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Abstract

Advances in miniaturization during the last decades have enabled the construction of
small spacecraft with total masses reaching down to 1 kg and below. At the same time
standardization of components, interfaces, and platforms for the design of small satellites
have further reduced their development costs. This trend has recently made formations
of several small satellites in favor of one large unit an economically feasible alternative
for university-scale organizations. While the satellite-formation approach provides new
opportunities regarding Earth observation applications, it also poses new challenges
to their communication system: the increased number of nodes at large distances and
therefore propagation delays complicates the problem of medium access; the distributed
collection of Earth observation data creates the necessity to gather the data over different
links and possibly multiple hops. At the same time, the simultaneous operation of a
number of identical satellites performing one task cooperatively can lead to redundancy in
the data that needs to be communicated; exploiting this redundancy improves the overall
efficiency of the communication system. In this work we discuss design approaches for
communication protocols for Earth-observing satellite formations. In doing so we cover
several layers from medium access control over network and transport up-to and including
compression of payload data.

Cooperative position awareness beaconing is nowadays required for vessels at the high
seas and serves as a convenient example for the in-orbit reception of data from large
terrestrial sensor networks. We demonstrate how a purpose-made medium access control
protocol can improve both, terrestrial performance for cooperative awareness and in-orbit
overhearing for the purpose of global tracking.

Regarding higher network layers we discuss modern coding techniques like network
coding and distributed source coding. These are less frequently used in terrestrial general-
purpose communication networks like the Internet but can be employed to take advantage
of the communication redundancy that is inherent to satellite formation operation. We
show how use cases that differ in terms of kind of payload data and network topology
each can benefit from their own, best-suited communication technique. We find that
network coding is well-suited for over-the-air programming of satellite formations, that is,
for ground-station-to-satellite broadcast transmissions. To adapt the concept of random
linear network coding to typical topologies of satellite-and-ground-station networks, we
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introduce a novel decoding algorithm that enables protocols to use simpler feedback
mechanism.

Satellite-to-ground-station transmissions of multiple satellites’ payload measurement data
is often correlated across nodes. Herewe demonstrate the applicability of distributed source
coding techniques to increase the efficiency of communication resource utilization.

As a common bottom line that applies to all of these subtopics we conclude in the end that
in Earth-observing satellite formations, there is a plethora of different types of information
redundancy across the satellites. The exploitation thereof allows tailored communication
protocols to significantly outperform their state-of-the-art terrestrial counterparts.
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Zusammenfassung

In den letzten Jahrzehnten haben Fortschritte in der Miniaturisierung den Bau kleiner
Satelliten mit Gesamtmassen von 1 kg und weniger ermöglicht. Währenddessen hat
die Standardisierung von Bauteilen, Schnittstellen und Entwurfsplattformen die Entwick-
lungskosten für Kleinstsatelliten reduziert. Diese Tendenz hat dazu geführt, dass Satelliten-
Missionen mit Formationen mehrerer kleiner Satelliten anstatt einem größeren Satelliten
auch kostentechnisch für Organisationen wie Universitäten umsetzbar sind. Der Ansatz,
Formationen von Kleinstsatelliten zu verwenden, bringt nicht nur neue Möglichkeiten für
Erdbeobachtungsmissionen mit sich, sondern erzeugt auch neue Herausforderungen für
die Kommunikationssysteme: Das Problem des Medienzugriffs wird durch eine Vielzahl
von Knoten mit großen Distanzen und daher großen Signallaufzeiten verkompliziert;
die auf mehrere Satelliten verteilt aufgenommenen Erdbeobachtungsdaten müssen über,
möglicherweise unterschiedliche, Funkverbindungen und mehrere Hops zusammenge-
tragen werden. Dabei kann das kooperative Sammeln von Messdaten durch mehrere
Satelliten dazu führen, dass Redundanzen in den Rohdaten und damit in den Nutzdaten
entstehen, die per Funk übertragen werden müssen; dies kann ausgenutzt werden, um
die Effizienz dieser Übertragungen zu steigern. In dieser Arbeit beschäftigen wir uns mit
Entwurfsansätzen für Kommunikationsprotokolle für erdbeobachtende Kleinstsatelliten-
formationen. Dabei decken wir verschiedene Netzwerkschichten ab, vom Medienzugriff,
über Netzwerk und Transport, bis hin zu Komprimierung von Nutzdaten.

Der Einsatz von Funksystemen für den automatisierten Austausch von Navigationsdaten
ist heutzutage für die Hochseeschifffahrt verbindlich vorgeschrieben. Sie sind ein gutes
Beispiel für die Möglichkeit, Nutzdaten terrestrischer drahtloser Sensornetze im Erdor-
bit zu empfangen. Wir zeigen, wie sowohl die rein terrestrische Effektivität von au-
tomatisiertem Navigationsdatenfunk als auch der satellitengestützte Empfang der zuge-
hörigen Funknachrichten zur globalen Seeverkehrsüberwachung durch ein geeignetes,
maßgeschneidertes Medienzugriffsverfahren verbessert werden kann.

Was höhereNetzwerkschichten angeht, beschäftigt sich diese Arbeit mitmodernenKodierung-
stechniken wie verteilte Quellenkodierung und Netzwerkkodierung. Obwohl diese Ver-
fahren derzeit in terrestrischen Allzweckkommunikationsnetzen wie dem Internet nur
wenig Verwendung finden, können sie genutzt werden, um die angesprochenen Kommu-
nikationsredundanzen auszunutzen. Für Anwendungsszenarien mit unterschiedlichen
Nutzdatentypen und Netzwerktopologien zeigen wir, wie jedes einzelne davon von speziell
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darauf abgestimmten Kommunikationsverfahren profitieren kann. So stellen wir fest, dass
sich Netzwerkkodierung gut für over-the-air programming, also die Übertragung einzelner
großer Dateien von einer Bodenstation an eine Vielzahl von Satelliten, eignet. Um die
gängigen Netzwerkkodierungsverfahren auf dieses Problem anwenden zu können, haben
wir einen neuen Dekodieralgorithmus entworfen, mit Hilfe dessen sich durch bessere
Rückmeldungsinformationen einfachere Protokolle konstruieren lassen.

Messen verschiedene Satelliten die selbe Art von Daten, beispielsweise das Erdmagnetfeld,
in ähnlichen Erdorbits, dann sind die Rohdaten oft zu einem gewissen Grad korreliert. Für
diesen Anwendungsfall demonstrieren wir, wie sich verteilte Quellenkodierung einsetzen
lässt, um die verfügbaren Kanalressourcen effizienter zu nutzen.

Als gemeinsames Fazit all dieser Unterthemen stellen wir fest, dass es im Bereich der
Kommunikation in erdbeobachtenden Kleinstsatellitennetzen etliche unterschiedliche
Arten von Informationsredundanz zwischen den Satelliten gibt. Nutzt man diese mittels
je nach Anwendungsfall maßgeschneiderten Verfahren aus, lassen sich die jeweiligen
etablieren Lösungen in Sachen Robustheit und/oder Effizient deutlich übertreffen.
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Part 0

Prologue





Prooimion 0
„And the moral of the story is that we had better

regard —after all those centuries!— zero as a most
natural number.

— Edsger Wybe Dijkstra

TL;DR This chapter can be skipped.

0.0 How to Read this Thesis

There is a saying that tools whose manual starts with “How to read this manual” tend to
create more problems than any other tools [119]. Having used GNU Make to build this
document, to run experiments for our evaluations, to compile our code, and for much
more, we want to honor its original author, Richard M. Stallman, by including such a
helpful section in our work. Hopefully, reading this document is as much of a pleasure as
reading the manual of GNU Make [120].

This work comprises six regular chapters (Chapter 2 through Chapter 7). Each regular
chapter contains the scientific content of one smallest publishable unit (SPU), i. e., the
content of one paper. The regular chapters are grouped into two parts. Part I consists of
chapters based on publications, whereas Part II contains unpublished findings. To rephrase
it in a more content-centric dimension to cut: Part I is concerned with communication of
Earth observation data towards satellite ground stations, while Part II deals with transmit-
ting bulk files like software updates from satellite ground stations. Each regular chapter,
roughly resembling one paper, follows more or less the de facto standard structure of
network-conference publications: introduction, related work, proposed method, evalua-
tion, and conclusion. Even though the ideal order of reading strongly depends on personal
preference, we suggest the following reading schedule for each regular chapter:

0. Read the beginning of the intro until getting bored.

1. Skim over the conclusion.

2. Read the section about the proposed method thoroughly.
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3. Look at the evaluation plots.

4. Read the rest of intro and evaluation and the related work only as needed.

There are two exceptions:

0. In order to grasp the main contribution of Chapter 7 it is probably sufficient to read
the conclusion after looking at Fig. 7.11. After all, that chapter was only written to
justify Chapter 6 in the context of this thesis’ topic.

1. Chapter 6, in contrast, is most likely worth to be read entirely,

If the impression arises that Chapter 7’s only purpose is to justify the presence of Chapter 6
which seems to be (in other respects) somehow unrelated to this thesis’ topic: we can
confirm that.

Regarding mathematical notation, we tried to stick to agreed-upon conventions wher-
ever possible and to define it otherwise. In case of doubt, Section A.1 is a glossary of
mathematical notation used.

Finally, we would like to note that Section 0.0 as well as the epigraphs at the chapters’
beginnings were written tongue in cheek. We want to apologize for any potential irritation
caused by its fatuity.

Ultimately we would like to kindly ask the reader for leniency regarding our poor style of
writing throughout this document, including but not limited to, overlong sentences that,
as we are aware of, are neither usual nor appreciated in scientific English writing, but
nonetheless constitute our own preferred mode which was applied in writing every paper’s
first draft and somehow made it through to the final version of this thesis, especially in
the chapters that are, despite contributing novel and significant findings, not based on
published content and therefore never underwent the streamlining process of making the
text ready for submission to peer-reviewed conferences.

0.1 Numbering Does Start at Zero, Indeed

According to the 1972 ACM A. M. Turing Award recipient Prof. Edsger Wybe Dijkstra,
“numbering should start at zero”[121]. Taking this advice to heart, we tried to use zero-
based indexing whenever applicable for mathematical objects within this work. While
this may seem unorthodox, especially when employed to vector and matrix indices, (e. g.,
Chapter 6), we favor consistency over convenience. Consequently, we usually specify
ranges of integers as half-open intervals [0, 𝑛)ℤ (rather than closed intervals [0, 𝑛 − 1]ℤ),
since the former notation possesses the handy property that the interval’s cardinality

4 Chapter 0 Prooimion



equals its bounds’ difference, thereby avoiding (mental) off-by-one errors. However, ranges
written with en dash (e.g., “2–5”) are meant to include the upper bound.

0.2 Relation of this Document to Already Published
Articles

Each of the Chapters 2–5 is largely based on a peer-reviewed conference full paper,
containing not only the ideas, but also literally copied passages of text, explanatory figures,
and plots. Since none of these papers were written by this work’s author alone, some
content of this thesis have flown from the pen of the other co-authors, both literal text
passages and more abstract background work like design and implementation of evaluation
scenarios and so forth.

B. Scheuermann, co-author of all four of these papers, contributed to each paper in terms
of ideas for (protocol) mechanism modifications, critical pre-reviews helping to refine
evaluation, guidance in stringent argumentation and presentation, as well as fine-tuning
of textual representation.

Apart from that, Chapter 2 and Chapter 3 were entirely crafted by H. Döbler, including the
initial ideas of the protocol mechanisms, implementation and evaluation thereof, as well
as the overall textual and graphical presentation. However, we would like to note that
the implementation of the automatic identification system (AIS) and self-organizing time
division multiple access (SO-TDMA) protocol where done by S. Dehlwes (Studentische
Hilfskraft) and that the original idea of solving the shortcomings of SO-TDMA in terms of
orbital receivability by means of a new Medium Access Control (MAC) protocol might
originate from H. Sparka.

[0], the foundation of Chapter 4, is a collaborative work of the Chair of “Informatics VII :
Robotics and Telematics” at Julius-Maximilians-University Würzburg and the Computer
Engineering Group at HU Berlin. To the best of our knowledge, the original idea of improv-
ing real-time capabilities of a traffic-monitoring satellite constellation by means of inter-
satellite communication originates from K. Schilling and B. Scheuermann. A. Freimann
and A. Kleinschrodt contributed the simulation and scenario framework, i. e., satellite
mobility, aggregated vessel mobility and a sketch of a channel model. The inter-satellite
forwarding and aggregation model together with implementation, the conceptual design
and implementation of the evaluation including generation of plots were contributed by
H. Döbler. The resulting text that was published and is now in large parts reproduced
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in this thesis was a joint effort, where individual contributions are no longer separable
reasonably.

Chapter 5 is based on [1] which in turn is based on H. Sparka’s master thesis with the title
“Von Picosatelliten im Formationsflug zur Erde: Effiziente Übertragung von Erdmagnetfeld-
daten”. Consequently, a major share of this chapter originates from H. Sparka, including
the initial idea as well as all the heavy lifting like distributed arithmetic coding (DAC)
implementation, design and implementation of evaluation, and the foundation of textual
and graphical presentation. H. Döbler informally supervised the original master thesis and
a lot of the core decisions that led to the proposed protocol/algorithm and evaluation setup
are a product of a cooperative process of H. Sparka and H. Döbler. The final publication as
well as Chapter 5 still contain a large share of H. Sparka’s original text and graphics, even
though the final work load to bring the content to a peer-reviewed-publishable manuscript
was then undertaken by H. Döbler and, as with all other publications, B. Scheuermann. In
the end, we would like to designate at least 55% of this chapter as H. Sparka’s contribution,
even though the individual contributions are no longer precisely distinguishable.

Finally, all of these papers received review comments in response to their initial submission.
As these comments were incorporated when preparing the camera ready versions of the
manuscripts, the anonymous reviewers can also be seen as indirect contributors to the
work presented here.

Chapter 6 and Chapter 7, on the other hand, are more or less entirely crafted by H. Döbler.
However, we’d still like to point out that in the evaluation of EAGER we used an implemen-
tation of JOYCE and HNC that was kindly provided by R. Naumann. In addition, we’d like
to thank J. Bauer for an introduction to related work on state-of-the-art OTAP protocols
in wireless sensor networks that we wrote about in Section 7.1.
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Introduction 1
„Und jedem Anfang wohnt ein Zauber inne,

Der uns beschützt und der uns hilft, zu leben.

— Hermann Hesse
(German-born Swiss poet)

1.0 Motivational Overview

From the beginning of the space age with the launch of soviet Sputnik 1 in 1957 [122],
virtually all artificial Earth satellites have been equipped with some sort of wireless radio
transmitters and/or receivers. This is due to the fact that wireless radio communication
(including optical links) is the only way to retrieve observation data from the satellites as
well as to carry out maintenance and control tasks on the satellites. The only exceptions
here are retrieval of reconnaissance data by ferrying cassettes of analog film back to
the surface using Recovery Vehicles that were then actively caught midair by airplanes
in the lower atmosphere, as is was for example done by the United States Air Force
from 1960 to 1984 [7], as well as maintenance flights of manned spacecraft to orbital
observatories like the Salyut, Mir, and ISS, or the Hubble Space Telescope. For obvious
reasons these mechanical ferrying approaches require an enormous amount of ressources
and infrastructure and are therefore quite expensive.

While the gross of low Earth orbit (LEO) satellites in and before the 1990s had masses
greater than 100 kg and above [8], advances in miniaturization led to the development
of smaller and lighter satellites, that are nowadays usually classified by their total mass
ranging from small satellites of 100 kg to 500 kg over micro, nano, and pico satellites, down
to fempto satellites with a wet mass smaller than 100 g [8]. The specification of the CubeSat
platform in 1999 [9] has gained great attention by the academic community. CubeSats are
satellites consisting of one or more cubic units with an edge length of 100mm and a mass
of up to 1.3 kg per cube, placing them at the lightweight end of the nano satellite range.
While traditionally, each new satellite has been designed from scratch, the standardization
brought with the CubeSat specification led to a plethora of now well-accepted interface
definitions as well as a market of Space-Commercial-Off-The-Shelf (COTS) hardware that
can be used to design and assemble nano satellites in a modular and therefore simple and
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inexpensive way. When combining the low development and hardware costs to build a
CubeSat with the nowadays commonly applied approach to launch the nano satellites as a
secondary payload from a launch vehicle that is used to place a much heavier primary
payload into orbit (in most cases a large satellite), the total mission costs of building
and launching a basic one-unit (1U) CubeSat can be as little as a few thousand US doller
depending on satellite components and orbit [10].

Another paradigm shift enabled by the low-cost availability of nano satellites is the trend
to plan satellite missions as cooperative multi-nano-satellite formations at total missions
costs still lower than comparable single-large-satellite missions launched some decades
ago.

1.1 Selected Challenges and Opportunities in
Multi-Nano-Satellite Low-Earth-Orbit Missions

The wireless communication in LEO missions of multiple nano satellites poses challenges
and opportunities that, taken in isolation, apply to several well-known other communica-
tion networks as well, but whose joint treatment allows for solutions more efficient and
better-suited than state-of-the-art approaches known from the related fields of wireless
network research.

Just as in networks of large satellites, node-to-node distances of hundreds or thousands of
kilometers lead to rather long per-link delays and high propagation path losses compared
with most typical terrestrial wireless links. But compared to large satellites, an individual
nano-satellite can be consideredmuch less capable in terms of power budget, computational
processing power, and system reliability. Since nano-satellite formations are networks of
many low-performance, power-restricted, and unreliable nodes, they share many boundary
conditions with Mobile Ad-hoc Networks (MANETs) and wireless sensor networks (WSNs).
The latter are similar to Earth-observing multi-nano-satellite missions not only in terms
of node characteristics, but also in the sense that the network’s primary objective is the
distributed cooperative acquisition, aggregation, and delivery of measurement data.

One important difference, however, between WSNs and MANETs on the one side and
satellite formations on the other side is the dynamic nature of network topology: WSNs
are generally considered to consist either of stationary nodes or of rather unpredictably
moving nodes; [11] the latter is also a common assumption for MANETs. Satellite networks
on the other hand feature a highly dynamic but long-term predictable and to some degree
periodically changing topology which unifies the best of both worlds. While qualified
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knowledge about future links enables reasonable routing decisions just as in the case
of stationary nodes, the rapid movement of nodes allows exploiting data ferrying [12]
approaches.

Even though all of these network types have in common that energy consumption is an
important limiting factor for both computational power and communication capabilities,
satellites are typically equipped with solar panels that ensure regular power generation
at each node. Thus, power-saving strategies do not translate to the extension of nodes’
overall lifetime, as seen in battery-powered WSN nodes [13]. Instead, a fixed portion
of the power produced on average can be allocated for communication during mission
planning, constituting the node’s power budget that must not be permanently exceeded.
However, there is also not necessarily an inherent benefit of permanently undercutting
the anticipated budget.

Finally, another significant property of nano-satellite formations is the heterogeneity of
link and node characteristics: satellite ground stations, usually connected to data centers,
can generally be considered to be equipped with steerable high-gain antennas and electrical
as well as processing power by orders of magnitude greater than what can be provided by
nano satellites. These differences in processing power, together with different physical
boundary conditions like background noise levels that differ between LEO and the surface
and varying link distances create a wide range of different and often highly asymmetric
links within the same satellite mission scenario.

1.2 Contributions and Thesis Structure

The communication demand in Earth observation satellite missions can roughly be divided
into retrieval of the primary mission’s payload data and data for maintenance and satel-
lites’ self-awareness. The primary mission payload data is simply the observation data
that is being collected in orbit, i. e., the main purpose of the whole mission. It can range
from any kind of imagery in case of remote sensing applications [14], via in-situ physical
measurements, e. g., Earth magnetic field [15] (as in Chapter 5) to in-orbit overhearing of
terrestrial communication networks like AIS or automatic dependent surveillance–broad-
cast (ADS–B) (Chapters 2–4). The latter case of overhearing is special in so far as the
process of data collection itself can be seen as an initial hop of wireless communication in
contrast to the former examples where data collection is rather a metrological challenge.
In Part I we discuss approaches to improve the retrieval of Earth observation data using
appropriate communication protocols, both in therms of effectiveness (i. e., retrieving more
or better data) and in terms of efficiency (i. e., using less resources). The part’s structure is
ordered according to the direction of data flow (see Fig. 1.0): Chapter 2 is about improving
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Fig. 1.0.: Thesis structure overview. Part I follows the path of primary mission payload data from
the origin on the surface (Chapter 2) to the satellites (Chapter 3), via inter-satellite links
(ISLs) in orbit (Chapter 4), and finally over a down-link to a ground station (Chapter 5).
Part II covers other data flowing in the inverse direction, namely firmware updates
and command-and-control data broadcasted from the ground station to the satellites.
“Layers” on the chart’s vertical axis do not follow any established layer model and are
just descriptions to help classify contributions.
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terrestrial cooperative awareness beaconing systems at the MAC layer by introducing the
new location-assisted medium access for beaconing applications (LAMA) [3] approach that
we find to out-perform AIS already in a purely terrestrial setting, without even considering
satellites. This is followed by Chapter 3 that is concerned with tuning the medium access
to receivability in LEO. In contrast to most of the related work on Satellite-AIS (S-AIS), we
are not primarily concerned with how in-orbit reception of transmissions of the existing
AIS can be improved, but instead propose a novel MAC protocol for terrestrial position
awareness beaconing that is well-suited for passive in-orbit reception. In Chapter 4 we
investigate the benefits of forwarding the received data in orbit via ISL, using a lightweight
in-network-aggregation plus store-and-forward approach, in order to decrease traffic
monitoring delay. Finally, the use of distributed source coding (DSC) to improve satellite-
to-ground station downlinks is treated in Chapter 5. In a simulation-based case study we
investigate the applicability of DSC in the context of simultaneous satellite-to-ground
transmissions of physical measurement data from two satellites not communicating with
each other.

Our contributions face varying boundary conditions in terms of available data to create
evaluations scenarios, required fidelity of the simulated channel models, and even the
applicability of the underlying techniques to the specific kind of payload data. This, among
other reasons, led to different orbital configurations of the satellite formation, channel
models, and mission goals (and thereby nature of payload data) being considered across
the chapters of Part I.

Satellites are normally not operated in a fire-and-forget fashion. Depending on experience
gained during the missions, software updates can become necessary. Satellites without a
global navigation satellite system (GNSS) receiver might not be able to determine their
orbital elements on their own, so this kind of operational metadata needs to be updated
once in a while. Depending on the primary mission goal, orbital measurement campaigns
need to be adapted or initialized during operation, e. g., when a customer suddenly orders
imagery of a certain region. This task of reprogramming nodes is well-known as Over-the-
Air Programming (OTAP) (or OAP) in the context of (terrestrial) WSNs.

Part II treats the broadcast transmission of bulk data, e. g., a firmware image, from a satellite
ground station (GS) to a potentially large number of satellites. This part is structured
differently, as it contains only one main contribution: the novel algorithmic approach
EAGER to decode random linear network coding (RLNC) transmissions. EAGER, developed
in Chapter 6, is applicable in a much broader context than just satellite OTAP. However,
in Chapter 7 we demonstrate empirically that one unique feature of EAGER makes it
particularly well suited precisely for RLNC-based OTAP for satellite formations, allowing
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to achieve efficient and reliable broadcasts with protocols needing only simple feedback
mechanism.

A conclusion is given in Chapter 8 which, together with the usual other back matter
clobber, constitutes the epilogue.
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Part I

Retrieval of Earth Observation Data





Location-Assisted Medium
Access for Terrestrial Nodes

2
„ Gallia est omnis divisa in partes tres, quarum unam

incolunt Belgae, aliam Aquitani, tertiam qui
ipsorum lingua Celtae, nostra Galli appellantur.

— Gaius Julius Caesar
from: Commentarii de Bello Gallico

This chapter is largely based on our own publication “LAMA: Location-Assisted Medium
Access for Position-Beaconing Applications” [3] published as a full paper at MSWiM’19.

TL;DR Two-hop-desynchronizing MAC for navigational-data broadcasts can efficiently be
achieved by using the locally shared navigational data itself to arbitrate channel access.

2.0 Introduction

Many of today’s transportation systems achieve cooperative awareness by means of
wireless beaconing. This includes ETSI ITS/WAVE for road traffic [123, 124], ADS–B
for air traffic [125], and the AIS for maritime traffic [126]. All of these systems share
the common feature that every vehicle periodically broadcasts small wireless beacons
containing its geographical position, along with identification data and other navigational
information. On the one hand these use cases share a set of challenging requirements
for their wireless MAC protocol: the number of participating nodes is potentially large
and distributed over a large area; nodes move, thereby constantly changing the network
topology; all transmissions are link-local broadcasts, limiting the use of handshakes;
successful, collision-free transmissions are safety-critical. On the other hand the use cases
imply that nodes know not only their own position but also their neighbors’ locations.

We propose to explicitly utilize the locally shared knowledge of node positions to resiliently
avoid collisions while requiring only a small constant overhead per beacon. Our protocol
LAMA, a Location-Assisted Medium Access control protocol for beaconing applications,
is especially suited to large-scale cooperative awareness applications. LAMA’s basic idea is
simple: in a slotted time, a distinct random fire position in the plane is assigned to each slot
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by means of a hash of the slot number. For a specific slot, the node whose real position is
closest to the fire position is allowed to use the slot for transmission while all other nodes
must remain silent. Some extensions to this idea that allow for spatial reuse and improve
channel access fairness are also discussed.

LAMA’s advantage lies in the utilization of information that is locally shared between
nodes anyway, as it is required by the primary use case itself. To the best of our knowledge,
LAMA is the first MAC protocol for pure link-local-broadcast communication in dynamic
topologies that achieves two-hop desynchronization, i. e., avoiding collisions also over
longer distance and resolving the hidden terminal problem (HTP), without any neighbor
state forwarding.

We have identified the maritime AIS as a well-fitting use case for the following three
reasons: first, AIS is operated in the VHF band with high transmission power on the high
seas, enabling typical communication ranges over 30 km. This leads to potentially high
neighbor counts. Therefore, the impact of MAC protocol overhead is particularly strong in
AIS, which may prohibit the use of more complex collision avoidance approaches. Third,
due to the absence of large obstacles in the maritime environment, the channel’s radio
propagation properties are well predictable and homogeneous across different regions.
LAMA can likewise constitute an interesting basis in other application areas, where
cooperative awareness and tracking based on beacons is used. This includes, for instance,
Intelligent Transportation Systems (ITS) or air traffic.

In our evaluation, we use large-scale maritime cooperative awareness as the use case and
compare the implementation of our protocol to SO-TDMA, the MAC protocol used by
AIS and therefore the state of the art in that field. In a comparative evaluation performed
using the ns-3 discrete event simulator we show that LAMA outperforms SO-TDMA. The
benefits are clear over a wide range of node densities, both in synthetic random topologies
and for real marine vessel trajectory traces.

The remainder of this chapter is structured as follows. Section 2.1 gives an overview of
the related work, especially discussing various MAC approaches. Our own approach is ex-
plained in detail in Section 2.2. In Section 2.3 we present a detailed performance evaluation
of LAMA in comparison to SO-TDMA. Finally, a conclusion is given in Section 2.4.

2.1 Related Work

MAC protocols for wireless networks have been studied extensively. According to [16],
MAC protocols for wireless networks can be either contention-based, like CSMA, or
contention-free, like time division multiple access (TDMA). In some cases, a mixture of

16 Chapter 2 Location-Assisted Medium Access for Terrestrial Nodes



both is used. The LAMA protocol proposed here is a distributed single-channel pure TDMA
protocol. As LAMA is mainly a slot-allocation mechanism, it can be extended to multiple
(sub-)channels and combined with orthogonal codes; such extensions are beyond the scope
covered here, though.

Since beaconing for the purpose of position awareness is an inherently distributed use
case, we skip the discussion of centralized protocols that rely on a base station, access
point or head node that coordinates medium access of all nodes in range.

Distributed contention-based protocols either require significant additional resources like
DBTMA [17] or suffer from a significant overhead due to control packets [18, 16, 19].
The same holds true for distributed hybrid MAC protocols such as HyMAC [20], which
in addition assumes one or more base station (BS) nodes, acting as a data sink. Static
contention-free MAC protocols that allocate fixed fractions of the resources available to
each node are not applicable to networks of changing topology and unbound size.

Dynamic distributed contention-free MAC protocols typically map the MAC problem to
a dynamic TDMA slot-allocation problem. Some of these protocols have multi-channel
capabilities, i. e., they further divide each time slot in the frequency (frequency division
multiple access, FDMA) or code (code division multiple access, CDMA) domain. In the
Unifying Dynamic Distributed Multichannel TDMA Slot Assignment protocol (USAP) [21]
nodes select unused TDMA slots and once in a while communicate their local slot allocation
view to one-hop neighbors using special control packets in order to achieve two-hop
desynchronization. In PTMAC [22] a similar approach is presented to resolve two-hop
collisions in TDMA in the context of vehicular ad-hoc networks. This comes at the cost of
MAC protocol overhead that scales with the number of neighbors.

Recent efforts to make the two-hop broadcasting of node states more efficient in the
domain of vehicular ad-hoc network use Bloom filters [23]. They still require more
overhead to broadcast Bloom filters than LAMA imposes. The Five Phase Reservation
Protocol (FPRP) [24], as well as Evolutionary-TDMA [127], which uses FPRP for broadcast
scheduling, use a five-way handshake in order to (re-)negotiate a broadcast slot assignment
every time the topology changes. Thereby FPRP is applicable to dynamic, but slowly
changing topologies. Despite the necessity for a significant amount of overhead, the FPRP
mechanism relies on the nodes’ capability to tell apart packet collisions from the absence
of transmissions. This is a strong assumption, especially in a distributed setting. In SO-
TDMA [126], on the other hand, no forwarding of neighbors’ slot reservations is performed,
thereby scaling well for large neighbor counts but suffering from the hidden terminal
problem. LAMA requires neither handshakes nor other kind of control packets or state
forwarding to achieve two-hop desynchronization, thereby generating less overhead.
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Many existing approaches for cooperative awareness beaconing for road traffic in the
absence of cellular network infrastructure are based on IEEE 802.11p or LTE-V2V sidelink
mode 4 [25]. The former uses CSMA/CA and hence suffers severe performance degrada-
tion [26] in high node density settings. LTE-V2V (sidelink mode 4) on the other hand uses
contention-free single carrier FDMA; nodes use Sidelink Control Information messages
for reservation of resources similar to slot reservation in SO-TDMA. Instead of dedicated
control messages, SO-TDMA, used by AIS, includes reservation information in every
beacon header. In our performance evaluation, we compare LAMA against SO-TDMA as
this protocol was designed specifically for small beacon sizes and data rates.

Our proposed MAC protocol LAMA is a distributed dynamic contention-free TDMA slot-
allocation protocol that makes use of the nodes’ locations to negotiate medium access
without the need for explicit slot reservations. LAMA has a considerably small overhead
of 𝑂(log2(# of neighbors)) bits per packet and uses no control, request, or confirmation
packets at all. It does, however, require the nodes to know each other’s locations approx-
imately. In case of a transponder system whose primary goal is to broadcast location
information, this is no overhead at all.

Medium access based on node locations has been used in geographic opportunistic routing,
e. g., [27]. In contrast to LAMA, however, this work targets unicast routing; relative
position information is used for (implicit) forwarder selection, whereas we use absolute
positions for broadcast medium access coordination.

