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Abstract

Blockchains have come a long way since the introduction of Bitcoin in 2008. Cryp-

tocurrencies have become a household name as more people and even countries

see the appeal in a secure decentralized ledger capable of processing monetary

transactions and executing programs. Yet, one of the drawbacks of such decentral-

ized systems is their lack of scalability. Hence, blockchains are unfortunately not

ready to replace the existing financial system or cost-effectively execute programs.

One class of solutions, proposed to tackle these limitations, are off-chain protocols.

These protocols shift the communication away from the blockchain, by allowing

parties to mostly communicate directly with each another. This direct communica-

tion is also referred to as off-chain communication. Probably the most well-known

off-chain solution developed to date are Payment Channel Networks (PCNs). PCNs

allow parties to make monetary transactions off-chain. Recently, more advanced

off-chain solutions such as virtual channels, state channels and Plasma protocols

have been developed for the Ethereum blockchain. These solutions allow making

payments with improved efficiency and even executing programs (called smart

contracts) off-chain. However, they rely on the fact that the Ethereum blockchain

can execute Turing complete smart contracts, and it was unclear if one can build

such protocols over more restricted blockchains such as Bitcoin.

In this thesis, we start by showing that virtual and state channels can be built

over Bitcoin and similar blockchains. First, we present a new channel solution

called generalized channels over Bitcoin. Generalized channels are comparable to

state channels over Ethereum, i.e., generalized channels allow parties to execute

applications off-chain that are supported by the underlying blockchain. In order to

design generalized channels, we formalized a new primitive called adaptor signatures

for the first time and show that Schnorr and ECDSA instantiations of this primitive

are secure in our model. We then show that virtual channels can also be built

over Bitcoin and Bitcoin-like blockchains. Virtual channels improve the efficiency

of PCNs by reducing the communication needed for making off-chain payments.

We further analyze the security of our protocols in the Universal Composability

framework of Cannetti.

We continue by extending our adaptor signature formalization and model two-

party adaptor signatures. This extension helps improve the efficiency of our
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generalized channel construction. We provide two generic transformations that allow

us to instantiate single and two-party adaptor signature schemes from signature

schemes built from identification schemes that satisfy certain properties. We show

that the Schnorr, Katz-Wang, and Guillou-Quisquater signature schemes satisfy

the necessary properties required by our transformations and can generically be

transformed into single and two-party adaptor signatures. Finally, we show that

it is impossible to transform unique signatures schemes such as BLS into adaptor

signature schemes.

After showing how to instantiate generalized and virtual channels over more

restricted blockchains such as Bitcoin, we turn our attention to an alternative

off-chain protocol called Plasma. In this solution, a single operator is responsible

for updating parties’ balances off-chain according to their transactions. On a high

level, there are two classes of Plasma protocols, Plasma Cash and Plasma MVP,

each with its advantages and disadvantages. Many in the Ethereum community

focused on building a protocol that inherits the best properties of both classes

without suffering from their disadvantages. We show that it is impossible to build

a protocol that achieves the best of both worlds. Put differently, there is an

inherent separation between Plasma Cash and MVP. This result can also be seen

as “bringing order” to the huge landscape of Plasma protocols discussed in the

Ethereum community. We further provide a formal model for Plasma protocols

and also present instantiations of Plasma Cash and MVP that are secure in our

model.

Finally, we conclude this thesis by presenting CommiTEE, an efficient yet simple

Plasma protocol using a Trusted Execution Environment (TEE). A TEE is a piece

of hardware that guarantees the correct execution of programs and secure storage

of secret values. We only require the operator to have access to a TEE, and hence

the end users are not burdened with purchasing expensive equipment. Our protocol

removes many of the drawbacks seen in other Plasma constructions and offers a

practical solution for real-world usage.
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Zusammenfassung

Seit der Einführung von Bitcoin im Jahre 2008 hat sich um das Thema blockchain

sehr viel getan. Kryptowährung wurde ein bekannter Begriff, insbesondere da mehr

und mehr Menschen und sogar ganze Länder den Reiz eines sicheren dezentralen

Verzeichnisses erkennen, das in der Lage ist finanzielle Transaktionen und komplexe

Programme auszuführen. Allerdings leiden solche dezentralen Systeme nach wie vor

an mangelnder Skalierbarkeit. Daher sind blockchains auch weiterhin nicht bereit,

existierende finanzielle Systeme zu ersetzten oder eine kosteneffiziente Rechen-

plattform zu liefern. Eine Klasse an Lösungen, welche die Skalierbarkeitsproblem

angehen, sind sogenannte off-chain Lösungen. Diese Protokolle reduzieren die Kom-

munikation mit der blockchain, indem sie es Parteien ermöglichen hauptsächlich

direkt miteinander zu kommunizieren. Eine solche Kommunikation wird als off-

chain Kommunikation bezeichnet. Die bisher wahrscheinlich bekannteste off-chain

Lösungen sind Payment Channel Networks (PCNs). PCNs erlauben es Parteien

finanzielle Transaktionen off-chain auszuführen. In den letzten Jahren wurden

weitere und fortgeschrittenere off-chain Lösungen für die Ethereum blockchain

entwickelt, wie beispielsweise Virtual Channels, State Channels und Plasma Pro-

tokolle. Diese Technologien ermöglichen effizientere off-chain Zahlungen und die

off-chain Ausführung von komplexeren Programmen, sogenannten Smart Contracts.

Allerdings verlassen sich diese Protokolle auf die Tatsache, dass die Ethereum

blockchain Turing-vollständige Smart Contracts ausführen kann. Bisher war es

unklar, ob solche Protokolle auch für eingeschränktere blockchains, sowie Bitcoin,

entwickelt werden können.

Wir beginnen diese Thesis, indem wir zeigen, dass Virtual und State Channels

auch auf Bitcoin und vergleichbaren blockchains aufgesetzte werden können. Zuerst

präsentieren wir eine neue auf Bitcoin aufsetzende Channel Technologie, die wir

Generalized Channels nennen. Generalized Channels sind mit State Channels

auf Ethereum vergleichbar. Das bedeutet, sie erlauben die off-chain Ausführung

jeglicher Programme, die auch von der darunter liegenden blockchain unterstützt

werden. Als Baustein für unsere Generalized Channels führen wir eine neue Primi-

tive ein, welche Adaptor Signaturen genannt wird. Wir formalisieren diese Primitive,

zeigen dass sie basierend auf Schnorr und ECDSA instanziiert werden kann, und

beweisen die Sicherheit der Instanziierungen in unserem Modell. Anschließend
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zeigen wir, dass auch Virtual Channels auf Bitcoin und ähnlichen blockchains

aufgesetzt werden können. Virtual Channels verbessern die Effizienz von PCNs,

indem sie die für off-chain Zahlungen notwendige Kommunikation reduzieren. Wir

analysieren und beweisen die Sicherheit unserer Protokolle in Canettis Universal

Composability Framework.

Im nächsten Teil der Thesis erweitern wir die Formalisierung von Adaptor

Signaturen und modellieren eine Variante der Primitive für zwei Parteien. Mit dieser

Erweiterung verbessern wir die Effizienz unserer Generalized Channel Konstruktion.

Anschließend stellen wir zwei generische Transformationen vor, welche es uns

ermöglichen die Einparteien- beziehungsweise die Zweiparteienvariante der Primitive

zu instanziieren. Ausgangspunkt der Transformationen sind Signaturverfahren,

die auf Identifikationsverfahren basieren und bestimmte Eigenschaften erfüllen.

Wir zeigen, dass Schnorr, Katz-Wand und Guilou-Quisquater Signaturverfahren

die von unseren Transformationen benötigten Eigenschaften erfüllen und damit

generisch in die Einparteien- und Zweiparteienvariante der Adaptor Signaturen

transformiert werden können. Abschließend beweisen wir, dass es unmöglich ist

eindeutige Signaturverfahren, wie beispielsweise BLS, in Adaptor Signaturverfahren

zu transformieren.

Nachdem wir gezeigt haben, wie Generalized und Virtual Channels auf

eingeschränkten blockchains wie Bitcoin aufgesetzt werden können, wenden wir

unsere Aufmerksamkeit einem alternativen off-chain Protokoll namens Plasma zu.

In Plasma ist eine einzige Partei, der Operator, dafür zuständig das Guthaben aller

beteiligten Parteien off-chain basierend auf den Transaktionen im System zu up-

daten. Plasma Protokolle können grob in zwei Kategorien mit unterschiedlichen Vor-

und Nachteilen eingeteilt werden, Plasma Cash und Plasma MVP. Die Ethereum

Community investierte viel Aufwand darauf ein Protokoll zu entwickeln, welches

die Vorteile beider Klassen kombiniert ohne unter den jeweiligen Nachteilen zu

leiden. Wir zeigen, dass dies unmöglich ist, oder in anderen Worten, dass es eine

inhärente Trennung zwischen Plasma Cash und MVP gibt. Dieses Ergebnis hilft

die riesige Menge an unterschiedlichen Plasma Protokollen etwas weiter zu ordnen.

Zusätzlich stellen wir ein formales Modell für Plasma Protokolle auf und präsen-

tieren Instanziierungen von Plasma Cash und MVP, welche in unserem Modell

sicher sind.

Wir schließen die Thesis mit der Vorstellung von CommiTEE ab, einem effizienten

aber einfachen auf Trusted Execution Environments (TEE) basiertem Plasma

Protokoll. Eine TEE ist ein Hardware Element, welches die korrekte Ausführung

von darin laufenden Programmen und sichere Speicherung deren Werten garantiert.

In unserem Protokoll muss nur der Operator Zugriff auf eine TEE haben. Es

ist nicht notwendig, dass die Nutzer sich zusätzliche teure Ausrüstung zulegen.
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Durch das beseitigen vieler der bisherigen Nachteile von Plasma Protokollen, bietet

CommiTEE eine praktische Lösung für Echtweltanwendungen.
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1. Introduction

The introduction of Bitcoin by Satoshi Nakamoto in 2008 [132] initiated a new

branch of financial products called Cryptocurrencies. Bitcoin put forth an innovative

approach, called blockchain, to instantiate a public ledger where parties can make

monetary transactions in a secure and decentralized way. One of the main goals

of Bitcoin is to make monetary transfers more accessible by removing financial

institutes as the middlemen who charge astronomical fees and can even refuse

to process certain transactions. Instead, Bitcoin relies on a large set of parties

operating in an open peer-to-peer network to maintain a public ledger. The role

of these maintainers, often called miners, is to gather users’ transactions, verify

their authenticity (using digital signatures) and validity according to a clear-cut

set of rules. These transactions are then accumulated in a new block of fixed size

and proposed to the network. As the name suggests, a blockchain is nothing but a

list of blocks that are “chained” together via a cryptographic process executed by

the miners. This process creates an immutable, append-only, public list of blocks

that can be used to emulate the role of a financial institute such as a bank. To

compensate these miners for their effort, they receive some fees directly from the

users who are making transactions.

Bitcoin’s implementation was released to the public in 2009 when the financial

markets were suffering from the 2008 housing crisis. This made Bitcoin emerge

as a reliable alternative, compared to the failing financial institutes. Although

at the beginning it only gained the attraction of a few, Bitcoin quickly became

very well-known. After its success, many new blockchains were built and deployed,

examples of which can be found in [22, 92, 178]. According to one estimate [119],

there are more than 10000 tradable cryptocurrencies in circulation today. The most

prominent blockchain after Bitcoin is Ethereum [178]. While Bitcoin aims to be the

“world’s decentralized bank”, Ethereum’s goal is to be the “world’s decentralized

computer”. More precisely, Ethereum allows parties to execute Turing complete

programs called Smart Contracts over the blockchain. This makes Ethereum quite

suitable for executing programs in a decentralized and secure way. Naturally,

parties need to compensate the miners for executing the programs by paying them

fees according to the complexity of the program being executed.

The main difference between Bitcoin and Ethereum is in their transaction systems.
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Bitcoin uses the Unspent Transaction Output (UTXO) model. Intuitively, in the

UTXO model money is transferred from an unspent transaction to a new unspent

transaction. On a high-level the transactions in this model form a directed acyclic

graph. This transfer of money can also be conditioned on some event, e.g., the new

transaction must be digitally signed by a certain party. The spending conditions

of a UTXO transaction are also called scripts. Ethereum uses an account based

system where each user and smart contract has a balance. Parties can specify in

their transaction how much money they wish to send to another party or which

function of a smart contract they wish to call. Ethereum has a Turing complete

scripting language, and can execute arbitrary programs. By scripting language, we

are referring to the set of program instructions that the blockchain can process.

One of the main reason for using the UTXO transaction system is its simplicity and

security. There are countless examples where flawed smart contract code causing

users to lose their money on Ethereum. The most famous of these attacks is the

DAO hack [162]. The simplicity of UTXOs does not allow for the execution of

complex programs which in return results in much less critical bugs.

One might ask: Can we employ blockchains to process daily monetary transac-

tions or to execute complex programs? To answer this question, we first have to

understand how the blockchain is maintained in an open peer-to-peer network.

Virtually all blockchains use a consensus mechanism to guarantee that new

blocks are generated correctly and only contain valid transactions. There are

many approaches to reach consensus between the miners in a peer-to-peer network.

However, the most prominent method, which is used in Bitcoin, and also up until

recently in Ethereum, is Proof of Work (PoW) [58, 93]. In PoW, to propose a

new block (of a fixed pre-determined size), a miner needs to solve a time- and

resource-consuming cryptographic puzzle. This results in Bitcoin and Ethereum

blockchains not being able to compete in terms of average transaction throughput

with other centralized payment systems. As an example, Bitcoin can on average

only process less than 7 transactions per-second [28, 29] but the Visa payment

system can process around 24.000 transactions per second [2].

There have been many proposals to improve the scalability of blockchains.

One line of work, also called layer-1 solutions, focuses on improving blockchains’

consensus mechanism. One example of such a proposal is Proof of Stake [16, 41, 47,

53, 105]. Another layer-1 scalability proposal is to split the set of total transactions

submitted to the network into smaller chunks called shards. Each shard is then

processed by a subset of the miners which can increase blockchain’s transaction

throughput [5, 108, 111, 116, 176, 180]. Implementing layer-1 solutions however,

requires changing the consensus mechanism of the underlying blockchain. Yet

in a decentralized cryptocurrency, some miners might simply disagree with the
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proposed changes and continue using the old procedures. This would split the

cryptocurrency into two (incompatible) cryptocurrencies, one following the new

consensus mechanism and another one following the old one. As an example, some

members of the Bitcoin community proposed increasing the size of each block. Yet,

many miners disagreed with this change. This split the currency into two parallel

blockchains. Those miners who agreed with this change created Bitcoin Cash [27].

As changing the consensus mechanism of a blockchain is a hard and lengthy pro-

cess, a new line of solutions, called off-chain protocols or layer-2 solutions, emerged.

The main idea here is to shift the communication away from the blockchain and

instead allow parties to mostly communicate privately. We denote the communica-

tion made with the blockchain by on-chain and the private communication between

parties without involving the blockchain is called off-chain. This approach not only

reduces the amount of data that the underlying blockchain needs to process and

reach consensus on, but also reduces the amount of fees parties have to pay, which

makes blockchains more accessible. The main difficulty of designing off-chain proto-

cols is achieving similar security guarantees compared to when parties communicate

directly with the blockchain.

Due to the importance of off-chain protocols, our main research questions in this

thesis are:

1. Can we instantiate off-chain solutions deployed over more capable blockchains,

i.e., Ethereum, on more restricted blockchains such as Bitcoin?

2. Do some of the more recent (and publicized) off-chain proposals suffer from

inherent limitations?

Let us first briefly summarize the most prominent off-chain solutions.

1.1. Off-Chain Solutions Overview

We divide off-chain solutions into two main categories: (1) Channels, and (2) Plasma

(Commit-Chain) protocols. Let us give a brief overview of each category.

1.1.1. Off-Chain Channels

One can view a payment channel as a direct line of credit between two parties. The

parties can update the coin distribution in this channel many times and eventually

report the final result to the blockchain. We first start by explaining the concept

of (simple) payment channels and then show how this concept can be extended

into more complex payment mechanisms.
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Simple Payment Channels. The first and by far most widely studied category

of off-chain solutions is payment channels [54, 89, 152, 163]. In a nutshell, parties

create a channel by “blocking” their coins on-chain. They can afterwards update

the distribution of coins in this channel off-chain. Let us elaborate more via an

example. We will build on this example throughout this section to motivate the

solutions and point out their drawbacks. Assume Alice buys a cup of coffee every

day and wishes to pay the shopkeeper Bob via a blockchain. As she makes recurring

payments to Bob, she can avoid making an on-chain transaction every day by

opening a payment channel with Bob and locking, say 10$ worth of coins, in this

channel. Every day, Alice and Bob update the state of the channel and reduce

Alice’s, and increase Bob’s balance accordingly. Eventually, they can close their

channels via an on-chain transaction and make the final payout.

Let us now summarize the main advantages of this solution: (a) Alice and Bob

only have to make 2 on-chain transactions (one for opening and one for closing

the channel) regardless of how many times they wish to make off-chain payments,

and (b) the payment is instantaneous, i.e., upon the state being updated, both

parties know that they can get the payout on-chain. Yet in this solution, Alice’s

locked coins can only be used for paying Bob. In other words, if she wishes to visit

multiple coffee shops, she needs to open multiple channels and lock coins in all

these channels. Payment Channel Networks (PCNs) were introduced in order to

overcome this drawback.

Payment Channel Networks. It is clear that opening a new channel between

all pairs of parties who wish to make a payment is financially not feasible. Yet,

the parties who have already opened a channel with each other form a network

or graph. The vertices of this graph represent the parties and the edges are the

channels between these parties. The idea of a Payment Channel Network is to

allow routing transactions between parties in this graph. By doing so, it would no

longer be necessary to open a new channel between each pair of parties who wish to

make off-chain transactions. Alice in this scenario can make payments to any other

coffee shop as long as she can find a path in the graph and route her transaction.

This improves the “pure” channel solution as it does not require parties to build

multiple channels to pay multiple parties off-chain. As a consequence, parties

do not need to lock coins multiple times for each payment channel. Examples

of PCNs are the Lightning network [152] over Bitcoin and the Raiden network

over Ethereum [155]. Nevertheless, this solution also has its own drawbacks. To

elaborate more, assume Alice wishes to pay Bob but needs to route her transaction

through Charlie and Dave as shown in Fig. 1.1. Although Alice has 10 coins in

her channel with Charlie, she can at most pay 3 coins to Bob. This is because
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Dave only has 3 coins in his channel with Bob. In general, routing a transaction

in a PCN is far from trivial. Even worse, some intermediaries might simply

refuse to route transactions. Furthermore, the intermediaries do not simply route

transactions out of the kindness of their hearts, they usually request some fees from

the sender/receiver. Although lower than the on-chain fees, this cost factor needs

to be considered when routing a transaction. One natural consequence of these

Alice

10Initial Balance:

Charlie

9Updated Balance:

5 5

6 4

Dave

2 3

3 2

Bob

0

1

α β λ

pay 1

Figure 1.1.: A PCN with three ledger channels α, β and λ. In this example, Alice
sends 1 coin to Bob.

drawbacks is the emergence of a few hubs with whom most parties are connected.

Payment Channels Hubs (PCHs) [60, 85, 90, 169], allow parties to simply open

a channel with a hub and rout all transactions via this hub. Although having

a centralized party to make payments is undesirable, PCHs almost completely

circumvent the issues caused via complex routing algorithms in PCNs. Overall

PCNs and PCHs have two common drawbacks: (a) the intermediaries need to be

online for each transaction they route, and (b) the intermediaries need to lock

quite a huge amount of coins in each channel in order to facilitate transactions.

The money that an intermediary needs to lock in order to route payments is also

called collateral. The second drawback is somewhat inherent to the fundamental

idea and approach behind payment channels. Hence, a completely new off-chain

solution (i.e., Plasma or Commit-Chain which we will explain later) was developed

to overcome it. However, the first drawback can be solved via a concept called

virtual channels which we will explain next.

Virtual Channels. The main idea of a virtual channel can be summarized as an

off-chain channel built over other off-chain channels. Let us continue with our

example. Consider a scenario where Alice and Bob both have a channel with Ingrid.

A virtual channel is a direct channel between Alice and Bob that does not require

Ingrid to route transactions and update the state of the channel. More precisely,

Alice, Ingrid, and Bob first run a protocol to open a “virtual” channel between Alice
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and Bob (see Fig. 1.2 for a pictorial illustration of a virtual channel). Afterwards,

Ingrid no longer needs to route transactions and Alice and Bob can update the

state of this channel independently. Eventually, Alice and Bob close their virtual

channel and their balances are updated accordingly in their channels with Ingrid.

The idea behind virtual channels was first introduced in [60]. However, the solution

in [60] requires the underlying blockchain to be able to execute Turing complete

smart contracts. An extension of payment and virtual channels allow parties to

execute smart contracts off-chain. This type of channels are called state channels.

Alice Ingrid Bobα β

γ

Figure 1.2.: A virtual channel γ built over ledger channels α, β.

State Channels. The concept of state channels was first introduced for channels

executed over the Ethereum blockchain. State channels allow parties to not only

make payments off-chain, but also execute smart contracts. As an example, if Bob

wishes to determine the price of Alice’s coffee based on the type and size of the

order, he can use a smart contract to charge Alice accordingly. By using a state

channel they can execute this smart contract off-chain. Using state channels would

save parties huge amounts of fees as they do not need to submit any transactions

on-chain in order to execute the smart contract. State and virtual state channels

were first formalized in [63]. In [59], the authors extended the previous work to build

multi-party (virtual) state channels, i.e., channels where more than two parties can

make payments or execute smart contracts. However, virtual channels and state

channels introduced in [59, 60, 63] require the underlying blockchain to support

executing Turing complete programs. It was unknown (until our work) if one can

build virtual or state channels for blockchains with more limited capabilities such

as Bitcoin.

Security Proofs

To guarantee that off-chain protocols are secure and parties do not lose their coins,

one must exhibit a security proof. This proof must guarantee that an honest

party does not lose his or her coins even if all other parties are malicious and

collude with each other. The golden standard for proving the security of off-chain

protocols, especially channel solutions, is the Universally Composability (UC)
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framework [43, 44]. In UC, one must prove that the execution of the protocol is

indistinguishable from the ideal behavior that is expected from the protocol, even

if some of the parties behave maliciously. The ideal behavior expected from the

protocol is defined via a so-called ideal functionality. More precisely, it must be

impossible for the malicious parties to force an outcome that is not captured in

the ideal functionality. Another approach for proving the security of cryptographic

primitives and protocols is the game-based approach. Here, one or more bad events

are defined in an experiment (also called game). The security proof in this case

involves showing that these bad events cannot happen i.e., the adversary cannot

win the games. While game based proofs are mainly used for primitives such as

digital signatures, UC is used to prove the security of complex protocols. Protocols

proven secure in the UC framework can be easily composed with each other and

the composed protocol would still remain secure.

Channel Solutions Summary. To summarize, off-chain channels can reduce the

cost of making payments and even executing applications for users. However, we

identify the following two drawbacks: (a) some of the more advanced solutions

such as virtual and state channels are only available on Ethereum, as they rely on

complex operations that are not supported on more restricted blockchains such as

Bitcoin, and (b) the total amount of collateral needed to facilitate payments via

PCNs and PCHs is rather high.

1.1.2. Plasma/Commit-Chain Protocols

Plasma (later called Commit-Chain in the literature) was first proposed by Poon

and Buterin [151] as an alternative off-chain solution. The main goal of this solution

is to reduce the amount of collateral needed for a hub when routing transactions.

Let us first calculate the amount of collateral needed in the PCH solution for a

simple scenario. Assume that Alice is connected to a hub called Ingrid and wishes

to make transactions freely and without any restrictions with all other parties

connected to Ingrid. If there are in total n parties connected to this hub, where

party i has a balance of ci in his or her channel with Ingrid, Ingrid must have∑
i∈{1,··· ,n}\ia ci coins in her channel with Alice alone (ia is Alice’s index in the set

of n parties). Therefore, in practice, no hub has enough coins locked to facilitate

arbitrary transactions between parties. Hence, at some point the hub’s channels

would be depleted. When Ingrid’s balance in Alice’s channel is depleted, Alice

can no longer receive any coins. She must either first spend some coins such that

Ingrid’s balance increases or close this channel on-chain and open a new channel

with Ingrid. Alternatively she can find a new path in the PCN. However, none of

these solutions are ideal.
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On a conceptual level, one can allot this high collateral requirement to the fact

that payment channels were originally designed for two parties only. More precisely,

parties can only transfer the coins that they indeed have locked in the channel

to each other. As PCHs are just an extension of normal payment channels, the

intermediary must have enough balance in all her channels to facilitate the transfer

of coins. Yet, the role of an intermediary is mainly to “move money around”, similar

to what we have in normal financial systems. Poon and Buterin [151] proposed

a compromise, namely to sacrifice the instant finality of the channels in order to

remove/reduce the amount of collateral. Their main idea is that the intermediary,

who is called the operator in this setting, gathers the transactions of all the users

connected to it and periodically updates the balances of the parties. Naturally, one

requires a complex mechanism to prevent a malicious operator from stalling the

system by going offline or incorrectly updating the balances of the parties.

Upon explaining their initial idea, the Ethereum community came up with

proposals on how to build Plasma protocols [38, 40, 102, 129, 131, 142, 144, 174].

However, the community failed to construct an efficient solution inheriting the

best properties of all proposals. To make matters worse, most of the proposals

were simply discussed over the Ethereum research forum and lacked formalism [76].

Therefore, analyzing them became a tedious task.

Rollups. After the introduction of Plasma protocols, the community moved to a

new proposal called Rollups, first proposed by Barry Whitehat [177]. This solution

can be seen as a combination of layer-1 and layer-2 solutions as it is not a fully

off-chain solution. In Rollups, the operator gathers the transactions and posts

all of them on-chain, in the most compact form possible, e.g., the signatures for

these transactions are not posted on-chain. However, the blockchain does not

verify these transactions, it only stores them for a short period of time to make

sure that all parties can see the list of transactions sent to the operator. This

makes sure that the operator cannot keep some parties in the dark. There are

two general classes of Rollups, (a) Optimistic-Rollups, and (b) ZK-Rollups. In

Optimistic-Rollups, the operator periodically publishes the raw transaction data.

Hence, the operator can post invalid transactions, e.g., by allowing parties to spend

more coins than they actually own, or posting a transaction that was never signed

by the sender. To deal with a malicious operator, the parties need to challenge the

operator on-chain in case they detect any misbehavior. Examples of Optimistic-

Rollups are Arbitrum and Optimism [98, 139]. ZK-Rollups, first introduced in [39,

177], take a different approach and use a cryptographic primitive called Succinct

Non-Interactive Argument of Knowledge (SNARK). For simplicity, the community

sometimes calls this primitive zero-knowledge proof. A SNARK enables a prover to
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convince a verifier that a statement is true in a succinct way. Ideally, the amount

of data that the prover needs to send to the verifier is independent of the statement

being proven. Such proof systems can even show that a certain program was

executed correctly on some input [23]. In ZK-Rollups, the operator is prevented

from behaving maliciously by providing such a proof. In a nutshell, the operator

generates a proof to convince the blockchain that the raw data posted on the

blockchain only consists of valid transactions. Naturally, if the operator is honest,

optimistic-Rollups are more efficient than ZK-Rollups since the operator does not

need to compute a SNARK when posting the information on-chain. However, if

the operator cheats, parties need to make on-chain transactions to challenge him

or her. This can be undesirable since parties have to pay fees to make on-chain

transactions. Hence, choosing between ZK- and optimistic-Rollups depends on the

use case and how trustworthy the operator is. We note that compared to Plasma

protocols, Rollups are simpler to design as the raw transaction information is indeed

posted on-chain. In Plasma protocols, this is not the case and the operator posts

the transactions made by the parties only off-chain. This makes designing secure

Plasma protocols much more difficult as the operator can simply stop sending the

list of transactions to the users.

1.2. Contribution and Thesis Outline

Our goal in this thesis is to analyze both channel and Plasma/Commit-Chain

solutions, explore the minimal requirements for building them, and at the same

time expose their limitations. The organization of this thesis is as follows:

Chapter 2 As mentioned before, it was not clear if off-chain solutions such as

state and virtual channels can be built over blockchains such as Bitcoin that do

not support smart contracts and can only execute limited operations called scripts.

In Chapter 2, we present the works, [11] and [12]. First, we introduce Generalized

Channels, an extension to normal payment channels that support off-chain execution

of scripts that are supporter by the underlying blockchain. Hence, state channels

can be seen as a special case of generalized channels that are only designed for

blockchains with a Turing complete scripting language. Our generalized channel

construction uses a new primitive called Adaptor Signatures. We provide the first

standalone formalization of adaptor signatures and prove that the single-party

constructions of adaptor signatures from Schnorr [158] and ECDSA [94] are secure

in our model. Our solution is also much more efficient than the state-of-the-art

payment channel solution over Bitcoin, namely the Lightning channel [152], both

in terms of off-chain and on-chain communication complexity.
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After successfully showing how to build generalized channels, in [12] we show

how to use them in order to build (generalized) virtual channels on blockchains that

only support a limited scripting language, such as Bitcoin. We note that building

virtual channels over Bitcoin was an open problem as previous solutions used Turing

complete smart contracts in order to build virtual channels. We further evaluate

our virtual channel protocol and compare it with the existing PCN solutions. For

n sequential payments, our solution only requires exchanging 9 + 2n transactions

off-chain, which results in 3524+695n bytes. Routing a payment in a PCN requires

exchanging 8n transactions which results in a total of 3026n bytes. Hence, after

the first payment, our solution would become much more efficient than the existing

PCN protocols.

We model both protocols from [11, 12] in the UC framework and argue the

security of our constructions in this model.

Chapter 3 As mentioned before, we use adaptor signatures to instantiate gen-

eralized and virtual channels over Bitcoin. However, in [11] we only formalized

the single-party adaptor signatures. Yet as we will see later in Chapter 3, one

could improve the efficiency of our generalized channels protocol if two parties

could jointly generate an adaptor signature. Furthermore, it was unclear until our

work if signature schemes other than ECDSA and Schnorr can be transformed into

adaptor signatures. In Chapter 3, we present the paper [70]. We provide the first

formalization of two party adaptor signature schemes and show how to generically

build single and two-party adaptor signatures, via (almost) generic transformations

from signature schemes built from identification schemes [106] (which we denote by

SIGID). We further prove that it is impossible to build adaptor signature schemes

from unique signatures. Unlike [106], our transformations are not fully generic,

i.e., the underlying SIGID schemes must satisfy certain properties to be compatible

with our transformations. Nevertheless, we show that Schnorr, Katz-Wang, and

Guillou-Quisquater signatures [87, 101, 159] satisfy these properties.

Chapter 4 In this chapter, we focus on Plasma protocols and present our paper [62].

In this work, we “bring order” to the huge landscape of Plasma protocols and

analyze their limitations. We provide a model for Plasma protocols and categorize

them into fungible Plasma also called Plasma MVP [38], and non-fungible Plasma

also called Plasma Cash [40]. We also show how Plasma MVP and Cash protocols

can be instantiated and proven secure in our model. In non-fungible Plasma

protocols, parties own and exchange unique tokens. This means a party who wishes

to leave the system must withdraw each token separately on-chain which increases

the total communication cost needed with the blockchain. On the other hand in

fungible Plasma parties have a single balance and can withdraw all their balance
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with one on-chain transaction. Yet, this class of protocols requires a more complex

design to prevent a malicious operator from stealing parties’ coins. In Plasma MVP,

if the operator is malicious, honest parties have to challenge him or her on-chain in

time to prevent the operator from stealing their coins.

In the Ethereum community, many have tried to design the best of both protocols.

We show that there is an inherent separation between these classes of protocols. In

other words, to prevent a malicious operator from stealing parties’ coins, either:

(a) all honest parties have to communicate a lot with the blockchain, even though

they did not intend to, or (b) when parties wish to exit their coins and use

them on-chain, they need to communicate a lot with the blockchain. The first

case happens in Plasma MVP where honest parties have to challenge a malicious

operator. The second case happens in Plasma Cash where each token has to be

withdrawn separately. Put differently, our results shows that one cannot build a

Plasma protocol that has the best properties of Plasma MVP and Cash and does

not suffer from their disadvantages.

Chapter 5 In the final work presented in this thesis [72], we design an efficient

Plasma protocol called CommiTEE by using a Trusted Execution Environment, or

TEE for short. A TEE is a chip (usually embedded in a CPU) that guarantees

correct execution of the programs that it runs. We only assume that the operator

has access to the TEE while the end users who wish to make off-chain transactions

do not need to have one. By using a TEE, we build a fungible Plasma protocol that

is much simpler than the existing proposals. Furthermore, our protocol requires

minimal interaction with the blockchain, which drastically reduces the cost of

executing our protocol. We also show that our solution can be extended to allow

(a) changing the operator, i.e., if the main operator behaves maliciously or crashes,

and (b) detecting if the TEE was compromised. Our experimental implementation

over Ethereum shows that CommiTEE is at least 2 times (and in some cases more

than 16 times) cheaper in terms of communication complexity compared to existing

Plasma implementations. Furthermore, compared to NOCUST-ZKP [102], which

uses zero-knowledge proofs (instead of TEEs) to guarantee the correct execution of

programs, CommiTEE decreases the on-chain costs by a factor of ≈ 19.
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2. Bitcoin Compatible Generalized
and Virtual Channels

As already mentioned in the introduction, blockchains do not scale. This is mainly

due to the decentralized nature of blockchains and the fact that executing a

consensus algorithm among many parties in a peer-to-peer network is time and

resource consuming. This makes blockchains less likely to be widely adopted.

Off-chain protocols add a new layer on top of the existing blockchain (i.e., layer-1 )

to achieve better scalability. Although there are many different off-chain solutions

such as [20, 86, 95, 176], payment channels [30, 55, 152] are the most prominent

ones. The life cycle of payment channels can be divided into three phases. First,

parties make an on-chain transaction to “lock” their coins and open a channel.

Afterwards, they can make transactions off-chain by updating the distribution of

coins in their channel. The state of a channel determines how the coins should be

distributed between the parties. Parties usually need to exchange digital signatures

on this new state to indicate that they agree with the update. Finally, parties close

the channel by posting the latest state of the channel on-chain. Hence, a payment

channel allows two parties to update the coin distribution of the channel without

requiring parties to make on-chain transactions. The main challenge of designing

payment channels is making sure that parties can only close their channel in its

latest state and according to the final coin distribution.

Recall that the Ethereum blockchain can execute Turing Complete programs.

This makes building applications such as payment, state and virtual channels [59,

63, 126] much easier over Ethereum, compared to a more restricted blockchain

such as Bitcoin. For example, on Ethereum a smart contract can store multiple

values, or compare integers and make payments to parties according to its logic.

This is quite useful to compare different states of a channel and identify the newer

state using a version number. Hence, if a malicious party tries to close the channel

by posting an outdated state, the honest party can submit the latest state and

the blockchain can determine which state is more recent by comparing the version

number of these states. This approach is not possible over Bitcoin. To understand

Bitcoin’s restrictions, we first give some background and explain how transactions

on Bitcoin look like. Furthermore, we show how Lightning payment channels, the
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most widely used payment channels over Bitcoin, are built.

2.1. Preliminaries

Digital Signatures. A digital signature scheme allows a party to validate the

authenticity of a message. More precisely, a digital signature scheme is a triple of

algorithms Σ = (Gen, Sign,Vrfy). Gen(1n) is a Probabilistic Polynomial Time (PPT)

algorithm that on input the security parameter 1n outputs a secret and public

key pair (sk , pk). On a high-level, the security parameter roughly indicates how

long the keys have to be. Signsk (m) is a PPT algorithm that on input a secret key

sk and a message m ∈ {0, 1}∗, outputs a signature σ. Finally, Vrfypk(m,σ) is a

Deterministic Polynomial Time (DPT) algorithm that on input a public key pk ,

a message m and a signature σ, outputs a bit b. We say that a signature scheme

is secure or Unforgable if no PPT attacker, called adversary, can forge a valid

signature on a fresh message (for which it has not seen any signatures before).

Hash Functions. On a high level, a hash function H : {0, 1}∗ → {0, 1}l is

a function that compresses its input. However, it should be difficult for a PPT

algorithm to find two inputs thatH maps to the same value. More precisely, no PPT

adversary can generate two (non-equal) values x1 and x2 such that H(x1) = H(x2).
For a more detailed definition and explanation on digital signatures and hash

functions we refer the reader to [100].

UTXO Transaction system. Bitcoin’s transaction system follows the Unspent

Transaction Output (UTXO) model. We use figures to show how transactions are

processed and used in our applications. As an example, Fig. 2.1 illustrates two

UTXO transactions. The transaction tx on the left-hand side is published on the

blockchain. This is illustrated by the double lined rounded frame. The transaction

tx′ on the right is not yet published on the blockchain and therefore has only a

single line rounded frame. Each transaction has a set of inputs and outputs. In this

model, coins are held in outputs of a transaction. In Fig. 2.1, tx has two outputs

one with the value x1 and the other with the value x2. tx′ on the other hand

has only one output (we have omitted the inputs in these figures for simplicity).

More precisely, an output θ is a tuple consisting of two elements (cash, φ), where

cash is the amount of coins associated to this output and φ specifies the spending

condition of this output. These conditions (also called scripts) must be satisfied

by the transaction that wants to spend this output. In other words, the spending

transaction must provide a witness, Witness, that satisfies the spending condition

in order to be able to spend this output. More formally, a transaction tx is a tuple

of the form (txid, In,Out,Witness). Let us go through each item one by one. txid is

13
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the unique identifier assigned to tx. It is generally computed by hashing the input

and output of tx, i.e., txid := H(In,Out). In is the list of tx’s inputs. Note that

these inputs are in fact outputs of other transactions. Hence, each element in In

identifies the transaction via its unique id and the index of the output. Out is a

list of outputs associated to tx, i.e., Out := [θ1, · · · , θn]. Witness is the witness that

allows tx to spend the inputs it has listed.

Let us now briefly talk about the spending conditions of the outputs of tx and

tx′. If the spending transaction must be signed w.r.t. a specific list of public keys,

say pk 1, · · · , pkn, this list is mentioned below the arrow coming out of the output,

e.g., the first output of tx must be signed by A w.r.t. pkA. We say that this output

“belongs” to A, or A is the owner of this output. The rest of the conditions are

mentioned above the arrow. The two main conditions that we are interested in are

hash-locks and time-lock. Hash-locks are shown by simply mentioning the value h

on top of the arrow and time-locks by +t over the arrow exiting an output. An

output with hash-lock value h can only be spent by a transaction that provides x,

where x is the preimage of h, i.e., H(x) = h. An output with time-lock value t can

only be spent after it was published on the blockchain for more than t rounds. We

use rounds as a unit of time in this work. A round is roughly equal to a second

and is the amount of time needed for a party to send a message to another party.

Finally, if an output can be spent under different spending conditions we use the

gray diamond symbol and multiple arrows exiting the same output, as depicted

in Fig. 2.1 for tx′.

tx

x1

x2

h

pkA

+t

pkA, pkB

tx′ x

φ1

φ2

φ3

Figure 2.1.: Two example transactions demonstrating our notations.

2.2. Lightning-Style Channels

Although there are many proposals on how to construct a payment channel on

Bitcoin, the most prominent and widely used channel network to date is the

Lightning network [152]. The main challenge of designing payment channels is

making sure that parties can only close their channel in its latest state and according

to the final coin distribution. Bitcoin’s scripting language does not allow comparing

multiple values. Hence, the approach used to build channels on Ethereum does not
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work over Bitcoin. Lightning style channels use a punishment mechanism to protect

against users who try to close the channel in an outdated state. In Lightning

channels, upon updating the coin distribution, parties exchange a secret value which

allows the other party to “punish” him or her in case this outdated state is posted

on the blockchain. We will now explain in more details how Lightning channels

work with the help of a pictorial illustration in Fig. 2.2. This figure illustrates the

transactions that can end up on the blockchain in a Lightning channel.

TXf
xA + xB

publishable by A

publishable by B

TXAc

xA

xB

TXBc xB

xA

spendable by B
knowing rA

spendable by A
knowing rB

pkA, pkB

pkB

+∆

pkA

hA

pkB

pkA

+∆

pkB

hB

pkA

Figure 2.2.: A Lightning style payment channel where Alice and Bob have xA and
xB coins respectively. The values hA and hB correspond to the hash
values of the revocation secrets rA and rB. ∆ is the upper bound for
the time needed to publish a transaction on a blockchain.

Opening the channel: When opening a channel, Alice and Bob need to post a

so called “funding transaction”, TXf, on-chain. TXf is funded by both parties, each

contributing xA and xB coins respectively to this channel. TXf can be spent by a

transaction signed by both parties. Before signing and publishing TXf, both parties

agree on the transactions that can spend TXf. Alice and Bob exchange signatures

on two transactions TXAc and TXBc which are called the “commit transactions”. These

transactions specify the coin distribution of the channel. More specifically, Bob

signs TXAc and sends it to Alice and Alice signs TXBc and sends it to Bob. Alice

sings TXAc locally and is the only party who can post it on-chain. Bob respectively

signs TXBc locally. Let us first see how TXAc distributes the xA + xB coins. Upon

Alice publishing TXAc , Bob can directly spend his xB coins. However, Alice can

only spend xA coins after ∆ rounds. Bob can also spend this output if he has the

preimage of the hash value hA, i.e., he knows rA such that hA = H(rA). We will

later elaborate more on why Bob can spend this output knowing rA. TX
B
c distributes
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the coins analogously. Note that when generating the commit transactions, Alice

and Bob choose rA and rB at random (without revealing them to the other party)

to calculate hA and hB used in the commit transactions.

Updating the channel: Alice and Bob first sign and exchange two new commit

transactions (with updated coin distribution and new hash values calculated as

h
′
A = H(r′A) and h

′
B = H(r′B)), similar to the process used during the creation of

the channel. Afterwards they exchange the pre-images of the hash values of the old

commit transactions. More specifically, Alice sends rA to Bob such that hA = H(rA)
and Bob sends rB to Alice where hB = H(rB). The process of exchanging these

pre-images are also called revocation of the commit transaction.

Closing the channel: To close the channel, either party can publish his or her

commit transaction.

Punishment: Let us elaborate more why Bob can spend the output with xA coins

in TXAc (see Fig. 2.2). When updating this channel, parties sign and exchange new

commit transactions. They furthermore invalidate the old state by exchanging the

pre-images of hA and hB. Now if Alice posts a revoked commit transaction, say

TXAc, to the blockchain, the parties must have exchanged the “revocation” secrets

for this transaction. In this case, rA must have been sent to Bob. Using rA, Bob

can spend the xA coins immediately. By doing so he gets all the coins in this

channel and hence he does not lose money regardless of the coin distribution in the

most recent state of the channel. Alice is punished for publishing a revoked TXAc.

Note that ∆ must be long enough to give Bob time to react and punish Alice. Put

differently, Alice should only be able to spend the xA coins after Bob had enough

time to punish her.

Lightning channels have two major drawbacks. Consider channels that support

executing multiple applications. As an example, assume Alice and Bob wish to

open new channels on top of the current channel, i.e., the output of the commit

transaction would fund a new funding transaction. This application might seem a

bit artificial, but virtual channels, which we will explain in Sec. 2.4, are an example

of channels being built on top of other channels. In this case, the commit transaction

would have multiple outputs for different applications that are being executed off-

chain, each with its own spending condition. For this use case, Lightning-style

channels suffer from the following drawbacks:

Revocation per Output. If we näıvely extend these channels to allow for the

execution of multiple applications, each application would require a separate

punishment mechanism. Hence, parties have to store a revocation secret for each

application. In case an outdated commit transaction is posted, each application
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has to be punished separately, i.e., we have revocation per-application and not

per-channel. This increases the total communication with the blockchain.

Two Commit Transactions. Although having two commit transactions is not an

issue for simple payments, building applications on top of Lightning channels might

result in less efficient solutions. To realize the application mentioned above, parties

need to sign two funding transactions as they do not know in advance which of the

commit transactions would end up on-chain. Hence, to update the new channels

built on top the old channel, they need to repeat the update process two times,

once for each funding transaction.

Following the above discussion we asked ourselves the following questions:

1. Can we design a channel protocol for Bitcoin with only one commit transaction

and a single revocation mechanism per channel?

2. Is it possible to instantiate virtual channels over blockchains with limited

scripting language such as Bitcoin?

We answer both questions positively. First, we introduce Generalized Channels

in Sec. 2.3. These channels can execute (2-party) applications (that are supported by

the underlying blockchain) off-chain. Our instantiation of generalized channels only

has a single commit transaction and revocation mechanism per-channel. Afterwards,

in Sec. 2.4 we show how to build virtual channels on blockchains with a restricted

scripting language. Our work has been disseminated in the following two articles

and can be found in Appendix A and B:

[11] L. Aumayr, O. Ersoy, A. Erwig, S. Faust, K. Hostáková, M. Maffei, P. Moreno-

Sanchez, and S. Riahi. “Generalized Channels from Limited Blockchain Scripts

and Adaptor Signatures”. In: ASIACRYPT 2021, Part II. Ed. by M. Tibouchi

and H. Wang. Vol. 13091. LNCS. Springer, Heidelberg, Dec. 2021, pp. 635–664.

doi: 10.1007/978-3-030-92075-3_22. Appendix A.

[12] L. Aumayr, M. Maffei, O. Ersoy, A. Erwig, S. Faust, S. Riahi, K. Hostáková,

and P. Moreno-Sanchez. “Bitcoin-Compatible Virtual Channels”. In: 2021 IEEE

Symposium on Security and Privacy. IEEE Computer Society Press, May 2021,

pp. 901–918. doi: 10.1109/SP40001.2021.00097. Appendix B.

2.3. Our Contribution On Generalized Channels

In our parer [11], we answer the first question mentioned above. Let us first give

an intuition why we need two commit transactions in Lightning style channels.
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By having two commit transactions, it is easy to identify which party started the

closing procedure of the channel and can be potentially punished. Note that only

Alice can publish TXAc since Bob does not receive her signature on this transaction.

Respectively, only Bob can publish TXBc. Hence, to build a channel with only one

commit transaction, we need a mechanism to identify the party who has published

this commit transaction.

Although this might look impossible at first sight, we can achieve it using Adaptor

Signatures. We formalized this primitive for the first time and showed that adaptor

signature constructions from Schnorr [147, 148], and the single party variant of

the ECDSA proposal [141] (with some slight modifications), are indeed secure in

our model. We first give an overview on adaptor signatures in Sec. 2.3.1 and then

present the solution overview for our generalized channels in Sec. 2.3.2.

2.3.1. Adaptor Signatures

An adaptor signature is a primitive that ties together the authorization of a message

and the leakage of a secret value. Generally speaking, this primitive is used in

protocols with two parties, say Alice and Bob, where Alice has the signing secret

key skA and Bob has an instance of a hard relation, i.e., (y, Y ) ∈ R. Informally, R

is a hard relation if just given Y , it is difficult for a PPT algorithm to compute y.

Bob would like to have a signature on a message m under Alice’s secret key. Alice

on the other hand would like to make sure that if her signature is published by

Bob, she will learn Bob’s secret, i.e., y. Adaptor signatures allow Alice and Bob to

achieve this functionality. Given the secret key skA and the statement Y , Alice

can generate a pre-signature on the message m. A pre-signature is an incomplete

signature that would not verify under the signer’s public key. Bob can complete this

pre-signature using the witness y into a full signature. Alice can extract y given the

full signature that Bob generated and the pre-signature. Naturally, upon receiving

the pre-signature, Bob wants to be sure that he can indeed complete (or adapt) it

into a full signature using y. Alice on the other hand wants a guarantee that Bob

can only generate a signature on the message m. Furthermore, Bob should not be

able to generate this signature in a malicious way such that she cannot extract y.

More precisely, an adaptor signature is defined w.r.t. a hard relation R and

a signature scheme Σ = (Gen, Sign,Vrfy) and consists of four algorithms ΞR,Σ =

(pSign,Adapt, pVrfy,Ext) where:

pSignsk(m,Y ): outputs a pre-signature σ̃ on input a secret key sk , message m, and

statement Y .
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pVrfypk(m,Y, σ̃): on input a public key pk , message m, statement Y , and pre-

signature σ̃, outputs 1 if the pre-signature is valid and 0 otherwise.

Adapt(σ̃, y): outputs a signature σ on input a pre-signature σ̃ and witness y.

Ext(σ, σ̃, Y ): on input a signature σ, pre-signature σ̃ and statement Y , outputs a

witness y such that (Y, y) ∈ R, or ⊥.

We say that an adaptor signature scheme is correct, if given a pre-signature

σ̃ computed as σ̃ = pSignsk(m,Y ), a full signature σ generated by adapting σ̃,

i.e., σ = Adapt(σ̃, y), and (Y, y) ∈ R, the following conditions hold: (1) σ̃ is valid,

i.e., 1 = pVrfypk(m,Y, σ̃), (2) σ is valid, i.e., 1 = Vrfypk(m,σ), and (3) given

σ̃ and σ, it is possible to extract a correct witness y′ for the statement Y , i.e.,

(Y,Ext(σ, σ̃, Y )) ∈ R.

An adaptor signature must satisfy the following 3 security properties.

Existential Unforgeability This property is similar to the unforgeability of normal

signature schemes. It guarantees to the holder of the secret key that no PPT

adversary is able to forge a valid signature under this user’s public key on a fresh

message m, i.e., a message for which no signature was previously returned to

the adversary. However, in case of adaptor signatures, the adversary receives an

additional pre-signature on the message for which it wishes to forge a signature.

Pre-signature Adaptability This property guarantees to the receiver of a pre-

signature that regardless of how a pre-signature is produced, if it is valid, it can be

completed into a valid full signature. Put differently, an adversary cannot generate

a pre-signature maliciously such that pVrfy returns 1, but it cannot be completed

into a valid full signature. More precisely, consider a pre-signature σ̃ which is valid,

i.e., pVrfypk(m,Y, σ̃) = 1. Given the corresponding y (i.e., (Y, y) ∈ R), the full

signature generated as σ = Adapt(σ̃, y) must be valid as well, i.e., it must hold that

Vrfypk(m,Adapt(σ̃, y)) = 1.

Witness Extractability This property states that given a valid pre-signature σ̃

generated with respect to a message and statement pair (m,Y ) of the adversary’s

choice, he or she cannot forge a signature σ such that the corresponding y cannot be

extracted from the signature, pre-signature pair (σ̃, σ). This property guarantees to

the party who is generating the pre-signature that if a (malicious) receiver publishes

a valid full signature, he or she can indeed extract the witness.

We refer the reader to our full paper [11], in Chapter A, for the formal model,

Schnorr and ECDSA adaptor signatures constructions and proving that they are

secure in our model. We will explore adaptor signatures more in Chapter 3.
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TXf

xA + xB

publishable by
A, reveals yA

publishable by
B, reveals yB

TXc

xA + xB TXs ...

x1

xn

spendable by B
knowing rA, yA

spendable by A
knowing rB , yB

pkA, pkB

pkB , hA,YA

pkA, hB ,YB

+∆

pkA, pkB

φ1

φn

Figure 2.3.: A generalized channel with outputs ((x1, φ1), . . . , (xn, φn)). pkA de-
notes Alice’s public key, (hA, rA) her revocation public/secret values,
and (YA, yA) her publishing public/secret values (analogously for Bob).
The value of ∆ upper bounds the time needed to publish a transaction
on a blockchain.

2.3.2. Generalized Channels

We now use adaptor signatures to build channels with a single commit transaction

and revocation per-channel. We call these kind of channels Generalized Channels

as they can support efficient off-chain execution of arbitrary applications that the

underlying blockchain supports. Let us explain how generalized channels work by

going through the transaction flow depicted in Fig. 2.3.

Our main idea is to force parties to reveal a secret when posting the commit

transaction. This secret value can be used by the other party to punish him or

her if necessary. More precisely, to punish Alice, Bob needs to know two secret

values (1) the revocation secret rA, and (2) the witness yA (see the outputs of TXc
in Fig. 2.3). Knowing rA shows this state is revoked and knowing yA guarantees that

Alice was the party who posted the outdated commit transaction. rA is exchanged

similar to the Lighting-style channels during the update procedure of the channel.

On the other hand, yA is revealed by using adaptor signatures. Concretely, Alice

and Bob exchange pre-signatures on the single commit-transaction TXc with respect

to their statements YA and YB. If Alice wishes to post TXc, she needs to first adapt

Bob’s pre-signature σ̃B on TXc, to a full signature σB using yA. Therefore, when

publishing TXc Bob can extract yA as he knows both σ̃B and σB. Hence, unlike

Lightning channels, we do not need two commit transactions to identify the party

who posted the commit transaction and can potentially be punished.

We furthermore, decouple the applications and the punishment mechanism by

introducing a new split transaction TXs which contains all the outputs needed for

the applications being executed. This transaction can spend the output of TXc
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after ∆ rounds if no party has punished the other party. Therefore, generalized

channels have a single punishment mechanism per-channel and not per-application.

Let us now go through the creation, update, closing and punishment procedures

of a generalized channel. To create a generalized channel, Alice and Bob first

generate a statement witness pair, i.e., (yA, YA) ∈ R and (yB, YB) ∈ R. They further

randomly sample the revocation secrets and compute its hash value, i.e., (rA, hA)

and (rB, hB) where hA := H(rA) and hB := H(rB) and exchange hA, YA and hB, YB.

They then generate the TXf, TXc and TXs transactions using these exchanged values

according to the spending condition described before and depicted in Fig. 2.3. Just

like Lightning channels, before signing and posting the funding transaction, Alice

and Bob exchange signatures on TXs and pre-signatures on TXc. Finally, they sign

and post TXf on-chain.

To update the channel, parties only need to agree on new TXs and TXc transactions

and exchange signature/pre-signature on them similar to the process of creating

the channel. They further need to exchange their revocation secrets rA and rB
similar to Lightning channels. Now if say Alice wishes to close the channel, she

needs to complete Bob’s pre-signature using yA. Upon publishing TXc, Bob can

extract her secret yA as he has now both a full signature and pre-signature on TXc.

If the state is already revoked, i.e., Alice and Bob have exchanged rA and rB, Bob

can punish Alice by spending the output of TXc unilaterally. We now summarize

the security properties that generalized channels satisfy.

(S1) Consensus on creation: Both parties have to agree to create a channel.

(S2) Consensus on update: Both parties in the channel must agree to update

the state of this channel.

(S3) Instant finality with punish: The latest state of the channel can be reflected

back on the blockchain or if a party misbehaves and prevents the channel

from being closed in the correct state, this party is punished, i.e., the honest

party gets all the coins in this channel.

Our formal model, detailed protocol description, security proofs, and performance

evaluation can be found in the full version of our paper [11] (Appendix A).

2.4. Bitcoin Compatible Virtual Channels

In [12], we show for the first time how to build virtual channels over Bitcoin.

A Virtual channel allows two parties who both have a channel with a common
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intermediary, to make direct off-chain payments to each other without requiring

the intermediary to route the payments. We start with the challenges of designing

virtual channels over Bitcoin in Sec. 2.4.1. We then continue with an overview of

our solution in Sec. 2.4.2 and finally present our concrete instantiation in Sec. 2.4.3.

2.4.1. Challenges on Designing Virtual Channels Over Bitcoin

We now explain our idea on how to build virtual channels on a blockchain that uses

UTXO transaction system with a limited scripting language. To build a virtual

channel Alice, Bob and Ingrid update their channels, such that a new channel

between Alice and Bob can be created. In other words, the coins in the channels

between Alice, Ingrid and Bob, Ingrid, fund a new funding transaction for a channel

between Alice and Bob. Naturally, this new funding transaction is not posted

on-chain and is only kept off-chain between the parties.

There are two main challenges that we need to address when designing virtual

channels over Bitcoin. First, we need to ensure that the opening and closing

procedures of a virtual channel are atomic, i.e., either the state of both channels is

updated or none of them. This is necessary to guarantee that Ingrid does not lose

any coins. As an example, if Alice has received 10 coins from Bob in the virtual

channel, after closing the virtual channel, Ingrid’s balance in her channel with Alice

decreases by 10 coins, i.e., Ingrid pays Alice 10 coins, but her balance in the channel

with Bob increases by the same amount. Clearly if this process is not atomic,

Ingrid can lose coins. Second, we need a punishment mechanism that guarantees

either (1) the virtual channel is closed in its latest state, or (2) the honest parties

are financially compensated. Let us now discuss how we address these challenges.

In this section, we use the term ledger channels to refer to “normal” channels that

have a funding transaction posted on-chain.

Synchronous Updates of the Ledger Channels: To guarantee that the underlying

ledger channels are updated atomically, Ingrid must be the final party that signs off

on the creation procedure. In other words, Ingrid must receive the update request

from both Alice and Bob, and then decide if she signs them or not.

New Punishment Mechanism for Virtual Channels: Recall that in contrast to

ledger channels, the funding transaction of a virtual channel is not posted on-chain.

There are two possible scenarios in case of a dispute. First, if both ledger channels

can be closed in their correct state, Alice and Bob can post the funding transaction

of the virtual channel and transform it into a ledger channel. In this case, Alice

and Bob can simply rely on the punishment mechanism of the underlying ledger

channel. Second, if one of the channels, say the channel between Ingrid and Bob,
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is maliciously closed in a state such that the funding transaction of the virtual

channel cannot be posted on-chain anymore, Alice must be able to punish Ingrid

and get financially compensated. Put differently, we need an additional punishment

mechanism in case the funding transaction of the virtual channel cannot be posted

on-chain.

2.4.2. Overview of Our Solution

First, we provide a modular framework for instantiating a virtual channel. The

main idea is to connect the split transactions of the two ledger channels such that

in case both channels are closed the funding transaction of the virtual channels can

be posted on the blockchain. In other words, the outputs of these split transactions

are the inputs of the virtual channel’s funding transaction.

Creating a Virtual Channel. To create a virtual channel, both channels between

Alice, Ingrid and Bob, Ingrid must be updated synchronously. In a nutshell, this is

done in the following steps:

1. Alice and Bob indicate to Ingrid that they wish to update the channels and

open a virtual channel. Ingrid can decide if she wishes to facilitate the virtual

channel.

2. Alice, Bob and Ingrid generate the necessary transactions for the virtual

channel. This process is called virtual channel setup and depends on the

exact virtual channel construction.

3. Alice and Bob sign the new update transactions (in case of generalized

channels, the commit and split transactions) and send them to Ingrid.

4. Finally, Ingrid signs the update transactions and sends them to both parties.

As we can see, Ingrid has the final say in the creation mechanism. This guarantees

Ingrid that Alice and Bob cannot create asynchrony between the channels.

Updating a Virtual Channel. This process is quite similar to updating a ledger

channel. The main difference arises in case one of the parties misbehaves and the

channel needs to be closed on-chain. In this case, parties have to first close their

underlying ledger channels, transform the virtual channel to a ledger channel and

then continue the execution on-chain or punish one another.

Closing a Virtual Channel. Closing a virtual channel is quite similar to the

creation procedure. The only difference here is that step 2, i.e., setting up the

virtual channel is no longer needed. Instead, parties simply reflect their final

balance in the virtual channel back to their ledger channel.

23



2. Bitcoin Compatible Generalized and Virtual Channels

Offloading a Virtual Channel. Offloading a virtual channel means that the virtual

channel is transformed into a ledger channel. This might be necessary in case Ingrid

wishes to unlock her collateral or if parties are in dispute and want to punish each

other on-chain. To offload a channel, the underlying ledger channels need to be

closed and the funding transaction of the virtual channel posted on-chain.

Punishment in a Virtual Channel. There are two kinds of punishment in a

virtual channel (1) punishment for not being able to offload the virtual channel,

and (2) ledger channel punishment executed after offloading the virtual channel.

The latter punishment mechanism is exactly the same punishment mechanism as

in the underlying ledger channel, i.e., generalized channel’s punishment mechanism.

The former punishment mechanism on the other hand punishes the party who mis-

behaved and prevented the virtual channel from being offloaded. This punishment

mechanism depends on the concrete instantiation of the virtual channel.

2.4.3. Our Concrete Instantiation of Virtual Channels

Now that we have described the challenges in designing a virtual channel over

Bitcoin and described the different procedures of a virtual channel in our modular

framework, let us go through our virtual channel construction.

Overview of the transaction flow. The full transaction flow for our virtual

channel construction is in Fig. 2.4. In our description, we are assuming that both

parties Alice and Bob together have a total of c coins in the virtual channel, i.e.,

c = cA+cB. We further assume that Ingrid receives f coins as fee for facilitating the

creation of the virtual channel (here, each party pays f/2 coins to Ingrid but this

fraction can be adjusted arbitrarily in practice). Let us go through the transaction

flow step by step. First, recall that upon closing the underlying ledger channels in

the correct state, it must hold that the funding transaction of the virtual channel

can be posted on-chain. Hence, the outputs of both TXAs and TXBs are the input of

TXf which is the funding transaction of the virtual channel. Upon TXf being posted

on-chain Ingrid can get c+ f coins and Alice and Bob can now treat TXf as the

funding transaction of a “normal” ledger channel. Now let us assume that one of

the split transactions, e.g., TXBs, is not posted on-chain before time ∆. In this case,

Alice can get all the coins in the output of TXAs and punish Ingrid. Let us analyze

offloaded and punishment cases separately.

Transaction flow in case of offloading. The transaction flow when the virtual

channel is offloaded can be seen in Fig. 2.5. In this case, the funding transaction of

the virtual channel is posted on-chain. This allows Ingrid to receive c+ f coins.
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Figure 2.4.: Funding of a virtual channel γ without validity.

The rest of the coins can be used to publish the commit and split transactions of

the virtual channel, which is now transformed into a ledger channel.

Transaction flow in case of punishment. Now assume the funding transaction

cannot be posted on-chain because TXBs is not posted on-chain as depicted in Fig. 2.5.

In this case, Alice can receive all the coins in her channel with Ingrid as she is no

longer able to post the funding transaction of the virtual channel. By doing so

Alice punishes Ingrid for not publishing TXBs. In other words, Ingrid is responsible

for making sure that her channel with Bob is not updated to a new state such

that the virtual channel can no longer be offloaded. Note that if Bob closes his

channel with Ingrid in a revoked state, she can punish him and receive c + f/2

coins. Hence, in this case only the malicious Bob is punished.

c+ f/2

TXAs
A

+∆

pkA

c+ f/2

TXBs

TXf
c

c+ f
pkA, pkB

I
pkI

c+ f/2

TXAs

pkA, pkB , pkI

c+ f/2

TXBs pkA, pkB , pkI

Figure 2.5.: The figure on the right shows the transactions published after the
virtual channel is successfully offloaded. The figure on the left shows
the transactions published after Alice successfully punishes Ingrid. The
grayed transaction TXBs has not been posted on-chain.

The virtual channel protocol presented above can remain open for an unlimited
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amount of time. Hence, it is important that Ingrid is also able to offload the virtual

channel by closing the underlying ledger channels and release her collateral. If

Ingrid was not able to offload this channel, Alice and Bob could collude and force

Ingrid’s collateral to be locked in the virtual channel indefinitely. We say that

this type of virtual channel is without validity. In [12], we also present a virtual

channel construction with validity where Alice and Bob can only use the virtual

channel for a limited amount of time and must close their channel before the validity

time. We refer the reader to our paper [12] for the formal model, detailed protocol

description, security proofs, and our second instantiation of virtual channels with

validity time. Here, we only give a high-level description of the security properties

that our construction achieves.

Security and Efficiency properties of our construction

Let γ be a virtual channel as described above. Naturally, all the security properties

that the ledger channels achieve, i.e., (S1), (S2) and (S3), hold for γ. In addition,

γ satisfies the following security properties for the intermediary Ingrid:

(V1) Balance security: If Ingrid is honest, she never loses coins, even if Alice and

Bob collude.

