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Abstract

Developing sustainable and efficient food processing technologies is paramount to reducing green-
house gas emissions and food waste. Autonomous food processing technologies, driven by artificial
intelligence, offer a promising solution for achieving these goals while maintaining high-quality
standards. In this context, digital twins have emerged as a powerful tool to model and optimize
complex systems, providing accurate predictions of the system behavior to allow optimization of
the process variables live during operation. This work proposes a software framework that com-
bines multi-physical, conjugate simulations and data-driven reduced-order modeling to develop
physics-based, data-driven digital twins for autonomous thermal food processing. The framework
is independent of the modeling approach and simulation software and aims at the immediate
application in the industry.
Physics-based, data-driven digital twins are highly accurate and fast-solving virtual replications

of a physical product or process, giving information on the current processing variables that cannot
easily or feasibly be measured during operation. Generally, the concept of digital twins stands for a
paradigm shift in computational engineering. In past decades, knowledge gained from simulations
remained in the hands of highly skilled product and process development experts. Digital twins
attempt to provide access to this knowledge even during operation to enable potential process
autonomy. This work demonstrates how multi-physical simulation models of realistic size and
dimension form the basis for physics-based, data-driven digital twins. To model thermal food
processing inside a convection oven, non-isothermal flow and thermal radiation are coupled
with mechanistic food processing models in one setup. This approach captures the couplings
between the food process variables and the heat transfer mechanisms much better than heat- and
mass-transfer-coefficient-based modeling approaches that still dominate within food science.
A challenge for modern-day computational engineering is that computing power does not

keep pace with the progressively increasing complexity and computational cost of multi-physical
simulation models. So far, real-time simulations of such models are not feasible, especially when
the models should be executed on low-end processors. In this work, neural ODEs, a novel data-
driven reduced-order modeling technique, are applied to generate an accurate and fast-solving
surrogate of simulation models, which also exhibit low computational cost. The resulting reduced-
order models are stored in an encrypted container format to protect the developer’s intellectual
property when deployed in the final appliance. The container files are executed at the device
level without cluster, edge or cloud computing. For the presented generation of a digital twin for
a convection oven, fewer errors are caused by the reduced-order models than by the underlying
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Abstract

food processing models. As coupled, multi-physical models of realistic dimensions still require
considerable solution times on modern cluster PCs, generating many data sets for data-driven
reduced-order modeling is not economically feasible. This work proposes an efficient design of
experiments that enables data-driven reduced-order modeling with only one-to-two training data
sets. Finally, the performance of fast-solving and highly accurate digital twins is demonstrated
within a model predictive control algorithm. The latter autonomously handles two scenarios
during thermal food processing in a convection oven.
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Zusammenfassung

Die Entwicklung nachhaltiger und effizienter Technologien für die Lebensmittelverarbeitung ist
von entscheidender Bedeutung für die Reduzierung von Treibhausgasemissionen und Abfällen.
Autonome Technologien für die Lebensmittelverarbeitung, die durch künstliche Intelligenz vor-
angetrieben werden, bieten eine vielversprechende Lösung, um diese Ziele zu erreichen und
gleichzeitig hohe Qualitätsstandards zu wahren. In diesem Zusammenhang haben sich digitale
Zwillinge als leistungsstarkes Werkzeug zur Modellierung und Optimierung komplexer Systeme
erwiesen. Digitale Zwillinge können das zukünftige Systemverhalten genau vorhersagen, um so
die Optimierung der Prozessvariablen während des Betriebs zu ermöglichen. In dieser Arbeit wird
ein Software-Framework vorgeschlagen, das multiphysikalische, konjugierte Simulationen und
datengesteuerte Modellierung reduzierter Ordnung kombiniert, um physikbasierte, datengesteu-
erte digitale Zwillinge für die autonome thermische Lebensmittelverarbeitung zu entwickeln. Das
Framework ist unabhängig vom Modellierungsansatz und der Simulationssoftware und zielt auf
unmittelbare Anwendbarkeit in der Industrie ab.
Physikalisch basierte, datengesteuerte digitale Zwillinge sind hochpräzise und schnell lösende

virtuelle Replikationen eines physischen Produkts oder Prozesses, die Informationen über die
aktuellen Prozessvariablen liefern, welche während des Betriebs nicht einfach oder praktikabel
gemessen werden können. Generell steht das Konzept der digitalen Zwillinge für einen Para-
digmenwechsel in der Simulationstechnik. In den vergangenen Jahrzehnten blieben die aus
Simulationen gewonnenen Erkenntnisse in den Händen von hoch qualifizierten Experten im
Bereich der Produkt- und Prozessentwicklung. Digitale Zwillinge versuchen, dieses Wissen auch
während des laufenden Betriebs zugänglich zu machen, um Prozessautonomie potenziell zu er-
möglichen. Diese Arbeit zeigt, wie multiphysikalische Simulationsmodelle von realistischer Größe
und Dimension die Grundlage für physikbasierte, digitale Zwillinge bilden. Um die thermische
Verarbeitung von Lebensmitteln in einem Konvektionsofen zu modellieren, werden erzwungene
Konvektion und Wärmestrahlung mit mechanistischen Modellen der Lebensmittelverarbeitung
in einem Setup gekoppelt. Dieser Ansatz erfasst die Kopplungen zwischen den Prozessvaria-
blen der Lebensmittel und den Mechanismen der Wärmeübertragung viel besser als die auf
Wärme- und Stoffübergangskoeffizienten basierenden Modellierungsansätze, die immer noch die
Lebensmittelwissenschaft dominieren.
Eine Herausforderung für moderne Computertechnik besteht darin, dass die Rechenleistung

nicht mit der zunehmenden Komplexität und dem Rechenaufwand von multiphysikalischen Simu-
lationsmodellen Schritt hält. Bislang sind Echtzeitsimulationen solcher Modelle nicht möglich,
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insbesondere wenn die Modelle auf Low-End-Prozessoren ausgeführt werden sollen. In dieser Ar-
beit wird eine neuartige datengetriebene Modellierungstechnik reduzierter Ordnung vom Typ der
neuronalen ODE angewandt, um ein genaues und schnelles Ersatzmodell von Simulationsmodellen
zu generieren, das zudem einen geringen Rechenaufwand aufweist. Die resultierenden Modelle re-
duzierter Ordnung werden in einem verschlüsselten Containerformat gespeichert, um das geistige
Eigentum des Entwicklers zu schützen, wenn sie auf den Endgeräten ausgeliefert werden. Diese
können auf der Geräteebene ohne Cluster-, Edge- oder Cloud-Computing ausgeführt werden. Bei
der vorgestellten Entwicklung eines digitalen Zwillings für einen Umluftofen sind die zusätzlichen
Fehler, die durch die Modelle reduzierter Ordnung verursacht werden, geringer als die Fehler der
zugrunde liegenden Modelle für die Lebensmittelverarbeitung. Da gekoppelte, multiphysikalische
Modelle realistischer Dimensionen immer noch beträchtliche Berechnungszeiten auf modernen
Cluster-PCs erfordern, ist die Erzeugung vieler Datensätze für die datengesteuerte Modellierung
reduzierter Ordnung wirtschaftlich nicht machbar. In dieser Arbeit wird ein effizientes Design
von Experimenten vorgeschlagen, das eine datengetriebene Modellierung reduzierter Ordnung
mit nur ein bis zwei Trainingsdatensätzen ermöglicht. Abschließend wird die Leistungsfähigkeit
schnell lösender und hochpräziser digitaler Zwillinge in Verbindung mit einem modellprädiktiven
Kontrollalgorithmus demonstriert. Letzterer bewältigt autonom zwei Szenarien während der
thermischen Lebensmittelverarbeitung in einem Umluftofen.
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1. Introduction

In the decades to come, one of the greatest challenges for humankind is the introduction of sustain-
able and climate-neutral products and processes. Our food system, for example, accounts for nearly
21–37% of greenhouse gas emissions, whereas 8–10% can be attributed to food wastage [129].
To address these emerging issues, international institutions such as the European Union have
already launched transformative initiatives to promote sustainable and resilient economies. Policy
frameworks, such as the Green Deal and the Farm to Fork Strategy, aim to make the food econ-
omy more sustainable, inclusive, and climate-neutral by 2050 [80]. Among the most promising
technology trends that can provide such paradigm shifts are autonomous processes that utilize
artificial intelligence [212]. Autonomous processes potentially enhance process quality, safety
and energy efficiency.
For the public eye, visible progress towards autonomous procedures is made, for example,

within the transportation sector. Autonomous vehicles can significantly reduce emissions and
traffic congestion by optimizing driving behavior and improving road safety by reducing human
error [163, 210]. Additionally, less stressful driving is a welcomed enhancement in the quality
of life. Similar improvements in energy consumption, waste reduction and quality of life can
be conjectured concerning autonomous food processing. However, a less pronounced pace of
transformation is observable in this respect. Already in 2008, a joint brainstorming session of
academia and industry concluded: “As a general comment, the food industry is seen to be one with a
great deal of inertia as compared to other industries” [58].
Preparing food with heat is presumably one of the oldest activities of humankind. By now, we

have replaced the fire with more refined forms of heat supply. However, we still lack innovative
methods in processing our foods — we still follow the cook and look approach without the help
of potentially intelligent cooking appliances. Datta, a renowned computational food scientist,
concluded: “[computer-aided engineering] and model-based understanding of food processes can
enable the building of highly intelligent food processing machines” [55]. The quality of processed
foods might take a “quantum leap through development of intelligent ovens” [57].

1.1. Motivation

Food scientists worldwide agree that intelligent thermal food processing equipment can optimize
process control, reducing food waste and improving quality and energy savings. A recent pan-
European review [211] within food science concluded in 2016: “There are optimization needs
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1. Introduction

for a good understanding of efficient process monitoring and control methods. These methods
are often lacking [...]. Such methods offer a chance of reducing the overprocessing given to foods
while maintaining required product safety. Better understanding of how processes work and use
of knowledge for improved process control will minimize waste through energy recovery and better
use of by-products.” Similarly, Rakesh et al. [199] commented on the potential of combination
heating appliances: “[I]n the cooking process, the quality of the final product such as texture (e.g.,
sogginess) or flavor (e.g., browning) is a multifaceted attribute that depends on the temperature and
moisture distribution and their time-histories. Through improved understanding of the combination
heating process, overheating, underheating, overdrying and sogginess of food can be minimized
while enhancing its quality. Reliable prediction of food quality factors will in turn enable increased
automation and efficiency in food product and process development.”
Summarizing the statements above, intelligent thermal food processing appliances can assist

in preparing large quantities of safe and high-quality meals just in time. Potential use cases are
community catering, such as in hospitals, schools, universities, diners, and canteens, or for crisis
response. The cooking operations in these sectors are mainly carried out by less-trained staff.
There have been recent staffing shortages in the food service industry caused by the COVID-
19-related shutdowns of public life. Even before the coronavirus pandemic, Germany’s top six
least popular jobs were chefs and sous-chefs [180]. Hence, adequate supervision and decision
support are required in kitchens to ensure food safety. Langsrud [151] disclosed deficits in
judging the doneness of food, as approximately 30% of foodborne illnesses can be related to
eating undercooked poultry. Rabeler et al. [198] have demonstrated how the absence of pink
color, a widespread indicator of doneness, is reached at a temperature of 59 °C. Conversely, safe
consumption of chicken meat can only be guaranteed for core temperatures of at least 74 °C [247].
Besides in community catering, transformation can significantly impact our food system when

applied at scale, e.g., in industrial processing. Our food system is critical in ensuring food security,
nutrition, and livelihoods for billions of people. However, it is also a significant contributor to
climate change. Recent studies by Clark [44] indicate a 67% probability of endangering the 2 °C
greenhouse gas reduction target if no transformation is undertaken within the food system by 2050.
Estimates for the United States imply that proper technological innovations in food production,
processing, packaging, transportation, and consumption can save up to 50% of energy in food
chains [211]. Data for the United Kingdom in 2011 [211], for example, reveals the major impact
of the food system: 160Mt of the total 470Mt [206] of CO2 is relatable to the food chain, from
which 13Mt can be attributed to food processing. The food service sector emits approximately
5.3Mt of CO2. More than 10% (42TWh) of the total industrial energy use is related to the food
and drink industry, from which 68% is used for process and space heating. 15Mt of food is wasted
annually, which corresponds to an avoidable amount of 30Mt of CO2 emissions.
Even at home, intelligent food processing can combine reduced wastage, energy savings and

proper pathogen inactivation with increased comfort. In the United Kingdom [211], 8.4Mt CO2
is emitted by domestic cooking. In terms of scaling potential, the energy savings are manifold: In

2



1.2. Physics-based, data-driven digital twin framework

2018, 94% of households in Germany owned an electric stove [113]. Approximately 15% energy
can be saved through timely removal and switching off the appliance and 10–20% by dispensing
with preheating and using the residual heat for cooking. Not opening the door during baking or
roasting can save up to 25% energy [111].
Last but not least, autonomous thermal food processing can be considered a step towards a

smarter, connected home that enriches living quality. Of course, the preparation of meals brings
people together as a ritual, hobby, or to perform the art of haute-cuisine. However, living in a
fast-paced world, we sometimes do not have the privilege of spending one-to-two hours in the
kitchen after a long workday. Then, it might be welcome to ask our future kitchen to prepare our
food to be safe, maybe crusty, but tender inside and have ready-to-eat temperatures at a specific
time in the evening.
Many renowned food science and technology researchers demand further interdisciplinary

research efforts to advance food processing. In 2016, Datta [55] summarized: “Coupling the
predictive power of models with a mathematical optimization technique and making it part of powerful
decision support systems would substantially enhance the usefulness of models. However, not nearly
as much work has been done in the area of optimization as in modeling.” In 2020, Verboven et
al. [253] found holistic digital twin frameworks capable of advancing food science: “So, as with
for the modeling approaches themselves, more holistic frameworks will be required for optimization,
allowing model reduction and multi-criteria decision making.”
Acknowledging the need to transform our food system, this work aims at contributing an

interdisciplinary, technological building block to advance thermal food processing. It proposes a
computational framework to enable the autonomy of thermal food processing with digital twin
methodology. Process autonomy can be attained by making the insights of coupled, multi-physical
simulations accessible to the thermal processing appliance. Considering that the transformation
of our processes should be realized promptly, the digital twin framework is designed to be readily
applicable within the industry.

1.2. Physics-based, data-driven digital twin framework

This section presents the proposed framework to generate digital twins for autonomous thermal
food processing. It defines key terms, identifies requirements and formulates research hypotheses.
A review of the state of the art can be found in Sec. 1.3.
First, it is instructive to define digital twins precisely as they are essential to this work. Michael

Grieves developed the notion of digital twins in 2003 as themirrored spaces model for his university
lectures [95]. Years later, Vickers inspired the pseudonym digital twin [95]. Many efforts have
been made since then to define and standardize the digital twin idea [2, 132, 232], and it has
been designated as an active research area by articles in renowned journals [177, 238]. Common
features found in the literature that characterize a digital twin are summarized in Tab. 1.1.
A digital twin is a virtual set of information (labeled F1 in Tab. 1.1) replicating its physical
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Table 1.1. Common features of the digital twin concept in literature [137].
Common Feature Description Sources

F1: Digital mirror Consists of a simulation model / a virtual domain [2, 95, 201]
F2: Speed-up Must reflect the physical process in real-time [90, 159, 201]
F3: High-fidelity Must reflect the physical process at utmost accuracy [90, 95, 201]
F4: Symbiosis Synergies of physics-based and data-based modeling [177, 201, 253]
F5: Bi-directionality Mutual data exchange of digital and physical twin [2, 90, 159, 177]
F6: Persistence Evolves during the product life-cycle and reflects changes [2, 95, 201]
F7: Robustness Reliable / accounts for uncertainty / validated [177, 201]
F8: Explorative Allows for monitoring, automation or autonomy [2, 95, 177, 212]

counterpart at the utmost fidelity (F3). Digital and physical twin benefit from bi-directional
data exchange (F4, F5), in real time (F2) and over the whole life-cycle of the process or product
(F6). To date, experts in the design phase have predominantly employed simulation and data
science technologies in what-if simulations to optimize products or processes. Digital twins
symbolize the endeavor to provide those insights also to the process in operation (F6), such that
the process control algorithms might make better-informed decisions (F8) [177, 201]. Thus,
digital twins might act as catalysts for developing autonomous processes [212], which can be
considered a novel thrust in digital twin research and technology. So far, around 85% of digital
twin studies concentrated on product life-cycle management, whereas 11% focused on factory or
manufacturing planning [159]. Niederer et al. [177] identify that novel mathematical, numerical,
and computational methodologies must be created to reliably implement digital twins at scale
(F7).

1.2.1. Requirements and hypotheses to attain thermal food processing autonomy

Several requirements must be fulfilled to attain thermal food processing autonomy with digital
twins. Table 1.2 clusters conceptualized requirements, relates them to the standard features
(F1–F8) of digital twins and presents the corresponding solution proposition of this work. Three
working hypotheses are formulated that aim to address the requirements within the scope of the
presented work.
First, digital twins must replicate their “physical siblings” accurately (F1). Science has a

proven track record of successfully deriving equations describing physical phenomena. In food
science literature, physics-based models, also called mechanistic models, exceed observation-based
models in insights and predictive capability [55, 58]. Not many decades ago, the mathematical
toolboxes limited the solution of physical models such that analytical solutions could only be found
for particular, simplified problems. During the age of computerization, we have witnessed an
unprecedented rise of numerical methods, continuously improving accuracy and efficiency [177].
Allowing to solve more complex models, the trend of past decades lies in modeling across scales
and disciplines: multi-physical models couple relevant physical fields of the problem, such as fluid
mechanics and thermodynamics. In light of the advancement in computational engineering, the
first working hypothesis of this work is: Physics-based models should be the foundation of digital
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twins. Conjugate heat and mass transfer simulations that couple food processing models with the
non-isothermal flow and thermal radiation of a thermal process are needed. Such simulation models
better capture the product-process interrelationship between primary process variables and heat
transfer mechanisms.
Second, digital twins must replicate their physical counterparts at least in real-time (F2). This

requirement shows that the concept of digital twins is much more sophisticated than that of a
simulation model. However, digital twins are still often mistakenly treated as such [159, 238].
Digital twins based on highly accurate, multi-physical simulation models face the dilemma of
modern computational engineering. The solution of such simulations for large-scale industrial
problems will not be achievable in real time in the coming years, maybe even decades — despite a
spectacular growth of feasible computing power over past years, still following Moore’s law [41].
Since the 1990s, scientific computing and computational engineering researchers have identified
reduced-order models (ROM), whose generation is also called model order reduction or surrogate
modeling, as a potential solution to the dilemma [17]. For food science as well, they are considered
as useful [58]. Particularly, data-driven ROMs adapt well to the reality of model development
in many open-source, commercial or custom codes. Data-driven ROMs solely require the output
data of the simulation model. Nonetheless, some data-driven ROMs still need much training
data, which is not feasible. The question of how to select a small set of appropriate training
data for ROMs leads to the second working hypothesis: Given the significant simulation times of
sophisticated full-order models, data-driven ROMs of thermal food processing need to be trained with
only one-to-two training data sets while preserving sufficient accuracy. A proposed efficient design
of experiments provides decision support to select training data that ensures low test error of the
ROMs on representative test data. Combining the notion of highly-accurate simulation models with
data-driven reduced-order modeling shall be conveyed in the coined term “physics-based, data-driven
digital twin”.
Third, intelligent decision-making of processes requires an advanced control algorithm, such as

the industry-standard model predictive control (MPC) [72, 108]. During operation, the algorithm
queries the model multiple times to determine the optimal trajectory of the control variables.
A comparison between the virtual and the real world also enables a reaction to unforeseen
disruptions or desired changes while the execution is still in progress. Aiming to realize multi-
query optimizations during operation leads to the following statement: MPC-based autonomous
decision-making requires surrogate models that are solvable several orders faster than real time.
Besides, one can hypothesize that physics-based, data-driven digital twins increase the accuracy and
efficiency of MPC approaches. This work presents an MPC approach based on accurate physical
models encapsulated in the functional-mockup unit (FMU) format [168]. The latter is a cross-
platform, intellectual-property-protected data format to store and deploy ROMs. The presented
algorithm that combines MPC and FMUs has a significantly low computational cost, allowing for
execution on low-end processors, e.g., those of processing devices.
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Table 1.2. Requirements and solution proposition for a digital-twin-enabled process autonomy [137].
Requirement Relates to Description Solution proposition

R1: Physics-based modeling F3 First principle models provide a profound under-
standing of the cause-and-effect relationships,
which enables control over the process.

Conjugate heat and mass transfer
models better capture
product-process interrelationship
of thermal food processing inside
a convection oven.R2: Minimum physical sen-

sors
F1, F5, Focus on easy-to-measurable quantities that are

used as boundary conditions for the simulation.
R3: Faster than real-time F2 Process autonomy based on digital twinmethod-

ology requires faster-than-real-time simula-
tions.

Data-driven reduced-order
modeling furnishes high
speed-ups, and it is non-intrusive
to the model equations. A
proposed efficient design of
experiments provides decision
support to select on-to-two
training data sets of the
full-order model to train ROMs
with low test errors.

R4: Reflect modeling reality
in industry and academia

F3, F4, F6,
R1

Modeling takes place in various software. Sel-
dom, there is code access to solvers in com-
mercial simulation software. Even for available
source code, sometimes intrusive ROMs are con-
sidered too time-consuming [185].

R5: Data determines ROM
quality

F3, F7, R4 Data-based ROM methods require sophisticated
excitation signal design to accomplish ROM ac-
curacy.

R6: On-device operation F2, F3 For execution at the device level, the simula-
tion’s computational cost must be minimal.

Autonomous decision-making
with FMU-based model
predictive control. The FMUs
impose meager computational
costs and store the ROMs in an
encrypted format.

R7: Cyber-security F5, F7, R6 On-device operation increases cyber-security,
especially for automating system-critical pro-
cesses.

R8: Intellectual property F3, F4, F5,
R6

Modeling know-how is the core intellectual
property of companies and should not be left
unprotected.

R9: Open access F6 The generation and distribution of digital twins
should be open-source-based to enable an ap-
plication at scale.

TwinLab — A MATLAB code
framework for digital twin gener-
ation from COMSOL and ANSYS
simulation data.

Lastly, the generation and distribution of digital twins requires open-source platforms to enable
an application at scale. In 2021, Niederer et al. [177] concluded on deploying digital twins:
“however, analogous open-source platforms—which have been so influential in finite element analysis,
optimization and machine learning—are not widely available for digital-twin applications.” To meet
this requirement to a certain extent, the software termed TwinLab was developed for this thesis. It
seeks to contribute to efforts toward applying digital twins at scale. The code connects simulation
models, data science and control techniques into one framework and, at its current state, offers
interfaces for two major commercial simulation software packages.

1.2.2. Overview of the proposed digital twin framework

Imagine a convection oven that performs autonomous thermal food processing. Food quality
variables, such as core temperature, moisture content, or texture, are difficult to evaluate by the
cooking appliance without additional equipment. A digital twin may offer knowledge of unknown
conditions using a detailed and accurate multi-physical model. Faster-than-real-time solution
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times enable the ROM of the simulation model to return multiple future scenarios. The device can
plan its oven temperature trajectory to meet the user requirements of specific moisture content,
safe core temperatures, or texture at the end of the process at one particular point in time. Three
building blocks form the digital twin framework for autonomous thermal food processing.
Within the first building block, a conjugate heat and mass transfer model for thermal food

processing is derived, see upper block of Fig. 1.1. Conjugate product and process modeling entail
non-isothermal computational fluid dynamics (CFD) simulations coupled to a food processing
model. The individual components of the model are validated step-by-step. For non-isothermal
fluid flow inside a convection oven, the benchmark cases flow over a flat plate, flow over a cylinder
and surface-to-surface radiation inside a cavity are evaluated. Two food processing models are
implemented and investigated: the hygroscopic, capillary-porous media model [53–55] and a
soft-matter model for chicken meat [83, 84, 196, 228]. Both models are tested against synthetic
and experimental data, depending on availability. Next, the sensitivities of the model parameters
are investigated. Of particular interest is the potential of the model to be extended to a conjugate
simulation model. Finally, all relevant parts of the selected food model are coupled to the physics
of thermal food processing within a simulation model of reduced size — a so-called forerunner
model. The ultimate full-order model is characterized not only by the application of all relevant
physics but also capturing geometric features. Comparable operating conditions and identically
applied physics render the two models similar.
Data-driven reduced-order modeling starts with synthesizing special excitation signals that vary

the oven temperature at the inlets of the simulation models, see the second block in Fig. 1.1. A
full-order model is considered too computationally expensive for multiple preliminary simulations,
as it typically may take days or weeks to solve. The proposed efficient design of experiments
consists of two major steps. Step 1: The forerunner model generates a basis of simulation data
sets with different excitation signals. One data set consists of a unique combination of excitation
signal and simulation output data. The Pearson correlation matrix reveals correlations between
training data set properties and corresponding ROM prediction errors. Testing of the ROMs is
performed on special fair data sets that are selected with a χ2 test. Step 2: With the knowledge of
correlations, one-to-two excitation signals are selected to simulate the full-order model. From
this data, the final ROM is trained and saved as an FMU.
The emulation of an operational phase is the third building block of the framework, see the

lowest block in Fig. 1.1. Simple measurements of the current oven temperature form the initial
condition of the ROM. A control algorithm employs the control vector parameterization (CVP)
approach, which systematically varies the amplitudes of a hypothetical oven temperature trajectory.
In such a way, the algorithm gains insight into the sensitivities of the model concerning a target
function that includes the desired cooking objectives. An optimization problem is solved at discrete
points during the operation to determine the optimal trajectory of oven temperatures to reach the
objectives. Repetitive comparisons of the actual oven temperature with the planned trajectory
mitigate the model–process mismatch by recalculating the residual trajectory.
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Figure 1.1. The proposed physics-based, data-driven digital twin framework.
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1.3. State of the art

Research within the food science and technology community has not yet addressed many of
the abovementioned concepts. The following literature review focuses on three categories in
food science: (1) intelligence for thermal food processing, including digital twins and advanced
control algorithms, (2) data-driven reduced-order modeling as well as (3) conjugate thermal food
processing models. The articles are evaluated against the standard criteria of digital twins and the
derived requirements for processing autonomy. In comparison to this thesis, many of the presented
works lack either conjugate modeling, state-of-the-art mechanistic food processing models, proper
radiation consideration, a ROM to obtain significant speed-ups and reduced computational cost, a
highly accurate surrogate model within intelligent control algorithms, or a surrogate model that
can run live during operation.

1.3.1. Intelligence for thermal food processing

In 2018, the concept report for the present thesis work [134] was one of the first works envisioning
the application of digital twin methodology within food science and technology. The latest
publication derived from this thesis work [137] covers many of the concepts presented in Tab. 1.1.
To date, no publication in the field fulfills all required criteria.

Digital twins in food science

Only in the last three years have we have seen the emergence of digital twins in food science
and technology, which explains why relevant literature is still rare. The potential of digital twins
has recently been highlighted in several review articles [68, 117, 253]. Whereas mechanistic
models were recommended in [68, 253], it was thought that only simple models would be viable
for application as digital twins. Complex physics-based models were considered not solvable in
real time. The assessment of digital twins in [253] concentrated on big data, cloud computing,
the internet of things and sensorization. Instead of identifying the predictive power of digital
twins for process autonomy, a real-time augmented-reality monitoring system was envisioned.
Henrichs et al. [117] concentrated their review on the food value chain and shop floor production
planning. The work by Koulouris et al. [146] is a good example of this perspective on digital twins.
Furthermore, according to the review [117], few food science studies explored process autonomy.
Just eight of 84 pieces of research focused on digital-twin-enabled process autonomy, and only two
of these eight were peer-reviewed studies. Guo et al. [103] developed a cyber–physical system
that monitors and controls the soil and plant parameters in greenhouses with robots. Eppinger
et al. [76] presented two application examples in brief: ketchup production optimization and a
spray-drying method for making milk powder. However, this work appears to serve marketing
rather than academic research purposes.
Somemanuscripts partially cover the common features of digital twins, as summarized in Tab. 1.1.
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Several studies on digital twins within the post-harvest sector [67, 224, 225, 236] see the latter
as a simulation model for processing temperature profiles of physical equivalents that have been
pre-recorded. Concepts like bi-directional linkages, interactive decision-making, and mirroring
across the product life cycle are not yet addressed. Real-time simulations are necessary, as has
been envisioned recently [68, 192]. In [192], the computational hardware (8-core Intel Core
i7 processor with 32 GB RAM) required a simulation time of 20 h to predict the solar drying of
one-eighth of one apple ring in a non-conjugate setting. Consequently, the presented speed-ups
(compared to real time) of factor three are not enough for online decision-making with advanced
control algorithms. Considering additionally the computational cost, it would be unfeasible to
predict multiple scenarios even for just one fruit. Here, the need for reduced-order modeling
becomes obvious.

Advanced process control in food science

Modern model-based control techniques are a popular approach to control the future behavior
of systems [152, 153]. Optimal control entails solving an optimization problem to obtain the
ideal control parameters of the system in an offline stage. The actual process then incorporates
this control signal. Model predictive control entails repeating the optimization at regular intervals
live during operation. This enables a response to differences between system reaction and model
prediction [152]. Employing contemporary control techniques for the food sector was encouraged
in a review by Kondakci et al. [145]. Madoumier et al. [161] identified the following research gaps
concerning surrogate models within their review: “The main advantage of these black box models
is probably the calculation speed, which enables use of a wide variety of optimization algorithms.
Nonetheless, these modelling approaches are often very data-hungry [...]. To develop [food engineering
process] simulators, it should be defined what is expected of a model tailored to optimization, especially
in terms of compromise between calculation speed and accuracy of results.” Both reviews concluded
that fast and precise models are essential for model-based control techniques and require further
research in the upcoming years.
The works closest to the concepts presented within this thesis are the ones by Alonso et al. [4,

5]. Without naming it digital twins, the works contain many elements that classify them as such:
a physics-based simulation model, a ROM and an MPC algorithm. Alonso et al. [5] modeled the
batch sterilization of food in cans. The authors stated that ignoring the dynamics of the process
would lead to unfeasible solutions during the MPC of the process. However, the process and
the product were realized in a non-conjugate fashion. The processing plant was described with
macroscopic ordinary differential equations (ODEs). In contrast, the temperature of the product
was modeled with Fourier’s law and heat transfer coefficients. The final set of equations was
Galerkin-projected to a smaller subspace to create a ROM. One disadvantage of the work is the
equation-invasive nature of the employed proper orthogonal decomposition (POD) [34, 118, 244]
and the need for handling the nonlinear terms [34, 207]. A large share of simulation models is
developed in commercial software [253], where root-level access to the equations for custom
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modifications is seldom possible. Consequently, the POD approach excludes the use of commercial
software. The study in [5] relied mainly on a pre-computed optimal control policy realized with
conventional controllers. Only for unexpected deviations were these policies recomputed live
during operation. For six and ten MPC steps for a total process time of 60–70min, the maximum
solve time of the optimization was approximately 3min and 6min per MPC time step, respectively.
Within a more recent study [4], which extended the model with robust control elements, the
authors indicated that the solve times of their approach must be significantly decreased to achieve
actual real-time optimal control. The underlying optimization routine was programmed to stop
after 5min and then proceed with the following MPC time step.
A recent article by Vilas et al. [254] demonstrated the MPC of a freeze-drying process. It is

modeled with constant transfer coefficients that are estimated from experimental data. Radiation
was not modeled explicitly but was accounted for as a boundary condition. Instead of employing
a ROM, the problem was simulated on a one-dimensional (1D) domain. The recalculation time
of optimal policies required “several minutes” for one control step with a duration of 1 h. Other
works that developed MPC approaches based on simple food models are [219, 235, 261]. Outside
of food science and especially within the Modelica community, several researchers performed
MPC with FMUs [18, 85, 93, 94, 127, 264]. However, the surrogate models presented in these
works were only derived from macroscopic system models.
Several studies that aim at the optimal control of thermal processing can be found. Hadiyanto et

al. [104] presented an optimal control approach for baking optimization. The model, realized with
heat and mass transfer coefficients, was discretized with 10 1D elements resulting in 108 ODEs
to replicate 9000 s of real time. In the best-case scenario, the control vector parameterization
optimization required a solve time of 4243 s. Arias-Mendez et al. [9] modeled a 2D quarter
section of an axisymmetric potato chip with heat and mass transfer coefficients estimated to
match experimental data. As no ROM was employed within the optimal control algorithm, the
problem was coarsely discretized with 200 elements, which required 40 s to simulate 90 s of real
time within COMSOL Multiphysics. Ousegui et al. [184] presented an optimal control study of a
baking process using adjoints of the non-conjugate simulation model.

Intelligent food processing appliances

Based on marketing claims by several brands, one may get the impression that intelligent thermal
processing devices are already developed, e.g., for the consumer [255]. Although these and
other appliances automate the cooking process, they merely follow pre-defined cooking paths or
simple logic designed upfront for the individual end-product. For a closer discussion of automated
cooking appliances, the interested reader is referred to [73].
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1.3.2. Data-driven reduced-order modeling in food science

Data-driven reduced-order modeling can be considered an essential block to derive digital twins
from simulation data independent of the software or custom code. Few works covered this aspect
in food science and technology literature. Generally, developing surrogate models is not new to
food science. Within the early work of Brescia and Moreira [28], linear auto-regressive moving
average models with exogenous input (ARMAX) were trained from experimental data to develop
an online controller. Bottani and Volpi [25] deduced analytical formulas from diffusive heat
equation simulations of a steam oven to predict trend curves for meat temperatures with 4.6%
relative errors compared to experimental data. However, nonlinear, transient ROMs for field data
are scarce in food science. The two works by Rivas et al. [207] and Alonso et al. [5] are rare
exceptions, as discussed above.
Only very few studies in food science consider ROMs that employ machine-learning approaches

to predict transient model behavior. Broyart and Trystram [31] trained recurrent neural networks
(RNNs) to predict macroscopic quantities during biscuit baking from experimental data. Similarly,
Isleroglu and Beyhan [130] predicted the browning index of cookies. Khan et al. [142] recently
reviewed the state of the art of machine-learning-based modeling in food processing. The authors
conclude: “The development of a machine learning (ML)-based approach to food processing appli-
cations is an exciting and innovative idea for optimizing process parameters and process kinetics to
reduce energy consumption, processing time, and ensure better-quality products; however, developing
such a novel approach requires significant scientific effort.” Two of the 31 presented studies were
transient ROMs: Huang et al. [125] developed a nonlinear, autoregressive system equation with
exogenous input (NARX) employing an RNN to predict only a few future steps of macroscopic
properties of snack food during frying; and Li et al. [154] trained a recurrent self-evolving fuzzy
neural network to predict red maple’s temperature and moisture content from data of an effective
diffusion model. The ROM was consecutively used within an MPC environment. The residual
studies in [142] reveal that many machine-learning models in food science are steady-state. The
findings of experiments or simulations are utilized for training feed-forward neural networks.
Owing to the lack of dynamics, process parameters cannot be influenced within the run of the
surrogate model.
The employed reduced-order modeling software within this work is ANSYS Dynamic ROM

builder. It is a neural-ODE-type of data-driven ROM method. The motivation to employ it and
details of the approach are discussed in Sec. 3.2. Since its introduction in 2018, few works
employed the method [24, 36, 143] other than publications stemming from this thesis work [135–
137]. This thesis intends to investigate the method in depth regarding speed-up and the impact
of ODE augmentation parameters on accuracy.
Within the discipline of system identification, tailored excitation signals are utilized to extract

information from a physical model during tailored virtual or real experiments. The excited
transient behavior of the physical problem can be determined from the recorded output data [23,
157, 174]. A few notable works inspired the excitation signal design in this thesis [96, 115,

12



1.3. State of the art

116, 174, 237]. However, those articles only provide suggestions for the design of experiments
for NARX models, local model networks and recurrent neural networks. To date, no published
work has been found that considers the training data generation and selection for data-driven
reduced-order modeling of food models. In general, the selection of data sets to train neural ODE
ROMs with low test errors has not been reported. This thesis and the related publication [137] try
to close these gaps by proposing an efficient design of experiments. Moreover, [137] demonstrates
that suggestions to uniformly cover the models’ input space [174] or output space [237] to ensure
good ROM training does not hold for the presented food model. An input and output space
coverage measure for the food model was implemented. High coverages did not correlate with
low test errors [137].

1.3.3. Conjugate thermal food processing models

For the simulation of thermal food processing, there has been a notable trend towards more
mechanistic and multi-disciplinary models over the past years. After predominantly employing
simple lumped diffusion models until the 1990s, more mechanistic models for moisture and
temperature were used during the 2000s [53]. From 2010 onward, additional physics, such
as electromagnetic heating and deformations [102], were added. Today, research additionally
focuses on finding remaining model parameters [50, 51]. However, models that couple the process
and the food, e.g., conjugate heat and mass transfer models, are still scarce in food science and
technology literature.

Convective heating

A large share of food science research on convective heating applied constant transfer coefficients
to model the interaction of food with its surrounding process. Early studies of convective heat-
ing of potato slabs assumed laminar flow and employed standard empirical correlations for the
Nusselt number to obtain constant heat transfer coefficients. Based on analogy assumptions of
heat and mass transfer, the Lewis relation was used to derive the corresponding mass transfer
coefficient [175, 176]. The details of the procedure are explained in Sec. 2.3.2. Other works
estimated the heat transfer coefficients from experimental heat flux and temperature measure-
ments [172] or simply “estimated [the coefficient] to minimize the prediction error” [40]. The latter
statement reflects the mindset toward considering the heat transfer coefficient as a convenient
tuning parameter.
The common practice of deriving constant values from correlations can be found in many works.

Sman employed constant coefficients for the modeling and validation of roasting beef inside an
oven [228] and chicken meat inside a tunnel oven [229]. Feyissa and Rabeler obtained constant
coefficients from experiments with aluminum blocks to model the roasting of meat [84] and
chicken meat [196] inside a convection oven. The four models can be grouped within the class
of soft-matter models for meats owing to their similarity and common roots. The models contain
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fitting parameters such that their output matches experimental data. A closer discussion of the
implications can be found in Sec. 4.2. Goni et al. [91] modeled meat roasting inside an oven
with constant transfer coefficients that were compiled with measured air velocities. Isleroglu et
al. [131] investigated steam-assisted beef cooking. The convective heat transfer coefficients were
obtained from experiments using the lumped capacity method. A separate radiative portion using
the Stefan–Boltzman law was added as a macroscopic boundary condition without modeling
radiative heat transfer explicitly. Various other works modeled bread baking and validated the
model with constant transfer coefficients [262, 263]. Ousegui et al. [183] enhanced this baking
model and demonstrated a strong dependence of the heat transfer coefficient on the surface
temperatures.
Within several works, radiation is considered at a macroscopic level but is not simulated explicitly.