2.2 Location-Assisted Medium Access

2.2.0 Problem Statement

We propose a MAC protocol that is particularly suitable for large-scale cooperative aware-
ness beaconing. Each of a large number of nodes distributed over a wide geographical area
repeatedly broadcasts beacons containing its own navigational data. Each node is equipped
with a radionavigation-satellite receiver providing it with the position information to be
broadcast. Typically, this also provides clock synchronization, the other key ingredient for
TDMA slot alignment. In addition, even though quite uncommon in distributed wireless
settings, energy consumption of the communication system is not assumed to be an issue,
because the vehicle’s engines typically provide electric power on a much larger scale than
what the communication requires.
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In order to provide high quality positional awareness, nodes need to send beacons fre-
quently, providing low-latency position information to their neighbors. At the same time
interference on the wireless channel must be avoided.

2.2.1 The Basic LAMA Protocol

The basic idea of LAMA is to use the nodes’ locations to mediate access to the wireless
medium. This location information is particularly suitable for cooperative position aware-
ness beaconing applications because up-to-date knowledge about neighbors’ locations
is inherent in this use case. LAMA is a single-channel TDMA protocol. Let us for the
moment assume that at all times each node exactly knows all nodes’ positions within a
sufficiently large bounding box.0 For each slot, let there be a so-called fire position: a 2D
position, sampled uniformly from the bounding box, known by all nodes. For a certain
slot, each node draws the same fire position; this can, e. g., be realized by using the same
pseudorandom number generator (PRNG) for sampling the fire positions, or by hashing the
time slot ID to a position. Fire positions for different slots are assumed to be statistically
independent; using a good PRNG or a good hash function serves the purpose.

Using this mechanism, a simple medium access scheme—and the starting point for LAMA—
is the following: A node uses a slot for transmission iff it is closer to the fire position than all
other nodes. If nodes have perfect knowledge about all nodes’ positions, this completely
prevents collisions, because in every slot exactly one node sends. Perfect knowledge about
all other nodes will of course not be given in practice. However, we will see that the
performance degradation caused by typical position inaccuracies is very limited.

A remaining problem with this naïve first protocol is that it prohibits any spatial reuse,
which results in poor channel utilization for networks covering larger areas. Let the length
𝐿 be a parameter that describes the desired distance scale of spatial reuse. Instead of a
single fire position, we assign a set of many fire positions to each slot that are mutually 𝐿
or further apart. To maximize the number of fire positions in each slot, a hexagonal lattice
of edge-length 𝐿 can be used.

A node then selects the lattice point closest to its own position as the slot’s nearest fire
position (np) and uses the slot for transmission if no other node is closer to np. Apart
from enabling spatial reuse, this gets rid of the necessity for a bounding box: the fire
positions can now simply be drawn uniformly at random (UAR) from the lattice’s unit
cell in order to achieve a spatially homogeneous fire-position probability density across
the entire plane. This mechanism can, however, lead to simultaneous transmissions of

0We will soon drop this assumption.
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arbitrarily close nodes: two nodes aware of each other can correctly get different nps
in the same slot, thereby each being closer to its np than the other one and hence both
transmit. To prevent this, we define a base send region around each node’s position and
let a node transmit only if the np lies within this region (in addition to being the nearest
node).

The protocol described so far can suppress most interference while enabling spatial reuse,
once a steady state is reached where each node knows at least its direct neighbors. To
improve bootstrapping and situations where new nodes join the network, nodes skip a
constant fraction of their assigned slots probabilistically. When a node is about to transmit
in a certain slot, it does so with probability 𝑃 a ∈ (0, 1] and listens for unknown nodes
otherwise. New nodes know their own position and therefore do not need any specific
behavior in order to join: they transmit just like any other node when they are closest
to the fire position. This comes with a (small) probability of collisions, but as we will see
is perfectly bearable. Throughout our evaluation we used a value of 𝑃 a = 0.95, which
is sufficient to allow joining of new nodes while at the same time not affecting channel
utilization too much. However, we would like to note that the improved version of the
LAMA protocol, the CAMELAMA protocol that is introduced in Chapter 3, does not use
probabilistic listening in own slots but instead relies on a more sophisticated bootstrapping
mechanism described in Subsection 3.2.2.

Exact definition of the (basic) LAMA protocol A node 𝐴 at position x𝐴 performs the
following steps to decide if it transmits a packet in slot 𝑖:

• It deterministically draws a base fire position p𝑖 from the lattice’s unit cell uniformly
at pseudorandom. All nodes compute the same p𝑖 for the same slot 𝑖.

• p𝑖 defines a hexagonal lattice P𝑖 of fire positions.

P𝑖 = {p𝑖 + 𝑗𝐿 ⋅ (1, 0) + 𝑘𝐿 ⋅ (1
2
,

√
3

2
) ∣ 𝑗, 𝑘 ∈ ℤ }

• From that, it computes its nearest fire position (np):

np𝑖(x𝐴) ≔ argminp∈P𝑖
‖p − x𝐴‖2

20 Chapter 2 Location-Assisted Medium Access for Terrestrial Nodes



Fig. 2.0.: Schematic of the LAMA protocol mechanism. A node uses a slot for transmission only if
a fire position lies within the node’s send region.

• Node 𝐴 sends in slot 𝑖 if all conditions (2.0)–(2.2) hold:

‖np𝑖(x𝐴) − x𝐴‖2 < ‖np𝑖(x𝐴) − x𝐵‖2 ∀ 𝐵 ∈ {other nodes} (2.0)

∣(np𝑖(x𝐴) − x𝐴) ⋅ (cos 𝜃, sin 𝜃)∣ <
𝛼𝐿
2

∀ 𝜃 ∈ {0, 𝜋
3
, 2𝜋

3
} (2.1)

𝑋[0,1) < 𝑃 a (2.2)

where 𝛼 ∈ (0, 1] and 𝑃 a ∈ (0, 1] are parameters of the protocol and 𝑋[0,1) is a uniform
pseudorandom variable with range [0, 1). For a visualization see Fig. 2.0. The first condition
is fulfilled iff np𝑖(x𝐴) is within the node’s Voronoi cell. The second condition is fulfilled iff
np𝑖(x𝐴) is within the node’s base send region, whichwe chose to be a regular hexagonwith
a minimal diameter of 𝛼𝐿, centered at the node’s position. For 𝛼 = 1 the base send region
is the lattice’s Wigner-Seitz cell shifted to the node’s position and thus Condition (2.1) is
always true. For 𝛼 < 1, Condition (2.1) assures that two nodes referring to distinct nps
can only send in the same time slot if they are at least (1 − 𝛼)𝐿 apart. Condition (2.2)
manifests probabilistic listening in own slots. We emphasize that in contrast to the globally
chosen fire position p𝑖, the 𝑋[0,1) of different nodes shall be statistically independent. In
Fig. 2.1 we show a snapshot of an example simulation run of this simple variant of our
protocol we call basic LAMA. This already yields good effective channel utilization and
robustness as shown in Section 2.3.

2.2.2 De-Allocation of Slots

Basic LAMA is a zero-overhead collision-avoiding slot allocation mechanism. No infor-
mation needs to be communicated beyond the node positions, which are the targeted
applications’ primary payload and are therefore exchanged anyway. Despite its efficiency,
basic LAMA can lead to unfair, counterproductive allocation: first, it under-represents
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Fig. 2.1.: Node positions and send regions in basic LAMA. The send regions (light gray) nearly
form a Voronoi diagram of nodes. Only few regions show uncovered gaps (white) and
small overlaps (dark gray).

Fig. 2.2.: Sample lattice of fire positions and the resulting senders in the situation depicted in
Fig. 2.1. The positions of sending nodes approximately replicate the hexagonal lattice
structure.
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nodes that are surrounded by very close neighbors. Second, each node’s transmissions
schedule resembles a discrete Bernoulli process. If the gap between successive beacons of
a node is too short, the second beacon carries only little additional information. If that
gap is too long, the position awareness accuracy suffers because of an increased position
information latency.

We therefore introduce a simple mechanism that allows nodes to de-allocate future slots:
each beacon’s header contains a positive integer 𝑣 that encodes a vow of silence that the
source node will be silent in the following 𝑣 slots. In this extended version of our protocol,
that we call just LAMA, each node keeps track of its neighbors’ silence state and only
non-silent neighbors are considered when evaluating Condition (2.0). As a heuristic which
value of 𝑣 a node chooses to send, we use 𝑣 = 𝜈(𝑘 − 𝛼−2), where 𝑘 is the number of
entries in the node’s neighbor table and 𝜈 is a real-valued protocol parameter. For now, we
can assume 𝜈 = 1. In scenarios of homogeneous node density, a node with 𝑘 neighbors in
range should transmit every 𝑘 + 1 slots on average. The additive term −𝛼−2 is used to
compensate for the bias that arises because a non-silent node needs to wait for the next
transmission at least until a nearest fire position hits into its base send region. Since 𝛼2

is the fraction of base send region area per lattice unit cell area, 𝛼−2 is the expectation
value of the number of slots that a node needs to wait unit a np lies in its base send region.
Even though 𝜈 = 1 is the natural choice to achieve fairness, we will investigate the effects
of this parameter in our evaluation. This mechanism induces a small amount of protocol
overhead as 𝜈 log2 𝑘max bits are needed to encode 𝑣 in each beacon’s header, where 𝑘max

is an upper bound of the number of neighbors a node is anticipated to observe at once.

Moving nodes So far we have not explicitly considered node movement, even though
the main purpose of a beaconing application is to create up-to-date knowledge of moving
nodes’ positions. Every time a node sends a beacon, it includes its current position and
saves this position. When evaluating Eq. (2.0), however, it uses the position it had sent in
its most recent beacon instead of its current position, because its neighbors’ state tables
cannot contain more recent position information.

Non-planar geometry We assumed nodes to be in a flat plane, but vessels are located
on the Earth’s near-spherical surface. A spherical generalization of LAMA is straightfor-
ward, but requires replacing the hexagonal lattice with a maximal set of fire positions,
pseudorandomly drawn for every slot, with a pairwise great-circle distance of at least 𝐿.
While we constrain ourselves to a flat-plane approximation in this chapter, the improved
MAC protocol CAMELAMA that is introduced in Chapter 3 treats node mobility and a fire
position mechanism constrained to the surface of a sphere.
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Forgetting nodes The protocol relies on each node’s neighbor state table and its size.
To prevent the table from growing indefinitely, nodes should delete neighbors from their
table if no beacon was received for a certain amount of time. In our evaluation-based on
real-world vessel movement traces, we experimented with neighbor expiration timeout
values between one and 25 minutes, and found no significant impact on the protocol’s
performance.

2.3 Evaluation

We evaluated LAMA in the setting of AIS and compared it against SO-TDMA, the latter
being the MAC protocol defined in [126] and designed particularly for that use case.

2.3.0 Simulation Setup

We implemented both LAMA and SO-TDMA for the AIS use case in ns-3 [128]. AIS
uses VHF channels modulated in binary GMSK with 9600 bit/s. For TDMA slots of
2

75
s =̂ 256 bit are used. Each position report uses one slot and consists of roughly two bytes

of slot reservation information and 19 bytes for the node’s navigational state, including the
sender ID. The remaining 11 bytes are used for header, trailer, and buffer time. SO-TDMA
nodes explicitly reserve slots 1min to 7min ahead of time, avoiding slots reserved by
other nodes. For further details of AIS and SO-TDMAwe refer to the standard [126]. In our
AIS implementation, we consider only position reports in continuous self-organizing mode
of so-called “Class A” nodes,1 a single channel, and a fixed reporting rate of 30 messages
per minute, to avoid unnecessary protocol complexity that is hardly relevant for a MAC
performance comparison. Our LAMA implementation uses exactly the same payload size
and slot/frame structure; instead of the slot reservation data, the vow-of-silence value 𝑣 is
transmitted.

Packet loss was simulated using the signal-to-interference-plus-noise mechanism of YansEr-
rorRateModel of ns-3, adapted to the characteristics of the maritime VHF channel: a SINR
of 10dB results in a packet error rate (PER) of 20% [126]. For path loss and fading produced
by Earth curvature and sea roughness, a two-log-distance model [28] was used with first
path loss exponent 𝑛0 = 2.6 according to [29] (with 3.75m antenna height, 1.5m sea
surface height, 𝑓carrier = 162MHz) and second path loss exponent 𝑛1 = 4.69 [28] with
transition distance 𝑑1 = 6.22 km yielding a PER of 20% at 20NM (nautical miles) distance.
Following [29], a normal random propagation loss with 𝜎 = 0.65dB was added.

1Class A AIS transceivers are required for large vessels on international voyages.
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To study the effect of different average node densities, we use the random walk with
reflection mobility model, where nodes are confined to a 222 km square box. This is
approximately six times the typical reception range in AIS. Inter-transition times and node
speeds are drawn uniformly from [0, 600 s) and [0, 30m/s) respectively. In the steady
state node positions are distributed uniformly, and the node speed distribution equals the
speed distribution at transitions [30].

We also use real AIS traces of vessels [129] that contain a set of position reports. Based
on the trace of Jun 1st, 2017, 1:00–3:00 pm UTC, we applied a UTM transform to obtain
Cartesian coordinates and cropped it to a 200 km×300 km rectangle to reduce the number
of nodes to ≈ 550. Between resulting waypoints, constant velocities were simulated. To
increase the real traces’ node density, we took a cropped 400 km × 400 km rectangle of
traces with 904 nodes, and scaled time and space coordinates by a factor of 1/2 to increase
node density without reducing the nodes’ speed.

Each measurement was performed with ten ns-3 simulation runs with independently
seeded random number sequences. To shorten the time required for protocol bootstrapping,
we did not start all nodes at the same time, but applied a staggered startup procedure
where one node is added every 4 seconds. After all nodes joined the simulation, plus an
additional initial equilibration period, data was measured for 30 simulated minutes in each
run.

2.3.1 LAMA's Parameters

LAMA has three parameters that may systematically affect its performance: the lattice
spacing 𝐿, the relative size of the base send region 𝛼, and the vow-of-silence scaling
parameter 𝜈. In the following, we explore their effects.

A simple robust performance metric is what we call the effective channel utilization (ECU):
for a node, we defined it as the number of messages that a node received divided by
the number of slots which the node itself did not use for transmission. Fig. 2.3a shows
the channel utilization of LAMA for different values of 𝛼 and different topologies. For
𝛼 ∈ {.3, .5, .7}, the channel utilization varies between 30% and 45% across all topologies
considered. For the best value 𝛼 = 0.7, which we use for the rest of our evaluation, LAMA
outperforms SO-TDMA by a factor of 1.6 to 4.4 in terms of ECU.

We alsomeasured the effective channel utilization of LAMA for values of𝐿 ∈ {20, 30, 40, 50, 60}
nautical miles (NM). The results are given in Fig. 2.3b.

The effective channel utilization of LAMA is maximized for 𝐿 ≈ 40NM which is twice
the maximum transmission range of the simulated model. However, the choice of 𝐿
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(a) Random walk;
different LAMA 𝛼-values with 𝐿 = 40NM vs. SO-
TDMA.

(b) different LAMA lattice
spacings (in NM) with 𝛼 = .5 vs SO-TDMA.

Fig. 2.3.: Effective channel utilization for different parameter sets. Error bars depict 95% confidence
intervals (CIs).

(a) Effective channel utilization for different random
and a real topologies. Error bars depict 95% CIs.

(b) Distribution of nodes’ transmission rates in mes-
sages/second for 800 nodes random walk topology.

Fig. 2.4.: LAMA’s performance depending on the choice of 𝜈; 𝐿 = 40NM and 𝛼 = 0.5 are fixed.
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has little influence on the performance. The robustness of LAMA with respect to 𝐿 is a
beneficial trait of the protocol. In maritime scenarios the transmission range may depend
on environmental factors such as the weather and could vary over time or over different
regions on Earth. Our results indicate that LAMA performs well in terms of effective
channel utilization for a wide range of 𝐿.

In Section 2.2.2 we introduced the vow-of-silence mechanism in order to improve the
transmission rate fairness between nodes, as well as homogenization of inter-transmission
times for each node. In order to quantify these effects, we varied 𝜈 in [0, 1] for an 800-nodes
random walk topology and measured the resulting effective channel utilization and the
distribution of transmission rates. The effective channel utilization (see Fig. 2.4a) shows
no significant dependency on 𝜈, including 𝜈 = 0 which corresponds to basic LAMA. The
distribution of transmission rates however (see Fig. 2.4b) exposes that, as intended, higher
values of 𝜈 reduce the width of the transmission rate distribution by effectively reducing
the occurrence of both very high and very low transmission rates. This indicates that
𝜈 = 1 is appropriate if transmission fairness is desired. This distribution was measured as
follows: for a single simulation run, for every consecutive full minute (after the start-up
phase) we measured every node’s average transmission rate during that minute. Fig. 2.4b
shows the cumulative distribution of these atomic measurements, combined from ten
simulation runs.

2.3.2 Location-Prediction (In-)Accuracy

The goal of cooperative position awareness is to optimize the nodes’ knowledge about each
other’s navigational state. Typically, low-latency mutual knowledge of navigational state
is more important the closer nodes are. Therefore, as an application-oriented performance
metric, we measured the nodes’ position prediction errors as a function of the distance
between two nodes: at a given time 𝑡, we recorded the sequence of tuples

(
𝑑(𝐴,𝐵)

⏞⏞⏞⏞⏞‖x𝐴 − x𝐵‖2,
Δpredict(𝐴,𝐵)

⏞⏞⏞⏞⏞⏞⏞‖x𝐴 − y𝐴(𝐵)‖2 ∣ ∀𝐴 ∈ {nodes} ∀𝐵 ∈ {nodes} ⧵ {𝐴})

where x𝐴 is the true position of node 𝐴 at time 𝑡 and y𝐴(𝐵) is the position of 𝐴 predicted
by node 𝐵 based on the last received message, containing 𝐴’s position and velocity vector,
using linear dead reckoning to extrapolate the position, course over ground, and speed over
ground included in the beacon message received latest. We define Δpredict(𝐴, 𝐵) ≔ ∞
if 𝐵 has never received a message from 𝐴. For a simulation run, we collected these
samples for every ordered pair of nodes once every 7 s. The samples were then binned by
𝑑(𝐴, 𝐵) in consecutive bins of 1 km and for every bin we determined the 50% percentile of
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(a) 1600 nodes random walk. (b) 541 nodes real. (c) 904 nodes scaled real.

Fig. 2.5.: Prediction error median as a function of node distance for LAMA and SO-TDMA in (a)
a 1600 nodes random walk topology, (b) a real topology and (c) a scaled real topology.
Error bars are omitted to avoid visual clutter.

Δpredict(𝐴, 𝐵). A comparison of LAMA@(𝐿 = 50NM, 𝛼 = 0.75, 𝜈 = 1.0) and SO-TDMA
is given for a 1600-node random walk topology (Fig. 2.5a) as well as for the real and scaled
real topology (Fig. 2.5b, 2.5c). In all scenarios and both methods, the median prediction
error appears to be monotonic in the nodes’ distance. It starts with a plateau ranging from
0 to 10NM to 18NM, depending on scenario and protocol, where the prediction error is
< 2m. Each plateau is followed by a steep increase and error medians < 100m are never
observed for distances greater than 20NM corresponding to the reception range of channel
model. In case of the original real topology both protocols achieve a small prediction
error for distances up to approximately 19NM which we explain with a small overall node
density that does not challenge the MAC protocol. In the other scenarios, however, we
observe that the steep increase of the prediction error of SO-TDMA occurs at ≈ 4NM
shorter distances compared with LAMA. The beginning of SO-TDMA’s increase at 10NM
to 12NM matches the fact that two nodes further apart than 20NM are likely unable to
desynchronize their transmissions. Thus, nodes in the middle between them suffer from
HTP-type interference. A comparison for LAMA at different topologies (Fig. 2.6) shows
that an increased node density mainly results in a prediction error curve shifted towards
lower node distances.

2.3.3 Distance of Senders and Interferers

To visualize the effectiveness in avoiding collisions we measured the geographical distance
of the sender to nearest simultaneously transmitting node for each transmission. Small
distances to the next transmitting node are an indication for packet collisions while large
distances indicate poor spatial reuse and therefore a waste of channel capacity. The
cumulative distributions for LAMA @ 𝐿 = {50, 60}NM as well as SO-TDMA in a 400
nodes random topology are given in Fig. 2.7. Themeasurements where recorded over a time
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Fig. 2.6.: Prediction error median as a function of node distance for LAMA in different random
walk topologies as well as real and scaled real topology.

Fig. 2.7.: Cumulative distribution of the distance of each transmitting node to the nearest simulta-
neously transmitting node in a 400 nodes random topology.
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Fig. 2.8.: Average ECU achieved by LAMA with 𝐿 = 40NM depending on emulated node local-
ization error. Error bars depict standard error measured in 10 runs.

of ≈ 14min and a total of 2.4 ⋅ 105 (LAMA, 𝐿 = 50NM) / 1.9 ⋅ 105 (LAMA, 𝐿 = 60NM) /
1.7 ⋅105 (SO-TDMA) transmissions have occurred in total. The corresponding distributions
in case of LAMA are narrower than in case of SO-TDMA; 95% of the distance samples fall
in 28NM to 55NM (𝐿 = 50NM) and 28NM to 64NM (𝐿 = 60NM) respectively. 55% of
SO-TDMA’s transmissions on the other hand where closer than 28NM to the next sender
producing both primary and HTP-type secondary interference, whereas either variant of
LAMA scheduled only 2.5% of the transmissions within that distance range. This shows
that even though LAMA was able to schedule more transmissions in total in the same
time, it performed dramatically better in avoiding simultaneous transmissions of nearby
nodes. As 𝐿 represents the scale of spatial reuse, a distance slightly greater than twice the
achievable or desired maximum transmission range seems appropriate.

2.3.4 Effect of Erroneous (Self-)Localization

So far we assumed perfect knowledge of each node’s own position by means of a ra-
dionavigation device even though, e. g., for GPS positional errors of 1m to 20m are not
uncommon [31]. To quantify the effect of this self-localization error we carried out a series
of simulations with noisy position information: each time a LAMA device queries its
node’s position, it obtains the true position shifted by a pseudorandom noise vector. The
noise vector’s direction is drawn uniformly at random; the magnitude is the absolute value
of a normally distributed variable with mean 0 and standard deviation 𝐴. The resulting
average ECU for noise amplitudes 𝐴 ∈ [1m, 32 km] for 𝐿 = 40NM ≈ 74 km is shown
in Fig. 2.8. No significant effect is observable for realistic localization errors smaller than
1 km.
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2.4 Conclusion

In this chapter we proposed the idea of LAMA, a radically new approach for a contention-
free TDMA MAC protocol that efficiently achieves two-hop collision avoidance with only
a small constant overhead per packet. LAMA is specifically well suited to the use case of
transponder systems which require both short message sizes and high robustness with
respect to topology changes. By combining a deterministic pseudorandom location-based
slot assignment that is hard-coded into the protocol with a highly robust local arbitration
mechanism, we completely circumvent the necessity for two-hop MAC state broadcasting.
This distinguishes our approach from contention-based or contention-free MAC protocols
known so far. The waiving of any state-forwarding makes our protocol inherently scalable
with respect to the number of neighbor nodes as well as with respect to the total network
size and diameter.

In our evaluation, we demonstrated LAMA’s effectiveness to achieve high channel uti-
lization and effective collision avoidance in synthetic random scenarios as well as for
real-world vessel movement trajectories. Compared to SO-TDMA, which is the MAC
protocol of the AIS, our protocol has shown to be superior in terms of position prediction
accuracy as well as all other metrics that we considered. The remaining shortcomings of
LAMA, namely its restriction to topologies that are geographically small enough to be
considered as embedded inℝ2 and its lack of a robust bootstrapping mechanism are, among
other topics, addressed by its successor protocol Cooperative Awareness and spaceborne
Monitoring Enabled by Location-Assisted Medium Access (CAMELAMA) that is presented
in Chapter 3.
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CAMELAMA: Cooperative
Awareness and spaceborne
Monitoring Enabled by
Location-Assisted Medium
Access

3

„Random dude:
Christus war — soviel ich weiß — duldsam. Und
wenn ihm einer widersprochen hat, dann hat er
versucht, ihn zu überzeugen; hat nicht gesagt: „Halt
deine Schnautze“
Kinski:
NEIN! Er hat nicht gesagt „Halt die Schnautze“, er
hat eine Peitsche genommen, UND HAT IHM IN DIE
FRESSE GEHAUEN!

— Klaus Kinski
(Uraufführung „Jesus Christus Erlöser“, 1971)

This chapter is largely based on our own publication “CAMELAMA: Cooperative Awareness
and spaceborne Monitoring Enabled by Location-Assisted Medium Access” [4], published as
a full paper at WONS’22 as well as its extended version [5].

TL;DR Using LAMA’s ability to explicitly adjust the minimum distance between simultane-
ously transmitting nodes, orbital overhearability of navigational data beacon messages can
be improved for a wide range of satellite swath widths without multi-hop propagation of state
in the terrestrial network.

3.0 Introduction

The primary purpose of navigational data beaconing systems such as AIS and ADS–B is
to increase traffic safety by means of mutual cooperative position awareness of nearby
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Fig. 3.0.: Schematic overview: The size of collision domains of terrestrial cooperative awareness
beaconing networks (dashed lines) may be significantly smaller than those corresponding
to LEO-based overhearing of these beacon messages (green cone/circle).

vessels. Nonetheless, it has been found that these messages can be overheard by LEO
satellites to achieve global traffic monitoring [32, 33, 34]. Even though single messages
can be received and decoded in LEO, collisions of multiple simultaneously transmitted
messages are a severe problem in practice, because typical satellite antenna footprints
span multiple terrestrial collision domains [35], as schematically depicted in Fig. 3.0.

In the past, this problem has been studied empirically and by modeling reception proba-
bilities in S-AIS with respect to SO-TDMA, the MAC protocol of AIS that is mandatory
for vessels at the high seas. Recent efforts to improve S-AIS performance were focused
on advanced antenna and receiver design (see Section 3.1). We present an orthogonal ap-
proach and discuss, on the example of AIS, how a MAC protocol for cooperative awareness
beaconing can be designed, if the satellite-reception use case is taken into account.

When assuming a high-gain receiver antenna in LEO with sufficiently small swath, ter-
restrial single-hop collision avoidance would imply good receivability in orbit. However,
wider satellite antenna footprints are favorable for two reasons: first, it enables monitor-
ing a greater surface area per time; second antennas with sufficient gain require greater
antenna sizes not compatible with the size of nano satellites [36]. Two-hop collision
avoidance at the surface on the other hand is not sufficient if a satellite’s collision domain
spans several terrestrial hops.
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In this chapter we propose CAMELAMA, a MAC protocol based on the LAMA idea that is
phy-layer-agnostic in the sense that it is merely a mechanism for the robust, decentral
allocation of discrete units of channel resources (e. g., time slots) to nodes moving on the
Earth’s surface, while employing spatial re-use at appropriate length scales. CAMELAMA
is designed to provide decent terrestrial cooperative awareness beaconing while at the same
time enabling overhearing of beacon messages in LEO, i. e., desynchronizing transmissions
in the corresponding larger collision domains.

One key ingredient for LEO overhearability of terrestrial beacon messages is that simul-
taneously sending nodes have a minimum distance to each other. The ability to set this
minimum distance explicitly is already provided by the LAMA protocol, as can be seen
for example in Fig. 2.7. However, in order to evaluate the performance with respect to
spaceborne traffic monitoring, we changed and extended the LAMA protocol significantly
in the following three aspects, which together result in the CAMELAMA protocol: first,
while the geometrical foundation of the slot assignment mechanism requires nodes to “live”
in a flat euclidean plane (ℝ2) in case of LAMA, we changed that mechanism to nodes on
the surface of the unit sphere (𝑆2) in CAMELAMA, as explained in Section 3.2.1. Second,
naïvely tuning the minimum distance between simultaneously transmitting nodes to the
orbital collision domain size would lead to a severe degradation of terrestrial cooperative
awareness, thereby jeopardizing functioning of the MAC protocol itself. Therefore, CAME-
LAMA includes a straightforward interleaving mechanism introduced in Section 3.2.3 to
afford transmissions intended for both in-orbit and terrestrial reception. Third, for protocol
bootstrapping and to allow new nodes to join the network, LAMA uses a fairly simple
mechanism of probabilistic listening, that is both lavish in terms of channel resources and
yet so ineffective that it requires our simulations to start with a long period of staggered
startup where nodes are carefully added one at a time. To make CAMELAMA more robust,
we added a completely different and much more robust bootstrapping mechanism which
is explained in Section 3.2.2.

This chapter also includes a quantitative empirical evaluation, where we modelled a
large number of terrestrial nodes and a small number of LEO satellites using discrete
event simulation (DES) and compared SO-TDMA with CAMELAMA in terms of orbital
traffic monitoring performance. Our results that are presented in Section 3.3 indicate that
especially for high node density, CAMELAMA significantly improves S-AIS performance.

Apart from that, this chapter contains Section 3.1 about related work regarding in-orbit
reception of AIS beacon messages and a conclusion in Section 3.4.
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3.1 Related Work

The problem of collision-free LEO reception of AIS messages has been studied exten-
sively [37, 38, 36, 39, 40, 41, 42, 130]. In [42, 35] models of the AIS network were developed
to predict the probability of receiving uncorrupted messages in LEO. [38] studies the
impact of the orientation of satellites’ monopole antennas on the receiving performance.
In [37, 39] the performance of actually operating S-AIS missions is discussed. In several
publications including [40, 36] designs of advanced S-AIS receivers are proposed to de-
code messages despite collisions using messages’ differing Doppler shifts and propagation
delays, soft decision decoding and Viterbi decoding, and successive interference cancel-
lation (SIC). Others seek to lower effects of interference using digital beamforming [41].
These approaches take SO-TDMA as given and study and/or improve on the receiving
side. CAMELAMA, in contrast, seeks to improve the medium access itself with respect to
in-orbit receiving. As pointed out in Section 8, we believe that some of these approaches
could be combined with CAMELAMA.While long range AIS [126, Annex 4] adds additional
channel resources with the intent of satellite-based monitoring, it has no mechanism to
desynchronize transmissions over multiple terrestrial transmission ranges.

Given that a LEO satellite’s field of view (FoV) spans several SO-TDMA organized areas [34],
the medium access pattern of vessels in distant organized areas looks approximately like
random access. Several wireless random accessMACprotocols that handle packet collisions
using interference cancellation have been described [43]. Examples include slot-less access
schemes by means of ZigZag decoding [44], but also the slotted flavor using the paradigm
of coded random access [45] or generalizations thereof [46]. It is useful to counter the
HTP [44], and is especially useful in situations where any sort of feedback is expensive,
e. g., in device-to-device broadcast communication [47]. What these approaches have in
common is the idea to introduce redundancy by spreading a transmission in time into
multiple replicas of the same packet, either proactively or as the result of a retransmission
mechanism. Decoding can then use this redundancy to iteratively extract information from
collided transmissions, starting with a single non-collided transmission or part thereof.
Like CAMELAMA, these protocols target the goal of feedback-less measures countering
collisions of packets from hidden nodes. But the feedback-less subset of these SIC-based
protocols lacks the ability to adapt transmission rates as it is needed for traffic beaconing
scenarios where node densities change over time by orders of magnitude. Our approach
guarantees a configurable upper limit of simultaneous transmissions per covered area.