(V2) Offload with punish: Ingrid can transform a γ to a ledger channel. Alice or

Bob can initiate the transformation as well. This transformation is either

completed or the honest parties are financially compensated.

Our virtual channel construction is also efficient and does not require any on-chain

transactions as long all parties are honest. More concretely, we have:

(E1) Constant round creation: If the creation of γ succeeds, the number of

rounds needed to create this channel must have been constant.

(E2) Optimistic update: In the optimistic case, i.e., when both parties Alice and

Bob are honest, updating γ takes a constant number of rounds.

(E3) Optimistic closure: In the optimistic case, i.e., when Alice, Bob and Ingrid

are honest, closing γ takes only constant number of rounds.

Building Virtual Channels over Generalized vs Lightning-Style Channels

Our virtual channel can be built over Lightning-style channels as well as generalized

channels. In fact, we intentionally designed our channels in a modular way in order
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to allow their deployment over the Lightning network. However, as explained before,

Lightning channels have two commit transactions which would make building virtual

channels on top of them even less efficient. Let us briefly explain why. Each of

the two Lightning ledger channels have two commit transactions (see Fig. 2.2).

In order to guarantee that the TXf of the virtual channel can be posted on-chain,

parties need to consider all four possible combinations of commit transactions being

posted on-chain. This means that four TXf transactions need to be created for the

virtual channel and therefore updating the state of the virtual channel also needs

repeating the update procedure four times. This is a huge overhead. Our detailed

performance evaluation can be found in our paper [12] (Appendix B).

2.5. Related Work

We divide the related work into two categories, payment channels and adaptor

signatures presented in Sec. 2.5.1 and Sec. 2.5.2 respectively.

2.5.1. Research on Payment Channels

We now provide an overview of the related work for our payment channel protocols.

An extensive list of such solutions can be found in works such as [95] and [86].

Uni-directional payment channels, where one party can pay and the other party

can only receive coins, was first proposed by Spilman and Hearn [89, 163]. Decker

and Wattenhofer [54] later extended this type of channel to allow both parties to

send and receive coins. In 2016, Poon and Dryja [152] showed how to build a PCN

called the Lightning network. However, at the time of proposal, Bitcoin’s scripting

language was much more limited than today and as such Lightning channels could

not be deployed immediately over Bitcoin. In 2017, a new Bitcoin Improvement

Proposal (BIP141) [67] was implemented by the Bitcoin community which finally

allowed the Lightning channels and network to be executed over Bitcoin. At the

time of writing Lightning network has more than 17000 nodes and 86000 channels

which is quite impressive [1]. Lightning network was also formally modeled and

analyzed in the UC framework by Kiayias and Litos [103].

After Lightning’s success, a few alternative channel solutions were introduced for

the Ethereum blockchain such as Sprites [127], counterfactual/state channels [165],

Raiden Network [155] and Perun (virtual) payment and state channels [59, 60, 63].

Other than the general research done on designing new and innovating payment

and state channel solutions, there have been some proposals on how to achieve

specific features in channels and channel networks such as anonymous payments [56,
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90, 120, 121, 169] or efficient and more secure multi-hop payments in a PCN [8, 13,

15, 65, 68, 97, 121]. However, we will not go into details on these works here and

instead mainly focus on virtual channels related work.

Virtual Channels. The concept of virtual channels was first introduced in [60].

The authors proposed a solution for the Ethereum blockchain and discussed how

their solution can be used to improve the efficiency of PCH solutions as the hub

is no longer needed to route every single transaction. Afterwards, two followup

papers extended this work. In [63], the concept of state channels and virtual state

channels were formalized and the authors showed how to instantiate them over

the Ethereum blockchain. In [59], the idea of virtual state channels was extended

to multi-party (virtual) state channels over Ethereum. As the name suggests, a

multi-party channel is a channel that is executed between more than two parties.

In this case, updating a channel is a more complex task as all parties need to agree

on the new state and be able to receive their coins on-chain. Concurrent to our

work [96] also proposed virtual channels over Bitcoin. However, their construction

only allows updating the state of the virtual channel for an a priori fixed number

of times. This is mainly because the authors use a different technique to guarantee

that only the latest state can be posted on-chain. Let us go a bit more into details.

When opening the channels, the parties agree on an initial state which can only be

posted on the blockchain after time t. This can be achieved using a different type

of time-lock (called absolute time-lock) that specifies at what time this transaction

is valid, and can be posted on-chain. During each update, parties exchange a new

state with a smaller time-lock (e.g., t′ = t−∆). This guarantees that the latest

state can be posted on-chain before the older ones. However, at some point the

time lock t of a new state would be equal to the current time and the channel

can no longer be updated. Hence, parties either need to frequently close and open

new virtual channels, or they must choose a rather large t. Frequently opening

and closing virtual channels is counter-intuitive as virtual channels are designed to

minimize the interaction with the intermediary. Choosing a large t can however

force the parties’ funds to be locked for a long time. Other than the restriction

mentioned above, the construction in [96] is not a “generalized virtual channel”,

i.e., it does not support executing applications off-chain and only allow making

payments.

After showing that it is possible to build virtual channels over Bitcoin [12], two

followup works showed how to build “longer” and “recursive” virtual channels [14,

104]. In a bit more detail, in [14] the authors design a virtual channel over multiple

intermediaries for Bitcoin. On the other hand, Kiayias et al., [104] show how to

build virtual channels over virtual channels, i.e., Alice and Bob do not need a ledger
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channel with Ingrid, they only need to have a virtual channel with Ingrid and can

open a virtual channel on top of the existing virtual channels.

2.5.2. Adaptor Signatures Related Work

The notion of adaptor signatures was first mentioned by Poelstra [147, 148] for

Schnorr signatures as an alternative to hash-locks. Given its utility, adaptor

signatures slowly started to gain more popularity. Moreno-Sanchez and Kate [141]

proposed a threshold two party construction for adaptor signatures based on

ECDSA signature. In [121] the authors used adaptor signatures to design a PCN

protocol with a more secure routing procedure. However, they did not provide a

standalone definition for adaptor signatures that can be then used in other works

such as ours. Concurrent to our work, Fournier [78] attempted to formalize adaptor

signatures which he called one-time verifiable encrypted signatures. However, his

definition lacked formalism and therefore he was not able to prove that the existing

adaptor signature proposals were indeed secure in his model.

A primitive similar but weaker than adaptor signatures is lockable signatures [172].

Lockable signatures allow generating a locked signature lk which can later be

unlocked into a full signature. However, unlike adaptor signatures, to generate the

locked signature (which is equivalent to the pre-signature in adaptor signatures)

the full signature must be produced in advance and the locked signature must be

generated honestly. More precisely the locked signature is simply computed as

lk := σ ⊕H(σ′) where both σ and σ′ are signatures. Put differently the signature

σ is being locked by another signature σ′. When σ′ is revealed, one can open the

lock as σ = lk⊕H(σ′). Naturally, to calculate lk both σ and σ′ must be computed

in advance. Furthermore, just given, lk one cannot verify that it indeed locks a

valid signature σ. Therefore, one needs more advanced cryptographic techniques

such as secure multi party computation [42, 48] in order to guarantee that lk was

generated honestly. On the positive side, lockable signatures can be built from

any signature scheme. This is mainly because calculating lk only requires xoring

the full signature with a hash value. Boneh et al., [33] defined a primitive called

verifiably encrypted signatures. In their setting, the signer’s goal is to prove that

he or she has provided a ciphertext encrypting a valid signature on a message m.

Banasik et al., [19] introduced a protocol that enables two parties, a buyer and a

seller, to exchange a digital asset even if the underlying blockchain cannot execute

Turing complete programs. However, these works do not provide a construction

that can be used to instantiate adaptor signatures.

Impact of our work. Shortly after our work was published, [75, 170] proposed

adaptor signature schemes that are post-quantum secure, i.e., these schemes remain

29



2. Bitcoin Compatible Generalized and Virtual Channels

secure even if the adversary has a quantum computer while the users still use normal

computers. In [75], Esgin et al., achieved post-quantum security by designing a

scheme based on well-studied lattice assumptions. The authors of [170] build their

scheme based on isogenies which are less analyzed. Both works further show how

to build PCNs using their adaptor signature construction. In another work, Tairi

et al., [169] showed how to build PCHs that achieve anonymity, i.e., the hub cannot

link the identities of the sender and receiver. They later updated their paper and

used the adaptor signature notation introduced in our work.

2.6. Discussion and Future Work

In this chapter, we presented two of our papers, namely generalized channels

and virtual channels over Bitcoin [11, 12]. Our generalized channels have two

main advantages over other Lightning channels, (1) generalized channels only

require a single commit transaction per-channel while Lightning channels require

2 commit transactions, and (2) generalized channels have a single punishment

mechanism per-channel while Lightning channels require a punishment mechanism

per-application built on top of the channel. These two features, alongside the novel

design of generalized channels, allow for the execution of applications supported by

the underlying blockchains even if it only supports a limited scripting language.

Hence, generalized channels can be seen as a generalization of state channels over

Ethereum. Put differently, state channels are a special case of generalized channels

that can only be deployed over blockchains with a Turing complete scripting

language. To build generalized channels, we utilized adaptor signatures, a novel

primitive that we formalized as a standalone primitive for the first time. We further

proved that the Schnorr and ECDSA adaptor signature constructions are secure in

our model.

Afterwards, we showed how to instantiate virtual channels over blockchains with

limited scripting language such as Bitcoin. All previous constructions of virtual

channels could only be deployed on blockchains such as Ethereum which support

Turing complete smart contracts. Therefore, our works help improve the scalability

and usability of more limited blockchains such as Bitcoin.

We modeled the concept of generalized and virtual channels in the Universal

Composability (UC) framework [43, 44] and analyzed our protocols’ security in

this model. UC is the gold standard when it comes to modeling and analyzing

the security of off-chain protocols. Protocols proven secure in this model can be

executed in multiple parallel sessions and composed with other protocols secure in

this model, with minimal overhead for proving that the composition is secure.

30



2. Bitcoin Compatible Generalized and Virtual Channels

Since the publication of our papers, many articles have either used or introduced

improvements to our work. As already mentioned before, works such as [14]

and [104] present virtual channel solutions with extended functionality. Another

example is [128] by Mirzaei et al., who proposed an extension to generalized channels

by adding fair and privacy preserving watchtower support. Users of the channel

can delegate the execution of the punishment mechanism to the watchtowers and

hence do not need to monitor the blockchain constantly for misbehavior. This

allows them to go offline if needed without the risk of losing funds. Mirzaei et al.,

were able to build their scheme because we detached the punishment procedure

from the applications in generalized channels.

One main open direction for future work is modeling and designing multi-party

generalized and virtual channels over blockchains with limited scripting language.

As our generalized and virtual channels are only executed between two parties, they

only support two party applications. Multi-party variants of our constructions will

be able to execute multi-party applications supported by the underlying blockchain.

We will later see how to build 2-party adaptor signatures in Chapter 3, however an

interesting question is whether multi-party generalized and virtual channels require

multi-party adaptor signatures or is it possible to instantiate them using the single

party adaptor signatures presented in this section.

Another more general direction of future work is introducing a new modeling

framework, other than UC, for off-chain and blockchain applications. Although

UC can be used to model such protocols, it is a general purpose model. Blockchain

protocols have many common elements that can be embedded in a tailor-made

model in order to reduce the overhead of modeling protocols and proving their

security. As an example, all such protocols communicate with a common ledger,

i.e., blockchain. There are many ways to model such a ledger in UC, some are

easier to use when proving the security of the protocols such as the ones used

in [11, 12, 59, 60, 63], and others are more realistic yet much more difficult to use

when analyzing the security of protocols [17, 103, 104]. Overall, coming up with

a new model that simplifies the modeling and proof process of blockchain related

protocols would streamline the security analysis and provide the protocol designers

with a universal language to describe their protocols.

A similar future work direction is modeling protocols in a formal/automated veri-

fication tool. There are many verification tools such as ProVerif [31], Tamarin [157]

or EasyCrypt [64]. However, there is still a huge gap between the capabilities,

and ease of usability of these tools and the necessary requirements for analyzing

complex protocols. Therefore, extending such tools and improving their usability

for complex blockchain protocols would be an interesting future work direction.

An example of a tool that tries to reduce this gap is Verifpal [107].
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We have already seen that adaptor signatures are quite useful for building off-chain

solutions such as generalized and virtual channels [11, 12]. However, adaptor

signatures were only constructed from Schnorr and ECDSA signatures, and it was

unclear if they can be built from other signature schemes as well. Furthermore,

only single-party adaptor signature schemes were formalized in these works. Yet,

a 2-party adaptor signature scheme can be used, e.g., in the generalized channel

construction, in order to reduce the communication complexity with the blockchain.

More precisely in Fig. 2.3, to spend the output of TXf, instead of requiring two

signatures under Alice’s and Bob’s public keys, it is possible to require only a single

signature under the combined public key of Alice and Bob. Therefore, we asked

ourselves the following question:

Is it possible to extend the existing definitions to model two-party adaptor

signatures and instantiate them generically?

We provide some preliminaries in Sec. 3.1 and then present our results in Sec. 3.2.

3.1. Preliminaries

First, let us recall the definition of identification schemes according to [106]. In

practice, an identification schemes is a three round protocol executed between a

prover and a verifier. It consists of 4 algorithms IGen, P1, P2 and V. The algorithms

IGen, P1 and P2 are executed by the prover and V is executed by the verifier. Before

executing the protocol, the prover generates a secret and public key pair (sk , pk)

using the key generation algorithm IGen and publishes its public key pk . The goal

of the prover is to convince the verifier that he or she indeed has a secret key sk

corresponding to pk . The protocol is now executed as follows (see also Fig. 3.1):

1. The prover first has to generate a commitment and state (R, St) using its

secret key by executing the algorithm P1(sk) and sends the commitment R

to the verifier (R is also called the public randomness).
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2. The verifier generates a random challenge h and sends it to the prover.

3. The prover now generates a response s by executing P2(sk , R, h, St) and sends

it to the verifier.

4. The verifier checks if this response is valid by executing V(pk , R, h, s). If V

returns 1, the verification succeeds, otherwise it returns 0

P1(sk) P2(pk)

(R,St)← P1(sk)
R−−−−−→

h←−−−−−−−− h← Random

s← P2(sk , R, h, St)
s−−−−→ 1

?
= V(pk , R, h, s)

Figure 3.1.: Identification scheme protocol.

Using the Fiat-Shamir heuristic [77], it is possible to transform an Identification

scheme as described above, into a signature scheme. More precisely, instead of

relying on the verifier to send the challenge h, it is generated by hashing the public

randomness R and message m that is going to be signed as presented in Fig. 3.2.

Gen(1n)

1 : (sk , pk)← IGen(1n)

2 : return (sk , pk)

Signsk(m)

1 : (R,St)← P1(sk)

2 : h := H(R,m)

3 : s← P2(sk , R, h, St)

4 : return (h, s)

Vrfypk(m, (h, s))

1 : R := V(pk , h, s)

2 : return h = H(R,m)

Figure 3.2.: Digital signature schemes from identification schemes [106].

3.2. Our Contribution

Motivated by the generalized channel construction, our main goal is to define and

design two-party Adaptor Signature schemes. At the same time we investigated the

properties that Schnorr signature satisfies which allowed transforming it into an

adaptor signature. We take the following three steps as shown in Fig. 3.3, (a) we
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show how to build adaptor signatures from ID schemes, then (b) we continue by

showing how to build two-party signatures from ID schemes, and finally (c) we

show how to build two-party adaptor signature schemes from SIGID
2 . Let us explain

each step in a bit more details:

Adaptor signatures from ID schemes. Our first goal is to determine if we can

build adaptor signatures from a broad class of signatures. We start by showing that

unique signatures, such as BLS [34], cannot be transformed into adaptor signatures.

We know how to build an adaptor signature from Schnorr signature which is a

signature scheme built from an Identification Scheme (ID) [106, 158]. Therefore,

we focus on transforming signature schemes from ID schemes (denoted by SIGID) to

adaptor signatures. We show that SIGID schemes that satisfy certain homomorphic

properties (which we will define later) can generically be transformed into adaptor

signatures. We denote such an adaptor signature scheme by aSIGID,R, where R is

the hard relation used in this scheme.

Two-party signatures from ID schemes. As a middle step, we show how to

generically build two-party signatures with aggregatable public keys (denoted by

SIGID
2 ) from ID schemes. Such a scheme allows two parties to jointly generate a

signature which is valid under their aggregated public key. The parties can however

generate their secret keys separately (non-interactively). This is in contrast to

other schemes which require an interactive key generation mechanism [81]. We

provide a generic transformation from SIGID schemes that satisfy certain aggregation

properties (which we will define later) to SIGID
2 schemes.

Two-party adaptor signature schemes from SIGID
2 . We show how to generically

transform our SIGID
2 schemes, to two-party adaptor signature schemes with aggre-

gatable public keys, denoted by aSIGID,R
2 . To instantiate this novel cryptographic

primitive, we use similar techniques to the ones we used previously for building

aSIGID,R and SIGID
2 . A aSIGID,R

2 does not require parties to generate their secret keys

interactively just like a SIGID
2 scheme.

Our concrete instantiations. Finally, we show that Schnorr, Katz-Wang and

Guillou-Quisquater signature schemes [87, 101, 158] satisfy all the properties that

we require in our transformations and hence can be transformed into aSIGID,R,

SIGID
2 and aSIGID,R

2 schemes. We note that Schnorr is one of the most well known

and widely used signature schemes. It is also recently added to Bitcoin [156].

Katz-Wang is quite similar to Schnorr however it achieves better security. Finally,

Guillou-Quisquater is quite different from the other two signature schemes as it

relies on the RSA assumption, while the other schemes rely on of the Diffie-Hellman

assumption (and consequently the hardness of discrete logarithm assumption). We
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ID
Identification Scheme

SIGID

Signature Scheme

aSIGID,R

Adaptor Signature Scheme

SIGID
2

2-Party Signature Scheme

aSIGID,R
2

2-Party Adaptor Signature Scheme

[106] Sec. 3.2.1

Sec. 3.2.2

Sec. 3.2.3

Figure 3.3.: Overview of our results. A full arrow represents a generic transforma-
tion, a dotted/dashed arrow represent a generic transformation that
requires additional homomorphic/aggregation properties.

will not describe here what these assumptions are, and refer the reader to [87, 101,

158] for more information. Hence, our results show that we can construct adaptor

signatures from different signature schemes based on different assumptions.

Our results have been disseminated in the following publication.

[70] A. Erwig, S. Faust, K. Hostáková, M. Maitra, and S. Riahi. “Two-Party Adaptor

Signatures from Identification Schemes”. In: PKC 2021, Part I. Ed. by J. Garay.

Vol. 12710. LNCS. Springer, Heidelberg, May 2021, pp. 451–480. doi: 10.1007/

978-3-030-75245-3_17. Appendix C.

3.2.1. From SIGID Schemes to aSIGID,R

In this section, we will focus on designing an adaptor signature scheme from

signature schemes based on identification schemes. But first, let us argue why

unique signatures such as [34, 84, 117, 160] cannot be transformed into adaptor

signatures. See Sec. 2.3.1 for the definition of (single party) adaptor signatures.

Impossibility of constructing unique adaptor signatures. In a unique signature

scheme, signing the same message multiple times results in the same signature.

We prove that it is impossible to construct a unique adaptor signature by con-

tradiction, i.e., we assume such a scheme exists. This means that adapting a

pre-signature on message m to a full signature using the witness y, and signing

the message m results in the same signature. More precisely, for (y, Y ) ∈ R we

have Adapt(pSignsk (m,Y ), y) = Signsk (m). We also know that one can extract the

witness given a pre-signature and the corresponding full signature. Therefore, given

a pre-signature σ̃ = pSignsk(m,Y ) we can conclude:

y = Ext(Adapt(σ̃, y), σ̃, Y ) = Ext(Signsk(m), σ̃, Y )
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Hence, a signer can break the hardness assumption of the relation R. More precisely,

the signer generates a pre-signature for message m on a given statement Y and

also generates a signature on message m independently and executes the Ext on

these values to generate y. This is a contradiction as computing y given only Y

should have been hard.

We make the following observation from the above impossibility result:

The statement and witness of the hard relation must be incorporated in the

randomness used for generating the (pre-)signature.

With this observation, let us see how signature schemes from identification

schemes can be transformed into adaptor signatures. Our main intuition is that

to generate the pre-signature, one must shift the public randomness R during the

Sign procedure using the statement Y . We can then “adjust” the resulting pre-

signature using the corresponding y (i.e., (Y, y) ∈ R), in order to obtain a regular

(or full) signature. More precisely we observe that SIGID schemes as presented

in Fig. 3.2, use two type of randomness, a public randomness R and a private one

St. Since R can be re-calculated by the verifier using the procedure V, it is called

the public randomness. St on the other hand, is only known to the signer. While

R is shifted using Y to generate the pre-signature, adapting the pre-signature

using y would shift St accordingly such that the resulting final signature is valid.

Finally, it should be possible to extract a witness given the pre-signature and the

full-signature. More precisely, to construct the pSign and pVrfy procedures, the

Sign and Vrfy from Fig. 3.2 are modified as follows (formally presented in Fig. 3.4):

pSignsk(m,Y ): Shift the randomness R using the statement Y (e.g., by multiplying

R and Y ), and then apply the Fiat-Shamir heuristic. More precisely, the

input of the hash function H is the shifted randomness and the message m.

This procedure outputs a pre-signature (h, s̃).

pVrfypk(m,Y, (h, s̃)): Similar to the pSign procedure, before checking if h = H(R,m),

R is shifted using the statement Y .

For our transformation presented in Fig. 3.4, we define three functions fshift, fadapt
and fext. fshift shifts R using Y , fadapt transforms a pre-signature value s̃ using y to

a full signature value s, and finally fext extracts y given s̃ and s.

Our transformation from Fig. 3.4 cannot transform arbitrary SIGID schemes into

a secure adaptor signature w.r.t. an arbitrary hard relation. However, we show

that if one can define the functions fshift, fadapt and fext for a SIGID scheme and

hard relation R such that the following two properties are satisfied, it is possible to

transform this signature into an adaptor signature scheme.
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pSignsk(m,Y )

1 : (Rpre, St)← P1(sk)

2 : Rsign := fshift(Rpre, Y )

3 : h := H(Rsign,m)

4 : s̃← P2(sk , Rpre, h, St)

5 : return (h, s̃)

pVrfypk(m,Y, (h, s̃))

1 : R̂pre := V(pk , h, s̃)

2 : R̂sign := fshift(R̂pre, Y )

3 : b := (h = H(R̂sign,m))

4 : return b

Adaptpk((h, s̃), y)

1 : s = fadapt(s̃, y)

2 : return (h, s)

Extpk((h, s), (h, s̃), Y )

1 : return fext(s, s̃)

Figure 3.4.: Generic transformation from SIGID to an aSIGID,R scheme.

Adapt then extract is equivalent to extract then shift. This is a homomorphic

property that relates the functions fshift, fadapt, V and the hard relation R. It states

that for all statement witness pairs (Y, y) ∈ R the following two cases are equivalent:

(1) first extracting the public randomness from s̃ via V and then applying fshift to

shift the public randomness by Y , and (2) first executing fadapt to shift s̃ using y

and then extracting the public randomness using V. More precisely, it must hold

that:

fshift(V(pk , h, s̃), Y ) = V(pk , h, fadapt(s̃, y))

where (Y, y) ∈ R and (h, s̃) = pSignsk (m,Y ) according to the description in Fig. 3.4.

This property is needed to prove that after correctly adapting a pre-signature into

a full signature, executing the verification procedure on this adapted pre-signature

returns 1.

fext and fadapt are the inverse of one another. This property states that if we

adapt a pre-signature to a full signature using fadapt and the corresponding witness

y, we would extract the same witness y after applying fext on the signature and

pre-signature. More precisely, we have:

y = fext(fadapt(s̃, y), s̃)

where (Y, y) ∈ R and (h, s̃) = pSignsk (m,Y ) according to the description in Fig. 3.4.

We do not provide the proof that our transformation results in a secure adaptor

signature here and refer the reader to [70] (or Appendix C) for more details. More

precisely we prove the (formal version of the) following Theorem:

Theorem 3.2.1 (Informal). Assume that SIGID is a secure signature scheme, let

fshift, fadapt and fext be functions satisfying the homomorphic properties explained

above, and R be a hard relation. Then the aSIGID,R scheme constructed using our

transformation is a secure adaptor signature scheme.
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3.2.2. From SIGID Schemes to SIGID
2

On a high level, a two-party signature scheme with aggregatable public keys, or for

short SIG2, allows two parties to generate a single signature which can be verified

under their aggregated public keys. Consider an application where two parties

have to separately sign a message, e.g., a transaction which is being posted on

the blockchain. By using a SIG2, instead of submitting two signatures, the parties

can jointly generate a single signature which is valid under their combined public

key. This reduces the overall communication needed to authenticate a message,

which is important for blockchain applications. The main difference between this

primitive and a two-party threshold signature scheme is that parties generate their

secret and public keys independently (non-interactively). Assume that we have two

parties P1 and P2. On a high level, in our transformation the signing process has

the following three steps (see also Fig. 3.5):

Ecxhange randomness: Both parties execute a secure random exchange protocol

(see [70] for a full description). At the end of this procedure, party Pi receives

two public values R1 and R2 (where Ri is generated by the party Pi), and

the private value Sti were i ∈ {1, 2}. Both parties compute the combined

randomness using a function fcom-rand as R = fcom-rand(R1, R2)

Generate partial signatures: Each party signs the message independently using

its secret key and the combined randomness that was agreed on during the

previous step and outputs a “partial” signature (h, si).

Combine partial signatures: The two partial signatures are combined into a full

signature using the function s = fcom-sig(s1, s2). The final signature is (h, s).

As in the previous section, our transformation is not generic. However, on a high

level, if the SIGID scheme satisfies the following properties, it can be transformed

into a SIG2 using the above transformation:

Combined signatures are valid under the combined public key. There exists a

function fcom-pk that combines the public keys as pk = fcom-pk(pk 1, pk 2). Further-

more, the combined signature (h, s) is valid under this pk , i.e., 1 = Vrfypk (m, (h, s)).

Combined signatures are decomposable. Using the secret key of a party sk i

the full signature can be “decomposed”, i.e., there exists a function fdec-sig such

that (h, s3−i) = fdec-sig(sk i, pk i, (h, s)) where i ∈ {1, 2} and s = fcom-sig(s1, s2).
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P1(sk1, pk1, pk2) P2(sk2, pk1, pk2)

Exchange Randomness:

(R1, St1)← P1(sk1) (R2, St2)← P1(sk2)
Randomness Exchange protocol for←−−−−−−−−−−−−−−−−−−−−−−−→

R1 and R2

(R1, R2, St1) (R1, R2, St2)
R = fcom-rand(R1, R2) R = fcom-rand(R1, R2)
R = fshift(R, Y ) R = fshift(R, Y )

Generate Partial (Pre-)Signatures:

h := H(R,m) h := H(R,m)
s1 ← P2(sk1, R, h, St1) s2 ← P2(sk2, R, h, St2)

Combine Partial (Pre-)Signatures:

Exchange s1,s2←−−−−−−−−−→
s = fcom-sig(s1, s2) s = fcom-sig(s1, s2)
Output (h, s) Output (h, s)

Figure 3.5.: Two-party (pre-)signing protocol. In the pre-signing protocol, the
combined randomness must be shifted as shown in the gray row.

The first property is very intuitive. Naturally, we expect that the combined

signature is valid under the combined public key. The second property is only

needed in our security proof. We refer the reader to [70] (or Appendix C) for

more information regarding our model and security proof of SIGID
2 schemes. More

precisely we prove the (formal version of the) following Theorem:

Theorem 3.2.2 (Informal). Assume that SIGID is a secure signature scheme.

Further, assume that the functions fcom-sig, fcom-pk and fdec-sig satisfy the aggre-

gation properties explained above. Then the SIGID
2 scheme constructed using our

transformation is a secure two-party signature scheme.

3.2.3. From SIGID
2 Schemes to aSIG2

We are finally ready to present the main ideas behind our two-party adaptor

signature scheme. In a nutshell, we only need to combine both transformations,

i.e., the transformation from SIGID to aSIGID,R and from SIGID to SIGID
2 . As shown

in Fig. 3.5, the only change needed to construct aSIG2 is to shift the randomness

R before generating the partial pre-signatures. The procedures Adapt and Ext are

non-interactive and remain as described in Fig. 3.4. Naturally, this transformation

only works if all the required properties for the transformations in Sec. 3.2.1

and Sec. 3.2.2, hold, i.e., (1) adapt then extract is equivalent to extract then shift,

(2) fext and fadapt are the inverse of one another, (3) combined signatures are valid

under the combined public key, and (4) combined signatures are decomposable.
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The security property that a two-party adaptor signature must achieve is very

similar to the properties mentioned in section Sec. 2.3.1. However, the main

challenge of proving that our transformation is secure comes from the fact that one

of the parties can behave maliciously. In our model, we consider an adversary that

can corrupt and control one of the parties. This gives the adversary additional

information (i.e., one of the secret keys) and more power as it can now communicate

with the honest party. We show that if such an adversary can break the security of

our scheme, one can build another adversary (sometimes called the simulator) that

internally uses this adversary to break the security of the SIGID scheme. The main

challenge of constructing such a simulator is the fact that it must simulate the

responses of the honest party for the adversary while using it to break the security

of the SIGID scheme. Nevertheless, we show in our paper [70] that the schemes built

using our transformation are secure even in the presence of such a strong adversary.

More precisely, we prove the (formal version of the) following theorem:

Theorem 3.2.3 (Informal). Assume that SIGID is a secure signature scheme. Let

fshift, fadapt and fext and fcom-sig, fcom-pk and fdec-sig be functions that satisfy all the

4 properties mentioned above. Further, assume R is a hard relation. Then the

aSIGID,R
2 scheme constructed using our transformation is a secure two-party adaptor

signature scheme.

We refer the reader to [70] (or Appendix C) for more details on our models,

security proofs. We further show that Schnorr, Katz-Wang and Guillou-Quisquater

signatures can be transformed into aSIGID,R, SIGID
2 and aSIG2 schemes, via our

transformations.

3.3. Related Work

We have already mentioned many of the adaptor signature related work in Chapter 2.

Here, we will mention a few more works related to our paper [70]. After the

publication of our paper at PKC 2021, the paper [153] was posted on the eprint

archive. The authors aimed to build (single-party) adaptor signature schemes from

ID schemes. They further considered blind and linkable ring adaptor signatures.

In a blind signature scheme [80], the signer does not know in advance the message

that he or she is signing. In a linkable ring signature [167, 179], the identity of

the signer remains anonymous in a group of parties, but if the signer generates

two signatures, these signatures can be linked together. This type of signature is

used in Monero [130] which is a privacy preserving cryptocurrency. However, the

authors of [153] withdrew their paper from eprint on 26.07.2021. Very recently,
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Qin et al., [154] defined blind adaptor signatures and provided an instantiation

based on ECDSA signatures to construct privacy preserving PCHs. Also very

recently, Dai et al., [46] extend our (single-party) definitions to achieve stronger

security by returning multiple pre-signatures on the message for which the adversary

wishes to return a forgery. Furthermore, they presented a generic transformation

from any signature and hard relation to an adaptor signature scheme. However,

their transformation requires changing the underlying signature scheme which is

counterintuitive, as using the adaptor signatures resulting from their transformation

would require making changes to the underlying blockchain.

Multi-Signatures. Multi-Signatures have been analyzed in numerous papers.

They allow a set of parties to jointly generate a signature which can be verified

under the public key of all signers. Some of the first papers describing this concept

and constructions of Multi-Signatures are [88, 134, 135]. After the introduction of

Multi-Signatures, the concept of Multi-Signature schemes with aggregatable public

keys gained more popularity. In these schemes, the verifier only needs to use a single

key to verify the final signature. When considering Multi-Signatures there are two

methods for modeling their security, (1) the Knowledge of the Secret Key (KOSK)

model [32], and (2) the plain public-key model [21] (or key-verification model [57]).

Our transformations are also proven secure in the KOSK model. Without going into

detail, in the KOSK model, when proving the security of a scheme we can assume

knowledge of the secret key(s) of the corrupted parties. The plain model does not

assume this additional information when proving the security of the scheme. We

refer the reader to our full paper [70] for a more detailed comparison between these

two models, nevertheless, the plain public-key model considers a stronger setting,

as schemes secure in the plain model are also secure in the KOSK model. On the

other hand, security proofs in the plain model are much more complex and prone

to errors. As an example, Drijvers et al., [57] showed that the works [18, 118, 122,

168] that were proven in the plain public-key model are in fact insecure in this

model. One of these works called MuSig by Maxwell et al., [122] was later fixed

by Nick et al., [133].

Identification Schemes and ID-Signatures. As explained before, an ID scheme

is a three round protocol that allows a party to authenticate itself to another party.

There are many examples of ID-schemes such as [25, 37, 77, 82, 83, 87, 101, 125, 136,

138, 149, 158, 166]. These schemes can be transformed to non-interactive signature

schemes via the Fiat-Shamir transformation [77]. Abdalla et al., [4] formalized this

type of identification schemes and named them canonical identification schemes. In

a more recent work, Kiltz et al., [106] analyzed the security of signature schemes

that are built by applying the Fiat-Shamir transformation in the multi-user setting,
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i.e., where the attacker who is trying to forge a signature can interact with many

users and receive signatures under different public keys.

3.4. Discussion and Future Work

In this work, we formalized two-party adaptor signatures with aggregatable public

keys for the first time, presented a generic transformation from SIGID schemes to

aSIGID,R, SIGID
2 and aSIGID,R

2 schemes, and showed that Schnorr, Katz-Wang and

Guillou-Quisquater schemes are compatible with our transformations. Our results

can be seen as an important step towards understanding adaptor signatures and

extending the original definition for more use cases, e.g., improving the efficiency

of generalized channels scheme.

One immediate future work direction is to prove the security of our schemes in

the plain public-key model instead of the KOSK model. Perhaps using techniques

from [133] would allow not only to prove security in this model, but also reduce the

communication complexity of the pre-signature procedure and consider multi-party

instead of two-party adaptor signatures.

Another direction for future work is finding applications of adaptor signatures

outside of the blockchain area. In adaptor signatures, the final signature, after

adapting a pre-signature, looks and verifies identically to a standard signature. This

feature makes them quite versatile for blockchain related applications as it allows

parties to exchange a secret value when a signature is posted on-chain. However,

we are not aware of any other setting outside the blockchain area that would benefit

from utilizing adaptor signatures.

Finally, one can consider threshold adaptor signatures. By threshholdizing this

primitive, parties will generate n key shares, while using t of them is enough to

generate a signature/pre-signature. This allows for better security as an adversary

who has access to t− 1 key shares cannot forge a signature/pre-signature. This

construction can then be used to design a threshold adaptor wallet scheme [7, 51,

52, 74] to store the secret keys securely and achieve better usability.
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Payment channels, payment channel networks, and payment channel hubs helped

improve the scalability of blockchains such as Bitcoin and Ethereum. Yet we saw

in the previous sections that if two parties are not directly connected to each other

via a channel, they have to route their transactions through intermediaries. To

guarantee that after receiving coins from the sender, the intermediary does not

simply disappear and abort the transfer to the receiver, the intermediary needs to

lock collateral equal to the amount being transferred. This makes these solutions

rather unattractive for hubs who wish to facilitate the payment between multiple

parties (see the example in Sec. 1.1.2).

To tackle the issues mentioned above, Poon and Buterin put forth an innovative

idea in [151] called Plasma, to reduce the amount of collateral needed for the

intermediary. In the context of Plasma protocols, the intermediary is called the

operator. The role of the operator is only facilitating the transfer of coins between

parties and (ideally) it should not lock any collateral to do so. The main idea

behind Plasma protocols is to sacrifice payment channels’ instant finality property,

in order to reduce the amount of collateral that the operator needs to lock.

Note that Plasma protocols are only deployed on Turing complete blockchains

such as Ethereum. As we will see shortly, this is mainly because the logic needed

to exit users’ funds from the system and use them on-chain is rather complex. In

other words, one must use a smart contract to verify if a party is indeed behaving

honestly and how many coins he or she owned off-chain.

The Landscape of Plasma. Shortly after the initial groundbreaking idea of

Plasma payment systems [151], many new variants of Plasma protocols were

proposed online [38, 40, 102, 129, 131, 142, 144, 174]. Most of these works were

proposed, and sometimes even implemented, by a community of Ethereum and

blockchain enthusiasts. This community typically shares their results via “white-

papers”, blog articles, or posts on discussion forums (such as the “Ethereum

Research Forum” [76]). Although this is quite useful to discuss new ideas, using

these communication channels resulted in a plethora of different proposals where
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one cannot easily identify the differences between them. In Fig. 4.1, one member

of the community tried to gather and mention the different Plasma proposals at

the time. Seeing all these different variants of plasma protocols one might ask:

Figure 4.1.: The “Plasma World Map”, illustrating the different flavors of Plasma
protocols posted on Ethereum Research Forum [145].

Is it possible to design a “perfect” Plasma protocol that achieves the best properties

of all the proposals?

Before answering this question let us provide some preliminaries.

4.1. Preliminaries

First, we briefly recall how the Ethereum blockchain can be modeled and present a

primitive called Merkle trees which are used to build Plasma protocols.

Modeling Ethereum Blockchain. In works such as [59, 63], the authors model

the blockchain as a trusted party who keeps track of the users’ balances and can

execute programs called smart contract. Parties can send transactions to the

blockchain and transfer their coins to other parties or the smart contracts registered

on the blockchain. In order for the blockchain to determine the authenticity of

a transaction, users need to sign their transactions. In practice, each party is
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identified via their public signing key. However, for simplicity we mention the

parties’ names instead. Furthermore, no user can transfer more coins than they

already own. Any user can register a new smart contract on the blockchain and

the logic implemented in this program determines how the coins it receives would

be later redistributed. Users can also call a function of a smart contract by sending

a transaction to the blockchain and specifying the smart contract, the function

they wish to call and its input. In other words, each smart contract and function

of a smart contract can be uniquely identified.

Merkle Trees. A Merkle tree [124] is a data structure that allows storing a list

of inputs and easily prove the membership of an element in the list. In Fig. 4.2,

a Merkle tree storing a list of 8 elements x0, · · · , x7 is depicted. By H(x0, x1) we
mean that x0 and x1 are concatenated together, and the result is hashed. These

elements are called the leaves of Merkle tree. The idea is to hash the elements in

h

H(h0,3, h4,7)

h0,3

H(h0,1, h2,3)

h0,1

H(x0, x1)

x0 x1

h2,3

H(x2, x3)

x2 x3

h4,7

H(h4,5, h6,7)

h4,5

H(x4, x5)

x4 x5

h6,7

H(x6, x7)

x6 x7

Figure 4.2.: A Merkle tree storing 8 elements x0, · · · , x7.

this list pairwise. These hash values are then again hashed pairwise. This pairwise

hashing continues until only one element is left. The final hash value is called the

root of the Merkle tree (e.g., in Fig. 4.2 h is the root of the Merkle tree). One can

prove that an element was included in a Merkle tree given the root of this tree.

The size of this proof is logarithmic in the number of leaves. We will not mention

how this proof can be constructed and verified here and refer the reader to [124].
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4.2. Our Contribution

In this chapter, we show that one cannot construct the “perfect” Plasma protocol.
Our work can also be seen as “bringing order to the huge landscape of Plasma”.
We categorize Plasma protocols into two main categories, provide a model for
Plasma protocols and present two instantiations of Plasma protocols (one for each
category) and argue that they are secure in our model. We also show that each
category of Plasma protocols has their own advantages and disadvantages, and it
is impossible to achieve the best of both worlds. Our work has been disseminated
in the following article.

[62] S. Dziembowski, G. Fabianski, S. Faust, and S. Riahi. “Lower Bounds for Off-Chain

Protocols: Exploring the Limits of Plasma”. In: ITCS 2021. Ed. by J. R. Lee.

Vol. 185. LIPIcs, Jan. 2021, 72:1–72:20. doi: 10.4230/LIPIcs.ITCS.2021.72.

Appendix D.

4.2.1. Our Plasma Model

We assume that the smart contract for the Plasma protocol is already deployed on

the blockchain. To ease readability, we say a party sends a message to the blockchain

instead of saying that it sends it to the Plasma smart contract. Furthermore, for

simplicity and better readability, we avoid discussing the process of depositing

coins in the Plasma system and assume that the Plasma system is initialized with

n users with identities P1, · · · , Pn and an initial balance of x1, · · · , xn. A Plasma

protocol is executed in 2 phases: (1) Transaction Phase, and (2) Exit Phase. Let

us describe the high level idea behind these phases in a bit more detail:

Transaction Phase: If Alice wishes to send c coins to Bob, she signs a transaction

of the form (Alice,Bob, c), and sends it to the operator. At the end of this

phase, the operator updates the balances of the parties locally (off-chain).

Exit Phase: In this phase, parties who wish to exit the system send their new

balance to the blockchain and request an exit.

We denote the time period from the beginning of the transaction phase to the end

of the exit phase as an epoch. Unlike payment channels, a Plasma protocol does

not achieve instant finality. More precisely, in a payment channel upon the parties

exchanging signatures on the new state of the channel they can post this state

on-chain and receive their coins. However, in Plasma protocols parties have to wait

until the end of the transaction phase for their balances to be updated.
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Security in a Plasma protocol. Similar to payment and virtual channels, we

need to define the notion of security for Plasma protocols. Here, we will only give

a high level idea and refer the reader to [62] for the full definition. We assume that

an adversary, can take control of the parties and the operator. These parties are

corrupted and only follow the instructions of the adversary. In a nutshell, we require

that an honest user with total (off-chain) balance c can exit all c coins. However,

as Plasma protocols only achieve late finality a user might not be able to exit the

system according to his or her latest balance, especially if the operator is malicious.

Therefore, we require that an honest user is always able to exit according to her

balance in either the current or previous epoch. Naturally, in order for all honest

parties to be able to exit, the Plasma smart contract must have enough balance

stored in it. In other words, (assuming the operator does not lock collateral) if a

malicious user is able to exit the system with more balance than he or she actually

has, the contract will not have enough balance to finance the exit of other honest

users. Therefore, Plasma protocols require a mechanism to prevent malicious users

from exiting the system and draining the contract’s funds.

In Plasma protocols, the operator posts a short digest of the new balances to

the blockchain at the end of the transaction or exit phase. This digest is sent to

the blockchain in order to (1) indicate that the transaction phase is over and the

balances of the parties are updated, and (2) allow the parties to later convince the

blockchain how many coins they owned off-chain and exit. Most Plasma protocols

use Merkle Trees [124] to store the balances of the users and the operator submits

the Merkle root every epoch to the blockchain. In a nutshell, there are two ways

of storing the balance of the users which results in two types of Plasma protocols,

(1) Plasma MVP, where the leaves of the Merkle tree indicate how many coins does

each user own in the system, and (2) Plasma Cash, where each leaf of the Merkle

tree represents a coin with a fixed identity and specifies its owner. In other words,

in Plasma MVP parties are mapped to their balances, while in Plasma Cash the

coins are mapped to their owner. To initiate an exit, a user only needs to send the

Merkle leaf and proof to the blockchain. This allows the blockchain to verify that

this user owned a token in Plasma Cash or what the balance of the user was in

Plasma MVP. In the next section, we will elaborate more on these two Plasma

protocol categories.

4.2.2. Plasma Categories

As we briefly mentioned before, we identify two general methods of designing

Plasma protocols, namely Plasma MVP [38] and Plasma Cash [40] protocols also

known as Fungible and non-Fungible Plasma. The main difference between them is
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how they store users’ balances and how this balance can be withdrawn on-chain.

In a bit more detail, in Plasma Cash parties own and exchange non-fungible tokens

(tokens that have a fixed valuation and cannot be fractioned into smaller tokens)

while in Plasma MVP each party has a balance and can transfer any fraction of

their balance to other parties. Let us give a high-level description on how each

protocol works (note that these descriptions are simplified. For the more concrete

description we refer the reader to our paper [62]):

Plasma Cash. In Plasma Cash, a leaf of the Merkle tree is of the form (j, Pi)

which indicates that user Pi is the current owner of leaf j (we assume that all coins

have a fixed value). We now describe the Transaction and Exit Phases of Plasma

Cash:

Transaction Phase: If Alice wishes to transfer a token to Bob, she signs a trans-

action of the form (Alice,Bob, j) and sends it to the operator. Here j is the

index of the leaf Alice wishes to transfer to Bob. At the end of this phase,

the operator updates the Merkle tree, publishes the Merkle root on-chain and

sends the Merkle proof of each coin to its designated user. If the Merkle tree

was updated correctly Alice sends the signed tuple (Alice,Bob, j) to Bob as

a “receipt” to confirm that the transfer of token j is finalized.

Exit Phase: In this phase, parties who wish to exit the system send the Merkle

proof of their coins from the previous epoch to the blockchain and indicate

that they wish to exit.

Exit Challenge: If Alice tries to exit the coin she already transferred to Bob, or a

coin that belongs to Bob but the operator maliciously transferred to Alice,

Bob can challenge Alice by sending the signed receipt (Alice,Bob, j) to the

blockchain or asking Alice to provide the receipt that indicates Bob has

transferred the ownership of this coin to Alice. In both cases, the blockchain

realizes that Alice was malicious and would stop her exit.

We note that the description provided here is simplified and is mainly given as a

high level overview on how Plasma Cash works.

Let us briefly explain why Plasma Cash is secure. Assume that the operator

and a party, say Bob, are corrupted. If the operator maliciously transfers the

ownership of Alice’s coin to Bob and Bob tries to exit, Alice can challenge this

Exit as mentioned above. Hence, in Plasma Cash each user only has to monitor his

or her own coins and reacts only if a malicious party tries to steal them. On the

other hand, if a user wishes to exit all her coins, she must exit each coin separately.

This requires substantial communication with the blockchain. In the full version of
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our paper [62], we prove the (the formal version) following theorem and show that

a secure instantiation of Plasma Cash exists:

Theorem 4.2.1 (Plasma Cash, Informal). There exists a secure plasma protocol

ΠCash, where one honest user, when exiting, must make large on-chain communica-

tion.

Plasma MVP. In Plasma MVP, a leaf of the Merkle tree is of the form (Pi, xi, j)

which indicates that user Pi owns xi coins in epoch j. Let us now describe the

Transaction and Exit Phases of Plasma MVP:

Transaction Phase: If Alice wishes to transfer c coins to Bob, she signs a transac-

tion of the form (Alice,Bob, c) and sends it to the operator. At the end of

this phase, the operator updates the Merkle tree, publishes the Merkle root

on-chain, and sends the Merkle proof of each user to them. In addition, the

operator must submit the full Merkle tree to all users. If the users see any

inconsistency in the final balances or do not receive the full Merkle tree they

exit using their Merkle proof from the previous epoch

Exit Phase: In this phase, parties who wish to exit the system send the Merkle

proof of their coins from the previous epoch to the blockchain and indicate

that they wish to exit.

Let us briefly explain why the operator needs to submit the full Merkle tree to

each user. Assume again that the operator and Bob, are corrupted. The operator

could have potentially increased Bob’s balance arbitrarily. This means that the

sum of the users’ balances in the leafs of the Merkle tree would be more than the

total balance of the Plasma smart contract. As such, if Bob exits, there will not be

enough coins left in the smart contract for all honest users to exit. That is why

parties need to constantly monitor the latest balance of all users and check if the

operator has cheated. There are many ways to challenge the malicious operator

or parties on-chain in case of misbehavior. A näıve way would be to post the full

Merkle tree on-chain and prove misbehavior to the blockchain. We will not go

into detail how the challenge mechanism can be designed here and refer the reader

to [38, 62, 131] for possible solutions. Nevertheless, challenge-response mechanisms

for Plasma MVP are rather complex which makes designing them quite difficult. In

the full version of our paper [62], we prove that a Plasma MVP exists and can be

instantiated. More precisely we prove (the formal version) of the following theorem:

Theorem 4.2.2 (Plasma MVP, Informal). There exists a secure plasma protocol

ΠMVP, where honest parties can be forced to make large on-chain action (mass exit)

by the adversary.
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To summarize, in Plasma Cash each party owns multiple coins and can transfer

the ownership of these coins to other parties. Parties only have to monitor if their

coins are being maliciously withdrawn on-chain and if so can challenge this malicious

exit. However, to exit the system each coin has to be withdrawn separately. In

Plasma MVP, parties have a single balance and can freely transfer any fraction

of their coins to other parties. To exit the system, a party only need to submit

a single (short) exit message for all of his or her balances. Yet, parties need to

constantly monitor the latest balance of all users and check if the operator has

cheated.

4.2.3. Separation result between Plasma MVP and Cash

Let us first elaborate on the issues with Plasma MVP and monitoring the new state

constantly. As long as the operator is sending the full Merkle tree to the users,

they can check if their balances were updated correctly. However, as soon as the

operator stops sending the new Merkle tree, parties cannot check if the operator

has behaved honestly or not. This attack is known as the Data Unavailability

Attack. In [62], we first show that data unavailability is non-uniquely attributable,

i.e., a judge cannot decide which party is malicious, the accuser or the accused.

On a high level the main reason data unavailability is non-uniquely attributable

is that the operator only publishes the new state off-chain. The private off-chain

communication of the parties does not have a digital footprint that can be used to

prove whether the operator was malicious or not. Let us give a high level overview

on how we prove this fact. Consider two scenarios:

1. The operator is malicious and does not post the latest state of the system to

the users. The honest users complain to a judge (in our case the blockchain)

that the operator did not post the latest state of the Plasma system off-chain.

2. The users are malicious and falsefully complain to a judge/blockchain that

the operator did not post the latest state of the Plasma system.

From the point of view of the judge/blockchain, these two scenarios are indistin-

guishable. The judge should not accuse the users of being malicious in the first

scenario. Likewise, it should not accuse the operator of being malicious in the

second case. But since these two scenarios are identical from the judge’s point of

view we can conclude that the judge cannot attribute fault to any party. We prove

this fact formally in [62].

The fact that data unavailability attack is non-uniquely attributable has a huge

downside, namely that mounting this attack is “free” for the operator. In other
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words, since the blockchain cannot decide if the operator was malicious or not,

it also cannot punish or penalize the operator. We already saw that parties can

challenge malicious exits in Plasma Cash. One might ask the question: what should

the honest users of Plasma MVP do, when they face a data unavailability attack?

The answer to this question is simply “take your money and run”! More precisely,

parties need to leave the system immediately upon facing a data unavailability

attack. We call this phenomenon, non-uniquely attributable mass exits as parties

have to immediately exit the system before any malicious party has the opportunity

to exit from the new epoch and potentially drain the smart contract (recall that if

a malicious party exits with more balance than he or she actually owns at least one

honest party cannot exit). Naturally, the honest parties cannot exit using their

latest balance as they either have not received their Merkle proof or cannot verify

if this state has been processed correctly. Plasma MVP must allow parties to exit

based on their balance in the previous epoch while making sure that the parties

who indeed remain in the system do not lose coins. This makes designing fungible

Plasma protocols quite complex.

We show in our work [62] that it is impossible to build the perfect Plasma

protocol, i.e., there does not exist a Plasma protocol with short exits that does not

suffer from non-uniquely attributable mass exits. In a bit more details, we prove

the (formal version of the) following Theorem:

Theorem 4.2.3 (Informal.). Let Π be a secure Plasma payment system with n

users. Then either:

1. there exists an attack on Π that causes a forced on-chain action (mass exit)

of large size with high (non-negligible) probability, or

2. there exists an attack on Π such that one honest user, when exiting his or her

coins, must make large on-chain communication with high (non-negligible)

probability.

Moreover, both attacks have no uniquely attributable faults.

We now explain on a high level how we achieve this result. First, note that it is

impossible to compress a random string arbitrarily, e.g., by hashing it, and still

being able to decompress it (this is a well known fact used in different disciplines

which we prove as well in [62]). In order for the blockchain to be able to determine

how much balance each party had after the transaction phase of epoch i, it would

need much more information than the Merkle root and the Merkle proof of a single

party, as just given these values one cannot prove that the operator or the party

exiting was honest. Put differently, as long as the total communication made
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with the blockchain is small, the blockchain does not have enough information

to determine what the correct balance of the parties were. This means either

the total size of an exit must be large, e.g., similar to Plasma Cash, or the total

communication of all honest parties with the blockchain needs to be large, e.g.,

similar to Plasma MVP.

To formalize the above idea, we must somehow show that the information stored

and exchanged off-chain cannot be compressed into a small string. We know that a

random string cannot be compressed arbitrarily without loosing some information.

Hence, our idea is to build an adversary who randomly corrupts half of the parties.

This represents the random string that cannot be compressed arbitrarily. Note

that we assume the Plasma protocol is secure, hence the adversary should not be

able to steal any of the honest users coins. However, the adversary can potentially

force these parties to react on-chain in order to protect their funds.

Let us make this idea more concrete. Assume we have a Plasma system with n

users each owning 1 coin. An attacker can choose, say around n/2 of the users at

random, corrupt them, e.g., by hacking their devices, and force them to transfer

their coins to Alice. At the same time the honest parties do not receive the latest

state of the system, i.e., the operator is mounting a data unavailability attack.

Alice should be able to exit since she indeed received all these coins honestly. The

corrupted parties now act as if they neither made any transactions nor received any

information from the operator, and try to exit. Naturally, if any of these corrupted

parties is able to exit, an honest party will not be able to exit, and this would

violate the security property of the Plasma system. Hence, the blockchain must be

able to determine which user can exit. To this end, it must be able to reconstruct

the list of honest (respectively corrupted) parties. However this list is indeed just

a random string that the adversary choose at the beginning. Therefore, the total

communication with the blockchain must be large in order for the blockchain to be

able to reconstruct this random string. We can conclude that either Alice’s exit

must have a large size or all honest parties must communicate a lot of data with

the blockchain (i.e., by exiting the system). This concludes the main idea behind

the proof. For the full detailed proof we refer the reader to [62].

4.3. Related Work

The original idea of Plasma protocols was proposed by Poon and Buterin in [151].

They used the UTXO transaction system for their Plasma proposal due to its

simplicity. However, their goal was mainly to put forth the idea of Plasma protocols

and encourage the community to develop different variants of this protocol according
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to their needs. Some examples of Plasma variants are Plasma MVP [38] and Plasma

Cash [40, 109] which we mentioned in detail in this work. Plasma Debit [142] was

one of the first attempts to improve Plasma Cash such that it can support more than

just simple transfer of coins. Plasma Snapp [144] proposed using Zero-Knowledge

proofs in order to guarantee that the operator cannot increase the balances of the

parties arbitrarily. Nevertheless, the operator can still mount a data unavailability

attack. One of the few formally presented Plasma solutions (which the authors call

Commit-Chain protocol) are the NOCUST and NOCUST-ZKP protocols by Khalil

et al. [102]. However, NOCUST requires a complex on-chain challenge-response

mechanism and NOCUST-ZKP relies on zero-knowledge proofs. A less analyzed

direction is executing smart contracts off-chain using Plasma. Naturally, data

unavailability would be quite problematic here as users have to go on-chain to

continue executing their smart contract. Nevertheless, examples of such protocols

are [143, 146]. One can find many other variants of Plasma protocols on the

Ethereum research forum [76], though we will not mention all proposals in this

section and refer the reader to this forum.

Handling Data Unavailability. As the main issue surrounding Plasma protocols

is the data unavailability attack, many works have tried to circumvent it. One

direction is to use a trusted party or a committee of parties to guarantee data

availability. In a nutshell, the committee members first verify if they have access to

the latest state of the system and only if that is the case, the new digest (Merkle

root) is valid. Examples of such works are StarkEx [164] and Oasis [171]. Another

direction is simply making the data available on-chain for a short period of time in

order to guarantee that all parties have access to it. This approach is called rollup

and we discussed it in detail in Chapter 1.

4.4. Discussion and Future Work

In this work, we initiated the study of lower bounds for off-chain protocols. We

first provided a model for Plasma protocols and presented Plasma Cash and MVP

instantiations that are secure in our model. Furthermore, we showed that there

is an inherent separation between Plasma Cash and MVP, i.e., Plasma protocols

either suffer from non-uniquely attributable mass exits or have large exit sizes

(see Table 4.1). This can help the Plasma community to focus on improving

the efficiency of protocols in each of the above categories instead of trying to

build a protocol which is indeed impossible to build. Furthermore, our result

justifies considering different solutions such as rollup [177] to overcome this inherent

limitation. In Table 4.2, we compare payment channel hubs and Plasma solutions.
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As we mentioned before, payment channels suffer from high collateral while Plasma

solutions do not have instant finality.

Plasma Type Exit Size mass exits

Plasma Cash Large No
Plasma MVP Small Yes

Table 4.1.: Plasma MVP vs Cash

Off-Chain Solution Collateral Instant finality

Payment Channel Large Yes
Plasma Small/Non No

Table 4.2.: Plasma vs PCHs

Let us now summarize some open problems and future works. In this work,

we only focused on analyzing communication lower bounds for Plasma protocols.

However, one can also consider similar lower bounds for other off-chain protocols

such as payment, state, or virtual channels. Especially, solutions such as PCNs and

PCHs, which involve multiple parties, can be analyzed to determine their efficiency.

This can shed light on the limitations of these protocols and help design better and

more efficient off-chain solutions.

Although we provided an instantiation for Plasma Cash and MVP, our protocols

are not efficient and were only presented to show that these two classes of protocols

exist and are secure in our model. Designing efficient and practical Plasma solutions

are left out as future work. We will see one such solution in Chapter 5. Another

similar direction is designing efficient Plasma protocols capable of executing smart

contracts. Such protocols have not been analyzed as intensively as Plasma protocols

that are only capable of making payments. Naturally, Plasma protocols capable of

executing smart contracts require a more complex design to handle misbehavior

and data unavailability efficiently.

Finally, Plasma protocols are only considered for blockchains that support smart

contracts. Designing a Plasma or Plasma-like solution for more limited blockchains

such as Bitcoin remains an open problem. In other words, analyzing the minimal

assumptions needed to build Plasma protocols is an interesting open problem.
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We saw in Chapter 4 how Merkle trees were used in order to design Plasma

protocols. We also saw that there are two classes of Plasma protocols, Plasma

Cash, and Plasma MVP. While Plasma Cash requires more communication with

the blockchain when a party wishes to exit his or her coins, Plasma MVP suffers

from non-uniquely attributable mass exits. We also discussed why it is impossible

to build the perfect Plasma protocol.

One might however ask if it is possible to optimize Plasma MVP further and

reduce the communication complexity needed in case the operator misbehaves.

In addition, the fact that the operator has to periodically submit the root of the

Merkle tree to the blockchain increases the cost of maintaining the Plasma payment

system. In this chapter, we answer the following question:

Is it possible to design a simple yet efficient Plasma MVP protocol that can easily

handle a malicious operator, assuming that the operator uses a TEE?

5.1. Our Contribution

In this section, we present CommiTee, an efficient Plasma protocol that uses a
Trusted Execution Environment (TEE). More precisely, we show how to build a
Plasma MVP protocol with a simple challenge-response mechanism to deal with a
malicious operator while completely removing the necessity of sending the Merkle
root every epoch to the blockchain. Our work has been disseminated in the following
article.

[72] A. Erwig, S. Faust, S. Riahi, and T. Stöckert. CommiTEE: An Efficient and

Secure Commit-Chain Protocol using TEEs. Cryptology ePrint Archive, Report

2020/1486. https://eprint.iacr.org/2020/1486. 2020. Appendix E.

5.1.1. Background on TEEs

A TEE is a chip that guarantees correct execution of the programs it runs and can

store data securely. In other words, the operator of a TEE chip can neither see the

secrets stored on a TEE nor influence its execution.
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In our work [72], we model a TEE similar to the works by Das et al., and Pass et

al. [49, 140]. A TEE is initialized with a signing keypair (msk ,mpk), called master

public and secret key. We assume in our work that the parties know the mpk of a

TEE, e.g., they can receive it from the website of TEE’s manufacturer. These keys

can be used to determine if a message was generated by the program executed in

the TEE or not. In other words, after installing a program inside the TEE, a user

communicating with the TEE can (a) verify the program that was indeed installed

on the TEE, e.g., the TEE can hash the program, sign it, and output it to the user,

and (b) upon the user receiving the signed output of the program installed on the

TEE, he or she can be certain that the provided output is indeed the result of the

program. Note that a TEE is not a trusted party, it is just a piece of hardware

that can be in the possession of a malicious party. In other words, a (potentially)

malicious party can stop sending messages to the TEE and simply not send out its

reply to the other parties.

The two most, prominent Examples of TEEs are Intel SGX [91, 123] and ARM

TrustZone [112]. We emphasize that TEEs are not bulletproof. There has been

a long line of work exposing their vulnerabilities [26, 36, 175] and also providing

solutions on how to fix them [3, 161, 175]. We see this line of work orthogonal to

ours and assume in our work that TEEs are secure.

5.1.2. Security and Efficiency Properties

Let us first summarize the necessary security and efficiency properties.

User Balance Security. As explained in Chapter 4, an honest user should always

be able to exit her entire balance during the exit phase. As Plasma protocols do

not achieve instant finality, this property essentially requires that an honest user

can exit his or her balance according to either the previous or current epoch.

Efficiency. A Plasma protocol is efficient, if the duration of an epoch is independent

of the number of users or transactions. This property is necessary to guarantee that

malicious parties cannot increase or decrease the length of an epoch by making

more transactions or creating pseudo accounts and joining the system.

5.1.3. CommiTee Protocol

The main idea behind our work is to consider an operator who has a TEE and uses

it to update the balances of the users. Since a TEE is a special piece of hardware,

we only assume that the operator has a TEE. We do not require users to have a

TEE which is quite an important feature of our protocol.
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By using a TEE, (1) the operator cannot maliciously update the balances of

the users, which significantly limits the attack vector of the operator, and (2) if

the honest users receive their new balance-proof, e.g., the Merkle proof of their

balance, from the TEE, they are guaranteed that their balances were updated

correctly. Hence, they do not need to verify the balances of the other parties and

check if the operator was honest. These two advantages alone might convince

us to design a new protocol where an operator uses a TEE. However, a carefully

designed protocol can take advantage of the trusted hardware and optimize the

communication complexity even further. In this section, we call the value returned

by the TEE to the users, e.g., the Merkle proof, balance-proof.

Before presenting the main idea behind our protocol, let us emphasize here that

having a TEE cannot prevent the non-uniquely attributable mass exits attack

explained in Chapter 4. The main reason is that the operator can still stop sending

the values generated by the TEE to the users. Let us analyze what can go wrong

in case of a data unavailability attack. Consider a scenario where Alice wishes to

send Bob 10 coins. She sends a transaction to the operator who forwards it to the

TEE. At the end of the payment phase, the operator sends Bob’s balance-proof to

him but does not return Alice’s balance-proof. In this situation, Alice can only exit

using her balance-proof from the previous epoch, but Bob can exit using his balance

from the latest epoch. However, if both Bob and Alice exit, 10 extra coins are

withdrawn i.e., the contract will be drained. Therefore, we still need a mechanism

to deal with data unavailability.

Main Idea Our main idea in [72] is as follows: We know that if any party can

provide Alice’s balance-proof (signed by the TEE) for the current epoch, it must

have been generated by the TEE and is indeed valid. Using this balance-proof,

regardless of the party providing it, Alice should be able to exit her coins. Therefore,

in case of data unavailability, Alice can simply send a request to the smart contract

on-chain and ask the operator to provide her balance-proof so she can exit. If the

operator provides the balance-proof, Alice can exit normally. Otherwise, if the

operator is non-responsive for some time the smart contract deems the operator to

be malicious. In this case, the current epoch is considered to be invalid, and all

parties have to exit using their balance-proof from the previous epoch.