Rakesh et al. [199] investigated microwave heating with additional radiant and convective influx.
Convection and radiation were sub-summarized in a constant heat transfer coefficient derived
from temperature and heat flux measurements. During cycled microwave operation, the heat
influx by radiation and convection was larger by a factor of 5.8 compared to the microwave heat
input. Other research models used separate but macroscopic boundary conditions in variants of
the Stefan–Boltzmann law [182, 183]. For the investigation of convection oven roasting, Feyissa
et al. [84] argued that “[r]adiation plays only a little role at the temperature applied (at 175 °C)
and the contribution from radiation is further reduced because the oven walls are of polished stainless
steel.” Similar arguments can be found in later works [196]. However, expecting low radiative
input to the food because of low wall emissivities is a misconception. From energy conservation
and Kirchhoff’s law (refer to Sec. 2.2.2), it becomes evident that low wall emissivities imply large
reflective portions of energy. Hence, lower wall emissivities effectively increase the radiative heat
flux to a food item. For example, Dhall et al. [70] showed that lower wall emissivities imply
higher (and locally variable) radiative heat input of more than 50% of the total heat flux to the
food sample inside a convection oven. The work explicitly models the radiative heat exchange
inside an oven with infrared heating and non-participating air. However, the results are slightly
impacted by neglecting convective effects, which might be a reason for the under-prediction of
heat losses observed. Moreover, no food-specific model was included in the investigation. The
food was treated as a solid, heat-conducting object.
Some works simulated the fluid flow inside a convection oven [189, 251]. Verboven et al. [252]

investigated the convection and radiation effects inside a microwave oven without considering
electromagnetic radiation or modeling a particular food. Radiative effects were found to be in the
same order of magnitude as the convective heat transfer effects. Only one research article partially
approached conjugate thermal food processing modeling: The work by Halder and Datta [106]
investigated the so-called blowing out of a porous medium by employing a two-dimensional (2D)
conjugate heat and mass transfer setup. A channel flow of air with a velocity of 0.1m s−1 over
a partially porous plate was modeled. However, no thermal radiation has been considered. The
derived convective heat transfer coefficient showed substantial temporal and spatial variance.
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1.3. State of the art

Drying and cooling

In the absence of holistic, conjugate heat and mass transfer models for convective heating that
include radiation and a mechanistic food processing model, this literature review is extended
to the sectors of more specialized food treatment, e.g., food drying and cooling. Within this
sector, many publications employ constant transfer coefficients until today. Various works simulate
conventional food drying [1, 100, 148], combined convective and microwave or infrared drying
of food [133, 147, 149, 181, 217] and microwave vacuum drying [155, 173, 239]. More specific
examples include rice puffing [101] and a microwave drying model including deformations [102].
For the former model, the simulation time for a 2D, axisymmetric quarter model of one rice corn
(10 800 elements) was 64 h on a 12-core Intel Xeon CPU with 32 GB of RAM to resolve 15 s of
real time.
Conjugate drying models are scarce. Defraeye et al. [66] summarized that mostly non-conjugate

models can be found in the literature. If a model is conjugate, it is mainly 2D, and radiation is
usually left unaccounted. If radiation were to be accounted for, the analogy between heat and
mass transfer, e.g., the Lewis relation, is not valid anymore. In a review on drying modeling,
Defraeye [61] denotes that “[w]ithin the field of food engineering, the group of Datta is at the forefront
of such multiphysics modelling of dehydration processes [...] Future perspectives in multiphysics
modelling should be directed towards developing more complete multiphysics models for drying, i.e.
models which couple heat and mass transport within the material simultaneously with multiple other
physical processes (e.g. deformation, airflow, radiation), instead of with only a single one (e.g. as in
conjugate modelling, [...]). Particularly for food, such next-generation dehydration models should
also include (bio)chemical or biological (degradation) processes to be able to address quality and
safety parameters.”
Ateeque et al. [10] developed a pseudo-conjugate model of potato drying. First, a cuboid was im-

mersed in a channel flowwith velocities of 0.1–4m s−1. The local heat transfer coefficient varied sig-
nificantly: α(xi) ∈ [65, 210]Wm−2K−1 for the front facing face and α(xi) ∈ [20, 155]Wm−2K−1

for the side faces. The local mass transfer coefficient was determined with the Lewis relation. A
purely diffusion-based food model was simulated once with local transfer coefficients and once
with averaged coefficients per face. The authors argued that similar average results were obtained
with averaged transfer coefficients, such as average food temperature or average moisture content.
The local impacts of the strongly spatially variable heat input remained uninvestigated, as the
authors favored the usage of constant transfer coefficients in the end. On the contrary, Defraeye
et al. [62] demonstrated considerable differences in the average drying rate of a porous flat plate
when comparing a conjugate approach and a heat-transfer-coefficient-based variant. Erriguible et
al. [78, 79] developed a conjugate model for drying pine wood by coupling ANSYS Fluent to a
custom 2D FORTRAN code for the porous medium. Other research groups developed their own
conjugate code [140, 141] or utilized COMSOL Multiphysics [35, 60, 162] to develop conjugate
drying models. However, radiation was not considered.
Defraeye and coworkers presented several drying or cooling models in recent years [63, 64,
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97, 236] that also advocated the usage of conjugate simulation models. In [63], the impact of
spatial and temporal variable transfer effects was captured with a conjugate model. Radiation
was not modeled explicitly but was considered with a boundary condition. Some models focus
on deformation and resort to semi-conjugate couplings through pre-computed transfer coeffi-
cients [64]. Others focus on the fruit shape and random stack modeling [97], but unexpectedly
use mesh resolutions within the boundary layer (y+ ∈ [6, 19]) that lie far above recommended
values of y+ ≈ 1 to capture the local heat transfer effects accurately [7]. In [225], the authors
state: “[w]e used wall functions to model the near-wall regions and built a corresponding mesh with
a desired y+ value of 1.” The usage of wall functions is only recommended for mesh resolutions of
y+ > 30 [218], and wall functions considerably reduce the resolution accuracy of the near-wall
effects. Other models [236] employed an effective diffusion ansatz to model heat and mass
transfer within the porous medium, an approach often criticized by experts in the field [53, 55].
Outside of food science, Selimefendigil et al. [222, 223] published a series of articles on

porous objects that are immersed within a channel flow. Although no foodstuff was simulated,
the approach is comparable to the models on drying. The implementation was performed in
COMSOL Multiphysics, and no radiation was considered. Notable particularities of the model are
a moving-boundary formulation and a subsequent compression of the field data.

1.4. Identified research gaps, objectives and outline of this work

Summarizing the state of the art, the following gaps can be identified: Within food science and
technology, many typical features that qualify a digital twin have not yet been combined in one
comprehensive approach. A conjugate heat and mass transfer model comprising non-isothermal
flow, thermal radiation and a hygroscopic, capillary-porous media approach has not yet been
explored. In particular, the local effects of convection and radiation have not yet been considered
in detail. Moreover, the requirements for achieving processing autonomy with digital twins have
not yet been adequately addressed. Neither non-intrusive ROMs that reproduce field data nor
systematic investigations on selecting only a few data sets to train accurate ROMs could be found
in food science literature. Advanced control algorithms that perform intelligent decision-making
live during operation have so far relied only on macroscopic, strongly simplified models or ROMs of
simplified models. MPC algorithms with access to highly accurate and computationally lean ROMs
of comprehensive, physical models have not yet been covered in food science. Process autonomy
based on digital twins can be seen as a novel thrust, as digital twins have so far been seen as a
monitoring tool rather than a potential core of process intelligence. This research initiative aims
to close the abovementioned gaps, proposing a physics-based, data-driven digital twin framework
for autonomous thermal food processing. It aims to match the standard features of digital twins
in Tab. 1.1 and to fulfill the requirements in Tab. 1.2.
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1.4. Identified research gaps, objectives and outline of this work

The outline of this work follows the order of the framework in Fig. 1.1. Chapter 2 presents the
fundamentals of modeling food processing inside a convection oven from first principles. Chapter 3
then motivates the selection of the numerical methods and introduces the latter. Chapter 4 covers
the first building block of the proposed framework in-depth. It presents the analysis of two food
processing models and investigates their potential to be included in a conjugate model. After
benchmarks of all required model components, a conjugate heat and mass transfer model for
thermal food processing is derived and investigated. Of particular interest is the local influence
of the conjugate model, particularly of radiation and convection, on the food temperature and
moisture saturation. Chapter 5 covers the subsequent data-driven reduced-order modeling. An
efficient design of experiments is proposed and investigated in detail for point data ROMs of a soft-
matter model for meat roasting. Consecutively, the approach is applied for a conjugate convection
oven model comprising non-isothermal flow, radiation and a hygroscopic, capillary-porous media
model. This work proposes a procedure to develop digital twins for autonomous thermal food
processing. The focus is on conjugate modeling and data-driven reduced-order modeling. To
deliver a holistic picture of the concept, Chapter 6 briefly presents how the digital-twin-based
autonomy may be accomplished with MPC. The algorithm encounters scenarios that require
autonomous decision-making during food processing inside a convection oven. Detailed syntheses
can be found at the end of Chapter 4–6. Chapter 7 summarizes the major findings of this work and
contextualizes them from a more global perspective. It also outlines the novelties and contributions
to food science and beyond and refers to potential future research that can follow this work.
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2. Fundamentals on physical modeling

The introductory chapter motivated the derivation of multi-physically coupled simulation models
for thermal food processing. This chapter introduces the relevant physical foundations to do so.
Figure 2.1 illustrates qualitatively the two main domains that require modeling of the physical
effects, namely the cavity of a convection oven filled with hot air Ωcavity and the domain of one
or multiple food items Ωporous,i that are treated as porous solids within this work. Their union

Γporous,1

Γporous,2

Γinterf,1

Γinterf,2

Γcavity

Ωporous,1

Ωporous,2

Ωcavity

Figure 2.1. Stylized domain setup for the thermal processing of food items in a convection oven.

forms the problem domain Ω = Ωcavity∪Ωporous,1∪Ωporous,2. The modeling of the relevant physical
phenomena involves conserving the mass, momentum and energy of the concerned fluids and
solids in the domains. Consequently, a system of coupled partial differential equations (PDEs) and
ODEs arises, which requires the specification of boundary and initial conditions. The boundary
Γcavity can be subdivided into sections where Dirichlet ΓD (specification of the variable values),
Neumann ΓN (specification of the normal fluxes) and Robin ΓR (mixed formulations of variable
values and fluxes) boundary conditions are imposed, and ΓD ∪ΓN ∪ΓR = Γcavity holds. Section 2.1
describes the modeling of non-isothermal turbulent fluid flow on Ωcavity. Section 2.2 focuses
on specialties in heat transfer modeling, namely the description of conjugate heat transfer, the
coupling conditions at the fluid–solid interface Γporous,i ≡ Γinterf,i, thermal radiation and the
description of moist air. Section 2.3 is devoted to modeling the food’s thermal processing in
Ωporous,i. Following an overview of the approaches in food science, two food processing models
based on the porous media approach are presented. The introduction of sensory quality models
of food concludes this section.
Note that units of variables only are given when they are considered helpful for better compre-

hension of derivations. Hence, if not stated otherwise, the reader can expect the standard units of
the given quantities within the SI system.
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2. Fundamentals on physical modeling

2.1. Non-isothermal fluid flow

Non-isothermal turbulent flow is modeled with the Navier–Stokes equations, which are presented
in this section. The efficient numerical solution of the fluid flow problem requires employing a
turbulence model. The Reynolds-averaged Navier–Stokes (RANS) equations and the k–ω shear
stress transport (SST) model are introduced in this context.

2.1.1. Navier–Stokes equations

Describing the single-phase non-isothermal flow of a fluid involves the derivation of conservation
of mass, momentum and energy. From a continuum mechanics perspective, the respective con-
servation laws are formulated for a small fluid parcel (Lagrangian description). Transforming
the equations to Eulerian description (e.g., with Reynolds transport theorem) and switching from
integral to differential form yields the Navier–Stokes equations

∂ρ

∂t
+

∂(ρ vi)

∂xi
= 0 , (2.1)

∂(ρ vi)

∂t
+

∂(ρ vi vj)

∂xj
= − ∂p

∂xi
+

∂τij
∂xj

+ ρ gi , (2.2)

∂(ρ h)

∂t
+

∂(ρ h vi)

∂xi
=

∂p

∂t
+

∂(τij vj)

∂xi
+ ρ gi vi −

∂qSi
∂xi

, (2.3)

where xi are cartesian coordinates, vi are fluid velocities, ρ represents density, p is pressure, h is
total enthalpy and gi is the gravitational acceleration [11, 19, 218, 231]. Fourier’s law models the
surface heat fluxes qSi

qSi = −κ
∂T

∂xi
, (2.4)

where κ denotes the isotropic thermal conductivity and T the absolute temperature. The viscous
stress tensor τij of a Newtonian fluid reads

τij = µ

(︃
∂vi
∂xj

+
∂vj
∂xi

)︃
− 2

3
µ
∂vk
∂xk

δij , (2.5)

where µ denotes dynamic viscosity and δij is the Kronecker delta [170]. Besides this constitutive
material law and relations for the material parameters µ and κ, the thermal and caloric equations
of state are required to close the system of equations describing non-isothermal fluid flow [19]:

ρ = ρ(p, T ) , (2.6)
cp = cp(p, T ) , (2.7)

where cp denotes the heat capacity at constant pressure that relates temperature and enthalpy
(see Eq. (2.24)). Viscous heating ∂

∂xi
(τij vj) can be neglected in Eq. (2.3) for flows without
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2.1. Non-isothermal fluid flow

enormous velocity gradients [19], which is expected to hold for the scope of this work. The closed
set of PDEs becomes solvable with given boundary and initial conditions, which are presented in
Chapter 4.

2.1.2. Turbulence modeling

The Reynolds number is a dimensionless measure that relates inertial and viscous forces in a flow.
It reads

Re =
ρUL

µ
=

UL

ν
, (2.8)

where U and L are characteristic velocity and length scales of the problem, and ν = µ/ρ is the
kinematic viscosity. Exceeding a critical Reynolds number, the flow becomes turbulent. Turbu-
lence is characterized by a broad spatial and temporal range of inherently three-dimensional
(3D), unsteady eddies [82]. The fluctuations might appear chaotic to an observer. Richardson
and Kolmogorov introduced the idea of an energy cascade to describe the mechanisms of turbu-
lence [191]. The largest eddies of a flow have a characteristic length similar to those length scales
of the geometric problem (energy-containing range). These turbulent eddies are unstable and
break down into smaller structures (inertial subrange) until the size is small enough that viscous
forces dominate, and consequently, the energy is dissipated (dissipation range). This energy
cascade’s lowest statistical length scale is called Kolmogorov length [191]. Although Eq. (2.1)
to (2.3) can describe these phenomena, the necessary numerical resolution in space ∼ (Re3/4)3

and in time ∼ Re1/2 becomes unfeasible for typical engineering problems at elevated Reynolds
numbers [82, 218].
A well-established approach to this problem is to derive the RANS equations. The RANS

equations solve for the mean values of the dependent variables of the Navier–Stokes equations,
and additional terms arise that have to be modeled. The following derivation is presented for an
incompressible, steady-state case, as found in numerous literature [82, 218, 260]. The concluding
remarks of this section discuss the applicability to transient, compressible and non-isothermal
flows in a convection oven.
To derive the RANS equations, the fluid quantities are split into mean value Φ and fluctuation

Φ′ in the first step. Inserting this split into Eq. (2.1)–(2.3) and then averaging the equations over
time furnishes the RANS equations. The Reynolds stress tensor −ρ v′i v

′
j arises from the averaging

of the momentum equation, specifically from the nonlinear convective term. The Reynolds stress
tensor correlates the velocity fluctuations in the three spatial directions. The modeling of the
six new unknowns of this symmetric tensor accomplishes turbulence closure. The class of eddy
viscosity models assumes that the Reynolds stress tensor can be modeled in analogy to the viscous
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2. Fundamentals on physical modeling

stress tensor, see Eq. (2.5), by introducing a turbulent viscosity µt (Boussinesq approximation):

τt,ij = −ρ v′i v
′
j = 2µt Sij −

2

3
ρ k δij , (2.9)

where Sij = 1
2

(︂
∂vi
∂xj

+
∂vj
∂xi

)︂
is the mean strain rate tensor. One conceptional idea is to derive

transport equations for further turbulent quantities, which can provide information on the turbulent
length and time scales to find expressions for νt = µt/ρ. For example,

νt ∼
k2

ε
, (2.10)

νt ∼
k

ω
, (2.11)

where k = 1/2 v′i v
′
i is the turbulent kinetic energy, ε = ν

∂v′i ∂v
′
i

∂xk ∂xk
is the turbulent dissipation rate

and ω is the specific turbulent dissipation rate. Two equation turbulence models, such as the k–ε or
the k–ω models, are frequently used in research and engineering applications [260]. The solution
of two further transport equations is a reasonable trade-off between increased computational cost
and loss of accuracy, as the fluid field is only represented by its mean quantities, and turbulent
eddies are fully modeled. However, both models display unwanted behavior in specific applications.
Standard k–εmodels under-predict the size of recirculation zones when adverse pressure gradients
are present. Moreover, corrections in the form of damping functions are required in the vicinity of
walls. The k–ω model may be used to describe wall-bounded flow accurately but shows sensitivity
to its free stream values. The latter, in return, is not as pronounced for k–ε models [260].
Menter [165, 166] proposed a blending between the two models within the logarithmic boundary
layer to combine the benefits of the two models. The transport equations for k and ω read

Dk

Dt
= P − β∗ ω k +

∂

∂xj

[︃
(ν + νt σk)

∂k

∂xj

]︃
, (2.12)

Dω

Dt
= γ

ω

k
P − β̃ ω2 +

∂

∂xj

[︃
(ν + νt σω)

∂ω

∂xj

]︃
+ 2 (1− F1) σω2

1

ω

∂k

∂xj

∂ω

∂xj
, (2.13)

where D
Dt is the material derivative and P = min(2 νt Sij Sij , 10 ρ β

∗ k ω) is the limited version
of the production term of the Wilcox k–ω model [166, 260]. Table 2.1 summarizes the model
parameters that are blended by a factor F1 via ϕ = F1 ϕ1 + (1− F1) ϕ2 for ϕ ∈ {σk, σω, β̃, γ}.
The blending factor F1 is essentially a tangent hyperbolicus and additional max() and min()

operators account for well-posedness of the transition to F1 = 1 for near-wall solutions:

F1 = tanh

⎡⎣min

(︄
max

(︄ √
k

β∗ω lw
;
500 ν

l2w ω

)︄
;
4 ρ σω2 k

CDkω l2w

)︄4 ⎤⎦ , (2.14)

CDkω = max

(︃
2 ρ σω2

1

ω

∂k

∂xj

∂ω

∂xj
, 10−10

)︃
, (2.15)
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2.1. Non-isothermal fluid flow

Table 2.1. Model parameters of the k–ω SST model [46, 165].

model ϕi : σki σωi β̃i β∗ κ̃ γi

k–ω (i = 1) 0.85 0.5 0.0750 0.09 0.41 5/9
k–ε (i = 2) 1.0 0.856 0.0828 0.09 0.41 0.44

where lw is the distance to the closest wall and CDkω represents the positive portion of cross-
diffusion term between k and ω. The last term acts as an additional safeguard against a free-
stream-dependent solution [165]. So far, the equations are closely similar to the k–ω baseline
(BSL) model reported by Menter [165]. Within the same publication, he proposed a shear stress
transport (SST) extension of the model. The name suggests the solution of a transport problem for
turbulent shear stresses, which is relevant to more accurately describe flows with adverse pressure
gradients [165, 260]. However, no such transport problem is solved. In return, a correction of the
turbulent viscosity is introduced with a blending factor F2:

νt =
0.31 k

max

(︃
0.31ω,

√︂
2Sij Sij F2

)︃ , (2.16)

F2 = tanh

⎡⎣max

(︄
2

√
k

β∗ ω lw
;
500 ν

l2w ω

)︄2
⎤⎦ . (2.17)

Boundary and initial conditions

The underlying k–ω model is a so-called low Reynolds model. In contrast to standard k–ε models,
it holds its validity in the boundary layer of the flow without further corrections. Here, the
Reynolds number refers to the viscous sublayer, where velocities are low to obey the no-slip
condition (vi = 0) at the wall. The integration through the viscous sublayer is necessary to
estimate quantities, such as friction or heat transfer coefficients, accurately. From the no-slip
condition, it can be concluded k = 0m2 s−2 for the turbulent kinetic energy at the boundary.
Taking the limit of Eq. (2.13) for the normal wall distance, the resulting equation is fulfilled for

lim
lw→0

ω =
6µ

ρ β̃ l2w
, (2.18)

where lw is the generalized normal wall distance. Accurate solutions employing the low Reynolds
approach require the dimensionless distance l+w = ρ vτ lw/µ to be close to unity, where vτ is the
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2. Fundamentals on physical modeling

friction velocity [46]. At inlets, the values of k and ω can be estimated

k =
3

2
(UIT)2 , (2.19)

ω =

√
k

β∗1/4LT
, (2.20)

where IT is the turbulent intensity and LT is a turbulent length scale. For fully turbulent channel
flows one can estimate IT ≈ 5–10% and LT ≈ 0.07L, where L is the channel width [46, 82]. The
initial values can be estimated with approximate mixing length approaches; for example, from
[46, 150]

k0 =

(︃
µ

ρLref

)︃2

, (2.21)

ω0 =

√
k0

Lref
, (2.22)

where Lref is chosen to be the shortest side of the geometry bounding box [46].

Applicability to compressible, non-isothermal and transient fluid flow problems

In general, eddy viscosity models are plagued by several known problems, round-/plane-jet or
stagnation point anomaly, to name a few [260]. Considering the application of a convection oven,
free stream jets from the inlets, favorable and adverse pressure gradients during flow over food
items, and impingement on walls are to be expected. Nonetheless, a variant of the RANS approach
is employed in this work. Previous comparisons with empirical data have shown that the k–ω
SST model provides the most accurate behavior compared to other eddy viscosity models in the
context of food drying [65]. In this spirit, this thesis solves several standard test cases in Sec. 4.3
as a confidence-building measure.
RANS-equations equivalents for compressible fluid flow can be derived with slight modifications.

It involves taking a Favre (mass) average of the compressible Navier–Stokes equations. This
simplifies the derivation mathematically and yields a similar structure for the Reynolds stress
tensor and all subsequent turbulent quantities [260]. The k–ωmodel only needs minor adjustments
to be applicable for compressible problems, such as a multiplication with ρ of ν, νT, and k/ω in Eq.
(2.12) and Eq. (2.13), whereas the closure coefficients remain identical to the incompressible
case [260]. From the analogy between momentum and heat transfer, the supplementary turbulent
heat-flux vector can be derived for the energy equation

qt,i = −µt cp
Pr t

∂T

∂xi
, (2.23)

where Pr t is the turbulent Prandtl number [260]. It can be described reasonably well with the
Kays–Crawford model (see [138] for more information).
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2.2. Heat transfer

For transient flow scenarios, the mean quantities can generally vary over time. The standard
split can be replaced by an ensemble average and again yields very similar equations to the RANS
equations. The time step of the simulation is required to be large compared to the lower turbulent
time scales, but small compared to the time scale of the dominant coherent structures that are to
be resolved (e.g., of a vortex street). Although unsteady RANS (URANS) today does not stand on
the most solid theoretical foundations, it is practiced frequently with satisfactory results. The more
sophisticated, fully transient resolution of large eddies, as practiced in large eddy simulations, has
considerable mesh and time step requirements. The resulting size of the discretized model and
the required resolution of long physical time spans with sufficiently small time steps lie outside
the computing power at hand.

2.2. Heat transfer

This thesis considers three heat transfer mechanisms inside a convection oven: conduction,
convection and thermal radiation. Conduction and convection are inherently covered within the
non-isothermal formulation of the Navier–Stokes equations. Fourier’s law models the conduction
(Eq. (2.4)). Natural convection is covered by the inclusion of the body force term ρ gi in Eq. (2.2)
and forced convection can be related to the second term in Eq. (2.3). When evaluating heat fluxes
at a boundary, the effects of conduction and convection are, in some sense, lumped. The fluid
flow obeys the no-slip condition at the wall. Hence, essentially, the fluid’s heat transfer is pure
conduction. However, the effective heat flux is strongly influenced by the fluid’s bulk speed and
accompanying, possibly turbulent mixing in the boundary layer. Referencing the convective heat
flux at a fluid boundary includes the effect of conduction naturally.

2.2.1. Conjugate heat transfer

Within the CFD community, conjugate heat transfer typically stands for the coupled solution of the
energy equation for both liquid and solid domains of a problem. Occasionally, it is convenient to
recast the total enthalpy equation in terms of temperature. COMSOL Multiphysics, the employed
finite element solver within this work, solves the non-conservative form of the energy equation, as
the total enthalpy is claimed to be prone to numerical oscillations [48]. The recast of Eq. (2.3) to a
non-conservative form for temperature employs a variant of the Gibbs fundamental equation [11]

dh = cp dT +
1

ρ

[︄
1 +

T

ρ

(︃
∂ρ

∂T

)︃
p

]︄
dp , (2.24)

and invokes Eq. (2.1) to furnish

ρ cp
DT

Dt
= β T

Dp

Dt
+

∂(τij vj)

∂xk
+

∂

∂xk

(︃
κ

∂T

∂xk

)︃
, (2.25)
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where β = −1
ρ

(︂
∂ρ
∂T

)︂
p
is the bulk expansion coefficient and D

Dt is again the material derivative [19,
170]. For a conjugate problem, such as the introductory example of Fig. 2.1, continuity of
temperature T and normal heat fluxes q at a fluid–solid interface Γporous ≡ Γinterf reads

Tporous(xi, t) = Tcavity(xi, t) , (2.26)
qporous(xi, t) = −qcavity(xi, t) . (2.27)

Numerically solving the resulting coupled system requires stabilization methods that are discussed
in Sec. 3.1.2. Note that food heating in a convection oven can be considered a particular variant
of conjugate heat transfer, as the foodstuff is not modeled as a purely solid, but as a porous object.
Unique forms of Eq. (2.25) are derived in the context of food-specific models in Sec. 2.3. Another
particularity of this work is that the heat flux qcavity at the fluid–solid interface also comprises
contributions by surface-to-surface radiation. The following section introduces its foundations.

2.2.2. Thermal radiation

Thermal radiation represents the third mode of heat transfer, in addition to convection and
conduction. Every body with a temperature T emits and absorbs electromagnetic radiation. For
an ideal black body, the total hemispherical emissive power Eb (Wm−2) follows from Stefan–
Boltzmann law:

Eb =
∫︂ ∞

0
Eb,λ(λ

∗) dλ∗ = σT 4 , (2.28)

whereEb,λ(λ) is the spectral emissive power distribution following Planck’s law, λ is the wavelength,
and σ is the Stefan–Boltzmann constant [11]. The multiplication of Eb with an emissivity ϵ (T, λ)
accounts for the observation that natural bodies emit with a reduced emissive power distribution
owing to surface and material properties. Grey bodies represent the conceptual simplification that
the deviation from a black body does not depend on the wavelength λ. Incident radiation can be
absorbed, reflected or transmitted. For the respective fractions of energy, a conservation reads
A+R+ T = 1, where the fractions are termed absorptivity A, reflectivity R and transmissivity
T . Opaque surfaces do not transmit electromagnetic waves (T = 0). Kirchhoff’s law states A = ϵ

[128]. Hence, the bodies absorb and emit the same fraction of energy of Eb.
In the absence of a participating medium, a conservation equation for the net radiative heat

flux qrad between participating surfaces can be derived. Consider a surface m with a temperature
T . Let Gm (Wm−2) be the irradiation, the incoming radiative heat flux from all other surfaces.
Jm (Wm−2) is the radiosity, the total radiative heat flux leaving the surface

Jm = ϵmEb,m +RmGm , (2.29)

where the first term is the grey body emissive power and Rm is the fraction of irradiation that
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2.2. Heat transfer

is diffusely reflected by the surface. The irradiation Gm on the surface m again depends on the
radiosity of all other surfaces. The fraction of the emitted energy of a surface j that reaches
surface m is represented by a view factor Fjm. For view factors, the reciprocity relation

Aj Fjm = Am Fmj (2.30)

holds [128].
Coming back to the derivation of a conservation equation, the total energy Qm,in (W) irradiated

on m by all other surfaces reads

Qm,in =
N∑︂
j=1

FjmQj,out (2.31)

⇔ AmGm =

N∑︂
j=1

Aj Fjm Jj . (2.32)

Note that this case also includes self-irradiation of a concave surfacem. Applying Eq. (2.30) yields

Gm =
N∑︂
j=1

Fmj Jj . (2.33)

Inserting Eq. (2.33) in Eq. (2.29) results in a linear system of equations

FJ = E , (2.34)

that can be solved with conventional numerical methods. The derived procedure to obtain the
radiative heat flux at the surface is sometimes referred to as the radiosity method [45]. The
difference between irradiation and radiosity is the net incoming radiative heat flux

qm,rad = Gm − Jm = Gm − ϵmEb,m −RmGm . (2.35)

Applying the conservation relation Am = 1−Rm and Kirchhoff’s law A = ϵ yields

qm,rad = AmGm − ϵmEb,m = ϵm (Gm − Eb,m) . (2.36)

The found relation for qm,rad is included in the boundary condition of the energy conservation
equation (Eq. (2.25)).

2.2.3. Moist air and evaporation

The thermal processing of food often induces accelerated evaporation of water stored in the food.
It requires the calculation of partial pressures and the vapor’s fraction in the food and in the
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surrounding air for exact modeling. Consider the imaginative experiment of a vacuum chamber
that is partially filled with water. At any temperature above absolute zero, molecules start to
overcome cohesion forces and surface tension of the liquid phase owing to increased (molecular)
motion. Vapor, denoted with index v, is called the gaseous phase of water that is formed in the
vacuum chamber. At thermal equilibrium, one can measure the saturation water vapor pressure
pv,sat(T ) in the gas phase. The saturation pressure can be derived from the Clausius–Clapeyron
equation for water vapor. Alternatively, various approximation equations have been derived, such
as the Magnus or Goff–Gratch equation.
Resuming the imaginative experiment, this time for multiple components, the effective pres-

sure of the gaseous phase is the sum of the partial pressures of the individual components. At
atmospheric pressures, air–steam mixtures follow the Gibbs–Dalton law closely [226]:

ptot = pair,partial + pv,partial . (2.37)

Note that a component’s partial pressure differs from its saturation vapor pressure. Raoult’s law
relates the former with the latter:

pk,partial = χk pk,sat , (2.38)

where pk,partial is the partial pressure of the component k in the gaseous mixture, pk,sat is the
saturation vapor pressure of the pure component k, and χk is the mole fraction of the compo-
nent k [187]. For better readability of the forthcoming formulae, the index partial is omitted, and
only saturated pressures are marked with an index sat.
It is often convenient to relate partial pressures of components to their mass, mole and volume

fractions in the mixture. The ideal gas equations for dry air and water vapor (k ∈ {air, v}) reads

pkV = nkRT , (2.39)

where nk is the amount of substance (mol), R is the universal gas constant and V is volume.
Dividing the ideal gas equation for air by the summation of the equations for air and water vapor
yields [226]

pair
pair + pv

=
nair

nair + nv
= χair , (2.40)

where the right-hand side equals the definition of mole fracture χair. The mole fraction of a
component is now related to its partial pressure and the total pressure of the mixture. The mass
fraction of a component can be related to its mole fraction as

ωk =
mk
mtot

=
nkMk∑︁
i niMi

, (2.41)

where mk is the respective mass of a component, mtot is the effective mass of the mixture, Mk
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is the molar weight of a component, an N is the total number of components. Expanding and
employing ni/

∑︁
j nj = χi yields

ωk =
nkMk∑︁
j nj

∑︁
j nj∑︁

i niMi
=

χkMk∑︁
i χiMi

. (2.42)

The molar concentration ck (molm−3) of a component can be derived from its mass fraction as

ck =
nk
Vtot

=
mk/Mk∑︁
imi/ρtot

= ωk
ρtot
Mk

, (2.43)

and it can be easily transformed to a mass concentration (kgm−3) when Mk is omitted. The
volume fraction of a component is defined as

ϕk =
Vk
Vtot

=
mk/ρk

mtot/ρtot
= ωk

ρtot
ρk

. (2.44)

At a certain temperature and pressure, the relative humidity of the air can be given as the ratio
of the mole fraction of water vapor in the current air sample to the mole fraction in a saturated
air sample [226]:

RH =
χv

χv,sat
=

pv
pv,sat

, (2.45)

where the recast is accomplished by applying Eq. (2.40).
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2.3. Porous media multiphase modeling of thermal food processing

The previous sections summarize the principles of non-isothermal flow, radiation and moist air.
Their physical effects are required to model the thermal processing environment (e.g., a convection
oven). This section focuses on the physical modeling of thermal food processing of the foodstuff
itself. After giving some classifications, definitions and general assumptions, two models for the
thermal processing of potatoes and chicken meat are introduced in detail.

Definitions and categorizations in the context of thermal food processing

One can identify four major heating modes in conventional thermal processing of food: using
hot air, steam, thermal radiation, or microwave radiation [57]. This work’s scope lies in heating
with hot air, which also involves thermal radiation. Whereas a roasting process implies the dry
heating of food with an open flame (e.g., in a barbecue), broiling corresponds to employing
more controlled heat sources (e.g., electrical heating coils or gas burners). During roasting or
broiling, the heat intake is realized mainly through thermal radiation of the energy source from
one direction. It requires the process or operator to turn the food. Dominant heat input from
convection is referred to as baking [57].
Generally, the history (or trajectory) of heat input into the food influences various parameters.

A temperature rise induces enhanced evaporation and moisture changes, mechanical stress
(shrinkage, swelling), and variation in electro-dynamical and thermo-physical properties and
biochemical changes [57]. One can subdivide primary and secondary quantities of interest. The
former are temperature, pressure, moisture and vapor concentration, which can be obtained from
models involving PDEs. Secondary quantities are sensory or safety-related properties, such as
texture, color, flavor (created by enzymatic reactions, caramelization, and Maillard reactions),
or the inactivation rates of organisms causing foodborne diseases (e.g., Salmonella typhimurium,
Listeria monocytogenes or Escherichia coli O157:H7) [6, 71]. Secondary properties can be modeled
as temperature or moisture-dependent analytical formulas or ODEs [167, 195, 249]. The relevant
models to this work are introduced at the end of this section.

Modeling food as porous media

The modeling of food processing with porous media approaches can be traced back to the second
half of the last century [32, 87, 160]. One can subdivide phenomenological and mechanistic
approaches to model the thermal processing of food. During the advent of numerical methods,
thermal processing simulations mainly utilized effective diffusion models. The mass and thermal
diffusion rates were adjusted such that simulations matched experimental data [38, 40, 160].
Those so-called phenomenological models have an observed phenomenon as a starting point, and
relations are found to reproduce measurable features [53]. In contrast, mechanistic models start
from fundamental laws to derive models of an observed phenomenon. A mechanistic framework
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for treating food as hygroscopic capillary-porous media has been proposed by Datta [53–55].
Porous media can be defined as solids with voids that can be filled by a fluid [15, 53, 120]. Heat
and mass transfer may occur within the porous medium [19, 53]. Capillary-porous media can be
characterized by pore sizes that are less than 10−7m [32]. Hygroscopic materials do not exclusively
have water present in the voids but are also physically bound to the solid matrix. This difference
from non-hygroscopic matter implies changes to the water–vapor equilibrium, as the bound water
cannot be easily removed from the solid matrix at lower water saturations [53].
The continuum hypothesis allows the treatment of fluids as continuous media, given sufficiently

small Knudsen numbers (Kn < 0.01) [14, 178, 191]. On the other hand, the interactions of the
molecules with solid walls have to be accounted for (Knudsen diffusion) when the mean free path
of the molecules is larger than the characteristic lengths of the pores. For soil systems, Knudsen
diffusion has been reported to become dominant for permeabilities less than 10−14m2 [81],
and is usually not accounted for in food models [53–55]. Ni [175] reports permeabilities of
15–46× 10−14m2 for meats.

Assumptions and model selection for this work

The upcoming trends of plant-based or insect-based products shift the focus to more or less
homogeneous mixtures as the primary food composition. On the other hand, as meats are
expected to become rarer and more valuable, processing quality should also be guaranteed
here. Hence, this work considers one model for a homogenous foodstuff (potato) and one for a
more heterogenous foodstuff (chicken meat). The former, introduced by Datta [53–55], can be
considered well-known and has been validated and applied in a multitude of scenarios within
the last two decades for convective heating [175], infrared heating [56], microwave heating and
drying [102, 147, 149], frying and deep-fat frying [107, 257], rice puffing [101], or vacuum
cooling [200].
The employed soft-matter approach for chicken meat, as presented in [228, 229] and rec-

ommended in [59], comprises a model for the shrinkage-induced liquid flow, which can be
rather contextualized as being phenomenological. This work applies a variant by [196], as the
researchers provided matching models for texture and color [195, 198]. Furthermore, the model
is representative of popular phenomenological models in the industry owing to more pragmatic
modeling approaches [54]. Its analysis and application in the proposed digital twin framework
follow the goals of providing industry-applicable research. The explicit shrinkage modeling lies
outside this work’s scope. Its impact has been demonstrated in [100, 102, 171].

2.3.1. Hygroscopic, capillary-porous media model

As the terms thermal food processing and porous media are now defined, this section presents the
theoretical foundations of the modeling framework for hygroscopic, capillary-porous media by
Datta [53, 55].
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solid matrix

gas phase

liquid phase

REV

Figure 2.2. Concept of a representative elementary volume (REV) for hygroscopic, capillary-porous media,
where water is also bound to the solid matrix.

