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A B S T R A C T

Ultra-Wideband (UWB) is a radio technology that uses a high bandwidth and enables use-
cases for precise position estimation in close ranges. In recent years, UWB functionality
found its way into many smartphones and Internet of Things (IoT) products, including
devices from Samsung that use UWB chips by NXP. However, neither the security of
Samsung’s UWB ecosystem entities nor the usage and communication of the integrated
NXP UWB chips were publicly explored yet. Since UWB integration into smartphones
and UWB chips for smartphone-related use-cases are new, only a few directly related
works exist. These works analyze the chips’ physical-layer security and the integration of
UWB into Apple devices, but no work addresses the firmware security of NXP’s UWB
chips and the UWB integration into Samsung’s devices.

Therefore, in our thesis, we analyze the security of Samsung’s UWB ecosystem entities,
including NXP’s SR100T UWB chip featured on the Samsung Galaxy S21 Ultra, which
we use as our test phone. We further assess the security of Samsung’s SmartTag+ that
features NXP’s SR040 UWB chip and is part of the ecosystem. Our goal is to identify
attack vectors and evaluate a selection of them. Furthermore, to aid our analysis and
create attacks in our evaluation, we implement several utilities that help us decode
the communication with NXP’s UWB chips, attack the SR100T on our Samsung phone
independently of the user space, and simulate attacks against the ecosystem’s entities.

In our evaluation, we find several vulnerabilities in different ecosystem entities. In
addition, our findings about NXP’s UWB chips and their communication protocols
provide a foundation for future research that evaluates the security of UWB chips
addressable over Ultra-Wideband Command Interface (UCI) as well as the security of
their integration.
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Z U S A M M E N FA S S U N G

Ultra-Wideband (UWB) ist eine Funktechnologie, die eine hohe Bandbreite nutzt und
Anwendungsfälle für eine präzise Positionsbestimmung im Nahbereich ermöglicht. In
den letzten Jahren wird UWB häufig in Smartphones und Internet of Things (IoT)-
Produkten integriert, einschließlich in Samsung-Geräten, welche UWB-Chips von NXP
nutzen. Jedoch wurde bisher weder die Sicherheit von Samsungs UWB-Ökosystem, noch
die Benutzung und Kommunikation von NXPs UWB-Chips öffentlich untersucht. Da
die UWB-Integration in Smartphones und die UWB-Chips für Anwendungsfälle mit
Smartphones neu sind, gibt es nur wenige einschlägige Arbeiten. Diese analysieren die
Sicherheit der Bitübertragungsschicht von UWB-Chips und die Integration von UWB in
Apple-Geräten, aber nicht die Sicherheit der Firmware von NXPs UWB-Chips und die
Integration von UWB in Samsungs Geräten.

Deshalb analysieren wir in unserer Thesis die Sicherheit der Entitäten von Samsungs
UWB-Ökosystem, mitsamt NXPs SR100T UWB-Chip, welcher in unserem Test-Gerät,
dem Samsung Galaxy S21 Ultra, integriert ist. Wir überprüfen auch die Sicherheit von
Samsungs SmartTag+, welcher NXPs SR040 UWB-Chip nutzt und Teil von Samsungs
UWB-Ökosystem ist. Unser Ziel ist die Identifizierung von Angriffsvektoren und die
Evaluation einer Auswahl dieser. Zusätzlich implementieren wir Hilfsmittel für unsere
Analyse und Attacken in unserer Evaluation, mit welchen wir die Kommunikation mit
NXPs UWB-Chips dekodieren, den SR100T in unserem Samsung-Smartphone unabhän-
gig vom Userspace angreifen, und Angriffe gegen Entitäten vom Ökosystem simulieren.

Wir finden in unserer Evaluation mehrere Schwachstellen in verschiedenen Entitäten
des Ökosystems. Außerderm bieten unsere Ergebnisse über NXPs UWB-Chips und
deren Kommunikationsprotokolle eine Grundlage für zukünftige Arbeiten, welche die
Sicherheit von mit über Ultra-Wideband Command Interface (UCI) ansprechbaren UWB-
Chips untersuchen oder die Sicherheit der Integration dieser analyisieren.
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1
I N T R O D U C T I O N

The radio technology Ultra-Wideband (UWB) is integrated into recent smartphones like
the iPhone 13 or the Samsung Galaxy S21 Ultra. It can be used for secure distance and
direction measurements between devices, which creates, for example, the opportunity to
use a UWB-enabled smartphone as a key in keyless car entry systems [3, 6, 47]. In these
phones, UWB is integrated on separate chips, which implement operations such as the
distance measurement.

In every UWB-enabled Apple device, the Apple U1 chip implements the UWB stack.
On the other side, Samsung uses the NXP SR100T for their smartphones, which is a UWB
chip made especially for mobile devices [26]. For their Internet of Things (IoT) tracking
tag named SmartTag+, Samsung uses the NXP SR040. The firmware of NXP’s UWB chips
come in a signed and encrypted form. They are not decrypted in any instance before
the chips receive the firmware. Moreover, the standard for UWB-related messaging with
NXP’s UWB chips is Ultra-Wideband Command Interface (UCI), which is a standard
by the Fine Ranging (FiRa) Consortium [31] and is only accessible to its members. For
example, a UWB ranging session can be established on the chips using UCI messages.
Furthermore, the Host-Based Command/Control Interface (HBCI) protocol is used to
manage the SR100T, while Software Update (SWUP) is used for the SR040. Both protocols
are not publicly accessible and proprietary protocols by NXP.

Additional integration of UWB into IoT devices such as Apple’s AirTag or Samsung’s
SmartTag+ broaden the UWB ecosystem’s scope but also the attack surface. Apart from
finding another UWB tag with a phone, as of now, it is possible to use a UWB-enabled
smartphone as a car key [3, 6, 47] or to prioritize contacts in nearby sharing services
based on the distance and direction calculated using UWB [4, 11, 45].

1.1 motivation

The UWB integration into smartphones is new, and the same applies to chips used in
UWB use-cases with smartphones. This makes new features available for end-users.
However, a new integration of this technology also brings new significant attack vectors.
Vulnerabilities in different locations of the UWB ecosystem allow a variety of attacks
and can be critical. For example, malicious apps can attack the UWB services and the
integrated UWB chip on a phone. In addition, remote attacks against UWB chips or
entities processing messages are possible. Also, attacks from a compromised UWB chip
can be achievable after locally or remotely compromising the chip. Moreover, with
additional devices like the SmartTag+, possible attacks against or from these devices
emerge. Therefore, it is important to ensure the security of every entity part of the
integration.

Previous work evaluates the physical-layer security of relevant UWB chips [23, 51]
and makes an analysis of Apple’s UWB ecosystem and the usage of Apple’s U1 chip [10,
11, 44]. However, there is no similar research known to us regarding Samsung’s UWB
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2 introduction

ecosystem as well as the usage of NXP’s UWB chips. In this thesis, we close the gap. We
analyze Samsung’s UWB ecosystem and the usage of NXP’s UWB chips with a focus on
the NXP SR100T. Furthermore, we identify attack vectors, attack selected ones, and point
out essential information for future research.

1.2 contributions

Our goal is to evaluate the security of entities in Samsung’s UWB ecosystem, including
NXP’s UWB chips and the SmartTag+. Furthermore, we aim to provide a foundation for
future work that analyzes the UWB integration with UCI-addressable UWB chips. With
respect to these goals, our main contributions are:

• Reverse engineering of the not publicly accessible protocols UCI and HBCI, which
are used to communicate with NXP’s UWB chips. In addition, a Wireshark dissector
is implemented to decode these protocols’ messages.

• Analysis of the firmware transfer and building of a state machine for NXP’s SR100T
UWB chip.

• Analysis of Samsung’s UWB ecosystem entities and the role of each entity.

• Implementation of scripts that build on a pre-existing tool to directly attack the
SR100T on Android phones. In addition, Frida scripts are implemented that are
used for simulating attacks against Samsung’s UWB services.

• Identification of attack vectors in Samsung’s UWB ecosystem and an evaluation for
a selection of them. Thereby, several vulnerabilities are found that are reported to
Samsung.

1.3 outline

In Chapter 2, we introduce UWB and briefly summarize the adoption of UWB in systems
related to our work. We further introduce NXP’s UWB chips and Samsung’s UWB
ecosystem. Afterwards, we give an overview of related work in Chapter 3.

Subsequently, we analyze the communication with and usage of NXP’s UWB chips
in Chapter 4. Then, we analyze the entities of Samsung’s UWB ecosystem in Chapter 5.
Next, in Chapter 6, we identify attack vectors based on our previous findings, and we
create a selection of them for our evaluation.

In Chapter 7, we present implemented utilities that we use for our evaluation and
provide for future work. Then, in Chapter 8, we evaluate the security of entities in Sam-
sung’s UWB ecosystem with a focus on assessing our selected attack vectors. Afterwards,
we discuss our results in Chapter 9. Finally, we conclude our thesis and give an outlook
for future work in Chapter 10.



2
B A C K G R O U N D

2.1 ultra-wideband

Ultra-Wideband (UWB) is a radio technology that enables high bandwidth communi-
cation over short distances with low energy consumption [56]. It is part of the 802.15.4
standard and is not a new technology [37, 56]. It gained proper recognition in the last
few years, and manufacturers slowly started integrating it into their products. Moreover,
in Impulse-Radio Ultra-Wideband (IR-UWB), which is a subtype of UWB, very short
pulses are used [37]. In this thesis, UWB is used interchangeably with IR-UWB since all
the systems analyzed use IR-UWB.

UWB uses large frequency ranges with a minimum bandwidth of 500 MHz or 20 %
of the center frequency [37, 56], which can be considered a high value. From a list of
commercially available Software Defined Radios (SDRs) [1], we know that even most
of the high-end SDRs do not support this bandwidth. Moreover, the frequency range
in which UWB is allowed to operate is between 3.1 and 10.6 GHz [13], which is also
not supported by most SDRs [1]. Furthermore, the Equivalent Isotropic Radiated Power
(EIRP) is limited to a low value of -41.3 dBm/MHz1 [13]. Other radio standards such
as Wireless Fidelity (WiFi) allow a higher EIRP. For example, in Germany, a device is
allowed to emit a WiFi signal in the 2.4000 - 2.4835 GHz frequency range that does not
exceed an EIRP value of 20 dBm for its complete signal [7]. When we consider a 500 MHz
wide UWB signal with the maximal EIRP per MHz, we only have an EIRP of around -14.3
dBm for the 500 MHz wide signal, which is more than 2500 times less than the previous
mentioned WiFi signal with an EIRP of 20 dBm. In conclusion, the large bandwidth, the
limited power usage, and the high frequency range make UWB applicable for close range
and high data rate use-cases.

There are two types of UWB physical interfaces defined in the IEEE 802.15.4 standard,
which are Low-Rate Pulse Repetition (LRP) and High-Rate Pulse Repetition (HRP) [13],
whereby HRP is used by most UWB chips integrated in devices for smartphone-related
use-cases [51]. The rate impacts the energy per pulse: The lower rate, the higher the
energy per pulse. Furthermore, LRP enables more energy-efficient implementations,
while HRP allows higher precision as well as easier limiting of interference [18].

Usually, there is an out-of-band establishment of UWB sessions between devices,
for example, over Bluetooth Low Energy (BLE) [37]. By making use of an already
existing technology, steps like UWB device discovery or exchange of the UWB session
parameters like the channel are facilitated. Additionally, it also can be used for out-of-
band authentication before even trying to establish a UWB session [37].

Many use-cases exist to which UWB can be adapted. For example, using UWB, it
is possible to implement high-rate data exchange services [56]. Also, it is possible to
implement high-granularity distance and direction calculations over short distances
between two or more devices such that further applications can be built, which rely

1 The frequency range and the EIRP are both declared by the Federal Communications Commission (FCC).
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User approaches car

Establish BLE connection

Establish UWB ranging session over BLE connection

Do UWB ranging. Car learns: Owner is 1.3 m away at an angle of 90°

Car doors open, since user is in proximity. User is able to enter

Create shared session key to be used in UWB session

Car authenticates smartphone

Figure 1: Overview of a ranging session example.

on precise position estimation between devices [37, 56]. This plays a significant role for
UWB-equipped smartphones and cars, for example, to allow using the smartphone as a
car key [3, 6] as well as to use it as a key for general physical access control systems [37].
A list of further use-cases exists in [17]. These use-cases include using a smartphone for
indoor navigation, mobile payment, and social distancing.

Figure 1 shows the summarized process of how a smartphone can be utilized to
open a car and drive away. We derive this figure based on the information provided
in [3, 6, 37]. After two devices (smartphone and car) come close enough to establish
a BLE connection, they can authenticate each other, while it is at least necessary to
authenticate the smartphone. Afterwards, both parties can create a shared session key,
which is used for secure ranging. For example, these two devices can then with Two Way
Ranging (TWR) calculate their distance between each other by doing Time-of-Flight (ToF)
measurements [37]. When the access controller (the car) knows that the user with its
smartphone is in proximity, it will open the doors, and the user can enter [6]. Also part
of ranging are Angle of Arrival (AoA) measurements, whereby multiple methods exist to
calculate the direction of incoming signals of another device [12]. For example, the car
can estimate with multiple antennas the owner’s relative position to the car by calculating
the time difference of arrival of the same smartphone’s signal [12]. If the owner is behind
the car, then the car can open the trunk.

Moreover, ranging can be used to find lost UWB tags: A device may learn the tag’s
distance and direction, and the user can actively move towards the tag to find it, while
getting live updates of the distance and direction [46].
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2.2 adoption of ultra-wideband

Many companies discovered the beneficial characteristics of UWB and started to integrate
the radio technology into their devices. A crucial role for the adaptation of UWB in the
mass market plays the organization Fine Ranging (FiRa) Consortium. The consortium’s
members include companies like Apple, Google, Samsung, Facebook, Cisco, NXP and
Bosch. A complete list of the members can be found on the official website [16]. One may
become a member for an annual membership fee starting from 5000 USD or a one-time
fee of 2500 USD for educational purposes [14].

The FiRa Consortium’s official goals are the development of UWB use-cases, ensuring
a general seamless interoperability of UWB, and the promotion of UWB ecosystems [15].
Developed specifications and documents are not accessible to the public. Currently, only
the consortium’s members have access to these. One of these not publicly accessible
standards developed by the consortium is the Ultra-Wideband Command Interface
(UCI) [31]. This standard defines the interface to establish UWB sessions between an
application and a chip implementing UWB.

The Car Connectivity Consortium also exists, which is similar to the FiRa Consortium but
focuses on smartphone-to-car related use-cases only [8, 47]. It has smartphone vendors
as members like Samsung and Apple as well as major car companies like BMW and
Volkswagen [8]. This consortium is responsible for establishing interoperability standards
between smartphones and cars for harnessing smartphones as car keys using UWB [9].

Apple was the first manufacturer to integrate UWB technology into smartphones.
iPhones beginning with the iPhone 11 contain a dedicated chip — named U1 — for UWB.
Additional to the iPhones, Apple includes UWB technology into other devices like the
Apple Watch Series 6 and the AirTag. All of these devices have the dedicated U1 chip for
enabling UWB [36].

After Apple, Samsung started to integrate UWB technology into their flagship smart-
phones, beginning with the Samsung Galaxy Note 20 Ultra, which contains a dedicated
UWB chip from NXP, the SR100T. Samsung also introduced a UWB-enabled Internet
of Things (IoT) device named SmartTag+, which is only compatible with recent Sam-
sung phones, and the UWB functionality can only be used with UWB-enabled Samsung
phones [46]. The SmartTag+ is equipped with a different UWB chip of NXP, which is
the SR040. It is further similar to Apple’s AirTag, and it also has the same intention,
namely to find objects that are attached with the SmartTag+ over BLE and UWB, by
calculating the direction and distance between smartphone and SmartTag+ [46]. As of
the mid of December 2021, Samsung uses their own software in combination with NXP’s
UWB Software Development Kit (SDK) to implement a UWB Application Programming
Interface (API) and the communication with the SR100T, which is independent of the
Android Open Source Project (AOSP).

In 2020, Android started to integrate a UWB API into the AOSP, to later enable apps
to make use of UWB functionality [53]. As of the mid of October 2021, the Hardware
Abstraction Layer (HAL) interface currently is not fully implemented [48, 52]. The fully
functional UWB API software stack will be likely included in the release of Android 13 in
2022 [48]. Furthermore, Google, the owner of Android, released the Google Pixel 6 Pro in
October 2021, which also includes UWB and makes use of the UWB API. However, it uses
custom software to implement the HAL interface [52]. Moreover, based on a teardown,
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we know that the Pixel 6 Pro uses a UWB chip by Qorvo [54], which we also verify
ourselves by downloading a Pixel 6 Pro image from Google’s website [19]. However, we
do not know the exact chip.

In August 2021, Xiaomi released the phone Xiaomi Mi Mix 4 in China, which also
integrates UWB. Like Samsung phones, the Xiaomi Mi Mix 4 uses the NXP SR100T as its
UWB chip [28].

Apart from Samsung, Google, Apple, and Xiaomi, many other companies work on
UWB solutions. For example, Bosch promotes its keyless car access system based on
UWB, which enables users of UWB-enabled smartphones to use the phone as the car
key, without even bringing it out of the pocket [6]. BMW has already integrated a similar
UWB keyless car system into their car BMW iX, released 2021 in Germany [3, 55].

2.3 samsung’s ultra-wideband ecosystem

Samsung integrates UWB functionality into their Galaxy flagship smartphones and
the Galaxy SmartTag+. All of these UWB-enabled devices have a dedicated UWB chip
from NXP. The firmware of these chips is signed and encrypted. It is not available as
a decrypted version before it is sent to the corresponding chip, and only the chips can
decrypt it. Moreover, the firmware itself is also developed by NXP.

Samsung’s smartphones use NXP’s SR100T UWB chip. The SmartTag+ uses the SR040,
which can be seen as a low-energy version with less capabilities in comparison to the
SR100T and the SR150, which is also a UWB chip developed by NXP [26, 31, 33, 34].

To manage the SR100T and the SR150, the communication standard Host-Based
Command/Control Interface (HBCI) is used. On the other side, the SR040 presumably
does not support HBCI but only Software Update (SWUP), which is a different protocol
only used for transferring the firmware. Furthermore, the communication standard to
establish UWB sessions with all NXP chips is UCI, which is a standard by the FiRa
Consortium [31]. All previously named standards are not publicly accessible, and the
protocols UCI and HBCI will be reverse-engineered and presented by us in Chapter 4.
Additionally, the transport of messages between each UWB chip and host processor is
done over Serial Peripheral Interface (SPI) [31].

Currently, there are three official UWB use-cases, which are available to a user of a UWB-
enabled Samsung smartphone [45–47]. Moreover, we find in our thesis an additional
undocumented use-case of UWB, which we describe in Section 5.4.3. The first use-
case is searching the SmartTag+ [46]. We show the high-level workflow of finding the
SmartTag+ using UWB in Figure 2. First, the SmartTag+ distance and direction estimation
process is started over a plugin in the Samsung SmartThings app2, which is an app by
Samsung to manage a variety of IoT devices. Then, the following distance and direction
measurements between the phone and the SmartTag+ are set up over BLE. Afterwards,
the UWB measurements are done directly between the UWB chips. The results of each
measurement, which include the distance and values such as the AoA, are sent back
from the UWB chip to the UWB processes on the phone for further post-processing.

The second use-case is the integration of UWB as part of the Nearby Share process [45].
Nearby Share lets users share files with other users in proximity. When using Nearby Share
to share a file with a UWB-enabled Samsung phone, the user who wants to share the file

2 Package ID: com.samsung.android.oneconnect
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Figure 2: High-level overview of the ranging session establishment with a SmartTag+. The num-
bers indicate the steps.

can see the live direction of other users that also have a UWB-enabled Samsung phone
and have Nearby Share enabled. The displayed direction changes in real-time when one
of the phones in the process is moved. Even if the data could be exchanged over UWB,
here UWB is only used for the real-time direction measurements, and the data transfer is
done over Bluetooth, BLE, WebRTC, or peer-to-peer WiFi [50].

In the third use-case, a user can harness its UWB-enabled Samsung smartphone as a
car key [47]. Because UWB is used, the car can learn that the owner or members are in
proximity, and if enabled, the car opens automatically and can be started. Thereby, the
user does not need to put the smartphone out of the pocket and unlock the car because
the authentication and proximity detection happens in the background [47]. In 2021, this
will be only available for buyers of a Genesis GV60

3. However, one can expect soon that
users of UWB-enabled Samsung smartphones can use their phone as a UWB car key
of other major car companies like BMW, since Samsung is part of the Car Connectivity
Consortium [47].

2.4 mk uwb kits

For companies and other interested parties, there is a possibility to develop and test
products with integrated UWB technology by using development kits. Mobile Knowledge

3 Genesis is a car manufacturer and is part of the Hyundai Motor Group.
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CHARACTERISTIC SR040 SR100T SR150

Firmware Encryption Yes Yes Yes

Secure Ranging No Yes Yes

# TX 1 1 1

# RX 1 2 2

Communication SWUP & UCI HBCI & UCI HBCI & UCI

Table 1: Characteristics of NXP’s UWB chips.

(MK) provides a small variety of such UWB development kits, which come with boards
that have integrated NXP UWB chips and to which one can push their self developed
application that communicates with the UWB chip [25]. From the kits’ attributive contents,
we know that they also contain precompiled applications, which can be pushed to
the board’s host chip. They further contain the applications’ source code, which can
fully communicate with the NXP SR040, SR100T, and SR150. The source code that is
responsible for the communication with NXP UWB chips is provided by NXP. Moreover,
the kits contain the firmware of NXP’s UWB chips, which are however encrypted and
signed. These firmware also are uploaded in encrypted form to the chips. Apart from the
source code, some documentation files explain the general contents and setup of the kits.

2.5 nxp ultra-wideband chips

As of December 2021, there are five chips released by NXP that implement UWB, which
all run under the code name Trimension. The official names and the use-case of these
chips are Trimension SR040 for Tags, Trimension SR100T for mobile devices, Trimension
SR150 for common devices and anchors, Trimension QL23D0 for industrial devices, and
Trimension NCJ29D5 for cars [30]. While the communication protocols with the SR040,
SR100T, and SR150 are UCI, HBCI, and SWUP as well as the communication is done
over SPI on the Printed Circuit Board (PCB), it is not clear which protocol and hardware
communication interface is used with the two other chips. However, it is likely that these
two at least also support UCI. Because of the missing information, we will not consider
the Trimension QL23D0 and Trimension NCJ29D5 in our thesis.

To learn the different capabilities of the SR100T, SR040, and SR150, we examine the
chips’ documents and descriptions, which are provided on NXP’s official website [26,
31, 33, 34]. We further use the MK UWB kits’ source code to learn the chips’ essential
differences. We show an overview in Table 1.

For this thesis, particular the SR040 and SR100T are interesting, because the SR040
is integrated in the SmartTag+, and the SR100T is integrated in all UWB-supporting
Samsung smartphones. In this thesis, the greatest focus lies on the SR100T. Both of the
chips and the SR150 are similar to a certain degree with different capabilities. They have
a similar description on the official sites of NXP [26, 31, 33, 34] and share the main
communication protocol UCI. Also, the SR100T and SR150 support HBCI. Furthermore,
the firmware of each of these chips comes encrypted and signed. A decrypted version is
not publicly available. The encrypted firmware is transferred in encrypted form to the
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chips and is not decrypted in any instance before. Neither searching in the MK UWB
kits’ source code nor analyzing the communication with the SR040 or SR100T as well as
disassembling or decompiling UWB-related code on the Samsung phone, let us get the
decrypted firmware to analyze it further.

From [31, 33, 34] we learn much information about the SR040 and SR150, which we
describe in this paragraph. We learn that the SR040 and SR150 are Arm Cortex-M33

based chips and implement UWB in HRP mode. In addition, the SR150 comes with
a separate Digitial Signal Processor (DSP) on board that implements algorithms for
measurement of ToF, Time Difference of Arrival (TDoA), and AoA. We assume the same
for the SR040 but do not find a clear statement. The DSP firmware is part of the encrypted
chip firmware. Also, both chips have a ranging accuracy of ±10 cm for Non-Line Of Sight
(nLOS). Furthermore, the SR040 is suitable for battery-operated devices like UWB Tags.
It comes with only one antenna that can used as a transmitter and receiver, and between
transmitting and receiving mode is switched. The SR150 comes with one transmitting
antenna and two receiving antennas for enabling two-dimensional AoA measurements.
We find no indication that the transmitting antenna might be used as a third receiving
antenna to enable three-dimensional AoA measurements. Additionally, we find the
indication that the SR150 has software support for handling three antennas, and with
these three-dimensional AoA measurements can be done. To enable this, we assume
an external third receiving antenna can be connected to the SR150’s General-Purpose
Input/Output (GPIO) pins.

There is no publicly available information by NXP, which elucidates specifics about the
SR100T, except a press release of NXP. Based on this press release in [26] and additional
teardown photographies of the Samsung Galaxy S21 Ultra in [20], we can tell that the
SR100T comes in combination with an external secure element from NXP, which is the
SN110U. It further has a ±10 cm range for nLOS and ±3° angle accuracy. It also has
two receiving antennas for two-dimensional AoA measurements like the SR150 [31,
34]. For other characteristics, we assume a high similarity to the SR150’s characteristics.
Additionally, the contents of the MK UWB kits and UWB-related files on our Samsung
phone indicate that the SR100T’s codename is Helios.

Based on documentation files from the kits, we know that the SR150 additionally
integrates Arm Trustzone4, which can be connected to a secure element by NXP (EdgeLock
SE051W) to generate and store cryptographic keys. The SR150 uses the secure element to
enable secure ranging measurements [31, 34].

We further find certain UCI opcodes for the SR150 in the UWB kits’ source code,
which are related to a secure element connection. We also find these for the SR100T.
Additionally, we assume that the SR100T also integrates Arm Trustzone and that the
secure element SN110U is also used to enable secure ranging. Futhermore, for the SR040
there exists no UCI opcode in the source that indicates the support for a secure element
connection. We also do not find statements in the documentation files related to the
SR040, which indicate a secure element connection support [31, 33]. In addition, the
SR040’s official information website states only a "Reliable UWB Solution" [35]. Thus, we
conclude that secure ranging might not be possible with the SR040. However, the SR040
still integrates Arm Trustzone [33].

4 Trustzone is a family of Trusted Execution Environment (TEE) implementations by Arm.
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We do not find UCI opcodes or configuration values indicating that it is possible to
directly enable secure ranging with the SR100T and SR150. However, it is possible to
set certain configuration values, which are related to a secure distance evaluation. We
assume by setting these configuration values, secure ranging will be implicitly used.

2.6 other ultra-wideband chips

Apple’s U1 UWB chip is included in various Apple devices [36]. It implements UWB in
HRP mode [51], and the firmware is not encrypted [11]. Additonally, the chip is separated
into an Application Processor (AP) and a DSP [11]. We further do not find information
that declares if UCI is used to communicate with the chip from the user space.

The Google Pixel 6 Pro integrates a UWB chip by Qorvo [54]. We do not find any
resource that names the exact chip. We can only tell that it is a UWB of Qorvo’s DW3000

series since the product websites state these are FiRa-compliant [39–42], which we assume
means interoperability with other current UWB chips as these from NXP. In addition, the
product websites state interoperability with Apple’s U1 chip [39–42].

Qorvo’s chips implement UWB in HRP mode [38]. They come with a separate AP and
DSP [23]. Furthermore, we do not find any information with web searches, on product
websites, or in documentation files that tell us if the communication protocol with the
Qorvo chips is UCI or not. However, since the product websites declare the chips are
FiRa-compliant, we assume it is possible [39–42].

Currently, there also exist UWB chips from many other vendors [43]. These are intended
for different use-cases and are often not compatible with the previously mentioned chips,
but they often also do not target the same use-cases and therefore do not aim for
interoperability with FiRa-compliant devices. On the other side, NXP’s and Qorvo’s
chips are FiRa-compliant, meaning they can operate mutually [31, 39–42]. In addition,
chips from both vendors can operate with Apple’s U1 UWB chip [32, 39–42]. For general
interoperability between devices featuring a UWB chip, it is also essential that they are
interoperable on a different layer for out-of-band session establishment. This means
an entity must exchange the UWB session parameters out-of-band, and the same or a
different entity hands the chip the UWB session parameters. Furthermore, one can expect
that FiRa-compliant UWB chips will follow in the future, and general interoperability
between these is ensured, also between devices featuring the chips and that exchange
out-of-band session parameters.



3
R E L AT E D W O R K

In this chapter, we give a general overview of related work. We divide the related
work into two parts. The first part concentrates on the physical-layer security of recent
Ultra-Wideband (UWB) chips including selected NXP UWB chips. Moreover, the second
part concentrates on Samsung’s normal SmartTag and selected entities of Apple’s UWB
ecosystem.

Next, we describe related work. Afterwards, we briefly explain the difference of related
work to our contributions.

3.1 physical-layer security of uwb chips

In [51], Singh et al. study the physical-layer security of UWB in High-Rate Pulse Repetition
(HRP) mode. The work evaluates possible attacks and attack strategies. In simulations,
Singh et al. derive two attacks from the Cicada attack, which builds on the hardness of
differentiating a received signal from interference [51]. The evaluation indicates distance
reduction attacks in HRP mode might be possible. Furthermore, Singh et al. come to the
conclusion that UWB ranging in HRP mode is hard to configure both performant and
secure simultaneously.

Leu et al. practically evaluate in [23] distance reduction attacks againt recent chips
that implement UWB in HRP mode. The work successfully demonstrates a reduced
measured distance on an iPhone 11 Pro, which contains Apple’s U1 UWB chip and does
UWB ranging with another UWB device. The other device can have a UWB chip from a
different manufacturer like NXP, and at least one of the ranging partners need to have
Apple’s U1 chip. The attack works by overshadowing parts of the transmitter’s signal at
the receiver, which tricks the receiver to detect an early copy of the signal in the attacker
created noise. In result, the receiver calculates a shorter distance of up to 12 meters,
and the attack success rate is up to 4 %. In addition, an attacker does not need to know
cryptographic secrets for the attack. Furthermore, multiple devices with different UWB
chips are used as the iPhone’s ranging partner, which are two tests devices using NXP’s
SR040 or SR150 UWB chip.

3.2 tracking tags and apple’s uwb ecosystem

In [11], Classen and Heinrich analyze the UWB integration into iOS. The work presents
which entities use and provide UWB in iOS. For example, when discovering devices
in proximity for sharing a file, Apple’s AirDrop1 service sends extra UWB beacons
over Bluetooth Low Energy (BLE). Devices in proxmity that are the sender’s contacts
and receive these UWB beacons do UWB ranging with the sender when they have a
UWB-capable iPhone. Then, the sender’s phone gets information about the distance and

1 https://support.apple.com/en-us/HT204144
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direction of contacts. This information is used to display the closest contact to which the
sender’s phone points.

Moreover, the work in [11] also presents information about the Nearby Interaction
Framework. Beginning with iOS 15, third-party apps can use the framework to initialize
UWB ranging sessions with certified third-party UWB devices. Independently of the apps
using UWB on an iPhone, the nearbyd daemon handles the communication with the chip
using Apple’s IOKit, which provides an interface for communicating with drivers [11].

In [11], Classen and Heinrich also give additional information about the communication
and usage of Apple’s U1 chip in iOS. The work further provides information about the
chip itself.

Furthermore, the work in [10] analyzes the communication between Apple’s iPhone
and AirTag. Additionally, the Over-The-Air (OTA) firmware update process is analyzed.
Two findings are that the firmware of Apple’s U1 UWB chip on the AirTag and the
AirTag’s main firmware can be downgraded.

Chips of the nRF52 series have an integrated protection that disables Serial Wire Debug
(SWD) access [24]. This protection can be bypassed using a fault injection attack to
reenable the SWD interface [24].

In [44], further work builds on [24] and attacks Apple’s AirTag that features a chip of
the nRF52 series. The work shows that the firmware of Apple’s AirTag can be dumped
and modified over SWD after exploiting the chip’s vulnerability.

Samsung’s normal SmartTag, which does not integrate UWB functionality, also uses
a chip of the nRF52 series like the AirTag [5]. In a GitHub repository [5], we find
information that the chip’s vulnerability also can be exploited on a SmartTag. A firmware
dump is provided and further information for replicating the attack. We conclude that
a firmware manipulation is also possible since full debug capabilities exist on the chip
after exploiting it [24].

3.3 differences to our contributions

The physical-layer security of UWB chips is not a part of our thesis. Instead, we focus
on the implementation of entities on a Samsung phone that provide UWB functionality
to apps. We also have a focus on the communication of these entities with NXP’s UWB
chips, and we further want to make conclusions about the chips’ firmware security. To
the best of our knowlegdge, there is no such research yet.

Learning from [10, 11] about the integration of UWB functionality into Apple’s UWB
ecosystem initally helps us understanding how such a system can be implemented. Yet,
Samsung’s UWB ecosystem is differently implemented and runs on a different mobile
operating system. Furthermore, Samsung uses a different UWB chip that has a different
communication protocol, which is not publicy available and was not analyzed by other
work. Therefore, we have to start from the beginning to learn about Samsung’s UWB
ecosystem and the communication with NXP’s UWB chips.

While research about the AirTag’s OTA firmware update meachnism [10] helps us to get
an understanding of a pracical implementation for tracking tags, we have no information
about the normal SmartTag’s and SmartTag+’s OTA firmware update meachnism. We
have to analyze the mechanism by ourselves.
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Apple’s AirTag and Samsung’s normal SmartTag are vulnerable to hardware exploits
due to the integrated chips of the nRF52 series [5, 24, 44]. On the other side, Samsung’s
SmartTag+ has a complete different Printed Circuit Board (PCB) with a different main
CPU, which is the NXP QN9090. We do not know of research about the SmartTag+’s
hardware, and we also do not know of attacks against the CPU. Therefore, we have to do
a hardware analysis from scratch.





4
C O M M U N I C AT I O N W I T H N X P U LT R A - W I D E B A N D C H I P S

Before we identify attack vectors and create attacks, we need to understand Samsung’s
Ultra-Wideband (UWB) ecosystem and learn more about NXP’s UWB chips. When we
describe our analysis and findings of Samsung’s UWB ecosystem, we follow a bottom-up
approach since it is easier for the reader to understand how the entities in the UWB
ecosystem work together. Hence, we first show how the communication between the
user space of the operating system (Android) and the NXP SR100T works on a Samsung
phone. Thereby, we focus on the SR100T’s communication protocols. These protocols
are Ultra-Wideband Command Interface (UCI) for establishing UWB sessions and Host-
Based Command/Control Interface (HBCI) for managing NXP UWB chips. Neither in
the web nor the UWB kits’ source code, we can find the full name or an explanation
of HBCI, and we only assume the given full name. Additionally, we use NXP’s SR100T
UWB chip as a representative for the SR040 and SR150 since it is integrated on our phone
and the chips are similar [26, 31, 33, 34].

Furthermore, the SR040 does support UCI messages but presumably does not support
HBCI messages. In this chaper, we find in our UWB kit content analysis that a protocol
named Software Update (SWUP) is used for transferring the firmware. This protocol
is comparable to the HBCI protocol but has a different message set. We do not find
comparable protocols for SWUP and conclude it also is a not publicly available standard.
We have a focus on the SR100T and skip an analysis of SWUP since it is only used for
transferring the SR040’s firmware, and UCI and HBCI are the main protocols we target.

To understand the usage of and the communication with NXP UWB chips, we reverse
engineer the source code of the standard Mobile Knowledge (MK) UWB kit SR150/SR0401

as well as of the MK UWB kit mobile edition2, which can be bought on MK’s official
website [25]. Moreover, we enable Verbose vendor logging and Samsung verbose debug logging
in the developer options of our test phone, which is the Samsung Galaxy S21 Ultra. This
results in additional log messages. Then, when we trigger UWB functionality on our
phone, the exchanged UCI and HBCI messages with the SR100T are logged. We use the
logged messages to help our understanding of the communication with the SR100T.

Next, we analyze the MK UWB kits’ contents. Subsequently, we examine the communi-
cation protocols UCI and HBCI. Then, we briefly analyze the SR100T’s local firmware
download process. Afterwards, we briefly describe the SR100T’s driver and build the
SR100T’s state machine based on the knowledge of the protocols and the driver.

4.1 mk uwb kits

We analyze the UWB kits’ contents in order to achieve several goals. We want to extend
our understanding of UCI and learn how a UWB application works from the application
level down to the communication level of communicating with the UWB chips. Addi-

1 https://www.themobileknowledge.com/product/mk-uwb-kit-sr150-sr040/

2 https://www.themobileknowledge.com/product/mk-uwb-kit-mobile-edition/
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tionally, we want to get a better general understanding of NXP’s UWB chips, and we
also want learn to which extent Samsung has inherited the provided source code in their
ecosystem, which we cover in Chapter 5.

4.1.1 Content Analysis

There is a great number of files that come with the kits. After automatically extracting
every zip file, we count more than 12000 files using the Linux find and wc commands.
The main folder’s documentation files do not help us to learn the information we need
to achieve our main goals. There is no description of which files and folders handle the
communication with the chips or how the communication works. In addition, the general
usage of NXP’s UWB chips is not explained.

Therefore, to achieve the goals, we first need to analyze the contents. First, we manually
click through folders to get a general understanding of the folder structures. Afterwards,
we automatically search for helpful documentation and source code files. Thereby, we
filter out the most important folders and files, including documentation files in lower
folders and UWB-related source code files. We further load essential source code files
into an Integrated Development Environment (IDE) and analyze the meaning and
interconnection of the source code files’ methods.

4.1.2 Overview of Important Findings

We find several interesting documentation files, which are distributed across the MK
UWB kits. Some are handy and include information about the inner workings of the
source code files as well as general mechanisms like an abstract description of the timeout
handling with the UWB chips.

We further find the encrypted and signed firmware for the SR040, SR100T, and SR150.
For both latter chips we find multiple firmware versions.

Based on our previous analysis of the contents, we can derive that only a fraction is
intended to be modified. Most source code files are ready to import and provide a fully
working Application Programming Interface (API) to build quick applications, which we
describe next.

4.1.2.1 NXP’s UWB API

In Appendix A.2 we show the paths where the UWB-related files can be found, whereby
each path targets another chip. The gist is in the paths’ subfolder libs, and it contains
three more subfolders. These subfolders build the UWB API itself and are intended to be
imported without modifications. Additionally, all of the code in libs is provided by NXP.

The first subfolder is halimpl, which name likely stands for "hardware abstraction layer
implementation". It contains many files that are related to the low-level operations with
the chips, such as the firmware transfer to the SR100T. Here we also can extract all HBCI
messages by evaluating headers and methods.

The second subfolder of libs, which is named uci-core, contains methods related to
UCI message creation and processing. It further contains all UCI-related opcodes and
parameters declared in C define statements. In Figure 3, we show the naming scheme of
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UCI [ _GROUP [ _SUB-GROUP [ _SUB-SUB-GROUP...]]] _ ID 

UCI_MSG_CORE_DEVICE_INFO 

Figure 3: Naming of UCI parameters in define statements of the UWB kits.
"[...]" indicates optionality.

these define statements. The naming scheme is expressive and helps us understanding
the opcode’s or parameter’s meaning as well as the referencing method’s fuctionality.

The last subfolder, uwb-iot, contains the actual UWB API, which is the main starting
point from which the rest of the classes in libs are addressed and which one can use to
build their application.

We conclude that the UCI communication is not fully equal between the host and all
chips, because of minor differences in the libs folder’s contents for each targeted chip.
For example, there are differences for definitions and interpretations of proprietary UCI
messages that extend the standard set of UCI messages.