As we can see, in case the operator is malicious we can easily force him to

submit the balance-proof to the blockchain. Note that this solution would not work

without being certain that the value provided by the operator was indeed generated

correctly, hence this solution would not work for the Plasma MVP construction

mentioned in Chapter 4 without using more advanced cryptographic primitives

such as zero-knowledge proofs (for more details, see our construction from [62]).
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We can now ask ourselves, is it possible to improve the efficiency of Plasma

protocols even further? More specifically, can we come up with a better balance-

proof mechanism than using Merkle trees and Merkle proofs?

Replacing Merkle proofs with simple signatures

As we described in the previous section, the Merkle root posted on the blockchain

is used to prove that a user’s balance was included in the corresponding Merkle

Tree. Put differently, given the Merkle proof, the blockchain can be certain that

the balance of the user was indeed produced by the operator. Yet, when using a

TEE, if a message is signed by the TEE we know that it was generated honestly

by the TEE. Now the question is: can we avoid using Merkle trees and publishing

the Merkle root on the blockchain altogether? We answer this question positively.

More precisely, the phases of the protocol are now as follows (for simplicity we do

not mention how parties can deposit coins into the system):

Transaction Phase: If Alice wishes to transfer c coins to Bob, she signs a transac-

tion of the form (Alice,Bob, c) and sends it to the operator. At the end of this

phase, the operator sends the list of all transactions gathered in this phase

and the new blocks of the blockchain since the last epoch to the TEE. The

TEE updates the balances of the users according to the off-chain transactions

and on-chain exits and for each user Pi the TEE returns a signed tuple

(Pi, xi, j) where xi is this user’s balance in epoch j.

Exit Phase: In this phase, parties who wish to exit the system send their new

balance tuple (Pi, xi, j) to the blockchain and request an exit.

Exit Challenge: If a user Pi does not receive her balance-proof in this epoch, she

sends a message of the form (Pi,Exit-Challenge) to the blockchain. The

operator has a limited time, say ∆ rounds, to respond:

Responsive Operator: If the operator posts the message (Pi, xi, j) signed

by the TEE, the blockchain returns xi coins to Pi on-chain.

Malicious Operator: Otherwise, the operator is malicious and epoch j is

no longer valid. Parties have to now exit using their balance-proof from

epoch j − 1.

As we can see, our protocol is not only simple but also very efficient. It is easy

to see that user balance security holds as honest parties are able to exit either

according to their balance in the current or previous epoch. Let us emphasize that

our solution assumes a fixed time period for each epoch (and as such the efficiency
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property holds), i.e., the blockchain knows when an epoch starts and ends. This

requirement is necessary to guarantee that parties cannot cheat by submitting an

older balance-proof to the blockchain. We refer the reader to our full paper [72] (or

Appendix E) for more technical details and our security argumentation.

Extensions In order to make CommiTee more versatile in practice, we have

extended it such that it is able to, (1) change the operator instead of forcing all

parties to exit if the main operator is malicious, and (2) detect if the TEE has

been compromised. We refer the reader to our full paper [72] for more details on

how these extensions are indeed implemented for CommiTee.

5.1.4. Evaluation of CommiTee

We have done an experimental evaluation of our protocol to show that it is indeed

more efficient than the existing solutions. We provide a short summary of our

results and refer the reader to [72] for more details. Many of the Plasma projects

discussed in the Ethereum research forums only provide experimental evaluations

and in many cases do not provide all the features of Plasma protocols. We chose

the omiseGO and loom network [115, 137] implementation of Plasma MVP and

Cash. Indeed, our results show that CommiTee is 2 to 16 times cheaper in terms

of communication complexity when compared to Plasma MVP and Cash.

The most well known Commit-Chain solution to date is NOCUST and NOCUST-

ZKP [102]. NOCUST relies on a challenge response mechanism in case the operator

tries to cheat while NOCUST-ZKP relies on a zero-knowledge proof to make

sure that the operator has processed all transactions correctly. Our results show

that NOCUST’s and NOCUST-ZKP’s on-chain costs for finalizing an epoch (e.g.,

on-chain fees for sending the Merkle root or zero-knowledge proof), are almost

3 and more than 19 times higher than CommiTee respectively. Note that the

CommiTEE’s smart contract still needs to be activated (which requires some fees

to be paid) at the end of an epoch to update the epoch number and announce the

current epoch as concluded. Hence, although no message needs to be sent by the

operator to the smart contract, the contract still needs to do some bookkeeping to

start a new epoch.

5.2. Related Work

We have already mentioned many works related to Plasma protocols in Chapters 1

and 4. Here, we focus on works that use TEEs to build off-chain protocols.
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Das et al., [49] proposed a solution, called FastKitten, to execute smart contracts

off-chain, over blockchains with limited scripting language such as Bitcoin. Similar

to our solution, FastKitten relies on an operator with a TEE who can correctly

execute a smart contract off-chain. However, in their solution, the operator needs

to lock collateral on-chain equal to the total balance of the parties using the system.

Furthermore, parties cannot dynamically join and leave the system and are fixed

at the beginning of the protocol execution. A more recent work using TEEs is

POSE [79]. In this work, the authors consider a pool of operators with TEEs that

can be selected for the smart contract execution. This solution assumes that at

least one honest operator is selected for the execution of the smart contract and

as such does not require the operators to lock collateral. Furthermore, the parties

can dynamically join and leave the system. Nevertheless, these properties are only

achieved due to the usage of multiple operators each equipped with a TEE.

Another work using TEEs is Ekiden [45]. In this work, the main goal of the

authors is to achieve better privacy for smart contract execution. Due to their

inherent distributed nature, blockchains do not guarantee any privacy, and cannot

store data safely or compute on sensitive data (e.g., medical information, auctions

or bids, financial transactions). Ekiden pushes the computation necessary for smart

contract execution off-chain and to a network of nodes all equipped with TEEs.

By doing so, Ekiden is able to achieve better privacy. Another work similar to

Ekiden is Private Data Objects (PDO) [35] which also allows parties to execute

smart contracts off-chain in a privacy preserving manner. In contrast to Ekiden,

PDO allows parties to decide which nodes are responsible for executing the smart

contract. Another similar work was presented in [99]. The authors’ goal however

was to synchronize stateless TEEs, i.e., TEEs that do not have access to secure

storage, via the blockchain. As such, their construction is more generic than the

previous two papers. They also discuss applications of their construction such as

private smart contracts execution between synchronized TEEs.

Other examples of off-chain protocols with TEEs is TEEchan and TEEchain [113,

114]. TEEchain proposes a PCN construction using TEEs in order to achieve

better flexibility, efficiency and security. TEEchain allows parties to dynamically

deposit coins in their channels whereas in traditional payment channels, increasing

the balance of a channel requires closing and reopening a new channel. To avoid

losing funds in case a TEE fails or brought offline, TEEchain uses a committee of

TEEs to guarantee security. Nevertheless, this solution only aims at improving

the channel solutions and works over Bitcoin. Before TEEchain, TEEchan [113]

also showed how to build payment channels using TEEs. However, TEEchan lacks

many of the features that TEEchain achieves like multi-hop payments, dynamic

deposits. Furthermore, TEEchan channels only have a limited lifetime.
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In [24], the authors proposed Tesseract, a scalable TEE based cross-chain cryp-

tocurrency exchange system using TEEs. Town Crier [181] presents a data feed

(nowadays mostly knows as oracles) system, i.e., it provides the blockchain with

information that are sourced on the web. By using a TEE, Town Crier guarantees

that the information relayed to the blockchain are correct. Obscuro [173] presents

a Bitcoin mixer solution using TEEs. A mixer, takes multiple coins as input and

outputs them in a shuffled order to designated users. Hence, it would become much

harder to track coins or identify the source of a transaction. Obscuro uses TEEs

to design a simple but secure mixer protocol. Hawk [110] presents an off-chain

solution using TEEs to execute smart contracts in a privacy preserving manner.

However, parties need to post their inputs (in an encrypted form) on-chain.

5.3. Discussion and Future Work

In this chapter, we presented a simple yet efficient fungible Plasma/Commit-Chain

solution using TEEs. Unlike other fungible Plasma protocols [38], honest parties do

not need to check the full state (Merkle Tree) of the Plasma system and only need to

submit a single message signed by the TEE when exiting the system. Our protocol

also does not rely on advanced cryptographic primitives such as zero-knowledge

proofs [144]. An interesting future work direction would be to design an efficient

Plasma protocol capable of executing smart contracts off-chain. Although works

such as FastKitten and POSE [49, 79] are also able to execute smart contracts

off-chain they either require using multiple operators or have some limitations, e.g.,

requiring the operator to lock collateral and having a fixed set of parties. Another

direction would be to consider multiple operators who are simultaneously active and

process transactions and as long as a majority of them are online (i.e., the operator

does not mount a data unavailability attack) the parties receive their balance-proof.

Naturally, one can execute a consensus protocol between these TEEs. However,

it would be interesting to come up with more efficient and tailor made solutions.

We showed how to build an efficient fungible Plasma protocol using a TEE. It

would also be interesting to see if one can improve the efficiency of non-fungible

Plasma, using a TEE. Finally, one can also consider a Plasma protocol that can

act as a bridge between multiple blockchains, i.e., parties can deposit coins in one

blockchain yet exit their coins in a different blockchain.

Impact of our work. After publishing our paper, CommiTee has been implemented

by the PolyCrypt GmbH [150] under the brand name Erdstall [66].
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In this thesis, we analyzed the minimal assumptions required to construct off-

chain protocols. We started in Chapter 2 with generalized and virtual channel

constructions over Bitcoin [11, 12]. Generalized channels are a generalization of

state channels over Ethereum. They allow executing applications off-chain that are

supported by the underlying blockchain even if the underlying blockchain has a

limited scripting language. One can also view state channels as a special case of

generalized channels that are only designed for blockchains with a Turing complete

scripting language. Works such as [59, 63] put forth state channel constructions,

yet these solutions can only be deployed over blockchains capable of executing

smart contracts such as Ethereum. Our generalized channels on the other hand can

be executed over Bitcoin. This is a huge step towards improving blockchains’ and

more specifically, Bitcoin’s scalability. In order to design generalized channels, we

used a primitive called adaptor signatures. We formalized adaptor signatures as a

standalone primitive for the first time in [11]. This allows other works in the future

to use adaptor signatures and argue the security of their scheme more easily. We

further showed that the single-party Schnorr and ECDSA instantiations of adaptor

signatures are secure in our model. As mentioned in Chapter 2, our work has been

the building block for many followup works such as [75, 128, 169, 170].

We then showed how to build virtual channels over blockchains with a limited

scripting language such as Bitcoin. A Virtual channel allows two parties who

have a channel with a common intermediary, to make direct off-chain payments

without requiring the intermediary to route the payments. Similar to generalized

channels, the virtual channel constructions known before our work could only be

deployed over blockchains that could execute smart contracts [59, 60, 63]. All in

all, we showed that building generalized and virtual channels does not require the

underlying blockchain to support Turing complete smart contracts, and they can

be deployed over blockchains with a much more restricted scripting language.

Although recent works, such as [14, 104], have extended the functionality of our

virtual channels, there are still some future work directions open for investigation.

First and foremost, extending our construction from two-party to multi-party

channels can be an interesting future work direction. This would allow executing

not only two-party but also multi-party applications off-chain.

62



6. Conclusion

Another direction for future work is finding new ways to analyze the security

of complex blockchain protocols. As mentioned in Chapter 2, analyzing protocols

in UC is unfortunately quite cumbersome for complex protocols such as the ones

deployed over blockchains. To tackle this issue, there are two complementary

approaches that can be investigated. First, one can design a specific model for

blockchain applications that already includes many of the machinery needed for

proving security in the blockchain setting, e.g., a unified model of blockchain itself.

Another direction would be to design formal/automated verification tools similar

to [31, 64, 107, 157]. This would allow easier verification of the protocol’s security

and even simplify the process of implementing such protocols. A natural extension

of this direction is analyzing if the implementation of the software and protocols

are indeed secure. This would guarantee that the solutions are not only secure

from a conceptual point of view but also in practice.

Finally, optimizing and calculating the duration of the time-locks are necessary

in order to implement and use off-chain protocols in practice. Similarly, making

sure that the parties are financially incentivised to route transactions is crucial for a

functioning off-chain payment system. All in all, analyzing the financial/economic

aspects of off-chain protocols is an interesting research question.

We continued our work in Chapter 3 by formalizing and designing two-party

adaptor signature schemes with aggregatable public keys [70]. This scheme allows

two-parties to jointly generate a pre-signature/signature which is valid under their

aggregated public key. We showed how both the single, and two-party variants of

adaptor signatures, and two-party signatures can be constructed (almost) generically

from identification schemes that satisfy certain properties. We further showed

that Schnorr, Katz-Wang, and Guillou-Quisquater schemes [87, 101, 159] satisfy

these properties and hence can be generically transformed into single and two-party

adaptor signatures and two-party signatures with aggregatable public keys. The

two-party adaptor signature construction allows improving the efficiency of our

generalized channel constructions as explained previously in Chapter 3. Finally,

we showed that unique signatures such as BLS [34] cannot be transformed into

adaptor signatures. Our work can be seen as the first step towards understanding

adaptor signatures. A natural future work direction is extending our model and

construction to multi-party adaptor signatures or analyzing if other signature

schemes such as ring signatures [167, 179] can also be transferred into adaptor

signatures. Furthermore, it would be interesting to prove the security of our scheme

in the plain public key model [21]. As we discussed in Chapter 3, we currently

only prove the security of our scheme in the KOSK model [32] which is weaker

than the plain public key model. Finally, finding new settings other than the

currently explored blockchain applications, where adaptor signatures can be used,

63



6. Conclusion

is an interesting general research direction.

By this point, we analyzed the possibility of constructing schemes and protocols

over Bitcoin that were already developed for the Ethereum blockchain, i.e., gen-

eralized and virtual channels. In Chapter 4, we presented our paper [62] where

we analyzed a new proposal called Plasma. Plasma protocols were introduced

as an alternative to channels in order to increase the scalability of the Ethereum

blockchain. The community came up with two standards, namely Plasma Cash and

MVP [38, 40, 109] each with its own advantages and disadvantages. While Plasma

Cash was easier to design and instantiate, parties who wish to bring their funds

back on-chain need to make large communication with the blockchain. Plasma

MVP on the other hand did not require large on-chain communication when parties

want to leave the system. However, in case the operator cheats, and does not send

the state of the Plasma MVP system off-chain to the users, every honest party

has to immediately leave the system. We called this phenomenon mass exit and

proved that it is non-uniquely attributable, i.e., the blockchain cannot decide if the

operator behaved maliciously or not. Hence, the operator cannot be punished for

causing this mass exit. We proved that one cannot construct a protocol that has

the best features of both Plasma MVP and Cash. More precisely, it is impossible to

build a plasma system that has short exits and does not suffer from non-uniquely

attributable mass exits.

As future work, one can analyze the limitations of other off-chain protocols such

as payment channels. This would allow both researchers and practitioners to know

the theoretical limitations of these off-chain protocols and avoid spending time on

designing protocols that are impossible to build. Another future work direction

would be designing more efficient Plasma Cash and MVP protocols and proving

that they are indeed secure. Finally, one can consider scenarios where instead of

a single operator, a set of parties take the role of the operator. Naturally, these

parties must be synchronized, however minimizing the communication between

these parties and avoiding the usage of expensive generic Multi Party Computation

techniques is an interesting direction for future research.

Finally, in Chapter 5 we presented an efficient yet simple Plasma MVP pro-

tocol using TEE called CommiTEE [72]. This protocol does not have many of

the inefficiencies of the other Plasma protocols. CommiTEE has a much simpler

challenge/response mechanism compared to other Plasma MVP constructions with-

out relying on complex cryptographic primitives such as zero-knowledge proofs.

Furthermore, our construction does not need the operator to send messages period-

ically to the blockchain. This is in contrast to all previous Plasma protocols. We

further showed via an experimental evaluation that our construction is much more

efficient than the existing implementations of Plasma/Commit-Chain protocols.
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Due to its efficiency and practicallity, CommiTee has been implemented by the

PolyCrypt GmbH [150] under the brand name Erdstall [66]. In this chapter, we

only considered off-chain payments, however, using TEEs one might be able to

extend the functionality of CommiTEE in multiple ways. First, CommiTEE can

be extended to also support the off-chain execution of smart contracts. Another

example would be to support multiple operators that are active at the same time

and jointly process transactions. One can also analyze if using a TEE helps design

a more efficient Plasma Cash protocol. Similar to payment channels, analyzing

the financial aspects of the Plasma protocols and making sure that the operators

are financially compensated for facilitating the off-chain payments is an interesting

an important research direction. Finally, supporting payments between multiple

blockchains such that parties can join from one blockchain and exit their funds in

another blockchain is an interesting open problem.
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Abstract. Decentralized and permissionless ledgers offer an inherently low transaction rate,
as a result of their consensus protocol demanding the storage of each transaction on-chain.
A prominent proposal to tackle this scalability issue is to utilize off-chain protocols, where
parties only need to post a limited number of transactions on-chain. Existing solutions can
roughly be categorized into: (i) application-specific channels (e.g., payment channels), of-
fering strictly weaker functionality than the underlying blockchain; and (ii) state channels,
supporting arbitrary smart contracts at the cost of being compatible only with the few
blockchains having Turing-complete scripting languages (e.g., Ethereum).
In this work, we introduce and formalize the notion of generalized channels allowing users
to perform any operation supported by the underlying blockchain in an off-chain manner.
Generalized channels thus extend the functionality of payment channels and relax the defi-
nition of state channels. We present a concrete construction compatible with any blockchain
supporting transaction authorization, time-locks and constant number of Boolean ∧ and
∨ operations – requirements fulfilled by many (non-Turing-complete) blockchains including
the popular Bitcoin. To this end, we leverage adaptor signatures – a cryptographic primi-
tive already used in the cryptocurrency literature but formalized as a standalone primitive
in this work for the first time. We formally prove the security of our generalized channel
construction in the Universal Composability framework.
As an important practical contribution, our generalized channel construction outperforms
the state-of-the-art payment channel construction, the Lightning Network, in efficiency. Con-
cretely, it halves the off-chain communication complexity and reduces the on-chain footprint
in case of disputes from linear to constant in the number of off-chain applications funded
by the channel. Finally, we evaluate the practicality of our construction via a prototype
implementation and discuss various applications including financially secured fair two-party
computation.

Keywords: Blockchain, adaptor signatures, off-chain protocols and channels.

1 Introduction

One of the most fundamental technical challenges of decentralized and permission-
less blockchains is scalability. Since transactions are processed via a costly dis-
tributed consensus protocol run among a set of parties (so-called miners), trans-
action throughput is limited and transaction confirmation is slow. There has been
a plethora of work on improving scalability of blockchains, with off-chain protocols
being one of the most promising solutions.

Intuitively, off-chain protocols build a second layer over the blockchain (often re-
ferred to as the layer-1 ) by allowing the vast majority of transactions to be processed
directly between the involved participants, with the blockchain being used only in



the initial setup and in case of disputes, thereby drastically improving transaction
throughput and confirmation time.

While there exists a large variety of different off-chain (or layer-2) solutions (see,
e.g., [6, 53, 30, 32] and many more), payment channels [10, 19, 47] are by far the
most prominent one. Intuitively, a payment channel works in three phases. First,
the two users open a channel by locking a certain amount of coins on-chain into
an account controlled by both users. Then they perform an arbitrary amount of
payments by exchanging authenticated messages off-chain. Finally, they close the
channel by announcing the outcome of their trades to the ledger.

Off-chain computations in Ethereum. Ethereum supports on-chain transactions
specified in a Turing-complete scripting language, which enables the execution of
arbitrarily complex programs, also called smart contracts, thereby going beyond
simple payments. The underlying blockchain is organized accordingly in the account-
based model, in which the balance associated to an account is explicitly stored in
its memory and programmatically updated via smart contracts. By leveraging the
expressiveness of Turing-complete scripting languages, payment channels can be
generalized into so-called state channels [43, 22, 23], whose functionality goes far
beyond simple payments. Namely, state channels enable users to execute arbitrarily
complex smart contracts in an off-chain manner, thereby making their execution
faster and cheaper.

Turing-complete vs restricted scripting. The majority of current blockchains (e.g.,
Bitcoin, Zcash, Monero, and Cardano’s ADA) only support a restricted scripting lan-
guage and are based on the Unspent Transaction Output (UTXO) model: intuitively,
they enable a restricted class of transactions, possibly conditioned to some events,
that transfer money from an unspent transaction to a new unspent transaction.
There are several reasons behind the choice of a limited scripting language. First,
the simplicity of design and usage, which is believed to be beneficial for security:
countless examples of smart contract vulnerabilities on Ethereum show that complex
contract logic and increased expressiveness pave the way for critical bugs, which may
have severe consequences for the stability of the underlying currency as shown by
the infamous DAO hack [48]. Second, blockchains with simple transaction logic are
less costly to maintain: this is important as transaction execution is done by many
parties, and even normal users. Finally, restricted scripting languages are expressive
enough to encode many interesting computations (e.g., lotteries [2], auctions [21],
and more [8, 37, 7]).

Unfortunately, current state channel constructions are not applicable without a
Turing-complete scripting language, thereby excluding the majority of blockchains.
In this work, we investigate the following question: Can we generically lift any
transaction logic offered by layer-1 to layer-2 even for blockchains with restricted
transaction logic? Besides its practical importance, we believe that this question
is theoretically interesting. It may constitute a first step towards a more general
research agenda exploring the feasibility (or impossibility) of generic off-chain com-
putation from blockchains with limited expressiveness.



1.1 Our contribution

Our main contribution is to put forward the notion of generalized channels – a
generic extension of payment channels to support off-chain execution of arbitrary
transaction logic supported by the underlying blockchain. State channels can hence
be seen as a special case of generalized channels for blockchains with Turing-complete
scripting languages. We briefly outline our main contributions below. A technical
overview of our construction is given in Sec. 2.

Generalized channels. We show that if the underlying UTXO-based blockchain
supports transaction authorization, time-locks and basic Boolean logic (constant
number of ∧, ∨ operations), then any transaction logic available on layer-1 can be
lifted to layer-2 securely and generically.

As most cryptocurrencies, including the by far most prominent Bitcoin, satisfy
the assumptions of our construction, they can benefit from generalized channels
as a scalability solution. This, in particular, implies that our construction directly
enables to execute any Bitcoin transaction off-chain. Moreover, we stress that our
construction can also be deployed over any blockchain that can simulate a UTXO-
based system, which, in particular, includes blockchains with support for Turing-
complete smart contracts, e.g., Ethereum or Hyperledger Fabric [1].

A novel revocation mechanism for generalized channels. The main technical chal-
lenge in our generalized channel design is to propose an efficient mechanism for old
channel state revocation while putting minimal assumptions on the scripting lan-
guage of the underlying blockchain. The state-of-the-art approach, put forward by
the Lightning Network [47], uses a punishment mechanism which allows the cheated
party to claim all coins from the channel. As we argue, a straightforward generaliza-
tion of the Ligthning-style revocation is unsuitable for generalized channels. Firstly,
the blockchain communication complexity in case of misbehavior depends on the
number of parallel conditional payments funded by the channel. This significantly
increases the blockchain overhead when processing a punishment (if triggered). Sec-
ondly, the security of the revocation mechanism relies on state duplication, hence
each off-chain transaction funded by the channel has to be performed twice (once on
each duplicate). This is particularly problematic when channels are built on top of
channels [26] as the off-chain communication complexity grows exponentially with
the number of channel layers.

To overcome these drawbacks, we design a novel revocation mechanism reducing
the on-chain complexity in case of a dispute from linear to constant, and the off-chain
communication complexity from exponential to linear.

Formalization of adaptor signatures. A key idea of our novel revocation mech-
anism is to utilize an adaptor signature scheme [46] – a cryptographic primitive
introduced by the cryptocurrency community to tie together the authorization of
a transaction and the leakage of a secret value. Although adaptor signatures have
been used in previous works (e.g. [41, 29, 45]), a formal definition has never been
presented. We fill this gap by providing the first formalization of adaptor signatures
and their security (in terms of cryptographic games), and proving that ECDSA and



Schnorr-based schemes satisfy our notions. We believe that our formalization and
security analysis of adaptor signatures is of independent interest (see details on the
impact of our work below).

Formalization of generalized channels. In order to formally define the security
guarantees of a generalized channel protocol, we utilize the extended Universal Com-
posability model allowing for global setup (the GUC model for short) put forward
by Canetti et al. [15]. More precisely, we model money mechanics of an UTXO-based
blockchain via a global ledger ideal functionality and provide an ideal specification
of a generalized channel protocol via a novel ideal functionality. Thereafter, we prove
that our generalized channel construction satisfies this ideal specification. The key
challenges of our security analysis are to ensure the consistency of timings imposed
by the blockchain processing delay, and to ensure that no honest party can ever lose
coins by participating in a channel.

Evaluation and applications. We implemented our protocols and conducted an
experimental evaluation, demonstrating how to use generalized channels as a build-
ing block for popular off-chain applications, like payment routing through a payment
channel network (PCN) [47, 42, 41] and channel splitting [26]. Concretely, our eval-
uation demonstrates that, already when routing one payment through a channel,
the amount of blockchain fees in case of a dispute is reduced by 28% compared to
the state-of-the-art Lightning network solution. In practice, there have been cases of
disputes in channels with 50 concurrent payments [40], which currently costs 553.66
USD in fees to resolve in Lightning and only 17.47 USD with generalized chan-
nels. For channel splitting, we reduce the transactions to be exchanged off-chain per
sub-channel from exponential to constant.

Moreover, we discuss how to use generalized channels to realize the Claim-or-
Refund functionality of Bentov and Kumaresan [8]. This functionality, can be used to
build a fair two-party computation protocol over Bitcoin, where fairness is achieved
by financially penalizing malicious parties. Realizing the Claim-or-Refund function-
ality, in particular, implies that generalized channels allow parties to execute any
two-party computation off-chain.

1.2 Other Related Work

We briefly discuss related work on off-chain protocols and adaptor signatures, where
the latter is an important building block in our construction.

Off-chain protocols. As already mentioned before, there has been an extensive
line of work on various types of payment channels [10, 19, 47] and payment channel
networks (PCNs) [47, 42, 41]. However, these constructions only support simple
payments and do not extend to support more complex transaction logic. The authors
in [34] provide a formalization of the Lightning Network (LN) in the UC framework.
This formalization is, however, tailored to the details of the current LN and cannot
be leveraged to formalize generalized channels as we propose here. Most related to
our work is the research on state channels [43, 22, 23], as these constructions allow to
lift any transaction logic supported by the underlying blockchain off-chain. However,



state channels crucially rely on the underlying blockchain to support smart contracts
and hence do not work for blockchains with restricted scripting language. Finally,
eltoo [20] is a payment channel construction which does not rely on a punishment
mechanism, yet requires Bitcoin to adapt a new scripting command (op-code). This
op-code, however, has not been included to Bitcoin’s scripting language in the past
due to security concerns. In the case of address reuse or lazy wallet designs, funds
can be stolen by replaying transactions [52]. Moreover, the security of the eltoo
protocol has not been formally proven and it only supports simple payments.

Apart from payment and state channels, numerous other solutions have been
proposed in order to perform heavy on-chain computation off-chain. For instance,
various previous works (e.g., [18, 17, 35]) focus on realizing on-chain functionality
off-chain by using Trusted Execution Environments which, however, inherently add
an additional trust assumptions that may not hold in practice (e.g., [12, 16, 13]). A
proposal to remove these assumptions is to use MPC protocols [8, 37], which how-
ever require collateral linear in the number of conditional payments. In contrast,
generalized channels only require constant collateral for the execution of an arbi-
trary number of such payments. There have been proposals to remedy the collateral
requirement in MPC protocols [9, 36, 38] but they are incompatible with many
existing UTXO blockchains, including Bitcoin.6

Adaptor signatures. Poelstra [46] introduced the notion of adaptor signatures
(AS), which intuitively allows to create partial signatures whose completion is con-
ditioned on solving a cryptographic hard problem – a feature that has been proven
useful in off-chain applications such as PCNs [41] and payment-channel hubs [49].
For instance, Malavolta et al. [41] use AS as building block to define and realize
multi-hop payments in PCNs. Moreover, AS have been used as an off-the-shelf cryp-
tographic building block for multi-path payments [25] and Monero-compatible PCNs
[51]. Banasik et al. [5] construct a scheme satisfying a similar notion to AS in order
to allow two parties to exchange a digital asset using cryptocurrencies that do not
support Turing-complete programs. None of these works, however, define AS as a
stand-alone primitive. Concurrently to our work, Fournier [29] attempts to formalize
AS as an instance of one-time verifiable encrypted signatures [11]. Yet, the definition
of [29] is weaker than the one we give in this work and does not suffice for the channel
applications. Also concurrent to this work, Thyagarajan and Malavolta [50] define
lockable signatures. While similar to AS in spirit, lockable signatures are a weaker
primitive as the partial signature must be created honestly (e.g., through MPC) and
the solution to the cryptographic hardness problem must be known beforehand. On
the other hand, lockable signatures can be built from any signature scheme while
AS cannot be constructed from unique signatures [27].

6 These solutions require the underlying blockchain to either support verification of signatures on arbitrary
messages or Turing-complete smart contracts.



2 Background and Solution Overview

Blockchain transactions. We focus on blockchains based on the Unspent Transaction
Output (UTXO) model, such as Bitcoin. In the UTXO model, coins are held in
outputs. Formally, an output θ is a tuple (cash, φ), where cash denotes the amount
of coins associated to the output and φ defines the conditions (also known as scripts)
that need to be satisfied to spend the output.

A transaction transfers coins across outputs meaning that it maps (possibly
multiple) existing outputs to a list of new outputs. The existing outputs that fund
the transactions are called transaction inputs. In other words, transaction inputs
are those tied with previously unspent outputs of older transactions. Formally, a
transaction tx is a tuple of the form (txid, In,Out,Witness), where txid ∈ {0, 1}∗
is the unique identifier of tx and is calculated as txid := H([tx]), where H is a
hash function modeled as a random oracle and [tx] is the body of the transaction
defined as [tx] := (In,Out); In is a vector of strings identifying all transaction inputs;
Out = (θ1, . . . , θn) is a vector of new outputs; and Witness ∈ {0, 1}∗ contains the
witness allowing to spend the transaction inputs.

To ease the readability, we illustrate the transaction flows using charts (see Fig. 1
for examples). We depict transactions as rectangles with rounded corners. Doubled
edge rectangles represent transactions published on the blockchain, while single edge
rectangles are transactions that could be published on the blockchain, but they are
not (yet). Transaction outputs are depicted as a box inside the transaction. The
value of the output is written inside the output box and the output condition is
written above the arrow coming from the output.

Conditions of transaction outputs might be fairly complex and hence it would
be cumbersome to spell them out above the arrows. Instead, for frequently used
conditions, we define the following abbreviated notation. If the output script contains
(among other conditions) signature verification w.r.t. some public keys pk 1, . . . , pkn

on the body of the spending transaction, we write all the public keys below the arrow
and the remaining conditions above the arrow. Hence, information below the arrow
denotes “who owns the output” and information above denotes “additional spending
conditions”. If the output script contains a check of whether a given witness hashes
to a predefined h, we express this by writing the hash value h above the arrow.
Moreover, if the output script contains a relative time-lock, i.e., a condition that is
satisfied if and only if at least t rounds passed since the transaction was published,
we write “+t” above the arrow. Finally, if the output script φ can be parsed as
φ = φ1 ∨ · · · ∨ φn for some n ∈ N, we add a diamond shape to the corresponding
transaction output. Each of the sub-conditions φi is then written above a separate
arrow.

Payment channels. A payment channel [47] enables several payments between
two users without submitting every single transaction to the blockchain. The cor-
nerstone of payment channels is depositing coins into an output controlled by two
users, who then authorize new deposit balances in a peer-to-peer fashion while hav-
ing the guarantee that all coins are refunded at a mutually agreed time.
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Fig. 1. (Left) tx is published on the blockchain. The output of value x1 can be spent by a transaction
containing a preimage of h and signed w.r.t. pkA. The output of value x2 can be spent by a transaction
signed w.r.t. pkA and pkB but only if at least t rounds passed since tx was accepted by the blockchain.
(Right) tx′ is not published yet. Its only output can be spent by a transaction whose witness satisfies
φ1 ∨ φ2 ∨ φ3.

First, assume that Alice and Bob want to create a payment channel with an initial
deposit of xA and xB coins respectively. For that, Alice and Bob agree on a funding
transaction (that we denote by TXf) that sets as inputs two outputs controlled by
Alice and Bob holding xA and xB coins respectively and transfers them to an output
controlled by both Alice and Bob (i.e., its spending condition mandates both Alice’s
and Bob’s signature). When TXf is added to the blockchain, the payment channel
between Alice and Bob is effectively open.

Assume now that Alice wants to pay α ≤ xA coins to Bob. For that, they create
a new commit transaction TXc representing the commitment from both users to the
new channel state. The commit transaction spends the output of TXf into two new
outputs: (i) one holding xA − α coins owned by Alice; and (ii) the other holding
xB +α coins owned by Bob. Finally, parties exchange the signatures on the commit
transaction, thereby complete the channel update. Alice (resp. Bob) could now add
TXc to the blockchain. Instead, they keep it locally in their memory and overwrite it
when they agree on another commit transaction, let us denote it TXc, representing
a newer channel state. This, however, leads to several commit transactions that
can possibly be added to the blockchain. Since all of them are spending the same
output, only one can be accepted. As it is impossible to prevent a malicious user
from publishing an old commit transaction, payment channels require a mechanism
punishing such behavior.

Lightning Network [47], the state-of-the-art payment channel for Bitcoin, imple-
ments such mechanism by introducing two commit transactions, denoted TXAc and
TXBc, per channel update, each of which contains a punishment mechanism for one
of the users. In more detail (see also Fig. 2), the output of TXAc representing Alice’s
balance in the channel has a special condition. Namely, it can be spent by Bob if
he presents a preimage of a hash value hA or by Alice if certain number of rounds
passed since the transaction was published. During a channel update, Alice chooses
a value rA, called the revocation secret, and presents the hash hA := H(rA) to Bob.
Knowing hA, Bob can create and sign the commit transaction TXAc with the built-in
punishment for Alice (analogously for Bob and TXBc). During the next channel up-
date, parties first commit to the new state by creating and signing TX

A

c and TX
B

c, and
then revoke the old state by sending the revocation secrets to each other thereby
enabling the punishment mechanism. If a malicious Alice now publishes the old com-
mit transaction TXAc, Bob can spend both of its outputs and claim all coins locked
in the channel.
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Fig. 2. A Lightning style payment channel where A has xA coins and B has xB coins. The values hA and
hB correspond to the hash values of the revocation secrets rA and rB . ∆ upper bounds the time needed
to publish a transaction on a blockchain.

2.1 Solution Overview

The goal of our work is to extend the idea of payment channels such that parties can
agree on any conditional payment that they could do on-chain and not only direct
payments. Technically, this means that we want the commit transaction to contain
arbitrary many outputs with arbitrary conditions (as long as they are supported by
the underlying blockchain). The main question we need to answer when designing
such channels, which we call generalized channels, is how to implement the revocation
mechanism.

Revocation per update. The first idea would be to extend the revocation mecha-
nism explained above such that each output of TXAc contains a punishment mechanism
for Alice (analogously for Bob). While this solution works, it has several disadvan-
tages. If one party, say Alice, cheats and publishes an old commit transaction TXAc,
Bob has to spend all outputs of TXAc to punish Alice. Although Bob could group some
of them within a single transaction (up to the transaction size limit), he might be
forced to publish multiple transactions thereby paying high transaction fees. More-
over, such revocation mechanism requires a high on-chain footprint not only for TXAc,
but also for Bob getting coins from the outputs.

Our goal is to design a punishment mechanism whose on-chain footprint and
potential transaction fees are independent of the channel state, i.e., the number
and type of outputs in the channel. To this end, we propose the punish-then-split
mechanism which separates the punishment mechanism from the actual outputs. In
a nutshell, the commit transaction TXAc has now only one output dedicated to the
punishment mechanism which can be spent (i) immediately by Bob, if he proves that
the commit transaction was old (i.e., he knows the revocation secret rA of Alice); or
(ii) after certain number of rounds by a split transaction TXAs owned by both parties
and containing all the outputs of the channel (i.e. representing the channel state).
Hence, if TXAc is published on the blockchain, Bob has some time to punish Alice if
the commit transaction was old. If Bob does not use this option, any of the parties
can publish the split transaction TXAs representing the channel state. Analogously for
TXBc.



One commit transaction per channel update. Another drawback of the Lightning-
style revocation mechanism is the need for two commit transactions for the same
channel state. While this is not an issue for simple payment channels, for generalized
channels it might cause undesirable redundancy in terms of communication and
computational costs. This comes from the fact that generalized channels support
arbitrary output conditions and hence can be used as a source of funding for other off-
chain applications, e.g., a fair two-party computation or another off-chain channel as
we discuss later in this work (see Sec. 7). Such off-chain application would, however,
have to “exist” twice. Once considering TXAc being eventually published on-chain and
once considering TXBc. Especially when considering channels built on top of channels,
the overhead grows exponentially. Our goal is to construct generalized channels that
require only one commit transaction and hence avoid any redundancy.

A naive approach to design such a single commit transaction TXc would be to
“merge” the transactions TXAc and TXBc. Such TXc could be spent (i) by Alice if she
knows Bob’s revocation secret; (ii) by Bob if he knows Alice’s revocation secret or
(iii) by the split transaction TXs representing the channels state after some time.
Unfortunately, this simple proposal allows parties to misuse the punishment mecha-
nism as follows. A malicious Alice could publish an old commit transaction TXc and
since she knows Bob’s revocation secret, she could immediately try to punish Bob.
To prevent such undue punishment of honest Bob, we need to make sure that Alice
can use the punishment mechanism only if Bob published TXc.

The main idea of how to implement this additional requirement is to force the
party publishing TXc to reveal some secret, which we call publishing secret, that the
other party could use as proof. We achieve this by leveraging the concept of an adap-
tor signature scheme – a signature scheme that allows a party to pre-sign a message
w.r.t. some statement Y of a hard relation (at a high level, a statement/witness
relation is hard, if given a statement Y is it computationally hard to find a witness
y). Such pre-signature can be adapted into a valid signature by anyone knowing a
witness for the statement Y . Also, it is possible to extract a witness y for Y by know-
ing both the pre-signature and the adapted full signature. In our context, adaptor
signatures allow users of a generalized channel to express the following: “I give you
my pre-signature on TXc that you can turn into a full signature and publish TXc,
which will reveal your publishing secret to me.”

To conclude, our solution, depicted in Fig. 3, requires only one commit transac-
tion TXc per update. The commit transaction has one output that can be spent (i)
by Alice if she knows Bob’s revocation secret rB and publishing secret yB; (ii) by
Bob if he knows Alice’s revocation secret rA and publishing secret yA or (iii) by the
split transaction TXs representing the channels state after some time. In the depicted
construction, we assume that statement/witness pairs used for the adaptor signature
scheme are public/secret keys of the blockchain signature scheme. Hence, testing if
a party knows a publishing secret can be done by requiring a valid signature w.r.t.
this public key. Let use emphasize that public/secret keys can also be used for the
revocation mechanism instead of the hash/preimage pairs. This is actually prefer-
able (not only in our construction but also in the Lightning-style channels) since the
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Fig. 3. A generalized channel in the state ((x1, φ1), . . . , (xn, φn)). In the figure, pkA denotes Alice’s public
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ogously for Bob). The value of ∆ upper bounds the time needed to publish a transaction on a blockchain.

punishment output script will only consist of signature verification, thereby requir-
ing less complex scripting language. As a result, our solution does not only work
over Bitcoin, but over any UTXO based blockchain that supports transaction au-
thorization (if there exists an adaptor signature scheme w.r.t. the considered digital
signature), relative time-locks and constant number of ∧ and ∨ in output scripts.

3 Preliminaries

We denote by x ←$ X the uniform sampling of the variable x from the set X .
Throughout this paper, n denotes the security parameter and all our algorithms
run in polynomial time in n. By writing x ← A(y) we mean that a probabilistic
polynomial time algorithm A (or PPT for short) on input y, outputs x. If A is
a deterministic polynomial time algorithm (DPT for short), we use the notation
x := A(y). A function ν : N → R is negligible in n if for every k ∈ N, there exists
n0 ∈ N s.t. for every n ≥ n0 it holds that |ν(n)| ≤ 1/nk. Throughout this work,
we use the following notation for attribute tuples. Let T be a tuple of values which
we call attributes. Each attribute in T is identified using a unique keyword attr and
referred to as T.attr. Let us now briefly recall the cryptographic primitives used in
this paper to establish the used notation.

A signature scheme consists of three algorithms Σ = (Gen, Sign,Vrfy), where:
(i) Gen(1n) gets as input 1n and outputs the secret and public keys (sk , pk); (ii)
Signsk(m) gets as input the secret key sk and a message m ∈ {0, 1}∗ and outputs
the signature σ; and (iii) Vrfypk(m;σ) gets as input the public key pk , a message m
and a signature σ, and outputs a bit b. A signature scheme must fulfill correctness,
i.e. it must hold that Vrfypk(m; Signsk(m)) = 1 for all messages m and valid key
pairs (sk , pk). In this work, we use signature schemes that satisfy the notion of
strong existential unforgeability under chosen message attack (or SUF–CMA). At a
high level, SUF–CMA guarantees that a PPT adversary on input the public key pk
and with access to a signing oracle, cannot produce a new valid signature on any
message m.

We next recall the definition of a hard relation R with statement/witness pairs
(Y, y). Let LR be the associated language defined as {Y | ∃y s.t. (Y, y) ∈ R}. We
say that R is a hard relation if the following holds: (i) There exists a PPT sampling



algorithm GenR that on input 1n outputs a statement/witness pair (Y, y) ∈ R; (ii)
The relation is poly-time decidable; (iii) For all PPT A the probability of A on input
Y outputting a valid witness y is negligible.

Finally, we recall the definition of a non-interactive zero-knowledge proof of
knowledge (NIZK) with online extractors as introduced in [28]. The online ex-
tractability property allows for extraction of a witness y for a statement Y from
a proof π in the random oracle model and is useful for models where the rewind-
ing proof technique is not allowed, such as UC. We need this property to prove
our ECDSA-based adaptor signature scheme secure. More formally, a pair (P,V) of
PPT algorithms is called a NIZK with an online extractor for a relation R, random
oracle H and security parameter n if the following holds: (i) Completeness : For any
(Y, y) ∈ R, it holds that V(Y,P(Y, y)) = 1 except with negligible probability; (ii)
Zero knowledge: There exists a PPT simulator, which on input Y can simulate the
proof π for any (Y, y) ∈ R. (iii) Online Extractor : There exist a PPT online extrac-
tor K with access to the sequence of queries to the random oracle and its answers,
such that given (Y, π), the algorithm K can extract the witness y with (Y, y) ∈ R.
An instance of such proof system is in [28].

4 Generalized channels

4.1 Notation and security model

To formally model the security of generalized channels, we use the global UC frame-
work (GUC) [15] which extends the standard UC framework [14] by allowing for a
global setup. Here we discuss our security model (which follows the previous works
on off-chain channels [22, 23, 24]), only briefly and refer the reader to the full version
of this paper [4] for more details.

We consider a protocol π that runs between parties from a fixed set P =
{P1, . . . , Pn}. A protocol is executed in the presence of an adversary A who can
corrupt any party Pi at the beginning of the protocol execution (so-called static
corruption). Parties and the adversary A receive their inputs from a special entity
– called the environment Z – which represents anything “external” to the current
protocol execution. We assume a synchronous communication network meaning that
protocol execution happens in rounds, formalized via a global ideal functionality
Fclock representing “the clock” [33]. Parties in the protocol are connected with au-
thenticated communication channels with guaranteed delivery of exactly one round,
formalized via an ideal functionality FGDC . For simplicity, we assume that all other
communication (e.g., messages sent between the adversary and the environment) as
well as local computation take zero rounds. Monetary transactions are handled by
a global ideal ledger functionality L(∆,Σ,V), where ∆ is an upper bound on the
blockchain delay (number of rounds it takes to publish a transaction), Σ defines
the signature scheme and V defines valid output conditions. Furthermore, the global
ledger maintains a PKI.

Generalized channel syntax. A generalized channel γ is an attribute tuple (γ.id,
γ.users, γ.cash, γ.st), where γ.id ∈ {0, 1}∗ is the channel identifier, γ.users ∈ P ×



P defines the identities of the channel users, γ.cash ∈ R≥0 represents the total
amount of coins locked in γ, and γ.st = (θ1, . . . , θn) is the state of γ composed
of a list of outputs. Each output θi has two attributes: the value θi.cash ∈ R≥0
representing the amount of coins and the function θi.φ : {0, 1}∗ → {0, 1} defining
the spending condition. For convenience, we use γ.otherParty : γ.users → γ.users
defined as γ.otherParty(P ) := Q for γ.users = {P,Q}.

4.2 Ideal Functionality

We capture the desired functionality of a generalized channel protocol as an ideal
functionality F . As a first step towards defining our functionality, we informally
identify the most important security and efficiency notions of interest that a gener-
alized channel protocol should provide.

Consensus on creation: A generalized channel γ is successfully created only if
all parties in γ.users agree with the creation. Moreover, parties in γ.users reach
agreement whether the channel is created or not after an a-priori bounded number
of rounds.

Consensus on update: A generalized channel γ is successfully updated only if
both parties in γ.users agree with the update. Moreover, parties in γ.users reach
agreement whether the update is successful or not after an a-priori bounded
number of rounds.

Instant finality with punish: An honest party P ∈ γ.users has the guarantee
that either the current state of the channel can be enforced on the ledger, or P
can enforce a state where she gets all γ.cash coins. A state st is called enforced
on the ledger if a transaction with this state appears on the ledger.

Optimistic update: If both parties in γ.users are honest, the update procedure
takes a constant number of rounds (independent of the blockchain delay ∆).

Having the guarantees identified above in mind, we now design our ideal function-
ality F . It interacts with parties from the set P , with the adversary S (called the
simulator) and the ledger L(∆,Σ,V). In a bit more detail, if a party wants to per-
form an action (such as open a new channel), it sends a message to F who executes
the action and informs the party about the result. The execution might leak infor-
mation to the adversary who may also influence the execution which is modeled via
the interaction with S. Finally, F observes the ledger and can verify that a certain
transaction appeared on-chain or the ownership of coins.

To keep F generic, we parameterized it by two values T and k – both of which
must be independent of the blockchain delay ∆. At a high level, the value T upper
bounds the maximal number of consecutive off-chain communication rounds between
channel users. Since different parts of the protocol might require different amount
of communication rounds, the upper bound T might not be reached in all steps.
For instance, channel creation might require more communication rounds than old
state revocation. To this end, we give the power to the simulator to “speed-up” the
process when possible. The parameter k defines the number of ways the channel
state γ.st can be published on the ledger. As discussed in Sec. 2, in this work we



present a protocol realizing the functionality for k = 1 (see Fig. 3). A generalized
channel construction using Lightning style revocation mechanism (see Fig. 2) would
be a candidate protocol for k = 2.

We assume that the functionality maintains a set Γ of created channels in their
latest state and the corresponding funding transaction tx. We present FL(∆,Σ,V)(T, k)
formally in Fig. 4. Here we discuss each part of the functionality at a high level and
argue why it captures the aforementioned security and efficiency properties identified
above. We abbreviate F := FL(∆,Σ,V)(T, k).

Create. If F receives a message of the form (CREATE, γ, tidP ) from both parties
in γ.users within T rounds, it expects a channel funding transaction to appear on
the ledger L within ∆ rounds. Such a transaction must spend both funding sources
(defined by transaction identifiers tidP , tidQ) and contain one output of the value
γ.cash. If this is true, F stores this transaction together with the channel γ in Γ and
informs both parties about the successful channel creation via the message CREATED
(how this can be done within the UC model is discussed in the full version of this
paper [4]). Since a CREATE message is required from both parties and both parties
receive CREATED, “consensus on creation” holds.

Close. Any of the two parties can request closure of the channel via the message
(CLOSE, id), where id identifies the channel to be closed. In case both parties request
closure within T rounds, peaceful closure is expected. This means that a transaction,
spending the channel funding transaction and whose output corresponds to the
latest channel state γ.st, should appear on L within ∆ rounds. If only one of the
parties requests closing, F executes the ForceClose subprocedure in which case
such transaction is supposed to appear on L within 3∆ rounds modelling possible
dispute resolution. In both cases, if the funding transaction is not spent before a
certain round, an ERROR is returned to both users.

Update. The channel update is initiated by one of the parties P (called the

initiating party) via a message (UPDATE, id , θ⃗, tstp). The parameter id identifies the

channel to be updated, θ⃗ represents the new channel state and tstp denotes the
number of rounds needed by the parties to set up off-chain applications (e.g., new
channels or fair two-party computation) that are being built on top of the channel
via this update request. The update is structured into two phases: (i) the prepare
phase, and (ii) the revocation phase. Intuitively, the prepare phase models the fact
that both parties first agree on the new channel state and get time to set up the
off-chain applications on top of this new state. The revocation phase models the
fact that an update is only completed once the two parties invalidate the previous
channel state. We detail the two phases in the following.

The prepare phase starts when F receives a vector of transaction identifiers
⃗tid = (tid1, . . . , tidk) from S.7 In the optimistic case, it is completed within 3T + tstp
rounds and ends when the initiating party P receives an UPDATE–OK message from
F . The setup phase can be aborted by both the initiating party P and the other

7 For technical reasons, ideal functionality cannot sign transactions and thus it can also not prepare the
transaction ids (which is the task of the simulator).



party Q. This is achieved by P not sending the SETUP–OK and by Q not sending the
UPDATE–OK message, respectively. This models two things. Firstly, the fact that Q
might not agree with the proposed update and secondly, that setting up off-chain
objects might fail in which case parties want to abort the channel update. The abort
may also result in a forceful closing of the channel via the subprocedure ForceClose.
It happens when one of the parties has sufficient information to enforce the new state
on-chain, while the other does not.

In order to complete the update, the revocation phase is executed. The function-
ality expects to receive the REVOKE message from both parties within 2T rounds, in
which case F updates the channel state in Γ accordingly and informs both parties
about the successful update via the message UPDATED. If one of the messages does
not arrive, the subprocedure ForceClose is called.

To conclude, the possibility for forceful closing guarantees the security property
“consensus on update” as it ensures termination of the update process and allows
both parties see the state in which the channel was closed. Moreover, in case both
parties are honest, the update duration is independent of the ledger delay ∆, hence
the efficiency property “optimistic update” is satisfied.

Punish. In order to guarantee “instant finality with punishments”, parties con-
tinuously monitor the ledger and apply the punishment mechanism if misbehavior
is detected. This is captured by the functionality in the part “Punish” which is ex-
ecuted at the end of each round. The functionality checks if a funding transaction
of some channel was spent. If yes, then it expects one of the following to happen:
(i) a punish transaction appears on L within ∆ rounds, assigning γ.cash coins to
the honest party P ∈ γ.users; or (ii) a transaction whose output corresponds to the
latest channel state γ.st appears on L within 2∆ rounds, meaning that the channel
is peacefully or forcefully closed. If none of the above is true, ERROR is returned.
Hence, under the condition that no ERROR was returned, the security property “in-
stant finality with punish” is satisfied.

In summary, our functionality satisfies the identified security and efficiency prop-
erties if no ERROR occurs. Otherwise, all guarantees may be lost. Hence, we are
interested only in those protocols realizing F that never output an ERROR.

Notation used in the formal description in Fig. 4. Messages sent between parties
and F have the following format: (MESSAGE TYPE, parameters). To shorten the de-

scription, we use following arrow notation: by m
t
↪−→ P , we mean “send the message

m to party P in round t.” and by m
t←−↩ P , we mean “receive a message m from

party P in round t”. To indicate that a message should be sent/received before/after
a certain round, we use inequality symbols above the arrows. When F expects S to
set certain values (such as the vector of tid ’s during the update process or the exact
round in which a message should be sent to parties) and it does not do so, we implic-
itly assume that ERROR is returned. Since we do not aim to make any claims about
privacy, we implicitly assume that every message that F receives/sends from/to a
party is directly forwarded to S. In the formal description, we treat the channel set
Γ as a function which on input id outputs (X, tx), where X is a set of channels
s.t. for every γ ∈ X γ.id = id , if such channel exists and ⊥ otherwise. We denote



the script requiring signature of (only) P as One–SigpkP
. Moreover, we omit several

natural checks that one would expect F to make. For example, messages with miss-
ing parameters should be ignored, channel instruction should be accepted only from
channel users, etc. We formally define all checks as a functionality wrapper in the
full version of this paper [4]. Finally, we omit the read queries that F sends to L in
order to learn its state.

Upon (CREATE, γ, tidP )
τ0←−↩ P , distinguish:

Both agreed: If already received (CREATE, γ, tidQ)
τ←−↩ Q, where τ0−τ ≤ T : If tx s.t. tx.In = (tidP , tidQ)

and tx.Out = (γ.cash, φ), for some φ, appears on L in round τ1 ≤ τ + ∆ + T , set Γ (γ.id) := ({γ}, tx)
and (CREATED, γ.id)

τ1
↪−→ γ.users. Else stop.

Wait for Q: Else wait if (CREATE, id)
τ≤τ0+T←−−−−−↩ Q (in that case “Both agreed” option is executed). If

such message is not received, stop.

Upon (UPDATE, id , θ⃗, tstp)
τ0←−↩ P , parse ({γ}, tx) := Γ (id), set γ′ := γ, γ′.st := θ⃗:

1. In round τ1 ≤ τ0 + T , let S define ⃗tid s.t. | ⃗tid | = k. Then (UPDATE–REQ, id , θ⃗, tstp, ⃗tid)
τ1
↪−→ Q and

(SETUP, id , ⃗tid)
τ1
↪−→ P .

2. If (SETUP–OK, id)
τ2≤τ1+tstp←−−−−−−−↩ P , then (SETUP–OK, id)

τ3≤τ2+T
↪−−−−−−→ Q. Else stop.

3. If (UPDATE–OK, id)
τ3←−↩ Q, then (UPDATE–OK, id)

τ4≤τ3+T
↪−−−−−−→ P . Else distinguish:

– If Q honest or if instructed by S, stop (reject).
– Else set Γ (id) := ({γ, γ′}, tx), run ForceClose(id) and stop.

4. If (REVOKE, id)
τ4←−↩ P , send (REVOKE–REQ, id)

τ5≤τ4+T
↪−−−−−−→ Q.

Else set Γ (id) := ({γ, γ′}, tx), run ForceClose(id) and stop.

5. If (REVOKE, id)
τ5←−↩ Q, Γ (id) := ({γ′}, tx), send (UPDATED, id , θ⃗)

τ6≤τ5+T
↪−−−−−−→ γ.users and stop (accept).

Else set Γ (id) := ({γ, γ′}, tx), run ForceClose(id) and stop.

Upon (CLOSE, id)
τ0←−↩ P , distinguish: Both agreed: If already received (CLOSE, id)

τ←−↩ Q, where
τ0 − τ ≤ T , run ForceClose(id) unless both parties are honest. In this case let ({γ}, tx) := Γ (id) and
distinguish:

– If tx′, with tx′.In = tx.txid and tx′.Out = γ.st appears on L in round τ1 ≤ τ0 +∆, set Γ (id) := ⊥,
send (CLOSED, id)

τ1
↪−→ γ.users and stop.

– Else output (ERROR)
τ0+∆
↪−−−→ γ.users and stop.

Wait for Q: Else wait if (CLOSE, id)
τ≤τ0+T←−−−−−↩ Q (in that case “Both agreed” option is executed). If

such message is not received, run ForceClose(id) in round τ0 + T .
At the end of every round τ0: For each id ∈ {0, 1}∗ s.t. (X, tx) := Γ (id) ̸= ⊥, check if L contains tx′

with tx′.In = tx.txid. If yes, then define S := {γ.st | γ ∈ X}, τ := τ0 +2∆ and distinguish: Close: If tx′′

s.t. tx′′.In = tx′.txid and tx′′.Out ∈ S appears on L in round τ1 ≤ τ , set Γ (id) := ⊥ and (CLOSED, id)
τ1
↪−→ γ.users if not sent yet.
Punish: If tx′′ s.t. tx′′.In = tx′.txid and tx′′.Out = (γ.cash, One–SigpkP

) appears on L in round τ1 ≤ τ ,

for P honest, set Γ (id) := ⊥, (PUNISHED, id) τ1
↪−→ P and stop.

Error: Else (ERROR)
τ
↪−→ γ.users.

ForceClose(id): Let τ0 be the current round and (X, tx) := Γ (id). If within ∆ rounds tx is still unspent

on L, then (ERROR)
τ0+∆
↪−−−→ γ.users and stop. Note that otherwise,message m ∈ {CLOSED, PUNISHED, ERROR}

is output latest in round τ0 + 3 ·∆.

Fig. 4. The ideal functionality FL(∆,Σ,V)(T, k). We abbreviate Q := γ.otherParty(P ).



5 Adaptor Signatures

Our goal is to realize the ideal functionality for generalized channel for k = 1, mean-
ing that there is only one way to publish the channel state on-chain. As explained at
a high level in Sec. 2.1, we achieve our goal by utilizing an adaptor signature scheme
– a cryptographic primitive that we discuss in this section.

Adaptor signatures have been introduced by the cryptocurrency community to
tie together the authorization of a transaction and the leakage of a secret value.
An adaptor signature scheme is essentially a two-step signing algorithm bound to
a secret: first a partial signature is generated such that it can be completed only
by a party knowing a certain secret, with the complete signature revealing such
a secret. More precisely, we define an adaptor signature scheme with respect to a
digital signature scheme Σ and a hard relation R. For any statement Y ∈ LR, a
signer holding a secret key is able to produce a pre-signature w.r.t. Y on any message
m. Such pre-signature can be adapted into a valid signature on m if and only if the
adaptor knows a witness for Y . Moreover, it must be possible to extract a witness
for Y given the pre-signature and the adapted signature.

Despite the fact that adaptor signatures have been used in previous works
(e.g. [41] [29] [45]), none of these works has given a formal definition of the adaptor
signature primitive and its security. In the following, we fill this gap and provide the
first game-based formalization of adaptor signatures. As already mentioned, Erwig
et al. [27] recently extended our definition to a two-party case.

Definition 1 (Adaptor signature scheme). An adaptor signature scheme w.r.t.
a hard relation R and a signature scheme Σ = (Gen, Sign,Vrfy) consists of four
algorithms ΞR,Σ = (pSign,Adapt, pVrfy,Ext) with the following syntax: pSignsk(m,Y )
is a PPT algorithm that on input a secret key sk, message m ∈ {0, 1}∗ and statement
Y ∈ LR, outputs a pre-signature σ̃; pVrfypk(m,Y ; σ̃) is a DPT algorithm that on
input a public key pk, message m ∈ {0, 1}∗, statement Y ∈ LR and pre-signature σ̃,
outputs a bit b; Adapt(σ̃, y) is a DPT algorithm that on input a pre-signature σ̃ and
witness y, outputs a signature σ; and Ext(σ, σ̃, Y ) is a DPT algorithm that on input
a signature σ, pre-signature σ̃ and statement Y ∈ LR, outputs a witness y such that
(Y, y) ∈ R, or ⊥.

An adaptor signature scheme ΞR,Σ must satisfy pre-signature correctness stating
that for every m ∈ {0, 1}∗ and every (Y, y) ∈ R, the following holds:

Pr

[
pVrfypk(m,Y ; σ̃) = 1,
Vrfypk(m;σ) = 1, (Y, y′) ∈ R

∣∣∣∣
(sk , pk)← Gen(1n),
σ := Adaptpk(σ̃, y),

σ̃ ← pSignsk(m,Y )
y′ := Extpk(σ, σ̃, Y )

]
=1.

The first security property, existential unforgeability under chosen message at-
tack for adaptor signature (aEUF–CMA security for short), protects the signer. It is
similar to EUF–CMA for digital signatures but additionally requires that producing
a forgery σ for some message m is hard even given a pre-signature on m w.r.t. a
random statement Y ∈ LR. Let us stress that allowing the adversary to learn a pre-
signature on the forgery message m is crucial since, for our applications, signature
unforgeability needs to hold even in case the adversary learns a pre-signature for m
without knowing a witness for Y .



Definition 2 (Existential unforgeability). An adaptor signature scheme ΞR,Σ

is aEUF–CMA secure if for every PPT adversary A = (A1,A2) there exists a negli-
gible function ν such that: Pr[aSigForgeA,ΞR,Σ

(n) = 1] ≤ ν(n), where the experiment
aSigForgeA,ΞR,Σ

is defined as follows:

aSigForgeA,ΞR,Σ
(n)

1 : Q := ∅, (sk , pk)← Gen(1n)

2 : (Y, y)← GenR(1n)

3 : (m, st)← AOS(·),OpS(·,·)
1 (pk , Y )

4 : σ̃ ← pSignsk (m,Y )

5 : σ ← AOS(·),OpS(·,·)
2 (σ̃, st)

6 : return
(
m ̸∈ Q ∧ Vrfypk (m;σ)

)

OS(m)

1 : σ ← Signsk (m)

2 : Q := Q∪ {m}
3 : return σ

OpS(m,Y )

1 : σ̃ ← pSignsk (m,Y )

2 : Q := Q∪ {m}
3 : return σ̃

The reason why the game computes σ̃ in step 4 (although A could obtain it by
querying OpS) is that it allows A to learn σ̃ without m being added to Q.

The second property, called pre-signature adaptability, protects the verifier. It
guarantees that any valid pre-signature w.r.t. Y (possibly produced by a malicious
signer) can be completed into a valid signature using a witness y with (Y, y) ∈ R.
Notice that this property is stronger than the pre-signature correctness property
from Def. 1, since we require that even pre-signatures that were not produced by
pSign but are valid, can be completed into valid signatures.

Definition 3 (Pre-signature adaptability). An adaptor signature scheme ΞR,Σ

satisfies pre-signature adaptability if for any message m ∈ {0, 1}∗, any statement,
witness pair (Y, y) ∈ R, any public key pk and any pre-signature σ̃ ∈ {0, 1}∗ with
pVrfypk(m,Y ; σ̃) = 1, we have Vrfypk(m;Adapt(σ̃, y)) = 1.

The last property that we are interested in is witness extractability which protects
the signer. Informally, it guarantees that a valid signature/pre-signatue pair (σ, σ̃)
for message/statement (m,Y ) can be used to extract a witness y for Y . Hence
a malicious verifier cannot use a pre-signature σ̃ to produce a valid signature σ
without revealing a witness for Y .

Definition 4 (Witness extractability). An adaptor signature scheme ΞR,Σ is
witness extractable if for every PPT adversary A = (A1,A2), there exists a negligible
function ν such that the following holds: Pr[aWitExtA,ΞR,Σ

(n) = 1] ≤ ν(n), where
the experiment aWitExtA,ΞR,Σ

is defined as follows

aWitExtA,ΞR,Σ
(n)

1 : Q := ∅, (sk , pk)← Gen(1n)

2 : (m,Y, st)← AOS(·),OpS(·,·)
1 (pk)

3 : σ̃ ← pSignsk (m,Y )

4 : σ ← AOS(·),OpS(·,·)
2 (σ̃, st)

5 : return ((Y,Extpk (σ, σ̃, Y )) ̸∈ R ∧m ̸∈ Q ∧ Vrfypk (m;σ))

OS(m)

1 : σ ← Signsk (m)

2 : Q := Q∪ {m}
3 : return σ

OpS(m,Y )

1 : σ̃ ← pSignsk (m,Y )

2 : Q := Q∪ {m}
3 : return σ̃



Let us stress that while the experiment aWitExt looks fairly similar to the exper-
iment aSigForge, there is one crucial difference; namely, the adversary is allowed to
choose the forgery statement Y . Hence, we can assume that they know a witness for
Y so they can generate a valid signature on the forgery message m. However, this is
not sufficient to win the experiment. The adversary wins only if the valid signature
does not reveal a witness for Y .