With LT-MAC [48] and LBTM [49], other location-based TDMA protocols have been
proposed. LT-MAC is designed for to-base-station unicasts whereas LBTM’s goal is to
reduce overhead of ACKs. As neither unicasts nor ACKs are needed for cooperative
awareness, these approaches do not seem relevant in our context.
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CAMELAMA re-uses some core ideas of the previously proposed protocol LAMA [3] and
extends the protocol towards applicability for space-borne global trafficmonitoring. LAMA
is restricted to geographically confined networks whose topologies could be approximated
in the Euclidean plane. CAMELAMA models a topology embedded on the unit sphere,
enabling application of the protocol on a planetary scale. Where LAMA uses a simple hack
to allow protocol bootstrapping and entry of nodes into the network that sacrifices channel
resources for simplicity, CAMELAMA comes with a more robust mechanism. Finally,
CAMELAMA can be adjusted to the aforementioned dual use as opposed to LAMA.

3.2 The CAMELAMA Protocol

3.2.0 Problem Statement

The protocol that is developed in this chapter is an extension of the LAMA MAC protocol
from Chapter 2 not only in the sense that it is built around the same location-assisted slot
allocation mechanism but also in the sense that one of CAMELAMA’s two purposes is
robust low-overhead MAC for high-seas vessel position beaconing applications. Therefore,
the assumptions made in Section 2.2.0 apply here as well. In this chapter we add the
secondary goal of in-LEO receivability of a significant share of these beacon messages in
order to enable global traffic monitoring applications.

Our goal is to schedule fair and frequent transmissions of the vessels to achieve both:
good cooperative position awareness between the vessels on the ground, and high packet
reception rates for over-passing LEO satellites. However, we assume that nodes are not
aware of the orbital elements or merely the number of overhearing satellites in orbit. To
limit protocol complexity we also abstain from any active participation of the receiving
satellite(s), i. e., we assume that the satellites are silent observers who do not influence the
medium access protocol and are unknown to the sending nodes.

3.2.1 The (CAME)LAMA Slot Assignment Mechanism for Nodes on
the Surface of a Sphere

The CAMELAMA slot assignment mechanism works similar to the mechanism used by
LAMA: in every time slot 𝑖, a node 𝐴 determines a set 𝐹𝑃𝑖 of slot fire positions and
computes its nearest fire position np𝑖 ∈ 𝐹𝑃𝑖 that is nearest to its own position x𝐴. The
set 𝐹𝑃𝑖 depends deterministically and pseudorandomly on the slot number 𝑖 so that all
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nodes agree on the same set 𝐹𝑃𝑖. Node 𝐴 sends in slot 𝑖 if all of the conditions (3.0)–(3.2)
hold:

dist(np𝑖,x𝐴) < dist(np𝑖,x𝐵) ∀ 𝐵 ∈ {other nodes} (3.0)

dist(np𝑖,x𝐴) < 𝑟max (3.1)

node 𝐴 is not in silent state (3.2)

where the radius 𝑟max of the base send region is a parameter of the protocol. While the
“base send region” in LAMA was a hexagon around each node’s position, it is simply an
open ball centered at the node’s position in CAMELAMA. Setting its radius 𝑟max to half
the typical reception range of CAMELAMA messages implies that two nodes’ base send
regions overlap only if they are likely to be mutually aware of each other’s positions.
The mechanism by which nodes become silent for a certain time span is exactly the de-
allocation mechanism used in LAMA and described in Section 2.2.2. LAMA’s probabilistic
listening mechanism is not used in CAMELAMA, as we explain in Section 3.2.2.

The main difference between LAMA and CAMELAMA lies in the domain used to model the
nodes’ positions and therefore in the geometrical nature of the fire position mechanism.

The LAMA protocol relies on a lattice (in ℝ2) of fire positions to assign slot allocations that
satisfy the desired constraints regarding minimum distance of simultaneously sending
nodes as well as channel utilization. This hexagonal lattice, being a subset of ℝ2, cannot
be applied globally to scenarios where the nodes’ positions are in first order confined to a
sphere, as it is the case for vessels moving on the Earth’s oceans (ignoring Earth’s flattening
for a moment). To find an analogous instrument for the pseudorandom assignment of fire
positions on the sphere, let us look at first at the properties of the hexagonal lattice that
make it a viable choice for the fire position assignment in planar LAMA.

0. For an explicitly given parameter 𝐿, every pair of lattice points is at least 𝐿 apart.

1. Using a random displacement (i. e., translation drawn uniformly at random from the
lattice’s primitive cell), the areal probability density function of fire positions in a
random time slot can be made constant.

2. Out of all subsets of ℝ2 satisfying property (1), the hexagonal lattices with parameter
𝐿 have the highest density of points (i. e., packing density).

3. It is computationally cheap to determine the lattice point that is closest to a given
point in ℝ2.

We note that only the first two properties are required for LAMA to function. The third
property has an influence on the achievable channel utilization whereas the fourth property
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has no impact on LAMA’s performance regarding the metrics we evaluated so far, but
seems favorable for the protocol’s implementation on embedded hardware as well as for
the computational demand of the simulations we use to evaluate LAMA.

We propose a mechanism that we call Randomly Oriented Approximative Tammes Sets
(ROATS) to assign fire positions in CAMELAMA, i. e., for the LAMA protocol for nodes
“living” on a spherical world. Let us from now on assume that in CAMELAMA all nodes’
positions are elements of the unit sphere 𝑆2 = {x ∈ ℝ3 | ‖x‖2 = 1}. Just as in planar
LAMA, the fire positions shall be a subset of the same domain the nodes live in. We want
to define the distance between two points in 𝑆2 as the length of the geodesic between them
or, equivalently, the angle between the first point, the origin, and the second point. We
could as well have used the Euclidean distance in the embedding ℝ3 𝑑ℝ3(x,y) = ‖x − y‖2

because the distance 𝑑𝑆2
uniquely depends on 𝑑ℝ3 strictly monotonically:

𝑑𝑆2
(x,y) = 2 arccos(1 − 𝑑ℝ3(x,y)

2
)

For a given 𝐿 ∈ (0, 𝜋), let 𝐹 ⊂ 𝑆2 be a set of points that are mutually at least 𝐿 apart:

∀x ∈ 𝐹𝑃𝑖, y ∈ 𝐹𝑃𝑖, x ≠ y ∶ 𝑑𝑆2
(x,y) ≥ 𝐿 (3.3)

We call 𝐹 the base fire positions set. In planar LAMA, the base fire positions set was a
hexagonal lattice and the set of fire positions for a specific time slot is defined as the base
fire positions set shifted (i. e., translated) by a pseudorandomly chosen displacement vector
v. Likewise in CAMELAMA, a rotation 𝑅𝑖 ∈ 𝑆𝑂(3) is drawn uniformly at pseudorandom
for each time slot 𝑖. The fire position set of slot 𝑖 is then defined as 𝐹𝑃𝑖 = {𝑅𝑖x ∣ x ∈ 𝐹}.
Hence, 𝐹𝑃𝑖 satisfies the same pairwise-distance constraint (3.3) as 𝐹 does. In addition, if
𝑅𝑖 was drawn uniformly at random from 𝑆𝑂(3), the fire positions’ probability density
function would be constant on 𝑆2, implying that a node’s retransmission rate does not
depend on its absolute position but only on its position relative to other nodes.

So far we have not discussed how to choose 𝐹 out of the many sets satisfying (3.3). In
order to achieve a good channel utilization, the cardinality of 𝐹 should be maximized.
The problem how to place as many points as possible on a sphere while satisfying (3.3) is
closely related to the Tammes problem [50]:

For a given number 𝑘 ∈ ℕ, what is the maximum distance 𝐿 such that there exists a set
𝐹 ⊂ 𝑆2 satisfying (3.3)? And how can such a set be described?

Unfortunately, exact solutions of the Tammes problem are currently only known for values
𝑘 ≤ 14 [51].
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Most, if not all, state-of-the-art approaches to compute approximations to the Tammes
problem for 𝑘 > 14, as pointed out in [51], are numerical methods that place 𝑘 particles on
the sphere in randomly or systematically computed initial positions, assume a repulsive
conservative force and then relax the system using simulated annealing, genetic algo-
rithm, steepest descent methods, or other generically applicable optimization strategies.
However, it turns out that numerical approximative approaches result in point sets with
little regularity, which means that an implementation of LAMA would need to store the
coordinates of all points of 𝐹 explicitly. In addition, finding the closest point 𝑓 ∈ 𝐹 for a
given location x ∈ 𝑆2 either costs 𝑂(|𝐹 |) time when using exhaustive search or requires
an additional data structure to facilitate nearest-point search.

Let us use the parameterization (3.4) of 𝑆2 where 𝜃 is called latitude and 𝜑 is called longitude
as it is common for geographical problems.

𝑥 = cos 𝜃 cos𝜑 𝜃 ∈ [−𝜋
2
, 𝜋

2
]

𝑦 = cos 𝜃 sin𝜑 𝜑 ∈ [0, 2𝜋)

𝑧 = sin 𝜃

(3.4)

For the sake of simplicity of implementation we decided use base fire positions sets where
the 𝑘 elements are arranged in a small number (approximately 𝑂(

√
𝑘)) of layers; the points

in each layer have the same latitude and are equidistant in longitude. Such sets are entirely
described by

• 𝑁layers, the number of layers

• (𝜃0, … , 𝜃𝑁layers−1), the layers’ latitudes

• (𝑛0, … , 𝑛𝑁layers−1), the number of points in each layer

• (Δ𝜑0, … , Δ𝜑𝑁layers−1), a longitude offset for each layer

𝐹 is then constructed from these parameters by (3.5).

𝐹 ≔
𝑁layers−1

⋃
𝑖=0

{(𝜃𝑖, Δ𝜑𝑖 + 2𝜋 𝑗
𝑛𝑖

)|𝑗 ∈ [0, 𝑁layers)ℤ} (3.5)

A naïve choice for these parameters would be (3.6) where adjacent layers are exactly 𝐿
apart in latitude and in each layer there are as many points as possible such that points
inside a layer are mutually at least 𝐿 apart (see Fig. 3.1a).
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(a) Naïve packing.

(b) Greedy staggered by-latitude layering.

Fig. 3.1.: 𝐿 = 𝜋/17 examples of naive (a) and greedy staggered by-latitude layering (b). The
centers of the disks are located at (𝜃, 𝜑) = (𝜃𝑖, Δ𝜑𝑖 + 2𝜋 𝑗

𝑛𝑖
). The disks are shown with

spherical radius 𝐿/2, so that the centers of two non-intersecting discs have a distance
not smaller than 𝐿. Note that even though (a) might look denser, there are more disks
placed on (b).
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𝑁layers = 1 + ⌊ 𝜋
𝐿

⌋

𝜃𝑖 = (𝑖 + 1−𝑁layers

2
)𝐿

𝑛𝑖 =

⎧{{{
⎨{{{⎩

⎢⎢⎢⎢
⎣

𝜋

arcsin(
sin 𝐿

2

cos 𝜃𝑖
)

⎥⎥⎥⎥
⎦

if 𝜋
2

− |𝜃𝑖| ≥ 𝐿
2

1 else

Δ𝜑𝑖 ≡ 0

(3.6)

Improved Layering

We use a slightly better (in terms of number of points placed for a given distance 𝐿) set of
parameters that is generated by an algorithm we call greedy staggered by-latitude layering.
Since we are not aware of an explicit formula of the resulting parameter values, we provide
pseudo-code of the algorithm in Listing 3.0.

The algorithm can be summarized as follows: Initially the equator is filled with many points
so that neighboring points are less than 2𝐿 apart. To populate the Northern Hemisphere,
a new layer is always added as close to the equator as possible. A new layer has the
same number of nodes as the last layer, if possible, or half that number otherwise. Using
𝑘 2⌊log2(2𝜋/(𝑘𝐿))⌋ equatorial points with 𝑘 ≤ 7 ensures that consecutively halving this
number results in a sequence of integers until the pole is reached. If there is enough
place of a single last point at the pole, it is also added. When the Northern Hemisphere is
full, the southern hemisphere is populated analogously, starting with a layer that touches
the equatorial layer and potentially the adjacent layer of the Northern Hemisphere. A
visualization of the key concepts is given in Fig. 3.2. This algorithm results in a set of
points 𝐹 that are mutually at least 𝐿 apart for given parameters 𝐿 and 𝑘. Since we are free
to choose 𝑘 in order to maximize |𝐹 | for given 𝐿, we compute 𝐹(𝐿, 𝑘) for 𝑘 ∈ {1, 3, 5, 7}
and use the value of 𝑘 that maximizes |𝐹 |. Larger values of 𝑘 could have been used as well
but rarely result in larger point numbers |𝐹 |.

Finally, we want to note that computation time required to compute 𝐹 is by no means
performance-critical, because it needs to be done only once while establishing protocol pa-
rameters for a specific protocol instantiation. The sequence of tuples (𝜃, 𝑛, Δ𝜑)0, … , (𝜃, 𝑛, Δ𝜑)𝑁layers−1

is hardcoded into the protocol.
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0 function layer_parameters(𝐿)
1 return max# points{ layer_parameters_inner(𝐿, 𝑘) ∣ 𝑘 ∈ {1, 3, 5, 7} }
2 function layer_parameters_inner(𝐿, 𝑘)
3 𝑁layers ← 1
4 𝜃0 ← 0 ⎫}}

⎬}}⎭

place first layer on equator5 Δ𝜑0 ← 0
6 𝑛0 ← 𝑘 2⌊log2(2𝜋/(𝑘𝐿))⌋

7 𝑛 ← 𝑛0
8 while 𝑛 ≥ 𝑘 do
9 𝑈 ← ([0, 𝜋

2
] × [0, 2𝜋)) ⧵ (⋃𝑁layers−1

𝑖=0 ⋃𝑛𝑖−1
𝑗=0 𝐵𝐿(𝜃𝑖, Δ𝜑𝑖 + 𝑗2𝜋

𝑛𝑖
))

10 𝐶 ← min𝜃 𝑈
11 (𝜃, 𝜑) ← min𝜑 𝐶
12 while dist𝑆2

((𝜃, 0), (𝜃, 2𝜋/𝑛)) < 𝐿 and 𝑛 ≥ 𝑘 do
13 𝑛 ← 𝑛

2

14 if 𝑛 ≥ 𝑘 then
15 𝑁layers ← 𝑁layers + 1
16 𝜃𝑁layers−1 ← 𝜃
17 Δ𝜑𝑁layers−1 ← 𝜑
18 𝑛𝑁layers−1 ← 𝑛

19 if 𝜃𝑁layers−1 + 𝐿 ≤ 𝜋
2
then

20 𝑁layers ← 𝑁layers + 1
⎫}}}
⎬}}}⎭

add point at pole21 𝜃𝑁layers−1 ← 𝜋
2

22 Δ𝜑𝑁layers−1 ← 0
23 𝑛𝑁layers−1 ← 1

24 Fill southern hemisphere analogously to lines 7 through 23.
25 Simultaneously sort (𝜃), (𝑛), and (Δ𝜑) such that (𝜃) is monotonically increasing.
26 return (𝑁layers, (𝜃), (𝑛), (𝜑))

Where 𝐵𝐿 is the open ball with respect to the spherical distance:
𝐵𝐿(𝜃, 𝜑) ≔ {𝑝 ∈ [−𝜋/2, 𝜋/2] × [0, 2𝜋) ∣ dist𝑆2

(𝑝, (𝜃, 𝜑)) < 𝐿}

Listing 3.0.: The algorithm by which the parameters of greedy staggered by-latitude layering are
computed.
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(a) The equator (blue, 𝑖′ = 0, lines 3–6) and two more layers are shown. 𝑈 (line 9), the subset of the Northern
Hemisphere that is at least 𝐿 apart from every point added so far, is drawn gray. Its southernmost points
𝐶 are marked with red dots.

(b) A new layer (yellow, 𝑖′ = 3) was added (lines 15–18). Since adding every red dot would have led to
overlapping discs (dashed circles), the number 𝑛 of points per layer needed to be halved (lines 12, 13).

Fig. 3.2.: A visualization of layer_parameters_inner(𝐿 = 𝜋/17, 𝑘 = 1) in Listing 3.0 while
layers are added to the Northern Hemisphere. Layer indices 𝑖′ are changed by sorting
(line 25) before the algorithm returns.
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Fig. 3.3.: Packing efficiency of naïve and improved layered fire position sets. Naïve packing seems
to approach 𝜋

4
for small 𝐿 whereas improved layered packing achieves densities around

0.85 for the range of 𝐿 we employ in our evaluation, which is approximately 7% smaller
than the upper bound [53] 𝜋

√
12

.

Packing Density

We evaluate the achievable cardinality of the different point packing strategies in terms
of their densities [50], i. e., the total area covered by spherical caps of radius 𝐿/2 at each
point of 𝐹 divided by the area of the unit sphere (3.7).

𝐷𝐿/2(𝐹) =
|𝐹 |(1 − cos 𝐿

2
)

2
(3.7)

In ℝ2 the packing efficiency2 of the square lattice is 𝜋/4 whereas the optimal packing
efficiency of 𝜋/

√
12 is achieved by the hexagonal lattice [52]. A comparison of the

packing efficiencies of both layered approaches that we consider is plotted in Fig. 3.3 for
𝐿 ∈ [20/6371, 2000/6371] (corresponding roughly to 20 km – 2000 km distance on our
Earth).

Nearest point lookup

A CAMELAMA node needs to determine its nearest fire position in every slot, i. e., the
element of 𝑃𝐹𝑖 that has the smallest distance to x, the last own geographical position it
transmitted in a beacon message.

2For infinite lattices a packing efficiency can be defined in terms of disk-coverage of their primitive cells.
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In a first step, this problem is reduced to the problem of finding the point 𝑓 ∈ 𝐹 that is
nearest to x′ ≔ 𝑅−1

𝑖 x:

𝑓 ≔ min
dist(⋅,𝑅−1

𝑖 x)
𝐹

⇒ 𝑅𝑖𝑓 = min
dist(⋅,x)

𝐹𝑃𝑖

because distance is invariant under rotations. In our implementation, the layer parameters
(𝜃, 𝑛, Δ𝜑)0, … , (𝜃, 𝑛, Δ𝜑)𝑁layers−1 are stored in an array, sorted by values of 𝜃.

The point of layer 𝑗 ∈ [0, 𝑁layers)ℤ that is closest to x′ is simply the longitudinally closest
point given by (3.8).

𝜃(𝑓𝑗) = 𝜃𝑗

𝜑(𝑓𝑗) = Δ𝜑𝑗 + ⌊
1
2

+
(𝜑(x′) − Δ𝜑𝑗) ⋅ 𝑛𝑗

2𝜋
⌋ ⋅

2𝜋
𝑛𝑗

(3.8)

Even though one could search exhaustively through all layers to find 𝑓, we found empiri-
cally that the approach described in Listing 3.1, which searches only in a much smaller
subset of layers, is significantly faster, despite yielding the same result.

0 function find_nfp(x′)
1 𝑗 ← ⌊𝑁layers ⋅ (1

2
+ 𝜃(x′)

𝜋
)⌋

2 while 𝑗 ≥ 0 ∧ 𝜃𝑗 > 𝜃(x′) do
3 𝑗 ← 𝑗 − 1
4 while 𝑗 + 1 < 𝑁layers ∧ 𝜃𝑗+1 ≤ 𝜃(x′) do
5 𝑗 ← 𝑗 + 1
6 return 𝑓𝑘 nearest to x′ according to (3.8) for 𝑘 ∈ [𝑗 − 2, 𝑗 + 3]ℤ

Listing 3.1.: An algorithm to compute the point 𝑓 ∈ 𝐹 nearest to a given point x′ without
exhaustively iterating over all layers.

3.2.2 CAMELAMA's Bootstrapping Mechanism

One of the worst properties of the LAMA protocol is its hostility with respect to new nodes.
In basic LAMA, nodes that join the network are only allowed to transmit within the slots
that where previously assigned to their nearest neighbors. In order to let a node introduce
itself to its neighbors, we used the mechanism of probabilistic listening in own slots. But
this mechanism looks rather like a naïve hack in an otherwise elegant protocol:

• It reduces the channel utilization by a constant factor.
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• It does not allow nodes to enter the network without intentionally creating packet
collisions.

• It does not work at all if too many nodes enter the network simultaneously within a
small geographical area.

Because of the last point, we needed to use a long-stretched staggered startup procedure
in the simulations of our evaluation. In scenarios that we simulate to study overhearing
by satellites we needed to go to sizes of several thousand nodes per simulation, leading to
staggered startup periods of hours of simulated time, while the actual satellite overflight
periods and therefore the measurement time that we are interested in are in the order of
minutes per satellite.

Roughly speaking, CAMELAMA’s bootstrapping works as follows:

• Before entering the regular state, where the CAMELAMA protocol mechanism
controls medium access, a node enters an introductory state where it sends only
introductory messages.

• The payload of introductory messages is identical to regular messages, except that
they are flagged as introductory using a special value 𝑣 = 216 − 1. They are
interpreted as 𝑣 = 0 and as requesting an acknowledgment from the nearest regular-
state node.

• Introductory messages are sent probabilistically with a small probability 𝑝tx and in
an anti-LAMA pattern with respect to fire positions, i. e., only if the node’s nearest
fire position is more than 𝑑intro

min away. 𝑑intro
min is a threshold parameter that we set to

𝐿/2.

• A node transitions from introductory state to regular state if it receives an ACK
message, meaning that its nearest regular-state neighbor node has successfully
received one introductory message.

• If a regular node is requested to transmit ACK messages, it uses a share of its slots
to transmit ACK messages, i. e., a share of the slots that are assigned to it by the
regular CAMELAMA mechanism. An ACK message is simply bit-by-bit the exact
same message it acknowledges, except for the field 𝑣 whose value is replaced with
𝑣 = 216 − 2 to flag it as an acknowledgment.

• Nodes in regular state do not perform any probabilistic listening.

The idea behind this is simple: in introductory state, nodes transmit only in slots where
the nearest transmitting regular node is most likely far away. Therefore, an introductory
message is received by the nearest neighbors with a high probability. To avoid multiple
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nearby introductory-state nodes to transmit simultaneously, they “play slotted ALOHA”
on top, i. e., even in slots where the nearest fire position is sufficiently far away, a node
draws a pseudorandom number to decide whether to send or not.

The ACKmechanism ensures that an introductory-state node switches to regular state only
if at least one of its messages was received by its nearest neighbor. LAMA’s protocol state
machine is shown in Fig. 3.4. If we required every node to receive an ACK message from
a regular-state node to enter the regular state, no node could ever be the first one to do
that. We therefore added second path to regular state, where nodes without a regular-state
neighbor within their base send region enter regular state after a fixed number (𝑁 tx,max

alone )
of transmissions. Considering only nodes within the base send region here is justified
by the following argument: if there is no regular-state node inside the base send region,
then a neighborhood of non-vanishing area around the node’s position is outside every
regular-state node’s base send region, meaning that no nearby regular-state node may
transmit if the np falls into that area.

This bootstrapping algorithm takes three new parameters:

1. 𝑑intro
min , the minimum distance from the fire position needed to transmit an introduc-

tory message. In the perspective of a certain node, we term such slots introductory
slots.

2. 𝑝tx, the transmission probability in introductory state.

3. 𝑁 tx,max
alone , the number of introductory messages need to be sent for nodes that are

alone.

Compared with the single parameter that probabilistic listening requires, this seems to
worsen the situation in terms of protocol complexity. But these parameters affect the
bootstrapping phase only, in contrast to 𝑃 a, which also affects regular operation in the
long term.

With a large distance 𝑑intro
min , the anti-LAMA condition dist(self,np) > 𝑑intro

min ensures that
the nearest fire position, i. e., the position where the nearest regularly transmitting node
is probably located, is sufficiently far away and should therefore be as large as possible.
If it is too large, however, the area fraction of the sphere that is more than 𝑑intro

min apart
from any fire position is small or even vanishes. We therefore set it to the most obvious
choice of 𝐿/2 which is equal to the largest radius for which open spheres around every
fire position do not intersect. With our Tammes-set coverage around 84% approximately
every 7th slot is on average a candidate for introductory messages. If we choose 𝐿 equal
to or larger than twice the typical 50%-rx-probability range, an introductory-state node
transmits only in slots where the nearest sender is likely to be beyond this range.

48 Chapter 3 CAMELAMA: Cooperative Awareness and spaceborne Monitor-
ing Enabled by Location-Assisted Medium Access



Fig. 3.4.: State machine of CAMELAMA’s introductory state used for robust bootstrapping.
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Fig. 3.5.: Plot of𝐺 𝑒−𝐺. Choosing 𝑝tx too small, implying𝐺 below its optimal value, leads to a linear
decrease of channel utilization whereas choosing 𝑝tx too high leads to an exponential
drop-off.

The number 𝑁 tx,max
alone of introductory messages that need to be sent for ACK-less initial-

ization was set to 3 by us. We did not try different values because 3 worked fine and
because this parameter only affects the very first few of nodes switching to regular mode
anyway.

The transmission probability 𝑝tx for introductory messages is the only parameter that lacks
an obvious or well-justified value to choose. Intuitively one can assume that it should be
adapted to approximately the number of nearby simultaneously introducing nodes, but this
number is highly scenario-dependent and therefore cannot be a property of the protocol.
When we consider a group of 𝑁 nodes mutually less than 𝜖 apart, where 𝜖 ≪ 𝐿, so that
the anti-LAMA condition is roughly equivalent for all 𝑁 nodes, the per-slot probability
that exactly one of these nodes transmits at a time is given by (3.9), a plot of which is
shown in Fig. 3.5.

𝑃(1 out of 𝑁 nodes transmitting) = 𝑁𝑝tx(1 − 𝑝tx)𝑁−1 (3.9)

=
𝐺

1 − 𝑝tx
(1 − 𝐺

𝑁
)

𝑁
with 𝐺 ≔ 𝑝tx𝑁

𝑁→∞
−−−−→
𝐺 const

𝐺 exp(−𝐺)

As this probability 𝐺 𝑒−𝐺 is maximized for 𝐺 = 1, i. e. 𝑝tx = 𝑁−1, and decreases linearly
for 𝑁 ≪ 1

𝑝tx
but exponentially for 𝑁 ≫ 1

𝑝tx
, it is favorable to overprovision by choosing

1
𝑝tx

to be much higher than the highest expected numbers of 𝑁. For a given node-density 𝜌,
the number of nodes contending for the same set of anti-LAMA-slots is upper bounded by
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𝜌𝜋𝐿2

4
. The densest scenarios we considered in our evaluation are 1600 nodes in 14 400NM2.

For our experiments we chose 𝑝tx = 10−2 which worked fine.

Since the simultaneous start of all protocol nodes is rather an artifact of our simulation-
based experiments than a common situation in practice, we abstained from quantitative
evaluation of the bootstrapping algorithm’s performance. Instead, we substituted prob-
abilistic listening with the new bootstrap algorithm and adapted the time-framing in
our evaluation: we started simulations without staggering node startup and dynamically
adjusted the equilibration time that was excluded from measurements to end two minutes
after the last node reached regular state. Once all nodes in a simulation are in regular state,
introductory messages are never sent anymore and the whole bootstrapping mechanism
becomes effectless for the rest of the simulation. The mere fact that this mechanism
successfully bootstrapped the protocol in each simulation that we conducted, ipso facto is
a strong empirical argument for it to be sufficient for its very purpose.

A Note on Loss of Mutual Awareness We suppose that even after bootstrapping, when
every node is in regular state and aware of its nearby nodes, there is a small but finite
probability that this state of mutual awareness deteriorates due to packet losses. This
probability may also be increased by maliciously behaving nodes that jam the channel or
even transmit spoofed packets in order to evoke a denial of service.

For reasons discussed in Section 3.2.2 the LAMA protocol is not able to recover from such a
loss of mutual awareness. We have briefly verified this assumption using a small jamming
experiment (simulation), where we applied a jam signal until the neighbor tables of all
nodes where emptied.

Security considerations in general and denial-of-service (DOS) mitigation in particular
are beyond the scope of this work. Nevertheless, we want to state some ideas how this
problem could be tackled:

1. So far we assumed that from a protocol perspective, a LAMA controller can only
receive a message in a slot or not. If it listens in a slot and no packet is received, it
cannot tell the difference between no node on Earth transmitting and a hundred
nodes all 10m away transmitting simultaneously. Modern receivers, however, are
able to report a received signal strength indicator (RSSI) to the host systemwhich can
then be used to discriminate message collisions of two or more nearby nodes from
messages transmitted too far away. LAMA nodes could then fall back to introductory
mode if a certain threshold of the average number of slots with nearby-collisions is
exceeded.
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2. Evenwithout RSSI, a breakdown ofmutual awareness could be detected by inspecting
the neighbor table only. An empty or near-empty neighbor table means that either
the mutual awareness has deteriorated and practically every packet collides with
nearby messages or the node is literally alone in its area. In the former case, falling
back to introductory state would help the system of all nodes recover to a mutually
aware state. In the latter case, medium access is practically trivial as there are no
potential receivers anyway.

We re-emphasize that these are only ideas to mitigate a hypothetical problem. We neither
implemented nor tested these ideas, because in our evaluation we were never confronted
with the problem of deteriorating mutual awareness of nearby nodes.

3.2.3 Terrestrial Cooperative Awareness and Orbital Overhearing

In case of vessel safety at the high seas, broadcasting navigational data serves both the
primary goal of pure terrestrial cooperative awareness, and the secondary goal of global
surveillance through overhearing by LEO satellites. We have already discussed that
good spatial reuse and therefore high channel utilization for terrestrial reception can be
achieved when the distance between nearest simultaneous senders is approximately twice
the typical maximum of terrestrial transmission range. Unfortunately, this pattern of
spatial reuse is counter-productive for orbital overhearing, if it generally leads to multiply
nodes transmitting simultaneously within the satellite’s receiving antenna main lobe (see
Fig. 3.0). To solve this problem, we use two base fire positions sets, one with a small
value of 𝐿 that is optimized for terrestrial transmissions and the other with a much larger
parameter 𝐿 for orbital overhearing. These base fire position sets are applied in a simple
fixed interleaving pattern: given an integer protocol parameter 𝑁orb, the finely granular
base fire position set is used in terrestrial slots 𝑖 ≡ 0 (mod 𝑁orb + 1) (where 𝑖 is the
integer slot number) while the coarsely granular base fire position set is used in all other
slots (from here on called orbital slots). Bootstrapping packets, i. e., introductory and
acknowledgment messages, are restricted to terrestrial slots only. Achieving channel
access fairness in orbital slots usually requires much larger values of 𝑣 than in terrestrial
slots, because if fewer nodes can transmit simultaneously then each node transmits less
frequently. In order to handle this appropriately, each vow of silence applies only to the
type of slots it was transmitted in. In our implementation, each node does not only count
up total slot numbers in order to generate pseudorandom fire positions and determine the
slot type, but also counts up per-type slot numbers 𝑖ter and 𝑖orb satisfying 𝑖ter + 𝑖orb = 𝑖
that are used only for the vow-of-silence fairness mechanism. For a visual overview, see
Fig. 3.6.
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Fig. 3.6.: Interleaving of slot types (terrestrial/orbital) in CAMELAMA. In terrestrial slots, a base-
fire-position set with 𝐿 smaller than in orbital slots is used. The slot types and -numbers
are hardcoded into the protocol and therefore synchronized for all nodes. In addition,
an example of the semantics of the vow-of-silence field 𝑣 of two transmissions of a
hypothetical node “123” is given. 𝑣 refers to per-type slot-numbers and affects slot-
assignment only within the same slot type. Slots in which node 123 cannot send due
to the vow-of-silence mechanism are greyed out. Note that the base-fire-position sets
shown in the figure are both drawn with 𝐿 much greater than in the evaluation. The slot
numbers and slot types are not part of a transmission’s payload as they can be inferred
from the time of reception.
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Fig. 3.7.: Vessel mobility and satellite ground tracks of a 1500 nodes run.