Additionally, we conclude that the knowledge of the source code is helpful for us when
we attack the chip in the future. The probability is high that some of the code is also used
in the encrypted firmware of NXP’s UWB chips. To save time and costs, it would make
sense for NXP to reuse as much code as possible.

4.1.2.2 Ucitool

Apart from findings in the source code, we make another beneficial discovery that helps
understanding UCI. The standard MK UWB kit ships with an undocumented tool called
ucitool. This tool is written in Python and can be used on a local PC to communicate with
the UWB kit’s Plug and Play Boards, which can be connected to a PC. It serves as an
alternative to the API source code written in C, which is intended to be installed on the
UWB kit boards and used by the boards’ host CPU. Moreover, one can use the ucitool
with an additional helper binary to communicate with the SR100T on Android phones.

We find out that the ucitool contains in YAML files the UCI opcodes for almost every
UCI message and their corresponding payload structure. There exist multiple YAML files
with presumably different UCI specifications. However, we are only interested in the
latest version, which is 1.10, and therefore, we ignore the other versions. The YAML file
with the latest UCI version is very useful for learning the UCI specification in combination
with the source code files found in the uwb-iot subfolder. Before discovering this file, we
did reverse engineering of the UWB kits’ source code files in order to learn the UCI and
HBCI specifications. The discovery makes some of our previous work obsolete. However,
we find in the YAML file not every UCI opcode for the communication with every chip
and no opcode for HBCI, although we found that information in the source code files.
Furthermore, only by reverse engineering the kits’ source code files, we can understand
the UCI header’s evaluation, which is not possible by examining the YAML file. In order
to learn the UCI header’s evaluation and the HBCI specification without these source
code files, we would need to analyze the source code of the ucitool itself. This means that
only parts of our previous effort are obsolete.
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To identify the ucitool’s targeted chip, we compare some of the UCI payload structures
in the YAML file with the creation or decoding of UCI payloads in the C source code
files. We find that specifically UCI messages for the communication with the SR100T are
declared in the YAML file.

Another beneficial aspect is that one can use the ucitool to communicate with the
SR100T on Android phones, without using any service or library provided by Samsung
in the user space. To use the uctitool to communicate with the SR100T, one needs to use a
provided helper binary named akash. When we load this binary into Ghidra, we identify
many functions of the UWB kits’ source code, which also are included in the halimpl
subfolder. This helps us understanding akash more quickly.

The binary akash needs to be pushed onto the phone and executed as a superuser (i.e.
on a rooted phone). When executed, akash acts as a server to which the ucitool connects,
which itself runs on the host PC. In addition, akash generates all chip management
messages (HBCI) and establishes a connection to the driver. Furthermore, akash reads the
firmware locally from a certain path on the Samsung phone, and this firmware is used
by akash in the firmware transfer process. Also, akash reads local configuration files from
the device. On the other side, the ucitool creates and processes UCI messages, which are
forwarded by akash to/from the driver. The predefined UCI messages are generated by
using the ucitool’s API. Additionally, it is possible to control multiple phones (or boards)
with the ucitool at once. Hence it is possible for us to establish UWB session between
phones by just using the ucitool.

We make a few modifications to the ucitool and akash, such that we can send our own
messages as well as any byte we want, which we will later use for attacking the SR100T.
We describe the modifications in Section 7.3.1.

The ucitool is fortunate for the rest of our work on multiple occasions. With our modi-
fications, we can send any message we want to the SR100T and can build applications
quickly by ourselves. Thereby, the ucitool and akash handle the connection with the chip.
The ucitool further provides an API for selected messages, which we also can use in some
cases. So on our Samsung phone, we can establish UWB sessions, send arbitrary bytes,
and more, without using and manipulating Samsung’s UWB services and libraries on
the phone since the ucitool and akash are independent of these. Furthermore, the ucitool
also can parse given bytes of a UCI message and print the decoded message, which is
helpful for debugging.

4.2 communication protocols uci and hbci

The UWB entities in Samsung’s user space authenticate other devices, exchange UWB
session parameters with other devices, post-process UWB measurements, and more. The
integrated SR100T does the UWB measurements. However, the firmware of NXP’s UWB
chip is encrypted. Hence, we cannot analyze the firmware implementation details. But
there are multiple steps we can take to learn as much as possible about the SR100T and
NXP’s other UWB chips, which can help us when we analyze the chips’ security. One
significant step is to understand the communication with the chips.

One of our primary goals is to reverse engineer the not publicly accessible protocols
UCI and HBCI to note them down. We can use our findings for our further work and
also can provide these other researches for future work. There are multiple reasons why
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understanding these protocols is important for us. The first major reason is that we need
to understand them in order to get a better understanding of NXP’s UWB chips and their
states. Furthermore, knowing these protocols helps us attacking the chips. For example,
we can try an attack by sending a UCI message with a 100-byte sized payload and declare
at the same time in the same message’s header a payload size of 50. If the chip allocates
memory for a buffer based on the declared payload size but writes the whole payload
into the buffer, we achieve a buffer overflow. We also can reverse the direction of attacks.
Thereby, we can simulate attacks from the chip towards the user space of Samsung’s UWB
ecosystem by manipulating the chip’s returned messages. Moreover, with knowledge
about these protocols, we may learn messages that can be used to request information
from the chip like logs.

We also can learn more about the firmware transfer process. This process of sending
the firmware to NXP’s UWB chips is called firmware download in different entities of
Samsung’s UWB ecosystem. However, the process is completely independent from a
Internet download and is confusing. Beginning from here, we use the term local firwmare
download for this firmware transfer process.

For understanding the protocols, we analyze our retrieved source code files from the
kits precisely to learn how UCI and HBCI headers and payloads are created. We further
analyze how these are processed as well as which opcodes exist. Additionally, we take
the ucitool’s UCI declaration as a utility to help our understanding.

Furthermore, we establish UWB ranging sessions between our Samsung smartphone
and the SmartTag+, which results in logs of UCI and HBCI messages (hex strings) that
are exchanged with the SR100T. We use these logged messages as examples to help
our understanding of UCI and HBCI. In the beginning, we notice that HBCI messages
are not logged if they relate to the local firmware download process. A service that
implements the Hardware Abstraction Layer (HAL) for UWB functionality is responsible
for logging all UCI and HBCI messages. However, the service logs only the additional
HBCI messages if a certain configuration value flag is set. The service reads this flag
from a configuration file before downloading the firmware locally to the chip. Hence, we
create a simple Frida script that manipulates the configuration value everytime it is read.
Beginning from now, we always use this script and get all messages logged.

We find out that UCI is used to exchange UWB-related messages with the SR100T, and
HBCI is used to manage the chip. Furthermore, HBCI may be related to UCI and may be
even a part of the Fine Ranging (FiRa) Consortium’s standard. However, we conclude
that this is not the case because of the clear separation of the both protocols’ usage. In
addition, HBCI messages are not related to UWB functionality in any form. Moreover,
UCI messages are used for operations like setting up a UWB ranging session on the
chip or receiving the ranging data from the chip. In contrast, HBCI messages are used
to manage the chip itself with operations such as sending the firmware to the chip or
receiving the chip ID from the chip. Our conclusion will be further justified for the reader,
when we describe UCI and HBCI in the following sections.

Next, we explain the protocol UCI, and afterwards we explain HBCI. For easier
reading, we give a detailed overview for both protocols by defining every HBCI message
in Appendix A.10 and every UCI message in Appendix A.11. If we can extract the
corresponding message’s payload, we include the payload structure as well. Furthermore,
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  21 00 00 05         78 35 0d 44 00 
Header Payload

Figure 4: Hex string of an example UCI message.
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Figure 5: UCI header.

we implement a UCI and HBCI Wireshark3 dissector based on the extracted protocol
definitions. We introduce the dissector in Chapter 7.

4.2.1 UCI

UCI has a defined set of messages, consisting of a four-byte header and an optional
variable-sized payload. The headers are handled the same by all of NXP’s UWB chips
and most payload structures as well. We encounter one payload structure that differs
between the UWB chips and also between the firmware version of the same UWB chip,
which is the returned ranging data. The ranging data is formatted in the SR100T’s new
firmware versions like the ranging data returned by the SR150, while it is formatted
differently in older versions.

To facilitate the understanding of the UCI protocol, we refer while explaining to
an example UCI message we retrieved from the logged messages, which we show in
Figure 4. The example message is a command to the chip with a five-byte sized payload. It
commands the chip to initialize a session with the session ID 0x440d3578 (because of little
endianness). Additionally, the session type is zero, which stands for a ranging session.
Note that the ranging process starts only after an additional start ranging command.

4.2.1.1 UCI Header

We show the header’s structure in Figure 5. It is always four bytes long, and each bit
always has the same meaning. The first byte defines three values at once: Message Type
(MT), Packet Boundary Flag (PBF), and Group Identifier (GID). Note that we read from left
to right if we point out the X-th bit of a byte.

MT makes up the first three bits of the header’s first byte. It defines the message’s type,
which can be either COMMAND, RESPONSE, Notification (NTF), or DATA. If MT is from
type COMMAND, meaning MT = 1, then the UCI packet’s sender commands the receiver
to perform an action such as starting a UWB session or applying the configuration
included in the payload. In our example UCI message, the first byte is 0x21. Therefore,
the header declares a command since the first three bits are equal to one. Moreover, for
each UCI packet a receiver gets that is a COMMAND, it will return a direct RESPONSE
UCI packet (MT = 2), which at the same time is an acknowledgment. In the payload,

3 https://www.wireshark.org/

https://www.wireshark.org/
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this packet includes either a response code notifying the commander of the command’s
status, or it contains the requested information such as the chip’s information. Another
responding packet type is a NTF packet (MT = 3), which abbreviation’s meaning is not
resolvable like HBCI, and we assume it likely means "Notification". This UCI packet type
is an asynchronous response/notification and is not the related response to a specific
command, but is sent as a notification to events that happen in the chip. For example,
after a UWB ranging session is set up on the chip, the ranging data of continuous
UWB measurements is sent as an NTF message periodically by the chip to the host.
Furthermore, the last message type is DATA (MT = 0). Messages of this type are used to
transfer raw data between UWB chips after a data exchange session is established.

The second value that can be retrieved from the header’s first byte is the PBF, which is
declared by the fourth bit. The PBF is a flag and is defined by one bit. If it is set (bit value
= 1), then the flag indicates that the whole UCI packet is fragmented and the current
packet is a fragment. Moreover, a count of fragments is not defined in the UCI packet
or a previous message. However, each fragment that is sent to the receiver has this flag
set, and for the last fragment, this flag is not set. The receiver can then reassemble the
whole packet after receiving the last fragment. Furthermore, UCI packets are generally
fragmented in the UWB kits if the payload size exceeds 255 bytes (excluding header),
which may also be the maximum allowed payload size of UCI messages. Since the PBF
flag is not set in our example UCI message, we know without looking at previous UCI
messages that this is either an unfragmented message or the last message from a set of
fragmented messages.

The GID is the third value that the header’s first byte holds, and it makes up the
byte’s second nibble. This value defines the UCI message’s group. Each group contains a
selected set of messages, which are defined by the header’s second byte that is the Opcode
Identifier (OID), which we explain later in this section. Additionally with MT and OID, the
GID defines uniquely a UCI packet. Furthermore, there exist multiple groups indicated
by the GID, which names also explain the abstract meaning of messages from the group.
These are CORE = 0, SESSION_MANAGE = 1, RANGE_MANAGE = 2, DATA_CONTROL
= 3 = 9, PROPRIETARY_SE = 10, TEST = 13, PROPRIETARY = 14, and INTERNAL = 15.
In our example, we have SESSION_MANAGE as the GID, since the second nibble is one.
We further point out that we encounter the value three or nine for DATA_CONTROL
at different points in our analysis. Moreover, we assume that both proprietary groups
and the INTERNAL group contain a set of messages, which are proprietary extensions
to the official UCI standard. This allows chip developers like NXP to extend the UCI
standard with additional messages. However, since we have not the specification of UCI
and cannot find a clarification in any of our reversed targets, it stays an assumption.

We point out that the first byte’s values can be read out quickly without calculation.
The first nibble defines MT and PBF. So one can retrieve the value of MT by using the
first nibble, whereby 0-1 = DATA, 2-3 = COMMAND, 4-5 = RESPONSE, and 6-7 = NTF.
Furthermore, if MT is odd, then the PBF flag is set. Additionally, the second nibble
defines the GID.

The first bit of the header’s second byte is Extended (EXT), which is a flag that signalizes
if the payload has an extended length, meaning if it is greater than 255 bytes. This is
contrary to our previous finding that the maximum allowed payload size of UWB may be
255 bytes. Our example UCI message has the flag not set. Therefore, it has no extended
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length. Moreover, for the second byte’s second bit, we do not find the meaning anywhere.
We assume it is reserved for future use.

The last six bits of the header’s second byte are the OID, which defines the corre-
sponding group’s message, whereby the group is identified by the GID. In our example
message, we have a OID of zero. By looking either into uci_defs.h of the UWB kits’ source
code files or into the ucitool’s YAML file, we can resolve the meaning. Since the GID is
SESSION_MANAGE = 1, the OID with the value zero stands for session initialization.

The header’s third and fourth byte display the UCI packet’s payload size. If the EXT
flag is not set, then only the fourth byte displays the payload size. This is the case in our
example, where we have a payload size of five. For a payload size less than or equal to
255, this flag will be not set and the third byte is ignored. Otherwise, if the EXT flag is
set, then the third byte displays the payload size together with the header’s fourth byte,
whereby the fourth byte contains the most significant bits (i.e. little-endianness is used).

4.2.1.2 UCI Payload

While the UCI header is always four bytes sized and each byte in the header has the
same meaning for each different UCI message, this is not the case for the payload of UCI
messages.

The identification of a UCI message and its payload structure is defined uniquely by
the MT, GID, and OID. The identification is simple: With the GID we can retrieve the list
of its corresponding OIDs, in which we find the entry with the OID’s value. Then, with
the MT we know the type (e.g. command). Moreover, even if GID and OID are the same,
for different MTs the payload structures are most often different as well. Also, the values’
endianness in the payload are little endian.

While each payload has a defined structure, it does not mean that it always has the
same size. Some payloads allow a variable length, which is indicated by specific bytes
in the payload. For example, the command for applying the app configuration of a
ranging session (MT = 1, GID = 1, OID = 3) defines a variable number of different
configuration values to apply in the fifth byte. Hereby, each of these configuration values
has a structure also known as Type-Length-Value (TLV). The structure consists of a
configuration identifier byte, followed by a byte indicating the configuration value’s
variable length, and the configuration value itself. As a result, different sized payloads
are possible. In addition, decoding these values is only possible by starting from the
payload’s beginning and looping through the configuration values.

In our example, we know based on the values MT = 1, GID = 1, and OID = 0, which
UCI message is used and what the payload structure looks like. Based on our extracted
UCI specification (see Appendix A.11), we know that the first four bytes display the
session ID, which is 0x440d3578. Furthermore, we know that the fifth byte indicates the
session type, and the byte is zero, which indicates the session type of a ranging session.

4.2.2 HBCI

Unfortunately, we cannot use the ucitool’s YAML file that declares only UCI messages
for understanding HBCI. Nevertheless, by analyzing the ucitool’s source code, and the
source code of NXP’s API, we learn in a great measure how HBCI works. HBCI is purely
used for chip management such as sending the encrypted chip firmware to the SR100T
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0 3 4 7 8 15 16 23 24 31

CLASS SUBCLASS OPCODE ID SIZE 2 SIZE 1

Figure 6: HBCI header.

or SR150. The message set also is much smaller in comparison to UCI. Additionally, in
contrast to UCI, the header and the payload are sent in separate messages. Furthermore,
for some messages are acknowledgements returned from the receiver. Despite access to
the source code, we cannot tell with certainty what conditions must be fulfilled, such that
an acknowledgement is sent back from the receiver. Yet, by analyzing logged messages
between the host and chip, we observe that an acknowledgement is sent back from the
receiver in three cases. In the first case, the receiver sends back an acknowledgement
when the header is received, and a payload size greater than zero is defined. When
the header defines a payload size greater than zero, the receiver knows that the sender
will send a message with the payload data afterwards. We assume that the receiver
acknowledges the header to tell the sender that the receiver is ready to receive the
payload. In addition to headers that indicate a payload size greater than zero, the receiver
acknowledges every payload message in the second case. In the third case, a receiver
sends back an acknowledgement when a command declared in a header is received. This
is independent of the header’s defined payload size and if the sender sends a payload
afterwards. We assume the receiver tells the sender with the acknowledgement that the
command was executed successfully.

Based on the purpose of HBCI messages, we assume that HBCI also is used to manage
other chips from NXP, which are not related to the UWB chips. The whole specification
is not related to UWB and in theory, each message also can be used to communicate with
other chips.

4.2.2.1 HBCI Header

In Figure 6, we show the structure of an HBCI header. Like in UCI, the header is also
four bytes long, but the structure is simpler. Here, the first byte’s first nibble declares
the message’s class. Five classes exist, whereby the first class General is intended for all
messages that do not fit into the other three classes. This class is displayed with the
value zero. The second class is indicated by the value one. The classe is named Test,
and it contains debug-related opcodes. By slightly modifying the communication with
the SR100T, we detect that this class is not supported by the SR100T. Next, the third
class is Patch_ROM, and it is displayed with the value two. We saw no message of this
type used in real communication. Moreover, we assume that messages of this type are
used to update the chip’s Read-Only Memory (ROM), which includes the bootloader
and certificates. HIF_IMAGE is the third class and is displayed with the value five. Its
messages are used to locally download the firmware to the chip. The fourth class is
IM4_Image and is displayed with the value six. IM4 is a feature that controls applet
migration and operating system update processes [27]. We assume it is unrelated to the
firmware running on the UWB chips. This class is also not supported by the SR100T.

Furthermore, the first byte’s second nibble defines the subclasses with self-explanatory
names. Thereby, we have Query = 1, Answer = 2, Command = 3, and Ack = 4.
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The second byte indicates the opcode identifier and is different from the ones of UCI.
For some messages, the opcode identifier is used as a direct status indicator in response,
making a payload superfluous.

The third and fourth bytes always signalize the payload size, whereby the bytes are
represented in little-endian. So the fourth byte makes up the most significant bits. For
headers with a payload size greater than zero, the payload with the defined size follows
in an additional message, which we describe next.

4.2.2.2 HBCI Payload

We find no defined structure for HBCI payloads. The payloads we retrieved from the real
communication consist of data and an additional byte, which is the data’s Longitudinal
Redundancy Check (LRC). Furthermore, there exist only a few messages with a payload.
We try to identify how payloads are interpreted in the NXP UWB API’s and ucitool’s
source code. We further analyze Samsung’s UWB libraries. However, we do not find
decoders for most payloads and can only guess the data meaning based on the opcode
identifier names. Moreover, we only find for two HBCI payloads the decoding of selected
bytes, which is done in one of Samsung’s UWB libraries. However, not being able to
decode these payloads is not severe since it probably will not hinder us in any form in
the duration of the thesis. This makes only the presented HBCI specification not entirely
complete. In Appendix A.10, we include this specification.

Additionally, we find that there exist two additional HBCI messages, which are not
referenced anywhere in the API source code or the ucitool, but only in one of Samsung’s
UWB-related libraries. These messages are the query and response of the device life-cycle
data. In conclusion, this means there may be additional unknown HBCI messages, even
if we have not found them in our logs or in the source code.

4.3 sr100t’s local firmware download process

By learning the HBCI specification and using logs as examples, we also can understand
the local firmware download process for transferring the encrypted and signed firmware.
In Figure 7, we show the steps of the SR100T’s local firmware download process. For the
SR150 we assume a very similar or equal order of messages. However, the SR040’s local
firmware download process is different. From a documentation file in the UWB kits, we
learn that is named SWUP, and it has a different message set. We delegate an analysis of
this firmware transfer process to future work.

The firmware is downloaded locally to the SR100T in the HBCI mode, which we describe
in Section 4.5. Additionally, it is already stored locally on the device, and nothing is
downloaded from a web server. The firmware comes pre-installed on our Samsung phone
and only updates when the phone’s operating system is updated.

To start the local firmware download process and to make the SR100T ready, the service
that handles the HBCI communication with the chip sends a command to start the HIF
image mode. In this mode, the firmware is locally downloaded. When the chip accepts
the command and goes into this mode, it sends back an acknowledgement containing
a positive status code. Now, the service can optionally ask the chip again for the chip’s
status, which should be the HIF image mode.
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Figure 7: SR100T’s local firmware download process.

After these steps, the service sends the firmware in chunks to the chip using two
messages, whereby the first message declares the chunk’s size in an HBCI header and
the second message contains the raw chunk data itself. For each message, the chip sends
back an acknowledgement. In the end, the service asks the chip if the firmware was
downloaded successfully. We assume that this query simultaneously signals that the
transfer is finished since no message declares the firmware’s whole size before. If the
firmware was downloaded successfully, the chip responds with a positive status message
and directly goes into UCI mode, which we describe in Section 4.5.

4.4 sr100t’s driver

The SR100T’s driver is open-source, and we find the current version for our phone model
on Samsung’s open-source kernel release website4. After downloading the open-source
kernel, we locate four source code files that implement the driver. We analyze these files
and present our key findings next.

4 https://opensource.samsung.com/uploadList?menuItem=mobile&classification1=mobile_phone

https://opensource.samsung.com/uploadList?menuItem=mobile&classification1=mobile_phone
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The driver is developed by NXP, written in C, and is a character device driver5. We
learn from the source code that a device handle will be created under /dev/sr100 after the
driver is started. This is also the case on our Samsung phone. Additionally, we find on
our phone that the Linux user uwb is the owner of this file. Moreover, only the Linux user
and group uwb have read-write permissions on the file. Other users have no permission
for any operation. So on our phone, only processes can operate on the device handle that
run under the same Linux user or group ID or that run as root.

When the driver is initialized, it also creates a Linux proc entry under /proc/uwblog,
which is owned by the Linux user root but can be read by any user. This entry enables
and handles read access to debug and error messages, which the driver writes if a debug
flag is set. Fortunately, this flag is set in the driver’s source code, and by reading the
contents of the proc entry on our smartphone, we can see that Samsung did not change it.
If we attack the driver, these logs can be useful for us.

We learn from the source code that the driver implements four file operations: open,
write, read, and ioctl. After a user space process opens with open a handle to /dev/sr100, it
can use the other three file operations to send data to the driver, receive data from the
driver, and execute specific commands.

There are several commands that the driver accepts over ioctl. The most interesting
command enables and disables the local firmware download mode by setting a flag. We
analyze the flag’s evaluation with the source code and logs of the driver. Thereby, we
learn the flag is set when the Serial Peripheral Interface (SPI) connection to the chip is
(re-) enabled. Furthermore, the driver interprets all messages as HBCI messages in the
local firmware download mode. When the flag is unset, the driver interprets all messages
as UCI messages. The different interpretations of messages based on a flag may indicate
two states for the SR100T, which we further analyze when we build the state machine in
the next section. The other commands that can be passed to ioctl are not essential for us.

In addition, the driver’s methods write and read do a check for a maximum allowed
length of the data to write or read. The limit is 4200 bytes. Larger writes or reads are
discarded. This limitation is essential to know when we try to attack the SR100T, since the
payload of UCI and HBCI messages can be sized up to 65535 bytes in theory. Moreover,
if the messages are not discarded, these methods only forward HBCI and UCI messages
between host and chip.

4.5 sr100t’s state machine

To better understand the SR100T, it is helpful to build its state machine. The state machine
helps us identifying the chip’s states and what conditions cause a transfer between states.
We can use this knowledge when we attack the chip. Furthermore, we do not want to
build a complete detailled state machine but focus on the essential states relevant to us.

We build the SR100T’s state machine based on our previous analysis and findings of
UCI, HBCI, the source code in the UWB kits, and the SR100T’s driver. In addition, we do
extra tests, which we describe next. In Figure 8, we show the resulting state machine.

To build the state machine, we further analyze the driver’s logs extracted from our
phone and normal logs extracted with Logcat. Because we do not detect in the regular
workflow crashes or timeouts and we want to ascertain our knowledge, we manually

5 A character device is a device to which single bytes can be sent to and read from.
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Figure 8: SR100T’s state machine.

trigger simple crashes, which we describe in Section 8.3.2.2 in more detail. This helps us
learn the state transitions in case of crashes and timeouts. Additionally, in the regular
workflow the user space processes on our phone do not deviate from the order of
messages and always send expected messages to the chip. Therefore, we want to verify
that we build the state machine of the chip itself, and the user space processes do not
determine the state machine. In order to do this, we manipulate HBCI and UCI messages
with Frida. For example, we send UCI messages in the HBCI mode state by changing HBCI
messages to valid UCI messages before they are sent. Then, we review the response from
the chip. We also inject messages. For example, we inject messages after the chip has
crashed in the UCI mode state and before the communication with the chip is reenabled.
Thereby, we send UCI messages to test the chip’s responsiveness and check if the only
way out of the error state is the re-establishment of the communication with the chip.

Furthermore, when the host writes HBCI messages to the chip in the regular workflow,
it always first sends the four-byte header, which the chip then processes. When a payload
exists, the receiver acknowledges the header, and if no error happens after the sent header,
then the host sends the payload. The same applies to the opposite direction, meaning
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for messages that the chip sends. To test if it is possible to send the header and payload
at once to the chip, we manipulate selected HBCI messages and generate messages
consisting of header and payload without separation. We test successfully that the chip
interprets only the header, and the rest of the message is ignored by the chip, even if
the payload size greater than zero is defined in the header. This means that the HBCI
payload needs always to be sent in a separate message after a received acknowledgement.
Additionally, we test the case when the chip sends HBCI messages to the host. We test
successfully that the chip always sends the header first. Only after an acknowledgement,
it sends the payload. Next, we describe the state machine.

When the phone is started and the driver is initialized, an SPI connection is established
with the SR100T. This is handled by the driver’s function sr100_dev_init. During the
connection setup, the driver sets the SPI connection’s Chip Enable (CE) line to zero,
which in effect temporarily disables the data exchange connection to the SR100T. This
means that after the connection establishment, the chip is in the initial state of Disabled.

The CE line is set to one to start the communication with the chip. Then, the chip
state transfers to HBCI mode. This mode is also named firmware download mode in the
source code, which fits its primary cause, namely to send the firmware to the SR100T.
Yet, there exist many HBCI messages that are unrelated to the local firmware download,
so we name it HBCI mode. Moreover, only HBCI messages are accepted by the chip in
this state, because when we inject a UCI in this state with a different header than any
HBCI message could have, it is discarded. Thereby, the chip responds with a message
that declares the error, which relates to unknown header bytes.

After the raw firmware data is transferred, a final HBCI command must be sent to
the chip. This command requests the firmware download status from the chip, and
we conclude it signalizes the end of the transfer simultaneously. The SR100T directly
responds to this command, and the response signalizes a positive status code if the chip
has accepted the transferred firmware. After the response, the chip immediately sends
an additional NTF UCI message declaring the state transition to UCI mode. There is no
additional command needed, and the state transition happens instantly. In this mode, all
UWB-related messages are exchanged with the chip, and only here we can use any UWB
functionality. Furthermore, just as UCI messages are not recognized in the HBCI mode,
HBCI messages are not recognized in the UCI mode. Moreover, we assume that when
the chip goes into the UCI mode, it starts an asynchronous event handler. When an event
happens that requires notifying the host, the event handler passes the data to the Message
Processor, which creates the corresponding UCI message from the data. For example, this
happens for a finished UWB measurement.

When we trigger crashes, we encounter two types of crashes in the UCI mode. When
the first crash type occurs, the SR100T does not respond anymore to our commands. The
only way out of this mode is to disable and reenable the connection, which starts the
HBCI mode again. When the other crash type happens, the SR100T sends a notification
to the host and in addition, a 52 byte sized debug message. Afterwards, the chip stays
responsive, and we can continue to send UCI messages and get the responses. Moreover,
normally, the UWB services disable and reenable the communication for both types of
crashes, even if the SR100T stays responsive.

Unfortunately, we cannot trigger crashes in the HBCI mode. However, we find in the
UWB kits’ source code an HBCI status opcode named phHbci_General_Ans_HBCI_Fail.
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We assume the chip uses it to notify the host of an error state. Hence, we conclude that
the chip stays responsive when this notification is sent like in the UCI mode. Furthermore,
we also assume that another crash type can happen, whereby the chip does not respond
anymore, and the communication needs to be disabled and reenabled.





5
E N T I T I E S O F S A M S U N G ’ S U W B E C O S Y S T E M

In Chapter 4, we learned the SR100T’s states and the communication with it. We also
learned the driver’s role. However, at this point, we do not know how the SR100T is used
in the user space of Samsung’s Ultra-Wideband (UWB) ecosystem. We also mostly do
not know which entities exist and how these are interconnected. Therefore, we want to
find out which services communicate with the SR100T and expose UWB functionality
to other entities, which we also want to learn. We further aim to understand all entities’
roles and interconnection in Samsung’s UWB ecosystem.

In this chapter, we explain how the UWB is integrated into the user space in Samsung
phones by analyzing the apps, services, and libraries that provide or use the UWB
functionality in Samsung phones. In addition, we examine in which way Samsung’s
SmartTag+ is integrated into the ecosystem, how it is controlled by the phone, and on a
high level how the UWB distance and direction measurement (ranging) between phone
and SmartTag+ is done.

5.1 laboratory

We use multiple tools for reverse engineering UWB-related apps and other binaries, which
mainly are the three tools we name next. We use Frida1 for dynamic instrumentation
of functions. We also use Ghidra2 for disassembling as well as decompiling binaries.
Additionally, we use JADX3 for decompiling Android (system) apps in .apk format and
other .jar library files.

We further use two Samsung Galaxy S21 Ultra (SM-G998B) phones with different
images and the Samsung Galaxy SmartTag+ (EI-T7300M) for our analysis. In Table 2, we
show the basic information about the phones’ images. In addition, we enable superuser
access on our Samsung phones, meaning we "root" it. In Appendix A.1, we show the
summarized steps we take to enable superuser access. We also enable Verbose vendor
logging and Samsung verbose debug logging in the developer options. This results in
additional log messages that help us in our understanding.

5.2 analysis procedure

We take several steps to learn the ecosystem’s entities. First, we trigger UWB functionality
on our Samsung phone by doing ranging with the SmartTag+, which can be started
over a plugin in the SmartThings app. Additionally, we trigger it using Nearby Share.
Meanwhile, we take logs and evaluate these after, which helps us learn unique strings
that are most likely only contained in a specific app, executable, or library. Then, we semi-
automated search for UWB-related files on our phone, which include apps, executables,

1 https://github.com/frida/frida

2 https://github.com/NationalSecurityAgency/ghidra

3 https://github.com/skylot/jadx
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PHONE NUMBER INFORMATION ID VALUE

1 Phone model number SM-G998B/DS

Phone Android version 11

Phone security patch level 2021-08-01

Phone firmware version G998BXXU3AUGM

2 Phone model number SM-G998B/DS

Phone Android version 11

Phone security patch level 2021-11-01

Phone firmware version G998BXXS3AUJ7

Table 2: Information about the phones’ images
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and configuration files. In our search, we look for filenames containing a specific string
in the name and files containing a specific string in the contents. Every found file is
extracted from the phone.

Next, we examine which files every process opens and look for files we have already
found. Thereby, we determine the UWB-related processes and which files are related to
these processes, including the executable name of the process itself and the imported
libraries. Previously unknown files are also extracted from the phone if we do not
know the file’s meaning based on the name. Furthermore, we match log contents to the
corresponding files or processes.

Subsequently, we begin to analyze the functionality of the UWB-related processes.
Thereby, based on the order of the workflow that can be derived from the evaluated logs,
we analyze or reverse engineer each extracted file with a focus on the process executables
and their libraries. It is helpful for our analysis that most apps, executables, and libraries
use no form of obfuscation.

In Figure 9, we show an overview of the ecosystem, which we created with our analysis
results. In the following sections, we elaborate on our findings.

5.3 samsung’s uwb api

In Figure 10, we show the entities that build Samsung’s UWB Application Programming
Interface (API) and the apps that use it, which all are system apps. Two processes form
the UWB API on our Samsung phone, which both run under the Linux user uwb like
the driver. Both also run in the background after the device starts. The first process
is vendor.samsung.hardware.uwb@1.0-service, which is started through the same-named
ARM executable. It implements the Hardware Abstraction Layer (HAL) for UWB on our
phone, and it communicates with the SR100T’s driver. Hence, we name it the UWB HAL
service. Furthermore, it is responsible for the SR100T’s setup including the local firmware
download to the chip. All Host-Based Command/Control Interface (HBCI) messages
that are sent to and received from the chip are created and processed here. Additionally,
it forwards all Ultra-Wideband Command Interface (UCI) messages, which the second
process sends, which we describe after the next paragraph. In addition, the bytes of
most HBCI and all UCI messages are logged by this service. Here, we make the same
manipulation as described in Section 4.2 to log all messages in our following tests.

Using Ghidra, we identify that one library imported by the UWB HAL service contains
many functions, which also are included in the halimpl subfolder of the Mobile Knowledge
(MK) UWB kits’ source code. Therefore, the library uses NXP’s source code included
in the MK UWB kits. We use this source code to analyze the library more quickly. The
library is named uwb_uci.helios.so. We further compare this library to akash of the ucitool.
Both have very high similarities. Examined functions and strings are either identical
or have slight differences. However, akash contains the additional server component,
which this library does not. Therefore, we conclude uwb_uci.helios.so is statically imported
by akash as it is dynamically imported by the UWB HAL service, and both underlying
executables are different. Additionally, we assume the slight differences in identified
methods relate to different library versions.

The second process is com.samsung.android.uwb and implements the actual API that
is accessible by other apps. Hence, we name it UWB API service. Behind this process
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is the app UwbUci.apk, which is a system app. The API checks for some method calls
that implement privileged actions if the calling app declares the Android permission
WRITE_SECURE_SETTINGS. This permission can only be granted to system apps, which
implicates that only selected system apps can call them. However, we do not find
permission checks for methods that are independent of the privileged methods. Thus, we
conclude that the UWB API service can be used by third-party apps in the near future
directly. Currently, we do not find third-party apps using it, and we also do not find an
API for third-party apps. Furthermore, the communication with the UWB HAL service
works with Binder4 and is implemented in imported native libraries.

UwbUci.apk imports a library named libuwb_uci_jni.so, which implements the interface
between the app and native code. This library uses another library named libuwb-uci.so,
which provides over exports an API for creating predefined UCI messages and returning
selected UCI responses. Here are all UCI messages created and processed that are used
to communicate with the SR100T. Moreover, one additional export exists, which enables
UwbUci.apk to send a raw UCI message through the library, whereby the own bytes can
be chosen, and no validity checks are done for the bytes. Additionally, all UCI messages
generated by the library libuwb-uci.so are forwarded to the UWB HAL service using Binder.

4 Android Binder is an Inter-Process Communication (IPC) mechanism provided by the Android operating
system [49].
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NAME PACKAGE ID IMPORTS

UwbTest com.sec.android.app.uwbtest samsung.uwb.jar &

com.samsung.andr-

oid.uwb_extras.jar

Samsung Multi Connectivity com.samsung.android.mcfserver samsung.uwb.jar

Mdx Kit Service com.samsung.android.mdx.kit samsung.uwb.jar

Google Play services com.google.android.gms samsung.uwb.jar

Table 3: Apps that use the UWB API service.

Using Ghidra again, we identify that libuwb-uci.so has a high similarity to parts of
the MK UWB kits’ source code. Many functions of this library are included in the
uci-core subfolder of libs. Again, we conclude that NXP’s source code is used, and this
helps us understanding the library more quickly. Moreover, we conclude that between
libuwb_uci_jni.so and libuwb-uci.so lies the separation of code without NXP connection
and the usage of code developed by NXP, which includes the code of uwb_uci.helios.so.
Beginning from this library, through the UWB HAL service and up to the chip, all
functions directly involved for the communication with the SR100T are developed by NXP.
Fortunately for us, this is the NXP source code from the UWB kits with slight variations,
which likely come from different versions. Furthermore, Samsung still developed code
after the separation. However, this code is not related to the communication with the
chip but primarily provides the foundation of the UWB HAL service.

UwbUci.apk and thereby the UWB API service expose many functions, and an app can
access these using Binder. These functions provide abstract UWB functionality to apps,
which do not need to handle the specifics. Furthermore, the functions themselves shift
all UCI message creation and processing to the library libuwb-uci.so. In the end, most of
the UwbUci.apk’s functions just forward commands to the native libraries. Additionally,
one provided function named sendRawUci enables sending raw bytes directly to the chip,
which are not checked for validity, except of the length. However, this method checks the
calling permission, and currently only system apps can use it.

5.4 apps using the uwb api

We encounter multiple apps that use the UWB API service, which we list in Table 3. All of
them are system apps and import samsung.uwb.jar, which is a framework library included
on the phone. In addition, the app UwbTest also uses com.samsung.android.uwb_extras.jar,
which is also a framework library. Both of these libraries implement the connection to the
UWB API service and provide a simple API, which the system apps can use for UWB func-
tionality. Furthermore, both libraries can only be used if the calling app has the Android
permissions ACCESS_FINE_LOCATION and ACCESS_BACKGROUND_LOCATION.
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5.4.1 UWB Test App

While our search on the phone for UWB-related files, we found the UwbTest system app,
which is developed by Samsung. By decompiling the app and looking at the Android
manifest file, we learn that we can start it by typing *#8928378# into the phone app.

The app lets a user test the UWB functionality on the phone. Moreover, with the app
a user can start UWB ranging sessions with other phones that use this app. It is also
possible to establish a ranging session with other devices that do not use this app for
ranging. For example, one phone uses the app and another phone uses a ucitool script,
which works independently of Samsung’s user space. We also developed a corresponding
ucitool script, which we describe in Section 7.3.2.

This app is helpful for us because it sets up a connection with the UWB API service
using both UWB jar libraries. Furthermore, it does not contain much code unrelated to
UWB usage and is easy to reverse engineer. Moreover, we can use the setup methods with
a simple Frida script instead of developing our own app. The result is a quick initialized
service connection, and we can use this connection in our Frida script to call the UWB
API service’s methods. This is fortunate for two reasons. First, we can send from here
any byte we want to the SR100T by calling the function sendRawUci in our Frida script.
However, with the ucitool we have already an easier and better way to communicate with
the chip. Second and more important, starting from here we can attack the UWB API
service and the UWB HAL service. Thereby, we can simulate attacks that come from system
apps now, and attacks that come from third-party apps in the future.

5.4.2 Samsung Multi Connectivity

The next app that uses the UWB API service is Samsung Multi Connectivity. It is a system
app and runs as a service in the background. UWB ranging sessions with the SmartTag+
are established through this service, which then interacts with the UWB API service using
samsung.uwb.jar. The ranging data is then returned to the calling app of this service. We
will elaborate on the SmartTag+ and the app that uses this service in Section 5.5.1.

5.4.3 Apps for Sharing Files

The app Google Play services includes the Nearby Share functionality and imports the
library samsung.uwb.jar. When a user selects one or more files to share and afterwards
presses "Nearby Share" in the sharing pop-up, the app searches for other devices nearby
independently of UWB. Another device is found when it has Nearby Share enabled and
is a sharer’s contact. Now, if both devices are Samsung phones and are UWB-enabled
devices, they do a UWB ranging session, which the Google Play services app starts using
the UWB API service.