Definition 5. An adaptor signature scheme ΞR,Σ is secure, if it is aEUF–CMA se-
cure, pre-signature adaptable and witness extractable.

Note that none of the security definitions explicitly states that pre-signatures
are unforgeable. However, it is implied by the definitions as we discuss in the full
version of this paper [4].

5.1 ECDSA-based Adaptor Signature

We now construct a provably secure adaptor signature scheme based on ECDSA dig-
ital signatures that are commonly used by blockchains. The construction presented
here is similar to the construction put forward by [45], however some modifications
are needed for the security proof. In addition to the ECDSA-based adaptor signa-
ture scheme presented here, we show a scheme based on Schnorr digital signatures,
including correctness and security proofs, in the full version of this paper [4].

Recall the ECDSA signature scheme ΣECDSA = (Gen, Sign,Vrfy) for a cyclic group
G = ⟨g⟩ of prime order q. The key generation algorithm samples x ←$ Zq and
outputs gx ∈ G as the public key and x as the secret key. The signing algorithm
on input a message m ∈ {0, 1}∗, samples k ←$ Zq and computes r := f(gk) and
s := k−1(H(m) + rx), where H : {0, 1}∗ → Zq is a hash function modeled as a
random oracle and f : G → Zq (i.e., f is typically defined as the projection to the
x-coordinate since in ECDSA the group G consists of elliptic curve points). The
verification algorithm on input a message m ∈ {0, 1}∗ and a signature (r, s) verifies
that f(gs

−1H(m)Xs−1r) = r. One of the properties of the ECDSA scheme is that if
(r, s) is a valid signature for m, then so is (r,−s). Consequently, ΣECDSA does not
satisfy SUF–CMA security which we need in order to prove its security. In order
to tackle this problem we build our adaptor signature from the Positive ECDSA
scheme which guarantees that if (r, s) is a valid signature, then |s| ≤ (q− 1)/2. The
positive ECDSA has already been used in other works such as [5, 39]. This slightly
modified ECDSA scheme is not only assumed to be SUF–CMA but also prevents
having two valid signatures for the same message after the signing process, which
is useful in practice, e.g., for threshold signature schemes based on ECDSA. As the
ECDSA verification accepts valid positive ECDSA signatures, these signatures can
be used by any blockchain that uses ECDSA, e.g., Bitcoin.

The adaptor signature scheme in [45] is presented w.r.t. a relation Rg ⊆ G× Zq

defined as Rg := {(Y, y) | Y = gy}. The main idea of the construction is that
a pre-signature (r, s) for a statement Y is computed by embedding Y into the r-
component while keeping the s-component unchanged. This embedding is rather
involved, since the value s contains a product of k−1, r and the secret key. More



pSignsk (m, IY )

x := sk , (Y, πY ) := IY

k ←$ Zq, K̃ := gk

K := Y k, r := f(K)

s̃ := k−1(H(m) + rx)

π ← PY ((K̃,K), k)

return (r, s̃,K, π)

pVrfypk (m, IY ; σ̃)

X := pk , (Y, πY ) := IY

(r, s̃,K, π) := σ̃

u := H(m) · s̃−1

v := r · s̃−1

K′ := guXv

return ((r = f(K)) ∧ VY ((K′,K), π))

Adapt(σ̃, y)

(r, s̃,K, π) := σ̃

s := s̃ · y−1

return (r, s)

Ext(σ, σ̃, IY )

(r, s) := σ

(r̃, s̃, K, π) := σ̃

y′ := s−1 · s̃
if (IY , y′) ∈ R′

g

then return y′

else return ⊥

Fig. 5. ECDSA-based adaptor signature scheme.

concretely, to compute the pre-signature for Y , the signer samples a random k and
computes K := Y k and K̃ := gk. It then uses the first value to compute r := f(K)
and sets s := k−1(H(m)+ rx). To ensure that the signer uses the same value k in K
and K̃, a zero-knowledge proof that (K̃,K) ∈ LY := {(K̃,K, ) | ∃k ∈ Zq s.t. g

k =
K̃ ∧Y k = K} is attached to the pre-signature. We denote the prover of the NIZK as
PY and the corresponding verifier as VY . The pre-signature adaptation is done by
multiplying the value s with y−1, where y is the corresponding witness for Y . This
adjusts the randomness k used in s to ky, and hence matches with the r value.

Unfortunately, it is not clear how to prove security for the above scheme. Ideally,
we would like to reduce both the unforgeability and the witness extractability of the
scheme to the strong unforgeability of positive ECDSA. More concretely, suppose
there exists a PPT adversary A that wins the aSigForge (resp. aWitExt) experiment.
Having A, we want to design a PPT adversary (also called the simulator) S that
breaks the SUF–CMA security. The main technical challenge in both reductions is
that S has to answer queries (m,Y ) to the pre-signing oracle OpS by A. This has to
be done with access to the ECDSA signing oracle, but without knowledge of sk and
the witness y. Thus, we need a method to “transform” full signatures into valid pre-
signatures without knowing y, which seems to go against the aEUF–CMA-security
(resp. witness extractability).

Due to this reason, we slightly modify this scheme. In particular, we modify
the hard relation for which the adaptor signature is defined. Let R′g be a relation
whose statements are pairs (Y, π), where Y ∈ LRg is as above, and π is a non-
interactive zero-knowledge proof of knowledge that Y ∈ LRg . Formally, we define
R′g := {((Y, π), y) | Y = gy ∧ Vg(Y, π) = 1} and denote by Pg the prover and by Vg

the verifier of the proof system for LRg . Clearly, due to the soundness of the proof
system, if Rg is a hard relation, then so is R′g.

It might seem that we did not make it any easier for the reduction to learn a
witness needed for creating pre-signatures. However, we exploit the fact that we are
in the ROM and the reduction answers adversary’s random oracle queries. Upon
receiving a statement IY := (Y, π) for which it must produce a valid pre-signature,
it uses the random oracle query table to extract a witness from the proof π. Knowing
the witness y and a signature (r, s), the reduction can compute (r, s · y) and execute
the simulator of the NIZKY to produce a consistency proof π. This concludes the
protocol description and the main proof idea. We refer the reader to the full version
of the paper [4] for the detailed proof of the following theorem.
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Fig. 6. Schematic description of the generalized channel creation protocol.

Theorem 1. If the positive ECDSA signature scheme ΣECDSA is SUF–CMA-secure
and Rg is a hard relation, ΞR′

g ,ΣECDSA
from Fig. 5 is a secure adaptor signature scheme

in the ROM.

6 Generalized Channel Construction

We now present a concrete protocol, denoted Π, that requires only one commit
transaction, i.e., implements the punish-then-split mechanism. This is achieved by
utilizing an adaptor signature scheme ΞR,Σ = (pSign,Adapt, pVrfy,Ext) for signa-
ture scheme Σ = (Gen, Sign,Vrfy) used by the underlying ledger and a hard relation
R. Throughout this section, we assume that statement/witness pairs of R are pub-
lic/secret key of Σ. More precisely, we assume there exists a function ToKey that
takes as input a statement Y ∈ LR and outputs a public key pk . The function is
s.t. the distribution of (ToKey(Y ), y), for (Y, y)← GenR, is equal to the distribution
of (pk , sk) ← Gen. We emphasize that both ECDSA and Schnorr based adaptor
signatures satisfy this condition as discussed in the full version of the paper [4],
where we also explain how to modify our protocol when this condition does not
hold. Our protocol consists of four subprotocols: Create, Update, Close and Punish.
We discuss each subprotocol separately at a high level here and refer the reader to
the full version of the paper [4] for the pseudo-code description.

Channel creation. In order to create a channel γ, the users of the channel, say A
and B, have to agree on the body of the funding transaction [TXf], mutually commit
to the first channel state defined by γ.st = ((xA, One–SigpkA

), (xB, One–SigpkB
)), and

sign and publish the funding transaction TXf on the ledger. Recall that One–Sigpk
represents the script that verifies that the transaction is correctly signed w.r.t. the
public key pk . Once TXf is published, the channel creation is completed. Looking
at Fig. 6, one can summarize the creation process as a step-by-step creation of
transaction bodies from left to right, and then a step-by-step signature exchange on
the transaction bodies from right to left. Let us elaborate on this in more detail.



Step 1: To prepare [TXf], parties need to inform each other about their funding
sources, i.e., exchange the transaction identifiers tidA and tidB. Each party can then
locally create the body of the funding transaction [TXf] with {tidA, tidB} as input
and output requiring the signature of both A and B. Step 2: Parties can now start
committing to the initial channel state. To this end, each party P ∈ {A,B} generates
a revocation public/secret pair (RP , rP ) ← GenR and publishing public/secret pair
(YP , yP ) ← GenR, and sends the public values RP , YP to the other party. Parties
can now locally generate [TXc] which spends TXf and can be spent by a transaction
satisfying one of these conditions:

Punish A: It is correctly signed w.r.t. pkB,ToKey(YA),ToKey(RA);
Punish B: It is correctly signed w.r.t. pkA,ToKey(YB),ToKey(RB);
Channel state: It is correctly signed w.r.t. pkA and pkB, and at least ∆ rounds

have passed since TXc was published.

Steps 3+4: Using the transaction identifier of TXc, parties can generate and ex-
change signatures on the body of the split transaction TXs which spends TXc and
whose output is equal to initial state of the channel γ.st. Step 5: Parties are now
prepared to complete the committing phase by pre-signing the commit transaction
to each other. This means that party A executes the pSignskA

on message [TXc] and
statement YB and sends the pre-signature to B (analogously for B). Step 6: If valid
pre-signatures are exchanged (validity is checked using the pVrfy algorithm), parties
exchange signatures on the funding transaction and post it on the ledger in Step 7.
If the funding transaction is accepted by the ledger, channel creation is successfully
completed.

The question is what happens if one of the parties misbehaves during the creation
process by aborting or sending a malformed message (w.l.o.g. let B be the malicious
party). If the misbehavior happens before A sends her signature on TXf (i.e., before
step 6), party A can safely conclude that the creation failed and does not need to take
any action. If the misbehavior happens during step 6, A is in a hybrid situation. She
cannot post TXf on-chain as she does not have B’s signature needed to spend tidB.
However, since she already sent her signature on TXf to B, she has no guarantee that
B will not post TXf later. To resolve this issue, our protocol instructs A to spend her
output tidA. Now within ∆ rounds, tidA is spent – either by the transaction posted
by A (in which case creation failed) or by TXf posted by B (in which case creation
succeeded).

To conclude, channel creation as described above takes 5 off-chain communication
rounds and up to∆ rounds are needed to publish the funding transaction. Our formal
protocol description contains two optimizations that reduce the number of off-chain
communication rounds to 3. The optimizations are based on the observations that
messages sent during steps 1 and 2 can be grouped into one as well as the messages
sent during steps 4 and 5.

Channel closure. The purpose of the closing procedure is to collaboratively
publish the latest channel state on the blockchain. The naive implementation is to
let parties publish the latest agreed upon commit transaction and thereafter the



corresponding split transaction representing the latest channel state. However, due
to the punishment mechanism built-in the commit transaction, parties have to wait
for ∆ rounds after such a transaction is accepted by the ledger to publish the split
transaction. To realize our ideal functionality, we need to design a more efficient
solution eliminating the redundant waiting for honest parties.

When parties want to close a channel, they first run a “final update”. In short,
the final update preserves the latest channel state, but removes the punishment
layer. More precisely, parties agree on a new split transaction that has exactly the
same outputs as the last split transaction but spends the funding transaction TXf
directly (i.e., Steps 2+5 from Fig. 6 are skipped). Once parties jointly sign the split
transaction, they can publish it on the ledger which completes the channel closure. If
the final update fails, parties close the channel forcefully. Namely, they first publish
the latest commit transaction, wait until the time for punishments expires. Then
they post the split transaction representing the final channel state. It takes at most
∆ rounds to publish the commit transaction and at most 2∆ rounds to publish the
split transaction once the commit transaction is accepted which corresponds to the
upper bound dictated by our ideal functionality. Since forceful closing might also be
triggered during a channel update (as we discuss next), we define forceful closure as
a separate subprocedure ForceClose.

Channel Update. To update a channel γ to a new state, given by a vector of
output scripts θ⃗, parties have to (i) agree on the new commit and split transaction
capturing the new state and (ii) invalidate the old commit transaction.

Part (i) is very similar to the agreement on the initial commit and split transac-
tion as described in the creation protocol (Steps 2-5 in Fig. 6). There is one major

difference coming from the fact that the new channel state θ⃗ can contain outputs
that fund other off-chain applications (such as sub-channels).8 In order to set up
these applications, the identifier of the new split transaction is needed. To this end,
parties first prepare the commit (Steps 2+3) to learn the desired identifier and set
up all applications off-chain. Once this is done, which is signaled by “SETUP–OK” and
takes at most tstp rounds, parties execute the second part of the committing phase
(Steps 4+5).

To realize part (ii), in which the punishment mechanism of the old commit trans-
action is activated, parties simply exchange the revocation secrets corresponding to
the previous commit transaction which completes the update. Note that in this opti-
mistic case when both parties are honest, the update is performed entirely off-chain
and takes at most 5 + tstp rounds.

We now discuss what happens if one party misbehaves during the update. As
long as none of the parties pre-signed the new commit transaction, i.e., before Step
5, misbehavior simply implies update failure. A more problematic case is when the
misbehavior occurs after at least one of the parties pre-signed the new commit trans-
action. This happens, e.g., when one party pre-signs the new commit but the other
does not; or when one party revokes the old commit and the other does not. In each

8 This is not the case during channel creation since we assume that the initial channel state consists of
two accounts only.



of these situations, an honest party ends up in a hybrid state when the update is
neither rejected nor accepted. In order to realize our ideal functionality requiring
consensus on update in bounded number of rounds, our protocol instructs an honest
party to ForceClose the channel. This means that the honest party posts the latest
commit transaction that both parties agreed on to the ledger guaranteeing that TXf
is spent within ∆ rounds. If the transaction spending TXf is the new commit trans-
action, the channel is closed in the updated state. Otherwise, the update fails and
either the channel is closed in the state before the update, or the punishment mech-
anism is activated and the honest party gets financially compensated (as discussed
in the next paragraph).

Punish. Since we are in the UTXO model, nothing can stop a corrupted party
from publishing an old commit transaction, thereby closing the channel in an old
state. However, the way we designed the commit transaction enables the honest
party to punish such malicious behavior and get financially compensated. If an
honest party A detects that a malicious party B posted an old commit transaction
TXc, it can react by publishing a punishment transaction which spends TXc and
assigns all coins to A. In order to make such punishment transaction valid, A must
sign it under: (i) her secret key skA, (ii) B’s publishing secret key ȳB, and (iii) B’s
revocation secret key r̄B. The knowledge of the revocation secret r̄B follows from the
fact that TXc was old, i.e., parties revealed their revocation secrets to each other.
The knowledge of the publishing secret ȳB follows from the fact that it was B who
published TXc. Let us elaborate on this in more detail. Since TXc was accepted by
the ledger, it had to include a signature of A. The only signature A provided to B
on TXc was a pre-signature w.r.t. ȲB. The unforgeability and witness extractability
properties of ΞR,Σ guarantee that the only way B could produce a valid signature
of A on TXc was by adapting the pre-signature and hence revealing the secret key
ȳB to A.

Security analysis. We now formally state our main theorem, which essentially
says that the Π protocol is a secure realization, as defined according to the UC
framework, of the F(3, 1) ideal functionality.
Theorem 2. Let Σ be a SUF–CMA secure signature scheme, R a hard relation and
ΞR,Σ a secure adaptor signature scheme. Let L(∆,Σ,V) be a ledger, where V allows
for transaction authorization w.r.t. Σ, relative time-locks and constant number of
Boolean operations ∧ and ∨. Then the protocol Π UC-realizes the ideal functionality
FL(∆,Σ,V)(3, 1).

The formal UC proof of the Theorem 2 can be found in the full version of this
paper [4]. Let us here just argue at a high level, why our protocol satisfies the
most complex property defined by the ideal functionality, i.e., instant finality with
punishment.

We first argue that instant finality holds after the channel creation, meaning that
each of the two parties (alone) is able to unlock her coins from a created channel if it
was never updated. The pre-signature adaptability property of ΞR,Σ guarantees that
after a successful channel creation, each party P is able to adapt the pre-signature



of the other party Q on [TXc] by using the publishing secret value yP (corresponding
to YP ). Party P can now sign [TXc] herself and post TXc on the ledger. Since parties
never signed any other transaction spending TXf, the posted TXc will be accepted
by the ledger within ∆ rounds. Note that here we rely on the unforgeability of the
signature scheme and the unforgeability of the adaptor signature scheme. Let us
stress that parties have not revealed their revocation secrets, i.e, the values rP and
rQ, to each other yet. Hardness of the relation R implies that none of the two parties
is able to use the punishment mechanism of the published commit transaction. Thus,
after ∆ rounds, P can post the split transaction TXs on the ledger by which she
unlocks her xP coins.

After a successful update, each party P possesses a pre-signature of the other
party Q on the new commit transaction TXc and the revocation secret of the other
party on the previous commit transaction. The former implies that P is able to
complete Q’s pre-signature, sign [TXc] herself and post TXc on-chain. Assume first
that the funding transaction of the channel TXf is not spent yet, hence TXc is accepted
by the ledger within ∆ rounds. Since party Q does not know the revocation secret
of party P corresponding to TXc, by hardness of the relation R, the only way how
TXc can be spent is by publishing TXs representing the latest channel state. Hence,
instant finality holds in this case.

Assume now that TXf is already spent and hence TXc is rejected by the ledger.
The only transaction that could have spent TXf is one of the old commit transactions.
This is because P never signed or pre-signed any other transaction spending TXf.
Let us denote the transaction spending TXf as TXc. Since TXc is an old transaction P
knows Q’s revocation secret rQ. Moreover, the extractability property of the adaptor
signature scheme implies that P can extract Q’s publishing secret yQ from the
pre-signature that she gave to Q on this transaction and the completed signature
contained in TXc. Hence, P can create a valid punishment transaction spending TXc.
As our protocol instructs an honest party P to constantly monitor the blockchain
and publish the punishment transaction immediately if TXc appears on-chain, the
punishment transaction will be accepted by the blockchain before the relative time-
lock of TXc expires. Hence, P receives all the coins locked in the channel which is
what we needed to show.

7 Applications

Our generalized channels support a variety of applications such as PCNs [47, 42,
41], payment channel hubs [49, 31], multi-path payments in PCNs [25], financially
fair two-party computation [8], channel splitting [26], virtual payment channels [3]
or watchtowers [44]. Furthermore, generalized channels prove to be highly versatile
in interoperable applications, i.e., applications that run across multiple blockchains.
As generalized channels rely only on on-chain signature verification, time-locked
transactions and basic Boolean logic, they can be implemented on a multitude of
different blockchains, easing thus the design and execution of cross-chain applica-



tions. Here, we first generally discuss which applications can be built on top of
generalized channels and then focus on several concrete examples.

Suitable applications. We are interested in applications that are executed among
two parties (i.e., two-party applications) and whose goal is to redistribute coins be-
tween them. We call the initial transaction outputs holding coins of the two par-
ties the funding source of the application. If all outputs of the funding source are
contained in already published transactions, we say that the application is funded
directly by the ledger. If the outputs are part of a generalized channel state, we say
that the application is funded by a generalized channel.

In principle, any two-party application that can be funded directly by the un-
derlying ledger can also be funded by a generalized channel. There are, however,
two subtleties one should keep in mind. Firstly, generalized channels provide “only”
instant finality with punishment. This implies that generalized channels are suitable
for two-party applications in which parties are willing to accept financial compen-
sation in exchange for an off-chain state loss. Secondly, it takes up to 3∆ rounds to
publish the funding source of the application. Hence, the protocol implementing the
application needs to adjust the dispute timings accordingly (if applicable). We sum-
marize this statement in the full version of this paper [4], where we also explain how
to add applications to a generalized channel. Here we now discuss several concrete
applications that benefit from generalized channels.

Fair two-party computation. One important example of an application that
can be built on top of generalized channels is the claim-or-refund functionality
introduced by Bentov and Kumaresan [8], and used in a series of work to realize
multiple applications over Bitcoin [37]. At a high level, claim-or-refund allows one
party, say A, to lock β coins that can be claimed by party B if she presents a witness
satisfying a condition f . After a predefined number of rounds, say t, the payment of
β coins is refunded back to A if the witness is not revealed.

In their work, Bentov and Kumaresan demonstrated how to utilize this simple
functionality to realize secure two-party protocol with penalties over a blockchain.
Hence, the fact that claim-or-refund can be built on top of generalized channels nat-
urally implies that two parties can execute any such protocol off-chain. Off-chain
execution offers several advantages if both parties collaborate: (i) they do not have
to pay fees or wait for the on-chain delay when deploying and funding the claim-
or-refund as well as when one of the parties rightfully claims (resp. refunds) coins;
(ii) they can run several simultaneous instances of claim-or-refund fully off-chain,
thus improving efficiency; and (iii) a blockchain observer is oblivious to the fact that
the claim-or-refund functionality has been executed off-chain. In case of misbehavior
during the execution of a claim-or-refund instance, the channel punishment proce-
dure ensures that the honest party is financially compensated with all funds locked
in the channel.

Channel splitting. A generalized channel can be split into multiple sub-channels
that can be updated independently in parallel. This idea appears already in [26]
where two users A and B want to split a channel γ with coin distribution (αA, αB)



into two sub-channels γ0 and γ1 with the coin distributions (βA, βB) and (αA −
βA, αB − βB) respectively.

Executing multiple applications without prior channel splitting requires all ap-
plications to share a single funding source (i.e., that provided by the channel) and
thus to be adjusted with every single channel update (i.e., even if the update is
required for a single application), which might significantly increase the off-chain
communication complexity. However, first splitting the channel into sub-channels
effectively makes the execution of applications in each sub-channel independent of
each other. For instance, two applications that benefit from channel splitting are
payment channels with watchtower [44] and virtual channels [3] – both of which rely
on generalized channels, and which we discuss next.

We elaborate on further applications in the full version of this paper [4].

8 Performance Analysis

We implemented a proof of concept for our generalized channels construction, cre-
ating the necessary Bitcoin transactions. We successfully deployed these transac-
tions on the Bitcoin testnet, demonstrating thereby the compatibility with the
current Bitcoin network. The source code is available at https://github.com/

generalized-channels/gc. For the different operations, we measure the (i) num-
ber and (ii) byte size for off- and on-chain transactions required for the protocol.
On-chain, we additionally measure the current estimated fee cost (May 2021). Note
that the transaction fee in Bitcoin is dependent on the transaction size. We compare
these numbers to Lightning-based channels.

Evaluation of multiple HTLCs. Users in a PCN typically take part in several
multi-hop payments at once inside one channel. We evaluate the costs of performing
m parallel payments, over both Lightning channels (LC) and generalized channels
(GC). To realize multiple payments in a channel, there needs to be 2 +m outputs:
Two of which account for the balances of each user, andm representing one payment
each in a “Claim-or-Refund” contract (HTLC).

To update to a channel with m parallel payments, parties need to exchange
2+2 ·m transactions in LC and only 2 transactions in GC. The advantage of GC is
two-fold: The state is not duplicated and the HTLCs do not require an additional
transaction. The difference in off-chain transaction size is 706 + 2 ·m · 410 bytes for
LC compared to 695 +m · 123 bytes for GC.

In case of a dispute, the difference in on-chain cost is even more pronounced. To
punish in LC, the honest party needs to spend m+ 1 outputs: the one representing
the balance of the malicious party and one per HTLC. This is in contrast to GC,

Table 1. Costs of lightning (LC) and generalized channels (GC) funding m HTLCs.

on-chain (dispute) off-chain (update)
# txs size (bytes) cost (USD) # txs size (bytes)

LC 2 +m 513 +m · 410 13.52 +m · 10.80 2 + 2 ·m 706 + 2 ·m · 410
GC 2 663 17.47 2 695 +m · 123



where the honest party publishes the punishment transaction only. As a result, the
total size of on-chain transactions in the LC is 513+m ·410 bytes, which cost around
13.52+m · 10.80 USD. In GC, the on-chain transaction size is 663 bytes resulting in
a cost of 17.47 USD. There have already been disputes for channels with 50 active
HTLCs [40]. To settle such a dispute in LC, transactions with 21013 bytes or a cost
of 553.66 USD have to be deployed. In GC, again we only need 663 bytes or 17.47
USD. GC thus reduce the on-chain cost from linear on m to constant in the case of
a dispute as shown in Table 1.

Evaluation of channel splitting. The state duplication impacts other applications
as well, e.g., channel splitting (see Sec. 7). For a LC, two commit transactions
need to be exchanged per update. Hence, if we split a LC into two sub-channels,
parties need to create these sub-channels for both commit transactions. Moreover,
for each sub-channel two commit transactions are required. This is a total of 4
commit transactions per sub-channel. GC needs only one commitment and one split
transactions per sub-channel.

After a channel split, sub-channels are expected to behave as normal channels.
If we want to split a LC sub-channel further, we would need eight commit trans-
actions (two for each of the four commitments) per sub-channel. Observe, that for
every recursive split of a channel, the amount of LC commit transactions for the new
subchannel doubles. For the mth split, we need 2m+1 additional commit transactions
in the LC setting. In the GC setting, there is no state duplication, therefore the
amount of transactions per sub-channel is always one commit and one split trans-
action. We reduce the complexity for additional transactions on the mth split from
exponential to constant.
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Abstract. Current permissionless cryptocurrencies such as Bitcoin suffer from a limited
transaction rate and slow confirmation time, which hinders further adoption. Payment chan-
nels are one of the most promising solutions to address these problems, as they allow the
parties of the channel to perform arbitrarily many payments in a peer-to-peer fashion while
uploading only two transactions on the blockchain. This concept has been generalized into
payment channel networks where a path of payment channels is used to settle the pay-
ment between two users that might not share a direct channel between them. However,
this approach requires the active involvement of each user in the path, making the system
less reliable (they might be offline), more expensive (they charge fees per payment), and
slower (intermediaries need to be actively involved in the payment). To mitigate this issue,
recent work has introduced the concept of virtual channels (IEEE S&P’19), which involve
intermediaries only in the initial creation of a bridge between payer and payee, who can
later on independently perform arbitrarily many off-chain transactions. Unfortunately, ex-
isting constructions are only available for Ethereum, as they rely on its account model and
Turing-complete scripting language. The realization of virtual channels in other blockchain
technologies with limited scripting capabilities, like Bitcoin, was so far considered an open
challenge.

In this work, we present the first virtual channel protocols that are built on the UTXO-model
and require a scripting language supporting only a digital signature scheme and a timelock
functionality, being thus backward compatible with virtually every cryptocurrency, including
Bitcoin. We formalize the security properties of virtual channels as an ideal functionality
in the Universal Composability framework and prove that our protocol constitutes a secure
realization thereof. We have prototyped and evaluated our protocol on the Bitcoin blockchain,
demonstrating its efficiency: for n sequential payments, they require an off-chain exchange of
9+2n transactions or a total of 3524+695n bytes, with no on-chain footprint in the optimistic
case. This is a substantial improvement compared to routing payments in a payment channel
network, which requires 8n transactions with a total of 3026n bytes to be exchanged.

1 Introduction

Permissionless cryptocurrencies such as Bitcoin [22] have spurred increasing interest
over the last years, putting forward a revolutionary, from both a technical and eco-
nomical point of view, payment paradigm. Instead of relying on a central authority
for transaction validation and accounting, Bitcoin relies on its core on a decen-
tralized consensus protocol for these tasks. The consensus protocol establishes and
maintains a distributed ledger that tracks every transaction, thereby enabling public
verifiability. This approach, however, severely limits the transaction throughput and
confirmation time, which in the case of Bitcoin is around ten transactions per sec-
ond, and confirmation of an individual transaction can take up to 60 minutes. This



is in stark contrast to central payment providers that offer instantaneous transac-
tion confirmation and support orders of magnitude higher transaction throughput.
These scalability issues hinder permissionless cryptocurrencies such as Bitcoin from
serving a growing base of payments.

Within other research efforts [15, 29, 4], payment channels [7] have emerged as
one of the most promising scalability solutions. The most prominent example that
is currently deployed over Bitcoin is the so-called Lightning network [24], which at
the time of writing hosts deposits worth more than 60M USD. A payment channel
enables an arbitrary number of payments between users while committing only two
transactions onto the blockchain. In a bit more detail, a payment channel between
Alice and Bob is first created by a single on-chain transaction that deposits Bitcoins
into a multi-signature address controlled by both users. The parties additionally
ensure that they can get their Bitcoins back at a mutually agreed expiration time.
They can then pay to each other (possibly many times) by exchanging authenticated
off-chain messages that represent an update of their share of coins in the multi-
signature address. The payment channel is finally closed when a user submits the
last authenticated distribution of Bitcoins to the blockchain (or after the channel
has expired).

Interestingly, it is possible to leverage a path of opened payment channels from
the sender to the receiver with enough capacity to settle their payments off-chain,
thereby creating a payment channel network (PCN) [24, 19]. Assume that Alice
wants to pay Bob, and they do not have a payment channel between each other
but rather are connected through an intermediary user Ingrid. Upon a successful
off-chain update of the payment channel between Alice and Ingrid, the latter would
update her payment channel with Bob to make the overall transaction effective.
The key challenge is how to perform the sequence of updates atomically in order
to prevent Ingrid from stealing the money from Alice without paying Bob. The
standard technique for constructing PCNs requires the intermediary (e.g., Ingrid in
the example from above) to be actively involved in each payment. This has multiple
disadvantages, including (i) making the system less reliable (e.g., Ingrid might have
to go offline), (ii) increasing the latency of each payment, (iii) augmenting its costs
since each intermediary charges a fee per transaction, and (iv) revealing possibly
sensitive payment information to the intermediaries [23, 27, 18].

An alternative approach for connecting multiple payment channels was intro-
duced by Dziembowski et al. [12]. They propose the concept of virtual channels – an
off-chain protocol that enables direct off-chain transactions without the involvement
of the intermediary. Following our running example, a virtual channel can be cre-
ated between Alice and Bob using their individual payment channels with Ingrid.
Ingrid must collaborate with Alice and Bob only to create such virtual channel,
which can then be used by Alice and Bob to perform arbitrarily many off-chain pay-
ments without involving Ingrid. Virtual channels offer strong security guarantees:
each user does not lose money even if the others collude. A salient application of
virtual payment channels is so-called payment hubs [12]. Since establishing a pay-
ment channel requires a deposit and active monitoring, the number of channels a



user can establish is limited. With payment hubs [12], users have to establish just
one payment channel with the hub and can then dynamically open and close virtual
channels between each other on demand. Interestingly, since in a virtual channel the
hub is not involved in the individual payments, even transactions worth fractions of
cents can be carried out with low latency.

The design of secure virtual channels is very challenging since, as previously
mentioned, it has to account for all possible compromise and collusion scenarios.
For this purpose, existing virtual channel constructions [12] require smart contracts
programmed over an expressive scripting language and the account model, as sup-
ported in Ethereum. This significantly simplifies the construction since the deposit
of a channel, and its distribution between the end-points are stored in memory and
can programmatically be updated. On the downside, however, these requirements
currently limit the deployment of virtual channels to Ethereum.

It was an open question until now if virtual channels could be implemented at
all in UTXO-based cryptocurrencies featuring only a limited scripting language,
like Bitcoin and virtually all other permissionless cryptocurrencies. We believe that
answering this question is important for several reasons. First, by limiting the
trusted computing base (i.e., the scripting functionality supported by the underlying
blockchain), we reduce the on-chain complexity of the virtual channel protocol. As
bugs in smart contracts are manifold and notoriously hard to fix, our construction
eliminates an additional attack vector by moving the complexity to the protocol
level (rather than on-chain as in the construction from [12]). Second, investigat-
ing the minimal functionality that is required by the underlying ledger to support
complex protocols is scientifically interesting. One may view this as a more general
research direction of building a lambda calculus for off-chain protocols. Concretely,
our construction shows that virtual channels can be built with stateless scripts, while
earlier constructions required stateful on-chain computation. Finally, from a practi-
cal perspective, our construction can be integrated into the Lightning Network (the
by far most prominent PCN), and thus our solution can offer the benefits of virtual
payment channels/hubs to a broad user base.

1.1 Our contributions

In this work, we develop the first protocols for building virtual channel hubs over
cryptocurrencies that support limited scripting functionality. Our construction re-
quires only digital signatures and timelocks, which are ubiquitously available in
cryptocurrencies and well characterized. We also provide a comprehensive formal
analysis of our constructions and benchmarks of a prototype implementation. Con-
cretely, our contributions are summarized below.

– We present the first protocols for virtual channel hubs that are built for the
UTXO-model and require a scripting language supporting only digital signature
verification and timelock functionality, being thus compatible with virtually every
cryptocurrency, including Bitcoin. Since in the Lightning network currently only 10
supernodes are involved in more than 25% of all channels, our technique can be used
to reduce the load on these nodes, and thereby help to reduce latency.



– We offer two constructions that differ on whether (i) the virtual channel is
guaranteed to stay off-chain for an encoded validity period, or (ii) the intermediary
Ingrid can decide to offload the virtual channel (i.e., convert it into a direct channel
between Alice and Bob), thereby removing its involvement in it. These two variants
support different business and functionality models, analogous to non-preemptible
and preemptible virtual machines in the cloud setting, with Ingrid playing the role
of the service provider.

– We formalize the security properties of virtual channels as an ideal function-
ality in the UC framework [8], and prove that our protocols constitute a secure
realization thereof. Since our virtual channels are built in the UTXO-model, our
ideal functionality and formalization significantly differs from earlier work [12].

– We evaluate our protocol over two different PCN constructions, the Lightning
Network (LN) [24] and Generalized channels (GC) [3], which extend LN channels
to support functionality other than one-to-one payments. We show that for virtual
channels on top of GC, n sequential payment operations require an off-chain ex-
change of 9 + 2 · n transactions or a total of 3524 + 695 · n bytes, as compared to
8 ·n transactions or 3026 ·n bytes when Ingrid routes the payment actively through
the PCN. This means a virtual channel is already cheaper if two or more sequential
payments are performed. For virtual channels over LN, n transactions require an
off-chain exchange of 6292+ 2824 · n bytes, compared to 4776 · n bytes when routed
through an intermediary. We have interacted with the Bitcoin blockchain to store
the required transactions, demonstrating the compatibility of our protocol.

To summarize, for the first time in Bitcoin, we enable off-chain payments between
users connected by payment channels via a hub without requiring the continuous
presence of any intermediary. Hence, our solution increases the reliability and, at
the same time, reduces the latency and costs of Bitcoin PCNs.

2 Background

In this section, we first provide the notation and preliminaries on UTXO-based
blockchains. We then overview the basics of payment and virtual channels, referring
the reader to [1, 19, 20, 12] for further details. We finally discuss the main techni-
cal challenges one needs to overcome when constructing Bitcoin-compatible virtual
channels.

2.1 UTXO-based blockchains

We adopt the notation for UTXO-based blockchains from [3], which we shortly
review below.

Attribute tuples Let T be a tuple of values, which we call in the following attributes.
Each attribute in T is identified by a unique keyword, e.g., attr and referred to as
T.attr.



Outputs and transactions We focus on blockchains based on the Unspent Transaction
Output (UTXO) model, such as Bitcoin. In the UTXO model, coins are held in
outputs of transactions. Formally, an output θ is an attribute tuple (θ.cash, θ.φ),
where θ.cash denotes the amount of coins associated with the output and θ.φ denotes
the conditions that need to be satisfied in order to spend the output. The condition
θ.φ can contain any set of operations (also called scripts) supported by the considered
blockchain. We say that a user P controls or owns an output θ if θ.φ contains only
a signature verification w.r.t. the public key of P .

In a nutshell, a transaction in the UTXO model, maps one or more exist-
ing outputs to a list of new outputs. The existing outputs are called transaction
inputs. Formally, a transaction tx is an attribute tuple and consists of the fol-
lowing attributes (tx.txid, tx.Input, tx.Output, tx.TimeLock, tx.Witness). The attribute
tx.txid ∈ {0, 1}∗ is called the identifier of the transaction. The identifier is cal-
culated as tx.txid := H([tx]), where H is a hash function which is modeled as a
random oracle and [tx] is the body of the transaction defined as [tx] := (tx.Input,
tx.Output, tx.TimeLock). The attribute tx.Input is a vector of strings which identify
the inputs of tx. Similarly, the outputs of the transaction tx.Output is the vector
of new outputs of the transaction tx. The attribute tx.TimeLock ∈ N ∪ {0} denotes
the absolute time-lock of the transaction, which intuitively means that transaction
tx will not be accepted by the blockchain before the round defined by tx.TimeLock.
The time-lock is by default set to 0, meaning that no time-lock is in place. Lastly,
tx.Witness ∈ {0, 1}∗ called the transaction’s witness, contains the witness of the
transaction that is required to spend the transaction inputs.

We use charts in order to visualize the transaction flow in the rest of this work.
We first explain the notation used in the charts and how they should be read. Trans-
actions are shown using rectangles with rounded corners. Double edge rectangles are
used to represent transactions that are already published on the blockchain. Single
edge rectangles are transactions that could be published on the blockchain, but they
are not yet. Each transaction contains one or more boxes (i.e., with squared cor-
ners) that represent the outputs of that transaction. The amount of coins allocated
to each output is written inside the output box. In addition, the output condition
is written on the arrow coming from the output.

In order to be concise, we use the following abbreviations for the frequently used
conditions. Most outputs can only be spent by a transaction that is signed by a set of
parties. In order to depict this condition, we write the public keys of all these parties
below the arrow. We use the command One–Sig and Multi–Sig in the pseudocode.
Other additional spending conditions are written above the arrow. The output script
can have a relative time lock, i.e., a condition that is satisfied if and only if at least t
rounds are passed since the transaction was published on the blockchain. We denote
this output condition writing the string “+t” above the arrow (and CheckRelative

in the pseudocode). In addition to relative time locks, an output can also have an
absolute time lock, i.e., a condition that is satisfied only if t rounds elapsed since
the blockchain was created and the first transaction was posted on it. We write
the string “> t” above the arrow for this condition. Lastly, an output’s spending
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Fig. 1: (Left) Transaction tx is published on the blockchain. The output of value x1
can be spent by a transaction signed w.r.t. pkB after round t2, and the output of
value x2 can be spent by a transaction signed w.r.t. pkA and pkB but only if at least
t3 rounds passed since tx was accepted by the blockchain. (Right) Transaction tx′ is
not published on the ledger. Its only output, which is of value x, can be spent by a
transaction whose witness satisfies the output condition φ1 ∨ φ2 ∨ φ3.

condition might be a disjunction of multiple conditions. In other words it can be
written as φ = φ1 ∨ · · · ∨ φn for some n ∈ N where φ is the output script. In this
case, we add a diamond shape to the corresponding transaction output. Each of
the subconditions φi is then written above a separate arrow. An example is given
in Figure 1.

2.2 Payment channels

A payment channel enables arbitrarily many transactions between users while re-
quiring only two on-chain transactions. The first step when creating a payment
channel is to deposit coins into an output controlled by two users. Once the money
is deposited, the users can authorize new balance updates in a peer-to-peer fashion
while having the guarantee that all coins are refunded at a mutually agreed time. In
a bit more detail, a payment channel has three operations: open, update and close.
We necessarily keep the description short and refer to [15, 3] for further reading.

Open Assume that Alice and Bob want to create a payment channel with an initial
deposit of xA and xB coins, respectively. For that, Alice and Bob agree on a funding
transaction (that we denote by TXf) that sets as inputs two outputs controlled by
Alice and Bob holding xA and xB coins respectively, and transfers them to an output
controlled by both Alice and Bob. When TXf is added to the blockchain, the payment
channel is effectively open.

Update Assume now that Alice wants to pay α ≤ xA coins to Bob. For that, they
create a new commit transaction TXc representing the commitment from both users
to the new balance of the channel. The commit transaction spends the output of TXf
into two new outputs: (i) one holding xA − α coins controlled by Alice; and (ii) the
other holding xB+α coins controlled by Bob. Finally, parties exchange signatures on
the commit transaction, which serve as valid witnesses for TXf. At this point, Alice
(resp. Bob) could add TXc to the blockchain. Instead, they keep it locally in their
memory and overwrite it when they agree on another commitment transaction TXc
representing a newer balance of the channel. This, however, leads to the problem
that there exist several commitment transactions that can possibly be added to
the blockchain. Since all of them are spending the same output, only one can be



accepted by the blockchain. Since it is impossible to prevent a malicious user from
publishing an outdated commit transaction, payment channels require a mechanism
that punishes such malicious behavior. This mechanism is typically called revocation
and enables that an honest user can take all the coins locked in the channel if the
dishonest user publishes an outdated commitment transaction.

Close Assume finally that Alice and Bob no longer wish to use the channel. Then,
they can collaboratively close the channel by submitting the last commitment trans-
action TXc that they have agreed on to the blockchain. After it is accepted, the coins
initially locked at the channel creation via TXf are redistributed to both users ac-
cording to the last agreed balance. As aforementioned, if one of the users submits an
outdated commitment transaction instead, the counterparty can punish the former
through the revocation mechanism.

The Lightning Network [24] defines the state-of-the-art payment channel con-
struction for Bitcoin.

2.3 Generalized channels

The recent work of Aumayr et al. [3] proposes the concept of generalized chan-
nels. Generalized channels improve and extend payment channels (see Figure 2 for
details) in two ways. First, they extend the functionality of payment channels by
offering off-chain execution of any script that is supported by the underlying ledger.
Hence, one may view generalized channels as state channels for blockchains with
restricted scripting functionality. Second, and more important for our work, gen-
eralized channels significantly improve the on-chain and off-chain communication
complexity. More concretely, this efficiency improvement is achieved by introducing
a so-called split transaction (that we denote as TXs) along with a punish-then-split
paradigm. In contrast to regular payment channels that require one revocation pro-
cess per output in the commit transaction, the punish-then-split approach decouples
the revocation process from the number of outputs in the commit transaction. This
allows moving from revocation for each output to a single revocation for the entire
channel. As shown in Figure 2, the commit transaction (TXc) is only responsible for
the punishment, while the split transaction (TXs) holds the actual outputs of the
channel.

The efficiency of generalized channels is further improved since they only require
a single commit transaction per channel. This is in contrast to the payment channels
used by Lightning, which require two distinct commit transactions for each channel
user. We will discuss in Section 3.4 why the punish-then-split paradigm (and requir-
ing only one commit transaction) is useful in order to improve the efficiency of our
virtual channels for Bitcoin.

To simplify terminology, we will use the term ledger channel for all channels that
are funded directly over the blockchain.
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Fig. 2: A generalized channel in the state ((x1, φ1), . . . , (xn, φn)). The value of ∆
upper bounds the time needed to publish a transaction on a blockchain. The con-
dition ϱA represents the verification of A’ revocation secret and ϱB represents the
verification of B’ revocation secret.

2.4 Channel Networks

The aforementioned payment and generalized channels allow two parties to issue
transactions between each other while having to communicate with the blockchain
only during the creation and closure of the channel. This on-chain communication
can further be reduced by using channel networks.

Payment Channel Networks (PCNs) A PCN is a protocol that allows parties to con-
nect multiple ledger channels to form a payment channel network. In this network,
a sender can route a payment to a receiver as long as both parties are connected
by a path in the network. Suppose that Alice and Bob are not directly connected
via a ledger channel, but instead both maintain a channel with an intermediary
party (Ingrid). In a nutshell, Alice can pay Bob by sending her coins to Ingrid who
then forwards them in her ledger channel to Bob. Importantly, the protocol must
achieve atomicity, i.e., either both transfers from Alice to Ingrid and from Ingrid to
Bob happen, or neither of them goes through. Current PCNs such as the Lightning
network use the HTLC-technique (hash-time-lock transaction), which comes with
several drawbacks as mentioned in the introduction: (i) low reliability because the
success of payments relies on Ingrid being online; (ii) high latency as each payment
must be routed through Ingrid; (iii) high-cost as Ingrid may charge a fee for each
payment between Alice and Bob; and (iv) low privacy as Ingrid can observe each
payment that happens between Alice and Bob. To mitigate these issues, virtual
channels have been proposed.

Virtual Channels An alternative solution to connect two payment channels with each
other is offered by the concept of virtual channels [12]. Virtual channels allow Alice
and Bob to send payments between each other without the involvement of the inter-
mediary Ingrid. In some sense, they thus mimic the functionality offered by ledger
channels, with the difference that they are not created directly over the blockchain
but instead over two ledger channels. More concretely, as shown in Figure 3, a vir-
tual channel γ between Alice and Bob with intermediary Ingrid is constructed on
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Fig. 3: A virtual channel γ built over ledger channels α, β.

top of two ledger channels α and β. Ingrid is required to participate in the initial
creation and final closing of the virtual channel. But importantly, Ingrid is not in-
volved in any balance updates that occur in the virtual channel. This overcomes the
four drawbacks mentioned above. While these advantages over PCNs make virtual
channels an attractive off-chain solution, their design is far from trivial. Previous
work showed how to construct virtual channels over a ledger that supports Turing
complete smart contracts [12, 13, 11]. The smart contract acts in the protocol as
a trust anchor that parties can fall back to in case of malicious behavior. Through
a rather complex protocol and careful smart contract design, existing virtual chan-
nel constructions guarantee that honest parties in the virtual channel will always
get the coins they rightfully own. Unfortunately, most cryptocurrencies (including
Bitcoin) do not offer Turing complete smart contracts, and hence the constructions
from prior work cannot be used. In this work, we present a novel construction of
virtual channels that makes only minimal assumptions on the underlying scripting
functionality offered by the ledger.

3 Virtual Channels

In this section, we first give some notation before presenting the necessary prop-
erties for virtual channels and discussing design challenges. Finally, we present our
protocol.

3.1 Definitions

We briefly recall some notation and definition for generalized channels [3] and ex-
tend the definition to generalized virtual channels. In order to make the distinction
between the two types of channels clearer, we call the former generalized ledger
channel (or ledger channels for short).

A generalized ledger channel as defined in [3] is a tuple γ := (γ.id, γ.Alice,
γ.Bob, γ.cash, γ.st), where γ.id ∈ {0, 1}∗ is the identifier of the channel, γ.Alice ∈
P , γ.Bob ∈ P are the identities of the parties using the channel, γ.cash ∈ R≥0
is a finite precision real number that represents the total amount of coins locked
in this channel and γ.st = (θ1, . . . , θn) is the state of the channel. This state is
composed of a list of outputs. Recall that each output θi has two attributes: the
output value θi.cash ∈ R≥0 and the output condition θi.φ : {0, 1}∗×N×N→ {0, 1}.
For convenience, we define a set γ.endUsers := {γ.Alice, γ.Bob} and a function
γ.otherParty : γ.endUsers → γ.endUsers, which on input γ.Alice outputs γ.Bob and
on input γ.Bob returns γ.Alice.



A generalized virtual channel (or for short virtual channel) is defined as a tuple
γ := (γ.id, γ.Alice, γ.Bob, γ.cash, γ.st, γ.Ingrid, γ.subchan, γ.fee, γ.val). The attributes
γ.id, γ.Alice, γ.Bob, γ.cash, γ.st are defined as in the case of ledger channels. The
additional attribute γ.Ingrid ∈ P denotes the identity of the intermediary of the
virtual channel γ. The set γ.endUsers and the function γ.otherParty are defined
as before. Additionally, we also define the set γ.users := {γ.Alice, γ.Bob, γ.Ingrid}.
The attribute γ.subchan is a function mapping γ.endUsers to a channel identifier;
namely, the value γ.subchan(γ.Alice) refers to the identifier of the channel between
γ.Alice and γ.Ingrid (i.e., the id of α from the description above); similarly, the value
γ.subchan(γ.Bob) refers to the identifier of the channel between γ.Bob and γ.Ingrid
(i.e., β from the description above). The value γ.fee ∈ R≥0 represents the fee charged
by γ.Ingrid for her service of being an intermediary of γ. Finally, we introduce the
attribute γ.val ∈ N∪{⊥}. If γ.val ̸= ⊥, then we call γ a virtual channel with validity
and the value of γ.val represents the round number until which γ remains open.
Channels with γ.val = ⊥ are called virtual channels without validity.

3.2 Security and efficiency goals

We briefly recall the properties of generalized channels as defined in [3] and state
the additional properties that we require from virtual channels.

Security goals Generalized ledger channels must satisfy three security properties,
namely (S1) Consensus on creation, (S2) Consensus on update and (S3) Instant
finality with punish. Intuitively, properties (S1) and (S2) guarantee that successful
creation of a new channel as well as successful update of an existing channel happens
if and only if both parties agree on the respective action. Property (S3) states that
if a channel γ is successfully updated to the state γ.st and γ.st is the last state that
the channel is updated to, then an honest party P ∈ γ.endUsers can either enforce
this state on the ledger or P can enforce a state where she gets all the coins locked
in the channel. We say that a state st is enforced when a transaction with this state
appears on the ledger.

Since virtual channels are generalized channels whose funding transaction is not
posted on the ledger yet, the above stated properties should hold for virtual channels
as well with two subtle but important differences: (i) the creation of a virtual chan-
nel involves three parties (Alice, Ingrid and Bob) and hence consensus on creation
for virtual channels can only be fulfilled if all three parties agree on the creation;
(ii) the finality (i.e., offloading) of the virtual channel depends on whether Alice is

L-Security V-Security Efficiency
S1 – S3 V1 V2 V3 E1 E2 E3

L ✓ - - - ✗ ✓ ✗

VC-V ✓ ✓ ✗ ✓ ✓ ✓ ✓

VC-NV ✓ ✓ ✓ ✗ ✓ ✓ ✓

Table 1: Comparison of security and efficiency goals for ledger channels (L), virtual
channels with validity (VC-V) and virtual channels without validity (VC-NV).



expected to offload the virtual channel within a predetermined validity period (vir-
tual channel with validity VC-V) or the offload task is delegated to the intermediary
Ingrid without having a predefined validity period (virtual channel without validity
VC-NV). In order to account for these two differences, virtual channels should also
satisfy the following properties:

(V1) Balance security: If γ is a virtual channel and γ.Ingrid is honest, she never
loses coins, even if γ.Alice and γ.Bob collude.
(V2) Offload with punish: If γ is a virtual channel without validity (VC-NV),
then γ.Ingrid can transform γ to a ledger channel. Party P ∈ γ.endUsers can initiate
the transformation which either completes or P can get financially compensated.
(V3) Validity with punish: If γ is a virtual channel with validity (VC-V), then
γ.Alice can transform γ to a ledger channel. If γ is not transformed into a ledger
channel or closed before time γ.val, γ.Ingrid and γ.Bob can get financially compen-
sated.

We first note that the instant finality with punish property (S3) does not provide
any guarantees for Ingrid ̸∈ γ.endUsers, which is why we need to define (V1) for
virtual channels. Properties (V2) and (V3) point out the main difference between
VC-NV and VC-V. In a VC-NV γ, Ingrid is able to free her collateral from γ at any
time by transforming the channel between Alice and Bob from a virtual channel to a
ledger channel. Furthermore, in case Alice and Bob transform the virtual channel to
a ledger channel or even misbehave, honest Ingrid is guaranteed that she will receive
the collateral back. In a VC-V γ, Ingrid cannot transform a virtual channel into a
ledger channel at any time she wants. Instead, there is a pre-agreed point in time,
defined by γ.val, until when γ.endUsers have to close the virtual channel or transform
it into a ledger channel (Ingrid’s collateral is freed in both cases). If γ.endUsers fail
to do so, Ingrid can get her collateral back through a punishment mechanism. Hence,
γ.endUsers have a guarantee that their VC-V will remain a virtual channel until a
certain round, after which they must ensure its closure or transformation to avoid
punishments.

Efficiency goals Lastly, we define the following efficiency goals, which describe the
number of rounds certain protocol steps require:

(E1) Constant round creation: Successful creation of a virtual channel takes a
constant number of rounds.
(E2) Optimistic update: For a channel γ, this property guarantees that in the
optimistic case when both parties in γ.endUsers are honest, a channel update takes
a constant number of rounds.
(E3) Optimistic closure: In the optimistic case when all parties in γ.users are
honest, the closure of a virtual channel takes a constant number of rounds.

Let us stress that property (E2) is common for all off-chain channels (i.e., both ledger
and virtual channels). The properties (E1) and (E3) capture the additional property



of virtual channels that in the optimistic case when all parties behave honestly, the
entire life-cycle of the channel is performed completely off-chain.

We compare the security and efficiency goals for different types of channels in
Table 1. We formalize these properties as a UC ideal functionality in Appendix A.

3.3 Design Challenges for Constructing Virtual Channels

The main challenges that arise when constructing Bitcoin-compatible virtual chan-
nels stem from the need to ensure the security properties (V1) - (V3) as presented
in the previous section. Namely, to guarantee balance security to the intermediary,
we need to ensure that the virtual channel creation and closure is reflected symmet-
rically and synchronously on both underlying ledger channels. We identify this as
a challenge (C1). As we discuss in more detail below, this can be solved by giving
the intermediary the right of a “last say” in the virtual channel creation and closure
procedures. However, a malicious intermediary could abuse such power and block
virtual channel closure indefinitely. Therefore, the second challenge (C2) is to design
a punishment mechanism that allows virtual channel users to either enforce closure
or claim financial compensation. We provide some further details below.

Synchronous create and close (C1) The creation and closure of a virtual channel
are done by updating the underlying ledger channels. In order to guarantee balance
security for the intermediary, we must ensure that updates on both ledger channels
are symmetric and either both of them succeed or both of them fail. That is, if
the intermediary Ingrid loses coins in one ledger channel as a result of the virtual
channel construction, then she has the guarantee of gaining the same amount of
coins from the other ledger channel. Such an atomicity property can be achieved by
allowing Ingrid to be the reacting party in both ledger channel update procedures.
Namely, Ingrid has to receive symmetric update requests from both Alice and Bob
before she confirms either of them.

As a result, Ingrid has the power to block a virtual channel creation and closure.
For a virtual channel creation, this is not a problem. It simply represents the fact
that Ingrid does not want to be an intermediary, and hence Alice and Bob have
to find a different party. However, for virtual channel closing, this power of the
intermediary results in a violation of the instant finality property for Alice and Bob,
and requires a more involved mechanism.

Enforcing virtual channel state (C2) In contrast to standard ledger channels that
rely on funding transactions that are published on the ledger, the funding transac-
tions of a virtual channel are, in the optimistic case (i.e., when parties are honest),
kept off-chain. In case of misbehavior (e.g., when malicious Ingrid refuses to close
the virtual channel), however, honest parties must be able to publish the virtual
channel funding transaction to the blockchain in order to enforce the latest state
of the virtual channel. Unfortunately, the funding transactions can only be pub-
lished if both of the underlying channels are closed in a state which funds the virtual
channel. The fact that the virtual channel participants, Alice and Bob, respectively



have control over just one of the underlying ledger channels further complicates this
situation. For instance, one of the underlying ledger channels may be updated or
closed maliciously at any time which would prevent the publishing of the funding
transaction on the ledger.

3.4 Virtual Channel Protocol

We now show how to build virtual channels on top of generalized channels. We later
discuss in Section 3.4 how our construction can be built over other channels such as
Lightning and why generalized channels offer better efficiency.

As mentioned in the previous section, virtual channels are created and closed
through an update of the underlying ledger channels. Hence, let us recall the update
process of ledger channels, depicted as UpdateChan in Figures 4 and 5, before ex-
plaining our construction in more detail. The update procedure consists of 4 steps,
namely (1) the Initialization step, during which parties agree on the new state of the
channel, (2) the Preparation step, where parties generate the transactions with the
given state, (3) the Setup during which parties exchange their application-dependent
data (e.g., for building virtual channels), and finally (4) the Completion step where
parties commit to the new state and revoke the old one. We refer the reader to [3]
for more details.

High level protocol description We are now prepared to present a high-level de-
scription of our modular virtual channel protocol and explain how to solve the main
technical challenges when designing virtual channels. In a nutshell, this modular
protocol gives a generic framework on how to design virtual channels. Afterwards,
we show how to instantiate this modular protocol with our virtual channel construc-
tion without validity. For the instantiation with our construction with validity, we
refer the reader to Appendix B. We present the formal pseudocode for the modular
protocol in Appendix C.

Create Let γ be a virtual channel that A := γ.Alice and B := γ.Bob want to
create, using their generalized ledger channels with I := γ.Ingrid. At a high level,
the creation procedure of a virtual channel is a synchronous update of the underlying
ledger channels. Given the ledger channels, we proceed as follows (see Figure 4).

As a first step, each party P ∈ {A,B} initiates an update of the respective ledger
channel with I (step 1○) who, upon receiving both update requests, checks if the
requested states (i.e., θA and θB) are consistent. The parties use the identifiers tidA

and tidB of their subchannels in order to build the virtual channel (step 2○). Next,
all three parties engage in a setup phase, in which the structure of the virtual channel
is built (step 3○). More concretely, all three parties agree on a funding transaction of
the virtual channel which when published on the blockchain transforms the virtual
channel to a ledger channel. When the setup phase is completed, i.e., the virtual
channel structure has been built, the parties complete the ledger channel update
procedures (step 4○). It is crucial for the intermediary I to have the role of a reacting
party during both channel updates. This gives her the power to wait until she is sure
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Fig. 4: Modular creation procedure of a virtual channel on top of two ledger channels
α and β.

that both updates will complete successfully and only then give her the final update
agreement (step 5○). Upon a successful execution, parties consider the channels as
updated (step 6○), which implies that the virtual channel γ was successfully created.

Update Updating the virtual channel essentially works in the same way as the update
procedure of a ledger channel. As long as the update is successful or peacefully
rejected (meaning that the reacting party rejects the update), the parties act as
instructed in the ledger channel protocol. The situation is more delicate when the
update fails because one of the parties misbehaved and aborted the procedure.

We note that aborts during a channel update might cause a problematic asym-
metry between the parties. For instance, when one party already signed the new
state of the channel while the other one did not; or when one party already re-
voked the old state of the channel but the other one did not. In a standard ledger
channel, these disputes are resolved by a force close procedure, meaning that the
honest party publishes the latest valid state on the blockchain, thereby forcefully
closing the channel. Hence, within a finite number of rounds, the dispute is resolved
and the instant finality property is preserved. We apply a similar technique for vir-
tual channels. The main difference is that a virtual channel is not funded on-chain.
Hence, we first need to offload the virtual channel to the ledger. In other words,
we first need to transform a virtual channel into a ledger channel by publishing its
funding transaction on-chain. This process is discussed later in this section. Once
the funding transaction is published, the dispute is handled in the same way as for
ledger channels.

Close The closure of a virtual channel is done by updating the underlying ledger
channels α and β according to the latest state of the virtual channel γ.st. To this end,
each party P ∈ {A,B} computes the new state for the ledger channel θ⃗P := {(cP ,
One–SigpkP

), (γ.cash− cP , One–SigpkI
)} where cP is the latest balance of P in γ. All

parties update their ledger channels according to this state.
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In a bit more detail, the closing procedure of a virtual channel proceeds as follows
(see Figure 5). Each party P initiates an update of the underlying ledger channel

with state θ⃗P (step 1○). Since both ledger channels must be updated synchronously,
I waits for both parties to initiate the update procedure. Upon receiving the states
from both parties (step 2○), I checks that the states are consistent and if so, she
agrees to the update of both ledger channels (step 3○). Finally, after all parties
have successfully revoked the previous ledger channel state, the virtual channel is
considered to be closed.

In the pessimistic case (if the states θ⃗A and θ⃗B are inconsistent, revocation fails
or I remains idle), parties must forcefully close their virtual channel by publishing
the funding transaction (offloading) and closing the resulting ledger channel. This,
together with the fact that I plays the role of the reacting party in its interactions
with A and B, addresses the challenge (C1) as mentioned in Section 3.3.

Offload During the offload procedure, parties try to publish the funding transaction
of the virtual channel γ which effectively transforms the virtual channel into a ledger
channel. In a nutshell, during this procedure, parties try to publish the commit and
split transactions of both underlying ledger channels and afterward the funding
transaction of the virtual channel. In case offloading is prevented by some form of
malicious behavior, parties can engage in the punishment procedure to ensure that
they do not lose any funds.

Punish The concept of punishment in virtual channels is similar to that in ledger
channels; namely in case that the latest state of a channel cannot be posted on the
ledger, honest A or B are compensated by receiving all coins of the virtual channel
while honest I will not lose coins. If the funding transaction of the virtual channel
is posted on the ledger, the virtual channel is transformed into a ledger channel and
parties can execute the regular punishment protocol for ledger channels. In addition
to the ledger channel’s punishment procedure, parties can punish if the funding
transaction of γ cannot be published. Since this punishment, however, differs for
each concrete instantiation, we will explain it in more detail for our protocol without
validity in the following section (and in Appendix B for the case with validity).



TXf

c

c+ f

pkA, pkB

I
pkI

c+ f/2

TXAs

pkA, pkB , pkI

A
+(T + 4∆)

pkA

c+ f/2

TXBs

pkA, pkB , pkI

B
+(T + 4∆)

pkB

Fig. 6: Funding of a virtual channel γ without validity. T upper bounds the number
of off-chain communication rounds between two parties for any operation in the
ledger channel.

The offloading and punishment procedure together tackles challenge (C2) from
Section 3.3.

Concrete Instantiation Without Validity We now describe how the modular
protocol explained above can be concretely instantiated with our construction for
virtual channels without validity.

Create In our construction without validity, A and B must “prepare” the virtual
channel during the setup procedure (step 3○ in create of the modular protocol).
This is done by executing the creation procedure of a regular ledger channel, i.e.,
they create a funding transaction with inputs tidA and tidB, as well as a commit
and split transactions that spend the funding transaction. Once all three transac-
tions are created, A and B sign them and exchange their signatures. Note that this
corresponds to a normal channel opening, with the mere difference that the funding
transaction is not published to the blockchain. In order to complete the virtual chan-
nel setup, A and B send the signed funding transaction to I who, upon receiving
both signatures, sends her own signature on the transaction back to A and B. At
this stage, the virtual channel is prepared, however, the creation is not completed
yet. In order to finish the creation procedure, A, I, and B have to finish the update
of their respective ledger channels. Once this is done, the virtual channel has been
successfully created.

We illustrate the transaction structure prepared during the creation process in
Figure 6. The funding transaction of the virtual channel TXf, which is generated
during the create procedure, takes as input coins from both, the ledger channel α
(represented by TXAs) and the ledger channel β (represented by TXBs). Both ledger
channels jointly contribute a total of 2c + f coins so that c coins are later used to
setup the virtual channel and the remaining c + f coins are I’s collateral and the
fees paid to I for providing the service for A and B.6 I’s collateral and fees in the
funding transaction TXf are the reason why I has to proactively monitor the virtual
channel as she has an incentive to publish TXf in case any party misbehaves.

6 For simplicity we assume each of the parties contributes f/2 coins to I’s total fees in addition to c/2
coins for funding the virtual channel.
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Offload I is always able to offload the virtual channel by herself (i.e., without having
to cooperate with another party) which guarantees that I can redeem her collateral
at any time. We note that P ∈ {A,B} can also initiate the offloading by publishing
the commit and split transaction of their respective ledger channels. This forces I
to publish the commit and split transactions of the respective other ledger channel,
since I loses her collateral to P otherwise.

