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Kurzfassung

Ziel dieser Arbeit war die Erzeugung eines geeigneten Ionenstrahls für spezifische Anwendungen mit
einer lasergetriebenen Ionenstrahlführung, welche im Rahmen der Laser Ion Generation Handling and
Transport (LIGHT) Kollaboration an der GSI Helmholtzzentrum für Schwerionenforschung GmbH realisiert
wurde. Zu diesem Zweck ist zunächst der Einfluss der Strahlformung auf die initialen Eigenschaften des
lasergenerierten Ionenstrahls detailliert charakterisiert worden. Außerdem wurden Gleichungen hergeleitet,
mit denen die erforderlichen magnetischen und elektrischen Feldstärken der Strahlführungskomponenten
für die zu untersuchenden Anwendungen berechnet werden können. Mit diesen Erkenntnissen ist dann
der optimale Aufbau der LIGHT Strahlführung für die folgenden drei Anwendungen ermittelt worden:

• Die Injektion des Ionenstrahls in das Schwerionensynchrotron SIS18 der GSI

• Die Erzeugung und Untersuchung von hohen Protonenflüssen

• Die Erzeugung eines geeigneten Ionenstrahls für die Messung des Bremsvermögens von dichten,
hochionisierten Plasmen

Anschließend wurden die zu erwartenden Strahlparameter für diese Aufbauten durch numerische Simula-
tionen bestimmt und experimentell überprüft.
Nach den numerischen Simulationen können mit dem derzeitigen Aufbau der LIGHT Strahlführung 3× 108
Protonen mit einer Energie von 11,4MeV in das Synchrotron SIS18 der GSI in einem Schuss injiziert werden.
Da das Synchrotron mehr als 1010 Protonen aufnehmen kann, wurden auch Vorschläge zur Erhöhung der
Teilchenzahl für diese Anwendung ausgearbeitet.
Im Hinblick auf die Erzeugung von hohen Protonenflüssen wurde in einer experimentellen Kampagne,
die im Rahmen dieser Arbeit durchgeführt wurde, ein Protonenbündel mit (7,72± 0,14)MeV und ei-
nem Teilchenfluss von (3,28± 0,24)× 108 ns−1mm−2 erzeugt. Besonders hervorzuheben ist dabei die
zeitliche Breite dieses Protonenbündels, die nur (742± 40) ps (FWHM) betrug. Außerdem ergaben die
entsprechenden Simulationen zu diesem Experiment, dass das kreuzförmige Ionenstrahlprofil in gepulsten
Hochfeld-Solenoid-Strahlführungen, welches auf dem Titelbild dieser Arbeit abgebildet ist, durch das Ma-
gnetfeld der Anschlusskabel der Solenoid-Magnete verursacht wird. Diese Ergebnisse sind in [Metternich
et al., 2022] veröffentlicht worden.
Schließlich wurde die Erzeugung eines geeigneten Ionenstrahls für die Messung des Bremsvermögens von
dichten, hochionisierten Plasmen untersucht und experimentell mit der LIGHT Strahlführung durchgeführt.
Der resultierende Ionenstrahl hatte eine Energie von (0,60± 0,02)MeVu−1 und eine zeitliche Breite von
(1,23± 0,04) ns (FWHM). Darüber hinaus konnte abgeschätzt werden, dass (2,0± 0,6)× 106 Kohlenstoff-
ionen dieses Bündels im geplanten Experiment den räumlich homogenen Bereich des zu untersuchenden
Plasmas durchdringen werden, also drei Größenordnungen mehr Teilchen als bei vorherigen Messungen
an der GSI bei einer vergleichsweise fast fünfmal kürzeren zeitlichen Bündelbreite. Die Messung des
Bremsvermögens von dichten, hochionisierten Plasmen mit den in dieser Arbeit erreichten Strahlparame-
tern sollte daher zu wesentlich geringeren Messunsicherheiten führen als bei den bisher durchgeführten
Experimenten.
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Abstract

The goal of this work was the generation of a suitable ion beam for specific applications with a laser-
driven ion beamline, which was realized within the Laser Ion Generation Handling and Transport (LIGHT)
collaboration at GSI Helmholtzzentrum für Schwerionenforschung GmbH. For this purpose, the influence
of the beam shaping on the initial properties of the laser-generated ion beam has first been characterized
in detail. In addition, equations have been derived to calculate the required magnetic and electric field
strengths of the beamline components for the applications under investigation. These findings have then
been used to determine the optimal setup of the LIGHT beamline for the following three applications:

• The injection of the ion beam into the heavy ion synchrotron SIS18 at GSI

• The generation and investigation of high proton fluxes

• The generation of a suitable ion beam for the measurement of the stopping power of dense, highly
ionized plasmas

Subsequently, the expected beam parameters for these setups were determined by numerical simulations
and verified experimentally.
According to the numerical simulations, the current setup of the LIGHT beamline can inject 3× 108 protons
with an energy of 11.4MeV into the SIS18 synchrotron at GSI in one shot. Since the synchrotron can
accommodate more than 1010 protons, proposals have also been elaborated to increase the number of
particles for this application.
With respect to the generation of high proton fluxes, in an experimental campaign that was carried out as part
of this work, a proton bunch with (7.72± 0.14)MeV and a particle flux of (3.28± 0.24)× 108 ns−1mm−2
was achieved. Of particular note is the temporal width of this proton bunch, which was only (742± 40) ps
(FWHM). Furthermore, the corresponding simulations for this experiment revealed that the cross-shaped
ion beam profile in pulsed high-field solenoid beamlines, which is shown on the cover of this thesis, is
caused by the magnetic field of the connecting cables of the solenoid magnets. These results have been
published in [Metternich et al., 2022].
Finally, the generation of a suitable ion beam for measuring the stopping power of dense, highly ionized
plasmas was investigated and experimentally performed using the LIGHT beamline. The resulting ion beam
had an energy of (0.60± 0.02)MeVu−1 and a temporal width of (1.23± 0.04) ns (FWHM). Moreover, it
could be estimated that (2.0± 0.6)× 106 carbon ions of this bunch will penetrate the spatially homoge-
neous region of the plasma under investigation in the planned experiment, i.e., three orders of magnitude
more particles than in previous measurements at GSI with a temporal bunch width comparatively almost
five times shorter. The measurement of the stopping power of dense, highly ionized plasmas with the beam
parameters achieved in this work should therefore lead to much lower measurement uncertainties than in
the experiments performed so far.
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1. Introduction

Lasers have evolved rapidly since their discovery in 1960 [Maiman, 1960]. They are now firmly established
in many sectors such as research, medicine, chemistry, construction, manufacturing and communication.
In research this new source of coherent, intense light opened up totally new chances for investigations and
the rising laser intensities from advanced techniques like Q-switching [McClung and Hellwarth, 1962]
and mode-locking [Hargrove et al., 1964] made it possible to generate and study plasma states in the
laboratories that can otherwise only be found in the stars of our universe.
With regard to the maximum achievable laser intensities, the next key innovation was the Chirped Pulse
Amplification technique (CPA) [Strickland and Mourou, 1985], which was awarded with the Nobel Prize
in 2018. With this technique, intensities higher than 1018Wcm−2 became accessible and thus also the
regime of relativistic laser-matter interactions. The irradiation of thin foil targets with such powerful laser
pulses results in the generation of protons in the MeV range [Snavely et al., 2000; Hatchett et al., 2000;
Clark et al., 2000; Maksimchuk et al., 2000] and established the new research field of laser-driven ion
acceleration.

1.1. Laser-driven ion acceleration

The cause of the resulting ion acceleration are electrons that gain energy from the relativistic laser-matter
interaction. Since the electrons are electrostatically confined to the target, they form a sheath at the targets
rear side and the resulting electric field is strong enough to field ionize and accelerate the atoms at this
position. This mechanism is designated Target Normal Sheath Acceleration (TNSA) because the ions are
directed towards the normal of the targets surface [Wilks et al., 2001].
Since then, the mechanism has been extensively studied and proven to reliably provide multi-MeV ion
bunches with a high particle flux and outstanding beam quality [Cowan et al., 2004; Hegelich et al.,
2002; Roth et al., 2006; Nürnberg et al., 2009]. It therefore offers the potential to expand the scope of
accelerators for applications and research [Cowan et al., 2004; Daido et al., 2012; Macchi et al., 2013].
This applies in particular for applications in High-Energy Density Physics (HEDP), in which they could be
used

• as a direct driver in inertial confinement fusion [Roth et al., 2001],

• for generating warm dense matter via isochoric heating [Patel et al., 2003; Snavely et al., 2007; Dyer
et al., 2008; Pelka et al., 2010],

• for the exploration of warm dense matter or hot plasma [Apiñaniz et al., 2021],

• as a new kind of ion source for conventional accelerators [Antici et al., 2011; Busold et al., 2014b],

• or as a pulsed neutron source [Roth et al., 2013].

But also in the field of radiation therapy laser-driven ion accelerators are discussed as an alternative ion
source [Masood et al., 2014; Schüller et al., 2020], as they can also efficiently accelerate carbon ions
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[Hegelich et al., 2002] and have the potential to further improve the methodology by utilizing the lately
discovered ultra-high dose rate (FLASH) radiotherapy [Hughes and Parsons, 2020; Schüller et al., 2020].
For many of the mentioned applications the initial TNSA-generated ion beam is not suitable because
of its broad energy spread, its large divergence, and the harsh background radiation environment in
the form of an ElectroMagnetic Pulse (EMP), x-rays and electrons. For this reason, laser-driven ion
beamlines with conventional accelerator elements like dipole magnets, quadrupole magnets, solenoid
magnets and plasma lenses are used in various laboratories around the world to shape the TNSA-generated
ion beam to the respective requirements [Zhu et al., 2020; Rösch et al., 2020; Brack et al., 2020; Cirrone
et al., 2020; Apiñaniz et al., 2021; Kroll et al., 2022]. In this context, an association of several German
Helmholtz institutes and universities founded the Laser Ion, Generation, Handling and Transport (LIGHT)
collaboration.

1.2. The LIGHT collaboration

The main goal of the LIGHT collaboration is to study the combination of laser-driven ion beams with
conventional accelerator components and to utilize this knowledge in order to demonstrate the potential of
laser-driven ion beamlines in applications. Therefore, in the early stages of this collaboration, the LIGHT
beamline was realized at the experimental area Z6 of GSI [Busold et al., 2014b]. This beamline is the
foundation for the investigations of this work. Its setup is shown in Fig. 1.1.

dsol,1 dsol,2 dend0

z

y

dcav,1 dcav,2

x

PHELIX

Solenoid 1 Solenoid 2

RF cavity

E1 < E2 < E3

Fig. 1.1: Schematic setup of the LIGHT beamline at the experimental area Z6 of GSI.

As can be seen, at the origin of this beamline the Petawatt High-Energy Laser system for heavy-Ion
eXperiments (PHELIX) [Bagnoud et al., 2010] is used for the ion acceleration and the energy selection
as well as the ion beam transport is performed by two pulsed, high-field solenoid magnets which were
manufactured by the high-field laboratory of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR). Due to
the availability of the accelerator infrastructure at GSI it is also possible to operate a RadioFrequency (RF)
cavity, which gives the LIGHT beamline the unique possibility to manipulate the energy distribution of the
transported, laser-accelerated ion bunches. The achieved beam parameters with the combination of the
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TNSA source, the solenoid magnets and the RF cavity at the LIGHT beamline has already led to several
publications [Busold et al., 2013, 2014b,a, 2015; Jahn et al., 2019; Metternich et al., 2022].
Meanwhile, applications with the LIGHT beamline are taking center stage. The two main applications that
are currently being pursued by the LIGHT collaboration are the measurement of the ion-stopping power in
transient plasma targets and the injection of a laser-accelerated ion beam into GSI’s heavy ion synchrotron
SIS18 (SIS18). Therefore, the main goal of this thesis is to use the LIGHT beamline to generate a suitable
ion beam for these applications. For the realization of this goal, the interaction of the magnetic and electric
fields of the beamline components with the laser-accelerated ion beam is extensively investigated in this
thesis by a comparison of theoretical predictions, numerical simulations and experimental data.

1.3. Thesis outline

This thesis is divided into two parts. In Part I, the different technologies that are used at the LIGHT beamline
and their individual implementation are explained and characterized step by step, starting with the ion
beam generation with the PHELIX laser via the TNSA mechanism in Chapter 2. After that, an introduction
to the field of beam dynamics is given in Chapter 3 as a basis for the subsequent theoretical considerations
on the transport and the longitudinal shaping of the TNSA-generated ion beams in the Chapters 4 and 5.
Then, in Part II, the investigations and results of three different applications that have been worked on in
the course of this thesis are presented, namely

• The injection of a laser-accelerated ion beam in the SIS18 (Chapter 6)

• The generation of high proton fluxes (Chapter 7)

• The generation of a suitable ion beam for stopping power experiments (Chapter 8)

Finally, Chapter 9 concludes this thesis with a summary and an outlook.
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Part I.

Shaping of laser-accelerated ion beams
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2. Properties of laser-accelerated ion beams

Within the scope of this work, only the Target Normal Sheath Acceleration (TNSA) has been used to
generate the ions at the LIGHT beamline, since it is by far the most reliable and most studied laser-based
acceleration mechanism. In the following, the theoretical basics of the TNSA mechanism are explained first
and then the TNSA source at the LIGHT beamline is characterized. Finally, also the reconstruction of a
TNSA-generated ion beam for the numerical simulations of this work is described.

2.1. Target Normal Sheath Acceleration

The following theoretical introduction is based on the information given in [Schollmeier, 2009]. More
details on the TNSA mechanism can also be found in [Gibbon, 2005; Mulser and Bauer, 2010; Macchi,
2013].
To accelerate ions with the TNSA mechanism, a laser pulse with an intensity of about 1018Wcm−2 or higher
is focused on a target, which is typically a thin foil with a thickness in the range of nano- to micrometers
(see Fig. 2.1).

Laser

Expanding
preplasma

Critical
density Random

expansion

Directed plasma
expansion

Ion Electron

Hot
electrons

Target foil

(a) (b) (c) (d)

Ez(r, z, t)

λD

Fig. 2.1: Schematic, step-by-step overview of the TNSA mechanism.

Such high-intensity pulses usually have a slow rising edge and are accompanied by prepulses and Amplified
Spontaneous Emission (ASE), which are causing a formation of a preplasma on the front side of the target.
Then, various electron heating mechanisms like
• resonance absorption [Gibbon, 2005; Mulser and Bauer, 2010],
• Brunel heating [Mulser and Bauer, 2010; Kruer, 2019] and
• j×B heating [Gibbon, 2005; Mulser and Bauer, 2010]

during the laser-plasma interaction at the critical density lead to the generation of hot electrons, which
are mainly directed towards the target. In this process, only the first electrons or those that gain enough
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energy manage to escape the target on the rear side. The other electrons are electrostatically confined
and circulate back and forth through the target, forming electron sheaths on both sides. Since initially
there is not a screening plasma at the rear side of the target, the charge separation induces an electric field
strong enough (∼ TVm−1) to ionize the target atoms on the surface by field ionization and accelerate
them to energies in the MeV range. Unless explicitly removed, there is a contaminant layer on the target
surface and the ionized hydrogen of this layer is accelerated most rapidly and efficiently due to its highest
charge-to-mass ratio. Due to the short timescale (∼ ps) and the target atoms on the rear side being initially
cold, the quality of the resulting beam is very high [Nürnberg et al., 2009; Cowan et al., 2004]. The exact
beam parameters depend strongly on the temporal profile and the intensity of the laser pulse, as well as on
the target properties. However, since these relations were not investigated within the scope of this work,
they will not be discussed further. Instead, the TNSA source of the LIGHT beamline at the experimental
area Z6 of GSI is explained and characterized in the following.

2.2. Characteristics of the TNSA source at the LIGHT beamline

To generate laser pulses with intensities above 1018Wcm−2, the Chirped Pulse Amplification (CPA) tech-
nique [Strickland and Mourou, 1985] is used by the PHELIX laser. The generation and the temporal
stretching of the laser pulse with a wavelength of 1053nm as well as its amplification by Nd:glass amplifiers
takes place in the PHELIX building. Then the laser pulse is transported to the experimental area Z6, where
it is compressed in time to ∼ 650 fs. The maximum aperture of the PHELIX laser is 28 cm, but since the
compressor gratings at Z6 can only handle a maximum beam diameter of 12 cm, the full aperture cannot
be used at Z6 in case of the short pulse operation mode. Therefore, the pulse energy is limited to 40 J to
remain below the destruction thresholds of the optics. After the Z6 compressor, the beam is transported to
the Z6 target chamber via the 100 TW beamline. For LIGHT experiments, a coated off-axis glass parabola
with a focal length of 300mm in the Z6 target chamber focuses the beam on the TNSA target. The focal
spot on the target has usually a size of 3.5µm which, in case of a laser pulse with an energy of 40 J and a
temporal length of 650 fs, results in an intensity greater than 1019Wcm−2 on the TNSA target.
In the experimental campaigns of this work, the TNSA target is typically a (5 - 10)µm thick gold or tungsten
foil, and the initial proton beam is characterized with the Radiochromic Imaging Spectroscopy (RIS). In RIS,
transparent plastic films are used that contain a polymer that turns deep blue by solid-state polymerization
in proportion to the irradiation dose received [McLaughlin et al., 1996]. These RadioChromic Films (RCFs)
usually consist of a radiation-sensitive layer (active layer) and a protective layer (passive layer), which have
a thickness of several µm. The energy deposition in the active layers of an RCF stack is therefore different
for the ionizing radiation types generated by the TNSA mechanism. The gamma rays and the electrons
penetrate the whole stack and deposit a small amount of their kinetic energy in all active layers, whereas
the accelerated ions are getting stopped in the RCF stack and, according to the Bragg curve, deposit a large
fraction of their energy in a small region. Since the energy loss per distance of a charged particle in matter
is proportional to Z2

eff of the projectile, all other ion species in the MeV range except protons are getting
stopped within the first few µm of the RCF stack. Therefore, the deposited energy of a TNSA source with
ions in the MeV range in an RCF stack with many active layers is mainly caused by protons. There is only
one exception, and this is when there is no or only a thin passive layer in front of the first active layer. In
this case, the deposited energy in the first active layer of the RCF stack is mainly caused by ion species
heavier than protons. Since the range of ions in matter can be determined very precisely [Ziegler and
Biersack, 1985], the RIS allows a complete spatial and spectral reconstruction of a TNSA-generated proton
beam in the MeV range from a single shot [Nürnberg, 2010; Schmitz et al., 2022]. In addition, the inherent
insensitivity of RCFs to ElectroMagnetic Pulses (EMP), which are generated during laser-matter interaction,
makes the RIS the most commonly used diagnostic for the characterization of laser-accelerated proton
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sources in many laboratories. Within the scope of this work, more detailed descriptions of the evaluation of
RIS data will be given on the basis of specific measurements, e.g. in the following for the characterization
of the TNSA source from an experimental campaign with the LIGHT beamline in January 2021. More
information on the distinction between types of ionizing radiation, determination of deposited energy from
RCF scans, and calibration of different RCF batches with respect to RIS can be found in [Schmitz et al.,
2022].
The configuration of the RCF stack for the TNSA source characterization in the experimental campaign
with the LIGHT beamline in January 2021 is shown in Fig. 2.2.

E3Ni NiH2Ni H2 Ni H2 Ni H2 Ni H2 Ni H2 Ni H2 E3Ni E3Ni E3Ni E3Ni E3Ni

Fig. 2.2: RCF stack configuration for the TNSA source characterization during an experimental campaign
with the LIGHT beamline in January 2021.

The first layer is a 12.5µm thick aluminum (Al) foil, the nickel (Ni) layers have a thickness of 50µm and
the RCFs are of type HD-v2 (H2) and EBT3 (E3) manufactured by the company Gafchromic. The active
layers (colored blue) of the EBT3 have a thickness of 27µm whereas the active layers of the HD-v2 only
have a thickness of 8µm. In addition, the active layers of the EBT3 is located between two passive layers
(colored white), each with a thickness of 120µm, and for the HD-v2, there is only one passive layer with a
thickness of 97µm. In the experiment, the RCF stack was placed in front of the first solenoid 40mm from
the TNSA Target. The corresponding normalized deposited energies per pixel of each active layer is shown
in Fig 2.3. Since the total deposited energy in the active layers of the same RCF type decreases for higher
penetration depths, the normalization ensures that the distribution of the deposited energy can be seen in
each active layer. The indicated energies correspond to the kinetic energies of the protons stopped in the
respective active layer.

4.3MeV 7.2MeV 9.3MeV 11.2MeV 12.8MeV 15.6MeV

17.6MeV 19.4MeV 21.0MeV 22.6MeV 24.1MeV 25.5MeV

(d
E

d
ep
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d
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) 

0

1

Fig. 2.3: Normalized deposited energies per pixel (dEdep/dA)/(dEmaxdep /dA) in the active layers of an RCF
stack from an experimental campaign which was carried out during this thesis in January 2021. The
indicated energies correspond to the kinetic energies of the protons stopped in the respective active layer.

Based on the decreasing size of the beam for higher energies, one can conclude that the initial divergence
of protons with higher energies decreases. In addition, the deposited energy in the active layers is higher
in the center of the beam than at the edge of the beam. This is mainly due to the fact that protons with
higher energies deposit a small fraction of their kinetic energy in all active layers that they penetrate.
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The total deposited energy in the active layers is shown by the black dots of the left image in Fig. 2.4. The
abrupt increase of the deposited energy at 17.6MeV is due to the fact that from this energy on the RCFs
of type EBT3 were used, which absorb more energy due to their thicker active layer. From RIS data, the
energy spectrum and the maximum divergence angle of each energy of the TNSA generated proton beam
can be determined by fits. In this procedure, the energy spectrum is not fitted to the measured deposited
energies, but is optimized so that its theoretically deposited energy, calculated by the Stopping and Range
of Ions in Matter (SRIM) code [Ziegler and Biersack, 1985], matches the measured deposited energy. For a
typical TNSA generated proton beam an exponentially decaying energy spectrum

dN

dE
=

N0

E
· exp(− E

kBT
) (2.1)

and a uniform distribution of the initial deviation angle θ in the range [0, θmax] with a quadratic dependence
of the maximum initial deviation angle θmax on the energy

θmax = a2 · E2 + a1 · E + a0 (2.2)

provides a good match to the experimental data [Schmitz et al., 2022]. In Fig. 2.4 the presented experi-
mental data are compared to the corresponding results. The obtained fit parameters (kBT,N0, a2, a1, a0)
are given in Table 2.1. Thus, the results show good agreement with the measured data.
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Fig. 2.4: The left image shows the deposited energies in the active layers of a RIS measurement from
an experimental campaign conducted as part of this work in January 2021, as well as an exponentially
decaying spectrum whose theoretically deposited energy was fitted to the measured data. In the right
image, a quadratic fit (see Equation 2.1) to the measured maximum divergence angle θmax(E) is shown.
The values obtained by the fits are listed in Table 2.1.

Table 2.1: Corresponding values of the parameters in Equation 2.1 and 2.2 which are determined by fits to
the RIS data shown in Fig. 2.3.

N0 kBT a2 a1 a0
1.61× 1011 10.35MeV -0.03 ◦/MeV2 0.34 ◦/MeV 19.71 ◦
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The deviations at higher energies than 20MeV in case of the energy spectrum indicates, that the measured
spectrum decays more rapidly from this point on. This can be remedied by using a more complex distribution
function for the spectrum. However, this will not be further investigated, since the spectrum in this energy
range has no relevance for this work and its influence on the spectrum up to an energy of 20MeV is negligible.

In the simulation studies of this work the introduced parameters kBT , N0, a2, a1, and a0 are used to
generate the ion beam at the origin of the LIGHT beamline. This process will now be explained in the
following.