Mdx Kit Service is another system app that uses the UWB API service and is used by
Samsung’s Quick Share app, which is an app developed by Samsung with very similar
functionality to Nearby Share. When selecting one or more files to share, Quick Share
is always started. This is even the case when Quick Share is disabled. We think it gets
temporarily enabled when sharing a file. Furthermore, Quick Share immediately prepares
a UWB ranging session without starting it by using Mdx Kit Service. When nearby
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Samsung devices are found that are UWB capable and "Quick Share" is pressed in the
sharing pop-up, a ranging session with the other UWB-enabled devices is done. Then,
the live direction to the closest UWB-enabled device is displayed in Quick Share. We point
out, while the UWB usage in the Nearby Share process is documented by Samsung [45],
this is not the case for the usage of UWB in Quick Share.

5.5 smarttag+

Samsung’s SmartTag+ is a low-cost Internet of Things (IoT) tracking device, which can
be used to find objects that are equipped with it. To manage and locate the SmartTag+,
one needs to use Samsung’s SmartThings app. Furthermore, its functionality is similar
to the normal SmartTag, but it additionally integrates UWB, which can be used to find
the SmartTag+’s location more precisely. Therefore, the SmartTag+ is part of Samsung’s
UWB ecosystem. Additionally, the UWB functionality is provided by the integrated NXP
SR040. This makes the SmartTag+ the cheapest commerical device currently available
that comes with an NXP UWB chip.

While there were some efforts made to analyze Samsung’s normal SmartTag [5] and
Apple’s UWB-enabled AirTag [10, 44], we do not know of research for the SmartTag+.
Hence, we analyze the SmartTag+ and its management entities on our Samsung phone.

For the following steps, we use our analysis results from Section 5.2. Additionally, we
examine all files in the SmartThings app’s data folder, which is located in /data/data/-
com.samsung.android.oneconnect/. We find multiple interesting files in this folder, including
plugins used to control and locate the SmartTag+. We also find multiple unencrypted
firmware versions of the SmartTag+ located in one plugin’s folder.

Next, we explain the SmartTag+ management entities and how a UWB ranging session
is set up between the SmartTag+ and a UWB-enabled Samsung smartphone. Afterwards,
we examine the SmartTag+’s firmware and its Printed Circuit Board (PCB).

5.5.1 Entities Used in the Interaction With the Smarttag+

Different additional entities are used when a user manages or locates the SmartTag+. We
show an overview in Figure 11. Moreover, the foundation is the SmartThings app. When a
user sets up a SmartTag+ for the first time, the SmartThings app downloads an additional
web plugin, which is called WebTRKPlugin. We also call it the SmartTag+’s Management
Plugin or simply the SmartTag+’s Plugin, and show a screenshot of it in Figure 12. This
web plugin is loaded into the SmartThings app using Android’s WebView5 and provides
a controller interface for the user to control the SmartTag+. We find the files that the
SmartThings app uses to display the web plugin in the corresponding data folder on
our phone. The plugin consists of one HTML file and multiple JavaScript and CSS files.
Additionally, we assume that the plugin is similar or equal to the normal SmartTag’s
plugin based on screenshots we find in a GitHub repository [5].

Furthermore, the JavaScript files contain all SmartTag+ management logic. For exam-
ple, they handle the ringtone update of the SmartTag+. However, for most actions, the
JavaScript execution environment is insufficient. Therefore, selected methods of the Smart-
Things app are called, which are accessible through the @JavascriptInterface annotation.

5 WebView enables apps to display web pages using remote or local resources.
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For example, the SmartTag+’s plugin can communicate over Bluetooth Low Energy (BLE)
with the SmartTag+ or can use location services using these methods. Moreover, since
the JavaScript files are in the SmartThings app’s data folder, we can easily modify them.
After modifying one of these files, we can see our changes successfully after reopening
the plugin in the SmartThings app. It is helpful for us that we can modify these JavaScript
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files and that they are not obfuscated. The positive consequence is that we can more
easily manipulate the communication with the SmartTag+ and more, without digging
into the SmartThings app itself and writing Frida scripts, which would cost us more
time. For example, we now can trigger the Over-The-Air (OTA) firmware update process,
which normally only happens if a new version is available. Additionally, we can extract
or manipulate the firmware sent to the SmartTag+ by modifying only a few lines of
JavaScript code.

We further detect the possibility to enable a test mode in the plugin by modifying one
line of code of a JavaScript file. However, the only difference between normal and test
mode is the possibility of manually triggering two types of firmware updates. The first
type updates the regular firmware with the latest version, independently if it is the same
version. The other type’s intention is downloading a test version and then updating the
SmartTag+’s firmware with this test version. However, even when a different link is used
to download the test firmware, only the regular firmware is downloaded here. Maybe it
is necessary to be in the intranet of Samsung to get the test firmware returned, or the
server simply does not host a test version because no test version is currently available.

No UWB functionality can be triggered with the SmartTag+’s management plugin.
Instead, another plugin needs to be used. Once the SmartTag+’s plugin is installed, the
user can install an additional plugin, which also can be installed in the SmartThings app
itself. This plugin is called SmartThings Find, and it can be started through the SmartTag+’s
plugin or directly in the SmartThings app’s main menu. Unlike the SmartTag+’s plugin,
this plugin is a .apk file, and it opens its own web plugin to display information. Moreover,
when SmartThings Find is downloaded and installed by the SmartThings app, it is stored
in the app’s data folder. This means it is not installed on the phone as a regular app, but
the SmartThings app loads it from its data folder when the plugin is started.

The SmartThings Find plugin is the entity that can start the establishment of UWB
ranging sessions with the SmartTag+. When the user opens the plugin, the user can
press "Search nearby" in the plugin. Then, the SmartThings Find uses the SmartThings
app to prepare a UWB ranging session with the SmartTag+ over BLE. The plugin further
instructs the Samsung Multi Connectivity service to establish a UWB ranging session
with the SmartTag+. Subsequently, the Samsung Multi Connectivity service uses the UWB
API service to establish a UWB ranging session with the SmartTag+, and it periodically
returns the post processed ranging data to the SmartThings Find plugin, which includes
the distance and Angle of Arrival (AoA) measurement results. Then, the user gets the
distance and direction displayed live. In Figure 13, we show a screenshot of how the
results are displayed to the user.

The SmartThings Find plugin is further used for Samsung’s offline finding network
and searching for unknown SmartTags nearby. The network and finding of unknown
SmartTags are independent of Samsung’s UWB ecosystem and therefore out of scope.

5.5.2 SmartTag+’s Firmware

Two versions of the SmartTag+’s firmware come with the SmartTag+’s management
plugin. These can be found in the plugin subfolder of the SmartThings app’s data folder.
Each name starts with "UWB_TAG" followed by the version. Once a new firmware version
is available, the user is asked in the plugin to start an update as we show in Figure 14.
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Then, the latest version will be downloaded from Samsung’s server, and the plugin sends
it to the SmartTag+ using the SmartThings app. However, even if the latest version is
downloaded in the update process, it is not stored in the data folder. Moreover, when we
first overviewed the firmware contained in the data folder, the firmware versions were
older than the current ones we find. We assume the latest firmware are included with
each update of the plugin. Furthermore, the firmware is unencrypted and intended to be
used on an NXP QN9090, which is the the SmartTag+’s main chip.

In the duration of our thesis, we extracted every version of the SmartTag+’s firmware
we encountered using two methods. First, we looked in the SmartThings app data folder
for every new version of the SmartTag+’s plugin. Second, whenever the plugin notified
us of a new firmware version and to do an update, we extracted the newly downloaded
firmware version by modifying one of the plugin’s JavaScript files. In the mid of December
2021, we have six different firmware versions, whereby the oldest version we have is
0.50.30, and the latest version is 1.01.04.

Furthermore, we find two other binaries in the same folder as the SmartTag+’s firmware.
These are named "ble_finder...". We always encountered only the two identical versions in
the duration of our thesis, which are 1.01.23 and 1.01.26. We also do not find any usage
of these files in the SmartTag+’s plugin or the SmartThings app. However, we find many
variables named "ble_finder" in the SmartThings Find plugin and conclude based on the
name a connection to Samsung’s offline finding network, which the SmartTag+ is also
part of. Furthermore, we find that strings of the "UWB_TAG" firmware and these files
are different but often have the same meaning. Hence, we think these files might be the
normal SmartTag’s firmware. To check this hypothesis, we compare strings of these files
and the normal SmartTag’s firmware, which we find in a GitHub repository [5]. Indeed,
both files have very high similarities. Thus, we conclude that these files are the normal
SmartTag’s firmware. Since the normal SmartTag’s firmware is included in the plugin’s
folder, it might indicate that the plugin is simultaneously used for the SmartTag+ and the
normal SmartTag. Moreover, since the normal SmartTag has no UWB integrated, itself
and its firmware are out of scope.

5.5.2.1 Firmware Analysis

We do a brief static analysis of the SmartTag+’s firmware. Thereby, we evaluate strings
and overview selected functions with Ghidra to learn about the SmartTag+’s UWB usage.

The firmware also contains the NXP SR040’s firmware. However, the SR040’s firmware
is encrypted and signed like the SR100T’s firmware. The QN9090 sends this firmware at
a certain step to the SR040. Furthermore, this is the only encryption in the SmartTag+’s
firmware. So the whole code that runs on the QN9090 is not encrypted, which includes
the communication with the SR040.

Both MK UWB kits come with a UWB tag, which is similar to the SmartTag+. This
tag also contains, like the SmartTag+, the NXP QN9090 and SR040 on its PCB. A demo
firmware can be uploaded to the tag, which source code can be found in the UWB
kits. The source code consists of demo files, which make use of the UWB API that we
already examined in our MK UWB kits’ source code analysis. Moreover, it is possible
to change the demo files, compile them, and upload the compiled firmware to the tag.
When compiled, these demo files and the UWB API are included in the tag’s firmware.
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We compare the UWB tag’s firmware from the standard UWB kit with the SmartTag+’s
firmware and find a very high similarity. We do no detailed analysis of the similarity,
but we can tell that Samsung uses the complete demo files and therefore, the UWB API.
Since the compiled demo makes up most of the firmware, we have most of the source
code for the SmartTag+’s firmware.

We further compare the size of the standard UWB kit’s tag firmware with the Smart-
Tag+’s firmware as well as look for strings that are only contained in one of both firmware.
Thereby, we determine that Samsung has extended the UWB kit’s demo with around
20% more functionality for the SmartTag+. We can assign some of these extensions to the
functionality of sending specific BLE beacons, which are part of Samsung’s offline finding
network. The offline finding network is not in the scope of our thesis. Additionally, we
find strings that are related to the usage of signatures and Cyclic Redundancy Check
(CRC) values, which might indicate integrity checks of the firmware that is uploaded to
the SmartTag+.

5.5.2.2 Firmware Update Process

We show the SmartTag+’s firmware update process in Figure 15. The SmartTag+’s plugin
always uses the SmartThings app’s exported methods, which are marked with the
@JavascriptInterface annotation. The plugin can communicate with Samsung’s servers
and the SmartTag+ using these methods. Moreover, the communication between the
SmartThings app’s methods and the SmartTag+ is done over BLE.

When the SmartTag+’s plugin is loaded, it requests information from Samsung’s servers
about the latest SmartTag+ firmware, which includes the firmware version. Afterwards,
the plugin requests the device data from the SmartTag+, which includes the SmartTag+’s
current firmware version. Next, the plugin compares if the SmartTag+’s firmware version
is equal to the latest firmware version. If both versions are equal, the plugin terminates
the update process. Otherwise, it continues and prepares the sending of the latest
firmware. Hereby, the plugin first checks if the latest firmware is cached, i.e. if it was
already downloaded earlier. The latest firmware is only cached when the user previously
declined a firmware update or terminated it, and the firmware update runs again when
the plugin is reloaded. If the firmware is not cached, the plugin downloads the firmware
data from Samsung’s servers.

Now the firmware transfer begins. Thereby, the plugin first transmits the firmware
information, which includes firmware’s version and size. If the SmartTag+ responds
with a positive status, then the plugin sends the firmware data in chunks, whereby the
SmartTag+ responds for each chunk with a status indicator. This step is repeated until
the plugin has sent the complete firmware or the returned status indicator signalizes
an error. Furthermore, the plugin sends as a checksum a CRC value once for the whole
firmware and together with each firmware chunk. The plugin uses CRC-16 Kermit as the
CRC algorithm.

After the firmware is completely transferred, the SmartTag+ returns one of two possible
status codes, which either signalizes a transfer successs or a transfer failure. We assume
that the status code depends on integrity checks, which the SmartTag+ does by verifying
the firmware’s digital signature and CRC value.
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5.5.3 SmartTag+’s PCB

Since the SmartTag+ is a low-cost IoT device that hosts an NXP UWB chip, and since it
is easier to open than our Samsung phone, it can be valuable for us to analyze its PCB.

SmartTag+SmartTag+ Plugin SmartThings

(1) Call latest firmware info command

(6) Get device data

(7) Return device data

(4) Return latest firmware info

(13²) Return firmware data

(12²) Get firmware data

(5) Call get device data command

(8) Return device data

(9¹) Compare firmware
versions

(15) Transfer firmware information
(16) Forward firmware information

(19) Transfer firmware chunk (20) Forward firmware chunk

(17) Transfer status

(22) Forward transfer status

(18) Forward transfer status

(21) Transfer status

(3) Return latest firmware info

(2) Get latest firmware info

(10) Check firmware data
cache

(11²) Download latest firmware

(14²) Latest firmware data

Samsung Cloud

(BLE)

Figure 15: SmartTag+’s firmware update process. The SmartThings app gets the firmware’s
information and data from the cloud in separate steps.
¹ Can lead to a termination.
² Optional.
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Figure 16: SmartTag+’s PCB - Upper side. Figure 17: SmartTag+’s PCB - Lower side.

The SmartTag+ has several test pads on its PCB. These test pads have a connection to
important pins of different PCB components and facilitate general PCB tests, which we
use for our advantage when evaluating the SmartTag+’s hardware security. Thus, we
analyze the SmartTag+’s PCB to evaluate the function of test pads. In our evaluation, we
make use of our test pad analysis results, for example, when trying to get debug access
to the QN9090 or SR040.

In Figure 16 and Figure 17, we show the upper and lower side of the SmartTag+’s PCB.
It contains the NXP QN9090 as the host chip and the SR040 as the UWB chip. In addition,
the PCB contains a flash memory component from GigaDevice, which is labeled as GD
34CE 2048 and is connected with the QN9090 but not the SR040. The SR040 stores the
firmware on-chip [33]. Furthermore, the PCB is completely different than the normal
SmartTag’s PCB, and another main chip is used, which we can compare with the help of
a GitHub repository [5].

To quickly learn each test pad’s connected pin, we visually follow the wire from the
test pad to its endpoint using high-quality photographs. Subsequently, we verify the
connection using a multimeter. If we are not successful in finding a test pad’s connection
with this method, we probe for the test pad each possible endpoint with a multimeter.
Afterwards, to learn the connected endpoint’s function, we study the QN9090’s and
SR040’s datasheets, which we retrieve from NXP’s website [29, 33]. We do not find
datasheets for other components on the PCB.

The PCB contains 36 numbered test pads. However, we could not find the test pads
number 22 and 34, which might be hidden under components of the PCB. In Table 4, we
show the most important test pads for us. Additionally, to facilitate future research, we
include an extended evaluation of each test pad in Appendix A.3.

The most important test pads are the connections to the QN9090’s and SR040’s Se-
rial Wire Debug (SWD) pins, which might get us debug access to the chips. Further
important are the test pads that are connected to the QN9090’s Universal Asynchronous
Receiver-Transmitter (UART) pins, which the SR040 does not have [33]. The UART pins
might get us logs or a shell. Moreover, for sniffing the Serial Peripheral Interface (SPI)
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COMPONENTS CONNECTION TEST PAD

SR040 SWDIO pin 2

SWCLK pin 3

RST_N pin 5

QN9090 SWDIO pin 14

SWCLK pin 15

RST_N pin 10

UART TXD pin 11

UART RXD pin 13

QN9090, SR040 SCK - SCK - SPI line 0 27

SS - CS - SPI line 0 30

MISO - MOSI - SPI line 0 28

MOSI - MISO - SPI line 0 29

QN9090, FLASH SCK - SCK - SPI line 1 33

SS - CS - SPI line 1 24

MISO - MOSI - SPI line 1 31

MOSI - MISO - SPI line 1 32

Table 4: A selection of evaluated test pads for the SmartTag+’s PCB. The first connection matches
the first component in case of multiple connections.

communication, test pads are important that connect to SPI pins of the QN9090, SR040,
or the flash memory component.
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I D E N T I F I C AT I O N O F AT TA C K V E C T O R S

At this point, we understand Samsung’s Ultra-Wideband (UWB) ecosystem. We know
each entity and the communication workflow between those entities. Now, we want to
identify attack vectors in the ecosystem, of which we also later attack selected ones to
evaluate the ecosystem’s security. We evaluate our previous findings from a security
perspective to identify attack vectors. Furthermore, we do not want to identify them only
for ourselves, but we also intend to give future research a starting point for analysis. For
easier understanding by the reader, we try to keep the attack vectors we identify abstract.
Additionally, while it is possible to identify attack vectors in most parts of each entity, we
try to focus on parts that are directly related to the newly integrated UWB functionality.
For example, we are not interested in vulnerabilities that affect the SmartThings app’s
network security, even if the SmartThings app is part of Samsung’s UWB ecosystem.

Next, we elaborate on the abstract vectors, starting with the lowest level entity. We
further present which of these attack vectors lay in our focus for the rest of our thesis. In
Figure 18, we show the selection of attack vectors we target for our evaluation.

6.1 nxp uwb chips

We learned about the communication protocols with NXP’s UWB chips in Section 4.2. The
protocol Ultra-Wideband Command Interface (UCI) is used for all UWB-related messages
by all chips. On the other side, Host-Based Command/Control Interface (HBCI) is used
to manage the SR100T and SR150, and it is mainly used to transfer the firmware to these
chips. We further learned the workflow of transferring the firmware to the SR100T in
Section 4.3. In addition, we analyzed the SR100T’s driver in Section 4.4. With all learned
information, we built the SR100T’s state machine in Section 4.5. The two essential main
states in the state machine are UCI mode and HBCI mode.

The SR040 and SR100T are integrated into Samsung’s UWB ecosystem, and the
firmware of these chips is the first attack vector. However, we cannot analyze the firmware
of these chips directly since it is encrypted and signed for each chip. Additionally, it is
not publicly available which encryption and signature algorithms are used. Therefore,
we need to retrieve the decrypted firmware first. We can try two methods to get the
decrypted firmware. First, we can test if we can get debug access to the UWB chips
on the Printed Circuit Board (PCB) of our phone or SmartTag+. If we are fortunate,
we can retrieve the unencrypted firmware. Second, we can analyze the local firmware
download process in depth to target information that may help us learning about the
firmware encryption, signature, and more. With this information, we can try attacks
on the encryption and similar. Furthermore, even when we do not have the decrypted
firmware, we can try firmware downgrade attacks.

There may be another way to analyze the encrypted firmware. If we assume that NXP
reuses code they also have provided for the Mobile Knowledge (MK) UWB kits, then we
know parts of the UWB chips’ encrypted firmware. At least a part is likely reused in the
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Figure 18: Selected test surface for our evaluation.
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firmware. Therefore, we can look for vulnerabilities in the UWB kits’ source code and
then establish attacks against the UWB chips for these vulnerabilities.

Furthermore, we can test the UWB chips’ availibility without having the encrypted
firmware. Thereby, we can craft special messages that we send to the chip. For example,
we can use a fuzzer for crafting these messages.

In our evaluation, we assess the SR100T’s local firmware download process. We choose
the SR100T because we can already communicate with it. Furthermore, we try getting
debug access to the SR040 because the low-cost SmartTag+ is easier to open than our
Samsung phone, it costs much less to replace the SmartTag+ in the case of bricking it,
and we already have evaluated all of the SmartTag+’s test pads. Additionally, we test
for the possibility of firmware downgrades and test how we can disturb the SR100T’s
availability. We further look for vulnerabilities in the UWB kits’ source code and try to
trigger these through specially crafted messages.

6.2 sr100t’s driver

In Section 4.4, we learned about the driver’s role. Only the Linux users uwb and root can
interact with it, and its main purpose it to forward UCI and HBCI messages between the
user space and the SR100T.

The whole driver is the next attack vector. We can evaluate the driver’s security in
depth since the source code is publicly available. Furthermore, the source code has less
than 1600 Lines Of Code (LoC), which is significant less than NXP’s UWB Application
Programming Interface (API) provided in the UWB kits that has more than 44000 LoC.
In addition, the code is properly written and easy to understand.

6.3 uci and hbci

In Section 4.2, we learned the workings of the communication protocols UCI and HBCI.
We choose both protocols as our next attack vector because they are far-reaching in
Samsung’s UWB ecosystem, and messages pass multiple entities. Furthermore, the
same types of vulnerabilities can exist in multiple entities when handling the procotols’
messages. Four different entities are directly involved on a Samsung phone for sending
and receiving messages of both protocols. The entities are the SR100T, its driver, the
UWB Hardware Abstraction Layer (HAL) service, and the UWB API service. For these entities,
we are interested in vulnerabilities that are related to UCI and HBCI message creation
or processing. Thereby, we can look for vulnerabilities that can be attacked by another
entity, which can be, for example, any app on the phone or a compromised SR100T.

We can test for two types of attacks, whereby not each type can be applied to each entity.
The first type is attacking the processing of UCI or HBCI messages. We can craft attack
messages that are both protocol conform and non-conform to trigger vulnerabilities.
Furthermore, we can use the knowledge of the protocol fields. For example, we can test
for buffer overflows by sending a message that declares a payload size of 100 in the
header but has a larger payload.

The second type is attacking the creation of UCI and HBCI messages. For this attack
type, we are limited to test the UWB HAL service and UWB API service, since only here
message are created that we can control. For example, we can attack the message creation
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from an external app by passing specially crafted configuration values to a vulnerable
method creating UCI messages from these values.

In our evaluation, we assess the UCI and HBCI message creation and processing of
each entity. Since both the UWB API service and UWB HAL service heavily make use of
the MK UWB kits’ source code, we primarily look for vulnerabilities in the source code,
which simplifies our analysis. Then, we practically attack selected found vulnerabilities.
Furthermore, since we do not have the SR100T’s unencrypted firmware, we practically
derive attacks for every vulnerability we find in the source code because we assume that
code is reused in the firmware.

6.4 uwb services

The next attack vector are both the UWB API service and the UWB HAL service, which we
analyzed in Section 5.3. These play a major role in Samsung’s user space. In addition,
besides processes that run as the Linux root user, both services are the only entities on the
phone permitted to communicate with the SR100T’s driver, because they run as the user
uwb like the driver. In the services, we can look for vulnerabilities excluding the parts
that handle UCI and HBCI messages. For example, we can look for vulnerabilities that
are related to the Inter-Process Communication (IPC) with the services. We can also test
if we can circumvent the protection of privileged actions in the UWB API service, such
that any app can execute a privileged UWB-related action on the phone.

Moreover, we mostly cannot use the MK UWB kits’ source code as help for finding
vulnerabilities because the source code mostly contains UCI and HBCI message creation
and processing, which are not part of this attack vector. Instead, we need to reverse
engineer Samsung’s services and libraries.

We have only a limited time frame for the analysis of the services. Therefore, we take
a focus on the UCI and HBCI message handling and do not look consciously for other
vulnerabilities in the services, except if these are directly connected to the communication
with the SR100T.

6.5 apps using the uwb api service

In Section 5.4, we describe multiple apps we detected that use the UWB API service.
Some of these build a middleware that can be used by other apps. For example, the
SmartThings app’s plugin for UWB ranging establishment with the SmartTag+ uses such
a middleware service, which is the Samsung Multi Connectivity app. In addition, we found
the UwbTest app, which is an helper app for testing UWB functionality and that can be
started with a key combination in the regular Phone app.

The apps that use the UWB API service are also part of Samsung’s UWB ecosystem
and also are attack vectors. Therefore, a security analysis of them is also important.
Additionally, every app we detected is at the same time a system app, and some of them
provide an API for other apps to use exported functions. Suppose these system apps can
be attacked or misused successfully. In that case, it can be possible for a third-party app
to use a privileged method of the UWB API service through the vulnerable system app,
which normally is only accessible for system apps. Furthermore, it is also important to
look for vulnerabilities in the system apps that can be attacked from the UWB API service.
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Since the service runs as the Linux user uwb on the phone, it is limited for certain actions.
However, a system app that runs as the Linux user system has much more privileges,
which is an attractive target for attackers to escalate privileges.

Because of our limited time frame, we only analyze two apps that use the UWB API
service on our phone. The first app is UwbTest, which also runs as the Linux user system.
The app is directly related to the UWB ecosystem and contains predominantly code that
is related to using the service. We also analyze UWB-related parts of the Samsung Multi
Connectivity app because the workflow from the SmartTag+ plugin to the UWB API service
passes through this app. This app also runs as the Linux user system. Furthermore, we
skip the analysis of UWB-related parts of Mdx Kit Service and Google Play services, because
we found only a limited UWB usage in these apps.

6.6 smarttag+

The SmartTag+ is a low-cost Internet of Things (IoT) tracking device. In Section 5.5,
we analyzed the SmartTag+ integration into Samsung’s UWB ecosystem. We further
analyzed its PCB.

A compromised SmartTag+ can affect the privacy and more of its users. Moreover, a
normal user cannot learn that the SmartTag+ is compromised since no utility like anti-
virus software can be used. Also, entities on the phone that handle the SmartTag+ need
to be secured against attacks. Therefore, our last attack vectors are the SmartTag+ itself
and its management interfaces on Samsung phones. These interfaces are the SmartTag+’s
plugin, the SmartThings app’s SmartTag+ related parts, and the SmartThings Find plugin.

Even if the SmartTag+ is only an IoT device with limited usage, its attack surface is
relatively large. We can test for different vulnerabilities on the SmartTag+’s PCB. For
example, we can test if it is possible to dump or even manipulate the firmware over
Serial Wire Debug (SWD) access to the QN9090. We also can test if it is possible to sniff
the Serial Peripheral Interface (SPI) communication between components on the PCB in
order to learn secrets.

Since the SmartTag+ uses much of the MK UWB kits’ source code, we also can derive
attacks for vulnerabilities that we find in the source code and then attack Over-The-Air
(OTA) from our phone. However, such attacks are limited since we only can control the
Bluetooth Low Energy (BLE) communication with the SmartTag+, and the kits’ source
code is not directly related to BLE usage on the SmartTag+.

We also can look for vulnerabilities of the SmartTag+’s management interfaces, which
all run on a Samsung phone. For these interfaces, we can test if a compromised SmartTag+
can attack them. We also can look for vulnerabilities that are exploitable between the
interfaces or can be exploited from a lower layer, which for example, can be initiated
by the UWB API service. Furthermore, we can try to attack the OTA firmware update
process in order to downgrade or manipulate the firmware without PCB access. We also
can evaluate the security of sharing a SmartTag+ with other SmartThings app users.
Additionally, normally the SmartTag+’s location is shared with Samsung’s servers, even if
the SmartTag+ is not connected with the owner’s phone. Therefore, a secure infrastructure
is important, and the infrastructure’s security can be tested as well.

In our evaluation, we focus on PCB attacks. We test if we can sniff SPI communication
between components and if we can get SWD access to the QN9090 and SR040. If this is
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successful, we try to extract the firmware over SWD and afterwards, we try to manipulate
it. Furthermore, we test for vulnerabilities in the management entities and focus on those
that a compromised SmartTag+ can attack. In addition, we check for OTA attacks against
the SmartTag+, which include to test if we can downgrade or manipulate the firmware
OTA. We further test if there exist vulnerabilities in the management entities that can be
attacked from the UWB services or the Samsung Multi Connectivity app.
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I M P L E M E N TAT I O N O F U T I L I T I E S

In Chapter 6, we made a selection of attack vectors that we want to assess in our
evaluation. Now, we need to develop tools that aid us in our evaluation. Our goal is to
implement tools that can be used for different testing scenarios at once. For example, the
foundation of a Frida script that attacks the SR100T should also be reusable to simulate
attacks coming from the SR100T. Therewith, we can save time that we can invest in
attacks. Another goal of the tools’ implementations is the reusability for future research.
We intend that our tools can be used to continue our work or for other research.

Next, we describe our Ultra-Wideband Command Interface (UCI) and Host-Based
Command/Control Interface (HBCI) Wireshark dissector, which can decode every UCI
message we encounter. Afterwards, we present the foundations of our Frida scripts
that we use to test for vulnerabilities and to attack entities. We elaborate on the imple-
mentations of selected Frida scripts that use the foundations. Subsequently, we explain
modifications that we take on the ucitool, and we explain how we can use the ucitool for
our analysis by describing self-developed ucitool scripts. Then, we depict the modifica-
tions we take on the SmartTag+ plugin’s JavaScript files to test for different vulnerabilities.
Last, we delineate how we set up our environment for testing Printed Circuit Board (PCB)
attacks on the SmartTag+.

7.1 uci and hbci wireshark dissector

We do not find the specifications of UCI and HBCI publicly. Therefore, we reverse
engineered both specifications in Chapter 4. However, even by knowing the specifications,
we cannot quickly understand the communication contents between host and NXP’s
Ultra-Wideband (UWB) chips without a detailed analysis of the communication every
time. We further have no simple way to provide our knowledge to other researchers
in a way that does not require understanding the protocols. Thus, to make use of our
received knowledge about both specifications, we decide to integrate our knowledge
into a graphical utility that can display the communication comprehensibly. With this
utility, other researchers and we can quickly understand the communication contents.
Other researchers do not even need to understand the specifications to learn about the
communication contents.

We choose to integrate our knowledge into a Wireshark dissector of which we show an
extract in Figure 19. We decide to use Wireshark for multiple reasons. First, it provides a
simple interface to integrate decoders of any custom protocol, which are called Dissectors.
So we do not need to develop additional software that provides a Graphical User Interface
(GUI). Second, it provides an easy-to-understand GUI that is tailored to display messages
of any protocol. Third, Wireshark is a common tool, and it is part of every security
researcher’s toolkit. Thus, our dissector can be reused without installing additional tools.

The ucitool also can be used to decode UCI messages and output the contents. However,
it outputs these only in a terminal, which is not easily comprehensible. In addition, it
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Figure 19: Extract of our Wireshark dissector.

cannot decode HBCI messages, and it is only tailored to the communication with the
SR100T. Moreover, the ucitool cannot be shared with other researchers that do not have
access to the Mobile Knowledge (MK) UWB kits. Therefore, we do not use the ucitool for
decoding UCI and HBCI messages.

7.1.1 Implementation Overview

We implement a combined dissector that can decode UCI and HBCI messages simul-
taneously. In Appendix A.4 we provide a short user guide of how the dissector can be
imported into Wireshark and how a hexdump of the communication can be analyzed
with it. The hexdumps can be generated using one of two tools, which we describe later,
and we provide a short user guide for these in Appendix A.6 and Appendix A.7.

Wireshark dissectors can be written in Lua instead of C, and we choose Lua as the
programming language for our dissector since for us, it is easier and faster to use than C.
Moreover, our goal is that the dissector can decode the communication with all of NXP’s
UWB chips. Unfortunately, we have only access to Samsung devices, and therefore, we
only can test our dissector for the communication with the SR100T and SR040. However,
we assume it is likely that our dissector is fully able to decode the communication with
the SR150.

Next, we describe the implementation of the dissector’s foundation. Afterwards, we
detail the implementation of our UCI and HBCI decoders that are part of the dissector.
Subsequently, we delineate two tools that can be used to extract the communication with
the SR100T. One of the tools can be used for any chip. We further include the user guides
in Appendix A.4, Appendix A.5, Appendix A.6, and Appendix A.7.
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7.1.1.1 Foundation

The dissector’s foundation sets up the dissector and decodes the UCI/HBCI Custom
Wrapper for every message, which is a required wrapper defined by us and is independent
of the UCI or HBCI message to decode. This custom wrapper is prepended to any UCI
or HBCI message and is eleven bytes long. One can view it as an additional header that
declares helper values. The custom wrapper’s first byte declares if the message is sent or
received by the host, the second byte declares the UWB chip ID, and the third byte is a
flag that declares if wrapper data follows. All of these three bytes are required to be set
with the correct values. Moreover, the following eight bytes are the wrapper data, and
the dissector only interprets these if the wrapper data flag is set. The wrapper data’s role
is explained in Section 7.1.2.1.

After interpreting the UCI/HBCI Custom Wrapper, the dissector continues to decode the
actual message by passing it to the decoders.

7.1.1.2 Decoders

The decoders make up most of the dissector’s implementation. When decoding a message,
the dissector first identifies if the message is a UCI or HBCI message based on the header.
Then, the dissector forwards the complete message to the corresponding message decoder.
Next, we detail how we decode UCI and HBCI messages.

uci decoder Except for the ranging data, we detected no difference of the UCI
payload interpretations for different chips in the MK UWB kits’ source code. Furthermore,
we find that the UCI message set for the communication with the SR040 is a subset of the
other chips’ message set with one exception. The message set of the communication with
the SR040 contains 15 additional messages that are specific for the SR040. Moreover, the
ucitool’s YAML file contains the full UCI specification, which we can use for our decoders.
We also extend the YAML file with the additional SR040-related messages. Now, we
depict how we implement our UCI decoders based on these circumstances.

We use automatically generated header and payload decoders for all UCI messages
except for the returned ranging data’s payload. For generating these, we implement a
tool that parses the ucitool’s YAML file and automatically generates decoders as Lua
code from the parsed data. The tool further generates the necessary tables and fields that
are used by the decoders to give the bytes a meaning. In addition, it adds references to
selected tables that are used by the dissector to decode the meaning of header values and
to find the correct payload decoder for given header opcodes.

We name the tool UCI Decoder Generator because of the described tool’s functionality,
and we include a user guide in Appendix A.5. The advantage of this tool is that it can
parse different and modified versions of the YAML file. When an updated YAML file
exists, or when one extends the YAML file by hand, the tool can automatically generate
the new decoders. The UCI Decoder Generator’s old generated files used by the dissector
can be simply replaced with the new generated files.

In summary, our dissector’s foundation extracts the header values for a UCI message.
These values are decoded with our generated header decoders. In addition, these values
are used to find the corresponding generated payload decoder, which then decodes the
payload if exisiting.
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Figure 20: Live Decoder workflow overview.

We use a handwritten decoder for the ranging data, which is returned by NXP’s UWB
chips and is part of an Notification (NTF) UCI message. We manually write the decoder
because we detect a different interpretation for the ranging data that depends on the used
chip and its firmware version. Otherwise, when would use an automatically generated
ranging data decoder that is tailored to the SR100T with an old firmware version, we
could likely not decode the ranging data returned by other chips or the SR100T with a
later firmware version.

hbci decoder For HBCI messages, the dissector first resolves and displays the
HBCI message’s header values. The dissector looks up the meaning in a handwritten
table to decode the header values. Afterwards, the dissector forwards the payload to a
generic decoder. Since HBCI payloads mainly only consist of data, and we do not find
interpretations except for single bytes of two payloads, we do not integrate HBCI payload
decoders. We only mark the payload data and Longitudinal Redundancy Check (LRC)
value. Nevertheless, since we can decode all header values of HBCI messages, the user of
our dissector still knows the data’s meaning.

7.1.2 Tools

We further develop two tools that facilitate the extraction of the communication with
NXP’s UWB chips, which can then be reviewed in our dissector.

7.1.2.1 Live Decoder

We implement a tool that can live decode the communication with the SR100T on a
Samsung phone, and it shows the real-time communication in Wireshark by using our
dissector. The tool facilitates the communication extraction, and by being able to live
decode the communication, we have full knowledge about what happens at the moment
between the host and the SR100T. We name the tool Live Decoder, and we provide a user
guide in Appendix A.6. During live decoding, the tool also creates a hexdump file, which
can be reviewed in Wireshark at any time.

The Live Decoder consists of two parts, and in Figure 20 we show an overview of the
workflow. The first part is implemented in Python and acts as a middleware. Therefore,
we name it Middleware. Furthermore, large parts of the first part’s implementation are
oriented on or copied from a GitHub repository in [22].
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The first part starts Wireshark and feeds it with data live, which our dissector decodes
and displays. Moreover, the data is retrieved by connecting to the Frida server running
on the phone and executing two Frida scripts, which build the second part. The Frida
scripts hook selected methods of the UWB Hardware Abstraction Layer (HAL) service that
write to and read from the SR100T. These hooked methods directly communicate with
the driver, meaning the Frida scripts hook the methods at the user space’s lowest level.

Additionally, the Frida scripts hook two methods of the UWB Application Programming
Interface (API) service. The SR100T returns for some firmware versions standard values
for two Angle of Arrival (AoA) values, and in the service are these values post-calculated
based on several factors that are partly independent from the communication data. We
can retrieve these post-calculated values by hooking the two services’ methods. Then, the
script adds the retrieved values to the UCI/HBCI Custom Wrapper, and the dissector can
display the values afterwards.

The Live Decoder also supports live decoding when the ucitool is used to communicate
with the SR100T on a Samsung phone. An additional command-line argument needs
to be passed to the Live Decoder, which we depict in the user guide in Appendix A.6.
Thereby, equivalent methods are hooked in akash instead of the UWB HAL service, which
we describe more precisely in Section 7.2.

Another Live Decoder’s feature is the manipulation of transferred messages between
host and chip. Thereby, the user can pass the exact manipulations as command-line
arguments. The messages to manipulate are identified by the header. Also, the manipula-
tion of message parts is possible by defining the index at which the message should be
manipulated. With this feature, quick attacks can be generated that are directed towards
the SR100T or the UWB services. In Appendix A.6, the user guide explains how to use
this feature.

7.1.2.2 Log Parser

We implement an additional helper tool that can parse log files and extract the logged
communication with the corresponding UWB chip. The tool generates a hexdump file
from the parsed data, which can be reviewed at any time with our Wireshark dissector.
We name this tool Log Parser, and we provide a user guide in Appendix A.7. Furthermore,
the tool parses logs that we can retrieve with Logcat on our Samsung phone, and it
further parses log files that are written by certain methods in the UWB API of the MK
UWB kits. For example, as we later show in Section 8.8.1, it is possible to retrieve logs
over Universal Asynchronous Receiver-Transmitter (UART) access on the SmartTag+’s
QN9090. The methods of the UWB kits write to these logs, and our tool can extract the
communication from them.

7.1.3 Limitations and Workarounds

We encountered some problems during our implementation. Additionally, our dissector
and the tools have a few shortcomings that only exist when the dissector is used to
decode the communication without using the Live Decoder or a generated hexdump from
it. Next, we depict the three most relevant ones.

We first wrote many selected UCI decoders of our dissector by hand because we
detected the ucitool’s YAML file in a later instance. As part of this work, we also analyzed
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payload structures for many UCI messages. However, when we found the ucitool’s YAML
file, we used this file for generating our UCI decoders and discarded our previous written
UCI decoders because we assume the YAML file contains the complete UCI specification.
This means some of our previous work got obsolete. Nevertheless, our work in reversing
the payloads for implementing the decoders was still valuable. We learned important
information, such as the differences in interpreting the returned ranging data. In addition,
we still use our implemented ranging data decoder since a manual implementation is
required to decode the ranging data for all chips and firmware versions. Also, the ranging
data decoder’s implementation was the most complex one.

A shortcoming of our dissector is the UCI and HBCI message detection. A message
is identified by the header’s first two bytes. Currently, the message detector identifies
for certain header bytes a HBCI message, which in theory can also be a UCI message.
However, we never detected a UCI message with these certain header bytes in the
communication, and we also detected no method in the UWB kits that creates a UCI
message with these bytes. A possible solution would be a detection of UCI mode and
HBCI mode, which we described in Section 4.5, such that the message type is clear.