More precisely, if I wishes to offload the virtual channel γ and retrieve her
collateral and fees, she can close both of her ledger channels with A and B (i.e., α
and β) and publish the funding transaction of the virtual channel i.e., TXf. This
is possible as I is part of both ledger channels. A or B, on the other hand, are
respectively part of only one ledger channel and hence they cannot offload the virtual
channel individually. However, they can force I to offload by publishing the commit
and split transactions of their respective channel with I (we will elaborate on this in
the description of the punishment mechanism). Figure 7 illustrates the transactions
that are posted on the blockchain in case of a successful offload. The figure shows
that the split transactions of both underlying ledger channels have to be published
such that eventually the funding transaction of the virtual channel can be published
which completes the offloading procedure.

Punish Party P ∈ {A,B} can punish I by taking all the coins on their respective
ledger channels if the funding transaction of the virtual channel γ is not published
on the ledger. In other words, it is I’s responsibility to ensure that the state of her
ledger channels with A and B are not updated while γ is open. Furthermore, upon
one of the subchannels being closed, I must close the other subchannel in order to
guarantee that both parties can post TXf.

Let us now get into more details. Assume that A’s ledger channel with I is
closed, but the funding transaction TXf cannot be published on the blockchain. This
means that I’s channel with B (i.e., β) is still open or has been closed in a different
state such that TXf cannot be published. In other words, Ingrid acted maliciously
by wrongfully closing β in a different state or by not closing β at all. In this case,
A must be able to get all the coins from her channel with Ingrid. This punishment
works as follows: After A publishing the split transaction of α, I is given a certain
time period to close her channel with B and publish the virtual channel’s funding
transaction TXf. If I fails to do so in the prescribed time period, A receives all coins
in her channel with I.
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We note that in this scenario, B (instead of I) might have been the malicious
party by closing β in an outdated state, thereby leaving I no option to publish
TXf. However, in this case, I can punish B via the punishment mechanism of the
underlying ledger channel and earn all the coins in β. Therefore, I will remain
financially neutral as she gets punished by A but simultaneously compensated by
B. Figure 8 illustrates the transactions that are posted on the blockchain in the case
of A successfully executing the punishment mechanism. The case where B executes
the punishment mechanism is analogous.

Further discussion regarding our constructions In the following, we present
further considerations regarding our protocol, including remarks on concurrency, a
discussion on how the protocol can be built on top of Lightning channels, and a
brief description of our virtual channel construction with validity that we detail in
Appendix B.

Concurrency When creating a virtual channel, we need to lock the underlying ledger
channels α and β (i.e., no further updates can be made on the ledger channels as
long as the virtual channel is open). This, however, is undesirable, because in most
cases the ledger channels will have more coins available than what is needed for
funding the virtual channel. We emphasize that this issue can be easily addressed
(and hence supporting full concurrency) by using the channel splitting technique
discussed in [3]. This means that before constructing the virtual channel Alice-Bob,
parties would first split each underlying ledger channel off-chain in two channels:
(i) one would contain the exact amount of coins for the virtual channel and (ii) the
other one would contain the remaining coins that can be used in the underlying
ledger channel.

Virtual channels over Lightning We will now discuss how our virtual channel con-
structions can be built on top of any ledger channel infrastructure that uses a revoca-
tion/punishment mechanism such as the Lightning Network [24]. The main compli-
cation arises from the fact that ledger channel constructions other than generalized
channels require two commit transactions per channel state (one for each party). As
depicted in Figure 9 (and unlike generalized channels in Figure 2), Alice and Bob



each have a commit transaction TXAc and TXBc which spends the funding transaction
TXf and distributes the coins. Therefore, in such channel constructions, it is a pri-
ori unclear which of these commit transactions will be posted and accepted on the
blockchain (note that only one of them can be successfully published) and hence
building applications (e.g., virtual channels) on top of such ledger channels becomes
complex.
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Fig. 9: A Lightning style payment channel where A has xA coins and B has xB
coins. ∆ upper bounds the time needed to publish a transaction on a blockchain.
condition ϱA represents the verification of A’ revocation secret and h represents the
verification of B’ revocation secret.

In more detail, assume Alice and Bob want to build a virtual channel γ on top of
their respective Lightning ledger channels with Ingrid, where both ledger channels
consist of two commit transactions respectively (i.e., (TXAc, TX

IA
c ) for the channel

between Alice and Ingrid and (TXBc, TX
IB
c ) for the channel between Bob and Ingrid).

All three parties now have to make sure that the virtual channel can be funded
(i.e., that the funding transaction of γ can be published to the blockchain) even
in case of malicious behavior. To ensure this, parties have to prepare the funding
transaction of γ with respect to all possible combinations of the commit transactions
of the respective underlying ledger channels. Since there are four such combinations
((TXAc, TX

B
c), (TX

A
c, TX

IB
c ), (TXIAc , TX

B
c) and (TXIAc , TX

IB
c )), parties have to prepare four

funding transactions for γ. Hence, updating such a virtual channel requires repeating
the update procedure for all four funding transactions.

As generalized channels require only a single commit transaction per channel
state building virtual channels on top of generalized channels offers a significant ef-
ficiency improvement in terms of off-chain communication complexity (see Section 5
for the detailed comparison).

Virtual Channels With Validity Note that so far we described our protocol without
validity where the virtual channel can be offloaded by the intermediary whenever she
wants. The drawback of this construction is that Ingrid needs to be proactive during



the lifetime of the virtual channel, i.e., she has to constantly monitor the channel
for potential misbehavior of Alice or Bob. This might be undesirable in scenarios
where Ingrid plays the role of the intermediary in not just one but many different
virtual channels at the same time (e.g., if Ingrid is a channel hub). For this reason,
we developed an alternative solution which we call virtual channels with validity. In
this solution, each virtual channel has a predetermined time (which we call validity)
which indicates until when the channel has to be closed again. If the channel is
still open after this time, Ingrid has to become proactive in order to receive her
collateral back. The obvious advantage of this approach is that Ingrid can remain
inactive until the validity of a channel expires. The details of this protocol can be
found in Appendix B.

4 Security Model and Analysis

In order to model and prove the security of our virtual channel protocols, we use the
global UC framework (GUC) [9] as in [3]. This framework allows for a global setup
which we utilize to model a public blockchain. More precisely, our protocol uses a
global ledger functionality L̂(∆,Σ), where ∆ upper bounds the blockchain delay,
i.e., the maximum number of rounds required to publish a transaction, and Σ is the
signature scheme used by the blockchain. In this section, we only give a high-level
idea behind our security analysis in the UC framework and refer the readers to the
full version of the paper [2] for more details.

As a first step, we define the expected behavior of a virtual channel protocol in
the form of an ideal functionality FV . The functionality defines the input/output
behavior of a protocol, its impact on the global setup (e.g., ledger) and the possible
ways an adversary can influence its execution (e.g., delaying messages). In order to
prove that a concrete protocol is a secure virtual channel protocol, one must show
that the protocol emulates the ideal functionality FV . This means that any attack
that can be mounted on the protocol can also be mounted on the ideal functionality,
hence the protocol is at least as secure as the ideal specification given by FV .

The proof of emulation consists of two steps. First, one must design a simulator,
which simulates the actions of an adversary on the real-world protocol by interacting
with the ideal functionality. Second, it must be shown that the execution of the real-
world protocol being attacked by a real-world adversary is indistinguishable from the
execution of the ideal functionality communicating with the constructed simulator.
In UC, the ppt distinguisher who tries to distinguish these two executions is called
the environment.

The main challenge when designing a simulator is to make sure that the environ-
ment sees transactions being posted on the ledger in the same round in both worlds.
In addition, our simulator needs to ensure that the ideal functionality outputs the
same set of messages in the same round as the protocol. We reduce the indistin-
guishability of the two executions to the security of the cryptographic primitives
used in our protocol.



One of the advantages of using UC is its composability. In other words, one can
use an ideal functionality in a black-box way in other protocols. This simplifies the
process of designing new protocols as it allows to reuse existing results and enables
modular protocol designs. We utilize this nice property of the UC framework and
use the ideal functionality of the generalized channel from [3] when designing our
virtual channel protocol.

Due to lack of space, we only mention the main security theorem and provide a
high-level proof sketch here. We refer the reader to the full version of this paper [2]
for the full proof.

Theorem 1. Let Σ be a signature scheme that is strongly unforgeable against cho-
sen message attacks. Then for any ledger delay ∆ ∈ N, the virtual channel protocol
without validity as described in Section 3.4 working in FpreL(3, 1)-hybrid, UC-realizes
the ideal functionality FV (2).

We now give a proof sketch to show that the two properties (V1) Balance security
and (V2) Offload with punish hold for honest parties. To this end, we analyze all
possible cases in which the underlying ledger channels are maliciously closed, i.e.,
the cases when the virtual channel cannot be offloaded anymore. Note that if the
virtual channel is offloaded, it is effectively transformed into a generalized ledger
channel and satisfies the security properties of generalized channels.

If all parties behave honestly (V1) and (V2) hold trivially as I is always able
to offload the virtual channel by publishing all transactions TXAs, TX

B
s and TXf. Fur-

thermore, neither A nor B would ever lose their coins. Now consider the case where
one of the underlying channels, e.g., the channel between B and I is closed in a
different state such that TXf cannot be posted on the blockchain anymore (the case
for the channel between A and I is analogous). As an honest A would not update
her channel with I as long as the virtual channel is open, there are only two possible
situations: (i) A is able to post TXAs which allows her to punish I (see Figure 8), or
(ii) I has maliciously closed her channel with A in an outdated and revoked state.
In this case, A is able to punish I according to property (S3), i.e., instant finality
with punish, of the underlying ledger channel (see Section 2 and Figure 2 for more
details on the punishment of the underlying channel). Therefore, (V2) is satisfied
for A, since she can punish I and get financially compensated. Now let us analyze
the maliciously closed channel between B and I, let us denote it β. If both parties
are malicious, we do not need to prove anything as (V1) and (V2) should only hold
for honest parties. In case B is honest, I must have closed β in an old state which
would allow B to punish I. Hence (V2) holds and we do not need to prove (V1)
as I is malicious. Analogously, if I is honest, malicious B must have closed β in an
old state and hence I can punish B. Hence (V1) holds and we do not need to prove
(V2) for malicious B). Hence, (V1) and (V2) hold for all honest parties.

5 Performance evaluation

In this section, we first study the storage overhead on the blockchain as well as the
communication overhead between users to use virtual channels. For each of these



aspects, we evaluate both constructions (i.e., with and without validity) built on
top of both generalized channels as well as Lightning channels and compare them.
Finally, we evaluate the advantages of virtual channels over ledger channels in terms
of routing communication overhead and fee costs. As testbed [6], the transactions are
created in Python using the library python-bitcoin-utils and the Bitcoin Script
language. To showcase compatibility and feasibility, we deployed these transactions
successfully on the Bitcoin testnet.

5.1 Communication overhead

We analyze the communication overhead imposed by the different operations, such as
CREATE, UPDATE, OFFLOAD and CLOSE, by measuring the byte size of the transactions
that need to be exchanged as well as the cost in USD necessary for posting the
transactions that need to be published on-chain. The cost in USD is calculated
by taking the price of 18803 USD per Bitcoin, and the average transaction fee of
104 satoshis per byte all of them at the time of writing. We detail in Table 2 the
aforementioned costs measured for both virtual channel constructions building on
top of generalized channels and on top of Lightning channels.

Generalized Channels Lightning Channels
VC-NV VC-V VC-NV VC-V

Operations on-chain off-chain on-chain off-chain on-chain off-chain on-chain off-chain
# txs size cost # txs size # txs size cost # txs size # txs size cost # txs size # txs size cost # txs size

CREATE 0 0 0 7 2829 0 0 0 8 2803 0 0 0 16 7704 0 0 0 14 5722
UPDATE 0 0 0 2 695 0 0 0 2 695 0 0 0 8 2824 0 0 0 4 1412
OFFLOAD 5 2134 41.73 0 0 6 2108 41.22 0 0 3 1800 35.20 0 0 4 1778 34.77 0 0
CLOSE (opt) 0 0 0 4 1390 0 0 0 4 1390 0 0 0 4 1412 0 0 0 4 1412
CLOSE (pess) 7 2829 55.32 0 0 8 2803 54.81 0 0 4 2153 42.10 0 0 5 2131 41.67 0 0

Table 2: Evaluation of the virtual channels. For each operation we show: the number
of on-chain and off-chain transactions (# txs) and their size in bytes. For on-chain
transactions, cost is in USD and estimates cost of publish them on the ledger.

Perhaps the most relevant difference to ledger channels in practice is, in the
CREATE and the optimistic CLOSE case, we do not have any on-chain transactions.
This implies no on-chain fees for the opening and closing of virtual channels.

Virtual channels over generalized channels For the creation of a virtual channel
(CREATE operation) on top of generalized channels, we need to update both ledger
channels to a new state that can fund the virtual channel, requiring to exchange
2 · 2 transactions with 1494 (VC-NV) or 1422 (VC-V) bytes. Additionally, we need
640 bytes for TXf (VC-NV) or 309 + 377 bytes for TXf and TXrefund (VC-V). Finally,
for both VC-NV and VC-V, we need the transactions representing the state of the
the virtual channel itself which requires 431 bytes for TXc and 264 bytes for TXs.
This complete process results in 7 (VC-NV) or 8 (VC-V) transactions with a total of
2829 (VC-NV) or 2803 (VC-V) bytes. Forcefully closing (CLOSE(pess) operation) and
offloading (OFFLOAD operation) requires the same set of transactions as with CREATE,
minus the commitment and the split transaction (695 bytes) of the virtual channel in



the latter case, both on-chain. Finally, we observe that the UPDATE and the optimistic
CLOSE(opt) operation require 2 transactions (695 bytes) for both constructions, as
they are designed as an update of a ledger channel.

Virtual channels over Lightning channels Building virtual channels on top of Light-
ning channels yields the following results. Instead of one commitment and one split
transaction per ledger channel, we now need two commitment transactions per ledger
channel, each of size 580 (VC-NV) or 546 (VC-V) bytes. Due to the fact that in both
ledger channels, either commitment transaction can be published, we now need four
TXf of 640 bytes each (VC-NV) or two TXf of 309 and four TXrefund of 377 bytes
(VC-V). For every TXf, we need two commitment transactions of 353 bytes (in total,
8 ·353 in VC-NV or 4 ·353 in VC-V). For OFFLOAD, only one commitment transaction
per ledger channel needs to be published, along with one TXf (for VC-NV) and TXf
plus TXrefund (for VC-V). CLOSE(pess), needs to publish a commitment transaction
in addition to OFFLOAD, resulting in 2153 (VC-NV) or 2131 (VC-V) bytes.

5.2 Comparison to payment channel networks

In this section we compare virtual channels to multi-hop payments in a payment
channel network (PCN). In a PCN, users route their payments via intermediaries.
During the routing of a transaction tx, each intermediary party locks tx.cash coins
as a “promise to pay” in their channels, a payment commitment that can technically
be implemented as a Hash-Time Lock Contract (HTLC), e.g. as in the Lightning
Network [24]. We now evaluate the difference in communication overhead and fee
costs compared to virtual channels, summarize them in Table 3 and illustrate them
in Figure 10.

Routing communication overhead When performing a payment between Alice and
Bob via an intermediary Ingrid in a multi-hop payment over generalized channels,
the participants need to update both generalized channels with a “promise to pay”,
which require 2 transactions or 818 bytes per channel when implemented as HTLC. If
they are successful, both generalized channels need to be updated again to “confirm
the payment” (again, 2 transactions or 695 bytes per channel). This whole process
results in 8 transactions or 2 · 818 + 2 · 695 = 3026 off-chain bytes that need to be
exchanged. Generically, if the parties want to perform n sequential payments, they
need to exchange 8 · n transaction with a total of 3026 · n bytes.

Assume now that Alice and Bob were to perform the payment over a virtual
channel without validity instead and that this virtual channel is not yet created.
As shown in Table 2, they need to open the virtual channel for 2829 bytes, where
they set the balance of the virtual channel already to the correct state after the
payment, and then close it again for 1390 bytes, resulting in a total of 4219 off-
chain bytes. However, if we again consider n sequential payments, the result would
be 9 + 2 · n transactions or 3524 + 695 · n bytes, which supposes a reduction of
2331 · n − 3524 bytes with respect to relying on generalized channels only. This
means that a virtual channel is already cheaper if only two (or more) sequential
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Fig. 10: Pictorial illustration of Table 3.

transactions are performed. We obtain similar results if we consider virtual channels
with validity instead. For Lightning channels, the overhead is larger for both the
multi-hop payment and the VC setting (Table 3).

Overhead in bytes fees
1 paym. 2 paym. n payments tx.cash in n payments

GC: PCN 3026 6052 3026 · n BF · n+ FR · tx.cash
GC: VC-NV 4219 4914 3524 + 695 · n

BF+ FR · tx.cash
GC: VC-V 4193 4888 3498 + 695 · n
LN: PCN 4776 9552 4776 · n BF · n+ FR · tx.cash
LN: VC-NV 9116 11940 6292 + 2824 · n
LN: VC-V 5722 7134 4310 + 1412 · n BF+ FR · tx.cash

Table 3: Comparison of virtual channels (VC) to multi-hop payments (PCN) showing
the overhead in bytes for a different number of payments and the difference in fees.

Fee costs In a multi-hop payment tx in a PCN, the intermediary user Ingrid charges
a base fee (BF) for being online and offering the routing service and relative fee (FR)
for locking the amounts of coins (tx.cash) and changing the balance in the channel,
so that fee(tx) := BF + FR · tx.cash. Note that at the time of writing, the fees are
BF = 1 satoshi and FR = 0.000001.

In a virtual channel setting, γ.Ingrid can charge a base fee to collaborate to open
and close the virtual channel, and also a relative fee to lock collateral coins in the
virtual channel. However, no fees per payment are charged by Ingrid as she does not
participate in them (and even does not know how many end-users performed)1. Let
us now investigate the case of paying tx.cash in n micropayments of equal value. In
PCN case, the total cost would be

∑n
i=1 BF + FR · tx.cash

n
= BF · n + FR · tx.cash.



Whereas, in the virtual case, the parties first create a virtual channel γ with balance
tx.cash, and they will handle the micropayments in γ. Thereby, the cost would be
only the opening cost of the virtual channel, for which we assumed BF+FR · tx.cash.
Thus, if Alice and Bob would make more than one transaction, i.e., n > 1, it is
beneficial to use virtual channels for reducing the fee costs by BF · (n− 1).

Summary We find that the best construction in practice is the combination of
virtual channels on top of generalized channels, as this yields the least overhead
after only two or more sequential payments. However, building virtual channels over
LN channels also yields less overhead than multi-hop PCN payments over LN.

6 Related Work

In this section, we position this work in the landscape of the literature for off-chain
payments protocols.

Payment Channels Started from the Lightning Channels construction [24], the idea
of 2-party payment channels has been largely used in academia and industry as a
building block for more complex off-chain payment protocols. More recently, Aumayr
et al. [3] have proposed a novel construction for 2-party payment channels that
overcome some of the drawbacks of the original Lightning channels. While their
benefit in terms of scalability is out of any doubt by now, payment channels are
limited to payments between two users and consequently its overall utility.

A concurrent work [17] has also proposed a virtual channel construction over
Bitcoin. However, their construction uses decreasing time-locks instead of a pun-
ishment mechanism in order to guarantee that only the latest state can be posted
on the blockchain. As a consequence, their construction only allows a fixed num-
ber of transactions to be made during the lifetime of the virtual channel. This is
quite restrictive as it requires users to close and open new virtual channels more
frequently which goes against the purpose of virtual channels. Note that one cannot
simply increase the time-lock as this would essentially lock the coins of the users
for a longer period of time. Furthermore, our constructions are generalized virtual
channels, i.e., they are not limited to just payments, but rather allow to run any
Bitcoin script off-chain. In addition, we propose a modular approach compared to
the monolithic construction in [17]. Finally, our work proposes two protocols, which
each have their advantages in different use cases.

Payment Channel Networks (PCN) and Payment Channel Hub (PCH) A PCN al-
lows a payment between two users that do not share a payment channel but are
however connected through a path of payment channels. The notion of PCN started
with the deployment of Lightning Network [24] for Bitcoin and Raiden Network [28]
for Ethereum and has been widely studied in academia to research into different as-
pects such as privacy [19, 20], routing of payments [25], collateral management [14]
and others. Similar to PCN, different constructions for PCH exist [26, 16, 5] that
allow a payment between two users through a single intermediary, the payment hub.



PCNs and PCHs, however, share the drawback that each payment between two users
require the active involvement of the intermediary (or several intermediaries in the
case of PCH), which reduces the reliability (e.g., the intermediary can go offline)
and increases the cost of the payment (e.g., each intermediary charges a fee for the
payment).

State Channels Several works [11, 13, 21, 10] have shown how to leverage the highly
expressive scripting language available at Ethereum to construct (multi-party) state
channels. A state channel allows the involved parties to carry out off-chain compu-
tations, possibly other than payments. Closer to our work, Dziembowski et al. [12]
showed how to construct a virtual channel leveraging two payment channels defined
in Ethereum. These approaches are, however, highly tight to the functionality pro-
vided by the Ethereum scripting language and their constructions cannot be reused
in other cryptocurrencies. In this work, we instead show that virtual channels can
be constructed from digital signatures and timelock mechanism only, which makes
virtual channels accessible for virtually any cryptocurrency system available today.

7 Conclusion

Current PCNs route payments between two users through intermediate nodes, mak-
ing the system less reliable (intermediaries might be offline), expensive (intermedi-
aries charge a fee per payment), and privacy-invasive (intermediate nodes observe
every payment they route). To mitigate this, recent work has introduced the con-
cept of virtual channels, which involve intermediaries only in the creation of a bridge
between payer and payee, who can later on independently perform arbitrarily many
off-chain transactions. Unfortunately, existing constructions are only available for
Ethereum, as they rely on its account model and Turing-complete scripting lan-
guage.

In this work, we present the first virtual channel constructions that are built
on the UTXO-model and require a scripting language supported by virtually ev-
ery cryptocurrency, including Bitcoin. Our two protocols provide a tradeoff on who
can offload the virtual channel, similar to the preemptible vs. non-preemptible vir-
tual machines in the cloud setting. In other words, our virtual channel construction
without validity is more suitable for intermediaries who can monitor the blockchain
regularly, such as payment channel hubs, but can also close the virtual channel at
anytime if desired. Our virtual channel protocol with validity however, is more suit-
able for light intermediaries who do not wish to be active during the lifetime of the
virtual channel but cannot close the virtual channel before its validity has expired.
We formalize the security properties of virtual channels in the UC framework, prov-
ing that our protocols constitute a secure realization thereof. We have prototyped
our protocols and evaluated their efficiency: for n sequential payments in the opti-
mistic case, they require 9 + 2 · n off-chain transactions for a total of 3524 + 695 · n
bytes, with no on-chain footprint.

As mentioned in the introduction of this work, the task of designing secure
virtual channels has been proven to be challenging even on a cryptocurrency like



Ethereum [12] which supports smart contract execution. Unsurprisingly, this task
becomes even more complex when building virtual channels for blockchains that
support only a limited scripting language as it is not possible to take advantage
of the full computation power of Turing complete smart contracts. Due to these
significantly differing underlying assumptions (smart contracts vs. limited scripting
languages), the virtual channel protocols based on Ethereum [12] and the protocols
presented in this work are incomparable. We emphasize that we view our virtual
channel constructions as complementary to the one presented in [12], as we do not
aim to improve the construction of [12] but rather extend the concept of virtual
channels to a broader class of blockchains.

We conjecture that it is possible to recursively build virtual channels on top
of any two underlying channels (either ledger, virtual or a combination of them),
requiring to adjust the timings for offloading channels: users of a virtual channel at
layer k should have enough time to offload the (virtual/ledger) channels at layers 1 to
k − 1. Additionally, we envision that while virtual channels without validity might
serve as a building block at any layer of recursion, virtual channels with validity
period may be more suitable for the top layer as they have a predefined expiration
time after which they would require to offload in any case all underlying layers.
We plan to explore the recursive building of virtual channels in the near future.
Additionally, we conjecture that virtual channels help with privacy, but we leave a
formalization of this claim as interesting future work, as it involves a quantitative
analysis that falls off the scope of this work.
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A Ideal functionality for virtual channels

Here we define the ideal functionality FV that describes the ideal behavior of both
ledger and virtual channels. The full description of the ideal functionalities can be
found in the full version of this paper [2].
FV can be viewed as an extension of the ledger channel functionality FL defined

in [3]. The functionality FV is parameterized by a parameter T which upper bounds
the maximum number of off-chain communication rounds between two parties re-
quired for any of the operations in FL. The ideal functionality FV communicates
with the parties P , the simulator S and the ledger L̂. It maintains a channel space
Γ where it stores all currently opened ledger channels (together with their funding
transaction tx) and virtual channels. Before we define FV formally, we describe it at
a high level.

Messages related to ledger channels For any message related to a ledger channel, FV

behaves as the functionality FL. That is, the corresponding code of FL is executed
when a message about a ledger channel γ is received. For the rest of this section, we
discuss the behavior of FV upon receiving a message about a virtual channel.



Create The creation of a virtual channel is equivalent to synchronously updating
two ledger channels. Therefore, if all parties, namely γ.Alice, γ.Bob and γ.Ingrid,
follow the protocol, i.e., update their ledger channels correctly, a virtual channel is
successfully created. This is captured in the “All agreed” case of the functionality.
Hence, if all parties send the CREATE message, the functionality returns CREATED to
γ.users, keeps the underlying ledger channels locked and adds the virtual channel to
its channel space Γ .

On the other hand, the creation of the virtual channel fails if after some time at
least one of the parties does not send CREATE to the functionality. There are three
possible situations: (i), the update is peacefully rejected and parties simply abort the
virtual channel creation, (ii) both channels are forcefully closed, in order to prevent
a situation where one of the channels is updated and the other one is not, (iii) if
γ.Ingrid has not published the old state of one of her channels to the ledger after ∆
rounds, it forcefully closes the ledger channels using the new state i.e., where γ.Ingrid
behaves maliciously and can publish both the old and new states, while γ.Alice or
γ.Bob can only publish the new state.

Update The update procedure for the virtual channel works in the same way as for
ledger channels except in case of any disputes during the execution, the functionality
calls V–ForceClose instead of L–ForceClose.

Offload We consider two types of offloading depending on whether the virtual chan-
nel is with or without validity. In the first case, offloading is initiated by one of the
γ.endUsers before round γ.val, while for channels without validity, Ingrid can initiate
the offloading at any time. Since offloading a virtual channel requires closure of the
underlying subchannels, the functionality merely checks if either funding transaction
of γ.subchan has been spent until round T1 +∆. If not, the functionality outputs a
message (ERROR). As in to [3], the ERROR message represents an impossible situation
which should not happen as long as one of the parties is honest.

Close - channels without validity Upon receiving (CLOSE, id) from all parties in
γ.users within T1 ≤ 6T rounds (where the exact value of T1 is specified by S), all
parties have peacefully agreed on closing the virtual channel, which is indicated by
the “All Agreed” case. In this case the final balance of the parties is reflected on
their underlying channels. When the update of Γ is completed, the ideal functionality
sends CLOSED to all users. Due to the peaceful closure in this “All Agreed” case, the
functionality defines property (E3).

If one of the (CLOSE, id) messages was not received within T1 rounds (“Wait for
others” case), the closing procedure fails. The following cases my happen: (i) the up-
date procedure of an underlying ledger channel was aborted prematurely by γ.Alice
or γ.Bob which would cause the virtual channel to be forcefully closed. (ii) γ.Ingrid
refuses to revoke her state during the update of either one of the underlying ledger
channels where the functionality waits ∆ rounds and if γ.Ingrid has not published
the old state to the ledger the functionality forcefully closes the ledger channels
using the new state.



Close - channels with validity. This procedure starts in round γ.val − (4∆ + 7T )
to have enough time to forcefully close the channel if necessary. If within T1 ≤ 6T
rounds (where the exact value of T1 is specified by S) all γ.users agreed on closing the
channel or if the simulator instructs the functionality to close the channel, the same
steps as in the all agreed case for channels without validity are executed. Otherwise,
after T1 rounds, the functionality executes the forceful closure of the virtual channel.

Punish The punishment procedure is executed at the end of each round. It checks
for every virtual channel γ if any of γ.subchan has just been closed and distinguishes
if the consequence of closure was offloading or punishment. If after T1 rounds (T1
is set by S) two transactions tx1 and tx2 are published on the ledger, where tx1
refunds the collateral γ.cash + γ.fee to γ.Ingrid and tx2 funds γ on-chain, then the
virtual channel has been offloaded and the message (OFFLOADED) is sent to γ.users.
If after T1 rounds, only one transaction tx is on the ledger, which assigns γ.cash
coins to a single honest party P and spends the funding transaction of only one
of γ.subchan, the functionality sends (PUNISHED) to P . Otherwise, the functionality
outputs (ERROR) to γ.users.

Notation In the functionality description, we use the notion of rooted transactions
that we now explain (see Figure 11 for a concrete example). UTXO based blockchains
can be viewed as a directed acyclic graph, where each node represents a transaction.
Nodes corresponding to transactions txi and txj are connected with an edge if at
least one of the outputs of txi is an input of txj, i.e, txi is (partially) funding txj.
We denote the transitive reachability relation between nodes, which constitutes a
partial order, as ≤. We say that a transaction tx is rooted in the set of transactions
R if

1. ∀txi ≤ tx.∃txj ∈ R.txj ≤ txi ∨ txi ≤ txj,
2. ∀txi, txj ∈ R.txi ̸= txj, txi ̸≤ txj and
3. tx /∈ R.

tx1 tx3

tx2

tx4

tx5

tx6

tx8

tx7

Fig. 11: The root sets of transaction tx8 are {tx1}, {tx2, tx3, tx4}, {tx5, tx6}, {tx4, tx5}
and {tx2, tx3, tx6}.

Moreover, in order to simplify the notation in the functionality description, we

write m
t
↪−→ P as a short hand form for “send the message m to party P in round

t.” and m
t←−↩ P for “receive a message m from party P in round t”.



Ideal Functionality FV (T )

Below we abbreviate A := γ.Alice, B := γ.Bob, I = γ.Ingrid. For P ∈ γ.endUsers, we denote Q :=
γ.otherParty(P ).

For messages about ledger channels, behave as FL(T, 1).

Create

Upon (CREATE, γ)
τ←−↩ P , let S define T1 ≤ 8T . If P ∈ γ.endUsers, then define a set S, where S :=

{idP } := γ.subchan(P ), otherwise define S as S := {idP , idQ} := γ.subchan. Lock all channels in S
and distinguish:

All agreed: If you already received both (CREATE, γ)
τ1←−↩ Q1 and (CREATE, γ)

τ2←−↩ Q2, where Q1, Q2 ∈
γ.users \ {P} and τ − T1 ≤ τ1 ≤ τ2, then in round τ3 := τ1 + T1 proceed as:

1. Let S define θ⃗A and θ⃗B and set (idA, idB) := γ.subchan.

2. Execute UpdateState(idA, θ⃗A), UpdateState(idB , θ⃗B), set Γ (γ.id) := γ, send (CREATED, γ)
τ3
↪−→

γ.endUsers, stop.

Wait for others: Else wait for at most T1 rounds to receive (CREATE, γ)
τ1≤τ+T1←−−−−−−↩ Q1 and (CREATE, γ)

τ2≤τ+T1←−−−−−−↩ Q2 where Q1, Q2 ∈ γ.users \ {P} (in that case option “All agreed” is executed). If at least
one of those messages does not arrive before round τ + T1, do the following. For all id i ∈ S, let
(γi, txi) := Γ (id i) and distinguish the following cases:
– If S sends (peaceful–reject, id i), unlock id i and stop.
– If γ.Ingrid is honest or if instructed by S, execute L–ForceClose(id i) and stop.

– Otherwise wait for ∆ rounds. If txi still unspent, then set θ⃗old := γi.st, γi.st := {θ⃗old , θ⃗} and
Γ (id i) := (γi, txi). Execute L–ForceClose(id i) and stop.

Update

Upon (UPDATE, id , θ⃗, tstp)
τ0←−↩ P , where P ∈ γ.endUsers, behave as FL(T, 1) yet replace the calls to

L–ForceClose in FL(T, 1) with calls to V–ForceClose.

Offload

Upon (OFFLOAD, id)
τ0←−↩ P , execute Offload(id).

Close

Channels without validity:

Upon (CLOSE, id)
τ←−↩ P , where γ(id).val = ⊥, let S define T1 ≤ 6T . If P ∈ γi.endUsers, define a set S,

where S := {idP } := γi.subchan(P ), else define S as S := {idP , idQ} := γi.subchan and distinguish:

All agreed: If you received both messages (CLOSE, id)
τ1←−↩ Q1 and (CLOSE, id)

τ2←−↩ Q2, whereQ1, Q2 ∈
γ.users \ {P} and τ − T1 ≤ τ1 ≤ τ2, then in round τ3 := τ1 + T1 proceed as follows:
1. Let γ := Γ (id), (idA, idB) := γ.subchan.
2. Parse γ.st = {(cA, One–SigA), (cB , One–SigB)} and set

θ⃗A := ((cA, One–SigA), (cB + γ.fee/2, One–SigI)),

θ⃗B := ((cA + γ.fee/2, One–SigI), (cB , One–SigB)),

3. Unlock both subchannels and execute UpdateState(idA, θ⃗A) and UpdateState(idB , θ⃗B). And set

Γ (id) := ⊥ and send (CLOSED, γ)
τ3
↪−→ γ.endUsers.



Wait for others: Else wait for at most T1 rounds to receive (CLOSE, γ)
τ1≤τ+T1←−−−−−−↩ Q1 and (CLOSE, γ)

τ2≤τ+T1←−−−−−−↩ Q2 where Q1, Q2 ∈ γ.users \ {P} (in that case option “All agreed” is executed). For all

id i ∈ S let (γi, txi) := Γ (id i), if such messages are not received until round τ + T1, set θ⃗old := γ′.st
and distinguish:

– If γ.Ingrid is honest or if instructed by S, execute V–ForceClose(id i) and stop.

– Else wait for ∆ rounds. If txi still unspent, set γi.st := {θ⃗old , θ⃗} and Γ (id i) := (γi, txi). Execute
L–ForceClose(id i) and stop.

Channels with validity:
For every γ ∈ Γ s.t. γ.val ̸= ⊥, in round τ0 := γ.val− (4∆+7T ) proceed as follows: let S set T1 ≤ 6T
and distinguish:

Peaceful close: If all parties in γ.users are honest or if instructed by S, execute steps (1)–(3) of the
“All agreed” case for channels without validity with τ3 := τ0 + T1.
Force close: Else in round τ3 execute V–ForceClose(γ.id).

Punishment (executed at the end of every round)

For every id , where γ := Γ (id) is a virtual channel, set (idA, idB) := γ.subchan. If this is the first
round when Γ (idA) = (⊥, txA) or Γ (idB) = (⊥, txB), i.e., one of the subchannels was just closed,
then let S set t1 ≤ T ′, where T ′ := τ0 + T + 5∆ if γ.val = ⊥ and T ′ := γ.val+ 3∆ if γ.val ̸= ⊥, and
distinguish the following cases:

Offloaded: Latest in round t1 the ledger L̂ contains both
– a transaction tx1 rooted at {txA, txB} with an output (γ.cash + γ.fee, One–SigI). In this case

(OFFLOADED, id)
τ1
↪−→ I, where τ1 is the round tx1 appeared on L̂.

– a transaction tx2 with an output of value γ.cash and rooted at {txA, txB}, if γ.val = ⊥, and rooted

at {txA}, if γ.val ̸= ⊥. Let τ2 be the round when tx2 appeared on L̂. Then output (OFFLOADED, id)
τ2
↪−→ γ.endUsers, set γ′ = γ, γ′.Ingrid = ⊥, γ′.subchan = ⊥, γ.val = ⊥ and define Γ (id) := (γ′, tx2).

Punished: Else for every honest party P ∈ γ.users, check the following: the ledger L̂ contains in
round τ1 ≤ t1 a transaction tx rooted at either txA or txB with (γ.cash+γ.fee/2, One–SigP ) as output.

In that case, output (PUNISHED, id)
τ1
↪−→ P . Set Γ (id) = ⊥ in the first round when PUNISHED was sent

to all honest parties.

Error: If the above case is not true, then (ERROR)
t1
↪−→ γ.users.

V–ForceClose(id): Let τ0 be the current round and γ := Γ (id). Execute subprocedure Offload(id).

Let T ′ := τ0 + 2T + 8∆ if γ.val = ⊥ and T ′ := γ.val + 3∆ if γ.val ̸= ⊥. If in round τ1 ≤ T ′ it holds
that Γ (id) = (γ, tx), execute subprocedure L–ForceClose(id).
Subprocedure Offload(id): Let τ0 be the current round, γ := Γ (id), (idα, idβ) := γ.subchan, (α, txA) :=
Γ (idα) and (β, txB) := Γ (idβ). If within ∆ rounds, neither txA nor txB is spent, then output (ERROR)
τ0+∆
↪−−−→ γ.users.
Subprocedure UpdateState(id , θ⃗): Let (α, tx) := Γ (id). Set α.st := θ⃗ and update Γ (id) := (α, tx).

B Concrete Instantiation With Validity

We now briefly present our virtual channel protocol with validity. We focus mainly on
the creation of the virtual channel as this illustrates the main structural differences
to our construction without validity.

Create Unlike the without validity case, the structure of the construction with va-
lidity is not symmetric (see Figure 12). The output of the ledger channel between
A and I is used as the input for the funding transaction of the virtual channel TXf,



whereas the output of the channel between B and I is used for the so-called refund
transaction TXrefund.

A can create TXf on her own from the last state of her ledger channel with I. As
a second step, A and B can already create the transactions required for the virtual
channel γ. Additionally, I and B create the refund transaction which returns I’s
collateral if the virtual channel is offloaded. Finally, the created transactions are
signed in reverse order. In particular, B signs TXrefund so that I is ensured that she
can publish it and receive her collateral and fees. Then, I signs TXf and provides
the signature to A, effectively authorizing her to publish TXf, thereby allowing A to
offload the virtual channel.

TXf

c

f/2

pkA, pkB

TXrefund

c+ f
pkI

I
pkI

c+ f/2

TXAs

pkA, pkI

I
> γ.val

pkI

c+ f/2

TXBs pkI , pkB

B
> γ.val+ 2∆

pkB

Fig. 12: Funding of a virtual channel γ with validity γ.val.

Offload In our virtual channel with validity, only A can offload the virtual channel
γ by publishing the commit and split transaction of her ledger channel with I.
Although I and B are not able to offload the virtual channel, they have the guarantee
that after round γ.val either the channel is offloaded or closed or they can punish A
and get reimbursed.

Punish Recall that after a successful offload, the punishment mechanisms of gen-
eralized channels apply. We now discuss other malicious behaviors specific to this
construction. In this protocol, only A can post the funding transaction of the virtual
channel. If the virtual channel is not closed or offloaded by γ.val, A is punished. A
loses her coins to I and I loses her coins to B. Therefore, though B cannot offload
the channel, he will get reimbursed from his ledger channel with I and I will get
reimbursed regardless of whether the virtual channel is offloaded or not. At the time
val, if the virtual channel is not honestly closed or the funding is not published, I
submits the punishment transaction to reimburse her collateral. Therefore, at time
val + ∆, either the punishment or the funding transaction is posted. If the virtual
channel is offloaded, I can publish the refund transaction within ∆ to get her coins
back.



C Protocol Pseudocode

In Figure 13, we present the pseudocode of our modular virtual channel protocol
that was described at a high level in Section 3.4.

Create virtual channel for P ∈ {A,B}

// Initiate creation of γ with funding source tidA, tidB in round t0

Let γP be the channel with id γ.subchan(P ).

Compute θP := GenVChannelOutput(γP , P )

Assign Setup← SetupVChannelP (γ, tidA, tidB)

if UpdateChanP (γP , θP , Setup) returns UPDATE–OK

Creation successful.

Close virtual channel for P ∈ {A,B}

// Initiate closure of γ in round tP0

Let γP be the channel with id γ.subchan(P ).

Parse γ.st =
(
(cP , One–SigpkP

), (cQ, One–SigpkQ
)
)

Compute θ⃗P := {(cP , One–SigpkP
), (cQ +

γ.fee

2
, One–SigpkI

)}

if UpdateChanP (γP , θ⃗P ,⊥) returns UPDATE–OK
Close successful.

else Execute OffloadP (γ) and stop.

Update virtual channel for P ∈ {A,B}

// Initiate update of γ with state θ⃗ in tP0

if UpdateChanP (γ, θ⃗,⊥) returns UPDATE–OK
Update successful.

else Execute OffloadP (γ) and stop.

SetupVChannel(γ, tidA, tidB)

// Return the setup procedure Setup required for the setup of the virtual channel.

// The funding transaction and initial versions of split and commit transactions of

// the virtual channel γ are created. Moreover, the punishment and refund

// transactions are generated to be used in malicious cases.

GenVChannelOutput(γP , P )

// Return output θ of γP that will fund the virtual channel

Create virtual channel for I

// React to creation of γ with funding source tidA, tidB in round tI0

Let γP be the channel with id γ.subchan(P ) for P ∈ {A,B}.
Compute θP := GenVChannelOutput(γP , P ) for P ∈ {A,B}
Assign Setup← SetupVChannelI(γ, tidA, tidB)

if UpdateChanSyncI(γA, θ⃗A, γB , θ⃗B , Setup) returns

UPDATE–OK Creation successful.

Close virtual channel for I

// React to closure of γ in round tI0 for some cP , cQ s.t. cP + cQ = γ.cash

Let γP be the sub-channel γ.subchan(P ) for P ∈ {A,B}.

Compute θ⃗P = {(cP , One–SigpkP
), (cQ +

γ.fee

2
, One–SigpkI

)}

for P ∈ {A,B}.
if UpdateChanSyncI(γA, θ⃗A, γB , θ⃗B ,⊥) returns UPDATE–OK
Close successful.

else Execute OffloadI(γ).

Punish for all parties

// In every round check the ledger and punish misbehavior

for every open channel γ execute Punish(γ)

UpdateChanP (γ, θ⃗,Setup) from [3]

// Initiate update of γ with state θ⃗ in τ0 with setup procedure Setup.

UpdateChanSyncI(γ1, θ⃗1, γ2, θ⃗2, Setup)

// Initiate update of γi with state θ⃗i with Setup for i = 1 and 2 simultaneously

// using the same steps of UpdateChan. At each step, wait for both channels

// before continuing. If one of them fails at any step, act as both failed.

PreCreateChan(TXγf ) from [3]

// Creates a channel γ with initial versions of split and commit transactions.

// It follows the channel creation procedure given in [3], expect that

// the funding transaction is not published in the end.

Fig. 13: Protocol for virtual channels. The protocol utilizes the generalized channel
protocols from [3]. Specifically, the channel update protocol UpdateChan is used in a
black-box fashion while also defining a synchronized version called UpdateChanSync.
Moreover, the channel creation protocol PreCreateChan is used with the difference
of not publishing the channel funding transaction of the virtual channel. The gray
parts of the protocol differ between our tow constructions with and without validity
and are specified in the protocol pseudocode and description.
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Abstract. Adaptor signatures are a novel cryptographic primitive with important applica-
tions for cryptocurrencies. They have been used to construct second layer solutions such as
payment channels or cross-currency swaps. The basic idea of an adaptor signature scheme
is to tie the signing process to the revelation of a secret value in the sense that, much like
a regular signature scheme, an adaptor signature scheme can authenticate messages, but
simultaneously leaks a secret to certain parties. Recently, Aumayr et al. provide the first
formalization of adaptor signature schemes, and present provably secure constructions from
ECDSA and Schnorr signatures. Unfortunately, the formalization and constructions given
in this work have two limitations: (1) current schemes are limited to ECDSA and Schnorr
signatures, and no generic transformation for constructing adaptor signatures is known; (2)
they do not offer support for aggregated two-party signing, which can significantly reduce
the blockchain footprint in applications of adaptor signatures.

In this work, we address these two shortcomings. First, we show that signature schemes
that are constructed from identification (ID) schemes, which additionally satisfy certain
homomorphic properties, can generically be transformed into adaptor signature schemes.
We further provide an impossibility result which proves that unique signature schemes (e.g.,
the BLS scheme) cannot be transformed into an adaptor signature scheme. In addition, we
define two-party adaptor signature schemes with aggregatable public keys and show how to
instantiate them via a generic transformation from ID-based signature schemes. Finally, we
give instantiations of our generic transformations for the Schnorr, Katz-Wang and Guillou-
Quisquater signature schemes.

1 Introduction

Blockchain technologies, envisioned first in 2009 [34], have spurred enormous
interest by academia and industry. This technology puts forth a decentralized pay-
ment paradigm, where financial transactions are stored in a decentralized data struc-
ture – often referred to as the blockchain. The main cryptographic primitive used
by blockchain systems is the one of digital signature schemes, which allow users
to authenticate payment transactions. Various different flavors of digital signature
schemes are used by blockchain systems, e.g., ring signatures [39] add privacy-
preserving features to cryptocurrencies [40], while threshold signatures and multi-
signatures are used for multi-factor authorization of transactions [18].

† Research partially conducted at Technische Universität Darmstadt, Germany.
‡ Research partially conducted at Indian Institute of Technology Madras, India.



Adaptor signatures (sometimes also referred to as scriptless scripts) are another
important type of digital signature scheme introduced by the cryptocurrency com-
munity [37] and recently formalized by Aumayr et al. [2]. In a nutshell, adaptor
signatures tie together authorization of a message and the leakage of a secret value.
Namely, they allow a signer to produce a pre-signature under her secret key such
that this pre-signature can be adapted into a valid signature by a publisher knowing
a certain secret value. If the completed signature gets published, the signer is able
to extract the embedded secret used by the publisher.

To demonstrate the concept of adaptor signatures, let us discuss the simple
example of a preimage sale which serves as an important building block in many
blockchain applications such as payment channels [6, 10, 38, 2], payment routing in
payment channel networks (PCNs) [30, 13, 33] or atomic swaps [11, 21]. Assume that
a seller offers to reveal a preimage of a hash value h in exchange for c coins from a
concrete buyer. This is a classical instance of a fair exchange problem, which can be
solved using the blockchain as follows. The buyer locks c coins in a transaction which
can be spent by another transaction if it is authorized by the seller and contains a
preimage of the hash value h.

While this solution implements the preimage sale, it has various drawbacks: (i)
The only hash functions that can be used are the ones supported by the underlying
blockchain. For example, the most popular blockchain-based cryptocurrency, Bit-
coin, supports only SHA-1, SHA-256 and RIPEMD-160 [5]. This makes the above
solution unsuitable for applications like privacy-preserving payment routing in PCNs
[30, 13] that crucially rely on the preimage sale instantiated with a homomorphic
hash function. (ii) The hash value has to be fixed at the beginning of the sale and
cannot be changed later without a new transaction being posted on the blockchain.
This is problematic in, e.g., generalized payment channels [2], where users utilize
the ideas from the preimage sale to repeatedly update channel balances without
any blockchain interaction. (iii) Finally, the blockchain script is non-standard as, in
addition to a signature verification, it contains a hash preimage verification. This
does not only make the transaction more expensive but also allows parties who are
maintaining the blockchain (also known as miners) to censor transactions belonging
to a preimage sale.

The concept of adaptor signatures allows us to implement a preimage sale in a
way that overcomes most of the aforementioned drawbacks. The protocol works at a
high level as follows. The buyer locks c coins in a transaction which can be spent by
a transaction authorized by both the seller and the buyer. Thereafter, the buyer pre-
signs a transaction spending the c coins with respect to the hash value h. If the seller
knows a preimage of h, she can adapt the pre-signature of the buyer, attach her own
signature and claim the c coins. The buyer can then extract a preimage from the
adapted signature. Hence, parties are not restricted to the hash functions supported
by the blockchain, i.e., drawback (i) is addressed. Moreover, the buyer can pre-
sign the spending transaction with respect to multiple hash values which overcomes
drawback (ii). However, the third drawback remains. While the usage of adaptor
signatures avoids the hash preimage verification in the script, it adds a signature



verification (i.e., there are now 2 signature verifications in total) which makes this
type of exchange easily distinguishable from a normal payment transaction. Hence,
the sale remains rather expensive and censorship is not prevented.

The idea of two-party adaptor signatures is to replace the two signature verifi-
cations by one. The transaction implementing a preimage sale then has exactly the
same format as a transaction simply transferring coins. As a result the price (in
terms of fees paid to the miners) of the preimage sale transaction is the same as the
price for a normal payment. Moreover, censorship is prevented as miners cannot dis-
tinguish the transactions belonging to the preimage sale from a standard payment
transaction. Hence, point (iii) is fully addressed.

The idea of replacing two signatures by one has already appeared in the literature
in the context of payment channels. Namely, Malavolta et al. [30] presented protocols
for two-party threshold adaptor signatures based on Schnorr and ECDSA digital
signatures. However, they did not present a standalone definition for the threshold
primitive and hence security for these schemes has not been analyzed. Furthermore,
the key generation of the existing threshold adaptor signature schemes is interactive
which is undesirable. Last but not least, their constructions are tailored to Schnorr
and ECDSA signature schemes and hence is not generic. From the above points, the
following natural question arises:

Is it possible to define and instantiate two-party adaptor signature schemes with
non-interactive key generation in a generic way?

1.1 Our contribution

Our main goal is to define two-party adaptor signatures and explore from which
digital signature we can instantiate this new primitive. We proceed in three steps
which we summarize below and depict in Fig. 1.

Step 1: From ID schemes to adaptor signatures. Our first goal is to determine if there
exists a specific class of signature schemes which can be generically transformed into
adaptor signatures. Given the existing Schnorr-based construction [37, 2], a natu-
ral choice is to explore signature schemes constructed in a similar fashion. To this
end, we focus on signature schemes built from identification (ID) schemes using
the Fiat-Shamir transform [25]. We show that ID-based signature schemes satisfy-
ing certain additional properties can be transformed to adaptor signature schemes
generically. In addition to Schnorr signatures [41], this class includes Katz-Wang
and Guillou-Quisquater signatures [24, 22]. As an additional result, we show that
adaptor signatures cannot be built from unique signatures, ruling out constructions
from, e.g., BLS signatures [9].

Our generic transformation of adaptor signatures from ID schemes has multiple
benefits. Firstly, by instantiating it with the Guillou-Quisquater siganture scheme,
we obtain the first RSA-based adaptor signature scheme. Secondly, since Katz-Wang
signatures offers tight security (under the decisional Diffie-Hellman (DDH) assump-
tion), and our generic transformation also achieves tight security, our result shows



how to construct adaptor signatures with a tight reduction to the underlying DDH
assumption.

Step 2: From ID schemes to two-party signatures. Our second goal is to generically
transform signature schemes built from ID schemes into two-party signature schemes
with aggregatable public keys. Unlike threshold signatures, these signatures have
non-interactive key generation. This means that parties can independently generate
their key pairs and later collaboratively generate signatures that are valid under
their combined public key. For our transformation, we require the signature scheme
to satisfy certain aggregation properties which, as we show, are present in the three
aforementioned signature schemes. While this transformation serves as a middle step
towards our main goal of constructing two-party adaptor signatures, we believe it is
of independent interest.

Step 3: From ID schemes to two-party adaptor signatures. Finally, we define two-
party adaptor signature schemes with aggregatable public keys. In order to instanti-
ate this novel cryptographic primitive, we use similar techniques as in step 1 where
we “lifted” standard signature schemes to adaptor signature schemes. More pre-
cisely, we present a transformation turning a two-party signature scheme based on
an ID scheme into a two-party adaptor signature scheme.

ID
Identification Scheme

SIGID

Signature Scheme

aSIGID,R

Adaptor Signature Scheme

SIGID
2

2-Party Signature Scheme

aSIGID,R
2

2-Party Adaptor Signature Scheme

[25] Sec. 3

Sec. 4

Sec. 5

Fig. 1: Overview of our results. Full arrow represents a generic transformation, dotted
and dashed arrows represent a generic transformation which requires additional
homomorphic or aggregation properties respectively.

Remark 1. Let us point out that Fig. 1 presents our transformation steps from sig-
nature schemes based on ID schemes to two-party adaptor signatures. Despite the
fact that we generically construct our two-party adaptor signature scheme from two-
party signature schemes based on ID schemes, we reduce its security to the strong
unforgeability of the underlying single party signature scheme. Therefore, we do not
need the two-party signature scheme from ID schemes to be strongly unforgeable.
This gives us a more general result than proving security based on strong unforge-
ability of the two-party signature scheme from ID schemes. We note that any ID
scheme can be transformed to a signature scheme with strong unforgeability by
Bellare and Shoup [4].



Let us further mention that our security proofs are in the random oracle model.
Proving the security of our constructions and the original constructions from [2] in
the standard model remains an interesting open problem.

1.2 Related Work

Adaptor Signatures. The notion of adaptor signatures was first introduced by Poel-
stra [37] and has since been used in many blockchain related applications, such as
PCNs [30], payment channel hubs [43] or atomic swaps [11]. However, the adap-
tor signatures as a standalone primitive were only formalized later by Aumayr et
al. [2], where they were used to generalize the concept of payment channels. Concur-
rently, Fournier [17] attempted to formalize adaptor signatures, however, as pointed
out in [2], his definition is weaker than the one given in [2] and not sufficient for
certain applications. All the previously mentioned works constructed adaptor sig-
natures only from Schnorr and ECDSA signatures, i.e., they did not show generic
transformations for building adaptor signature schemes. As previously mentioned,
a two-party threshold variant of adaptor signatures was presented by Malavolta et
al. [30]. Their construction requires interactive key generation, thereby differing from
our two-party adaptor signature notion. Moreover, no standalone definition of the
threshold primitive was provided.

Two works [15, 44] have recently introduced post-quantum secure adaptor sig-
nature schemes, i.e., schemes that remain secure even in presence of an adversary
having access to a quantum computer. In order to achieve post-quantum security, [15]
based its scheme on standard and well-studied lattice assumptions, namely Module-
SIS and Module-LWE, while the scheme in [44] is based on lesser known assumptions
for isogenies. Both works additionally show how to construct post-quantum secure
PCNs from their respective adaptor signature schemes.

Multi-Signatures and ID Schemes. Multi-Signatures have been subject to extensive
research in the past (e.g., [36, 35, 23]). In a nutshell, multi-signatures allow a set
of signers to collaboratively generate a signature for a common message such that
the signature can be verified given the public key of each signer. More recently, the
notion of multi-signatures with aggregatable public keys has been introduced [31]
and worked on [8, 26], which allows to aggregate the public keys of all signers into
one single public key. We use some results from the work of Kiltz et al. [25], which
provides a concrete and modular security analysis of signatures schemes from ID
schemes obtained via the Fiat-Shamir transformation. Our paper builds up on their
work and uses some of their notation.

2 Preliminaries

In this section, we introduce notation that we use throughout this work and pre-
liminaries on adaptor signatures and identification schemes. Due to space limita-
tions, we provide formal definitions of digital signature schemes, non-interactive
zero-knowledge proofs and extractable commitments in the full version of this pa-
per [14].



Notation. We denote by x←$ X the uniform sampling of x from the set X . Through-
out this paper, n denotes the security parameter. By x ← A(y) we denote a proba-
bilistic polynomial time (PPT) algorithm A that on input y, outputs x. When A is
a deterministic polynomial time (DPT) algorithm, we use the notation x := A(y).
A function ν : N → R is negligible in n if for every k ∈ N, there exists n0 ∈ N s.t.
for every n ≥ n0 it holds that |ν(n)| ≤ 1/nk.

Hard relation. Let R ⊆ DS×Dw be a relation with statement/witness pairs (Y, y) ∈
DS × Dw and let the language LR ⊆ DS associated to R be defined as LR := {Y ∈
DS | ∃y ∈ Dw s.t. (Y, y) ∈ R}. We say that R is a hard relation if: (i) There exists
a PPT sampling algorithm GenR(1n) that on input the security parameter outputs
a pair (Y, y) ∈ R; (ii) The relation R is poly-time decidable; (iii) For all PPT ad-
versaries A, the probability that A outputs a valid witness y ∈ Dw for Y ∈ LR is
negligible.

2.1 Adaptor Signatures

We now recall the definition of adaptor signatures, recently put forward in [2].

Definition 1 (Adaptor signature). An adaptor signature scheme w.r.t. a hard
relation R and a signature scheme SIG = (Gen, Sign,Vrfy) consists of a tuple of four
algorithms aSIGR,SIG = (pSign,Adapt, pVrfy,Ext) defined as:

pSignsk(m,Y ): is a PPT algorithm that on input a secret key sk, message m ∈
{0, 1}∗ and statement Y ∈ LR, outputs a pre-signature σ̃.

pVrfypk(m,Y ; σ̃): is a DPT algorithm that on input a public key pk, message m ∈
{0, 1}∗, statement Y ∈ LR and pre-signature σ̃, outputs a bit b.

Adaptpk(σ̃, y): is a DPT algorithm that on input a pre-signature σ̃ and witness y,
outputs a signature σ.

Extpk(σ, σ̃, Y ): is a DPT algorithm that on input a signature σ, pre-signature σ̃ and
statement Y ∈ LR, outputs a witness y such that (Y, y) ∈ R, or ⊥.
An adaptor signature scheme, besides satisfying plain digital signature correct-

ness, should also satisfy pre-signature correctness that we formalize next.

Definition 2 (Pre-signature correctness). An adaptor signature aSIGR,SIG sat-
isfies pre-signature correctness, if for all n ∈N and m ∈ {0, 1}∗:

Pr



pVrfypk(m,Y ; σ̃) = 1 ∧
Vrfypk(m;σ) = 1 ∧

(Y, y′) ∈ R

∣∣∣∣∣∣

(sk , pk)← Gen(1n), (Y, y)← GenR(1n)
σ̃ ← pSignsk(m,Y ), σ := Adaptpk(σ̃, y)
y′ := Extpk(σ, σ̃, Y )


 = 1.

An adaptor signature scheme aSIGR,SIG is called secure if it satisfies three security
properties: existential unforgeablity under chosen message attack for adaptor signa-
tures, pre-signature adaptability and witness extractability. Let us recall the formal
definition of these properties next.

The notion of unforgeability for adaptor signatures is similar to existential un-
forgeability under chosen message attacks for standard digital signatures but addi-
tionally requires that producing a forgery σ for some message m∗ is hard even given
a pre-signature on m∗ w.r.t. a random statement Y ∈ LR.



Definition 3 (aEUF–CMA Security). An adaptor signature scheme aSIGR,SIG is
unforgeable if for every PPT adversary A there exists a negligible function ν such
that: Pr[aSigForgeA,aSIGR,SIG

(n) = 1] ≤ ν(n), where the definition of the experiment
aSigForgeA,aSIGR,SIG

is as follows:

aSigForgeA,aSIGR,SIG
(n)

1 :Q := ∅, (sk , pk)← Gen(1n)

2 :m∗ ← AOS,OpS(pk)

3 : (Y, y)← GenR(1n), σ̃ ← pSignsk (m
∗, Y )

4 :σ∗ ← AOS,OpS(σ̃, Y )

5 :return
(
m∗ ̸∈ Q ∧ Vrfypk (m

∗;σ∗)
)

OS(m)

1 :σ ← Signsk (m)

2 :Q := Q∪ {m}
3 :return σ

OpS(m,Y )

1 : σ̃ ← pSignsk (m,Y )

2 :Q := Q∪ {m}
3 :return σ̃

A natural requirement for an adaptor signature scheme is that any valid pre-
signature w.r.t. Y (possibly produced by a malicious signer) can be completed into
a valid signature using a witness y with (Y, y) ∈ R.

Definition 4 (Pre-signature adaptability). An adaptor signature scheme aSIGSIG,R

satisfies pre-signature adaptability, if for all n ∈ N, messages m ∈ {0, 1}∗, state-
ment/witness pairs (Y, y) ∈ R, public keys pk and pre-signatures σ̃ ← {0, 1}∗ we
have pVrfypk(m,Y ; σ̃) = 1, then Vrfypk(m;Adaptpk(σ̃, y)) = 1.

The last property that we are interested in is witness extractability. Informally,
it guarantees that a valid signature/pre-signatue pair (σ, σ̃) for message/statement
(m,Y ) can be used to extract a corresponding witness y.

Definition 5 (Witness extractability). An adaptor signature scheme aSIGR is
witness extractable if for every PPT adversary A, there exists a negligible function
ν such that the following holds: Pr[aWitExtA,aSIGR,SIG

(n) = 1] ≤ ν(n), where the
experiment aWitExtA,aSIGR,SIG

is defined as follows:

aWitExtA,aSIGR,SIG
(n)

1 : Q := ∅, (sk , pk)← Gen(1n)

2 : (m∗, Y ∗)← AOS,OpS(pk)

3 : σ̃ ← pSignsk (m
∗, Y ∗)

4 : σ∗ ← AOS,OpS(σ̃)

5 : y := Extpk (σ
∗, σ̃, Y ∗)

6 : return (m∗ ̸∈ Q ∧ (Y ∗, y) ̸∈ R ∧ Vrfypk (m
∗;σ∗))

OS(m)

1 : σ ← Signsk (m)

2 : Q := Q∪ {m}
3 : return σ

OpS(m,Y )

1 : σ̃ ← pSignsk (m,Y )

2 : Q := Q∪ {m}
3 : return σ̃

Let us stress that while the witness extractability experiment aWitExt looks
fairly similar to the experiment aSigForge, there is one crucial difference; namely,
the adversary is allowed to choose the forgery statement Y ∗. Hence, we can assume
that it knows a witness for Y ∗ and can thus generate a valid signature on the forgery
message m∗. However, this is not sufficient to win the experiment. The adversary
wins only if the valid signature does not reveal a witness for Y ∗.



2.2 Identification and Signature Schemes

In this section we recall the definition of identification schemes and how they are
transformed to signature schemes as described in [25].

Definition 6 (Canonical Identification Scheme [25]). A canonical identifica-
tion scheme ID is defined as a tuple of four algorithms ID := (IGen,P,ChSet,V).

– The key generation algorithm IGen takes the system parameters par as input and
returns secret and public key (sk , pk). We assume that pk defines the set of
challenges, namely ChSet.

– The prover algorithm P consists of two algorithms namely P1 and P2:
• P1 takes as input the secret key sk and returns a commitment R ∈ Drand and
a state St.
• P2 takes as input the secret key sk, a commitment R ∈ Drand, a challenge
h ∈ ChSet, and a state St and returns a response s ∈ Dresp.

– The verifier algorithm V is a deterministic algorithm that takes the public key
pk and the conversation transcript as input and outputs 1 (acceptance) or 0
(rejection).

We require that for all (sk , pk) ∈ IGen(par), all (R, St) ∈ P1(sk), all h ∈ ChSet and
all s ∈ P2(sk , R, h, St), we have V(pk , R, h, s) = 1.

We recall that an identification scheme ID is called commitment-recoverable, if
V first internally calls a function V0 which recomputes R0 = V0(pk, h, s) and then
outputs 1, iff R0 = R. Using Fiat-Shamir heuristic one can transform any identifi-
cation scheme ID of the above form into a digital signature scheme SIGID. We recall
this transformation in Fig. 2 when ID is commitment-recoverable.