2.3. Reconstruction of TNSA-generated ion beams

As the first step, an energy is assigned to each particle. As shown in the previous section, the energy
spectrum of a TNSA-generated proton beam at the LIGHT beamline can be described by

dN

dE
=

N0

E
· exp

(︃
− E

kBT

)︃
. (2.3)

Such an energy spectrum can be generated by the inverse transformation method [Devroye, 1986], so by
inverting the corresponding Cumulative Distribution Function (CDF), which in this case is

CDF(E) =
N

Ñ

∫︂ E

−∞

1

t
exp

(︃
− t

kBT

)︃
dt (2.4)

=
N

Ñ

∫︂ E

Emin

1

t
exp

(︃
− t

kBT

)︃
dt (2.5)

=
N

Ñ

[︃
Ei

(︃
− E

kBT

)︃
− Ei

(︃
−Emin

kBT

)︃]︃
. (2.6)

Thereby N is the number of particles to be generated, Ei the exponential integral, and

Ñ =

∫︂ Emax

Emin

N

E
· exp

(︃
− E

kBT

)︃
dE (2.7)

the normalizing constant. Let U[a,b] be uniformly distributed numbers in the interval [a, b], then the energy
spectrum can be generated as follows [Devroye, 1986]:

E = CDF−1(U[0,1]). (2.8)

The number of particles can be chosen freely, as well as the maximum energy Emax and the minimum
energy Emin. The maximum Emax is usually set as the cut-off Energy Ecut, but it can also be chosen smaller
if high energies are not of interest. After assigning an energy to each particle their corresponding maximal
initial divergence θmax is set with Equation 2.2.
To account for the initial beam quality, a random micro divergence ∆θ(x,y,z) as well as a random start delay
t0 can be added to each particle. Let N(x,y,z)(µ, σ

2) be normally distributed random numbers with a mean
value µ and a standard deviation σ, then the micro divergence is defined as

∆θ(x,y,z) = ∆θmax · N(x,y,z)(µ = 0, σ2 = 0.2) (2.9)

and the start delay as
t0 = U t

[0,∆tmax]. (2.10)
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Now only the source size r has to be characterized. In [Nürnberg, 2010], a real source size between
rmin=50µm and rmax=380µm, with a linear dependency on the energy was determined. These values
have been adopted for the simulation studies of this work. Then the initial values (x0, y0, z0, ẋ0, ẏ0, ż0, t0)
are assigned to each particle. Therefore, additional uniformly distributed random numbers are generated:

θ =
√︂

Uθ
[0,θmax(E)], ϕ = Uϕ

[0,2π]. (2.11)

So, θi is the initial divergence of a particle, which is energy dependent (θi ∈ θmax(E)), and ϕi ∈ [0, 2π] its
azimuth direction. With these, the transverse, initial location deviation is obtained by

|r0| = (rmax − (rmax − rmin) · E/Ecut) · θ/θmax (2.12)

and the initial location of the particle is

r0 =
⎛⎝x0
y0
z0

⎞⎠ = |r0| ·
⎛⎝cos(ϕ)
sin(ϕ)

0

⎞⎠ . (2.13)

The total initial velocity is given by the Lorentz factor

|ṙ0| = c ·
√︁

1− 1/γ2, γ =
Ẽ

m0c2
(2.14)

and the initial direction deviations are then calculated as follows:

ṙ0 =
⎛⎝ẋ0
ẏ0
ż0

⎞⎠ = |ṙ0|
⎛⎝sin (θ +∆θx) · cos(ϕ)
sin (θ +∆θy) · sin(ϕ)

cos (θ +∆θz)

⎞⎠ . (2.15)

Since many simulations of this work were performed before the evaluation of the RIS measurement shown
in Section 2.2, the parameters Ecut, kBT , a2, a1, and a0 given in [Busold, 2014] are mostly used for the
initial proton beam reconstruction in this work. Also, the micro divergence∆θmax and the start delay∆tmax
were set to zero, so the initial beam quality is assumed to be perfect. However, in the Appendix A.1 it is
exemplarily shown that within the expected deviations of these parameters no influence on the results of
the simulations in this work is to be expected.

The considerations in relation to the ion beam generation at the LIGHT beamline have thus been completed.
In the next chapter, the theoretical fundamentals of beam dynamics are presented as a basis for the following
investigations on the transport and the longitudinal shaping of the TNSA-generated ion beam at the LIGHT
beamline.
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3. Beam dynamic fundamentals

The interaction of ion beams with magnetic and electric fields is fundamental in accelerator physics.
Therefore, the terminology of accelerator physics is used throughout this thesis and will be introduced in
this chapter. For this purpose, the motion of a single particle is considered first. Then, the main properties of
ion beams with multiple particles are explained, as well as the particle tracking with numerical simulations.
Finally, in the last section of this chapter, the influence of space charge effects on the beam dynamics will
be discussed.
This chapter is based on the textbooks [Reiser et al., 2008], [Hinterberger, 2008] and [Wille, 1996], where
also more details on these topics can be found.

3.1. Coordinate system

In mathematical modeling, it is usually very practical to adapt the coordinate system to the given symmetries
of the system under consideration. Accelerator physicists therefore use a coordinate system K(x, y, s)
whose origin is co-moving with the so-called reference particle. The trajectory of the reference particle,
which is called nominal trajectory or orbit, is given by the beam guiding magnets (solenoids, dipoles,
quadrupoles, sextupoles, etc.) of the beamline. The parameter s describes the distance traveled along the
nominal trajectory and thereby determines the instantaneous position of the coordinate system. Therefore,
the description of a single particle trajectory r(s) only requires the relations x(s) and y(s)

r(s) = r0(s) + x(s)ux(s) + y(s)uy(s) (3.1)

with the unity vectors ux and uy. In this context, the coordinates x and y are called radial and axial location
deviation, or horizontal and vertical location deviation if the magnetic mid-level and the horizontal plane
coincide [Hinterberger, 2008].
For a complete characterization of a particle in the six-dimensional phase space and the determination of
its trajectory, four additional parameters must be specified. In accelerator physics these are usually the
vertical and horizontal direction deviations (x′, y′), the longitudinal location deviation l, and the momentum
deviation δ, which are defined as follows:

x′ =
dx

ds
, y′ =

dy

ds
, l = −v0(t− t0), δ =

p− p0
p0

. (3.2)

Thereby v0 is the velocity, t0 the time of flight and p0 the momentum of the reference particle. The
coordinate system Kcurv(x, y, s) is curvilinear. For some considerations it is reasonable to define a normal
(right-handed, Cartesian), co-moving coordinate system Kcart(x, y, z) locally. The two coordinate systems
are shown in Fig. 3.1.
The main difference between these two systems is the line element [Hinterberger, 2008]:

drxys = uxdx+ uydy + us(1 + hx)ds,

drxyz = uxdx+ uydy + uzdz.
(3.3)

13



O
r

s

ρ0
z

x

y

dr

Fig. 3.1: Relation between a curvilinear coordinate systemKcurv(x, y, s) and a Cartesian coordinate system
Kcart(x, y, z) [Hinterberger, 2008].

The parameter h = 1/ρ0 is the curvature of the nominal trajectory (see Fig 3.1) and therefore a function of
s. It applies, that us = uz and z′ = 1 + hx, so the systems are identical if h = 0. Since this is always the
case in this thesis, further on the following relations are always valid:

dx

dz
=

px
pz

=
x′

z′
= x′,

dy

dz
=

py
pz

=
y′

z′
= y′.

(3.4)

Furthermore, x′ and y′ have typically small values which allows their specification by an angle deviation in
paraxial approximation

θ ≈ tan θ =
dx

dz
= x′,

φ ≈ tanφ =
dy

dz
= y′.

(3.5)

This results in a very useful mnemonic for the unit mrad, which is
mrad = mm/m. (3.6)

Even though the divergence of the laser-accelerated ion beam in this thesis has a half opening angle
of up to 500mrad, due to the limited aperture of the beamline components, ions with large direction
deviations are not transported, and therefore this assumption is largely fulfilled. In contrast, dealing with
the relative momentum deviation δ is inconvenient, since it is typically given in promille (‰), which is
not suitable in relation to laser-accelerated ion beams. Therefore, instead of the momentum deviation δ
and the longitudinal location deviation l, the kinetic energies Ekin and the Time of Flight (ToF) t of the
particles is specified most of the time. To conclude, here are the parameters with their respective units,
that are used in this thesis to characterize particles:⎛⎜⎜⎜⎜⎜⎜⎝

x
x′

y
y′

t
E

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

horizontal location deviation
horizontal direction deviation
vertical location deviation
vertical direction deviation

time of flight
kinetic energy

⎞⎟⎟⎟⎟⎟⎟⎠ , in

⎛⎜⎜⎜⎜⎜⎜⎝

mm
mrad
mm
mrad
ns

MeV

⎞⎟⎟⎟⎟⎟⎟⎠ . (3.7)
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3.2. Multipole expansion

Now the influence of a magnetic field on a charged particle will be considered. If a magnetic field
B = (0, By, 0) acts on a charged particle with the velocity v = (0, 0, vs) the Lorentz force is balancing the
centrifugal force which leads to

1

ρ0(x, y, s)
=

q

p
By(x, y, s) (3.8)

with the momentum p = mvs and the charge q of the particle. The fact that the curvature radius ρ0(x, y, s)
is usually small compared to transverse coordinates (x, y) allows the multipole expansion of the magnetic
field By in the vicinity of the nominal trajectory [Wille, 1996]:

q

p
By(x) =

q

p
By0 +

q

p

dBy

dx
x+

1

2!

q

p

d2By

dx2
x2 +

1

3!

q

p

d3By

dx3
x3 + ... (3.9)

Designation, definition and principal effect of the individual multipoles on the motion of the beam are
shown in Table 3.1. It is technically feasible to generate magnetic fields with particular multipole strengths
in the region of the beam. These magnets are named accordingly (dipole magnets, quadrupole magnets,
etc.).

Table 3.1: Designation, definition and principal effects of the individual multipoles in an accelerator,
according to [Wille, 1996].

Multipole Definition Effect

Dipole 1
ρ0

= q
pBy0 Beam steering

Quadrupole κ = q
p
dBy

dx Beam focusing

Sextupole m = q
p
d2By

dx2 Chromaticity compensation

Octupole o = q
p
d3By

dx3 Field errors or field compensation

In linear beam optics, only dipole and quadrupole fields are considered and higher order terms are
neglected. With this simplification and additional assumptions, some fundamental concepts and quantities
of accelerator physics, such as the betatron oscillation and the beam emittance, can easily be derived,
which will be done in the following.

3.3. Linear equation of motion

The linear equations of motion form the basis for the calculations in linear beam optics. Therefore, their
derivation is briefly described in the following. The given information are based on [Wille, 1996], in which
the deviation is shown in more detail.
In case of a magnetic field B = (Bx, By, 0) the Lorentz equation leads to
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r̈ = q

m
(ṙ × B⃗) =

q

m

⎛⎜⎜⎜⎝
−(1 + x

ρ0
)ṡBy

(1 + x
ρ0
)ṡBx

x′ṡBy − z′ṡBx

⎞⎟⎟⎟⎠ . (3.10)

A more general equation of r̈ is obtained by calculating the second derivative of Equation 3.1:

r̈ =

⎛⎜⎜⎜⎝
x′′ṡ2 + x′s̈− (1 + x

ρ0
) ṡ

2

ρ0

y′′ṡ2 + y′s̈

2
ρ0
x′ṡ2 + (1 + x

ρ0
)s̈

⎞⎟⎟⎟⎠ . (3.11)

So it is assumed that the nominal trajectory only has a curvature in the x-z plane. Since the particles are
generally moving with relativistic velocities, the change in the longitudinal velocity is negligible. Therefore,
only the transverse components are considered and s̈ ≈ 0. Combining the Equations 3.10 and 3.11 leads to

x′′ − (1 +
x

ρ0
)
1

ρ0
= −v

ṡ

q

p
By(1 +

x

ρ0
),

y′′ =
v

ṡ

q

p
Bx(1 +

x

ρ0
).

(3.12)

Further, assuming that δ ≪ 1, x ≪ ρ0 and y ≪ ρ0, as well as only considering the terms of the multipole
expansion for the dipole and the quadrupole strength ( qpBy = 1

ρ0
− κx, qpBx = −κy), one obtains the linear

equation of motion

x′′(s) +

(︃
1

ρ20(s)
− κ(s)

)︃
x(s) =

1

ρ0(s)

∆p

p
,

y′′(s) + κ(s)y(s) = 0.

(3.13)

With these, a matrix formalism can be derived, which is a very practical tool for calculating the trajectories
for a system with many components. The equation of motion and the matrix formalism can be also extended
up to the higher orders [Hinterberger, 2008]. But this, as well as the matrix formalism itself, will not be
discussed as it was not used in the context of this thesis. Information on these topics can be found in [Wille,
1996] and [Hinterberger, 2008]. Instead, the equation of motion are used in the next section to introduce
some essential concepts for ion beams with multiple particles.

3.4. Phase space ellipse and Liouville’s theorem

The equations of motion (Equation 3.13) in case of a straight orbit (1/ρ0 = 0) and a particle that has the
nominal momentum (∆p/p = 0) leads to Hill’s equation

x′′(s)− κ(s)x(s) = 0. (3.14)

A valid solution of this differential equation is an oscillation around the orbit [Wille, 1996]:

x(s) =

√︂
ε β̂(s) cos(Ψ(s) + ϕc), (3.15)
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which is called betatron oscillation. Thereby β̂(s) is the beta function, ε the emittance,
√︂
εβ̂(s) the envelope

of the particle beam, ϕc the constant of integration and

Ψ(s) =

∫︂ s

0

ds̃

β̂(s̃)
(3.16)

the phase advance. Inserting Equation 3.15 in its derivative x′(s) and defining

α̂(s) := − β̂(s)′

2
(3.17)

as well as
γ̂(s) :=

1 + α̂(s)2

β̂(s)
(3.18)

results in an ellipse equation in phase space [Wille, 1996]:
A

π
= γ̂(s)x2(s) + 2α̂(s)x(s)x′(s) + β̂(s)x′2(s) = ε. (3.19)

x

x′

−α̂
√︂

ε
γ̂

−α̂
√︂

ε
β̂

√︂
εβ̂

√︂
ε
γ̂

√︂
ε
β̂

−
√
εγ̂

A = πε

Fig. 3.2: Illustration of the x-x′ phase space ellipse given by the Courant-Snyder parameters.

The form and the orientation of the ellipse in x-x′ phase space is given by α̂(s) and β̂(s) or γ̂(s), which
are called Twiss or Courant-Snyder parameters (see Fig. 3.2). They can, like x(s), be evolved stepwise
through a system with many components. Thereby the area of the ellipse, which is proportional to the
emittance, remains constant. This follows from Liouville’s theorem, which states that every volume element
in phase space is constant in time, as long as the particles obey only the canonical equations of motion. In
the context of linear beam optics this condition is always fulfilled, which means that for a given emittance,
the beam envelope at any position can be calculated via the evolution of the Twiss parameter along s.
However, the following effects can cause a deformation of the ellipsoid shape of the beam as well as a
redistribution of the particles [Reiser et al., 2008]:
• Chromatic aberrations
• Spherical aberrations
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• Magnetic field errors
• Misalignment of beamline components
• Collisions between the particles of the beam and gases or foils in the beamline
• Random kicks due to RadioFrequency (RF) noise and mechanical vibrations
• Nonlinear space charge effects

This raises the question, how the emittance of randomly distributed particles with a non-ellipsoid shape is
determined. Therefore, a statistical definition of the emittance is now introduced, which is most commonly
used in accelerator physics.

3.5. Statistical definition of emittance

First, the advantages of a statistical definition of emittance will be explained using the example of the
change in directional deviation of a monoenergetic beam by a solenoid magnet with spherical aberration.
The initial beam is divergent and represents a perfect ellipse in the x-x′ phase space, like the blue beams in
Fig. 3.3.
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Fig. 3.3: Illustration of a divergent, uniformly distributed beam (blue beam Fig. 3.3a) and a divergent,
Gaussian distributed beam (blue beam Fig. 3.3b) in the x-x′ phase space. These beams are rotated in
phase space by a solenoid magnet (red beams). Thereby the phase space area, that is enclosed by the
beam, remains constant, according to Liouville’s theorem. But due to the spherical aberration of the
solenoid, the elliptical shape of the beams is lost. The area of an ellipse that can enclose the red beams
therefore increases, which is indicated by the black dashed ellipses.

The direction deviation caused by the solenoid is [Reiser et al., 2008]:

∆x′ = −x

f
− Cs · x3, (3.20)

with the focal length f and the spherical aberration coefficient Cs of the solenoid magnet, which will both
be considered in more detail in Section 4.2. So the solenoid rotates the ellipse in the x-x′ phase space and
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according to Liouville’s theorem, the phase space area, that is enclosed by the beam, remains constant. But
due to the spherical aberration of the solenoid, the beam quality deteriorates since the elliptical shape of the
beams is lost (red beams in Fig. 3.3). To reflect the degradation of the beam quality, the emittance can be
defined by the area of an ellipse that can enclose the whole beam (black dashed ellipses in Fig. 3.3). This
definition is well suited for verifying whether the entire beam can be transported by a beamline, provided
the acceptance of the beamline is known. But this definition also has its drawbacks, since generally it is
difficult to find a uniform criterion for the edge or boundary of a particle beam. Furthermore, this definition
does not distinguish between different particle distributions, so the beam quality of the red beams in
Fig. 3.3a and 3.3b would be identical even though the particles of the Gaussian distributed beam (Fig. 3.3b)
are more clustered around their center.
Therefore, the Root Mean Square (RMS) emittance of the beam is specified most of the time, which is
determined by the variance-covariance matrix:

εRMS = ε1σxx′ =

⌜⃓⃓⃓
⎷

⃓⃓⃓⃓
⃓⃓ ⟨x · x⟩ ⟨x · x′⟩

⟨x′ · x⟩ ⟨x′ · x′⟩

⃓⃓⃓⃓
⃓⃓ = √︁

⟨x2⟩⟨x′2⟩ − ⟨x · x′⟩2. (3.21)

In some textbooks the emittance is defined as the area of the ellipse Axx′ = Exx
′ = πε1σxx′ . The unit

πmmmrad is an indication for this with the pleasant side effect that the valuesExx
′ and ε1σxx′ are comparable

without having to multiply either of them by π or 1/π. The RMS emittance is refereed to as the 1σ-emittance
and the nσ-emittance (n ∈ [1, 2, 3]) is simply defined as

εnσxx′ = n2ε1σxx′ . (3.22)

For ion beams, the 2σ-emittance is preferred, which is called effective RMS emittance and is used most of
the time in this thesis. For a beam with an elliptical, Gaussian distributed particle distribution in phase
space, the effective (2σ) emittance contains 86.47% of the particles and the 3σ emittance 99.73%. In this
particular case the 3σ emittance therefore corresponds to the enclosed area as can be seen in Table 3.2 in
which the emittance and the enclosed area of the beams shown in Fig. 3.3 are given.

Table 3.2: Emittance ε3σxx′ and enclosed phase space area of the beams and ellipses shown in this Fig. 3.3.

Beam ε3σxx′ in mmmrad Enclosed area in πmmmrad

Blue uniform beam (Fig. 3.3a) 399 180
Red uniform beam (Fig. 3.3a) 518 180
Black ellipse (Fig. 3.3a) - 422

Blue Gaussian beam (Fig. 3.3b) 180 180
Red Gaussian beam (Fig. 3.3b) 238 180
Black ellipse (Fig. 3.3b) - 422.28

In Table 3.2 it can also be seen that aberrations as well as different particle distributions are reflected by the
RMS emittance, which makes this parameter a suitable quantity to describe the beam quality. In addition,
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the definition of the RMS emittance can also be extended to the six-dimensional phase space:

(︁
ε1σ6D

)︁2
=

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓

⟨x · x⟩ ⟨x · x′⟩ ⟨x · y⟩ ⟨x · y′⟩ ⟨x · l⟩ ⟨x · δ⟩

⟨x′ · x⟩ ⟨x′ · x′⟩ ⟨x′ · y⟩ ⟨x′ · y′⟩ ⟨x′ · l⟩ ⟨x′ · δ⟩

⟨y · x⟩ ⟨y · x′⟩ ⟨y · y⟩ ⟨y · y′⟩ ⟨y · l⟩ ⟨y · δ⟩

⟨y′ · x⟩ ⟨y′ · x′⟩ ⟨y′ · y⟩ ⟨y′ · y′⟩ ⟨y′ · l⟩ ⟨y′ · δ⟩

⟨l · x⟩ ⟨l · x′⟩ ⟨l · y⟩ ⟨l · y′⟩ ⟨l · l⟩ ⟨l · δ⟩

⟨δ · x⟩ ⟨δ · x′⟩ ⟨δ · y⟩ ⟨δ · y′⟩ ⟨δ · l⟩ ⟨δ · δ⟩

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
≈

(︁
ε1σxx′ · ε1σyy′ · ε1σlδ

)︁2
. (3.23)

Thereby δ is the momentum deviation and l the longitudinal location deviation as defined in Section 3.1.
The approximation in Equation 3.23 is valid if there are no correlations between the vertical, horizontal
and longitudinal coordinates of the beam, which is in general the case [Hinterberger, 2008]. However, this
does not mean that the momentum of the particles has no effect on the emittance. The interrelationships
will be briefly explained in the following.

3.5.1. Emittance and particle momentum

In the following, the influence of the particles’ momentum on the emittance in different phase spaces
and subspaces is considered. To distinguish between the phase space described by (x, px, y, py, z, pz) and
(x, x′, y, y′, l, δ), the latter is often times referred to as trace space in literature. The trace space area Axx′ is
related to the projection of the phase space volume in the x-px-plane by [Reiser et al., 2008]:

Axx′ =
1

ps

∫︂∫︂
dx dpx =

1

βγmc

∫︂∫︂
dx dpx. (3.24)

So if there is an energy transfer (βγ ̸= const), the trace space area Axx′ and, in implication, the emittance
εxx′ would change. To circumvent this effect, the normalized emittance εn,xx′ is used

ε2σxpx = ε2σn,xx′ = β̄γ̄ε2σxx′ = 4β̄γ̄ε1σxx′ (3.25)

with the mean values of the relativistic quantities β̄ = v̄total/c and γ̄ = Ē/(m0c
2) + 1. It is therefore

important, that the normalized emittances are referred to when two particle beams with different mean
energies are compared.
A momentum distribution can also affect the transverse particle beam profile. This occurs when the beam
is projected onto an x-y plane at a specific point along the nominal trajectory which, for example, is done
when measured and simulated beam profiles are compared. In linear beam optics a simple drift with the
length Ld will change the horizontal location deviation x and the longitudinal location deviation l (see
Section 3.1) of a particle as follows:

x = x0 + Ldx
′, l =

δ

γ2
Ld. (3.26)

A detector on the x-y-plane would however measure the horizontal location deviation

x̂ = x0 + (Ld + l)x′ = x0 + (1 +
δ

γ2
)Ldx

′. (3.27)

For δ = 0 the emittance εx̂x′ would remain constant, and therefore it changes in case of δ ̸= 0 for an
increasing drift length Ld. Since typically the momentum deviation is quite small (δ ≪ 1) this effect can
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usually be neglected. However, it should be noted that in this work the ion beam is always projected onto
the x-y plane at a particular point along the nominal trajectory.
The RMS emittance was thus found to be a suitable parameter for quantifying the beam quality. To
investigate the extent to which the ion beam shaping at the LIGHT beamline changes the emittance, the
trajectories of the particles are determined numerically in this thesis. This will now be discussed in the
following section.