A further shortcoming exists when relying on the Log Parser and not using our Live
Decoder or a hexdump generated by the Live Decoder. Methods writing to logs do not
log the entire message when the message is large. Instead, only the first 505 bytes are
logged. Furthermore, messages related to the local firmware download are not logged
when we do not manipulate the read of a specific configuration value as we described in
Section 4.2. Even when our Log Parser works, it parses only the bytes of messages that are
logged. However, we only encounter such large messages for the firmware data, which
are also part of the not logged local firmware download messages. Moreover, it is not
critical that these messages are not logged since they are the least relevant messages.
Using our Live Decoder or manually hooking selected methods solves this problem.

7.2 frida scripts

We decide to use Frida because we can use it to intercept and manipulate methods by
hooking any method we want in Samsung’s user space. Moreover, with Frida, we do
not need to care about low-level process manipulations or app modifications. Instead,
we can hook methods by only providing simple information like the method’s name
or address. Furthermore, we are not limited to apps in .apk format but also can hook
service executables or imported libraries. We also can hook methods of different entities
in parallel. Additionally, the easy-to-write Frida scripts provide a fast way to create
our hooks, and we often can reuse or extend parts of the scripts for a different testing
scenario.

We develop many Frida scripts, which are used for different purposes. Most often,
they are used to gather information at different instances of Samsung’s UWB ecosystem
or to test for various vulnerabilities. They also heavily were used when we analyzed
Samsung’s UWB ecosystem. Furthermore, while we develop more than 60 different Frida
scripts in total, the foundation of most scripts are the same, and there exist fewer different
foundations than scripts. The scripts often build on these foundations. In most cases,
they only introduce minor additions for specific tests. If a script does not build on a
foundation, then it often only consists of a simple hook definition of a method.
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Figure 21: Locations at which we hook with Frida.

In Figure 21, we show an illustration of the user space locations in which we hook
methods with Frida to test entities in Samsung’s UWB ecosystem. Next, we explain the
most important foundation and provide examples of how scripts use this foundation.
This foundation hooks methods at the driver’s interface, and it also is the most relevant
for future research. Afterwards, we briefly explain an additional foundation that can be
used to simulate an app using the UWB API of Samsung’s UWB ecosystem.

7.2.1 Hooking of Host-to-SR100T Communication

Our most important foundation hooks four methods that handle the whole UCI and
HBCI communication with the SR100T’s driver, which on the other hand just forwards
messages between host and chip. Two of the methods write to the driver, and the other
two read from the driver. The methods are named phHbci_PutApdu, phHbci_GetApdu,
phTmlUwb_spi_write, and phTmlUwb_spi_read. Furthermore, the methods are part of the
UWB HAL service’s library uwb_uci.helios.so.

The base foundation hooks the methods to extract the communication. However, an
extension of the foundation also enables manipulation in both directions. Thus, messages
that are sent to or received from the SR100T can be manipulated. Thereby, all types of
manipulations are possible. For example, extending, shrinking, or replacing a message
is possible. It also is possible to modify only selected bytes of a message or to do only
modifications if certain conditions are true.

Additionally, the foundation can be used to hook the same methods in akash of the
ucitool, which is similar to the UWB HAL service. Because function names of akash are
stripped, we only can hook these methods by using the functions’ addresses. We easily
can find these addresses by searching in akash for unique strings that are also used by
the previously named methods of uwb_uci.helios.so. After inserting the addresses at the
corresponding locations in the foundation, we have support for the methods of akash.
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7.2.1.1 Example Usage

Now, we delineate selected examples of how we use and extend the foundation to test
for different vulnerabilities.

We use the base foundation in one Frida script of the Live Decoder, which we previously
explained. The script extends the base foundation to enable the communication with the
Python main script and to manipulate selected messages that we can define over the Live
Decoder’s command-line arguments.

Multiple other Frida scripts use the base foundation for vulnerability testing of the
SR100T. In these scripts, each of the four methods has an extension to enable manipula-
tions of messages under defined conditions. Besides the write methods, the read methods
also can manipulate messages because in some cases, we need to mock a specific response
after manipulating a message that is sent to the SR100T. Moreover, the manipulation
extensions are different from the ones of the Live Decoder. Additionally, we point out that
an alternative for testing the SR100T with Frida scripts is to use the ucitool, and we also
use it for the latest tests.

We further use the base foundation with the manipulation extensions when evaluating
the local firmware download process. For example, we manipulate single bytes of the
firmware transferred to the SR100T for evaluating the responses that have informative
status codes, which helps us identifying selected bytes as we describe in Section 8.3.1.

We also use the foundation with manipulation extensions to test for vulnerabilities of
Samsung’s UWB services. Thereby, we simulate attacks that come from a compromised
SR100T. This works by manipulating reads from the driver.

7.2.2 App Simulator

We can simulate an app that uses the UWB API service. For this, we write a Frida script
foundation that creates an instance for a UwbTest app’s certain class. After creating the
instance, we call the instance’s setup method, which creates a connection to the UWB API
service using the framework jar libraries. Then, we can use the instance’s global variables
to call all of the UWB API service’s exported methods. Furthermore, we point out that this
app needs to be manually opened first using the key sequence *#8928378# in the call app.

With this foundation, we can test for vulnerabilities in Samsung’s UWB services, the
driver, and the SR100T. Depending on the API’s called method, we have full control over
messages that are sent to the chip through the other entities. For example, we can call the
API’s method sendRawUci, which forwards our chosen byte array up to the chip without
validity checks of the content.

7.3 ucitool modifications and scripts

In Section 4.1.2.2 we described the ucitool. Apart from the useful UCI specification, we
also can use the ucitool to quickly build UWB applications and more importantly, to
attack the SR100T. It provides an API with selected methods that can be used to send
predefined UCI messages to the SR100T. The ucitool and the helper binary akash handle
the connection with the SR100T and all background tasks like sending the firmware to
the SR100T. Hereby, no entity of Samsung’s user space is used.
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Figure 22: Workflow and modifications of ucitool components.

To use the API, we need to write a Python script that imports and uses the ucitool’s
classes and methods. Furthermore, it is essential to repeatedly kill both of Samsung’s
UWB services. Otherwise, these interfere with akash that runs on the phone. The services
are automatically restarted after termination. Therefore, we recommend using a script
that kills them every half second or less. We provide a shell script named killall.sh, which
does the repetitive termination of the services in a short time frame.

Currently, the ucitool is limited to sending only predefined UCI messages. Therefore,
we make some simple modifications to the ucitool and akash. In Figure 22, we show an
overview of the workflow when using the ucitool, and we also indicate the modifications
we do. With the ucitool’s modification, we can fully define any message sent to the
SR100T, and we can quickly write and send these using only one line of code per
message. Furthermore, the akash modifications help us in a later step when we tamper
with the local firmware download process or do tests for different firmware versions.

Even with our modifications, we only can send any messages we want after the
chip goes into UCI mode, which we described in Section 4.5. The reason is that akash
completely handles all HBCI messages including the local firmware download, and
before any message from the ucitool is forwarded to the chip, akash transfers the chip into
UCI mode. However, we already have Frida scripts that can write arbitrary messages to
the chip in HBCI mode by using Samsung’s UWB HAL service, which is very similar to
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akash. Therefore, we adapt these scripts for akash instead of making modifications in akash,
which would cost more time because the script adaptations consist only of exchanging a
few lines with addresses.

Next, we depict our modifications. Afterwards, we present examples of how we make
use of the modified ucitool.

7.3.1 Modifications

In the ucitool’s Python code we only add two small methods at the API interface, which
accept raw bytes. We add these methods in UciHost located in uci.py, and using these
methods does not change the regular API workflow. Moreover, we can call these methods
in a Python script that imports the ucitool. As a result, we can send any message we want
to the SR100T. The messages are not checked for validity in between.

Furthermore, the existing API interface methods always print the sent UCI message in
a decoded form to the terminal. Our added methods do not print them by default, and
to print the messages, doprint=True needs to be passed as the optional second argument
to the method’s call. We decided us for this behavior because our added methods are
intended for testing, which includes sending long and malformed UCI messages. These
often are not decodable and only result in unclear and superfluous terminal outputs.
Thus, a user can choose which messages should be displayed in a decoded form in the
terminal output.

We use Ghidra for disassembling akash and for instruction patching. Furthermore, since
we already can send arbitrary UCI and HBCI messages with the ucitool modifications
and Frida scripts, we only target modifications that help us for new tests.

We take three modifications. The modifications we take can be equally done in the
UWB HAL service’s corresponding library because of the high similarity to akash. However,
since all of Samsung’s UWB services and libraries are in read-only partitions on the phone
and protected by the operating system, kernel modifications are required. Furthermore,
the first two modification’s results also can be achieved with Frida, however, with much
more work and less flexibility.

Our first modification changes two paths from which akash reads the firmware and
configuration files. Normally, the firmware and configuration files are located in a read-
only partition on the phone. Therefore, we change both paths to point to the same path
we control and in which we can write and modify files. We chose the path /data/uwbb. In
this path, we store the firmware and the configuration files.

We can change any file in this path as we want, and akash reads it from this path.
Only the filename needs to stay the same. By being able to change the file contents,
different testing possibilities emerge. For example, we can test the impact of specific
configuration values by changing these. Some of these configuration values are directly
used to configure the SR100T. We also can modify the read firmware, or we can try
to replace the firmware that akash reads with an older firmware to test if firmware
downgrade attacks are possible.

Our second modification is a change of the firmware’s filename to libsr100t_chosen_fw.bin.
As a result, akash reads the firmware with this name from our controlled path. This mod-
ification is not essential, and we only do the modification to avoid confusion when
handling different firmware files.
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INFORMATION ID VALUE

Firmware version byte sequence 0x211000

Firmware UCI version byte sequence 0x0110

Firmware MD5-hash FFB9B3459D7FB3A4B2E6D7723ED2B869

Phone Android version 11

Phone security patch level 2021-08-01

Phone firmware version G998BXXU3AUGM

Table 5: Information about the firmware that we retrieved from our Samsung phone and is
targeted by our ucitool scripts.

The third modification patches only a single byte of an instruction. When akash down-
loads locally the firmware to the SR100T, it increments a counter after each failed try and
terminates if the counter is equal to a specific number of allowed tries. However, we need
to circumvent this check for our firmware download brute-force attacks, which we will
describe in Section 8.3.1. Therefore, we patch the instruction that increments the counter
such that only zero is added to the counter, which effectively circumvents the check for
failed tries. This is the fastest and most effective way to achieve unlimited local firmware
download tries.

7.3.2 Example Scripts

We develop several Python scripts that use the ucitool to communicate with the SR100T.
Most of them are based on existing test scripts, and some are a good foundation for
future work.

Moreover, we write our scripts for a certain SR100T firmware that we find on our
device in /vendor/firmware/uwb. In Table 5, we point out the essential information about
the firmware and the phone’s image from which we retrieved it. The firmware version
has the byte sequence of 0x211000, which is interpreted as 21.10.0 by Samsung but may
also be 33.16.0. Additionally, the firmware’s UCI version is 0x0110, which is interpreted
as 1.10 by Samsung but may also be 1.16. The firmware and UCI version can be retrieved
from the chip using the UCI command GET_DEV_INFO.

For later firmware versions, some of the scripts may not work as expected when
significant changes are introduced to the UCI specification. If a script does not work
because of this reason, we recommend using our modified akash binary that reads and
downloads locally the firmware version 21.10.0/33.16.0 from our controlled path. We
further recommend using the same firmware version when doing tests with the ucitool
between two or more phones. Next, we present our five most important scripts, and in
Table 6, we give an overview of the test scenarios targeted by our scripts.

opcode_detector .py The first script sends UCI command messages by iterating
through all possible Group Identifier (GID) and Opcode Identifier (OID) values, even when
these are not defined. The goal is to find new messages that are not defined in the YAML
file or in the UWB kits. Since the SR100T returns an error value when a GID does not
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SCRIPT NAME TEST SCENARIO

opcode_detector.py UCI opcode detection

simple_fuzz.py Simple fuzzing

ranging.py Ranging establishment between two phones using ucitool

ranging_one_phone.py Ranging establishment on one phone using ucitool

per_phone_data.py UWB data transfer between two phones using ucitool

Table 6: Test scenarios of our most essential ucitool scripts.

exist, or when for the corresponding GID the OID does not exist, we can learn new GIDs
or OIDs when no error code is returned.

simple_fuzz .py Our second script tests the SR100T for stability. It sends large
amounts of differently sized messages independently of the chip’s state. The messages
are both UCI conform and unconform. Our script only implements a simple fuzzer, and
we delegate testing with a sophisticated fuzzer to future work.

ranging .py The third script opens a ranging session between two phones that are
connected to our PC and run akash. Since ranging is currently the primary application for
UWB usage in phones, it is interesting for attacks. For example, we use the script to test
for attacks while a ranging session is done between phones. After the ranging session
establishment, the script begins to send the attack data to the chip, which is derived from
the second script.

ranging_one_phone .py Our fourth script is derived from the third script and
opens a ranging session on one phone. The ranging partner can be any chosen device
and no ucitool needs to be used. For example, one phone runs our ucitool ranging script,
and the other phone runs the UwbTest app.

per_phone_data .py NXP’s UWB chips support data transfer over UWB. While we
also find the corresponding API methods for UWB data transfer in the UWB API service,
we detect no app using it. This is also the case for the file sharing apps Nearby Share and
Quick Share. We assume this will be used in the future.

Therefore, our fifth script creates a UWB data exchange connection between two phones
by using the ucitool. On both phones runs akash, and the data transfer is entirely done
over UWB. Furthermore, one phone builds the transmitter and the other the receiver, and
the script can be slightly modified to enable data transfer in both directions.

The data transfer we establish is one of five ways a phone can control data sent to and
processed by another phone. Three of the ways can be achieved by establishing a test
session between the phones and by using specific test UCI commands. The last possibility
to transfer data over UWB presumably can be done during a ranging session using the
BLINK_DATA_TX UCI command. We do not test the data transfer commands using
UCI test commands and delegate it to future work. Moreover, we could not successfully
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Figure 23: Testing capabilities with modified bundle.js.

exchange data using the BLINK_DATA_TX command and also delegate a working version
to future work.

By having control of the data that is exchanged over UWB between phones, an attacker
can attack the receiver’s UWB chip as well as all other entities of the UWB ecosystem.
This fact can be used to try attacks for found vulnerabilities in entities.

7.4 smarttag+ plugin modifications

The SmartTag+’s plugin easily can be modified since it is a web plugin which files are
writable by the root user on our phone. The plugin is interesting for us because it contains
all SmartTag+ management logic, and it handles the majority of the data sent to the
SmartTag+. For example, the main JavaScript file stores the ringtone data sent to the
SmartTag+ when the user wants to update the ringtone. We simply can exchange the
ringtone data in the JavaScript file with our chosen data and save the file. Then, the plugin
transfers our chosen ringtone data, which lets us completely control the SmartTag+’s
ringtone.

We modify the SmartTag+ plugin’s files to do several security tests efficiently. Further-
more, we take the majority of modifications in the plugin’s main JavaScript file, which
contains the most interesting operations. The file is called bundle.js, and we illustrate the
test surface we can achieve with our modifications in Figure 23.

We have different goals when modifying the plugin, including learning if a firmware
manipulation or downgrade is possible. Thus, we create a modified version of bundle.js
first, which serves as a foundation for the firmware transfer attacks. This foundation
manually triggers the Over-The-Air (OTA) firmware update process every time the plugin
is started. On that foundation, we create our firmware transfer attacks, which modify the
firmware that is about to be transferred. In the attacks, we modify selected bytes of the
firmware or replace the complete firmware with an old version. Additionally, we add
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code that extracts the new firmware versions sent to the SmartTag+ in the regular OTA
firmware update process.

We also want to test if we can attack the SmartTag+ with other data that we can
control. For this, we take multiple minor modifications at different locations in bundle.js.
For example, we modify a length field of meta-data information sent to the SmartTag+
before the firmware data is sent. The modified length field indicates the firmware version
string’s size that follows the field. Here, we decrease the length indication but keep
following data’s size.

Furthermore, we want to test the plugin’s general security and if a compromised
SmartTag+ can attack the plugin. Therefore, we again take minor modifications in
bundle.js to test for different vulnerabilities and partly to simulate attacks that come
from a compromised SmartTag+. For example, we modify the firmware version that the
SmartTag+ sends our phone, which is subsequently displayed in the plugin. Here, we
inject JavaScript code to test for Cross-Site Scripting (XSS) vulnerabilities. Additionally,
it is possible to share access to the SmartTag+ over the SmartThings app. A member
has limited access rights for managing the SmartTag+ in the SmartTag+ plugin, and the
owner has full access rights. Here, we also briefly check for vulnerabilities that can be
attacked between members.

We further take minor modifications to test for vulnerabilities in the interface between
the plugin and the SmartThings app. Moreover, because of two reasons, we also add code
to bundle.js that uses the SmartThings app’s JavaScript interface. First, we want to test for
vulnerabilities. Second, we want to learn how much essential code of the SmartThings
app the SmartTag+ plugin can access. This helps us learning the impact that a security
vulnerability in the plugin can have. For example, we add code to bundle.js that tries
retrieving the phone’s location or that tries turning the phone’s Bluetooth on and off.

7.5 smarttag+ pcb access

The SmartTag+’s PCB is interesting for us. Over the UART and Serial Wire Debug (SWD)
interfaces, we can try to get logs or even debug access. When we can retrieve logs from
the PCB, we could evaluate our attacks against the SmartTag+. Moreover, when we can
get SWD access, we could manipulate the firmware. Furthermore, we can sniff the Serial
Peripheral Interface (SPI) communication between components in order to learn secrets.
For all of these tests, the test pads on the PCB facilitate our efforts.

Besides screwdrivers to open and extract the SmartTag+’s PCB, we need to implement
a hardware setup that consists of proper tools for our tests. Furthermore, the SmartTag+
PCB’s longest diagonal is less than four centimetres small, and the diagonal of a test pad
is around one millimetre in size. In addition, the test pads do not have protrusions such
as header pins. Also, component pins that are not connected to a test pad can only be
accessed directly over the pin. These are also very small. In conclusion, it is hard to solder
cables on this small PCB. Thus, we choose tools that also help us to avoid soldering.
Next, we present our hardware implementation for our tests, and we show our setup in
Figure 24.

We use a Raspberry Pi 3B+ instead of the battery to power the SmartTag+ because it is
easier to connect on the open PCB. Thereby, we connect the 3.3 volts pin and the ground
pin of the Raspberry Pi to the corresponding battery protrusions of the SmartTag+’s



7.5 smarttag+ pcb access 65

Figure 24: Hardware test setup.

PCB. Moreover, for the battery protrusions connection, we use hook grabbers, which are
simple PCB pin grabbers connected to a jumper cable. As an alternative to hook grabbers,
we recommend soldering a cable to the protrusions since these are relatively large in
comparison to the whole PCB’s size.

To solve the problem of accessing test pads without soldering, we use the PCBite set
from Sensepeek1 and two self-made PCBite replicas. The set contains PCB holders and
flexible arms with very thin tips that are ideal for connecting to tiny component pins or
test pads. We also can connect our jumper cables to the arms.

When testing UART and SPI access, we need a tool that can interpret the signals we
retrieve from the connected test pads. We use the Logic Pro 8 as an interpreter, which is
a logic analyzer from Saleae2. We also use the logic analyzer to record SWD access tries.
However, we cannot use it to actively connect to a component over SWD.

For trying to get an SWD connection to a component, we use the Segger J-Link EDU
Mini3.

1 https://sensepeek.com/

2 https://www.saleae.com/

3 https://www.segger.com/products/debug-probes/j-link/models/j-link-edu-mini/

https://sensepeek.com/
https://www.saleae.com/
https://www.segger.com/products/debug-probes/j-link/models/j-link-edu-mini/
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E VA L UAT I O N

In Chapter 4, we learned about the communication protocols with NXP’s Ultra-Wideband
(UWB) chips and the SR100T’s state machine. We further learned about Samsung’s UWB
ecosystem entities and the SmartTag+ in Chapter 5. Based on our findings, we identified
attack vectors in Chapter 6, of which we made a selection for our following security tests.
Afterwards, we implemented several tools in Chapter 7, which help us with our security
tests and also can be used for future work.

Now, we evaluate our selected attack vectors of Chapter 6. Our goal is to assess if
attacks are possible against selected entities and to make statements about the entities’
general security. We do not intend to make an in-depth evaluation of selected entities,
but we target results that give us a broad overview of the entities’ security. We further
aim to provide a starting point for future work with our tests.

ENTITY RESULT STATUS

SR100T Decrypted firmware - ¹

Firmware manipulation - ¹

Firmware downgrade + ²

Crash triggering + ²

Other vulnerabilities + ²

SR100T driver Vulnerabilities - ¹

UWB services SR100T can attack services + ²

App can attack services + ²

Apps using UWB services Vulnerabilities - ¹

SmartTag+ management (entities) OTA Firmware manipulation - ¹

OTA Firmware downgrade + ²

SmartTag+ can attack plugin + ²

Attacks between members + ²

SmartTag+ PCB QN9090 UART read logs + ²

Full QN9090 SWD access + ²

SmartTag+ firmware extraction + ²

SmartTag+ firmware manipulation + ²

Full SR040 SWD access - ¹

Table 7: Summary of important evaluation results per entity.
¹ = Unsuccessful attack or no vulnerability found.
² = Successful attack or test.
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In Table 7, we show a summary of the most important evaluation results. We cannot get
the SR100T’s decrypted firmware, but we still can identify the header and selected values.
We further find a concluded vulnerability in the firmware, which we conclude based on
our test results. Furthermore, we find vulnerabilities in Samsung’s UWB services that
can be attacked from both sides. We also can compromise the SmartTag+ over unblocked
Serial Wire Debug (SWD) access and can attack its management plugin over an HTML
tag injection vulnerability that leads to Cross-Site Scripting (XSS).

Next, we describe the results of gathering information from the SR100T. Subsequently,
we present vulnerabilities that we found in the source code provided by NXP of the
Mobile Knowledge (MK) UWB kits. We derive attacks against entities of Samsung’s UWB
ecosystem that use the code provided by NXP, and we provide the results when presenting
the corresponding entity. After presenting the source code vulnerabilities, we detail our
SR100T analysis results. Then, we delineate our results regarding the ecosystem’s services
and selected apps that use the services. Last, we provide our security analysis results of
entities that handle the SmartTag+ on a Samsung phone, and we present our SmartTag+
hardware security analysis results.

In Chapter 9, we discuss our results, and we also briefly provide information about the
vulnerability disclosure process of found vulnerabilities.

8.1 uci and hbci information gathering

First, we test if and how we can get additional information from the SR100T. Thereby, we
use our knowledge of the Ultra-Wideband Command Interface (UCI) and Host-Based
Command/Control Interface (HBCI) specifications and create messages that potentially
get us more information from the SR100T. We send messages and appraise responses
using our implemented ucitool and Frida scripts. For example, we brute-force every
possible Group Identifier (GID) and Opcode Identifier (OID) with a ucitool script to find
undeclared opcodes. Moreover, while we apply our tests to the SR100T, the test results
likely are similar for NXP’s other UWB chips.

In Appendix A.8, we give a complete overview of the results since it may be helpful
for future work. Next, we briefly summarize the results.

We find seven undeclared OID and GID combinations. By setting the UCI configuration
value DUMP_SE_COMM_DATA and sending a UCI command with an undeclared
OID and GID combination, we get logs that are presumably the exchanged messages
between the SR100T and the phone’s secure element. Additionally, it is possible to enable
additional logs from the SR100T when doing a ranging session. For example, by enabling
one log type, the chip returns data about received UWB frames. Furthermore, we can
request some additional information using HBCI queries, including certificate identifiers
that are stored on the SR100T independently of the firmware.

8.2 uwb kit vulnerabilities

NXP’s code in the UWB kits provides an Application Programming Interface (API)
that enables the communication with a UWB chip. It creates and processes UCI and
HBCI messages, and an app using the API has access to UWB functionality without
handling the specifics. Furthermore, NXP’s code also is used by Samsung’s UWB services,
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VULNERABILITY GROUP GROUP ID FILE NAME

Reading received messages 1 phTmlUwb.cc

phNxpUciHal_fwd.cc

Fragment chaining 2 uwb_ucif.cc

UCI payload processing 3 uwb_ucif.cc

UwbApi_Proprietary_Internal.ccp

UwbApi_RfTest.ccp

App controlled data processing 4 uci_hmsgs.cc

Table 8: Vulnerability groups and files that contain vulnerabilities of that group.

the SmartTag+’s firmware, and presumably partly by NXP’s UWB chips. Therefore,
vulnerabilities in the code can affect multiple entities at once.

In this section, we do a careful source code security analysis and focus on vulnerabilities
that relate to the UCI and HBCI message processing and creation, which another entity
can attack. Thereby, we also use our knowledge of the previous chapters. For the analysis,
we use NXP’s files that are shaped for the communication with the SR100T, but only
minor differences exist to the files for the other chips, except for the SR040’s chip
management protocol Software Update (SWUP), which is different and not in scope
of our thesis. Our targeted vulnerabilities are particularly interesting for us because
they enable attacks between different entities in Samsung’s UWB ecosystem and are
potentially far-reaching. Moreover, when doing our analysis, we orient on the SR100T’s
driver for message size limits. Therefore, we consider a 4200-byte limit for messages to or
from a UWB chip. We note found vulnerabilities down and assess these when analyzing
entities that use the source code.

In our analysis, we find buffer overflow, integer overflow, and integer underflow
vulnerabilities in different source code files. In addition, sometimes vulnerabilities can
be combined to increase the amount of attacker-controlled bytes that overflow a buffer.
Furthermore, the majority can be attacked from a compromised NXP UWB chip, but
we also find vulnerabilities that can be attacked from an external app using NXP’s API.
Many vulnerabilities are similar, and we can group them into four groups.

Next, we present the vulnerabilities of each group and summarize them. In subsequent
sections, we elaborate on these vulnerabilities if we can practically trigger them in entities
that use NXP’s code. In Table 8, we further show a summary in which source code files
we find vulnerabilities of which group. In Appendix A.9, we provide a complete list
including method names.

8.2.1 Reading Received Messages

The first group of vulnerabilities relate to reading data from the driver’s interface, which
receives the data from the UWB chip. A compromised chip can attack these vulnerabilities.
We find six vulnerabilities, and five are the same but exist in different locations. These
five vulnerabilities occur when calling a method that reads HBCI messages. A buffer is
passed to this method, and a HBCI response from the chip is stored to the buffer without
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1) payload = message.Payload 
2) p_size = payload.Size  
3) gid = message.GID 
4) oid = message.OID 
5) message.PBF == True (-> fragment)

chain.Fragment_mode == True

Process payload

1) memcpy(chain.Buffer[chain.Offset], 
                                 payload, p_size)
2) chain.Offset = 0 
3) chain.Fragment_mode = False 
4) chain.GID = 0xFF 
5) chain.OID = 0xFF

Print error -> unexpected gid and oid

Return

gid == chain.GID &&  
oid == chain.OID

Receive message for processing

chain.Fragment_mode == True

gid == chain.GID && 
oid == chain.OID

1) memcpy(chain.Buffer[chain.Offset], 
                                 payload, p_size)
2) chain.Offset += p_size

1) chain.GID = gid 
2) chain.OID = oid 
3) memcpy(chain.Buffer[0], payload,   
                                              p_size) 
4) chain.Offset = p_size 
5) chain.Fragment_mode = True

Boolean Expression

True

False

Figure 25: Workflow of processing UCI fragements.

any checks. When considering the maximum allowed message size of 4200 bytes, the
buffer can overflow with over 3900 bytes.

The remaining vulnerability works similarly, but in this case, it exists when parsing a
UCI message.

8.2.2 Fragment Chaining

As we describe in Section 4.2.1.1, a UCI packet can be divided into multiple fragments.
Each fragment contains a header, and a message is considered a fragment if the Packet
Boundary Flag (PBF) is set in the header. We only can order one vulnerability to the
second group, and it exists when batching the payloads of fragments in the method
uwb_ucif_process_event.

We show the workflow of fragment processing in Figure 25. For batching fragments’
payloads, there is a global struct used named chain. This struct holds a 1024-byte sized
buffer for payloads, and the OID and GID of the fragments follow. It further contains
a 16-bit offset indicating the current position in the buffer such that a new fragment’s
payload can be appended at the right position. This offset value is reset to zero when a
non-fragment message is received. The struct’s last value is a flag indicating a fragment
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mode. It is set when the first fragment is received. Additionally, the flag is used to
determine if a fragment is the first or a following fragment of a chain of fragments.

When processing an incoming UCI message that is a fragment, the vulnerable source
code appends the fragment’s payload to the struct’s buffer. It further increases the struct’s
offset value by the payload size until a message is received that is no fragment, meaning
it has no PBF set. A check if the struct’s buffer is full and gets overflowed is missing.
Therefore, a compromised UWB chip can send multiple fragments and overflow this
buffer with over 64000 controlled bytes. Additionally, if needed and no crash occurs
before, the attacker can rewrite the buffer once the offset variable overflows.

When the first fragment of a chain of fragments is received, the struct’s OID and
GID are set using the fragment’s header values. Following fragments do not modify the
values. Moreover, if a following fragment has a different OID or GID than the struct’s
corresponding values, an error message is logged. As we describe next, we can use this
fact when verifying if this vulnerability exists in entities.

Once the buffer overflows, the struct’s OID is the first value in memory that an attacker
can overwrite. Therefore, if we only overwrite the struct’s OID with a non-existing OID
value through the overflow, the processing of the following fragment would lead to
printing the error message. Then, we can see the printed error message in our logs and
learn that the vulnerability exists in an entity.

The vulnerability can be attacked from a compromised UWB chip. Furthermore, if an
attacker remotely can influence fragmentation at the receiver’s side, then remote attacks
are possible. For example, an attacker controls the data when doing data transfer over
UWB. If the attacker can influence fragmentation, the vulnerability can be exploited with
complete control over the data.

8.2.3 UCI Payload Processing

All vulnerabilities of the third group relate to the payload processing of UCI messages
received from a UWB chip. The result of the vulnerability is always a buffer overflow,
and we can divide the vulnerabilities into two types.

The first type is a simple buffer overflow when UCI payload contents are copied into
a smaller-sized buffer. Except for one occurence, the buffer always overflows with less
than 128 bytes. Additionally, an integer underflow vulnerability precedes most buffer
overflows of the first type. The combination of the integer underflow with the buffer
overflow is the second type.

The integer underflow happens in the copy counter calculation. The copy counter is a
16-bit unsigned integer, and it is used when copying payload bytes to a buffer. It results
by subtracting a constant from the payload’s size passed as a parameter. The attacker
needs to send a small payload of one or two bytes to underflow the integer. Then, the
subtraction results in a copy counter of up to 65535 bytes through the integer underflow.

Despite sending a UCI message with a small payload, the attacker still controls bytes
after the payload’s buffer. The bytes that overflow the buffer are the bytes of previous
messages that still exist in memory. Therefore, by carefully choosing the contents of
previous messages, a buffer overflow with controlled bytes is possible. We verified this
statement by reviewing the memory after the payload’s buffer in Samsung’s UWB API
service, which inherits NXP’s code.
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Again, the vulnerability can be attacked from a compromised UWB chip, and if a
remote attacker controls the UCI payload at the vulnerable method, then remote attacks
are possible.

8.2.4 App Controlled Data Processing

We also find four vulnerabilities that can be attacked from an app interacting with NXP’s
API. We order them to the last group. Three of these vulnerabilities exist when different
UCI messages of the group TEST are created. The other one exists when a message for
UWB data transfer is created. All four vulnerabilities are caused by the same error, which
we will describe next.

Each vulnerable method creates a UCI message containing data from a buffer B1 passed
as a parameter. Additional to B1, the size S of B1 is passed as a 16-bit unsigned integer. In
the beginning, each method allocates a second buffer B2. The size of B2 is calculated with
an addition of three constants and S. However, the addition’s result is casted to a 16-bit
unsigned integer. If an attacker carefully chooses S, then the sum exceeds the possible
representable size of a 16-bit unsigned integer, and a small number of bytes are allocated
for B2 through the integer overflow. After allocating B2, S bytes of the attacker-controlled
buffer B1 are appended to B2. As a result, an attacker can overflow the buffer with over
65300 bytes of chosen data.

8.3 chip analysis

We do not have an unencrypted firmware version for any of NXP’s UWB chips. Therefore,
only limited possibilities remain for assessing the chips, and we take specific steps to learn
about the firmware and its security. Our goal is to evaluate security against black-box
attacks. In addition, we evaluate if the assumption holds that NXP’s code of the UWB
kits is used in the UWB chip’s firmware. Thereby, we attack selected UWB kit source
code vulnerabilities.

We use the SR100T as a representative for all of NXP’s UWB chips since it is part of our
Samsung phone, and we already have tools to completely control the communication.

First, we assess the SR100T’s local firmware download process. Afterwards, we derive
attacks against the chip based on the UWB kits’ vulnerabilities and depict our results.
Subsequently, we present how we can crash the SR100T and the implications of crashes.

8.3.1 Findings of Firmware Download Analysis

The local firmware download transfers the encrypted firmware to the SR100T. Then, the
chip decrypts and executes the firmware. We tamper with this process for evaluating
different details and present our results next.

8.3.1.1 Firmware Header Identification

After the encrypted firmware is completely transferred to the SR100T in the local firmware
download process, the UWB Hardware Abstraction Layer (HAL) service or respectively akash
request the transfer status. The response’s status byte is expressive and signals one of
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ERROR CODE POSITION IN FIRMWARE FILE

Header parse error 0 - 3 & 72 - 79 & 288 - 291 & 356 - 359

Invalid cipher type crypto 4

Invalid cipher type mode 4

Invalid cipher type hash 4

Invalid cipher type curve 5

Invalid ECC key length 6 - 7

Invalid header signature 8 - 71 & 80 - 287 & 292 - 355 & 360 - 511

Invalid encrypted payload hash 512+

Table 9: Error codes returned by the SR100T after receiving a firmware with one modified byte at
position X.

25 status codes. In case of a transfer error, the status byte indicates the cause, and most
error codes refer to the firmware’s unencrypted header.

We use this fact to order firmware bytes to the header and firmware itself. By using
a Frida script in combination with our modified akash version that allows unlimited
firmware transfer tries, we automatically send the regular firmware to the chip and each
time decrement a byte at a different position. Thus, we send the X byte sized firmware X
times. For the first 512 bytes, we test every possible byte value. Afterwards, we evaluate
the responses for each firmware transfer.

In Table 9, we order the firmware’s bytes based on the response status codes. Because of
the different header-related response codes, we conclude that the firmware’s first 512 bytes
are the header, which is not encrypted. Moreover, we can decode the meaning of selected
header bytes with some error codes. We conclude that Elliptic-Curve Cryptography (ECC)
is used for encrypting the firmware. However, we cannot identify the curve. Furthermore,
we get different error messages for the fifth byte at position four.

When modifying a byte that follows the header, we always get the same error message:
Invalid_Encrypted_Payload_Hash. Therefore, we conclude that the following bytes build
the actual encrypted firmware that gets decrypted by the chip by evaluating the header.

8.3.1.2 Production and Development Firmware

We find on our phone two firmware versions of the SR100T named libsr100t_prod_fw.bin
and libsr100t_dev_fw.bin. Both are encrypted, and the first version — the production
version — is always used by the UWB HAL service and akash in the local firmware
download process.

We do not find unexpected differences between both versions except for bytes at
positions eight and nine, which are zero in the development version. This is also the case
for other development firmware we find in the UWB kits and different images of our test
phone.

Using our modified akash version that allows us to choose the transferred firmware file,
we try to transfer the development version to the SR100T. We are unsuccessful, and the
SR100T returns an unknown error code: 0x96. We look in NXP’s source code to verify
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that we do not need to use different HBCI commands for the development version, which
is not the case. Furthermore, we set the bytes at position eight and nine to zero in a valid
production firmware and transfer it to the chip. As expected, the chip returns an Invalid
header signature error.

We conclude that the SR100T chip on our phone is a productive build and only allows
production firmware executed, which might be realized using a fuse. Yet, we question
why the development firmware version is included on the phone.

8.3.1.3 Accepted Firmware Versions

As we already described, we can choose the firmware file that our modified akash version
sends to the SR100T in the local firmware download process. We use it to test which
firmware is accepted by the chip. Thereby, we transfer all SR100T firmware versions we
encounter during our thesis. Some of them are included in the UWB kits. We further try
to transfer the SR040’s and SR150’s firmware, which we also retrieve from the kits.

While modified versions or a development firmware are discarded by the SR100T on
our phone, we successfully can transfer any valid production firmware version of the
SR100T. Additionally, production firmware versions for the SR150 are accepted as well
but not firmware versions for the SR040.

8.3.2 Black-Box Attacks

We do not have the decrypted firmware. The only way to verify if the SR100T inherits the
vulnerable NXP source code is to derive attacks. When we achieve unexpected behavior or
crashes of the chips, we can conclude that the vulnerability exists. Yet, we cannot be sure
if we always trigger the vulnerability we target. It might be possible that the unexpected
behavior or crash have a different source, which may even be another vulnerability.

Apart from derived attacks, we also test for potential vulnerabilities that are inde-
pendent of NXP’s source code. We divide the tests into two attack types. The first type
concentrates on the features of UCI and HBCI messages. We mainly focus on specific
bytes in the header or payload that can lead to vulnerabilities when parsed or used
wrongly. For example, we send valid UCI messages in which we decrease the value of
specific length fields in the payload while keeping the data’s length same. The second
type is fuzzing the SR100T, for example, by sending differently sized random data.

Because of our limited time frame, we only test selected messages for the first attack
type and only do simple fuzzing for the second type. We delegate sophisticated tests to
future work. For sending attack messages, we primarily use our ucitool scripts.

We do our tests for three different production firmware versions that we extracted
from different builds of our Samsung phones. The firmware versions are represented by
the byte sequences 0x211000, 0x273000, and 0x300000, which are interpreted differently
by different entities. The last firmware is the latest version, and it is part of the Samsung
S21 Ultra image release of January 2022. Moreover, we retrieve the firmware versions
using the GET_DEV_INFO UCI command.

Furthermore, to detect that we trigger a vulnerability successfully, we rely on two
different crash logs that the chip returns. In the case of a crash and the SR100T is still
able to respond, without considering the header, the SR100T sends a 48-byte debug UCI



8.3 chip analysis 75

message. Additionally, we can request from the chip a 232-byte UCI error message, which
is done automatically by the UWB HAL service and akash.

Next, we present the results of our tests regarding inherited NXP code vulnerabilities
and both other attack types. Afterwards, we assess crash logs that we get during our
testing.

8.3.2.1 Inherited NXP Code Vulnerabilities

When appraising if the SR100T’s firmware inherits vulnerabilities of NXP’s code, we filter
for possible vulnerabilities. Then, we test them by sending carefully crafted messages
using ucitool scripts.

fragment chaining attack We successfully get crashes for all tested firmware
versions when consecutively sending two UCI fragments to the SR100T. After sending
the second fragment, the chip sends a crash notification and a debug log message.

We only get crashes if the fragments use an extended payload length, which is declared
by the Extended (EXT) flag in the UCI header. For example, we use payload lengths
of 256 or 512 bytes. Moreover, we send the same two UCI fragment messages without
declaring the PBF, thus, making them no fragments but normal UCI messages. The only
difference is the unset PBF flag, which is signalized by only one bit in the UCI header.
When sending these two messages, we get no crash, and the chip continues working as
expected. We also do not get a crash when sending more than two of these non-fragment
messages. Therefore, we conclude that the fragment chaining vulnerability exists in the
SR100T’s firmware.