Simulating fluid flow in exact representations of a porous medium is not feasible, especially on
larger domains [14]. Similar to the continuum approach, but on a larger scale, all quantities of
interest are averaged on a sufficiently large representative elementary volume (REV) [14, 259],
see Fig. 2.2 for an illustration. To formulate the model analogous to non-hygroscopic porous
media equations, a constant equivalent porosity

φ = φg + φw =
Vg
Vtot

+
Vw
Vtot

, (2.46)

is introduced as the sum of gas and water porosity. Porosity is defined as the ratio of the gas (index
g) and water (index w) volumes Vk to the total volume Vtot of the REV. To account for porosity
changes caused by thermal processing, equivalent variable water and gas saturations

Sw =
Vw

Vw + Vg
=

Vw
φVtot

, (2.47)

Sg =
Vg

Vw + Vg
=

Vg
φVtot

, (2.48)

are defined. The saturations represent the relative volume fraction of the corresponding fluid in
the void, implying Sw + Sg = 1. The concentrations (kgm−3) of water, gas (vapor + air) and
vapor (index v) are defined as

cw = Sw φρw , cg = Sg φρg , cv = Sg φρv , (2.49)

where the gas densities are determined employing ideal gas and Dalton’s law (Eq. (2.37)). The
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corresponding mass conservation laws for gas, vapor and water read

∂cg
∂t

+
∂Ji,g
∂xi

= İ , (2.50)
∂cv
∂t

+
∂Ji,v
∂xi

= İ , (2.51)
∂cw
∂t

+
∂Ji,w
∂xi

= −İ , (2.52)

where Ji,k (k ∈ {g,v,w}) are mass fluxes and İ is the evaporation rate, which are introduced later.

Given sufficiently small velocities (Re ≪ 1) in sufficiently small pores, fluid flow in porous
media can be modeled with Darcy’s law [15, 53, 120, 178] as

Ji,g = −ρg
kg
µg

(︃
∂p

∂xi
− ρg gi

)︃
, (2.53)

where k is permeability, µ is the dynamic viscosity, and p is pressure. This assumption covers most
food processing conditions of plant- or animal-based food matter [53]. Observe that Eq. (2.50)
can be recast to a PDE for pressure when Eq. (2.53) is inserted, and the ideal gas law is invoked.

The vapor mass flux likewise considers pressure-driven flow and additionally accounts for the
binary diffusion of vapor in the gas

Ji,v = −ρv
kg
µg

(︃
∂p

∂xi
− ρg gi

)︃
⏞ ⏟⏟ ⏞

Darcy flux

−
c̃2g
ρg

MvMaDeff,g
∂χv
∂xi⏞ ⏟⏟ ⏞

binary flux

, (2.54)

where χv is the mole fraction of vapor, c̃g is the molar concentration of the gas andMa andMv
are the molar weights of air and vapor [19], respectively. The effective gas diffusion coefficient
Deff,g = Dva(Sg φ)4/3 accounts for the binary diffusion in the porous cavities, which differs from
the binary diffusion in free air Dva = 2.6× 10−5m2 s−1 [175].

The unsaturated capillary flow of water tends to move from locations with higher concentrations
to ones of lower concentrations. The capillary attraction pcap of the solid counteracts gas pressure-
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driven flow, which is reflected in the water mass flux as

Ji,w = −ρw
kw
µw

(︃
∂pw
∂xi

− ρw gi

)︃
= −ρw

kw
µw

(︃
∂

∂xi

(︁
pg − pcap(cw, T )

)︁
− ρw gi

)︃
= −ρw

kw
µw

(︃
∂pg
∂xi

− ∂pcap
∂cw

∂cw
∂xi

− ∂pcap
∂T

∂T

∂xi
− ρw gi

)︃
= −ρw

kw
µw

(︃
∂pg
∂xi

− ρw gi

)︃
⏞ ⏟⏟ ⏞

Darcy flux

−Dw,cw
∂cw
∂xi⏞ ⏟⏟ ⏞

capillary flux

−Dw,T
∂T

∂xi⏞ ⏟⏟ ⏞
Soret effect

,

(2.55)

whereDw,cw is the capillary diffusivity regarding concentration gradients andDw,T is the capillary
diffusivity regarding temperature gradients (Soret effect). The latter and gravitational effects are
considered negligibly small compared to the remaining driving mechanisms [53]. Thus, they are
not accounted for.

The conservation of energy for all phases reads

∂

∂t

(︁
cg hg + cw hw + cs hs

)︁
+

∂

∂xi

(︁
Ji,g hg + Ji,w hw

)︁
=

∂

∂xi

(︃
κeff

∂T

∂xi

)︃
, (2.56)

where index s denotes the solid matrix. For cp = const., the equation can be recast to a non-
conservative form for temperature T [175]:

(ρ cp)eff
∂T

∂t
+
(︁
Ji,g cp,g + Ji,w cp,w

)︁ ∂T
∂xi

=
∂

∂xi

(︃
κeff

∂T

∂xi

)︃
−Hevap İ , (2.57)

where Hevap = 2.435 × 106 J kg−1 is the latent heat of evaporation, and effective transport
coefficients are averaged as

(ρ cp)eff = ρs (1− φ) cp,s + ρg Sg φ cp,g + ρw Sw φ cp,w , (2.58)
κeff = κs (1− φ) + κg Sg φ+ κw Sw φ . (2.59)

Closure of the boundary value problem of mass and energy conservation is furnished with the
provision of boundary and initial conditions together with a non-equilibrium formulation for
distributed evaporation [20, 53]

İ = Kevap (pv,equ − pv)
Mv
RT

Sg φ , (2.60)

where the evaporation constant Kevap can be interpreted as the inverse of the time to reach
thermodynamical equilibrium in a REV [107]. This explicit formulation of an evaporation rate
enables a facilitated implementation in transport equations of commercial software [102].
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Water activity

The vapor pressure at thermal equilibrium pv,equ in Eq. (2.60) differs from the vapor saturation
pressure pv,sat. A fraction of a food matrix’s total amount of water is firmly chemically bound [246].
Similar to the relative humidity, water activity aw is a measure of how much water is available (or
“active”) to participate in the exchange with the food’s surroundings. It is defined as the ratio of
the vapor pressure of food in equilibrium with its surroundings to the saturated vapor pressure of
distilled water

aw =
pv,equ
pv,sat

. (2.61)

Water activity is usually measured experimentally [13]. It is often given as a function of moisture
concentration on a dry basis

Mdb =
mw
ms

=
ωw

1− ωw
. (2.62)

Ratti derived an empirical relationship for potatoes [202], which is employed in the context of
this work:

ln
pv,equ
pv,sat

= −0.0267M−1.656
db + 0.0107 exp(−1.287Mdb)M

1.513
db ln pv,sat . (2.63)

Permeability and capillary diffusivity

The permeability k of a porous medium describes its ability to allow for fluid flow through the
porous matrix. One can subdivide contributions of the solid properties as intrinsic permeability
kin and of the fluid as relative permeability krel [14]: k = kin krel. For food matter, there has been
limited success in relating intrinsic permeabilities to the structure of the material [54, 99], and
the Datta group typically chooses kg,in = 5× 10−14m2 for gas permeability at arid conditions and
liquid permeability kw,in = 10 × 10−14m2 at very wet stages since the early works by Ni [175].
Common analytical relations for the relative permeabilities of gas and water are

kg,rel =

⎧⎨⎩1− 1.1Sw, if Sw < 1/1.1

0, if Sw ≥ 1/1.1
(2.64)

kw,rel =

⎧⎨⎩
(︂
Sw−Sir
1−Sir

)︂3
, if Sw > Sir

0, if Sw ≤ Sir

(2.65)

and were borrowed by Ni and Datta for food matter [54, 175], where Sir = 0.09 is the irreducible
moisture saturation.
As discussed in this subsection, the capillary diffusivity of water is not a diffusion process in the
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Figure 2.3. Variable relative permeabilities [54, 175], capillary diffusivity [54, 175] and dynamic viscosities
[164].

classical sense but a flow of water owing to capillary forces. In [175], the semi-empirical relation

Dw,cw = 1× 10−8 exp (−2.8 + 2.0Mdb) m
2 s−1 (2.66)

was derived by comparisons with experimental data of effective moisture diffusivities at very
wet states, where vapor diffusion becomes negligible. Figure 2.3 illustrates the relations for
permeability and capillary diffusivity in Eq. (2.64)–(2.66) and the dynamic viscosities required
in Darcy’s law. The reader is referred to works by Datta and Ni [53, 55, 175] for further details.

2.3.2. Soft-matter model for meats

The soft-matter approach has been successfully applied to model the thermal processing of
meats [83, 84, 196, 228]. It assumes a water-saturated foodstuff, the absence of a gas phase, and
capillary pressure is considered zero [59]. The governing equations are the conservation of mass
and energy

∂cw
∂t

+
∂

∂xi
(cw ui) =

∂

∂xi

(︃
Dw,cb

∂cw
∂xi

)︃
, (2.67)

ρcb cp,cb
∂T

∂t
+ ρw cp,w ui

∂T

∂xi
=

∂

∂xi

(︃
κij

∂T

∂xj

)︃
, (2.68)

where ui are water velocities, Dw,cb is the effective water diffusivity, cp and ρ denote the specific
heat capacities and densities. The additional indices w and cb mark the corresponding water
parameters and the chicken’s effective quantities. The effective specific heat capacity cp,cb is the
mass averaged sum of the components

cp,cb =
∑︂
k

ωk cp,k , (2.69)
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Figure 2.4. Temperature-dependent transport properties taken from [6, 42].

where ωk (k ∈{ash, protein, fat, water}) is the respective mass fraction of a component [6]. The
orthotropic thermal conductivity of the fillet fibers is accounted for with the parallel and serial
models. The effective thermal conductivities in parallel and perpendicular directions with respect
to the main fiber direction are

κpara =
∑︂
k

ϕk κk , (2.70)

1

κperp
=
∑︂
k

ϕk
κk

, (2.71)

where ϕk is the respective volume fraction of a component. The specific heat capacities cp,k and
thermal conductivities κk of the food components can be modeled with empirical temperature-
dependent formulas from [6, 42]. Figure 2.4 illustrates the temperature-dependence of the
transport properties.
The boundary conditions of the transport equations are governed by the rate of water evapo-

ration ṁevap (kgm−2 s−1) and the heat intake modeled with a constant heat transfer coefficient
αtot (Wm−2 K−1):

Nw|surf = −ṁevap , (2.72)
Ne|surf = αtot (Toven − Tsurf)− ṁevapHevap , (2.73)

where Hevap is the latent heat of evaporation, Nk(k ∈ {w,e}) are the normal, total water and
energy fluxes at the boundary, and ·|surf is an evaluation of the former in the normal direction
of the boundary. The evaporation rate ṁevap can be derived from the driving difference of the
water-vapor concentration in the oven cv,oven (kgm−3) and the water-vapor concentration on the
surface cv,surf (kgm−3) [226] as

ṁevap = βtot
(︁
cv,surf − cv,oven

)︁
, (2.74)
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Figure 2.5. Modeled parameters in the swelling pressure model in [196]. Empirical data (markers) by
[205] is added for comparison.

where βtot is the total mass transfer coefficient. Invoking the ideal gas law for the vapor concen-
tration at the food surface and relating the partial vapor pressure to the product of water activity
aw and saturated vapor pressures pv,sat(T ) yields

cv,surf =
Mw

RTsurf
pv,surf =

Mw
RTsurf

aw pv,sat(Tsurf) , (2.75)

where R is the universal gas constant. The water activity of the chicken breast is modeled as an
empirical formula by [196, 228]. Figure 2.5a compares the employed empirical formulation with
experimental data of Rimkate [205]. The water vapor concentration in the oven is derived from
the measurements of the vapor mass fraction in ambient air, which can be expressed as a mass
concentration with Eq. (2.43), resulting in

cv,oven =
Mw patm
RToven

ωv , (2.76)

where patm is the atmospheric pressure under standard conditions.

The total mass transfer coefficient βtot is determined with a serial model

βtot =
1

1
βext +

1
βskin

. (2.77)

The external mass transfer coefficient is determined from the Chilton–Colburn relation [196, 227,
228]:

βext =
αtot

ρair cp,air
Le−2/3 , Le =

Sc

Pr
≈ 0.91 , (2.78)

where Le, Sc and Pr are the Lewis, Schmidt, and Prandtl numbers. All quantities are evaluated
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for air at a film temperature Tfilm = (Tsurf + Toven)/2. The skin coefficient

βskin = 0.04ω
b(T )
w , (2.79)

accounts for surface resistance to evaporation owing to the skin of the food product [6, 196, 227].
A function b(T ) ∈ [3, 5] modifies the exponent to lower values when the boiling temperature is
reached [229]. As will be seen later, the serial model for the total mass transfer coefficient gives
dominant weight to βskin for small ωw (dry surfaces) and reduces the total mass transfer coefficient
to a value considerably less than βext. The skin coefficient βskin is a modeled quantity, that is
discussed more in detail in Sec. 4.1.2.

Swelling pressure approach

Darcy’s law is used to relate the velocity ui to a pressure gradient:

ui = − k

µw

∂p

∂xi
, (2.80)

where k is the permeability of the food matrix and µw is the dynamic viscosity of water. The
permeability of chicken meat was experimentally determined by Datta [52] to be k ∈ [1 ×
10−17, 1 × 10−19] m2. Feyissa [84] tested values of k ∈ [1 × 10−16, 1 × 10−17] m2 and suggested
k = 1× 10−17m2 as a suitable value for raw meat. Rabeler [196] employs k = 3× 10−17m2 for a
simulation of chicken meat.
Protein denaturation induces shrinkage during a roasting process, which results in a substantial

water loss at the surface [243]. A similar phenomenon models the Flory–Rehner theory [86],
which describes the swelling or shrinking in polymer gels [193, 228]. Similar to the derivation of
the capillary diffusivity in Eq. (2.55), the pressure mechanisms acting on the water read

pw = pg − pcap + pswell , (2.81)

where pswell is the newly introduced swelling (and shrinking) pressure. Assuming a nearly saturated
state, the contributions of capillarity and gas pressure can be neglected [53, 59]. The adaptation
of the theory for thermal processing of meats models pswell in relation to a driving difference of
water concentrations [84, 196, 228, 229] as

p = G′(T )
(︁
C − Ceq(T )

)︁
. (2.82)

The induced pressure is proportional to the difference between the local water mass fraction
C ≡ ωw and the equilibrium water mass fraction Ceq(T ):

Ceq(T ) = C0 −
0.31

1 + 30 exp (−0.17 (T − Tσ))
, (2.83)
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Table 2.2. Constants of the thermal processing model for chicken meat from [196].
Parameter Value Parameter Value
Tσ 315K Hevap 2.3× 106 J kg−1

T 342.15K G′
0 13.5× 103 Pa

∆T 4K G′max 92× 103 Pa
Dcb 3× 10−10 m2 s−1 aw 1− 0.073/Mdb

where C0 is the initial water mass fraction. The model constants are given in Tab. 2.2 and are
taken from [196, 229]. G′(T ) is the storage modulus

G′(T ) = G′
max +

G′
0 −G′

max
1 + exp

(︂
T−T
∆T

)︂ , (2.84)

which is a measure of the viscoelastic material elasticity [243]. Both quantities are modeled
with sigmoidal functions that were fitted to experimental data [195, 228, 229] (see Fig. 2.5b
and Fig. 2.5c for a graphical representation). The required model constants are summarized in
Tab. 2.2. For a more extended discussion of the model, the reader is referred to [196, 229].

2.3.3. Sensory quality models

Although taste is, of course, a subjective perception, food science tried to derive objective quantities
to characterize it scientifically. Four main properties can be found to describe the quality of food:
appearance (e.g., color, size or gloss), flavor (e.g., taste or odor), texture (e.g., tactile sensing of
the food or sound), and nutrition (e.g., carbohydrates, fat, protein or minerals) [26]. Obtaining
the desired texture determines the perceived value of food (e.g., tough or dry beef sells at a much
lower price than tender). As a consequence, the processing of food has to account for sensory
attributes that the customer desires. Heating of meat introduces microstructural changes that lead
to increased perceived hardness [243]. Texture profile analysis (TPA) is an experimental method
pioneered by Szczesniak [234] that emulates a chewing motion. Several textural parameters
have been derived from the force–time curve that describe the mouthfeel of food in the human
mouth during mastication. Table 2.3 summarizes the mechanical characteristics relevant to this
work’s scope. Chewy, for example, may be defined as “[t]ending to remain in the mouth without
rapidly breaking up or dissolving. Requiring mastication [...]” and hardness can be described as
“the perceived force required to break the sample into several pieces during the first bite by the molars
[...]” [26].
Besides a change of mechanical properties, the heating of meat induces the change of its color

(e.g., from a light rose to white for temperature above 55 °C). The change is related to the
denaturation of myoglobin proteins [98]. Further heating induces the Maillard reactions that
govern the flavor and browning of meat [33]. The color of meat can be described in standardized
color spaces (e.g., the L∗a∗b∗ color space defined by [75]). The 3D color space is spanned by the
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Table 2.3. Texture parameters derived from texture profile analysis [26, 234].
Mechanical property Origin Units Descriptions
hardness TPA experiment N soft→ firm→ hard
adhesiveness TPA experiment Nm sticky→ tacky→ gooey
springiness TPA experiment m
cohesiveness TPA experiment -
→ brittleness TPA experiment N crumbly→ crunchy→ brittle
→ chewiness gumminess × springiness Nm tender→ chewy→ tough
→ gumminess hardness × cohesiveness N short→ mealy→ pasty→ gummy

color intensity, type — a∗ (varying from green to red), b∗ (varying from blue to yellow) — and
color brightness L∗.
A general rate law can describe the changes of a sensory quality Q in the form

∂Q

∂t
= −k Qn , (2.85)

where the reaction rate constant k and the reaction order n have to be adjusted to match experi-
mental data. Arrhenius’ law

k = k0 exp

(︃
− Ea
RT

)︃
, (2.86)

has proven capable to describe a multitude of reaction kinetics [249], where k0 is the pre-
exponential factor, Ea is the activation energy and R is the universal gas constant. A modified
rate law that accounts for non-zero equilibrium conditions of the parameters after long process
durations has been proposed by [195]:

∂Q

∂t
= k0 exp

(︃
− Ea

RT

)︃
(Q∞ −Q)n , (2.87)

Q∞(T ) = Qmax +
Q0 −Qmax

1 + exp
(︁
T−T ∗
∆T ∗

)︁ , (2.88)

where Q0 is the initial quality value, Q∞ is the final non-zero equilibrium quality value, whereas
T ∗ and ∆T ∗ are fitting parameters of the sigmoid function. Data of the parameters are given in
the validation test case in Sec. 4.1.3.
The description of sensory qualities finalizes the set of PDEs and ODEs employed in modeling

thermal food processing within a convection oven. Before the models can be investigated closer in
Chapter 4, the following chapter provides the required methods for their numerical simulation.
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The previous chapter introduced the physical models to describe thermal food processing inside a
convection oven. This chapter provides the numerical methods to solve the model equations and
derive the digital twin framework for autonomous thermal food processing. Section 3.1 focuses
on the numerical solution of PDEs and ODEs. Then, Sec. 3.2 introduces reduced-order modeling
techniques that derive lightweight and yet accurate surrogate models of the multi-physical full-
order models.

3.1. Numerical solution of partial and ordinary differential equations

Data-driven reduced-order modeling methods are principally independent of the software in
which the problem is modeled and solved. The following section clarifies the choice of modeling
software and methods. The fundamentals of the numerical methods for solving PDEs and ODEs
are presented thereafter.

3.1.1. Selection of the modeling platform

Developing a conjugate heat and mass transfer model requires the possibility of implement-
ing mechanistic food models. In addition, it must be possible to couple the relevant fields of
non-isothermal flow and thermal radiation with those of the thermal food processing model.
Historically, finite volume methods were often preferred to solve fluid flow problems because of
their inherently conservative properties. Based on a survey within the industry, the commercial
software tools ANSYS Fluent and Simcenter STAR-CCM+ are the commercial market leaders
for CFD problems [203]. In contrast to Simcenter STAR-CCM+, ANSYS Fluent offers the imple-
mentation of user-defined scalar transport equations. However, preliminary tests showed that
additionally modeled fluxes, other than those driven from the fluid flow, are identified as “parasitic”
and are automatically removed during the solving. ANSYS confirmed this problem upon request
but did not elaborate on plans for changes. Datta concluded on food modeling in ANSYS Fluent:
“Some of the complications that need to be addressed for food processing include multiphase capability,
coupled liquid and vapor phases (i.e., liquid to vapor and vice versa), and unsaturated (capillary)
flow. Adapting a problem having these features to the available formulations in a typical commercial
CFD software (e.g., Fluent) is non-trivial” [54]. Within the open-source domain, OpenFOAM is a
potential modeling platform. Considering the number of new couplings and customizations to the
solvers chtMultiRegionFoam, viewFactor and scalarTransportFoam, this is considered an endeavor
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on its own by experts in the field. From the food science perspective, Datta commented in 2007:
“For research purposes, code development from scratch is the preferred route, but it is typically a
multi-year project” [54]. In 2016, he concluded on the choice of modeling platform: “There has
never been a tool as close to the needs of the food process modeling community as is the software
COMSOL” [55]. Not by chance, most of the computational works presented in the literature review
were conducted within COMSOL Multiphysics. Indeed, the software distinguishes itself through
its high flexibility. Its modules for fluid flow, heat and mass transfer and thermal radiation can be
coupled to the user’s liking. Moreover, it provides universal modules that allow the implementation
of custom PDEs or ODEs. In summary, COMSOL Multiphysics met the requirements of this work
and enabled the model developments within reasonable timeframes. It was therefore chosen to
be the modeling platform.
COMSOL Multiphysics employs the finite element method (FEM). It is a well-established method

to numerically solve boundary value problems, such as the non-isothermal fluid flow, conjugate
heat transfer and porous media problems introduced in Sec. 2.1–2.3. However, special attention
must be paid to stabilizing the FEM for advection-dominated problems, as discussed in Sec. 3.1.2.
The FEM is typically applied to provide a spatial discretization of PDEs, resulting in nonlinear ODE
systems in time. Section 3.1.3 outlines the numerical time integration of those systems with explicit
Euler, Runge–Kutta, and implicit backward-differencing formulas. Large systems of equations
arise from the implicit temporal discretization and the radiosity method for surface-to-surface
radiation. Standard numerical solution approaches for systems of equations are briefly discussed
in Sec. 3.1.5.

3.1.2. Spatial discretization

The fundamental ideas of the FEM, as presented in this section, are based on standard text
books [218, 266, 267], where the reader is referred to for further background reading. The
finite element semi-discretization in space of a generic advection–diffusion initial-boundary value
problem is demonstrated hereafter. The representative model problem reads

∂Φ

∂t
+ vi

∂Φ

∂xi
=

∂

∂xi

(︃
κ
∂Φ

∂xi

)︃
+ S , (3.1)

whereΦ(xi, t) is a scalar valued variable, vi is a divergence-free velocity field, κ some representative
diffusion and S is a source term on a problem domain Ω. The initial conditions are Φ(xi, 0) =
ΦIC(xi) and the time-dependent boundary conditions can be, for example, of Dirichlet or Neumann
type

Φ = ΦΓ on ΓD , (3.2)

−κ
∂Φ

∂xi
ni = qΓn on ΓN , (3.3)
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where ΦΓ and qΓn are given values of the primary variable or its boundary flux in the normal
direction. Furthermore, the general requirements for boundary value problems hold, as presented
in the introduction to Chapter 2.

The FEM is a particular method of weighted residuals, which involves deriving a so-called weak
form. Inserting an approximative solution Φ̃ into Eq. (3.1) introduces an imbalance termed the
residual, the difference between the left- and right-hand side. The residual is multiplied by weight
functions ωj (j = 1, . . . , n). The integral of this product over the problem domain Ω must vanish
for each weight function ωj:∫︂

Ω

(︄
∂Φ̃

∂t
+ vi

∂Φ̃

∂xi
− ∂

∂xi

(︄
κ
∂Φ̃

∂xi

)︄
− S

)︄
ωj dΩ

!
= 0 ∀ j = 1, . . . , n . (3.4)

Integrating the third term by parts yields∫︂
Ω

(︄
∂Φ̃

∂t
ωj + vi

∂Φ̃

∂xi
ωj + κ

∂Φ̃

∂xi

∂ωj

∂xi
− S ωj

)︄
dΩ−

∫︂
Γ
κ
∂Φ̃

∂xi
ωj dΓ = 0 ∀ j = 1, . . . , n . (3.5)

As the weight functions must vanish on Dirichlet boundaries, the integration over Γ can be recast
to ∫︂

Ω

(︄
∂Φ̃

∂t
ωj + vi

∂Φ̃

∂xi
ωj + κ

∂Φ̃

∂xi

∂ωj

∂xi
− S ωj

)︄
dΩ +

∫︂
ΓN

qΓn ωj dΓ = 0 ∀ j = 1, . . . , n , (3.6)

which is the weak form of Eq. (3.1), where the Dirichlet boundary conditions still need to be
imposed for completeness. The term weak originates from the vanishing of the weighted residual
representing a less strict requirement to the ansatz in Eq. (3.7) than fulfilling the original PDE.
Moreover, the partial integration has loosened the differentiability requirements for the ansatz.

The first key idea of the FEM is the approximation of the unknown variable Φ by a linear
combination of n yet unknown parameters Φ̃k(t) and basis functions Nk(xi), such that

Φ ≈ Φ̃ =

n∑︂
k=1

Φ̂k Nk . (3.7)

Following the Galerkin method, ωj = Nj gives the discretized system of equations in space

M
∂Φ̂

∂t
+H Φ̂+ f = 0, (3.8)

for the unknown vector Φ̂ ∈ Rn, where

Mjk =

∫︂
Ω
Nk Nj dΩ , (3.9)
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Hjk =

∫︂
Ω

(︃
Nj vi

∂Nk

∂xi
+ κ

∂Nj

∂xi

∂Nk

∂xi

)︃
dΩ , (3.10)

fj = −
∫︂
Ω
Nj S dΩ +

∫︂
ΓN

qΓn Nj dΓ . (3.11)

The second key idea of the FEM is the discretization of the problem domain into discrete
subdomains Ωe, the finite elements, such that ∪Ωe = Ω̂ ≈ Ω. On each finite element Ωe, a local
ansatz for the approximative solution of Φ is formulated as

Φ̃
e
=

p∑︂
m=1

Φ̂
e
mN e

m , (3.12)

where Φ̂e are called the p degrees of freedom of a finite element. From selecting Φ̂e
m to represent

the approximative solution at suitable positions xe
r (r = 1, . . . , p) inside of Ωe follows linear

independent ansatz functions that fulfill N e
m(xe

r) = δmr. The systematic assembly of the local
approximations in Eq. (3.12) for all elements yields the global ansatz of Eq. (3.7). One particularity
of the FEM is the calculation of Eq. (3.9)–(3.11) on the finite elements individually owing to
the local stencil of Nk(xi). For spatial numerical integration, e.g., with the Gauss–Legendre
quadrature, it is beneficial to project the arbitrary elements onto a unit element. The concept of
isoparametric elements utilizes the same parent variables −1 ≤ ξi ≤ 1 for the geometric element
description in local coordinates and the unified shape function N(ξi) [218, 267].

Stabilization for advection-dominated problems

The standard Galerkin FEM produces decent results for diffusion-dominated problems, such as
pure heat conduction. However, the method shows considerable inaccuracies and instabilities for
advection-dominated problems [266]. Introducing the element Peclet number Peh = |v|h/(2κ)
for the model problem in Eq. (3.1), where h is a characteristic element length, it can be shown that
the finite element solution with standard Galerkin methods becomes unstable once Peh exceeds
unity [266]. The cause lies in negative diffusion introduced by the numerical scheme, similar as
it can be observed for standard central difference schemes [29]. Upwinding is a technique that
includes the advection direction into the numerical discretization. In this spirit, various approaches
have been proposed over the past three decades to accomplish an upwinding effect for Galerkin
finite element methods. Indeed, the “upwinded”, semi-discretized equations of a 1D model
problem can be interpreted as a central-difference scheme with added artificial diffusion [29].
However, such a balancing diffusion does not modify transient and source terms, which leads to
inaccuracies, see [29] or [266] for examples. Likewise, adding artificial diffusion isotropically for
multi-dimensional problems corrupts the solution quality. A consistent method, applicable for all
terms in the weighted residual approach, and adding only anisotropic diffusion in the direction of
the flow field is the streamline upwind Petrov–Galerkin (SUPG) weighting, proposed by Hughes
and Brooks [29]. The essential idea is to increase the weighting function Nj at the upwind side
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and decrease it at the leeward side of the element, such that an adjusted weight functionWj reads

Wj = Nj + αW ∗
j ≡ Nj + α

h

2

vi
|v|

∂Nj

∂xi
, (3.13)

for example. An optimal α can be determined for each element as

α = αopt = cothPeh−
1

Peh
. (3.14)

It should be noted that the method introduces additional terms to the weighted residual approach
that must be integrated appropriately. An extended version for compressible flows [109] is
implemented in the FEM solver COMSOL Multiphysics to stabilize advection-dominated problems.
The extension also adds consistent cross-wind diffusion to regions that are not aligned with the
streamline direction of the flow, e.g., to capture shocks, sharp boundary or shear layers without
numerical oscillations [47].

3.1.3. Time discretization

After having performed an exemplary semi-discretization in space in the previous section, a
discretization in time can be performed to achieve an approximate solution to Eq. (3.8). To align
the presentation of the time discretization methods in this section with standard textbooks, such
as [105, 218, 266, 267], Eq. (3.8) can be recast to

∂Φ̂

∂t
= L

(︂
t, Φ̂(t)

)︂
, (3.15)

utilizing an operator L that sub-summarizes all other terms. Initial values t0 and Φ(t0) uniquely
characterize this initial value problem. Note that the operator L might be nonlinear or linear in
Φ̂ in general. It is linear in the case of the generic advection–diffusion equation in Eq. (3.1).
Similar to the discretization in space, numerical methods solve the initial value problem at

discrete points in time t0, t1, . . . , tN . The integration of Eq. (3.15) yields∫︂ tj+1

tj

∂Φ̂

∂t
dt =

∫︂ tj+1

tj

L
(︂
t, Φ̂(t)

)︂
dt (3.16)

⇒ Φ̂(tj+1) = Φ̂(tj) +

∫︂ tj+1

tj

L
(︂
t, Φ̂(t)

)︂
dt . (3.17)

One common approach is the interpolatory quadrature of the integral on the right-hand side.
Using, for example, the left Riemann sum yields the explicit Euler formula

Φ̂j+1 = Φ̂j +∆tL
(︂
tj , Φ̂j

)︂
, (3.18)
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where ∆t = tj+1 − tj is called time step and Φ̂j+1 now denotes the numerical approximation of
Φ̂(tj+1). Applying the concept at multiple points in time between tj and tj+1 without including
the yet unknown solution Φ̂(tj+1) yields the Runge–Kutta methods. Because of their efficiency,
these methods are utilized in the context of neural ODEs later in this chapter. With the variation
of the interpolatory quadrature scheme and including the yet unknown solution Φ̂(tj+1), e.g.,
applying the right Riemann sum or the trapezoidal rule, the implicit Euler and the Crank–Nicolson
method are derived. Methods that include the evaluation of the yet unknown solution Φ̂(tj+1)

are characterized as implicit, as they require the solution of an additional system of equations to
solve for Φ̂(tj+1).
Another common implicit approach is the approximation of Φ̂(t) with a polynomial Pk of order

k through the past k approximate solutions Φ̂j−1, . . . , Φ̂j−k and requiring ∂Pk
∂t = L (tj+1, Φ̂j+1).

This is the essential idea of the backward-differencing formulas BDF(k) [89]. For constant time
steps, BDF(2) reads

3Φ̂j+1 − 4Φ̂j + Φ̂j−1 = 2∆tL (tj+1, Φ̂j+1) . (3.19)

It is an unconditional stable integrator in time with a consistency order of 2. Its advantage
over other second-order methods, such as the Adams–Moulton class of integrators, is the more
accurate solution of numerically stiff ODE systems [105]. BDF(k) is the default time integrator in
COMSOL Multiphysics. Particularly, a version of the IDA solver of Lawrence Livermore National
Laboratory [119] is implemented in the software [47]. IDA employs a variable-order, variable-
coefficient BDF [27], that comprises the core ideas outlined above. Note that the recast of Eq.
(3.15) was performed for demonstration purposes. As it implies an inversion ofM in Eq. (3.8),
this recast is not performed explicitly during the solution of the FEM problem, see Sec. 3.1.5 for
more details on the solution procedure.

3.1.4. Hemi-cube view factor calculation for radiative heat exchange

The radiative heat flux contribution qm,rad, see Eq. (2.36), in the boundary condition for the energy
conservation of Eq. (2.3) is the last remaining puzzle piece that needs numerical treatment before
the approximative solution of the overall set of equations can be addressed. The radiosity method
for surface-to-surface radiative heat exchange, as derived in Sec. 2.2.2 for topological surfaces,
also holds for a discretized version of the problem. During the finite element discretization, each
topological surface is discretized with triangular or quadrilateral surface patches. To calculate
qm,rad on each surface patch, the view factors F are required in Eq. (2.34). The numerical
approximation of those view factors is provided with the hemi-cube method, described hereafter.
For two arbitrarily positioned patches j and m in space, the view factor can be obtained by

solving the fundamental photometric law [11]

Fjm =
1

Aj

∫︂
Aj

∫︂
Am

cosβj cosβm
πr2

dAj dAm , (3.20)
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Am

βm

Ak

Aj

βj

A′
k

(a) Projection onto a hemisphere. (b) Projection onto a hemicube.

Figure 3.1. Projection methods for view factor calculations.

where A is the respective surface area of a patch, r is the distance between the centers of the
patches, and β is the polar angle at which the surfaces mutually appear to each other, see Fig. 3.1a
for an illustration. For simple shapes, view factors can be obtained analytically; see [11, 128,
169] for examples. For more complex geometries, the view factors could be determined from
the numerical integration of the analytical relation. However, this approach is computationally
intensive for a large number of surface patches and requires the absence of obstructions in the
domain [45].

Nusselt [179] proposed one of the first practical approaches to estimate the view factors between
two surfaces. He formulated the analogy that two patches k and m have the same view factors
Fjk = Fjm, where k is a projection of m on a half-sphere with radius R that surrounds the center
of patch j, see Fig. 3.1a for an illustration. Hence, the first step of the practical approach is a
projection of an arbitrary outer patch onto the unit sphere. The integration of the view factor of
the patch k is replaced by a second projection of the area Ak onto the base of the half-sphere. The
view factor can be recast to the simple fraction of areas Fjm = A′

k/(πR
2).

As the Nusselt analogy holds for any shape of an enclosing box, Cohen [45], a pioneer in
computer graphics, enhanced the approach utilizing a hemispherical cube, see Fig. 3.1b. The
so-called hemi-cube is evenly pixelated with square patches. COMSOL Multiphysics, for example,
utilizes 256 pixels as default. The view factor Fk of a surface patch k can be pre-calculated
analytically in advance. In the first step of the approach, an outer patch m is projected onto the
pixelated surface. Secondly, every patch that is “illuminated”, contributes to the overall view
factor. The summation of all partial view factors yields the total view factor Fjm =

∑︁
k Fk,illum.

Shadowing in complex geometries is efficiently captured with z-buffer algorithms that are
well-known in computer graphics [37]. The z-buffer algorithm checks if multiple outside patches
are projected on the same surface patch k. The patch with the smallest distance to j is taken into
account, and all other patches are not included in the view factor calculation.
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3.1.5. Solution algorithms

Within this work, COMSOL Multiphysics 5.6 is utilized to provide numerical solutions to the
PDEs presented in Chapter 2. Details on settings and utilized modules to realize the various
multi-physical couplings are given in the context of the studies of Chapter 4. One simulation run
typically comprises the following steps: Calculating the view factors with the hemi-cube method
is performed once during the initialization of a simulation. During each time step, the radiative
heat flux qm,rad on each surface patch is calculated by solving the linear system of equations in
Eq. (2.34) with the updated surface temperatures of the current time step. The non-isothermal,
compressible Navier–Stokes equations of Eq. (2.1)–(2.3) and the porous media multi-phase PDEs
of Sec. 2.3 are discretized in space and time with SUPG-stabilized FEM and BDF(2). While
the software employs the core ideas of the methods as presented in the previous sections, the
implementation is more elaborate. For example, when discretizing the nonlinear convective term
of the momentum conservation in Eq. (2.2), a nonlinear, semi-discretized set of equations arises
from the FEM. It is linearized with a Newton–Raphson method [47].
The linear systems of equations arising during one Newton iteration and from the radiosity

method are solved with standard approaches. Whereas direct methods are preferable for small
systems, iterative solvers should be used for large-scale systems [218]. The generalized minimal
residual (GMRES) algorithm [215] is a well-established, iterative solver that is implemented
COMSOL Multiphysics [47, 119]. Notably, Krylov subspace methods, such as GMRES, require
appropriate preconditioning, as they are often otherwise inefficient [30]. Good selections of
preconditioners are often problem-dependent; see [30, 47, 119] for further background reading.

3.2. Reduced-order modeling

As motivated in the introduction, the digital twin methodology must go hand-in-hand with
reduced-order modeling approaches that replicate the large-scale, multi-physical problems within
reasonable simulation time and with lean computational cost. Section 3.2.1 motivates employing
ANSYS Dynamic ROM builder for this thesis. The method is explained in Sec. 3.2.2 for point data
and is extended to field data in Sec. 3.2.3. An overview of error measures concludes this chapter
in Sec. 3.2.4.

3.2.1. Selection of the reduced-order modeling method

Various perspectives can be shed on ROMs, as the problem is addressed in many disciplines. A
common classification criterion is the intrusiveness of the ROM generation method [17, 244].
Access to and modification of the underlying set of PDEs can be called an intrusive approach.
Conversely, methods that do not modify the underlying equations are called non-intrusive [17,
185].
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Within the discipline of computational engineering, the PDE-centric, intrusive approaches utilize
the formulated PDE of the physical model as a starting point. After a numerical discretization
in space and time, the resulting equation is projected onto a reduced-order space, where an
accelerated solution to the problem is targeted [17]. Commercial simulation software companies
protect their solution algorithms as intellectual property. They do not grant users root-level access
to the underlying algorithms. Hence, intrusive ROM methods are not a feasible option. This work
resorts to non-intrusive ROM methods to preserve universality in employed simulation software.
Within the discipline of system identification, researchers have developed many methods to

derive surrogates of dynamical systems [12, 157, 174]. Either generic (black-box) or problem-
specific (gray-box) ansatz equations are formulated that should describe the system dynamics [23].
The unknown model parameters are fitted such that the output is close to the actual output of the
problem in the sense of some error measure. Linear time-invariant (LTI) systems, represented in
either time or frequency domain, have a long tradition in system identification [157, 174]. As
demonstrated in [135, 188], LTIs are unsuitable for replicating strong non-linearities of coupled
problems per design. Also, nonlinear approaches such as NARX models are only optimized for
one-step-ahead predictions while measuring the actual output signal of the full-order model (or
the natural experiment). NARX predictors are not designed for stand-alone simulations over a
larger time span [157, 174, 221], as also shown in [188].
Within the discipline of machine learning, time series are usually replicated with RNNs [92].