3.6. Particle beam tracking with the MATLAB ODE solver

In general, accelerator simulation codes can be classified into two types: matrix codes and numerical
field models [Kalvas, 2014]. Matrix codes use the analytical transport matrices for each accelerator
element up to a given order and combine them to create a comprehensive mathematical description of the
accelerator through which the particles can then be tracked. This approach is particularly well suited for
large accelerator structures with many elements of the same type. In numerical simulations, the three-
dimensional electromagnetic field of each element is determined and the particle tracking through those
fields is then achieved by finite element modelling. Since the LIGHT beamline consists of only five elements
(two solenoids and three accelerating gaps) and it should also be possible to investigate the influence of
different magnetic field distributions of the solenoids on the particle beam, the numerical approach was
chosen for this work. The trajectories of the particles are only changing due to electromagnetic forces and
can therefore be fully explained by the Lorentz equation [Demtröder, 2013]:

F =
d

dt
(γm0ṙ) =

d

dt

⎛⎜⎜⎝ m0ṙ√︃
1−

(︂
ṙ
c

)︂2

⎞⎟⎟⎠ = q (E+ ṙ× B) . (3.28)

Thereby γ is the Lorentz factor, c the speed of light, E the electric field, B the magnetic field, m0 the resting
mass, ṙ the velocity and q the charge of the ion. The numerical solving of this differential equation is
done with the MATLAB Ordinary Differential Equation (ODE) suite [Shampine and Reichelt, 1997]. The
ODE suite is capable to solve first-order equations with various Runge–Kutta methods [Rannacher, 2017].
Therefore, the Lorentz equation has to be rewritten to a first-order equation. The substitutions

x1 = x, x2 = ẋ, y1 = y, y2 = ẏ, z1 = z, z2 = ż, (3.29)
are leading to the following first-order equations:

x2̇ =
q

γm
· ((y2 ·Bz − z2 ·By) + Ex) ,

y2̇ =
q

γm
· ((z2 ·Bx − x2 ·Bz) + Ey) ,

z2̇ =
q

γm
· ((x2 ·By − y2 ·Bx) + Ez) .

(3.30)

In the presence of an electric field E it has to be considered that the Lorentz factor is time dependent
(γ = γ(t)) which is taken into account by recalculating it for each step. For the simulations in this work,
the Dormand–Prince method [Dormand and Prince, 1978, 1980] is used. It is an adaptive Runge–Kutta
method that calculates the fourth- and fifth-order accurate solution for each step and if the deviation
between these two solution is too large, the incremental step size is decreased. For the simulations shown
in this thesis, a relative tolerance of 10−5 and an absolute tolerance of 10−8m is used.
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With the MATLAB ODE solver and the initial ion beam parameters (see Section 2.3), the trajectories of the
particles can be determined for arbitrary electric and magnetic fields and thus also the influence of these
fields on the beam quality. However, at its current state the simulation code does not take into account the
self-generated electric and magnetic fields of the particles, which can influence the beam dynamics at very
high particle fluxes. Therefore, in the final section of this chapter, the main effects of these self-generated
fields are discussed.

3.7. Space charge effects

The forces on the particles of the beam due to their self-generated fields, referred to as space charge effects,
cannot be neglected, especially for high particle fluxes. In the following, the most important information
regarding the influence of space charge effects on the beam dynamics are provided. This section is based
on [Reiser et al., 2008] where also more details on this topic can be found.
Space charge effects can be described by the sum of a "collision" force and a "smooth" force. The collision
force is the interaction of the particles with their immediate neighbors, which causes statistical fluctuations
in the particle distribution. In contrast, the smooth force raises from a collective potential of the beam
and ultimately leads to a defocusing or an acceleration. To estimate the relative importance of these two
effects, the particle beam can be considered as a non-neutral plasma, which exhibits a similar collective
behavior as a neutral plasma. Thus, a local perturbation in the charge distribution of a beam with transverse
temperature T and density n, confined by external focusing fields, will be screened off in a distance
corresponding to the Debye length

λD =
v̂x
ωp

=

(︃
ϵ0kBT
q2n

)︃1/2

. (3.31)

Thereby, v̂x is the transverse RMS velocity and ωp the plasma frequency. If the Debye length is large
compared to the beam radius (λD ≫ r0), the single particles are not screened and collisions will lead to
statistical fluctuations of the particle distribution. However, for the beam parameters achieved in this thesis
as well as for most beams of practical interest, the Debye length is small compared to the beam radius
(λD ≪ r0) and therefore collective effects will dominate [Reiser et al., 2008].
The collective effects are mainly leading to a defocusing force as well as an acceleration of the particles. By
assuming a cylindrical beam cross-section with a homogeneous particle density ρ, the focusing strength
caused by collective space charge effects is [Reiser et al., 2008]:

κsc =
K

r20
=

qI

2πϵ0mβ3c3γ3r20
(1− γ2fe). (3.32)

Thereby fe ∈ [0, 1] is the space charge neutralization factor, I the beam current, r0 the beam radius and K
the generalized perveance. For a charge neutralized beam (fe ≈ 1), e.g. an unaffected ion beam generated
by the TNSA mechanism near its origin, the defocusing due to collective space charge effects vanishes for
non-relativistic beams (γ ≈ 1), whereas for a complete unneutralized beam it is fe = 0. In the derivative
of the focusing strength κsc in [Reiser et al., 2008] it is assumed that the variation of the beam radius
r0 with axial distance is slow enough that axial electric field components Ez and radial magnetic field
components Br can be neglected. But for the ion bunch parameters that can be achieved with the LIGHT
beamline this assumption is not valid. Therefore, in the following, the axial electric field Ez caused by
space charge effects is estimated for a particle at the beam’s edge. As it is done for the derivative of the
focusing strength κsc in [Reiser et al., 2008], a cylindrical beam cross-section with a homogeneous particle
density ρ is assumed.
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Fig. 3.4: Relation between the variables used to calculate the electric field of a particle located on the axis
and at the edge of the beam for a cylindrical beam cross-section with a homogeneous particle density ρ.

The beam radius is r0 and the axial expansion of the beam (cylinder height) is hz (see Fig. 3.4). Then the
electric field acting on a particle, that is located on the beam’s axis (r = 0) as well as on the beam’s edge
(z = 0), can be determined by Coulomb’s law [Demtröder, 2013]:

E =
1

4πϵ0

∫︂
b̂

|b|2
ρ(b) dV, (3.33)

with b̂ = b/ |b|. Since b2 = z2 + r2, cos(α) = z/b and Ez = − |E| cos(α) as shown in Fig. 3.4 as well as
ρ(b) = ρ it follows:

Ez = − ρ

4πϵ0

∫︂ hz

0

∫︂ r0

0

∫︂ 2π

0
cos(α)

r

b2
dz dr dϕ, (3.34)

Ez = − ρ

2ϵ0

∫︂ hz

0

∫︂ r0

0

zr

(r2 + z2)3/2
dz dr, (3.35)

Ez = − ρ

2ϵ0

(︃
r0 + hz −

√︂
h2z + r20

)︃
. (3.36)

The Equations 3.32 and 3.36 are used in this thesis to estimate whether space charge effects can be
neglected or if they could cause deviations between simulations and experimental data.

With the parameters and concepts that have been introduced in this chapter, the transport and the
longitudinal ion beam shaping at the LIGHT beamline will now be investigated in the following chapters.
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4. Beam transport with solenoid magnets

In this chapter, the transport of laser-accelerated ion beams with pulsed, high field solenoid magnets is
investigated. Therefore, the focusing effect of the solenoid magnets is explained first by considering the
motion of a charged particle in their magnetic field. After that, the focal spot size of an initially parallel
ion beam that was focused by a solenoid magnet is estimated, taking into account the spherical and
chromatic aberration of the solenoid. Subsequently, the technical design of the pulsed, high-field solenoid
magnets used at the LIGHT beamline are presented, and their magnetic field distribution is determined for
a simplified coil geometry. Finally, in the last section of this chapter, the capturing of the TNSA-generated
proton beam at the LIGHT beamline is analyzed with numerical simulations.

4.1. Motion of charged particles in solenoid magnets

The equations and results used in this section can be found in [Kumar, 2009]. In the following, a particle
with an initial direction deviation of zero is considered in the following axisymmetric magnetic field:

Bz(r, z) = B(z)− r2

4
B′′(z) + . . . , (4.1)

Br(r, z) = −r

2
B′(z) +

r3

16
B′′′(z) + . . . . (4.2)

Thereby, z is the solenoid axis and r the radial distance to this axis. For simplification, only terms up to the
first order of r are assumed, as well as B(z) = B0 inside and B(z) = 0 outside the solenoid. Furthermore,
the magnetic field B(z) shall drop to zero abruptly at the edges of the solenoid. Then the Equations 4.1
and 4.2 can be written as

Bz(r, z) = B0[u(z)− u(z − Lsol)], (4.3)
Br(r, z) = −r

2
B0[δ(z)− δ(z − Lsol)], (4.4)

with the Dirac delta function δ(z), the length of the solenoid Lsol and the Heaviside step function u(z).
So, a charged particle that enters the solenoid (z = 0) experiences a kick due to the magnetic field
Br(r, z) = − r0

2 B0. This results in an azimuthal velocity

∆vθ =
r0
2

eB0

γm
= r0ωL = 2r0ωc. (4.5)

Thereby, r0 is the initial distance of the particle to the solenoid axis, ωL the Larmour frequency and ωc the
cyclotron frequency. Afterwards the particle is effected by the magnetic field Bz(r, z) = B0, which causes it
to move on a helical trajectory (see Fig. 4.1) with the radius

Rc =
γmvθ
eB0

=
r0
2
. (4.6)
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Fig. 4.1: Motion of a charged particle within a solenoid magnet.

The radial and azimuthal velocities of the particle on this trajectory are

vr = −rωL tan
(︃
ωLz
vz

)︃
,

vθ = rωL.
(4.7)

When the particle exits the solenoid it experiences a kick again, but this time the radial magnetic field is
directed away from the solenoid axis Br(r, z) =

r
2B0 and therefore cancels out the azimuthal velocity vθ.

The radial velocity on the other hand is not effected by the radial magnetic field, thus the particle moves
towards the z axis after the solenoid. If for the length of the solenoid Lsol ≪ vz/ωL applies (thin lens
approximation), the small angle approximation can be used and the focal length of the solenoid can be
written as

1

f
=

(︃
qB0

2γmvz

)︃2

· Lsol =
(︃
ωL
βc

)︃2

· Lsol. (4.8)

By further assuming that the radial coordinate r0 does not change significantly in the solenoid, the stepwise
usage of Equation 4.8 leads to the more general equation [Kumar, 2009]:

1

f
=

(︃
q

2γmvz

)︃2 ∫︂ z2

z1
B2

zdz. (4.9)

Due to the dependency of the focal length from the square of the particles’ momentum pz = mvz a solenoid
can be used as an energy selector, which is one of the tasks of the solenoid magnets in this thesis. But it also
causes the chromatic aberration of the solenoid. In addition, the second term in Equation 4.1 can not be
neglected in a more realistic magnetic field distribution of the solenoid magnet. Therefore, particles with
a larger distance to the solenoid axis experience a stronger magnetic field Bz, which causes a spherical
aberration. This will be explained in more detail in the next section by an estimation of the influence of
these effects on the focal spot size of an ion beam that is focused by a solenoid magnet.
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4.2. Ion beam focusing with solenoid magnets

In this section, the focal spot size of an initially parallel ion beam that is focused by a solenoid magnet is
estimated. This section is inspired by [Chen, 2003], in which similar results are found.
Let z = 0 be just behind a focusing solenoid, r(z = 0) = r0 the initial beam radius and ε the emittance of
the beam in front of the solenoid. So for z ≥ 0 the beam propagates freely (no magnetic or electric field is
present). In this case, the beam radius can be described by the Lee-Cooper’s envelope equation [Lee and
Coopert, 1976; Reiser et al., 2008]:

r′′(z) =
ε2

r(z)3
. (4.10)

Multiplying both sides by r′ and integrating from z1 = 0 to z2 = z results in

(r′0)
2 − (r′)2 =

ε2

r2
− ε2

r20
, (4.11)

since ∫︂
r′r′′dz =

1

2
(r′)2,

∫︂
r′

r3
dz = − 1

2r2
. (4.12)

By defining the constant C2 = (r′0)
2 + ε2/r20, Equation 4.11 can be rearranged as follows:

r′r√︁
r2 − ε2/C2

= −C. (4.13)

Again, integrating from z1 = 0 to z2 = z leads to√︂
r20 − ε2/C2 −

√︁
r2 − ε2/C2 = Cz, (4.14)

since ∫︂
r′r√︁

r2 − ε2/C2
dz =

√︁
r2 − ε2/C2. (4.15)

Now the following two assumptions are made from this point on:

1. The beam was parallel before it entered the solenoid, so behind the solenoid the direction deviation
is |r′(z = 0)| = |r′0| = r0/f0, with f0 being the focal length of the solenoid as derived in the previous
subsection (see Equation 4.8).

2. The focal spot size will be much smaller than the initial beam (r0|r′0| ≫ ε).

From the second assumption it follows:

ε2

C2
=

ε2

(r′0)
2 + ε2/r20

≈ ε2

(r′0)
2

(4.16)

and √︂
r20 − ε2/(r′0)

2 ≈ r0. (4.17)
This can be substituted in Equation 4.14, which leads to

r0 −
√︂
r2 − ε2/(r′0)

2 = zr′0. (4.18)

27



Rearranging for r(z) yields
r2(z) =

ε2

(r′0)
2
+ (r0 − zr′0)

2. (4.19)

Therefore, the minimum focal spot size is at the position z = f0 = r0/ |r′0|:

r2(f0) = r2f0 =

(︃
εf0
r0

)︃2

. (4.20)

Now the effect of the chromatic and the spherical aberration on this focal spot size is investigated. Both
aberrations cause a slight deviation of the focal length ∆f . Let f = f0 +∆f , so that f = r0/ |r̃′0| as shown
in Fig. 4.2.

r

z

r0

r(f0)

f0 f

∆f

r̃(f0)

Fig. 4.2: Relationship of the variables in Equation 4.24.

With these definitions, Equation 4.19 can be rewritten as follows:

r̃2(f0) =
ε2

(r̃′0)
2
+ (r0 − f0r̃

′
0)

2 (4.21)

=

(︃
εf

r0

)︃2

+ r20

(︃
1− f0

f

)︃2

(4.22)

=

(︃
εf0
r0

)︃2

+

(︃
ε∆f

r0

)︃2

+ 2f0∆f

(︃
ε2

r20

)︃
+ r20

(︃
∆f

f

)︃2

(4.23)

≈
(︃
εf0
r0

)︃2

+ r20

(︃
∆f

f

)︃2

. (4.24)

In the last step, the assumption r0 ≫ ∆f is made. By substituting ∆f = ∆fCs +∆fδ, with the focal length
deviations due to chromatic aberration ∆fδ/f and the focal length deviations due to spherical aberration
∆fCs/f into Equation 4.24, one obtains

r̃2(f0) ≈
(︃
εf0
r0

)︃2

+

(︃
r0∆fδ

f

)︃2

+

(︃
r0∆fCs

f

)︃2

+

(︃
2r20∆fδ∆fCs

f2

)︃
. (4.25)

Now the focal length deviations ∆fδ/f and ∆fCs/f are determined for a solenoid and substituted in
Equation 4.25. The focal length deviation ∆fδ/f can be directly determined by the partial derivative of the
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focal length of the solenoid (see Equation 4.8). For a non-relativistic particle it is

∂f

∂γ
≪ ∂f

∂p
(4.26)

and therefore
∂f

∂p
=

2f

p
≈ ∆fδ

∆p
→ ∆fδ

f
≈ 2δ. (4.27)

The spherical aberration is a direct consequence of the variation of the magnetic field Bz(r, z) on the
radial distance, so the higher order terms in Equation 4.1. Including the second order term of Bz(r, z) in
Equation 4.9 leads to

1

fCs
=

(︃
q

2γmvz

)︃2(︃∫︂
B2

zdz −
r2

2

∫︂
BzB

′′
zdz +

r4

16

∫︂
(B′′

z )
2dz

)︃
. (4.28)

By assuming ∫︁ (B′′
z )

2dz ≈ 0 and defining the spherical aberration coefficient as

Cs =
1

2

∫︁
BzB

′′
zdz∫︁

B2
zdz

, (4.29)

the focal length deviation caused by the spherical aberration is approximately

f

fCs
≈ 1− Csr20 → ∆fCs

fCs
≈ −Csr20 ≈ ∆fCs

f
. (4.30)

According to [Scherzer, 1936], the spherical aberration coefficient Cs is always positive. Therefore, ∆fCs/f
is always negative and cannot be compensated in terms of linear ion optics. Substitution of Equation 4.30
and 4.27 in Equation 4.25 then results in the following estimation for the focal spot size:

(r̃f0)
2 ≈

(︃
εf0
r0

)︃2

+ (2r0δ)
2 +

(︁
Csr30

)︁2 − (︁
4r40δCs

)︁
. (4.31)

The last term in Equation 4.31 ensures, that the focal length deviation of the chromatic and the spherical
aberration compensate each other in the case of Csr20 = 2δ ↔ −∆fCs/f = ∆fδ/f . But if the mean focal
spot size of many particles with an axisymmetric energy distribution, and without any correlation between
r0,i and δi is determined, the term vanishes since

1

N

N∑︂
i=1

r40,iδi ≈ 0. (4.32)

Since the minimum focal spot size is directly related to the emittance, Equation 4.31 can also be used as a
scaling law for the emittance growth that is caused by the aberrations. This will be verified with simulations
in the last section of this chapter. In the next two sections, the technical design of the pulsed high-field
solenoid magnets used at the LIGHT beamline and the determination of their magnetic field distribution
will be explained first.
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4.3. Technical design of the pulsed, high-field solenoid magnets

The pulsed high-field solenoid magnets used in this work were designed and constructed by the High-Field
Laboratory (HLD) at HZDR. The coil itself has a length of 150 meters with 112 evenly distributed windings
in four layers. The wire has a cross-section of (4.3× 2.8)mm2 and is wrapped around a cylindrical, Fiber
Reinforced Plastic (FRP) coil body with an inner diameter of 46mm and an outer diameter of 54mm.
Each layer is isolated by at least 1.5mm Zylon-epoxy composite. The coil can in principle be operated in a
vacuum, but to prevent outgassing of the Zylon-epoxy and to reduce the breakdown voltage in accordance
to Paschen’s law, the coil is usually located in a stainless steel housing and connected to the outside air
volume. This housing reduces the open aperture of the solenoid to 40mm. In Fig. 4.3 a technical drawing
of the design is illustrated.
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Fig. 4.3: Cutaway view of the pulsed, high-field solenoid magnet with stainless steel housing, which is
mounted on a hexapod [Kroll, 2018].

The coil can be operated with a peak current of up to 23.4 kA, which corresponds to a magnetic field of
19.7 T in the center of the solenoid. Such high currents are provided by a specially designed, capacitor-based
pulse generator with a capacity of 180µF. The following equation is a good estimation for the maximum
magnetic field strength of the solenoid [Busold, 2014; Kroll, 2018]:

B0 = Bz,max ≈ 0.84× I ≈ 0.55× U. (4.33)

Thereby, I is the current of the generated pulse and U is the voltage of the pulse generator. When the
solenoid magnet is pulsed, its temperature increases. Therefore, the repetition rate of the setup is limited
by the energy of the pulse that is provided to the solenoid. For full energy pulses, one shot per minute for
several minutes is tolerable [Kroll, 2018].
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4.3.1. Magnetic field distribution of the solenoid magnets

For the determination of a magnetic field distribution of the solenoid magnets for the simulation studies of
this work, the coil geometry is reconstructed with many straight line wires and the magnetic field of those
are then calculated with the Biot-Savart law [Demtröder, 2013]:

B(r) = µ0

4π

∫︂
C

I dl× r′
|r′| . (4.34)

Thereby, dl is a vector along the path C, r′ = r− l and I the current. The sum of all the individual magnetic
fields then results in the magnetic field of the solenoid magnet. The reconstructed coil is shown in Fig. 4.4.
It contains of 100 (4 × 25) ring wires and has a length of 150mm. Then, a current of 1A is used to
determine a 41 × 41 × 481 mm3 field map with a grid size of 1mm for each magnetic field direction.
In Fig. 4.5 the y-z-plane (x = 0) of these field maps are shown. The coordinate systems in Fig. 4.4 and
Fig. 4.5 are identical, so the front side of the coil has a distance of 80mm to the origin of the coordinate
system. It can be seen, that at the entrance (z = 80mm) and the exit (z = 230mm) of the coil the magnetic
field is mainly directed towards the radial direction which corresponds to the y-direction in the y-z-plane,
whereas inside the coil, the magnetic field is directed towards the z-direction.

Fig. 4.4: Simplified coil geometry of the solenoid magnet used at the LIGHT beamline. This geometry
consists of many straight line wires and was used in this section to determine fieldmaps for the simulation
studies of this work.

z in mm
20 80 155 230 300

y
in

 m
m

-20

-10

0

10

20

B
x

in
 T

10
-6

-2

-1

0

1

2

z in mm
20 80 155 230 300

y
in

 m
m

-20

-10

0

10

20

B
y

in
 T

10
-4

-1

0

1

z in mm
20 80 155 230 300

y
in

 m
m

-20

-10

0

10

20

B
z

in
 T

10
-4

-5

0

5

Fig. 4.5: The y-z-plane (x = 0) of the field maps that have been determined with the Biot-Savart law (see
Equation 4.34) and the coil geometry shown in Fig. 4.4.

The presented or similar field maps will now be used to simulate the capturing of laser-accelerated proton
beams at the LIGHT beamline.
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4.4. Simulation studies on capturing laser-accelerated proton beams

This section is divided into three subsections. In Subsection 4.4.1 the required magnetic field strength for
collimating TNSA-generated protons with a specific energy is determined as well as the maximum initial
divergence angle that the LIGHT beamline can capture. Then the emittance growth that results from the
capturing process is analyzed in Subsection 4.4.2 and finally, in Subsection 4.4.3, the influence of different
magnetic field distributions on the properties of the transported ion beam is investigated.

4.4.1. Energy selection and capture efficiency

In most of the experimental campaigns with the LIGHT beamline, protons with an energy of about 8MeV
were transported since the RF cavity is designed for ions with an energy per mass of 8MeVu−1. The typical
setup of the LIGHT beamline in the experiments in which protons with 8MeV are targeted is shown in
Fig. 4.6. This setup will be used for the following simulations.

dsol,1 dsol,2 dend0

z

y

dcav,1 dcav,2

x

PHELIX

Solenoid 1 Solenoid 2

RF cavity

E1 < E2 < E3 Distance Length
dsol,1 40mm
dsol,2 5400mm
dend 5700mm
dcav,1 2275mm
dcav,2 3425mm

Fig. 4.6: Setup of the LIGHT beamline which is typically used for handling protons with 8MeV.

For the numerical simulations, the initial proton beam is generated first as described in Section 2.3.
Therefore, the parameters shown in Table 4.1 are used, which have been determined by fits to RIS data in
[Busold, 2014].

Table 4.1: Parameters that were used to generate the initial proton beam in the simulations of this section.
The values have been determined by fits to RIS data in [Busold, 2014].

N kBT Emin Emax Ecut a2 a1 a0 m q

5× 106 6MeV 2MeV 22MeV 28MeV -0.04 ◦/MeV2 0.41 ◦/MeV 26.47 ◦ 1u 1 e

The resulting energy spectrum as well as the correlations between the location deviation x, the direction
deviation x′, the divergence angle θ and the energy E of the generated particles are shown in Fig. 4.7.
It can be seen, that the number of protons is decreasing exponentially to higher energies, whereas the
corresponding source size and divergence increases.
The trajectories of these protons are then determined with the procedure that has been described in
Section 3.6. In the simulations that will be presented in this subsection, the field maps determined in
the previous section are used for the first solenoid while the RF cavity and the second solenoid are only
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Fig. 4.7: Energy spectrum as well as the correlations between the location deviation x, the direction
deviation x′, the divergence angle θ and the energy E of a reconstructed TNSA-generated proton beam at
its origin.

implemented as drift tubes. Since the field maps have been determined for a current of 1A, the field
strength is simply adjusted by multiplying the entire field map by the desired current. It should also be
noted at this point, that the magnetic field is linearly interpolated for the positions of the protons during
the calculation process in all simulations of this work.
In Fig. 4.8 the resulting energy distributions of the proton bunches at a distance of 5.7m to their origin are
shown for different currents supplied to the first solenoid. Due to the dependence of the focal length of the
solenoid on the particle momentum (see Eq. 4.7), and the limited apertures of the solenoids (40 mm) and
the RF cavity (35 mm), only a certain energy range of the proton beam reaches the end of the beamline.
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Fig. 4.8: Energy distributions of the proton bunches at the LIGHT beamline 5.7m behind their origin. The
color of the lines corresponds to the current supplied to the first solenoid. The energy spectrum of the
protons at their origin is also shown in blue.