When triggering a crash through the concluded fragment chaining vulnerability, we
only get an unexpressive debug log message from the chip for each firmware version.
Additionally, the crash log we request afterwards is also unexpressive. Both messages
mainly consist of zeros. Nevertheless, at a specific position in each debug log message, a
few bytes are not zeros and look like an address. For two of our three firmware versions,
this address is the same. The other address is very similar. We assume this is the address
at which the chip crashes.

other nxp code vulnerabilities We cannot trigger any other vulnerability we
found in NXP’s source code. The chip continues working and returns expected responses
despite carefully deriving attacks.

8.3.2.2 Further Attacks

Attacks by exploiting UCI or HBCI characteristics are not successful besides attacking
the fragment chaining vulnerability. We did not thoroughly test other protocol features
because of our limited time frame, and future work can expand on these attacks. Nev-
ertheless, we choose the most likely payload fields that can lead to potential crashes
because of a vulnerability. We create multiple different attacks and analyze the responses.
Each time, the chip responds as expected, and no crash occurs.

Except for the fragment chaining vulnerability, we are also unsuccessful for attacks
exploiting header characteristics. For example, we send UCI messages declaring a 1000-
byte sized payload in the header, but the payload consists of 4000 bytes.
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Yet, we can trigger unexpected behavior and crashes of the SR100T by sending dif-
ferently sized random data. We achieve this using a simple self-implemented fuzzer in
a ucitool script. Moreover, we also create valid UCI messages as fuzzing data but only
get unexpected behavior or crashes when sending many large messages in a short time
frame. Thereby, the fuzzing data’s contents do not matter.

unexpected behaviour Unexpected behavior of the SR100T comes in the form of
responses that are not UCI conform, responses that contain parts of our attack data, or
both. For example, when sending consecutively large messages that only consist of the
byte 0x41, the chip eventually returns the UCI message 0x69000006414141410101, which
is a valid UCI message but unrelated to the communication.

crashes Except when triggering the fragment chaining vulnerability, we can only
crash the chip when sending many large messages in a short time frame, independent of
the attack data. The direct result is often undefined behavior, and eventually, the chip
crashes. For the three different firmware versions, we observe slightly different undefined
behavior due to our attacks. Moreover, we also observe a slightly different tolerance. Yet,
the eventual result is the same, namely a crash.

We make a further observation. When crashing the SR100T while doing UWB ranging
with the SmartTag+, often after the chip crashes and the firmware is transferred to the
chip again, the chip returns too large measured distances when doing ranging again. The
distance is then always enlarged by around 40 meters, and in our tests we never saw a
different deviation.

Furthermore, when crashing the latest firmware through our simple fuzzing attacks,
we sometimes see four bytes of our attack data in the requested error log between other
byte sequences. An additional byte of our attack data is placed eight bytes before the
other four bytes in the error log. We assume the four bytes of our attack data display the
value of a register. In the next section, we assess the debug and error logs more closely.

In older firmware versions, we also sometimes see our attack data in the returned
debug log sent after the chip’s crash notification. However, this happens seldom, unlike
the observation in the latest firmware. Moreover, we achieve this only while the chip
does UWB ranging and when sending the attack data to the driver’s device handle in
/dev/sr100 using the Linux echo command. We never observed a debug log containing our
attack data when using a ucitool script to establish a ranging session and attacking the
chip during the ongoing ranging session. Besides the ongoing ranging session condition
for triggering a crash, we assume sending data directly over the driver speeds the sending
rate, which is needed to trigger a crash while ranging.

8.3.3 Crash Analysis

Two types of crash-related logs exist. We do a close inspection of the UWB kits and all
related entities in Samsung’s UWB ecosystem, but we do not find the interpretation for
any of both crash logs. Therefore, we only can make assumptions about the contents,
which we present next.
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00000000: 6e03 002c 0300 0000 1502 0215 0204 0302 
00000010: 0342 4242 428b 0103 0100 0000 0100 0002 

00000020: 7d1d 0220 1971 0220 0800 0000 0000 0000

Additional UCI header

Register values

Attack data

Addresses

Error identifiers

Figure 26: Dump of an encountered debug message and our assumed meaning for each byte.

debug message Two types of crashes exist for the SR100T in UCI mode, as we
described in Section 4.5. The SR100T is still responsive when one of these crash types
occurs. Then, the SR100T first sends a crash notification, and subsequently an additional
debug message. This debug message cannot be requested. In both older firmware versions,
the message is 52 bytes in size with a payload of 48 bytes. The latest firmware returns
a 12 byte larger message. Next, we only consider the 52-byte message because we only
have debug message samples mainly consisting of zeros for the latest firmware.

In Figure 26, we show a dump of the payload from a debug message we received,
which contains parts of our attack data. The first four-byte sequence is a UCI header,
and it is always part of the debug messages’ payload independently of the real header.
We mark it in red. Furthermore, the purple marked attack data in the debug log is at
a position that does not hold an address in logs that do not contain our attack data.
Moreover, in all debug logs, we do not find any address from position 0x0 to 0x1F. We
assume these values are register values, which we mark orange. The attack data is also
part of the register values.

Marked in blue, the four-byte sequences at positions 0x20 and 0x24 are likely addresses.
At 0x24, we always have an address in all debug log messages from older firmware
versions. At position 0x2C in a debug log from the latest firmware, the address is very
similar to the addresses in the older firmware version’s debug messages. Depending on
the firmware version, we assume the crash happens at the address displayed in 0x24 or
0x2C.

The last eight bytes always are the same in each debug message. We assume that these
are error identifiers.

error message After receiving the crash notification, it is possible to request an
error message from the chip. When no error occurred before, the chip returns only zeros
when requesting it.

The error message consists of 232 bytes, excluding the header. We further differentiate
between two types of error messages. The first type consists of many different bytes, and
the second type consists mainly of zeros. Next, we only consider the first type.

In Figure 27, we show an example error message we got from the chip after crashing
the latest firmware with our simple fuzzing script. It contains four bytes of our attack
data at position 0x5C, which we mark in purple. We compare this error message to
other error messages from the chip we gathered during our thesis to make the correct
conclusions.

All error messages have 4-byte sequences that are likely addresses, share the same
address range, and are similar to the debug message’s dump in Figure 26. The addresses
often are located at different positions in each message. Only the last six 4-byte sequences
always store an address, which we mark in blue. We conclude this might be a call stack,
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00000000: 0200 0000 c880 0320 3002 0000 6c8c 0320 
00000010: 0100 0000 92ca 0120 e3c3 0120 f2c3 0120 
00000020: 0000 0021 0100 0000 0000 0000 0000 0000 

00000030: 0000 0000 0000 0000 0000 0000 0410 0040 
00000040: 00e1 00e0 1766 0320 da58 0120 0434 0040 
00000050: 1c00 0040 4100 0000 001d 0120 4141 4141 
00000060: 640c 0120 ec1c 0120 0000 0000 0000 0000 
00000070: 0000 0000 f81c 0120 d01b 0120 0000 0000 

00000080: 0000 0000 0000 0000 0000 0000 0000 0000 
00000090: 0000 0000 0000 0000 0000 0000 0000 0000 
000000a0: b55b 0320 0082 0000 0000 0000 0000 0000 
000000b0: 0000 0000 0000 0000 38af 0520 38af 0520 
000000c0: 0400 0000 bc01 0010 792d 01d8 0000 0000 

000000d0: ea08 014c 2011 0248 8014 020c df01 0108 
000000e0: 6008 0340 0005 0120 

Register values

Attack data

Calll stack of crash source

Figure 27: Dump of an encountered error message and our assumed meaning for each byte.

whereby the last address is the error’s source. We further assume that the previous bytes
display register values since the SR100T likely is an ARM Cortex-M33 chip as its two
silbings [33, 34], and all of its core register values fit into the error message [2]. We mark
them orange, and the attack data is part of the register values.

8.4 sr100t’s driver

We do a careful security analysis of the driver’s source code and find no vulnerability.
Instead, as we describe in the next section, the driver even prevents many vulnerabilities
in Samsung’s UWB services because it discards messages that are larger than 4200 bytes
in size.

8.5 uwb services

We consider both the UWB API service and UWB HAL service as Samsung’s UWB services.
They build the middleware between external apps and the SR100T’s driver, which
forwards messages from and to the chip. Moreover, both services make heavy use of
NXP’s code provided in the UWB kits.

When assessing the security of both services, we target vulnerabilities that can be
attacked from both services’ sides. These attacks can come from an external app or from
the SR100T, which can be a compromised SR100T or a remote attack that uses the SR100T
to forward the attack payload. For example, a remote attack might be possible when
doing data transfer over UWB.

We focus on the vulnerabilities we found in NXP’ source code. Our goal is to find and
practically verify at least one vulnerability for each side.

Next, we first describe entities’ five behaviors and characteristics in Samsung’s UWB
ecosystem that prevent many attacks against potential vulnerabilities, including some of
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the inherited NXP code vulnerabilities. Except of the driver’s message size limitation, we
conclude that Samsung implements all vulnerability preventions we describe next. After
describing the vulnerability preventions, we present found vulnerabilities.

8.5.1 Vulnerability Preventions

The SR100T’s driver only forwards messages that do not exceed the 4200-byte limit.
Otherwise, the message is discarded. When simulating attacks from a compromised
SR100T, we are bound to this limit and cannot simulate attacks with larger messages.

Additionally, in Samsung’s UWB services, bytes directly read from the driver are
always copied to are large enough buffer that meets the driver’s size limit. Moreover,
UCI payloads of messages received from the SR100T are always copied to buffers that
also are allocated large enough and meet the driver’s size limit. Thus, all vulnerabilities
of our defined first group and some of the third group are prevented, which both are
based on smaller allocated buffers.

Many vulnerabilities also are prevented on the other side, meaning these that can be
attacked from an app using UWB functionality over Samsung’s UWB services. Vulnera-
bilities of the fourth group can be attacked through the integer overflow if an external
app can control a Java array that is almost 65336 bytes in size. This array needs to be
forwarded to the vulnerable method as well as the size that is calculated by a helper
method in between. In addition, some other potential vulnerabilities we find in native
code of Samsung’s UWB services could be attacked when we can send arrays that are
sized larger than 256 bytes in size.

However, in the call chain between the called UWB API service’s exported method and
the targeted vulnerable method, most times, one of the first methods in the call chain
only accepts an 8-byte unsigned integer for the array’s size. When this method is called,
it results in casting the array’s size value to an 8-bit unsigned integer that is smaller than
256. Consequently, in the following methods, the array’s 8-bit size value is considered and
used for any copy operation, and the vulnerable methods cannot be attacked. Sometimes
an array size check is also done, which prevents forwarding arrays larger than 255 bytes.

In conclusion, for attacks, we need to find call chains to vulnerable methods that do
not cast the array’s size parameter from a 16-bit value to an 8-bit value. We also find one,
which we describe after the next section.

8.5.2 Fragment Chaining Attack

In the method uwb_ucif_process_event of UWB API service’s library libuwb-uci.so, fragments
are chained and UCI headers are processed. To appraise if our previously found fragment
chaining vulnerability of NXP’s code is inherited, we first do a brief static analysis of
libuwb-uci.so, and we conclude that the vulnerability might be inherited. Therefore, we
test our finding practically and simulate an attack by the SR100T. We want to prove that
the vulnerability exists and can be attacked. Because of our limited time frame, we aim
to verify the vulnerability and not to write an exploit.

To practically trigger the vulnerability, we use one of our Frida scripts that hooks the
driver’s interface methods of the UWB HAL service, and exchanges read UCI messages
from the SR100T with valid UCI fragment messages. By hooking at this location, we can
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ensure we do not skip any validity checks, and the manipulated message passes through
all instances until it arrives at the vulnerable method.

Our goal is to trigger the error printing, which normally only happens when a following
fragment of a chain of fragements is received with a different OID or GID than the first
fragment. When the first fragment of a chain of fragments is received, these both one-byte
values are stored in the same global struct as the buffer that stores all fragment’s payloads.
In memory, the values follow the buffer directly, and the OID follows first.

In our attack, we create a chain of fragments, which all have the same valid OID
and GID declared in the header. The payload is a sequence of the byte 0x41. When the
vulnerability exists, we would eventually overflow the buffer and overwrite the buffer’s
following values in the struct with the byte 0x41. After we overflow the buffer and
overwrite at least the OID, the vulnerable code would print the error message when
processing the following received fragment since the OID and GID are both different
than the byte 0x41.

We successfully trigger the overflow and see in the logs the printed error. We learn that
the overflowed buffer’s size is 4192 bytes instead of 1024. The rest turns out as expected.
In conclusion, a compromised SR100T can attack Samsung’s UWB services. Moreover,
remote attacks might be possible if an attacker can control the creation of fragments and
at least parts of the fragments’ payloads.

8.5.3 App Controlled Data Processing Attacks

The evaluation of vulnerabilities attackable by external apps is a three-step process.
First, we need to find methods doing operations that potentially can be attacked by an
app using exposed UWB API service’s methods. For example, we filter out methods in
native code that copy X bytes of a buffer A to another buffer B, whereby the contents
of buffer A are controlled by us. Sometimes C’s memcpy function is used to copy bytes,
but the copy operations are often directly done without using a helper method. Second,
we need to identify all exposed UWB API service’s methods that forward our data to
the corresponding potential vulnerable methods. Last, we check if our attack data gets
forwarded as expected to the vulnerable method, and if positive, we test the attack by
trying to trigger a crash.

We further target vulnerabilities that can be attacked with one method call exclusive
calling setup methods. Moreover, we give the highest priority to the methods in Sam-
sung’s code equal to the vulnerable methods in NXP’s source code, which can be attacked
by an app using NXP’s code.

Because of the limitations regarding casting the buffer’s size parameter to an 8-bit
value in specific methods, we fail most often in the third step for methods identified in the
first step. Nevertheless, we find one call chain that allows using an exposed API method
to send a large buffer for attacking a vulnerable method successfully, which is one of the
identified ones in NXP’s source code. The vulnerable method is UWA_PerRxTest of the
UWB API service’s library libuwb-uci.so. In NXP’s source code the same method is named
uci_snd_test_per_rx_cmd.

For our attack, we use our Frida script that uses the UwbTest app’s methods to establish
a connection to the UWB API service. The UwbTest app is independent of Samsung’s UWB
services and is used as our external app. In Figure 28, we show an overview of the call
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UwbTest App UwbUci.apk libuwb_uci_jni.so libuwb-uci.so

startRfTest(testConfig)

startPerRxTest(byteArray)

UWA_PerRxTest(buffer, size)

UWB API ServiceExternal app

Figure 28: Overview of the call chain’s important methods and arguments used to attack a
vulnerable method in Samsung’s UWB API service.

chain to attack UWA_PerRxTest. We only mark essential arguments. Next, we describe
the workflow and only highlight important methods and their behavior. We also only
name essential arguments.

After creating the connection to the UWB API service in the Frida script, we establish
the attack by calling the exposed startRfTest(testConfig) method. We pass an instance of a
configuration class as a parameter. The created instance holds a byte array defined by us,
which gets extracted from the instance and forwarded to startPerRxTest(byteArray).

The method startPerRxTest(byteArray) is in the UWB API service’s library libuwb_uci_jni.so
in native code. It creates a buffer from the array and calculates the buffer’s size using the
array. Both values are passed to UWA_PerRxTest(buffer, size) of the library libuwb-uci.so.

In UWA_PerRxTest(buffer, size) the size of our array gets added to a constant that
holds the value 0x18. The result is stored in a 16-bit unsigned integer variable. Thus, for
example, when sending an array sized 65514 bytes, the addition’s result is 65538, which
a 16-bit unsigned integer cannot represent. Instead, the result value overflows and holds
the value two, meaning we have an integer overflow.

The problem is that the result value is used to allocate space for a second buffer to
which the passed buffer is copied afterwards. The passed size argument determines the
number of bytes to copy from the passed buffer to the second buffer. Therefore, when
the integer overflow occurs, a buffer overflow follows.

We can trigger the buffer overflow successfully using our Frida script, which results in
a crash of the UWB API service. In the logs, we also get a crash dump.

8.5.4 Other Vulnerabilities

We did not test practical attacks regarding the vulnerabilities of group three. Yet, using
Ghidra, we discover that the vulnerabilities exist and likely can be attacked. Future work
can practically demonstrate attacks.

Because of our limited time frame, we do no thorough tests for other vulnerabilities,
and we have no findings for tests we take. We delegate further testing to future work,
and the next step for future work can be to evaluate remote attacks against services.
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8.6 api apps

We do a security analysis of the UwbTest app’s and the Samsung Multi Connectivity app’s
UWB-related parts. Both parts only consist of a few classes that use the UWB API service
over the framework libraries, and we do not have any noteworthy findings.

8.7 smarttag+’s management entities

We assess the security of different entities that are responsible for managing the Smart-
Tag+. Thereby, we focus on attacks that a compromised SmartTag+ can exploit and remote
attacks against the SmartTag+ that these entities can establish. We also check if attacks
are possible from lower entities of Samsung’s UWB ecosystem.

Furthermore, all of our tests for SmartTag+ vulnerabilities are established through the
SmartTag+ plugin since here the most data sent to the SmartTag+ is handled, and it is
easy to manipulate. We use our manipulated versions of the plugin’s main JavaScript file
named bundle.js, which manipulations we presented in Section 7.4.

First, we depict our results for attacks against the SmartTag+. Afterwards, we come to
the results regarding the entities’ security.

8.7.1 Remote Attacks Against the SmartTag+

First, we test firmware attacks. Our goal is to learn if we can downgrade or manipulate
the firmware Over-The-Air (OTA). Therefore, using one of our modified bundle.js files,
we trigger the OTA firmware update process and inject our firmware. In Figure 29, we
illustrate the manipulated workflow of bundle.js. Our modifications trigger the firmware
update process after the plugin is started and inject our chosen firmware at the right loca-
tion before it is sent to the SmartTag+. The update process is triggered by a manipulated
line in bundle.js, which always returns a non-existing old firmware version to the method
that checks if the SmartTag+ runs the current firmware.

8.7.1.1 Firmware Downgrade

We gather multiple firmware versions of the SmartTag+ during our work, and we test
firmware downgrades with each older version. Each firmware downgrade is successful,
and we can downgrade the SmartTag+’s firmware to the oldest version we have, which
has the version 0.50.30. The current version is 1.01.04 in January 2022.

Additionally, we point out that after each successful firmware downgrade, we first do
a regular OTA firmware update to the latest version before we test the next older version.
Furthermore, we can quickly check our success in the SmartTag+ plugin’s Information
menu. Here, the plugin displays the SmartTag+’s firmware version, which the SmartTag+
sends to our plugin.

8.7.1.2 Firmware Manipulation

To test if firmware manipulations with the OTA firmware update process are possible, we
manipulate single bytes of different firmware versions and test if the SmartTag+ accepts
these. We further take our tests while the SmartTag+ runs different firmware versions,
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SmartTag+

Plugin Main

SmartThings

(BLE)

getFirmwareVersion()
Request

1.01.04

getFirmwareDataFromCache()
Request

1010011...

1.01.04 0.50.28

1010011... 
0111001... 

transferFirmwareData()
Done

1010011... 0111001... 

1.01.04 0.50.28 == Latest Version
Check

True / Done

False -> Do update Done

(1)

(2)

(3)

(4)

Figure 29: Modifications of the SmartTag+’s plugin to trigger the firmware update mechanism
and inject a custom firmware.

whereby we use the firmware downgrade attack to choose the SmartTag+’s current
firmware. Unfortunately, the SmartTag+ does not accept any manipulated firmware, and
after the firmware is transferred, the SmartTag+ returns a single error code, which does
not explain the failure reason. We further validate that we make no error and closely
analyze the code of bundle.js that is responsible for the firmware update. For example,
the plugin sends Cyclic Redundancy Check (CRC) values together with each firmware
chunk and one time for the whole firmware, and we check that these values are correct
for our manipulated firmware.

In the SmartTag+’s Universal Asynchronous Receiver-Transmitter (UART) logs re-
trieved over Printed Circuit Board (PCB) access, several messages indicate that a signature
check fails for the manipulated firmware we transfer, and a certificate stored on the
SmartTag+ is used to verify the signature. Therefore, we conclude that signature checks
are correctly implemented and prevent OTA firmware manipulations.

8.7.1.3 Other attacks

We also use our modified bundle.js files to exchange the contents of selected messages
that are sent to the SmartTag+. For example, we considerably increase the size of these
messages to test for crashes and similar. Thereby, we simultaneously observe the Smart-
Tag+’s UART logs. While doing this, we achieve crashes and undefined behavior. For
example, after sending a large string instead of the firmware meta-data information that
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is sent in the firmware update process, we have to reset the SmartTag+. Unfortunately,
the UART logs do not explain the crashes.

We conclude that there are a lot of undiscovered vulnerabilities. Moreover, also NXP’s
source code vulnerabilities might be inherited since some parts of the SmartTag+’s
firmware use this code. However, a closer analysis is out of scope because of our limited
time frame. Therefore, we continue with our analysis at this point, and delegate the
firmware analysis to future work.

8.7.2 Security of SmartTag+’s Management Entities

When evaluating the management entities, we focus on vulnerabilities that directly
correlate to handling data received from the SmartTag+. We also briefly appraise the
attack surface between entities and look for vulnerabilities that can be attacked from
another entity. Moreover, access to the SmartTag+ can be shared, and a member only can
find the SmartTag+ and change the ringtone. We also briefly assess if attacks between
members are possible.

We find two vulnerabilities in the SmartTag+ plugin and no vulnerability in the
SmartThings app that is related to handling the SmartTag+.

8.7.2.1 Cross-Site Scripting

The first finding is an HTML injection vulnerability, which leads to XSS. For specific
displayed values, we can inject these HTML tags. Furthermore, script tags are sanitized
by the plugin, but JavaScript in HTML tags not. Therefore, for example, we can inject an
HTML image tag and JavaScript into the image tag’s onerror attribute.

Only locations at which JavaScript can be injected are important for us. To identify
vulnerable locations in the plugin, we use this payload: <img src="a" onerror="alert(1)">,
which results in a pop-up as in Figure 30. Thereby, we identify three locations, and the
foundation of each vulnerability is that attacker-controlled data is dynamically appended
to the HTML Document Object Model (DOM). Next, we depict these locations.

The first identified location is the SmartTag+’s name field, which can be changed by
the SmartTag+’s owner or by any member when using the vulnerability described in
Section 8.7.2.2. As a result, attacker-controlled JavaScript is executed when a member
opens the plugin.

The second identified location is the selected ringtone’s name. An attacker with
a superuser-enabled phone can manipulate the ringtone data sent to the SmartTag+.
Additionally, the attacker can also modify the ringtone’s name and inject the HTML tags
into the name. This name is displayed to other members, and once a member opens the
plugin, the member is attacked. In addition, while the size of the SmartTag+’s name field
is limited, we do not find limits for the ringtone’s name field. For larger payloads, an
attacker needs to remotely load code when attacking over the SmartTag+’s name field.
Over the ringtone’s name field, the attacker can inject the complete payload.

While the first two locations can only be abused between members, the third location
enables attacks from a compromised SmartTag+. The SmartTag+’s firmware contains
the firmware version as a string, and it sends the bytes of this string to our phone over
Bluetooth Low Energy (BLE). Subsequently, on our phone, these bytes are converted
back to a string and forwarded to the SmartTag+’s plugin, which displays the firmware
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Figure 30: Verification of cross-site script-
ing.

Figure 31: Location retrieval over cross-site
scripting.

version in the Information menu. However, HTML tags can be injected into this firmware
version string.

In Section 8.8.2, we practically demonstrate that HTML tags can be sent from a
compromised SmartTag+.

calling smartthings’ methods With XSS it is also possible to call methods
from the SmartThings app that are exported with the @JavascriptInterface annotation.
These methods allow access to certain phone information and management functions.
For example, it is possible to retrieve the phone’s location or enable/disable Bluetooth.
We demonstrate this possibility in Figure 31, where we show a screenshot of a successful
location retrieval over JavaScript.

8.7.2.2 Member Privilege Escalation

We further find a vulnerability that allows any member of a shared SmartTag+ to get
full privileges for SmartTag+ management. All logic of checking if a user is the owner of
a shared SmartTag+ is implemented in bundle.js. An attacker with a superuser-enabled
phone can manipulate the checks, and it is sufficient to exchange one line in bundle.js for
getting full privileges. Then, for example, an attacker gets firmware update privileges or
can change the SmartTag+’s name.
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We reported this vulnerability to Samsung, and they consider it working as intended.
However, we do not agree with this assessment.

8.7.2.3 No Attacks From Lower Layers

We do not encounter any data from lower layers of Samsung’s UWB ecosystem that
reaches the management entities on our phone, and we do not find any vulnerability that
can be attacked from lower layers. Therefore, we consider the attack surface of attacks
that come from lower entities as very small or even not existent.

8.8 smarttag+ hardware attacks

Now, we evaluate hardware-level attacks against the SmartTag+. Thereby, we have three
goals. First, we want to learn if and how much we can gather information from the
SmartTag+’s PCB. For example, we test if we can get logs or learn secrets by sniffing
signals from the test pads or selected component pins. Second, we want to assess if we
can extract the SmartTag+’s firmware over SWD access to the QN9090, or if we even
can manipulate the firmware. Third, we intend to learn if we can extract the SR040’s
decrypted firmware and if we further can manipulate it.

For our tests, we use the setup described in Section 7.5. Next, we present the results of
our targeted goals.

8.8.1 Information Gathering

We can successfully live extract logs from the QN9090’s UART transmitter pin. The logs
include the UCI messages exchanged between QN9090 and SR040. Furthermore, it is
comprehensible through the logs which operations the SmartTag+ does at the moment.
We also learn that the signature of a transferred firmware is checked before it is replaced
with the old one.

Moreover, it is possible to sniff the Serial Peripheral Interface (SPI) communication
between the QN9090 and SR040 as well as QN9090 and the flash memory component
using the test pads. By doing this, we do not learn any additional information about the
SR040 or secrets written to the flash memory component that are independent of the
firmware.

8.8.2 SmartTag+ Firmware Extraction and Manipulation

We assess the attack surface over a potential debug access to the QN9090. First, we test
if we can establish an SWD connection to the QN9090, which is the SmartTag+’s main
chip and executes the firmware. Thereby, we are successful. We can halt and resume the
firmware’s execution. Additionally, we can dump the firmware.

To test if we can manipulate the firmware, we modify selected bytes inclusive executed
instructions of the firmware we dumped from the QN9090. For example, we modify the
firmware string in the dumped firmware. Afterwards, we upload the modified firmware
to the QN9090 over SWD, and we are successful. We see our success in the UART output
and the SmartTag+ plugin to which the SmartTag+ sends its firmware version. Both
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Figure 32: Non-existing firmware version
sent by manipulated firmware.

Figure 33: Injected horizontal rule HTML
tag.

times our non-existing firmware version is displayed. This means we can compromise the
SmartTag+ completely. In Figure 32, we show a screenshot of a displayed non-existing
firmware version.

We further test if we can get SWD access and manipulate the firmware for three
firmware versions: 1.00.08, 1.00.10, and 1.01.04, which is the latest firmware version in
January 2022. We are successful for each version.

sending html tags In Section 8.7.2.1, we already presented a vulnerability that a
compromised SmartTag+ can attack. The compromised SmartTag+ can execute JavaScript
in the plugin by injecting HTML tags into the sent firmware version.

Currently, the SmartTag+’s firmware only sends the first seven bytes of the firmware
version string. For practically testing the XSS attack, we first need to modify the firmware’s
code related to reading the seven bytes, and upload the modified firmware to the
SmartTag+ over SWD afterwards. However, this involves patching several code fragments
in Ghidra, and it is out of scope with our limited time frame. Nevertheless, for a simple
proof-of-concept, we still verify that a compromised SmartTag+ can send HTML tags,
which are displayed without checks in the plugin afterwards. For this test, we modify the
firmware’s hard-coded firmware version string and inject an HTML horizontal rule tag
(<hr>), which fits in our byte limit. Afterwards, we upload the firmware to the SmartTag+
over SWD. Then, we successfully can see the result in the plugin. In Figure 33, we show a
screenshot of the result. Future work can modify the firmware’s code fragments to send
longer strings with an injected HTML tag containing a JavaScript payload.

8.8.3 Failure of SR040 Firmware Extraction

Despite existing test pads that are connected to the SR040’s SWD pins, we cannot establish
a fully working SWD connection with the SR040.

The Segger J-Link EDU Mini, which is our SWD connection tool, can successfully do
the SWD connection setup’s first steps with the SR040 and fails afterwards. Thereby, it
finds the addresses of the Serial Wire Debug Port (SW-DP) registers and can read the
Debug Port Identification Register (DPIDR). Using our logic analyzer, we further detect
that some reads of the RDBUFF register fail, which is one of the SW-DP registers.
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We carefully checked the web for explanations to help us understand the failure, but we
did not find anything. If the SWD protocol is not customized on the SR040, a possibility
would be to manipulate the SmartTag+’s firmware to include a development version of
the SR040, which the QN9090 sends to the SR040. The development version might be
accepted since the SR040’s firmware transfer process is different from the SR100T’s local
firmware download process. Furthermore, when the development version is accepted by
the SR040, then the SWD connection establishment might be successful. We delegate this
test to future work.
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D I S C U S S I O N

In Chapter 8, we evaluated the security of entities from Samsung’s Ultra-Wideband
(UWB) ecosystem, including the SR100T as a representative for all NXP UWB chips.
Some of our attacks are successful, and we find several vulnerabilities in different entities.
Next, we discuss our results and the impact of found vulnerabilities.

9.1 nxp’s uwb chips

We do not have an unencrypted firmware version for any of NXP’s UWB chips and find
no ways to extract the firmware from the chips. Also, trying to access the firmware over
the SR040’s Serial Wire Debug (SWD) interface on the SmartTag+ was not successful.
Nevertheless, we understand the communication with the chips and the SR100T’s state
machine. With this knowledge and by using our ucitool and Frida scripts for practical
tests, we identify security issues for the SR100T, which also are helpful for future work.
Our Wireshark dissector additionally aids us when doing our tests, for example, when
interpreting responses from the chip.

In our evaluation, we show that any valid production firmware is accepted by the
SR100T, which also means that a firmware downgrade is possible. This finding is helpful
for future research that needs specific firmware versions. It has no security impact for
an end-user since a superuser-enabled phone is needed to transfer a chosen firmware
version, and only attacks against the phone itself are possible.

We further conclude in our evaluation that the source code’s fragment chaining
vulnerability is inherited by the SR100T’s firmware. While we only can crash the chip, a
sophisticated attacker might be able to create a working exploit. Moreover, in the future,
an unencrypted version for one of NXP’s UWB chips might become public. Then, the
fragment chaining vulnerability would likely be included and quickly found. Therefore,
a fix is important now since it is easy to attack with much attacker-controlled bytes.
Furthermore, the fragment chaining vulnerability strengthens our assumption that the
encrypted firmware inherits at least parts of NXP’s source code.

We also show that we can crash the SR100T with simple fuzzing. Sometimes we even
see our fuzzing data in one of the two crash logs. It has no direct security impact besides
hindering the availability. Yet, it shows that the SR100T has a low tolerance, and the
crashes might be triggered through memory corruptions. Additionally, it shows that
NXP did not test the chip’s robustness with fuzzing, even though fuzzing is a standard
measure for improving code robustness or discovering and preventing vulnerabilities.

9.1.1 Impact and Security Assessment

Currently, attacks against the fragment chaining vulnerability only are possible from a
system app on our Samsung phone because the command needed for the attack is only
available for privileged apps. The same applies to attacks against the SR100T’s availability.

89
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When Samsung opens more of its UWB ecosystem’s functionality to all apps, then a
third-party app also can attack the vulnerability. Moreover, besides Samsung phones,
other devices that use an NXP UWB chip likely are also affected. Here, an app might not
need to be a privileged app.

In conclusion, we find the fragment chaining vulnerability, and the SR100T has a
low tolerance against our simple fuzzing attacks. In addition, NXP’s code has a general
lack of security on which we elaborate in the next section. Therefore, we conclude the
SR100T’s security and the security of NXP’s other UWB chips can be defined as security
by obscurity.

9.1.2 Vulnerability Disclosure

We reported the concluded fragment chaining vulnerability to Samsung in the mid of
January 2022 and requested Samsung to forward the information to NXP. Currently, our
report still is under analysis, and we do not expect a feedback before the end of our
thesis.

9.2 services and apps of samsung’s uwb ecosystem

The UWB Application Programming Interface (API) service and the UWB Hardware Abstraction
Layer (HAL) service build both of Samsung’s UWB services. In our evaluation, we find
vulnerabilities in Samsung’s UWB services that can be attacked from both sides, which
means from an app using the services or from a compromised SR100T. We further indicate
that remote attacks might be possible. Furthermore, we do not find vulnerabilities in
apps using Samsung’s UWB services.

Both of Samsung’s UWB services inherit source code from NXP, which also is provided
in the Mobile Knowledge (MK) UWB kits. The source code contains several vulnerabilities,
of which most are inherited as well in the services. This shows that the blind adoption of
source code also inherits its vulnerabilities.

9.2.1 Attacks From SR100T

We practically verified the inherited fragment chaining vulnerability for the UWB API
service. There are several vulnerabilities left that a compromised SR100T can attack, which
we did not test practically but discovered using Ghidra. Furthermore, remote attacks
might be possible that use the SR100T to forward attacks.

The core problem of these vulnerabilities lies in assuming that only expected messages
are received from the SR100T. Most often, we do not find any check for the received
data’s validity. Moreover, independent of an attack, locations at which the vulnerabilities
exist are often also susceptible to crashes when unexpected messages are received, which
only need to vary from expected messages slightly.

Thorough checks for the validity of received messages would prevent most attacks. In
addition, the other vulnerabilities would be prevented when checking that the number of
bytes in a copy operation does not exceed the destination buffer’s size.
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9.2.2 Attacks From Apps

Attacks from an app against Samsung’s UWB services are critical. We demonstrate an
attack in our evaluation. We also describe behaviors and characteristics of methods in
the services that prevent attacking other vulnerabilities. However, the problem is that
the core vulnerabilities still exist. Most often, no checks are implemented to prevent
these. Therefore, we conclude that most of these behaviors and characteristics are not
implemented for preventing vulnerabilities.

In our evaluation, we demonstrate exactly this problem with our attack against the
vulnerable method UWA_PerRxTest, which results by finding a call chain to a vulnerable
method without the non-intended attack preventions. Also, since the core vulnerabilities
are not prevented, when new features are added to the services, new paths to vulnerable
methods might emerge that an attacker can use for attacks.

It is important to fix the core vulnerabilities. All of our discovered ones can be prevented
when implementing two checks at the corresponding vulnerable locations. First, checking
is needed for a buffer overflow before copying bytes to a buffer. In addition, the second
check should ensure that the result of an addition fits into the result object.

9.2.3 Vulnerability Disclosure

We reported both practically verified vulnerabilities to Samsung at the end of November
2021. We further marked NXP’s source code vulnerabilities and reported them to Samsung
in the same report, even if we did not test them or could attack them successfully.
Additionally, we requested to forward the information to NXP. A fix is outstanding, but
the vulnerabilities were already acknowledged, and a patch is under development, which
will be released in March 2022. Moreover, the vulnerability in UWA_PerRxTest that we
could successfully attack was previously known to Samsung and was fixed in parallel to
our report.

9.3 smarttag+

In Chapter 8, we find several vulnerabilities regarding the SmartTag+ and its management
entities. Overall, these vulnerabilities show that the security of Internet of Things (IoT)
devices from large companies also is a concern. Next, we discuss the vulnerabilities.

9.3.1 Cross-Site Scripting in Plugin

We find that an HTML injection vulnerability exists in the SmartTag+’s management
plugin. This vulnerability can be used to run arbitrary JavaScript in the plugin. Members
of a shared SmartTag+ can attack other members, and a compromised SmartTag+ can
attack members as well. An attacker can execute JavaScript in the victim’s plugin, for
example, to forward a user to a malicious website. Furthermore, an attacker also can
call the SmartThings app’s exported methods, which considerably extends the impact.
The exported methods allow, for example, managing other SmartTag+s or retrieving the
location of the victim’s phone.
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The problem is that elements dynamically added to the HTML Document Object Model
(DOM) are not sanitized. This includes the SmartTag+’s name and the SmartTag+’s sent
firmware version. A simple fix for this vulnerability is to sanitize each element that is
dynamically added to the HTML DOM.

Furthermore, the HTML tag injection vulnerability exists in the SmartTag+ plugin
version 1.2.11-11 and later. We do not test earlier versions, but these likely also are
affected.

9.3.1.1 Vulnerability Disclosure

We reported the vulnerability to Samsung in October 2021, and a fix was provided at the
end of December 2021. The vulnerability is fixed in version 1.2.15-6.

9.3.2 SmartTag+ Firmware Downgrade

The work in [10] demonstrates that the AirTag’s firmware can be downgraded Over-The-
Air (OTA). We show in our evaluation that the SmartTag+’s firmware can be downgraded
as well. Furthermore, we assume that the firmware of Samsung’s normal SmartTag also
can be downgraded, but we do not test it.

By transferring any valid firmware to the SmartTag+, it is possible to send vulnera-
ble firmware versions. An attacker might be able to fully compromise the SmartTag+
OTA afterwards. The attacker might have different goals. For example, when sharing a
SmartTag+ with other members, the attacker first downgrades the SmartTag+ to a vulner-
able version. Then, the vulnerable SmartTag+ is attacked. Afterwards, the compromised
SmartTag+ is used to establish attacks against another member. Additionally, attacking
a vulnerable downgraded firmware might be a way for an attacker to circumvent the
protection against OTA firmware manipulations.

A fix for the vulnerability would be comparing the received firmware’s version with
the current running version. If the received firmware’s version is not greater than the
current version, an update to the received firmware should be declined.

9.3.2.1 Vulnerability Disclosure

We reported the vulnerability to Samsung in October 2022. At the beginning of February
2022, four months after the report submission, an acknowledgment of the vulnerability
and a fix are outstanding.

9.3.3 SmartTag+ Hardware Security

The works in [5] and [44] show that the main chip of Apple’s AirTag and Samsung’s
normal SmartTag can be attacked to enable SWD access. We show that the SmartTag+’s
different main chip has an enabled SWD interface, and firmware extraction and manipu-
lation of the SmartTag+ are possible without exploiting a vulnerability.

In conclusion, future research can use the SmartTag+ as a low-cost programmable
hacking device with included UWB and Bluetooth Low Energy (BLE) functionality, which
also is attractive for attackers. Moreover, the binding between the phone and SmartTag+
does not reset after the firmware manipulation. This indicates that the SmartTag+ does
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not store user data but only its non-programmable ID. Therefore, an attacker can steal a
SmartTag+, manipulate the firmware, and attack the SmartTag+’s user without following
noticeable indications for the victim. With the HTML tag injection vulnerability, we also
showcase that the attacker can attack members with a compromised SmartTag+.