Neural networks are known to be highly flexible, universal [124], nonlinear function approxima-
tors [92]. Recurrent neural networks, more specifically long short-term memory neural networks
(LSTMs) [122], are characterized by recursive calls of a neural network with a discrete temporal
delay to invoke the progress of the variables in time. Through the back-propagation through
time algorithm, the neural network is trained to replicate input-to-output relations over time.
Exemplary implementations of RNNs and discussions on how to overcome difficulties with learning
long-term dependencies can be found in [121, 233].
Recently, hybrid approaches have come into focus that combine the concept of identifying

system dynamics with machine-learning techniques. Dupont et al. [74] illustrate the similarity of
deep feed-forward neural networks, more specifically residual networks [110], with differential
equations: The mapping of a hidden state ht ∈ Rd at layer t to its next layer is

ht+1 = ht + ft(ht) , (3.21)

where ft : Rd → Rd is a differentiable function that projects from one hidden state to the next.
Forming a difference quotient and taking the limit of an imaginary time step clarifies the similarity
to an ODE system:

lim
∆t→0

ht+∆t − ht

∆t
=

dh(t)

dt
= f(h(t), t) . (3.22)

An input is mapped to the output by solving an ODE over multiple time steps. A feed-forward
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neural network represents the right-hand side operator ft of the ODE, which inspired the name
of the approach: neural ODEs. Recent publications indicate that neural ODEs outperform RNNs or
tree-based algorithms, e.g., in [158] for predicting pharmacokinetics or in [186] for predicting
the remaining state of health of batteries. The success of neural ODEs is conjectured to be the
learning of underlying dynamics instead of just input-to-output relations [123, 186].
The software package ANSYS Dynamic ROM Builder (ANSYS Inc. [8, 248]; termed DynROM

hereafter) can provide a non-intrusive, nonlinear, transient ROM by employing a method that
is quite similar to neural ODEs. Given the promising results during preliminary testing and
considering the lack of in-depth investigations of the method in the literature, it was decided to
employ DynROM within this work. Nonetheless, future work could also examine the applicability
of the proposed efficient design of experiments for other variants of transient ROMs, such as
augmented neural ODEs by Dupont et al. [74] or Runge–Kutta neural networks [265].

3.2.2. Data-driven reduced-order modeling for point data

Consider the idealized illustration of porous food items inside a convection oven cavity, as de-
picted in Fig. 3.2. The procedure to generate a ROM for data probed at selected points can be
characterized as follows: The multi-physical model of thermal food processing, hereafter called
a full-order model, is simulated within COMSOL Multiphysics. Discretized oven temperatures
Ĝ = [Toven,1, . . . , Toven,N ] are the external excitation for the full-order over time, where N is the
total number of time steps. Virtual probes can read out temperatures, for example, TA,k, TB,k and
TC,k at discrete points in space and time, which are stored in an array Ŷ ∈ Rn×N (n = 3 here,
see Fig. 3.2). Now, the ROM is likewise excited by the oven temperatures Ĝ at its input. During a
training phase, the parameters of the ROM are optimized such that the discretized ROM output
X̂ replicates the full-order model output: Ŷ !≈ X̂.
Figure 3.2 (right half) illustrates the core principle of the DynROMmethod. One inputG = G(t)

is mapped to the outputX = X(t) by solving the ODE

∂

∂t

[︄
X

I

]︄
= f

(︄[︄
X

I

]︄
, G,X0

)︄
, (3.23)

X(t = 0) = X0 , (3.24)

where the state vector X ∈ Rn is prolonged by a special vector I ∈ Ri — introduced later
— and X0 ∈ Rn+i contains the initial conditions for both. The right-hand side operator f is
modeled with a three-layer feed-forward neural network. The neural network consists of an input
layer x ∈ Rn+i+1, a hidden layer h ∈ Rn+i and an output layer z ∈ Rn+i, see Fig. 3.2. Linear
transformations of the values of the input layer x with weight matricesW1 and the superposition
with a bias vector b1 are the basic operations to calculate the values of the neurons on the hidden
layer h. The new values are found by applying a sigmoid activation function S , which renders
the relationship between the layers nonlinear [92]. Repeating this procedure for the output layer
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Figure 3.2. Reduced-order modeling with ANSYS Dynamic ROM Builder of discretized readout matrix Ŷ
from a full-order model.

with different weights and biases yields the calculation from the input to the output layer:

h = S (W1x+ b1) , (3.25)
z = S (W2h+ b2) . (3.26)

To find the desired relation between the input and output layer, training data with known input
Ĝ and output Ŷ is introduced to the neural network. This procedure is referred to as supervised
learning. Fourth-order Runge–Kutta schemes are implemented in DynROM to integrate the ODE
system in time. The loss function for the neural network’s training error is the mean squared error

Emse =
1

n

n∑︂
j=1

(︄
1

N

N∑︂
k=1

(X̂jk − Ŷ jk)
2

)︄
, (3.27)

which is averaged for all learning scenarios. To minimize the loss function, gradient descent
algorithms are combined with the back-propagation algorithm [34, 214]. This optimization
procedure tries to find optimal values of the weights and biases in all layers, such that the discrete
output X̂ of the numerical integration of Eq. (3.23) can replicate the output of the full-order
model: Ŷ !≈ X̂.
The nature of ODEs is that the right-hand side can be interpreted as a vector field, where

trajectories from two different initial conditions cannot cross. Dupont [74] demonstrated how
neural ODEs cannot learn crossing paths from input to output without special augmentation. The
limitation was elegantly eliminated with the addition of other free variables I toX by Dupont [74],
which he called augmented neural ODEs. The augmentation adds extra channels to the layers,
which allows to lift trajectories into other dimensions where they no longer need to cross. The
number i of added free variables is called the complexity of the augmentation in this work. Like
the augmentation of neural ODEs by Dupont [74], DynROM adds i free variables to the state
vector as long as it further decreases the training error [8]. One particularity of the method is
that only little training data is required, e.g., one-to-two simulations over time that each contains
a moderate number of time steps, e.g., N = 280 for the studies of Chapter 5. On the contrary, in
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machine learning, it is not uncommon to have data set sizes on the order of 103–107 [221]. The
particularity raises the question of which data can successfully convey the system properties to
the ROM. The studies in Chapter 5 strive to answer that question.

3.2.3. Extension to field data

In general, one may be interested not only in replicating the values of selected points in the
full-order model but of the entire solution field as well. In thermal food processing, such a ROM
may serve to investigate local temperature or moisture concentration peaks. Using all n nodal
temperatures of the full-order model as rows in Ŷ ∈ Rn×N would render the neural ODE ROM
considerably high-dimensional and inefficient to train. However, many complex systems can be
described by dominant low-dimensional patterns without considerable loss of accuracy. For field
data, DynROM employs the singular value decomposition (SVD), one of the workhorses in the
era of data-driven computational engineering [34], to generate a matrix decomposition of Ŷ ,
from which a low-dimensional representation of the problem can be found. Note that the matrix
dimensions are given as subscripts in the following derivation for better comprehension. For every
matrix Ŷ n,N ∈ Cn×N , a unique SVD can be found that reads

Ŷ n,N = Un,nΣn,NV ∗
N,N , (3.28)

where Un,n and V ∗
N,N are unitary matrices that consist of orthonormal columns and ∗ denotes the

complex conjugate transpose and Σn,N is a diagonal matrix [34]. The real-valued singular values
σk can be ordered by decreasing magnitude on the main diagonal. It can be shown that setting
σk = 0 ∀k > r results in a optimal rank-r representation of Ŷ n,N in least-square sense [34]:

Ŷ n,N ≈ Ỹ n,N = Un,rΣr,rV
∗
r,N = Un,rCr,N . (3.29)

Un,r contains the first r left singular vectors (exclusively spatial mode shapes) of Ŷ n,N and Cr,N

contains r time-dependent mode shape coefficients on its rows. It is now a much more efficient
task for DynROM to approximate the mode shape coefficients Cr,N

!≈ Ĉr,N instead of all outputs
Ŷ n,N , as r ≪ n. The decompression of the SVD

X̂n,N = Un,rĈr,N (3.30)

generates the approximation Ŷ !≈ X̂ that is sought.

3.2.4. Error measures

Error measures are utilized throughout this work to assess either the accuracy of a full-order
model compared to experimental data or the quality of a ROM compared to the full-order model.
An accuracy measure should be interpretable, indifferent to over- and under-predictions, scale-
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independent, insensitive to outliers and stable for zero crossings of the observation variable [39].
The root mean square error

Erms =

⌜⃓⃓⎷ 1

N

N∑︂
k=1

(X̂k − Ŷ k)2 (3.31)

is a popular, scale-dependent error measure, facilitating interpretability. Here, X̂k is the discrete
prediction for one readout Ŷ k of the full-order model. The mean absolute percentage error

Emap =
1

N

N∑︂
k=1

|X̂k − Ŷ k|
|Ŷ k|

. (3.32)

is a percentage-based variant. Both error measures are fair concerning over- and under-predictions
but show sensitivity to single outliers. However, owing to the usage of deterministic models in this
work, single outliers are not expected to occur. Likewise, the sensitivity of Emap to zero crossings
of the observation Ŷ k and its scale sensitivity within one time series [39] only plays a minor role.
The usage of Emap enables the comparability of all temperature errors within this work. However,
the error magnitude is not comparable for differing variables. One drawback of the error measure
is that relative errors may appear small, as the deviations are set in relation to the total reference
value. A deviation of 20K at a reference value of 400K would result in Emap = 5%, which appears
small in contrast to an alternative relative error of 12.7% in comparison to the expected variable
range of 293.15–450.15K = 157K. Such alternative error measure would, however, require an
a priori knowledge of all variable ranges, which is considered impractical for the studies of this
work. Thus, sometimes it is beneficial to assess local accuracy measures as well, for example, the
maximum absolute error

Emax = max
k

|X̂k − Ŷ k| . (3.33)

Moreover, statistical measures of time-dependent errors, such as the median and the interquartile
range of X̂k − Ŷ k (k = 1, . . . , N), denoted as Emed and Eiqr, are considered. These measures
are more robust to outliers than the mean or standard deviation. Occasionally, the root mean
square, mean, standard deviation, median or interquartile range must be calculated from an array
of data. The corresponding functions are denoted as rms(), mean(), std(), med() and iqr(). A
model’s goodness-of-fit can be expressed with the coefficient of determination

R2 = 1−
∑︁N

k=1(Ŷ k − X̂k)
2∑︁N

k=1(Ŷ k − Y k)2
, (3.34)

where an overline like in Y k denotes the average over all items k = 1, . . . , N of a time series or
array of data.
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This chapter aims to derive a conjugate heat and mass transfer model for thermal food processing
inside a convection oven. Conjugate heat transfer typically indicates that the energy equation
of a non-isothermal fluid flow is also solved on an adjacent solid body to capture mutual heat
transfer effects. This work implements a conjugate energy equation for food items and oven
cavity. The conjugate heat transfer covers, besides convection and conduction heat transfer,
also the modeling of thermal radiation. Additional conjugate mass transfer entails continuously
transporting vapor concentrations in food and oven cavity domains. Owing to scarce literature and
data for validating a conjugate thermal food processing model, conjugate heat transfer and porous
media models are benchmarked individually. Section 4.1 compares this work’s implementation
of two porous media models against synthetic and experimental data from the literature. Two
subsequent studies investigate the model’s working mechanisms and the model’s sensitivity to
parameters and modeling terms. The overall focus is on comparing the sensitivity to heat and mass
transfer coefficients with the sensitivity of other food-science-specific modeling terms. Moreover,
the model’s applicability in a conjugate setup is of interest, which is discussed in Sec. 4.2. The
conjugate heat transfer benchmarks and the conjugate simulations of food processing are described
in Sec. 4.3. Section 4.4 presents the conclusions from the conjugate simulations.

4.1. Analysis of thermal food-processing models

This section aims to test the implementation of two food-processing models for plausibility and to
analyze their working mechanisms. Further studies reveal sensitive modeling parameters and
terms. In conclusion, a decision is made on which model is better suited for developing a conjugate
heat and mass transfer model in Sec. 4.3.

4.1.1. Hygroscopic, capillary-porous media model for potatoes

The hygroscopic, capillary-porous media model for potatoes, presented in Sec. 2.3.1, was investi-
gated in a test case by Ni [175] that also was published later by Datta [54]. The test case consists
of a potato slab on a convection oven baking plate. Ni reduced the problem to a 1D domain for
simplicity, see Fig. 4.1 for an illustration.
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Figure 4.1. Pseudo 1D model of a potato slab (dimensions in mm).

Table 4.1. Initial conditions and model parameters from [175].
Parameter Value Parameter Value
p0 1× 105 Pa ρs 1419 kgm−3

p p0 + prel ρw 1000 kgm−3

Sw,0 0.5 cp,s 1566 J kg−1 K−1

cv,0 0.17molm−3 cp,w 4180 J kg−1 K−1

T0 293.15K cp,v 2062 J kg−1 K−1

cv,oven 0 kgm−3 cp,a 1006 J kg−1 K−1

Toven 450.15K κs 0.21Wm−1 K−1

αtot 20Wm−2 K−1 κw 0.64Wm−1 K−1

βtot 0.0125m s−1 κg 0.026Wm−1 K−1

φ 0.75 µg 5.468× 10−4 Pa s
ttot 3600 s µw 1.8× 10−5 Pa s

The following boundary conditions are assigned to the surface Γsurf of the slab:

prel|surf = 0Pa , (4.1)

Nv|surf = βtot

(︃
φSg

Mw pv,surf
RTsurf

− cv,oven

)︃
, (4.2)

Nw|surf = βtot

(︃
φSw

Mw pv,surf
RTsurf

− cv,oven

)︃
, (4.3)

Ne|surf = αtot (Toven − T ) +Hevap βtot

(︃
φSw

Mw pv,surf
RTsurf

− cv,oven

)︃
, (4.4)

where Nk ∀ k ∈ {v,w,e} are the total vapor, water and energy fluxes at the boundary that are
driven by the differences of vapor concentration, water concentration and temperature at the
top boundary facing the oven cavity. The boundary conditions assume that evaporation at the
surface is intense enough to remove all excess moisture, resulting in no drip flow and representing
the dominant energy losses. Zero flux conditions are assigned to the remaining boundaries. The
initial conditions and additional model parameters from [175] are given in Tab. 4.1. The model
implementation is realized in the Coefficient Form PDE module of COMSOL Multiphysics 5.6.
For the spatial discretization, hexahedral elements with quadratic Lagrange (for T and p) and
cubic Hermite (for cv and cw) polynomials are chosen. Element formulations with lower orders
would result in oscillatory behavior. In contrast, Hermite ansatz functions enable to capture steep
gradients in the distributed evaporation formulation, as is discussed at the end of this section.
A grid study with uniform cell sizes h ∈ {2×10−4, 1×10−4, 5×10−5}mwas performed to obtain

a grid-independent solution with a generalized Richardson extrapolation. The grid convergence
index (GCI), calculated following [208], is 9× 10−5%, 3× 10−4% and 3× 10−3% for the finest
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Figure 4.2. Comparison of implemented hygroscopic, capillary-porous media model (solid lines) at t =
20min (black), t = 40min (blue), t = 60min (red) with reference simulation of [175],
represented with markers.

solution of T , cw and p at a position of 1× 10−3m below the top surface. The finest uniform grid
resolution, resulting in 179 372 degrees of freedom, would require a solution time of 1.5 h on 20
cores of a cluster of two Intel Xeon E5-2687W v4 (3.2 GHz) processors to resolve a real time
of 1 h. Consequently, the utilized mesh within the studies is manually refined to economize the
grid size and solution times. The final mesh has a grid size h = 2× 10−4m, ten inflation layers
with stretch factor 1.15 and a first layer height h0 = 2× 10−5m resolve the boundary layer in the
vicinity of the wall. The spatial discretization error of this mesh is 6 × 10−5%, 4 × 10−3% and
6× 10−4% for T , cw and p compared to the grid-independent solution of the grid study outlined
above. Time-stepping is performed with adaptive BDF(2) with a relative truncation error set to
0.1% for a scaled weighted root-mean-square error measure [47, 119]. The maximum time step
is 10 s, whereas the initial time step is ∆t = 1 × 10−7 s. One can expect a rather stiff temporal
behavior of the model in the initial phase owing to fast-rising temperatures in the surface area.
During the course of the simulation, the time step is typically increased, and the maximum time
step is applied after approximately 60 s of simulated real time.
The obtained results are in very good agreement with the reference simulation by Ni [175], see

Fig. 4.2 for a comparison and the maximum differences Emax. The maximum root-mean-square
error is only Erms = 0.9K for the temperatures. However, there is slightly too much progress in
the temperatures (Fig. 4.2a) and too few water saturation losses (Fig. 4.2b). The evaporative
losses are also slightly different from the reference simulation (Fig. 4.2e). The latter has been
performed on a custom code without the non-equilibrium evaporation formulation, which could
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be a possible source for the deviation. Moreover, Ni used a coarse, uniformly spaced grid with only
41 elements and a central differencing scheme. This grid spacing would have been insufficient in
this implementation — despite a high-order ansatz — to accurately capture the steep subsurface
gradients caused by evaporation. Hence, the present deviations could potentially stem from the
coarse resolution in Ni’s work.

Working mechanisms of the model

The heat input at the surface of the potato slab induces a rise in temperature (Fig. 4.2a). The
rise in temperature leads to increased evaporation that starts to dry out the sub-surface region,
which strongly determines the composition of the effective material properties, such as thermal
conductivity, density and specific heat capacity (Fig. 4.3a). The reduced effective thermal conduc-
tivity hinders the heat from reaching the center of the slab. Figure 4.3b illustrates the receding
evaporation front, which acts as a heat sink. The sharp stencil of the evaporation front is induced
by increased vapor pressures and reduced water activity owing to low moisture concentration
in the sub-surface region. Keep in mind that both parameters are multiplied to form pv,equ in
Eq. (2.60). The dominant influences on mass fluxes are highlighted in Fig. 4.3c and Fig. 4.3d.
Increased gas diffusivity and permeability allow diffusion and pressure-driven fluxes, mainly in
the sub-surface region. Diffusion fluxes dominate pressure-driven gas fluxes by a factor of four to
five. Similarly, capillary fluxes towards the dry surface exceed those of pressure-driven flow. The
mass fluxes are confined by the receding front of the crust region where capillary diffusivity and
water permeability are low.

Sensitivity study

This study investigates the sensitivity of water saturation Sw, temperature T and pressure p on
changes to parameters and the omission of selected model terms. The aim is to compare the
sensitivity of heat and mass transfer modeling to food-specific modeling terms. Additionally, the
omission and variation of model terms shall give further insight into the working mechanisms
and check the latter for plausibility. Table 4.2 summarizes a selection of findings of the conducted
sensitivity study. It also gives identifying numbers to the individual studies and refers to figures
that provide clarity. Emap serves as a dimensionless error measure. Note that error measures
are not mutually comparable, as the three variables have their individual numerical ranges. To
mitigate this shortcoming, coloring is applied individually for each variable, from white for the
10th percentile of the error measure to blue for the 45th percentile and red for the 80th percentile.
Studies 1–2 reveal the sensitivity to a variation of 20% of the mass transfer coefficient βtot. It

induces moderate changes of maximum Emap = 2.9% for the moisture saturation, Emap = 3.0%

for the pressure and Emap = 0.6% for the temperature. Conversely, the model is susceptible to
variations in the heat transfer coefficient, see studies 3–4. The deviations of Sw (Emap = 16.2%,
Erms = 0.033, Emax = 0.082), T (Emap = 1.9%, Erms = 6.8K, Emax = 13.4K) and p (Emap =
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Figure 4.3. Working mechanisms of the hygroscopic, capillary-porous media model at t = 20min (black),
t = 40min (blue), t = 60min (red). Black dotted lines indicate initial conditions, where
applicable.

61



4. Physical modeling studies

Table 4.2. Sensitivity analysis with deviations given as Emap (%) in relation to the validation simulation.
Coloring is applied individually for each variable, from white for the 10th percentile of the error
measure to blue for the 45th percentile and red for the 80th percentile.

Study Case Details Moisture saturation Sw Temperature T Pressure p
20min 40min 60min 20min 40min 60min 20min 40min 60min

1 βtot + 20% 1.6 1.9 2.0 0.4 0.2 0.1 1.4 0.4 0.5
2 βtot − 20% 2.3 2.7 2.9 0.6 0.3 0.2 3.0 1.5 1.5
3 αtot + 20% Fig. 4.4a 6.5 8.4 9.8 1.5 1.2 1.2 32.2 14.8 9.4
4 αtot − 20% Fig. 4.4a 10.3 14.1 16.2 1.9 1.7 1.6 34.0 19.5 13.3
5 ρs(T ), cp,s(T ), κs(T ) 2.3 4.7 6.5 0.3 0.5 0.7 6.0 8.7 9.7
6 ρs(T ) 1.8 3.4 4.6 0.1 0.2 0.2 2.6 1.9 1.3
7 cp,s(T ) 0.1 0.2 0.2 0.0 0.0 0.0 0.7 0.2 0.1
8 κs(T ) 0.6 2.2 4.1 0.2 0.4 0.5 4.7 7.5 8.8
9 ρw(T ), cp,w(T ), κw(T ) 1.8 2.4 2.6 0.0 0.1 0.1 0.8 1.1 1.3
10 ρw(T ) 1.8 2.4 2.8 0.0 0.0 0.0 0.5 0.5 0.6
11 cp,w(T ) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
12 κw(T ) 0.1 0.1 0.3 0.0 0.0 0.0 0.4 0.6 0.6
13 µw(T ) 0.2 0.1 0.2 0.0 0.0 0.0 0.3 0.0 0.0
14 µg(T ) 0.1 0.1 0.1 0.0 0.0 0.0 11.0 13.8 15.5
15 Dw,cw (Mdb,0) Fig. 4.4b 11.0 13.9 16.3 1.1 0.9 0.8 39.5 15.5 9.9
16 Dg,eff(Sg,0) Fig. 4.4b 3.4 8.5 13.3 1.4 2.3 2.3 25.8 9.0 5.3
17 Jw,darcy = 0 2.8 1.3 1.0 0.1 0.0 0.0 3.0 0.5 0.3
18 Jg,darcy = 0 0.5 1.0 1.5 0.2 0.4 0.4 3.5 2.4 1.7
19 Je = 0 0.3 0.7 1.1 0.1 0.1 0.2 1.5 1.9 1.9
20 (ρcp)eff(Sw,0) 0.9 2.0 2.8 0.2 0.3 0.4 4.4 4.5 4.0
21 κeff(Sw,0) Fig. 4.4c 4.0 10.8 18.1 1.0 1.9 2.4 24.5 41.7 48.7
22 İ = 0 (global) 131.2 317.7 485.8 15.5 22.5 24.6 99.6 99.9 100.0
23 İ = 0 (Eq. (2.50)) 3.1 1.7 0.6 0.1 0.4 0.6 100.0 100.1 100.1
24 İ = 0 (Eq. (2.52)) 126.1 314.0 483.7 2.2 4.8 6.5 96.3 94.9 95.4
25 Kevap = 10 000 s−1 Fig. 4.5 0.2 0.2 0.1 0.0 0.0 0.0 0.8 0.2 0.1
26 Kevap = 100 s−1 Fig. 4.5 1.5 1.1 0.9 0.2 0.1 0.0 2.3 1.1 1.0
27 Kevap = 10 s−1 Fig. 4.5 15.5 10.5 8.4 1.1 0.5 0.3 10.8 3.7 2.5
28 Kevap = 1 s−1 Fig. 4.5 92.9 103.0 65.3 5.0 2.8 1.8 60.3 13.2 6.6

34.0%, Erms = 59.8Pa, Emax = 66.4Pa) are significantly high when αtot is reduced by 20%. The
results of studies 1–4 serve as a reference for the conjugate simulations in this chapter.
The reference simulation [175] assumes constant transport properties of water, denoted with

index w, and carbohydrate, indicated with index s for solid matrix. A systematic switch to
temperature-dependent relations by Choi and Okos [6, 42] reveals the model error of this as-
sumption. With a maximum Emap = 6.5% for Sw and Emap = 9.7% for p, the error levels for
temperature-dependent transport variables of carbohydrate, see study 9, are within the sensi-
tivity range of study 1–4. Study 7 shows that no significant sensitivity can be found for cp,s(T ).
Therefore, the main contributions can be linked to ρs(T ) and κs(T ), see studies 6 and 8. Utilizing
temperature-dependent transport for water, a weak sensitivity Emap = 2.8% can be established
for ρw(T ) on Sw, see studies 9–12. However, changes of Emap = 2.8% in the water saturation do
not seem to couple into temperatures and pressures. No significant influence can be linked to
κw(T ) and cp,w(T ).
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The viscosities of water and gas are in the denominator of the Darcy velocity formulation,
and smaller values induce proportionally larger fluxes. Although µw(T ) ∈ [1.0 × 10−3, 2.2 ×
10−4] kgm−1 s−1 varies by one order of magnitude, no significant change can be observed, see
study 13. In contrast, the slight variation of µg(T ) ∈ [1.78×10−5, 2.15×10−5] kgm−1 s−1 influences
the pressures, see study 14. However, the pressure changes ofEmap = 15.5% do not coordinate with
the temperatures and water saturations. The influence of intrinsic gas and water permeabilities
has not been investigated here, as this has already been done by Ni [175]. No visually observable
deviation of temperature profiles could be found for variations of one to two orders of magnitude
in kg,in or kw,in.
In the description of the working mechanisms of this model, pressure-driven mass fluxes are

considerably lower than capillary or binary diffusion. Omitting the Darcy mass fluxes Jw,darcy = 0

and Jg,darcy = 0, see studies 17–18, confirms a comparably low influence of Emap = 2.8% on Sw
and Emap = 3.5% on p. Both omissions have insignificant influence on T (Emap = 0.4%).
Leaving out capillary and diffusive fluxes leads to divergence. The simulation stops because of

too high temperatures, resulting in steep gradients in p and Sw as the surface dries out. Therefore,
one can assume a strong dependence of the model on capillary and binary fluxes that provide
sufficient moisture to the hot surface region. Leaving Dw,cw or Dg,eff fixed to initial conditions,
indicated by dotted lines in Fig. 4.3c and Fig. 4.3d, confirms their relatively strong influence on
all variables, see studies 15–16. As the influence of the pressure equation is ruled out by study
23, discussed later in this section, the variations are likely caused by altered water saturation
profiles Sw. Leaving Dw,cw constant at initial moisture conditions results in increased capillary
fluxes, see Fig. 4.4b. As a consequence, the saturation profiles are more diffuse. The reduced
water saturations effect decreased effective thermal conductivities and, consequently, colder
temperatures. Leaving Dg,eff constant at initial gas saturations results in slightly decreased binary
fluxes, see Fig. 4.3c. The transition front from dry to moist levels is slightly shifted to the right (i.e.,
it is delayed temporally). The delay owing to Dg,eff(Sg,0) effects remarkably higher temperatures
in the core region (Emap = 2.3%, Erms = 8.6K, Emax = 10.4K).
Studies 15 and 16 reveal a strong sensitivity of the temperatures to capillary and binary fluxes.

However, leaving out all convective energy fluxes Je = 0, leading to Jw = Jg = 0 in Eq. (2.57),
highlights the insensitivity of the model to convective fluxes in the energy equation, see study 19.
Hence, the influence of studies 15 and 16 can be related to the altered moisture profiles and not
to altered convective fluxes in the energy equation. This finding aligns with findings in [175].
Study 20 investigates the transient term of the energy equation. The effective quantity (ρ cp)eff is
fixed to initial composition of the model by setting Sw = Sw,0 in Eq. (2.58), indicated with dotted
lines in Fig. 4.3a. Otherwise, (ρ cp)eff varies from core to surface by one order of magnitude (2.1
to 0.6× 106 Jm−3K−1). Only a low influence on temperatures (Emap = 0.4%) can be found for
the case when this variation is omitted. Study 21 applies the same fixation to κeff. The relatively
strong influence on all variables is comparable to the sensitivities of studies 4 and 16. The findings
on κeff align with crust formation theories and resulting lower thermal conductivities in [54].
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Figure 4.4. Selected graphs of the most sensitive parameters of the hygroscopic, capillary-porous media
model at t = 20min (black) and t = 60min (red). Solid lines represent the baseline validation
simulation. t = 40min is omitted for a better readability.

Evaporation proves to be the most dominant mechanism. Removing İ from all equations turns
the model close to invalidity, as is to be expected, see study 22. More instructive is removing
İ from the mass balance for gas only, see study 23. It results in a quasi-deactivation of the
pressure equation. Whereas pressures remain almost zero (p ∈ ±0.5Pa), the radical change in the
pressures leads to only minor deviations in T (Emap = 0.6%) and Sw (Emap = 3.1%). The model is
insensitive to pressures and pressure-driven flow at the present operational conditions. Removing
İ from the mass balance for vapor leads to divergence in the first step, although initial time steps
are on the order of ∆t = 1 × 10−7 s. Removing İ from the mass balance for water leads to its
quasi-deactivation, as saturation levels mainly remain at initial conditions. Consequently, no crust
region forms and temperatures rise uniformly to approximately 330K. After 3600 s, this translates
in Emap = 6.5%, Erms = 28.0K, Emax = 62.8K for temperatures — a drastic, but plausible result,
given the fact that the model has been stripped of its core working mechanisms.
The sensitivity study concludes with an investigation of the non-equilibrium evaporation formu-

lation. The value of Kevap was set to 1× 103 s−1 in [147] and also in this work. The value was
estimated to be 1×104 s−1 in [107]. For a sensitivity analysis, it is changed step-wise by one order
of magnitude. High values force the system to quickly transition to thermal equilibrium [53]. As
noted by Datta [54] and Joardder et al. [133], this leads to numerical instabilities. The issue can
be confirmed for the implementation of this work, but it was found to be much more pronounced
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Figure 4.5. Influence of Kevap variations by orders of magnitude at t = 20min (black), t = 40min (blue)
and t = 60min (red).

only for a low-order polynomial FEM ansatz. As a consequence, cubic Hermite elements are chosen.
Continuity and equality of the function value and the first derivative at the nodes of the Hermite
finite elements provide smoother gradients of the primary variables. Even with a higher-order
ansatz, Figure 4.5 illustrates how for Kevap = 1 × 104 s−1 the evaporation rate starts to form a
wave pattern superposed on the main evaporative front — a harbinger of numerical oscillations.
Nonetheless, the general position and dimension of the evaporation front are already captured
with Kevap = 1 × 103 s−1. The front gets considerably diffuse for smaller values, significantly
altering the simulation outcome in all variables, see studies 25–28. Figure 4.5a illustrates the loss
of compactness of the evaporation front for lower Kevap. These results close the sensitivity studies
of the capillary-porous media model for potatoes. Conclusions from the studies are drawn together
with findings concerning the soft-matter model for meats, which is investigated hereafter.

4.1.2. Soft-matter model for meats

This section validates the implementation of the soft-matter model for chicken meat, analyses
the working mechanisms and performs a sensitivity analysis. The thermal processing of chicken
breast is simulated with the model presented in Sec. 2.3.2. The implementation is compared to
experimental data by Rabeler and Feyissa [196]. The dimensions of the chicken fillet follow the
experimental setup, where cuboids were cut out of chicken fillets. Figure 4.6 gives the model
dimensions and characteristic measurement positions. Note that symmetry is exploited, and
the two visible, vertical planes are the symmetry planes of the cuboid, whose total dimensions
are 0.07m × 0.02m × 0.04m. Along the surface of the food, a heat transfer coefficient αtot is
applied to model lumped convection and radiation effects related to the oven temperature Toven.
At the bottom, a higher heat transfer coefficient αbot accounts for the interaction with the baking
plate [196]. Table 4.3 summarizes the initial conditions and other model constants. The fibers of
the chicken meat, modeled by κpara, see Eq. (2.70), are oriented along the long side of the cube.
The model is implemented in the Coefficient Form PDE module of COMSOL Multiphysics. A

quadratic Lagrange and a cubic Hermite ansatz are chosen for the spatial discretization of the
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Figure 4.6. Mesh and dimensions of the quarter section model.

Table 4.3. Initial conditions and model parameters from Rabeler and Feyissa [196].
Variable Name Value
C0 Initial mass fraction 0.76
T0 Initial temperature 279.15K
ρcb Effective density of chicken 1050 kgm−3

αtot Heat transfer coefficient 44Wm−2 K−1

αtot,bot Heat transfer coefficient (bottom) 50Wm−2 K−1

Toven Oven temperature 443.15K
ωv,amb Ambient humidity 0.05
ωp,0 Protein mass fraction 0.21
ωa,0 Ash mass fraction 0.01
ωf,0 Fat mass fraction 0.01

temperature and the moisture concentration. A grid study with uniform cell sizes h ∈ {1 ×
10−3, 5×10−4, 2.5×10−4}mwas performed to obtain a grid-independent solution with generalized
Richardson extrapolation. The GCI, calculated following [208], is 0.04% and 0.2% for the finest
solution of T and C at position B. The utilized mesh within the studies is manually refined to
economize the grid size. 26 500 hexahedral elements, with a maximum height of 1× 10−3m, are
used to discretize the quarter section of the cuboid, see Fig. 4.6. Four inflation layers (stretch
factor 1.2, 1 × 10−4m first layer height) are designated to capture subsurface gradients. The
resulting system of equations has 892 611 degrees of freedom. This grid has a relative discretization
error of 0.02% and 0.2% for T and C compared to the grid-independent solution of the grid study
outlined above. Time-stepping is performed with BDF(2) and with a maximum time step of 10 s.
The root mean square validation error is Erms = 2.38K for core temperatures TA, Erms = 3.43K

for surface temperatures TB and Erms = 0.01 for the dry moisture contentMdb. The corresponding
percentage errors are depicted in Fig. 4.7a and Fig. 4.7b.

Working mechanisms of the model

When a chicken fillet is exposed to the hot air of temperature Toven inside of a convection oven, heat
is transferred to the surface by convection and radiation. As temperature rises in the surface region,
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Figure 4.7. Validation of this work’s implementation with experimental data of Rabeler and Feyissa [196].

see Fig. 4.8a, an increased water vapor saturation pressure pv,sat(T ) leads to an increased driving
potential for the evaporation of water ṁevap. The surface dries out, see Fig. 4.8b. Contemporarily,
the protein denaturation sets in. The storage modulus G′ of the food matrix increases with rising
temperatures, whereas the water holding capacity Ceq decreases. The gradient of C − Ceq, see
Fig. 4.8c, induces the water velocities, see Fig. 4.8d. The excess moisture is expelled to the surface.
The supplementary provision of water to the surface delays the drying of the surface and ensures
further evaporative cooling.

Sensitivity study

The study of this section reveals the model sensitivity to a selection of its parameters and model
terms. Besides variation of parameters in magnitude, a leave-out approach is followed for specific
terms. Table 4.4 summarizes the sensitivity of the temperatures in points A and B and the
moisture concentration on a dry basisMdb. Supplementary plots are added to Fig. 4.9 only for
significant findings. The validation simulation that can be found in Fig. 4.7 serves as a baseline
for comparisons and is represented by black and blue solid lines in Fig. 4.9.
The model shows more substantial sensitivities towards the surface heat transfer coefficient than

towards the bottom heat transfer coefficient, see studies 1–4. Perturbing the former with a 20%
magnitude, the resulting maximum temperature variation is Emax = +6.9K to Emax = −8.2K

in the surface area. In contrast, the effective diffusivity Dcb had to be modified by one order of
magnitude to cause variations above the level of the numerical discretization errors of the model,
see studies 5 and 6. Notably, Dcb × 0.1 = 3× 10−11m2 s−1 does not alter the results significantly
compared to the baseline simulation. This finding hints at a more pronounced sensitivity to
convective than to diffusive mass fluxes of the model. This assumption is further confirmed
when the water viscosity is held constant at µw = 9.88× 10−4 kgm−1 s−1 for one simulation, see
study 7. The temperatures at point B deviate with Emax = +11.58K. The explanation can be
found in Darcy’s law, compare Eq. (2.80), where the viscosity is in the denominator. Within the
temperature range of the model, the dynamic viscosity of water decreases from 1.5 × 10−3 to
3× 10−4 kgm−1 s−1 in the baseline simulation. Increased fluid velocities lead to increased water
exudation at the surface, which adds to the evaporative cooling.
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Figure 4.8. Spatial distribution and temporal evolution of T , C, C − Ceq and ui.

68



4.1. Analysis of thermal food-processing models

Table 4.4. Sensitivity analysis data with deviations given by Emap (in %) and Erms, Emax (in K and -).
Coloring is applied individually for each variable, from white for the 10th percentile of the error
measure to blue for the 45th percentile and red for the 80th percentile.