Since f−1 ∝ (qB0/p)
2 ∝ (qI/p)2 (see Equation 4.33 and Equation 4.8), it is expected, that the relation

between I and E for non-relativistic protons (γ = 1, p =
√
2mE, q1 = q2 and m1 = m2) is

I2 =

√︃
E2

E1
· I1 (4.35)

under the assumption that the focal length f is identical for the collimation of any particle (f1 = f2),
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which can be confirmed. The relative energy spread of the transported proton bunch is approximately
∆E/Epeak ≈ 10% (FWHM) for all currents shown. Due to the smaller initial direction deviation of protons
with higher energies, the transport efficiency in the corresponding energy interval (∆E/Epeak = 10%)
increases from 8.43% (Epeak = 4.75MeV) to 13.40% (Epeak = 17.5MeV).
According to the simulation, for a current of 8.5 kA most of the protons that are reaching the end of the
beamline have an energy of 8.3MeV. Therefore, the current that is necessary to transport 8MeV protons is
8.34 kA in the simulation. But since the solenoid in the experiment has 112 windings and the coil which
was used to generate the field map for these simulations has only 100 windings, the required current in
the experiment is expected to be 7.45 kA.
Lastly, these simulations are also used to determine the opening angle that the solenoid is able to capture.
For this purpose, the distributions of the initial direction deviations of the transported beams are illustrated
in Fig. 4.9. The maximum initial direction deviation of all the shown distributions is 130mrad (≈ 7.5°),
which is a clear indication that this is the maximum opening angle that the solenoid magnet is able to
capture for the used setup.
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Fig. 4.9: Normalized distributions of the initial divergence angle θ of the proton bunches that reach the end
of the LIGHT beamline in the simulation in case of the setup shown in Fig. 4.6. The normalized distribution
of the initial ion beam is shown in blue. The colors of the other lines correspond to the respective currents
supplied to the first solenoid, which in turn corresponds to the energy distributions of the transported
proton bunches, as shown in Fig. 4.8.

For an energy spread of∆E/Epeak ≈ 10% (FWHM) and a maximum initial divergence of 130mrad (≈ 7.5°)
it can be expected, that the beam quality was degraded due to the chromatic and the spherical aberration
of the solenoid which will now be investigated in the next subsection.

4.4.2. Quantification of the spherical and chromatic aberrations

Since the effect of the spherical and the chromatic aberration are both depending on the distance of the
particle to the solenoid axis (see Equation 4.31), they cannot really be considered independently of each
other. Nevertheless, in order to characterize both aberrations as well as possible, a monochromatic proton
beam with 8.3MeV and a proton beam with an energy range of (7 - 9)MeV will be transported by the
first solenoid and the emittances of the resulting bunches are then compared with each other. Moreover,
this is done for different maximum initial divergence angles in each case, so a1 and a2 are set to zero and
a0 = θmax (see Section 2.3). Therefore, in the following θ0 is also a direct measure for the distance of the
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particle to the nominal axis r0 in and shortly after the first solenoid. The resulting effective, normalized
emittances ε2σn,xx′ of the proton beams just behind the RF cavity (2.5m behind the origin) are shown in
Table 4.2. Thereby, the same beamline setup as in the previous subsection is used (see Fig. 4.6) and the RF
cavity is only implemented as a drift tube with an aperture of 35mm.

Table 4.2: Emittances ε2σn,xx′ of proton beams with different energies E and different maximum initial
divergence angles a0 that were collimated by the first solenoid of the LIGHT beamline. All other initial beam
parameters are identical (N = 3× 105, kBT = 6MeV, Ecut = 28MeV and a2 = a1 = 0). The emittances
are determined just behind the RF cavity 2.5m from the origin of the beamline.

a0 ε2σn,xx′

2◦ 0.11mmmrad
4◦ 0.51mmmrad
6◦ 1.73mmmrad
8◦ 3.95mmmrad

(a) E = 8.3MeV

a0 ε2σn,xx′

2◦ 1.66mmmrad
4◦ 6.45mmmrad
6◦ 10.73mmmrad
8◦ 12.84mmmrad
(b) E = (7 - 9)MeV

The emittance of the monoenergetic proton beam is thus fifteen times (a0 = 2◦) or three times (a0 = 8◦)
smaller than the emittance of the proton beam with an energy spread. Moreover, the emittance growth for
the proton beams with energy spread scales approximately linearly with a0, while for the monochromatic
beams it scales approximately with a30. Since the initial divergence of the particle is directly related to its
distance to the nominal axis in and just behind the solenoid, the emittance growth in these simulations
scales similar as the focal spot size in Equation 4.31.
The effect of the aberrations shall now also be discussed on the basis of Fig. 4.10.
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Fig. 4.10: Transported proton beams with different energies at the center of the LIGHT beamline. The
current supplied to the capturing solenoid was 8.5 kA in these simulations.

The beam profile of the transported proton beam with an energy of E = (7 - 9)MeV (see Fig. 4.10a) is
radially symmetric as the initial proton beam and the magnetic field distribution. In Fig. 4.10b the same
proton beam is shown in the x-x′ phase space. Thereby, the color of the particles corresponds to their energy.
In this figure, the dependency of the focal length on the energy of the protons can be observed by the
different orientation of the various energies in the x-x′ phase space. For an energy of approximately 8.3MeV
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the beam is collimated best, whereas for lower and higher energies, the divergence of the beam increases.
The energy for which most protons are collimated thus corresponds to the peak energy (Epeak ≈ 8.3MeV)
of the beam (see Fig 4.8).
In Fig. 4.10c the particles with an energy of 8.3MeV are shown in the x-x′ phase space. Thereby, the color
of the particles correspond to their initial divergence angle θ0 to better illustrate the spherical aberration. It
can be seen that the particles with a larger initial divergence are rotated more clockwise in phase space and
therefore had experienced a stronger focusing force by the solenoid. This is consistent with the findings in
Section 4.2.

The results obtained so far should be taken with caution due to the highly simplified coil geometry that
was used to generate the magnetic field distribution of the solenoid (see Section 4.3.1). A strong indication
that the magnetic field is not perfectly radially symmetric in the experiments, is the filamentation of the
beam profile in the x-y plane, which is typically observed in pulsed, high-field solenoid beamlines (see
cover of this thesis or [Busold, 2014; Kroll, 2018; Brack et al., 2020]). Therefore, the influence of magnetic
field imperfections on the beam profile and the beam quality are investigated in the following.

4.4.3. Cause of the beam filamentation in pulsed, high-field solenoid beamlines

The filamentation of the ion beam profile in pulsed, high field solenoid beamlines (see cover of this thesis
or [Busold, 2014; Kroll, 2018; Brack et al., 2020]) has long been debated. In the following, the cause of
the filamentation is investigated with simulations. These results have also been published in [Metternich
et al., 2022].
From RIS data, it is known that the initial TNSA-generated ion beam is radially symmetric to a good
approximation (see Section 2.2). Therefore, the beam filamentation has to be caused by an asymmetry in
the magnetic field distribution of the solenoid, which in turn can only be caused by the connection cables or
the slight inclination of the windings. To investigate this further, the magnetic field distribution of solenoid
magnets with different coil geometries are calculated and for each of them the beam profile of the proton
beam is simulated in the middle of the LIGHT beamline. The following coil geometries are used:

• Straight ring wires (Fig. 4.11a)

• Connected helix wires (Fig. 4.11b)

• Ring wires with connection cables (Fig. 4.11c)

• Realistic coil geometry (Fig. 4.12)

All four coils have 100 windings (4 x 25) and a total length of 150mm. As described in Section 4.3.1,
the corresponding field maps of the straight ring wires have been determined by reconstructing the coil
geometry with many line wires and the Biot-Savart law. The corresponding field maps of the connected
helix wires and the ring wires with connection cables are calculated in the same way. The realistic coil
geometry was constructed in a Computer-Aided Design (CAD) software and the field maps were determined
with the COMSOL Multiphysics® software.

36



(a) Straight ring wires (b) Connected helix wires (c) Ring wires with connection cables

Fig. 4.11: Different coil geometries that have been used in this work to determine fieldmaps of themagnetic
field distribution with the Biot-Savart law.

Fig. 4.12: Coil geometry of a solenoid magnet, which was constructed in a Computer-Aided Design (CAD)
software.

37



The beam profiles of the captured protons are shown in Fig. 4.13. For these simulations the parameters
shown in Table 4.1 have been used for the generation of the initial proton beam and the current supplied
to the solenoid was 8.5 kA as in the previous subsection.
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(a) Straight ring wires
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(b) Connected helix wires
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(c) Realistic coil
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(d) Straight ring wires with
connection cables (α = 90°)
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(e) Straight ring wires with
connection cables (α = 75°)
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(f) Straight ring wires with
connection cables (α = 60°)

Fig. 4.13: Beam profiles of the transported protons at the middle of the LIGHT beamline (2.5m from their
origin). Thereby, different field maps have been used for the capturing solenoid magnet in the simulation.
These field maps were determined with the coil geometries shown in Fig.4.11 and 4.12.

The beam profile shown in Fig. 4.13a is radially symmetric to the z-axis which has to be the case since the
initial beam as well as the wire geometry have this symmetry. In case of the connected helix wires this
symmetry remains for the most part and therefore the corresponding magnetic field only causes a slight
deflection of the beam. But by adding the magnetic field generated by the connection cables, this symmetry
is harmed. In the case that the cables are directed as in Fig. 4.11c (towards the z- and y-direction) the
generated magnetic field is also mainly directed towards this direction and its strength decreases with
increasing distance to the cables. This has two effects:
• An astigmatism arises which causes the filamentation of the proton bunch.
• The proton bunch is directed towards the x-direction (in the case the connection cables are directed
as in Fig. 4.11c).

Whether the magnetic field generated by the connecting cables is directed more towards the z- or y-direction
depends on how the cables are routed away from the coil. It is mainly directed in the y-direction when the
cables are parallel, and mainly directed in the z-direction when they are perpendicular to the coil (see
Fig. 4.14). Since in particular the magnetic field in the y-direction adds an asymmetry to the magnetic
field distribution, the influence of the connecting cables increases for smaller angles α (see Fig. 4.13).
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Fig. 4.14: By field maps in the x-z-plane (y = 0), which were determined with different coil geometries.
The CC in the captions of the subfigures stands for connection cables and α indicates the angle between
the connection cables and the x-z-plane (see in Fig. 4.11c).

In a future design of the solenoid magnet the following approaches could therefore be pursued to minimize
the influence of the connecting cables:
• The connecting cables could be guided vertically away from the coil to minimize the y-component of
their magnetic field.

• The connection cables could be guided close to each other, possibly even twisted together. Thereby,
the magnetic fields of the two connecting cables would cancel each other out.

• The number of windings could be increased to decrease the relative magnetic field strength of the
connecting cables in relation to the coil.

• The distance of the connecting cables to the drift tube of the solenoid could be increased by adding
additional layers with windings or by increasing the radii of the layers.

In the next step, the influence of astigmatism on beam quality is now also determined. In Table 4.3 the
effective, normalized emittances ε2σn,xx′ of different beams, captured by the different field maps, are listed.
Thereby in each case, the appropriate magnetic field strength is used to collimate protons with 8.3MeV and
the deflection of the beams by the magnetic field of the connection cables is compensated by a transverse
displacement of the solenoid, so that the center of the cross-shaped beam profile is on the nominal trajectory
as in Fig. 4.15d. As can be seen, for high initial divergence angles (a0 = 8◦) the relative emittance growth
that is caused by the connection cables and the inclination of the windings is less than 10%. This indicates
that mainly the particles that are close to the solenoid axis (particles with small initial divergence angles
θ0) are affected by the asymmetry of the magnetic field distribution of the realistic coil. This can also be
seen in Fig. 4.15, where the transported beams obtained with the simplified and the realistic magnetic
field distribution are compared.

Even though the imperfections in the magnetic field distributions only contribute slightly to the emittance
growth, the energy distribution in the resulting filaments deviate from the energy distribution of the entire
beam. The experimental campaign and the simulations in which this was revealed will be presented
together in Chapter 7.

In the following chapter, the longitudinal beam shaping with the RF cavity will be explained first, since
this will be essential for all the following investigations of this thesis.
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Table 4.3: Emittances ε2σn,xx′ of captured proton beams with different energies E and different maximum
initial divergence angles a0 just behind the RF cavity 2.5m from their origin. Thereby, different field maps
have been used for the first solenoid in the simulations. All other initial beam parameters are identical
(N = 3× 105, kBT = 6MeV, Ecut = 28MeV and a2 = a1 = 0) and CC is an abbreviation for ring wires with
connection cables.

Fieldmap ε2σn,xx′

Ring wires 0.11mmmrad
Helix wires 0.14mmmrad
CC (α = 60°) 0.61mmmrad
Realistic coil 0.35mmmrad

E = 8.3MeV, a0 = 2°

Fieldmap ε2σn,xx′

Ring wires 12.84mmmrad
Helix wires 13.14mmmrad
CC (α = 60°) 13.90mmmrad
Realistic coil 13.30mmmrad

E = (7 - 9)MeV, a0 = 8°
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Fig. 4.15: Comparison of transported proton beams that have been captured by solenoid magnets with
different magnetic field distributions in the simulation. The proton beams are shown in the middle of the
LIGHT beamline (2.5 m from their origin) and the magnetic field distributions have been determined with
the coil geometries shown in Fig. 4.11 and 4.12.
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5. Longitudinal beam shaping with an RF cavity

In this chapter, the longitudinal beam shaping with an RF cavity is considered. Therefore, the main tasks
of the RF cavity at the LIGHT beamline are presented first. Then the technical design of the RF cavity
used in this thesis and the velocity dependent energy transfer that results from this design is discussed.
Thereby, equations are derived that can be used to determine the required RF cavity voltage for different
applications and different setups of the LIGHT beamline. Finally, the implementation of the RF cavity in
the numerical simulations is explained, which is then used in the following chapters to make predictions
about the beam parameters that can be achieved with the LIGHT beamline.

5.1. Longitudinal beam shaping fundamentals

In a beamline with only beam guiding magnets, a beam with a momentum deviation expands longitudinally.
For a free propagation over the distance Ld the following applies for a single particle with a momentum
deviation δ and an initial longitudinal deviation of l0 = 0:

δ = const., l =
δ

γ2
Ld. (5.1)

As already stated in Section 3.1 in the context of this work the kinetic energy E and the time of flight t of
the particles are specified most of the time which are related to δ and l as follows:

E = const., ∆t = t− t0 =
l

v0
. (5.2)

By inserting Equation 5.1 in Equation 5.2 and using the relation δ = ∆p/p = β−2∆Ẽ/Ẽ [Wille, 1996] one
obtains

∆t =
∆Ẽ

Ẽ

Ld

γ2β3c
. (5.3)

Thereby Ẽ is the total energy of the particle Ẽ = E +m0c
2. This equation can also be used to determine

the change in temporal width ∆t of an ion bunch, provided that the mean energy Ẽ, the energy spread
∆Ẽ/Ẽ and the distance Ld are known. However, it should be noted that this relation has been derived in
the context of linear beam dynamics and therefore deviations may occur if ∆Ẽ ≪ Ẽ does not apply.
In accelerators, as in this thesis, high-frequency (RF) electric fields generated in cavities are used to
accelerate particles and thus influence the longitudinal beam dynamics. Let ω be the frequency of the
electric field in the RF cavity and U0 the maximum voltage. Then in case of a short interaction between the
electric field of the cavity and the particle (v/Lcav ≪ 2π/ω), the energy transfer to the particle is given by

∆E = q · U0 · cos(ω ·∆t+ ϕ). (5.4)

Thus, the nominal particle (∆t = 0) experiences a maximum acceleration for ϕ = 2π · n, a maximum
deceleration for ϕ = π(2n± 1) and is unaffected by the cavity for ϕ = π(2n± 0.5). In the context of this
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(a) Free beam propagation
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(b) Energetic compression

t in ns
0 50 100 150 200 250

U
 i

n
 5

 M
V

-1

-0.5

0

0.5

1

E
  

in
M

e
V

9.5

10

10.5

(c) Temporal compression

Fig. 5.1: Temporal evolution of an ion beam in case of a free propagation (Fig. 5.1a), an energetic com-
pression (Fig. 5.1b) and a temporal compression (Fig. 5.1a). The energy transfer to the beam is indicated
by the black line and the color of the ions corresponds to their energy.

thesis, the case ϕ = π(2n− 0.5) is particularly interesting, since thereby an energetic compression or even
a temporal compression of the ion bunch can be achieved. This is now described with the help of Fig. 5.1.
The black line in these images represents the electric field of an RF cavity and the colored dots are the
particles of a beam in the E-t-phase space for different times. Thereby, the color of the particles correspond
to their energy. Without any electric field, the temporal width of the beam increases due to the energy
spread of the beam (Fig. 5.1a). As can be seen, during the free propagation the linear correlation between
the energy and the time of flight of the particles remains (according to Equation 5.4). If the temporal width
of the bunch in the RF cavity is small so that cos(ω ·∆t+ ϕ) ≈ ω ·∆t+ ϕ is a valid assumption, the energy
transfer of the RF cavity to the particles is also proportional to their time of flight for ϕ = π(2n− 0.5) (see
Equation 5.4). Therefore, the energy spread of the bunch can be minimized for the proper electric field
strength of the RF cavity (see Fig. 5.1a). This method is called energetic compression in the following
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and the corresponding electric field strength will be UEcomp. For an RF cavity voltage higher than UEcomp
the resulting energy distribution causes the bunch to contract in time during the subsequent drift until it
reaches a minimum temporal width (see Fig. 5.1c). This temporal compression of the bunch is the main
operation mode of the RF cavity in the experimental campaigns of this thesis, since it leads to high particle
fluxes.
In the following equations shall be derived that can be used to determine the required RF cavity voltage
for the energetic and the temporal compression at the LIGHT beamline. Thereby, the RF cavity used in this
work is characterized precisely.

5.2. Design and effective voltage of the three-gap spiral resonator

At the LIGHT beamline a three-gap spiral resonator, which was formerly used at the UNILAC of GSI [Häuser,
1989], is implemented. A schematic overview of this RF cavity is shown in Fig. 5.2a and the corresponding
values of the distances that are drawn in as well as the most important electric properties are given in
Table 5.1.

Table 5.1: Most important geometrical and electric data of the three gap spiral resonator used in this
thesis.

Geometrical data

Aperture a 35mm
Outer gap length Lgap,o 20mm
Inner gap length Lgap,i 40mm
Drift tube length Ldrift,o 85mm
Drift tube length Ldrift,i 150mm
Gap to gap length Lgg 180mm

Electric data

Resonance frequency fRF 108.4MHz
Optimal particle velocity vopt 8MeVu−1

Shunt impedance Rs 21.8MΩm−1

Maximum RF power PRF > 100 kW
Maximum RF cavity voltage Umax ∼ 1MV
Quality factor Q > 6000

Ez

a

Ions

Lgap,o Lgap,i Lgap,o

Ldrift,o Ldrift,i Ldrift,i Ldrift,o

Lgg

(a) Schematic overview of the three gap spiral resonator

Drift tubes Plunger

(b) Photograph of the inside of the three
gap spiral resonator

Fig. 5.2: Schematic overview and photograph of the inside of the three gap spiral resonator used in this
thesis [Busold, 2014; Ding, 2018].
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The three-gap geometry causes an energy transfer which depends on the ion velocity v. Moreover, for
ions with low velocities the electric field cannot be assumed to be constant during the time in which they
pass the gap, so the assumption v/Lgap,i ≫ ω = 2πfRF is not given. Since in this work also particles with
relatively low velocities are temporally compressed, the dependency between the energy transfer of the RF
cavity and the ion velocity is derived now. The considerations in this section are mainly taken from [Ding,
2018].
For the following considerations it is always assumed, that the energy transfer of the cavity is much smaller
than the initial energy of the particle ∆ERF ≪ Eparticle as well as that the electric field in the gap is spatially
constant and only directed towards the z-direction: E(r, t) = (0, 0, Ez(t)). Let’s first also assume that
v/Lgap,i ≫ ω is given. Between the inner and the outer gaps there is a phase shift of π. Therefore, a particle
with an energy per mass of 8MeVu−1 experiences the same electric field strength in all three gaps, since
the time required for this particle to travel from an outer to an inner gap corresponds to half the period
duration

T

2
=

Lgg

vopt,0
. (5.5)

So vopt,0 corresponds to the velocity of a particle with an energy per mass of 8MeVu−1 and Lgg is the
distance from the inner to an outer gap (see Fig. 5.2a). According to this consideration, also particles with
a velocity of

vopt,n =
vopt,0
2n+ 1

, (5.6)

with n ∈ N, experiences the same electric field strength in all three gaps, whereas for the velocities

vunsuitable,n =
vopt,0
2n

(5.7)

the energy transfer of the outer gaps and the inner gap cancel each other out and therefore no energy
transfer is possible. If the assumption v/Lgap,i ≫ ω = 2πfRF is not valid, the energy transfer of a single gap
to a particle is

∆ERF = q

∫︂ Lgap/2

−Lgap/2
Ez(t) dz. (5.8)

≈ qvEz,0

∫︂ tgap/2

−tgap/2
cos (ωt+ ϕ) dt. (5.9)

= qvEz,0

∫︂ tgap/2

−tgap/2
(cos (ωt) cos (ϕ) + sin (ωt) sin (ϕ)) dt (5.10)

= qvEz,0 cos (ϕ)

∫︂ tgap/2

−tgap/2
cos (ωt) dt (5.11)

= qvEz,0 cos (ϕ)
2 sin

(︁
ωtgap/2

)︁
ω

. (5.12)

Thereby tgap = Lgap/v since ∆ERF ≪ Eparticle as mentioned in the beginning. Also, U0 = Ez,0Lgap and
therefore, it follows:

∆ERF = qU0 cos (ϕ)
2v

ωLgap
sin

(︃
ωLgap
2v

)︃
(5.13)

= qU0 cos (ϕ0)TT, (5.14)
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with the transit time factor TT of a gap. Now the effective voltage of the three gap spiral resonator used in
this work is determined for the maximal acceleration of the nominal particle (ϕ = 0°):

UTTeff = U0TT1 cos(π − ωLgg/v)⏞ ⏟⏟ ⏞
gap,1

+2U0TT2 cos(0)⏞ ⏟⏟ ⏞
gap,2

+U0TT3 cos(π + ωLgg/v)⏞ ⏟⏟ ⏞
gap,3

, (5.15)

with Ucav = 4U0 → U1 = U0, U2 = 2U0, U3 = U0 and the transit time factor of the nth gap TTn. Since
TT1 = TT3 and cos (−x+ π) = cos (x+ π) Equation 5.15 can be simplified to

UTTeff = 2U0 (TT2 + TT1 cos(π + ωLgg/v)) . (5.16)
This equation can only further be simplified for v/Lgap,i ≫ ω. In this case TTn ≈ 1, which corresponds to
the assumption made in the beginning of this section and thus

Ueff ≈ 2U0 (1 + cos(π + ωLgg/v)) . (5.17)

For a cavity voltage of Ucav = 4U0 = 8kV and the geometrical data shown in Table 5.1, the effective voltage
is illustrated in Fig 5.3 for ions with different energies per mass.
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Fig. 5.3: Effective voltage of the three-gap spiral resonator used at the LIGHT beamline for ions with
different energies per mass at a maximum outer gap voltage of 2 kV and a maximum inner gap voltage of
4 kV [Ding, 2018]. The blue line is calculated by Equation 5.17, so the transit time factor is TT = 1. For the
determination of the red line Equation 5.16 is used, so the transit time factor TT is determined for each
energy per mass and gap length.

With the effective RF cavity voltage, the required RF cavity voltage for the energetic and the temporal
compression can be determined, which is explained in the next section.