9.3.3.1 Vulnerability Disclosure

We reported the vulnerability to Samsung at the beginning of January 2022, and the
issue was previously known to Samsung. We further learned from Samsung that this
vulnerability is unfixable because the deactivation of SWD pins cannot be done in the
firmware. Moreover, all SmartTag+’s manufactured before July 2021 are affected, and later
products should not be affected. However, in practice, we consider new commercially
available SmartTag+’s still as affected. We bought a SmartTag+ from Samsung’s official
German shop in the end of November 2021, and the SmartTag+’s production date is
March 2021. Therefore, we conclude that this issue still is current. Security researchers
and attackers that need a SmartTag+ with an enabled SWD interface also can try buying
one from different sources, and it is likely that still unsecured SmartTag+s are shipped.
Security researchers and attackers that need a SmartTag+ with an enabled SWD interface
also can try buying one from different sources, and still unsecured SmartTag+s are
likely shipped. Depending on the time difference to our thesis, we recommend buying a
SmartTag+ from unofficial sources or buying a used one.
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C O N C L U S I O N S

In our thesis, we looked into the security of Samsung’s Ultra-Wideband (UWB) ecosystem
and the usage of NXP’s UWB chips. Our goals were first to learn about the ecosystem’s
entities and their communication. Subsequently, we aimed to identify relevant attack
vectors. With our developed understanding, we developed tools and used them for a
security evaluation of selected attack vectors. Finally, in our evaluation, we found several
vulnerabilities, which we discussed afterwards.

First, we analyzed the communication with NXP’s UWB chips in Chapter 4. Ultra-
Wideband Command Interface (UCI) is the first protocol and is used by all chips for
UWB-related messages. It is a standard by the Fine Ranging (FiRa) Consortium [31] and
is only available to its members. In addition, the protocol Host-Based Command/Control
Interface (HBCI) is used to manage the SR100T and SR150. We conclude it is a non-
publicly available proprietary protocol by NXP. Since both protocol specifications are not
available to us, we reverse engineered the specifications using the source code provided
by NXP in the Mobile Knowledge (MK) UWB kits. We further used the ucitool’s YAML
file that contains UCI opcodes and payload structure identifiers.

Furthermore, in Chapter 4, we used the SR100T as a representative of NXP’s UWB
chips since it is integrated on our test phone. We analyzed its local firmware download
process, which is responsible for transferring the encrypted firmware to the SR100T. With
our understanding of the protocols and the following analysis of the SR100T’s driver, we
further built the SR100T’s state machine. Two essential modes exist in the state machine:
UCI mode and HBCI mode.

Subsequently, in Chapter 5, we examined Samsung’s UWB ecosystem entities with a
focus on each entity’s role. NXP’s SR100T chip is used in Samsung phones. Moreover,
two services are responsible for providing UWB functionality on the phone and for
communicating with the SR100T. The first service provides an Application Programming
Interface (API) for external apps. It is further responsible for UCI message creation and
processing. This service forwards its messages to the second service, which implements
the Hardware Abstraction Layer (HAL) for UWB functionality on the phone. It is further
responsible for transferring the firmware to the SR100T. Additionally, we detected that
essential parts of both services use NXP’s source code from the UWB kits.

Afterwards, also in Chapter 5, we briefly examined apps using the UWB API on the
phone, which include a middleware service used by a SmartThings app’s plugin to
establish a UWB ranging session with the SmartTag+.

Additionally, we analyzed the SmartTag+ and its management entities in Chapter 5.
The SmartTag+ is controlled by a plugin that is easy modifiable, and we used it for
understanding the Over-The-Air (OTA) firmware update process. We further analyzed
the SmartTag+’s Printed Circuit Board (PCB) and noted down the connections of test
pads on the PCB.

After we developed an understanding of the entities and the SR100T’s usage, in Chap-
ter 6, we identified relevant attack vectors and selected specific ones for our evaluation.
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For our further work, in Chapter 7, we implemented several utilities and made modifi-
cations to pre-existing tools and entities. Most results of this work are further valuable for
future work in different scenarios. Our first implementation was the Wireshark dissector.
It can decode the UCI and HBCI messages exchanged with NXP’s UWB chips. With an
additional tool, we even can use it to decode the live communication with the SR100T
on our Samsung phone. We further implemented several Frida scripts for hooking and
manipulating methods at different locations in Samsung’s UWB ecosystem. For example,
we can use the scripts to simulate attacks against the UWB services from both sides. In
addition, we took modifications on the ucitool and its helper binary akash. As a result, we
can send any message we want to the SR100T as well as choose the transferred firmware.

Finally, in Chapter 8, we first evaluated our selected identified attack vectors and
discussed our results subsequently in Chapter 9. In Chapter 8, we first showed that NXP’s
provided source code has several vulnerabilities, which can be divided into four groups.
The core problem of most vulnerabilities is trusting incoming messages. Furthermore,
the goal of this security analysis was to provide a foundation for deriving attacks against
entities using the source code, which includes the SR100T.

The encrypted firmware of NXP’s UWB chips prevented a close analysis in our thesis.
Nevertheless, in Chapter 8, we could identify the unencrypted header and selected bytes
of the header for the SR100T’s firmware. Moreover, we derived an attack against the
fragment chaining vulnerability, and we practically demonstrated that the vulnerability
presumably is inherited by the SR100T’s firmware. Additionally, we could crash the chip
and sometimes see our fuzzing data in a returned crash log. In conclusion, we defined
the security of NXP’s UWB chips as security by obscurity in Chapter 9.

We further demonstrated in Chapter 8 that Samsung’s UWB services could be attacked
from an external app and a compromised SR100T. In addition, remote attacks might be
possible. The vulnerabilities are inherited from NXP’s code. Most of them that could
be attacked from an app are prevented through indirect preventions. However, the core
vulnerabilities still exist, and we showed a call chain to circumvent the preventions.

In Chapter 8, we also showed that the SmartTag+’s firmware could be downgraded
OTA but not manipulated. In addition, we found an HTLM tag injection vulnerability in
the SmartTag+’s management plugin. Attacks between members sharing a SmartTag+
are possible, and a compromised SmartTag+ can attack members as well.

Afterwards, we assessed the SmartTag+’s hardware security in Chapter 8. The Serial
Wire Debug (SWD) interface of the SmartTag+’s main chip is enabled, and it is possible
to extract and manipulate the firmware. As a result, the SmartTag+ can be fully compro-
mised. We also showed that HTML tags could be sent over a manipulated SmartTag+
firmware to the vulnerable management plugin. We concluded in Chapter 9 that the
lack of the SmartTag+’s security and the security of its entities show that the security of
Internet of Things (IoT) products from large companies also is a concern.

We point out that we reported all discovered vulnerabilities to Samsung. If they
were related to NXP’s vulnerable source code, we requested Samsung to forward the
information to NXP.
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outlook for future work

There is work left for analyzing the implementation security of NXP’s UWB chips.
The essential step is to retrieve an unencrypted version for at least one of the chips. An
unencrypted version is helpful to assess the chips’ security, and it might also be helpful for
future work that evaluates the physical-layer security of NXP’s chips. We recommend as
a next step a sophisticated hardware attack that aims the firmware extraction for an NXP
UWB chip. We further recommend the low-cost SmartTag+ with the integrated SR040
as the test device. As an alternative, successfully transferring a development firmware
version might lead to enabled SWD access and the following firmware extraction.

Once an unencrypted firmware version is available, we recommend first assessing
the security of UCI message processing. The core vulnerabilities in NXP’s source code
emerge through the trust that only expected UCI messages are received. While we
detected several vulnerabilities in NXP’s source code and reported them, it is probable
that undetected vulnerabilities still exist since the code lacks general security. Additionally,
when analyzing an unencrypted firmware version, one of the first steps should be to
understand crash logs. Understanding the crash logs can be very helpful when executing
attacks against an NXP UWB chip with encrypted firmware. Moreover, our modified
ucitool and the implemented scripts can be used for attacks against the SR100T. It is
probable that the ucitool and its helper binary akash work on any Android device featuring
the SR100T.

Parts of both Samsung UWB services also use NXP’s source code. We showed that the
adoption of NXP’s source code also inherited its vulnerabilities. Since the source code
provides a fully working API to communicate with NXP’s UWB chips, it is probable
that other vendors that feature an NXP UWB chip also use this source code. Therefore,
it is likely that the vulnerabilities also exist in applications that inherit the source code.
For example, Xiaomi features the SR100T in the Mi Mix 4 phone [28]. We assume that
NXP’s code is inherited by services that provide UWB functionality on this phone. The
vulnerabilities are probably also inherited. We further point out that attacks in other
devices than mobile phones that integrate NXP’s code also might be possible.

Remote attacks against the UWB services were only briefly covered by us without
success. We recommend first fully evaluating the attack surface of remote attacks when
doing data transfer over UWB. Here, an attacker has the most control over data that
reaches the victim’s services. Furthermore, since UWB ranging is currently the main
application of UWB in a mobile device, remote attacks while doing ranging are also
essential to evaluate. Our ucitool scripts provide a good foundation when testing remote
attacks. For example, they implement UWB ranging or data transfer between two devices.
An attack can be built on top of them.

Based on Samsung’s response to our SmartTag+ SWD access report, we assume that
SWD is disabled on the main chip for newly manufactured SmartTag+s. Therefore,
the next step is to evaluate if one can bypass the protection as in [24]. Additionally, a
SmartTag+ firmware analysis might find vulnerabilities that are remotely attackable.

UWB will likely be fully integrated into the Android Open Source Project (AOSP) for
the Android 13 release [48, 52]. Currently, the HAL is missing in Android 12, and the
Google Pixel 6 Pro uses custom software to implement the HAL, which is independent
of the AOSP’s Android 12 branch [48, 52]. Nevertheless, future work can start to analyze
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the Pixel’s UWB ecosystem now. The API exists already [52, 53] and it is probable that
the Pixel 6 Pro uses a similar HAL implementation as it will be integrated into the AOSP
for Android 13.

Furthermore, since UWB is not fully implemented in the AOSP [48, 52, 53], other
vendors like Samsung started integrating UWB functionality using self-implemented
proprietary entities. Once UWB is integrated into the AOSP, this will lead to problems
when merging the functionality with pre-existing UWB integration like in Samsung’s
phones. Probably, a simple replacement of the services and co. is not possible. For example,
in the latest UwbUci.apk version from January 2022, which implements Samsung’s UWB
API accessible by apps, we presumably detected an AOSP UWB API wrapper, which
likely will be used when merging the functionality for Android 13. We conclude this is
Samsung’s way of merging the functionality. For Samsung phones, we assume that the
AOSP’s UWB API will be exposed to third-party apps, and internally Samsung’s UWB
services still will be used. We further assume that Samsung’s UWB API simultaneously
will be available to Samsung’s apps since these currently use Samsung’s API. Future
work can investigate the security issues that emerge from merging the functionality.

Moreover, in general, when the chip is addressable over UCI, future work that analyzes
the physical-layer security or usage of UWB chips might use our Wireshark dissector for
decoding the communication with the chips. Since UCI is a non-public standard by the
FiRa Consortium, and the consortium has members that include major companies, which
have access to the procotol specification [16, 31], many UWB chips likely use UCI as a
protocol in the future.

final words

UWB was integrated into recent smartphones and IoT devices, including devices from
Samsung that feature NXP’s SR100T and SR040 UWB chip. The main use case is a precise
position estimation between devices, which enables using a smartphone as a car key by
doing secure UWB ranging. However, new attack vectors emerge with the integration of
UWB. In our thesis, we analyzed the security of Samsung’s UWB ecosystem, including
NXP’s UWB chips and Samsung’s SmartTag+. Our results show that security issues exist
for the integration of UWB functionality into Samsung phones, including the integrated
SR100T UWB chip. The core of all issues is a lack of writing code with security in mind
and a lack of general testing for written code. Our results further show that major security
issues exist for Samsung’s only UWB-enabled IoT device. In conclusion, Samsung’s UWB
ecosystem is not mature for deployment yet.
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A P P E N D I X

a.1 steps to enable superuser access on a samsung galaxy s21 ultra

1. Download the right firmware for the phone, for example, from SamMobile1.

2. In the developer options, turn the setting "unlock the bootloader" on.

3. Turn the phone off.

4. Reboot in download mode, by pressing the volume up and down key at once on
the powered off phone and then connecting the phone cable to the PC.

5. A long press of volume up and the following press of "yes" will unlock the boot-
loader finally.

6. Start and set up the device.

7. Push the latest Magisk2 app to the device and install it.

8. Push the file of the downloaded firmware that begins with "AP..." to the device.

9. Open Magisk on the phone and patch the "AP..." file.

10. Pull the patched "AP..." file from the phone to the host.

11. Download and execute Odin3 on Windows. Alternatively, use a Windows virtual
machine, copy the firmware files to the virtual machine if necessary, and then
download and start Odin.

12. In Odin, put the "BL..." file to the BL instance, the patched "AP..." file to the AP
instance, the "CP..." file to the CP instance, and the "CSC..." (not HOME CSC) file to
the CSC instance. Then, disable auto-reboot.

13. Power off the phone and put it into download mode like in step 4. Then, press
shortly the volume up key to go into the regular download mode.

14. The phone should now appear in Odin. Now, press start in Odin.

15. Restart the device after Odin was successful. After the device setup, install the
Magisk app that is already there and disable auto-updates in the phone menu.

a.2 important paths in the mk uwb kits

In Table 10, we show the paths to the most important files in the MK UWB kits in relation
to the targeted NXP chip, after each zip file was extracted as a folder. Each extracted zip

1 https://www.sammobile.com/

2 https://github.com/topjohnwu/Magisk

3 https://forum.xda-developers.com/t/patched-odin-3-13-1.3762572/

99

https://www.sammobile.com/
https://github.com/topjohnwu/Magisk
https://forum.xda-developers.com/t/patched-odin-3-13-1.3762572/


100 appendix

UWB KIT EDITION NXP CHIP PATH

Standard Edition SR040 & SR100T MK-UWB%20KIT/USB%20flash%20drive

%20KIT%20SR150_SR040%20%20v3.2/So

ftware/MK%20UWB%20SDK/source/MK

%20UWB%20SDK%20v1.2.0/resources/N

XPSoftware%20packages/SR040%20-%20

UWB%20Tracker%20SDK/UWBIOT_v02.

00.00_MCUx/

Standard Edition SR150 MK-UWB KIT/USB%20flash drive%20KI

T%20SR150_SR040%20%20v3.2/Software

/MK%20UWB%20SDK/source/MK%20

UWB%20SDK%20v1.2.0/resources/NXP

%20Software%20packages/SR150%20-

%20UWB%20IoT%20SDK/UWB01_SW_

FreeRTOS_RHD_A19.2/2020-12-04_UW

B01_SW_FreeRTOS_RHD_A19.2/SOUR

CE/UwbCoreSDK/uwb_core/

Mobile Edition SR040 SW-Documentation-MK-UWB_Kit-mobil

eedition/SW%20&%20Documentation

%20-%20MK%20UWB%20Kit%20Mobile

%20edition/Software/SR040%20Tag%20

v03.07.00/UWBIOT_SR040_v03.07.00/

Mobile Edition SR150 SW-Documentation-MK-UWB_Kit-mobil

eedition/SW%20&%20Documentation

%20-%20MK%20UWB%20Kit%20Mobile

%20edition/Software/SR150%20Anchor

%20v03.04.00/UWBIOT_SR150_v03.04.0

0_MCUx/

Table 10: Paths to the most important files in the Mobile Knowledge (MK) Ultra-Wideband (UWB)
kits. "%20" means the space character.

file has the same name and is in the same corresponding folder. Except for the SR150 code
in the mobile edition, all the UWB-related files are located in the subfolder uwbiot-top
and the gist in its subfolder libs. The folder structure of each uwbiot-top folder is the same,
and important files in these folders are mostly similar with the same contents. If they
vary, then only slightly.

The most important differences between the contents of the uwbiot-top folder lay in
the libs subfolder. The differences are in source code files, which extend the standard
set of Ultra-Wideband Command Interface (UCI) parameters. These are used as part of
proprietary UCI messages, whereby some different parameters are defined and used.
Additionally, the ranging data returned from the chips is slightly different parsed.
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a.3 complete smarttag+ test pad evalution

In Table 11, we show the complete test pad evaluation. We could not find the test pads
with the numbers 22 and 34, which might be hidden under components of the Printed
Circuit Board (PCB). We also found two unnumbered test pads, which might be these
two test pads. However, we do not find a connection for both unnumbered test pads.
Moreover, test pad 22 might be test pad 27 and vice versa because we cannot clearly read
the number of this test pad.

a.4 wireshark dissector user guide

Now, we explain how to set up the dissector and how to import a hexdump to dissect.

a.4.1 Setup

First, place the Lua files of the dissector in the Wireshark plugin path. For example, on a
Linux system, this can be in the path /home/username/.local/lib/wireshark/plugins/. Second,
open Wireshark and then, go to Edit -> Preferences... -> Protocols -> DLT_USER -> Edit. In
the pop-up, add a mapping by pressing the plus sign. Ensure that USER 0 is set under
DLT. Afterwards, set the Payload protocol of the mapping to uciandhbci and press ok.

Values marked with * in the dissector are post-processed and interpreted as such in
Samsung’s services. We reverse engineered the interpretation, and in the dissector, we
add how the values are interpreted.

a.4.2 Import of a Hexdump File

First, open Wireshark. Then, go to File -> Import from Hex Dump.... In the pop-up, select
the hexdump file. Afterwards, set in the pop-up USER 0 as the Encapsulation Type. Now,
press Import.

a.4.3 Layout of a Hexdump File

Now, we describe how a hexdump file needs to be formatted. We assume that the
messages of the communication are already extracted.

A custom wrapper needs to be generated for each message, which is 11 bytes long
and prepended to the actual packet bytes. The first byte declares if the packet is written
(0x57) or received (0x52) by the host. The second byte declares the UWB chip, whereby
0x00 = SR040, 0x01 = SR100T, 0x02 = SR150, and 0x03 = SR100T with a new firmware
version. The SR100T formats the ranging data in new firmware versions like the SR150.
Therefore, use for current versions 0x03 as the chip ID. The other 9 bytes can be 0x00 if
no additional information is integrated into the custom wrapper, which should be the
case when communication should be dissected that was not retrieved with the Frida code
of the Live Decoder. For example, for a write to the SR100T with no information in the
custom wrapper, the wrapper should be: 57 01 00 00 00 00 00 00 00 00 00.
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TEST PAD CONNECTION 1 CONNECTION 2 NOTE/SYMBOL

1 QN9090 pin 19 - RSTN

2 SR040 pin 18 - SWDIO

3 SR040 pin 17 - SWCLK

4 SR040 pin 8 - PA_CAP_N

5 SR040 pin 31 - RST_N

6 SR040 pin 14 - Unknown function

7 SR040 pin 13 - Unknown function

8 - - Unknown

9 QN9090 pin 28 - VBAT

10 QN9090 pin 27 - RSTN

11 QN9090 pin 11 - UART TXD

12 Buzzer_P - SmartTag+’s sound system

13 QN9090 pin 12 - UART RXD

14 QN9090 pin 16 - SWDIO

15 QN9090 pin 15 - SWCLK

16 QN9090 pin 9 - Unknown function

17 Power (+) -

18 QN9090 pin 23 - Unknown function

19 QN9090 pin 20 - IO supply voltage

20 Button - SmartTag+’s button

21 Buzzer_N - SmartTag+’s sound system

22 - - Not found. May be TP 27

23 SR040 pin 11 - VDD_GLOB

24 QN9090 pin 8 Flash pin 5 SS/CS of SPI line 1

25 Power (-) -

26 SR040 pin 19 - Test point

27 QN9090 pin 3 SR040 pin 22 SCK of SPI line 0. May be TP 22

28 QN9090 pin 4 SR040 pin 23 MOSI/MISO of SPI line 0

29 QN9090 pin 4 SR040 pin 21 MISO/MOSI of SPI line 0

30 QN9090 pin 6 SR040 pin 20 SS/CS of SPI line 0

31 QN9090 pin 14 Flash pin 7 MISO/MOSI of SPI line 1

32 QN9090 pin 7 Flash pin 4 MOSI/MISO of SPI line 1

33 QN9090 pin 13 Flash pin 3 SCK of SPI line 1

34 - - Not found

35 QN9090 pin 10 - Unknown function

36 QN9090 pin 26 - TRST

Table 11: Complete evaluation of all SmartTag+ test pads. SYMBOL refers to declared symbol in
the data sheet of the corresponding chip [29, 33]. We number the pin numbers of the
flash component beginning from the left upper side. The left upper side is pin 1 and the
right lower side is pin 8.
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Furthermore, each message needs to be declared in a new line and prepended with
six zeros without a space. Each following byte needs to be appended with a space in
between. For example, a line for a sent packet from the host to the chip (SR100T), which
contains only the header (always 4 bytes long) and no payload, should be declared like
this: 000000 57 01 00 00 00 00 00 00 00 00 00 20 02 00 00.

a.5 generator

Note that we cannot provide the YAML file with the UCI specification due to copyright
reasons. Therefore, one needs to get the standard MK UWB kit, and in the kit is the
YAML file.

To generate the decoders, run python3 generator.py -f INPUTFILE, whereby INPUTFILE
defines the path to the YAML file. The resulting decoders are written to the folder
generated.

a.6 live decoder user guide

First, optionally kill both of Samsung’s UWB services, which run under the processes
vendor.samsung.hardware.uwb@1.0-service and com.samsung.android.uwb. When killing these
processes, one gets a trace from the beginning where the firmware is transferred to the
SR100T. For example, use our provided killuwb.sh script.

Second, start the Frida server on the phone and then run python3 main.py -i CHIP_ID
on your computer. As the argument for the chip ID use "1" for older SR100T versions,
and use "3" for later versions. If the ucitool is used to communicate with the SR100T, then
run python3 main.py -i CHIP_ID -u yes. Note that when using a later version of akash,
an update of the Frida script with the corresponding addresses of the hooked methods
in akash is needed. Thereby, in the Frida script write_read.js, four addresses need to be
changed. For example, one can find the new addresses as described in Section 7.2.1. This
step takes a few minutes when using Ghidra. Further note, when using the ucitool, both
of Samsung’s services need to be killed as described in Section 7.3.

It is also possible to manipulate messages and parts that are sent to or received from
the SR100T. For this, use the -m option for any manipulation. Thereby, separated by a
double dot, first define the header (4 bytes) of the packet that should be manipulated
as a hex string. Then, define the index at which should be manipulated as an integer,
and afterwards, define the hex values that should be written at the index. The argument
can be used as often as wanted. It is also possible to manipulate the same packet at
different indexes by using the argument multiple times and defining the same header.
Example: 6200003D:33:1A01 manipulates the distance of the range measurement returned
by the SR100T to 1A01 as a hex value, which results in 282 as int (LE). Example:
6200003D:2:AABB manipulates the header, such that the header indicates a payload size
of 0xBBAA.

a.7 log parser user guide

Run python3 extract_uci_and_hbci.py -f INPUTFILE -o OUTPUTFILE -i CHIP_ID to generate
a hexdump of a log file. INPUTFILE is the path to the filename that contains logs, and
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GID GID NAME NEW OID

1 Session 32

14 Proprietary 32, 33, 35, 36

15 Internal 1, 2

Table 12: Found undeclared UCI opcodes displayed in decimal form.

OUTPUTFILE is the path to the filename to which the hexdump should be written.
Depending on the UWB chip used for the communication in the log, CHIP_ID should be
"0" for the SR040, "1" for the SR100T, "2" for the SR150, and "3" for the SR100T with a new
firmware version. The tool works for logs retrieved with Logcat on a Samsung phone
and logs of a SmartTag+ retrieved over Universal Asynchronous Receiver-Transmitter
(UART). Logs generated by any entity that uses the UWB Application Programming
Interface (API) of the UWB kits can also be parsed, but this was not tested.

a.8 uci and hbci information gathering

In this section, we give an overview of which interesting information can be requested
from the SR100T and likely from NXP’s other UWB chips.

a.8.1 Undeclared UCI opcodes

One of our implemented uctiool scripts, which we presented in Section 7.3.2, iterates
through all possible Group Identifiers (GIDs) and Opcode Identifiers (OIDs) opcodes. In
result, we find seven OIDs that are not declared anywhere in the ucitool or MK UWB kits.
However, we cannot derive the meaning for any opcode we found. In Table 12, we show
the newly found OIDs with the corresponding GID.

a.8.2 HBCI Queries

We find that using Host-Based Command/Control Interface (HBCI) messages, we can
request from the SR100T two interesting information, which are likely independent of
the firmware that is send to the SR100T in a later instance. First, we can query it for a
six-byte value, which presumably is a key ID of the installed root Certificate Authority
(CA)’s public key. Second, we can request a two-byte value, which presumably is the
ID of the installed certificate’s public key from NXP. Both previous assumptions are
based on the opcode’s name. We further assume the chip uses the certificates with the
corresponding IDs for validating the transferred firmware and other checks.

Moreover, we can request additional other data, which might be interesting for future
work. In Table 13, we show the responses for all queries, and we additional include the
HBCI message used to retrieve the data from the chip. Unfortunately, no HBCI payload
interpretation exists except for a few selected bytes of two HBCI responses, which are
not noteworthy. Therefore, we only can guess the meaning of each response’s content.
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NAME HBCI QUERY RESPONSE DATA

Chip_ID 0x01310000 0x30523050302D3030B13245-

382200300008C879

Helios_ID 0x01320000 0xB100000016

CA_Root_Pub_Key 0x01330000 0x40888C2D4301

NXP_Pub_Key 0x01340000 0x03C5

ROM_Version 0x01350000 0x104523AFD4C8

Dev_Lifecycle 0x01360000 0xBF1F000000000000000000-

00000000000BE006000F0022-

0AD2D97B000000000000000-

0000000003F000000002C

Table 13: Responses of HBCI queries.

Figure 34: Decoded RFRAME measurement.

a.8.3 Ranging Logs

When establishing a ranging session, or also while a ranging session is running, it is pos-
sible to enable different log messages by applying a configuration for the ranging session.
There exist four of these messages and when enabled, the SR100T returns periodically
the corresponding log message as an Notification (NTF) UCI message. Moreover, these
logs messages may be interesting for future work that evaluates physical-layer attacks
against the SR100T.
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NUMBER SE_COMM_DATA MESSAGES

1 0x6e1a00140780ca00fe02df230bfe07df2304003532429000

2 0x6e1a003d1603a4040010a000000396545300000001040200-

000000256f218410a0000003965453000000010402000000a5-

0dbf0c0a9f7e0201034c030000009000

3 0x6e1a002f0e8350000008466a2675476a471d001f00000000-

0000000000000103600f08931484431e36be82aec39166799d-

9000

4 0x6e1a00191587823300100841c0509f14798e52b191c659b3-

80a2029000

5 0x6e1a002a0e87ca004708a69354b949a8a040001a56c5b74b-

b5f8f2977cb9edd203198e87d78fbd5c60067ded9000

Table 14: Returned secure element logs. The used command to trigger the previously enabled
logs is: 0x2E240000.

The first log message that can be enabled by applying a configuration value are
RFRAME measurements. RFRAMES — short for ranging frame — are UWB frames
with a set ranging bit flag. They are exchanged between devices when doing UWB
ranging [21]. An RFRAME measurement returned from the SR100T includes data like
Channel Impulse Response (CIR) samples or the Received Signal Strength Indication
(RSSI), which presumably comes from a received RFRAME. In Figure 34, we show the
contents of a decoded RFRAME measurement that is part of a message with multiple
measurements and is decoded by our dissector.

For a ranging session it is also possible to enable logs of the CIR. Furthermore, it is
possible to enable PHY Service Data Unit (PSDU) logs. PSDU is a data field of a UWB
frame [21], and the logs presumably come from the PSDU of a received RFRAME.

The fourth log message that can be enabled is DATA_LOGGER, and we do not the
effect of enabling it since we encounter no additional messages by enabling it. We also
cannot learn the meaning of it by looking in the UWB kits’ source code.

a.8.4 Other

It is possible to apply a device configuration that enables logs presumably of the commu-
nication between SR100T and the secure element on the phone. The configuration value is
named DUMP_SE_COMM_DATA, and when enabled, the SR100T returns additional NTF
UCI packets. We test this successfully with a self-implemented ucitool script. Furthermore,
we only do a brief analysis of the log contents and under which circumstances logs are
returend. Thereby, we learn that we get five logs as NTF UCI messages, only when we
send a specific UCI command to the chip: 0x2E240000. This command also is one of
the undeclared ones we find in Appendix A.8.1. In Table 14, we show the whole log
messages we get. Unfortunately, we cannot decode the logs, and find no other commands
that trigger these NTF UCI messages. We delegate a thorough analysis to future work.
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FILE NAME VULNERABLE METHOD GROUP

uwb_ucif.cc uwb_ucif_process_event 2

uwb_ucif_proc_core_set_config_status 3

uwb_ucif_proc_core_get_config_rsp 3

uwb_ucif_proc_app_get_config_status 3

uwb_ucif_proc_app_set_config_status 3

uwb_ucif_proc_ranging_data 3

uwb_ucif_proc_app_data_rcve_ntf_status 3

uwb_ucif_proc_get_device_capability_rsp 3

uwb_ucif_proc_test_get_config_status 3

uwb_ucif_proc_test_set_config_status 3

uwb_ucif_proc_rf_test_data 3

uci_hmsgs.cc uci_snd_app_data_send_cmd 4

uci_snd_test_per_rx_cmd 4

uci_snd_test_uwb_loopback_cmd 4

uci_snd_test_periodic_tx_cmd 4

UwbApi_Proprietary_Internal.ccp uci_snd_test_uwb_loopback_cmd 3

handle_schedstatus_ntf 3

handle_do_calibration_ntf 3

UwbApi_RfTest.ccp ufaTestDeviceManagementCallback 3

phNxpUciHal_fwd.cc phHbci_GetStatus 1

phHbci_QueryInfo 1

phHbci_PutCommand 1

phTmlUwb.cc phTmlUwb_TmlReaderThread 1

Table 15: Vulnerable methods of files and the groups of the vulnerabilities.

In the YAML file that contains the UCI specification we also find configuration IDs that
are related to information about the stack of threads on the SR100T. We do not know how
to request the information since we do not find a corresponding UCI opcode. Furthermore,
we know from other opcodes how configuration values can be requested from the SR100T.
Therefore, we try unsuccessfully a brute force attack, that creates any possible UCI
message by iterating through all GIDs and OIDs, and defines for each message in the
payload a valid configuration value request. We assume that these configuration values
cannot be requested from the SR100T running a producation firmware.

a.9 uwb kit vulnerabilities

In Table 15, we show all vulnerable methods of NXP’s source code contained in the
UWB kits. The first group of vulnerablitites relate to the reading of received messages
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from the driver. Only the fragment chaining vulnerability corresponds to group two.
Vulnerabilities of the third group relate to the processing of UCI messages. Last, the
fourth group are vulnerabiliites that happen when processing app controlled data.
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a.10 hbci specification

In this section, we present all opcodes for the different HBCI classes. We resolve opcodes
for the class General in Table 16, Test in Table 17, Patch_ROM in Table 18, HIF_Image in
Table 19, and IM4_Image in Table 20.
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CID CN SCID SCN OID ON

0 General 1 Query 0x21 phHbci_General_Qry_Status

0x31 phHbci_General_Qry_Chip_ID

0x32 phHbci_General_Qry_Helios_ID

0x33 phHbci_General_Qry_CA_Root_Pub_Key

0x34 phHbci_General_Qry_NXP_Pub_Key

0x35 phHbci_General_Qry_ROM_Version

0x36 phHbci_General_Qry_Device_LC

0 General 2 Answer 0x21 phHbci_General_Ans_HBCI_Ready

0x23 phHbci_General_Ans_Mode_Patch_ROM_Ready

0x24 phHbci_General_Ans_Mode_HIF_Image_Ready

0x25 phHbci_General_Ans_Mode_IM4_Image_Ready

0x31 phHbci_General_Ans_Chip_ID

0x32 phHbci_General_Ans_Helios_ID

0x33 phHbci_General_Ans_CA_Root_Pub_Key

0x34 phHbci_General_Ans_NXP_Pub_Key

0x35 phHbci_General_Ans_ROM_Version

0x36 phHbci_General_Ans_Device_LC

0x41 phHbci_General_Ans_Boot_Success

0xD1 phHbci_General_Ans_Boot_Autoload_Fail

0xD2 phHbci_General_Ans_Boot_GPIOConf_CRC_Fail

0xD3 phHbci_General_Ans_Boot_TRIM_CRC_Fail

0xD4 phHbci_General_Ans_Boot_GPIOTRIM_CRC_Fail

0xE1 phHbci_General_Ans_HBCI_Fail

0xE3 phHbci_General_Ans_Mode_Patch_ROM_Fail

0xE4 phHbci_General_Ans_Mode_HIF_Image_Fail

0xE5 phHbci_General_Ans_Mode_IM4_Image_Fail

0 General 3 Command 0x23 phHbci_General_Cmd_Mode_Patch_ROM

0x24 phHbci_General_Cmd_Mode_HIF_Image

0x25 phHbci_General_Cmd_Mode_IM4_Image

0 General 4 Ack 0x01 phHbci_Valid_APDU

0x81 phHbci_Invalid_LRC

0x82 phHbci_Invalid_Class

0x83 phHbci_Invalid_Instruction

0x84 phHbci_Invalid_Segment_Length

Table 16: HBCI opcodes for class General. CID = Class ID, CN = Class Name, SCID = Subclass ID,
SCN = Subclass Name, OID = Opcode ID, and ON = Opcode Name.
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CID CN SCID SCN OID ON

1 Test 1 Query 0x1 WRITE_STATUS

0x2 AUTH_STATUS

0x3 JTAG2AHB_STATUS

0x4 PAYLOAD_STATUS

0x8 DEV_STATUS

0x9 ATTEMPT_REMAINING

1 Test 2 Answer 0x1 WRITE_SUCCESS

0x2 AUTH_SUCCESS

0x3 JTAG2AHB_SUCCESS

0x4 PAYLOAD_SUCCESS

0x8 DEV_UNLOCKED

0x9 ATTEMPT_REMAINING

0x81 OTP_FULL

0x82 INVALID_PWD_LEN

0x83 AUTH_FAIL

0x84 DEV_LOCKED

0x85 JTAG2AHB_FAIL

0x86 PAYLOAD_FAIL

1 Test 3 Command 0x1 WRITE_PWD

0x2 AUTH_PWD

0x24 ENABLE_JTAG2AHB

0x25 DOWNLOAD_PAYLOAD

Table 17: HBCI opcodes for class Test. CID = Class ID, CN = Class Name, SCID = Subclass ID,
SCN = Subclass Name, OID = Opcode ID, and ON = Opcode Name.
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CID CN SCID SCN OID ON

2 Patch_ROM 1 Query 0x1 phHbci_Patch_ROM_Qry_Patch_Status

2 Patch_ROM 2 Answer 0x1 phHbci_Patch_ROM_Ans_Patch_Success

0x81 phHbci_Patch_ROM_Ans_File_Too_Large

0x82 phHbci_Patch_ROM_Ans_Invalid_Patch_File_Marker

0x83 phHbci_Patch_ROM_Ans_Too_Many_Patch_Table_Entries

0x84 phHbci_Patch_ROM_Ans_Invalid_Patch_Code_Size

0x85 phHbci_Patch_ROM_Ans_Invalid_Global_Patch_Marker

0x86 phHbci_Patch_ROM_Ans_Invalid_Signature_Size

0x87 phHbci_Patch_ROM_Ans_Invalid_Signature

2 Patch_ROM 3 Command 0x1 phHbci_Patch_ROM_Cmd_Download_Patch

Table 18: HBCI opcodes for class Patch_ROM. CID = Class ID, CN = Class Name, SCID = Subclass
ID, SCN = Subclass Name, OID = Opcode ID, and ON = Opcode Name.
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CID CN SCID SCN OID ON

5 HIF_Image 1 Query 0x1 phHbci_HIF_Image_Qry_Image_Status

5 HIF_Image 2 Answer 0x1 phHbci_HIF_Image_Ans_Image_Success

0x4 phHbci_HIF_Image_Ans_Header_Success

0x5 phHbci_HIF_Image_Ans_Quickboot_Settings_Success

0x6 phHbci_HIF_Image_Ans_Execution_Settings_Success

0x81 phHbci_HIF_Image_Ans_Header_Too_Large

0x82 phHbci_HIF_Image_Ans_Header_Parse_Error

0x83 phHbci_HIF_Image_Ans_Invalid_Cipher_Type_Crypto

0x84 phHbci_HIF_Image_Ans_Invalid_Cipher_Type_Mode

0x85 phHbci_HIF_Image_Ans_Invalid_Cipher_Type_Hash

0x86 phHbci_HIF_Image_Ans_Invalid_Cipher_Type_Curve

0x87 phHbci_HIF_Image_Ans_Invalid_ECC_Key_Length

0x88 phHbci_HIF_Image_Ans_Invalid_Payload_Description

0x89 phHbci_HIF_Image_Ans_Invalid_Firmware_Version

0x8A phHbci_HIF_Image_Ans_Invalid_ECID_Mask

0x8B phHbci_HIF_Image_Ans_Invalid_ECID_Value

0x8C phHbci_HIF_Image_Ans_Invalid_Encrypted_Payload_Hash

0x8D phHbci_HIF_Image_Ans_Invalid_Header_Signature

0x8E phHbci_HIF_Image_Ans_Install_Settings_Too_Large

0x8F phHbci_HIF_Image_Ans_Install_Settings_Parse_Error

0x90 phHbci_HIF_Image_Ans_Payload_Too_Large

0x91 phHbci_HIF_Image_Ans_Quickboot_Settings_Parse_Error

0x92 phHbci_HIF_Image_Ans_Invalid_Static_Hash

0x93 phHbci_HIF_Image_Ans_Invalid_Dynamic_Hash

0x94 phHbci_HIF_Image_Ans_Execution_Settings_Parse_Error

0x95 phHbci_HIF_Image_Ans_Key_Read_Error

5 HIF_Image 3 Command 0x1 phHbci_HIF_Image_Cmd_Download_Image

Table 19: HBCI opcodes for class HIF_Image. CID = Class ID, CN = Class Name, SCID = Subclass
ID, SCN = Subclass Name, OID = Opcode ID, and ON = Opcode Name.
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CID CN SCID SCN OID ON

6 IM4_Image 1 Query 0x1 phHbci_IM4_Image_Qry_IM4_Status

0x2 phHbci_IM4_Image_Qry_IM4M_Status

0x3 phHbci_IM4_Image_Qry_IM4P_Status

0x4 phHbci_IM4_Image_Qry_File_Descriptor_Status

0x5 phHbci_IM4_Image_Qry_Payload_Status

6 IM4_Image 2 Answer 0x1 phHbci_IM4_Image_Ans_IM4_Success

0x2 phHbci_IM4_Image_Ans_IM4M_Success

0x3 phHbci_IM4_Image_Ans_IM4P_Success

0x4 phHbci_IM4_Image_Ans_File_Descriptor_Success

0x5 phHbci_IM4_Image_Ans_Payload_Success

0x81 phHbci_IM4_Image_Ans_IM4M_Too_Large

0x82 phHbci_IM4_Image_Ans_IM4M_Parse_Error

0x83 phHbci_IM4_Image_Ans_Invalid_Chip_ID

0x84 phHbci_IM4_Image_Ans_Invalid_Helios_ID

0x85 phHbci_IM4_Image_Ans_Invalid_IM4M_Leaf_Certificate

0x86 phHbci_IM4_Image_Ans_Invalid_IM4M_Manifest_Signature

0x87 phHbci_IM4_Image_Ans_IM4P_Too_Large

0x88 phHbci_IM4_Image_Ans_Invalid_IM4P_Hash

0x89 phHbci_IM4_Image_Ans_IM4P_Parse_Error

0x8A phHbci_IM4_Image_Ans_Invalid_IM4P_Signature

0x8B phHbci_IM4_Image_Ans_File_Descriptor_Too_Large

0x8C phHbci_IM4_Image_Ans_Invalid_File_Descriptor

0x8D phHbci_IM4_Image_Ans_Payload_Too_Large

0x8E phHbci_IM4_Image_Ans_Invalid_Encrypted_Payload_Hash

0x8F phHbci_IM4_Image_Ans_Invalid_Download_Settings

6 IM4_Image 3 Command 0x1 phHbci_IM4_Image_Cmd_Download_IM4

0x2 phHbci_IM4_Image_Cmd_Download_IM4M

0x3 phHbci_IM4_Image_Cmd_Download_IM4P

0x4 phHbci_IM4_Image_Cmd_Download_File_Descriptor

0x5 phHbci_IM4_Image_Cmd_Download_Payload

Table 20: HBCI opcodes for class IM4_Image. CID = Class ID, CN = Class Name, SCID = Subclass
ID, SCN = Subclass Name, OID = Opcode ID, and ON = Opcode Name.
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a.11 uci specification

Now, we declare all UCI opcodes and payload identifiers. We include opcode identifiers,
resolvers, etc., in automatically generated tables. In the start Table 21, we give an overview
of all UCI messages. This table can be used as the base for decoding a UCI message. It
contains a reference for each OID, and the reference points to the payload identifiers for
each existing message type of an OID. We point out that when no payload identifiers are
declared for a message type, then the UCI message may still exist but just has no payload.
For example, the UCI message GET_DEV_INFO can be sent as a command. Then the
message has no payload, and no payload identifer exists for the command. We further
point out that an index value indicates the position of a byte in the payload.