Study Case Details Temperature TA Temperature TB ConcentrationMdb

Emap Erms Emax Emap Erms Emax Emap Erms Emax

1 αtot,bot + 20% 1.43 1.76 2.64 0.28 0.38 0.86 0.003 0.004 0.007
2 αtot,bot − 20% 1.76 2.18 3.28 0.34 0.47 1.04 0.004 0.005 0.009
3 αtot + 20% Fig. 4.9a 1.76 2.22 3.58 4.67 4.98 6.91 0.008 0.010 0.016
4 αtot − 20% Fig. 4.9a 2.25 2.85 4.49 5.65 6.02 8.20 0.009 0.012 0.021
5 Dcb × 10 0.84 1.10 1.71 1.03 1.25 2.20 0.005 0.007 0.017
6 Dcb × 0.1 0.17 0.22 0.35 0.21 0.25 0.41 0.001 0.002 0.004
7 µw = const. Fig. 4.9c 1.50 2.32 6.19 2.31 3.63 11.58 0.011 0.016 0.041
8 aw = 1 0.13 0.18 0.31 0.17 0.19 0.33 0.001 0.001 0.003
9 cp,cb(ωk,0, T ) Fig. 4.10c 0.09 0.13 0.23 0.05 0.06 0.12 0.000 0.000 0.001
10 κcb(ϕk,0, T ) Fig. 4.10a 0.51 0.64 0.98 0.14 0.15 0.22 0.000 0.000 0.000
11 κk(T0) Fig. 4.10b 2.69 3.40 5.13 0.68 0.79 1.49 0.001 0.001 0.001
12 cp,k(T0) Fig. 4.10c, 4.10b 0.17 0.23 0.37 0.08 0.10 0.23 0.000 0.000 0.001
13 ρk(T0) 0.27 0.34 0.54 0.06 0.07 0.13 0.000 0.000 0.000
14 ui = 0 in mass eq. Fig. 4.9b 3.84 5.95 15.24 5.90 8.78 22.39 0.027 0.039 0.090
15 ui = 0 in energy eq. Fig. 4.9b 0.06 0.09 0.17 0.06 0.08 0.20 0.000 0.000 0.001
16 ui × 2 in energy eq. 0.06 0.09 0.17 0.06 0.08 0.19 0.000 0.000 0.001
17 βtot = βext Fig. 4.11b 6.86 8.87 14.12 8.59 10.08 15.51 0.030 0.036 0.052
18 b = 5 for βskin Fig. 4.11b 0.86 1.92 6.80 1.72 3.78 11.99 0.009 0.016 0.041
19 b = 4 for βskin Fig. 4.11b 0.90 1.27 3.35 1.90 2.71 8.35 0.005 0.008 0.023
20 b = 3 for βskin Fig. 4.11b 2.05 2.83 5.20 2.81 3.58 6.66 0.007 0.009 0.016

Opposed to the expectation, the artificial fixation of the water activity aw = 1 does not lead
to significant deviation, see study 8. Although the average water activity at the surface varies
from 0.98 to 0.69 throughout one simulation, the induced deviations of temperatures and mass
concentration are hardly measurable. The finding is surprising from the perspective that much
attention is spent on accurately modeling water activities in food science literature [13, 205, 226].
Fixing the temporarily variable compositions of the food components ϕk and ωk to fixed initial
compositions in the effective thermal conductivities κpara, κperp and the specific heat capacity cp,cb
does not alter the outcome of simulations above numerical error levels, see studies 9 and 10.
The finding is notable, as the relative composition of chicken varies by 50% and cp,cb(ωk, T ) ∈
[3648, 2905] J kg−1K−1 over time, compare Fig. 4.10a and Fig. 4.10c. Similarly, the temperature-
dependent transport quantities ρk, cp,k and κk are fixed to their value at initial temperature T0,
see studies 11–13. The model reveals only a slight sensitivity to temperature-dependent values
of κk for core temperatures, see study 11. The findings on the transport parameters contradict
[197], where cp,cb and κcb are identified as the most sensitive parameters.
The most pronounced sensitivity of Emax relates to the modeled fluid velocities ui in the mass

conservation. Temperatures and mass concentration differ considerably when the convective mass
fluxes are omitted, see study 14. This finding hints at a strong dependence on accurate mass
transport modeling. To put it differently, the model would lose its validity without the convective
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Figure 4.9. Sensitivity and leave-out study of the soft-matter model. Blue and black solid lines represent
the baseline simulation at positions A and B.

fluxes, which have been indirectly fitted to experimental data through G′ and Ceq. Oppositely, the
convective heat transport induced by ui does not at all influence the temperatures of the model,
see studies 15–16. This finding contradicts van der Sman’s claims of non-negligible convective
energy transport in [228]. Sman argues with an estimated Peclet number of Pe ≈ 10. However,
this study shows

Peavg =
|u| ρw cp,wH

κw
≈ 0.2 , (4.5)

where all quantities are averaged over space and time, and H is the height of the cube. Moreover,
it could be demonstrated in this section that convective heat fluxes could be left out of the energy
equation with negligible effects on the solution.
Themost pronounced sensitivity ofEmap andErms relates to neglecting the artificial mass transfer

coefficient βskin, see study 17. Omitting the latter results in a decrease in surface temperatures by
10K on average, see Fig. 4.11b, leading to increased evaporation at the surface, which in turn can
be traced back to the external heat transfer coefficient βext that is one order of magnitude higher
than βskin, see Fig. 4.11a. Sman [229] argues that chicken skin undergoes a glass transition that
hinders moisture exudation. As a consequence, Sman introduces the artificial coefficient βskin that
is implemented in series to βext, compare Eq. (2.77). Figure 4.11a shows that as a consequence of
the series model, the total mass transfer coefficient is almost exclusively governed by βskin. In [229],
a value of b = 4±1.1 in the modeling term for βskin, compare Eq. (2.79), is proposed. A sensitivity
analysis with constant exponents b ∈ {3, 4, 5} reveals that temperature trajectories do not match
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Figure 4.10. Variable composition determines the effective transport properties.

the baseline, see studies 18–20. Besides a wrong slope, no distinct cut-off behavior at boiling
temperatures can be observed, as depicted in the upper right section in Fig. 4.11b. This finding
contradicts the modeling of βskin presented in [196, 197]. Rabeler [194] comments that “different
modifications to the Chilton–Colburn analogy or simple empirical approximations are used to obtain
a better match with the experimental data”, but no further details on the promoted modifications
were provided. Similar studies by [21, 84] introduced a switching function f that cuts off the
heat input into the model at boiling temperatures. Only when a similar approach is applied for b,
e.g., the switching of b = 5 to b = 3 at boiling temperatures, the baseline temperature trajectories
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Figure 4.11. The transition of b(T ) at boiling temperatures induces increased total mass transfer coefficients,
resulting in enhanced surface cooling.
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Figure 4.12. Validation of the implemented models with experimental data (markers) of [195] at constant
temperatures T = {338.15, 348.15, 358.15, 368.15}K. Modified reprint with permission of
Pham [188].

can be attained. Figure 4.11a illustrates how the transition of b in βskin clearly interferes with
evaporative mass losses of the model. The transition of b induces a temporarily increased βtot. As
a consequence, increased evaporative cooling creates the characteristic “cut-off” in temperature
trajectories that would not be present in the simulation data if no transition is applied.

4.1.3. Simulation of sensory quantities

The authors of the soft-matter model provided matching sensory models for the TPA quantities
hardness, chewiness and gumminess in their studies [195, 196]. Within the scope of this work,
an implementation by Pham [188] is utilized. Figure 4.12 depicts the validation of the model at
various constant temperature levels, and Tab. 4.5 denotes the corresponding model parameters.
The parameter variation given with ± indicates the value range in which the parameters are
adjusted such that the model fits the experimental data provided in [195]. A good validation
error of Emap = 0.85% is attained on average for all temperature levels and quantities.
The modified rate law of Eq. (2.87) describes a convergence of the sensory variable Q towards

the final non-zero equilibrium quality value Q∞(T ). This is only valid for constant temperatures
during one run. A simple test with alternating oven temperatures was performed in [188].
The core temperature TA of the soft-matter model was used as an input to the sensory model
for hardness Ha. Figure 4.13 reveals how decreasing food temperatures induce a questionable
reversible behavior of Ha. No approach to mitigate these effects can be found in the literature to
date. In response, a simple adaption was proposed together with Pham in [188], where further
investigations and details can be found. The essential idea of the modification is to include a simple
logic during the temporal integration of the sensory ODEs. It verifies the current value of Q∞(T ),
which is the final value towards which the variable Q(T ) converges. In the case Q∞(T ) > Q(T ),
the model remains unchanged. For the case Q∞(T ) ≤ Q(T ), the value of Q∞(T ) is set to the
current value Q∞(T ) = Q(T ). Figure 4.13 illustrates how this modification effectively removes
the reversible behavior. Although this change enables the usage of the model for alternating food
temperature, it would need further validation with experimental data, which is beyond the scope
of this work.
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Table 4.5. Kinetic parameters for Ha, Gu and Cw for validation [188].
Q/N n Ea/(kJ/mol) k0/(min−1[Q]1−n × 103) Qmax/N Q0/N T ∗/K ∆T ∗/K

Ha 1.076± 0.016 39.3± 2.7 196± 8.3 55.2± 3.5 14± 1.4 318.15± 1.5 4± 1.1
Gu 1.052± 0.012 35.9± 2.2 64± 4.1 38.6± 2.2 7± 1.1 320.15± 2.1 8± 1.4
Cw 1.268± 0.088 44.6± 3.5 773± 29 28.5± 1.5 6.9± 1.5 323.15± 2.9 10± 2.1
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Figure 4.13. Mitigating the reversible behavior of the original model at decreasing temperatures with the
proposed modification. Modified reprint with permission of Pham [188].

4.2. Conclusions from the food model analyses

The sensitivity analyses aim to estimate the sensitivity to variations in the heat and mass transfer
coefficients compared to alterations of food-specific modeling terms. In summary, the hygroscopic,
capillary-porous media model for potatoes has a medium-to-strong sensitivity to variable heat
and mass transfer coefficients compared to the residual sensitivities that are presented. The
sensitivity of the mass transfer coefficient βtot to a 20% variation is in the same order of magnitude
as the sensitivity to other model changes, such as transport properties (studies 5–14 and 20) or
individual contributions of fluxes (studies 17–19). In terms of temperature, a 20% variation of the
heat transfer coefficient (studies 3–4) is in the same sensitivity range as the food-specific model
variations (studies 15, 16 and 21). Only a low-to-medium sensitivity can be established concerning
variable carbohydrate properties and low sensitivity to variable water properties (studies 5–14).
Studies 19 and 20 demonstrate a low sensitivity of the energy equation to mass fluxes and variable
composition of the food. A weak coupling of the model to Darcy flow (and its related transport
quantities, e.g., temperature-dependent viscosity) is observable in studies 17 and 18. These
findings align with the discussion of negligible over-pressures for convective heating scenarios in
[54]. Consequently, forthcoming analyses of the model, particularly in a conjugate setting, do
not focus too much on pressures. In contrast, the model shows a strong dependence on capillary
water and binary gas fluxes (studies 15–16), variable composition in effective conductivity (study
21) and accurate evaporation modeling (studies 22–28). The latter should be excluded from the
sensitivity comparison with variable heat and mass transfer coefficients, as the radical changes to
the evaporation modeling invalidate the model. However, these tests reveal a plausible behavior
of the model (e.g., failure), when key model elements are removed.
Summarizing the findings of the soft-matter model sensitivity study, one can observe a strong

sensitivity on heat transfer coefficients (studies 1–4) compared to all other performed variations
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(studies 5–13). The model has a low-to-medium sensitivity to water diffusivity (studies 5–6) or
variable composition and temperature-dependent transport coefficients (studies 9–13), except for
variable thermal conductivities. These findings are similar to the hygroscopic, capillary-porous
media model results. The sensitivity study reveals a strong sensitivity concerning the modeled
swelling pressure flow and the corresponding variables (e.g., µw) in the mass conservation equation.
However, there is negligible sensitivity concerning the convective fluxes in the energy conservation
equation (studies 15–16). This finding contradicts claims of non-negligible convective energy
transport in [228], as discussed in the previous section. Testing the model for plausibility, one
can observe — surprisingly — a low sensitivity to water activity (study 8), although aw typically
should determine the evaporative losses. On the other hand, one can observe a strong sensitivity
concerning the modeled skin mass transfer coefficient and the corresponding variables, e.g.,
b(T ). Generally, the investigated model for the convective heating of chicken meat contains fitted
model parameters, e.g., the equations for G′ and Ceq. The temperature trajectories, especially
at boiling temperatures, are enforced artificially by modifying the evaporative losses through
βskin. The model generalization remains an open question, as the swelling pressure mechanism
is fitted to reproduce experimental temperature and moisture content data. At the same time,
the evaporation is modified to artificially enforce temperature cut-offs at boiling temperatures.
Indeed, [229] reports problems in predicting conditions beyond the boiling point. In conclusion,
the sensitive, fitted behavior of the model does not qualify the model to be directly suitable for
conjugate simulations. Whereas the formation of a glassy skin may be relevant for simulations in
general, how the skin behavior could be included in a conjugate setting remains an open question.
On the contrary, the hygroscopic, capillary-porous media model shows plausible behavior based
on the validation, the investigation of the working mechanisms and the results of the sensitivity
study. It does not apply empirical modeling approaches at the boundary condition (e.g., skin
coefficients), and it was rigorously derived from first principles. Themodeling of crucial parameters,
such as capillary diffusivity and permeability, are aligned with experimental data as closely as
possible. Contrasting both models, the hygroscopic, capillary-porous media model seems to be
more plausible and suitable for conjugate simulations. However, the soft-matter model for chicken
meats reveals its merits in combination with the matching models to predict the final sensory
qualities of interest. Consequently, the soft-matter model is employed for the MPC case studies
in Chapter 6. Therefore, ROMs of the soft-matter model are derived in Chapter 5. Likewise, the
proposed data-driven ROM methodology is cross-validated with the hygroscopic, capillary-porous
media model in a conjugate setting.

As the state of the art revealed, food science literature focuses on the exact modeling of the
interactions within the food and less with its surroundings. The sensitivity study and leaving-out
model terms demonstrate that some modeling aspects in food models have a relatively moderate
influence on the simulation outcome, e.g., the modeling of water activity (for the soft-matter
model), mass diffusivities, variable compositions or temperature-dependent transport properties.
On the other hand, the heat transfer coefficient is a sensitive parameter in both models. However,
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both investigated models lump radiation and convection in the form of a constant value over space
and time. It appears advantageous to improve the modeling of the thermal interaction with the
food’s surroundings with a conjugate heat and mass CFD simulation, which is the aim in Sec. 4.3.

4.3. Conjugate simulations of thermal food processing

This section aims to construct and analyze a conjugate thermal food processing model. It allows a
comparison of models applying a heat transfer coefficient and models employing conjugate heat
transfer. Their respective influence on the trajectories of temperature, moisture concentration, va-
por concentration and pressure inside of the food is of primary interest. Similar to the benchmarks
of the food models at the beginning of this chapter, this section performs plausibility checks of the
conjugate simulation model concerning convective and radiative heat transfer in the oven cavity.
Finally, the hygroscopic, capillary-porous media model for potatoes is investigated in a conjugate
setting, where a fully coupled simulation of thermal food processing in a convection oven is
performed. This chapter closes with conclusions from the conjugate heat transfer simulations.

4.3.1. Thermal fluid flow and radiation benchmarks

The thermal processing of food in a convection oven is dominated by two physical effects: convec-
tion and radiation. For testing the simulation setup, the process is split up into standard cases
where sufficient experimental data exists: the flow of hot air over a flat plate (representing oven
walls and baking tray), the flow over a cylinder (representing the food item) and radiative heat
exchange in a cavity enclosing an ellipsoid (representing a simplified radiative heat exchange
of convection oven and food item). A particular focus is put on the plausibility and accuracy of
the thermal fluid flow simulations, as they may be affected by the selected turbulence model (see
Sec. 2.1.2) or the applied FEM stabilization methods (see Sec. 3.1.2).

Flow over a flat plate

The study of flow over a flat heated plate is well investigated theoretically and experimentally [156,
204, 268]. Empirical formulations exist for the local Nusselt number Nux = αx/κ from analogy
considerations with the boundary layer theory [16, 128]:

Nux = 0.0296Re4/5x Pr1/3 , (4.6)

Rex =
ρUx

µ
, (4.7)

Pr =
cp µ

κ
, (4.8)

where Rex is the local Reynolds number, Pr is the Prandtl number and U is the free stream
velocity. Note that the temperature-dependent fluid properties are evaluated at a hypothetical
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Figure 4.14. Benchmark of hot air flow over a cooled flat plate.
Table 4.6. Simulation metrics for the benchmark cases.

Metric Flow over flat plate Flow over cylinder Radiative heat exchange
Mesh size hmax = 1× 10−1 m hmax = 1× 10−2 m h = 1× 10−2 m
First inflation layer height h1 = 2.5× 10−5 m h1 = 1× 10−6 m -
Average wall distance y+ = 0.16 y+ = 0.02 -
Inflation layer stretch factor 1.05 1.2 -
Number of inflation cells 50 20 -
Scaled residual R < 5× 10−5 R < 5× 10−5 R < 1× 10−14

GCI [208] fine grid error EGCI = 0.03% EGCI = 0.15% -

average film temperature Tf = (Twall + Tbulk)/2.
Figure 4.14a depicts the employed problem to investigate the predictability of the local heat

transfer coefficient with a conjugate approach. Dry air with variable transport properties from
[250] is utilized as a medium. The k–ω SST model with low-Re wall resolution is used to model
turbulence. A fully developed flow boundary condition is given at the inlet, see Fig. 4.14a for an
illustration of the velocity profile. Essentially, COMSOL Multiphysics extends the channel virtually
to the left to allow the flow to develop a boundary layer. On the left half of the problem domain,
hence for negative abscissae, the flow is not exposed to heat transfer at the boundaries and the
velocity boundary layer of the fluid is given the possibility to stabilize. At x/L = 0 (L = 5m),
the lower wall is cooled with a constant heat flux qw and the thermal boundary layer forms
(thickness δw ≪ L/5). The execution of the simulations again follows good CFD practice (e.g.,
see [77, 88]). Key metrics are given in Tab. 4.6. The free stream velocities U ∈ [0.5, 10]m s−1

(Re ∈ [1.62×105, 3.31×106]) cover the spectrum of wind speeds in a convection oven of maximum
10m s−1 [49].
Figure 4.14b illustrates the reasonably good agreement of the simulated local heat transfer

coefficient α( xL) with the empirical relation given in [128] with relative errors ranging within
Emap = 6–12.9%. Moreover, the figure already underlines why constant, averaged heat transfer
coefficients should not be employed when local heat transfer effects or varying free-stream
conditions are investigated. Note that the turbulence model and the empirical correlation are
designed for fully turbulent cases and cannot accurately model the transition from laminar to
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Figure 4.15. Problem setup and comparison of flow over a cylinder simulations with two empirical corre-
lations.

turbulent boundary layers, compare with [156] for a discussion. The onset of the transition also
depends on the free-stream turbulence level, which is set to a medium value of IT = 5% for the
present simulation.

Flow over a cylinder

The flow over a cylinder test case reasonably mimics hot air flow over a food item. Figure 4.15a
illustrates the problem setup and key metrics of the simulated test case. The domain dimensions,
mesh generation and simulation parameters again follow good CFD practice, see Tab. 4.6 for
key metrics. The free stream velocity is U ∈ [0.5, 10]m s−1 (Re ∈ [5 × 102, 4 × 104]), and the
free stream turbulence level is set to a medium value of IT = 5%. Coherent structures of the von
Kármán vortex street are resolved with a URANS approach and then appropriately averaged over
at least ten periods. Figure 4.15b illustrates that the simulation model remains within the error
bounds of 20–25% of the given correlations. The relative errors of the simulations compared to the
correlation by Churchill are on average Emap = 10.1%. Whitaker [258] gives a ±25% deviation
from experimental data for his correlation, represented by the grey area. Lienhard [156] attests
the correlation by Churchill [43] an underprediction of experimental data by 20% for Re > 4×104.
This might explain why the simulations lie in the upper band for higher Reynolds numbers.

Surface-to-surface radiation inside a cavity

Only for simple shapes analytical solutions can be found for radiative heat exchange, see [11, 128,
169] for background reading. Solving problems with more than three surfaces typically requires
solving a system of linear equations — essentially solving the radiosity method (Sec. 2.2.2) by
hand. However, it is possible to treat the walls of a simplified oven cavity (0.4m× 0.4m× 0.4m)
without baking plates as one surface (denoted with index 2). An ellipsoid represents the food
item (denoted with index 1, semi-axes 0.06m× 0.03m× 0.015m), which is placed at the center
of the cavity, see Fig. 4.16a for an illustration of the problem. As the shape of ellipsoids is convex,
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(a) Problem setup of the cavity for h = 1 × 10−2 m
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Figure 4.16. Relative error of the hemicube view factor calculation over mesh element size h. The most
significant error is dominated by the discretization of the ellipsoid’s surface area.

the self-irradiation view factor F11 is zero.
Following the derivation in [169], an analytical formula for the test case reads

F11 + F12 = 1 ⇒ F12 = 1 (conservation property of Fij), (4.9)

A2F21 = A1F12 ⇒ F21 =
A1

A2
(reciprocity property of Fij), (4.10)

qrad,1 =
σ
(︁
T 4
1 − T 4

2

)︁
1
ϵ1

+ A1
A2

(︂
1

ϵ2−1

)︂ ≈ 883.24Wm−2 (energy conservation), (4.11)

which holds (in its general form) for any convex object in a closed cavity. Figure 4.16b depicts the
relative errors compared to the analytical solution over the surface mesh size. The hemicube view
factor method operated with a default accuracy of 256 pixels. The most dominant error can be
found for F21, the cavity-to-ellipsoid view factor. It seems governed by the correct representation
of the ellipsoid’s surface area A1 with rectangular surface elements. One can observe that the
error for F21 closely follows the relative error of the surface area representation A1. The error for
the effective radiative heat flux qrad,1 lies below Emap < 0.01% for the surface mesh sizes of up to
2× 10−2m, which is well above the employed surface mesh sizes used in this work.

4.3.2. Hygroscopic capillary-porous model in conjugate flat plate configuration

This section represents an intermediate step on the path towards a conjugate convection oven
model. It presents the implementation details and investigations of the hygroscopic capillary-
porous model in conjugate configuration.
In the first step, the 1D implementation of the validation test case of Sec. 4.1.1 is extended to a

3D version in the Coefficient Form PDE module of COMSOL Multiphysics. The successful extension
is ensured by running and comparing against the validation test case in x-, y- and z-direction in a
pseudo-1D setup, respectively (results not shown for brevity). In the second step, the validation
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Figure 4.17. The validation case of the hygroscopic capillary-porous model extended to a conjugate flat
plate setup: dimensions, mesh and boundary conditions.

test case is implemented in a pseudo-2D setup in combination with the flow over a flat plate test
case of Sec. 4.3.1. Figure 4.17 illustrates the resulting model with a potato slab of L × 0.1L

(L = 0.1m). The average inlet speed of a hot airflow (Toven = 450.15K) is held constant at
U = 5.25m s−1 (IT = 5%) to induce an average heat transfer coefficient of αtot ≈ 20Wm−2K−1,
which is comparable to the validation test case. On the residual bottom wall of the fluid domain,
αwall = 15Wm−2K−1 is prescribed to emulate the heat losses of a baking plate and to prevent
a heating shock at the first contact point of the porous domain and the fluid domain. A no-slip
condition is given at the bottom wall of the fluid domain, as no considerable obstruction of the
airflow by evaporation from the porous food item (so-called blowing) is expected. The mesh
design and general solver settings follow the methods described in Sec. 4.1.1 and Sec. 4.3.1.
The Richardson number

Ri =
g β (Twall − Tref)L

U2
(4.12)

expresses the ratio of buoyant forces to inertial forces, where Tref = 448.10K is the lowest average
temperature in the problem domain and Twall = 450.15K is the maximum temperature of a
hot wall (e.g., the baking plate). For the present case, Ri ≈ 1.5 × 10−4, which lies far below
the threshold of Ri > 0.3 for mixed buoyant flow [230]. Consequently, no buoyant effects are
considered in the conjugate simulations, and temperature-dependent viscosities are also neglected.
From now on, a unidirectional coupling approach is followed for fluid-flow simulations to reduce
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the model’s degrees of freedom during the conjugate simulation of the oven cavity and the food
processing. The fluid flow of the oven cavity is pre-calculated under steady-state conditions for
the average oven temperature.
The conjugate solution of temperature and vapor concentration in the cavity and the food

domain is realized by treating temperature and vapor concentration as continuous fields over
the cavity and food domains. Utilizing sub-nodes per domain in the Heat Transfer in Solids and
Fluids module and the Coefficient Form PDE module ensures that COMSOL Multiphysics handles
continuity of variables and fluxes, as introduced in Sec. 2.2.1. The energy conservation of the food
model of Eq. (2.57) is ported to the Heat Transfer in Solids and Fluids module to make use of the
built-in conjugate heat transfer capabilities of the Nonisothermal Flow module in the Multiphysics
node. The food-specific modeling terms, such as Hevap İ of Eq. (2.57), are included as additional
volumetric source terms in the food domain.
To enable not only conjugate heat but also conjugate mass transfer, the conservation equation

for water vapor must be solved both on the fluid and the porous domain. Although COMSOL
Multiphysics has such a functionality in the Moist Air node in the Transport of Diluted Species
module, it does not provide a distributed evaporation approach. Consequently, the conjugate mass
transfer is implemented in the Coefficient Form PDE module. For the food domain, Eq. (2.51) is
ported without changes. For the cavity, the new transport equation reads

∂cv
∂t

+ vi
∂cv
∂xi

=
∂

∂xi

[︃(︃
Dva +

νt
Sct

)︃
∂cv
∂xi

]︃
. (4.13)

The second term on the left-hand side models the convective fluxes induced by the steady-state
velocity field vi, and the right-hand side models the diffusive mass transport of vapor in the
fluid. The effective diffusivity Dva,eff = Dva + νt/Sct accounts for diffusion of vapor in the air
(Dva = 2.6× 10−5m2 s−1) and enhanced turbulent mixing with a turbulent Schmidt number of
Sct = 0.8 [242]. In Eq. (2.50) and Eq. (2.52), the conservation equations of liquid water and
gas are left untouched and are solved exclusively on the porous domain. The boundary condition
for water conservation at the top surface, Eq. (4.2), is replaced by a no flux condition without
influence on the result, as water is removed exclusively by the distributed evaporation approach
within the porous domain. The resulting vapor is convected away owing to the conjugate mass
transfer for vapor.
For the following evaluations, the results of the conjugate simulation are evaluated at a vertical

cut through the potato slab at x = 0.01m, indicated by a dashed line in Fig. 4.17b. Figure 4.18a
compares the results of the conjugate simulation at the vertical cut (represented with dashed
lines) with the results of the validation test case (represented with solid lines). Even for this
simple conjugate setup, the variations in temperature, moisture saturation and pressure exceed
the range of the sensitivity study of αtot ± 20%, marked with a grey band. When investigating
the derived heat and mass transfer coefficients for the conjugate simulation, this is not a surprise.
Although the air velocity and temperature are held constant, the derived heat transfer coefficient
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Figure 4.18. Comparison of conjugate flat plate setup at x = 0.01m (dashed lines) with the transfer-
coefficient-based validation case (solid lines) at t = 20min (black) and t = 60min (red).
Deviations of αtot ± 20% of the sensitivity study are represented by a gray band.

varies significantly in space and time, see Fig. 4.19a. For the first quarter of the potato slab, the
coefficient varies more than 50% over time, although the preceding channel wall is pre-chilled with
αwall. The cause of the deviations is rooted in the temperature-dependent material properties of
dry air (ρ, cp, and κ). As the potato heats up, so does the thermal boundary layer, and heat transfer
becomes less efficient owing to the decreased driving temperature gradient. A similar explanation
holds for the local variation from left to right, as the hot air gets cooled during the passage
over the porous food item. The derived mass transfer coefficient, calculated with Eq. (2.74), is
approximately constant during the simulation, see Fig. 4.19b, as the driving material property
Dva,eff remains unchanged and given the steady-state velocity field. However, the magnitude of
βderived is one order higher than the estimation given in the article of the validation test case by
Ni [175]. Presumably, turbulent effects, as simulated in this conjugate setup, were not considered
in the empirical estimation of the mass transfer coefficient. So far, this study has demonstrated
the successful extension of a food processing model into a multi-dimensional, conjugate heat
and mass transfer model. The results foreshadow why the thermal processing of food should
not be simulated with constant heat transfer coefficients, although geometric, temperature and
fluid flow variations or thermal radiation have not been considered yet. The deviations for this
simple conjugate setup exceed most of the model’s sensitivities of food-specific modeling terms,
recapitulate study 1–21 in Tab. 4.2.
Adding radiation for demonstration purposes to this setup with ϵwall = 0.9 and ϵinterface = 0.8,

approximately doubles the deviations in all variables, see 4.18b. With a maximum error of 35.6K
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Figure 4.19. Derived local heat and mass transfer coefficients from the conjugate simulation results.

in the surface temperatures and Emap = 3.1%, the changes induced by the conjugate setup in
terms of temperature are within the sensitivity range of one of the most crucial food model
manipulations of the sensitivity study — the removal of evaporative source terms from the water
conservation equation, see study 24 in Tab. 4.2. The deviation of Emap = 30.8% for the water
saturation exceeds by far the maximum food model sensitivities of Emap = 18.1%, recapitulate
study 1–21 in Tab. 4.2. These results reveal that it is mandatory to consider radiation in the
following derivation of the conjugate convection oven model.

4.3.3. Conjugate heat and mass thermal food processing in a convection oven

The conjugate fluid flow simulation models of Sec. 4.3.1 and the conjugate heat and mass food
processing model of Sec. 4.3.2 are combined to model a hypothetical convection oven. Forced
convection of non-isothermal hot air, surface-to-surface thermal radiation and the hygroscopic
capillary-porous model in a conjugate configuration are utilized to model the thermal processing
of two potato slices on two baking trays, see Fig. 4.20a for an illustration. Section 4.3.3.1 presents
the modeling assumptions that are specifically tailored to investigate the effects of conjugate heat
and mass transfer, including radiation. One designated goal of the convection oven simulations
presented in Sec. 4.3.3.2 is to achieve a relative comparison of the heating effects and deliver
a comparison with transfer-coefficient-based approaches. Conclusions of the convection oven
simulations are given in Sec. 4.4.

4.3.3.1. Modeling assumptions

The geometry of a convection oven is inspired by standard consumer appliance, see Fig. 4.20a. In
order to significantly save simulation time, a 2D model with similar dimensions is derived, see
Fig. 4.20b. The impact that 2D modeling may have on the results shown, as well as an estimate of
the simulation time of a 3D model, can be found in Sec. 4.4.
For representing a convection oven in a simulation model, the following modeling assumptions

are made: The heating coil, the outlet grill and the ventilation system are not represented explicitly.
Moreover, the geometric details of the oven, the two baking plates and the upper heating coils
are simplified. This enables meshing with fewer elements. Following the usual working principle
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(a) 3D geometry of a convection oven inspired
by a standard consumer appliance.
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(b) Dimensions of the 2Dmodel (given inmm).

Figure 4.20. Geometrical model of a conventional consumer hot air convection oven with two slices of
potatoes on two separate baking plates.

of convection ovens [112], hot air is blown out of the rectangular duct into the oven cavity. A
medium turbulence level of IT = 5% is set at the inlet. The velocity is chosen as U = 5.25m s−1 to
induce average heat transfer coefficients comparable to the conjugate flat plate case of Sec. 4.3.2.
A similarity of the conjugate flat plate and the convection oven model becomes relevant for the
studies in Sec. 5.4, where this requirement is discussed in more detail. The outlet grill is modeled
as a pressure outlet with zero relative pressure. Conventional convection ovens re-heat the air
with heating coils mounted around a fan that blows the air back into the oven. Moreover, fresh
air is continuously drawn into the cavity from the environment to renew the air. Likewise, a
fume exhaust, usually located at the top of the cavity, evacuates portions of the cavity air into
the surrounding kitchen [112]. These two mechanisms ensure that the hot, dry air inside of a
convection oven does not saturate with fumes and steam of the food. As information is scarce
on how the secondary fume exhaust system works, the following modeling approach is followed:
Once air leaves the simulation domain through the outlet, it will not reenter the ducts. Thus, the
modeling of a fume exhaust system is not considered.
Modeling of the plate-food contact is sophisticated. Owing to inhomogeneities and roughness

of the food surface, the heat transfer partially occurs through direct contact and partially through
thin films of liquids, steam or air [69, 256]. A common approach in the literature is to estimate a
contact heat transfer coefficient from experimental data [69, 171, 209, 256]. As no experimental
data exists for this work, plate-food contact modeling is excluded to avoid distortion of the results
by loosely estimated parameters. Zero flux conditions are set on the contact line for all variables.
These settings also facilitate comparing transfer-coefficient-based models (where no baking plates
or oven cavities exist) with the results of the conjugate heat and mass transfer model.
Simulation of the thermal radiation requires specification of the emissivities of the participating
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surfaces. Oven walls and baking plates are usually manufactured from enameled sheet metal, with
an emissivity of ϵenamel ≈ 0.89 [144, 250], which is used in this study. Heating rods are usually
coated with electrically insulating ceramics, such as silicium carbide, which has ϵ ≈ 0.8 [190] at
the operational surface temperatures of Trod ≈ 1293K [3]. Almeida et al. [3] also measured the
spectral emissivity of peeled potatoes, which is on average ϵpot ≈ 0.8.
Equation (2.29) introduced the reflected portion R of the incoming irradiation. This model-

ing assumes a purely diffuse reflection of incoming radiation. More general formulations, as
implemented in COMSOL Multiphysics, also allow for specular reflection. The relative portion
of specular reflection is specified as Rspec ∈ [0, 1]. Data on the specular properties of enameled
oven walls and windows is scarce. Thus, a parameter sweep for Rspec ∈ [0, 1] is performed for the
surface-to-surface radiation test case of Sec. 4.3.1. The test reveals a relative deviation of maximum
0.7% on the heat flux qrad,1. Consequently, specular reflection effects are neglected. Whereas
visible light can pass through the glass of an oven, a large share of thermal radiation is absorbed
within the infrared band [11]. Additionally, the windows of convection ovens can be coated with
reflective material to contain the thermal radiation inside the oven cavity [112]. Quartz glass and
soda lime glass have an emissivity of ϵ ≈ 0.84–0.94 [213, 250]; therefore ϵglass = 0.89 is employed
for this model. The oven walls and front window are treated as well-insulated walls with a weak
external heat transfer coefficient of αext = 1Wm−2K−1 with ambient temperatures of 293.15K.
Utilizing a conjugate mass transfer model for water vapor raises the question of whether

humidity influences the transport properties of air (κ, cp) and whether gas radiation must be
taken into account. As explained above, convection ovens continuously renew the air in the oven
cavity by drawing fresh air out of the environment and evacuating moist air from the cavity [112].
Assuming a worst-case scenario of fully vapor-saturated room air at room temperature, the
relative humidity inside of the cavity would fall below RH = 0.01 for heating the room air to
Toven > 415.15K. Tsilingiris [245] tabulated little influence of low humidity on the air’s transport
properties for the considered temperature range. Thus, the air is considered dry and is treated as
an ideal gas. The temperature-dependent transport coefficients of dry air are taken from [250].
Considering the components of moist air with respect to gas radiation, only CO2 and H2O interact
significantly with thermal radiation [11]. Those components of air exhibit relatively low partial
pressures at room temperatures under standard atmospheric pressure, e.g., pCO2 ≈ 39Pa. The
partial pressure of water vapor for RH = 0.01 and Toven = 415.15K is pH2O ≈ 3820Pa. Textbooks
such as [11, 128] tabulate the gas emissivities in relation to gas temperature, partial pressure
and average beam length sm that is traveled. Assuming sm ≈ 0.45m for an oven cavity, one can
extrapolate the gas hemispherical total emissivities ϵCO2 ≈ 0.003 and ϵH2O ≈ 0.06 for temperatures
above the boiling point. The mixture’s emissivity is

ϵg = ϵCO2 + ϵH2O − δϵ ≈ 0.063 , (4.14)

where the correction term δϵ is negligible under atmospheric conditions [11]. To test the influence
of the gases’ radiative attenuation, the test case of Sec. 4.3.1 is repeated with the discrete ordinates
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(a) Mesh overview.

(b) Mesh detail: food item.

(c) Mesh detail: food-cavity interface.

Figure 4.21. Inlet and outlet positions within the 2D convection oven model and meshing details.

radiation model, a method capable of solving the radiative transport equation in participating
media. With standard settings and utilizing a gas emissivity ϵg = 0 (i.e., non-participating gas),
the method exhibited a relative error of +1.48% compared to the analytical solution. For the case
of a participating air with ϵg = 0.063, the error is −0.56%. From these results, it can be concluded
that the participation of the gas phase in the radiative heat transfer is relatively small and, thus, is
neglected. This decision renders the conjugate heat and mass transfer solvable using the available
computing power. The surface-to-surface radiation model induces significantly less computational
load per time step than the discrete ordinates radiation model.
The element sizes and inflation layer properties of the hygroscopic capillary-porous model in

conjugate flat plate configuration are utilized to mesh the 2D model, as the fine grid error was
already analyzed for this similar case, see Sec. 4.3.2. Figure 4.21 gives an overview and two
detailed illustrations of the resulting mesh with a maximum cell size of hmax = 5× 10−3m. Note
that the lower sides of the half-ellipsoids have no inflation layers, as the contact to and resulting
heat flux from the baking plate is excluded from the investigations. Simulating 1 h of real time
requires a solve time of 3.67 h. The simulation model has 866 001 degrees of freedom and is solved
with a maximum time step of ∆t = 5 s.

4.3.3.2. Results of the 2D model simulations

During the first investigations of the model, the upper four heating coils do not operate. Figure 4.22
illustrates the velocities, temperatures and vapor concentrations of the conjugate heat and mass
transfer model at t = 1200 s. One can observe that the fluid flow remains reasonably attached
to the upper ellipsoid but detaches early from the lower food item owing to a more complex
interaction of a secondary swirl between the outlet and the lower ellipsoid. After a heterogeneous
startup phase, the oven temperature is reasonably equilibrated at t = 1200 s. However, differences
in the food surface temperatures and water vapor concentrations can already be recognized. For
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(a) Velocities. (b) Temperature. (c) Vapor concentration.