5.3. Required RF cavity voltage for the energetic and the temporal
compression

Let UEcomp be the required RF cavity voltage for the energetic compression, E the mean energy of the
bunch, ∆E/E the energy spread of the bunch and dcav,1 the distance of the RF cavity to the origin of the
beam for the following considerations. Also, the temporal width of the bunch at its origin is assumed to be
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zero. In Section 5.1 the following relation for the temporal width of the beam is derived in terms of linear
beam optics:

∆t =
∆Ẽ

Ẽ

dcav,1
γ2β3c

, (5.18)

with the total energy Ẽ = E +m0c
2. Therefore, the relation between the time and the energy deviation

is linear in first approximation and the energetic compression is only possible in the range, in which the
temporal change of the electric field is also approximately linear. This time is assumed to be Tlinear ˆ︁= T/6 in
the following to ensure that the deviation of ω ·Tlinear and 2 sin(ω ·Tlinear/2) is less than 10%. The relations
of those variables is shown in Fig. 5.4.

t

Tlinear

ω(t− t0)− sin(ω(t− t0))

t0

Fig. 5.4: Schematic Illustration of the parameter Tlinear. Thereby, the red line corresponds to the temporal
profile of the ion bunch in the RF cavity, the blue line corresponds to the energy transfer of the RF cavity
and the green line corresponds to the energy transfer that is required for an energetic compression of the
ion bunch. As can be seen, only in the time Tlinear the deviation between ω(t − t0) and sin(ω(t − t0)) is
very small and therefore only this part of the ion beam can be energetically compressed by the RF cavity.

At the LIGHT beamline the temporal width of the bunch within the cavity is usually longer than Tlinear
which is therefore always assumed in the following. The energy deviation ∆Elinear of the bunch that can be
energetically compressed is

∆Elinear ≈
γ2β3cTlinear

dcav,1
Ẽ. (5.19)

For this reason, the distance of the RF cavity to the origin of the beamline dcav,1 should be as short as
possible, since then the fraction of the beam that is energetically compressed becomes larger. On the
other hand the required cavity voltage UEcomp increases for a lower distance dcav,1 since for an energetic
compression the following condition must apply

∆ERF, Ecomp = qUTT
eff =

∆Elinear
2 sin(ωTlinear/2)

≈ ∆Elinear
ωTlinear

, (5.20)

with (see previous section):

UTTeff =
Ucav
2

(TT2 + TT1 cos(π + ωLgg/v)) . (5.21)

Therefore, the required RF cavity voltage for the energetic compression is

UEcomp =
2∆Elinear

qωTlinearCTT(v)
(5.22)
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with
CTT(v) = TT2(v) + TT1(v) cos(π + ωLgg/v). (5.23)

Substituting Equation 5.19 in Equation 5.22 results in the following relation between the voltage UEcomp,
the distance dcav,1 and the mean energy E of the bunch:

dcav,1 · UEcomp =
2γ2β2c(E +m0c

2)

qωCTT(v)
. (5.24)

This equation is now used to determine the voltage UEcomp and the distance dcav,1 for different mean
proton bunch energies E. The maximum voltage Umax of the RF cavity at the LIGHT beamline is 1MV and
the distance dcav,1 can be adjusted between (1225 - 2275)mm. In the left image of Fig. 5.5 the required
distance dcav,1 for an energetic compression of a bunch with a mean energy E is shown for the maximum
RF cavity voltage Umax and in the right image of Fig. 5.5 the required RF cavity voltage UEcomp is illustrated
for the upper and lower limit of dcav,1. For some energies dcav,1 and UEcomp approaches infinity since the
parameter CTT(v) approaches zero for these energies (zero crossings of the red line in Fig. 5.3).
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Fig. 5.5: In the left picture, the required distance dcav,1 (black line) for an energetic compression is shown
for different mean energies E of the bunch and the maximum RF cavity voltage of Umax = 1MV. The
upper (blue dashed line) and the lower (red dashed line) limit of dcav,1 at the LIGHT beamline are also
drawn in. In the right picture, the required RF cavity voltage for the energetic compression is plotted for
the upper (blue line) and the lower (red line) limit of dcav,1. For these illustrations, Equation 5.24 is used
and the x axes are scaled logarithmically.

As can be seen, Equation 5.24 can be used to determine the required voltage UEcomp at the LIGHT beamline
for each ion type and energy. Since the principle of the temporal compression is very similar to the
principle of the energetic compression, the required voltage for the temporal compression Utcomp can also
be determined by Equation 5.24 which is explained in the following.
To obtain a temporal compression instead of an energetic compression, the RF cavity voltage has to be
increased. The resulting energy distribution then causes the bunch to contract in time behind the RF
cavity. Since the change of the temporal bunch width is proportional to the energy spread and the distance
(see Equation 5.18), the required RF cavity voltage for the temporal compression Utcomp depends on the
distance dcav,2 from the RF cavity to the position, at which the bunch should have its minimum temporal
length. As in the case of the energetic compression, only the fraction of the beam, that has a temporal
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width of approximately T/6 within the RF cavity can be temporally compressed. Therefore,
Utcomp = (1 + dcav,1/dcav,2) · UEcomp (5.25)

and in this case the energy spread of the temporally compressed beam is given by
∆Etcomp

E
=

∆Elinear
E

· dcav,1
dcav,2

. (5.26)

The most important concepts of this work with respect to the longitudinal ion beam shaping have thus
been covered. Since the TNSA-generated proton beam at Z6 can be characterized very precisely and the RF
cavity is best suited for an energy per mass of 8MeVu−1, in the first experiments with the LIGHT beamline
proton beams with approximately 8MeV were exclusively targeted. These were, also in the context of
this work (see Chapter 7), successfully transported, energetically compressed, temporally compressed and
focused [Busold et al., 2013, 2014b, 2015; Jahn et al., 2019; Metternich et al., 2022]. In order to make
predictions on the beam parameters that can be achieved for other ion species and energies, the RF cavity
has been implemented in the numerical simulations, which is now explained in the last section of this
chapter.

5.4. Implementation of the RF cavity in the numerical simulations

In the simulation, the RF cavity only consists of the three gaps whose length and spacing are as shown in
Fig 5.2a. For the electric field E, the following assumptions are made:
• The electric field is only directed towards the z-direction: E = (0, 0, Ez).
• The electric field is spatially constant in the gap.
• Outside the gaps, the electric field immediately drops to zero.

That these assumptions are justified is shown in Appendix A.2. In the gaps, the electric field acting on a
particle is therefore

Ez,gap1 = Ez,0 · cos(ω · t+ ϕ)

Ez,gap2 = Ez,0 · cos(ω · t+ ϕ+ π)

Ez,gap3 = Ez,0 · cos(ω · t+ ϕ)

(5.27)

with the time of flight of the particle t, the electric field strength Ez,0 and the phase ϕ. The latter two can
be adjusted as desired in the simulation. Instead of the electric field strength Ez,0, the cavity voltage Ucav
is usually given in the following, which is in accordance to the considerations in the previous sections of
this chapter defined as follows:

Ucav = Ez,0 · (2Lgap,o + Lgap,i). (5.28)
As a validation, the energy transfer to a collimated proton beam with an energy range of E = (0.1 - 10)MeV
for a cavity voltage of Ucav = 8kV, a distance of the cavity to the beams’ origin of dcav,1 = 2275mm and
different phases ϕ is shown in Fig. 5.6, which is consistent with the determined energy transfer of the RF
cavity shown in Fig. 5.3.
With the implementation of the RF cavity, it is now possible to simulate the ion beam shaping with the
LIGHT beamline for specific applications. This will now be done in the next part of this thesis to make
predictions about the achievable beam parameters and compare them with experimental results.
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Fig. 5.6: Simulated energy transfer to a collimated proton beam with an energy E of (0.1 - 10)MeV for a
cavity voltage of Ucav of 8 kV, a distance of the cavity to the beams’ origin dcav,1 of 2275mm and different
phases ϕ. The x-axis is logarithmic in this figure.
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Part II.

Investigations on specific applications
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6. SIS18 injection with the LIGHT beamline

The first application that will be investigated is the generation of an ion beam with the LIGHT beamline
that can be injected into the heavy ion synchrotron SIS18 of GSI. Therefore, in the beginning of this chapter
an introduction to this project is given and the beam parameter requirements are defined. After that, the
setup for the LIGHT beamline is considered for two different mean proton beam energies. The resulting
setups are then used in simulations to determine the resulting beam parameters and estimate the amount
of particles that can be injected into the SIS18.

6.1. Required beam parameters for the SIS18 injection

Injecting a laser-generated ion beam into a synchrotron would be a major milestone for the laser plasma
accelerator community. In this section, a closer look at how close the implementation of a first proof of
principle experiment at GSI is and which preparations still have to be made. In Fig. 6.1, a schematic
overview of the accelerator facility at GSI is illustrated.

Experimental hall I Experimental hall II

UNILAC

Ring accelerator

SIS18

Fragment

separator FRS

Experimental

storage ring ESR

Z6 & Z4 

target chamber

Transfer channel

PHELIX

LIGHT

beamline

Fig. 6.1: Schematic drawing of the accelerator facility at GSI.
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The UNILAC can accelerate almost all ion species to 11.4MeVu−1. These can then either be used at the
experimental areas of the experimental hall I, or they are injected into the heavy ion synchrotron SIS18 via
the transfer channel for post acceleration. As can be seen in Fig. 6.1, the LIGHT beamline is right next
to the transfer channel and protons with 11.4MeVu−1 are also well within the capabilities of the LIGHT
beamline. The initial conditions for a first proof-of-principle experiment are therefore very promising.
However, it remains to be determined whether the LIGHT beamline can generate a proton beam which
is within the acceptance range of the SIS18 and whether it contains a sufficient number of protons to be
detected by the respective beam diagnostic. The following values are specified for the acceptance of the
SIS18 [GSI, 2022]:

• Normalized horizontal emittance ε2σn,xx′ = 3.12mmmrad

• Normalized vertical emittance ε2σn,xx′ = 9.96mmmrad

• Energy spread ∆E/E = ±0.2% (full width)

It is also known that the maximum number of protons reached in SIS18 is about 3× 1010 and the time the
UNILAC needs to fill the SIS18 is approximately 130µs [GSI, 2022].
The extent to which the required beam parameters for the SIS18 injection can be accomplished with the
LIGHT beamline will be determined with simulations in the following. Therefore, the setup of the LIGHT
beamline is considered first.

6.2. Setup of the LIGHT beamline for the SIS18 injection

For a first proof of principle experiment, protons will be used since they are accelerated most efficiently
by the TNSA mechanism and therefore most particles are expected for this ion species. Since the RF
cavity at the LIGHT beamline is best suited for a proton energy of 8MeV and the proton beam energy
that the UNILAC usually provides to the SIS18 is 11.4MeV, these two energies are used for the following
considerations.
In Chapter 4 it was shown that the energy spread of the transported ion beam at the LIGHT beamline
is ∆E/E = 10% (FWHM) as well as that the emittance of a transported proton beam with a mean
energy of 8.3MeV and a maximal initial divergence angle of 8° is ε2σn,yy′ ≈ ε2σn,xx′ = 13.3mmmrad. Thus,
the transverse emittance of the transported beam is expected to be approximately in the order of the
acceptance range of the SIS18, while its energy spread will be much larger than required. The extent to
which the injection is possible therefore depends mainly on the amount of particles that can be energetically
compressed by the RF cavity. Therefore, as a first step, the energy spread of the transported proton beam
that can be energetically compressed ∆Elinear/E and the RF cavity voltage UEcomp required for that are
determined with Equation 5.24. The results are shown in the Tables 6.1a and 6.1b for different distances
dcav,1 that are geometrically accessible at the LIGHT beamline.
The maximum RF cavity voltage is Umax ≈ 1MV, which means that the energetic compression for protons
with 8MeV and a distance dcav,1 of 1225mm is within the capabilities of the RF cavity, whereas for protons
with 11.4MeV it is just about possible for a distance dcav,1 of 1750mm. The simulations of these two
scenarios are now presented. Thereby, in both cases the second solenoid is not implemented since the
resulting beam is already considered after the RF cavity and for the first solenoid the field maps determined
with the realistic coil are used (see Section 4.4.3).
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Table 6.1: The energy spread ∆Elinear/E of the transported beam that can be energetically compressed
by the RF cavity of the LIGHT beamline as well as the required voltage UEcomp for different distances
dcav,1. The values are determined with Equation 5.19 and 5.22 for protons with a desired energy of 8MeV
(Table 6.1a) and 11.4MeV (Table 6.1b).

dcav,1 ∆Elinear/E UEcomp

1225mm 9.84% 0.77MV
1750mm 6.89% 0.54MV
2275mm 5.30% 0.41MV

(a) E = 8MeV

dcav,1 ∆Elinear/E UEcomp

1225mm 11.74% 1.39MV
1750mm 8.22% 0.97MV
2275mm 6.32% 0.75MV

(b) E = 11.4MeV

6.3. Simulations on the energetic compression of protons with 8MeV

The simulations of the energetic compression of protons with 8MeV will be presented first. Therefore, the
capturing solenoid is supplied with 8.3 kA so that protons with 8MeV are collimated. The distance dcav,1
is set to the smallest distance possible (1225mm) since according to Table 6.1a this leads to the largest
value of ∆Elinear/E and UEcomp is still well within the capabilities of the RF cavity. For the initial proton
beam parameters shown in Table 6.2 the smallest energy spread of the beam behind the RF cavity was
achieved for an RF cavity voltage of 0.78MV in the numerical simulations, which is thus consistent with
the analytically determined values in Table 6.1a.

Table 6.2: Parameters that were used to generate the beam for the simulation of the energetic compression
in case of protons with 8MeV.

N kBT Emin Emax Ecut a2 a1 a0 m q

1× 107 6MeV 6MeV 10MeV 28MeV -0.04 ◦/MeV2 0.41 ◦/MeV 26.47 ◦ 1u 1 e

The spectra of the initial, the transported, and the energetically compressed proton beam obtained in this
way are shown in the left image of Fig. 6.2. The most important parameters of the particles that pass the
RF cavity are as follows:

• Energy spread ∆E/E = 0.32% (FWHM)

• Horizontal emittance ε2σn,xx′ = 17.4mmmrad (entire beam)

• Vertical emittance ε2σn,yy′ = 17.3mmmrad (entire beam)

• Number of protons Nsim = 3.7× 105 (entire beam)

The energy spread of the transported proton beam is 10% (FWHM) which is reduced to 0.32% (FWHM)
by the RF cavity in this simulation. The main reason for the remaining energy spread is the longer path
that particles with higher initial divergence angles have to travel. Therefore, particles with the same energy
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Fig. 6.2: The left image shows the simulated spectra of the initial, the transported, and the energetically
compressed proton beam at the LIGHT beamline for a targeted energy of 8MeV and in the right image the
particles of the energetically compressed beam in the E-t phase space are illustrated. The main reason
for the remaining energy spread of the energetically compressed fraction of the proton beam are the
different initial divergence angles θ0 as shown in the right image.

reach the RF cavity at slightly different times and do not experience the same electric field strength. This
can be seen in the right image of Fig. 6.2, since the size of the compressed beam in the E-t phase space is
caused by the different initial divergence angles θ0 of the particles.

The reason for the relatively large transverse emittances of the beam is that they refer to all protons that
pass the RF cavity and not only to those that are collimated and energetically compressed. Only considering
the protons of the beam that are within the energy spread of ±0.2% (acceptance range of the SIS18) leads
to the following beam parameters:

• Energy spread ∆E/E = 0.4% (full width)

• Horizontal emittance ε2σn,xx′ = 8.54mmmrad (within ∆E/E)

• Vertical emittance ε2σn,yy′ = 7.82mmmrad (within ∆E/E)

• Number of protons Nsim = 105 (within ∆E/E)

For this fraction of the beam the horizontal emittance ε2σn,xx′ is still not within the acceptance range of the
SIS18 (ε2σn,xx′ = 3.12mmmrad). Since the solenoid is set up to collimate most of the beam’s particles, the
horizontal emittance of the beam can be reduced by removing particles with a large horizontal direction
deviation. By removing all protons with x′ > 4mmmrad the horizontal emittance of the beam corresponds
exactly to the required emittance of ε2σn,xx′ = 3.12mmmrad. The proton beam obtained in this way contains
6× 104 protons in the simulation which are 46% of the protons that would pass the second solenoid of
the LIGHT beamline. The initial beam has 107 particles with an energy of (6 - 10)MeV (see Table 6.2) and
the TNSA source at the experimental area Z6 typically contains 8.8× 1010 particles in this energy range.
Therefore, it can be expected that the LIGHT beamline can inject a proton beam with the following
parameters into the SIS18:
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• Energy spread ∆E/E = 0.4% (full width)

• Horizontal emittance ε2σn,xx′ = 3.12mmmrad

• Vertical emittance ε2σn,yy′ = 6.04mmmrad

• Number of protons Nexp = 5.3× 108 (within ∆E/E, ε2σn,xx′ and ε2σn,yy′)

The same simulation has also been performed for a targeted proton beam energy of 11.4MeV and will be
presented in the next section.

6.4. Simulations on the energetic compression of protons with 11.4MeV

For protons with an energy of 11.4MeV the first solenoid is supplied with 9.9 kA, the distance dcav,1 is
set to 1750mm, the RF cavity voltage is set to 1MV and the parameters shown in Table 6.3 are used to
generate the initial proton beam.

Table 6.3: Initial proton beam parameters for the simulations in this subsection.

N kBT Emin Emax Ecut a2 a1 a0 m q

1× 107 6MeV 9MeV 14MeV 28MeV -0.04 ◦/MeV2 0.41 ◦/MeV 26.47 ◦ 1u 1 e

This results in a proton beam with the following parameters behind the RF cavity:

• Energy spread ∆E/E = 0.21% (FWHM)

• Horizontal emittance ε2σn,xx′ = 9.66mmmrad (within ∆E/E = ± 0.2%)

• Vertical emittance ε2σn,yy′ = 8.37mmmrad (within ∆E/E = ± 0.2%)

• Number of protons Nsim = 1.2× 105 (within ∆E/E = ± 0.2%)

Therefore, also in this case protons with a high horizontal direction deviation behind the solenoid are
removed to reduce the horizontal emittance of the beam to ε2σn,xx′ = 3.12mmmrad. In this simulation, the
threshold had to be set to x′max = 1.4mmmrad. The proton beam obtained in this way contains 6.8× 104
protons in the simulation which are 39% of the protons that would pass the second solenoid of the LIGHT
beamline. The initial beam has 107 particles with an energy of (9 - 14)MeV (see Table 6.3) and the TNSA
source at the experimental area Z6 typically contains 4.7× 1010 particles in this energy range. Therefore,
the LIGHT beamline can inject 3.2× 108 protons with an energy of 11.4MeV into the SIS18 in a single
shot. The results of the simulations of this chapter are summarized in the Tables 6.4a and 6.4b.
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Table 6.4: The beam parameters that can be achieved with current setup of the LIGHT beamline for the
injection in the SIS18.

Beam parameter Value

Energy spread ∆E/E 0.4% (full width)
Hor. emittance ε2σn,xx′ 3.12mmmrad
Vert. emittance ε2σn,yy′ 6.04mmmrad
Number of protons within
∆E/E and (ε2σn,xx′ , ε2σn,yy′)

5.3× 108

(a) E = 8MeV

Beam parameter Value

Energy spread ∆E/E 0.4% (full width)
Hor. emittance ε2σn,xx′ 3.12mmmrad
Vert. emittance ε2σn,yy′ 6.5mmmrad
Number of protons within
∆E/E and (ε2σn,xx′ , ε2σn,yy′)

3.2× 108

(b) E = 11.4MeV

The estimated number of particles that can be injected refer to the current setup of the LIGHT beamline.
In the following, some measures are mentioned with which the number of injectable particles can be
increased:

• An increase in the available PHELIX laser energy at Z6, which would increase the number of particles
in the initial TNSA spectrum significantly.

• A reduction of the initial divergence for the particles in the relevant energy interval of the TNSA
source, which would increase the transport efficiency and reduce the emittance growth by chromatic
and spherical aberrations of the solenoid (see Section 4.4.2). This could be achieved by a TNSA
target optimization or by increasing the beam size of the PHELIX laser on the target.

• An improvement of the ion capturing element to obtain more particles in the required transverse
emittance range.

• A reduction of the distance dcav,1 between the TNSA source and the RF cavity, which would require
an RF cavity with more power and geometric adjustments in and around the Z6 target chamber.

For some applications, such as the planned stopping power measurements, a high beam flux and a short
temporal length of the bunch is more valuable than a small energy spread. At the LIGHT beamline the
highest particle flux (for the transported beam) is achieved by a temporal compression with the RF cavity
in combination with the focusing of a second solenoid. Within the scope of this thesis, this was investigated
for laser-accelerated protons and carbon ions using simulations and experiments. The results of this are
presented in the following two chapters.
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7. Generation of high proton fluxes

In this chapter, the results of a beamtime that was conducted in January 2020 are presented. Prior to
this beamtime the transport, the focusing and the temporal compression of 8MeV protons had already
been successfully performed separately at the LIGHT beamline [Busold et al., 2013, 2014b, 2015; Jahn
et al., 2019]. From these results, it was expected, that the focusing of the temporally compressed bunch
would lead to a very high particle flux [Jahn et al., 2019]. The generation of such high particle fluxes was
therefore the main goal of this experimental campaign.
In the following, the transport, focusing and temporal compression of the proton beam is considered with
simulations first. After that, the measurements of the experimental campaign are described in detail and
the corresponding results of their evaluation are presented. A discussion of the discrepancies between the
experimental data and the simulations is then given in the last section of this chapter.

7.1. Simulation studies for the generation of high proton fluxes

The following simulations will be compared to the experimental data to identify possible systematic
measuring errors and explain unexpected observations in the measurements. The energy of the resulting
proton bunch in the experiment was 7.7MeV. Therefore, in the following simulations, the particle flux of
a proton beam with 7.7MeV is optimized for the corresponding beamline setup of the experiment. The
setup of the LIGHT beamline in the experimental campaign and the simulations corresponds to the setup
that was already shown in Fig. 4.6. In Table 7.1 the parameters that are used to generate the initial proton
beam are given.

Table 7.1: Parameters that were used to generate the initial proton beam in the simulations of this
subsection.

N kBT Emin Emax Ecut a2 a1 a0 m q

1× 107 6MeV 5MeV 10MeV 28MeV -0.04 ◦/MeV2 0.41 ◦/MeV 26.47 ◦ 1u 1 e

7.1.1. Transport and focusing of the proton beam

To transport protons with a mean energy of 7.7MeV in the simulation, the first solenoid has to be supplied
with 8.23 kA (see Section 4.4). Simultaneously supplying the second solenoid with a current of 7.75 kA
leads to a focal spot of the transported beam behind the second solenoid. In Fig. 7.1 the beam sizes in the
x-y-plane are shown for different distances to the TNSA target d (behind the second solenoid) as well as
for different magnetic field distributions used for the solenoids (see Section 4.4.3) and different beam size
definitions.
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Fig. 7.1: Beam sizes for different distances d, different beam size definitions and different magnetic field
distributions used for the solenoid magnets.
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(a) Straight ring windings
d = 5670mm
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(b) Straight ring windings
d = 5685mm
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(c) Straight ring windings
d = 5705mm
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(d) Realistic coil geometry
d = 5700mm
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(e) Realistic coil geometry
d = 5705mm
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(f) Realistic coil geometry
d = 5715mm

Fig. 7.2: Transported proton beams for different distances d to their origin and different magnetic field
distributions of the solenoid magnets. The red circles are enclosing 50% of the total proton number.

Also, for some distances, the beam profiles are illustrated in Fig. 7.2. In case of the beam size definition
that is called "50% of protons" in the legend of Fig. 7.1, the radius of a circle is given that encloses 50% of
the transported protons. This circle is also shown in red in the images of Fig. 7.2. For every focal spot size
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definition and for both magnetic field distributions that are used, the minimum size is close to 0.5mm,
albeit at different distances. The plateau of the FWHM for the straight ring windings at approximately
5685mm in Fig. 7.1 is striking, which can be explained by the uniform particle distribution of the beam
profile around this distance (see Fig. 7.2b). These simulations therefore illustrate that only the particle
distribution in the focal spot is changed by the imperfections in the magnetic field distribution and not
its size. This was also expected due to the similar emittances of the beam after the first solenoid for the
different magnetic field distributions (see Section 4.4.3).
In the next subsection, the particle distribution in the beam profile shown in Fig. 7.2f is described in more
detail.