Gen(1n)

1 : (sk , pk)← IGen(n)

2 : return (sk , pk)

Signsk (m)

1 : (R,St)← P1(sk)

2 : h := H(R,m)

3 : s← P2(sk , R, h, St)

4 : return (h, s)

Vrfypk (m; (h, s))

1 : R := V0(pk , h, s)

2 : return h = H(R,m)

Fig. 2: SIGID: Digital signature schemes from identification schemes [25]

3 Adaptor Signatures from SIGID

Our first goal is to explore and find digital signature schemes which can generically
be transformed to adaptor signatures. Interestingly, we observe that both exist-
ing adaptor signature schemes, namely the Schnorr-based and the ECDSA-based
schemes, utilize the randomness used during signature generation to transform dig-
ital signatures to adaptor signatures [2]. We first prove a negative result, namely



that it is impossible to construct an adaptor signature scheme from a unique sig-
nature scheme [42, 29, 19]. Thereafter, we focus on signature schemes constructed
from identification schemes (cf. Fig. 2) and show that if the underlying ID-based sig-
nature scheme SIGID satisfies certain additional properties, then we can generically
transform it into an adaptor signature scheme. To demonstrate the applicability of
our generic transformation, we show in the full version of this paper [14] that many
existing SIGID instantiations satisfy the required properties.

3.1 Impossibility Result for Unique Signatures

An important class of digital signatures are those where the signing algorithm is
deterministic and the generated signatures are unique. Given the efficiency of deter-
ministic signature schemes along with numerous other advantages that come from
signatures being unique [42, 29, 19], it would be tempting to design adaptor signa-
tures based on unique signatures. However, we show in Thm. 1 that if the signature
scheme has unique signatures, then it is impossible to construct a secure adaptor
signature scheme from it.

Theorem 1. Let R be a hard relation and SIG = (Gen, Sign,Vrfy) be a signature
scheme with unique signatures. Then there does not exist an adaptor signature
scheme aSIGR,SIG.

Proof. We prove this theorem by contradiction. Assume there exists an adaptor
signature scheme where the underlying signature scheme, SIG, has unique signatures.
We construct a PPT algorithm A which internally uses the adaptor signature and
breaks the hardness of R. In other words, A receives (1n, Y ) as input and outputs
y, such that (Y, y) ∈ R. Below, we describe A formally.

On input (1n, Y ), A proceeds as follows:

1 : Sample a new key pair (sk , pk)← Gen(1n).

2 : Choose an arbitrary message m from the signing message space.

3 : Generate a pre-signature, σ̃ ← preSignsk (m,Y ).

4 : Generate a signature, σ := Signsk (m).

5 : Compute and output y := Extpk (σ, σ̃, Y ).

We now show that y returned by A is indeed a witness of Y , i.e., (Y, y) ∈ R.
From the correctness of the adaptor signature scheme, we know that for any y′ s.t.
(Y, y′) ∈ R the signature σ′ := Adapt(σ̃, y′) is a valid signature, i.e., Vrfypk(m,σ

′) = 1.
Moreover, we know that y′′ := Extpk(σ

′, σ̃, Y ) is such that (Y, y′′) ∈ R. As SIG is a
unique signature scheme, this implies that σ′ = σ which in turn implies that the
witness y returned by A is y′′. Hence, A breaks the hardness of R with probability
1.

Let us briefly discuss which signature schemes are affected by our impossibility
result. Unique signature schemes (also known as verifiable unpredictable functions
(VUF)) have been first introduced in [19]. Furthermore, many follow-up works such



as [32, 29] and most recently [42], have shown how to instantiate this primitive in
the standard model. Another famous example of a unique signature scheme is BLS
[9]. Naturally, due to our impossibility result, an adaptor signature scheme cannot
be instantiated from these signature schemes.

3.2 Generic Transformation to Adaptor Signatures

We now describe how to generically transform a randomized digital signature scheme
SIGID from Fig. 2 into an adaptor signature scheme w.r.t. a hard relation R. For
brevity, we denote the resulting adaptor signature scheme as aSIGID,R instead of
aSIGR,SIGID . The main idea behind our transformation is to shift the public random-
ness of the Sign procedure by a statement Y for the relation R in order to generate
a modified signature called a pre-signature. Using a corresponding witness y (i.e.,
(Y, y) ∈ R), the shift of the public randomness in the pre-signature can be reversed
(or adapted), in order to obtain a regular (or full) signature. Moreover, it should be
possible to extract a witness given both the pre-signature and the full-signature. To
this end, let us formalize three new deterministic functions which we will use later
in our transformation.

1. For the randomness shift, we define a function fshift : Drand × LR → Drand that
takes as input a commitment value R ∈ Drand of the identification scheme and
a statement Y ∈ LR of the hard relation, and outputs a new commitment value
R′ ∈ Drand.

2. For the adapt operation, we define fadapt : Dresp×Dw → Dresp that takes as input
a response value s̃ ∈ Dresp of the identification scheme and a witness y ∈ Dw of
the hard relation, and outputs a new response value s ∈ Dresp.

3. Finally, for witness extraction, we define fext : Dresp × Dresp → Dw that takes as
input two response values s̃, s ∈ Dresp and outputs a witness y ∈ Dw.

Our transformation from SIGID to aSIGID,R is shown in Fig. 3.

pSignsk (m,Y )

1 : (Rpre, St)← P1(sk)

2 : Rsign := fshift(Rpre, Y )

3 : h := H(Rsign,m)

4 : s̃← P2(sk , Rpre, h, St)

5 : return (h, s̃)

pVrfypk (m,Y ; (h, s̃))

1 : R̂pre := V0(pk , h, s̃)

2 : R̂sign := fshift(R̂pre, Y )

3 : b := (h = H(R̂sign,m))

4 : return b

Adaptpk ((h, s̃), y)

1 : s = fadapt(s̃, y)

2 : return (h, s)

Extpk ((h, s), (h, s̃), Y )

1 : return fext(s, s̃)

Fig. 3: Generic transformation from SIGID to a aSIGID,R scheme

In order for aSIGID,R to be an adaptor signature scheme, we need the functions
fshift, fadapt and fext to satisfy two properties. The first property is a homomorphic one
and relates the functions fshift and fadapt to the commitment-recoverable component



IGen(n)

1 : sk ←$ Zq, pk = gsk

2 : return (sk , pk)

P1(sk)

1 : r ←$ Zq, R = gr

2 : return (R, r)

P2(sk , R, h, r)

1 : s = r + h · sk
2 : return s

V0(pk , h, s)

1 : R = gs · pk−h

2 : return (R)

Fig. 4: Schnorr signature scheme

V0 and the hard relation R. Informally, for all (Y, y) ∈ R, we need the following
to be equivalent: (i) Extract the public randomness from a response s̃ using V0

and then apply fshift to shift the public randomness by Y , and (ii) apply fadapt to
shift the secret randomness in s̃ by y and then extract the public randomness using
V0. Formally, for any public key pk , any challenge h ∈ ChSet, any response value
s̃ ∈ Dresp and any statement/witness pair (Y, y) ∈ R, it must hold that:

fshift(V0(pk , h, s̃), Y ) = V0(pk , h, fadapt(s̃, y)). (1)

The second property requires that the function fext(s̃, ·) is the inverse function of
fadapt(s̃, ·) for any s̃ ∈ Dresp. Formally, for any y ∈ Dw and s̃ ∈ Dresp, we have

y = fext(fadapt(s̃, y), s̃). (2)

To give an intuition about the functions fshift, fadapt and fext and their purpose, let
us discuss their concrete instantiations for Schnorr signatures and show that they
satisfy Equations (1) and (2). The instantiations for Katz-Wang signatures and
Guillou-Quisquater signatures can be found in the full version of this paper [14].

Example 1 (Schnorr signatures). Let G = ⟨g⟩ be a cyclic group of prime order p
where the discrete logarithm problem in G is hard. The functions IGen, P1, P2 and
V0 for Schnorr’s signature scheme are defined in Fig. 4.

Let us consider the hard relation R = {(Y, y) | Y = gy}, i.e., group elements and
their discrete logarithms, and let us define the functions fshift, fadapt, fext as:

fshift(Y,R) := Y ·R, fadapt(s̃, y) := s̃+ y, fext(s, s̃) := s− s̃.

Intuitively, the function fshift is shifting randomness in the group while the function
fadapt shifts randomness in the exponent. To prove that Eq. (1) holds, let us fix an
arbitrary public key pk ∈ G, a challenge h ∈ Zq, a response value s ∈ Zq and a
statement witness pair (Y, y) ∈ R, i.e, Y = gy. We have

fshift(V0(pk , h, s), Y ) = fshift(g
s · pk−h, Y ) = gs · pk−h · Y

= gs+y · pk−h = V0(pk , h, s+ y) = V0(pk , h, fadapt(s, y))

which is what we wanted to prove. In order to show that Eq. (2) holds, let us fix an
arbitrary witness y ∈ Zq and a response value s ∈ Zq. Then we have

fext(fadapt(s, y), s) = fext(s+ y, s) = s+ y − s = y

and hence Eq. (2) is satisfied as well.



We now show that the transformation from Fig. 3 is a secure adaptor signature
scheme if functions fshift, fadapt, fext satisfying Equations (1) and (2) exist.

Theorem 2. Assume that SIGID is a SUF–CMA-secure signature scheme transformed
using Fig. 2, let fshift, fadapt and fext be functions satisfying the relations from Equa-
tions (1) and (2), and R be a hard relation. Then the resulting aSIGID,R scheme from
the transformation in Fig. 3 is a secure adaptor signature scheme in the random
oracle model.

In order to prove Thm. 2, we must show that aSIGID,R satisfies pre-signature cor-
rectness, aEUF–CMA security, pre-signature adaptability and witness extractability
properties described in Defs. 2 to 5 respectively.

Lemma 1 (Pre-Signature Correctness). Under the assumptions of Thm. 2,
aSIGID,R satisfies pre-signature correctness as for Def. 2.

Proof. Let us fix an arbitrary messagem and a statement witness pair (Y, y) ∈ R. Let
(sk , pk)← Gen(1n), σ̃ ← pSignsk(m,Y ), σ := Adaptpk(σ̃, y) and y

′ := Extpk(σ, σ̃, Y ).
From Fig. 3 we know that σ̃ = (h, s̃), σ = (h, s) and y′ = fext(s, s̃), where we
have s := fadapt(s̃, y), s̃← P2(sk , Rpre, h, St), h := H(Rsign,m), Rsign := fshift(Rpre, Y )
and (Rpre, St)← P1(sk). We first show pVrfypk(m,Y ; σ̃) = 1. From completeness of
the ID scheme, we know that V0(pk , h, s̃) = Rpre. Hence:

H(fshift(V0(pk , h, s̃), Y ),m) = H(fshift(Rpre, Y ),m) = H(Rsign,m) = h (3)

which is what we needed to prove. We now show that Vrfypk(m;σ) = 1. By Fig. 2,
we need to show that h = H(V0(pk , h, s),m). This follows from the property of fshift,
fadapt (cf. Eq. (1)) and Eq. (3) as follows:

H(V0(pk , h, s),m) =H(V0(pk , h, fadapt(s̃, y)),m)

(1)
=H(fshift(V0(pk , h, s̃), Y ),m)

(3)
= h.

Finally, we need to show that (Y, y′) ∈ R. This follows from Eq. (2) since:

y′ = fext(s, s̃) = fext(fadapt(s̃, y), s̃)
(2)
= y.

Lemma 2 (aEUF–CMA-Security). Under the assumptions of Thm. 2, aSIGID,R sat-
isfies the aEUF–CMA security as for Def. 3.

Let us give first a high level overview of the proof. Our goal is to provide a reduc-
tion such that, given an adversary A who can win the experiment aSigForgeA,aSIGID,R ,
we can build a simulator who can win the strongSigForge experiment of the underly-
ing signature or can break the hardness of the relation R. In the first case, we check
if A’s forgery σ∗ is equal to Adaptpk(σ̃, y). If so, we use A to break the hardness of
the relation R by extracting the witness y = Ext(σ∗, σ̃, Y ). Otherwise, A was able
to forge a signature “unrelated” to the pre-signature provided to it. In this case,
it is used to win the strongSigForge experiment. All that remains is to answer A’s
signing and pre-signing queries using strongSigForge’s signing queries. This is done
by programming the random oracle such that the full-signatures generated by the
challenger in the strongSigForge game look like pre-signatures for A.



Proof. We prove the lemma by defining a series of game hops. The modifications for
each game hop is presented in code form in the full version of this paper [14].

Game G0G0G0: This game is the original aSigForge experiment, where the adversary A
outputs a valid forgery σ∗ for a message m of its choice, while having access to
pre-signing and signing oracles OpS and OS respectively. Being in the random oracle
model, all the algorithms of the scheme and the adversary have access to the random
oracleH. SinceG0G0G0 corresponds to aSigForge, it follows that Pr[aSigForgeA,aSIGID,R(n) =
1] = Pr[G0G0G0 = 1].
Game G1G1G1: This game works as G0G0G0 except when the adversary outputs a forgery σ∗,
the game checks if adapting the pre-signature σ̃ using the secret witness y results in
σ∗. If so, the game aborts.

Claim. Let Bad1 be the event where G1G1G1 aborts. Then Pr[Bad1] ≤ ν1(n), where ν1 is
a negligible function in n.

Proof: This claim is proven by a reduction to the relation R. We construct a sim-
ulator S which breaks the hardness of R using A that causes G1G1G1 to abort with
non-negligible probability. The simulator receives a challenge Y ∗, and generates a
key pair (sk , pk) ← Gen(1n) in order to simulate A’s queries to the oracles H, OpS

and OS. This simulation of the oracles work as described in G1G1G1.
Upon receiving the challenge message m∗ from A, S computes a pre-signature

σ̃ ← pSignsk(m
∗, Y ∗) and returns the pair (σ̃, Y ) to the adversary. Upon A out-

putting a forgery σ∗ and assuming that Bad1 happened (i.e., Adapt(σ̃, y) = σ), pre-
signature correctness (Def. 2) implies that the simulator can extract y∗ by executing
Ext(σ∗, σ̃, Y ∗) in order to obtain (Y ∗, y∗) ∈ R.

We note that the view of A in this simulation and in G1G1G1 are indistinguishable,
since the challenge Y ∗ is an instance of the hard relation R and has the same distri-
bution to the public output of GenR. Therefore, the probability that S breaks the
hardness of R is equal to the probability that the event Bad1 happens. Hence, we
conclude that Bad1 only happens with negligible probability. ■

Since games G1G1G1 and G0G0G0 are equivalent except if event Bad1 occurs, it holds that
Pr[G0G0G0 = 1] ≤ Pr[G1G1G1 = 1] + ν1(n).

Game G2G2G2: This game is similar to the previous game except for a modification in
the OpS oracle. After the execution of preSignsk , the oracle obtains a pre-signature
σ̃ from which it extracts the randomness Rpre ← V0(pk , σ̃). The oracle computes
Rsign = fshift(Rpre, Y ) and checks if H was already queried on the inputs Rpre∥m or
Rsign∥m before the execution of pSignsk . In this case the game aborts.

Claim. Let Bad2 be the event that G2G2G2 aborts in OpS. Then Pr[Bad2] ≤ ν2(n), where
ν2 is a negligible function in n.

Proof: We first recall that the output of P1 (i.e., Rpre) is uniformly random from a
super-polynomial set of size q in the security parameter. From this it follows that
Rsign is distributed uniformly at random in the same set. Furthermore, A being a
PPT algorithm, it can only make polynomially many queries to H, OS and OpS



oracles. Denoting ℓ as the total number of queries to H, OS and OpS, we have:
Pr[Bad2] = Pr[H ′[Rpre||m] ̸= ⊥ ∨H ′[Rsign||m] ̸= ⊥] ≤ 2 ℓ

q
≤ ν2(n). This follows from

the fact that ℓ is polynomial in the security parameter. ■
Since games G2G2G2 and G1G1G1 are identical except in the case where Bad2 occurs, it

holds that Pr[G1G1G1 = 1] ≤ Pr[G2G2G2 = 1] + ν2(n).

GameG3G3G3: In this game, upon a query to the OpS, the game produces a full-signature
instead of a pre-signature by executing Signsk instead of preSignsk . Accordingly, it
programs the random oracle H to make the full-signature “look like” a pre-signature
from the point of view of the adversary A. This is done by:

1. It sets H(Rpre∥m) to the value stored at position H(Rsign∥m).
2. It sets H(Rsign∥m) to a fresh value chosen uniformly at random.

The above programming makes sense as our definition of fshift requires it to be
deterministic and to possess the same domain and codomain with respect to the
commitment set Drand. Note further that A can only notice that H was programmed
if it was previously queried on either Rpre∥m or Rsign∥m. But as described in the
previous game, we abort if such an event happens. Hence, we have that Pr[G2G2G2 =
1] = Pr[G3G3G3 = 1].

Game G4G4G4: In this game, we impose new checks during the challenge phase that are
same as the ones imposed in G2G2G2 during the execution of OpS.

Claim. Let Bad3 be the event thatG4G4G4 aborts in the challenge phase. Then Pr[Bad3] ≤
ν3(n), where ν3 is a negligible function in n.

Proof: The proof is identical to the proof in G2G2G2. ■
It follows that Pr[G4G4G4 = 1] ≤ Pr[G3G3G3 = 1] + ν3(n).

GameG5G5G5: Similar to gameG3G3G3, we generate a signature instead of a pre-signature in
the challenge phase and program H such that the full-signature looks like a correct
pre-signature from A’s point of view. We get Pr[G5G5G5 = 1] = Pr[G4G4G4 = 1].

Now that the transition from the original aSigForge experiment (game G0G0G0) to
game G5G5G5 is indistinguishable, it only remains to show the existence of a simulator
S that can perfectly simulate G5G5G5 and uses A to win the strongSigForge game. The
modifications from games G1G1G1 - G5G5G5 and the simulation in code form can be found in
the full version of this paper [14].

We emphasize that the main differences between the simulation and GameG5G5G5 are
syntactical. Namely, instead of generating the public and secret keys and computing
the algorithm Signsk and the random oracle H, S uses its oracles SIGID and HID.
Therefore, S perfectly simulates G5G5G5. It remains to show that S can use the forgery
output by A to win the strongSigForge game.

Claim. (m∗, σ∗) constitutes a valid forgery in game strongSigForge.

Proof: To prove this claim, we show that the tuple (m∗, σ∗) has not been returned by
the oracle SIGID before. First note that A wins the experiment if it has not queried
on the challenge message m∗ to OpS or OS. Therefore, SIG

ID is queried on m∗ only



during the challenge phase. If A outputs a forgery σ∗ that is equal to the signature
σ as output by SIGID, it would lose the game since this signature is not valid given
the fact that H is programmed.

Hence, SIGID has never output σ∗ when queried on m∗ before, thus making
(m∗, σ∗) a valid forgery for game strongSigForge. ■

From gamesG0G0G0−G5G5G5, we have that Pr[G0G0G0 = 1] ≤ Pr[G5G5G5 = 1]+ν(n), where ν(n) =
ν1(n)+ν2(n)+ν3(n) is a negligible function in n. Since S simulates gameG5G5G5 perfectly,
we also have that Pr[G5G5G5 = 1] = Pr[strongSigForgeSA,SIG(n) = 1]. Combining this with
the probability statement in G0G0G0, we obtain the following:

Pr[aSigForgeA,aSIGID,R(n) = 1] ≤ Pr[strongSigForgeSA,SIGID(n) = 1] + ν(n).

Recall that the negligible function ν1(n), contained in the sum ν(n) above, pre-
cisely quantifies the adversary’s advantage in breaking the hard relation R. Thus, the
probability of breaking the unforgeability of the aSIGID,R is clearly bounded above
by that of breaking either R or the strong unforgeability of SIGID.

Lemma 3 (Pre-Signature Adaptability). Under the assumptions of Thm. 2,
aSIGID,R satisfies the pre-signature adaptability as for Def. 4.

Proof. Assume pVrfypk(m,Y ; σ̃) = 1, with the notations having their usual mean-
ings from Fig. 3, which means h = H(fshift(V0(pk , h, s̃), Y ),m). For any valid pair
(Y, y) ∈ R, we can use the homomorphic property from Eq. (1). Then, for such a pair
(Y, y) ∈ R, plugging fshift(V0(pk , h, s̃), Y ) = V0(pk , h, fadapt(s̃, y)) in the above equa-
tion implies h = H(V0(pk , h, fadapt(s̃, y)),m). This directly implies Vrfypk(m;σ) = 1,
where s = fadapt(s̃, y) and σ = (h, s). Therefore, adapting the valid pre-signature
would also result in a valid full-signature.

Lemma 4 (Witness Extractability). Under the assumptions of Thm. 2, aSIGID,R

satisfies the witness extractability as for Def. 5.

This proof is very similar to the proof of Lemma 2 with the mere difference
that we only need to provide a reduction to the strongSigForge experiment. This is
because in the aWitExtA,aSIG

Rg,SIGID
experiment, A provides the public value Y ∗ and

must forge a valid full-signature σ∗ such that (Y ∗,Extpk(σ∗, σ̃, Y ∗)) ̸∈ R. The full
proof can be found in the full version of this paper [14].

Remark 2. We note that our proofs for the aEUF–CMA security and witness ex-
tractability are in its essence reductions to the strong unforgeability of the under-
lying signature schemes. Yet the Fiat-Shamir transformation does not immediately
guarantee the resulting signature scheme to be strongly unforgeable. However, we
first note that many such signature schemes are indeed strongly unforgeable, for in-
stance Schnorr [25], Katz-Wang (from Chaum-Pedersen identification scheme) [24]
and Guillou-Quisquater [1] signature schemes all satisfy strong unforgeability. More-
over, one can transform any Fiat-Shamir based existentially unforgeable signature
scheme into a strongly unforgeable one via the generic transformation using the
results of Bellare et.al. [4].



4 Two-party Signatures with Aggregatable Public Keys
from Identification Schemes

Before providing our definition and generic transformation for two-party adaptor
signatures, we show how to generically transform signature schemes based on iden-
tification schemes into two-party signature schemes with aggregatable public keys
denoted by SIG2. In Sec. 5, we then combine the techniques used in this section with
the ones from Sec. 3 in order to generically transform identification schemes into
two-party adaptor signature schemes.

Informally, a SIG2 scheme allows two parties to jointly generate a signature which
can be verified under their combined public keys. An application of such signature
schemes can be found in cryptocurrencies where two parties wish to only allow
conditional payments such that both users have to sign a transaction in order to
spend some funds. Using SIG2, instead of submitting two separate signatures, the
parties can submit a single signature while enforcing the same condition (i.e., a
transaction must have a valid signature under the combined key) and hence reduce
the communication necessary with the blockchain. Importantly and unlike threshold
signature schemes, the key generation here is non-interactive. In other words, parties
generate their public and secret keys independently and anyone who knows both
public keys can compute the joint public key of the two parties.

We use the notation ΠFunc⟨xi,x1−i⟩ to represent a two-party interactive proto-
col Func between Pi and P1−i with respective secret inputs xi, x1−i for i ∈ {0, 1}.
Furthermore, if there are common public inputs e.g., y1, · · · , yn we use the nota-
tion ΠFunc⟨xi,x1−i⟩(y1, · · · , yn). We note that the execution of a protocol might not
be symmetric, i.e., party Pi executes the procedures ΠFunc⟨xi,x1−i⟩ while party P1−i
executes the procedures ΠFunc⟨x1−i,xi⟩.

4.1 Two-party Signatures with Aggregatable Public Keys

We start with defining a two-party signature scheme with aggregatable public keys.
Our definition is inspired by the definitions from prior works [8, 26, 7].

Definition 7 (Two-party Signature with Aggregatable Public Keys). A
two-party signature scheme with aggregatable public keys is a tuple of PPT protocols
and algorithms SIG2 = (Setup,Gen, ΠSign,KAg,Vrfy), formally defined as:

Setup(1n): is a PPT algorithm that on input a security parameter n, outputs public
parameters pp.

Gen(pp): is a PPT algorithm that on input public parameter pp, outputs a key pair
(sk , pk).

ΠSign⟨sk i,sk1−i⟩(pk 0, pk 1,m): is an interactive, PPT protocol that on input secret keys
sk i from party Pi with i ∈ {0, 1} and common values m ∈ {0, 1}∗ and pk 0, pk 1,
outputs a signature σ.

KAg(pk 0, pk 1): is a DPT algorithm that on input two public keys pk 0, pk 1, outputs
an aggregated public key apk.



Vrfyapk(m;σ): is a DPT algorithm that on input public parameters pp, a public key
apk, a message m ∈ {0, 1}∗ and a signature σ, outputs a bit b.

The completeness property of SIG2 guarantees that if the protocol ΠSign is exe-
cuted correctly between the two parties, the resulting signature is a valid signature
under the aggregated public key.

Definition 8 (Completeness). A two-party signature with aggregatable public
keys SIG2 satisfies completeness, if for all key pairs (sk , pk)← Gen(1n) and messages
m ∈ {0, 1}∗, the protocol ΠSign⟨sk i,sk1−i⟩(pk 0, pk 1,m) outputs a signature σ to both
parties P0,P1 such that Vrfyapk(m;σ) = 1 where apk := KAg(pk 0, pk 1).

A two-party signature scheme with aggregatable public keys should satisfy un-
forgeability. At a high level, this property guarantees that if one of the two parties is
malicious, this party is not able to produce a valid signature under the aggregated
public key without cooperation of the other party. We formalize the property through
an experiment SigForgebA,SIG2

, where b ∈ {0, 1} defines which of the two parties is
corrupt. This experiment is initialized by a security parameter n and run between
a challenger C and an adversary A, which proceeds as follows. The challenger first
generates the public parameters pp by running the setup procedure Setup(1n) as
well as a signing key pair (sk 1−b, pk 1−b) by executing Gen(1n), thereby simulating
the honest party P1−b. Thereafter, C forwards ppC and pk 1−b to the adversary A
who generates its own key pair (sk b, pk b), thereby emulating the malicious party
Pb, and submits (sk b, pk b) to C. The adversary A additionally obtains access to an
interactive and stateful signing oracle Ob

ΠS
, which simulates the honest party P1−b

during the execution of ΠASign⟨sk1−b,·⟩. Furthermore, every queried message m is stored
in a query list Q.

Eventually, A outputs a forgery in form of a SIGID
2 signature σ∗ and a message

m∗. A wins the experiment if σ∗ is a valid signature for m∗ under the aggregated
public key apk := KAg(pk 0, pk 1) and m∗ was never queried before, i.e., m∗ ̸∈ Q.
Below, we give a formal definition of the unforgeability game.

Definition 9 (2-EUF–CMA Security). A two-party, public key aggregatable sig-
nature scheme SIG2 is unforgeable if for every PPT adversary A, there exists a
negligible function ν such that: for b ∈ {0, 1}, Pr[SigForgebA,SIG2

(n) = 1] ≤ ν(n),

where the experiment SigForgebA,SIG2
(n) is defined as follows:

SigForgebA,SIG2
(n)

1 : Q := ∅, pp ← Setup(1n)

2 : (sk1−b, pk1−b)← Gen(pp)

3 : (skb, pkb)← A(pp, pk1−b)

4 : (σ∗,m∗)← AOb
ΠS

(·)
(pk1−b, skb, pkb)

5 : return
(
m∗ ̸∈ Q ∧ VrfyKAg(pk0,pk1)

(m∗;σ∗)
)

Ob
ΠS

(m)

1 : Q := Q∪ {m}
2 : σ ← ΠA

Sign⟨sk1−b,·⟩(pk0, pk1,m)

Remark 3 (On security definition.). There are two different approaches for mod-
eling signatures with aggregatable public keys in the literature, namely the plain



public-key model [3] (also known as key-verification model [12]) and the knowledge-
of-secret-key (KOSK) model [7]. In the plain public-key setting the adversary chooses
a key pair (sk b, pk b) and only declares the public key pk b to the challenger in the
security game. However, security proofs in this setting typically require rewinding
techniques with the forking lemma. This is undesirable for the purpose of this paper,
as we aim to construct adaptor signatures and its two-party variant generically as
building blocks for further applications such as payment channels [2]. Payment chan-
nels are proven secure in the UC framework that does not allow the use of rewinding
techniques in order to ensure concurrency. Thus, the plain public-key model does not
seem suitable for our purpose. In the KOSK setting, however, the adversary outputs
its (possibly maliciously chosen) key pair (sk b, pk b) to the challenger. In practice
this means that the parties need to exchange zero-knowledge proofs of knowledge
of their secret key3. Similar to previous works [7, 28], we do not require the forking
lemma or rewinding in the KOSK setting and hence follow this approach.

4.2 Generic Transformation from SIGID to SIGID
2

We now give a generic transformation from SIGID schemes to two-party signature
schemes with aggregatable public keys.

At a high level, our transformation turns the signing procedure into an interactive
protocol which is executed between the two parties P0,P1. The main idea is to let
both parties engage in a randomness exchange protocol in order to generate a joint
public randomness which can then be used for the signing procedure. In a bit more
detail, to create a joint signature, each party Pi for i ∈ {0, 1} can individually create
a partial signature with respect to the joint randomness by using the secret key sk i

and exchange her partial signature with P1−i. The joint randomness ensures that
both partial signatures can be combined to one jointly computed signature.

In the following, we describe the randomness exchange protocol that is executed
during the signing procedure in more detail, as our transformation heavily relies
on it. The protocol, denoted by ΠRand-Exc, makes use of two cryptographic building
blocks, namely an extractable commitment scheme C = (Gen,Com,Dec,Extract) and
a NIZK proof system NIZK = (SetupR,Prove,Verify). Consequently, the common in-
put to both parties P0 and P1 are the public parameters ppC of the commitment
scheme, while each party Pi takes as secret input her secret key sk i. In the follow-
ing, we give description of the ΠRand-Exc⟨sk0,sk1⟩(ppC, crs) protocol and present it in a
concise way in Fig. 5.

1. Party P0 generates her public randomness R0 using algorithm P1 from the un-
derlying ID scheme alongside a NIZK proof π0 ← NIZK.Prove(crs, R0, sk 0) that
this computation was executed correctly with the corresponding secret value sk 0.
P0 executes (c, d)← C.Com(pp, (R0, π0)) to commit to R0 and π0 and sends the
commitment c to P1.

3 Using techniques from [20, 16] it is possible to obtain NIZKs which allow for witness extraction without
rewinding.



P0(ppC, crs, sk0) P1(ppC, crs, sk1)

(R0, St0)← P1(sk0)
π0 ← NIZK.Prove(crs, R0, sk0)

(c, d)← C.Com(ppC, (R0, π0))
c−−−−−−−−→ (R1, St1)← P1(sk1)

R1,π1←−−−−−−−− π1 ← NIZK.Prove(crs, R1, sk1)
d−−−−−−−−→ R′

0 ← C.Dec(ppC, c, d)
If NIZK.Verify(crs, R1, π1) = 0, then abort If NIZK.Verify(crs, R′

0, π0) = 0, then abort

R0, St0, R1 R1, St1, R0

Fig. 5: ΠRand-Exc Protocol

Setup(1n)

1 : ppC ← C.Gen(1n)

2 : crs← NIZK.SetupR(1
n)

3 : return pp := (1n, ppC, crs)

Gen(pp)

1 : Parse pp = (1n, ppC, crs)

2 : (sk , pk ′)← IGen(n)

3 : pk := (pp, pk ′)

4 : return (sk , pk)

KAg(pk0, pk1)

1 : apk := fcom-pk(pk0, pk1)

2 : return apk

ΠSign⟨sk i,sk1−i⟩(pk i, pk1−i,m)

1 : Parse pk i = ((1n, ppC, crs), pk
′
i)

2 : (Ri, Sti, R1−i)← ΠRand-Exc⟨ski,sk1−i⟩(ppC, crs)

3 : Rsign := fcom-rand(R0, R1)

4 : h := H(Rsign,m)

5 : si ← P2(sk i, Ri, h, Sti)

6 : s1−i ← ΠExchange ⟨si, s1−i⟩
7 : (h, s) := fcom-sig(h, (s0, s1))

8 : return (h, s)

Vrfyapk (m; (h, s))

1 : Rsign := V0(apk , h, s)

2 : return h := H(Rsign,m)

Fig. 6: SIGID
2 : SIG2 scheme from identification scheme.

2. Upon receiving the commitment c from P0, party P1 generates her public ran-
domness R1 using algorithm P1. She also computes a NIZK proof as π1 ←
NIZK.Prove(crs, R1, sk 1), which proves correct computation of R1, and sends R1

and π1 to P0.

3. Upon receiving R1 and π1 from P1, P0 sends the opening d to her commitment
c to P1.

4. P1 opens the commitment in this round. At this stage, both parties check that
the received zero-knowledge proofs are valid. If the proofs are valid, each party
Pi for i ∈ {0, 1} outputs Ri, Sti, R1−i.

Our transformation can be found in Fig. 6. Note that we use a deterministic function
fcom-rand(·, ·) in step 3 in the signing protocol which combines the two public random
values R0 and R1. In step 6 of the same protocol, we assume that the partial signa-
tures are exchanged between the parties via the protocol ΠExchange upon which the
parties can combine them using a deterministic function fcom-sig(·, ·) in step 7. Fur-
ther, a combined signature can be verified under a combined public key of the two
parties. In more detail, to verify a combined signature (h, s) := fcom-sig(h, (s0, s1)),



in step 7, there must exist an additional deterministic function fcom-pk(·, ·) (in step
1 of the KAg algorithm) such that:

Pr


Vrfyapk(m; (h, s)) = 1

∣∣∣∣∣∣

(pk 0, sk 0)← IGen(n), (pk 1, sk 1)← IGen(n)
(h, s)← ΠSign⟨sk0,sk1⟩(pk 0, pk 1,m)
apk := fcom-pk(pk 0, pk 1)


 = 1. (4)

We also require that given a full signature and a secret key sk i with i ∈ {0, 1}, it
is possible to extract a valid partial signature under the the public key pk 1−i of the
other party. In particular, there exists a function fdec-sig(·, ·, ·) such that:

Pr


Vrfypk1−i

(m; (h, s1−i)) = 1

∣∣∣∣∣∣

(pk 0, sk 0)← IGen(n), (pk 1, sk 1)← IGen(n)
(h, s)← ΠSign⟨sk0,sk1⟩(pk 0, pk 1,m)
(h, s1−i) := fdec-sig(sk i, pk i, (h, s))


=1.

(5)

Note that equations 4 and 5 implicitly define fcom-sig through the execution of
ΠSign in the conditional probabilities.

The instantiations of these functions for Schnorr, Katz-Wang signatures and
Guillou-Quisquater signatures can be found in the full version of this paper [14].

We note the similarity between this transformation with that in Fig. 3. In par-
ticular, both of them compute the public randomness Rsign by shifting the original
random values. Note also that running the algorithm V0 on the inputs (pk i, h, si)
would return Ri,∀i ∈ {0, 1}.

Below, we show that the transformation in Fig. 6 provides a secure two-party
signature with aggregatable public keys. To this end, we show that SIGID

2 satisfies
SIG2 completeness and unforgeability from Def. 8 and Def. 9, respectively.

Theorem 3. Assume that SIGID is a signature scheme based on the transformation
from an identification scheme as per Fig. 2. Further, assume that the functions
fcom-sig, fcom-pk and fdec-sig satisfy the relations, Equations (4) and (5) respectively.
Then the resulting SIGID

2 scheme from the transformation in Fig. 6 is a secure two-
party signature scheme with aggregatable public keys in the random oracle model.

Lemma 5. Under the assumptions of Thm. 3, SIGID
2 satisfies Def. 8.

Proof. The proof follows directly from Eq. 4 and the construction of KAg algorithm
in Fig. 6.

Lemma 6. Under the assumptions of Thm. 3, SIGID
2 satisfies Def. 9.

Proof. We prove this lemma by exhibiting a simulator S that breaks the unforgeabil-
ity of the SIGID scheme if it has access to an adversary that can break the unforgeabil-
ity of the SIGID

2 scheme. More precisely, we show a series of games, starting with the
SigForgebA,SIG2

experiment, such that each game is computationally indistinguishable
from the previous one. The last game is modified in such a way that the simulator



can use the adversary’s forgery to create its own forgery for the unforgeability game
against the SIGID scheme.

To construct this simulator, we note that the ΠRand-Exc protocol in Fig. 6 must
satisfy two properties (similar to [27]). First, the commitment scheme must be ex-
tractable for the simulator, and second, the NIZK proof used must be simulatable.
The reasons for these two properties become evident in the proof.

We prove Lemma 6 by separately considering the cases of the adversary corrupt-
ing party P0 or party P1, respectively.

Adversary corrupts P0. In the following we give the security proof in case the ad-
versary corrupts party P0.
Game G0G0G0: This is the regular SigForge0A,SIG2

(n) experiment, in which the adversary
plays the role of party P0. In the beginning of the game, the simulator generates
the public parameters as pp ← Setup(1n). Note that the Setup procedure, apart
from computing crs ← NIZK.SetupR(1

n), includes the execution of C.Gen through
which the simulator learns the trapdoor tr for the commitment scheme C. Further, S
generates a fresh signing key pair (sk 1, pk 1)← Gen(1n), sends pp and pk 1 to A and
receives the adversary’s key pair (pk 0, sk 0). The simulator simulates the experiment
honestly. In particular, it simulates the interactive signing oracle O0

ΠS
honestly by

playing the role of party P1.

GameG1G1G1: This game proceeds exactly like the previous game, with a modification in
the simulation of the signing oracle. Upon A initiating the signing protocol by calling
the interactive signing oracle, S receives the commitment c to its public randomness
R0 from A. The simulator, using the trapdoor tr , then extracts a randomness R′0 ←
C.Extract(pp, tr , c) and computes the joint randomness as Rsign ← fcom-rand(R

′
0, R1).

S honestly computes the zero-knowledge proof to its own randomness R1 and sends
it to A. Upon receiving the opening d to c from the adversary, S checks if R′0 =
C.Dec(pp, c, d). If this does not hold, S aborts, otherwise S continues to simulate
the rest of the experiment honestly.

Claim. Let Bad1 be the event that G1G1G1 aborts in the signing oracle. Then, we have
Pr[Bad1] ≤ ν1(n), where ν1 is a negligible function in n.

Proof: Note that game G1G1G1 aborts only if the extracted value R′0 from commitment
c is not equal to the actual committed value R0 in c, i.e., if C.Extract(pp, tr , c) ̸=
C.Dec(pp, c, d). By the extractability property of C this happens only with negligible
probability. In other words, it holds that Pr[Bad1] ≤ ν1(n), where ν1 is a negligible
function in n. ■
GameG2G2G2: This game proceeds as gameG1G1G1, with a modification to the signing oracle.
Upon input message m, instead of generating its signature (h, s0) with respect to
the joint public randomness Rsign, the simulator generates it only with respect to
its own randomness R0. Further, the simulator programs the random oracle in the
following way: as in the previous game, it computes the joint randomness Rsign and
then programs the random oracle in a way such that on input (Rsign,m) the random
oracle returns h.



It is easy to see that this game is indistinguishable from G1G1G1 if the adversary
has not queried the random oracle on input (Rsign,m) before the signing query. If,
however, the adversary has issued this random oracle query before the signing query
(i.e., H(Rsign,m) ̸= ⊥)), then the simulation aborts.

Claim. Let Bad2 be the event that G2G2G2 aborts in the signing oracle. Then, we have
Pr[Bad2] ≤ ν2(n), where ν2 is a negligible function in n.

Proof: We first recall that the output of P1 (i.e., Rpre) is uniformly random from a
super-polynomial set of size q in the security parameter. From this it follows that
Rsign is distributed uniformly at random in the same set. Furthermore, A being
a PPT algorithm, can only make polynomially many queries to H and OpS ora-
cles. Denoting ℓ as the total number of queries to H and OS, we have: Pr[Bad2] =
Pr[H(Rsign,m) ̸= ⊥] ≤ ℓ

q
≤ ν2(n). This follows from the fact that ℓ is polynomial in

the security parameter. ■
Game G3G3G3: In this game, the only modification as compared to the previous game
is that during the Setup procedure, the simulator executes the algorithm (c̃rs, τ)←
NIZK.Setup′R(1

n) instead of crs ← SetupR(1
n), which allows the simulator to learn

the trapdoor τ . Since the two distributions {crs : crs ← SetupR(1
n)} and {c̃rs :

(c̃rs, τ)← Setup′R(1
n)} are indistinguishable to A except with negligible probability,

we have that Pr[G2G2G2 = 1] ≤ Pr[G3G3G3 = 1]+ ν3(n) where ν3 is a negligible function in n.

Game G4G4G4: This game proceeds exactly like the previous game except that the
simulator does not choose its own key pair, but rather uses its signing oracle from
the EUF–CMA game to simulate the adversary’s interactive signing oracle O0

ΠS
. More

concretely, upon the adversary calling O0
ΠS

on message m, the simulator calls its
own signing oracle which provides a signature (h, s1) for m under secret key sk 1.
Note that the simulator does not know sk 1 or the secret randomness r1 used in s1.
Therefore, the simulator has to additionally simulate the NIZK proof that proves
knowledge of r1 in s1. More concretely, the simulator executes πS ← S(c̃rs, τ, R1),
where R1 is the public randomness used in s1. Due to the fact that the distributions
{π : π ← Prove(c̃rs, R1, r1)} and {πS : πS ← S(c̃rs, τ, R1)} are indistinguishable to
A except with negligible probability, it holds that Pr[G3G3G3 = 1] ≤ Pr[G4G4G4 = 1] + ν4(n)
where ν4 is a negligible function in n.

It remains to show that the simulator can use a valid forgery output by A to
break unforgeability of the SIGID scheme.

Claim. A valid forgery (m∗, (h∗, s∗)) output by A in game SigForgeA,SIGID
2

can be
transformed into a valid forgery (m∗, (h∗, s∗1)) in game SigForgeS,SIGID .

Proof: When A outputs a valid forgery (m∗, (h∗, s∗)), S extracts the partial signature
(h∗, s∗1) by executing fdec-sig(sk 0, pk 0, (h

∗, s∗)) (from Eq. 5). Note that the simulator
knows the adversary’s key pair (sk 0, pk 0). The simulator then submits (m∗, (h∗, s∗1))
as its own forgery to the EUF–CMA challenger. By definition, A wins this game
if it has not queried a signature on m∗ before. Thus, S has also not queried the
EUF–CMA signing oracle on m∗ before. Further, Eq. (5) implies that (m∗, (h∗, s∗1))
is a valid forgery under the public key pk 1. ■



From games G0G0G0 − G4G4G4, we have that Pr[G0G0G0 = 1] ≤ Pr[G4G4G4 = 1] + ν(n), where
ν(n) = ν1(n) + ν2(n) + ν3(n) + ν4(n) is a negligible function in n. Thus, we have
Pr[SigForgeA,SIGID

2
(n) = 1] ≤ Pr[SigForgeS,SIGID(n) = 1] + ν(n).

Adversary corrupts P1. In case the adversary corrupts P1, the simulator has to
simulate P0. The proof for this case follows exactly the same steps as above with the
exception that game G1G1G1 is not required. This is due to the reason that the simulator
now plays the role of the committing party in the randomness exchange and hence
does not have to extract A’s randomness from the commitment c.

5 Two-party Aggregatable Adaptor Signatures

We are now ready to formally introduce the notion of two-party adaptor signatures
with aggregatable public keys which we denote by aSIG2. Our definition can be
seen as a combination of the definition of adaptor signatures from Sec. 3 and the
definition of two-party signatures with aggregatable public keys from Sec. 4. Unlike
the single party adaptor signatures, in aSIG2 both parties have the role of the signer
and generate pre-signatures cooperatively. Furthermore, both parties can adapt the
pre-signature given a witness value y. We note that both the pre-signature and the
full-signature are valid under the aggregated public keys of the two parties. We
formally define an aSIG2 scheme w.r.t. a SIG2 scheme (which is in turn defined w.r.t.
a SIG scheme) and a hard relation R.

Afterwards, we show how to instantiate our new definition. Concretely, we present
a generic transformation that turns a SIGID

2 scheme with certain homomorphic prop-
erties into a two-party adaptor signatures scheme. As a SIGID

2 scheme is constructed
w.r.t. a SIGID scheme (cf. Sec. 4), the construction presented in this section can
implicitly transform digital signatures based on ID schemes to two-party adaptor
signatures.

The definition of a two-party adaptor signature scheme aSIG2 is similar to the
definition of a standard adaptor signature scheme as for Def. 1. The main difference
lies in the pre-signature generation. Namely, the algorithm pSign is replaced by a
protocol ΠpSign which is executed between two parties.

Definition 10 (Two-Party Adaptor Signature Scheme with Aggregatable
Public Keys). A two-party adaptor signature scheme with aggregatable public keys
is defined w.r.t. a hard relation R and a two-party signature scheme with aggregatable
public keys SIG2 = (Setup,Gen, ΠSign,KAg,Vrfy). It is run between parties P0,P1

and consists of a tuple aSIG2 = (ΠpSign,Adapt, pVrfy,Ext) of efficient protocols and
algorithms which are defined as follows:

ΠpSign⟨sk i,sk1−i⟩(pk 0, pk 1,m, Y ): is an interactive protocol that on input secret keys
sk i from party Pi with i ∈ {0, 1} and common values public keys pk i, message
m ∈ {0, 1}∗ and statement Y ∈ LR, outputs a pre-signature σ̃.

pVrfyapk(m,Y ; σ̃): is a DPT algorithm that on input an aggregated public key apk,
a message m ∈ {0, 1}∗, a statement Y ∈ LR and a pre-signature σ̃, outputs a bit
b.



Adaptapk(σ̃, y): is a DPT algorithm that on input an aggregated public key apk, a
pre-signature σ̃ and witness y, outputs a signature σ.

Extapk(σ, σ̃, Y ): is a DPT algorithm that on input an aggregated public key apk, a
signature σ, pre-signature σ̃ and statement Y ∈ LR, outputs a witness y such
that (Y, y) ∈ R, or ⊥.
We note that in aSIG2, the pVrfy algorithm enables public verifiability of the pre-

signatures, e.g., aSIG2 can be used in a three-party protocol where the third party
needs to verify the validity of the generated pre-signatrue.

In the following, we formally define properties that a two-party adaptor signature
scheme with aggregatable public keys aSIG2 has to satisfy. These properties are
similar to the ones for single party adaptor signature schemes. We start by defining
two-party pre-signature correctness which, similarly to Def. 2 states that an honestly
generated pre-signature and signature are valid, and it is possible to extract a valid
witness from them.

Definition 11 (Two-Party Pre-Signature Correctness). A two-party adap-
tor signature with aggregatable public keys aSIG2 satisfies two-party pre-signature
correctness, if for all n ∈ N, messages m ∈ {0, 1}∗, it holds that:

Pr




pVrfyapk(m,Y ; σ̃) = 1
∧

Vrfyapk(m;σ) = 1
∧

(Y, y′) ∈ R

∣∣∣∣∣∣∣∣∣∣

pp ← Setup(1n), (sk 0, pk 0)← Gen(pp)
(sk 1, pk 1)← Gen(pp), (Y, y)← GenR(1n)
σ̃ ← ΠpSign⟨sk0,sk1⟩(pk 0, pk 1,m, Y )
apk := KAg(pk 0, pk 1)
σ := Adaptapk(σ̃, y), y

′ := Extapk(σ, σ̃, Y )



= 1.

The unforgeability security definition is similar to Def. 9, except the adver-
sary interacts with two oracles Ob

ΠS
,Ob

ΠpS
in order to generate signatures and pre-

signatures, as in Def. 3. More precisely, in the aSigForgebA,aSIG2
(n) experiment defined

below, A obtains access to interactive, stateful signing and pre-signing oracles Ob
ΠS

and Ob
ΠpS

respectively. Oracles Ob
ΠS

and Ob
ΠpS

simulate the honest party P1−b dur-

ing an execution of the protocols ΠASign⟨sk1−b,·⟩ and Π
A
pSign⟨sk1−b,·⟩ respectively. Similar

to Def. 9, both the protocols ΠASign⟨sk1−b,·⟩, Π
A
pSign⟨sk1−b,·⟩ employed by the respective

oracles Ob
ΠS
,Ob

ΠpS
gets an oracle access to A as well.

Definition 12 (2-aEUF–CMA Security). A two-party adaptor signature with ag-
gregatable public keys aSIG2 is unforgeable if for every PPT adversary A there exists
a negligible function ν such that: Pr[aSigForgeA,aSIG2

(n) = 1] ≤ ν(n), where the
experiment aSigForgeA,aSIG2

(n) is defined as follows:

The definition of two-party pre-signature adaptability follows Def. 4 closely. The
only difference is that in this setting the pre-signature must be valid under the
aggregated public keys.

Definition 13 (Two-Party Pre-Signature Adaptability). A two-party adap-
tor signature scheme with aggregatable public keys aSIG2 satisfies two-party pre-
signature adaptability, if for all n ∈ N, messages m ∈ {0, 1}∗, statement and



aSigForgebA,aSIG2
(n)

1 : Q := ∅, pp ← Setup(1n)

2 : (sk1−b, pk1−b)← Gen(pp)

3 : (skb, pkb)← A(pp, pk1−b)

4 : m∗ ← AOb
ΠS

,Ob
ΠpS (pk1−b, skb, pkb)

5 : (Y, y)← GenR(1n)

6 : σ̃ ← ΠA
pSign⟨sk1−b,·⟩(m

∗, Y )

7 : σ∗ ← AOb
ΠS

,Ob
ΠpS (σ̃, Y )

8 : return
(
m∗ ̸∈ Q ∧ VrfyKAg(pk0,pk1)

(m∗;σ∗)
)

Ob
ΠS

(m)

1 : Q := Q∪ {m}
2 : σ ← ΠA

Sign⟨sk1−b,·⟩(pk0, pk1,m)

Ob
ΠpS

(m,Y )

1 : Q := Q∪ {m}
2 : σ̃ ← ΠA

pSign⟨sk1−b,·⟩(pk0, pk1,m, Y )

witness pairs (Y, y) ∈ R, public keys pk 0 and pk 1, and pre-signatures σ̃ ∈ {0, 1}∗
satisfying pVrfyapk(m,Y ; σ̃) = 1 where apk := KAg(pk 0, pk 1), we have Pr[Vrfyapk(m;
Adaptapk(σ̃, y)) = 1] = 1.

Finally, we define two-party witness extractability.

Definition 14 (Two-Party Witness Extractability). A two-party public key
aggregatable adaptor signature scheme aSIG2 is witness extractable if for every
PPT adversary A, there exists a negligible function ν such that the following holds:
Pr[aWitExtA,aSIG2(n) = 1] ≤ ν(n), where the experiment aWitExtA,aSIG2 is defined as
follows:

aWitExtbA,aSIG2
(n)

1 : Q := ∅, pp ← Setup(1n)

2 : (sk1−b, pk1−b)← Gen(pp)

3 : (skb, pkb)← A(pp, pk1−b)

4 : (m∗, Y ∗)← AOb
ΠS

,Ob
ΠpS (pk1−b, skb, pkb)

5 : σ̃ ← ΠA
pSign⟨sk1−b,·⟩(m

∗, Y ∗)

6 : σ∗ ← AOb
ΠS

,Ob
ΠpS (σ̃)

7 : apk := KAg(pk0, pk1), y
′ := Extapk (σ

∗, σ̃, Y ∗)

8 : return (m∗ ̸∈ Q ∧ (Y ∗, y′) ̸∈ R ∧ Vrfyapk (m
∗;σ∗))

Ob
ΠS

(m)

1 : Q := Q∪ {m}
2 : σ ← ΠA

Sign⟨sk1−b,·⟩(pk0, pk1,m)

Ob
ΠpS

(m,Y )

1 : Q := Q∪ {m}
2 : σ̃ ← ΠA

pSign⟨sk1−b,·⟩(pk0, pk1,m, Y )

Note that the only difference between this experiment and the aSigForgeA,aSIG2
ex-

periment is that here the adversary is allowed to choose the statement/witness pair
(Y ∗, y∗) and that the winning condition additionally requires that for the extracted
witness y′ ← Extapk(σ

∗, σ̃, Y ∗) it holds that (Y ∗, y′) ̸∈ R.

A two-party adaptor signature scheme with aggregatable public keys aSIG2 is
called secure if it satisfies 2-aEUF–CMA security, two-party pre-signature adaptability
and two-party witness extractability properties.



5.1 Generic transformation from SIGID
2 to aSIGID,R

2

We now present our generic transformation to achieve two-party adaptor signature
schemes with aggregatable public keys from identification schemes. In its essence,
this transformation is a combination of the transformations presented in Figs. 3
and 6. More precisely, similar to the transformation from SIGID to aSIGID,R presented
in Fig. 3, we assume the existence of functions fshift, fadapt and fext with respect to
the relation R. We then make use of the ΠRand-Exc protocol from the transformation
in Fig. 6 to let parties agree on the randomness that is going to be used during
the pre-signing process. However, unlike the transformation in Fig. 6, the resulting
randomness is shifted by a statement Y for relation R using the function fshift. The
transformation can be found in Fig. 7.

ΠpSign⟨sk0,sk1⟩(pk0, pk1,m, Y )

1 : Parse pk i = ((1n, ppC, crs), pk
′
i), i ∈ {0, 1}

2 : (Ri, Sti, R1−i)← ΠRand-Exc⟨ski,sk1−i⟩(ppC, crs)

3 :Rpre := fcom-rand(R0, R1)

4 :Rsign := fshift(Rpre, Y ), h := H(Rsign,m)

5 : s̃i ← P2(sk i, Ri, h, Sti)

6 : s̃1−i ← ΠExchange ⟨s̃i, s̃1−i⟩
7 : (h, s̃) := fcom-sig(h, (s̃i, s̃1−i))

8 : return (h, s̃)

pVrfyapk (m,Y ; (h, s̃))

1 : R̂pre := V0(apk , h, s̃)

2 : return h = H(fshift(R̂pre, Y ),m)

Adaptpk ((h, s̃), y)

1 : return (h, fadapt(s̃, y))

Extpk ((h, s), (h, s̃), Y )

1 : return fext(s, s̃)

Fig. 7: A two-party adaptor signature scheme with aggregatable public keys aSIGID,R
2

defined with respect to a SIGID
2 scheme and a hard relation R.

Theorem 4. Assume that SIGID is an SUF–CMA-secure signature scheme trans-
formed using Fig. 2. Let fshift, fadapt and fext be functions satisfying the relations
from Equations (1) and (2), and R be a hard relation. Further, assume that fcom-sig,
fcom-pk and fdec-sig satisfy the relation from Equations (4) and (5). Then the result-

ing aSIGID,R
2 scheme from the transformation in Fig. 7 is a secure two-party adaptor

signature scheme with aggregatable public keys in the random oracle model.

In order to prove Thm. 4, we must show that aSIGID,R
2 satisfies the pre-signature cor-

rectness, 2-aEUF–CMA security, pre-signature adaptability and witness extractability
properties as described in Defs. 11 to 14 respectively. We provide the full proofs
of the following lemmas in the full version of this paper [14] and only mention the
intuition behind the proofs here. As mentioned in the introduction of this work,
despite the fact that aSIGID,R

2 is constructed from SIGID
2 , we require only SIGID to be

SUF–CMA-secure in order to prove 2-aEUF–CMA security for aSIGID,R
2 .

Lemma 7 (Two-Party Pre-Signature Correctness). Under the assumptions
of Thm. 4, aSIGID,R

2 satisfies Def. 11.



The proof of Lemma 7 follows directly from Equations (1) to (3) and the cor-
rectness of SIG2 from Lemma 5.

Lemma 8 (2-aEUF–CMA-Security). Under the assumptions of Thm. 4, aSIGID,R
2

satisfies Def. 12.

Proof Sketch: In a nutshell the proof of this lemma is a combination of the proofs of
Lemmas 2 and 6, i.e., the proof is done by a reduction to the hardness of the relation
R and the SUF–CMA of the underlying signature scheme. During the signing process,
the challenger queries its SUF–CMA signing oracle and receives a signature σ. As
in the proof of Lemma 6, the challenger programs the random oracle such that σ
appears like a signature generated with the combined randomness of the challenger
and the adversary. Simulating the pre-signing process is similar with the exception
that before programming the random oracle, the randomness must be shifted using
the function fshift. Finally, the challenger and the adversary generate a pre-signature
σ̃∗ = (h, s̃) on the challenge message m∗ and the adversary outputs the forgery
σ∗ = (h, s). If fext(s, s̃) returns the y generated by the challenger, as in the proof of
Lemma 2, the hardness of the relation R can be broken. Otherwise, using fdec-sig, it
is possible to use the forgery provided by the adversary to extract a forgery for the
SUF–CMA game.

Lemma 9 (Two-Party Pre-Signature Adaptability). Under the assumptions
of Thm. 4, aSIGID,R

2 satisfies Def. 13.

Proof Sketch: The proof of Lemma 9 is analogous to the proof of Lemma 3.

Lemma 10 (Two-party Witness Extractability). Under the assumptions of
Thm. 4, aSIGID,R

2 satisfies Def. 14.

Proof Sketch: The proof of Lemma 10 is very similar to the proof of Lemma 8
except that the adversary chooses Y now and thus, no reduction to the hardness of
the relation R is needed.
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Abstract. Blockchain is a disruptive new technology introduced around a decade ago. It can
be viewed as a method for recording timestamped transactions in a public database. Most
of blockchain protocols do not scale well, i.e., they cannot process quickly large amounts
of transactions. A natural idea to deal with this problem is to use the blockchain only as a
timestamping service, i.e., to hash several transactions tx1, . . . , txm into one short string, and
just put this string on the blockchain, while at the same time posting the hashed transactions
tx1, . . . , txm to some public place on the Internet (“off-chain”). In this way the transactions
tx i remain timestamped, but the amount of data put on the blockchain is greatly reduced.
This idea was introduced in 2017 under the name Plasma by Poon and Buterin. Shortly
after this proposal, several variants of Plasma have been proposed. They are typically built
on top of the Ethereum blockchain, as they strongly rely on so-called smart contracts (in
order to resolve disputes between the users if some of them start cheating). Plasmas are an
example of so-called off-chain protocols.
In this work we initiate the study of the inherent limitations of Plasma protocols. More
concretely, we show that in every Plasma system the adversary can either (a) force the honest
parties to communicate a lot with the blockchain, even though they did not intend to (this is
traditionally called mass exit); or (b) an honest party that wants to leave the system needs
to quickly communicate large amounts of data to the blockchain. What makes these attacks
particularly hard to handle in real life is that these attacks do not have so-called uniquely
attributable faults, i.e. the smart contract cannot determine which party is malicious, and
hence cannot force it to pay the fees for the blockchain interaction. An important implication
of our result is that the benefits of two of the most prominent Plasma types, called Plasma
Cash and Fungible Plasma, cannot be achieved simultaneously.
Besides of the direct implications on real-life cryptocurrency research, we believe that this
work may open up a new line of theoretical research, as, up to our knowledge, this is the
first work that provides an impossibility result in the area of off-chain protocols.

1 Introduction

What does it mean to timestamp a digital document? Haber and Stornetta in their
seminal paper [17] define timestamping as a method to certify when a given doc-
ument was created. In many settings the timestamped document T remains secret
after it was timestamped, until its creator decides to make it public. This is of-
ten because of efficiency reasons – for example in the scheme of [17] what is really
timestamped is the cryptographic hash3 H(T ) (not T ), which leads to savings in
⋆ This work was partly supported by the FY18-0023 PERUN from the Ethereum Foundation, by the

TEAM/2016-1/4 grant from the Foundation for Polish Science, by the DFG CRC 1119 CROSSING
(project S7), by the German Federal Ministry of Education and Research (BMBF) iBlockchain project
(grant nr. 16KIS0902), and by the German Federal Ministry of Education and Research and the Hessen
State Ministry for Higher Education, Research and the Arts within their joint support of the National
Research Center for Applied Cybersecurity ATHENE.

3 In this paper we assume reader’s familiarity with basic cryptographic notions such as hash functions,
negligible functions, etc. For an introduction to this topic see, e.g., [20].



communication between T ’s creator and the timestamping service. Sometimes the
secrecy of T is actually a desired feature. According to [29] several researchers in
the past (including Galileo Galilei and Isaac Newton) have used ad-hoc methods
to timestamp their research ideas before publishing them, in order to later claim
priority.

Recently, in the context of blockchain, timestamping has been used in a slightly
different way. Namely, in the paper that introduced this technology [25], the “times-
tamping” mechanism is such that T ’s creator does not only get a proof that T has
been created at a given time, but also that it has been made public at this time.
Let us call this kind of scheme public timestamping, and let us refer to the former
type of timestamping as secret timestamping. The public timestamping feature of
blockchain has been one of the main reasons why this technology attracted so much
attention. In fact one of the first projects that use blockchain for purposes other than
purely financial was Namecoin that used the timestamping to create a decentralized
domain name system (see, e.g., [19] for more on this project).

In many cases timestamping is expensive, and its costs grow linearly with the
length of the timestamped document. This is especially true for blockchain-based
solutions, where all parties in the network need to reach consensus about what
document was published and when. For example, Bitcoin (the blockchain system
introduced in [25]) can process at most around 1MB of data per 10 minutes. In
Ethereum, which is another very popular blockchain system [31] “timestamping” a
word of 32 bytes cost currently around USD 0.80. A similar problem appears in
several other blockchain protocols. We give a short introduction to blockchain in
Sec. 1.1. For a moment let us just say that typical blockchains come with their
own virtual currencies (also called cryptocurrencies). In the most standard case the
“timestamped” messages define financial transfers between the network participants,
and are hence called transactions. We will refer to timestamping a transaction as
posting it on the blockchain.

To summarize, from the efficiency point of view the secret timestamping is better
than the public one (as only hashes need to be timestamped). From the security
perspective these two types of timestamping are incomparable as the fact that the
timestamped document T needs to be published can be considered to be both an
advantage and a disadvantage, depending on the particular application. For example,
one could argue that considering timestamped hashes of academic papers as being
sufficient evidence for claiming priority would slow down scientific progress, as it
would disincentive making the papers public (until, say, the author writes down all
followup papers that build upon the timestamped paper).

A natural question therefore is as follows. Suppose we have access to a times-
tamping service that is expensive to use (so we would rather timestamp only very
short messages there). Can we use it to “emulate” public timestamping that would
be cheap for long documents T? Of course this “emulation” cannot work in general,
since some scenarios may simply require a proof that the whole T was available
publicly at a given time. So the best we can hope for is to find some applications
which permit such emulation. An idea for such emulation emerged recently within



the cryptocurrency community under the names Plasma or commit chains4 [26,
21, 16, 28, 24]. Very informally speaking, Plasma allows to “compress” a number
of blockchain transactions tx 1, . . . , txm into one very short string h = H(T ), where
T := (tx 1, . . . , txm). The transactions can from from different parties called users.
The only document that gets posted on the blockchain is h. The compression and
posting h is done by one designated party called the operator (denoted Op). Besides
of posting h, the operator publishes all the transactions T on some public network
(say: on her web-page). Since this publication is not done on the blockchain we also
say that it is performed off-chain.

Publishing T off-chain is important since only then each user can verify that her
transaction was indeed included into the hashed value. Moreover, typical Plasma
designs use as H the so-called Merkle-tree hashing with tx 1, . . . , txm being the labels
of the leaves (see the full version of this paper [11] for more on this technique).
Thanks to this, every user can prove that his transaction was included in H(T )
with a proof of length O(log n). If the operator does not include some tx i in T
then the user U that produced tx i can always post tx i directly to the blockchain.
In this case using Plasma does not bring any benefits to U compared to just using
the blockchain directly from the beginning. However, in reality it is expected that
this is not going to happen often, especially since the operators are envisioned to be
commercial entities that will charge some fee for their services.