3.3 Evaluation

We evaluate CAMELAMA using ns-3 [128] in a setting motivated by AIS and compare it
against SO-TDMA. Our primary focus lies on the quantitative analysis of the successful
reception of vessels’ position reports by LEO satellites.

3.3.0 Mobility

Ideally we would have liked to evaluate the protocol with a global Earth-scale configuration
of vessels, complemented by an Earth-covering constellation of monitoring satellites as
proposed in [34]. To produce trustworthy results we decided to model transmission
errors based on the signal to interference plus noise ratio. In ns-3, using a linear list for
range searching, this implies computation cost per transmission to be linear in the global
number of nodes. This in turn leads to per-simulation computational cost quadratic in the
number of nodes if the nodes’ average transmission rate is kept constant. Given that our
largest simulations of 6000 nodes already take several hours per run, simulations with
realistic global ship counts (400,000–550,000 nodes as of 2016 [35]) would be prohibitively
expensive. Improved range searching techniques based on grids and kd-trees [54] rely
on in-euclidean-plane mobility and are therefore not applicable to Earth-spanning node
distributions.

We therefore decided to use scenarios where the simulated vessels are confined to a
rectangular box in latitude/longitude parametrization. We modeled vessel mobility using
a spherical waypoint mobility model, i. e., each vessel’s mobility is described in terms of
a sequence of waypoints (i. e., time-position pairs); the node moves with constant speed
along the shortest path between consecutive waypoints.
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(a) Discovered vessels per time slot.

(b) Message count per time slot.

Fig. 3.8.: Number of (a) discovered ships 𝑁ves and (b) received messages 𝑁msg, each per slot per
satellite, collected with antennas of varying beam width, during one formation overflight
of a 3000 nodes random walk topology performing SO-TDMA or CAMELAMA, the latter
with 𝐿orb ∈ {200, 300, 400} km and 𝑁orb = 4. Legend of (a) applies to (b) as well.
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For most experiments we used a random walk mobility [131] with speed drawn UAR
from [0, 30 m

s
], inter-waypoint times are drawn UAR from [0, 300 s], and initial positions

drawn UAR with respect to areal probability density from the confining rectangle, i. e.,
sin 𝜃 uniform in [arcsin 𝜃min, arcsin 𝜃max). We verified experimentally that this mobility
model has a steady state and that it is initialized in this steady state to avoid pitfalls
like [55]. In some experiments we used real-world AIS traces captured in the area of
Denmark at 1:00pm–1:30pm (UTC) on 2017/06/01.3 The traces were limited to those nodes
corresponding to AIS Class A devices with at least one waypoint inside the rectangular
region of latitude [49.26∘N, 62.74∘N] and longitude [5.97∘E, 14.03∘E], i. e., a rectangle
centered at 56∘N, 10∘E with a latitude extent of 1500 km and a longitude extent of 500 km
at 56∘N. This results in 1688 nodes. The random walk topologies were generated for the
same rectangle.

In order to study message reception of multiple satellites passing over the same region,
we put four satellites in a string-of-pearls orbital configuration with 500 km altitude,
vanishing eccentricity, 90∘ inclination, and 500 km inter-satellite distance. The remaining
orbital elements were adjusted such that the formation’s geometrical center passes over the
rectangle’s center point and such that the first satellite’s footprint enters the rectangle just
after we consider the terrestrial MAC protocol as equilibrated. The satellites’ mobility was
then modeled with SGP4 and converted to Earth-centered, Earth-fixed (ECEF) Cartesian
coordinates used for vessel mobility.

3.3.1 Channel Model

We implemented CAMELAMA and SO-TDMA for a single 25 kHz bandwidth VHF channel
at 161.975MHz center frequency modulated in binary GMSK with 9600 bit/s. Slots of
2

75
s =̂ 256 bit were used. The signal-to-interference-plus-noise based packet loss model

and the path loss of terrestrial ship-to-ship communication was taken from [3]. Path
loss computation for ship-to-satellite signal propagation was ported from the ESTNeT
simulator [56].

3.3.2 Antenna Model

A 500 km-altitude satellite with an omnidirectional antenna has a swath width of ≈
5000 km horizon to horizon. We can neither simulate realistic-node-density topologies of
this size (Section 3.3.0), nor do we have access to corresponding captured AIS traces. Thus,
we limit the swath width with an abstract model of a nadir-pointing directional antenna.

3ftp://ftp.ais.dk/ais_data/dk_csv_jun2017.rar, accessed 12/02/18.
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It is parametrized by its half-power beam width (HPBW) and has a directional gain (3.10)
depending only on the angle 𝛼 between the received signal and the nadir direction.

𝐴(𝛼) = 𝑐 ⋅ 2−( 2𝛼
HPBW

)2
𝑐 ∈ ℝ ∶ ∫ 𝐴dΩ = 4𝜋 (3.10)

This abstract model allows evaluating protocol performance depending on HPBW regard-
less of whether the receiver uses a physically directive antenna, digital beamforming using
a patch antenna array, or creates the effective FoV by means of signal processing using
timing- and Doppler-shift-based filtering on the received signals.

3.3.3 Split Simulation Strategy

As our protocol contains no transmissions from satellites at all, the vessels’ behavior is
completely independent of the satellites’ behavior. We use this to split each simulation into
two separate parts: 1) a terrestrial-only simulation of CAMELAMA or SO-TDMAwhere we
record an exact schedule of which message is transmitted in which slot, and 2) a satellite-
reception-only simulation, where the vessels replay the transmission schedules recorded in
the first simulation part while the vessels’ and satellites’ mobility are simulated. The second
simulation part is much cheaper, because the vessels’ behavior is fixed and independent of
the messages that are received. Therefore, the loop in ns-3 that iterates over all nodes in
the channel to compute signal-power levels for every node for every transmission can be
limited to the satellites only, avoiding the need to perform this computation for thousands
of terrestrial nodes. We leveraged this computational simplification by re-using the
same terrestrial simulation part for different satellite configurations and receiver-antenna
configurations that we examined. Unless stated otherwise, each data point corresponds
to six independently seeded simulations and error bars in plots depict the standard error.
Distances given as legend keys denote 𝐿orb values.

3.3.4 Measurement Timing

We conducted measurements with different antenna HPBWs with the widest swaths just
smaller than the longitudinal width of the terrestrial topology. If we measured data in
situations with only part of the terrestrial topology in the satellite’s FoV, boundary effects
would not only affect our results, but theirmagnitudewould varywith the antenna’s HPBW,
making it hard to tell apart boundary effects from the desired underlying performance
characteristics. To circumvent this problem we seek to essentially cut out the boundary
effects by limiting the measurement of in-orbit reception per satellite to the time span
when the satellite’s ground track is within the terrestrial topology’s latitude range shrunk
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(a) # of vessels discovered.

(b) Optimal antenna beam width.

Fig. 3.9.: (a) 𝑁ves per slot for per-parameter-optimal antenna beam width (corresponding to the
curve maxima in Fig. 3.8) and (b) the corresponding beam widths. Error bars are omitted
for (b) because the values shown correspond to an argmax out of a finite set of parameter
values. The legend of (a) applies to both plots.
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Fig. 3.10.: RMS distance from sending ship to receiving satellite’s ground track measured in runs
depicted in Fig. 3.8a,b.

by 250 km. This way we can assure that the satellite’s ground track during measurement
is surrounded by ⪆ 200 km of populated ground area (see Fig. 3.7) in every direction.

Every measurement of SO-TDMA scenarios is preceded by 10min of equilibration time to
allow SO-TDMA to reach a steady state. Every measurement of CAMELAMA scenarios is
preceded by equilibration time consisting of time needed for all nodes to reach regular state
plus 2min, which, when taken together, was less than 10min in total in each simulation
run.

3.3.5 Parameters

In the evaluation performed in [3], the LAMA protocol proved robust with respect to its pa-
rameters. CAMELAMA is based on LAMA, so in this evaluation we used 𝐿ter = 92.6 km(=
50NM), 𝑟max = 23.15 km(= 12.5NM), 𝜈 = 0.8, and 𝑁orb = 4 (see Section 3.3.7) together
with 𝐿orb ∈ {200, 300, 400}km and antenna beam widths 𝐻𝑃𝐵𝑊 ∈ [2∘, 32∘].

3.3.6 Satellite-Based Monitoring

When a satellite formation passes over the simulated area of Earth, there is some re-
dundancy in the received messages. The same message can be received by two or more
satellites at the same time, and multiple different messages of the same vessel can be
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received, carrying different but highly correlated information. We consider both, the
number of messages received 𝑁msg and, deduplicating messages from the same sender,
the number 𝑁ves of “discovered” vessels, i. e., vessels that at least one message is received
from. These total counts were then divided by the sum of time slots regarded for reception
over all four satellites. Fig. 3.8 shows both metrics over antenna HPBW for SO-TDMA
and for CAMELAMA with 𝐿orb ∈ {200, 300, 400} km measured for 3000 nodes random
walk topologies. Message counts received from SO-TDMA are on par with CAMELAMA.
However, the former requires significantly higher antenna gain which is unfavorable as
discussed in Section 3.2.0, while the latter leads to more distinct vessels being discovered.
As expected, the optimal antenna HPBW, i. e. the curves’ arg maxima, increase with 𝐿orb. A
corresponding measurement based on real AIS traces (Fig. 3.11a) shows that CAMELAMA
still performs better but the strong correlation of antenna beam width and 𝐿orb vanishes.

We repeated this measurement for random walk topologies of identical geometrical bounds
but with varying node counts. Fig. 3.9a shows 𝑁ves per slot over node count where each
data point was measured for the optimal HPBW. The corresponding optimal HPBW values
are given in Fig. 3.9b. For CAMELAMA, the number of vessels detected increases while
the optimal beam width shows no significant dependence on node density. SO-TDMA
shows a significantly weaker increase along with a narrowing of the optimal antenna
directiveness, indicating that receiving SO-TDMA signals at high node densities requires
high-gain antennas to compensate for smaller distances between simultaneous senders.

For every received message, we also measured the distance of the transmitting node to the
receiving satellite’s ground track point to get a sense of the “effective swath width” that a
satellite is receiving messages from. In Fig. 3.10 these RMS distances that correspond to
the data points in Fig. 3.8 are shown. CAMELAMA effectively receives messages from a
significantly larger FoV that increases roughly linearly with growing value of 𝐿orb, just
as one would expect. Finally, we measured the monitoring accuracy in the scenario of
real traces at the per-MAC-protocol-optimal HPBWs. At the end of the satellite reception
measurement time interval, we recorded for each vessel in the simulation the distance
between its true position and the position resulting from extrapolating the last beacon
received in orbit to this point in time using dead reckoning. For vessels no beacon at
all was received from, ∞ was recorded. Fig. 3.11b shows the relative cumulative counts
and reveals that while CAMELAMA achieves a tracking accuracy smaller than 1 km for
55%–64% of vessels, SO-TDMA provides the same accuracy only for 40%.
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(a) 𝑁ves vs. HPBW for real AIS traces.

(b) Orbital tracking inaccuracy.

(c) Median terr. location-prediction inaccuracy.

Fig. 3.11.: (a) 𝑁ves per slot over sat. HPBW for real vessel traces (legend denotes 𝐿orb) and (b) a
CDF-plot of the corresponding tracking (in-) accuracy measured at 5.7∘ (SO-TDMA)
and 22.6∘ (CAMELAMA) HPBW. Legend of (a) applies to (b) as well. (c) Median of
terrestrial location-prediction inaccuracy over ship-to-ship distance in random walk
mobility for SO-TDMA and CAMELAMA at 𝐿orb = 400 km.
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3.3.7 Terrestrial Performance

We have re-run the whole evaluation from [3] for CAMELAMA with 𝑁orb = 0 (i. e.,
without orbital slots at all) and found that CAMELAMA without orbital slots behaves
qualitatively equivalent to LAMA, outperforming SO-TDMA. To quantify the effect of
orbital slots on the performance of terrestrial cooperative awareness, we measured the
neighbor location prediction inaccuracy (the distance between neighboring nodes’ true
positions and the predicted positions extrapolated from the last received position report’s
location, speed, and course) depending on 𝑁orb, using the methodology of [3], Section 4.3.
In a (222.24 km)2 (120NM) square topology of 1600 random-walk nodes we measured
once every 7 s the location-prediction inaccuracy of every ordered node pair and the node
pair’s true distance. We then binned these samples by the node distance. In Fig. 3.11c
the prediction inaccuracy median is plotted over the ship-to-ship distance for SO-TDMA
and CAMELAMA with varying 𝑁orb ∈ {0, 2, 4, 6}. As we take away channel resources in
terms of terrestrial slots, the inaccuracy increases from less than 2m to more than 10m,
which is still below a typical vessel size. Nevertheless, CAMELAMA achieves to maintain
a nearly constant accuracy up to distances of 30 km.

3.4 Conclusion

We introduced CAMELAMA, a location-assisted MAC protocol for cooperative awareness
beaconing combined with satellite-based traffic monitoring. We demonstrated that it leads
to significantly higher node discovery rates and tracking accuracy compared to SO-TDMA.
This already holds for a simple static nadir-pointing satellite antenna and a receiver naïvely
treating interference as noise in decoding. Since improving theMAC protocol is orthogonal
to recent efforts to improve in-orbit de-collision of AIS messages, we see great potential in
combining these techniques. If nodes use CAMELAMA, a satellite knows approximately
where transmitting nodes are located. This knowledge could be exploited with respect
to Doppler shift and propagation delay when using techniques as in [36] as well as for
direction-dependent antenna gain adaption, i. e., receive antenna beamforming [41]. As
SO-TDMA lacks this transmitter-location knowledge, the advantages of CAMELAMA
might further increase significantly if improved decoding techniques are applied. As this
chapter is merely a proof of concept, consideration of environmental effects like adverse
atmospheric conditions is left for future work.
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Opportunistic In-Orbit
Forwarding and Aggregation

4
„The future is already here — it’s just not very evenly

distributed.

— William Ford Gibson
(American-Canadian writer)

This chapter is largely based on our own publication “Evaluation of a delay tolerant network-
ing approach for inter-satellite communication in LEO for time sensitive traffc monitoring” [0]
published as a full paper at the 2015 IAA Symposium on Small Satellites for Earth Obser-
vation.

TL;DR Simple probabilistic in-orbit forwarding and aggregation of AIS messages can ef-
fectively reduce monitoring delays in Earth-spanning satellite constellations used for vessel
traffic monitoring.

4.0 Introduction

As we have discussed extensively in the last chapter, beacon messages of systems such as
AIS or ADS–B can be overheard by spacecraft in low Earth orbit. To achieve the goal of
satellite-enabled global vessel traffic monitoring, however, the navigational data that is
received in orbit must somehow make its way to a satellite ground station to be processed
and used, e. g., in data centers. When using only a small number of GSs, a satellite will
for most of the time (also discussed in Chapter 7) not be in direct communication range
to any GS. In this chapter we propose to make use of ISLs to forward the data contained
in the received beacon messages between satellites to decrease the end-to-end delay of
navigational data from the originally transmitting vessel to the satellite GS network.
Considering only a medium number of 18 nano-satellites, even with ISLs there is no
end-to-end multi-hop connection between each satellite and the GS network for most of
the time. In this chapter we propose a store-and-forward approach that is robust with
respect to noise and loss of individual satellites, yet simple and scalable. It follows the
delay-tolerant networking paradigm and relies on payload forwarding through stateless
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stochastic broadcasting. Unfortunately, it did not turn out feasible to integrate Chapter 3
and this chapter into one evaluation scenario: forwarding of vessels’ navigational data
over ISLs has very limited effect in small satellite groups in dense orbital configuration
that were considered in Chapter 3. Both the global Walker constellation and the multiple-
hour measurement periods considered in this chapter, however, are not simulatable with
reasonable effort using the methodology of Section 3.3, as we discussed in Section 3.3.0.

The remainder of this chapter is structured as follows. In Section 4.1 we outline the overall
design of the proposed satellite system. We subsequently go into more detail specifically
on the protocol side in Section 4.2. In Section 4.3 we describe the evaluation setting and
present the empirical results. We finally conclude with a summary in Section 4.4.

4.1 System Design

The proposed message forwarding approach is designed for observation of any types of
static or moving ground vehicles. For the evaluations presented here, the specific case
of ship tracking is considered. The proposed tracking system leverages the existing AIS,
which is used by vessels to periodically transmit ID and position data in radio beacons. AIS
messages are sent periodically by all ships equipped with AIS transmitters. AIS is based on
SO-TDMAwhere each message is broadcasted in a distinct 1

2250
min time slot in one of two

VHF maritime mobile channels. Within an AIS-message, the sending ship pre-announces
the time slot for its next transmission, thereby providing a mechanism to avoid collisions of
AIS-messages of nearby ships. The AIS beacons are captured by a distributed small satellite
system. Without inter-satellite communication, the minimum total monitoring delay is the
time it takes the observing satellite to come into view of a ground station after observing
the vessel. Shorter times can be achieved if the satellites forward collected data between
each other. To reduce the amount of unnecessary information and to make the best use of
available capacities in a satellite-based AIS monitoring system, only relevant information
should be forwarded to users on the ground. To this end, the received AIS messages
are processed in the satellite network. The data forwarding approach that is pursued
here is motivated by the following consideration: for continuous monitoring of current
vessel positions, it is not required to maintain old data in the system if more up-to-date
information for the same vessel is already available. Thus, if a satellite holds information of
a vessel with a certain time stamp, and receives another data set of the same vessel with a
different time stamp—either directly from the vessel or from another satellite—then it needs
to keep only the most recent data. Our proposed message forwarding approach makes use
of this consideration in the following way: regularly, each satellite transmits a random
subset of locally available data. Upon reception of such a message by another satellite,

64 Chapter 4 Opportunistic In-Orbit Forwarding and Aggregation



the received information is merged with the locally available knowledge according to the
policy of always keeping the most recent information per vessel. This protocol makes
use of all possible paths in the network stochastically in parallel, which yields inherent
robustness with respect to network disturbances, including transmission errors or the loss
of individual satellites, while at the same time not requiring any explicit coordination or
path planning.

4.2 Message Forwarding

The strategy of maintaining only the most recent data per vessel implies that the number
of vessel data sets in any satellite’s send buffer is always bounded by the total number of
AIS-equipped vessels on earth. We restrict our protocol to receiving class A AIS position
reports, which consist of 168 bit of payload data. An AIS record in the satellite network
consists of 141 bit from the original AIS position report (everything apart from Message
ID, Repeat indicator, and Communication state) and a 17 bit reception time stamp holding
the seconds elapsed since last midnight (UTC) as an unsigned integer. This results in a
record size of 158 bit. To avoid ambiguity of the reception time stamp, records older than
23h are removed from the database. For medium access we use pure ALOHA random
access for sending frames via the omnidirectional satellite antenna. A frame consists
of a fixed-length payload along with a checksum. The frame size and the (also fixed)
transmission data rate determine the time 𝑇 needed to transmit a frame on the channel.
When a satellite finishes a frame transmission, it chooses the time it waits before the start
of the next transmission randomly with an exponential distribution with mean 𝑡wait. For
our simulation, we chose 𝑡wait = 3𝑇. This value is a compromise between the theoretically
optimal ALOHA inter-frame times for the situations where a satellite is in range of either
one or two other satellites. Before transmitting a frame, the payload data is constructed
by choosing a random subset of appropriate size from the set of all AIS records in the
satellite’s local database. When a satellite successfully receives a frame (i. e., if it receives
a complete frame and positively validates its integrity using the checksum), it updates
its database by keeping only the most recent available data set for each vessel on which
information was contained in the frame.
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Fig. 4.0.: 3D model of a 45° ∶ 18/6/0 Walker constellation for traffic monitoring.

4.3 Evaluation

4.3.0 Model

For the evaluation of the approach described above, a global ship distribution as collected
in the PASTA MARE project [132] was considered. In order to achieve a high temporal
resolution for traffic monitoring, a 45° ∶ 18/6/0 Walker constellation was designed (see
Fig. 4.0). This constellation allows for a high temporal surface coverage except for polar
regions, where ship distribution is naturally rather sparse. The second constellation used
for the simulation is a 66° ∶ 18/6/0 Walker constellation. An optimal footprint diameter
has been determined by considering the total number of messages which can be received
during the simulation interval. As a result an antenna opening angle of 120° was used
for this constellation. Therefore, it is assumed that signals can only be received within
this opening angle of the nadir pointing satellite antennas. This assumption requires the
availability of attitude control systems on board of each satellite. The applicability of
such systems was demonstrated, even for one unit CubeSats, as described in [57]. For
the inter-satellite communication antennas an omnidirectional characteristic is assumed,
which can be achieved either by using dipoles or by using multiple antennas. The selection
of the orbit altitude of the constellation is a trade-off between the received signal power
and the atmospheric drag. A low altitude leads to short mission lifetimes or high propellant
requirements due to the atmospheric drag. High altitudes lead to high communication
distances and therefore higher bit error rates. As a compromise an orbit altitude of 700 km
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was selected. For evaluation the monitoring system is complemented by up to four globally
spread ground stations, used for collecting monitoring data from the satellites and making
the data available for end users. The performance of the observation system was evaluated
by analyzing the contact windows of the ship-to-satellite links, the inter-satellite links,
and the satellite-to-ground links. Since maximum communication distances are highly
dependent on frequency, antenna gain, available transmission power, and many other
parameters, the impact of different radio ranges is considered as well.

AIS message reception

Using a 1° × 1° tessellation of the earth’s surface, we work with a fixed distribution of
𝑁𝑖 = ⌈𝑁PastaMare

𝑖 ⌉ ships in the 𝑖th tile, yielding a total of approximately 68,000 ships. For
simplicity, we assume each ship to stay within its tile during the 24h time interval that
was simulated. We further assume that each ship transmits position reports once every
10 s on average, which is the reporting interval for AIS Class A ships heading at speed
up to 14 kn while not changing course. Satellites receive primary AIS messages via an
omnidirectional antenna with a sharply defined sensor opening angle of 120° full cone.
We use a simplified model where each AIS message that is transmitted by a ship within the
satellite’s footprint is successfully received if and only if no other AIS message is sent from
a different ship within the sensor footprint in the same SO-TDMA slot and channel. We
thereby neglect the limited signal power in the vicinity of the transmitting ship’s zenith as
well as the noise caused by AIS transmissions from ships visible to the satellite but outside
the sensor footprint.

Inter-satellite links

Let 𝑡𝑠
𝑖 be the starting time of the 𝑠th frame sent by the 𝑖th satellite. This frame is successfully

received by the 𝑗th satellite if and only if dist𝑖𝑗 < 𝑑max∧∀𝑘∀𝑟 ∶ (dist𝑗𝑘 > 𝑑max∨|𝑡𝑠
𝑖 −𝑡𝑟

𝑘| >
𝑇 ), hereby treating collisions explicitly. Because of the pure ALOHA medium access
scheme used, the negligence of signal propagation delay is not assumed to cause any
systematic bias in transmission probability. However, we assume to slightly overestimate
the achievable throughput for inter-satellite communication by neglecting the noise level
caused by transmissions of satellites further apart than 𝑑max.

Simulation

The simulation incorporates the reception of primary AIS messages, forwarding of AIS
data records between satellites, as well as forwarding AIS data to one or more ground
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stations. A period of 24h is simulated where all satellite databases are initially empty;
therefore the first 6h of the simulation are used for warmup only and data is measured
during the remaining 18h.

The simulated time domain is homogeneously discretized in steps of 60 s each. A single
time step is simulated as follows:

• Assuming an unlimited downlink bandwidth, each ground station’s database is
updated using the databases of all satellites within its field of view immediately
during GS contact periods.

• For each satellite 𝑖 the set of ships 𝑠fp𝑖 within the sensor footprint is determined.
For every ship in 𝑠fp𝑖 the probability that at least one AIS message is successfully
received by the satellite within the current time step is, following the results from
[130], given by (4.0),

𝑃 = 1 − [1 − (1 −
𝑁 vis

𝑖

75Hz ⋅ 𝑀 ⋅ Δ𝑇
)

𝑀−1

]

𝑇obs
Δ𝑇

(4.0)

where 𝑇obs = 60 s, Δ𝑇 = 10 s is the assumed reporting interval, 𝑁 vis
𝑖 = |𝑠fp𝑖 | is the

number of visible ships, and 𝑀 is the number of organized SO-TDMA cells formed
by these ships.

• 𝑁 vis
𝑖 independent Bernoulli distributed pseudorandom numbers determine the subset

𝑠vis𝑖 ⊆ 𝑠fp𝑖 that is actually detected by the 𝑖th satellite in the current time step. This
procedure is performed for every satellite independently.

• For each satellite the inter-frame times within the corresponding time step are deter-
mined by exponentially distributed independent pseudorandom numbers. Chrono-
logically for each transmission a random subset of the AIS records in the sender’s
database is selected and used to update the databases of all neighbor satellites unless
inhibited by a packet collision.

4.3.1 Results

Let 𝜏orbit(𝑡, 𝑖) be the newest time stamp of all AIS messages from vessel 𝑖 received by
any satellite at or prior to time 𝑡 and let 𝜏ground(𝑡, 𝑖) be the corresponding newest time
stamp of AIS messages from vessel 𝑖 that is forwarded to any ground station prior to
time 𝑡. Then, Δ𝜏(𝑡, 𝑖) ≔ 𝜏orbit(𝑡, 𝑖) − 𝜏ground) is the delay caused by non-perfect network
connectivity (inter-satellite and/or between satellites and ground, in the following called
delivery delay), whereas 𝑡 − 𝜏ground(𝑡, 𝑖) is the total monitoring delay that is also caused
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(a) Delivery delay. (b) Monitoring delay.

Fig. 4.1.: Relative cumulative counts of delays.

by imperfect ground coverage and AIS message reception probability. Our aim here is
to reduce the delivery delay (and thereby the monitoring delay) through inter-satellite
message forwarding. To demonstrate the applicability of our protocol, we collected values
for Δ𝜏 for all vessels over the measurement time interval of 18h by simulation.

In the evaluation, we assume that satellites deliver their database to Earth via a separate
communication channel whenever they come into a ground station’s field of view. Even
though this assumption is a strong simplification of the real situation, it still allows for direct
comparison to a system without inter-satellite communication, which is equivalent to the
case where the inter-satellite data rate is zero. We compare the cumulative delivery delay
distribution for different inter-satellite data rates in Fig. 4.1a. The curves corresponding
to finite bit rates lie well in the middle between the case without inter-satellite links and
the idealized case of an infinite inter-satellite data rate, where any two satellites exchange
all information instantaneously whenever they are within communication range. Clearly,
the use of inter-satellite links significantly reduces the typical delivery delays even at
relatively low data rates. Fig. 4.1b shows the distribution of the total age of the newest
record received on ground 𝑡 − 𝜏ground(𝑡, 𝑖), i. e., the full monitoring delay.
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Fig. 4.2.: Histogram of database overlaps when two satellites meet.
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When two satellites come within range to communicate, their databases will typically
partially overlap. Therefore, the transmission of randomized subsets of the satellites’
databases causes an overhead due to transmitting data that is already known at the
receiver.

To estimate this overhead we histogrammed (Fig. 4.2) the distribution of 𝑞overlap(𝑖, 𝑗), which
is the fractional overlap between the databases of two satellites. The data is collected from
all satellite meetings within an 18h period, in a simulation with 30 kbit s−1 transmission
rate. The result given in Fig. 4.2 suggests a typical overlap of 30 % to 40 %, even though
with different parameter settings the overlap was observed to range up to 60 %. Given
this overlap, one might argue that message forwarding could in some situations benefit
from additional coordination, but not by much when considering the overhead of a then
required handshake. As expected, the benefit of data forwarding increases as the number
of ground stations decreases.

In Fig. 4.3 the distributions of delivery delay and total monitoring delay in the case
of one single ground station is shown for both the original 45° constellation and the
alternative constellation with 66° inclination. To investigate the effects of the somewhat
optimistic assumption that any two satellites within visibility range can communicate,
which corresponds to 𝑑max ≈ 6200 km, the communication range was varied for a fixed
communication bandwidth of 30 kbit s−1 and the resulting delivery delay distribution is
shown in Fig. 4.4. We note that for 𝑑max ≥ 3000 km the data forwarding performance is
not dramatically reduced.

Finally, we demonstrate the robustness of the system with respect to loss of individual
satellites by omitting a subset of satellites during the whole simulation. For data rates of
0, 30 kbit s−1, and ∞ we simulated the loss of one and two satellites each with several
different subsets of omitted satellites. The resulting (monitoring- and delivery-) delay
distributions (Fig. 4.5) show that the relative location of the distribution corresponding
to a data rate of 30 kbit s−1 between the limiting cases does not change significantly. We
also note that the apparent benefit of delivery delay from defunct satellites for small delay
times is not an error but is instead a consequence of the definition of that observable.

4.4 Conclusion

In this chapter we briefly demonstrated how satellite-based real-time traffic monitoring of
terrestrial vehicles can benefit from inter-satellite communication in terms of a significantly
reduced delays. Because of its stateless and stochastic design the system is expected to be
inherently robust, flexible and scalable with respect to failing and newly added satellites,
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(a) 45° inclination.

(b) 66° inclination.

Fig. 4.3.: Delivery- and monitoring delay in case of a single ground station.
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Fig. 4.4.: Delivery delay cumulative distribution for different communication ranges and a band-
width of 30 kbit s−1.

Fig. 4.5.: Delivery (left) and monitoring (right) delay distribution for different numbers of defunct
satellites.
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and also with respect to unreliable communication channels. The presented approach is
an enabling technology for a variety of traffic monitoring applications.
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More Efficient LEO-Satellite
Downlinks Using Distributed
Source Coding

5

„Things are only impossible until they’re not!

— Captain Jean-Luc Picard
from: “When the Bough Breaks” (15 February

1988) written by Hannah Louise Shearer

This chapter is largely based on our own publication “Efficient Multi-Satellite Downlinks
for Earth Observation Data Based on Distributed Arithmetic Coding” [1] published as a full
paper at LCN’19.

TL;DR Distributed Arithmetic Coding is a viable choice to exploit inter-dataset redundancies
that occur when multiple satellites in similar Earth orbits measure the same kind of data.

5.0 Introduction

Earth observation is a prevalent goal of low-Earth-orbit satellite missions, including
missions based on nano satellites like CubeSats [133]. Due to their low cost, nano satellites
lend themselves to being launched and operated in formations of identical satellites within
one mission, which increases fault tolerance, flexibility, reconfigurability, and upgradability.
The small form factor, however, leads to limited energy production capabilities and prohibits
the use of large, high-gain antennas. This, together with short and infrequent ground
station contact periods typical for low Earth orbit, makes the downlink to the GSs a primary
bottleneck for the acquisition of mission data.

When two (or more) satellites of a mission measure the same kind of data in orbit it is not
uncommon that the data acquisition by different satellites is correlated. By making use of
this (information-theoretic) inter-dataset redundancy, the satellites’ downlink efficiency
can be improved. As theorized by Slepian and Wolf [58], such redundancy of correlated
datasets located at two or more independent sources can be exploited to reduce the amount
of data that needs to be transmitted, without a need for the sources to communicate with
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each other. That is, there is no need to exchange information between the satellites. Yet
the total amount of channel bandwidth needed for transmission down to Earth could be
reduced compared to compressing, i. e., encoding and decoding, each transmitted dataset
independently. The challenge to code different sources’ data accordingly is usually referred
to as the distributed source coding (DSC) problem.