If a resolver exists for a payload identifer value in the referenced OID table, then
the value references to yet another table, which resolves the meaning of the payload
identifier’s value. These resolver tables follow after all payload identifiers.

Furthermore, in UCI, data streams that are resolvalbe like APP_TLV are formatted
based on the Type-Length-Value (TLV) scheme, and can be identified by having "TLV" in
their name. Beginning with the first byte of the stream, the ID and an optional second
SUB-ID are each one byte and resolve the type. The following byte defines the length
L of the following data that is L bytes sized. Afterwards, subsequent bytes are resolved
again based on the TLV scheme until no bytes are unresolved.
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GID GID NAME OID OID NAME IDENTIFIERS

0 GID_CORE 0 DEVICE_RESET Table 22

1 DEVICE_STATUS_NTF Table 23

2 GET_DEV_INFO Table 24

3 GET_CAPS_INFO Table 25

4 SET_CONFIG Table 26

5 GET_CONFIG Table 27

6 DEV_SUSPEND Table 28

7 GENERIC_ERROR_NTF Table 29

1 GID_SESSION 0 SESSION_INIT Table 30

1 SESSION_DEINIT Table 31

2 SESSION_STATUS_NTF Table 32

3 SET_APP_CONFIG Table 33

4 GET_APP_CONFIG Table 34

5 SESSION_GET_COUNT Table 35

6 SESSION_GET_STATE Table 36

7 SESSION_UPDATE_CONTROLLE...LIST Table 37

2 GID_RANGING 0 RANGE_START Table 38

1 RANGE_STOP Table 39

2 RANGE_INTERVAL_UPDATE_REQ Table 40

3 RANGE_GET_RANGING_COUNT Table 41

4 BLINK_DATA_TX Table 42

3 GID_DATA_CTRL 0 DATA_CREDIT_NTF_G3 Table 43

1 DATA_TRANSMISSION_STATUS_NTF_G3 Table 44

9 GID_DATA_CTRL 0 DATA_CREDIT_NTF_G9 Table 45

1 DATA_TRANSMISSION_STATUS_NTF_G9 Table 46

13 GID_TEST 0 TEST_CONFIG_SET Table 47

1 TEST_CONFIG_GET Table 48

2 TEST_PERIODIC_TX Table 49

3 TEST_PER_RX Table 50

4 TEST_TX Table 51

5 TEST_RX Table 52

6 TEST_LOOPBACK Table 53

7 TEST_STOP_SESSION Table 54

8 TEST_SS_TWR Table 55

14 GID_PROPRIETARY 0 DEVICE_INIT Table 56

1 SE_DO_BIND Table 57

3 DBG_BIN_LOG Table 58

4 DBG_CIR0_LOG_NTF Table 59

... ... ... ... ...
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GID GID NAME OID OID NAME IDENTIFIERS

... ... ... ... ...

14 GID_PROPRIETARY 5 DBG_CIR1_LOG_NTF Table 60

6 DBG_GET_ERROR_LOG Table 61

9 DBG_PSDU_LOG_NTF Table 62

10 SE_GET_BINDING_COUNT Table 63

11 DBG_RFRAME_LOG_NTF Table 64

12 SE_GET_BINDING_STATUS Table 65

13 SE_DO_TEST_LOOP Table 66

14 SE_DO_TEST_CONNECTIVITY Table 67

15 GET_ALL_UWB_SESSIONS Table 68

16 SE_COMM_ERROR_NTF Table 69

17 SET_CALIBRATION Table 70

18 GET_CALIBRATION Table 71

19 BINDING_STATUS Table 72

20 SCHEDULER_STATUS_NTF Table 73

21 UWB_SESSION_KDF_NTF Table 74

22 UWB_WIFI_COEX_IND_NTF Table 75

23 WLAN_UWB_IND_ERR_NTF Table 76

24 DO_CALIBRATION Table 77

25 QUERY_TEMPERATURE Table 78

28 GENERATE_TAG Table 79

29 VERIFY_CALIB_DATA Table 80

34 UWB_WLAN_COEX_MAX_ACTIVE..._NTF Table 81

0 !SR040! - R4_LOG_NTF Table 82

17 !SR040! - R4_RADIO_CONFIG_DOWNLOAD Table 83

18 !SR040! - R4_ACTIVATE_SWUP Table 84

32 !SR040! - R4_TEST_START Table 85

33 !SR040! - R4_TEST_STOP Table 86

34 !SR040! - R4_TEST_INITIATOR_RA...DATA Table 87

35 !SR040! - R4_STACK_TEST Table 88

36 !SR040! - R4_DEVICE_SUSPEND Table 89

37 !SR040! - R4_TEST_LOOPBACK Table 90

38 !SR040! - R4_SET_TRIM_VALUES Table 91

39 !SR040! - R4_GET_ALL_UWB_SESSIONS Table 92

40 !SR040! - R4_GET_TRIM_VALUES Table 93

43 !SR040! - R4_SESSION_NVM_MANAGE Table 94

44 !SR040! - R4_GET_LUT_CRC Table 95

45 !SR040! - R4_GET_TRNG Table 96

Table 21: UCI specification overview.
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INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 0 GID_CORE

OID 0 DEVICE_RESET

CMD payload index 0 RESET_CONFIG

RSP payload index 0 UCI_STATUS Table 100

Table 22: Payload identifiers - DEVICE_RESET. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 0 GID_CORE

OID 1 DEVICE_STATUS_NTF

NTF payload index 0 DEVICE_STATUS Table 101

Table 23: Payload identifiers - DEVICE_STATUS_NTF. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 0 GID_CORE

OID 2 GET_DEV_INFO

RSP payload index 0 UCI_STATUS Table 100

1 UCI_MAJOR_VERSION

2 UCI_MINOR_VERSION

3 MANUFACTURE_LEN

4 - N DEVICE_TLV Table 126

Table 24: Payload identifiers - GET_DEV_INFO. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 0 GID_CORE

OID 3 GET_CAPS_INFO

RSP payload index 0 UCI_STATUS Table 100

1 PARAMETERS

2 - N DEVICE_TLV Table 126

Table 25: Payload identifiers - GET_CAPS_INFO. Go to start at Table 21.
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INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 0 GID_CORE

OID 4 SET_CONFIG

CMD payload index 0 PARAMETERS

1 - N DEVICE_TLV Table 126

RSP payload index 0 UCI_STATUS Table 100

1 N_PARMETERS

2 - N DEVICE_FAIL_STATUS

Table 26: Payload identifiers - SET_CONFIG. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 0 GID_CORE

OID 5 GET_CONFIG

CMD payload index 0 PARAMETERS

1 - N DEVICE_PARAMS

RSP payload index 0 UCI_STATUS Table 100

1 PARAMETERS

2 - N DEVICE_TLV Table 126

Table 27: Payload identifiers - GET_CONFIG. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 0 GID_CORE

OID 6 DEV_SUSPEND

RSP payload index 0 UCI_STATUS Table 100

Table 28: Payload identifiers - DEV_SUSPEND. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 0 GID_CORE

OID 7 GENERIC_ERROR_NTF

NTF payload index 0 UCI_STATUS Table 100

Table 29: Payload identifiers - GENERIC_ERROR_NTF. Go to start at Table 21.
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INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 1 GID_SESSION

OID 0 SESSION_INIT

CMD payload index 0 - 3 SESSION_ID

4 SESSION_TYPE Table 104

RSP payload index 0 UCI_STATUS Table 100

Table 30: Payload identifiers - SESSION_INIT. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 1 GID_SESSION

OID 1 SESSION_DEINIT

CMD payload index 0 - 3 SESSION_ID

RSP payload index 0 UCI_STATUS Table 100

Table 31: Payload identifiers - SESSION_DEINIT. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 1 GID_SESSION

OID 2 SESSION_STATUS_NTF

NTF payload index 0 - 3 SESSION_ID

4 SESSION_STATUS Table 102

5 SESSION_REASON_CODE Table 103

Table 32: Payload identifiers - SESSION_STATUS_NTF. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 1 GID_SESSION

OID 3 SET_APP_CONFIG

CMD payload index 0 - 3 SESSION_ID

4 NUM_CONFIGS

5 - N APP_TLV Table 125

RSP payload index 0 UCI_STATUS Table 100

1 N_PARAMETERS

2 - N APP_FAIL_STATUS

Table 33: Payload identifiers - SET_APP_CONFIG. Go to start at Table 21.
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INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 1 GID_SESSION

OID 4 GET_APP_CONFIG

CMD payload index 0 - 3 SESSION_ID

4 NUM_CONFIGS

5 - N APP_PARAMS

RSP payload index 0 UCI_STATUS Table 100

1 NUM_CONFIGS

2 - N APP_TLV Table 125

Table 34: Payload identifiers - GET_APP_CONFIG. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 1 GID_SESSION

OID 5 SESSION_GET_COUNT

RSP payload index 0 UCI_STATUS Table 100

1 ACTIVE_SESSION_COUNT

Table 35: Payload identifiers - SESSION_GET_COUNT. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 1 GID_SESSION

OID 6 SESSION_GET_STATE

CMD payload index 0 - 3 SESSION_ID

RSP payload index 0 UCI_STATUS Table 100

1 SESSION_STATUS Table 102

Table 36: Payload identifiers - SESSION_GET_STATE. Go to start at Table 21.
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INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 1 GID_SESSION

OID 7 SESSION_UPDATE_CONTROLLE...LIST

CMD payload index 0 - 3 SESSION_ID

4 CONTROLLEE_UPDATE_ACTION Table 105

5 NUM_OF_CONTROLLES

6 - N CONTROLEE_LIST

RSP payload index 0 UCI_STATUS Table 100

NTF payload index 0 - 3 SESSION_ID

4 REMAINING_MULTICAST_LIST_SIZE

5 NUM_OF_CONTROLLES

6 - N STATUS_LIST_M_SUBFIELD Table 224

Table 37: Payload identifiers - SESSION_UPDATE_CONTROLLER_MULTICAST_LIST. Go to start
at Table 21.
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INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 2 GID_RANGING

OID 0 RANGE_START

CMD payload index 0 - 3 SESSION_ID

RSP payload index 0 UCI_STATUS Table 100

NTF payload index SR040 0 - 3 SEQUENCE_NUM

4 - 7 SESSION_ID

8 RCR_IND

9 - 12 CUR_RNG_INTERVAL

13 MEASUREMENT_TYPE

14 RFU

15 MAC_ADDR_MODE

16 - 23 RFU

24 NUM_RANGING_MEAS

25 - X MEASUREMENT_DATA Table 97

(X+1) - (X+2) -> Optional VENDOR_SPEC_LENGTH

(X+3) - N -> Optional VENDOR_SPEC

NTF payload index SR100T - Old FW 0 - 3 SEQUENCE_NUM

4 - 7 SESSION_ID

8 RCR_IND

9 - 12 CUR_RNG_INTERVAL

13 MEASUREMENT_TYPE

14 ANTENNA_PAIR_INFO

15 MAC_ADDR_MODE

16 - 23 RFU

24 NUM_RANGING_MEAS

25 - X MEASUREMENT_DATA Table 98

X + 1 -> Required AUTH_INFO_PRESENT

(X + 1) - N -> Optional AUTHENTICATION_TAG

NTF payload index SR100T or SR150 0 - 3 SEQUENCE_NUM

4 - 7 SESSION_ID

8 RCR_IND

9 - 12 CUR_RNG_INTERVAL

13 MEASUREMENT_TYPE

14 RFU

15 MAC_ADDR_MODE

16 - 23 RFU

24 NUM_RANGING_MEAS

25 - X MEASUREMENT_DATA Table 99

(X+1) - (X+2) -> Required VENDOR_SPEC_LENGTH

(X+3) - N -> Optional VENDOR_SPEC

Table 38: Payload identifiers - RANGE_START. Go to start at Table 21.
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INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 2 GID_RANGING

OID 1 RANGE_STOP

CMD payload index 0 - 3 SESSION_ID

RSP payload index 0 UCI_STATUS Table 100

Table 39: Payload identifiers - RANGE_STOP. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 2 GID_RANGING

OID 2 RANGE_INTERVAL_UPDATE_REQ

CMD payload index 0 - 3 SESSION_ID

4 - 5 RANGING_INTERVAL

RSP payload index 0 UCI_STATUS Table 100

Table 40: Payload identifiers - RANGE_INTERVAL_UPDATE_REQ. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 2 GID_RANGING

OID 3 RANGE_GET_RANGING_COUNT

CMD payload index 0 - 3 SESSION_ID

RSP payload index 0 UCI_STATUS Table 100

1 - 4 SESSION_RANGING_COUNT

Table 41: Payload identifiers - RANGE_GET_RANGING_COUNT. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 2 GID_RANGING

OID 4 BLINK_DATA_TX

CMD payload index 0 - 3 SESSION_ID

4 REPEAT_COUNT

5 APP_DATA_LEN

6 - N APP_DATA

RSP payload index 0 UCI_STATUS Table 100

NTF payload index 0 UCI_STATUS Table 100

Table 42: Payload identifiers - BLINK_DATA_TX. Go to start at Table 21.
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INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 3 GID_DATA_CTRL

OID 0 DATA_CREDIT_NTF_G3

NTF payload index 0 - 3 SESSION_ID

4 UCI_STATUS Table 100

5 NUM_CREDITS

Table 43: Payload identifiers - DATA_CREDIT_NTF_G3. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 3 GID_DATA_CTRL

OID 1 DATA_TRANSMISSION_STATUS_NTF_G3

NTF payload index 0 - 3 SESSION_ID

4 UCI_STATUS Table 100

Table 44: Payload identifiers - DATA_TRANSMISSION_STATUS_NTF_G3. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 9 GID_DATA_CTRL

OID 0 DATA_CREDIT_NTF_G9

NTF payload index 0 - 3 SESSION_ID

4 UCI_STATUS Table 100

5 NUM_CREDITS

Table 45: Payload identifiers - DATA_CREDIT_NTF_G9. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 9 GID_DATA_CTRL

OID 1 DATA_TRANSMISSION_STATUS_NTF_G9

NTF payload index 0 - 3 SESSION_ID

4 UCI_STATUS Table 100

Table 46: Payload identifiers - DATA_TRANSMISSION_STATUS_NTF_G9. Go to start at Table 21.
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INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 13 GID_TEST

OID 0 TEST_CONFIG_SET

CMD payload index 0 - 3 SESSION_ID

4 NUM_TEST_CONFIG

5 - N TEST_TLV Table 129

RSP payload index 0 UCI_STATUS Table 100

1 NUMBER_OF_PARAMS

2 - N TEST_PARAMS

Table 47: Payload identifiers - TEST_CONFIG_SET. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 13 GID_TEST

OID 1 TEST_CONFIG_GET

CMD payload index 0 - 3 SESSION_ID

4 NUM_TEST_CONFIG

5 - N TEST_PARAMS

RSP payload index 0 UCI_STATUS Table 100

1 NUMBER_OF_PARAMS

2 - N TEST_TLV Table 129

Table 48: Payload identifiers - TEST_CONFIG_GET. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 13 GID_TEST

OID 2 TEST_PERIODIC_TX

CMD payload index 0 - N PSDU_DATA

RSP payload index 0 UCI_STATUS Table 100

NTF payload index 0 UCI_STATUS Table 100

Table 49: Payload identifiers - TEST_PERIODIC_TX. Go to start at Table 21.
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INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 13 GID_TEST

OID 3 TEST_PER_RX

CMD payload index 0 - N PSDU_DATA

RSP payload index 0 UCI_STATUS Table 100

NTF payload index 0 UCI_STATUS Table 100

1 - 4 ATTEMPTS

5 - 8 ACQ_DETECTS

9 - 12 ACQ_REJECTS

13 - 16 RX_FAIL

17 - 20 CIR_SYNC_READY

21 - 24 SFD_FAIL

25 - 28 SFD_FOUND

29 - 32 PHR_DEC_ERR

33 - 36 PHR_BIT_ERROR

37 - 40 PSDU_DEC_ERROR

41 - 44 PSDU_BIT_ERROR

45 - 48 EOF

49 - 50 RSSI_RX1

51 - 52 RSSI_RX2

53 - 54 SNR_RX1

55 - 56 SNR_RX2

57 - 58 RX_CFO_EST

Table 50: Payload identifiers - TEST_PER_RX. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 13 GID_TEST

OID 4 TEST_TX

CMD payload index 0 - N PSDU_DATA

RSP payload index 0 UCI_STATUS Table 100

NTF payload index 0 UCI_STATUS Table 100

1 - 4 TX_DONE_TS_INT

5 - 6 TX_DONE_TS_FRAC

Table 51: Payload identifiers - TEST_TX. Go to start at Table 21.
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INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 13 GID_TEST

OID 5 TEST_RX

RSP payload index 0 UCI_STATUS Table 100

NTF payload index 0 UCI_STATUS Table 100

1 RX_TOA_FIRST_PATH Table 123

2 - 5 RX_DONE_TS_INT

6 - 7 RX_DONE_TS_FRAC

8 - 9 AoA1

10 - 11 AoA2

12 - 13 PDoA1

14 - 15 PDoA2

16 - 17 PDoA1_Index

18 - 19 PDoA2_Index

20 - 21 RSSI_RX1

22 - 23 RSSI_RX2

24 - 25 FIRST_PATH_INDEX_RX1

26 - 27 FIRST_PATH_INDEX_RX2

28 - 29 MAX_PATH_INDEX_RX1

30 - 31 MAX_PATH_INDEX_RX2

32 SNR_MAIN_PATH_RX1

33 SNR_MAIN_PATH_RX2

34 SNR_FIRST_PATH_RX1

35 SNR_FIRST_PATH_RX2

36 TOA_GAP

37 - 38 PHR

39 - N PSDU_DATA

Table 52: Payload identifiers - TEST_RX. Go to start at Table 21.
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INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 13 GID_TEST

OID 6 TEST_LOOPBACK

CMD payload index 0 - N PSDU_DATA

RSP payload index 0 UCI_STATUS Table 100

NTF payload index 0 UCI_STATUS Table 100

1 RX_TOA_FIRST_PATH Table 123

2 - 5 TX_TS_INT

6 - 7 TX_TS_FRAC

8 - 11 RX_TS_INT

12 - 13 RX_TS_FRAC

14 - 15 AoA1

16 - 17 AoA2

18 - 19 PDoA1

20 - 21 PDoA2

22 - 23 PDoA1_Index

24 - 25 PDoA2_Index

26 - 27 RSSI_RX1

28 - 29 RSSI_RX2

30 SNR_MAIN_PATH_RX1

31 SNR_MAIN_PATH_RX2

32 SNR_FIRST_PATH_RX1

33 SNR_FIRST_PATH_RX2

34 - 35 SNR_AVERAGE_RX1

36 - 37 SNR_AVERAGE_RX2

38 - 39 FIRST_PATH_INDEX_RX1

40 - 41 FIRST_PATH_INDEX_RX2

42 - 43 MAX_PATH_INDEX_RX1

44 - 45 MAX_PATH_INDEX_RX2

46 - 47 PHR

48 - N PSDU_DATA

Table 53: Payload identifiers - TEST_LOOPBACK. Go to start at Table 21.
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INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 13 GID_TEST

OID 7 TEST_STOP_SESSION

RSP payload index 0 UCI_STATUS Table 100

Table 54: Payload identifiers - TEST_STOP_SESSION. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 13 GID_TEST

OID 8 TEST_SS_TWR

RSP payload index 0 UCI_STATUS Table 100

NTF payload index 0 UCI_STATUS Table 100

1 - 4 MEASUREMENT

Table 55: Payload identifiers - TEST_SS_TWR. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 0 DEVICE_INIT

CMD payload index 0 PLATFORM_ID Table 118

1 VARIANT_ID Table 119

RSP payload index 0 UCI_STATUS Table 100

Table 56: Payload identifiers - DEVICE_INIT. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 1 SE_DO_BIND

RSP payload index 0 UCI_STATUS Table 100

NTF payload index 0 UCI_STATUS Table 100

1 HELIOS_BINDING_COUNT

2 BIND_STATUS Table 107

Table 57: Payload identifiers - SE_DO_BIND. Go to start at Table 21.
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INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 3 DBG_BIN_LOG

RSP payload index 0 - N UCI_STATUS Table 100

NTF payload index 0 - N DEBUG_DATA

Table 58: Payload identifiers - DBG_BIN_LOG. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 4 DBG_CIR0_LOG_NTF

NTF payload index 0 - 3 SESSION_ID

4 - N CIR0_DATA

Table 59: Payload identifiers - DBG_CIR0_LOG_NTF. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 5 DBG_CIR1_LOG_NTF

NTF payload index 0 - 3 SESSION_ID

4 - N CIR1_DATA

Table 60: Payload identifiers - DBG_CIR1_LOG_NTF. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 6 DBG_GET_ERROR_LOG

RSP payload index 0 - N DEBUG_DATA

Table 61: Payload identifiers - DBG_GET_ERROR_LOG. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 9 DBG_PSDU_LOG_NTF

NTF payload index 0 - 3 SESSION_ID

4 - N PSDU_LOG_DATA_M_SUBFIELD Table 225

Table 62: Payload identifiers - DBG_PSDU_LOG_NTF. Go to start at Table 21.
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INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 10 SE_GET_BINDING_COUNT

RSP payload index 0 UCI_STATUS Table 100

1 BINDING_STATUS

2 HELIOS_BINDING_COUNT

3 SE_BINDING_COUNT

Table 63: Payload identifiers - SE_GET_BINDING_COUNT. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 11 DBG_RFRAME_LOG_NTF

NTF payload index 0 - 3 SESSION_ID

4 NUM_RFRAME_MEASUREMENT

5 - N RFRAME_MEASUREMENT_M_SUBFIELD Table 223

Table 64: Payload identifiers - DBG_RFRAME_LOG_NTF. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 12 SE_GET_BINDING_STATUS

RSP payload index 0 SE_STATUS Table 108

NTF payload index 0 BIND_STATUS Table 107

1 SE_BINDING_COUNT

2 HELIOS_BINDING_COUNT

3 SE_BINDING_COUNT

Table 65: Payload identifiers - SE_GET_BINDING_STATUS. Go to start at Table 21.



A.11 uci specification 133

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 13 SE_DO_TEST_LOOP

CMD payload index 0 - 3 SE_CMD

RSP payload index 0 SE_TEST_LOOP_STATUS Table 109

NTF payload index 0 TEST_STATUS

1 - 2 LOOP_COUNT

3 - 4 LOOP_PASS_COUNT

Table 66: Payload identifiers - SE_DO_TEST_LOOP. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 14 SE_DO_TEST_CONNECTIVITY

RSP payload index 0 UCI_STATUS Table 100

NTF payload index 0 SE_AID_STATUS Table 110

1 WTX_COUNT

Table 67: Payload identifiers - SE_DO_TEST_CONNECTIVITY. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 15 GET_ALL_UWB_SESSIONS

RSP payload index 0 UCI_STATUS Table 100

1 SESSION_COUNT

2 - N SESSION_INFO_M_SUBFIELD Table 226

Table 68: Payload identifiers - GET_ALL_UWB_SESSIONS. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 16 SE_COMM_ERROR_NTF

NTF payload index 0 UCI_STATUS Table 100

1 - 2 CLS_AND_INS

3 - 4 STATUS_CODES

Table 69: Payload identifiers - SE_COMM_ERROR_NTF. Go to start at Table 21.
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INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 17 SET_CALIBRATION

CMD payload index 0 CHANNEL_ID

1 CALIB_PARAM Table 120

2 - N CALIBRATION_VALUE

RSP payload index 0 UCI_STATUS Table 100

Table 70: Payload identifiers - SET_CALIBRATION. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 18 GET_CALIBRATION

CMD payload index 0 CHANNEL_ID

1 CALIB_PARAM Table 120

RSP payload index 0 UCI_STATUS Table 100

1 CALIB_STATE Table 122

2 - N CALIB_VALUE

Table 71: Payload identifiers - GET_CALIBRATION. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 19 BINDING_STATUS

NTF payload index 0 BIND_STATUS Table 107

Table 72: Payload identifiers - BINDING_STATUS. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 20 SCHEDULER_STATUS_NTF

NTF payload index 0 NUM_OF_SESSIONS

1 - N SESSION_DATA_M_SUBFIELD Table 227

Table 73: Payload identifiers - SCHEDULER_STATUS_NTF. Go to start at Table 21.



A.11 uci specification 135

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 21 UWB_SESSION_KDF_NTF

NTF payload index 0 NUM_OF_PARAMS

1 - N KDF_NTF_TLV Table 128

Table 74: Payload identifiers - UWB_SESSION_KDF_NTF. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 22 UWB_WIFI_COEX_IND_NTF

NTF payload index 0 UWB_WIFI_COEX_IND_STATUS Table 114

1 - 4 SLOT_INDEX

Table 75: Payload identifiers - UWB_WIFI_COEX_IND_NTF. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 23 WLAN_UWB_IND_ERR_NTF

NTF payload index 0 WLAN_UWB_IND_ERR_STATUS Table 115

1 - 4 SLOT_INDEX

Table 76: Payload identifiers - WLAN_UWB_IND_ERR_NTF. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 24 DO_CALIBRATION

CMD payload index 0 CHANNEL_ID

1 CALIB_PARAM Table 120

RSP payload index 0 UCI_STATUS Table 100

NTF payload index 0 UCI_STATUS Table 100

1 - N CALIB_VALUE

Table 77: Payload identifiers - DO_CALIBRATION. Go to start at Table 21.
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INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 25 QUERY_TEMPERATURE

RSP payload index 0 UCI_STATUS Table 100

1 TEMPERATURE

NTF payload index 0 UCI_STATUS Table 100

1 - N CALIB_VALUE

Table 78: Payload identifiers - QUERY_TEMPERATURE. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 28 GENERATE_TAG

CMD payload index 0 - N KEY

0 TAG_OPTION

RSP payload index 0 UCI_STATUS Table 100

NTF payload index 0 UCI_STATUS Table 100

1 - 16 CMAC_TAG_IFVAL_UCI_STATUS_VAL_0

Table 79: Payload identifiers - GENERATE_TAG. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 29 VERIFY_CALIB_DATA

CMD payload index 0 - N KEY

0 - N CMAC_TAG

0 TAG_OPTION

1 - 2 TAG_VERSION

RSP payload index 0 UCI_STATUS Table 100

NTF payload index 0 UCI_STATUS Table 100

Table 80: Payload identifiers - VERIFY_CALIB_DATA. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 34 UWB_WLAN_COEX_MAX_ACTIVE..._NTF

NTF payload index 0 STATUS

Table 81: Payload identifiers - UWB_WLAN_COEX_MAX_ACTIVE_GRANT_DUAR
TION_EXCEEDED_WAR_NTF. Go to start at Table 21.
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INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 0 !SR040! - R4_LOG_NTF

NTF payload index 0 - N LOG_DATA

Table 82: Payload identifiers - !SR040! - R4_LOG_NTF. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 17 !SR040! - R4_RADIO_CONFIG_DOWN...LOAD

CMD payload index 0 - N RADIO_DATA

RSP payload index 0 - N UCI_STATUS Table 100

Table 83: Payload identifiers - !SR040! - R4_RADIO_CONFIG_DOWNLOAD. Go to start at Ta-
ble 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 18 !SR040! - R4_ACTIVATE_SWUP

CMD payload index 0 - N COMMAND_DATA

RSP payload index 0 - N UCI_STATUS Table 100

Table 84: Payload identifiers - !SR040! - R4_ACTIVATE_SWUP. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 32 !SR040! - R4_TEST_START

CMD payload index 0 - N TEST_DATA

RSP payload index 0 - N UCI_STATUS Table 100

Table 85: Payload identifiers - !SR040! - R4_TEST_START. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 33 !SR040! - R4_TEST_STOP

CMD payload index 0 - N TEST_DATA

RSP payload index 0 - N UCI_STATUS Table 100

Table 86: Payload identifiers - !SR040! - R4_TEST_STOP. Go to start at Table 21.
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INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 34 !SR040! - R4_TEST_INITIATOR_RA...DATA

CMD payload index 0 - N RANGE_DATA

RSP payload index 0 - N UCI_STATUS Table 100

NTF payload index 0 - N RANGE_DATA_NTF

Table 87: Payload identifiers - !SR040! - R4_TEST_INITIATOR_RANGE_DATA. Go to start at
Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 35 !SR040! - R4_STACK_TEST

CMD payload index 0 - N DATA

RSP payload index 0 - N UCI_STATUS Table 100

Table 88: Payload identifiers - !SR040! - R4_STACK_TEST. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 36 !SR040! - R4_DEVICE_SUSPEND

CMD payload index 0 - N DATA

RSP payload index 0 - N UCI_STATUS Table 100

Table 89: Payload identifiers - !SR040! - R4_DEVICE_SUSPEND. Go to start at Table 21.
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INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 37 !SR040! - R4_TEST_LOOPBACK

CMD payload index 0 - N PSDU_DATA

RSP payload index 0 UCI_STATUS Table 100

NTF payload index 0 UCI_STATUS Table 100

1 RX_TOA_FIRST_PATH Table 123

2 - 5 TX_TS_INT

6 - 7 TX_TS_FRAC

8 - 11 RX_TS_INT

12 - 13 RX_TS_FRAC

14 - 15 AoA1

16 - 17 AoA2

18 - 19 PDoA1

20 - 21 PDoA2

22 - 23 PDoA1_Index

24 - 25 PDoA2_Index

26 - 27 RSSI_RX1

28 - 29 RSSI_RX2

30 SNR_MAIN_PATH_RX1

31 SNR_MAIN_PATH_RX2

32 SNR_FIRST_PATH_RX1

33 SNR_FIRST_PATH_RX2

34 - 35 SNR_AVERAGE_RX1

36 - 37 SNR_AVERAGE_RX2

38 - 39 FIRST_PATH_INDEX_RX1

40 - 41 FIRST_PATH_INDEX_RX2

42 - 43 MAX_PATH_INDEX_RX1

44 - 45 MAX_PATH_INDEX_RX2

46 - 47 PHR

48 - N PSDU_DATA

Table 90: Payload identifiers - !SR040! - R4_TEST_LOOPBACK. Go to start at Table 21.
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INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 38 !SR040! - R4_SET_TRIM_VALUES

CMD payload index 0 NUM_DATA

1 CALIBRATION_ID

2 CALIBRATON_LEN

3 CHANNEL_NO

4 - N DATA

RSP payload index 0 - N UCI_STATUS Table 100

NTF payload index 0 UCI_STATUS Table 100

Table 91: Payload identifiers - !SR040! - R4_SET_TRIM_VALUES. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 39 !SR040! - R4_GET_ALL_UWB_SESSI...IONS

CMD payload index 0 - N DATA

RSP payload index 0 - N UCI_STATUS Table 100

Table 92: Payload identifiers - !SR040! - R4_GET_ALL_UWB_SESSIONS. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 40 !SR040! - R4_GET_TRIM_VALUES

CMD payload index 0 - N DATA

RSP payload index 0 - N UCI_STATUS Table 100

Table 93: Payload identifiers - !SR040! - R4_GET_TRIM_VALUES. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 43 !SR040! - R4_SESSION_NVM_MANAGE

CMD payload index 0 - N DATA

RSP payload index 0 - N UCI_STATUS Table 100

Table 94: Payload identifiers - !SR040! - R4_SESSION_NVM_MANAGE. Go to start at Table 21.
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INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 44 !SR040! - R4_GET_LUT_CRC

CMD payload index 0 - N DATA

RSP payload index 0 - N UCI_STATUS Table 100

Table 95: Payload identifiers - !SR040! - R4_GET_LUT_CRC. Go to start at Table 21.

INFORMATION IDENTIFIER / INDEX VALUE RESOLVER

GID 14 GID_PROPRIETARY

OID 45 !SR040! - R4_GET_TRNG

CMD payload index 0 - N DATA

RSP payload index 0 - N UCI_STATUS Table 100

Table 96: Payload identifiers - !SR040! - R4_GET_TRNG. Go to start at Table 21.
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TYPE INDEX VALUE RESOLVER

ONE WAY 0 - 1 or 0 - 7 MAC_ADDR (Depends on MAC_ADDR_MODE = 0 or 1)

-> Add 6 to following indexes if MAC_ADDR_MODE = 1

2 FRAME_TYPE

3 NLOS

4 - 5 AoA_AZIMUTH

6 AoA_AZIMUTH_FOM

7 - 8 AoA_ELEVATION

9 AoA_ELEVATION_FOM

10 - 17 TIMESTAMP

18 - 21 BLINK_FRAME_NUM

!! Do not add 6 to following indexes any more (-> Cleared) !!

22 - 33 or 28 - 33 RFU (Depends on MAC_ADDR_MODE = 0 or 1)

34 DEV_INFO_SIZE

35 - X DEV_INFO (Size depends on DEV_INFO_SIZE)

-> Add #DEV_INFO_SIZE to following indexes

36 BLINK_PAYLOAD_SIZE

37 - Y BLINK_PAYLOAD (Size depends on BLINK_PAYLOAD_SIZE)

TWO WAY 0 - 1 or 0 - 7 MAC_ADDR (Depends on MAC_ADDR_MODE = 0 or 1)

-> Add 6 to following indexes if MAC_ADDR_MODE = 1

2 UCI_STATUS Table 100

3 NLOS

4 - 5 DISTANCE

6 - 7 AOA_AZIMUTH

8 AOA_AZIMUTH_FOM

9 - 10 AOA_ELEVATION

11 AOA_ELEVATION_FOM

12 - 13 AOA_DEST_AZIMUTH

14 AOA_DEST_AZIMUTH_FOM

15 - 16 AOA_DEST_ELEVATION

17 AOA_DEST_ELEVATION_FOM

18 SLOT_INDEX

!! Do not add 6 to following indexes any more (-> Cleared) !!

19 - 30 or 25 - 30 RFU (Depends on MAC_ADDR_MODE = 0 or 1)

Table 97: Resolver - RANGING_DATA_SR040. TYPE = MEASUREMENT_TYPE. Go to start at
Table 21.
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TYPE INDEX VALUE RESOLVER

ONE WAY 0 - 1 or 0 - 7 MAC_ADDR (Depends on MAC_ADDR_MODE = 0 or 1)

-> Add 6 to following indexes if MAC_ADDR_MODE = 1

2 FRAME_TYPE

3 NLOS

4 - 5 AoA1

6 - 7 AoA2

8 - 9 PDoA1

10 - 11 PDoA2

12 - 13 PDoA1_INDEX

14 - 15 PDoA2_INDEX

16 - 23 TIMESTAMP

24 - 27 BLINK_FRAME_NUM

28 - 29 RSSI_RX1

30 - 31 RSSI_RX2

32 - 41 RFU

42 DEV_INFO_SIZE

43 - X DEV_INFO (Size depends on DEV_INFO_SIZE)

-> Add #DEV_INFO_SIZE to following indexes

44 BLINK_PAYLOAD_SIZE

45 - Y BLINK_PAYLOAD (Size depends on BLINK_PAYLOAD_SIZE)

TWO WAY 0 - 1 or 0 - 7 MAC_ADDR (Depends on MAC_ADDR_MODE = 0 or 1)

-> Add 6 to following indexes if MAC_ADDR_MODE = 1

2 UCI_STATUS Table 100

3 NLOS

4 - 5 DISTANCE

6 - 7 AoA1

8 - 9 AoA2

10 - 11 PDoA1

12 - 13 PDoA2

14 - 15 PDoA1_Index

16 - 17 PDoA2_Index

18 - 19 AoA_DEST1

20 - 21 AoA_DEST2

22 SLOT_INDEX

23 - 24 RSSI_RX1

25 - 26 RSSI_RX2

27 - 28 DISTANCE2

!! Continue only if MAC_ADDR_MODE = 0 !!

29 - 34 RFU

Table 98: Resolver - RANGING_DATA_SR100T_OLD_FW. TYPE = MEASUREMENT_TYPE. Go to start at Table 21.
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TYPE INDEX VALUE RESOLVER

ONE WAY 0 - 1 or 0 - 7 MAC_ADDR (Depends on MAC_ADDR_MODE = 0 or 1)

-> Add 6 to following indexes if MAC_ADDR_MODE = 1

2 FRAME_TYPE

3 NLOS

4 - 5 AoA_AZIMUTH

6 AoA_AZIMUTH_FOM

7 - 8 AoA_ELEVATION

9 AoA_ELEVATION_FOM

10 - 17 TIMESTAMP

18 - 21 BLINK_FRAME_NUM

!! Do not add 6 to following indexes any more (-> Cleared) !!

22 - 33 or 28 - 33 RFU (Depends on MAC_ADDR_MODE = 0 or 1)

34 DEV_INFO_SIZE

35 - X DEV_INFO (Size depends on DEV_INFO_SIZE)

-> Add #DEV_INFO_SIZE to following indexes

36 BLINK_PAYLOAD_SIZE

37 - Y BLINK_PAYLOAD (Size depends on BLINK_PAYLOAD_SIZE)

TWO WAY 0 - 1 or 0 - 7 MAC_ADDR (Depends on MAC_ADDR_MODE = 0 or 1)

-> Add 6 to following indexes if MAC_ADDR_MODE = 1

2 UCI_STATUS Table 100

3 NLOS

4 - 5 DISTANCE

6 - 7 AOA_AZIMUTH

8 AOA_AZIMUTH_FOM

9 - 10 AOA_ELEVATION

11 AOA_ELEVATION_FOM

12 - 13 AOA_DEST_AZIMUTH

14 AOA_DEST_AZIMUTH_FOM

15 - 16 AOA_DEST_ELEVATION

17 AOA_DEST_ELEVATION_FOM

18 SLOT_INDEX

!! Do not add 6 to following indexes any more (-> Cleared) !!