What is much more problematic is the case when the malicious operator does
not publish T off-chain. This situation is typically referred to as data unavailabil-
ity. Note that data unavailability is subjective, i.e., the parties can have different
views on whether it happened or not. This is because, unlike the situation on the
blockchain, there may be no consensus on what was published off-chain. Moreover,
there is no way to produce a proof that data unavailability happens: even if some
parties complain on the blockchain that they did not receive T there is no way to
determine (just by looking at the blockchain) whether they are right, or if they are
just falsely accusing the operator. The situation when a disagreement between par-
ties happens but there is no “blockchain-only” way to verify which party is corrupt,
is commonly referred to as a non-uniquely attributable fault. Finally, some Plasma
protocols require all the honest parties to immediately act on blockchain after a data
unavailability attack happened. This is called “mass exit”, although (for the reasons
explained in Sec. 1.1 in this paper we call it “large forced on-chain action”)

Plasma comes in many variants and has been discussed in countless articles (see
Sec. 1.1). One of the most fundamental distinction is between the two types of
Plasma systems: Plasma Cash and Fungible Plasma. As we explain in more detail
in Sec. 1.1 they both serve for the “emulation” that we outlined above, but have
different incomparable features. From one point of view Fungible Plasma is better
than Plasma Cash since it is “fungible”, which means that the money can be arbi-
trarily divided and merged. On the other hand: Fungible Plasma suffers from some
problems that Plasma Cash does not have, namely the adversary can cause a “non-
uniquely attributable large forced mass actions” (we explain these notions Sec. 1.1).

4 In this paper we mostly use the name “Plasma” due to its brevity.



The cryptocurrency community has been unsuccessfully looking for a Plasma solu-
tion that would have the benefits of both Plasma Cash and Fungible Plasma. The
main result of this paper is that such Plasma cannot be achieved simultaneously.
In other words, we show inherent limitations of the compression technique, at least
for compressing blockchain financial transactions. Our paper can also be viewed as
initiating the theoretical analysis of lower bounds for the smart contract protocols.
We write more about our contribution in Sec. 1.2. First, however, let us provide
some more introduction to blockchain and to Plasmas.

1.1 Introduction to Plasma

Let us start with providing some more background on blockchain and smart con-
tracts. Blockchain can be viewed as a public ledger containing timestamped transac-
tions that have to satisfy some correctness constraints. Moreover, several blockchains
permit to execute the so-called smart contracts [27] (or simply: “contracts”), which
informally speaking, are “self-executable” agreements described in form of computer
programs. Examples of such blockchain platforms include Ethereum, Hyperledger
Fabric, or Cardano. Typically, it is assumed that contracts are deterministic and
have a public state. Moreover, they can own some coins. Executing a contract is
done by posting transactions on the blockchain and it costs fees that depend on the
computational complexity of the given operation, and on the amount of data that
needs to be transmitted to the contract.

Let us now explain the basic idea of Plasma, and introduce some standard ter-
minology. Since it is an informal presentation, we mix the definition of the protocol
with its construction. In the formal sections of the paper these two parts are sep-
arated (the definition appears in Sec. 2, and the constructions in the full version
of this paper [11]). As highlighted above Plasma address the scalability problem of
blockchain by keeping the massive bulk of transactions outside of the blockchain
(“off-chain”). The parties that are involved in the protocol rely on a smart contract
that is deployed on the ledger of the underlying cryptocurrency, but they try to
minimize interacting with it. Typically, this interaction happens only when the par-
ties join and leave the protocol, or when they disagree. Since all parties know that
in case of disagreement, disputes can always be settled on the ledger, there is no
incentive for the users to disagree, and honest behavior is enforced.

In the optimistic case, when the parties involved in the protocol play honestly,
and the off-chain transactions never hit the ledger, these protocols significantly re-
duce transaction fees and allow for instantaneous executions. Off-chain protocols
also resemble an idea explored in cryptography around two decades ago under the
name “optimistic protocols” [7, 1]. In this model the parties are given access to a
trusted server that is “expensive to use”, and hence they do not want to contact it,
unless it is absolutely necessary

Plasma’s operator Op provides a “simulated ledger”, in which other parties can
deposit their coins, and then perform operations between each other. The key re-
quirement is that its users do not need to trust the operator, and in particular if
they discover that she is cheating, then they can safely withdraw their funds. The



latter is called an exit from the simulated ledger, and requires communication with
the underlying ledger.

Plasma protocols come in different variants (see Sec. 1.1), however, they are all
based on a single framework proposed in [26]. The parties that execute Plasma are:
the users U1, . . . , Un, and the operator Op. Moreover, the parties have access to a
contract on the blockchain. In our formal modeling this contract will be represented
as a trusted interactive machine Γ with public state, owning some amount of coins.
Each user Ui has some number of coins initially deposited in his Plasma account
which is maintained by Γ . This number is called a balance and is denoted with
bi ∈ Z≥0. Users’ balances are changing dynamically during the execution of the
protocol. The total number of coins owned by the contract Γ is equal to the sum of
all balances of its users. A vector

−→
b := (b1, . . . , bn) is called a Plasma chain. When

referring to the underlying blockchain (i.e. the one on which Γ is deployed) we use
the term main chain. Note that the operator Op has no account and only facilitates
transfers of the users. In some variants of Plasma (see Sec. 1.1) the operator blocks
some amount of coins (called operator’s collateral) that can be used to compensate
the users their losses in case she misbehaves.

Let us briefly describe the different operations that parties of the Plasma protocol
can execution during the lifetime of the system. We divide time into epochs (e.g.
1 epoch takes 1 hour). In the ith epoch the operator sends some information Ci

to Γ . We can think of Ci as “compressed” information about the vector (b1, . . . , bn)
containing the users’ balances. By “compressed” we mean that |Ci| is much shorter
than the description of (b1, . . . , bn), and usually its length is constant in every epoch.
We will refer to Ci as a “commitment” to (b1, . . . , bn). The length of Ci is called the
commit size.

In each epoch every user Ui can request to exit, by which we mean that all bi
coins from her Plasma account get converted to the “real” coins on the main chain,
and she is no longer a part of this Plasma chain (which, in our formal modeling will
be indicated by setting bi := ⊥). Plasma’s security properties guarantee that every
user can exit with all the coins that she currently has in the given Plasma chain. It
is often required that exiting can be done cheaply, and in particular that the total
length of the messages sent by the exiting user to Γ is small. The amount of data
that a user needs to send to Γ in order to exit the Plasma chain is called the exit
size.

Finally, any two users of the same Plasma chain can make transfers between each
other. Suppose Uk wants to transfer v coins from her account to Uj. This transfer
operation involves only communicating with Uj, and with the operator Op, while no
interaction with the contract Γ is needed. Under normal circumstances (i.e. when the
operator is honest) the next Plasma block that is committed to the main chain will
simply have v coins deduced from Uk’s account and v coins added to Uj’s account.5

5 To keep things simple, in this paper we do not discuss things like “transfer receipts”, i.e., confirmations
for the sender that the coins have been transferred.



Challenges in designing Plasma systems. The main challenge when designing
a Plasma system is to guarantee that every user can exit with her money. This is
usually achieved as follows: each Ci is a commitment to (b1, . . . , bn), computed using
a Merkle tree. An honest operator Op is obliged to obey the following rule:

Explaining commitments — each time Op sends Ci to Γ , she sends the corre-
sponding

−→
b := (b1, . . . , bn) to all the users.

Technically, sending
−→
b to the users can be realized, e.g., by publishing it on the

operator’s web-page (i.e.: “off-chain”). Every user Uj can now check if she has the
correct amount on her account and if Ci was computed correctly. Moreover, thanks
to the properties of Merkle trees, Uj has a short proof of size O(log(n)) that bj has
been “committed” into Ci.

The above description assume that the operator is honest. If she is corrupt things
get more complicated. Note that Ci sent by the operator to Γ is publicly known (due
to the properties of the underlying blockchain). Hence, we can assume that all the
users agree on whether Ci was published and what is its exact value. The situation
is different when it comes to the vector

−→
b that should be published off-chain. In

particular, if
−→
b has not been published, then the users have no way to prove this to

Γ . This is because whether some data has been published off-chain or not does not
have a digital evidence that can be interpreted by Γ . This leads us to the following
attack that can be carried out by a malicious operator, and is intensively studied by
the cryptocurrency community (see, e.g., [5]).

Data unavailability attack — in this attack the corrupt operator publishes Ci

but does not publish
−→
b .

Note that this attack has no extra cost for the operator because from the point
of view of the smart contract Γ , the operator behaves honestly, and hence the
users cannot complain to Γ and request, e.g., that Op sends

−→
b to Γ . Furthermore

determining if this attack happened is “subjective”, i.e., every user Uj has to detect
it herself. Moreover, in case of data unavailability it is impossible for Γ to determine
whether Uj or Op is dishonest, since a sheer declaration of Uj that Op did not send
him the data obviously cannot serve as a proof that it indeed happened. This leads
to the following definition.

Non-uniquely attributable faults — this refers to the situation when the con-
tract has to intervene in the execution of the protocol (because the protocol is
under attack), but it unable to determine which party misbehaved (see, e.g., [2]).

Non-uniquely attributable faults appear typically in situations when a party claims
that it has not received a message from another party. In contrast if a contract is
able to determine which party is corrupt then we have a uniquely-attributable fault.
A typical example of such a fault is when a party signs two contradictory messages.
Unfortunately, non-uniquely attributable faults are hard to handle in real life, since
it is not clear which party should pay the fees for executing the smart contract, or
which party should be punished for misbehaving. In particular, what is unavoidable



in such a case is that a malicious party P can force another participant P ′ to lose
money on fees (potentially also loosing money herself). This phenomenon is known
as griefing [2].

When a user realizes that the operator is dishonest, then she often needs to start
quickly interacting with Γ in order to protect her coins. This action has to be done
quickly, and has to be performed by each honest user. This leads to the following
definition.

Forced on-chain action of size α — this term refers to the situation that honest
parties who did not intend to perform an exit are forced by the adversary to
quickly interact with Γ , and the total length of the messages sent by them to Γ
is α. Informally, when α is large (e.g. α = Ω(n)) we say this is a mass forced
on-chain action.

Note that this definition talks about all honest “parties”, and hence it includes also
the case when the operator is honest, but it is forced to act because of the behavior
of the corrupt users. Typically α = Ω(n) and by “quickly” we mean “1 epoch”. In
most Plasma proposals [23, 26, 3] “interacting with the smart contract” means simply
exiting the Plasma chain with all the coins. Hence, a more common term for this
situation is “mass exit”. Since in our work we are dealing with the lower bounds, we
need to be ready to cover also other, non-standard, ways of protecting honest users’
coins. For example, it could be the case that a user Uj does not exit immediately,
but, instead, keeps her coins in a special account “within Γ ” and withdraws them
much later. Of course, this requires interacting with Γ immediately, but, technically
speaking does not require “exiting”. To capture such situations, we use the term
“forced on-chain action”, instead of “mass exit”.

After a party announces an exit, we need to ensure that she is exiting with the
right amount of coins. The main problem comes from the fact that we cannot require
that users exit from the last Ci by sending the explanation for her balance bi to Γ .
This is because it could be the case that a given user does not know the explanation−→
b of Ci (due to the data unavailability attack). For a description of how this can
be done in practice see [26, 3], or the full version of this paper [11].

Mass exits (or large forced on-chain actions) caused by data unavailability are
considered a major problem for Plasma constructions. They are mentioned multiple
times in the original Plasma paper [26] (together with some ad-hoc mechanism for
mitigating them). They are also routinely discussed on “Ethereum’s Research Fo-
rum”6, with even conferences organized on this topic7. One of the main reasons why
the mass exits are so problematic is that they may results in blockchain congestion
(i.e., situations when too many users want to send transactions to the underlying
blockchain). Moreover, the adversary can choose to attack Plasma precisely in the
moments when the blockchain is already close to being congested (see, e.g., [30]
for a description of real-life incident of the Ethereum blockchain congestion). She
can also attack different Plasma chains (established over the same main chain) so
6 Available at: ethresear.ch.
7 See: ethresear.ch/t/data-unavailability-unconference-devcon4.



their users simultaneously send large amounts of data to the blockchain. In order to
be prepared for such events in real-life Plasma proposals it is sometimes suggested
that the time T for reacting to data unavailability should be very large (e.g. T = 2
weeks). This, unfortunately, has an important downside, namely that also an honest
coin withdrawal requires time T .

Consider a non-fungible Plasma that supports coin identifiers from some set C.
In a non-fungible Plasma the Plasma chain is of a different form than before: instead
of a vector of balances

−→
b , it is a function f : C → {U1, . . . , Un,⊥} that assigns to

every coin c ∈ C its current owner f(c) (or ⊥ if the coin has been withdrawn).
Similar to before the commitment to the value of f will be done using Merkle trees.
Whenever a coin is withdrawn its identifier c is sent to the smart contract Γ , and
hence it becomes public. This is important for the mechanism that prevents parties
from stealing coins. To this end, each user U monitors Γ , and sends a complaint
whenever some (corrupt) user U ′ tries to withdraw one of U ’s coins. For the contract
Γ to decide if c belongs to U or U ′ can require some additional interaction, but the
system is designed in such a way that the honest user is guaranteed that finally she
will win such dispute. Hence, every malicious attempt to withdraw someone else’s
coin will be stopped.

The main difference between Plasma Cash and Fungible Plasma is that in Plasma
Cash every user has to “protect” only her own coins. Thanks to this, even in case of
the data unavailability attack, each honest user U does not need to immediately take
any action. Instead, she can just monitor Γ , and has to act only if someone tries to
withdraw one of U ’s coins. Of course, the corrupt user can still force all the honest
ones to quickly act on the blockchain. However, this requires much more effort from
them than in Fungible Plasma, namely: they need to withdraw many coins of the
honest users at once, hence forcing the honest users to react. This is “fairer” both
honest and malicious users have to make similar effort. Most importantly, however,
this attack has uniquely-attributable faults.

This advantage of Plasma Cash comes at a price, namely the “exit size” is not
constant anymore, as it depends on the number of coins that a user has (since
each coin has to be withdrawn “independently”). The Ethereum research community
has been making some efforts to deal with this problem. One promising approach
is to “compress” the information about withdrawn coins. For example one could
assume that the identifiers in C are natural numbers. Then a user U who owns
coins from some interval [a, . . . , b] (with a, b ∈ N) could simply withdraw them by
posting a message “User U withdraws all coins from the interval [a, . . . , b] (instead
of withdrawing each i ∈ [a, . . . , b] independently). This, of course, works only if the
coins that users own can be divided into such intervals. Some authors (in particular
V. Buterin) have been suggesting “defragmentation” techniques for achieving such a
distribution of coins. This is based on the assumption that the parties periodically
cooperate to “clean up” the system. Hence, it does not work in a fully malicious
settings8 (if the goal of the adversary is to prevent the cleaning procedure).

8 See ethresear.ch/t/plasma-cash-defragmentation and subsequent posts by Buterin on the Ethereum
Research Forum.



The landscape of Plasmas. Soon after the original groundbreaking work on
Plasma [26], some concrete variants have been proposed. Some of them we already
described in Sec. 1.1. Since this paper focuses on the impossibility results, we do
not provide a complete overview of the many different variants that exist and what
features they achieve. Plasma projects that are frequently mentioned in the media
are Loom, Bankex, NOCUST and OmiseGO [28, 24]. This area is mostly developed
by a very vibrant on-line community that typically communicates results in form
of so-called “white-papers”, blog articles, or post on discussion forums (such as the
“Ethereum Research Forum”, see footnote 6 on page 7). See also the diagram called
“Plasma World Map” illustrating the different flavors of Plasma in the full version
of this paper [11]. A notable exception are NOCUST and NOCUST-ZKP described
in [21]. This work, up to our knowledge, is the first academic paper on this topic.
It provides a formal protocol description (with several interesting innovations such
as “ Merkle interval trees”) and a security argument. Moreover, the authors of [21]
describe a version of NOCUST that puts a collateral on the operator (this is done
in order to achieve instant transaction confirmation). The authors of [21] (see also
[16]) introduce the term “commit chains”. Yet, unfortunately, they do not define a
full formal security model that we could re-use in our work.

Let us also mention some of the so-called “distributed exchanges” that look very
similar to Plasma. One example is StarkDEX (informally described in [15]), which
is also based on the idea of a central operator batching transactions using Merkle
trees, and a procedure for the users to “escape” from the system if something goes
wrong. This protocol uses non-interactive zero-knowledge protocols to ensure cor-
rectness of the operator’s actions (similar approach has been informally sketched
in the original Plasma paper [26], and has been also used in NOCUST-ZKP [21]).
While zero knowledge can be used to demonstrate that some data was computed
correctly, it cannot be used to prove that the off-chain data was published at all.
Consequently, the authors of this system also encountered the challenge of handling
the data unavailability attack. Currently, in StarkDEX this problem is solved by in-
troducing an external committee that certifies if data is available.9 StarkDEX plans
to eventually replace the committee-based solution with an approach that is only
based on trusting the underlying blockchain. Our result however shows that in gen-
eral this will be impossible, as long as fungibility and short exits are required (unless
the operator puts a huge collateral).

1.2 Our contribution and organization of the paper

We initiate the study of lower bounds (or: “impossibility results”) in the area of
off-chain protocols. Our results can also be viewed as a part of a general research
program of “bringing order to Plasma”. We believe that the scientific cryptographic
community can provide significant help in the efforts to systematize this area, and
to determine the formal security guarantees of the protocols (in a way that is similar
to the work on “Bitcoin backbone” [14], or more recently on “Mimblewimble” [13],

9 See their FAQs at https://www.starkdex.io.



state channels [9], or the Lightning Network [22]). Investigating the limits of what
Plasma can achieve is part of this process. We focus on proving lower bounds that
concern the necessity of mass forced on-chain actions, especially caused by the attack
that have no uniquely attributable faults (as a result of data unavailability). This is
motivated by the fact that such attacks are particularly important for the off-chain
protocols: since the main goal of such protocols is to move the transactions off -chain,
the necessity of quickly acting on-chain can be viewed as a big disadvantage.

We start with a formal definition of Plasma (this is done in Sec. 2). Since in this
work we are interested only in the impossibility results, our definition is very restric-
tive for practical systems. By “restrictive” we mean that we make several assumptions
about how the protocol operates. For example we have very strict synchronicity rules,
and in particular we only allow the users to start the Plasma operations in certain
moments (see “payment orders” and “exit orders” phases in Sec. 2.1). Obviously, such
restrictions make our lower bounds only stronger, since they also apply to a more
realistic model (without such restrictions). We believe that fully formalizing real-life
Plasma (e.g. in the style of [10, 12, 22]) is an important future research project, but
it is beyond the scope of this work.

Our main result is presented in Thm. 1, stated formally in Sec. 3. It states that
in certain cases the adversary can force mass on-chain actions of the honest users of
any Plasma system. One subtle point that we want to emphasize is that whenever
we talk about “forcing actions” on the honest users, we mean a situation when the
users that did not want to exit (in a given epoch) are forced to act on-chain. This is
important, as otherwise our theorem would hold trivially (one can always imagine
a scenario when lots of users decide to exit Plasma because of some other, external,
reasons). The notion of “wanting to exit” is formalized by an environment machine
Z (borrowed from the Universal Composability framework [8]) that “orders” the
parties to behave in certain way.

More formally, Thm. 1 states that in Plasma either there exists an attack that
provokes a mass action, or there is an attack that requires a party that exits to
post long messages on the blockchain (i.e. this Plasma has large exits). Moreover,
both attacks have no uniquely attributable faults. Note that, strictly speaking, this
theorem also covers Plasma systems where the commit size is large (even Ω(n))10,
but in this case it holds trivially since the honest operator needs to send the large
commitments to Γ even if everybody is honest (hence: there is an “unprovoked” mass
action in every epoch).

The most interesting practical implication of this theorem is that it confirms the
need for “two different” Plasma flavors, as long as the operator is not required to put
aside a collateral of size comparable to the total amount of coins in the system11.
One way to look at it is: either we want to have a Plasma system that does not
have large exits, in which case we need to have (non-uniquely attributable) mass

10 In practice, Plasma systems with unbounded commit size are not interesting since they do not bring any
advantages to the users. Moreover, they can be trivially constructed just by putting every transaction
on the main chain.

11 This is clearly impractical for most of the applications. Actually most of Plasma constructions assume
no such collateral at all.



actions (this is Fungible Plasma/Plasma MVP); or alternatively we insist on having
Plasma without such mass actions, but then we have to live with large exits (as in
Plasma Cash). Our theorem implies that there is no Plasma that would combine
the benefits of both Fungible Plasma and Plasma Cash, and hence can serve as a
justification why both approaches are complementary. Before our result one could
hope that the opposite is true and that, e.g., the only reason why Plasma Cash
is popular is its relative simplicity (compared to Fungible Plasma). Besides of this
reason, and the general scientific interest, we believe that our lower bound has some
other important practical applications. In particular, lower bounds often serve as a
guideline for constructing new systems or tweaking the definitions. We hope it will
contribute to consolidate the countless research efforts in constructing new Plasma
systems12 and simplify identifying proposals that are not sound (e.g., because they
claim to achieve the best of both worlds).

Let us also stress that our Thm. 1 does not rely on any assumptions of complexity-
theoretic type and does not use a concept of “black-box separations” [18]. This means
that the lower bound that we prove cannot be circumvented by introducing any
kind of strong cryptographic assumptions. Hence, of course, it also holds for Plas-
mas that use non-interactive zero-knowledge (like NOCUST-ZKP [21] or StarkDEX
[15]). Moreover, we manage to generalize our lower bound. Thm. 1 even holds for
Plasma systems where the operator deposits a certain amount of coins for com-
pensating parties for malicious behavior (e.g., it could be used when a malicious
operator does not explain commitments).

For completeness, we also describe (in the full version of this paper [11]) “positive”
results, i.e., two protocols that satisfy our security definition (Plasma Cash and
Fungible Plasma). We stress that we do not consider it to be a part of our main
contribution, and we do not claim novelty with these constructions, as they strongly
rely on ideas published earlier (in particular [26, 4, 23, 3, 21, 15]).

Notation. For a formal definition of an interactive (Turing) machine and a protocol,
see, e.g., [8]. In our modeling the communication between the parties is synchronous
and happens in rounds (see Sect. 2). During the execution of the protocol a party
P may send messages to a party P ′. A transcript of the messages sent from P to P ′
is a sequence {(mi, ti)}ℓi=1, where each mi was sent by P to P ′ in the ti-th round.
A transcript of messages sent from some set of parties to a different set of parties
is a sequence {(Wi,W

′
i ,mi, ti)}ℓi=1, where each mi was sent by Wi to W ′

i in the ti-th
round. By the length of a transcript we mean its bit-length (in some fixed encoding).
We sometimes refer to it also as communication size (between the parties).

2 Plasma Payment Systems

A Plasma payment system (or “Plasma” for short) is a protocol Π consisting of a
randomized non-interactive machine Ψ representing the setup of the system; deter-

12 see https://ethresear.ch/c/plasma/.



ministic13 interactive poly-time machines U1, . . . , Un,Op representing the users and
the operator of the Plasma system (respectively); and a deterministic interactive
poly-time machine Γ , which represents the Plasma contract. We use the notation
U = {U1, . . . , Un} to refer to the set of users of the system. The contract machine Γ
has no secret state, and moreover its entire execution history is known to all the par-
ties. We can think of it as a Turing machine that keeps the entire log of its execution
history, and moreover all the other parties in the system have a (read-only) access
to this log. The Plasma system comes with a parameter γ ∈ R≥0 called operator’s
collateral fraction. Informally, this parameter describes the amount of coins that are
held by the operator as a “collateral” (as a fraction of user’s coins). These coins can
be used to cover users’ losses if the operator misbehaves. This is formally captured
in Sect. 2.2 (see “limited responsibility of the operator”). If γ = 0 then we say that
the operator is not collateralized. We introduce the notion of collateral in order to
make our results stronger and to cover also cases of real-life systems that have such
a collateral (e.g., NOCUST, see Sect. 1.1).

The protocol is attacked by a randomized poly-time adversary A. We assume
that A can corrupt any number of users and the operator except the contract Γ
(hence Γ can be seen as a trusted third party). Once A corrupts a party P , she
learns all its secrets, and takes full control over it (i.e. she can send messages on
behalf of P ). A party that has not been corrupted is called honest. An execution of
a Plasma payment system Π is parametrized by the security parameter 1λ.

To model the fact that users perform actions, we use the concept of an environ-
ment Z (which is also a poly-time machine) that is responsible for “orchestrating”
the execution of the protocol. The environment can send and receive messages from
all the parties (it also has full access to the state of Γ ). It also knows which parties
are corrupt and which are honest. For an adversary A and an environment Z, a
pair (A,Z) will be called an attack (on a given Plasma system Π). The contract
machine Γ can output special messages (attribute-fault, P ) (where P ∈ U ∪ {Op}).
In this case we say that Γ attributed a fault to P . We require that the probability
that Γ attributes a fault to an honest party is negligible in λ. An attack (A,Z) has
no attributable faults if the probability that Γ attributes a fault to some party is
negligible.

2.1 Protocol operation

Let us now describe the general scheme in which a Plasma payment protocol oper-
ates. In this section, we focus only on describing what messages are sent between
the parties. The “semantics” of these messages, and the security properties of the
protocol are described in Sect. 2.2. We assume that all the parties are connected by
authenticated and secret communication channels, and a message sent by a party
P in the ith round, arrives to P ′ at the beginning of the (i + 1)th round. The
communication is synchronous and happens in rounds. It consists of three stages,
namely: “setup”, “initialization”, and “payments”. The execution starts with the setup
13 We assume that these machines are deterministic, since all their internal randomness will be passed to

them by Ψ .



stage. In this stage parameter 1λ is passed to all the machines in Π. Upon receiv-
ing this parameter, machine Ψ samples a tuple (ψU1 , . . . ψUn , ψOp , ψΓ ) (where each
ψP ∈ {0, 1}∗). Then for each P ∈ {U1, . . . , Un,Op, Γ} the string ψP is passed to P .
Afterwards, the parties proceed to the initialization stage. In this stage the environ-
ment generates a sequence (ainit1 , . . . , ainitn ) of non-negative integers and passes it to
the contract Γ (recall that the state of Γ is public, and hence, as a consequence,
all the parties in the system also learn the ainiti ’). Then the protocol proceeds to
the payment stage. This stage consist of an unbounded number of epochs. Each ith
epoch (for i = 1, 2, . . .) is divided into two phases.

Payment phase. In this phase the environment sends a number of payment orders
to the users (for simplicity we assume that this happens simultaneously in a sin-
gle round). Each order has a form of a message “(send, v, Ui)”, where v ∈ Z≥0,
and Ui ∈ U . It can happen that some users receive no payment orders in a given
epoch. It is also ok if a user receives more than one order in an epoch. Informally,
the meaning of these messages is as follows: if a user Uj receives a “(send, v, Ui)”
message, then she is ordered to transfer v coins to user Ui. We require that this
message can only be sent if none of bi and bj are equal to ⊥ (i.e.: if none of Ui and
Uj “exited”, see below). The parties execute a multiparty sub-protocol. During
this executions some of the users send a message “(received, v, Ui)” to the environ-
ment Z. This sub-protocol ends when Γ outputs a message payments-processed.

Exit phase. In this phase the environment sends exit orders to some of the users
(again: this happens in a single round). Each such order is simply a message
“exit”. Informally, sending this message to some Ui means that Ui is ordered to
exit the system with all her coins. The environment can send an exit message to
Ui only if bi ̸= ⊥ (i.e. Ui has not already “exited”, see below). The parties again
execute a multiparty protocol. The protocol ends when Γ outputs a sequence

{(exited, Uij , vij)}mj=1, (1)

where m is some non-negative integer, and each Uij ∈ U and vij ∈ Z≥0. For each
Uij in Eq. (1) we say that Uij exited (with vij coins), and we let bij := ⊥. We
require that no party can exit more than once. In other words: it cannot happen
that two messages (exited, Ui, v) and (exited, Ui, v

′) are issued by Γ .

We make some assumptions on the communication between the parties. Informally
we require that if U and U ′ are some honest users, then the procedure of transferring
coins from U to U ′ is done by a “sub-protocol” involving only parties in the set U and
U ′. Since we do not have a concept of “sub-protocol” this is formalized as follows:

Communication locality. Two honest users U and U ′ exchange messages only
in epochs in which they do transactions between each other (i.e. a message
(send, U, v) is sent by Z to U ′, for some v).

This requirement is very natural since Plasma is supposed to work even when an
arbitrary set of users is corrupt. Hence, relying on the other users’ help in financial



transfers would be impractical. Up to our knowledge all “pure” Plasma proposals
in the literature satisfy this requirement. On the other hand: it may not hold if we
incorporate some techniques that assume some type of cooperation between larger
sets of parties (e.g. consensus mechanisms). Examples include: Buterin’s Plasma
Chash defragmentation (where a large set of users has to regularly cooperate in
order to “clean-up” the system), and StarkDEX’s “data availability committee” (see
Sect. 1.1), if we treat the committee members as “users”. One way to view our result
is that it implies that such techniques are inherent for every fungible Plasma.

2.2 Security properties

During the interaction with the protocol, the environment keeps track of balances of
honest users (we do not define balances of dishonest users). Formally, for each honest
user Ui it maintains a variable bi ∈ Z≥0 ∪ {⊥} (a balance of Ui), where the symbol
“⊥” means that a party exited. It also maintains a variable t ∈ Z≥0 (initially set to
0) that is used to keep track on the amount of coins that have been withdrawn. The
rules for maintaining these variables are as follows. Initially, for each i := 1, . . . , n
the environment Z lets bi := ainiti . Whenever Γ outputs (exited, Ui, v) (for some
Ui and v) we let bi := ⊥ and increment t by v. Each time Z receives a message
(received, v, Ui) from some honest Uj, it adds v to bj (recipient balance) and, if Ui

(sender) is honest too, subtracts v from bi. We require that the environment never
issues an order if Ui or Uj exited (i.e. if bi = ⊥ or bj = ⊥). The environment also
never sends an order exit to the same user more than once, and it never sends exit
order to a user Ui that already exited (i.e. such that bi = ⊥). We have the following
security properties.

Responsiveness to “send” orders. Suppose Op, Ui, and Uj are honest, and the
environment issued an order (send, v, Ui) to Uj then in the same epoch party Ui

sends a message “(received, v, Uj)” to the environment.
Correctness of “received” messages. Suppose Ui and Uj are honest and Ui out-

puts a message “(received, v, Uj)”, then environment has issued an order (send, v, Ui)
to Uj in the same epoch.

Responsiveness to “exit” orders. Suppose Ui is honest and the environment is-
sued an order exit to Ui then in the same epoch Γ outputs a message (exited, Ui, v)
(for some v).

No forced exits if operator honest. Suppose Op and Ui are honest and Γ out-
puts message (exited, Ui, v) at epoch r, then environment has sent the order exit
to Ui in the same epoch.

Fairness for the users. If Γ outputs a message (exited, Ui, v) (for some honest Ui)
then v ≥ bi (where bi is the current balance of Ui).

Limited responsibility of the operator. If the operator is honest, then the total
amount of coins that are withdrawn from the system is at most ainit1 + · · ·+ ainitn .
Otherwise (if she is dishonest) the total amount of coins that are withdrawn from
the system is at most ⌈(1 + γ)(ainit1 + · · · + ainitn )⌉. This definition captures the
notion of operator’s collateral, and the fact that it is used (to cover users’ losses)
if the operator is caught cheating.



If an attack (A,Z) succeeds to violate any of the requirements from this section,
then we say that (A,Z) broke a given Plasma payment system. We say that Π is
secure if for every environment (A,Z) the probability that A breaks Π is negligible
in 1λ.

As explained in the introduction, certain attacks on Plasma are of particular
importance, due to the fact that they are hard to handle in real life. We say that
(A,Z) force an on-chain action of size M (in some epoch i) if the following hap-
pened. Let T be the set of honest parties that did not receive any order from Z in
epoch i. Then the total length of messages sent by parties from T to Γ is at least
M . As explained in the introduction, the term that is more standard than “forced
on-chain action” is “mass exit”. See 1.1 for a discussion why “forced on-chain action”
is a better term when impossibility results are considered.

3 Our main result

We now present Thm. 1, which is the main result of this paper. The main implication
of this theorem is that for every non-collateralized Plasma system there exists an
attack that provokes a mass forced on-chain action, i.e., it forces the honest users
to make large communication with the contract even if they did not receive any exit
order from the environment (see point 1 in the statement of the theorem), unless
a given Plasma system has large exits (point 2). Moreover, this can be done by an
attack that has no uniquely attributable faults. This fact cannot be circumvented
by putting a collateral on the operator, unless this collateral is very large.

Theorem 1 (Mass forced on-chain actions or large exits without uniquely
attributable faults are necessary). Let Π be a secure Plasma payment system
with n users and let γ ≥ 0 be the operator’s collateral fraction. Then either

1. there exists an attack on Π that causes a forced on-chain action of size greater
than (n− ⌈γn⌉ · log2 n− 5)/4 with probability at least 1/16 + negl(λ), or

2. there exists an attack on Π such that one honest user, when ordered to exit by the
environment, makes communication to Γ of size at least (n−⌈γn⌉ · log2 n− 5)/4
with probability at least 1/16 + negl(λ).

Moreover, both attacks have no uniquely attributable faults.

One way to look at this theorem is as follows. First, consider a non-collateralized
Plasma, i.e., assume that γ = 0. Let P1 be a class of non-collateralized Plasma that
with overwhelming probability do not have uniquely attributable forced on-chain
actions (of any size larger than 0). In this case point 1 cannot hold, and hence,
every Plasma Π ∈ P1 needs to satisfy point 2. This means that there exists an
attack on every Π ∈ P1 such that one honest user, when ordered to exit by the
environment, makes communication to Γ of size at least (n− 5)/4 with probability
around 1/16. Or, in other words: every Plasma from class P1 must have a large
exist size with noticeable probability. We know Plasma with such properties: it is
essentially Plasma Cash (see the full version of this paper [11])



On the other hand, let P2 be a class of non-collateralized Plasmas that with
high probability have no large exits, in the sense of point 2 of Thm. 1. This means
that point 1 has to hold, which implies that every Π ∈ P2 needs to have large
(at least around (n− 5)/4) non-uniquely attributable mass forced on-chain actions.
Plasma with such properties is called Fungible Plasma (see the full version of this
paper [11]) Hence, informally speaking, Thm. 1 states that we cannot have the “best
of two types of Plasma” simultaneously.

If we consider non-zero collaterals, i.e., we let γ > 0 then the situation does not
improve much, unless the collateral fraction is large, i.e., the total collateral blocked
by the operator is at least around n · γ = n/ log2 n

14. This essentially means that
we cannot get around the bounds from Thm. 1 by introducing collateral, unless the
amount of coins blocked in operator’s collateral is of roughly the same order as the
total amount of coins stored by the users.

Note that even trivial versions of Plasma “fit” into Thm. 1. For example, consider
Plasma in which the operator always puts all the transactions on-chain. Of course,
the details would need to be worked out, but clearly such a Plasma can be made
secure. The existence of such a trivial Plasma does not contradict our Thm. 1, since
it clearly satisfies point 1: a large number of transfers in one epoch will cause a
forced mass on-chain action (by the operator). The same also holds if every user
needs to put each transaction on-chain.

4 Proof of Thm. 1

Before we present the proof let us introduce some auxiliary machinery. This is done
in the next section.

4.1 Isolation scenario

Let Π be a Plasma payment system, let Z be an environment, and let W be some
subset of the users of Π. We now introduce a procedure that we call isolation of W .
In this scenarioΠ is executed as in the normal execution, except that we “isolate” the
users W ⊆ U from the operator. More precisely: all the messages sent between any
U ∈ W and the operator Op are dropped, i.e., they never arrive to the destination.
This scenario can be viewed as an “attack” although it does not fit into the framework
from Sect. 2.1, since it violates the assumption that messages sent by an honest party
to another honest party always arrive to the destination.

Although the isolation scenario cannot be performed within our model, it can
be “emulated” by corrupting either the operator Op, or the users from W . In the
first case we corrupt the operator and instruct him to behave as if she was honest,
except that she does not send messages to the users in W and ignores all messages
sent by these users. This will be called the data unavailability (DU) attack against
W by the operator. In the second, symmetric case (the pretended data unavailability
14 This is because we need to have γ ≈ 1/ log2 n to make the expression “(n− ⌈γn⌉ · log2 n− 5)/4” equal

to 0.



(PDU) attack by W on the operator) we corrupt the users in W . Then, every user
U ∈ W behaves as if she was honest, except that she does not send messages to Op,
and ignores all messages from Op.

If this is the only type of malicious behavior, then “from the point of view” of
all the other parties, and, most importantly, from the point of view of the contract
machine Γ , it is impossible to say who is corrupt (the users in W or the operator
Op). More precisely, we have the following.

Observation 1 Let Π be a Plasma payment system and consider the attack that
isolates users in some set W from the operator. Let Z be an arbitrary environment
and let T W,Z

isolate be the random variable denoting the transcript of messages received by
Γ . Moreover, let T W,Z

PDU and T W,Z
DU be the random variable denoting the transcripts of

messages received by Γ in the PDU attack and in the DU attack (respectively), both
with environment Z. Then T W,Z

DU
d
= T W,Z

isolate

d
= T W,Z

PDU .

This fact is useful in the proof of the following simple lemma.

Lemma 1 Fix an arbitrary Plasma Π. Let W be some set of users. Suppose A
performs a DU attack against W or a PDU attack by W (either by corrupting the
operator or by corrupting the users), and let Z be arbitrary. Then the attack (A,Z)
has no uniquely attributable faults.

Proof. From the security of Π we get that if the users are corrupt then the proba-
bility that Γ attributes a fault to them is negligible. Symmetrically, if the operator
is corrupt then the probability that Γ attributes a fault to her is negligible. By Ob-
servation 1 the transcripts of messages received by Γ in both attacks are distributed
identically, so the probability that Γ attributes any fault has to be negligible.

4.2 Proof overview

Fix some secure Plasma payment system Π that works for n users. We construct
either an attack such that

Pr




the set of all honest users makes communication to Γ
of size at least (n− ⌈γn⌉ · log2 n− 5)/4

(without receiving an exit order from the
environment)


 ≥ 1/16+negl(λ), (2)

or an attack such that

Pr




user U1, when ordered to exit by the environment,
makes communication to Γ of size at least

(n− ⌈γn⌉ · log2 n− 5)/4


 ≥ 1/16+negl(λ). (3)

In both of these attacks the amount of coins given to the users is n, but our
proof can be generalized to cover cases when it is required that the amount of coins
is larger than n (we comment more on this at the end of Sect. 4). On the other



hand, the proof does not go through in the (unrealistic) case when this amount is
very small (sublinear in n).

The attacks that we construct in both cases ((2) and (3)) have no uniquely
attributable faults. Note that for n ≤ 5 Eq. (3) holds trivially, and therefore we
can assume that n > 5. Let Υ denote the family of all non-empty proper subsets
of {U2, . . . , Un}, i.e. sets V such that ∅ ⊊ V ⊊ {U2, . . . , Un} (note that U1 ̸∈ V).
Since we assumed that n > 5 we have that log |Υ | = log2(2

n−1 − 2) ≥ n − 2, and,
in particular, Υ is non-empty. In the proof we construct an experiment (denoted by
Exp(V) and presented in details in the full version of this paper [11]) and analyze its
performance, assuming that V is sampled uniformly at random from Υ . Depending
on this analysis, the experiment Exp(V) can be “transformed” into an attack that
satisfies Eq. (2) or Eq. (3).

Experiment Exp(V) “simulates” an execution of two epochs of Plasma Π. In the
first epoch the adversary isolates the users in {U2, . . . , Un} \ V from the operator
(in the attacks that we construct later this will be done either by corrupting these
users, or the operator). The environment gives 1 coin to each user U ∈ U . Then,
in the “payment” phase of the first epoch all the users from V transfer their coins
to U1. In the “exit” phase of the first epoch user U1 receives an exit order from the
environment and consequently exits with all her coins. Note that in the first epoch
every party behaved honestly (except of the isolation attack against the users in
{U2, . . . , Un}\V), and hence U1 is guaranteed to successfully exit with her coins (she
has 1 such coin from the “initialization” phase, and |V| coins that were transferred
to her by the users in V).

Of course the honest parties from {U2, . . . , Un} \ V will usually realize that they
are isolated from the operator. As a reaction to this they may send some messages
to Γ . This, in turn can provoke the other parties to react by sending their messages
to Γ . Hence, in general there can be a longer interaction between all the parties
and Γ in this phase. Let T 1 be the transcript of the messages sent by the users in
{U2, . . . , Un} \ V to Γ in both phases, let T 2 be the messages sent by the users in V
and the operator to Γ in both phases, let T 3 be the messages sent by U1 to Γ in the
“payment” phase, and finally let T 4 be the messages sent by U1 to Γ in the “exit”
phase. The first epoch of the experiment Exp(V) and the transcripts are depicted on
Fig. 1.

Before discussing the second epoch of the experiment, let us note that in the
first epoch the only way in which we deviate from the totally honest execution is the
“isolation” of {U2, . . . , Un} \ V . This will later allow us to be “flexible” and corrupt
different sets of parties ({Op} or {U2, . . . , Un} \ V) depending on the results of our
analysis of Exp(V). This will be different in the second epoch, where we always
assume that parties from V are corrupt. This is ok because while constructing the
attacks that satisfy (2) or (3) we will only use the first epoch of Exp(V). The only
reason to have the second epoch of Exp(V) is to make sure that the users have to
send large amounts of data to Γ during the first epoch, as otherwise corrupt V can
steal the money (in the second epoch).
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Fig. 1: The first epoch of the experiment Exp(V). Gray circles denote the parties,
and the T i’s denote the transcripts of the communication with Γ (see, e.g., Sect. 4.2
for their definitions).

Let us now present some more details of the second epoch. Initially we corrupt all
the users from V and “rewind” them to the state that they had at the beginning of
the first epoch. This is done in order to let them “pretend” that they still have their
coins. We then let all of them try to (“illegally”) exit with these coins. Technically,
“rewinding a user U ” is done via a procedure denoted ReconstructU . This procedure
outputs the state that U would have at the end of the “payment” phase if she did
not transfer her coins to U1. To make it look consistent with the state of Γ , this
procedure takes as input the transcripts defined above. Then, each user U ∈ V tries
to exit (in the “exit” phase) from her state computed by ReconstructU . Also the
honest users try to exit (they receive an “exit” order from the environment). Let Q
be the set of users that managed to exit with at least 1 coin. From the security of
Plasma we get that Q is equal to the set of honest users ({U2, . . . , Un} \ V) plus a
small (of size at most ⌈γn⌉) subset D of dishonest users.

The key observation is now that all that is needed to “simulate” the second
epoch of Exp(V) are the transcripts T 1, T 2, T 3, and T 4. On the other hand V can be
approximately computed from Q (i.e., we can compute V with elements D missing,
where |D| = ⌈γn⌉). Hence the variable (T 1, T 2, T 3, T 4) carries enough information
to “approximately” describe V . Thanks to this we can construct a “compression”
algorithm that “compresses” a random V ←$ Υ by simulating the first epoch of
Exp(V) and obtaining (T 1, T 2, T 3, T 4) and then “decompresses” it by simulating the
second epoch, and computing the output as V := {U2, . . . , Un} \ Q (the additional
⌈γn⌉ elements can be simply listed as an additional output of C and passed to D as
input that has to be added to the output of D).

On the other hand, clearly (for completeness we show this fact in the full version
of this paper [11]), a random V ←$ Υ with high probability cannot be compressed
to a string that is significantly shorter than log |Υ | ≥ n−2. This implies that with a
noticeable probability |(T 1, T 2, T 3, T 4)| ≈ n− ⌈γn⌉ log2 n, where ⌈γn⌉ log2 n is the
number of bits needed to describe set D.

Obviously, the above fact implies that for at least one i ∈ {1, . . . , 4} we have
that T i ≥ (n− ⌈γn⌉ log2 n)/4 with noticeable probability for concrete parameters).
The rest of the proof of Thm. 1 is based on the case analysis of the implications of



“T i ≥ n/4” for different i’s. More concretely, we show that in the first three cases
(i = 1, 2, and 3) we can construct attacks that satisfy Eq. (2), and in case i = 4
— an attack that satisfies Eq. (3). All these attacks are based on the experiment
Exp(V), but are only using its first epoch. In the proof we exploit the fact that
the only malicious behavior that happens in this epoch is the “isolation” (i.e., not
sending messages). Hence, we can use Observation 1 and “switch” between scenarios
when different groups of parties are corrupt (while still getting the same transcripts
T i). Moreover these attacks do not have uniquely attributable faults.

The detailed proof of Thm. 1 can be found in the full version of this paper [11].

Remark 1. Our proof would also go through even if the total balance of the users
a is arbitrarily large. The only difference would be that instead of giving 1 coin to
every user, the environment would give to each user Ui (for i > 1) ⌊a/n⌋ coins, and
to user U1 the environment would give the remaining coins (say). The rest of the
proof would be essentially identical to the proof of Thm. 1.

Remark 2. Although the attack presented requires two epochs, the second epoch
only captures the scenario where the underlying protocol is insecure and hence it
can be seen as a “thought experiment”. In other words, if the honest parties do not
make large communication with the contact Γ in the first epoch, they risk loosing
their coins in the second epoch. Therefore, under the assumption that the plasma
system is indeed secure and consequently parties make large communication with
Γ in the first epoch, the adversary cannot steal any coins in the second epoch and
hence the second epoch would become obsolete.

Conclusion

The main contribution of this work is that we have shown that the distinction be-
tween Plasma Cash and Fungible Plasma is inherent, i.e., we ruled out the possibility
of constructing Plasma that combines benefits of both Plasmas. We believe that, be-
sides of the general scientific interest, our work (especially ruling out existence of
some Plasma constructions) can help the practical blockchain community in devel-
oping Plasma protocols, and in general can bringing more understanding in what is
possible and what is impossible in the area of off-chain protocols, and under what
assumptions. It can also serve as a formal justification why “hybrid” approaches
(such a “rollups”) [6] may be needed in real life. We also hope that this work may
expand the scope of theory by identifying a new area where theoretical lower bounds
can have direct impact on the real life problems.
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E. CommiTee: An Efficient and
Secure Commit-Chain Protocol
using TEEs

This chapter corresponds to our work on CommiTee, an efficient off-chain

Plasma/commit-chain protocol designed using TEEs. Our paper can also be found

in [72].
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Abstract. Permissionless blockchain systems such as Bitcoin or Ethereum are slow and
expensive, since transactions are processed in a distributed network by a large set of parties.
To improve on these shortcomings, a prominent approach is given by so-called 2nd-layer
protocols. In these protocols parties process transactions off-chain directly between each
other, thereby drastically reducing the costly and slow interaction with the blockchain. In
particular, in the optimistic case, when parties behave honestly, no interaction with the
blockchain is needed. One of the most popular off-chain solutions are Plasma protocols (often
also called commit-chains). These protocols are orchestrated by a so-called operator that
maintains the system and processes transactions between parties. Importantly, the operator
is trustless, i.e., even if it is malicious users of the system are guaranteed to not lose funds.
To achieve this guarantee, Plasma protocols are highly complex and rely on involved and
expensive dispute resolution processes. This has significantly slowed down development and
deployment of these systems.
In this work we propose CommiTEE – a simple and efficient Plasma system leveraging
the power of trusted execution environments (TEE). Besides its simplicity, our protocol
requires minimal interaction with the blockchain, thereby drastically reducing costs and
improving efficiency. An additional benefit of our solution is that it allows for switching
between operators, in case the main operator goes offline due to system failure, or behaving
maliciously. We implemented and evaluated our system over Ethereum and show that it is
at least 2 times (and in some cases more than 16 times) cheaper in terms of communication
complexity when compared to existing Plasma implementations. Moreover, for protocols
using zero-knowledge proofs (like NOCUST-ZKP), CommiTEE decreases the on-chain gas
cost by a factor ≈ 19 compared to prior solution.

1 Introduction

Over the past decade cryptocurrencies such as Bitcoin [35] and Ethereum [47] have
gained increasing popularity by introducing a new financial paradigm. Unlike tradi-
tional financial systems these cryptocurrencies do not rely on a central authority for
transaction validation and accounting, but instead build upon a decentralized con-
sensus protocol which maintains a distributed ledger that tracks each single transac-
tion. However, maintaining such a ledger in a distributed fashion comes at the cost of
poor transaction throughput and confirmation time. For example, in Ethereum the
transaction throughput is limited to a few dozen transactions per second and final
confirmation of a transaction can take up to 6 minutes. On the contrary, traditional
centralized payment providers offer almost instantaneous transaction confirmation
while being able to support orders of magnitude higher throughput. These scalability
issues hinder cryptocurrencies from being used at larger scale.

One particularly promising solution to address these scalability problems are off-
chain protocols. Off-chain protocols work by taking the massive bulk of transactions



off-chain, and at a high-level proceed as follows. After an initial on-chain transaction
to join the system, transactions between participants can be carried out off-chain
(without interaction with the underlying blockchain). Only when a user wants to
exit the system, or when other parties of the system try to cheat, honest users need
to carry out on-chain transactions again. Important examples of this concept include
payment channel networks (or hubs) [41, 30, 5], and more recently Plasma protocols,
where the latter is the focus of this work.

The original idea of Plasma protocols (often also known as commit-chains3) was
first introduced by Poon et al. in 2017 [40]. Soon after, countless variants of Plasma
emerged such as Loom, Bankex, NOCUST and OmiseGO (see, e.g., [44, 24, 33]).
While all these systems differ in certain aspects, at a high-level they all follow
the off-chain approach described above and outsource transaction execution to a
second layer (we will explain in more detail how Plasma systems work in Sec. 3). A
key role in any Plasma system plays the operator, who maintains the system, and
ensures that all off-chain transactions among the users are processed correctly. It
is important to note, however, that the operator is not assumed to be trusted, and
merely ensures an efficient and well-functioning system. Since the operator is not
trusted, but essentially “confirms” all transaction processing, Plasma protocols use
a highly involved mechanism which ensures that the user’s funds remain secure even
when the operator is malicious.

The design of such mechanism poses non-trivial challenges that existing Plasma
systems attempt to solve by employing either heavy cryptographic machinery such
as zero-knowledge proofs or complex challenge-response protocols for resolving dis-
putes on-chain. Neither of these approaches is optimal for the following two reasons:
(1) both approaches significantly increase the communication complexity with the
blockchain which increases costs and undermines the original purpose of Plasma as
an off-chain protocol; (2) the security analysis of the resulting protocols becomes
cumbersome, and hence to date there is no Plasma-like system that has been for-
mally proven secure. While there have been significant research efforts to address
these problems [51], [39], [19], the community has not yet come up with a suitable
solution that can readily be implemented.

1.1 Our Contribution

In this paper, we address the before mentioned shortcomings.

Secure and Efficient Plasma with TEE We first propose a general security model
for Plasma systems, and introduce CommiTEE – a simple and efficient Plasma-like
protocol. CommiTEE leverages trusted execution environments (TEE) in order to
overcome the above mentioned downsides of existing Plasma systems. In Commi-
TEE, the operator uses a TEE for all necessary computation, which limits the
operator’s role in the protocol to merely relaying messages between the TEE and
the outside world (blockchain, users of the system, etc.). This significantly limits the
operator’s ability to misbehave, which in turn allows for a simpler protocol design.

3 In this work we use the terms Plasma and commit-chain interchangeably.



An immediate consequence of CommiTEE’s simplicity is that it becomes easier to
analyze and verify its security. This is in contrast to other Plasma protocols which
are often too complex for a thorough security analysis. We analyze CommiTEE in
our model and show that it achieves the three security properties deposit security,
balance security and operator security, which in a nutshell guarantee that no honest
party in the system loses her coins even if all other parties are malicious.

Another crucial benefit of our simple protocol design is that CommiTEE re-
quires minimal interaction with the blockchain, which significantly reduces on-chain
costs and improves efficiency. Unlike payment channels, all existing Plasma/commit-
chain protocols require periodic commitments to the blockchain and logarithmic
size messages to withdraw coins from the system. CommiTEE overcomes these two
drawbacks of conventional commit-chains, which brings the efficiency on par with
payment channel networks/hubs [41, 30, 5].

Evaluation We evaluated our system over Ethereum and compared the results to the
two most common (and partially in prototype-status available) Plasma protocols,
namely Plasma MVP [9] and Plasma Cash [17], as well as to the most prominent
commit-chain protocols NOCUST and NOCUST-ZKP [24]. The evaluation shows
that CommiTEE is between 2 to 16 times cheaper in terms of communication com-
plexity when compared to Plasma MVP and Cash. For systems using zero-knowledge
proofs (e.g., NOCUST-ZKP), CommiTEE outperforms previous work with respect
to on-chain communication by a factor of ≈ 19. Furthermore, asymptotically the
on-chain communication complexity of CommiTEE is O(1), while for all the above
mentioned protocols the communication complexity grows logarithmically in the
number of users.

Extensions to CommiTEE Finally, we propose two extensions for CommiTEE in
order to (1) support multiple operators, and (2) handle TEE compromise. The first
extension to a multi-operator system allows switching between operators, in case the
main operator behaves maliciously or goes offline, which is a highly desirable feature
for Plasma systems as it makes them more robust to operator failures, and thus
increases their reliability significantly. We emphasize that until now there has not
been any full specification of a Plasma-like system that supports multiple operators
due to the complexity of designing such a system. This gap is closed by our work
leveraging again the power of TEEs. Likewise, our second extension to handle TEE
compromise significantly increases the reliability and practicality of CommiTEE as
it guarantees the security of user’s funds even in case a malicious party is able to
influence the computation inside the TEE.

1.2 Applications to Decentralized Finance (DeFi)

Although our focus in this paper is to build an efficient off-chain protocol for mone-
tary transactions, CommiTEE is quite versatile and can be extended to instantiate
DeFi applications off-chain. This is mainly due to the usage of TEE which allows us
to extend the transaction logic and support additional functionalities. As an exam-
ple, we can build an off-chain marketplace, where parties can not only have balances



but also own Non-Fungible Tokens (NFTs). These tokens can then be traded and sold
for some agreed upon value or withdrawn on-chain for further usage. Furthermore,
it is possible to support event-based transactions via so-called oracles (e.g., [12]),
i.e., an off-chain transaction only happens if an oracle service announces an event
on-chain. Last but not least, it is possible to support loans, e.g., users can stake some
token to receive funds or use flash loans where the loan and its interest are issued
and returned within a single transaction. Therefore, one can build a fully fledged
off-chain DeFi marketplace. For more information regarding such DeFi applications
we refer the reader to works such as [2, 46, 42].

1.3 Related Work

We briefly discuss the most important related works on commit-chains and off-chain
solutions using TEEs.

Plasma protocols There are many different variants of Plasma protocols. Some of
the most well known are Plasma MVP [9], Plasma Cash [17] Plasma Debit [38] and
Plasma Snapp [39]. Yet most of these protocols have been mentioned and discussed
only in forums, e.g., the https://ethresear.ch website and there has not been any
academic work that formalizes them. To date, the only formally presented commit-
chain/Plasma solutions are the NOCUST and NOCUST-ZKP protocols by Khalil et
al. [24], both of which however suffer from the aforementioned drawbacks of requiring
either a complex on-chain challenge-response mechanism or zero-knowledge proofs.

Dziembowski et al. [16] give a lower bound for the communication complexity
in Plasma protocols, showing that any secure Plasma protocol requires significant
communication with the blockchain. Our protocol does not violate this lower bound,
but shows how to significantly reduce the concrete communication complexity with
the blockchain. As we show in this work such a system can be quite efficient and
cheap in terms of blockchain interaction and on-chain computation complexity.

Recently, a new proposal called Rollups has gained more popularity [11]. In this
approach, the operator publishes the entire raw transaction data to the blockchain
in order to avoid some of the fundamental drawbacks pointed out by Dziembowski
et al. [16]. Yet, this solution requires significant modifications to the underlying
blockchain in the sense that the blockchain must be able to store large amounts of
data temporarily. As pointed out by Buterin [8], it will likely take years to develop
these solutions. Our work, however, aims for a solution that works without any
modifications to the existing underlying blockchain.

Off-Chain TEE Solutions In a recent work, Das et al. [15] proposed the FastKitten
protocol which allows parties to execute arbitrary complex smart contracts off-chain
even if the underlying blockchain does not support smart contract execution. To this
end, the authors use an operator who has access to a TEE which allows efficient and
correct execution of smart contracts off-chain. Yet, the set of parties who participate
in the smart contract is fixed for the entire lifetime of the contract execution. In
addition, the operator has to be collateralized, i.e., make a security deposit, which is



as large as the initial balance of all users combined. A similar solution to [15] has been
proposed by Cheng et al. [13], which considers confidentiality preserving off-chain
smart contract executions using a TEE. Similarly, [6] and [23] propose solutions for
private off-chain function execution with the help of TEEs. However, the main goal
of these works is to move complex contract executions off the chain, yet require
the encrypted state of a contract execution to be published on the blockchain after
each function call, which results in significant interaction with the blockchain. Our
work on the other hand aims at reducing on-chain communication complexity. Two
other works [25], [22] present privacy preserving off-chain executions of contracts
using TEEs, yet both of them rely on zero-knowledge proofs which we avoid in our
solution.

Lind et al. [28] proposed the Teechain in order to improve the transaction
throughput of payment channels and payment channel networks. They utilize TEEs
in order to process transactions and reduce blockchain interaction in case of dis-
putes. In order to deal with TEE failures or compromises, a committee of TEEs is
used who must agree on the latest state of the balances. As this work focuses on
payment channel networks, parties that do not have a direct channel must find a
path in the network through some intermediaries who must have enough balance in
order to facilitate such transaction.

There has been a considerable amount of work on the usage of TEEs in conjunc-
tion with a blockchain in order to enhance existing blockchain applications ([50, 49,
3, 48, 31] and many more), which, however, does not focus on off-chain applications
and is hence not closely related to our work.

2 Preliminaries

In this section we give a brief overview of the main concepts our protocol depends
on, namely blockchain and trusted execution environment.

2.1 Blockchain and Cryptocurrencies

Throughout this paper we model a blockchain b as a sequence of individual blocks
(b1, · · · , bm) where bm is the latest confirmed block, meaning that it is the latest
block that the blockchain network reached consensus on. We use the terms blockchain
and ledger (denoted by L) interchangeably in this paper. Users participating in the
blockchain network have an account which stores their current balance in the system.
The account of a party Pi is identified by her public key pki and it consists of a tuple
(pki, vi) where vi is the current balance of Pi. Furthermore, the blockchain network
can execute Turing complete programs referred to as smart contracts. Similar to
parties, a smart contract has an account which is identified by a unique address
addr, however in contrast to parties, each contract consists of a set of functions
(f1, · · · , fl) which might optionally take parameters param as input.

In order to transfer funds from a party Pi to another party Pj, Pi must submit a
transaction tx of the form (pki, pkj, v) to the blockchain network. Such a transaction



is valid if it is signed under the public key pki, and Pi’s balance exceeds v. We assume
that publishing a transaction takes at most time ∆.

Modeling Blockchain Validation Any blockchain system inherently requires a valida-
tion algorithm that allows to check if a sequence of blocks was computed correctly.
This validation includes checks for the validity of transactions in individual blocks
and checks that two consecutive blocks form a valid chain. In order to verify the
whole blockchain a user has to start the verification process with the very first
block (genesis block) of the blockchain. This results in a potentially huge amount
of storage and computation cost since the user has to download and store the en-
tire blockchain. Therefore, in practice nodes often verify new blocks with respect to
so-called checkpoints instead of the entire blockchain. A checkpoint is a confirmed
block on the chain whose validity has been verified before.

2.2 Trusted Execution Environments

Our TEE modeling follows the one of Das et al. [15] and Pass et al. [37]. As in [15],
we only explain a simplified version of the model and refer the reader to Figure 1
in [37] for the complete formal definition. When the TEE is initialized it creates a
signing keypair (msk,mpk) called master public key and master secret key of the
TEE. The master keypair is used to authenticate the installation of a program on the
TEE. The TEE functionality offers two enclave operations, an install and a resume
operation. The install operation stores a given program p under an enclave identifier
eid. A program that is stored on an enclave is executed via the enclave operation
resume. It takes the identifier of the enclave eid, a function f, and the function input
in as input and returns the output of the program operation denoted as out and
a quote ϱ over the tuple (eid, p, out). This quote serves as the verifiable statement
in the remote attestation process which allows to verify that out was output by an
enclave with master public key mpk that installed program p.

Intel SGX [32, 20] and ARM TrustZone [27] are probably the most well known
TEEs that are used in practice. Most recently the introduction of SGX2 [21] tackles
some limitations of the original SGX proposal e.g., by increasing its memory capacity
to up to 512GBs. Nevertheless, in this work remain TEE-agnostic, and do not limit
ourselves to a certain brand. By doing so our protocol can be implemented and
deployed on a large variety of hardware that satisfy our modeling.

We note that making TEEs secure against side-channel [45], memory-corruption
[4] and architectural vulnerabilities [7] is an ongoing research direction which is
orthogonal to our work [1], [45], [43]. In CommiTEE we consider a TEE which is
secure against such vulnerabilities. However, in Section 7.2, we propose an extension
to CommiTEE, that allows users to detect TEE corruption such that user’s funds
remain secure even in case a malicious party can influence the computation inside
the TEE.



3 Solution Overview

In this section, we provide a brief overview of our solution and discuss its main
design challenges that had to be overcome.

Plasma protocols have first been introduced in order to mitigate the issues of
payment channel hubs (PCHs), namely the problem that intermediaries in PCHs
are required to lock a significant amount of collateral. This is needed in payment
channel hubs in order to punish the intermediary in case of malicious behavior.
In contrast, Plasma protocols do not utilize a punishment mechanism but instead
require the operator to periodically submit a short commitment of the latest state
of the system to the blockchain. This avoids the need for collateralization. In case
the operator behaves maliciously, users can simply exit the system based on the last
commitment.

In a nutshell, users in a Plasma protocol can dynamically join and leave the
system by making deposits or exiting their funds from the Plasma contract. They can
submit their transactions off-chain to the operator, who collects these transactions
and updates the balances of the users accordingly. In addition, the operator stores
these transactions and balances in a data structure, which enables her to generate
a short commitment to the state of the system. The operator can then publish this
commitment on the blockchain and provide a proof of balance to each user, which
is required if the user wishes to exit the system. Traditionally, the data structure
used by the operator in order to store balances and transactions is a Merkle tree,
and the commitment is the root of this tree. In order to exit the system, users must
prove to the contract that they own some coins in the system. This proof is in fact
a Merkle proof where the leaves store the balances of the users in the system.

As it can be seen, a malicious operator can misbehave by publishing an incorrect
commitment (i.e., Merkle root). As an example, the operator can allow users to dou-
ble spend or “print money” by maliciously increasing the balance of users. In order
to mitigate such attacks, existing Plasma protocols employ either of the following
two strategies: (1) a complex challenge-response mechanism or (2) a zero-knowledge
proof of the operator’s correct behavior. These approaches require additional com-
munication or expensive computation on the blockchain, which undermines the orig-
inal goal of designing an off-chain solution.

Our protocol mitigates the above mentioned issues in two ways: (1) the operator
employs a TEE which does all the necessary computation while the operator simply
has to relay messages between the TEE and the users and the blockchain and (2)
our protocol allows for efficient extension to a multi-operator system, in which a
different operator can take over as soon as the current operator acts maliciously.