Figure 4.22. Representative field data of the conjugate thermal food processing model at t = 1200 s.

closer investigations, temperature, water saturation and the derived heat transfer coefficient are
evaluated at the interface between the food item and oven cavity, see Fig. 4.23a. To render the
comparisons fairer, the data for the lower food item is reversed in x-direction, owing to the reversed
flow direction over the lower baking plate. Nonetheless, extreme variations can be observed over
the boundary of the two food items and, foremost, when comparing the two food items mutually.
The temperature differences between the two food items are Emap = 7.2% and Emax = 46.3K.
In the detached, less heated region of the lower ellipsoid, strong water saturation hot spots can
be found, where crust formation may be delayed or even hindered, see central illustration in
Fig. 4.23a. The forced convection around the food items induces an irregular temperature pattern.
Evaluating the derived, convective heat transfer coefficient at the interface reveals local variations
of αderv(x) ∈ [15, 60]Wm−2K−1, see the right-hand plot in Fig. 4.23a. The local variations are
somewhat comparable to the values α(xi) ∈ [20, 155]Wm−2K−1 reported for the side faces of
cuboids by Ateeque et al. [10]. Higher peak values can be explained by the fact that Ateeque et al.
simulate bulk flow (U = 4ms−1) passing over the sharp edges of the cuboids.
To investigate the temporal evolution of the conjugate heat transfer, αderv(x) is line-averaged at

the interface and plotted over time, see Fig. 4.23b. One can observe a transient trend of the heat
transfer coefficient during the first third of the simulation. At the steady-state operational state,
the derived heat transfer coefficient of the upper and lower food item differs by Emap = 34%.
The differences between the two food items would be even more prominent when radiation is
not considered. Figure 4.23b illustrates the average, relative radiative heat flux compared to
convection over time. Whereas the upper food item receives up to 19.1% radiation, the lower item
receives up to 31.6%. Indeed, radiation acts as an equilibrating mechanism inside the convection
oven. The radiation of the upper baking plate heats (convective) cold spots on the lower food
item.
A closer comparison of upper and lower food items can be found in Fig. 4.24a. The influences on

the food-specific variables are investigated on a vertical cut through the two half ellipses, indicated
by dashed lines in Fig. 4.20b. Comparing the food processing progress of the two ellipsoids results
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(a) Spatial evaluations at the food-cavity interface at t = 1200 s.
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(b) Line-averaged heat transfer coefficient and relative radiative heat flux over time.

Figure 4.23. Spatial and temporal comparison of the upper (solid line) and lower food item (dashed line).

in temperature, moisture saturation and pressure deviations that clearly exceed the food modeling
sensitivities of Tab. 4.2 (study 1–21). Maximum deviations of Emax = 53.9K for the temperature
and Emax = 0.39 for water saturations are revealed with the help of the conjugate simulation of
the thermal process and food items. Enabling the upper heating rods for demonstration purposes
leads to even more drastic variations between upper and lower food items, see Fig. 4.24b. The
baking plate acts as a radiation shield, which results in delayed cooking progress for the lower
food item.
The simple comparison of upper and lower food items in the same convection oven simulation

reveals that there are no constant heat transfer coefficients in time and space. A central aim of
this chapter is to compare the influences of the conjugate approach on primary variables with
standard transfer-coefficient-based models. To this end, the derived, convective heat and mass
transfer coefficients of the lower food item are spatially and temporally averaged to form constant
coefficients: αtot = 21.95Wm−2K−1 and βtot = 0.029m s−1. The coefficients are used on the
surface of a single ellipsoid in a transfer-coefficient-based model. All other settings are identical to
the benchmark test case of Sec. 4.1.1. Figure 4.25 depicts the error between the two approaches
for t = 1200 s (upper row) and t = 3600 s (lower row). Dominant errors in temperature, and
resulting differences in water saturation and pressures, can be found at the surface of the ellipsoid.
Fewer differences can be observed at the bottom. This is not surprising since the interaction
with the baking plate is not modeled, and more differences would be expected if this were the
case. Local temperature variations dominate the surface and sub-surface region of the food item.
For example, at the impingement point of the hot air stream (right-hand side), the temperature
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(a) Comparison at t = 1200 s (black) and t = 3600 s (red). Note that the Emap = 81.6% (marked with ∗) for pressures
could only be calculated at t = 3600 s owing to devision by zero at t = 1200 s.
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(b) Comparison at t = 1200 s, with upper heating rods turned on.

Figure 4.24. Comparison of the upper (solid lines) and the lower (dashed lines) food item in conjugate
configuration at vertical cut lines at x = −0.05m.
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Figure 4.25. Influence of conjugate and a transfer-coefficient-based approaches on the primary food
variables at t = 1200 s (upper row) and t = 3600 s (lower row). Positive values indicate a
positive deviation from the transfer-coefficient-based approach.
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of the conjugate model is up to 48K hotter than the prediction of the model based on transfer
coefficients. The resulting water saturations vary up to Emax = 0.3. Estimating surface properties,
such as crusting or browning, with models based on constant heat transfer coefficients would lead
to significant mispredictions.

4.4. Conclusions from the conjugate studies

Several research questions of this work can be answered with the derived conjugate simulation
models. Plausibility checks with the non-isothermal benchmark cases flow over a flat plate and
flow over a cylinder demonstrate that employing the k–ω SST model in combination with SUPG
stabilization adequately solves conjugate heat transfer problems that are comparable to the
conjugate convection oven simulations of this work. The test cases deliver trustworthy results
that remain within the error bounds of empirical data for Re ∈ [5× 102, 4× 104] (cylinder) and
Re ∈ [1.62× 105, 3.31× 106] (flat plate). Errors stemming from the numerical discretization are
systematically evaluated with generalized Richardson extrapolation and are within the range
of EGCI = 0.03–0.15% for the finest grid. Errors of the radiosity method for solving surface-to-
surface radiation are magnitudes lower. The conjugate flat plate configuration of the hygroscopic
capillary-porous model demonstrates the successful development of a food processing model with
combined conjugate heat and mass transfer. Free convection can be neglected because of low
Richardson numbers, and consequently, a uni-directional coupling is established for air velocities
and pressures. Gas radiation and specular diffusion are of minor importance when modeling
radiation inside a convection oven.
Likewise, research questions concerning conjugate heat and mass transfer modeling are an-

swered with the presented studies. The state of the art revealed that many research articles in
food science and technology focus on modeling the food but treat heat and mass transfer effects of
the process with rudimental methods, e.g., estimating average heat and mass transfer coefficients
from empirical relations. This practice is at least debatable in light of the results highlighted within
this section. In a controlled setting, the conjugate flat plate case demonstrates that deviations
from conjugate couplings already become the most dominant on the overall simulation outcome.
Without even considering the geometric variation of a food item or processing device, the maxi-
mum error in surface temperatures is Emax = 15.4K when the local and temporal deviations of
conjugate heat transfer are not considered. Not accounting for thermal radiation leads to even
more pronounced deviations of Emax = 35.6K for the temperatures and Emax = 0.25 for the water
saturation.
The simulations of thermal food processing inside a convection oven demonstrate that there are

no constant heat and mass transfer coefficients. The local heat transfer coefficient, derived from
the conjugate simulations, varies strongly: αderv(x) ∈ [15, 60]Wm−2K−1. Just the positioning
of food items at other places inside the oven induces a maximum temperature difference of
Emax = 46.3K after 20min. Another practice observed in the literature is the estimation of a heat
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transfer coefficient from experimental data, where radiative and convective effects are lumped
into a total heat transfer coefficient. The convection oven simulations show that the contribution
of thermal radiation varies from 19.1% (upper food item) to 31.6% (lower food item) compared
to convection. Moreover, a clear transient build-up phase of the radiative contribution can be
identified during the first 20min of the simulations. Radiation tends to fill in the gaps in heat
input when convection becomes less inefficient because of increased surface temperatures of
the food items. Comparing a conjugate simulation of a food item with one employing constant
transfer coefficients reveals the most pronounced differences encountered within this work: The
temperature locally differs up toEmax = 48K, which is a deviation of 30.6% compared to a possible
variable range of 157K. The water saturations differ up to Emax = 0.3, which is a deviation of
60% compared to a possible variable range of 0–0.5. The differences for this example could be
even higher if the average heat and mass transfer coefficients were not taken from the conjugate
model, but empirical correlations would have been used.
Another major consequence can be drawn from the preliminary simulation time estimations of

a 3D variant of the conjugate heat and mass transfer model. Coarsely meshing one (symmetric)
half of the geometry illustrated in Fig. 4.20a results in a model with 5.8× 106 degrees of freedom.
Every of the 740 time steps would approximately require 5 h to converge — resulting in a solve
time of around 154 days. Additionally, one run of the coarsely meshed problem usually does not
guarantee an acceptable solution quality that would allow drawing valid conclusions. For example,
the mesh error estimation with generalized Richardson extrapolation would require solving the
problem at three different mesh sizes [208]. The outlined dilemma of long simulation times
of several days or even months holds for many large-scale simulation problems in the industry.
Training data set sizes on the order of 103–107 [221] are unattainable in a reasonable timeframe.
Even a significant increase in computing power could not render the simulations for a data set
of, e.g., 100 simulations feasible for a digital twin development process. This gap shall be closed
with the efficient data-driven reduced-order modeling framework presented in the next chapter.
To underpin the conclusions on convection and radiation, a 3D conjugate heat transfer simulation

of the oven depicted in Fig. 4.20a is performed. All relevant parameters match the ones of the
2D model, and the effective transport properties of the food items are replaced by ρs, cp,s and
κs from Tab. 4.1. The omission of food modeling enables the use of linear ansatz orders for the
temperature field. Likewise, it significantly reduces the mesh refinement requirements in the
porous domains. Overall, the system size is reduced to 2.02× 106 degrees of freedom. Figure 4.26
compares the 2D results with the 3D conjugate heat transfer model results. The local convective
heat transfer coefficient varies αderv(x) ∈ [8, 55]Wm−2K−1 for the upper food item, which is in
very good agreement with the 2D results. Comparing the relative impact of radiative heat flux, the
results of the 3D simulation show an even higher spread between upper and lower food items. The
2D and 3D results of the conjugate heat and mass transfer convection oven model are probably
closely resemblant. These findings also align with previous works on similar processing devices,
revealing the same order of magnitude of convection and radiation effects when comparing a 2D
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Figure 4.26. Comparison of 2D and 3D relative radiative heat flux and spatial distribution of the convective
heat transfer coefficient.

and 3D model [135, 220]. In summary, simulation results produced with constant heat transfer
coefficients should be scrutinized. As demonstrated, a constant, lumped heat transfer coefficient
would not capture the spatial and temporal variation of radiative and convective heat fluxes. This
is only possible with conjugate heat transfer simulations that include thermal radiation.
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Digital twins must replicate their physical counterparts with minimal computational cost while
retaining high accuracy and executing faster than in real time. Considering the time required for
the numerical solution of the problems presented in the previous chapter, the need for reduced-
order modeling becomes evident. The DynROM approach, as introduced in Sec. 3.2, is employed
for the reduced-order modeling studies in this chapter. Derived data-driven ROMs with this
method rely on output data of the multi-physical simulations of Chapter 4. The output data of the
simulations, termed readouts, remain the only transport vehicle of relevant information about the
problem that the data-driven ROM should replicate. This raises the question of which training
data selection is appropriate, because the ROM test error is directly related to the data presented
during training [115, 139]. One particularity of the DynROM method is its reduced need for
training data, usually requiring less than five simulations of the reference model [8]. Consequently,
the objective of this chapter is to derive a procedure for finding only one-to-two simulation data
sets that ensure a training of a ROM that has low test errors.

A MATLAB code framework, called TwinLab, provides automation of the ROM studies and
interfaces to COMSOL Multiphysics and ANSYS DynROM. Furthermore, TwinLab contains the
main data science methods of this work, some of which are described in Sec. 5.1. Within the
discipline of system identification, tailored excitation signals are utilized to extract information
from a physical model. The excitation signal synthesis within TwinLab and the calculation of
training data properties, termed features, are introduced. Moreover, the testing of the generated
ROMs with so-called global error measures on particular fair data sets is motivated. Section 5.2
presents the cornerstone of ROM generation of this work: an efficient design of experiments. Its
core is a proposed correlation-based selection of training data. First, the method is described
in detail for the soft-matter model for meats. Subsequently, the procedure is applied to the
conjugate thermal food processing model in flat plate configuration. Section 5.3 investigates
the performance of the DynROM method, particularly the ODE augmentation, prediction error,
extrapolatory capabilities and attainable speed-up. In Sec. 5.4, the successful reduced-order
modeling of the conjugate convection oven model is demonstrated. Section 5.5 presents the
conclusions from the reduced-order modeling studies and summarizes how to apply the proposed
efficient design of experiments approach.
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Figure 5.1. Schematic procedure for the data-driven ROM training.

5.1. The TwinLab framework

This section describes the ROM training and testing procedure and introduces the TwinLab
framework. Moreover, the generation of excitation signals and their resulting properties are
presented. An exemplary ROM training and testing demonstrates the derivation of six global test
errors that qualify the accuracy of a ROM.

5.1.1. Model selection and training procedure within the TwinLab framework

In the previous chapter, the derivation of a conjugate heat and mass transfer simulation model
of food processing is shown. Its superiority in predicting local temperature and moisture con-
centration differences is demonstrated. However, conjugate models are scarce in food science.
Transfer-coefficient-based models enjoy great popularity in the industry and research, as high-
lighted in the state of the art, see Sec. 1.3. This and the following sections aim to derive a valid
ROM framework for both worlds. The soft-matter model comes with consistent sensory models,
as introduced in Sec. 4.1.3. Such sensory quantities are relevant for the MPC studies in Chapter 6,
which rely on the ROMs found in this chapter. Consequently, the soft-matter model is prioritized
for the ROM training investigations. However, a digital twin of a conjugate model is ultimately
targeted, as it is believed to be more accurate than transfer-coefficient-based models. The validity
of the ROM training method is thus demonstrated for the conjugate hygroscopic, capillary-porous
model in a consecutive step. This proceeding proves the generality of the correlation-based
training data selection for a broader class of thermal food processing models.
For the upcoming ROM studies, the validation setup of the soft-matter model of Sec. 4.1.2

is employed. The studies focus on replicating temperature probes at specific points of the full-
order model, see Fig. 5.1. Investigating point data ROMs provides a condensed, minimalistic
setup to closely investigate the effects of training data selection. Nonetheless, an extension to
field data ROMs is demonstrated at the end of this chapter. Only temperatures are chosen for
training to exclude the effects of different physics and scales in one ROM, as recommended
by ANSYS [8]. The core temperatures TA and surface temperature TB are selected as they are
considered representative of the possible temperature trajectories in the model. Core temperatures
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are typically monitored to control doneness. The U.S. Food and Drug Administration, for example,
requires holding times of at least one second above 74 ◦C [247]. Surface temperatures can
be relevant for determining the temperature-dependent browning of the food item. Note that
during the validation simulations of the soft-matter model, see Sec. 4.1.2, the oven temperatures
are constantly high. Considering that the subsequent studies do not apply the maximum oven
temperature at all times, the simulation duration is prolonged to 1400 s without significantly
leaving the validated range of the model.
The following procedure is applied to generate one data set: A tailored excitation signal, as

introduced later in this section, is handed over to the soft-matter model in COMSOL Multiphysics
to vary the oven temperature Ĝ = [Toven,1, . . . , Toven,N ] over time. The readout matrix of one
simulation is

Ŷ =

[︄
TA,1, . . . , TA,N
TB,1, . . . , TB,N

]︄
, (5.1)

where N is the number of time steps. One data set consists of the unique combination of Ĝ and
Ŷ and is stored in a structure array within TwinLab. Each data set has a unique alphanumeric
identifier which stems from the consecutive numbering in the original studies in [137, 188]. The
process of excitation signal synthesis, training data generation with COMSOL Multiphysics, data
management, format conversions, export for ANSYS DynROM and reimport of ROM readouts X̂
is centrally controlled within TwinLab. More of its functionalities are described in the following
sections.

5.1.2. Excitation signal synthesis

Within the discipline of system identification, special signals are employed as an input for a physical
problem. From a linear dynamics point of view, the principal “modes” of the system are “excited”
by the input signal, which is why it is also referred to as an excitation signal. The excited transient
behavior of the physical problem can be determined from the recorded output data [23, 157, 174].
Typically, two classes of excitation signals are employed for system identification: step-based
and sinusoidal signals. Single-step signals provide a single jump with a certain amplitude, and
pseudo-random binary sequences provide multiple jumps with alternating positive and negative
amplitude. The waiting time thold for one state is pseudo-random [157]. Both step signals and
pseudo-random binary sequences are only applied for linear system identification [174]. On
the contrary, amplitude-modulated pseudo-random binary sequences (APRBS) are suitable for
nonlinear system identification. They trigger different amplitude levels in a pseudo-random
fashion. Jumps in the signal excite a broad range of system frequencies, and the piecewise
constant sections cover low-frequency components [115, 174]. Figure 5.2a (left and center)
depicts two representative APRBS signals that are used for Toven. The illustration also shows the
corresponding readouts TA and TB of the full-order simulation model. The synthesis of quantized
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Algorithm 1 Synthesis of APRBS signals for Toven [137].
1: Discretize the temperature range between Tmin = 293.15K and Tmax = 473.15K into four equidistant bands
2: Compute Ti randomly in every ith temperature band with i = 1, . . . , 4 and permute Ti inside of an array
3: Compute temperature difference Tdiff between adjacent Ti inside of the array from step 2
4: if any Tdiff < Tmargin = 10K then
5: Go to step 2
6: end if
7: Compute time-steps ti randomly between tstart and tend with i = 1, . . . , 4
8: Compute time difference tdiff between two adjacent time steps
9: if any tdiff < thold then
10: Go to step 7
11: end if
12: Sample Ti over time with ∆t = 5 s and write out as an array Ĝ

APRBS signals within this work is summarized in the pseudo-code of Alg. 1. A minimum hold
time thold = 300 s is set.

Nelles [114, 174] promotes the usage of sinAPRBS for system identification. Such signals
consist of an APRBS base with smooth, sinusoidal transitions. Sinusoidal pieces A sin(2πfjt) + c

with frequencies fj ∈ [0.001, 0.01]Hz are inserted into APRBS signals to synthesize sinAPRBS
within this work. The amplitudes A and the offset c are adjusted individually to fit in each APRBS
step [188]. Figure 5.7 illustrates the transformation of an APRBS signal into a sinAPRBS signal
with two different frequencies fj .

Multi-sines are a superposition of s single sines

G(t) =
s∑︂

k=1

A cos(2πkf0t+ φk) + ck . (5.2)

The parameters f0 ∈ [0.001, 0.01]Hz, φk ∈ [0, 10] and A ∈ [1, 30]K are chosen to match the
frequency and amplitude ranges of interest. The constants ck are adjusted such that the resulting
oven temperature stays within the temperature bounds of Toven ∈ [293.15, 473.15]K. A quantized
output of Eq. (5.2) is written into the array Ĝ. A constant time step of ∆t = 5 s provides sufficient
resolution to represent the high-frequent oscillations appropriately. Data set 819, an exemplary
simulation with multi-sines, can be found in Fig. 5.2a.

An excitation signal’s crest factor

Cr(Ĝ) = max
1≤k≤N

|Ĝk|
rms(Ĝ)

(5.3)

is a measure of the energy level of the excitation signal. It is sometimes maximized during system
identification to increase the possible energy input into a physical system [96]. The crest factor is
a possible data set feature that could correlate with a good ROM quality.
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5.1.3. Data set features and global error measures

Each ROM for the upcoming studies is trained with only one training data set. Those ROMs are
termed 1-signal ROM hereafter. The central idea of a correlation-based training data selection is
to find features of the data sets that correlate with low test errors of the 1-signal ROMs. The use
of 1-signal ROMs permits features of data sets to be uniquely assigned to a ROM performance.
Combinations of two data sets are investigated in Sec. 5.2.2.2. Several data set features are
derived in the hope that at least one feature will correlate with low 1-signal ROM test errors.
For example, simple features are the standard deviation and the mean value of Toven, TA and
TB. Moreover, various measures of the APRBS steps of Alg. 1 are calculated to serve as data set
features:

T i := mean([T1, T2, T3, T4]) , (5.4)
T diff,i := mean([Tdiff,1, Tdiff,2, Tdiff,3, Tdiff,4]) , (5.5)

|T diff,i| := mean([|Tdiff,1|, |Tdiff,2|, |Tdiff,3|, |Tdiff,4|]) , (5.6)
T diff,j := mean([Tdiff,2, Tdiff,3, Tdiff,4]) . (5.7)

For example, T diff,i can be verbalized as the signed mean of the delta jumps of an APRBS signal. In
Fig. 5.2a, |Tdiff,2| and T2 are indicated in data set 745 to clarify their definition.
Figure 5.2 illustrates the sensitivity of training data selection for a 1-signal ROM with a short

example. In Fig. 5.2a, three training data sets with identifiers 351, 745 (APRBS) and 819 (multi-
sine) are shown. All three sets are employed individually to train a 1-signal ROM, called ROM351,
ROM745 and ROM819. The testing is performed on data set 703, see Fig. 5.2b. ROM745 produces
good results with a Erms = 0.7K compared to the solution of the full-order model. Conversely,
ROM351 and ROM819 produce the errors Erms = 13.5K and Erms = 7.9K, respectively, which
are one order of magnitude larger. ROM351 and ROM745 are the worst and best-performing
APRBS-trained ROMs of the upcoming study. To introduce global error measures, both ROMs are
evaluated on all 165 APRBS data sets generated for the study. ROM testing on multiple test data
sets renders testing more representative. For each ROM evaluation on a test data set, the test error
measures Erms , Emap , Emax , Emed, Eiqr and R2, as described in Sec. 3.2.4, are calculated over
all time steps. For example, the root-mean-square error of ROM745, tested on data set 298 reads

Erms =

⌜⃓⃓⎷ 1

N

N∑︂
k=1

(T ROM745
B,298,k − TB,298,k)2 , (5.8)

where T ROM745
B,298 is the output of ROM745 at position B when it is excited with Toven,298. Each

error measure captures the differences between test and ROM data slightly differently: linearly,
quadratically, overall or locally, for example. Utilizing multiple error measures increases the
chances of finding an error measure that linearly correlates with features of the training data set.
Figure 5.3 shows the histogram of the error measures when testing ROM745 and ROM351 on
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(a) Training data sets 351, 745 and 819. |Tdiff,2| and T2 are indicated in data set 745 to clarify the definition of the
APRBS features of Eq. (5.4)–(5.7).
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(b) Testing of the 1-signal ROMs on test data set 703.

Figure 5.2. Introductory 1-signal ROM training for data sets 351 and 745 (APRBS) and 819 (multi-sine).
The sensitivity of training data selection on the resulting test error is demonstrated.

the entire group of 165 APRBS data sets. The test error measures appear normally distributed for
testing on a sufficient number of data sets. Consequently, the average of the error measures is taken
to obtain six global error measures per testing of a 1-signal ROM. The global error measures are
denoted with an overline, e.g., Erms. Figure 5.3 indicates the global error measures for ROM351
and ROM745 with dashed lines. The TwinLab framework includes the functionality to calculate
the data set features, test ROMs on test data and calculate the global error measures.

5.1.4. Reduced-order model training and test groups

ROM training and testing must follow an objective study design to render the study outcomes
statistically significant. For this study, a fixed complexity of i = 2 of the DynROM method, recall
Sec. 3.2.2, ensures equal training conditions. Repeating ROM training within DynROM always
resulted in the same ROM training error.
It is of central interest in reduced-order modeling that trained ROMs can generalize on yet

unknown data sets. In other words, ROMs should show validity in a defined variable range of
the full-order model output, which test data should objectively represent. One finding of this
work is that a purely random choice of test data sets is not representative of the output space of
the full-order model. Hence, a different approach is taken to select appropriate fair test data.
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Figure 5.3. Distribution of error measures for 1-signal ROM351 (gray) and 1-signal ROM745 (blue),
evaluated on all APRBS signals. Dotted lines mark the value of the global error measures for
the respective ROM [137].

To avoid misunderstandings with the term data set, a group of several data sets used for ROM
testing is termed test group hereafter. To define fair test groups more precisely, consider APRBS
signals, as they serve well as instructive examples. Algorithm 1 generates APRBS signals for Toven
in a pseudo-random way. Figure 5.4a (top) depicts a histogram of the APRBS amplitudes of all
data sets. The amplitudes appear sufficiently equally distributed (dark gray bars). However, the
medians of each data set (bright grey bars) show a normal-like distribution. This tendency can also
be found in the resulting amplitudes of surface temperatures TB (blue bars) and their medians per
data set (bright grey bars), see Fig. 5.4a (bottom). The serial execution of four pseudo-random
oven temperatures in the physical model can be interpreted as a random experiment with four
dice. The sum of the dice has a normal distribution.
Cross-validation is a common approach that separates the available data sets into train and

test groups. Usually, following the standard concept of k-fold cross-validation, all remaining
APRBS data sets would serve as the test group for 1-signal ROMs. However, this test group
would advantage 1-signal ROMs that are trained with a data set whose median of the surface
temperatures med(TB) is close to the medians of the test group. Taking the average of all error
measures to form the global error measures would thus pronounce operational conditions that are
close to the medians of the test data. Consequently, 1-signal ROMs would receive the feedback
that they would generalize well on all APRBS data sets. However, it is not ensured by this feedback
that the 1-signal ROM performs well for the entire parameter range of the output space, i.e., also
for high or low med(TB). Further investigations revealed this bias for any randomly selected test
group out of all 165 APRBS data sets.
The concept of befitted cross-validation recommends including expert input during the selection

of test data sets [139]. In that spirit, one may postulate that fair test data sets should be uniformly
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(b) Histograms of the fair test group AP15.

Figure 5.4. Test groups with equally distributed Toven excitation signals (top left) show pronounced biased
surface temperatures for testing (bottom left). Fair test groups, here AP15, show a more
uniform distribution (right) [137].
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Figure 5.5. Fair APRBS test group AP15. The horizontal lines in the boxplots indicate the median. The box
represents the interquartile range. The whiskers contain the data within 1.5 times the IQR.
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distributed with respect to med(TB). With a null hypothesis, “the observations TB of a test group
come from a uniform distribution”, the selection of a test group is automated based on a χ2 test
(probability p = 0.05, number of bins nbins = 6). Per excitation signal type, the algorithm randomly
selects 15 data sets as a test group and tests it against the null hypothesis. The process repeats
until the hypothesis is fulfilled. The test groups are termed AP15 (15 APRBS signals), sinAP15
(15 sinAPRBS signals), and MS15 (15 multi-sines signals). Figure 5.4b depicts the histograms
of Toven and TB of AP15. They show a considerably more equal distribution of amplitudes and
medians than Fig. 5.4a. The remaining test sets are presented in Appendix A to ensure better
readability of this chapter. Figure 5.5a illustrates the good coverage of operational oven conditions
for AP15. Furthermore, a boxplot in Fig. 5.5b gives an impression of the median, interquartile
range and mean of the TB readout per data set.
For the efficient design of experiments studies, 165 APRBS with four steps, 85 sinAPRBS, 55

multi-sine, ten single-sine and ten single-step data sets are generated. As will be discussed in the
following sections, APRBS signals proved to be the most promising excitation signals during the
course of the investigations. This explains the different sizes of the groups. Note that the study
assumes that an intelligent convection oven can not only heat the air inside its cavity but also
cool it, e.g., by excessively adding room air and evacuating hot air through the fume exhaust.
Be it heating or cooling, the sudden APRBS steps for Toven cannot be realized by real convection
ovens. Nevertheless, APRBS serve well for the entirely digital data-driven reduced-order modeling.
During the testing of ROMs, sinAPRBS signals for Toven can better emulate the delayed thermal
behavior of convection ovens. Mixed operational usage of the model is emulated with a test group
consisting of the addition of AP15, sinAP15, and MS15.

5.2. Efficient design of experiments

The introductory example in Fig. 5.2 illustrates that certain data sets convey more information
about the physical system to a 1-signal ROM than others during reduced-order modeling. Now
that training and testing conditions are defined, this section presents the efficient design of
experiments approach. The underlying correlation-based training data selection routine closes
the gap in the literature of finding or synthesizing very few, “best-possible” training data sets for
data-driven reduced-order modeling. Whereas the term design of experiment is standard in system
identification, the added attribute efficient shall convey the conceptional idea of a minimalistic but
effective training data set. The method is one of the cornerstones of the digital twin framework
derived in this thesis and was published in part in [137].

5.2.1. Excitation signal type comparisons

A first pre-selection is performed to identify which excitation signal type is best suited for the
reduced-order modeling of the concerning multi-physical simulations. All synthesized APRBS,
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Figure 5.6. The global error measure Erms averaged for the five ROMs of their (excitation signal) kind,
respectively. Testing is performed on six different test groups. APRBS signals perform best
considering the average error on all test groups [137].

sinAPRBS, and multi-sines are utilized for training a 1-signal ROM. Each ROM is tested on AP15,
sinAP15, MS15, the mixed test group and on the single steps and single sines test groups to
calculate Erms. A cluster of five data sets per excitation signal type could be identified with
the lowest 1-signal ROM test errors on all test groups. The average of Erms for each cluster is
depicted as ordinate in Fig. 5.6. Corresponding test group names can be found as the abscissa.
The multi-sine-trained ROMs perform best on the MS15 test group but worse than APRBS-trained
ROMs on the step-based test groups. APRBS-trained ROMs perform best on AP15, single steps,
single sines and sinAP15. The latter emulates best the conditions inside a convection oven.
Figure 5.6 reveals that the best five sinAPRBS perform worse than the best five APRBS on all

test sets. As APRBS and sinAPRBS are closely related, a further study tests the influence of the
sinusoidal transitions in sinAPRBS on the test error. The best 15 APRBS signals are transformed
into sinAPRBS signals, one with a fast and one with a moderate transition frequency, respectively.
Figure 5.7 illustrates the transformation for the APRBS signal 745.
Although the changes to Toven and TB are minor, the test errors are considerably different, see

Tab. 5.1 for a compilation of test error measures. Decreasing speeds of the sinusoidal transitions
of sinAPRBS signals degrade the test error measures for the corresponding 1-signal ROMs. One
possible explanation can be found in systems and control theory. Rapid signals, such as steps, are
known to excite the broadest frequency range of a system. This property is taken from APRBS
when sinusoidal transitions are inserted. Observe how TB is marginally smoothed out during
the transition, which seems to make a surprisingly considerable impact during the data-driven
reduced-order modeling. Based on these results, the focus is laid on APRBS signals for the
forthcoming sections.
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Figure 5.7. Transformation of APRBS signal 745 to a fast and slow sinAPRBS signal and corresponding
full-order model readouts for TB [137].

Table 5.1. Global error measures of 15 APRBS 1-signal ROMs and their transformed fast and slow sinAPRBS
1-signal ROMs (testing on AP15; similar trends for other test sets) [137].

Type APRBS sinAPRBS
Speed - fast slow
Erms/K 1.63 2.32 2.90
Emap/% 0.38 0.58 0.67
Emax/K 3.91 4.79 6.22
Emed/K 0.15 0.48 0.14
Eiqr/K 1.64 2.46 3.36
R2 0.99 0.97 0.94

5.2.2. Correlation-based training data selection

This section investigates correlations between APRBS data set features and 1-signal ROM test
errors. Identifying such correlation allows synthesizing training data properties that ensure low
ROM test errors. At first, only 1-signal ROMs are considered. Then, the study is extended to
combinations of training data sets.

5.2.2.1. Investigations for 1-signal ROMs

The following procedure is followed to find correlations between global error measures and
training data features1. Fifty-five APRBS signals are utilized in the full-order simulation model to
vary Toven and to generate readouts as defined in Eq. (5.1). A priori (only evaluating the excitation
signal) and a posteriori (considering excitation signal or system output or both) features, as
introduced in Sec. 5.1.3, are calculated for each data set. After that, each data set is utilized for
training a 1-signal ROM. The median of all training errors, that is, the root-mean-square of the
difference between ROM and training data set output, is 0.22K, and the standard deviation is
0.14K. As defined in Sec. 5.1.3, six global error measures are derived from testing the 1-signal
ROMs on AP15, sinAP15 and MS15. There is hardly any correlation (R = 0.096) between training
1Originally, the study was performed with all signal types. This study description is tailored to APRBS for brevity, as
the most significant correlations can be found here.
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error and global test measures, where R is the Pearson correlation coefficient. Consequently, the
training error has no significant effect on the study outcomes concerning the global error measures
of the ROMs. The Pearson correlation matrix is employed to reveal correlations between training
data features and global test error measures. Table 5.2 shows this matrix for testing on AP15. The
testing on sinAP15 and MS15 can be found in Appendix A. Numbers close to a magnitude of one
imply a strong correlation, highlighted in bold fonts.
The most significant correlation is found for std(TB), which is an a posteriori feature. A value

of R = −0.76 for the correlation between std(TB) and Erms decodes to high standard deviations
in the surface temperatures of the full-order model correlate with low 1-signal ROM test errors. For
better visual interpretation, Fig. 5.8 depicts the correlation between std(TB) and Erms on the test
sets AP15 and sinAP15, where each marker symbolizes the evaluation of one 1-signal ROM. In
the class of a priori training data features, T diff,j also shows a good correlation to error measures,
see Fig. 5.8c. It reveals that APRBS signals with a globally ascending trend result in lower global
ROM test errors. Remember that T diff,j is the mean signed sum of delta jumps of an APRBS signal,
where the first jump is excluded from the calculation. The correlations for std(TB) and T diff,j
are a good example of how physical particularities of a model find their way into the efficient
design of experiments for data-driven reduced-order modeling through the search for correlations.
One possible interpretation may be that the excessive triggering of the modeled skin effect of the
soft-matter model at high oven temperatures renders the training data set not representative.
The majority of data sets remain below the boiling point, see Fig. 5.4a for example. Indeed, high
values for std(TB) similarly abstract this physical requirement, as it demands the training data
set to not exclusively trigger high surface temperatures. Moreover, a high standard deviation in
surface temperatures can only be attained when oven temperatures are varied more dynamically.
This encourages the inclusion of the maximum possible operational conditions in one training data
set. The fact that this target cannot be achieved with having high standard deviations in Toven
(R = −0.12) demonstrates the complexity of appropriate training data synthesis for nonlinear
models.
All in all, the found correlations now facilitate the synthesis or pre-selection of training data

under the proposition that std(TB) and T diff,j should have high values. The best five training
signals for a 1-signal ROM are marked in red in Fig. 5.8. Additionally, the red circle indicates
the place of promising training data for a 1-signal ROM. Signal 745 is the best training data set
for a 1-signal ROM, not only within the class of APRBS but also overall. It is synthesized with
the knowledge of the required features of the excitation signal. Also not by chance, signal 745
is chosen as an example in the previous section. The data set is illustrated in Fig. 5.2a, and
the distribution of errors can be found in Fig. 5.3. It is also revisited during the benchmarks of
DynROM in Sec. 5.3.
Some remarks: Note that more markers can be found on the left half of the plots. The study

commenced with an initial set of 30 pseudo-random training cases. As soon as correlations started
to reveal, further data sets were synthesized that have high std(TB) to confirm the hypothesis
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Figure 5.8. Correlations of signal features and Erms of 1-signal ROMs for APRBS ( ) and best 5 APRBS ( )
training data sets. Solid and dashed lines are the linear regression curve and p = 0.95 bounds.
The red circle indicates the position of 1-signal ROMs with low test errors.

Table 5.2. Pearson correlation matrix between error measures (rows) and training data features (columns)
for APRBS 1-signal-ROMs (testing on AP15). std(TB) shows the best a posteriori correlation
whereas T diff,j is a potential a priori signal feature.

Measure T i T diff,i T diff,j |T diff,i| T oven std(Toven) Cr(Toven) std(TA) std(TB)

Erms/K 0.18 −0.39 −0.68 0.40 0.33 −0.12 −0.13 −0.05 −0.76
Emap/% 0.20 −0.38 −0.69 0.43 0.35 −0.11 −0.14 −0.06 −0.78
Emax/K 0.13 −0.47 −0.69 0.33 0.25 −0.13 −0.10 0.03 −0.70
Emed/K 0.19 −0.37 −0.72 0.50 0.35 −0.09 −0.13 −0.11 −0.83
Eiqr/K 0.31 −0.07 −0.32 0.23 0.36 −0.02 −0.07 −0.08 −0.37
R2 −0.23 0.40 0.60 −0.29 −0.37 0.13 0.14 −0.08 0.61

more robustly and to find even better training data. The presented correlation trends hold not
only for the data sets AP15 and sinAP15 but also for testing on other, additional APRBS and
sinAPRBS data sets. It is also worth noting that Emed shows slightly higher correlations than
Erms. The cancelation of positive and negative errors while averaging Emed for Emed may cause
doubts about the suitability of this error measure. However, it could be shown that the medians
are normally distributed, compare Fig. 5.3. Hence, the average of the mean errors indicates if the
ROM somewhat under- or overpredicts the output values of the full-order model.
Note that this section focuses on correlations that have been found and not on those that have

not been found, although the latter outnumber the former. Moreover, note that systems and
control literature sometimes suggest a uniform coverage of the model input space [174] or output
space [237] to ensure good ROM training data. Implementing the input space coverage measure
for the soft-matter model and demonstrating how high coverages do not guarantee low test errors
can be exclusively found in [137].

5.2.2.2. Combination of training signals

Having found one good training data set directly raises the question of how to select a second
training partner data set that enriches the accuracy of the ROM training. This section proposes a
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Figure 5.9. Combinations of the best 1-signal ROM training data set 745 with other data sets: data sets
that perform best on AP15 (left side of (a)) and that are sufficiently dissimilar to signal 745
(ordinate of (b)) are a good training partner furnishing low test errors on AP15.

procedure to find training partner data sets based on similarities to the 1-signal ROM. From now
on, the limit of i = 2 is removed, and only the ROM complexity producing the lowest test error is
chosen. A closer investigation of the influence of complexities can be found in Sec. 5.3.1.
Hereafter, various training partner selection routines are checked for plausibility with the help

of Fig. 5.9, where several decision support tools are aggregated. Figure 5.9a is a version of
Fig. 5.8a, where the data sets under consideration are now labeled and grouped with a color
coding. Figure 5.9c shows Erms (bars), and the distribution of Erms (boxplots) on AP15 of the
2-signal ROMs. The headings of the following paragraphs are the hypotheses on how to find
a training partner data set. Their naming is consistent with the naming of the boxes and the
corresponding color coding in Fig. 5.9.

Very similar to 745, best performance on AP15, low ROM745 error: One intuitive approach is
selecting a data set as a training partner that is also a successful training data set for a 1-signal ROM.
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A measure for the similarity of an excitation signal j with APRBS 745 is rms(T̂ oven,745 − T̂ oven,j),
plotted as the ordinate in Fig. 5.9b. A second tool to facilitate the selection of a training partner
is the test error of the 1-signal ROM745 on all the other APRBS data sets individually, plotted as
the abscissa in Fig. 5.9b. The 1-signal ROM745 has one of the lowest test errors on test set 625.
This is not entirely surprising, as data set 625 (color-coded in black) is very similar to data set
745 in terms of oven temperatures, indicated by the low y-position in Fig. 5.9b. Likewise, 1-signal
ROM625 is one of the best 1-signal ROMs on AP15, see Fig. 5.9a. Given both similarity to data
set 745 and the good performance of 1-signal ROM745, selecting signals 745 and 625 as training
partners, however, is a disadvantageous choice. Combining both signals increases the test error
instead of decreasing it, compare the black section of Fig. 5.9c. Data set 625 does not add new
information to the training. It may instead enforce over-fitting of the ROM to the specific, similar
operational conditions of the data sets 745 and 625.