In this chapter, we investigate the challenges associated with efficient utilization of multi-
satellite downlink capacity in such a setting. Though many solutions to the DSC problem
have been proposed, they have been designed and studied mostly in terms of pseudo-
random data of known entropy and correlation. In order to harness these theoretical
findings for practical system designs, a couple of additional challenges need to be over-
come. The satellites’ restricted energy budget and limited processing power requires a
simple, lightweight encoder. The lack of an exact statistical model of the encoded real-
world data requires additional flexibility of the ground station’s joint decoder. Building
upon DAC [59] as a prototypical DSC approach, we discuss how these requirements can be
addressed. We describe a protocol with an adaptive joint decoder, which scales its decoder
state as needed. This decoder is operated with different fitness functions, thereby paying
tribute to the uncertainty in the correlation of data acquired by real-world sensors.

Using Earth magnetic field data obtained during the MagSat [15] mission, we evaluate
our proposed architecture. We show that inter-dataset redundancy can indeed be utilized
to improve the coding rate for Earth observation satellite downlinks. To the best of our
knowledge, we are the first to successfully apply DSC techniques to a complex, distributed
real-world setting with an extensive performance evaluation based on more than 400 pairs
of correlated datasets.

The remainder of this chapter is structured as follows: after Section 5.1 on related work, we
discuss the opportunities and requirements that are characteristic of efficient down-link
utilization in multi-nano-satellite missions in Section 5.2. In Section 5.3 we review the
principles of (distributed) arithmetic coding. A codec that is tailored to the specific needs
of the use case considered is developed in Section 5.4, followed by Section 5.5 in which we
present an evaluation of our codec. Finally, we draw a conclusion in Section 5.6.

5.1 Related Work

An important challenge when working with nano-satellites is their limited energy supply
and low computing power. This problem is also encountered in Earth-bound wireless
sensor networks (WSN). Studies of WSN nodes have shown that the power used for data
transmission amounts to about 80 % of the total energy consumption [60]. As the power
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consumed for data transmission is proportional to the amount of data transmitted, a
common strategy is to reduce the size of the data by compression [61].

In [62] it is pointed out that compression algorithms potentially consume more energy
during their execution than the reduced amount of transmitted data can save later on.
Orbit-to-Earth communication is, however, very energy consuming. Therefore, we argue
that compression is worthwhile in this context. Still, we take into account the argument
made in [62] and avoid overly complex compression algorithms.

The theoretical basis for distributed source coding was laid by Slepian and Wolf [58] in
1973. They proved that it is theoretically possible to losslessly compress two correlated
datasets encoded separately by sources not communicating to each other to an overall
size that is smaller than what could have been achieved if each dataset was compressed
independently. In order to achieve this, the encoders as well as the joint decoder only
need a priori knowledge about the datasets’ correlation.

Today, a wide range of algorithms aiming to make practical use of Slepian and Wolf’s
findings is known [63, 64, 65]. However, many of these algorithms are based on channel
codes, e. g., [63, 65], which have some severe drawbacks. The following problems are
found [66] to be inherent to DSC based on channel codes: they are unable to reach
optimal performance for short datasets. The symbols in a dataset are expected to follow a
stationary distribution, which is often not the case in practice. Furthermore, it is argued
that many of the algorithms are complex and may even increase the encoder’s overall
energy demand [66].

To overcome these shortcomings, in 2007 the first DAC algorithm was proposed [66],
an algorithm based on arithmetic coding [67] and quasi-arithmetic coding [134], for
the primary and secondary sources respectively. This gave rise to new approaches to
distributed source coding based on arithmetic coding [68, 69, 70], new models to describe
the decoding complexity of DAC [71], and approaches to avoid decoding errors, for instance
by including forbidden symbols [72] or a special end-of-file symbol [73]. In DAC literature,
often only binary, memoryless data sources are considered, e. g., [74, 69, 68]. The use
of more complex sources, like for example Gaussian distributions [75] or a Markov-1
source [76, 70], is very rare. Even then, only memoryless sources are used in [75] and the
Markov sources in [76] and [70] emit only binary symbols. While channel-coding-based
distributed source coding has already been evaluated for distributed real-world settings,
see e. g., [77], DAC algorithms have not.

To the best of our knowledge, only in [78] DACwas used to compress real-world data so far.
In contrast to our work, however, a traditional compression problem is considered there, in
which a single dataset is compressed and DAC is solely used to leverage correlations within
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this dataset. The same holds for [79] where scalar coset codes, a low complexity DSC
technique, to compress hyperspectral images losslessly in a non-distributed setting, are
used. Because we use DAC to compress correlated datasets in a distributed setting, where
each encoder has access to its own dataset only, we face radically different challenges.

A general problem shared among all DSC techniques is that so far no approach can
guarantee lossless compression. However, if decoding errors can be detected, they may still
be overcome by DAC when additional resources, e. g., main memory, can be provided.

What further sets DAC algorithms apart from both classical lossless compression algorithms
– like arithmetic coding [67] or Huffman codes [80] – and classical lossy algorithms, is
that a major part of the decoder can be exchanged without needing to change the encoder
as well.

5.2 Efficient Coding of Correlated Data

We consider a scenario of two nano satellites in low Earth orbit, each acquiring measure-
ment data using some instrument. The satellites cannot communicate with each other,
but both transmit the acquired data to a common satellite ground station. The satellites’
possible measurement outcomes (i. e., the data) can be seen as a pair for random variables
𝑋 and 𝑌 whose probability distributions are unknown. To use communication links effi-
ciently, one usually resorts to source coding, also known as lossless data compression. A
dataset 𝑥 ∈ 𝑋 that is to be transmitted, e. g., from a satellite to a ground station, can often
be encoded using code words that are on average shorter than the corresponding plain
representation, thereby utilizing less channel capacity. The expected code word length is,
according to Shannon’s source coding theorem [81], lower bounded by the data sources’
entropy 𝐻(𝑋), which in turn depends on the probability distribution of 𝑋. For simple
scenarios, where a source is known in advance to be a sequence of stochastically inde-
pendent random variables or a Markov chain, the entropy may be computed analytically.
So-called entropy codes are known that can be used to encode this data at an expected
code word length, or rate, 𝑅𝑋 close to the entropy. When coding physical measurement
data efficiently, neither the sources’ probability distribution nor its entropy are known, and
therefore heuristic codes are used in practice. The PNG image format [135] for example
uses a codec based on the simple assumption that neighboring pixels have similar values;
using a combination of differential coding and entropy coding, typical photographic image
data can be losslessly transmitted using code words that are significantly shorter than the
raw pixel data. Optimization of code word length is, however, not the only requirement
of source coding in the context of effective utilization of channel capacity: especially in
scenarios where the source is limited in terms of computational and electrical power, like
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Fig. 5.0.: The Slepian-Wolf-Region and the Slepian-Wolf-Limits for two data sources.

nano satellites, it is reasonable to use a simple, fast encoder that achieves only suboptimal
coding rate in favor of low complexity.

We consider a scenario of two data sources 𝑋 and 𝑌 that are correlated, i. e., 𝑋 and 𝑌 are
not stochastically independent. As pointed out by Slepian and Wolf [58], the additional
inter-dataset redundancymay be exploited to reduce the coding rates further than what can
be achieved by independently source-coding and decoding 𝑋 and 𝑌. The set of feasible rate
combinations shown in (5.0), the Slepian-Wolf region, is a convex subset of the Cartesian
plane shown in Figure 5.0.

𝑅𝑋 ≥ 𝐻(𝑋|𝑌 ), 𝑅𝑌 ≥ 𝐻(𝑌 |𝑋), 𝑅𝑋 + 𝑅𝑌 ≥ 𝐻(𝑋, 𝑌 ) (5.0)

𝐻(𝑋, 𝑌 ) and 𝐻(𝑋|𝑌 ) denote the joint and conditional entropy respectively. Just as
entropy codecs can be used to reduce a single source’s rate close to its entropy, DSC codecs
have been proposed to reduce the sources’ combined code rate near to the Slepian-Wolf
bound (see Section 5.1).

Our goal is to economically apply this coding-theoretical knowledge on real-world mea-
surement data. Using a simple encoder based on DAC, coding rates can be reduced
compared to classical source coding while additional computational complexity is added
only at the decoder side where resources are not as limited.

5.3 DSC Based on Arithmetic Coding

Our proposed approach is based on arithmetic coding (AC) and DAC [59]. One satellite
(𝑌) conventionally compresses its dataset 𝑦 losslessly such that the ground station can
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decode it without a need for further information. The other satellite (𝑋) applies DAC on
its dataset 𝑥, to reduce the size of the corresponding code word ̂𝑥 even more before its
transmission. The joint decoder, i. e., the ground station, cannot decode ̂𝑥 on its own. It
can, however, decode ̂𝑥 and thus fully reconstruct 𝑥 when using the decoded correlated
dataset 𝑦 together with some knowledge about the correlation of 𝑥 and 𝑦. We note that
even though asymmetric in terms of the achievable code word lengths, this approach can
still be used to symmetrically increase coding efficiency of both satellites’ downlinks by
alternating the sources’ roles. In the following, we briefly recall the key concepts of AC
and DAC and highlight why DAC is particularly well suited to the use case considered
here.

5.3.0 Arithmetic Coding

AC [67] is an entropy coding technique that encodes a sequence of symbols based on an
internal statistical model of symbol probabilities. If each symbol’s probability is known
and depends only on the symbols prior to that, a rate close to the entropy can be achieved
in theory [136].

AC does not represent the input symbols 𝑥 = (𝑥1, … , 𝑥𝑘) by a sequence of individual
code words, but instead represents the whole sequence as one code word. By repeatedly
subdividing and shrinking [0, 1), the encoder maps the input sequence to a characteristic
interval 𝐶 ⊆ [0, 1). Each encoded symbol shrinks the interval by a factor equal to its
probability. For details see, e. g., [67].

The characteristic intervals correspond to the possible sequences of length 𝑘 and form a
partition of [0, 1). Given 𝑘, any real number in 𝐶 is characteristic for 𝑥. Thus, any 𝑤 ∈ 𝐶
can be chosen as the code point of 𝑥, and its binary representation is the compressed code
word ̂𝑥. The length of ̂𝑥 can generally be assumed to be about − log2|𝐶| bits [59], where
|𝐶| denotes the length of 𝐶.

To retrieve 𝑥 from ̂𝑥, the decoder simply replays the encoding procedure by iteratively de-
termining and emitting the unique symbol that results in a shrunk interval still containing
𝑤 until all 𝑘 symbols are emitted.

Even though this process appears to require floating point arithmetic with infinite precision,
different strategies have been found to circumvent this problem. AC can be implemented
with an encoder using only integer arithmetic and a small constant number of integers
as state [82]. This makes AC a perfect candidate for encoding in embedded systems like
nano-satellites.
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As stated above, AC gives good compression results if a good statistical model is available.
Models used in the literature range from simple symbol frequency counts and Markov
chains to models where the last 𝑛 symbols are taken into account [83, 84]. Because
accessing memory is energy consuming [60], overly large models should be avoided in
our use case.

5.3.1 Distributed Arithmetic Coding

The encoding of DAC [59] is nearly identical to the encoding of AC. The subdivide-and-
shrink procedure is identical, only the subintervals corresponding to different symbols are
enlarged, so that they overlap with their neighbor intervals. The enlarged subintervals in
turn lead to a larger characteristic interval 𝐶 and therefore to shorter code words. They
also lead to a very specific form of ambiguity, because a code point does in general no
longer belong to only one valid code word. In order to resolve the arising ambiguities, we
use side information from the other satellite and domain knowledge about correlations.

In line with the arguments above, we use a simple strategy where each symbol’s subinterval
is increased by the same constant overlap factor 𝑐 > 1. The product of the symbol’s
probability and 𝑐, called extended probability in this work, determines the size of the
symbol intervals. We used the following simple strategy to enlarge every symbol’s interval
[𝑝low(𝑠), 𝑝high(𝑠)) by a factor of 𝑐, giving the new interval [𝑙(𝑠), ℎ(𝑠)):

ℎ(𝑠) = min (𝑝low(𝑠) + 𝑐 ⋅ 𝑝(𝑠), 1) ,

𝑙(𝑠) =
⎧{
⎨{⎩

𝑝low(𝑠) , if ℎ(𝑠) < 1

max (𝑝low(𝑠) + 1 − 𝑐 ⋅ 𝑝(𝑠), 0) , otherwise.

(5.1)

This reduction of code-word length by approximately 𝑘 log2 𝑐 bits comes at the cost of a
small constant number of arithmetic instructions per encoded symbol, thereby increasing
the computational cost of encoding by at most a small constant factor, depending on the
implementation. We assume this additional cost to be affordable. When using look-up
table-based implementations of AC, as in [134], 𝑐 would affect only table creation, thereby
eliminating any per-symbol computation overhead in the encoder.

On the decoder side, the challenge is to resolve the deliberate ambiguities. Whenever the
decoder encounters the code point in a region where two symbol intervals overlap in one
or more decoding steps, the correct continuation of the decoding process is ambiguous.
It is up to the decoder to jointly use the code point 𝑤𝑥 as given by ̂𝑥, the decoded side
information 𝑦, and a model of the correlation of 𝑋 and 𝑌 in order to reconstruct 𝑥. Thus,
the decoding process, which is described in the next section, is of substantially increased
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complexity compared with conventional arithmetic coding. This is the price for the
additional compression of 𝑥 beyond the entropy limit.

Note that the resulting asymmetry in coding complexity—nearly unchanged encoding
effort, but increased decoding effort—matches the asymmetry of resource availability as
found in satellite missions very well: on-board resources are scarce, while additional
computation on the ground after transmission is easy.

5.4 A Flexible Distributed-Arithmetic-Coding-Based
Codec for Correlated Time Series Data

Each time the decoder encounters an ambiguity, there are at least two different possibilities
to continue decoding. The decoder needs to use the known side information 𝑦 to decide
which decoding path is more likely. One can assume that in most practical applications
only limited knowledge about the correlation of the data sources is available. Because
every ambiguity encountered must be resolved faultlessly to decode the dataset correctly,
a decoder could try to pursue every possible continuation. This, however, is not always
feasible as the number of possible solutions grows rapidly with the length of the encoded
sequence. Instead, pruning is used to limit the number of pursued solution paths.

A practical solution to handle the rapidly growing number of decoding paths is pruning
with the so-called M-Algorithm [85]: a fixed upper bound for the number of paths pursued
by the decoder is defined and paths are removed by the decoder whenever their number
exceeds this limit. To decide which paths to keep and which to prune, a fitness function is
used to evaluate how well each partial decoding result fits the assumed correlation with
the side information 𝑦.

The fitness functions proposed in literature are one main reason for the difficulty of
applying DAC in practice. Usually, these fitness functions are based on known joint or
conditional probability distributions of individual pairs of symbols, e. g., in [68, 66]. In
particular, the so-called Maximum A Posteriori [59] (MAP) metric is frequently used [72,
86, 75]. In this work, MAP is not employed, because we deem the necessary detail of
knowledge about the datasets’ distribution unrealistic. Instead, we use fitness functions
focusing on more general properties of the correlated datasets.
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Fig. 5.1.: Example for two correlated datasets of Earth’s magnetic field data.

5.4.0 Lightweight General-Purpose Encoding of Time-Series
Measurement Data

In our use case scenario we apply DAC to the encoding of Earth’s magnetic field data. The
datasets are correlated pairs of scalar time series sampled at a fixed rate. A pair of example
datasets is shown in Fig. 5.1.

To keep the computational complexity manageable on a small satellite platform and to
broaden the applicability of our approach, we abstained from trying to create the best
possible compression algorithm for the specific datasets considered. Instead, we use a
two-step encoder consisting only of differential coding for de-correlation and arithmetic
coding. A quantized sampled scalar time-series of length 𝑘 is a sequence 𝑥 of integers.
This is first transformed by taking successive differences:

𝑥Δ = (𝑥1, 𝑥2 − 𝑥1, 𝑥3 − 𝑥2, … , 𝑥𝑘 − 𝑥𝑘−1)

The symbols in 𝑥Δ are then, according to their frequencies, encoded using AC in case of 𝑌
or DAC in case of 𝑋, using a fixed overlap factor 𝑐. This encoding is lightweight, general
purpose, yet tailored to encode time-series data: the magnetic field strength measured by
a satellite while traveling in its orbit is a continuous real-valued function of time. Being
sampled at a fixed rate, it is a plausible assumption that consecutive samples are highly
correlated. No further assumptions are made, reducing the risk of overfitting our model to
the specific datasets. The finite precision AC (or DAC) encoder we used requires only a
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small constant amount of memory and its run-time is linear in the number of encoded
symbols [134].

5.4.1 Adaptive Decoding

We propose a new kind of decoder, called adaptive decoder, which extends the classical
breadth-first M-Algorithm [85]. The latter uses a fixed pruning threshold 𝑀 to determine
when and how many paths to prune. Pruning starts as soon as the number of paths
surpasses 2 ⋅ 𝑀 and then 𝑀 paths are pruned at once.

In the literature 𝑀 is chosen arbitrarily, e. g., 𝑀 = 2048 in [59]. However, if 𝑀 is too
small, the correct path may be pruned during decoding and thus the dataset cannot be
decompressed. If 𝑀 is too large, i. e., a smaller 𝑀 would have sufficed, the decoding
process wastes resources. We therefore avoid a fixed value for 𝑀 and instead adjust the
threshold dynamically during decoding.

To this end, we include a hash value ℎ(𝑥) in the header of the transmission of ̂𝑥. ℎ(𝑥)
can be used to confirm if a given guess is correct (with a properly chosen hash function
the probability of hash collisions is negligible). Our adaptive decoder starts with a small
pruning threshold (e. g.𝑀 = 1), and increases it iteratively on demand. For each value of
𝑀, the M-Algorithm is executed, yielding between 𝑀 and 2𝑀 candidates of 𝑘 symbols
each. If one of these candidates can be confirmed to be the correct dataset 𝑥 using the
hash function, the decoding terminates. Otherwise, 𝑀 is doubled and a new decoding
attempt is made. This way, decoding time is saved and resource limitations are taken into
account. The iteration is, in addition, terminated by an upper bound 𝑀max that depends
on computing resources available as well as on the length of the hash function ℎ.

The computational cost of iteratively re-executing the M-Algorithm until 𝑀max is reached
is at most twice as high as the worst-case cost of the final iteration with 𝑀 = 𝑀max as
can be seen by the following argument: since the worst-case complexity of a single run
of the M-Algorithm is at least linear in 𝑀, the M-Algorithm’s worst-case runtime will at
least double with each iteration. Therefore, the final iteration costs at least as much as all
prior iterations together (in terms of worst-case complexity).

5.4.2 The Fitness Function

We now turn to the description of the methods we employed to exploit the similarities
between the side information and the correlated dataset in the design of our fitness
functions.
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It is difficult to state a universal strategy of how the knowledge about inter-dataset corre-
lation is obtained at the decoder site, as the nature and extent of such knowledge depends
on the satellite mission, the type of data measured, and a priori knowledge about the
phenomena being observed. If, at the beginning of data collection, the decoder has no
knowledge at all, one could begin the mission with an exploration period where data is
transmitted without inter-dataset redundancy removal, so that correlation knowledge can
be built from that.

In general, a fitness function has to be designed with the similarities of the correlated
datasets (or data sources) in mind. At its core, a fitness function evaluates a property
that is typical for the underlying datasets but is less likely to be found in data generated
by incorrect decoding. For the Earth magnetic field data used here, we used fitness
functions that either compare the smoothness of the datasets or analyze the similarity
of the curve shapes. In addition, one could, in principle, extend the adaptive decoder to
use multiple different fitness functions within one decoding run to further increase the
decoding probability. This, however, would introduce many additional degrees of freedom
and is left to be studied in future work.

In our algorithm, each decoding path’s fitness value is updated every time it is extended
by a new symbol 𝑠. Because wrong paths may share a potentially long prefix with the
correct decoding path, we use a windowed approach for all fitness functions and only
compare the newest 𝑊 symbols (including 𝑠) of the decoding path with the corresponding
𝑊 symbols in the side information. The cumulative sum of these quantitative comparisons
is then used as the decoded path’s fitness value.

Let 𝑔(𝑥, 𝑦, 𝑊, 𝑘′) be the function evaluating the similarity of 𝑥 and 𝑦 for a window size
𝑊 after the symbol 𝑥𝑘′ was decoded. We define 𝑥’s fitness value to be

𝑓(𝑥, 𝑦) =
𝑘

∑
𝑘′=1

𝑔 (𝑥, 𝑦, 𝑊, 𝑘′) .

Therefore, it is the similarity function 𝑔 that sets the different fitness functions apart.

First, we describe the similarity function of a fitness function comparing the smoothness
of 𝑥 and 𝑦 (“FitPCC”). Let 𝑔FitPCC be this similarity function:

𝑔FitPCC(𝑥, 𝑦, 𝑊, 𝑘′) = −(|𝜌PCC(𝑥, 𝑊, 𝑘′)| − |𝜌PCC(𝑦, 𝑊, 𝑘′)|)2,

5.4 A Flexible Distributed-Arithmetic-Coding-Based Codec for
Correlated Time Series Data
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where 𝜌PCC(𝑥, 𝑊, 𝑘′) is the autocorrelation of 𝑥 or 𝑦 respectively, in a window of size
𝑊 ending at the 𝑘′th symbol expressed via the Pearson correlation coefficient. Let ̂𝜏 =
max(1, 𝑘′ − 𝑊), then

𝜌PCC(𝑥, 𝑊, 𝑘′) =

𝑘′−1
∑
𝑖= ̂𝜏

(𝑥𝑖 − ̄𝑥) ⋅ (𝑥𝑖+1 − ̄̇𝑥)

√
𝑘′−1
∑
𝑖= ̂𝜏

(𝑥𝑖 − ̄𝑥)2 ⋅ √
𝑘′−1
∑
𝑖= ̂𝜏

(𝑥𝑖+1 − ̄̇𝑥)2

,

where ̄𝑥 = 1
𝑘′−1− ̂𝜏

𝑘′−1
∑
𝑖= ̂𝜏

𝑥𝑖 and ̄ ̇𝑥 = 1
𝑘′−1− ̂𝜏

𝑘′−1
∑
𝑖= ̂𝜏

𝑥𝑖+1.

Next, we describe the similarity function 𝑔 of the fitness functions FitSlope and FitPresent,
which evaluate similarities between the curve shapes: Let 𝑔FitSlope be the similarity function
of FitSlope and 𝜏 = max(1, 𝑘′ − 𝑊 + 1), defined as follows:

𝑔FitSlope(𝑥, 𝑦, 𝑊, 𝑘′) = − ((𝑥𝑘′ − 𝑥𝜏) − (𝑦𝑘′ − 𝑦𝜏))2 . (5.2)

And let 𝑔FitPresent be the similarity function of FitPresent and 𝜏 = max(1, 𝑘′ − 𝑊 + 1),
given by

𝑔FitPresent(𝑥, 𝑦, 𝑊, 𝑘′) = −
𝑘′−1

∑
𝑖=𝜏

(𝑥𝑖 + 𝑑𝑐 − 𝑦𝑖)
2 , (5.3)

where 𝑑𝑐 = 𝑦𝑘 − 𝑥𝑘 is the offset between 𝑥’s most recent symbol and the corresponding
symbol in the side information 𝑦.

For all aforementioned fitness functions, the window size 𝑊 strongly influences how
easily the correct and incorrect decoding paths can be discerned. The choice of 𝑊 will be
discussed in the next section.

5.5 Results

Before we evaluate the adaptive decoder, we briefly discuss the statistical model used for
evaluation.

5.5.0 Implementation

Because our focus is on evaluating DAC’s applicability to real-world problems, we do not
aim for perfect compression of the magnetic field data in the sense of exactly reaching the
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Slepian-Wolf limit.4 We make use of the autocorrelation of the datasets by transmitting
only the differences between consecutive magnetic field values. In coherence with the
findings of [62], we use a simple frequency-based zero-order statistical model for DAC and
AC, which is generated independently for each dataset. A 256-bit hash is used to detect
decoding errors. We assume that transmission errors are resolved at a lower layer by
means of retransmissions and/or forward error correction. The latter is common practice
for satellite communication in general and nano satellites in particular [87]. Thus, the
savings in transmission data achieved by our approach refer to transport layer goodput
instead of raw channel capacity. A simultaneous treatment of transmission errors in the
satellite downlinks is beyond the scope of this thesis.

In the following, we will explore the limits of how far we can reduce the rate of source 𝑋,
so that it can still be successfully decoded given source 𝑌 as side information. Intentionally,
we challenge our algorithms, in particular by increasing the overlap factor 𝑐 so far that
decoding will start to fail. We look at the number of datasets for which correct decoding
is not achieved for different similarity functions and varying overlap factors. This shows
what the safe parameter range is, and therefore how much additional compression (beyond
standard arithmetic coding) can be achieved.

5.5.1 The Earth's Magnetic Field Data

The data obtained during the MagSat mission [137] serves as an example for a real-world
application of DAC. Its goal was to obtain detailed data of Earth’s magnetic field and
thereby detect magnetic anomalies in the Earth’s crust. The mission had a total duration
of eight months, during which time the satellite circled Earth many times in low Earth
orbit.

A single satellite was used in the MagSat mission. We used the fact that the satellite
circled Earth repeatedly (about once every 94 minutes [137]) to simulate a nano-satellite
formation based on the MagSat data. Among the MagSat data, there are pairs of datasets
recorded by the same satellite on different overflights with a horizontal distance of less
than 50 km at the equator. These were combined to simulate the measurement of Earth’s
magnetic field by two nano-satellites flying in close proximity.

The datasets are generated using the MagSat data, of which we considered only the
magnetic field strength. The datasets typically consist of ca. 11,300 samples each, with a
raw (uncompressed) size of ca. 23 kB. With arithmetic coding (i. e., without making use of

4For clarity, it should be noted that of course we still implement lossless compression, just not necessarily at
the theoretically “perfect” Slepian-Wolf rate. Even if the resulting rate is higher than this limit, we do
achieve rates better than what could be achieved by independently compressing both sources.
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correlation across the two sources), we found that the size of a dataset can be reduced to
typically 12 kB.

The data exhibit a high level of both temporal and spatial correlation. As can be seen in
Fig. 5.1, the magnetic field exhibits low levels of noise and changes slowly compared to
the sampling rate. Thus, the correlation of consecutive data points of each dataset, i. e., its
autocorrelation, is high. The spatial correlation between the datasets obtained at different
positions is high as well.

This scalar time series data is particularly suitable for our approach, as it allows for
straightforward application of AC. Moreover, the partially decoded datasets represent
completely decoded time series data on a sub-interval in time, thereby easing the design
of appropriate fitness functions. DAC could in principle be applied to other kinds of
correlated observation data, like overlapping photographic imagery. We leave that for
future work, because it would require both a more complex encoding/decoding pipeline, as
well as a plethora of additional degrees of freedom regarding possible fitness functions.

5.5.2 Evaluating the Decoding Performance

We used the adaptive decoder described above. Because the number of possible solution
candidates grows exponentially with the number of bits saved, we stopped decoding when
no solution was found before exceeding a limit of 1 GB RAM usage. The quality of the
DAC algorithms was evaluated based on the number of correctly decoded datasets for
different overlap factors.

Because the window size determines the length of the region in which the correlation is
evaluated by the fitness function, its choice is very important for the fitness function’s
performance. To determine a suitable window size 𝑊 for each fitness function, we use all
948 real-world datasets and a technique we call fast decoding. The idea of fast decoding is
to decode each received dataset with the adaptive decoder, but accept any decoding path
whose first 𝛼 bits match the corresponding bits in the 256 bit hash of the correlated dataset.
Because the correct 256 bit hash is known, we can then discern how many decoding results
were correct. We observed that even if only the first 𝛼 = 3 bits were used, a large number
of datasets was decoded successfully for a suitable 𝑊.

From a theoretical perspective, we would assume 𝑓’s performance to be a concave function
of 𝑊, because there are two competing effects associated with the window size. On the one
hand, the larger the window size, the stronger the statistical significance of 𝑓’s associated
fitness value. On the other hand, the smaller the window size, the stronger the influence
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Fig. 5.2.: Fast decoding performance for the overlap factor 𝑐 = 1.1 and different window sizes.

of the most recent path symbols on the fitness value, i. e., the sooner decoding errors can
be detected and wrong decoding paths pruned.

Fig. 5.2 shows the results of such a fast decoding performance test with an overlap factor
of 1.1. Note that only combinations of fitness functions and window sizes with more than
600 correctly decoded datasets are shown. As expected, the performance of FitPCC is a
roughly concave function of 𝑊. For the other two fitness functions, this is not the case.
Here, the optimal 𝑊 is 2 for both functions, i. e., increasing the statistical significance
seems to have less of an impact than detecting decoding errors early. Choosing a window
size of 2 for both fitness functions is not meaningful in this specific case because for
𝑊 = 2 FitSlope and FitPresent evaluate the same property. For this reason, we only used
𝑊 = 2 for FitSlope, whose performance degrades strongest for bigger 𝑊, and 𝑊 = 4 for
FitPresent.

To investigate the achievable compression rate, we increased the overlap factor 𝑐 stepwise
and analyzed the number of datasets that could not be decoded before exceeding the
resource limits.

Table 5.0 shows the decoding performance for an overlap factor of 1.2, which corresponds
to a saving of about 296 bytes per dataset. FitPresent performs the worst with 41 undecoded
datasets. As these 41 datasets correspond to 4.32 % of all datasets, we say that FitPresent’s

Tab. 5.0.: Decoding performance for 𝑐 = 1.2.

Fitness function Window size Not decodable NDR

FitPCC 4 0 0 %
FitSlope 2 0 0 %

FitPresent 4 41 4.32 %
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Fig. 5.3.: Number of undecodable transmissions using FitPCC or FitSlope.

non-decoding-rate (NDR) is 4.32 %. FitPCC and FitSlope performed best and were able to
decode all datasets for 𝑐 = 1.2.

It is important to note that one of DAC’s unique properties is that (in contrast to classical
lossy compression algorithms) the correct dataset will theoretically always be decodable.
In fact, there are many ways to recover missing transmissions, for example by changing
the fitness function used for decoding or by running the same decoder on a computer
with more main memory. Depending on the specific application setting, it is also well
conceivable that a decoder that notices a decoding failure for a specific transmission
requests additional data from the respective source using an interactive protocol.

The only hard limitation for the number of different decoding attempts for the same dataset
is given by the number of hash comparisons that can be performed without risking a
non-negligible false positive probability.

5.5.3 Exploring the Limits

So far, the two fitness functions FitPCC and FitSlope are the most promising of the five
fitness functions we designed.

The results are depicted in Figure 5.3. When FitSlope is used and memory is limited to 1 GB,
all dataset transmissions are decodable for an overlap factor of 1.25 or less. So FitSlope
can be used for a size reduction of up to 0.322 bits per symbol, i. e., about 370 bytes per
dataset, while still decoding all datasets successfully. For overlap factors greater than 1.25,
however, the number of undecodable transmissions grows rapidly.