19 - 30 or 25 - 30 RFU (Depends on MAC_ADDR_MODE = 0 or 1)

Table 99: Resolver - RANGING_DATA_SR150_SR100T. TYPE = MEASUREMENT_TYPE. Go to
start at Table 21.
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ID VALUE

0 STATUS_OK

1 STATUS_REJECTED

2 STATUS_FAILED

3 STATUS_SYNTAX_ERROR

4 STATUS_INVALID_PARAM

5 STATUS_INVALID_RANGE

6 STATUS_INVALID_MESSAGE_SIZE

7 STATUS_UNKNOWN_GID

8 STATUS_UNKNOWN_OID

9 STATUS_READ_ONLY

10 STATUS_CMD_RETRY

17 STATUS_SESSION_NOT_EXIST

18 STATUS_SESSION_DUPLICATE

19 STATUS_SESSION_ACTIVE

20 STATUS_MAX_SESSIONS_EXCEEDED

21 STATUS_SESSION_NOT_CONFIGURED

22 STATUS_ACTIVE_SESSIONS_ONGOING

23 STATUS_ERROR_MULTICAST_LIST_FULL

24 STATUS_ERROR_ADDRESS_NOT_FOUND

25 STATUS_ERROR_ADDRESS_ALREADY_PRESENT

32 STATUS_RANGING_TX_FAILED

33 STATUS_RANGING_RX_TIMEOUT

34 STATUS_RANGING_RX_PHY_DEC_FAILED

35 STATUS_RANGING_RX_PHY_TOA_FAILED

36 STATUS_RANGING_RX_PHY_STS_FAILED

37 STATUS_RANGING_RX_MAC_DEC_FAILED

38 STATUS_RANGING_RX_MAC_IE_DEC_FAILED

39 STATUS_RANGING_RX_MAC_IE_MISSING

48 STATUS_DATA_TRANSFER_ERROR

49 STATUS_DATA_NO_CREDIT_AVAILABLE

80 STATUS_BINDING_SUCCESS

81 STATUS_BINDING_FAILURE

82 STATUS_BINDING_LIMIT_REACHED

83 STATUS_CALIBRATION_IN_PROGRESS

84 STATUS_DEVICE_TEMP_REACHED_THERMAL_RUNAWAY

112 STATUS_NO_SE

113 STATUS_SE_RSP_TIMEOUT

114 STATUS_SE_RECOVERY_FAILURE

... ...
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ID VALUE

... ...

115 STATUS_SE_RECOVERY_SUCCESS

116 STATUS_SE_APDU_CMD_FAIL

117 STATUS_SE_AUTH_FAIL

129 STATUS_RANGING_PHY_RX_SECDEC_FAILED

130 STATUS_RANGING_PHY_RX_RSDEC_FAILED

131 STATUS_RANGING_PHY_RX_DEC_FAILED

132 STATUS_RANGING_PHY_RX_ERR_FAILED

133 STATUS_RANGING_PHY_RX_PHR_DECODE_FAILED

134 STATUS_RANGING_PHY_RX_SYNC_SFD_TIMEOUT

135 STATUS_RANGING_PHY_RX_PHR_DATA_RATE_ERROR

136 STATUS_RANGING_PHY_RX_PHR_RANGING_ERROR

137 STATUS_RANGING_PHY_RX_PHR_PREAMBLE_DUR_ERROR

138 STATUS_MAX_ACTIVE_GRANT_DUR_EXD_WARN_NTF

144 STATUS_DATA_TRANSFER_ERROR

145 STATUS_NO_CREDIT_AVAILABLE

Table 100: Resolver - UCI_STATUS. Go to start at Table 21.

ID VALUE

0 STATUS_INIT

1 STATUS_READY

2 STATUS_ACTIVE

3 STATUS_SE_BINDING_UNKNOWN

4 STATUS_SE_UNBOUND

5 STATUS_SE_BOUND_UNLOCKED

6 STATUS_SE_BOUND_LOCKED

255 STATUS_ERROR

Table 101: Resolver - DEVICE_STATUS. Go to start at Table 21.
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ID VALUE

0 SESSION_STATE_INIT

1 SESSION_STATE_DEINIT

2 SESSION_STATE_ACTIVE

3 SESSION_STATE_IDLE

255 SESSION_ERROR

Table 102: Resolver - SESSION_STATUS. Go to start at Table 21.

ID VALUE

0 STATE_CHANGE_WITH_SESSION_MANAGEMENT_COMMANDS

1 MAX_RANGING_ROUND_RETRY_COUNT_REACHED

2 MAX_RANGING_BLOCKS_REACHED

32 ERROR_SLOT_LENGTH_NOT_SUPPORTED

33 ERROR_INSUFFICIENT_SLOTS_PER_RR

34 ERROR_MAC_ADDRESS_MODE_NOT_SUPPORTED

35 ERROR_INVALID_RANGING_INTERVAL

36 ERROR_INVALID_STS_CONFIG

37 ERROR_INVALID_RFRAME_CONFIG

128 NO RANGING DATA IN SE

129 KEY FETCH FAILURE

130 DYNAMIC STS NOT SUPPORTED

131 SESSION TERMINATED BY IN BAND STOP SIGNAL

132 FEATURE_NOT_SUPPORTED_FOR_MODEL_ID

Table 103: Resolver - SESSION_REASON_CODE. Go to start at Table 21.

ID VALUE

0 SESSION_RANGING

1 SESSION_DATA_TRANSFER

208 SESSION_DEVICE_TEST_MODE

Table 104: Resolver - SESSION_TYPE. Go to start at Table 21.

ID VALUE

0 UPDATE

1 DELETE

Table 105: Resolver - CONTROLLEE_UPDATE_ACTION. Go to start at Table 21.



148 appendix

ID VALUE

0 READY FOR RANGE

1 IDLE

2 BUSY

3 RFU

255 ERROR

Table 106: Resolver - RNG_NTF_STATUS. Go to start at Table 21.

ID VALUE

0 NOT_BOUND

1 BOUND_UNLOCK

2 BOUND_LOCK

3 UNKNOWN

4 NO_SE

Table 107: Resolver - BIND_STATUS. Go to start at Table 21.

ID VALUE

0 SUCCESS

1 FAIL

Table 108: Resolver - SE_STATUS. Go to start at Table 21.

ID VALUE

0 SUCCESS

1 NO_TEST

255 ERROR

Table 109: Resolver - SE_TEST_LOOP_STATUS. Go to start at Table 21.
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ID VALUE

0 SELEC_SUCCESS

1 SE_ERROR

2 INFINITE_WTX

3 I2C_FAIL_BETWEEN_UWB_AND_ESE

4 I2C _FAILE WITH_IRQ_LOW

5 I2C_FAIL_WITH_IRQ_HIGH

6 I2C_TIMEDOUT

7 I2C_WRITE_TIMEOUT_WITH_IRQ_HIGH

Table 110: Resolver - SE_AID_STATUS. Go to start at Table 21.

ID VALUE

0 TEST_CMPLT

1 TEST_ABORTD

Table 111: Resolver - SE_TEST_STATUS. Go to start at Table 21.

ID VALUE

1 Hard Fault

2 Bus Fault

4 Secure Fault

8 Usage Fault

16 Watchdog

32 CoolFlux Fault

64 Assert Fault log

Table 112: Resolver - EXCEPTION_STATUS. Go to start at Table 21.

ID VALUE

0 SCHD_STATUS_SESSION_SUCCESS

1 SCHD_STATUS_SESSION_CANNOT_SCHEDULE

2 SCHD_STATUS_SESSION_SYNC_FAILURE

3 SCHD_STATUS_SESSION_WIFICOEX_PROTO_VIOLATION

Table 113: Resolver - SCHEDULER_STATUS. Go to start at Table 21.
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ID VALUE

0 HIGH_TO_LOW

1 LOW_TO_HIGH

Table 114: Resolver - UWB_WIFI_COEX_IND_STATUS. Go to start at Table 21.

ID VALUE

1 WLAN_UWB_IND_HIGH_AT_RR_START

2 WLAN_UWB_IND_HIGH_ DURING_RR

Table 115: Resolver - WLAN_UWB_IND_ERR_STATUS. Go to start at Table 21.

ID VALUE

0 STATUS_RX_ACQ_FAILURE

1 STATUS_RX_SECDEC_FAILURE

2 STATUS_RX_RSDEC_FAILURE

3 STATUS_RX_DEC_FAILURE

4 STATUS_RX_DEC_SUCCESS

5 STATUS_RX_DEC_NO_DATA

6 STATUS_PHY_RX_ERR

7 STATUS_RX_STS_FAILURE

8 STATUS_RX_TOA_DETECT_FAILURE

9 STATUS_RX_PHR_DEC_FAILURE

10 STATUS_RX_SYNC_SFD_FAILURE

11 STATUS_PHR_DATA_RATE_ERROR

12 STATUS_RX_PHR_RANGING_ERROR

13 STATUS_RX_PHR_PREAMBLE_DUR_ERROR

Table 116: Resolver - DEC_STATUS. Go to start at Table 21.

ID VALUE

0 STATUS_OK_MULTICAST_LIST_UPDATE

1 STATUS_ERROR_MULTICAST_LIST_FULL

2 STATUS_ERROR_KEY_FETCH_FAIL

3 STATUS_ERROR_SUB_SESSION_ID_NOT_FOUND

Table 117: Resolver - SESSION_UPDATE_CONTROLLER_MULTICAST_LIST_STATUS. Go to
start at Table 21.
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ID VALUE

0 uninitialized

1 NXP_REF

42 SSG

115 RHODES

11 AMOTECH

Table 118: Resolver - PLATFORM_ID. Go to start at Table 21.

ID VALUE

1 V1

2 V2

3 GN20_V1

Table 119: Resolver - VARIANT_ID. Go to start at Table 21.

ID VALUE

0 VCO_PLL

1 TX_POWER

2 XTAL_CAP_GM_CTRL

3 RSSI_CALIB_CONSTANT1

4 RSSI_CALIB_CONSTANT2

5 SNR_CALIB_CONSTANT

6 MANUAL_TX_POW_CTRL

7 PDOA_OFFSET

8 PA_PPA_CALIB_CTRL

9 TX_TEMPERATURE_COMP

Table 120: Resolver - CALIB_PARAM. Go to start at Table 21.

ID VALUE

0 Forbid_rsp_for_next_command

1 Forbid_rsp_infinitely

2 Force_FW_Assert_or_crash

3 Forbid_session_status_NTF_for_next_session_state_cha...ands

Table 121: Resolver - ERR_OPTION. Go to start at Table 21.
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ID VALUE

0 DEFAULT

1 CUSTOM_NOT_INTEGRITY_PROTECTED

2 CUSTOM_AUTH_PENDING

3 CUSTOM_DEVICE_SPECIFIC_TAG_AUTHENTICATED

4 CUSTOM_MODEL_SPECIFIC_TAG_AUTHENTICATED

Table 122: Resolver - CALIB_STATE. Go to start at Table 21.

ID VALUE

0 RX1

1 RX2

Table 123: Resolver - RX_TOA_FIRST_PATH. Go to start at Table 21.

ID VALUE

0 I2C_INTERFACE_IDLE

1 I2C_INTERFACE_BUSY

Table 124: Resolver - INTERFACE_STATUS. Go to start at Table 21.
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ID SUB-ID TAG LEN RESOLVER

0 - DEVICE_TYPE 1 Table 130

1 - RANGING_CONFIG 1 Table 131

2 - STS_CONFIG 1 Table 132

3 - MULTI_NODE_MODE 1 Table 133

4 - CHANNEL_ID 1 Table 134

5 - NUMBER_OF_CONTROLEES 1 Table 135

6 - SRC_MAC_ADDRESS [2, 8] Table 136

7 - DST_MAC_ADDRESS_LIST 2 Table 137

8 - SLOT_DURATION 2 Table 138

9 - RANGING_INTERVAL 4 Table 139

10 - STS_INDEX 4 Table 140

11 - MAC_TYPE 1 Table 141

12 - RANGING_ROUND_CONTROL 1 Table 142

13 - AOA_RESULT_REQ 1 Table 143

14 - RNG_DATA_NTF 1 Table 144

15 - RNG_DATA_NTF_PROXIMITY_NEAR 2 Table 145

16 - RNG_DATA_NTF_PROXIMITY_FAR 2 Table 146

17 - DEVICE_ROLE 1 Table 147

18 - RFRAME_CONFIG 1 Table 148

19 - RX_MODE 1 Table 149

20 - PREAMBLE_CODE_INDEX 1 Table 150

21 - SFD_ID 1 Table 151

22 - PSDU_DATA_RATE 1 Table 152

23 - PREMABLE_DUR 1 Table 153

24 - RX_ANTENNA_PAIR_SEL 1 Table 154

25 - MAC_CFG 1 Table 155

26 - RANGING_TIME_STRUCT 1 Table 156

27 - SLOTS_PER_RR 1 Table 157

28 - TX_ADAPTIVE_PAYLOAD_POWER 1 Table 158

29 - TX_ANTENNA_SELECTION 1 Table 159

30 - RESPONDER_SLOT_INDEX 1 Table 160

31 - PRF_MODE 1 Table 161

32 - MAX_CONTENTION_PHASE_LENGTH 1 Table 162

33 - MAX_CONTENTION_PHASE_UPDATE_LENGTH 1 Table 163

34 - SCHEDULED_MODE 1 Table 164

35 - KEY_ROTATION 1 Table 165

36 - KEY_ROTATION_RATE 1 Table 166

37 - SESSION_PRIORITY 1 -

... ... ... ... ...
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ID SUB-ID TAG LEN RESOLVER

... ... ... ... ...

38 - MAC_ADDRESS_MODE 1 Table 167

39 - VENDOR_ID 2 -

40 - STATIC_STS_IV 6 -

41 - NUMBER_OF_STS_SEGMENTS 1 Table 168

42 - MAX_RR_RETRY 2 Table 169

43 - UWB_INITIATION_TIME 4 Table 170

44 - RANGING_ROUND_HOPPING 1 Table 171

45 - BLOCK_STRIDING 1 Table 172

46 - RESULT_REPORT_CONFIG 1 Table 173

47 - IN_BAND_TERMINATION_ATTEMPT_COUNT 1 -

48 - SUB_SESSION_ID 4 -

49 - TDOA_REPORT_FREQUENCY 2 -

50 - BLINK_RANDOM_INTERVAL 2 -

51 - AUTHENTICITY_TAG 1 -

52 - MAX_NUMBER_OF_BLOCKS 2 -

227 0 TOA_MODE 1 Table 174

227 1 CIR_CAPTURE_MODE 1 Table 175

227 2 MAC_PAYLOAD_ENCRYPTION 1 Table 176

227 3 RX_ANTENNA_POLARIZATION_OPTION 1 Table 177

227 4 RX_ANTENNA_SELECTION_RFM undefined -

227 5 SESSION_SYNC_ATTEMPTS 1 Table 178

227 6 SESSION_SHED_ATTEMPTS 1 Table 179

227 7 SCHED_STATUS_NTF 1 Table 180

227 8 TX_POWER_DELTA_FCC 1 Table 181

227 9 TEST_KDF_FEATURE 1 Table 182

227 10 DUAL_AOA_PREAMBLE_STS 1 Table 183

227 11 TX_POWER_TEMP_COMP 1 Table 184

227 12 WIFI_COEX_MAX_TOL_COUNT 1 Table 185

227 13 ADAPTIVE_HOPPING_THRESHOLD undefined -

227 14 RX_MODE_2 undefined -

227 15 RX_ANTENNA_SELECTION undefined -

227 16 TX_ANTENNA_SELECTION_2 undefined -

227 17 MAX_CONTENTION_PHASE_LENGTH_2 undefined -

227 18 CONTENTION_PHASE_UPDATE_LENGTH_2 undefined -

227 22 INBAND_DATA_TX_BLOCKS undefined -

227 23 INBAND_DATA_RX_BLOCKS undefined -

227 24 RANGING_SUSPEND_MODE undefined -

227 25 RX_ANTENNA_SELECTION_RFM_2 undefined -

227 160 WRAPPED_RDS undefined -

... ... ... ... ...
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ID SUB-ID TAG LEN RESOLVER

... ... ... ... ...

228 0 THREAD_SECURE undefined -

228 1 THREAD_S_ISR undefined -

228 2 THREAD_NS_ISR undefined -

228 3 THREAD_SHELL undefined -

228 4 THREAD_PHY undefined Table 186

228 5 THREAD_RANGING undefined Table 187

228 6 THREAD_SE undefined -

228 7 THREAD_UWB_WLAN_COEX undefined -

228 16 DATA_LOGGER undefined Table 188

228 17 CIR_LOG_NTF undefined Table 189

228 18 PSDU_LOG_NTF undefined Table 190

228 19 RFRAME_LOG_NTF undefined Table 191

228 20 TEST_CONTENTION_RANGING_FEATURE undefined Table 192

Table 125: Resolver - APP_TLV. Go to start at Table 21.
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ID SUB-ID TAG LEN RESOLVER

0 - DEVICE_STATUS 1 Table 101

1 - LOW_POWER_MODE 1 Table 193

144 - TEST_UCI_VERSION 2 -

227 0 DEVICE_NAME 1 -

227 1 FW_VERSION 3 Table 194

227 2 NXP_UCI_VERSION 3 Table 195

227 3 NXP_CHIP_ID 16 -

227 4 FW_BOOT_MODE 1 -

228 0 DELAY_CALIBRATION 8 Table 196

228 1 AOA_CALIBRATION_CTRL 128 -

228 2 DPD_WAKEUP_SRC 1 Table 197

228 3 WTX_COUNT_CONFIG 1 Table 198

228 4 DPD_ENTRY_TIMEOUT 2 -

228 5 WIFI_COEX_FEATURE 4 Table 199

228 6 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_1_CH5 72 -

228 7 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_1_CH6 72 -

228 8 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_1_CH8 72 -

228 9 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_1_CH9 72 -

228 10 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_2_CH5 72 -

228 11 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_2_CH6 72 -

228 12 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_2_CH8 72 -

228 13 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_2_CH9 72 -

228 14 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_3_CH5 72 -

228 15 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_3_CH6 72 -

228 16 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_3_CH8 72 -

228 17 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_3_CH9 72 -

228 18 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_4_CH5 72 -

228 19 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_4_CH6 72 -

228 20 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_4_CH8 72 -

228 21 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_4_CH9 72 -

228 22 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_5_CH5 72 -

228 23 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_5_CH6 72 -

228 24 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_5_CH8 72 -

228 25 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_5_CH9 72 -

228 26 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_6_CH5 72 -

228 27 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_6_CH6 72 -

228 28 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_6_CH8 72 -

228 29 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_6_CH9 72 -

... ... ... ... ...
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ID SUB-ID TAG LEN RESOLVER

... ... ... ... ...

228 30 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_7_CH5 72 -

228 31 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_7_CH6 72 -

228 32 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_7_CH8 72 -

228 33 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_7_CH9 72 -

228 34 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_8_CH5 72 -

228 35 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_8_CH6 72 -

228 36 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_8_CH8 72 -

228 37 AOA_FINE_CALIB_CTRL_RX_ANT_PAIR_8_CH9 72 -

228 38 DDFS_TONE_CONFIG_ENABLE 1 -

228 39 DDFS_TONE_CONFIG 72 -

228 40 TX_TELEC_CONFIG 4 -

229 0 DUMP_SE_COMM_DATA 1 Table 200

Table 126: Resolver - DEVICE_TLV. Go to start at Table 21.

ID SUB-ID TAG LEN RESOLVER

0 - MEMORY_ALLOCATIONS 16 Table 201

1 - DYNAMIC_MEMORY_OBJECT_COUNTS 28 Table 202

2 - SECURE_REGION_MAIN_STACK_DETAILS 8 Table 203

3 - NON_SECURE_REGION_MAIN_STACK_DETAILS 8 Table 204

4 - SECURE_REGION_PROCESS_STACK_DETAILS 52 Table 205

5 - DYNAMIC_MEMORY_DETAILS 8 Table 206

6 - NON_SECURE_REGION_EACH_APPLICATION_...AILS 64 Table 207

7 - NON_SECURE_REGION_OS_IDLE_THREAD_ST...AILS 8 Table 208

8 - NON_SECURE_REGION_OS_TIMER_THREAD_S...AILS 8 Table 209

Table 127: Resolver - MEM_TLV. Go to start at Table 21.
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ID SUB-ID TAG LEN RESOLVER

0 - KDF_BLOCK_INDEX 2 -

1 - KDF_STS_INDEX 4 -

2 - KDF_CONFIG_DIGEST 4 -

3 - KDF_DERIVED_AUTH_IV 4 -

4 - KDF_DERIVED_AUTH_KEY 4 -

5 - KDF_DERIVED_PAYLOAD_KEY 4 -

6 - KDF_SALTED_HASH 4 -

Table 128: Resolver - KDF_NTF_TLV. Go to start at Table 21.

ID SUB-ID TAG LEN RESOLVER

0 - NUM_PACKETS 4 Table 210

1 - T_GAP 4 Table 211

2 - T_START 4 Table 212

3 - T_WIN 4 Table 213

4 - RANDOMIZE_PSDU undefined Table 214

5 - RAW_PHR 2 Table 215

6 - RMARKER_TX_START 4 Table 216

7 - RMARKER_RX_START 4 Table 217

8 - STS_INDEX_AUTO_INCR undefined Table 218

229 0 RSSI_AVG_FILT_CNT undefined Table 219

229 1 RSSI_CALIBRATION_OPTION undefined Table 220

229 2 AGC_GAIN_VAL_RX 2 Table 221

229 3 TEST_SESSION_STS_KEY_OPTION 1 Table 222

Table 129: Resolver - TEST_TLV. Go to start at Table 21.

ID VALUE

0 CONTROLEE

1 CONTROLLER

Table 130: Resolver - DEVICE_TYPE. Go to start at Table 21.

ID VALUE

0 ONE_WAY

1 SS_TWR

2 DS_TWR

Table 131: Resolver - RANGING_CONFIG. Go to start at Table 21.
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ID VALUE

0 NO_SE_STATIC_STS

1 SE_DYNAMIC_STS

2 SE_DYNAMIC_STS_FOR_CONTROLEE_INDIVIDUAL_KEY

3 STATIC_STS_TDOA

Table 132: Resolver - STS_CONFIG. Go to start at Table 21.

ID VALUE

0 SINGLE_DEVICE_TO_SINGLE_DEVICE

1 ONE_TO_MANY

2 MANY_TO_MANY

3 RESERVED

Table 133: Resolver - MULTI_NODE_MODE. Go to start at Table 21.

ID VALUE

5 CH_5

6 CH_6

8 CH_8

9 CH_9

N CH

Table 134: Resolver - CHANNEL_ID. Go to start at Table 21.

ID VALUE

1 SINGLE_ANCHOR

Table 135: Resolver - NUMBER_OF_CONTROLEES. Go to start at Table 21.

ID VALUE

35840 MASTER_ADDR

Table 136: Resolver - SRC_MAC_ADDRESS. Go to start at Table 21.

ID VALUE

36096 ANCHOR_ADDR

Table 137: Resolver - DST_MAC_ADDRESS_LIST. Go to start at Table 21.
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ID VALUE

2000 DEFAULT_RANGING

Table 138: Resolver - SLOT_DURATION. Go to start at Table 21.

ID VALUE

192 DEFAULT_RANGING

Table 139: Resolver - RANGING_INTERVAL. Go to start at Table 21.

ID VALUE

0 STS_ZERO

Table 140: Resolver - STS_INDEX. Go to start at Table 21.

ID VALUE

0 CRC_16

1 CRC_32

Table 141: Resolver - MAC_TYPE. Go to start at Table 21.

ID VALUE

0 MEASUREMENT_REPORT_PHASE

2 RANGING_CONTROL_PHASE

3 DEFAULT

Table 142: Resolver - RANGING_ROUND_CONTROL. Go to start at Table 21.

ID VALUE

0 NO_AOA_REPORT

1 NEG_90_TO_90

Table 143: Resolver - AOA_RESULT_REQ. Go to start at Table 21.

ID VALUE

0 DISABLE

1 ENABLE

2 ENABLE_IN_PROXIMITY_RANGE

Table 144: Resolver - RNG_DATA_NTF. Go to start at Table 21.
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ID VALUE

0 DEFAULT_RANGING

Table 145: Resolver - RNG_DATA_NTF_PROXIMITY_NEAR. Go to start at Table 21.

ID VALUE

20000 DEFAULT_RANGING

Table 146: Resolver - RNG_DATA_NTF_PROXIMITY_FAR. Go to start at Table 21.

ID VALUE

0 RESPONDER

1 INITIATOR

2 MASTER_ANCHOR

Table 147: Resolver - DEVICE_ROLE. Go to start at Table 21.

ID VALUE

0 NO_STS

1 STS_FOLLOWS_SFD

2 STS_FOLLOWS_PSDU

3 STS_FOLLOWS_SFD_NO_PPDU

Table 148: Resolver - RFRAME_CONFIG. Go to start at Table 21.

ID VALUE

0 DUAL_RX

1 RX1

2 RX2

Table 149: Resolver - RX_MODE. Go to start at Table 21.

ID VALUE

10 DEFAULT_BPRF

Table 150: Resolver - PREAMBLE_CODE_INDEX. Go to start at Table 21.
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ID VALUE

0 DEFAULT_BPRF

1 HPRF_1

2 BPRF

3 HPRF_3

Table 151: Resolver - SFD_ID. Go to start at Table 21.

ID VALUE

0 DEFAULT

Table 152: Resolver - PSDU_DATA_RATE. Go to start at Table 21.

ID VALUE

0 ZERO

1 DEFAULT

Table 153: Resolver - PREMABLE_DUR. Go to start at Table 21.

ID VALUE

0 SINGLE_RX

1 DEFAULT

2 ANTENNA_2

4 ANTENNA_4

8 ANTENNA_8

Table 154: Resolver - RX_ANTENNA_PAIR_SEL. Go to start at Table 21.

ID VALUE

0 DEFAULT_PER

3 DEFAULT_RANGING_DATA

Table 155: Resolver - MAC_CFG. Go to start at Table 21.

ID VALUE

0 INTERVAL_BASED_SCHEDULING

1 BLOCK_BASED_SCHEDULING

Table 156: Resolver - RANGING_TIME_STRUCT. Go to start at Table 21.
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ID VALUE

24 DEFAULT_SLOTS

Table 157: Resolver - SLOTS_PER_RR. Go to start at Table 21.

ID VALUE

0 DISABLED

1 ENABLED

Table 158: Resolver - TX_ADAPTIVE_PAYLOAD_POWER. Go to start at Table 21.

ID VALUE

1 ANTENNA_1

2 ANTENNA_2

Table 159: Resolver - TX_ANTENNA_SELECTION. Go to start at Table 21.

ID VALUE

0 RESERVED

1 RESPONDER_1

Table 160: Resolver - RESPONDER_SLOT_INDEX. Go to start at Table 21.

ID VALUE

0 BPRF

1 HPRF

Table 161: Resolver - PRF_MODE. Go to start at Table 21.

ID VALUE

50 DEFAULT

Table 162: Resolver - MAX_CONTENTION_PHASE_LENGTH. Go to start at Table 21.

ID VALUE

5 DEFAULT

Table 163: Resolver - MAX_CONTENTION_PHASE_UPDATE_LENGTH. Go to start at Table 21.
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ID VALUE

0 CONTENTION_BASED_RANGING

1 TIME_SCHEDULED_RANGING

Table 164: Resolver - SCHEDULED_MODE. Go to start at Table 21.

ID VALUE

0 DISABLE

1 ENABLE

Table 165: Resolver - KEY_ROTATION. Go to start at Table 21.

ID VALUE

5 DEFAULT

Table 166: Resolver - KEY_ROTATION_RATE. Go to start at Table 21.

ID VALUE

0 MAC_ADDR_TWO_BYTES

1 MAC_ADDR_EIGHT_AND_TWO_IN_HDR

2 MAC_ADDR_EIGHT_AND_EIGHT_IN_HDR

Table 167: Resolver - MAC_ADDRESS_MODE. Go to start at Table 21.

ID VALUE

1 ONE_STS_SEGMENT

2 TWO_STS_SEGMENT

Table 168: Resolver - NUMBER_OF_STS_SEGMENTS. Go to start at Table 21.

ID VALUE

0 DEFAULT_RETRY

Table 169: Resolver - MAX_RR_RETRY. Go to start at Table 21.

ID VALUE

0 DEFAULT

Table 170: Resolver - UWB_INITIATION_TIME. Go to start at Table 21.
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ID VALUE

0 DISABLED

1 ENABLED

Table 171: Resolver - RANGING_ROUND_HOPPING. Go to start at Table 21.

ID VALUE

0 DEFAULT_BLOCK_STRIDING_DISABLED

1 BLOCK_STRIDING_ENABLED

Table 172: Resolver - BLOCK_STRIDING. Go to start at Table 21.

ID VALUE

0 ALL_REPORTS_DISABLED

1 TOF_REPORT

15 ALL_REPORTS_ENABLED

Table 173: Resolver - RESULT_REPORT_CONFIG. Go to start at Table 21.

ID VALUE

0 FIRSTPATH_ON_RX1

1 FIRSTPATH_ON_RX2

2 FIRSTPATH_ON_RX1RX2

Table 174: Resolver - TOA_MODE. Go to start at Table 21.

ID VALUE

0 PRE_SYNC_RX1

1 PRE_SYNC_RX2

2 PRE_STS_RX1

3 PRE_STS_RX2

4 POST_SYNC_RX1

5 POST_SYNC_RX2

6 POST_STS_RX1

7 POST_STS_RX2

0x8-0xF RFU

84 DEFAULT

Table 175: Resolver - CIR_CAPTURE_MODE. Go to start at Table 21.
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ID VALUE

0 DISABLE

1 ENABLE

Table 176: Resolver - MAC_PAYLOAD_ENCRYPTION. Go to start at Table 21.

ID VALUE

0 STRAIGHT

1 REVERSE

Table 177: Resolver - RX_ANTENNA_POLARIZATION_OPTION. Go to start at Table 21.

ID VALUE

3 DEFAULT

Table 178: Resolver - SESSION_SYNC_ATTEMPTS. Go to start at Table 21.

ID VALUE

3 DEFAULT

Table 179: Resolver - SESSION_SHED_ATTEMPTS. Go to start at Table 21.

ID VALUE

0 DISABLE

1 ENABLE_ALL_SESSION

2 ENABLE_FAILURE_SESSION

Table 180: Resolver - SCHED_STATUS_NTF. Go to start at Table 21.

ID VALUE

0 DEFAULT

Table 181: Resolver - TX_POWER_DELTA_FCC. Go to start at Table 21.

ID VALUE

0 DISABLE

1 ENABLE

Table 182: Resolver - TEST_KDF_FEATURE. Go to start at Table 21.



A.11 uci specification 167

ID VALUE

0 DISABLE

1 ENABLE

Table 183: Resolver - DUAL_AOA_PREAMBLE_STS. Go to start at Table 21.

ID VALUE

0 DEFAULT_DISABLE

1 ENABLE

Table 184: Resolver - TX_POWER_TEMP_COMP. Go to start at Table 21.

ID VALUE

3 DEFAULT

Table 185: Resolver - WIFI_COEX_MAX_TOL_COUNT. Go to start at Table 21.

ID VALUE

7 DEFAULT_RANGING

Table 186: Resolver - THREAD_PHY. Go to start at Table 21.

ID VALUE

23 DEFAULT_RANGING

Table 187: Resolver - THREAD_RANGING. Go to start at Table 21.

ID VALUE

0 DISABLE

1 ENABLE

Table 188: Resolver - DATA_LOGGER. Go to start at Table 21.

ID VALUE

0 DISABLE

1 ENABLE

Table 189: Resolver - CIR_LOG_NTF. Go to start at Table 21.
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ID VALUE

0 DISABLE

1 ENABLE

Table 190: Resolver - PSDU_LOG_NTF. Go to start at Table 21.

ID VALUE

0 DISABLE

1 ENABLE

Table 191: Resolver - RFRAME_LOG_NTF. Go to start at Table 21.

ID VALUE

0 DISABLE

1 ENABLE

Table 192: Resolver - TEST_CONTENTION_RANGING_FEATURE. Go to start at Table 21.

ID VALUE

0 DISABLED

1 ENABLED

Table 193: Resolver - LOW_POWER_MODE. Go to start at Table 21.

INDEX VALUE

0 FW_MAJ

1 FW_MIN

2 FW_RC

Table 194: Resolver - FW_VERSION. Go to start at Table 21.

INDEX VALUE

0 UCI_MAJ

1 UCI_MIN

2 UCI_PATCH

Table 195: Resolver - NXP_UCI_VERSION. Go to start at Table 21.
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ID VALUE

0 DEFAULT

Table 196: Resolver - DELAY_CALIBRATION. Go to start at Table 21.

ID VALUE

0 SE_INTERFACE

1 GPIO1

2 GPIO3

Table 197: Resolver - DPD_WAKEUP_SRC. Go to start at Table 21.

ID VALUE

20 DEFAULT_MIN

180 MAX

Table 198: Resolver - WTX_COUNT_CONFIG. Go to start at Table 21.

ID VALUE

0 DISABLE

1 ENABLE

2 DEBUG_VERBOSE

Table 199: Resolver - WIFI_COEX_FEATURE. Go to start at Table 21.

ID VALUE

0 DISABLE

1 ENABLE

Table 200: Resolver - DUMP_SE_COMM_DATA. Go to start at Table 21.

INDEX VALUE

0-3 SE_PROC_STACK

4-7 SE_MAIN_STACK

8-11 NS_MAIN_STACK

12-15 DYNAMIC_MEM

Table 201: Resolver - MEMORY_ALLOCATIONS. Go to start at Table 21.
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INDEX VALUE

0-3 THREAD_OBJS

4-7 TIMER_OBJS

8-11 EVENT_FLG_OBJS

12-15 MUTEX_OBJS

16-19 SEMAPHORE_OBJS

20-23 MEM_POOL_OBJS

24-27 NUM_MSG_Q_OBJS

Table 202: Resolver - DYNAMIC_MEMORY_OBJECT_COUNTS. Go to start at Table 21.

INDEX VALUE

0-3 TOTAL_SE_STACK

4-7 USED_SE_STACK

Table 203: Resolver - SECURE_REGION_MAIN_STACK_DETAILS. Go to start at Table 21.

INDEX VALUE

0-3 TOTAL_NS_STACK

4-7 USED_NS_STACK

Table 204: Resolver - NON_SECURE_REGION_MAIN_STACK_DETAILS. Go to start at Table 21.
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INDEX VALUE

0-1 SE_NUM_SLOTS

2-3 SE_SLOT_SIZE

4-7 SE_THREAD1

8-9 SE_STACK_SIZE1

10-13 SE_THREAD2

14-15 SE_STACK_SIZE2

16-19 SE_THREAD3

20-21 SE_STACK_SIZE3

22-25 SE_THREAD4

26-27 SE_STACK_SIZE4

28-31 SE_THREAD5

32-33 SE_STACK_SIZE5

34-37 SE_THREAD6

38-39 SE_STACK_SIZE6

40-43 SE_THREAD7

44-45 SE_STACK_SIZE7

46-49 SE_THREAD8

50-51 SE_STACK_SIZE8

Table 205: Resolver - SECURE_REGION_PROCESS_STACK_DETAILS. Go to start at Table 21.

INDEX VALUE

0-3 TOTAL

4-7 USED

Table 206: Resolver - DYNAMIC_MEMORY_DETAILS. Go to start at Table 21.



172 appendix

INDEX VALUE

0-3 NS_THREAD1

4-5 TOTAL_NS_STACK1

6-7 USED_NS_STACK1

8-11 NS_THREAD2

12-13 TOTAL_NS_STACK2

14-15 USED_NS_STACK2

16-19 NS_THREAD3

20-21 TOTAL_NS_STACK3

22-23 USED_NS_STACK3

24-27 NS_THREAD4

28-29 TOTAL_NS_STACK4

30-31 USED_NS_STACK4

32-35 NS_THREAD5

36-37 TOTAL_NS_STACK5

38-39 USED_NS_STACK5

40-43 NS_THREAD6

44-45 TOTAL_NS_STACK6

46-47 USED_NS_STACK6

48-51 NS_THREAD7

52-53 TOTAL_NS_STACK7

54-55 USED_NS_STACK7

56-59 NS_THREAD8

60-61 TOTAL_NS_STACK8

62-63 USED_NS_STACK8

Table 207: Resolver - NON_SECURE_REGION_EACH_APPLICATION_THREAD_STACK_DETAILS.
Go to start at Table 21.

INDEX VALUE

0-3 TOTAL_IDLE_THREAD_STACK

4-7 USED_IDLE_THREAD_STACK

Table 208: Resolver - NON_SECURE_REGION_OS_IDLE_THREAD_STACK_DETAILS. Go to
start at Table 21.
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INDEX VALUE

0-3 TOTAL_TIMER_THREAD_STACK

4-7 USED_TIMER_THREAD_STACK

Table 209: Resolver - NON_SECURE_REGION_OS_TIMER_THREAD_STACK_DETAILS. Go to
start at Table 21.

ID VALUE

1000 DEFAULT

Table 210: Resolver - NUM_PACKETS. Go to start at Table 21.

ID VALUE

2000 DEFAULT

Table 211: Resolver - T_GAP. Go to start at Table 21.

ID VALUE

450 DEFAULT

Table 212: Resolver - T_START. Go to start at Table 21.

ID VALUE

750 DEFAULT

Table 213: Resolver - T_WIN. Go to start at Table 21.

ID VALUE

0 DEFAULT

Table 214: Resolver - RANDOMIZE_PSDU. Go to start at Table 21.

ID VALUE

0 DEFAULT

16384 RANGE_ENABLED

Table 215: Resolver - RAW_PHR. Go to start at Table 21.
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ID VALUE

0 DEFAULT

1000 LOOPBACK

Table 216: Resolver - RMARKER_TX_START. Go to start at Table 21.

ID VALUE

0 DEFAULT

1000 LOOPBACK

Table 217: Resolver - RMARKER_RX_START. Go to start at Table 21.

ID VALUE

0 DEFAULT

1 STS_IDX_INCR

Table 218: Resolver - STS_INDEX_AUTO_INCR. Go to start at Table 21.

ID VALUE

0 DEFAULT

Table 219: Resolver - RSSI_AVG_FILT_CNT. Go to start at Table 21.

ID VALUE

1 DEFAULT

Table 220: Resolver - RSSI_CALIBRATION_OPTION. Go to start at Table 21.

ID VALUE

1 DEFAULT

Table 221: Resolver - AGC_GAIN_VAL_RX. Go to start at Table 21.

ID VALUE

0 PROPRIETARY

1 IEEE

Table 222: Resolver - TEST_SESSION_STS_KEY_OPTION. Go to start at Table 21.
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INDEX VALUE

0 MAPPING

1 DEC_STATUS

2 NLOS

3 - 4 FIRST_PATH_INDEX

5 - 6 MAIN_PATH_INDEX

7 SNR_MAIN_PATH

8 SNR_FIRST_PATH

9 - 10 SNR_TOTAL

11 - 12 RSSI

13 - 16 CIR_MAIN_POWER

17 - 20 CIR_FIRST_PATH_POWER

21 - 22 NOISE_VARIANCE

23 CFO

25 - 26 AoA_PHASE

27 - 90 CIR_SAMPLES

Table 223: Resolver - RFRAME_MEASUREMENT_DATA. Go to start at Table 21.

INDEX VALUE RESOLVER

0 - 3 SUB_SESSION_ID

4 SESSION_UPDATE_CONTROLLER_MULTICAST_LIST_STATUS Table 117

Table 224: Resolver - STATUS_LIST. Go to start at Table 21.

INDEX VALUE

0 SLOT_INDEX

1 PSDU_SIZE

2 - N PSDU_DATA (Depends on PSDU_SIZE)

Table 225: Resolver - PSDU_LOG_DATA. Go to start at Table 21.

INDEX VALUE RESOLVER

0 - 3 SESSION_ID

4 SESSION_TYPE Table 104

5 SESSION_STATE

Table 226: Resolver - SESSION_INFO. Go to start at Table 21.
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INDEX VALUE RESOLVER

0 - 3 SESSION_ID

4 SCHEDULER_STATUS Table 113

5 - 8 NO_OF_SUCCESSFUL_SCHEDULEING

9 - 12 NO_OF_UN_SUCCESSFUL_SCHEDULEING

13 PRIORITY

Table 227: Resolver - SESSION_DATA. Go to start at Table 21.
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