7.1.2. Analyzing the beam filamentation in the focal spot

In Fig. 7.3 the individual particles of the beam profile shown in Fig. 7.2f are illustrated. Thereby, in the left
picture, the color of the particles corresponds to their energy E, while in the right picture it corresponds to
their initial divergence angle θ0.
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Fig. 7.3: Particles of the proton bunch at a distance of 5715mm to their origin. In the left image, the color
of the particles corresponds to their energy E, while in the right image it corresponds to their divergence
angle θ0 at the origin of the beamline.

In these two pictures the effect of the chromatic aberration, the spherical aberration and the astigmatism of
the solenoid magnets can be seen, which are now considered one after the other. The chromatic aberration
was found to be the most dominant aberration at the LIGHT beamline in Section 4.4.2. This aberration
is caused by the dependency of the focal length of the solenoid on the particles’ momentum. Therefore,
the particles of each energy are reaching the nominal axis at different positions. In the left picture of
Fig. 7.3 it can be seen, that at the illustrated position particles with an energy of (7.5 - 7.8)MeV are closest
to the nominal axis (x = y = 0). The particles with an energy of (7.8 - 8)MeV will therefore reach the
nominal axis behind the considered position while the particles with an energy of (7.2 - 7.5)MeV have
already passed the nominal axis. The elliptical or S-shaped distribution of the particles of each energy
is caused by the astigmatism which in turn is caused by the connection cables of the solenoid as shown
in Subsection 4.4.3. In the right picture of Fig. 7.3 it can be seen that the particles with a smaller initial
divergence angle are closer to the nominal axis at the illustrated position. Since the first solenoid collimates
the beam, particles with a large initial divergence angle have the largest distance to the nominal axis
in the second solenoid and, as discussed in Section 4.2, therefore experience a stronger focusing force
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(spherical aberration). Therefore, many particles with a large initial divergence angle have already passed
the nominal axis at the illustrated position.
Due to the elliptical or S-shaped distribution of the particles of each energy, multi-peak structures in the
temporal beam profile can occur if just a fraction of the beam is considered. This is indicated in Fig. 7.4.
Thereby, the diameter of the blue and the red circle in the left image of Fig. 7.4 corresponds to the detection
area (0.5mm diameter) of the time of flight diamond membrane detector that is typically used in the
experimental campaigns with the LIGHT beamline [Jahn et al., 2018]. In the experiments, this ultimately
leads to an unclear correlation between the shape of the measured temporal beam profile and the phase or
the electric field strength of the RF cavity, which makes a systematic adjustment of the RF cavity with a
filamented beam unfeasible. Therefore, during the adjustment of the RF cavity the beam filamentation has
to be suppressed with a scattering foil in the experiments.
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Fig. 7.4: In the left image the number of particles per area of the proton bunch at a distance of 5715mm
to their origin is shown and the temporal profiles of the beam fractions enclosed by the green, blue and
red rings are illustrated in the right image.

Due to the energy spread of the transported bunch, its temporal width increases over the entire length of
the LIGHT beamline. Therefore, the temporal width of the bunch is 7 ns (FWHM) in the focal spot of the
second solenoid as can be seen by the green line in the right image of Fig. 7.4. In the next section, the RF
cavity is now used to temporally compress the bunch and thus increase the particle flux at this position.

7.1.3. Temporal compression of laser-accelerated proton beams

As a first step, the required RF cavity voltage for the temporal compression shall be determined with
Equation 5.25. For the used setup the ratio dcav,1/dcav,2 is 0.66 and according to Table 6.1a UEcomp is
0.41MV which results in a Utcomp of 0.68MV. In the simulations, the voltage was then systematically
optimized and the smallest temporal bunch width was found for an RF cavity voltage of 0.67MV.
In the left image of Fig. 7.5 the energy spectra of the initial, the transported and the temporally compressed
proton beam are compared at a distance of 5.7m from the TNSA source. The spectrum of the temporally
compressed beam has an U-shape with an energy spread of 4.54%. According to Equation 5.26 the energy
spread of the resulting beam is 5.2%, which is therefore consistent with the simulations.
In the right image of Fig. 7.5 the beam is shown in the E-t phase space and the color of the particles
corresponds to their initial divergence angle θ0. The temporal width of the beam at this position is 60 ps
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(FWHM). As in the case of the energetic compression in Chapter 6, the temporal width of the beam is
only limited by the different path lengths of the particles with different initial divergence angles θ0 in the
simulation.
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Fig. 7.5: The left image shows the simulated energy spectra of the initial, the transported, as well as the
temporally compressed proton beam at the LIGHT beamline for a targeted energy of 7.7MeV. The right
image shows the particles of the temporally compressed beam with their initial divergence angle θ0 in E-t
phase space.

x in mm

-2 -1 0 1 2

y 
in

 m
m

-2

-1

0

1

2

dN
/d

A
 in

 1
/
1

0
0

 
m

-2

0

5

10

15

20

25

x in mm

-2 -1 0 1 2

y 
in

 m
m

-2

-1

0

1

2

dN
/d

A
 in

 1
/
1

0
0

 
m

-2

0

5

10

15

20

25

Fig. 7.6: Comparison of the focal spots at the LIGHT beamline for a transported proton beam (left image)
and a transported proton beam that is temporally compressed by the RF cavity (right image).

In the experimental campaign, the spatial beam profile of the temporal compressed beam was measured in
the focal spot. Therefore, the extent to which the temporal compression changes the beam profile in the
focal spot of the second solenoid is also investigated with simulations. The beam profiles of the transported
and the temporally compressed proton beam after the second solenoid are shown in Fig. 7.6. As can be
seen, the temporal compression changes the beam profile only slightly and the beam size increases only
from 1mm to 1.3mm.
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This concludes the simulation studies of this chapter. The most important parameters of the temporal
compressed and focused proton bunch are summarized in Table 7.2. In the next section, the measured
beam parameters in the experiment are presented.

Table 7.2: Parameters of the temporal compressed and focused proton beam that have been determined
with the simulations shown in this section.

Parameter Value

Mean energy 7.7MeV
Energy spread (full width) 4.54%
Temporal bunch width 60 ps
Focal spot size 1.3mm

7.2. Generation and measurement of high proton fluxes

In the following, the setup of the beamline, the alignment of the solenoids and the adjustment of the RF
cavity during the experimental campaign are explained, and the most important results obtained in this
process are presented and evaluated.
Fig. 7.7 shows the setup of the LIGHT beamline during the experimental campaign along with the used
diagnostics.

PHELIX

Sideview Focus diagnostic

Z6 target

chamber
Z4 target

chamber

Solenoid magnets

RF cavity Photodiode (PD)

Diamond detector (DD)

40 mm

2275 mm

50 mm

3425 mm

Fig. 7.7: Schematic setup of the LIGHT beamline during the experimental campaign in January 2020.

After the PHELIX beam enters the Z6 target chamber, a mirror reflects the beam on the off-axis parabola
which then focuses it on the TNSA target. The focus of the PHELIX beam and the TNSA target are aligned
with the sideview and the focus diagnostic. The sideview images the TNSA target on a camera. Thereby, a
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laser pointer is used as a backlight. The focus diagnostic images the PHELIX beam at the position of the
target on a camera. The first optics of the focus diagnostic are mounted on a motorized linear stage so that
they can be moved away from the beamline axis.
For the alignment of the capturing solenoid, the transported proton beam is diagnosed with RCF stacks in
front of the RF cavity and at the entrance of the second solenoid. Thereby the RCF stacks are configured, so
that the protons with an energy of 5.8MeV, 8MeV and 9.8MeV are stopped in the active layers. The size of
the beam in the active layers is then used for the adjustment of the magnetic field strength and its position
for the solenoid alignment. Since even a slight displacement (∼ mm) of the solenoid results in a deflection
of the beam, the alignment is very crucial for the capture efficiency and can be very time-consuming due to
the limited shot rate of the PHELIX laser. Therefore, the solenoid is mounted on a hexapod (HXP100-MECA
V6), whose adjustment platform can perform motions and rotations in the range of µm or mdeg. This
hexapod was installed in the Z6 target chamber in 2019 as one of the first projects of this work. In Fig. 7.8
the hexapod is shown in the Z6 target chamber with and without the mounted solenoid.

Hexapod Capturing solenoid Focusing parabola

Fig. 7.8: Images of the hexapod in the Z6 target chamber before and during an experimental campaign
with the LIGHT beamline.

The second solenoid is adjusted in the same way, but due to the short distance between the second solenoid
and the middle of the Z4 target chamber, the alignment is far less demanding. After the minimization of the
focal spot size in the Z4 target chamber, the temporal profile and the energy of the transported proton beam
can be measured with the Diamond Detector (DD) and the photodiode. In this experimental campaign,
the diamond membrane detector [Jahn et al., 2018] is placed in the focal spot of the proton beam which
had a distance of dDD = (5.70± 0.05)m to the TNSA target. The photodiode was placed right next to
the diamond detector and measured the electromagnetic radiation that is generated by the interaction
between the PHELIX laser and the TNSA target. Diamond detector and photodiode were connected to an
oscilloscope with cables of the same type and length. Therefore, the time of flight of the bunch from the
TNSA target to the diamond detector tbunch can be determined by the time difference between the rising
edge of the photodiode signal and the diamond detector signal ∆toszi, since the electromagnetic radiation
of the plasma travels with the speed of light c, so

tbunch = ∆toszi + dDD/c. (7.1)
The time of flight can then be used to determine the energy of the bunch

Ebunch = γbunch ·m0c
2 =

m0c
2√︂

1− β2
bunch

(7.2)
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with
βbunch =

dDD
c · tbunch

. (7.3)

It should be noted, that this is only valid if the energy of the bunch is constant over the entire distance,
so only if the mean energy of the bunch is not changed by the RF cavity. The result of one of the first
measurements with this setup is shown in Fig. 7.9 as an example.
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Fig. 7.9: Normalized signals of the photodiode and the diamond detector, which were recorded by an
oscilloscope. The signal of the photodiode is caused by the electromagnetic radiation of the plasma,
whereas the signal of the diamond detector is caused by the transported protons.

Thereby, 30% of the rising edge of the photodiode signal corresponds to the time of flight of the electro-
magnetic radiation from their origin to the diamond detector (dDD/c = 19ns) and therefore the diamond
detector signal corresponds to the time of flight of the transported protons. The triple peak structure of the
diamond detector signal is due to the beam filamentation and the small detection area of the diamond
detector as shown in the simulations of Section 7.2. To get the temporal profile of the entire proton bunch,
its filamentation was eliminated by a scattering foil. The middle peak corresponds to a proton energy of
7.7MeV. According to the Stopping and Range of Ions in Matter (SRIM) code, the scattering of an RCF of
type Gafchromic HD-V2 (about 100µm thick) at the second solenoid causes a mean scattering angle of
13mrad, which corresponds to a transverse position deviation of 3.86mm at the position of the diamond
detector if the scattering foil is placed in front of the second solenoid (the size of the whole beam at the
position of the diamond detector was approximately 2.5mm). This scattering was sufficient to eliminate
the beam filamentation, which can be seen by the Gaussian-like diamond detector signal of shot 68 shown
in Fig. 7.10. The temporal width of this signal is (7.50± 0.04) ns (FWHM). According to Equation 5.3
this corresponds to an energy spread of ∆E/E ≈ 10%, which agrees well with the predictions of the
simulations in Section 7.2.
The elimination of the beam filamentation allows the systematical adjustment of the RF cavity for the
temporal compression, which is illustrated in Fig. 7.11. As can be seen, changing the RF cavity phase ϕ
(delay between the RF cavity and the PHELIX laser) leads to a different energy transfer of the RF cavity to
the nominal particle (particle with the mean energy of the bunch) whereas an increase in the RF cavity
voltage changes the energy spread of the bunch and therefore the temporal width of the bunch at the
position of the diamond detector. The absolute values of the used RF cavity voltages are estimated, since
the applied voltages were only measured relative to each other.
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Fig. 7.10: Normalized signals of the photodiode and the diamond detector which were recorded by the
oscilloscope for shot 29 and 68. The triple peak structure of the diamond detector signal of shot 29 is
caused by the filamentation of the proton beam. For shot 68 the filamentation is eliminated by a scattering
foil.
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Fig. 7.11: Temporal profile of the transported proton bunch at the LIGHT beamline for different RF cavity
voltages Ucav and phases ϕ.

With a temporal width of (742± 40) ps (FWHM), the signal of shot 70 has the smallest temporal width
measured in this experiment. Therefore, the RF cavity parameters of this shot were used to measure the
transverse beam profile of the temporally compressed bunch with the RIS. For this measurement, the
scattering foil was removed to obtain the smallest possible focal spot. The used RCF stack configuration
and the deposited energy in the first four active layers of the RCF stack are shown in Fig 7.12.
The red circle in the second active layer has a diameter of 1.38mm. Since the total deposited energy
is highest in the second active layer and then decreases significantly in the third active layer, it can be
concluded that most of the protons had an energy between 7.7MeV and 8MeV, which is consistent with
the results of the ToF measurements.
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Fig. 7.12: RCF configuration and the deposited energy of the temporal compressed bunch in the first four
active layers of the stack. The copper (Cu) layer had a thickness of 100µm and the aluminum (Al) layer a
thickness of 25µm. The specified energies in the header of the images correspond to the energy of the
protons that are, according to SRIM, stopped in the active layer and the red circles are enclosing 50% of
the total deposited energy.

In the next step, the particle flux of the proton bunch is determined, which requires the number of protons
in the bunch. Therefore, a particle distribution must be found that deposits the same amount of energy
in the active layers of the RCF stack as was measured in the experiment. This is done with two different
methods in the following. The first method is based on a stepwise adjustment of the number of particles
that are stopped in the active layers. Thereby, the number of particles in the passive layers are set by a
linear interpolation. The idea of this method was first published in [Schollmeier et al., 2014] and was
implemented in an RCF evaluation routine as part of this work, which has also been published [Schmitz
et al., 2022]. The main advantage of this method is that no particle distribution has to be assumed.
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In the second method, a given particle distribution is optimized so that its deposited energy matches the
measured deposited energy, as is done in Section 2.2 for the TNSA source at Z6 and an exponentially
decaying energy spectrum. Thereby, the following particle distribution are used:

• Gaussian distribution: dN
dE = N0 exp

(︃
−1

2

(︂
E−Eµ

σ

)︂2
)︃
+Nbg

• Gaussian distribution (fixed σ): dN
dE = N0 exp

(︃
−1

2

(︂
E−Eµ

σ̃

)︂2
)︃
+Nbg, σ̃ = 0.32

• Parabolic distribution: dN
dE = N0 (E − Eµ)

2 +Nbg,u, dN
dE (E > Eµ +∆E1, E < Eµ −∆E2) = Nbg

So in all three distributions Eµ is the mean energy, Nbg is a constant background of particles, and the
parameter N0 only influences the number of particles that the distribution contains. The background
Nbg is required to properly reproduce the deposited energy at higher ion energies which is caused by
particles with very small initial divergence angles. The fixed standard deviation of the second Gaussian
distribution σ̃ corresponds to an energy spread of ∆E/E ≈ 10% (FWHM), as it would be expected for a
transported, uncompressed beam. According to the simulation studies in Section 7.2 the energy spectrum
of the temporal compressed beam has an U-shape which can be reproduced with the parabolic distribution.
The resulting particle distributions are shown in Fig. 7.13 and their most important parameters are listed
in Table 7.3.

Table 7.3: Number of particlesNges, mean energyEµ and energy spread∆E/E of the particle distributions
that were adjusted or optimized to match the measured deposited energies shown in Fig 7.12. The square
root of the mean squared deviation (MSD) of the deposited energies divided by the maximum measured
deposited energy Ēmaxdep are also given.

Distribution Nges Eµ ∆E/Eµ

√
MSD/Ē

max
dep

Gradually adjustment (7.29± 0.64)× 108 7.70MeV 5.92% (2σ) 0
Gaussian (7.21± 0.72)× 108 7.82MeV 6.60% (2σ) 1.53%

Gaussian (fixed σ) (7.81± 0.79)× 108 7.80MeV 16.03% (2σ) 12.24%
Parabolic (7.30± 0.81)× 108 7.81MeV 4.91% (full width) 1.47%

To determine the uncertainty of the particle number Nges, the corresponding method was applied to the
minimum and maximum measured deposited energies. As can be seen in Fig 7.13 and by the mean squared
deviation (MSD) in Table 7.4, all obtained particle distributions except the normal distribution with the
fixed standard deviation can reproduce the RIS measurement. In addition, the particle number, energy
and energy deviation of the distributions, that reflect the measurement well, differ only slightly from each
other. It can therefore be concluded that these values apply to the measured spectrum. For a definite
assignment of a specific distribution function, the pure RIS measurement does not provide enough data
points. However, according to the ToF measurements and the simulation studies in Section 7.2, it is very
likely that the measured beam had an energy spectrum similar to the one shown in Fig 7.13d.
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(a) Gradually adjustment with linear interpolation
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(b) Optimization of a normal distribution
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(c) Optimization of a normal distribution with σ̃ = 0.32
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(d) Optimization of a parabolic distribution

Fig. 7.13: Particle distributions whose deposited energies are adjusted or optimized to match the RIS
measurement shown in Fig 7.12. In addition, the deposited energies of the spectra are compared to the
measured deposited energies in each case.

With the number of particle thus obtained, the proton beam is well-characterized for most applications.
The most important beam properties are summarized in Table 7.4. Thereby, the number of protons that
corresponds to the gradually adjusted particle distribution are used, so the values given are identical to
those published in [Metternich et al., 2022].
In the next section, the measurements are compared with the simulations of the Section 7.2 to evaluate
the accuracy of the simulations and to identify possible systematic errors in the measurements.
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Table 7.4: Parameters of the proton beam obtained during an experiment performed as part of this work.

Parameter Value Determined by

Number of protons (7.29± 0.64)× 108 RIS measurement
Mean energy (7.72± 0.14)MeV ToF measurement
Energy spread (4.91± 0.82)% RIS measurement
Temporal bunch width (742± 40) ps ToF measurement
Focal spot size (50% of protons) (1.38± 0.02)mm RIS measurement
Particle fluence in the focal spot (2.44± 0.21)× 108mm−2 Parameters above
Particle flux in the focal spot (3.28± 0.24)× 108 ns−1mm−2 Parameters above
Beam current (157± 16)mA Parameters above
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7.3. Comparison of the measurements and the simulations

In Table 7.5 the measured and the simulated parameters of the focused and temporal compressed proton
beam are listed side by side.

Table 7.5: Parameters of the proton beam that were achieved during a beamtime in January 2020 and in
the simulation studies of Section 7.2. Since the coils of the solenoid magnets in the experiment have
Nexp = 112 windings and the coil that is used to determine the magnetic field distributions in the simulation
only have Nsim = 100 windings, the specified current for the solenoids in the simulation are multiplied
by the ratio Nsim/Nexp (for a solenoid B0 ∝ NI/L applies with L = 150mm being the length of the coil
[Demtröder, 2013]).

Parameter Experiment Simulation Deviation

Capture efficiency (9.10± 3.21)% 9.58% 5.01%
Mean energy (7.72± 0.14)MeV 7.7MeV 0.26%
Energy spread (4.91± 0.82)% 4.54% 8.15%
Temporal bunch width (742± 40) ps 60 ps > 10
Focal spot size that contains 50% of protons (1.38± 0.02)mm 1.3mm 6.15%
Current supplied to the first solenoid ∼ 7.94 kA 7.32 kA 8.47%
Current supplied to the second solenoid ∼ 7.24 kA 6.75 kA 7.26%
RF cavity voltage ∼ 0.65MV 0.68MV 4.41%

So except of the temporal bunch width, the relative deviation of all parameters is less than 10%. The
deviation of temporal bunch widths can be caused by anything that was not taken into account in the
simulation or in the evaluation of the experimental data. The most likely causes are

• The scattering foil in the ToF measurements

• Incorrect settings or alignments of the beamline components

• Saturation effects of the used diagnostics

• Space charge effects

• A non-negligible initial emittance of the TNSA-generated ion beam

• A radially dependent energy transfer of the RF cavity

The influence of these effects on the beam parameters are estimated one by one in the following.
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The scattering foil in the ToF measurements

According to SRIM, a monochromatic proton beamwith 7.7MeV has a Gaussian distributed energy spectrum
after the scattering foil with a FWHM of 75 keV. This energy spread results in a temporal width of 30 ps
(FWHM) over the distance between the scattering foil and the diamond detector (300mm). Therefore, the
scattering foil cannot explain the deviation between the measured and simulated temporal bunch width.

Incorrect settings or alignments of the beamline components and possible saturation effects

For the considerations of these points, some more details about the alignment procedure, the setting
accuracies and the shot-to-shot variations in the experiment are given. The main amplifier of the PHELIX
laser consists of five individual amplifier heads. If all of them are used simultaneously, the shot rate of the
laser system is limited to about one shot per 90minutes to get a sufficient cooling time for the Nd:glass of
the amplifiers. During the alignment phase of the LIGHT beamline only two to three amplifier heads are
used simultaneously which therefore allows a shot rate of 1 shot per (30 - 45)minutes at the expense of
laser energy. Nevertheless, the alignment process remains the most time-consuming step in experimental
campaigns and slight deviations from the optimal settings cannot be ruled out.
As a next step, the shot-to-shot variations and the setting accuracies shall be discussed. In this context, the
solenoid magnets are considered first. In the case that the maximum energy of the TNSA spectrum is higher
than the energy that shall be transported, the mean energy of the transported bunch is only depending on
the current that is supplied to the first solenoid. The mean relative deviation of this current is less than 1%
in the experiments, which leads to a very stable transported proton beam energy.
The same applies for the shot-to-shot variations of the RF cavity voltage (∼ 1%) as well as for the delay
between the RF cavity and the PHELIX laser (∼ 0.5 ns). Therefore, only slight deviations of the temporal
width and the height of the diamond detector signal are observed in the experiment. In fact, the relative
influence of the RF cavity voltage on the diamond detector signal is smaller than it would be expected
from the simulations, which is shown in Fig 7.14.
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Fig. 7.14: Comparison of the temporal widths (FWHM) in the simulation and the experiment for different
deviations ∆U from the optimal RF cavity voltage for the temporal compression.

This observation strongly suggests saturation effects in the diamond detector. However, the other effects
mentioned above are also possible causes for this.
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Space charge effects

In Fig. 7.15 the electric field in longitudinal direction Ez,sc (on axis and at the edge of the beam) and the
defocusing strength κsc caused by space charge effects are shown for different beam radii r0 and different
temporal bunch widths τ . The equations derived in Section 3.7 are used to generate these images. Thus, a
cylindrical beam with 7.29× 108 homogeneously distributed protons is assumed. In addition, the solenoid
magnets are assumed to act as magnetic mirrors for the TNSA-generated electrons that would otherwise
move along with the transported beam, so the space charge neutralization factor fe in Equation 3.32 is set
to zero. In the following, the influence of the space charge effects on the longitudinal beam dynamics are
considered first.
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Fig. 7.15: Electric field Ez,sc and defocusing strength κsc caused by space charge effects for different
beam radii r0 and bunch lengths τ .