Somewhat similar to 745, best performance on AP15, medium ROM745 error: Despite the
example above, it might still be a reasonable approach to combine training data sets that train
accurate 1-signal ROMs on their own. However, a certain level of data set dissimilarity and a
medium test error of the base ROM745 on those data sets should be guaranteed, compare the red
color-coded cases in Fig. 5.9. The ROM745+553 almost halves the test error to Erms = 0.54K

and has a considerably low error spread in the replication of the full-order model — the best
result in this study on AP15. Also, the combination of data set 745 with medium similar, but best-
performing multi-sine 1-signal ROM795 training data set produces decent results ofErms = 0.64K

on AP15.
Nonetheless, combining all three signals does not increase model quality, compare the case

ROM745+795+553. Figure 5.9b can be understood as a similarity map of data sets. Placing the
second training data set close to a cluster of points seems to enrich the ROM training. However,
as discussed in the following hypotheses, it is not as easy as it appears.

Dissimilar to 745, medium or low performance on AP15 , medium ROM745 error: Another
intuitive approach to selecting a training partner is choosing a data set different from the base
data set 745 in terms of the oven temperature. Yet, improving ROM quality is not guaranteed
with this procedure. Consider, e.g., highly dissimilar data sets with a medium performance as
1-signal ROMs (color-coded in blue). Those training partner data sets cannot considerably improve
the ROM quality. The same unproductive trend can be found for the combination with highly
dissimilar data sets that train poor 1-signal ROMs (color-coded in light gray).

Somewhat similar to 745, medium performance on AP15, high ROM745 error: Adding data
sets as training partners where Erms of ROM745 is high seems to be a good choice (color-coded in
green). The trend of decreasing test error medians of the light gray and green training signals
(see trend arrow in Fig. 5.9c) leads to the assumption that the training improvement increases
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with increasing test error of 1-signal ROM745 (abscissa in Fig. 5.9b).
Generally, one can identify the trend that suitable training partner candidates can be found

on the main diagonal of Fig. 5.9b (red and green cases). A certain level of dissimilarity has to
be assured to be a successful training partner — hence, this is not the case for data set 625, as
discussed before. Based on this study, one can suggest that a training partner data set should
at least provide medium-quality 1-signal ROMs, have a certain level of dissimilarity to the base
training data set in terms of oven temperatures, and the base-signal ROM should have elevated
test errors on the potential partner data set.

5.2.3. Application to the hygroscopic capillary-porous media model

The efficient design of experiments method is now applied to the hygroscopic capillary-porous
media model. It allows for investigating how the procedure adapts to different physical models. The
conjugate heat and mass food processing model of Sec. 4.3.2 is utilized to provide a reasonably
comparable setting. One core temperature probe TA′ is taken at (x, y) = (0.01, 0)m and one
surface temperature probe TB′ is taken at (x, y) = (0.01, 0.009)m. In an economized study setup,
165 APRBS and 35 multi-sine signals (among which are AP15 and MS15) are used to generate
training data sets with the full-order model. Then, training of 1-signal ROMs is performed with
90 APRBS-excited data sets and a fixed complexity i = 2. Correlations are tested and found on
the groups AP15, MS15 and all 165 APRBS data sets. The data set utilized for the training of the
respective 1-signal ROM is excluded from the test groups. Data sets consisting of sinAPRBS, single
sine, and single step excitation signals are not considered, as low errors on AP15 also showed low
errors on sinAP15, single sines and single steps in Sec. 5.1.4.
Table 5.3 tabulates the Pearson correlation matrix between error measures (rows) and training

data features (columns). The most significant correlation exists between T diff,i and Emed with
R = 0.76 when testing is performed on all APRBS signals. In contrast to the correlations for
the soft-matter model, the correlations on AP15 and MS15 are slightly less (R = 0.67). A
possible cause is AP15 and MS15 not being perfectly tailored for the hygroscopic capillary-porous
media model. Promising candidates for good 1-signal ROMs can be found at Emed ≈ 0K and
T diff,i ≈ 25K, as indicated by a red circle in Fig. 5.10a. ROM450 is one of the best 1-signal ROMs
with Erms = 1.58K, see Fig. 5.10c. Choosing a suitable training partner with the similarity chart
in Fig. 5.10b further reduces the error of the respective 2-signal ROM to Erms = 0.97K for TB′ , see
markers in Fig. 4.17b. Lower test errors for the core temperature TA′ of Erms = 0.71K indicate
that surface temperatures are more complex to replicate, presumably owing to the evaporation
effects that are active in the surface region. Complexities higher than i = 2 do not increase the
ROM test error in this particular example. The effect of complexities is investigated more closely
in the next section, together with other particularities of the DynROM method. All in all, this
short repetitive example demonstrates how the efficient design of experiments method flexibly
adapts to the physics of other models. It is considered plausible that correlations change when
different models are investigated.
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Figure 5.10. Efficient design of experiments for the conjugate hygroscopic capillary-porous media model.
The red circle indicates the position of 1-signal ROMs with low test errors. Testing is performed
on all APRBS data sets.

Table 5.3. Pearson correlation matrix between error measures (rows) and training data features (columns)
for APRBS 1-signal-ROMs. T diff,i shows the best correlation with Emed. Testing is performed on
all APRBS data sets.
Measure T i T diff,i T diff,j |T diff,i| T oven std(Toven) Cr(Toven) std(TA) std(TB)

Erms/K 0.21 0.47 0.37 −0.17 0.26 0.04 −0.10 −0.05 0.22
Emap/% 0.23 0.44 0.34 −0.16 0.27 0.05 −0.10 −0.04 0.18
Emax/K 0.15 0.50 0.40 −0.18 0.18 0.03 −0.08 −0.09 0.22
Emed/K 0.21 0.76 0.57 0.11 0.21 0.07 0.02 −0.29 0.26
Eiqr/K 0.19 0.38 0.32 −0.21 0.23 0.02 −0.11 0.02 0.22
R2 −0.14 -0.48 -0.42 0.17 −0.16 −0.02 0.07 0.07 −0.23

5.3. Benchmarks of the DynROM method

As the state of the art revealed, this work is one of the first to employ and especially investigate
the properties of the DynROM method in detail. The influence of complexity (ODE augmentation),
extrapolation capabilities, speed-up and prediction accuracy are investigated with the soft-matter
model hereafter.

5.3.1. The influence of reduced-order model complexity

As introduced in Sec. 3.2.2, one particularity of DynROM lies in adding i free variables to the
ODE system to better learn the nonlinear behavior in the data. The free variables are added
iteratively to reduce the error during training [8]. So far, the 1-signal ROM study considered a
fixed complexity i = 2. Indeed, hardly any 1-signal ROM could be trained beyond i = 2, and
it is often unstable if i = 3 was reached. Presumably, positive poles of the ODE system lead to
unstable system dynamics when the method reaches an over-learned state. As this behavior does
not appear as strong for the 2-signal ROM study, one can assume that DynROM needs more than
one training data set to not over-learn at low complexities. Figure 5.11 depicts the test errors over

109



5. Reduced-order modeling studies

Lin 1 2

1

2

3

Complexity

E
rm
s/
K

ROM745

Lin 1 2 3 4

1

2

3

E
rm
s
=

9
4
K

E
rm
s
=

1
5
4
K

Complexity

ROM745+625

Lin 1 2 3 4

1

2

3

Complexity

ROM745+312

Lin 1 2 3 4 50

1

2

3

Complexity

ROM745+795

Lin 1 2 3 4 5

1

2

3

Complexity

ROM745+553

Figure 5.11. Influence of complexity i on the ROM test error. Lin represents a linear ROM. A usual
error-decreasing trend for increasing i (ROM745, ROM745+312, ROM745+553), potential
over-learning (ROM745+795), and instability (ROM745+625) are shown. Color-coded black
and red bars mark the selected complexity for the 2-signal ROMs study.

ascending complexities for candidates of the 2-signal ROM study of the previous section. One can
observe here that combining data sets 625 and 745 does not add sufficient new information to the
training process. Utilizing both data sets for training leads to instability at higher complexities.
In contrast, increasing complexity reduces the test error for good training partners by a factor
of up to four compared to linear2 ROMs (marked as “Lin” in Fig. 5.11), see cases ROM745+312
and ROM745+553. Nonetheless, choosing the highest complexity for a ROM does not always
guarantee the best test errors, compare the case ROM745+795.

5.3.2. Extrapolation capabilities

ROMs with extrapolation capability are desired as they can predict results outside of their trained
parameter space. Extending the oven’s temperature range to even higher or lower temperatures
is not considered sensible. The time frame for transient ROMs can also be considered a trained
parameter space. A test utilizes a repeated oven temperature signal 303 to investigate how a
ROM behaves after t = 1400 s. The results show that the error remains reasonably low despite
the temperatures behaving differently in the second segment. Figure 5.12 again reveals the
nonlinear behavior of the physical model owing to evaporation effects. The ROMs can reasonably
extrapolate this nonlinear behavior, as seen in the surface temperature evolution in 1-signal
ROM745 and 2-signal ROM745+795. The root-mean-square errors are within the range of the
physical validation of the soft-matter model in Sec. 4.1.2.
A build-up of prediction error can be observed when the model is applied outside the trained time

window of 1400 s. However, there is no clear trend of over- or under-prediction when transitioning
from the learned to the unlearned time domain. The source of the accumulating error may be
attributed to the extended nonlinear behavior of the physical model at high temperatures, where
surface evaporation acts as a heat sink and keeps temperatures within the boiling range. Once
2The linear ROMs are a by-product of using DynROM. The linear ROM technology is based on time domain vector
fitting techniques [8].
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Figure 5.12. Extrapolation capability of the best 1-signal and 2-signal ROMs [137].

the surface dries out, surface temperatures can increase further. To include this behavior in the
ROM, a wider time frame and higher temperatures would need to be included in the training.
However, this study focused on the typical thermal processing duration of chicken fillets. Reaching
core temperatures close to 100 ◦C, this simple test already leaves the sensible range of operation.
Additionally, it can be concluded from this example that concatenating two excitation signals to
enrich the information content of a training data set is not a practical approach. For example, the
data would not include the start-up phase induced by the second signal.

5.3.3. Attainable speed-up

Speed-ups within this work are defined relative to physical process times, not the simulation times
of the full-order model. A speed-up larger than unity indicates that the digital twin objectives
of faster-than-real-time simulations are achieved. Table 5.4 summarizes the simulation timings
of full-order models and of the corresponding ROM generated with DynROM. The numerical
solutions of the validation case (a quarter section of the soft-matter model) take about 5 h on 20
cores of a cluster of two Intel Xeon E5-2687W v4 (3.2 GHz) processors. DynROM allows the export
of synthesized ROMs in the FMU format [22], a standard model exchange format for surrogate
models. The execution of the FMUs within MATLAB Simulink [241] requires approximately 0.10 s,
which translates to a speed-up of Sp ≈ 3.6 × 104 with no noticeable serial computational load.
When increasing the number of outputs to eight, the simulation time is still only 0.13 s. Similar
speed-ups are also achieved for field data ROMs, as discussed in Sec. 5.4.

5.3.4. Reduced-order model prediction errors

Figure 5.13 illustrates the performance of the found ROMs. Representative data sets with sinAPRBS,
APRBS, and multi-sine signals are chosen for testing. Their oven temperature trajectories are
depicted in Fig. 5.13a. The error measures Erms and Emax are given in the figure legends for
better comparability. Grey and blue solid lines represent the solution of the full-order model.
Figure 5.13b and Fig. 5.13c show the evaluation of the best multi-sine-based and APRBS-based
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Table 5.4. Comparison of simulation times and speed-up for the validation case and the conjugate convec-
tion oven simulations with ROM executions.

Type Real time Sim. time Computational load Degrees of freedom Speed-up

3D FEM, estimation in Sec. 4.4 3600 s est. 3700 h parallel, full load
24 × 3.2 GHz 5.8× 106 0.0003

3D FEM, validation case of Sec. 4.1.2 1200 s 5 h parallel, full load
20 × 3.2 GHz 9× 105 0.07

ROM745+795 3600 s ≈ 0.1 s serial, not noticeable
1 × 3.2 GHz 5 (FMU) 36 000

1-signal ROMs: ROM795 and ROM745. Already 1-signal ROM745 shows a very good replication
of the core and surface temperatures of the full-order model, achieving a test error of typically
Erms ≈ 1K on a multitude of test data sets. To further emphasize the significance of proper signal
selection for ROM training, evaluations of the worst APRBS (ROM351) and multi-sine (ROM819)
ROMs are also presented in Fig. 5.13b and Fig. 5.13c. The 2-signal ROM745+795 time evaluation
can be found in Fig. 5.13d, displaying a characteristic Erms < 0.5K for the presented test signals.
The 2-signal ROM745+795 performs best considering many test groups. Its global test error
is as low as Erms = 0.38K on MS15, Erms = 0.64K on AP15 and Erms = 0.67K on sinAP15.
The complete error evaluations of all 2-signal ROMs on all available test groups can be found in
Appendix A.4.

Table 5.5. 2-signal ROMs tested on AP15.
ID 745 +553 +795 +312 +553+795 +371 +351 +555 +638 +692 +303 +328 +342 +625
Complexity 2 5 4 4 3 3 4 3 5 4 3 3 4 2
Erms/K 1.05 0.54 0.64 0.69 0.85 1.45 0.98 1.16 0.54 0.79 0.87 0.81 0.59 1.30
Emap/% 0.22 0.12 0.14 0.14 0.16 0.29 0.20 0.27 0.13 0.15 0.16 0.16 0.14 0.28
Emax/K 2.63 1.31 1.67 1.73 2.70 3.99 2.70 2.28 1.41 2.29 2.71 2.29 1.36 3.20
Emed/K 0.07 0.07 −0.19 0.02 0.03 0.01 0.13 −0.63 −0.04 −0.07 −0.02 −0.06 −0.12 0.01
Eiqr/K 1.25 0.62 0.64 0.73 0.80 1.31 1.05 1.43 0.51 0.73 0.75 0.80 0.72 1.44
R2 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00
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Figure 5.13. Time evaluation of representative ROMs on selected test signals. The full-order model
solutions TA and TB are represented by the grey and blue solid lines [137].
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5.4. Field data reduced-order modeling

The previous sections demonstrate the derivation of ROMs for specific readout points of a full-order
model. In certain MPC scenarios, it might be interesting to have access to field data as well.
This section extends the ROM generation to field data with the SVD-based approach presented
in Sec. 3.2.3. It investigates how the extension influences the accuracy and simulation time
requirements of the generated ROM. Moreover, it embeds the generation of field-data ROMs into
the proposed efficient design of experiments procedure.

5.4.1. Field data reduced-order model benchmarks

The following benchmarks of the field data ROMs are performed for the convection oven model
from Sec. 4.3.3. Particularly, the temperature field of the lower food item shall be replicated
by a ROM. The food item is spatially discretized into n = 4649 points in space defined by the
vertices of the finite elements. A fixed time step of ∆t = 10 s with N = 140 time steps defines
the resolution of the readout in time. Compared to the ROM studies for readouts at two distinct
points, significantly higher efforts are required concerning the field data generation of the readout
data Ŷ ∈ Rn×N , data storage, ROM training and ROM testing time. Consequently, instead of
training 1-signal ROMs from all available data sets, only apparently suitable ROMs are chosen to
prove the proposed procedure and to investigate the performance of the DynROM method. Testing
is performed on an economized test group consisting of AP15 enriched by 15 additional APRBS
data sets. The resulting test group passes the χ2 test of Sec. 5.1.4 for surface temperatures of the
ellipse. So far, data exchange between COMSOL Multiphysics, TwinLab (MATLAB) and DynROM
is conducted with text files containing comma-separated values (CSV). TwinLab is extended with
an interface to read and write binary snapshot data to handle the increased data set sizes better.
TwinLab writes out the 2D or 3D field data as binary snapshot files (*.bin) for DynROM and
imports the evaluations of the ROM (performed in DynROM) back into the data structure in
TwinLab for the error calculations.

5.4.1.1. Field data ROM accuracy

Section 3.2.3 explains the approach within DynROM that is used to reduce the readout size. Keep
in mind that a SVD is performed for Ŷ ∈ Rn×N and a rank r representation is found:

Ŷ n,N ≈ Ỹ n,N = Un,rΣr,rV
∗
r,N = Un,rCr,N , (5.9)

where Un,r contains purely spatial mode shape vectors and Cr,N contains r transient mode shape
coefficients on its rows. By default, DynROM selects r such that the SVD’s relative root-mean-square
error for Ỹ n,N is below 0.1%. Figure 5.14 depicts the time-dependent mode shape coefficients3
3Unfortunately, ANSYS DynROM does not provide access to the spatial modes, nor does it allow to export the ROM
output for the mode shape coefficients.
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Figure 5.14. Mode shape coefficients for a rank-7 representation with relative errors less than 0.1% on
data set 450.
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(b) Rank-7 ROM: rms(Erms(xi)) = 1.69K.

(c) Rank-20 ROM: rms(Erms(xi)) = 1.60K.

Figure 5.15. Influence of the SVD rank r on the ROM accuracy at a constant complexity of i = 3 for the
2-signal ROM450+531.

for the data set 450 at this default error setting, which results in a rank-7 representation. The
coefficients are ordered by magnitude as rows in Cr,N . A three-order decrease in magnitude
can be seen from the first mode to the three last modes in Fig. 5.14. Moreover, the transient
trajectory of the last mode coefficients has more complicated patterns than the coefficients of the
first. Replicating these patterns might be a challenge for the DynROM method.
The findings above raise the question of how the choice of rank influences the accuracy of the

ROM. Whereas r = 3 yields a relative root-mean-square error for Ỹ n,N of 0.48%, r = 7 and r = 20

yield errors of 0.089% and 0.013%, respectively. Figure 5.15 illustrates the influence of these
three rank-r representations on the ROM error. The root-mean-square error over time, denoted
as Erms(xi), results from testing on one test data set. The isocontours in Fig. 5.15 represent the
average of Erms(xi) over all 30 test data sets. In the subcaption, rms(Erms(xi)) is given to coin
the error into one error measure over space and time. One can observe a slight difference in
the error distribution from coarse patterns in Fig. 5.15a to slightly more granular patterns in
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Figure 5.16. Combined interaction of rank and complexity that influence the ROM accuracy. ROMs with the
same complexity are grouped in ascending order from left to right. Bars represent the average
of the error measure rms(Erms(xi)) on the test group. Boxplots indicate the distribution of
rms(Erms(xi)).
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(a) Complexity i = 1: rms(Erms(xi)) = 3.32K. Error contours clipped
at 6K. Maximum error is 15K.

(b) Complexity i = 2: rms(Erms(xi)) = 1.67K.

(c) Complexity i = 3: rms(Erms(xi)) = 1.60K.

(d) Complexity i = 4: rms(Erms(xi)) = 1.06K.

(e) Complexity i = 5: rms(Erms(xi)) = 0.83K.

Figure 5.17. High complexities employed within the DynROM approach allow training ROMs with excep-
tionally low test errors.
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Fig. 5.15b and Fig. 5.15c. The occurrence of dark red areas on the right-hand side is slightly
reduced with increasing rank. However, no clear trend can be established for the overall error
measure rms(Erms(xi)) that varies from 1.60K to 1.69K and back to 1.60K. Investigating the rank
together with the complexity i of the ROM is more instructive. Indeed, i = 3 is chosen for Fig. 5.15,
as this is the highest complexity where the rank-3 ROM does not show instabilities in the form of
highly deviating solution trajectories. Figure 5.16 depicts the error levels of the ROMs when both
rank r and complexity i are considered. ROMs with the same complexity are grouped in ascending
order from left to right. One can observe a trend of reduced error levels when increasing the
complexity from 1 to 5. This behavior agrees with the findings in Sec. 5.3.1. Up to a complexity
of i = 3 the rank r does not significantly influence the error. For i = 4, the rank-3 ROM becomes
unstable for selected test data sets. This can be seen from the mean being biased by one outlier
ROM evaluation with values far outside the variable range. The median and interquartile range
remain less sensitive to the single outlier. For i = 5, the ROM with rank r = 20 can be trained
to even lower test error measures. Figure 5.17 depicts the average for all stable rank-20 cases of
the 2-signal ROM450+531. Up to a complexity of 4, the ROMs struggle to replicate the hotter
zones of the food item caused by the conjugate simulation of the convection oven and food item.
At i = 5, those zones are captured with very high accuracy. Here, the combination of increased
rank and high complexity seem to interact in a sweet spot. The error of the ROM remains below
1K for large portions of the domain, and the global error measure is rms(Erms(xi)) = 0.83K,
which can be considered a remarkably good result given the fact that testing is performed on 30
representative and fair data sets. The error is reduced by a factor of four compared to the ROM
with i = 1. For i = 6, a threshold for error reduction is reached. Although the training error is
still reduced for i = {5, 6} (results not shown), the corresponding ROMs become highly unstable
during testing. Presumably, over-fitting to the dedicated training data entails a loss of generality
and ROM stability. Considering that the rank r determines the number of states of the DynROM
ODE system (plus the number of free variables), one may conclude that the selection of i < r

ensures better stability of a ROM until a certain threshold is reached and instabilities of the ROM
start to appear. Depending on the patterns in the field data, it may be beneficial to increase the
rank of the SVD such that higher complexities and even lower ROM test errors can be attained.

5.4.1.2. Field data ROM run times

One may suspect that switching to field data ROMs would entail significant performance losses
compared to point data ROMs. Fortunately, this is not the case because of the SVD. The time
requirements to execute a point data ROM do not differ significantly for field data ROMs. Only the
mode shape coefficients Ĉr,N must be replicated with an ODE time stepping scheme. Themaximum
number of mode shapes is 20 in the benchmarks above. A corresponding execution time of such
ROM is 0.37 s on average. The decompression to field data is the algebraic expression X̂n,N =

Un,rĈr,N . Such matrix-vector products and potential further algebraic expressions to obtain
derived quantities of interest, e.g., the average surface temperature, are not too computationally
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expensive. If secondary food variables are of interest within an MPC task, the ODEs of Sec. 2.3.3
must be integrated in time while utilizing the temperature trajectories generated by the ROM.
Simulations of 1400 s of real time in 20 points would require additional 0.30 s on the same hardware
(ODE45 solver, fixed time step ∆t = 10 s, serial execution within MATLAB). Whereas the 20 points
of interest might be sufficient for many applications, other scenarios might rely on field data for
the secondary variables. The simulation for one secondary variable with the entire temperature
field requires additional 23 s. Here, it would be worth a try to train additional ROMs for the
secondary variables. Studies by Pham [188] suggest that ROMs that include secondary variables
and temperatures have reduced output quality compared to ROMs with only temperatures.
Consequently, a tradeoff between accuracy and speed must be found.

5.4.2. Efficient design of experiments for field data reduced-order models

The discussions in Sec. 4.3.3 elaborate how simulations of realistic-sized multi-physical, coupled
problems can easily take weeks or months to solve on modern cluster PCs. Consequently, the
training data generation of field data ROMs makes use of the forerunner concept: Instead of again
performing the (time-consuming) correlation search with the full-order model of the convection
oven, one can resort to the correlations already found on a reduced-size simulation model. This
forerunner model may be a by-product of the simulation model development. In computational
engineering, one would seldom derive a new simulation model directly with all physical couplings,
employing a fine mesh and the problem’s detailed geometry. Instead, the individual components
of the model are validated step-by-step. They are assembled into a model of smaller size and
dimension. This procedure is followed in Chapter 4. The hygroscopic capillary-porous model in
conjugate flat plate configuration can be considered a forerunner of the convection oven model.
All required physical models are present, but geometric particularities are not considered. Not
by chance, comparable average heat transfer conditions are simulated in the conjugate flat plate
model and in the convection oven model. Thus, the simplified setup serves as the forerunner
model to perform the efficient design of experiments’ pre-simulations to identify correlations. In
Sec. 5.2.3, data set 450 serves as good training data to generate a 1-signal ROM. ROM361 lies in
the midrange, and ROM483 is one of the worst, stable 1-signal ROMs. A good training partner for
ROM450 is data set 531, as identified with the proposed similarity chart in Fig. 5.10. Table 5.6

Table 5.6. Similar error trends for point and field data ROMs. Comparison of one top, mid and end-range
ROM of the flat plate case and the 2D convection oven case, respectively.

Conj. flat plate at B′ Convection oven field data
Training data Complexity Erms/K Eiqr/K Emap/% rms(Erms(xi))/K rms(Eiqr(xi))/K rms(Emap(xi))/%

450+531 5 − − − 0.83 0.51 0.18
450+531 2 0.97 1.10 0.25 1.66 1.30 0.37
450 2 1.58 1.58 0.30 1.94 1.45 0.46
361 2 2.47 2.97 0.58 2.01 1.47 0.47
483 2 5.29 4.75 1.18 2.64 2.53 0.62

118



5.5. Conclusions from the reduced-order modeling studies

summarizes the corresponding error measures. The same error trends persist for the convection
oven field data ROMs. One can assume that correlations and good training partners found on
the forerunner model are also valid for the convection oven problem. Exploiting this association
of models would require only one-to-two simulations of the physical problem in full geometric
representation to derive a 2-signal ROM.

5.5. Conclusions from the reduced-order modeling studies

The research presented in this chapter demonstrates that data-driven reduced-order modeling is a
powerful method for developing accurate and efficient digital twins for industrial applications. The
employed methodology is not dependent on modeling software. With only one-to-two training
data sets, data-driven ROMs having high accuracy and speed-up can be created. The proposed
efficient design of experiments supports selecting appropriate training data sets.

Summary and conclusions concerning the ROM performance

The ROMs presented in this chapter can provide significant speed-ups compared to real time. This
results in suitable tools for on-device MPC. Attainable speed-ups for point data ROMs of up to
eight outputs are approximately Sp ≈ 3.6× 104 with characteristic solution times of one-tenth of
a second — without imposing a noticeable computational cost on a single-core processor. In less
than half a second, field data ROMs with 4649 points in space and 140 points in time can reproduce
the output of full-order models. Besides the significant speed-up, the data-driven ROMs show
excellent test accuracy on large, representative test data groups. In particular, root-mean-square
errors for the best point data ROM are 0.30–0.74K, depending on the test group, and 0.83K for
the field data ROM. Compared to the variable range of 279.15–450.15K, this is a relative error
of 0.18–0.49%. The accuracy achieved by the ROMs is superior to the accuracy achieved by the
hygroscopic, capillary-porous food model (Erms = 0.9K) or the validation error of the soft-matter
model (Erms = 2.4–3.4K). Particularly, the field data ROM can capture the highly heterogenous
temperature fields stemming from the conjugate simulation of heat and mass transfer inside a
convection oven, see Fig. 4.25 and Fig. 5.17. The neural ODE augmentation mainly attains the high
accuracy, which involves adding i free variables to the ROM ansatz. Compared to linear ROMs, this
reduces the average test error by a factor of four. A lower complexity than the maximum possible
should be employed to ensure ROM stability. A clear sweet spot for accuracy and stability is often
identifiable when testing is performed on large enough test groups. Choosing a sufficient number
of outputs, such as 4–8 probe locations for point data ROMs or 7–20 mode shape coefficients for
field ROMs, improves ROM training. When the ODE ansatz has more state variables and more than
one training data set, it is possible to apply a higher complexity i while being numerically stable.
This holds especially for field data ROMs, where high complexities keep accuracy remarkably
high, and the underlying SVD ensures a low computational load of the ROM.
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In general, generating field data ROMs can be considered a “chicken–egg” problem. Suppose
only five-to-ten derived variables of interest are evaluated within an MPC environment. In that
case, it is questionable whether field data ROMs are required. A good alternative might be to
train those derived variables directly as a point-data ROM. It would not require performing the
SVD, the rank-r compression, the mode shape replication with ROMs, the decompression and the
final calculation of the derived variables from the ROM’s field data. This might be an unnecessary
chain of errors that can be circumvented with point data ROMs.
Three limitations of the DynROM method could be identified during the studies. First, the

initial condition present in the training data must be identical. Owing to the black-box nature of
ANSYS DynROM, trained ROMs always begin their output at the initial conditions of the training
data. From a practical point of view, this does not represent an obstacle to deriving digital twins
of thermal food processing. Usually, food is stored at controlled temperatures before processing.
Additionally, one could enhance the digital twin concept by training various ROMs at different
initial conditions. Only a few megabytes of storage are needed to store point data ROMs exported
in the FMU format.
Second, the trained ROMs depend on the initial values of the free variables. A start from

different values for the state variables would also require specifying appropriate initial conditions
for the free variables. Without knowing an appropriate initial condition, the latter specification for
the free variables is not yet possible in DynROM. On request, ANSYS acknowledges the issue and
considers addressing it in future releases. The restart of a ROM from defined initial conditions is
often needed during MPC tasks. A solution to this issue is proposed in Chapter 6.
Third, to avoid obscuring the training process, ANSYS suggests training only outputs of the

same physical unit. However, preliminary tests by the author and Pham [188] indicate that mixing
physical units within one ROM might not necessarily decrease its quality. In certain combinations,
this might even be beneficial. The co-learning of temperature for a ROM of secondary variables
could enhance the training effect, as the temperature might serve as a latent variable in the ODE
system. In other cases, e.g., co-learning of water concentration together with temperatures, the
accuracy of the temperature predictions is decreased compared to a temperature-only training
run. These findings have the potential for future exploration.

Summary and conclusions concerning the efficient design of experiments

The proposed efficient design of experiments closes the gap in how to select only a few appropriate
training data sets to obtain accurate ROMs. It correlates features of training data with error
measures of 1-signal ROMs. Acknowledging such trends, good training data sets can be selected,
or even better ones can be generated.
When selecting a suitable excitation signal type, one must distinguish ROM training, testing, and

operation. In this work, ROM training is most successful with APRBS-excited data sets. However,
a real convection oven cannot replicate the instant jumps in oven temperature. These findings
oppose common recommendations in the literature, where signal types close to operational signals
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are suggested for training [96]. For APRBS, sinAPRBS, single-step, or single-sine test sets, APRBS-
trained ROMs exhibit the lowest average test errors for the presented problems. Remarkably,
APRBS-trained ROMs outperform their transformed sinAPRBS counterparts. Multi-sines may
provide more suitable training signals if the operating environment is solely sinusoidal.
Testing needs to be done on fair and objective test groups. Random generation and selection of

training data, such as the k-fold cross-validation, may not necessarily represent the output space
equally at all positions, as demonstrated for the soft-matter model. Selecting data sets based on a
χ2 test, one can establish, e.g., a uniform distribution of the medians of the output variable. Fair
test groups are beneficial for finding correlations between data set features and error measures.
Besides using fair test groups, testing might also be performed with different excitation signal
classes. SinAPRBS data sets most properly emulate the convection oven operating temperatures.
However, testing on APRBS is considered conservative, as APRBS-trained ROMs exhibit even lower
test errors on sinAPRBS test groups in this work.
The pragmatic approach of using a forerunner model allows the economized computational cost

of the efficient design of experiments. An a priori search of correlations is performed on simpler
forerunner models. Forerunner models can be a by-product during the usual modeling work in
computational engineering, where physical, geometric and dimensional complications are tested
and increased step-wise. Only one-to-two final full-order model simulations are required at the
end. In this work, a similar ROM test error trend can be established between the forerunner and
full-order model, given the prerequisite that both models contain identical physical models and
operational conditions to ensure comparability. Future work could investigate the correlations
between forerunner and full-order models more in-depth. Data and time-consuming studies could
prove that correlations found in the forerunner concept also hold for the full-order model.
Correlations between data set features and ROM test errors vary depending on the physical

model. Whereas high standard deviation in surface temperatures can serve as a good feature
to select training data for the soft-matter model, derived properties of the APRBS signal serve
as better features for the hygroscopic, capillary-porous model. Recommendations in literature
to maximize coverage of input or output space of a data set [174, 237] cannot be confirmed.
Investigations presented in [137] demonstrate that no beneficial correlation between input space
coverage and ROM test error could be found for the soft-matter model.
Notably, low correlation values in the Pearson correlation matrix only indicate that no linear

correlation exists. However, one might observe nonlinear dependencies between data set features
and error measures. This limitation is partly lifted in this work through the choice of error
measures, of which some behave linearly or quadratically in a local or global sense. Similarly,
nonlinear data set features could be derived in future research. Nonetheless, the pre-search is not
in vain even if no correlation can be found for any feature and error measure. The performed
parameter sweep can serve to select the best training data set that exists. Likewise, independent
of whether a correlation can be established, a similarity chart for the best 1-signal ROM facilitates
the selection of additional data sets that enrich the ROM accuracy. An appropriate partner data
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set shows dissimilarity to the base data set, and elevated mutual 1-signal ROM test error levels
should be considered to select potential training partner data sets. Moreover, all viable training
partners should create excellent 1-signal ROMs.
Based on the results in this chapter, the following practical summary of the efficient design of

experiments can be given in the style of a checklist:

I. Validate the physics and ensure the numerical accuracy of simulation on a geometrically
simpler, potentially 2D, forerunner model.

II. Select and generate excitation signals that are appropriate for the problem at hand
A. APRBS signals can be a good starting point for nonlinear system identification unless
testing and application are exclusively sinusoidal. Here, consider multi-sines.

B. For APRBS synthesis, divide the maximum overall process time into a manageable num-
ber of input steps/operational conditions (such as four steps in this study, considering
the largest time constant of the model).

C. Simulate the forerunner model with a significant number of random signals, e.g.,
50−100, to gather sufficient data sets covering the desired operating conditions.

III. Consider the usage of fair test data groups
A. Check whether a group of test data sets might bias the error feedback of 1-signal ROMs.
B. Data set selections based on χ2 tests can furnish fair test groups if the desired distribu-
tion of the outputs is known.

C. Consider sinAPRBS as an appropriate test signal if the physical process device cannot
realize the immediate steps of the input signal (such as the thermal lag of convection
ovens).

IV. Establish the efficient design of experiments in TwinLab
A. Design and calculate data set features. This work’s features might give inspiration for
new, potentially nonlinear features.

B. The data sets should be filtered based on their features, such as std(TB) in this work.
When a priori features are yet unknown, perform a random selection.

C. 10−20 data sets should at least be employed to train a preliminary 1-signal ROM each.
The complexity should be selected to be moderate, such that stability is ensured.

D. Derive global error measures of the 1-signal ROMs.
E. Search for correlations between error measures and data set features and design better
data sets with the knowledge of what features correlate with low ROM test errors.

F. Choose the best 1-signal ROM as the base case.
G. Select potential training partners with a similarity chart for the base 1-signal ROM,
e.g., based on signal dissimilarity and the base case 1-signal ROM test error on the
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residual data sets.
H. Good training partners have at least medium dissimilar excitation signals. Furthermore,
the base case 1-signal ROMs should at least show medium test errors on the potential
training partners. The latter should also provide high-quality 1-signal ROMs.

I. Train 2-signal ROMs with training partners and test the ROM errors.
J. Repeat combinations of training partners until the test error stagnates.

V. Exploit the similarity between the forerunner and finished (3D) full-order models. Simulate
1-2 data sets of the final full-order model and train the corresponding ROM.
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This chapter briefly demonstrates the potential of physics-based, data-driven digital twins for
developing advanced control algorithms. In an exclusively virtual setup, the predictions of the
accurate surrogate models are employed to control the inner temperature of a convection oven.
The core of the intelligent control approach entails an MPC algorithm. MPC is among the most
popular closed-loop approaches for advanced process control [72]. The theoretical foundations
and a condensed description of the implementation in MATLAB can be found in Sec. 6.1. It
also introduces a proposed sub-optimization approach, which allows utilizing FMUs with fixed
initial conditions. Section 6.2 demonstrates how the MPC algorithm deals with the remaining
model/reality mismatch. Moreover, the MPC algorithm is exposed to challenging scenarios where
autonomous decision-making is mandated. Conclusions from the presented use cases on the assets
of physics-based, data-driven digital twins are drawn in Sec. 6.3.

6.1. A digital-twin-based model predictive control algorithm

The presented MPC solution approach and the decision-making scenarios were conceptualized
and implemented for this thesis. Dorer [73] was given parts of the problem and wrote the first
version of the code during his master’s thesis in 2021. However, the results presented in this
chapter were produced using a thoroughly revised version of the original code, including corrected
loss functions, streamlined parameterization and optimizer selection for accuracy and speed, and
improved FMU readouts at higher sampling rates to increase the prediction accuracy. In addition,
an automatic command line call of the COMSOL model mimics the real process. Instead of using
section-wise constant oven temperatures in the model call, the thermally delayed behavior of a
convection oven temperature is emulated with a PT1 block.

6.1.1. Control vector parameterization and model predictive control

This section briefly introduces the concepts of optimal control, control vector parameterization and
MPC. The theoretical foundations are taken from [72, 108, 152], where the reader is referred to for
further reading. Optimal control is an open-loop control algorithm that relies on a process model.
Prior to the start of the process, an optimal control approach determines a set of control variables
that optimizes the performance of a dynamical system model. The optimization is realized by
minimizing a cost function that includes desired process targets. A direct solution method for
an optimal control problem is approximating the control variables with a polynomial over time.
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The approximation coefficients are then employed as design variables in a (in this case) nonlinear
optimization problem. The simplest form of this so-called control vector parameterization approach
utilizes constant subsections within the control signal.
Consider the benchmark setup of thermal processing of chicken meat, as presented in Sec. 4.1.2.