When FitPCC is used, all datasets can be decoded up to an overlap factor of 𝑐 = 1.35,
which is slightly better than FitSlope. The steep increase of undecodable datasets for
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higher overlap factors starts much later than for FitSlope, but exhibits a qualitatively
similar behavior. For FitPCC, either all datasets can be decoded when a size reduction of
0.433 bit per symbol (about 500 bytes per dataset) is sufficient, or up to 1 bit per symbol
(about 1.2 kB per dataset) can be saved without raising the NDR above 0.75 %. The latter
means that the result is 10 % smaller than the dataset compressed with (non-distributed)
arithmetic coding.

5.5.4 Discussion

The above results should be understood as a proof of principle, laying the groundwork
for further research on applying DAC to real-world scenarios on real-world data. The
fitness functions are not fully optimized and the results are not representative of what
DAC could achieve if more realistic correlation models were used. Our intention was a
proof of concept of a functional and realistic DAC algorithm for real-world scenarios.

Note that the rate reduction achieved by DAC considered in this work denotes the amount
of bits saved per symbol in addition to what is already saved by using AC.

To keep decoding times manageable, we used only little resources for the evaluation of the
decoding algorithms. In practice, faster CPUs and more main memory will be available
for decoding, especially in our use case. This has the potential to decrease the NDR when
compared to our results. The fact that the fitness function, i. e., an important part of the
decoder, can be exchanged without needing to change the encoder, is a quite unique feature
of DAC and provides an unusual amount of flexibility.

A key part of a functioning DAC algorithm is a suitable fitness function. In this work,
we used the smoothness or shape of the curve to identify the correct decoding path and
used a simple statistical model for AC. If a better statistical model were used for AC, the
differences between correct and incorrect decoding paths could become more subtle.

Finally, though finding DAC algorithms with good performance is challenging, we believe
it is currently promising to use distributed source coding under realistic assumptions.

5.6 Conclusion

The central question addressed in this chapter is whether and how DSC can be used to
improve nano-satellite downlink efficiency, without increasing resource utilization on the
satellites. We investigated a scenario in which two satellites measure Earth’s magnetic
field in low Earth orbit. Based on measured complex real-world data we demonstrated
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that using only small realistic knowledge about the datasets’ correlation, DSC techniques
can be used to significantly reduce the amount of channel capacity used. Using a simple
general-purpose encoding suitable for any kind of scalar time-series measurement data,
our adaptive decoder together with suitable fitness functions is able to decode the rate-
reduced transmitted data by exploitation of inter-dataset redundancy. Because compression
has the potential to reduce both the energy demand for transmission and the memory
needed for storage, DSC is an attractive approach for this kind of application. The proposed
application of DSC is not an alternative to other lossless compression algorithms, but rather
an additional layer of compression that allows (in scenarios where AC is already employed
for compression) for further reduction of code word size on top of what traditional lossless
codecs like AC achieve.

To the best of our knowledge, we are the first who successfully applied realistic DAC algo-
rithms to a complex, distributed real-world setting and provided an extensive evaluation of
its performance (based on more than 400 correlated datasets). We designed a new decoder
for DAC, which adaptively chooses the pruning threshold. Furthermore, we proposed
three fitness functions that avoid using detailed knowledge about probability distributions,
and introduced a method to quickly determine the fitness functions’ window sizes.

Finally, we evaluated the performance of our DAC decoder and the fitness functions for a
wide range of overlap factors and provided a thorough discussion of our results.
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Part II

Transmitting Bulk Data to Orbit





EAGER Decoding:
Introducing EAger Gaussian
Elimination for Rlnc Decoding

6

„General:
This is good, but what is best in life?
Soldier:
The open steppe, fleet horse, falcons at your wrist,
and the wind in your hair.
General:
WRONG! Conan! What is best in life?
Conan:
To crush your enemies, see them driven before you,
and to hear the lamentations of their women.

— Conan the Barbarian
(1982)

TL;DR When using Gaussian elimination for incremental RLNC decoding, eager back-
substitution during injection is better than incremental LU decomposition with lazy back-
substitution.

acronym

6.0 Introduction

In random linear network coding (RLNC) over finite fields, decoding is often performed
using Gaussian elimination (GE). While it would be possible for an RLNC-decoder using a
generation size 𝑀 to passively collect 𝑀 linear combinations (LCs) before trying to solve
the resulting system of linear equations, it has advantages to perform the GE incrementally
each time a new LC is injected into, i. e., received by, the decoder: during incremental
decoding, the decoder finds whether a newly injected linear combination is innovative,
i. e., whether it is linearly independent of the linear combinations injected before. Thus, it
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is able to keep track of the rank of the matrix formed by all injected linear combinations, it
can use less memory by storing only innovative linear combinations, and it can randomly
recode the received linear combinations using less computational resources if it computes
new combinations only from innovatively injected LCs instead of from all injected LCs.

Many of the RLNC-based coding schemes described in the literature therefore decode
packets incrementally to some degree, but what and how much decoding work is actually
done at what time differs significantly.

In this chapter we introduce EAGER5, an approach to decode LCs more eagerly than
proposed in the related literature. We show that our approach, which is applicable to
creating variants of many known coding schemes, comes with asymptotically negligible
computational overhead or even improves performance, depending on which existing
scheme it is applied to. At the same time it reduces the decoder-induced overhead as
well as network-induced overhead, again depending on which scheme our approach is
applied to. In the context of layered prioritized RLNC, it supersedes computationally
expensive techniques like counter-elimination [88], as our evaluation shows. Even for
decoders handling bulk encoding matrices, it reduces the computational demand to decide
whether an LCs is innovative. Thus, the overall computational complexity of decoding is
reduced. Most importantly, EAGER is able to bring its decoder, after each injection, to a
normalized state that uniquely depends on the span of the LCs injected, requiring only
marginal computational overhead. Thereby, it enables efficiently determining the equality
of two decoders by exchanging only hash values between the corresponding nodes. The
consequences thereof are discussed in detail in Chapter 7.

The rest of this chapter is structured as follows: in Section 6.1 we discuss the related work,
followed by Section 6.2 where we recapitulate GE and LU decomposition in the variants
that are used for RLNC decoding in the related work. EAGER decoding itself and its data
structures are introduced in Section 6.3 and an analytical treatment of its computational
resource utilization in comparison with LU decomposition is given in Section 6.4. In
Section 6.5 we show how EAGER’s engine can be applied to different sparsity classes,
including a comparative empirical evaluation in Subsection 6.5.1 in the context of layered
prioritized RLNC. In Section 6.6 we discuss how EAGER can relatively simple be extended
to maintain a normalized decoder state that depends only on the subspace spanned by the
LCs injected. We also measure the computational cost of maintaining this state empirically
in Subsection 6.6.2. Finally, we draw a short conclusion in Section 6.7.

Regarding our algorithms name we clarify here that EAGER is called eager as in “lazy vs.
eager evaluation” but it is not greedy as in “greedy vs. thrifty optimization”.

5The expansion of the acronym EAGER can be found in this chapter’s title.
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6.1 Related Work

The key idea of our approach is to replace the usual row echelon form that is central to
solving linear systems using GE by the bilateral row echelon form. Therefore, this work is
primarily related to RLNC schemes using some flavor of LU decomposition and/or GE for
decoding and less related to LT Codes [89] or Raptor Codes [90], both of which are fountain
codes [91] using random LCs as code symbols, but whose encoding vector distributions
allow for more efficient decoding algorithms than GE-based approaches. For LT Codes it
has been shown that in-network recoding is also applicable [92] to some degree.

Many known GE-based RLNC de- and recoding approaches already are somewhat eager
in the sense that they perform the LU decomposition part of decoding incrementally (also
termed on-the-fly by some authors [93]) in order to decide for each incoming LC whether
it is innovative, i. e., whether it is linearly independent of the set of LCs injected so far.
Incremental decoding therefore means that the encoding vectors of received LCs are not
simply buffered, but are immediately processed using the current decoder state and then
stored in some kind of row echelon form.

Some authors favor laying out their decoder in LU factorized formwith partial pivoting [88],
meaning that the encoding vectors of incoming LCs are stored in decomposed form in
triangular matrices 𝐿 and 𝑈 (the latter being in row echelon form) while the information
vectors (IVs) are simply buffered together with a permutation matrix. The forward and
backward substitution part needed for decoding are then lazily postponed until the decoder
state 𝐿𝑈 is of full rank.

Others [94, 93] eagerly perform forward substitution incrementally as well, which not only
releases from the necessity to store 𝐿 in memory but also increases the opportunities of
recoding LCs that satisfy certain sparsity conditions. In addition, performing the forward
substitution on-the-fly when packets are received, implies that the decoder literally stores
non-trivial linear recombinations of received LCs. Transmitting these partially decoded
LCs already constitutes recoding while avoiding the computational demand of explicitly
creating new LCs for transmission, a technique known as precoding [95, 96].

In [97] the concept of overlapping generations is introduced, but a separate decoder for
each generation is used. Every time a generation is completely decoded, a number of
LCs is back-substituted into adjacent generations. Our decoder EAGER, by contrast, can
be used to jointly decode the overlapping generations as one system of linear equations,
thereby reducing decoding overhead.

We think that EAGER decoding could be used for the decoding of “chains of chunks”
introduced in [98] as well. The technique of “combination of chunks” introduced there
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means to jointly decode contiguous undecodable overlapping chunks using one joint
decoder, something that EAGER is particularly well-suited for.

To the best of our knowledge, none of the chunked or layered RLNC-based codes described
in literature uses incremental backward substitution in decoding in an eager per-linear-
combination way, as our proposed decoding method does. Apart from improving some
codes described here in terms of network-induced and decoder-induced overhead as well
as computational costs, we see the main contribution of this chapter in providing a simple
decoder layout that is suitable for implementing decoding and recoding for most of the
mentioned codes in a unified way. In many cases our approach removes the necessity
to handle transmissions consisting of many generations/chunks/layers by a bunch of
interacting sub-decoders.

Finally, we did not find any reference in literature to an RLNC decoder whose state depends
uniquely on its current subspace. In Section 6.6.1 we show that EAGER can be modified to
gain that property and Chapter 7 is dedicated to demonstrate by example of over-the-air
programming of satellite formations how RLNC-based protocols can benefit from this
feature. However, we also did not find any explicit reference supporting our assumption
that no state-of-the-art decoder is capable of maintaining a unique decoder state.

6.2 RLNC Decoding Using Gaussian Elimination

6.2.0 Problem Statement

Consider a random linear code, i. e., a code in which code symbols consist mainly of
random LCs of vectors over a finite field 𝔽𝑞. 𝑞 is the size of the finite field and usually
chosen to be an integer power of 2. Let 𝑋 be an 𝑀 × 𝐾 matrix over 𝔽𝑞 that represents
the plain uncoded bulk payload that is to be encoded. Some authors call this the “data
object” [99] or “long file” [100]. In erasure code literature, the concept of one bulk payload
is often completely reduced to the notion of a “set of source symbols” or “original packets”.
The term “bulk payload” that we use corresponds to the data that is encoded by the whole
set of original packets.

Then every pair of encoding vector (EV) 𝑎 ∈ 𝔽𝑀
𝑞 and information vector (IV) 𝑏 ∈ 𝔽𝐾

𝑞

satisfying 𝑎 ⋅ 𝑋 = 𝑏 is called a code word or a LC.
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Encoding A source node (also referred to as encoder ) can then create an arbitrary number
of code words using the following steps:

0. Draw a random Encoding vector a𝑖 = (𝑎𝑖,0, … , 𝑎𝑖,𝑀−1) ∈ 𝔽𝑀
𝑞 . The discrete random

distribution used to draw the EV heavily depends on the specific code used, might
enforce certain sparsity pattern in a𝑖 (see paragraph Sparsity of encoding vectors on
p. 100), and may also depend on additional feedback that the source received from
other nodes.

1. Calculate the Information vector b𝑖 as the linear combination of the rows of 𝑋 given
by (6.0).

𝑏𝑖,𝑗 =
𝑀−1

∑
𝑘=0

𝑎𝑖,𝑘𝑋𝑘,𝑗 (6.0)

The pair (EV, IV) will be referred to as linear combination (LC).

2. Create a coded packet that enables a receiving node to restore (EV, IV). The most
straightforward choice would be to use the concatenation of the bit representations
of EV and IV as coded packet. A reasonable choice in scenarios of end-to-end
fountain coding without in-network recoding would be to construct the EV using a
suitable hash function applied to 𝑖 and use (𝑖, IV) as the coded packet. For present
purposes, it is not important how coded packets are serialized. Instead, it is sufficient
to assume that when a node receives a packet, the full LC is injected into the decoder.

Decoding In order to obtain 𝑋, a receiving node can arrange the LCs encoded in the
received coded packets in matrices 𝐴, whose rows are the EVs, and 𝐵, whose rows are
the corresponding IVs, and solve the resulting system of linear equations 𝐴𝑋 = 𝐵 for
𝑋. Solving is of course only possible if enough packets have been received, such that
rank𝐴 = 𝑀.

In addition, it is often desired (see Section 7.2.3) that the decoder can always be queried for
the rank of the matrix whose rows are the encoding vectors of all packets injected so far.
Exchanging this information can, for example, help to estimate whether coded packets
generated by one node are likely to be innovative for another node.

This ability to report the decoder’s rank is of course often also desired with respect to
ranks of sub-matrices corresponding to chunks or layers, when applicable. In general, by
a “decoder’s rank” we mean the dimension of the linear span of the LCs injected into the
decoder.
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Recoding Following the nomenclature in [95], recoding is the process of computing new
LCs by linearly combining the LCs of received packets, which includes the combination of
the corresponding IVs as well as the received EVs. Computing new LCs from a completely
decoded data-set, however, is essentially identical to encoding and therefore termed re-
encoding, when performed by a node not being an initial source node.

Sparsity of encoding vectors Many random linear codes restrict the encoding vectors
to certain sparsity patterns. Let 𝒞 ⊆ 𝒫([0, 𝑀)ℤ) be a set of sparsity classes. Note that the
term class is used by some authors, e. g., [97], for what we call a generation. An encoding
vector a𝑖 is said to belong to a class 𝐶 ∈ 𝒞 if {𝑗 ∶ 𝑎𝑖,𝑗 ≠ 0} ⊆ 𝐶. The classes do not need
to be disjoint, so an EV can belong to more than one class. For each packet to be encoded,
a source node selects a sparsity class from 𝐶 ∈ 𝒞 and then draws a random EV belonging
to 𝐶. The process of selecting 𝐶 differs across codes and may depend on the source’s
knowledge about the other nodes’ state. Examples for different sparsity class approaches
are depicted in Fig. 6.0. All of these examples share the property that all sparsity classes
are integer intervals shape, i. e., every class 𝐶 ∈ 𝒞 can be represented as:

𝐶 = [𝑡, 𝑡 + ℓ)ℤ (6.1)

or

𝐶 = [𝑡, 𝑀)ℤ ∪ [0, 𝑡 + ℓ − 𝑀)ℤ (6.2)

We therefore call these codes interval-sparse codes. If an interval-sparse code cannot be
represented without classes of the form (6.2), we call it a wrapped interval-sparse code. We
emphasize here that for a random linear network code it is important that intermediate
nodes are able to respect these sparsity classes when recoding packets. For a recoding node,
it is possible to generate a packet belonging to a class 𝐶 by simply building a random linear
combination of all received innovative LCs belonging to 𝐶. This naïve strategy, however,
misses some recoding possibilities, because the number of innovative LCs belonging to 𝐶
that have been received by a node may be significantly smaller than the dimension of the
decoder’s state with respect to 𝐶. As a minimal non-trivial example, consider a code with
𝑀 = 4 and 𝒞 = {{0, 1, 2}, {1, 2, 3}}, and a decoder that has received two independent
LCs belonging to 𝐶0 = {0, 1, 2} only:

a0 = (1, 1, 1, 0)

a1 = (1, 2, 2, 0)
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RLNC The base-case of one single
large generation.

chunked RLNC Multiple gen-
erations can be interpreted as
one large generation divided into
chunks by means of disjoint spar-
sity classes.

Bulk HNC The sparsity classes
used in [101].

Band HNC Like Bulk HNC, but
combined with the idea of band
codes; used in our evaluation.

Continuous band code; not
wrapped

Continuous band code;
wrapped

Overlapped chunked code; not
wrapped

Overlapped chunked code;
wrapped

Tab. 6.0.: Examples of sparsity classes of different codes.
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Since a0 ⊕ a1 = (0, 3, 3, 0) belongs to 𝐶1 = {1, 2, 3} as well, the decoder state with
respect to 𝐶1 has a dimension of 1, despite having received no LC belonging to 𝐶1 at all.
We term this kind of recoding inter-class recoding.

6.2.1 Solving Systems of Linear Equations Using Gaussian
Elimination with Row Pivoting

We start with a recap of traditional numerical solving of floating-point systems of linear
equations through GE-based LU decomposition with lazy forward and backward substi-
tution. Then we discuss how and in how far the steps of row-pivoting, GE, and forward
substitution are handled differently by the related work.

Finally, we introduce the notion of bilateral row echelon form, a novel criterion for matrices
representing the LHS decoder state that can be achieved and efficiently retained using
eager incremental backward substitution without significant computational overhead.

Vanilla numerical substitution-after-column-by-column-decomposition

The standard numerical method to solve a system of linear equations 𝐴𝑋 = 𝐵 with
non-singular (𝑀 × 𝑀)-matrix 𝐴 and right-hand side 𝐵 for 𝑋, e. g., as implemented in
LAPACK’s dgesv routine [138], consists of the following consecutive steps:

0. Factor 𝐴 = 𝑃𝐿𝑈 using GE, where

• 𝑃 is a permutation matrix (implemented as array of integers) that represents
the row swaps needed for pivoting,

• 𝐿 is a lower unitriangular bulk matrix,

• 𝑈 is an upper triangular matrix,

1. Compute 𝑌 = 𝐿−1𝑃 −1𝐵, also known as forward substitution.

2. Compute 𝑋 = 𝑈−1𝑌, also known as backward substitution.

LU decomposition is performed through GE, creating the zeros below the diagonal column
by column, because row pivoting, used for sake of numerical stability, means to use
the largest-by-absolute-value element of the corresponding sub-column to eliminate the
remaining non-zero elementswithin that sub-column. In order to compute𝑈, one initializes
𝑈 (0) = 𝐴, which is completely known by then, and in each step of the outermost loop GE
is applied to eliminate all below-diagonal non-zero elements of one column, so that after 𝑖
steps, the sub-matrix consisting of the 𝑖 leftmost columns of 𝑈 (𝑖) is in row echelon form.
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Definition 6.1 (Head and tail index). For 𝑎 ∈ 𝔽𝑛
𝑞 we define the head and tail index as the

(inclusive) boundary indices of the convex hull of non-zero elements of 𝑎:

ℎ(𝑎) ≔
⎧{
⎨{⎩

𝑛 if 𝑎 ≡ 0

min{𝑖 ∈ [0, 𝑛)ℤ ∣ 𝑎𝑖 ≠ 0} else

𝑡(𝑎) ≔
⎧{
⎨{⎩

−1 if 𝑎 ≡ 0

max{𝑖 ∈ [0, 𝑛)ℤ ∣ 𝑎𝑖 ≠ 0} else

By 𝑎 ≡ 0 we mean that every element of 𝑎 equals 0.

Definition 6.2 (Row echelon form). Matrix 𝐴 ∈ 𝔽𝑚×𝑛
𝑞 is in row echelon form iff ∃𝑘 ∈

[0, 𝑚]ℤ ∶

𝐴𝑖 ≡ 0∀𝑖 ∈ [𝑘, 𝑚)ℤ

∧ ℎ(𝐴𝑖) ∈ [0, 𝑛)ℤ∀𝑖 ∈ [0, 𝑘)ℤ

∧ ℎ(𝐴𝑖) < ℎ(𝐴𝑗)∀𝑖, 𝑗 ∈ [0, 𝑘)ℤ ∣ 0 ≤ 𝑖 < 𝑗 < 𝑘

Where 𝐴𝑖 refers to the 𝑖th row of matrix 𝐴.

Incremental decomposition

For decoding in RLNC, this column-by-column, left-to-right strategy is neither compatible
with the demand for incremental processing of LCs (i. e., rows), nor is it needed in systems
over finite fields, where field arithmetic is exact as opposed to floating point arithmetic
that is usually used in a numerical context.

For this reason, it is common (as described in [102] and in more detail in [88]) in RLNC
decoding, to factorize 𝐴 row by row, such that after 𝑖 steps, the sub-matrix consisting of
the 𝑖 topmost rows of 𝑈 (𝑖) is in row echelon form. Note however that these first 𝑖 steps
may correspond to injecting 𝑖′ >= 𝑖 LCs with a total rank of 𝑖: transforming 𝑖′ LCs that
span a subspace of rank 𝑖 into row echelon form produces 𝑖′ −𝑖 all-zero rows (representing
the non-innovative packets) below the 𝑖 non-zero rows. Since the all-zero rows carry
no information, they are simply neglected. These different eliminations strategies are
visualized in Fig. 6.0.

Besides the lack of necessity to take numerical stability into account, which enables
factoring 𝐴 row by row, there is yet another important difference between floating-
point and RLNC LU decomposition: in numerics, bulk matrices, e. g., 𝐴 and 𝐵, are often
represented by storing their elements consecutively in memory, let it be in Fortran- or
C-order. When the problem of solving 𝐴𝑋 = 𝐵 is separated into LU decomposition and
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(a) Vanilla numerical GE. (b) Incremental decoding.

Fig. 6.0.: Comparison of (a) vanilla floating point LU decomposition with row-pivoting and (b)
incremental decoding. The “?”s represent zeros corresponding to yet unknown LCs.
The meta variables refer to arbitrary non-zero elements (𝑦) and arbitrary elements
(𝑥) respectively, i. e., the instances of 𝑥 and 𝑦 do not imply equality. The highlighted
submatrices are in row echelon form and their elements are final, i. e., are not altered by
subsequent iterations. For incremental decoding (b) the figure depicts only the simplest
case in which row-pivoting is unnecessary.

substitution steps, implemented in different subroutines, it is required to keep track of the
permutation 𝑃 that allows for stable decomposition. But even if the decomposition routine
had access to 𝐵, swapping the actual full rows of 𝑈 𝑖 and 𝐵 in-place during decomposition
would be wasteful.6

In RLNC decoding we are in a fundamentally different position, in that 𝐴 and 𝐵 are not
fully known while we decompose 𝐴. When a new innovative LC is injected into a decoder
of rank 𝑖, there is no good reason to store the EV and IV in the first vacant row of 𝐴 and
𝐵 respectively (as it is done in [102]), apart from the abstract notion of row echelon form
of 𝑈.

In-place Permutation

A different strategy, e. g., used to decode Band Codes [94] (RLNC over 𝔽2 with band-
diagonal encoding matrices), is to keep 𝑈 in a state where each row 𝑈 (𝑖)

𝑗 is either vacant
or has exactly 𝑗 leading zeros. When swapping rows, instead of explicitly recording the
swap history in a dedicated data structure 𝑃, they just simultaneously swap pointers in
their representation of 𝑈 and 𝐵. When neglecting the concept of column-wrap-around,

6An implementer not tied to historical bounds of existing libraries could of course abandon continuous
memory layout for bulk matrices and instead represent a matrix as an array of pointers to row vectors.
But computationally that would not make any real difference to the status quo, where a permutation
is implemented as a one-dimensional array of integers that itself is an array of pointers, just not of
machine-address-space pointers, but row-index-space pointers.
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the same technique is used in [93]. We shall note here that although this approach seems
to make matrix 𝑈 deviate from classical row echelon form, the sub-matrix that consists of
the non-vacant rows of 𝑈 still is maintained in row echelon form. We therefore term this
condition spread row echelon form.

Definition 6.3 (Spread row echelon form). Matrix 𝐴 ∈ 𝔽𝑚×𝑛
𝑞 is in spread row echelon

form iff
∀𝑖 ∈ [0, 𝑚)ℤ ∶ 𝐴𝑖 ≡ 0 ∨ ℎ(𝐴𝑖) = 𝑖

Essentially, a matrix in row echelon form can be transformed to spread row echelon form
by placing every non-zero row 𝐴𝑖 at row ℎ(𝐴𝑖).

Again, it is up to the implementer’s taste whether the matrix itself is organized in this
form, or an additional index structure is used to find a row with a given number of leading
zeros in constant time.

Eager Forward Substitution

Another concept used in [94, 93], even though not termed that way, is what we call eager
forward substitution. By this we mean that row operations applied on 𝑈 (𝑖) are directly
applied on 𝐵 as well, instead of saving them in a column of 𝐿. It turns out that the
decomposition-approach of lazily recording row operations in a matrix 𝐿 and postponing
forward substitution 𝑌 ≔ 𝐿−1𝐵 until the decoder is of full rank, costs exactly as many
elementary multiplications, so that eager forward substitution has no computational
overhead, with two exceptions:

(a) It is worth to postpone the row operations on 𝐵 until it is found that the injected LC
is innovative, as it is discarded anyway otherwise.

(b) The computational effort of row operations on 𝐵 is of course wasted, if the whole
transmission is discarded before it is completed.

From now on, we will use a slightly different terminology: let 𝐺 be an (𝑀 × 𝑀) decoder
matrix and 𝑌 an (𝑀 × 𝐾) data matrix, both of which shall from now on be thought as
mutable matrices which relieves us of carrying the upper indices like in 𝑈 (𝑖) through all
calculations. Initially both 𝐺 and 𝑌 shall be all-zero. As LCs are received and decoded
iteratively, they are inserted into vacant rows of 𝐺 and 𝑌 and both matrices are simulta-
neously manipulated using elementary row operations. Thus, at any stage of decoding
𝐺𝑋 = 𝑌 will hold. If we speak of the decoder’s rank, we mean the row rank of 𝐺.
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6.3 EAGER Decoding

6.3.0 Eager Backward Substitution

Up to here we only gave a wrap-up of related work and introduced some notation. Now
we start with our own contribution: the eager backward substitution.

The idea is simply not to limit incremental decoding to the elimination of non-zeros in the
decoder matrix, until no pair of rows has the same number of leading zeros (i. e., it is in
row echelon form), but to also eliminate non-zeros at the rear end of rows, until no pair of
rows has the same number of trailing zeros.

We could have defined the eager-forward-substitution strategy equivalently as follows:
“When injecting a new EV into the decoder, place it at a vacant row of 𝐺 and use elementary
row operations until 𝐺 is in spread row echelon form. If we find that the LC is innovative,
also place the IV in 𝑌 and apply the same sequence of row operations on 𝑌.” The step
of eager backward substitution then reads: “Then, use elementary row operations until
𝐺 is in bilateral spread row echelon form (Definition 6.5). Also apply each operation on
𝑌.” Examples for the sparsity patterns of decoder matrices in the different types of row
echelon forms are given in Fig. 6.1.

Definition 6.4 (Ordered head- and tail-unique basis (OHTUB)). An OHTUB in 𝔽𝑛
𝑞 is a

(potentially empty) tuple 𝐵 of vectors ∈ 𝔽𝑛
𝑞 satisfying

(𝛼) 𝑏 ≢ 0∀𝑏 ∈ 𝐵

(𝛽) ℎ(𝐵𝑖) < ℎ(𝐵𝑗)∀𝑖, 𝑗 ∈ [0, |𝐵|)ℤ, 𝑖 < 𝑗 (head-ordered and -unique)

(𝛾) 𝑡(𝐵𝑖) ≠ 𝑡(𝐵𝑗)∀𝑖, 𝑗 ∈ [0, |𝐵|)ℤ, 𝑖 ≠ 𝑗 (tail-unique)

Of course, for |𝐵| < 𝑛, 𝐵 is not a base of 𝔽𝑛
𝑞 . However, the elements of 𝐵 are linearly

independent as stated in Corollary 6.2.

Proposition 6.1. Given an OHTUB 𝐵 and a non-zero vector 𝑎 ∈ 𝔽𝑛
𝑞 :

ℎ(𝑎) ≠ ℎ(𝑏)∀𝑏 ∈ 𝐵 ⇒ 𝑎 ∉ span𝐵

Where span𝐵 denotes the linear span of the rows of a matrix 𝐵.

Proof. We proof the contraposition. 𝑎 ∈ span𝐵 ⇒ ∃𝜆 ∈ 𝔽|𝐵|
𝑞 ∶ 𝑎 = ∑|𝐵|−1

𝑖=0 𝜆𝑖𝐵𝑖.
𝑎 ≢ 0 ⇒ ∃𝑖∶ 𝜆𝑖 ≠ 0. Let 𝑗 ≔ min{𝑖 ∈ [0, |𝐵|)ℤ ∣ 𝜆𝑖 ≠ 0}. ⇒ ℎ(𝑎) = ℎ(𝐵𝑗).

Corollary 6.2. The elements of an OHTUB are linearly independent.
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vanilla spread bilateral spread
row echelon form row echelon form row echelon form

(a) 𝐺(𝛼) in row echelon form
(REF)/spread row echelon
form (SREF).

(b) 𝐺(𝛼) in bilateral spread row
echelon form (BSREF).

(c) 𝐺(𝛽) in REF. (d) 𝐺(𝛽) in SREF. (e) 𝐺(𝛽) in BSREF.

Fig. 6.1.: Schematic of different encoder matrixes 𝐺(𝛼) (a, b) and 𝐺(𝛽) (c,d,e) in different row
echelon forms. Each encoder matrix has rank 4. These sparsity patterns are only two
possible examples and depend on the specific values of 𝑥 and 𝑦. E. g., the shape of (e)
requires that (d): 𝐺𝛽

56 = 0.
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Proof. Follows from Proposition 6.1 by induction.

Proposition 6.3. Given an OHTUB 𝐵 and a non-zero vector 𝑎 ∈ 𝔽𝑛
𝑞 :

(∃𝑖 ∈ [0, |𝐵|)ℤ ∶ ℎ(𝑎) = ℎ(𝐵𝑖) ∧ 𝑡(𝑎) < 𝑡(𝐵𝑖)) ⇒ 𝑎 ∉ span𝐵

Proof. We proof the contraposition. 𝑎 ∈ span𝐵 ⇒ ∃𝜆 ∈ 𝔽|𝐵|
𝑞 ∶ 𝑎 = ∑|𝐵|−1

𝑗=0 𝜆𝑗𝐵𝑗.
Let 𝑖 ∈ [0, |𝐵|)ℤ ∶ ℎ(𝑎) = ℎ(𝐵𝑖) which exists because of Proposition 6.1. ⇒ 𝜆𝑖 ≠ 0. 𝑡 is
injective on 𝐵 ⇒ 𝑡(𝑎) = max{𝑡(𝐵𝑗) ∣ 𝑗 ∈ [0, |𝐵|)ℤ ∧ 𝜆𝑗 ≠ 0} ≥ 𝑡(𝐵𝑖).

Definition 6.5 (Bilateral spread row echelon form). Matrix 𝐴 ∈ 𝔽𝑚×𝑛
𝑞 is in bilateral

spread row echelon form iff all the following hold:

(𝛼) 𝐴 is in spread row echelon form.

(𝛽) The non-zero rows of 𝐴 form an OHTUB.

It is obvious that every matrix 𝐴 in spread row echelon form can be brought to bilateral
spread row echelon form using elementary row operations: while there exist two rows
𝑖 < 𝑗 with 𝑡(𝐴𝑖) = 𝑡(𝐴𝑗), we can eliminate the last non-zero element of row 𝑖 with
row 𝑗. This does not change ℎ(𝐴𝑖), but decreases 𝑡(𝐴𝑖) at least by one. As the total
number of trailing zeros of all rows is bounded by the matrix size, iterating this process
will deterministically terminate. When it terminates, the desired condition is fulfilled.