For the proton beam parameters achieved in the simulation (r0 = 0.65mm, τ = 60ps) the electric field
strength for the particles that are on axis and at the edge of the beam is 1.9MVm−1. However, at a distance
of 30mm to the focal spot the beam radius is already 1.5mm (see Fig. 7.1) and therefore the electric field
at this position is only 48 kVm−1 (assuming a constant temporal bunch width over this distance). The
electric field Ez,sc can therefore only explain a change in the energy of the particles in the immediate
vicinity of the focal point, but a change in their flight time from the origin to the focal point due to space
charge effects can be excluded. In the following, it will also be investigated whether transverse space
charge effects could have had an influence on the beam dynamics.
Since the value of the focusing strength has not been used in this work so far, the focusing strength of the
second solenoid magnet in the experiment shall be given here as a comparison. By using the Equations 4.8
and 4.33 as well as κsol = 1

fLsol
[Hinterberger, 2008], one obtains κsol(6.75 kA) = 144m−2 for protons

with an energy of 7.7MeV which would thus correspond to the green color in the right image of Fig. 7.15.
For the proton beam parameters achieved in the simulation (r0 = 0.65mm, τ = 60ps) the defocusing
strength κsc is 283m−2, and it seems therefore unrealistic that a focal spot size of 0.65mm is achievable
for 7.29× 108 protons with 7.7MeV and a temporal width of 60 ps. On the other hand, for the measured
proton beam parameters (r0 = 0.69mm, τ = 742 ps) the defocusing strength κsc is only 10m−2. So only if
the actual temporal bunch widths were shorter than the diamond detector signals it is possible that space
charge effects had a significant influence on the transverse beam dynamics in the experiment and thus led
to an enlargement of the focal spot. This implies that for the uncompressed proton beam, a smaller focal
spot size should be possible. The focal spot of the transported, uncompressed bunch during the beamline
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adjustment was actually smaller, which can be seen in Fig 7.16. However, the simulations also showed that
the temporal compression slightly increases the focal spot size (see Fig. 7.6). Also, a direct comparison of
Fig. 7.16 and Fig. 7.12 should be taken with caution since during the beamline alignment the energy of
the PHELIX laser is reduced to increase the shooting rate. For this reason, the maximum energy of the
TNSA spectrum is lower and therefore the initial maximum divergence angle of protons with 7.7MeV is
smaller. According to Table 4.2 this results in a smaller emittance of the beam which could also be the
reason for the smaller focal spot.
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Fig. 7.16: Deposited energy of the uncompressed proton beam during the adjustment of the second
solenoid. The red circles enclose 50% of the total deposited energy. In the left image the circle has a
diameter of 0.86mm and in the right image the diameter is 0.76mm.

From this discussion it can be concluded that the space charge effects had little, if any, influence on the
beam dynamics.

Initial emittance of the TNSA-generated ion beam

As discussed in Section 2.3 and in Appendix A.1, according to [Cowan et al., 2004] the transverse and
the longitudinal emittance of the TNSA-generated ion beam are very low and should therefore not affect
the resulting beam parameters at the LIGHT beamline. However, measuring the longitudinal emittance
with the LIGHT beamline would definitely be an option for a future experimental campaign if saturation
effects of the diamond detector cannot explain the discrepancies between the temporal bunch width in the
simulations and the measurements.

Radial dependence of the energy transfer of the RF cavity

A dependency of the energy transfer of the RF cavity on the radial distance of the particles would limit
the temporal bunch width that can be achieved by the temporal compression. In Appendix A.2 the spatial
distribution of the electric field in an acceleration gap is determined for a very simplified, stationary charge
distribution. The radial dependency of the energy transfer that resulted from this electric field distribution
does not change the resulting temporal bunch width in the simulation. However, the determination of a
realistic electric field distribution was not carried out within the scope of this work and a more detailed
investigation of this point is therefore still pending.
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Conclusion

In this section, the measured and the simulated parameters of the focused and temporally compressed
proton bunch at the LIGHT beamline were compared. Thereby, a good agreement of all beam parame-
ters was found except for the temporal bunch width. The scattering foil, space charge effects, incorrect
settings of the RF cavity, the initial emittance of the proton beam and a radial dependence of the en-
ergy transfer of the RF cavity could be excluded as the cause of this deviation. Therefore, saturation
effects in the diamond detector used in the measurements are the most plausible explanation of this de-
viation for the time being. However, in order to prove this with certainty, further investigations are required.

This concludes the investigations of this thesis with respect to proton beam shaping. In the next chapter,
the implementation and results of an experimental campaign are presented in which carbon ions have
been shaped for future stopping power experiments at GSI.
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8. Generating suitable ion bunches for stopping
power experiments

The last application that will be investigated in this thesis is the generation of a suitable ion bunch for
stopping power experiments. Therefore, in the beginning of this chapter an introduction to this application
is given, the beam parameter requirements are defined and a suitable setup for the LIGHT beamline
is determined. After that, the results of a preparatory beamtime in which the discussed setup is used
are presented and compared with simulations. Finally, the obtained beam parameters are used to make
predictions for the planned stopping power experiments.

8.1. Stopping power experiments with the LIGHT beamline

The stopping power of ions in dense, highly-ionized matter is one of the key topics in Inertial Confinement
Fusion (ICF), since modelling the process in order to optimize the net energy gain requires a precise
understanding of the interaction between the Deuterium-Tritium (DT) plasma and the α-particles [Zylstra
and Hurricane, 2019; Hurricane et al., 2019]. An approved and universally applicable ion stopping theory
could be even more valuable in ICF schemes like heavy-ion fusion [Callahan-Miller and Tabak, 2000]
[Hofmann, 2018] or ion-driven fast ignition [Roth et al., 2001; Fernandez et al., 2014], as well as in other
partially related research areas like isochoric heating [Sharkov et al., 2018; McGuffey et al., 2020] and
plasma proton radiography [MacKinnon et al., 2006; Volpe et al., 2011]. The validation of ion stopping
theories requires conclusive experimental data and these are very sparse, especially in the regime, in which
the velocities of the probing ions and the plasma electrons or ions are approximately equal [Cayzac et al.,
2017; Apiñaniz et al., 2021]. This is because suitable laser-generated plasmas in these measurements are
typically very small and highly transient, leading to great demands on the equipment of the experimental
area and, in particular, on the plasma probing ion beam.
This is also the cause of the rather large uncertainties in the few experiments reported. For example, in
a previous experiment at GSI ([Cayzac et al., 2017]), the micro bunches of the UNILAC were used as
the probing ions which had a temporal width of 5.5 ns in this experiment. Since during this 5.5 ns the
relevant plasma parameter for the stopping power (Te, ne, Z̄plasma) change significantly, the time averaging
over the plasma parameters caused rather large uncertainties in the theories, which are compared to the
experimental data. Also, the signal-to-noise ratio was relatively high due to the low particle flux in a single
micro bunch (≈ 104) of the UNILAC. Because of that, it was not possible to use a longer flight distance in
the ToF measurement to increase the accuracy of the measured stopping power. Therefore, one goal of
this work was to generate an ion beam with the LIGHT beamline for the plasma probing, with a higher
particle flux and a shorter temporal width than the UNILAC. In addition, the energy spread of the bunch
should be small, and its velocity vp should be matched to the thermal velocity of the electrons veth in the
laser generated plasma

vp ≈ veth =

√︃
3kBTe
me

, (8.1)
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since in this regime the stopping power peaks and a strong beam-plasma coupling is achieved, which
increases the importance of strong non-perturbative collisions [Cayzac et al., 2017]. Therefore, the existing
theories differ the most, thus reducing the measurement accuracy requirements for theory benchmarking
[Cayzac et al., 2017]. The extent to which this condition can be met depends primarily on the equipment of
the experimental area. For example, the size and temperature of the plasma in stopping power experiments
is mainly limited by the laser used to generate the plasma. Thereby it should be noted that although the
plasma temperature can be increased by a smaller laser focus, in the case of a flat foil plasma target this
decreases the range in which the plasma parameters are spatially homogeneous and the timescale on which
the plasma can be investigated. Therefore, for the first stopping power experiments with the LIGHT beam-
line, the same plasma parameters as in [Cayzac et al., 2017] are chosen (ne ≈ 5× 1020 cm−3, Te ≈ 150 eV),
which requires a laser pulse with an energy of 60 J, a wavelength of approximately 527 nm and a pulse
length of 7 ns. At the experimental area Z6, two high power laser systems are available, the PHELIX and
the nhelix laser. Since the PHELIX laser will already be used for the ion acceleration at the LIGHT beamline,
the plasma heating will be done by the nhelix laser. In order to achieve the required laser pulse parameters
with nhelix, the system was redesigned as part of this work and is currently under reconstruction.
According to the Equation 8.1, the corresponding energy per mass of the probe ions for an electron plasma
temperature of Te ≈ 150 eV is about 0.5MeVu−1. This is a much lower energy per mass than usually
targeted at the LIGHT beamline, especially for protons. In addition, the effective voltage of the RF cavity
has a minimum at an energy per mass of 0.5MeVu−1 (see Fig. 5.3). Since the generation and transport of
carbon ions with C4+ has also been shown to work reliably in previous experiments [Ding, 2018], in this
thesis the generation of C4+ carbon bunches with 7.2MeV (0.6MeVu−1) was targeted. Recently, however,
the first experiments with protons in the suitable energy range have also been carried out.
The setup of the LIGHT beamline with the appropriate distances for handling C4+ with 7.2MeV for the
plasma probing is shown in Fig 8.1 and will be discussed in the following.

Distance dsol,1 dsol,2 dend dcav,1 dcav,2

Length 40mm 2200mm 3225mm 1225mm 2000mm

dsol,1 dsol,2 dend0

distance

z (mm)

z

y

dcav,1 dcav,2 

x

PHELIX

Solenoid 1 Solenoid 2

RF cavity
nhelix nhelix

ToF detectorPlasma

Fig. 8.1: Planned setup for future stopping power experiments at the experimental area Z6 of GSI, in which
the plasma probing ion beam is provided by the LIGHT beamline.
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The position of the RF cavity is considered first. As discussed in Section 5.3, the energy spread ∆Elinear/E
that can be temporally compressed increases for a shorter distance between the RF cavity and the origin
of the beam dcav,1. The distance should therefore be as short as possible. The minimal distance is limited
by the maximum RF cavity voltage and the geometrical constraints at the experimental area Z6. For C4+

with about 0.5MeVu−1 the required energy transfer of the RF cavity for the temporal compression is in
principle relatively low, but since the effective voltage of the RF cavity has a minimum at an energy per
mass of 0.5MeVu−1 (see Fig. 5.3) the targeted energy per mass is adapted to 0.6MeVu−1. Therefore,
the velocity of the ions is still very close to the thermal velocity of the plasma electrons and the distance
dcav,1 can be chosen as small as it is geometrically possible (1.225m). The required cavity voltage for
the temporal compression Utcomp also depends on the distance between the RF cavity and the plasma
target dcav,2 (see Section 5.3). However, this distance does not have a great effect on the resulting beam
parameters. Therefore, it is set to 2m which results in an RF cavity voltage Utcomp of 0.4MV and thus
should favor a stable operation of the RF cavity.
Now the positions for the solenoid magnets are also taken into account. In order to increase the capture
efficiency, the first solenoid should be as close to the TNSA target as possible. At the LIGHT beamline, this
distance is typically 40mm, allowing a motorized stage with a lens and a mirror to travel between the
TNSA target and the solenoid before each shot to adjust the PHELIX laser (see Focus diagnostic in Fig. 7.7).
The ideal position of the second solenoid depends on the size of the plasma target that will be probed by the
ion beam. Due to the limited energy of the heating laser (nhelix), the region in which the plasma parameters
are spatially homogeneous will only be ∼ 0.5mm [Cayzac et al., 2017]. Therefore, the second solenoid
has to focus the carbon beam on the plasma to get a sufficient amount of carbon ions to pass through
this region. Since the focal spot size increases with the focal length of the solenoid (see Equation 4.31 in
Section 4.2), also the distance of the second solenoid to the plasma target should be as short as possible.
Unfortunately, the smallest possible distance is about 1m because otherwise the solenoid would block the
beam of the heating laser (see Fig. 8.1).
In the next section simulations of the carbon beam shaping with the discussed setup are presented which
will then be compared to experimental results in Section 8.3.
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8.2. Simulation studies on the carbon beam shaping

In the following, the reconstruction of a TNSA-generated carbon beam is explained first and then the
simulation studies on the carbon beam shaping for the stopping power experiments are presented. In these
simulations, the field maps determined with the realistic coil are used for the solenoids (see Section 4.4.3).

8.2.1. Reconstruction of a TNSA-generated carbon beam

The reconstruction of the TNSA-generated carbon beam in the simulation requires the parameters kB,
Ecut, a2, a1 and a0 for each charge state, which in case of carbon ions in the lower MeV-range cannot be
measured by RIS (see Section 2.2). Therefore, the parameter kB and Ecut are taken from the energy spectra
shown in Fig. 8.2, which were determined from Thomson parabola measurements in [Ding, 2018].
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Fig. 8.2: Energy spectra of the TNSA-generated carbon beam at the origin of the LIGHT beamline of GSI
[Ding, 2018].

Since these measurements do not provide the parameters a2, a1 and a0 it is assumed, that the maximum
and minimum direction divergence are with θmax =25° and θmin =5° equal for each charge state, as well
as θ(Emin) = θmax and θ(Ecut) = θmin with a linear dependency on the ion energy. This results in

a2 = 0, a1 =
θmax − θmin
Emin − Ecut

, a0 = θmax − a1 · Emin. (8.2)

The values determined in this way are listed in Table 8.1 and the generated spectra are shown in Fig. 8.3.
Thereby, some slight adoptions are made. In the Thomson parabola measurements in [Ding et al., 2018]
the acceleration of protons were suppressed. However, in the simulation protons and carbon ions can be
considered simultaneously and therefore the parameters of the initial proton beam were chosen as in the
previous chapter. In addition, the number of C2+ was reduced in order to save computing power.
In the following, the transport of the carbon beam is now considered.
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Table 8.1: Parameters that were used to generate a beam with proton and carbon ions in the simulations
of this section.

Ions N kBT Emin Emax Ecut a2 a1 a0

H1+ 1× 106 6MeV 1MeV 28MeV 28MeV -0.04◦/MeV2 0.41◦/MeV 26.47◦

C2+ 2× 106 0.5MeV 0.75MeV 3.75MeV 3.75MeV 0◦/MeV2 -5.80◦/MeV 26.74◦

C3+ 2× 106 1MeV 0.75MeV 6MeV 7.5MeV 0◦/MeV2 -3.33◦/MeV 30.00◦

C4+ 3× 106 6MeV 2MeV 60MeV 60MeV 0◦/MeV2 -0.34◦/MeV 25.68◦
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Fig. 8.3: Initial spectra of the carbon beam generated by the parameters shown in Table 8.1.
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8.2.2. Transport of laser-accelerated carbon beams

As a first step, the required current of the first solenoid for transporting the C4+ with 7.2MeV is estimated.
Therefore, it is assumed that the focal length f of the solenoid magnet is given by Equation 4.8 for each
particle and that the magnetic field B0 is proportional to the current that is supplied to the solenoid magnet
(see Equation 4.33). This leads to the following relation:

f−1 ∝ (qB0/p)
2 ∝ (qI/p)2. (8.3)

The fact that the focal length must be identical for all simultaneously transported particles (f1 = f2) then
leads to (γ ≈ 1 → p =

√
2mE):

I2 =
q1
q2

√︃
m2

m1

E2

E1
· I1. (8.4)

From Section 4.4 it is known, that the current required to transport protons with 8.3MeV is I = 8.5 kA.
Using this as a reference, the required current for transporting C4+ with 7.2MeV results in I = 7kA. The
spectra of the transported carbon beam for this current is shown in Fig. 8.4 (behind the second solenoid).
Thereby, the initial carbon beam parameters and the setup of the LIGHT beamline are as described in the
previous subsections and the RF cavity as well as the second solenoid are only implemented as drift tubes.
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Fig. 8.4: Simulated spectra of the protons and carbon ions that are simultaneously transported through the
LIGHT beamline. Thereby, a current of 7 kA is supplied to the first solenoid and the initial beam parameters
shown in Table 8.1 are used.

Setting I1 = I2 in Equation 8.4 results in the following relation between E1 and E2:

E2 =

(︃
q2
q1

)︃2 m1

m2
· E1, (8.5)

which is given for the peak energies in Fig. 8.4. In the next subsection, the focusing of this beam with the
second solenoid is investigated.
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8.2.3. Transverse focusing of the transported carbon beams

For the simulation of this subsection, the same simulation parameters as in the previous subsection are used,
but the second solenoid is simultaneously supplied with a current of 2.95 kA. This current was gradually
adjusted in the simulation until the beam size had a minimum at the distance dend. The beam profile at this
position (3225mm from the origin of the beamline) is shown in the left image of Fig. 8.5 in the x-y plane.
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Fig. 8.5: In the left image the number of particles per area of the carbon beam at the end of the LIGHT
beamline is shown, and the red circle encloses 50% of the particles. The color of the particles in the right
picture corresponds to their charge state and species.

The red circle in this image encloses 50% of the particles and had a radius of 3.9mm. The focal spot is
therefore almost eight times larger than the focal spot of the proton beam shown in Section 7.2. The reason
for this is the longer focal length of the second solenoid. If the cardinal points are assumed to be in the
center of the solenoid, in Section 7.2 the focal length fsol,2 is 175mm whereas for the setup used in this
subsection it is 875mm. According to Equation 4.31 the focal spot size should therefore be five times larger.
The deviation indicates that the cardinal points are not exactly in the center of the solenoid. Calculating
the focal length with Equation 4.8 supports this assumption (f = 86.3mm for I = 7kA, E = 7.2MeV,
q = 4e and m = 12u).
In the right image of Fig. 8.5 the distribution of the charge state of the particles is shown in the x-y plane
which does not reveal any correlations between the charge states and the positions of the particles. This is
in accordance to Lorentz’s equation, which states that non-relativistic ions (γ ≈ 1) with the same ratio of
charge and momentum q/p behave exactly the same in a magnetic field.
In the last subsection of this section the C4+ ions with an energy of 7.2MeV are temporally compressed to
increase the particle flux and minimize the temporal width of the beam at the point where the plasma will
be generated in future stopping power experiments.

8.2.4. Temporal compression of carbon ions

For the temporal compression, the RF cavity parameters are gradually adjusted until the carbon bunch with
a mean energy of 7.2MeV has its minimum temporal width at the distance dend (3225mm from the TNSA
target). Thereby, the optimal RF cavity voltage was found to be 0.43MV. The C4+ ions of the resulting
beam in the E-t phase space are shown in the upper image of Fig. 8.6 and in the lower picture, the time of
flight of the particles is illustrated as a histogram.
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Fig. 8.6: In the upper image, the C4+ ions of the transported carbon beam are shown in the E-t phase
space at the distance dend (3225mm from the TNSA target) for an RF cavity voltage of 0.43MV. Thereby,
the color of the particles corresponds to their initial divergence angle θ0. In the lower picture the time of
flight of the particles are illustrated as a histogram.

It can be seen, that not all transported C4+ can be compressed to a single bunch, which is due to the
long temporal width of the transported C4+ within the RF cavity. In this case the temporal width of the
transported C4+ within the RF cavity is even longer than twice the period duration 2T which leads to
multiple peaks of the C4+ at the illustrated distance dend. Since the relative energy transfer of the RF cavity
to the C4+ ions with a mean energy of 5.7MeV and 8.5MeV is higher (according to Equation 5.14), they
have already reached their minimum temporal width at a shorter distance. The additional flight distance
then leads to an u-shaped temporal profile of the bunch. For the future stopping power experiments, only
the temporal compressed carbon ions with an energy of about 7.2MeV are relevant. The temporal width
of this bunch is 300 ps in the simulation, which is mainly caused by the longer path lengths of particles
with higher initial divergence angles. Therefore, particles with the same energy reach the RF cavity at
slightly different times and do not experience the same electric field. For the temporal compression of the
carbon ions with 7.2MeV this has a greater effect than for protons with 7.7MeV (see Section 7.2) due to
the lower velocities of the particles.
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The most important parameters of the temporal compressed and focused C4+ beam in the simulation are
summarized in Table 8.2.

Table 8.2: Parameters of the temporal compressed and focused C4+ beam that have been determined
with the simulations shown in this section.

Parameter Value

Mean energy 7.2MeV
Energy spread (full width) 1.94%
Temporal bunch width 300 ps
Focal spot size (radius, only C4+ ions) 3.44mm

8.3. Experimental results on the carbon beam shaping

In this section the results of a preparatory beamtime for the planned stopping power experiments, which
was performed during this work, will be presented and compared to the simulations of the previous section.

8.3.1. Setup for the generation and characterization of the carbon beam

The setup of the LIGHT beamline used in the preparatory beamtime is shown in Fig. 8.7 together with the
used diagnostics. The distances are chosen as discussed in the first section of this chapter so that the setup
of the LIGHT beamline corresponds to the setup in future stopping power experiments.

PHELIX

Sideview Focus diagnostic

Z6 target

chamber
Z4 target

chamber

Solenoid magnets

RF cavity Photodiode (PD)

Diamond detector (DD)

40 mm

1225 mm

1025 mm

2000 mm

Pyrometer

Verdi

Fig. 8.7: Schematic setup of the LIGHT beamline during a preparatory beamtime for stopping power
experiments in January 2021.
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Under normal conditions, the hydrogen of the contamination layer on the targets surface is accelerated
most efficiently by the TNSA mechanism due to their highest charge to mass ratio. For this reason, the
contamination layer has to be removed in order to increase the acceleration efficiency of other ion species
[Hegelich et al., 2005; Ding, 2018]. In this work, the contamination layer is evaporated by increasing
the temperature of the target well above 1000 °C. Therefore, 10µm thick tungsten foils with a 0.9µm
carbon coating on its rear side were used as the TNSA target and their temperature were increased by
either Ohmic heating or by a heating laser (Verdi G 10 manufactured by the company Coherent, Inc.).
Thereby, a pyrometer measures the temperature of the target to ensure that the heating is sufficient and
the targeted temperature is reached. During the experiment it turned out that the Ohmic heating was
much more reliable since in this case the whole target is heated homogeneously whereas in the case of the
laser heating it was difficult to verify if the relevant spot was heated. In addition, the mechanical stress
from the local heating of the laser caused the target to break in the worst case, since it was kept under
tension by the target holder in order to prevent strong deformation due to thermal expansion.
The setup of the other diagnostics are identical as in the experiment that was presented in the last chapter.
In the next subsection, the carbon beam transport through the LIGHT beamline is described.

8.3.2. Transport of laser-accelerated carbon beams

Since the RIS cannot distinguish between different carbon ion energies and species (see Section 2.2), the
solenoid magnets were set up to transport 5.4MeV protons, which according to Equation 8.5 and the
simulations in Subsection 8.2.2 leads to simultaneous transport of C+4 ions with 7.2MeV. After minimizing
the focal spot size in the center of the Z4 target chamber by a stepwise adjustment of the supplied current,
everything was set up for the ToF measurements, i.e., the diamond detector was placed in the focal spot
and a 2µm thick Mylar foil was placed 300mm in front of the diamond detector to eliminate the beam
filamentation. According to the SRIM code this leads to a mean scattering angle of 13mrad for C+4 ions
with 7.2MeV which corresponds to a location deviation of 3.9mm over the 300mm distance (the radius
of the focal spot at this position was about 3.5mm). As described in the beamtime that was presented in
the previous chapter, the photodiode next to the diamond detector measures the electromagnetic radiation
of the interaction between the TNSA target and the PHELIX laser. The rising edge of the photodiode signal
is then used to determine the starting time of the transported particles. A result of the ToF measurement
with this setup is shown in Fig. 8.8 along with the corresponding time of flight of the carbon ions in the
simulations of Section 8.2.2.
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Fig. 8.8: Diamond detector signal that corresponds to the time of flight of the ions that are transported
through the LIGHT beamline as well as the time of flight of the transported carbon ions in the simulations.
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As can be seen, the first three peaks of the diamond detector signal can be assigned to H+1, C+5 and the
C+4 ions, while the signal of the diamond detector shows no peak at the time when the C+3 and C+2 ions
should arrive. In addition, the diamond detector signal has a peak at 340 ns which can not assigned to
transported protons or carbon ions. Based on the high signal for protons, it can be concluded that the
contamination layer on the rear side of the target surface was not completely evaporated in this shot. Since
the contamination layer typically contains hydrogen, carbon and oxygen, it is possible that the peak in the
signal at 340 ns is caused by transported oxygen ions. The Table 8.3 gives an overview of the oxygen ions
that are transported simultaneously, provided they have been accelerated by the TNSA mechanism.

Table 8.3: Energy E and ToF t of oxygen ions that are transported simultaneously with 5.4MeV protons
through the LIGHT beamline according to the Equation 8.5.