Oven temperature set points Tset,k are the design variables. Those must remain within the sensible
range of oven temperatures Tset,k ∈ [291.15K, 450.15K]. A more realistic temperature trajectory
is obtained in this work by superposing a PT1 model to each set point. A PT1 block consists of a
proportional gain (P) and a first-order time lag (T1). The step response of the oven temperature
between tk and tk+1 reads:

Toven(t) = Tset,k + (Tset,k+1 − Tset,k)
(︂
1− exp−(t−tk)/τ

)︂
, (6.1)

where τ = 60 s is the estimated time constant of the oven and Tset,k+1 − Tset,k is the gain.
Figure 6.1 (center) illustrates the resulting exponential trajectories for Toven. To give the emulated
PT1-behavior the possibility to equilibrate, the time window of 1000 s is divided into four MPC
time steps. To ensure sufficient pathogen inactivation, it is required as a safety constraint that the
core temperature TA (tend) reaches TA,safe = 347.15K at the end of the process [247]. The final
moisture concentrationMdb (tend) and the final texture Ha (tend) can be considered as possible
process variables subject to optimization. If the moisture concentration and the hardness shall
reach certain end valuesMdb,end and Haend, the nonlinear optimization problem reads:

min
Tset,k

J = wHa [Ha (tend)−Haend]
2 + wM

[︁
Mdb (tend)−Mdb,end

]︁2
, (6.2)

s.t. TA,safe − TA (tend) ≤ 0 , (6.3)
291.15K ≤ Tset,k ≤ 450.15K , (6.4)

where wHa = 10 and wM = 3 are the weights of the penalty terms chosen to be most suitable for
the presented use cases. Internally, all variables are treated with a unity-based normalization.
The process end time is termed tend. A maximization of moisture concentration and minimization
of hardness is realized by setting the moisture concentration and hardness to their initial values
(Mdb, end = 0.76 and Haend = 14N). The optimal control policy of oven temperature set points is
determined by numerically solving the constrained optimization problem in Eq. (6.2)–(6.4).
The optimal control approach presented so far is carried out only once before the start of the

process. It cannot cope with model/reality mismatch and unexpected disturbances. Closure of the
control loop is achieved by recomputing the optimal control problem at discrete times during the
process. For example, at a time tk, the optimization is performed again for the remaining future
temperature setpoints.
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Figure 6.1. Digital-twin-based model predictive control approach.

Note that the loss function presented here is based on rough common sense estimates of
what would be a plausible target. It serves to demonstrate what an intelligent MPC-based
control algorithm might look like. The focus of upcoming studies lies on the accuracy and speed-
up, as well as the computational approach that allows to apply FMUs in the context of MPC.
However, generating enhanced loss functions would certainly require further expert input from
food scientists and practitioners. Browning parameters within the loss function would possibly
mandate different oven temperature trajectories. Additional power-related loss parameters could
be added to explicitly account for energy savings.

6.1.2. Circumventing fixed initial conditions with a sub-optimization

During an MPC step at tk, actual measurements of the process variables (if available) can be
fed to the model to improve future predictions. Namely, the model for core temperatures could
be initialized at tk with the actual core temperatures from the measurements. As concluded in
Sec. 5.5, the FMUs stemming from ANSYS DynROM possess hardcoded initial conditions. For this
reason, the FMUs cannot be reinitialized at later points in time. Simulating the FMU with the
previously realized oven setpoints inherently induces a difference between predicted and real core
temperature, which comes from the inaccuracy of the ROM. A sub-optimization is conceptualized
to still benefit from the measured values. At tk, the last realized setpoint in the control vector
could not, of course, be changed because it lies in the past. However, it can be altered for the
model run. Therefore, the last oven temperature setpoint Tset,k−1 is artificially changed to Tsub,k−1,
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which minimizes the difference between real measurement and model prediction for TA between
tk−1 and tk. An additional equality constraint requires that the two values equal at tk. The
corresponding sub-optimization problem reads:

min
Tsub,k−1

Jsub =
∫︂ tk

tk−1

(︁
TA (t)− TA,real (t)

)︁2
dt , (6.5)

s.t. TA (tk)− TA,real (tk) = 0 , (6.6)
291.15K ≤ Tsub,k−1 ≤ 500.15K . (6.7)

6.1.3. Numerical procedure

One run of the MPC algorithm is initialized by solving the optimal control problem for all oven
temperature set points. Under the assumption of a convex loss function, a global optimum is
sought for the problem in Eq. (6.2)–(6.4). In a first heuristic step, the genetic algorithm ga (two
generations, EliteCount = 5) is utilized to find a good initial guess for the design variables. The
initial guess is further refined with the gradient-based local optimizer fmincon employing the
sequential quadratic programming (sqp) algorithm. The latter is recommended because of its
rapid convergence for medium-size optimization problems [240].
At tk ∈ {250 s, 500 s, 750 s}, each MPC step starts with a sub-optimization step, respectively: The

oven temperature setpoint of the previous control step is artificially optimized such that the model
output TA (tk) matches best the real core temperature TA,real. Then, the residual, future design
variables Tset,k are updated within the MPC optimization. Given that the previously determined
control vector already provides a good initial guess for both the sub-optimization and the MPC
optimization, the local optimization algorithm fmincon (sqp) is employed again. As no explicit
gradient of the FMU with respect to the design variables is available, the gradient is reconstructed
with forward finite differences by fmincon. Preliminary parameter tests identified robust optimizer
settings (TolX = 1× 10−5 ; TolFun = 1× 10−6 ). The parameters of the finite difference stencil
could be left at standard settings.
Whenever a design variable changes during optimization, the FMU of ROM745+795 is au-

tomatically simulated in MATLAB Simulink with the optimizer-defined oven temperature tra-
jectory. The explicit ODE45 algorithm (RelTol = 1× 10−6 ) provides the temporal solution of
the FMU within MATLAB Simulink. In the absence of a real process, the simulation model
within COMSOL Multiphysics mimics reality in the presented virtual MPC setup. Notice that the
validation error of this model is Erms = 2.38K for the core temperatures. At every grid point
tk ∈ {250 s, 500 s, 750 s, 1000 s}, an updated trajectory of the oven temperature is computed. The
algorithm then automatically calls the COMSOL model and queries the real core temperature
trajectory. Note that the time delay between the measurement of reality and the subsequent run
time of the re-optimization is not reflected in the following demonstration as it is quite small.
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6.2. Application scenarios for autonomous thermal food processing

In the following, two selected decision-making scenarios are presented. The first one highlights
how efficiently the derived digital twin acts within the MPC algorithm when it operates within its
trained temperature range and time horizon. The second scenario forces the digital twin to leave
this time horizon to ultimately adapt to new optimization targets during operation. Nevertheless,
the algorithm masters this challenge with success.

6.2.1. Mitigation of the reduced-order model error during undisturbed operation

A digital twin is mandated to be a highly accurate reflection of a process. However, there is
always some mismatch between the model and reality. This baseline case demonstrates how
the sub-optimization and the MPC routine mitigate the mismatch between the ROM and the
underlying full-order model.
As motivated earlier, a COMSOL model mimics the reality in the presented virtual setup. Since

the numerical solution errors of the simulation model are shown to be negligibly small, the only
significant error source is the test error of ROM745+795, which is 0.30–0.74K depending on the
test set. Figure 6.2 illustrates trajectories and statistics on the baseline case with ROM745+795.
The realized trajectory Toven,online by the MPC algorithm does not differ significantly from the
pre-calculated offline policy Toven,offline. This is a strong indicator of a low model error. Further
evidence confirming this hypothesis is provided by the performance of the sub-optimization
algorithm, which applies only minor adjustments (red x-markers) compared to the realized
set points (black squares) to keep TA,online (FMU model) aligned with TA,real (COMSOL model).
Consequently, the predictions and the realization for the texture parameter Ha are also almost
identical. Note that ROM745+795 is not only trained to reproduce TA and TB, but also Mdb.
Its reproduction is required inside of the loss function. Figure 6.2 illustrates the accuracy of
the prediction, which only misses reality by Emax = 0.01. However, a slight unphysical rise in
Mdb is also observable during the first third of the prediction. One MPC step takes maximum
tMPC + tsub ≈ 3.73 s to be solved on one core of an Intel Xeon E5-2687W v4 (3.2 GHz) processor.
This corresponds to a feedback delay of 1.5% compared to the MPC step length of 250 s. Like all
steps, the total time of the second MPC step is strongly dominated by the time required to realize
the model runs and the subsequent solutions of the ODE for hardness. Here, it becomes evident
that the fast and precise control of the virtual convection oven only becomes possible thanks to
the accurate and fast-solving ROM. For example, if the ROM required 12.5 s to replicate one of
the 21 model calls, the duration of the MPC algorithm would already exceed the time window
of one MPC step. In summary, minor mismatches stemming from reduced-order modeling are
mitigated efficiently by the sub-optimization and the MPC algorithm.
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Figure 6.2. Baseline case demonstrating the mitigation of the ROM error with MPC and sub-optimization.

6.2.2. Change of end time during operation

To challenge the MPC algorithm, several scenarios are conceptualized. In analogy to the SAE
J3016 levels of driving automation [216], mainly scenarios for autonomy levels 4 and 5 are
developed. This means that the process does not demand the operator to take over control despite
challenging environmental conditions. Instead, the algorithm masters the situation on its own.
For example, short-term power failures were emulated, or target variables such as Haend were
manipulated within physically reasonable limits during operation. Still achieving the required
goals, the MPC algorithm successfully reacted to these disturbances. Preliminary results can be
found in [73]. One of the most challenging scenarios is presented here: After 500 s of the run, the
required end time is changed to tend = 1800 s. This case requires a complete re-optimization of the
existing and newly added design variables, which is a potential complication for the gradient-based
optimizer. By analogy to SAE J3016, this scenario would correspond to a level-5-autonomy case
as the underlying ROM must operate outside its trained model duration of 1400 s without human
help.
Figure 6.3 shows the progression of the control and process variables and illustrates additional

statistics of the run. First, the optimal control algorithm plans the same sequence as for the
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6.2. Application scenarios for autonomous thermal food processing
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Figure 6.3. Change of process end time to tend = 1800 s before executing the MPC step at tk = 500 s.

baseline case (blue dotted line). The MPC algorithm takes over this trajectory again until the
time tk = 500 s. Now, before calculating the future design parameters, the end time is changed.
Accordingly, further entries extend the control vector for tk = {1250 s, 1500 s, 1750 s, 2000 s} with
initial guesses Tset,k = 300K. The chosen end time of tend = 1800 s serves to demonstrate that
the algorithm can also realize end times outside the grid points. To this end, another degree of
freedom is inserted at tk = 2000 s.
The sub-optimization approach is increasingly challenged from tk = 1000 s onward. Manip-

ulations become necessary to keep the course of TA,online in agreement with reality. This can
also be seen in Jsub, which increases visibly towards the end, as the mismatch can no longer be
compensated entirely. Although the grid points still match, more vigorous manipulations become
necessary to bridge the thermal lag of the model between Toven, online to the core temperature
TA,online. Thus, the superposed waveform of the online solution stems exclusively from the sub-
optimization. The solution would presumably be smoother if the ROM could be initialized at
arbitrary initial conditions. This example also illustrates why finer time grids are unsuitable for
the sub-optimization approach. In shorter time windows, the manipulation may no longer be
effective.
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6. Model predictive control studies

Overall, the algorithm masters this challenge successfully. It adjusts promptly to the new
situation: In the MPC steps at tk = 500 s and tk = 750 s, the oven temperature is lowered before
finishing the food up to the new end time. Compared to the offline predicted value of J = 3.04 at
the preliminary end time of tend = 1000 s, the loss function only slightly increases to a final value
of J = 3.26. The moisture concentration is slightly better after 1800 s than in the offline prediction.
Meanwhile, the final value of Ha increased only marginally by 1.49N. The most critical MPC step
at time tk = 500 s requires 28.96 s for its calculation (including sub-optimization), although the
FMU model and the ODE for Ha are both run 187 times, respectively. In total, the ROM is executed
501 times in this scenario, and the FMU simulation time accumulates to only 46.6 s.

6.3. Conclusions from the model predictive control studies

The examples shown provide a good impression of the great potential that accurate and fast-
solving digital twins offer for advanced control scenarios. It becomes clear why digital twins may
by no means operate only in real time to achieve process autonomy. Only multiple, complete
predictions of possible future scenarios enable algorithms like the MPC shown here to make good
decisions autonomously. If these predictions should be realized on existing process hardware and
software, particularly computationally inexpensive models are required. Feedback delay can be
significantly reduced if only slight re-optimizations are required. The number of model runs can
be effectively reduced by saving optimization iterations. In return, few optimization iterations are
only needed if the model error is as small as possible. In line with the digital twin philosophy, a
model with utmost accuracy is needed. Note that all calculations of the MPC algorithm, the FMU
model calls, and the ODE integration for Ha are executed in serial on a single processor. MATLAB
operates inherently serial if no further action is taken. The parallelization of the FMU executions
and the ODE integrations show potential for even further acceleration.
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7. Summary, contributions and outlook

Autonomous processes employing artificial intelligence may contribute to a paradigm shift to-
wards more sustainable economies. Digital twins symbolize the endeavor to render simulation
insights also available to the process in operation, allowing the process control algorithms to
make better-informed, autonomous decisions [177, 253]. Digital-twin-based control algorithms
may optimize thermal food processing in terms of reduced wastage, improved food quality and
safety, and the economization of energy input. This thesis is one of the few publications that
aim to implement digital twin methodology within food science holistically, fulfilling essential
requirements of highly accurate predictions that are supplied much faster than in real time. It
supplies a technological building block to enable autonomous thermal food processing with digital
twins. The computational framework is designed to be readily applicable within the industry,
independent of the modeling approach and simulation software. Owing to its reduced computa-
tional costs, the digital twin can be deployed directly on the control unit of a processing appliance.
There, it offers knowledge about unknown food process variables, such as core temperature,
moisture content, or texture, by replicating a detailed multi-physical simulation model. The latter
couples the governing heating effects, such as convection and radiation, with a food processing
model. Employing a fast ROM of the model enables an MPC algorithm to evaluate multiple future
scenarios. Consequently, the algorithm can plan its optimal oven temperature trajectory to meet
user requirements for specific moisture content, safe core temperatures, texture, and process end
time.

Conjugate heat and mass transfer simulations better capture product-process relationships

Using physics-based models as a foundation for accurate digital twins is a central pillar of this
work. First, this entails employing a mechanistic food model with as few fitting parameters
as possible to potentially provide better generalization outside the validation setup. Second, it
requires capturing the thermal processing with a conjugate heat and mass transfer model, a
practice seldom found in food science literature.
To demonstrate the impact of a conjugate model in this thesis, a thermal process (non-isothermal

flow of air and thermal radiation) is coupled with a mechanistic food processing model developed
by Datta et al. [55, 175]. For hot air flow over a flat food item, the conjugate couplings induce
significant deviations in primary variables, such as Emax = 15.4K for the temperature. The derived
heat transfer coefficient varies more than 50% over space and time, although air velocity and
temperature are constant. Adding thermal radiation leads to even more pronounced deviations of
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7. Summary, contributions and outlook

Emax = 35.6K for the temperature and Emap = 30.8% for the water saturation. Such deviations
would not be captured by models employing constant transfer coefficients. Within a hypothetical
convection oven model, the derived heat transfer coefficient at the food surface varies significantly
with αderv ∈ [15, 60]Wm−2K−1. Comparing two food items within the oven reveals that the
temperature locally differs up toEmax = 48K (30.6% relative error), whereas the water saturations
differ up to Emax = 0.3 (60% relative error). The conjugate convection oven simulations reveal
that the contribution of thermal radiation compared to convection varies from 19.1% to 31.6%
depending on the position of the food item. The radiative heat flux also has an explicitly transient
behavior.
In the presented food models, it becomes apparent how much attention is dedicated to modeling

the mechanistic effects within the food accurately, e.g., with Darcy and capillary fluxes, binary
diffusion, distributed evaporation, water activity, temperature-dependent material parameters,
porosity or permeability. In contrast, constant transfer coefficients are employed to model the
interaction with the thermal process or the surroundings. In light of the results discussed above,
the practice of validating the food models with constant transfer coefficients is at least questionable
— especially when food model parameters are fitted such that the model output matches the
experimental data. In the end, one can assume that the fitted food model parameters may
compensate for erratic heat and mass transfer modeling during validation. Notice that empirical
correlations from literature rely on experiments for single, hypothetical configurations that typically
do not match the complex conditions within a realistic convection oven setup. Lumped heat transfer
coefficients cannot capture the spatial and temporal variation of radiative and convective heat
fluxes, as presented in the convection oven model. Moreover, when radiation is present, mass
transfer coefficients derived from analogy considerations lose their validity [66]. The sensitivity
study conducted in this work gives insight into the relative proportions of the physical effects
within the food and those of the convective and radiative heating. The changes induced by the
conjugate flat plate setup are within the sensitivity range of one of the most crucial food model
manipulations: removing the evaporative source terms from the water conservation equation.
Additionally, the position-dependent effects of local convection and radiation within the convection
oven become the most dominant on the overall simulation outcome.
This work demonstrates that the conjugate coupling of convection and radiation to a food

processing model better captures the mutual cause-and-effect relationships of process variables
and heating mechanisms than transfer-coefficient-based approaches. The concepts presented here
could inspire the development of more conjugate food processing models. Indeed, this thesis may
pave the way for many possible directions regarding future research; the experimental validation
of the conjugate simulation model could be a starting point. Using low-order ansatz functions to
decrease the degrees of freedom in the simulation model potentially renders a 3D model solvable
within reasonable time frames. To this extent, mainly the distributed, non-equilibrium evaporation
approach requires the use of high-order ansatz functions. The complications faced in this work
are in agreement with Datta’s comment on implementing the evaporation model in COMSOL
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Multiphysics: “Thus, complexities resulting from rapid evaporation in porous media (a physics that is
not typically built-in) will continue to be a challenge even in such apparently flexible codes” [54].
This might explain why the Moist Air module within COMSOL Multiphysics employs a different
evaporation model. The effects on the primary variables would need proper investigation before a
switch could be made to the module.
Besides solving the 3D model, many additional engineering problems must be addressed to

transfer the concept to actual appliances. On the process side, the heating coil, the ventilation
system and the fume exhaust system would need explicit modeling. Investigating different
velocities and the effects of recirculating moist air could be a promising approach. Higher steam
concentrations may require air to be considered as a participating medium within the radiative
heat exchange, which in return implies significantly higher computational cost when employing
the discrete ordinates method. Considering the significant impact of radiation within this work,
a promising path would be the derivation of a coupled model that relates the local emissivities,
e.g., to the surface browning. Ibarra et al. [126] reported emissivities of chicken fillets that vary
during cooking from 0.91 to 0.64. Almeida et al. [3] investigated the spectral emissivities of peeled
potatoes.
Concerning food processing modeling, first efforts towards more robust models aim to capture

the heterogenous shapes and material properties of the food items [197]. To account for the
position dependence of heating effects and the overall loading of the oven, a pragmatic approach
is to guide the end-user on where to place the food items. Multiple ROMs could then capture the
placement combinations. The efficient design of experiments would certainly help to keep the
simulation efforts manageable. The DynROM method allows for shape morphing, an interesting
feature that could capture the variability in the size of the food items.

Training of accurate, data-driven ROMs with only one-to-two training data sets

Long computational times and the high cost of transient, large-scale simulation problems are
hurdles that must be overcome for digital twins based on physical models. Data-driven reduced-
order modeling is a promising approach that adapts to a multitude of simulation approaches, be
it in commercial, open-source or custom software. ROMs that employ neural networks to model
transient problems have not yet reached awareness in food science. The research presented in
this work demonstrates that neural ODEs are a powerful method for developing accurate and
efficient ROMs. Attainable speed-ups for point data ROMs with eight outputs are approximately
Sp ≈ 3.6 × 104 with characteristic solution times of one-tenth of a second without imposing a
noticeable computational cost on a single-core processor. In less than half a second, field data
ROMs with 4649 points in space and 140 points in time can reproduce the output of full-order
models. Besides the significant speed-up, the data-driven ROMs provide excellent test accuracy on
large, representative test data groups. The root-mean-square errors are 0.30–0.74K for the best
point data ROM and 0.83K for the field data ROM. This is a relative error of 0.18–0.49% compared
to the variable range. In particular, the accuracy achieved by the ROMs is superior to the accuracy
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achieved by the benchmark of the hygroscopic, capillary-porous food model (Erms = 0.9K) or
the validation error of the soft-matter model (Erms = 2.4–3.4K). The ODE augmentation within
DynROM reduces the average test error by a factor of four compared to linear ROMs. Future work
could also examine the applicability of the proposed efficient design of experiments for other
variants of ROMs, such as the augmented neural ODEs by Dupont et al. [74] or the Runge–Kutta
neural networks by Zhuang et al. [265]. Likewise, investigating mixed physics during ROM
training to utilize the latent variable effect shows potential for future exploration.
The proposed efficient design of experiments attempts to answer how to select only a few

appropriate training data sets to obtain accurate ROMs. When selecting a suitable excitation
signal type, one must distinguish ROM training, testing, and operation. In this work, ROM
training is most successful with APRBS-excited data sets. SinAPRBS data sets most properly
emulate the convection oven operating temperatures during ROM testing. Testing of the ROMs
is performed on so-called fair data sets that are selected with a χ2 test. A full-order model
is considered too slow for multiple preliminary simulations, as it typically may take days or
weeks to solve numerically. An a priori search of correlations on simpler forerunner models
enables the economized computational cost of the efficient design of experiments. Forerunner
models can be a by-product during the usual modeling work in computational engineering, where
physical, geometric and dimensional complications are tested and increased step-wise. The Pearson
correlation matrix reveals correlations between training data set properties and corresponding
ROM prediction errors for the forerunner model. Acknowledging such trends, good training data
sets can be selected, or even better ones can be generated. Different correlations between data set
features and ROM test errors can be found for differing physical models. The approach somewhat
adapts to the model by searching for correlations, as demonstrated for the transfer-coefficient-
based soft-matter model and the conjugate hygroscopic, capillary-porous model. Occasionally,
there might be no linear correlation between any data set feature and ROM test error. This
limitation is partly lifted through the choice of error measures, some of which behave linearly
or quadratically in a local or global sense. Likewise, nonlinear data set features or nonlinear
correlations could be sought in future research. In this work, a similar ROM test error trend
can be established between the forerunner and the full-order model, given the prerequisite that
both models contain identical physical models and operational conditions to ensure comparability.
Only one-to-two final full-order model simulations are required at the end, making the proposed
design of experiments efficient. Future work could pursue a more in-depth investigation of the
correlations between forerunner and full-order models. Data and time-consuming studies could
prove that correlations found in the forerunner concept also hold for the full-order model.
The inclined reader may question why the DynROM approach does not directly resort to

experimental data and thus avoids the tedious detour via modeling and simulation. This is
certainly a valid approach for a few simple cases. However, one may miss the predictive power
of the models for quantities that cannot be determined easily or economically with experiments.
Looking at a large amount of geometry and material data variability, a break-even point for the
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modeling efforts is quickly reached. Moreover, one is rewarded with a deeper understanding of
the underlying physics. In food science, physics-based models exceed observation-based models
in insights and predictive capability [55, 58].

Physics-based, data-driven digital twins enable thermal food processing autonomy

The designed MPC algorithm of this thesis is unique in food science and technology literature.
Operating with information from highly accurate, multi-physical simulations within an MPC
environment sets new standards in accuracy, as the errors of the digital twin are less than the
model validation errors of the food model. Unprecedented efficiency of the ROM is characterized
by lean computational cost and simulation times of 0.1–0.5 s for 1 h of real time. From the up to
501 model runs within the MPC algorithm, it becomes evident why the solutions of the digital
twin must be generated much faster than in real time. The limitations of fixed initial conditions of
the FMUs of the DynROM method are circumvented with a pragmatic sub-optimization approach,
such that the FMU can also run during operation and not only at the beginning of the process.
All in all, employing the ROM within the MPC environment echoes the core digital twin spirit
of virtually reflecting a physical process with utmost accuracy while interacting in real time to
perform bi-directional data exchange. The presented digital twins based on a conjugate simulation
model of realistic dimension and application do not trade off accuracy and speed, contrary to the
expectations discussed in recent food science literature [161, 253].
So far, the underlying food model validation errors are more extensive than those introduced by

the ROMs. Besides, the food models have only been validated for constant operating conditions,
not dynamic oven temperature paths. Hence, future interdisciplinary research projects need to
bring the domains of computational engineering and food science closer together to develop
even more accurate simulation models. The developed framework is ready to contribute to an
overall validation to render the digital-twin-based autonomy of thermal food processing a reality.
A worthwhile application scenario is the use of digital twins within a so-called combination heating
appliance: Such a cooking device could employ multiple heating modes, such as convection,
infrared or microwave radiation, to tailor the final quality of the product in terms of texture, flavor,
temperature and moisture distribution while reducing the cooking time by up to 40% [112, 199].

Contributions and outlook

The code framework TwinLab provides helpful automation of the data-driven ROM generation
from simulation data. Excitation signal generation, test group selection based on χ2 tests, data
set feature determination and global test error calculation are fully automated. Code for batch
simulations of full-order models in COMSOL Multiphysics or ANSYS Fluent considerably reduces
data handling and user-interaction efforts. Although the interfaces to these two software tools
already cover a large share of the CFD and multi-physics community, APIs to open-source software
such as OpenFOAM would also be an option in future releases. Likewise, the import and export of
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training data and readouts to and from ANSYS DynROM could be extended to other data-driven
ROM methods within the open-source domain.
The proposed efficient design of experiments can be applied to a variety of industrial or academic

problems where simulations take too long to generate large amounts of training data. Adhering
to a universal data-driven ROM approach is valuable when simulating the full-order model within
commercial software. The pragmatic proposition of the correlation-based training data selection on
a forerunner model may serve as guidance. It can inspire the development of training approaches
for data-driven ROMs with only a few data sets. Researchers are invited to extend the approach
with novel data set features or nonlinear correlation-seeking.
Overall, the digital twin framework within this thesis contributes to shifting the perspective

on digital twins towards the autonomy of processes. This is a stride that has not yet been fully
appreciated in the literature on digital twins. To some extent, the presented digital twin concept
at the device level can be understood as a counter-concept to the internet of things, in which the
sensorization of the processes and connection to the cloud is often a dogma. Not every state of a
process can be captured with a sensor. For system-critical control algorithms, it might be desired
to stay offline and still benefit from digital twin knowledge within modern control algorithms. Be
it offline or online, encrypted FMUs as large as a few megabytes facilitate the safe deployment
of the digital twins at scale. Software updates, such as improved ROMs after retraining, can be
supplied easily. As only a ROM is shipped to the devices, the manufacturer’s intellectual property
(the multi-physical simulation model) does not leave the company premises.
This work demonstrates the application of physics-based, data-driven digital twins for thermal

food processing. A relevant application area that corresponds closely with physics is the optimal
operation of fuel cells, which requires modeling a porous medium, fluid flow, heat exchange,
and additional reaction kinetics. Mobile applications are expected to emerge, e.g., within the
transportation sector, where digital twins can provide intelligent control to achieve the optimal
operating window of fuel cells. Even for problems of a different physical nature, the proposed
framework can contribute to many endeavors where physics-based, data-driven digital twins
might improve the autonomy of processes.
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A. Test and training data for ROMs
A.1. Fair test groups
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(a) Fair APRBS test group AP15.
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(b) Fair sinAPRBS test group sinAP15.
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(c) Fair multi-sine test group MS15.

Figure A.1. Fair test groups.
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Figure A.2. Fair APRBS test group AP15 [137].
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Figure A.3. Fair sinAPRBS test group sinAP15.
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Figure A.4. Fair multi-sine test group MS15.
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A.2. Excitation signals of the best training data sets

A.2. Excitation signals of the best training data sets
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Figure A.5. Excitation signals of the best five APRBS, sinAPRBS and multi-sine training data sets.
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A. Test and training data for ROMs

A.3. Pearson correlation matrices

Table A.1. Correlations between error measures (rows) and data set features (columns) for APRBS 1-signal-
ROMs (test group: AP15).

Measure T i T diff,i T diff,j |T diff,i| T oven std(Toven) Cr(Toven) std(TA) std(TB)

Erms/K 0.18 –0.39 –0.68 0.40 0.33 –0.12 –0.13 –0.05 –0.76
Emap/% 0.20 –0.38 –0.69 0.43 0.35 –0.11 –0.14 –0.06 –0.78
Emax/K 0.13 –0.47 –0.69 0.33 0.25 –0.13 –0.10 0.03 –0.70
Emed/K 0.19 –0.37 –0.72 0.50 0.35 –0.09 –0.13 –0.11 –0.83
Eiqr/K 0.31 –0.07 –0.32 0.23 0.36 –0.02 –0.07 –0.08 –0.37
R2 –0.23 0.40 0.60 –0.29 –0.37 0.13 0.14 –0.08 0.61

Table A.2. Correlations between error measures (rows) and data set features (columns) for APRBS 1-signal-
ROMs (test group: sinAP15).

Measure T i T diff,i T diff,j |T diff,i| T oven std(Toven) Cr(Toven) std(TA) std(TB)

Erms/K 0.10 –0.45 –0.68 0.28 0.22 –0.14 –0.11 0.01 –0.72
Emap/% 0.16 –0.43 –0.69 0.34 0.29 –0.13 –0.12 0.00 –0.74
Emax/K –0.04 –0.52 –0.64 0.15 0.04 –0.17 –0.07 0.05 –0.64
Emed/K 0.18 –0.43 –0.75 0.48 0.34 –0.08 –0.13 –0.05 –0.81
Eiqr/K 0.04 –0.25 –0.30 –0.08 0.04 –0.12 –0.01 0.08 –0.28
R2 –0.15 0.42 0.64 –0.28 –0.30 0.14 0.12 –0.04 0.68

Table A.3. Correlations between error measures (rows) and data set features (columns) for APRBS 1-signal-
ROMs (test group: MS15).

Measure T i T diff,i T diff,j |T diff,i| T oven std(Toven) Cr(Toven) std(TA) std(TB)

Erms/K 0.03 0.07 –0.05 –0.09 0.04 0.05 0.07 –0.15 –0.18
Emap/% 0.12 0.02 –0.11 –0.02 0.14 0.04 0.03 –0.08 –0.21
Emax/K –0.21 0.12 0.07 –0.21 –0.20 0.08 0.12 –0.24 –0.10
Emed/K 0.07 –0.56 –0.67 0.29 0.19 –0.03 –0.07 0.17 –0.53
Eiqr/K –0.12 0.20 0.18 –0.30 –0.17 0.13 0.17 –0.19 0.11
R2 –0.17 0.34 0.44 –0.15 –0.26 0.07 0.10 –0.14 0.41
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A.4. Global error measures of the best 2-signal ROMs

A.4. Global error measures of the best 2-signal ROMs

Table A.4. Testing on AP15.
ID 745 +553 +795 +312 +553+795 +371 +351 +555 +638 +692 +303 +328 +342 +625
Complexity 2 5 4 4 3 3 4 3 5 4 3 3 4 2
Erms/K 1.05 0.54 0.64 0.69 0.85 1.45 0.98 1.16 0.54 0.79 0.87 0.81 0.59 1.30
Emap/% 0.22 0.12 0.14 0.14 0.16 0.29 0.20 0.27 0.13 0.15 0.16 0.16 0.14 0.28
Emax/K 2.63 1.31 1.67 1.73 2.70 3.99 2.70 2.28 1.41 2.29 2.71 2.29 1.36 3.20
Emed/K 0.07 0.07 −0.19 0.02 0.03 0.01 0.13 −0.63 −0.04 −0.07 −0.02 −0.06 −0.12 0.01
Eiqr/K 1.25 0.62 0.64 0.73 0.80 1.31 1.05 1.43 0.51 0.73 0.75 0.80 0.72 1.44
R2 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00

Table A.5. Testing on MS15.
ID 745 +553 +795 +312 +553+795 +371 +351 +555 +638 +692 +303 +328 +342 +625
Complexity 2 5 4 4 3 3 4 3 5 4 3 3 4 2
Erms/K 0.91 0.56 0.38 0.59 0.67 1.31 0.62 0.79 0.79 0.58 0.82 0.60 0.63 0.87
Emap/% 0.20 0.14 0.09 0.14 0.13 0.29 0.14 0.19 0.18 0.12 0.16 0.13 0.15 0.19
Emax/K 2.37 1.33 0.98 1.34 2.05 3.21 1.48 1.71 1.94 1.54 2.38 1.65 1.39 2.12
Emed/K −0.07 0.26 0.07 −0.01 0.12 −0.05 0.17 −0.10 0.48 0.07 −0.12 0.17 0.06 −0.06
Eiqr/K 0.98 0.62 0.44 0.62 0.65 1.16 0.66 1.02 0.49 0.56 0.69 0.56 0.80 1.02
R2 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table A.6. Testing on sinAP15.
ID 745 +553 +795 +312 +553+795 +371 +351 +555 +638 +692 +303 +328 +342 +625
Complexity 2 5 4 4 3 3 4 3 5 4 3 3 4 2
Erms/K 1.31 0.73 0.67 0.78 1.33 1.94 1.18 1.01 0.80 0.95 1.19 1.00 0.64 1.55
Emap/% 0.28 0.16 0.14 0.16 0.25 0.40 0.24 0.23 0.17 0.18 0.22 0.19 0.14 0.34
Emax/K 3.02 1.64 1.52 1.89 3.46 4.63 2.91 2.28 2.04 2.67 3.26 2.62 1.54 3.52
Emed/K 0.25 0.21 0.02 0.06 0.36 0.47 0.31 −0.36 0.31 0.09 0.17 0.21 −0.00 0.16
Eiqr/K 1.64 0.82 0.80 0.83 1.44 2.28 1.39 1.24 0.69 0.90 1.22 1.04 0.72 1.95
R2 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table A.7. Testing on mixed test group (AP15+sinAP15+MS15).
ID 745 +553 +795 +312 +553+795 +371 +351 +555 +638 +692 +303 +328 +342 +625
Complexity 2 5 4 4 3 3 4 3 5 4 3 3 4 2
Erms/K 0.97 0.57 0.47 0.59 0.86 1.49 0.81 0.88 0.80 0.74 0.94 0.71 0.58 1.06
Emap/% 0.21 0.13 0.11 0.14 0.16 0.31 0.17 0.21 0.17 0.15 0.18 0.15 0.14 0.24
Emax/K 2.29 1.28 1.13 1.30 2.44 3.62 1.92 1.88 2.10 1.99 2.59 1.80 1.30 2.41
Emed/K 0.11 0.19 0.00 0.02 0.12 0.09 0.21 −0.27 0.27 0.03 −0.01 0.12 −0.04 0.15
Eiqr/K 1.12 0.66 0.53 0.70 0.90 1.52 1.00 1.06 0.59 0.77 0.89 0.77 0.73 1.33
R2 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table A.8. Testing on all APRBS data sets.
ID 745 +553 +795 +312 +553+795 +371 +351 +555 +638 +692 +303 +328 +342 +625
Complexity 2 5 4 4 3 3 4 3 5 4 3 3 4 2
Erms/K 0.97 0.67 0.72 0.72 0.65 0.99 0.70 1.22 0.70 0.54 0.54 0.52 0.64 1.11
Emap/% 0.22 0.16 0.16 0.16 0.14 0.23 0.16 0.28 0.15 0.11 0.12 0.12 0.14 0.26
Emax/K 2.33 1.55 1.68 1.85 1.85 2.50 1.89 2.82 1.71 1.51 1.61 1.57 1.61 2.67
Emed/K 0.01 0.30 -0.18 -0.04 0.13 0.17 0.20 -0.49 0.14 -0.03 -0.15 0.04 -0.04 -0.25
Eiqr/K 1.20 0.59 0.70 0.84 0.66 1.08 0.86 1.35 0.64 0.56 0.56 0.53 0.70 1.17
R2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table A.9. Testing on 55 sinAPRBS data sets.
ID 745 +553 +795 +312 +553+795 +371 +351 +555 +638 +692 +303 +328 +342 +625
Complexity 2 5 4 4 3 3 4 3 5 4 3 3 4 2
Erms/K 0.93 0.61 0.65 0.74 0.69 1.02 0.75 1.23 0.77 0.55 0.57 0.57 0.67 1.10
Emap/% 0.22 0.15 0.14 0.15 0.15 0.23 0.16 0.27 0.18 0.11 0.12 0.13 0.15 0.26
Emax/K 2.20 1.33 1.55 1.84 1.83 2.44 1.89 2.75 1.74 1.47 1.56 1.52 1.60 2.51
Emed/K 0.08 0.24 0.00 0.04 0.21 0.20 0.25 −0.29 0.21 0.05 0.05 0.11 0.00 −0.05
Eiqr/K 1.18 0.60 0.70 0.81 0.70 1.14 0.87 1.49 0.73 0.56 0.60 0.59 0.69 1.40
R2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00

Table A.10. Testing on 10 single sines data sets.
ID 745 +553 +795 +312 +553+795 +371 +351 +555 +638 +692 +303 +328 +342 +625
Complexity 2 5 4 4 3 3 4 3 5 4 3 3 4 2
Erms/K 0.65 0.44 0.30 0.57 0.24 0.73 0.46 0.58 0.65 0.43 0.44 0.30 0.56 0.71
Emap/% 0.14 0.12 0.08 0.15 0.06 0.19 0.12 0.13 0.17 0.10 0.10 0.07 0.13 0.17
Emax/K 1.57 0.89 0.64 1.04 0.73 1.51 0.97 1.39 1.13 0.99 1.02 0.71 1.16 1.68
Emed/K -0.17 0.32 0.17 0.05 0.03 -0.37 0.17 0.22 0.65 0.08 -0.18 0.10 0.05 -0.02
Eiqr/K 0.65 0.55 0.32 0.73 0.26 0.52 0.62 0.61 0.48 0.61 0.25 0.33 0.71 0.97
R2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table A.11. Testing on 10 single step data sets.
ID 745 +553 +795 +312 +553+795 +371 +351 +555 +638 +692 +303 +328 +342 +625
Complexity 2 5 4 4 3 3 4 3 5 4 3 3 4 2
Erms/K 1.75 1.07 0.74 0.96 2.37 3.64 1.62 1.31 1.81 1.75 2.56 1.68 0.73 1.64
Emap/% 0.38 0.25 0.16 0.21 0.41 0.70 0.32 0.31 0.29 0.31 0.45 0.33 0.17 0.37
Emax/K 3.68 1.87 1.64 1.80 6.10 8.34 3.47 2.72 5.92 4.85 6.49 3.52 1.62 3.11
Emed/K 0.78 0.52 -0.03 0.08 0.30 0.78 0.44 -0.74 0.10 0.09 0.36 0.37 -0.31 0.83
Eiqr/K 1.98 1.27 1.00 1.35 2.59 4.22 2.13 1.54 1.24 1.81 2.76 2.11 0.94 2.21
R2 1.00 1.00 1.00 1.00 0.98 0.96 0.99 0.99 0.98 1.00 0.99 1.00 0.99 1.00
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