In order to perform the rear-end elimination efficiently, that is, to find a pair of rows with
equal number of trailing zeros, we use a lookup table 𝑡inv ∈ ([0, 𝑀)ℤ ∪ {∅})𝑀

to partially
invert the tail index function 𝑡:

𝑡inv𝑖 ≔
⎧{
⎨{⎩

𝑗 if 𝑡(𝐺𝑗) = 𝑖

∅ if ∄𝑗 ∈ [0, 𝑀)ℤ ∶ 𝑡(𝐺𝑗) = 𝑖
(6.3)

When a new row is injected and eliminated at the front (row echelon form), we can ripple-
eliminate at the rear-end side using 𝑡inv until a vacant position is found, which means that
the bilateral spread row echelon form is reached.

The eager decoder uses the following decoding state:

0. Matrices 𝐺 and 𝑌 over 𝔽𝑞, implemented such that replacing a row with a given
vector, swapping rows, etc., can be done in constant time. Initially, 𝐺 and 𝑌 are all
zero.

1. Lookup tables 𝑡 ∈ {−1, … , 𝑀 − 1}, 𝑡𝑖 = 𝑡(𝐺𝑖) and 𝑡inv according to (6.3). Initially
𝑡inv ≡ ∅ and 𝑡 ≡ −1.
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Pseudocode of the EAGER decoding is given in Algorithm 6.0. Note however that depend-
ing on the specific code EAGER is applied to, it can be favorable to replace the lazy for
operations on 𝑌 (lines 4, 11) by eagerly applying them in line 4. While doing so comes at
the expense of additional cost to check injected LCs for innovativeness, it is required to
perform the swapping feature in Swap Gaussian Elimination (SGE) which plays a signifi-
cant role in precoding, where this additional cost is compensated by a reduced cost for
generating new LCs for recoding.

0 function inject(encoding vector 𝑔, information vector 𝑦)
1 𝑙 ← ⟨empty list⟩ ▷ buffer to record elimination steps
2 𝑠 ← ℎ(𝑔)
3 while 𝐺𝑠 ≠ ∅ do
4 append (𝑠, 𝑔𝑠

𝐺𝑠𝑠
) to 𝑙 ▷ record elimination step

5 eliminate 𝑔 using 𝐺𝑠 ▷ eliminate
6 if 𝑔 ≡ 0 then
7 return False ▷ (𝑎, 𝑏) is not innovative
8 𝑠 ← ℎ(𝑔)

▷ 𝐺 is not altered yet.
9 𝐺𝑠 ← 𝑔 ▷ insert 𝑔 in 𝐺

10 for (𝑟, 𝑥) ∈ 𝑙 do
11 𝑦 ← 𝑦 − 𝑥𝑌𝑟 ▷ replay eliminations 𝑙 on 𝑦 using rows of 𝑌
12 𝑌𝑠 ← 𝑦 ▷ insert 𝑦 in 𝑌

▷ 𝐺 is in non-bilateral spread row echelon form.
13 while 𝑡inv𝑡(𝐺𝑠) ≠ ∅ do
14 (𝑠, 𝑟) ← (min{𝑠, 𝜌},max{𝑠, 𝜌}) where 𝜌 = 𝑡inv𝑡(𝐺𝑠)
15 rear-end eliminate 𝐺𝑠 using 𝐺𝑟
16 apply the same row operation on 𝑌
17 𝑡inv𝑡(𝐺𝑟) ← 𝑟

18 𝑡inv𝑡(𝐺𝑠) ← 𝑠
▷ 𝐺 is in bilateral spread row echelon form again.

19 return True
Listing 6.0.: High-level generic pseudocode of EAGER.

Proposition 6.4. Given two matrices 𝐺, 𝐻 ∈ 𝔽𝑀×𝑀
𝑞 in BSREF, it holds that

(𝛼) span𝐺 = span𝐻 ⇒ ℎ(𝐺𝑖) = ℎ(𝐻𝑖)∀𝑖 ∈ [0, 𝑀)ℤ

(𝛽) span𝐺 = span𝐻 ⇒ 𝑡(𝐺𝑖) = 𝑡(𝐻𝑖)∀𝑖 ∈ [0, 𝑀)ℤ

Proof. Both are proven by contraposition.
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(𝛼) ∃𝑖 ∈ [0, 𝑀)ℤ ∶ ℎ(𝐺𝑖) ≠ ℎ(𝐻𝑖) ⇒ (ℎ(𝐺𝑖) = 𝑀 ∧ ℎ(𝐻𝑖) = 𝑖) ∨ (ℎ(𝐺𝑖) = 𝑖 ∧
ℎ(𝐻𝑖) = 𝑀). WLOG ℎ(𝐺𝑖) = 𝑖 ∧ ℎ(𝐻𝑖) = 𝑀 ⇒ 𝐺𝑖 ∉ span𝐻 because of
Proposition 6.1 ⇒ span𝐺 ≠ span𝐻.

(𝛽) ∃𝑖 ∈ [0, 𝑀)ℤ ∶ 𝑡(𝐺𝑖) ≠ 𝑡(𝐻𝑖). If 𝐺𝑖 ≡ 0 or 𝐻𝑖 ≡ 0, then span𝐺 ≠ span𝐻
because of Proposition 6.1. Else, WLOG let 𝑡(𝐺𝑖) < 𝑡(𝐻𝑖) ⇒ 𝐺𝑖 ∉ span𝐻 because
of Proposition 6.3. ⇒ span𝐺 ≠ span𝐻.

Corollary 6.5. Given a matrix 𝐺 in BSREF, if 𝐺 has full rank, then 𝐺 is diagonal.

Proof. rank𝐺 = 𝑀 ⇒ span𝐺 = 𝔽𝑀
𝑞 = span 1. 1 is diagonal ⇒ by Proposition 6.4 𝐺 is

diagonal.

Proposition 6.6. Given a finite sequence 𝐿 of LCs, if there exists an algorithm that is capable
of partially decoding 𝐿, the same partial result will naturally be produced by an EAGER
decoder when injecting all elements of 𝐿.

Proof. Before sketching a proof, we need to clarify what we mean by “partially decode”:
by completely solving 𝐴𝑋 = 𝐵 we mean that we compute 𝑋, i. e., every row of 𝑋. By
partially solving 𝐴𝑋 = 𝐵 for row 𝑖 ∈ [0, 𝑛)ℤ we mean that we compute 𝑋𝑖, regardless
of whether the rest of 𝑋 can also be computed yet. Any algorithm can only compute 𝑋𝑖

from 𝐿 if the standard basis vector e𝑖 lies in the span of 𝐿’s EVs. After injecting every LC
of 𝐿 into an EAGER decoder, its span𝐺 equals the span of 𝐿’s EVs. ⇒ e𝑖 ∈ span𝐺 ⇒
ℎ(𝐺𝑖) = 𝑡(𝐺𝑖) = 𝑖 because of Proposition 6.3. ⇒ 𝑋𝑖 = (𝐺𝑖𝑖)−1𝑌𝑖.

6.3.1 Conditional Row Swapping

As already discussed, decoding algorithms of codes like SGE perform row swapping during
the GE phase: before eliminating 𝑔 using 𝐺ℎ(𝑔), 𝑔 and 𝐺ℎ(𝑔) are always swapped (as well
as 𝑦 and 𝑌ℎ(𝑔)) which enables treating the rows of 𝐺 and 𝑌 as precoded LCs. It turns out
that even without precoding, this kind of swapping can save many rear-end elimination
steps. When an LC (𝑔, 𝑦) with a small tail index is eliminated using a row (𝐺𝑖, 𝑌𝑖) with
a greater tail index (𝑡(𝑔) < 𝑡(𝐺𝑖)), both LCs have that larger tail index 𝑡(𝐺𝑖) afterwards.
Since the goal of eager back-substitution is to reduce the tail indices of 𝐺, some of this
work can be saved by swapping the LCs before elimination. At a first glance, this seems
to be in conflict with the strategy of postponing the GE row operations on 𝑌 until the
innovativeness of 𝑔 has been shown. But 𝑡(𝑔) < 𝑡(𝐺𝑖) ⇒ 𝑔 ∉ span𝐺 (Proposition 6.3),
so as soon as we encounter a situation where (𝑔, 𝑦) and (𝐺𝑖, 𝑌𝑖) should be swapped, we
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know that (𝑔, 𝑦) is innovative. Therefore, we can safely apply on 𝑦 the postponed row
operations recorded in 𝑙 before swapping. From this point where we know that (𝑔, 𝑦) is
innovative, every row operation on 𝑔 can immediately be applied on 𝑦 as well.

As a final note, we want to emphasize that conditional row swapping is only an improve-
ment of the computational performance and does not alter the partial decoding properties
in any way, i. e., it is not required for zero-overhead early partial decoding in a Hierarchi-
cal Network Coding (HNC) context. Pseudocode of the full EAGER decoding including
conditional row swapping is given in Algorithm 6.1.

6.4 Computational Demand

The computational demand for decoding strongly depends on the sparsity of injected LCs,
which in turn differs for the specific codes. At first, we consider the computational demand
of decoding a bulk code where all EVs are uniformly drawn from 𝔽𝑀

𝑞 . We compute the
worst case where each GE eliminates only one single element to zero which approximately
corresponds to the limit of large finite field size 𝑞 (for random rows, the probability that
an elimination step produces more than one leading zero is roughly 1

𝑞
). Furthermore,

we restrict this calculation to decoding of exactly 𝑀 innovative LCs, thereby neglecting
the cost of eliminating any non-innovative LCs’ EV to zero. In order to compare EAGER
decoding with row-pivotized incremental LU decomposition, we define the computational
demand of decoding as the number of 𝔽𝑞 multiplications needed to compute 𝑋, thereby
neglecting 𝔽𝑞 additions (which are just bitwise XOR for log2 𝑞 ∈ ℤ), modifications in the
permutation matrix, pointer swaps, and so forth.

Both for LU decomposition and for EAGER, multiplications happen only during row
operations. A row operation on 𝑌 simply needs 𝐾 multiplications, because regardless of
the sparsity of 𝐺 (or 𝑈), 𝑌 is always bulk. Row operations on 𝐺 and 𝑈, however, are not
that simple, because in both 𝐺 and 𝑈 the strictly lower triangle equals zero by construction,
thereby systematically reducing number of multiplications required for elimination. A
similar argument holds for the trailing zeros in 𝐺.

6.4.0 LU Decomposition

Computational Demand of Decomposition

Assuming that no zeros occur by chance, we can neglect permutation and thus assume
that after 𝑘 LCs injected, 𝑈𝑖𝑗 = 0∀𝑗 < 𝑖, 𝑈𝑖𝑖 ≠ 0∀𝑖 < 𝑘, and 𝑈𝑖𝑗 = 0∀𝑖 ≥ 𝑘∀𝑗. To
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0 function inject(encoding vector 𝑔, information vector 𝑦)
1 𝑙 ← ⟨empty list⟩ ▷ buffer to record elimination steps
2 𝑖 ← False ▷ 𝑖 = whether 𝑔 is definitely innovative
3 𝑠 ← ℎ(𝑔)
4 while 𝐺𝑠 ≠ ∅ do
5 if 𝑡(𝑔) < 𝑡(𝐺𝑠) then
6 for (𝑟, 𝑥) ∈ 𝑙 do
7 𝑦 ← 𝑦 − 𝑥𝑌𝑟 ▷ replay eliminations 𝑙 on 𝑑 using rows of 𝑌
8 𝑖 ← True
9 𝑙 ← ⟨empty list⟩

10 swap (𝑔, 𝑦) and (𝐺𝑖, 𝑌𝑖)
11 if 𝑖 then
12 𝑦 ← 𝑦 − 𝑔𝑠

𝐺𝑠𝑠
𝑌𝑠 ▷ perform elimination on 𝑦

13 else
14 append (𝑠, 𝑔𝑠

𝐺𝑠𝑠
) to 𝑙 ▷ record elimination step

15 eliminate 𝑔 using 𝐺𝑠 ▷ eliminate
16 if 𝑔 ≡ 0 then
17 return False ▷ (𝑎, 𝑏) is not innovative
18 𝑠 ← ℎ(𝑔)
19 𝐺𝑠 ← 𝑔 ▷ insert 𝑔 into 𝐺
20 for (𝑟, 𝑥) ∈ 𝑙 do
21 𝑦 ← 𝑦 − 𝑥𝑌𝑟 ▷ replay eliminations 𝑙 on 𝑦 using rows of 𝑌
22 𝑌𝑠 ← 𝑦 ▷ insert 𝑦 in 𝑌

▷ 𝐺 is in non-bilateral spread row echelon form.
23 while 𝑡inv𝑡(𝐺𝑠) ≠ ∅ do
24 (𝑠, 𝑟) ← (min{𝑠, 𝜌},max{𝑠, 𝜌}) where 𝜌 = 𝑡inv𝑡(𝐺𝑠)
25 rear-end eliminate 𝐺𝑠 using 𝐺𝑟
26 apply the same row operation on 𝑌
27 𝑡inv𝑡(𝐺𝑟) ← 𝑟

28 𝑡inv𝑡(𝐺𝑠) ← 𝑠
▷ 𝐺 is in bilateral spread row echelon form again.

29 return True
Listing 6.1.: High-level generic pseudocode of EAGER including conditional row swapping.
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decompose the EV of the 𝑘th LC, the leading 𝑘 elements need to be eliminated using row
operations requiring 𝑀 + 𝑀 − 1 + ⋯ + 𝑀 − 𝑘 + 1 multiplications in total:

𝐶(𝑘) =
𝑘−1

∑
𝑖=0

𝑀 − 𝑖 = 𝑘𝑀 −
𝑘(𝑘 − 1)

2

So decomposition of all 𝑀 EVs requires

𝑀−1

∑
𝑖=0

𝐶(𝑘) =
1
3

𝑀3 + 𝑂(𝑀2)

(neglecting coefficients of sub-dominant terms) multiplications, the well-known result for
Gauss-Jordan elimination that one can find in practically any textbook on numerics [139].

Forward- and Backward Substitution

Visually speaking, every element of 𝐿 strictly below its diagonal requires one row operation
on 𝑌 during forward substitution and every element of 𝑈 on and above its diagonal requires
one row operation on 𝑌 during backward substitution. Together, this yields 𝑀2 row
operations and thus 𝐾𝑀2 multiplications.

Together with the cost of decomposition, this yields

cost(LU-based decoding) = (1
3
𝑀 + 𝐾)𝑀2 + 𝑂(𝑀2)

6.4.1 EAGER Decoding

Just like for LU decomposition, we can assume that after 𝑘 LCs injected, 𝐺𝑖𝑗 = 0∀𝑗 < 𝑖,
𝐺𝑖𝑖 ≠ 0∀𝑖 < 𝑘, and 𝐺𝑖𝑗 = 0∀𝑖 ≥ 𝑘∀𝑗. However, due to the property of 𝐺 being in
BSREF we also know that all 𝑡(𝐺𝑖) for 𝑖 < 𝑘 are distinct. Eliminating 𝑔 using 𝐺𝑖 requires
only 1 + 𝑡(𝐺𝑖) − ℎ(𝐺𝑖) multiplications. Therefore, front-end elimination of the leading
𝑘 elements of the 𝑘th LC’s EV requires only 𝑘(𝑀 + 1 − 𝑘) multiplications plus 𝑘 row
operations on 𝑌, since we do not postpone these operations into a later substitution
step. This yields a total of 𝑘(𝑀 + 1 − 𝑘 + 𝐾) multiplications for front-end elimination
during injection of the 𝑘th LC. Analogously, the following 𝑘 rear-end elimination steps
require 𝑘(𝑀 − 𝑘) multiplications for row operations on 𝐺 and 𝑘𝐾 multiplications for row
operations on 𝑌. Putting front-end and rear-end elimination together, this yields a cost
of

𝐶(𝑘) = 𝑘(2𝑀 + 1 − 2𝑘 + 2𝐾)

6.4 Computational Demand 113



multiplications for the injection of the 𝑘th LC. The total cost of injecting 𝑀 LCs then
follows from summation over 𝑘:

cost(EAGER decoding) =
𝑀−1

∑
𝑘=0

𝐶(𝑘)

= (1
3
𝑀 + 𝐾)𝑀2 + 𝑂(𝑀2)

Interestingly, this is exactly (when considering only dominant terms) the same result
that we computed for LU-decomposition-based decoding. While this is definitely no
quantitative benefit over LU decomposition, we still note that with EAGER decoding, we
practically get the feature of earliest-possible partial decoding (Proposition 6.6) for free, at
least asymptotically.

Non-innovative combinations In practice, it is not always possible to design a protocol
in a way, such that every node only receives innovative LCs. Therefore, the cost of
identifying an LC as non-innovative is still of relevance. In LU decomposition, this
cost equals the cost of decomposition: when the decoder already has rank 𝑘, it requires
𝑘⋅(𝑀 − 𝑘−1

2
) multiplications at worst. In EAGER decoding, this cost does not equal the cost

of injection, as neither row operations on 𝑌, nor rear-end elimination takes place. Instead,
it equals the cost of EAGER’s front-end elimination, namely 𝑘(𝑀 + 1 − 𝑘) multiplications
when the decoder already has rank 𝑘. When naïvely assuming a decoder-rank probability
distribution for received non-innovative LCs that is flat on [0, 𝑀)ℤ (which is really naïve,
because for rank = 0, an LC cannot even be non-innovative), the expectation value of the
computational cost in either case is given by

cost(LU-based) =
1
𝑀

𝑀−1

∑
𝑘=0

𝑘 ⋅ (𝑀 −
𝑘 − 1

2
)

=
1
3

𝑀2 + 𝑂(𝑀)

cost(EAGER) =
1
𝑀

𝑀−1

∑
𝑘=0

𝑘 ⋅ (𝑀 + 1 − 𝑘)

=
1
6

𝑀2 + 𝑂(𝑀)

multiplications to identify a non-innovative LC. In this oversimplified model, EAGER
suddenly outperforms LU-based decoding by a factor of two.
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6.5 Application of EAGER to Different Codes

6.5.0 Hierarchical Network Coding

HNC [101] is the ideal example to demonstrate the benefits of EAGER decoding.

• The method introduced so far can be applied directly, without any extension or
modification.

• The partial decoding that inherently comes with EAGER is actually the primary goal
of HNC.

• We have access to implementation and evaluation source code that was used to
evaluate the computational demand of HNC, or JOYCE [88], respectively.

• EAGER decoding is asymptotically more efficient than JOYCE by a factor of 𝑀 in
terms of computation time as well as memory usage.

We first recap the basic idea of JOYCE: starting with empty (i. e., all-zero) (𝑀 ×𝑀) matrices
𝐿 and 𝑈, and an identity permutation 𝑃, the EV of each injected LC is inserted into the first
non-vacant row of 𝑈. If the non-vacant rows of 𝑈, including the new row, are not sorted
by layer, the rows of 𝑈 are bubble-sorted bottom-up. In order to maintain the invariant
𝑃𝐿𝑈 = 𝐴 when swapping adjacent rows of 𝑈, it may be required to partially undo the
GE operations applied beforehand. This technique is called counter elimination. EAGER,
using eager forward eliminations and avoiding to store 𝐿, does not have this inter-row-
dependency: for every row (𝐺𝑖|𝑌𝑖) of (𝐺|𝑌 ) holds: 𝐺𝑖𝑋 = 𝑌𝑖. Therefore, eager forward
substitution allows swapping arbitrary rows in 𝐺 as long as the corresponding rows in 𝑌
are swapped as well, thereby eliminating the need for costly counter elimination. Naïvely,
one could think that the well-known strategy of eager forward substitution was sufficient
to enable by-layer-ordering with simple row-swapping. But without eager backward
substitution, this comes at the cost of performing all forward substitution steps on 𝑌, even
if the injected LC is not innovative. For our approach of conditional row swapping, which
assures that row swapping never happens in case of non-innovative LCs, eager forward
substitution alone is not sufficient, but in addition the concept of the BSREF is required.
Thus, while eager forward substitutions and direct swapping of non-adjacent rows could
be used as an alternative approach to LU decomposition and counter elimination, only
EAGER backward substitution assures that solving the system for a given right-hand side
𝑌 can be performed in less than or equal to 𝑀2 elementary row operations on 𝑌.

In order to compare EAGER to JOYCE in terms of processing time and memory usage,
we take a look at the model that is defined by JOYCE’s authors [88]: it is assumed that a
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(a) Memory usage. (b) Processing time.

Fig. 6.2.: Comparison of HNC, JOYCE, and EAGER in terms of (a) memory usage and (b) processing
time for decoding a generation of size 𝑀 = 120 depending on the numbers |𝑅| of layers.
Error bars depict 95% confidence intervals (CIs).

generation of size 𝑀 is divided into |𝑅| fine-grained prioritization layers, meaning that
|𝑅| ∈ Θ(𝑀), or equivalently that 𝑚 ≔ 𝑀

|𝑅|
is constant. Further it is assumed that a

decoder receives LCs mostly in order, i. e., with a maximum deviation of 𝐶 layers, where
𝐶 ∈ ℕ is independent of 𝑀. We call this the in-order assumption (IOA). The opposite, i. e.,
not assuming any special ordering of injected LCs, would translate to 𝐶 ∈ Θ(𝑀/𝑚).

6.5.1 Empirical Comparative Performance Evaluation

To give JOYCE a fair chance, we start by approximately reproducing the performance
evaluation carried out in [88], only adding data series for EAGER. In Fig. 6.2 we show
measurements of memory usage and processing time of HNC, JOYCE, and EAGER for
decoding a generation of size 𝑀 = 120 with varying number |𝑅| of equally-large layers.
We also adopt the assumption of the sender’s imperfect knowledge about the receiver’s
decoding state: if the decoder has already decoded the first 𝑘 layers successfully, instead of
injecting combinations of the best-fitting generation 𝑘, we chose a layer uniform at random
from {𝑘 − 𝐶, … , 𝑘 + 𝐶} ∩ [0, |𝑅|). The data clearly confirms that EAGER’s computational
demand for decoding is essentially independent of layering, just as it is the case for
JOYCE. As it is not possible in case of EAGER, to measure the time for decomposition and
substitution separately, the measured processing times incorporate the complete solution
of the system of linear equations for each decoding algorithm. However, in order to focus
on solving the encoding matrix instead of the coded data part, we chose 𝐾 = 1 for all
timing experiments.
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Fig. 6.3.: Processing times of different decoding algorithms for layered prioritized RLNC, given an
ignorant sender that selects layers uniform at random. Dotted straight lines are drawn
only to give orientation regarding slopes. Error bars depict 95% CIs.

In addition, we also repeated the measurement of processing time under the worst-case
assumption that the sender has no knowledge about the decoder’s state at all: in Fig. 6.3 we
considered a sender that generates packets by choosing the layer uniform at random from
all possible layers and measured the processing time for complete decoding depending on
the generations size 𝑀 for fixed 𝑚 = 1. In addition to HNC, JOYCE, and EAGER, we also
take a vanilla not-partially-decoding LU decomposition-based decoder into consideration,
denominated “RLNC” in the plot. The data confirms that both HNC and JOYCE have a
processing time of 𝑂(𝑀4), whereas vanilla RLNC and EAGER require 𝑂(𝑀3). In addition,
we learn that EAGER performs roughly a factor of ten faster than vanilla LU-decomposition-
based RLNC, thereby demonstrating a rather mundane benefit over LU decomposition
that, admittedly, might be an artifact of the specific implementations.

The strength of EAGER, when applied to prioritized layered RLNC, becomes much clearer
when considering resource utilization depending on generation size 𝑀 for a fixed layer
size 𝑚 (as opposed to Fig. 6.2, where 𝑀 is fixed and 𝑚 is varied). For 𝑚 = 10 and
layer-imperfection 𝐶 = 2 we measured memory usage and processing time of EAGER
and JOYCE for a wide range of values of 𝑀; results are given in Fig. 6.4. In addition
to the bulk layered approach, where an LC corresponding to the 𝑘th layer has non-zero
coefficients in [0, (𝑘 + 1)𝑚)ℤ we also measured performance in the case of a band layered
code where encoding vectors of a layer have the same zero-tail properties, but at most
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(a) Memory usage. (b) Processing time.

Fig. 6.4.: Comparison of JOYCE and EAGER in terms of (a) memory usage and (b) processing time
for decoding. Generation size 𝑀 is varied for constant layer size 𝑚. Both algorithms are
evaluated for bulk layered coding as well as for band layered coding. Dotted straight
lines are drawn only to give orientation regarding slopes. Each data point has been
measured with 10 differently seeded runs. Error bars depict 95% CIs. There are no data
points for JOYCE at 𝑀 > 1000 because each measurement run was performed with a
timeout of 10 s.

ℓ ∈ ℕ+ consecutive coefficients are non-zero. The terms “band”/“bulk” layered are our
own creation and do not stem from the related work.

bulk LC of layer 𝑘: 𝑎𝑖𝑗 = 0 ∀𝑖 ∉ [0, (𝑘 + 1)𝑚)ℤ

band LC of layer 𝑘: 𝑎𝑖𝑗 = 0 ∀𝑖 ∉ [max{0, (𝑘 + 1)𝑚 − ℓ}, (𝑘 + 1)𝑚)ℤ

An example of sparsity patterns of EVs and decoder state matrices for bulk layered and
band layered codes for 𝑚 = 3 and ℓ = 6 is given in Fig. 6.5.

We find that for either encoding strategy EAGER has memory usage linear in the size
of the generation, while JOYCE’s memory usage is super-linear. When considering the
sparsity patterns of matrices 𝐿 and 𝑈 of JOYCE for layered band-coded LCs as depicted
in Fig. 6.5, there is reason to presume that JOYCE’s memory usage could also be made
linear by changing its implementation appropriately to use sparser data structured to store
the rows of 𝐿 and 𝑈. The comparison of processing times however shows that EAGER
can achieve linear time for band-coded LCs and quadratic time for bulk-coded LCs. We
note that these processing times are asymptotically optimal because they are proportional
to the number of non-zero random coefficients, each of which needs to be processed for
decoding. We conclude that EAGER is a promising concept as its resource utilization is
not only asymptotically optimal for large 𝑀 but also smaller than its contenders for small
generation sizes that would be expected in practical applications.
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LCs JOYCE (𝐿) JOYCE (𝑈) EAGER (𝐺)

non-
hierar-
chical

bulk

band

Fig. 6.5.: Example snapshots of LCs and decoder state sparsity patterns for JOYCE’s 𝐿 and 𝑈
matrices as well as EAGER’s 𝐺 matrix for 𝑀 = 24, 𝑚 = 3, 𝐶 = 2 bulk and band codes,
each after the injection of 20 LCs.
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6.5.2 Treatment of Wrapped Interval-Sparse Codes

As we have already seen, EAGER is well-suited to decoding and recoding non-wrapped
interval-sparse random linear codes. For the use case of bulk broadcast using fountain/net-
work hybrid random linear codes that we treat in Chapter 7, however, we use end-wrapping
chunked overlapped random linear codes because of their rotation symmetry in the index
space.

We discuss two strategies for decoding codes with end-wrapping interval-sparse EVs.
Consider for example, for an 𝑀 = 8, ℓ = 4 interval-sparse code, an encoding vector
a𝑖 = (1, 1, 0, 0, 0, 0, 1, 1). We can straight-forwardly inject this LC into an EAGER decoder,
ignoring its sparsity and treating it as bulk encoding vector with ℎ(a𝑖) = 0 and 𝑡(a𝑖) =
7 = 𝑀 − 1. If decoding was the decoder’s only purpose, this was a perfectly valid strategy.
Even though EAGER performs particularly efficiently when applied on interval-sparse
encoding vectors, there is no requirement that EVs have any sparsity pattern at all.

Recoding, on the other side, is significantly hampered by this strategy. When not-end-
wrapping LCs are injected into an EAGER decoder, their sparsity and therefore their
recodability is only increased, because front-end and rear-end elimination never enlarges
the non-zeros’ convex hull. (By convex hull we heremean the index-space-interval covering
all non-zero elements of a vector or of a matrix row.) The sparsity of an end-wrapping LC
on the other side lies in a stride of zero coefficients in the middle of two non-zero ranges.
This kind of sparsity is by no means conserved by EAGER.

To enable both recoding and decoding for end-wrapping interval-sparse codes, we use
a simple trick that allows us to insert end-wrapping EVs without tearing them apart:
Consider a code with fixed 𝑀 and ℓ whose sparsity classes are all representable as

𝐶 = [ℎ, ℎ + ℓ)ℤ with ℎ ≤ 𝑀 − ℓ (6.4)

or

𝐶 = [ℎ, 𝑀)ℤ ∪ [0, ℎ + ℓ − 𝑀)ℤ with ℎ > 𝑀 − ℓ (6.5)

The end-wrapping type of classes (6.5) can be re-written as simple (non-wrapping) integer
intervals

𝐶 = [ℎ, ℎ + ℓ)ℤ with ℎ > 𝑀 − ℓ (6.6)

120 Chapter 6 EAGER Decoding: Introducing EAger Gaussian Elimination for
Rlnc Decoding



if we logically extend the matrix 𝑋 in an 𝑀-periodic fashion to shape 𝑀 ′ × 𝐾 where
𝑀 ′ = max{ ℎ + ℓ ∣ [ℎ, ℎ + 𝑙)ℤ ∈ 𝒞(6.6) }:

𝑋𝑘 ≔ 𝑋𝑘−𝑀 ∀ 𝑘 ≥ 𝑀 (6.7)

When we rewrite every end-wrapping EV in this way, they have non-zero coefficients at
indices greater than or equal to 𝑀. In order to inject these EVs into the decoder matrix
𝐺, it needs to be enlarged to 𝑀 ′ × 𝑀 ′ as well as 𝑌 which now is of size 𝑀 ′ × 𝐾. At
a first glance, it seems that we have bought the ability to efficiently recode packets at
the cost of needing 𝑀 ′ instead of 𝑀 innovative packets for 𝐺 to become diagonal and
thus to being able to decoding the whole transmission. This is caused by the fact that we
use (6.7) for encoding, but have not used it for decoding so far. Therefore, we rewrite (6.7)
in row-matrix form as

𝑋𝑘−𝑀,𝑗 − 𝑋𝑘,𝑗 = 0 ∀ 𝑘 ∈ [𝑀, 𝑀 ′)ℤ∀𝑗 ∈ [0, 𝐾)ℤ

(
𝑘−𝑀

⏞0, … , 0, 1,
𝑀−1

⏞0, … , 0, −1,
𝑀′−𝑘−1
⏞0, … , 0)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

encoding vector

⋅𝑋 = (
𝐾

⏞0, … , 0)⏟
information vector

← matrix equation

(6.8)

and simply inject these 𝑀 ′ − 𝑀 LCs that encode the redundancy in 𝑋′ into the decoder
during initialization, i. e., before the first real LC is injected. Note that by −1 we mean the
additive inverse of 1 which is equal to 1 for finite fields whose order are integer powers
of 2. Since the decoder state matrix is hereby initialized with rank 𝑀 ′ − 𝑀, only 𝑀
additional innovative LCs are required to achieve full rank and thereby decodability.