Ions O+1 O+2 O+3 O+4 O+5 O+6 O+7 O+8

E 0.32MeV 1.31MeV 2.95MeV 5.25MeV 8.20MeV 11.8MeV 16.1MeV 21.0MeV
t 1612ns 810ns 540ns 405ns 324ns 270ns 232ns 203ns

Thus, it is very likely that the peak was caused by O+5 ions with 8.2MeV which have a time of flight of
324 ns. However, it remains unclear why the carbon and oxygen ions with low energies, i.e. those with a
small charge state are not observed in the ToF measurement. The Thomson parabola spectra measured
in [Ding et al., 2018] (see Fig 8.2) show that these ions are generated and accelerated during the TNSA
process and according to SRIM all carbon and oxygen ions with more than 1.5MeV should be able to
penetrate the 2µm thick Mylar foil. So it remains to be clarified if space charge effects or a different
response of the detector for low ion energies are the cause of these discrepancies. Since the simulated and
measured flight times of the C4+ ions are showing a good agreement, it can be assumed that the space
charge effects can be neglected for the C4+ ion transport. Therefore, in the following, the defocusing due
to space charge effects for the C4+ ions is compared with those for the C3+ ions. For non-relativistic and
nonneutralized beams (γ ≈ 1, fe ≈ 0) Equation 3.32 can be simplified to

κsc =
qI

2πϵ0mv3r20
=

Nq2

2πϵ0mv3r20τ
(8.6)

with I = qN/τ and τ being the temporal width of the bunch. According to the Thomson parabola spectra
measured in [Ding et al., 2018] (see Fig 8.2) and the simulations, there should be twice as much C4+

ions than C3+ ions (N4+ = 2N3+). By using the same radius r0 and temporal width τ for both charge
states, the ratio can be determined to κ4+sc /κ3+sc = 1.32. Thus, the space charge effects for C3+ ions are
even smaller than for the C4+ ions and cannot explain the measurements. For this reason it is very likely
that the diamond detector cannot detect ions with low energies.
However, since the transport of C4+ ions with 7.2MeV was successful, the experiment could be continued
without any restrictions and in the next subsection, the temporal compression of these ions will be presented.
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8.3.3. Temporal compression of the transported carbon beam

For the temporal compression of the C4+ ions, the same setup as described in the last subsection was used
and the RF cavity voltage and phase were adjusted stepwise. The two shortest diamond detector signals
obtained by this procedure are shown in Fig. 8.9 (red and blue line) along with the diamond detector
signal of the uncompressed beam (black line) and the temporally compressed beam from the simulation
studies in Section 8.2.4 (purple line).
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Fig. 8.9: Measured (red and blue line) and simulated (purple line) time of flight of the temporally com-
pressed C4+ ions along with the measured time of flight of the uncompressed C4+ ions (black line).

As can be seen, the flight times and temporal distributions of the different carbon ion bunches show only
slight deviations. However, the temporal widths of the temporal compressed C4+ bunch with 7.2MeV is
with 1.23 ns (FWHM of the blue line at t ≈ 300 ns) four times larger than in the simulation. As discussed
in Section 7.3, the reason for this deviation is probably due to

• Saturation effects in the diamond detector

• The scattering foil in the ToF measurements

• Space charge effects

• A non-negligible initial emittance of the TNSA-generated ion beam

• Radial dependence of the electric field within the gaps of the RF cavity

The first three points will be considered in more detail in the following. The fourth and the fifth point are
partly considered in the appendix.
The energy deviation due to the scattering foil (2µm Mylar) for 7.2MeV carbon ions is 0.1MeV (FWHM)
which causes a time of flight deviation of 0.35 ns over the distance between the scattering foil and the
diamond detector (300mm). Thus, the scattering alone cannot explain the deviation between the measured
and the simulated temporal bunch widths. To rule out space charge effects as a possible cause for the
deviations, the number of carbon ions in the temporally compressed bunch as well as the size of the beam
behind the second solenoid has to be known. These beam parameters are estimated with RIS measurements
and simulation studies in the following subsection.
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8.3.4. Estimation of the number of transported carbon ions

In Fig. 8.10 the deposited energy of the temporally compressed ion beam in the active layer of an RCF
which was placed at the position of the diamond detector is shown.

Fig. 8.10: Deposited energy of the transported ion beam at the position of the diamond detector. The
smallest circle that contains 50% of the deposited energy at this position has a radius of 3.77mm.

The active layer of this RCF has a thickness of 10µm. In the experiment, this active layer was facing the
incident beam without any passive layer in front of it (also the Mylar scattering foil was removed). Thus,
according to SRIM all transported carbon and oxygen ions up to an energy of 10MeV were stopped within
this layer and deposited their energy in it. Since even the carbon ions with the maximum measured and
simulated energy of 12MeV are depositing about 80% of their energy in this active layer, it is assumed
that the total deposited energy in the active layer corresponds to the energy of all transported carbon and
oxygen ions (the deposited energy of the protons in this layer can be neglected). With this assumption,
the number of particles of each energy can be determined for an arbitrary spectrum with relative particle
numbers and a maximum energy of 12MeV.
As discussed in Section 8.3.2 the diamond detector is probably not able to detect carbon ions with low
energies. For this reason, is it not possible to determine the energy spectrum of the transported ion
beam via the ToF measurements. Therefore, the energy spectrum of the transported carbon beam in the
simulation is used for the estimation. In the simulation the transported beam contains 4.3× 105 carbon
ions in total of which 21% are C2+, 26% are C3+, 40% are C4+ and 13% are C5+. Integrating over the
entire energy spectrum results in an energy of 2.4× 106MeV. The total deposited energy in the active
layer is (2.0± 0.6)× 1010MeV (the large uncertainty is due to a lack of calibration of the RCF used).
Therefore, the number of carbon ions in the simulation would have to be 104 times higher to replicate the
measurement. Assuming that the spectrum of the measured beam matches the spectrum in the simulation,
the transported ion beam contains (3.6± 1.1)× 109 carbon ions of which then (1.4± 0.4)× 109 are C4+

ions. Furthermore, according to the simulation 14% of the transported C4+ can be temporally compressed
which would thus correspond to (2.0± 0.6)× 108 temporally compressed C4+ ions in the experiment.
With this estimation, the defocusing strength κsc and the longitudinal electric field Ez,sc caused by space
charge effects can now be determined. For a beam radius of 3.5mm and a temporal width of 0.3 ns this
results in a κsc of 16m−2 and a Ez,sc of 0.1MVm−1. Space charge effects can therefore not explain the
deviations between the measured and the simulated temporal width of the temporal compressed C4+ ions,
and it is therefore most likely that the deviation is caused by saturation effects of the diamond detector.
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In Table 8.4 the most important parameters of the temporal compressed carbon bunch are summarized.
These are used in the following section to make some predictions for the planned stopping power experi-
ments with the LIGHT beamline.

Table 8.4: Parameters of the temporal compressed carbon bunch that was generated during a preparatory
beamtime for stopping power experiments with the LIGHT beamline. Also, the beam parameters from
simulations are shown (see Section 8.2).

Parameter Experiment Simulation

Mean energy (7.2± 0.2)MeV 7.2MeV
Energy spread (full width of C4+ ions) / 1.94%
Temporal bunch width (1.23± 0.04) ns 0.3 ns
Focal spot size (50% of C ions) (3.77± 0.02)mm 3.9mm
Number of C4+ ions (2.0± 0.6)× 108 14% of the transported C4+ ions
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8.4. Predictions for the planned stopping power experiments

As explained at the beginning of this chapter, the same plasma parameters which were used in the
experiment published in [Cayzac et al., 2017] are targeted for the planned stopping power experiments
with the LIGHT beamline. Therefore, in the following, the beam parameters of the experiment published in
[Cayzac et al., 2017] are compared with the beam parameters that are expected in the planned experiment
to illustrate the advantages.
In [Cayzac et al., 2017] the UNILAC of GSI was used as the ion source, which provided nitrogen ions with
3.6MeVu−1. In front of the plasma, this beam was then reduced in size by a pinhole with a diameter of
0.5mm. Behind the pinhole, the beam was then degraded to (0.586± 0.016)MeVu−1 with a 41µm thick
carbon foil. After that, the resulting micro bunches of the nitrogen beam had about 103 ions with a Gaussian
temporal profile and a FWHM of 5.5 ns. Since the plasma parameters are changing in nanoseconds in
the experiment, the main uncertainties in the stopping power calculations are due to the time averaging
over the 5.5 ns ion bunch. In addition, the low particle count resulted in a low signal-to-noise ratio, so the
distance of the ToF measurement could not be increased further to increase the measurement accuracy.
Therefore, the use of the temporally compressed C4+ ions of the LIGHT beamline for the plasma probing
has several advantages:

• The temporal width of the C4+ ions is with 1.23 ns (FWHM) almost five times shorter than the
temporal width of the micro bunches of the UNILAC.

• Even though the focal spot size is with 7.52mm much higher than the 0.5mm of the pinhole in front
of the plasma, according to the simulation (2.0± 0.6)× 106 (1%) of the ions would make it through
the pinhole and therefore the LIGHT beamline provides three orders of magnitude more particles in
a single bunch than the UNILAC.

• Since the C4+ bunch of LIGHT beamline does not have to be degraded by a scattering foil, their
energy spread is with 2% in the same order as the UNILAC bunches even though there are temporally
compressed and not energetically compressed.

For these reasons, it is expected that the signal-to-noise ratio as well as the uncertainties in the theoretical
stopping power calculations due to the time averaging can be significantly reduced by the performance of
the stopping power experiments with the LIGHT beamline. With further investigations on the temporal
compression as well as on the ion beam shaping through an appropriate pinhole placement, the temporal
width of the C4+ bunches can probably even be further reduced. Moreover, with additional ion optics,
the setup of the ToF measurement as well as the number of particles that penetrating the plasma can be
improved.

This covers all the applications that were examined in the course of this work. In the final chapter, this
work is now concluded with a summary and an outlook.
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9. Summary and outlook

In the scope of this work, the shaping of laser-accelerated ion beams with the LIGHT beamline was exten-
sively investigated by a comparison of theoretical predictions, numerical simulations, and experimental
data. The goal of these investigations was to generate suitable ion beams with the LIGHT beamline for the
applications that are currently pursued by the LIGHT collaboration.

In the first part of this thesis, the technologies used at the LIGHT beamline were explained and characterized
step by step, namely

• the ion acceleration with the PHELIX laser via the TNSA mechanism,
• the transport of laser-accelerated ion beams with pulsed, high-field solenoid magnets and
• the longitudinal ion beam shaping with an RF cavity.

In this context, the capturing of the TNSA-generated ion beam with the solenoid magnet was investigated
in particular detail, since it was expected that the ion beam quality would degrade in this process. Thereby,
the chromatic aberration of the solenoid magnet was identified as the most crucial source of the transverse
emittance growth (see Table 4.2).
Furthermore, the comparison of the beam profiles in the simulation for different, not perfectly symmetrical
magnetic field distributions of the solenoid magnet revealed that the asymmetric magnetic field generated
by the connecting cables of the solenoid magnet causes the cross-shaped beam profile in pulsed, high-field
solenoid beamlines (see Fig. 4.13). However, when capturing an ion beam with a large initial divergence
angle, which is typically the case at the LIGHT beamline, the relative emittance growth due to the magnetic
field of the connecting cables is less than 10% compared to the increase in emittance due to spherical and
chromatic aberration (see Table 4.3).
After that, equations were derived which were used to determine the required RF cavity voltage as well as
the optimal position of the RF cavity for the energetic and the temporal compression of the transported ion
beam at the LIGHT beamline. These were then used to find the optimal setup of the LIGHT beamline for
the applications that have been investigated in Part II of this thesis.

The injection of the proton beam into the heavy ion synchrotron SIS18 at GSI was evaluated first as a
possible application in the future. Therefore, simulations were used to determine whether it is possible to
provide a suitable ion beam with the LIGHT beamline that has a sufficient amount of particles within the
acceptance range of the SIS18. This acceptance range is specified as follows [GSI, 2022]:
• Energy spread ∆E/E = 0.4% (full width)
• Normalized horizontal emittance ε2σn,xx′ = 3.12mmmrad

• Normalized vertical emittance ε2σn,xx′ = 9.96mmmrad
According to the simulations, the components and laser parameters currently used at the LIGHT beamline
can provide a proton beam with the following parameters:
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• Mean energy E = 11.4MeV
• Energy spread ∆E/E = 0.21% (FWHM)
• Normalized horizontal emittance ε2σn,xx′ = 9.66mmmrad (within ∆E/E ± 0.2%)

• Normalized vertical emittance ε2σn,yy′ = 8.37mmmrad (within ∆E/E ± 0.2%)

• Number of particles N = 3.2× 108 (within the SIS18 acceptance range)
Since the SIS18 can accommodate more than 1010 protons, also proposals have been made to increase the
number of particles for this application. The most promising approach in this regard would be to increase
the laser pulse energy for the TNSA mechanism at the origin of the LIGHT beamline.

The second application that had been addressed in this thesis was the generation of a high proton flux with
the LIGHT beamline. Therefore, in an experimental campaign of this work, a proton beam with an energy
of (7.72± 0.14)MeV was simultaneously focused and temporally compressed at the LIGHT beamline for
the first time. The resulting beam parameters are shown in Table 9.1 along with the beam parameters
predicted from numerical simulations.

Table 9.1: Resulting beam parameters of a temporal compressed and focused proton bunch at the LIGHT
beamline. The corresponding measurements and simulations from which these values were determined
have been performed in this work.

Parameter Experiment Simulation Deviation

Number of protons (7.29± 0.64)× 108 / /
Mean energy (7.72± 0.14)MeV 7.7MeV 0.26%
Energy spread (full width) (4.91± 0.82)% 4.54% 8.15%
Temporal bunch width (742± 40) ps 60 ps > 10
Focal spot size that contains 50% of protons (1.38± 0.02)mm 1.3mm 6.15%

Due to the large deviation between the measured and simulated temporal bunch width (highlighted in
yellow), possible causes for this discrepancy were considered. Most of these could be ruled out, so that
saturation effects of the diamond detector used in the measurements are the most plausible explanation of
this deviation for the time being.

The final application targeted in this work was the generation of a suitable ion beam for measuring the
ion-stopping power of transient plasma targets with the LIGHT beamline. For this application C4+ ions
with an energy of (7.2± 0.2)MeV were generated, transported, temporally compressed and focused
with a setup of the LIGHT beamline that can be used for the stopping power experiments. The resulting
bunch had a focal spot size of (7.52± 0.02)mm and a temporal width of (1.23± 0.04) ns (FWHM).
Furthermore, it could be estimated that (2.0± 0.6)× 106 C4+ ions of this bunch will penetrate the
spatially homogeneous region of the plasma under investigation in the planned experiment, i.e., three
orders of magnitude more particles than in previous measurements at GSI with a temporal bunch width
comparatively almost five times shorter.
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Outlook

With the beam parameters achieved in this work, the measurement of the ion-stopping power of dense,
highly ionized plasma targets should lead to much lower measurement uncertainties than in previous
stopping power experiments performed at GSI. Therefore, the next goal of the LIGHT collaboration is
the conduction of a first stopping power experiment with the LIGHT beamline. For this experiment the
same plasma parameters as in [Cayzac et al., 2017] are targeted (ne ≈ 5× 1020 cm−3, Te ≈ 150 eV), which
requires a laser pulse with an energy of 60 J, a wavelength of approximately 527 nm and a pulse length of
7 ns. At the experimental area Z6, two high power laser systems are available, the PHELIX and the nhelix
laser. Since the PHELIX laser will already be used for the ion acceleration at the LIGHT beamline, the
plasma heating will be done by the nhelix laser. In order to achieve the required laser pulse parameters for
plasma generation, the nhelix laser system has been redesigned as part of this work and is currently under
reconstruction. After the completion of the upgraded nhelix system, the first stopping power experiments
will be conducted.

The injection of a laser-accelerated ion beam into the SIS18 is the primary long-term goal of the LIGHT
collaboration. In this regard, the next steps would be the experimental validation of the simulated beam
parameters presented in Chapter 6, as well as the construction of a suitable beamline between the LIGHT
beamline and the transfer channel to the SIS18. A first concept for such a beamline has recently been
completed.
According to the numerical simulations of this work, the LIGHT beamline should be able to provide
proton bunches with 11.4MeV and an energy spread that is below the acceptance range of the SIS18
(∆E/E = ±0.2%). Therefore, the implementation of an ion beam diagnostic with a suitable energy
resolution at the LIGHT beamline is crucial for an experimental validation. Since the energetic and temporal
compression of the transported ion beam with the RF cavity work very similarly, the measurement of
the achievable energy spread could also be useful to clarify the reason for the discrepancy between the
measured and the simulated temporal ion bunch widths, which have been observed for the temporal
compression in the scope of this thesis. Depending on the reason for this discrepancy, it might then
be possible to develop concepts that enable ion bunches with temporal widths in the order of 100 ps as
predicted by the simulations.
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A. Appendix

A.1. Influence of the initial beam parameters on the simulation studies

In the simulation studies of this work, the TNSA-generated ion beam was reconstructed with the following
parameters (see Section 2.3):

• The maximum energy (cut-off energy) of the TNSA spectrum Ecut and its decaying constant kBT

• The scaling parameters for the maximum divergence a2, a1 and a0

• The maximum micro divergence ∆θmax and the start delay ∆tmax

• The maximum and minimum source size rmax and rmin

The parameters Ecut, kBT , a2, a1 and a0 influence the initial energy and divergence distribution of the
particles and can be determined by fits to RIS measurements. Since many simulations in this work were
performed prior to the evaluation of RIS measurements shown in Section 2.2, the parameters Ecut, kBT ,
a2, a1, and a0 in these simulations are taken from a TNSA source characterization presented in [Busold,
2014].
The parameters ∆θmax, ∆tmax, rmin and rmax change the emittance of the ion beam. According to [Cowan
et al., 2004] and [Nürnberg et al., 2009] the emittance of TNSA-generated ion beams is very low. For this
reason the initial emittance has been neglected in the simulations of this work by setting ∆θmax and ∆tmax
to zero.
Therefore, in the following it will be investigated to what extent a change of these parameters has an
influence on the simulation studies of this work. For this purpose, the simulations of Section 7.1 are
performed again with the initial beam parameters determined in Section 2.2 (see Table 2.1) and different
initial emittances εrr′ , εtE (r = x ∪ y, r′ = x′ ∪ y′). Thereby, the setup of the LIGHT beamline, the phase
and voltage of the RF cavity, and the currents supplied to the solenoid magnets were identical to those
used in Section 7.1. The results are shown in Table A.1.
In [Cowan et al., 2004] a longitudinal emittance of ε3σtE < 10−4 eV s and a transverse emittance of
ε2σn,rr′ = 0.016mmmrad are specified for TNSA generated ion beams and in [Nürnberg et al., 2009]
the maximum transverse emittance for protons with around 8MeV is ε2σn,rr′ = 0.2mmmrad. As can be seen,
for these values (marked in yellow) the influence of the initial emittance on the resulting beam parameters
is negligible. In this initial emittance range the results are also consistent with those of Section 7.1 (see
Table 7.2), thus the deviation of the initial beam parameters specified in [Busold, 2014] and in Section 2.2
are also negligible.
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Table A.1: Parameters of the temporal compressed and focused proton beam for different initial emit-
tances ε2σrr′ and ε3σtE . Thereby, τ is the temporal bunch width and r0 the radius of the focal spot. The
initial emittances in the yellow highlighted row are expected for a TNSA-generated ion beam according to
[Cowan et al., 2004] and [Nürnberg et al., 2009].

ε2σn,rr′ ε3σtE E ∆E/E τ (FWHM) r0 (50% of protons)

0mmmrad 0 eV s 7.7MeV 4.4% 70ps 0.69mm
0.2mmmrad 10−4 eV s 7.7MeV 4.4% 70ps 0.69mm
2mmmrad 10−3 eV s 7.7MeV 4.4% 160ps 0.68mm
10mmmrad 5× 10−3 eV s 7.7MeV 4.93% 700ps 0.67mm
30mmmrad 10−2 eV s 7.7MeV 5.97% 1.46 ns 0.74mm

A.2. Influence of a radially dependent energy transfer of the RF cavity on
longitudinal beam shaping

In the simulation studies of this work, the electric field within the gaps of the RF cavity was assumed to
be spatially constant. In the following, the influence of a more complex electric field distribution on the
temporal compression is investigated with simulations. For this purpose, the electric field distribution within
the gap is determined for a simplified, stationary charge distribution which will be explained in the following.

Fig. A.1: Charge distribution that is used to determine the
electric field distribution within the middle gap of the RF
cavity.

For the moment at which the standing wave
has its maximum in the RF cavity there is an
excess of electrons at the end of one drift tube,
whereas at the end of the opposite drift tube
there is an electron deficiency at this moment.
Within the drift tube the electric field that is
caused by this charge distribution counteracts
the electric field within the RF cavity and in the
gap they add up. It is now assumed that the
electric field in the gap is only caused by the
electron excess and the electron deficiency at
the end of the drift tubes, so the electric field of
the standing wave in the RF cavity is neglected.
This can be considered as the worst-case sce-
nario, since it can be assumed that the standing
wave in the RF cavity is spatially constant in
the gap, which would therefore reduce the rela-
tive radial dependence of the electric field. The
used charge distribution for the middle gap of
the RF cavity is shown in Fig. A.1.
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The electric field of this charge distribution is determined by Coulomb’s law [Demtröder, 2013]:

E(r) =
1

4πϵ0

N∑︂
i

qi
r− ri

|r− ri|3
. (A.1)

Thereby, ri are the positions of the charges qi. In the left image of Fig. A.2 the resulting electric field in
z-direction Ez is shown in the y-z plane.
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Fig. A.2: The left image shows the electric field Ez determined with the charge distribution shown in
Fig. A.1, and the right image shows the electric field Ez plotted along the paths indicated by the black
lines in the left image.

As can be seen, in the gap (z = ±20mm) is a positive electric field whereas in front and behind the gap
are small regions in which the electric field is negative. The difference between the electric field in and just
outside the gap is larger for a greater radial distance (see right image of Fig. A.2). However, the energy
transfer of the electric field to a particle

∆Egap(r) =
∫︂ ∞

−∞
Ez(r, z) dz (A.2)

is always positive within the aperture of the drift tubes and the deviation between∆Egap(r1) and∆Egap(r2)
with r1 = 0 and r2 = 17.5mm is only 5% as shown in Fig. A.3.
Therefore, for particles whose velocity does not change significantly in the RF cavity, the radial dependence
of the energy transfer can be taken into account in the simulation by adjusting the electric field strengths
of the gaps Ez,gap,i (see Equation 5.27) as follows:

Ez,gap1 = Ez,0 · (1− 0.7ξr2) · cos(ω · t+ ϕ)

Ez,gap2 = Ez,0 · (1− ξr2) · cos(ω · t+ ϕ+ π)

Ez,gap3 = Ez,0 · (1− 0.7ξr2) · cos(ω · t+ ϕ)

(A.3)

The scaling factor ξ as well as the factor of 0.7 in Equations A.3 can be determined by parabolic fits to
∆Egap(r)/∆Egap(0). For the graph in Fig. A.3 it is ξ = 182m−2.
To investigate to what extent a radial dependence of the electric field in the gaps has an influence on the
simulation studies of this work, the simulations of Section 7.1 were performed again for different values of
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Fig. A.3: Relative energy transfer of the electric field shown in the left image of Fig. A.2 to a particle that
has passed the field along the z-direction with a constant distance r to the nominal axis (z-axis).

the scaling factor ξ. Thereby, the setup of the LIGHT beamline, the phase and voltage of the RF cavity, and
the currents supplied to the solenoid magnets were identical to those used in Section 7.1. The only beam
parameter that changed for a higher ξ is the temporal width of the bunch. The corresponding temporal
bunch widths are shown in Table A.2.

Table A.2: Resulting temporal bunch width τ of a temporal compressed proton beam with 7.7MeV for
different radial scaling factors ξ of the electric field in the gaps of the RF cavity. The radial distance r2
corresponds to the radius of the aperture of the RF cavity (17.5mm). The yellow row corresponds to the ξ
that was determined for the electric field shown in the left image of Fig. A.2.

ξ ∆E/E (full width) τ (FWHM)

0 0 60 ps
182m−2 5% 60ps
1000m−2 25% 75ps
2000m−2 50% 150ps

As can be seen, the temporal bunch width only changes for ξ > 1000m−2 and for ξ = 182m−2 (yellow
row) as derived for the determined electric field distribution in the beginning of this appendix, the effect of
the radial dependency of the electric field on the temporal bunch width can be neglected.
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