Since by definition the TEE executes all computations correctly, neither expen-
sive zero-knowledge proofs nor complex challenge-response mechanisms are required
in order to guarantee correct behavior of the operator. Instead, a single signature
from the TEE is sufficient as a proof of correct computation. In a bit more de-
tail, the proof of balance consists merely of a message signed by the TEE, which
is not only much shorter than a Merkle proof but also less expensive to verify on
the blockchain. Note that asymptotically the size of a Merkle proof grows logarith-



mically in the number of users, while a signature size is constant. This difference
shows itself clearly in Section 6 where we present the evaluation of our protocol.
Furthermore, other Plasma systems require periodic commitments of the operator
to the blockchain such that users can verify their balance proof. Conventionally, this
commitment is a Merkle root. Yet we observe that in order to verify signatures from
the TEE, only the TEE’s public key is required and hence there is no need for the
operator to publish a commitment. Instead, the public key of the TEE is part of the
public parameters of the contract.

This efficiency improvement directly translates to the challenge-response mech-
anism of our protocol. Due to the use of a TEE, many of the scenarios where the
operator can act maliciously are mitigated (e.g., changing balances, double spending
etc.) and hence the only possible way for the operator to misbehave is by withhold-
ing data, i.e., balances signed by the TEE. Due to this limited attack vector, we
only need a simple challenge-response mechanism to deal with data unavailability.
Note that even this challenge-response mechanism is more efficient compared to
traditional Plasma systems, since only a signature needs to be published on the
blockchain (instead of a Merkle proof).

3.1 Design Challenges

In the following, we describe the design challenges for Plasma protocols. Even when
utilizing a TEE the operator acts as a relay between the TEE and the Plasma system
and hence can still act maliciously by dropping the messages sent to and from the
TEE. The aim of our protocol is to ensure security even in presence of a malicious
operator.

Malicious Operator Since the operator runs the TEE, she controls all interactions
with it. This implies that she may send false requests to the enclave or refuse to
forward requests made by users. The operator may also abort executions on the
enclave or delay inputs and outputs.

At the very beginning, an operator can set up the TEE in a malicious way which
would compromise the Plasma system right from the start. Hence, before joining the
Plasma network, it is crucial that the users verify the correct initialization of the
TEE via remote attestation. This ensures that the correct program has been loaded
into the enclave and hence the initialization has indeed been correct.

Since an operator may go offline, crash or act maliciously at any point, users
must always be able to withdraw their coins from the system. To this end all users
receive a message signed by the TEE which informally says “this user owns v coins in
epoch e4” and can be sent to the ledger L if they wish to exit. However, a malicious
operator can avoid delivering this message to the users. Yet, the fact that these users
did not receive this message from the operator does not have a digital footprint and
hence they cannot prove to the contract that the operator misbehaved. Even worse
the operator can avoid forwarding the messages produced by the TEE to only a

4 An epoch is a time interval where the duration is defined by a fixed number of blocks.



subset of users. This would fragment the system into users who have the latest state
of the system and users who do not. This means that from the point of view of some
users the balances are updated yet for others this is not the case. Since users cannot
have two different balances at the same time, our solution must provide a method
in order to solve this fragmentation.

A natural question would be whether or not one can extend Plasma protocols
in order to support multiple operators and mitigate the single point of failure that
arises from having only a single operator. Unfortunately, this is not possible in a
straightforward way since all operators must be aware of the latest state of the
system and agree on it. This would require them to run a consensus algorithm
which, however, significantly hinders the efficiency of the system. In our work, we
present an extension to CommiTEE for multi-operator support that does not rely
on consensus among the operators and requires only a single on-chain transaction
in the best case.

Blockchain Verification In order to process deposits or exits that happen on-chain,
the TEE must be informed about the latest state of the ledger every epoch. Hence,
we need a secure blockchain verification algorithm on the TEE to ensure that the op-
erator cannot provide incorrect or tampered blocks. We tackle this challenge similar
to [15] in the following way.

In order to verify that a deposit (or exit) has been included in the smart contract,
the block in which the deposit list is stored, has to be confirmed k-times on-chain.
The parameter k is part of the security parameter in the enclave. This requirement
ensures that it is computationally infeasible for a malicious operator to forge a
valid chain of blocks which prevents potentially malicious deposit attempts by the
operator.5

Furthermore, in order to make the verification algorithm more efficient, the TEE
uses checkpoints in order to avoid validating the entire blockchain each time.

Minimizing Blockchain Interaction Since interacting with the blockchain is slow
and expensive, it is crucial to minimize all communication with the blockchain.
In Plasma protocols, the operator has to prove at the end of every epoch to all
users that she processed all transactions correctly. This is often done by requiring
the operator to provide a zero-knowledge proof on-chain such that every user can
verify the operator’s computation or by allowing users to challenge the operator’s
behavior on-chain. In our protocol, we make use of the fact that all computation
done in the TEE is by definition correct. As mentioned before a user’s exit message
is of the form “this user owns v coins in epoch e” which is signed by the TEE. As we
can see, a single signature verification is sufficient in order to verify this statement
and no additional Merkle proof or zero-knowledge proof validation is required. In
other words, the only on-chain communication happens when a party wishes to join
(deposit) or leave (exit) the system6.

5 Additionally, this ensures that the block containing the deposit list is not part of a fork on the blockchain.
6 Note that in Ethereum contracts do not activate on their own and in order to indicate that an epoch
or phase has ended, a single transaction must be sent to the contract.



Mass actions and exit size In case the operator is behaving maliciously by performing
a data unavailability attack and not responding (or responding incorrectly) to on-
chain challenges, users have to exit the system. This often requires the need for mass
actions, where all users exit the system at the same time. Such mass actions can
result in huge on-chain communication complexity, network congestion and elevated
transaction fees. In CommiTEE we do not remove the possibility for mass actions,
but the users do not need to exit immediately, thereby circumventing the drawbacks
that arise from mass exits as mentioned above.

4 The Plasma Framework Model

In a nutshell, a Plasma protocol Π is a protocol executed between a set of users P ,
an operator O and the ledger L which executes the Plasma contract. The execution
of the Plasma protocol consists essentially of three phases, i.e., deposit, transaction
and exit phase. In the deposit phase users can deposit coins on the ledger into the
Plasma contract, in the transaction phase users can transfer coins (off-chain) to one
another and in the exit phase users can withdraw coins from the Plasma contract
on-chain. These phases are executed in order and after the exit phase the protocol
continues by executing the deposit phase again. Each consecutive execution of these
three phases is referred to as an epoch. More formally, the following messages are
exchanged during each epoch:

Deposit phase In this phase any user Pi can send a message of the form (deposit, v)
to the contract, where v denotes the amount of coins that the user wants to deposit
into the Plasma contract. Pi eventually outputs (deposited, v′, Pi) where either v

′ = v
if the deposit was successful or v′ = 0 otherwise. If the deposit was successful and
Pi ̸∈ P , then set P = P ∪ {Pi}.

Transaction phase In this phase each user Pi ∈ P can send a message of the form
(Pi, Pj, v) to the operator O. This message indicates that Pi wants to send v coins
to user Pj. At the end of this phase each user Pi receives a message (v, epochE, Pi, π)
from the operator which indicates its balance v in the current epoch epochE and
includes a balance proof π. A protocol might (optionally) require O to send the
message (submit, commite) to the contract.7 The contract eventually outputs a mes-
sage m ∈ {success, failed}.

Intuitively, a transaction is valid if the sender owns more coins than the trans-
action amount and the transaction is authorized by the sender (which is commonly
checked using digital signatures). The operator is responsible for processing the
transactions and updating the balances of the users.

Exit phase In this phase each user Pi ∈ P can send a message of the form (exit) to the
contract. The contract eventually outputs (exited, Pi, v), where v denotes the user’s
latest balance in the Plasma system. Pi is then removed from P , i.e., P = P \ {Pi}.
7 commite is a commitment to the updated balances in epoch e, e.g., it can be a Merkle root or a zero-
knowledge proof.



4.1 Communication and adversarial assumptions

We now discuss the communication and adversarial assumptions in our modeling.
In our model, all parties have access to a ledger L which supports the execution of
Turing complete programs as described in Section 2.1.

A Plasma protocol is executed in presence of an adversary who can corrupt
parties. The corrupted parties are “controlled” by the adversary and can deviate
from the protocol description. Furthermore, the adversary can delay messages sent
by honest users to the ledger.

All parties are connected via authenticated channels i.e., the adversary can read
the messages sent between parties and can drop them, yet the adversary is not able
to modify the messages that are being sent.

4.2 Properties

We now discuss the properties that a Plasma protocol must fulfill. These properties
can be divided into three categories, namely correctness, security and efficiency.
The correctness properties describe the protocol’s behavior in the optimistic case
where parties behave honestly and the security properties describe what the protocol
guarantees to honest parties in the pessimistic case, i.e., in presence of malicious
parties. We provide in this section only an informal description of these properties.
For a formalization of the properties we refer the reader to Appendix B.

Deposit and Transaction Phase Correctness During the deposit phase if an honest
user successfully deposits v coins in the Plasma contract and the operator is honest,
the balance of this user in the Plasma system is increased by v. During the trans-
action phase if the sender and the receiver of a transaction and the operator are
honest, a transaction of the form (Pi, Pj, v

′) is processed correctly if the balance of
the sender Pi is decreased by the amount v′ and the receiver’s balance is increased
by v′. We note that a user might send/receive coins to/from multiple users during
this phase. Balances do not have to be updated immediately but only at the end of
the transaction phase. This feature is usually referred to as late finality or eventual
finality.

Exit Phase Correctness If an honest user exits the Plasma system, her balance and
the user set P are updated accordingly. For simplicity we assume that a user always
exits with all her coins, and hence her balance is set to 0 and the user is removed
from the Plasma user set.

Deposit Security In presence of malicious parties, an honest user does not lose the
coins she deposited. In other words, an honest user is able to get her deposits back
if they are not processed correctly and her balance is not updated accordingly.

Balance Security In presence of malicious parties, an honest user does not lose any
coins at any stage of the protocol, i.e., an honest user is able to always exit her entire
balance. We note that due to the late finality feature, this property essentially states



that users will either be able to exit with their balance from the previous or current
epoch.

Operator Balance Security An honest operator does not lose the coins she deposited
in the Plasma contract, even in presence of malicious users.

Efficiency Let δ denote the duration of an epoch. A Plasma protocol is efficient if
δ ∈ O(1), i.e., the duration of an epoch is independent of the number of users or
transactions.

We note that in practice the duration of an epoch can be dynamically changed
based on the number of transactions that are received. For instance, if none of the
users issues any transaction, the duration of an epoch can be extended. However,
asymptotically the duration of an epoch will always be constant.

5 CommiTEE Protocol

We now give a description of our Plasma protocol which makes use of the fact that
the operator runs a TEE. We first give an overview of the protocol execution, before
presenting the CommiTEE protocol and the corresponding enclave program that
is run by the operator’s TEE. Lastly, we provide a high level discussion about the
security of our protocol.

5.1 Architecture and Protocol Overview

On a high level, the execution of CommiTEE can be separated into the following
phases: (1) Initialization of the system, (2) Verification of the TEE, (3) Depositing
coins into the system, (4) Transferring coins off-chain between the participants and
(5) Exiting the system (see Figure 1). Note that the phases (3), (4) and (5) occur
repeatedly. The execution of the protocol starts with O initializing the TEE by
installing the program pCT and calling its genKeys function. This function will
initialize all the necessary variables and generates the key pair (skE, pkE). The public
key pkE is hard coded on the contract Γ and is used to verify messages which are
signed by the TEE. At this point the contract Γ is deployed on the blockchain and
users can join the system by depositing coins on-chain on the contract. However,
before joining, users first verify that the TEE and Γ are initialized correctly. After a
successful verification users can deposit coins on Γ which will increase their balance
off-chain in the system. Users who have already deposited some coins can make
off-chain transactions by submitting their transactions to O. The operator gathers
these transactions and submits them to the TEE, which then updates the balances
of the users according to the issued transactions. Furthermore, the TEE signs the
updated balances of the users and outputs the list of signed balances which the
operator forwards to the users. This signed message can be used as evidence of
user’s balance, if a party wishes to exit the system. Finally, users who wish to leave
the system can submit the signed balance to Γ .



However, if the users did not receive their signed balance from O, they will
not be able to exit the system. To mitigate this, users can request an exit (called
exit challenge) on Γ . This challenge essentially forces the operator to submit the
signed balance to the blockchain. If the request is correctly responded to, the user
exits normally with her latest balance. However, if the operator continues to behave
maliciously and resists responding to the challenges, the affected users do not have
any possibility of exiting their latest balance. In this case Γ will deem O as malicious
and all users must exit according to their balance from the previous epoch. We note
that all users have indeed received their signed balance from the previous epoch,
otherwise they would have challenged the operator during the exit phase of the
previous epoch.
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Fig. 1: The architecture of CommiTEE.

5.2 Protocol Description

We now give the description of CommiTEE. We present the corresponding pseudo-
code of the protocol in Figure 2.

Notation We refer to the protected memory in the operator’s TEE where the Com-
miTEE program is installed and executed as enclave which we denote as E. For
simplicity, from this point on, we use the terms enclave and TEE interchangeably.
In the rest of this work we use the value epochX which denotes the current epoch
counter stored by party X ∈ P ∪{O}∪{E}∪{Γ}. The term epoch refers to the du-
ration of executing the phases (3), (4) and (5). In our protocol an epoch has a fixed
duration which is measured by the number of blocks produced on the blockchain.
Furthermore each phase of the protocol has a fixed duration. For simplicity we as-
sume that this duration is the same for all three phases and is equal to the time



required to publish t blocks. When we say that a tuple of values is valid, we mean
that the tuple has been created according to an honest protocol execution.

Initialization The first step of our protocol is the initialization of the TEE by the op-
erator O. In this stage the TEE first creates its master (signing) key pair (msk,mpk)
and outputs the master public key mpk. Then, the operator installs the enclave
program pCT with the parameters (κ, Γ, bcp) on the TEE, where κ is the security
parameter, Γ is the address of the Plasma contract on L and bcp is the latest block
on L. This block acts as checkpoint for the verification of future blocks. In order to
prevent O from submitting forged blocks or unconfirmed blocks to the enclave, the
enclave also derives the parameter k from the security parameter κ. Essentially, the
enclave only considers a block bl as confirmed if it receives a valid chain of blocks
b̄ := (bl, · · · , bl+k).

Upon the completion of the initialization step, the operator calls the key gener-
ation function in the enclave, in order to create a second key pair and to initialize
internal values specific to the program pCT . The TEE returns ((pkE, σ), ϱ) where
(pkE, σ) is the generated public key and σ is a signature for this public key under
the TEE’s master secret key msk. Finally, the value ϱ is the quote from the enclave
which allows other users to verify the correct initialization of the installed program.
We note that the public key pkE is hard coded on the contract Γ (this can be done
after the TEE is initialized by calling a function and fixing pkE). The generation of
the additional key pair guarantees that even if a malicious O re-installs the program
on the TEE, Γ will reject messages signed under the new key pair and therefore O
cannot reset the system or revert the balances of the users to 0. This is because the
key generation algorithm is probabilistic and will not generate the same key pair
except with negligible probability.

Verifying the Enclave Before joining the Plasma system, the users must be convinced
that the correct program is installed on the TEE of the operator and that it is
registered with the Plasma contract. Otherwise the operator might have installed a
different program on the TEE which maliciously increases or decreases the balances
of the users. To this end, the user verifies the quote ϱ which ensures that the program
pCT (κ, Γ, bcp) has been initialized correctly on the TEE. Afterwards, the signature σ
is verified using the master public key mpk of the TEE. Naturally, the users check
that the public key stored on the contract is the same public key as the one that
the enclave has created for the program pCT .

If all verification steps were successful, the user proceeds to the deposit phase.
Otherwise, the user aborts and does not participate in the Plasma protocol.

Deposit Phase In order to deposit coins a user Pi with public key pki sends a
transaction to the Plasma smart contract (let vi be the amount of coins sent by this
transaction). The contract adds the tuple (deposit, pki, vi) to a list DΓ , called deposit
list, which stores all deposits made in the current epoch.

At the end of the deposit phase the operator sends the newly confirmed blocks
to the enclave. The enclave processes the deposits, signs the deposit list DΓ and



outputs both, the list and its signature. The operator forwards the signed list to
all parties who deposited coins in the current epoch. If a user who made a deposit
does not receive a valid tuple at the end of the deposit phase, she will exit in the
following exit phase.

Transaction Phase In order to transfer coins, a user Pi only needs to submit a
transaction tx = (pki, pkj, v, epochPi

) with a signature σpki for tx under pki, off-
chain to the operator, where pki, pkj are the public keys of the sender and receiver,
respectively, v is the transaction’s value and epochPi

is the current epoch counter.
The operator collects all received transactions during this phase and then executes
the transaction processing function on the enclave by giving the set of received
transactions as input (see the enclave program 5.3 for more details). At the end
of the transaction phase the enclave processes all transactions and returns a list of
signed balances vE, where vE[i] is the new, signed balance of user Pi. The operator
sends vE[i] = ((vi, epochE, pki), σi) to user Pi where σi is a signature for the tuple
(vi, epochE, pki) under the TEE’s public key pkE. If a user does not receive a correct
tuple from the operator, she will exit in the next exit phase.

Exit Phase In order to withdraw money from the system a user Pi sends the signed
balance value ((vi, epochE, pki), σi) that she received at the end of the transaction
phase to Γ . The contract verifies that the received values are valid and that the user
did not exit before, i.e., pki ̸∈ eΓ , where eΓ is the exit list, which stores the public
keys of all users who exited in the last two epochs. If the verification was successful
the contract stores the exit in eΓ . At the end of the exit phase the contract returns
vi coins to the exiting user Pi.

Exit Challenge If the user did not receive a valid tuple of the form ((vi, epochE, pki), σi)
at the end of the transaction phase, she has to challenge the operator by sending
the message (exit challenge, pki) to the contract. The contract stores this message
which indicates that the operator has been challenged and adds the user to the list
of challenging parties cΓ . In order to respond to the challenge, the operator sends the
balance value ((vi, epochE, pki), σi) to the contract. This tuple is in fact the message
which a user sends when she wishes to exit the system. Therefore, upon receiving
this response from the operator, the contract processes this message as a regular
exit made by Pi and removes the challenge from the list cΓ .

However, if the operator does not post a valid response from the TEE until
the end of the exit phase, the contract deems the operator malicious and halts
the system8. Parties can then only send exit based on messages of the previous
epoch. In a bit more detail, the contract reverts its state to the previous epoch
by decrementing the epoch-counter and it announces a message indicating that the
operator is malicious. The contract also returns all deposited values from the latest
epoch stored in the deposit list DΓ back to the depositing parties.

8 Note that the operator needs to be given enough time to reply to all challenges. In practice this can be
achieved by dividing the exit phase into two subphases, a challenge and a response phase.



Simplifying Assumptions In our protocol description we assumed that the contract
can actively check if a phase has ended or not (which is done by checking the number
of blocks produced by the blockchain). Yet in Ethereum a contract must be manually
called for it to get activated and be able to check the time. Naturally, the contract
checks whether or not a phase has ended whenever it receives a message but one
must also add a function which can be called by any party and which checks the
current time and determines if the current phase or epoch has ended.

In our protocol when a user challenges the operator in case of data unavailability,
she will exit the system even if the operator responds to the challenge correctly. We
note that the valid response to a challenge is in fact the signed balance which the
user did not receive from O. Hence, we can extend our protocol in order to allow
users to stay in the system if O responds to the challenge correctly, i.e., a user Pi

can indicate in her challenge message whether or not she wishes to exit upon O
publishing ((vi, epochE, pki), σi).

Protocol Pseudo-Code We now present the protocol program pseudo-code in
Figure 2 according ot the explanation in this section.

We note that in order to prevent a user who exited in epoch epochΓ − 1 from
exiting again if the operator is deemed malicious in epoch epochΓ (as we just ex-
plained) the contract must store the list of users who exited in the previous epoch
and stop such exits. Yet after epoch epochΓ is successfully concluded, the users who
exited in epoch epochΓ − 1 can be removed from the exiting list since they cannot
exit again by submitting their balance from epochΓ − 1. This reduces the size of the
list which is stored on the contract and allows such users to later rejoin the system
by making a deposit. For simplicity, we did not mention this in the protocol code.

5.3 Enclave Program

We now describe the enclave program pCT executed on the TEE. The enclave pseudo-
code can be found in Appendix A in Figure 3. As mentioned above, the TEE is
initialized with a master key pair (msk,mpk). To install the program on the TEE
and to initialize the enclave, the operator provides the contract address Γ , the
security parameter κ and the checkpoint of the ledger bcp as parameters. In the
following, we give an overview of the functions in the enclave program.

Generating Keys This procedure is used for the initialization of the enclave. It
generates the program-specific key pair (skE, pkE) for the TEE which the enclave
uses to authenticate all messages with regard to pCT . The key pair is also signed
with the master secret key msk, which allows parties to verify it under the master
public key mpk. Additionally, all internal variables, such as the list of deposits D,
the list of balances v, and the list of signed balances vE are initialized. We note
that the program does not allow to execute keyGen again after this point in order
to prevent the operator from resetting the system. The function returns the tuple
(pkE, σE) where σE is a signature for pkE under mpk.



CommiTEE Protocols

Enclave Verification Protocol

Pi verifying the Enclave
1. Send the message (Verify enclave) to O

O upon (Verify enclave) from Pi

2. Send the message (mpk, pkE , σ, ϱ) to Pi

Pi upon (mpk, pkE , σ, ϱ) from O

3. Abort if VrfyQuote(mpk, pCT (κ), (pkE , σ), ϱ) ̸= 1 or
Vrfy(mpk, pkE , σ) ̸= 1 or Γ.pkTEE ̸= pkE

Deposit Phase Protocol

Pi depositing vi coins
1. Send (deposit, pki, vi) to Γ

O at the end of deposit phase

2. Let b̄ := b.get(t+ k)
3. (DΓ , σE)← E.deposit(b̄)
4. Send (DΓ , σE) to all parties enlisted in DΓ

Pi at the end of the deposit phase

5. Exit during the exit phase If (DΓ , σE) is not received or
Vrfy(pkE ,DΓ , σE) ̸= 1

Γ upon (deposit, pki, vi) from Pi

If pki ̸∈ eΓ then add DΓ := DΓ ∪ {(deposit, pki, vi)}

Transaction Phase Protocol

Pi sending v coins to Pj

1. Let tx := (pki, pkj , v, epochPi) and sign σpki ←
Sign(ski, tx)

2. Send (transaction, tx, σpki) to O

O upon (transaction, tx, σi) from Pi

3. Store (transaction, tx, σi) in the list of transactions made in
this epoch, denoted as TO

O at the end of transaction phase

4. Execute the process transactions function on the enclave
and let (vE)← E.process tx(TO)

5. Send (vE [i]) to each Pi ∈ P

Pi at the end of transaction phase

6. If ((vi, epochE , pki), σi) is not received or epochE ̸=
epochPi

+1 or Vrfy(pkE , (vi, epochE , pki), σi) ̸= 1 then ex-
ecute the challenge procedure during the exit phase
else store the tuple ((vi, epochE , pki), σi) and set
epochPi

:= epochE

Γ at the end of transaction phase

Set epochΓ := epochΓ + 1, DΓ := ∅ and announce
(new block submitted)

Variable Description

mpk TEE master public key
pkE Enclave public key used in CommiTEE (stored on Γ )
pki User Pi’s public key
DΓ List of deposits stored on Γ
cΓ List of challenges stored on Γ
eΓ List of submitted exits stored on Γ
stateΓ State of Γ (set to malicious if O misbehaves)
b̄ Subset of blocks from the blockchain b
vE List of signed user’s balances (generated by E)
epochE E’s epoch counter
epochΓ Γ ’s epoch counter
epochPi Pi’s epoch counter
t Duration of a phase
k Required number of confirmed blocks
ϱ Quote generated by the the enclave

Exit Protocol

Pi requesting an exit
1. Send (exit, ((vi, epochE , pki), σi)) to Γ

O at the end of exit phase

2. Let b̄ := b.get(2t+ k)
3. Execute E.exit(b̄)

Γ upon (exit, ((vi, epochE , pki), σi)) from Pi

If epochE = epochΓ and Vrfy(pkE , (vi, epochE , pki), σi) = 1
and pki ̸∈ eΓ then Set eΓ = eΓ ∪ {(pki, vi)}

Γ at the end of exit phase

If cΓ ̸= ∅ then set stateΓ := malicious and
epochΓ := epochΓ − 1, remove all the exit requests
made in this phase from eΓ , announce the message malicious
and repeat the exit phase
else, if stateΓ = malicious then send vi + vi

′ via L to Pi

for every tuple (pki, vi) ∈ eΓ which was added to eΓ in the
current epoch where (deposit, pki, vi

′) ∈ DΓ

else If stateΓ ̸= malicious then send vi via L to Pi for
every tuple (pki, vi) ∈ eΓ which was added to eΓ in the
current epoch

Exit Challenge Protocol

Pi requesting an exit challenge
1. Send (challenge exit) to Γ

O upon (exit challenge, pki) announced by Γ

die Sie mir geschickt haben,
2. Send (respond, vE [i]) to Γ

Γ upon (respond, vE [i]) from O during exit phase

3. Parse vE [i] as ((vi, epoch, pki), σi).
4. If epochE = epochΓ and Vrfy(pkE , (vi, epoch, pki), σi) = 1

then cΓ := cΓ \ {pki} and eΓ := eΓ ∪ {(pki, bi)}

Γ upon (challenge exit) from Pi during the exit phase

If stateΓ ̸= malicious and pki ̸∈ cΓ and pki ̸∈ eΓ then
cΓ := cΓ ∪ {pki} and announce (exit challenge, pki)

Fig. 2: Description of CommiTEE protocols.



Deposit In this procedure, the TEE adds the deposits made on-chain to the balances
of the users on the enclave. This function receives as input a list of blocks b, which
is the chain of blocks since the last checkpoint.

The enclave verifies that (1) the chain b is a valid extension of the checkpoint
and (2) the chain consists of t + k blocks. We require t + k blocks, since t is the
duration of the phase and k are the necessary blocks to confirm the last block of
the phase. If both conditions are met, the enclave extracts the deposit list DΓ from
the blocks of the deposit phase, i.e., the first t blocks of b, updates the balances
of the parties, and adds new parties to the system. Finally, the enclave computes a
signature σE for DΓ under pkE and returns the tuple (DΓ , σE) to O.

Process Transactions This procedure is used to process transactions made by the
users and to update the balances of the affected users. The parameter passed to this
function is the list of transactions TO.

For each transaction the enclave verifies that the transaction is of the form
(pki, pkj, v, epochPi

, σpki) and that σpki is a valid signature under pki. In addition,
epochPi

must be the current epoch and the balance of the sender must be greater
or equal to v. If all these conditions are satisfied the balances of the sender and the
receiver are updated according to the transaction amount.

At this point the latest balance of the users in this epoch can be updated and the
epoch must be finalized. To this end, the TEE creates and returns the list vE which
consists per user of a tuple of the form ((vi, epochE, pki), σi), where σi is a signature
under the public key of the enclave and epochE is the enclave’s epoch counter.

Exit The exit procedure is used to set the balance of the users who exited to 0.
The operator provides a chain of blocks b. If the chain is valid, extends the last
checkpoint and has 2t + k blocks (the last checkpoint was made at the end of the
deposit phase, therefore at this point both transaction and exit phase are finished
and hence 2t + k blocks must be sent to the enclave), the enclave extracts the exit
list from the 2t-th block, removes all exiting parties from the system and sets their
balance to 0.

5.4 CommiTEE Security Analysis

Due to the limited space, we present the formal security properties and prove that
CommiTEE is secure in Appendix C. Here, we briefly discuss why our protocol
achieves the security properties from Section 4.

Theorem 1 (informal). The CommiTEE protocol as described in Section 5 sat-
isfies the correctness, security and efficiency properties as described in Section 4.

The most challenging property to prove is security as it involves a malicious
operator who can behave arbitrarily. We first shortly discuss why correctness and
efficiency are satisfied.

It is easy to see that CommiTEE satisfies correctness, since in case the operator
is honest, she will honestly provide the list of deposits, transactions and exits to her



TEE which honestly updates and returns the signed balances of the users. All users
receive their respective signed balances since the operator is honest. Hence, deposit,
transaction and exit phase correctness is satisfied. Further, as each phase of the
protocol has a constant duration, the efficiency property is satisfied.

Let us now discuss the three security properties. Due to the usage of a TEE which
acts as a trusted entity, a malicious operator can only mount data unavailability
attacks, i.e., refuse to forward data between users and the TEE. Data unavailability
attacks are a general issue in Plasma protocols and can never be prevented. However,
we show that CommiTEE provides sufficient mechanisms to protect honest parties
in this case. Assume an operator who does not send the signed balances from the
TEE to users after a transaction phase. In this case, the users will challenge the
operator on-chain and exit the system. If the operator responds to the challenge
with a signed balance tuple generated by the TEE, the user exits based on her
latest balance. Otherwise, the contract announces the operator as malicious and all
users exit based on their balance from the previous epoch. In this case, the contract
returns all coins which were deposited in this epoch. Note that as commit-chain
protocols satisfy late finality, users should be able to exit either with their balance
from the previous or current epoch. Hence, balance and deposit security are satisfied.
Finally, as our protocol does not require the operator to lock any collateral, operator
balance security is satisfied.

6 Evaluation

We evaluated CommiTEE’s costs both in terms of gas costs and on-chain commu-
nication complexity. In order to evaluate the gas costs we used Ganache-cli [18] to
simulate full client behaviour. The contract itself is written for Solidity version 0.5.3.
Our implementation can be found at [14]. To evaluate the communication complex-
ity we analyzed the size (in bytes) of the parameters sent for each function call of
the contract. In this evaluation (Table 2), we did not include the size overhead of
sending a transaction, i.e., for function calls without any parameters we assume a
size of 0 bytes.

We compare the results of our evaluation with the most widely known commit-
chain protocol namely NOCUST and NOCUST-ZKP [24] and with the most common
Plasma protocols, namely Plasma MVP and Plasma Cash.9 We use the evaluation
results from [24] in order to compare CommiTEE with NOCUST/NOCUST-ZKP
in terms of gas costs. On the other hand, most implementations of Plasma MVP
and Plasma Cash are experimental and neither optimized in terms of gas costs nor
do they execute flawlessly without errors. Therefore our comparison with Plasma
Cash and MVP is with respect to the message size of all (potential) interaction
that occurs during the protocol execution. Note that our protocol is fundamentally
different to both Plasma MVP and Plasma Cash. In Plasma MVP and Plasma Cash,
a malicious user can attempt to exit another user’s coins by sending an exit request
of an already spent UTXO or coin respectively. Hence, users must constantly observe

9 For comparison we used the omiseGO and loom network respectively [36, 29].



the blockchain and challenge malicious behavior on-chain which might be expensive
or problematic in case of blockchain congestion. On the other hand, in our protocol
users only challenge the operator in case of data unavailability (which is unavoidable
according to the work of Dziembowski et.al., [16]), i.e., in case the operator does
not provide the signed balances to all users. We would like to point out that there
are many different proposals (other than Plasma MVP and Cash) on how to design
a Plasma protocol such as Plasma Snapp [39], Plasma Debit [38], and More Viable
Plasma [34]. However, these are only proposals mentioned on online forums and
are not formally specified. Therefore, we do not compare our protocol with these
approaches.

6.1 Comparison with NOCUST(-ZKP)

Let us first compare CommiTEE with the best known commit-chain protocol
namely NOCUST and NOCUST-ZKP [24]. The main difference between NOCUST
and NOCUST-ZKP is that NOCUST-ZKP utilizes zero knowledge proofs in order
to guarantee valid state transitions where NOCUST allows users to challenge the
operator in case the state transaction is invalid. Therefore, NOCUST-ZKP is from a
design perspective closer to CommiTEE. However, since CommiTEE uses a TEE
there is no need to submit and verify expensive zero knowledge proofs on-chain
in order to guarantee that the state transition is valid. The full comparison can
be found in Table 1. As we can see, CommiTEE is almost 3 times cheaper when
finalizing an epoch compared to NOCUST and more than 19 times cheaper than
NOCUST-ZKP. We would like to point out that our evaluated gas cost does not
increase with the number of users n or transactions v. Furthermore, the reported
gas cost for NOCUST is with respect to a system with only 10 users who only make
20 transaction, i.e., n = 10 and v = 20.

Function Gas Cost Paid By Complexity

CommiTEE NOCUST(-ZKP) CommiTEE NOCUST(-ZKP)

Deposit 69 815 64 720 User O(1) O(1)

Exit 118 601 169 238 User O(1) O(log(n))

Exit Challenge 66 548 225 642 User O(1) O(log(n) + log(v))

Exit Response 74 580 68 152 Operator O(1) O(log(n) + log(v))

Total Exit Challenge/Response 141 128 293 794 User and Operator O(1) O(log(n) + log(v))

Finalization 32 363 96 073 Operator O(1) O(1)

ZK-proof - >523 618 Operator - O(1)

Total Finalization cost 32 363 >619 691 Operator O(1) O(1)

State Challenge - 281 786 User - O(log(n))

State Response - 80 769 Operator - O(log(n))

Table 1: Comparison of CommiTEE with NOCUST and NOCUST-ZKP with re-
gard to gas cost and on-chain communication complexity. The gas cost in row “ZK-
proof” is only relevant for NOCUST-ZKP, while the gas costs in rows “State Chal-
lenge” and “State Response” are only relevant for NOCUST. The evaluated gas
cost for NOCUST(-ZKP) are for n = 10 and v = 20 where the parameters n and v
represent the number of users and transactions respectively.



6.2 Comparison with Plasma MVP and Cash

Deposit For depositing in Plasma MVP and CommiTEE, a party only has to send
a transaction with the amount of coins that it wants to deposit into the contract,
which then can extract and store the sender identifier and the transaction value. On
the other hand, when depositing in Plasma Cash, a user must send some additional
information such as a coin identifier and a user address to the contract, resulting in
an overhead of 105 bytes.

Exit and Finalize Exits In order to implement the exit mechanism, Plasma contracts
require two functions, namely an initiating and finalizing Exit function.

1. Initiating Exit. In order to initiate an exit, a user first has to send an exit
request to the Plasma contract. In CommiTEE the user sends the signed balance
value to the contract to request an exit. In contrast, in Plasma MVP to initialize
an exit the user needs to send the position of the UTXO, the UTXO itself, the
signature of the UTXO, a signature confirming the inclusion of the UTXO and
a Merkle proof for this inclusion. In Plasma Cash the exit request consists of the
token to be exited, two Merkle proofs (for the current owner of the token and the
previous owner of the token [17]) together with two signatures and the position
in the Plasma chain, i.e., the epoch counter. This exit request is stored in the
contract and can be challenged while the exit phase is running.

2. Finalizing Exit. At the end of the exit phase the contract is called again, in
order to process all stored exit requests. In CommiTEE the exit finalization does
not require any additional information, however Plasma MVP and Cash require
an additional list which indicates the exit requests that should be finalized in
this epoch. This is because in Plasma MVP and Cash an exit request does not
need to be processed in the same epoch. In fact, the challenge period is usually
set to 7 days [9] in order to give honest users enough time to challenge malicious
exit requests.

Exit Challenge and Response As mentioned before, all three Plasma systems allow
parties to submit a challenge in case they suspect malicious behavior. We emphasize
that there is a fundamental difference between the challenges in CommiTEE and
Plasma MVP or Cash. In CommiTEE the users challenge the operator in case of
data unavailability, in order to exit the system. In comparison, in Plasma MVP or
Plasma Cash users issue a challenge when a malicious user attempts to steal their
coins. Furthermore, in both Plasma MVP and Plasma Cash parties need to exit in
case of data unavailability, where in Plasma MVP this must be done immediately
while in Plasma Cash users do not need to rush and it suffices to eventually exit.
Hence, in practice our protocol does not require users to monitor other user’s exits in
order to save their coins, which is a significant improvement over the other variants
of Plasma.

Finalize Finally, in both Plasma MVP and Cash the operator must submit addi-
tional information such as the Merkle root (of the Merkle tree which commits to



the transactions or coins) on the ledger. In contrast, in CommiTEE the operator
does not have to submit such a message to the contract, thus saving additionally on
communication with the ledger.

Overall, our protocol substantially reduces the communication complexity with
the ledger. In order to evaluate our implementation, we estimated the gas costs for
deposits, exits in the honest and malicious cases and for the finalization. We also
analyzed the size of the parameters that are needed to call the different functions
on the contract and compared them to other implementations (Plasma MVP and
Plasma Cash). The overview of our results can be found in tables 1 and 2.

Table 2 shows the comparison of the message size in bytes for each of the protocols
CommiTEE, Plasma MVP and Plasma Cash and for each respective phase of an
epoch.

Function CommiTEE MVP Cash

Deposit 0 0 105

Exit 117 ≥ 266 ≥ 449 · n
Exit Challenge 20 ≥ 323 ≥ 253

Exit Response 117 - ≥ 285

Epoch Finalize 0 32 64

Table 2: Sizes in bytes. Only counting function parameters, while abstracting from
constant transaction size. n represents the balance of a user in Plasma Cash.

7 Extensions to CommiTEE

In this section, we discuss two extensions to CommiTEE , namely how to support
multiple operators and how to deal with TEE compromise. Both extensions signifi-
cantly increase security and applicability of CommiTEEas users can continue using
the system even in presence of a malicious operator or a compromised TEE.

7.1 Supporting Multiple Operators

Most previous works on commit-chain or Plasma protocols [9, 10, 24] assume that
only one operator maintains the system as multi-operator support would either
require to establish consensus among all operators on the latest state of the system,
or it would require users to publish the latest state of the system on-chain. The
first approach introduces huge communication overhead on the operators and also
requires an honest majority assumption among the operators. The second approach,
however, is not much different to requiring all users to exit the protocol and deposit
their coins into a new Plasma system.

By leveraging a TEE, CommiTEE can support multiple operators and avoid the
above mentioned challenges. In our solution the backup operators (i.e., all operators
except for the currently active one) remain idle until the active operator is deemed
malicious by the contract Γ .



We now elaborate on how to extend our system to a multi-operator setting. For
simplicity, we consider the setting of two operators, as it is straightforward to extend
our approach to more than two operators. Assume O1 is the active operator, while
O2 is a passive backup operator. Upon setup of the contract Γ , O1 and O2 register
their public keys in a list L in the contract, such that O1’s public key is the first
element in L. O1 acts as described in our protocol description from Section 5; O2

on the other hand only needs to monitor Γ every epoch to check if Γ marks O1 as
malicious. As long as O1 is not marked as malicious, O2 can stay inactive.10

However, when Γ announces O1 as malicious, it extracts the public key of O2

from L (i.e., the next element in L) and registers O2 as the next active operator. The
contract additionally removes the public key of O1 from L. Upon being announced
as the new active operator, O2 first has to send a confirmation message to Γ within
a pre-defined time period ∆. If Γ does not receive this confirmation from O2 within
∆ time, then all users have to exit the system as described in the exit protocol of
CommiTEE by submitting the message (exit, (vi, epochE, pki), σi)) to Γ .

11

Otherwise, if O2 confirms the operator switch, users have two options, namely
either to exit or stay in the system. In the latter case, users first verify that the
enclave in O2’s TEE has been initialized correctly (i.e., that the correct program is
installed on the TEE of O2), as described in Section 5.2. Upon successful verification,
each user Pi signs and sends the message ((swapO, (vi, epochE, pki), σi), σpki) to O2,
where the tuple ((vi, epochE, pki), σi) represents the user’s balance in epoch epochE
and σpki is a signature under Pi’s public key pki. Note that this tuple also contains
a valid signature σi of O1’s TEE which serves as proof for Pi’s balance in epoch
epochE.

Upon receiving these messages, O2 (by using its TEE) checks if the signatures σi
and σpki are valid under the public key of O1’s TEE and pki respectively. If so, the
TEE stores the balance of this user and outputs a message ((vi, epochE, pki), σi

′) to
Pi, where σi

′ is a valid signature with respect to the public key of O2’s TEE. Nat-
urally, if the user does not receive this message from O2 (i.e., O2 is also malicious),
she submits the exit message (exit, (vi, epochE, pki), σi) to Γ .

At the end of this epoch, O2 forwards the list of parties who exited on Γ to its
TEE. The TEE checks if any of the users who agreed to swap the operator have
exited and if so deletes their information. Note that a party cannot exit twice (by
submitting both ((vi, epochE, pki), σi) and ((vi, epochE, pki), σi

′)) because Γ does not
allow the same pki to exit twice.

7.2 Handling TEE Compromise

Naturally the security of our protocol relies on the security of the TEE. However,
by making some modifications, it is possible to detect if the TEE was compromised
in certain situations.

10 We emphasize that O2 does not need to interact with O1 at any stage of the protocol.
11 Note that if there was a third operator in L, the contract would register her as the next active operator.



We consider a situation where the party’s expected final balance is different from
what she has received from the operator. In this case either the operator did not
forward some transactions to the TEE or the TEE has been compromised.

This extension requires that a transaction in CommiTEE is signed by both,
the sender and the receiver. Under this requirement an honest user Pi can compute
her final balance vi,e after the transaction phase of an epoch e, since she knows the
list of transactions TX i,e consisting of all transactions that she sent and received in
epoch e and she knows her starting balance vi,e−1 from the previous epoch. As such,
if Pi receives a final balance ṽi,e ̸= vi,e from the operator after the transaction phase,
she can draw one of the following conclusions: (1) the operator did not forward
some transactions in TX i,e to the TEE or (2) the integrity of the TEE has been
compromised12. As mentioned before, the former case is a form of data unavailability
attack from the operator, which cannot be prevented. However, Pi can distinguish
cases (1) and (2), as she is able to compute all possible combinations of transactions
in TX i,e and check if any of these combinations results in the balance ṽi,e. In case
she finds such a combination, she concludes that case (1) happened (notice that even
if this was a result of a compromised TEE, the effect is the same as in case of a data
unavailability attack). Otherwise, Pi concludes that the TEE must be corrupted.13 In
this case, the user can challenge the operator on-chain, which requires the operator
to publish the set of transactions which results in the final balance ṽi,e as output by
the TEE. If the operator cannot do so, the contract Γ announces that the TEE has
been compromised and users can switch to another operator as described in Section
7.1. If the operator can answer the challenge correctly, then the user maliciously
challenged the operator.

While this solution works well for applications with moderate transaction rate per
epoch, it does not scale to use cases with high transaction frequency per epoch as the
computation of all possible final balances grows significantly with large transaction
sets.

7.3 Conclusion

In this work we have designed CommiTEE, an efficient and secure Plasma proto-
col which requires minimum on-chain interaction. By using zero-knowledge proofs,
the on-chain cost of the most prominent existing Plasma solution NOCUST-ZKP
increases by a factor of 19 when compared to our protocol. Furthermore, compared
to other well-known protocols such as Plasma MVP or Cash our protocol reduces
the on-chain communication complexity by at least 2 times (and in some cases
more than 16 times). As an additional contribution, we present the first model for
Plasma/Commit-Chain protocols, which paves the way for rigorous security analyses
of existing and future Plasma protocols.

Finally, we have shown how to extend CommiTEE in order to incorporate mul-
tiple operators in the system, which allows users to switch from a malicious operator
to an honest one. Our approach does not require the operators to run a consensus

12 We assume that all transactions in TXi,e are valid.
13 This follows from the fact that the operator cannot forge signatures under the Pi’s public key.



mechanism, in fact the backup operators do not need to communicate with the ac-
tive operator at all. This extension improves the usability of CommiTEE in case
the active operator acts maliciously, crashes or loses connection.

We are convinced that our results will not only affect the huge landscape of
Plasma (Commit-Chain) protocols but also proves that it is indeed possible to design
efficient and practical Commit-Chain protocols.

There are multiple directions in which our work can be extended. As the tech-
nology of TEEs gets more and more mature and ready for widespread use, it might
be interesting to consider a Plasma protocol where not only the operators but also
all users operate a TEE. This might be a great way to reduce blockchain interaction
even further or to provide even stronger security guarantees. Furthermore, consid-
ering a Plasma/Commit-Chain protocol that supports executing smart contracts
off-chain is an interesting direction for future work.
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A Enclave Code

In this section, we present the enclave program pseudo-code corresponding to the
explanation in section 5.3. The protocol pseudo-code was already provided in Figure
2 and the enclave pseudo-code can be found in Figure 3.

B Formal Properties

B.1 Formal Properties

In this section we formally define the properties that a Plasma protocol must satisfy.

First let us define some notation. We denote the set of honest parties as H ⊆
P ∪ {O}, the set of all finished epochs is referred to as E and a single epoch from
the set in the set of finished epochs is denoted as ε ∈ E . The formal definition of
the properties depend on the input and output of the users during each phase of
the epochs. Therefore, we use the following notation for a protocol execution. Note
that for the protocol description we omitted mentioning these input output behavior
(which is only required in our security analysis) for clarity and in order to be concise.

Protocol execution

A protocol is executed between the users, the operator, and the contract. Therefore,
we consider every protocol as a n + 2 party protocol π where n denotes the total
number of users. For every protocol we first define an input domain Din-π. This
domain specifies which values may be used as inputs to the protocol. Similarly we
use an output domain Dout-π which specifies the possible outputs for a protocol
execution.

In order to model the presence of an adversary A who can corrupt parties, we
introduce the following notation for a protocol execution during an epoch ε similar
to the notation used in [15].

(O, accnew,Pnew)← REALπ,A,ε(I, acc
old,Pold)

I ∈ Dn
in-π is the input vector and I[i] is the input of Pi ∈ P . O ∈ Dn+2

out-π is defined
analogously where O[O] and O[Γ ] defines the output of the operator and contract
respectively. Note that parties may have a set of inputs or outputs (e.g., a party
might make multiple transactions in an epoch). accnew, accold denote the balance
vectors before and after the protocol execution. Concretely accold[i] defines the bal-
ance of Pi before the protocol execution. The values Pold and Pnew denote the set
of parties in the Plasma network before and after the protocol execution.

Let us now define the input and the output behavior for the deposit, transaction,
and exit phases.



CommiTEE ’s Enclave Code

Variable Description

msk,mpk TEE master secret and public keys
skE , pkE Enclave secret and public keys for CommiTEE
s Name of the next function that can be called
v List of user’s balances
vE List of signed user’s balances
P Set of users
epochE E’s Epoch counter
bcp Blockchain checkpoint stored on E

Algorithm 1 Enclave Program pCT

Key Generation, Deposit Transaction
and Exit Phases

1: s = keyGen
2: procedure genKeys(κ)
3: if s = keyGen then
4: (skE , pkE)← Gen(1κ)
5: σE ← Sign(msk; pkE)
6: v := []
7: vE := []
8: P := ∅
9: epochE := 0
10: s := deposit
11: return (pkE , σE)
12: end if
13: end procedure
14: procedure deposit(b̄ =

(bl, ..., bl+t, ..., bl+t+k))
15: if VrfyChain(bcp, b̄) = 1 and s = deposit

then
16: Extract the deposit list DΓ from bl+t

17: for each d ∈ DΓ do
18: parse d as (deposit, pki, vi)
19: P := P ∪ {pki}
20: v[i]= v[i] + vi
21: end for
22: σE ← Sign(skE ,DΓ )
23: bcp := bl+t+k

24: s := transaction
25: return (DΓ , σE)
26: end if
27: end procedure

28: procedure process tx(TO)
29: if s = transaction then
30: for each tx in TO do
31: Parse tx as

(pki, pkj , v, epochPi , σpki)
32: if Vrfy(pki, (pki, pkj , v, epochPi)

, σpki) = 1 and epochPi + 1 = epochE and
v ≤ v[i] then

33: v[i] := v[i]− v
34: v[j] := v[j] + v
35: end if
36: end for
37: epochE := epochE + 1
38: vE := ∅
39: D := ∅
40: for each Pi ∈ P do
41: σi ← Sign(skE ; (v[i], epochE , pki))
42: vE := vE ∪ {((v[i], epochE , pki), σi)}
43: end for
44: s := exit
45: return (vE)
46: end if
47: end procedure
48: procedure exit((b̄ =

(bl, ..., bl+2t, ..., bl+2t+k)))
49: if VrfyChain(bcp, b̄) = 1 and s = exit then
50: Extract the exit list eΓ from bl+2t

51: for each (pki, ·) in eΓ do
52: v[i] := 0
53: P := P \ {pki}
54: end for
55: bcp := bl+2t+k

56: s := deposit
57: end if
58: end procedure

Fig. 3: Pseudo-code of CommiTEE ’s Enclave program.



Deposit Phase The input domain Din-d := {∅, (deposit, v)} denotes the input values
each user may provide. ∅ indicates that a user did not deposit coins during the proto-
col execution. (deposit, v) specifies the amount v which was requested as deposit. The
output domain is denoted as Dout-d := {∅, (deposited, Pi, v)} where (deposited, Pi, v)
indicates that the deposit of Pi with the amount v was processed. For simplicity we
assume that a user makes at most one deposit during the deposit phase.

Transaction Phase The input domain for the transaction phase is defined as Din-t :=
{∅, {tx}} where tx := (pki, pkj, v) denotes the transaction that party pki submitted
to O and ∅ indicates that no transaction was submitted. The output domain is de-
noted as Dout-t := {∅, {tx}} where {tx} is the set of transactions that were processed.

Exit Phase The input domain for the exit phase is defined as Din-e := {∅, (exit)}
where exit indicates that an exit was requested. The output domain is defined as
follows:

Dout-e ⊆ {(exited, Pi, v), (deposit-returned, Pi, v
′)}

With the output (exited, Pi, v) indicating that Γ processed an exit by Pi and sent
the amount v to Pi on L and (deposit-returned, Pi, v

′) indicating that Γ returned the
deposit that was made on L. The output domain of Γ can be a set of exited and
deposit-returned messages.

Correctness Properties

The correctness properties describe how the balances of the users are updated. There
are two correctness properties, namely (1) deposit and transaction phase correctness
(2) exit phase correctness

Deposit and Transaction Phase Correctness Intuitively deposit phase correct-
ness ensures that if an honest party deposits coins on the contract and the operator
is honest, the balance and the set of users is updated accordingly. Transaction phase
correctness ensures that if the sender of a transaction and the operator are honest,
the transaction is included and the user’s balance are updated accordingly. Since
Plasma protocols achieve late finality, both these properties must hold at the end of
the transaction phase. More formally we have:

For all epochs ε ∈ E , input vectors Id ∈ Dn
in-d and It ∈ Dn

in-t and balance vectors
accold, let the output of the deposit and transaction protocols be (·, accold,Pnew)←
REALπd,A,ε(Id, acc

old,Pold), (O, accnew,Pnew) ← REALπt,A,ε(I, acc
old,Pnew) re-

spectively. Furthermore, let TxsPi
⊆ O[O] be the set of transaction of the form

(pki, ·, v) (i.e., transaction sent by Pi) and let TxrPi
⊆ O[O] be the set of transaction

of the form (·, pki, v) (i.e., transaction received by Pi). If Pi,O ∈ H the following
must hold:

I[i] =O[i] = TxsPi

accnew[i] =accold[i] + x+
∑

(·,·,v)∈TxrPi

v −
∑

(·,·,v′)∈TxsPi

v′



where if Id[i] = (deposit, d) then x = d and otherwise x = 0.

Exit Phase Correctness On a high level exit phase correctness states that if an
honest party exits and the operator is also honest the balance and the user set will
be updated accordingly. This means that balance of the exiting party is set to 0 and
that the party is removed from the user set. More formally we have:

For all epochs ε ∈ E , input vectors I ∈ Dn
in-e and balance vectors accold, let the

protocol output be (O, accnew,Pnew)← REALπe,A,ε(I, acc
old,Pold), then ∀Pi ∈ H :

I[i] = exit if O ∈ H it must hold that:

accnew[i] = 0

Pnew = Pold \ {Pi}

Security

We now describe the security properties that a plasma protocol must satisfy.

Deposit Security Intuitively, deposit security states that if the deposit of an honest
user is not processed correctly, then the user receives the deposited value at the end
of the exit phase.

For all epochs ε ∈ E , input vectors I ∈ Dn
in-d and balance vectors accold, let the

protocol output be (O, accold,Pnew) ← REALπd,A,ε(I, acc
old,Pold), then ∀Pi ∈ H :

I[i] = (deposit, v) where O[i] ̸= (deposited, Pi, v), it must hold that:

(deposit-returned, Pi, v) ∈ Oe[i]

∧(deposit-returned, Pi, v) ∈ Oe[Γ ]

where Oe is the output of the protocol at the of the exit phase.

Balance Security On a high level Balance Security states that an honest user can
always either exit her balance from the current epoch or the previous epoch. We
note that if the user exits accordion to her balance from the previous epoch, she will
also receive the amount of coins that she deposited in this epoch.

For all epochs ε ∈ E , input vectors I ∈ Dn
in-e and balance vectors accold ∈ Nn,

let the exit protocol output be (O, accnew,Pnew)← REALπe,A,ε(I, acc
old,Pold), the

∀Pi ∈ H : I[i] = exit one of the following holds:

(exited, Pi, acc
old[i]) = O[i] ∈ O[Γ ]

or

exited, Pi, acc
old′ [i]) ∈ O[i]

∧(exited, Pi, acc
old′ [i]) ∈ O[Γ ]

where accold
′
[i] is the balance of the user at the beginning of the depost phase of

epoch ε.



Operator Security Operator Security states that an honest operator does not
lose the money she deposited on the contract. This implies that for any protocol
where the operator has to provide a collateral an exit mechanism to withdraw that
collateral has to be provided.

More formally, let ε0 denote the first epoch and let v denote the initial bal-
ance stored on Γ in ε0, then for all epochs ε ∈ E , input vectors I ∈ Dn

in-e and
balance vector, accold ∈ Nn, let the exit protocol output be (O, accnew,Pnew) ←
REALπe,A,ε(I, acc

old,Pold), then if O ∈ H, I[O] = exit and Pnew = ∅, the following
holds:

O[O] = (exited,O, v′) ∈ O[Γ ]

Where v′ ≥ v.

Efficiency

Protocol Efficiency Let the duration of an epoch ε ∈ E be denoted as δ. A Plasma
protocol is efficient if it holds that δ ∈ O(1) for every ε ∈ E .

C Proof of Plasma Properties

C.1 Security Analysis

In this section we argue that CommiTEE as described in section 5 satisfies the
properties defined in Appendix B. We show that the correctness, security, efficiency,
properties are satisfied (except with negligible probability) in our model.

We analyze the relevant steps of each protocol and argue why these steps result
in satisfying the required properties.

Assumptions

Let us shorty recall our assumptions and model. First we assume the adversarial
model of the Plasma framework which we introduced in section 4.1. I other words
we consider a byzantine adversary [26], a secure underlying ledger which can exe-
cute smart contracts and a stable network in which the parties are connected via
authenticated channels.

We assume that the TEE is secure as described in section 2.2. This implies that
it is infeasible for an adversary to forge a valid quote ϱ or mount any attacks which
would compromise the TEE.

Furthermore, we assume that Σ = (Gen, Sign,Vrfy), the signature scheme used
in the protocol, is existentially unforgeable under chosen message attack.

Correctness

In order to prove that our protocol satisfies correctness, we show that deposit and
transaction phase correctness and exit phase correctness are satisfied.



Deposit and Transaction Phase Correctness We will go through the execution
of deposit and transaction phases and show that deposit and transaction phase
correctness is satisfied.

When an honest user Pi deposits coins, the deposit will be included in the list
of deposits DΓ on the contract. At the end of the deposit phase the honest operator
will wait until k blocks have been published on L. k is the parameter derived from
the security parameter κ ensuring that a chain of k blocks cannot be forged by an
adversary. The honest operator will provide all blocks since the last phase to the
enclave. The enclave then stores all deposits in D and updates the set of parties as
P ∪ {pki} for each depositing user.

An honest user Pi submits transactions ((pki, pkj, v, epochPi
), σpki) only if she has

enough balance and also signs the transactions correctly. Furthermore the honest
operator stores all valid transactions in the list TO and will forward them to the
TEE. Therefore the set of transactions made by the user Pi in this phase is a
subset of the transaction which the operator outputs, in other words it holds that
I[i] = O[i] = TxsPi

. Furthermore since the operator is honest, the set of transactions
outputted by her are all processed by the TEE. Hence we have accnew[i] = accold[i]+
x+

∑
(·,·,v)∈TxrPi

v −∑
(·,·,v′)∈TxsPi

v′ where x is the amount of coins deposited by this

user during this epoch. Therefore transaction phase correctness holds

Exit Phase Correctness If an hones user submits an exit message to Γ , the exit
is added to the list eΓ by Γ . At the end of the exit phase an honest operator will
forward eΓ and the chain b confirming the exit list to the enclave. Note that in
case of an honest operator non of the challenges will remain un answered at the
end of the exit phase and therefore the operator ill not be announced malicious by
Γ . The balance on the enclave is then updated such that v[i] = 0 for each exiting
user Pi. Furthermore, the enclave will also update the set of participating parties as
P = P \ {pki}. Therefore, the requirements for exit phase correctness are fulfilled
and exit phase correctness holds.

Security

In order to prove that our protocol satisfies security, we show that Deposit Security
and Balance Security are satisfied.

Deposit Security According to the enclave program, the operator must provide
t + k blocks to the deposit function of the enclave in order to proceed to the next
phase. If the operator does so the deposit is processed correctly. However, the op-
erator can refuse to forward the blocks to the enclave which would effectively halt
the system since the enclave program would not proceed to the transaction phase
or exit phase. This means that the users will not receive their balance at the end of
the transaction phase i.e., the message vE[i] = ((vi, epochE, pki), σi), since it will not
be produced by the enclave and the operator cannot forge such a message (except
with negligible probability) because of the unforgeability of the underlying signa-
ture scheme. Therefore, the honest users will challenge the operator on-chain and



the operator cannot answer to the challenges of the honest users since she cannot
forge a message of the form ((vi, epochE, pki), σi) (except with negligible probabil-
ity). Finally, the contract will deem the operator malicious and therefore the users
will be able to exit their deposit and balance. In other words an honest user Pi

will receive vi + v′i, where vi is the initial balance of the user at the beginning
of this epoch and v′i is the value Pi deposited in this epoch. Hence, it hold that
(deposit-returned, Pi, v) ∈ Oe[i] and (deposit-returned, Pi, v) ∈ Oe[Γ ] if user Pi made
a deposit in this epoch.

Balance Security For balance security we assume that the user Pi is honest and
we require that this user receives her whole balance from the contract when exiting.
We separate our analysis in to two cases, (1) Honest operator and (2) dishonest
operator. Furthermore we do not assume that other users are honest.

Remark 1. The total amount of balances stored on the enclave after a successful
transaction phase is never greater than the funds deposited on the Plasma contract
Γ .

In order to increase the total amount of balances, the enclave has to process a
deposit. To this end at the end of the deposit phase, the operator submits the chain
b̄ which consisting of the last t+ k blocks on the ledger where the first t blocks of b̄
have to contain the requested deposit list. The security parameter k ensures that it
is infeasible for the operator to provide a valid forged chain except with negligible
probability. The enclave can hence extract all deposits from b̄ and include them in
the deposit list DΓ . The enclave does not include the same list of deposits more
than once in the same epoch. Therefore, the total balance on the enclave cannot be
greater than the funds on the contract at the end of the transaction phase.

Remark 2. If an honest user requests an exit from the Plasma contract Γ i.e., by
submitting the message (exit, (vi, epochE, pki), σi)), she will receive the value she
deposited in this epoch as part of the exit procedure.

The contract stores the deposits of the current epoch epoch in the list D. If the
operator is honest the deposits of each honest user were included in the Plasma
system and are part of the balance value vi that the user receives when exiting.
If the operator is malicious the contract sends additionally the stored deposits of
the exiting user via the ledger. Altogether an honest user Pi will receive the correct
deposit amount when exiting. In order to show that balance security is satisfied, we
analyze the case of an honest and a malicious operator.

Case 1 Honest Operator In case the operator is honest, the user Pi receives the tuple
((vi, epochE, pki), σi) at the end of the transaction phase. In order to exit the user
forwards this value to the contract which adds the exit request to the list eΓ . At the
end of the exit phase the contract will send the amount vi to Pi for each exiting user.
The correctness of vi follows from Remark 2 and the fact that TEE processes the
transactions made in this epoch correctly. As discussed in remark 1, Γ has enough
funds to send vi to Pi (note that the sum of all balances signed by the TEE is not



greater than the total balance of the contract). Lastly, since the operator is honest
she will answer all challenges submitted by other (malicious) users. Altogether we
can conclude that vi coins will be retired to the user on the ledger and vi = accold[i]
and therefore balance security is satisfied in the honest operator case.

Case 2 Malicious Operator In case of a malicious operator, the operator may deviate
from the CommiTEE protocol.

If the operator does not send the balance value to an honest user Pi, this user
will start an exit challenge. Consequently, if the operator responds to the challenge
correctly, Pi will exit as in case 1. Therefore balance security is satisfied.

However, if the operator does not respond with valid values to this or any other
challenge she is deemed malicious by the contract Γ . In this case the users exit based
on their balance from the previous epoch i.e., by submitting ((v′i, epochE−1, pki), σi).
We note that the users do have this value since otherwise they would have challenged
the operator in the previous epoch. Therefore, the amount of coins returned to the
users is v′i = accold

′
[i] = out[i] and hence balance security is satisfied.

Operator Security Since the operator does not deposit money on the Plasma
contract, operator security is trivially satisfied.

Efficiency Since all protocol phases, (namely deposit, transaction and exit phases)
of CommiTEE have a fixed constant length on Γ and the honest parties will chal-
lenge the operator and exit the system if the operator does not proceed to the next
phases on the enclave in any epoch (i.e., by not submitting the transaction list in
the transaction phase or the new blocks in the deposit and exit phase to the en-
clave), the duration of an epoch, δ is constant (δ ∈ O(1)) and efficiency is satisfied.
Note that in the situation described above users will not receive their balance value
(since it must be produced by the enclave) and as discussed before honest users will
challenge and exit the system. In other words the off-chain execution of the system
is synchronized with the epoch length that is enforced by Γ (otherwise the users
challenge and exit) and hence the duration of an epoch is constant time.


	Introduction
	Off-Chain Solutions Overview
	Off-Chain Channels
	Plasma/Commit-Chain Protocols

	Contribution and Thesis Outline

	Bitcoin Compatible Generalized and Virtual Channels
	Preliminaries
	Lightning-Style Channels
	Our Contribution On Generalized Channels
	Adaptor Signatures
	Generalized Channels

	Bitcoin Compatible Virtual Channels
	Challenges on Designing Virtual Channels Over Bitcoin
	Overview of Our Solution
	Our Concrete Instantiation of Virtual Channels

	Related Work
	Research on Payment Channels
	Adaptor Signatures Related Work

	Discussion and Future Work

	Two Party Adaptor Signatures from Identification Schemes
	Preliminaries
	Our Contribution
	From SIGID Schemes to aSIGID,R
	From SIGID Schemes to SIGID2
	From SIGID2 Schemes to aSIG2

	Related Work
	Discussion and Future Work

	Lower Bounds for Plasma Protocols
	Preliminaries
	Our Contribution
	Our Plasma Model
	Plasma Categories
	Separation result between Plasma MVP and Cash

	Related Work
	Discussion and Future Work

	CommitTee
	Our Contribution
	Background on TEEs
	Security and Efficiency Properties
	CommiTee Protocol
	Evaluation of CommiTee

	Related Work
	Discussion and Future Work

	Conclusion
	Bibliography
	Appendix Generalized Channels from Limited Blockchain Scripts and Adaptor Signatures
	Appendix Bitcoin-Compatible Virtual Channels
	Appendix Two-Party Adaptor Signatures From Identification Schemes
	Appendix Lower Bounds for Off-Chain Protocols: Exploring the Limits of Plasma
	Appendix CommiTee: An Efficient and Secure Commit-Chain Protocol using TEEs