End-Wrapping Overlapped Chunked Codes: EAGER vs. Separate Decoders

As stated earlier, EAGER decoding lends itself to decode overlapped chunked random
linear codes [103]. When dividing 𝑀 source symbols into 𝑁 = 𝑀/(𝑚 − ℓ) chunks of
size 𝑚 such that every two contiguous chunks overlap by ℓ symbols in an end-wrapping
fashion, decoding can be performed in two fundamentally different ways: one can either
use one large joint decoder of size 𝑀 (or rather 𝑀 ′ = 𝑀 + ℓ when using EAGER), or
one could instantiate 𝑁 separate decoders of size 𝑚 each, one per chunk, and inject each
received combination into the corresponding decoder. In the case of separate decoders,
every time one of the per-chunk decoders reaches full rank 𝑚, the chunk can be decoded
and ℓ trivially encoded LCs (whose EV is a standard basis vector) can be injected into its
predecessor and successor chunk each.
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(a) Code overhead. (b) Decoding time.

Fig. 6.6.: Comparison of decoding strategies for end-wrapping overlapped chunked RLNC. Per-
chunk decoding and joint decoding using EAGER is compared in terms of (a) code
overhead and (b) compute time for decoding. Error bars depict standard deviation.

The joint decoding approach has two advantages over per-chunk decoding: first, it can
decode sets of LCs that are not decodable with separate decoders because the latter require
that there is at least one chunk of which 𝑚 linearly independent LCs have been received.
Second, joint decoding using EAGER improves the recodability, because LCs that belong
to one chunk implicitly contribute to neighboring chunks as soon as more than 𝑚 − ℓ
linearly independent LCs have been injected. Using separate decoders, this inter-class
recoding happens only when chunks reach full rank.

To quantify the advantage of joint decoding using EAGER over separate per-chunk decoders
empirically, we consider a single-hop scenario consisting of one source node emitting LCs
with 𝑚−ℓ = 50, 𝑞 = 100 and a destination node that receives packets and seeks to decode
the message. In each run and for each decoding approach we measure the number 𝑛 of
random LCs that is needed to decode the message entirely (which is termed capacity by
some authors [103]). For each decoder and each value of ℓ we performed 10 independently
seeded runs. The relative amount of excess packages 𝜅 = 𝑛

𝑀
− 1 is also known as code

overhead.

In Fig. 6.6a we see that for both decoding approaches the overhead benefits from overlapped
chunks if the overlap is small (ℓ ≪ 𝑚). However, the overhead of per-chunk decoding
raises again as ℓ → 2(𝑚 − ℓ) while the overhead of joint decoding seems to decrease
monotonically and to approach 0 asymptotically. The latter is consistent with analytic
results found in [104].

It turns out, however, that the reduction of overhead comes at an increased computational
demand, as can be seen in Fig. 6.6b.
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rank comparison implication on vector space innovativity of random LC

rank𝐺𝐴 > rank𝐺𝐵 span𝐺𝐴 ⊈ span𝐺𝐵 𝐴 → 𝐵 is innovative

rank𝐺𝐴 < rank𝐺𝐵 span𝐺𝐴 ⊉ span𝐺𝐵 𝐵 → 𝐴 is innovative

rank𝐺𝐴 = rank𝐺𝐵 ⁇ ⁇
Tab. 6.1.: Deduction of innovativity of randomly recoded packets from decoder state ranks only.

6.6 Normalization of Decoder State

6.6.0 Motivation

In a scenario with nodes using RLNC to transmit packets over multiple hops, a forwarding
node needs to decide whether its decoder contains information that is innovative for one
or more of its neighboring nodes. Let us consider two nodes A and B that are immediate
neighbors and use chunked RLNC to distribute data. Without loss of generality looking
at the perspective of node A, it has to decide for each chunk index 𝑖 whether an LC that
is randomly recoded from its own decoder state is likely to be innovative for node B. To
avoid visual clutter, we will not write out the index 𝑖 in this subsection, but simply write
𝐺𝐴 and 𝐺𝐵 to refer to the nodes’ decoder state matrices 𝐺 restricted to the rows whose
non-zero elements lie entirely within chunk 𝑖’s sparsity class. In other words: node 𝐴 has
to judge whether the vector space spanned by its own decoder state is a subspace of the
space spanned by B’s decoder (in which case an LC of A cannot be innovative for B). A
plain representation of the entire coefficient matrix that represents the decoder state is
typically far too large to be shared between different nodes: when assuming packets of
approximately 256B and 𝔽256, already the decoder state corresponding to a small chunk
size of 16 would fill an entire packet. Therefore, we can assume that including one or more
chunks’ decoder coefficient matrix in packet headers implies at least a significant overhead
and is unfeasible for larger chunk sizes.

A more lightweight heuristic to decide whether A’s packets are innovative for B relies on
ranks of the decoders’ coefficient matrix. The rank of the coefficient matrix of a chunk of
size 𝑚 is an integer in [0, 𝑚] and can thus be encoded in ⌈log2(𝑚 + 1)⌉ bits (compared
to 𝑚2 bytes to encode the plain coefficient matrix). If the RLNC protocol distributes
per-chunk decoder ranks as meta information such that neighboring nodes are aware of
each other’s chunk ranks, the Table 6.1 describes the implied innovativeness of packets.

Unless rank𝐺𝐴 = rank𝐺𝐵, one of the nodes can be certain that its combinations will
be innovative for the other node. Therefore, a conservative approach would let nodes
transmit combinations of a chunk if and only if its decoder rank is strictly greater than
the receiver’s rank. Naturally, when considering only these two nodes, this tends toward
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a situation where both nodes have the same rank and no node will transmit anymore. In
static topologies with a single source node that has full-rank information of all chunks,
this is not much of a problem: intermediate nodes will typically have smaller ranks the
further downstream from the source they are located. The source (which has full rank and
therefore higher rank than any not-finished node) can permanently pump LCs into its
one-hop neighborhood. Therefore, all nodes in the network can keep emitting LCs based
on the conservative rank heuristic and the only steady state7 that can be reached is the
state where all nodes in the network have full rank.

In Chapter 7 we study topologies where the source node distributes LCs to different
intermediate nodes before it goes out of communication range for a while. This can lead to
a situation where the vector space spanned by the union of all intermediate nodes’ decoders
has full rank, even though no decoder by itself has full rank. Using the conservative rank-
based heuristic for recoding could (and sometimes does) then reach a steady state, where
all intermediate nodes have reached the same (non-full) rank, even though their spanned
vector spaces differ. In other words: in some situations, the conservative heuristic can tell
every node not to transmit, even though some or even every node has innovative LCs for
its neighbors.

One possibility to overcome this steady state of unequal decoder subspaces is to find a
representation of the decoder state that uniquely depends on the spanned vector space
and is independent of the LCs that were injected into the decoder. We could then feed
this unique state into a hash function ℎ and exchange the resulting hash values between
nodes. If nodes A and B find that they not only have decoder states of equal rank but
also of equal hash value, both know (up to hash collisions) that their decoders represent
equal vector spaces and therefore neither of them can transmit an innovative LC to the
other. If, on the other hand, the ranks are equal, but the hash values are not, it is clear that
neither A’s vector space is a subspace of B’s, nor vice versa. For decoders of unequal rank,
the hash value does not contribute any additional information. Table 6.1 summarizes the
implication of different combinations of rank- and hash-relation on vector space relation
and thereby innovativity of transmitted LCs.

Thus, when we include hashes of all chunks’ decoder states into the meta-information
shared between neighbors, the only steady state (aside from hash collisions) of the resulting
hash-extended conservative heuristic is the state of all nodes decoder states being equal.

7By steady state we mean, in this context, a state where all nodes have stopped to transmit LCs and therefore
the data dissemination has stalled.
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rank comparison hash values implication on vector space innovativity of random LC

rank𝐺𝐴 > rank𝐺𝐵 irrelevant span𝐺𝐴 ⊈ span𝐺𝐵 𝐴 → 𝐵 is innovative

rank𝐺𝐴 < rank𝐺𝐵 irrelevant span𝐺𝐴 ⊉ span𝐺𝐵 𝐵 → 𝐴 is innovative

rank𝐺𝐴 = rank𝐺𝐵 ℎ(𝐺𝐴) ≠ ℎ(𝐺𝐵)
span𝐺𝐴 ⊈ span𝐺𝐵

span𝐺𝐴 ⊉ span𝐺𝐵 𝐴 ↔ 𝐵 both innovative

rank𝐺𝐴 = rank𝐺𝐵 ℎ(𝐺𝐴) = ℎ(𝐺𝐵) 𝐴 = 𝐵 none (unless hash collision)
Tab. 6.2.: Deduction of innovativity of randomly recoded packets from decoder state ranks and

decoder state hash values. See also Table 6.1.

6.6.1 A Unique Representation of the EAGER Decoder's State

All we need in order to achieve a unique representation of the decoder state is a set of
properties of the coefficient matrix such that given one coefficient matrix 𝐺 that satisfies
all properties, any non-trivial row operation on 𝐺 breaks at least one condition.

The first condition that we use is that 𝐺 is in BSREF, which is alreadymaintained by EAGER
by default. Fortunately, BSREF does not leave many ambiguities for the coefficient matrix.
The first ambiguity lies in constant per-row pre-factors: multiplying 𝐺 with a non-singular
diagonal matrix changes the coefficients in G but leaves it in BSREF. Therefore, we require
as second uniqueness condition that the first non-zero element in every row of 𝐺 shall be
1 (which is an arbitrary but obvious choice). The only remaining ambiguity is that we can
add a multiple of one row 𝑟 to another row 𝑠 where 𝑠 < 𝑟, if 𝑡(𝐺𝑟) < 𝑡(𝐺𝑠):

𝐺′
𝑠𝑖 = 𝐺𝑠𝑖 + 𝑎𝐺𝑟𝑖 ∀𝑖 (6.9)

Remember that for each non-vacant row 𝑠, 𝑠 is the index of the first non-zero element.
Thus, for 𝑟 < 𝑠, 𝐺𝑠𝑟 = 0 and the row operation (6.9) for 𝑎 ≠ 0 would result in 𝐺′

𝑠𝑟 ≠ 0,
breaking BSREF. Obviously, the same argument holds for the indices 𝑡(𝐺𝑠), 𝑡(𝐺𝑟) of the
last non-zero element of each row, which is unique in BSREF. If 𝑡(𝐺𝑟) > 𝑡(𝐺𝑠) then
𝐺′

𝑠,𝑡(𝐺𝑟) = 𝑎𝐺𝑟,𝑡(𝐺𝑟) ≠ 0 would be the last non-zero element of row 𝐺′
𝑠, breaking BSREF.

Therefore, row operations of type (6.9) only maintain the BSREF condition if

𝑠 < 𝑟 ∧ 𝑡(𝐺𝑠) > 𝑡(𝐺𝑟), (6.10)

i. e., if the convex hull of non-zero element indices of 𝐺𝑟 lies entirely within the cor-
responding convex hull of non-zero element indices of 𝐺𝑠. To remove the ambiguity
implied by this kind of row operation, we require that for every pair (𝑠, 𝑟) with 𝑠 < 𝑟
and 𝑡(𝐺𝑠) > 𝑡(𝐺𝑟): 𝐺𝑠𝑟 = 0. If this condition is not satisfied after injection, it can
be established by the row operation (6.9) with 𝑎 = −𝐺𝑠𝑟/𝐺𝑟𝑟. Since this elimination
produces a 0 somewhere between 𝐺𝑠𝑠 and 𝐺𝑠𝑡(𝐺𝑠), we term this a middle elimination.

6.6 Normalization of Decoder State 125



Fortunately, this rarely happens when using sparsity classes of equal length, or at least
when using an overlapped chunked linear code, as we investigated empirically.

We call a coefficient matrix 𝐺 satisfying these three conditions to be in reduced BSREF
in analogy to the (equivalently unique) reduced row echelon form that is well known
from linear algebra. Once the decoder is adapted to bring 𝐺 into reduced BSREF after
each injection, we can easily compute hash values of either the whole matrix 𝐺 or of
sub-matrices consisting of the rows that correspond to a certain sparsity class. We use
a chunked RLNC approach where each transmitted LC fits into the sparsity class of a
chunk in Chapter 7. Therefore, we compute submatrix hash values corresponding to the
chunks.

We note here that if only per-chunk hashes are ever used, it is sufficient to restrict conditions
(2) and (3) to rows that fall into any chunk’s sparsity class. Especially the de-wrapping
rows (6.8) receive many non-zero elements by elimination and often break these conditions.
But as long as their non-zero convex hull is longer than any chunk’s sparsity class, they
do not directly take part in recoding, and they are therefore excluded from hashing, and
thus also excluded from middle elimination in our implementation.

To hash a submatrix of 𝐺 consisting of 𝑘 non-vanishing rows in the corresponding sparsity
class, we push the concatenated byte sequence

(𝑠0, 𝑡0, 𝐺𝑠0𝑠0
, 𝐺𝑠0𝑠0+1, … , 𝐺𝑠0𝑡0

, 𝑠1, 𝑡1, 𝐺𝑠1𝑠1
, … , 𝐺𝑠𝑘−1𝑡𝑘−1

)

into a hash function capable of digesting byte streams of arbitrary length. In our imple-
mentation we use SpookyHashV2 [140] for this purpose.

6.6.2 The Computational Cost of Decoder State Uniqueness

Adding rear-end elimination to the incremental Gaussian elimination does not incur any
additional cost, because (a) the additional row operations during one injection are later
repaid by reducing the cost of subsequent front-end eliminations and (b) the resultant
shortening of rows of 𝐺 is never cancelled by subsequent elimination steps. See Section 6.4
for a full discussion of this topic.

This does not hold for additional middle elimination operations. The zero elements in
the middle of 𝐺’s rows are likely to be cancelled by subsequent front-end or rear-end
elimination steps and even if they did not, they would not shorten the ranges of loops
during elimination and therefore would not save any operations. The search effort to find
all ordered pairs of rows satisfying (6.10) after every successful injection incurs a secondary
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(a) Bulk code. (b) Overlapping chunked code.

Fig. 6.7.: Compute time for decoding using vanilla EAGER, unique-decoder-state EAGER, and
unique-decoder-state EAGER computation of all chunk hashes after each injection. (a)
bulk code with varying generation size and (b) end-wrapping overlapping chunked code
with chunk size 50, overlap 10 and varying number of chunks. Error bars depict standard
deviation.

computational cost of the unique representation. Additional memory is, however, not
required for middle elimination.

To quantify the cost of achieving a unique representation of decoder state in practice,
we measured the total decoding time required for bulk code as well as end-wrapping
overlapping chunked code. We compare decoding time without reduced BSREF, with
reduced BSREF, and with reduced BSREF plus computing the hash value of every chunk
(that changed) after every injection. The results given in Fig. 6.7 indicate that establishing
the unique representation of decoder state incurs a constant factor for 0.1–0.2 of additional
computation time. The actual computation of hash values increases the total computation
time by a factor of 2–3. However, a strong dependence on the total system size or chunk
overlap size cannot be observed in this data.

6.7 Conclusion

We introduced EAGER, a novel algorithm to solve systems of linear equations over finite
fields to be used in RLNC.We have shown both analytically and empirically that EAGER can
outperform RLNC decoders that are based on LU decomposition. EAGER can seamlessly
handle the joint decoding of overlapped chunked random linear codes, thereby decreasing
decoder-induced overhead, at least in end-to-end fountain code scenarios. Finally and
most importantly, EAGER is, to the best of our knowledge, the first RLNC decoder that is
capable of maintaining its decoder in a reduced state that depends only on the vector space
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spanned by the injected LCs. As we demonstrate in Chapter 7, this feature can be used to
simplify RLNC protocol design in the context of Over-the-Air Programming (OTAP) in
low Earth orbit (LEO) satellite formations.

128 Chapter 6 EAGER Decoding: Introducing EAger Gaussian Elimination for
Rlnc Decoding



Over-the-Air Programming of
Satellite Formations Using
Random Linear Network
Coding

7

„Alles Ständische und Stehende verdampft, alles
Heilige wird entweiht, und die Menschen sind
endlich gezwungen, ihre Lebensstellung, ihre
gegenseitigen Beziehungen mit nüchternen Augen
anzusehen.

— Karl Marx und Friedrich Engels
from: Manifest der Kommunistischen Partei

TL;DR In satellite OTAP based on RLNC, a decoder state that uniquely depends on the
represented subspace helps to improve communication efficiency.

7.0 Introduction

Nano satellite formations will be implemented that provide cooperative attitude control
capabilities for simultaneous target observations, e. g., in the missions TOM [105] and
CloudCT [106]. In the CloudCT project a formation of ten satellites will be implemented
by the Zentrum für Telematik e.V. (ZfT) in Würzburg, Germany. 3D information of
clouds will be captured by a satellite formation flying in a dense orbit configuration, as
displayed in Figure 7.0. While the satellite mission’s primary goal is the acquisition of
data in orbit which is then forwarded to the ground segment, satellites require frequent
reprogramming in terms of either regular command and control or in terms of firmware
updates that need to be deployed to each craft in the formation. Even though quite similar
to OTAP in wireless sensor networks (WSNs) at a first glance, the time-varying topologies
and channel conditions are significantly different from terrestrial sensor networks. The
dynamical topology of a whole system comprising one ground station (GS) and a number
of satellites in dense orbit configuration has three outstanding characteristics: First, the
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Fig. 7.0.: The CloudCT string-of-pearls orbit configuration.

satellites’ geometrical constellation is highly regular in space and constant over time,
at least when considering a string-of-pearls configuration as planned for the CloudCT
mission. Second, the satellites’ effective topology in terms of connectivity and packet loss
is neither constant nor predictable: it may be largely restricted by third party terrestrial
interferers like surveillance radar [107]. Connectivity may therefore significantly change
as the satellites move with respect to the Earth’s surface. Third, the satellites’ connectivity
to the GS is somewhat special: for most orbital configurations with homogeneous altitude
and inclination, the long-term average connectivity of each satellite to the GS is identical
for all satellites of the formation. Thus, none of the nodes is naturally preferential to
be the GS’s first hop for broadcast data dissemination. Furthermore, the GS’s aggregate
communication windows to all satellites in the formation constitutes only a small fraction
of time. Therefore, in-orbit dissemination via inter-satellite links may significantly reduce
delay when the same transmission payload is to be deployed to all satellites.

The task of broadcasting one bulk payload from the GS to all satellites in the formation
naturally lends itself to being solved with either a fountain code (also known as rateless
code) or with RLNC. On the one hand, adjacent satellites are close enough that most
packets transmitted by the GS can be received by more than one satellite. The formation’s
total extent, on the other hand, is so large that no packet transmitted by the GS can be

130 Chapter 7 Over-the-Air Programming of Satellite Formations Using Random
Linear Network Coding



received by all satellites at once (see Fig. 7.1). This implies that, considering any pair of
adjacent satellites, their sets of received packets have a large intersection, but neither is
a subset of the other. In such a situation, the total number of transmissions required to
complete the bulk broadcast transmission can be significantly reduced by using a fountain
code [6]. In simple terms, a fountain code is an erasure code that defines a practically
unbounded number of code words of size 𝐾 such that any random ⌈𝒮/𝐾⌉-element subset
of code words is sufficient to decode the source of size 𝒮 with high probability.

While using a fountain code has significant advantages over naïvely chopping the bulk
payload into uncoded segments, it still requires that every satellite receives the entire coded
transmission directly from the GS. Using inter-satellite transmissions, the GS-to-satellite
communication demand can be further reduced: as soon as the set of all packets received
by any satellite of the formation encodes the entire payload, satellites could exchange data
among each other, let it be by forwarding of received packets or by recoding (RLNC), until
each satellite can decode the transmission.

In order to minimize the total transmission delay or the GS-to-satellite uplink channel
resources, this use of inter-satellite communication is especially appealing when consider-
ing that a quasi-static inter-satellite topology offers significantly higher long-run average
channel capacity than the rare and short GS-to-satellite contact periods that are typical
for LEO satellite formations. In this chapter we use the term contact period to refer to a
(maximal) interval of time when there is at least one of the formation’s satellite above the
GS’s horizon.

In this chapter we introduce a simple chunked-RLNC-based toy protocol for OTAP. Since
every transmission in chunked RLNC belongs to one chunk, the protocol needs to decide
for any given transmission opportunity whether to transmit at all as well as from which
chunk to create a code word. In a simulation-based empirical evaluation, we use the
toy protocol to compare different chunk selection strategies with respect to use-case-
motivated performance metrics. In particular, we want to answer whether the availability
of RLNC decoder states that depend uniquely on the encoded linear subspace leads to
measurable performance gains. In addition, we also compare the toy protocol to a simple
fountain-code-based single-hop broadcast strategy to highlight the benefits of RLNC-based
inter-satellite data dissemination over a single-hop fountain code approach empirically.

The rest of this chapter is structured as follows: an overview of related work, especially ex-
plaining why we abstain from including existing OTAP protocols in our evaluation, is given
in Section 7.1. In Section 7.2 we introduce the toy protocol, a minimalist chunked-RLNC-
based OTAP protocol for string-of-pearls satellite formations. In a simulation-based
empirical evaluation that we present in Section 7.3 we use this toy protocol to compare
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(a) All satellites above GS horizon.

(b) Some satellites above GS horizon.

(c) No satellite above GS horizon.

Fig. 7.1.: Schematic overview of a network consisting of one satellite ground station and a string-
of-pearls LEO satellite formation. Even when all satellites are above the horizon (a), they
may not fit simultaneously in the GS antenna’s main lobe. As typical for LEO formations
in dense orbital configuration, most of the time (> 90%) no satellite at all is above the
horizon (c). (Dawing is not to scale.)
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different chunk selection strategies against each other. Concluding remarks follow in
Section 7.4.

7.1 Related Work

OTAP (also abbreviated “OAP” by some authors) in WSNs has attracted a lot of attention
in the research community during the last two decades. One of the earliest and most
cited OTAP protocols is Deluge [108], implemented in TinyOS. Many authors proposing
different approaches for OTAP compare their work to the Deluge protocol which despite
its popularity has been shown to suffer severe scalability issues, e. g., the “NACK implosion
problem”[100].

In order to reduce control message overhead created by ACK and NACK messages and
to improve the benefits of multiple nodes receiving a message, several multi-hop OTAP
protocols based on rateless codes and/or network coding have been proposed. In the
following we discuss the applicability of some of these protocols with respect to the
satellite OTAP problem. We note here that since “packet” is already heavily used in
RLNC for what we call “linear combinations,” and since “packet” is, in a different context, a
common term for network-layer objects, i. e., data objects that are transmitted over multiple
hops, we rather use the term “message”[108] for the data that is contained as payload in a
Medium Access Control (MAC) frame. Unfortunately, in OTAP it not uncommon [100] to
use the term “packet” for both, “message” and “uncoded row”. However, in this chapter
we still sometimes use the term “packet” as a synonym for “message” in common terms
like “packet loss.”

Most of the following protocols divide the bulk payload (e. g., a firmware image) into a
number of smaller units called pages, each of which is then further divided into several
messages or code words. These pages are what we called chunks in Chapter 6. All the
equivalent terms “chunk” [98], “generation” [102], “class” [97], and “aperture” [103] are
common in RLNC literature and refer to the subsets of all uncoded symbols from which
linear combinations are constructed. In OTAP, the term “page” [108, 100] is more common,
but some authors also use “batch” [99] for the very same thing.

Some protocols make explicit assumptions about the network’s topology that do not match
the topology we are facing here. UFlood [109] uses a base-station-rooted spanning tree
on the network’s topology to facilitate sender selection. A comparable tree structure is
also used by Splash [110]. While laying a tree over a group of terrestrial sensor nodes
distributed over a region of the surface makes sense, the linear topology of an in-line
satellite formation is less suited to be represented as a tree and especially as a rooted tree,
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Fig. 7.2.: Schematic sketches of topologies typically assumed for terrestrial WSNs (left) and a LEO
satellite formation in string-of-pearls dense orbital configuration (right).

bearing in mind that the root (the base station) is for most of the time disconnected from
the rest of the network. Considering the topologies depicted in Fig. 7.2, the terrestrial
network contains nodes closer to the base station (BS) like (a,b,c) that would most likely
play an important role as intermediate node in OTAP and nodes farther away from the
BS like (f,h). In a LEO satellite formation, all satellites have the same long-term-average
distance to the GS, each of them being within a one-hop distance to the GS once in a
while. Therefore, dividing satellites into intermediate and terminal nodes would be rather
artificial and hardly reflect the given topology. Similarly, Sprinkler [111], CORD [112],
Splash [110], and ULTRA [113] also fall into the category of protocols that we do not
consider because of their assumptions about network topology.

Deluge [108], ReXOR [114], and UFlood [109] employ an end-to-end one-batch-at-a-time
strategy, meaning that at any given point in time, all nodes including the base station
are only transmitting messages belonging to one single batch. The base station starts
to transmit messages belonging to the next batch as soon as it has received feedback
indicating that dissemination of the current batch has finished in the whole network.
Even though we did not verify it empirically, we deem this strategy unsuited for satellite
formations, where the first hop is particularly narrow because it is constrained to short
contact periods. After transmitting the first batch to some satellites within range of the
GS, the GS would need to wait for the satellites to finish dissemination of the first batch to
all satellites, including those currently not in range. Thus, the GS would waste the already
short contact period by waiting for inter-satellite communication to finish, something that
could be performed at any other time as well.
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However, this chapter focuses specifically on feedback mechanisms and heuristics that
intermediate nodes use to judge whether their RLNC-recoded messages are innovative
for their neighbors. One may therefore ask: what are the corresponding mechanisms
used by RLNC-based OTAP protocols in literature, and how do they compare to the toy
protocol?

UFlood uses a heuristic approximately resembling the toy protocol’s “pessimistic” heuristic
introduced in Section 7.2. Even though we do not evaluate the full UFlood protocol for the
aforementioned reasons, our evaluation reveals significant problems of the pessimistic
heuristic in case of satellite OTAP.

COPE [115] uses opportunistic XOR coding for intermediate nodes on a per-transmission
basis, as opposed to the per-batch network coding approach used by other protocols. This
opportunistic use of network coding, effectively only with micro-generations of degree
two, completely avoids the problem of non-innovative combinations. However, it also
significantly limits the positive effects of RLNC, which we find in our evaluation to become
distinct at much larger generation sizes.

AdapCode [116], Rateless Deluge [100], Synapse++[117], and SYREN [99] employ rateless
codes instead of network coding: they to not recode received messages but only forward
received, coded messages and/or re-encode already decoded complete batches. Arguing
similarly as we did for COPE, the lack of in-network re-coding avoids any need to estimate
the innovativeness of re-coded messages, but also lacks the benefits of re-coding.

A careful reader who is aware of the details of SYREN might wonder because in the
paper [99] it is claimed that SYREN uses network coding and that intermediate nodes
transmit only recoded messages. However, the paper also claims that SYREN’s messages do
not contain encoding coefficients at all, but a unique identifier from which the coefficients
are pseudorandomly deduced. To the best of our knowledge, no generally applicable
technique to represent the coefficients of recoded combinations in multi-hop RLNC is
known. A look at the source code of SYREN reveals that indeed, re-coding does not happen
and that messages of not-completed batches are only forwarded, whereas completed
batches are reencoded.

Last but not least CodeDrip [118] does use XOR-based recoding, but is explicitly designed
for rapid dissemination of small payloads and is therefore hardly comparable with the toy
protocol as well as other OTAP protocols.

Finally, in one of our own co-authored publications [6] the use of rateless codes for single-
hop bulk data dissemination from GSs to string-of-pearls satellite formations is discussed.
In this chapter we show that while single-hop dissemination, i. e., not using inter-satellite
links at all, is feasible: transmission delay as well as first-hop resource utilization can
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be reduced significantly by employing multi-hop dissemination by means of network
coding.

7.2 The Toy Protocol

In this section we describe the toy protocol, a minimalist tailored OTAP protocol for
string-of-pearls nano-satellite formations such as the satellites of the CloudCT mission.
We call it a toy protocol because we took some shortcuts to simplify protocol design. While
it could in principle be implemented and used exactly as we do in our evaluation, it would
be quite inflexible due to simplifications discussed at the end of Subsection 7.2.0.

7.2.0 Problem Statement

Our main design goals are:

• The protocol shall be able to achieve the goal of a complete OTAP transmission in a
resource-efficient way.

• The protocol shall be as simple as possible.

• The protocol shall however be sufficiently powerful and complete so that it could
in principle be deployed, violating only conventions and best practices, but not
violating physical or information-theoretical bounds.

• The heuristic by which nodes decide if a satellite should further transmit messages
and what RLNC chunk these messages belong to shall be easily exchangeable be-
tween different experiment runs, so that these heuristics can be compared against
each other.

We define the aimed efficiency of the protocol in terms of minimizing the following
metrics:

Total delay; Time to Last Byte: The time span from the GS’s first transmittedmessage
until every satellite has received and decoded the bulk payload.

Gross Inter-Satellite-Transmitted Data: The sum of the sizes of all messages trans-
mitted by satellites, including all protocol overhead in terms of headers, encoding
vectors, messages containing only control information, messages whose LC is non-
innovative for every receiver, and so forth.
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Consumed GS contact time: The total time that the GS spends on transmitting mes-
sages to the satellites, include time spent waiting for or receiving ACK messages.

We deliberately used the following simplifications that would need to be fixed for deploy-
ment in practice:

• As MAC protocol for inter-satellite transmissions we use a hard-coded time division
multiple access (TDMA) schedule.

• All protocol parameters, including those that directly affect the size of the bulk
payload to be delivered are hard-coded.

• The same holds for the satellites’ formation shape: In each experiment, the number
of satellites is hard-coded and the satellites “addresses” are 0 for the leading satellite
through 𝑁satellite − 1 for the trailing satellite.

• The GS contact periods are assumed to be global knowledge to the GS as well as to
all satellites. Even though this data would need to be generated and communicated
to the satellites in practice, we do not model the mechanisms by which this happens.

• We ignore the header conventions of the AX.25 protocol that would normally for
satellite UHF links serve as the layer below the toy protocol. Instead, we use custom
frame headers consisting only of 8-bit source and destination addresses (as opposed
to AX.25’s 112 bit) and a CRC 32 checksum.

• In one specific mode of the protocol (generous GS), we do not model the feedback
mechanism by which the GS is notified that all satellites have received and decoded
the whole transmission, so that it stops to transmit first hop messages. Feedback by
which satellites stop to transmit, on the other hand, is part of the protocol and thus
always explicitly simulated.

• We do not care about any interaction of the toy protocol with other communication
demand. We assume that the task of OTAP using the toy protocol has the highest
priority so that no transmission or reception of messages outside the protocol is to
be modelled.

7.2.1 Protocol Overview

The protocol is on a large timescale divided into two sub-protocols. The contact period
sub-protocol is applied by all nodes during formation contact periods to utilize the short
and rare contact periods efficiently to upload as much data into orbit as possible. We
define the term “contact period” as the intervals of time when at least one satellite of the
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formation is above the GS’s horizon. The other part, the inter-satellite sub-protocol, is
used by the satellites for the rest of the time and handles propagation of data between the
satellites.

The backbone of the data dissemination protocol is an end-wrapping overlapped chunked
random linear code over a finite field 𝔽. In our evaluation we use 𝔽28 . The first hop
messages, i. e., the transmissions of the GS, do not contain an explicit representation
of the EVs. Instead, the EVs deterministically depend on the sequence number in the
header, i. e., the random linear code is operated as low-overhead fountain code on the first
hop. Nonetheless, in order to allow first hop messages to be later recoded, they obey the
chunk-structure in the sense that each encoding vector has non-zero elements for exactly
one chunk. The chunks of first hop messages are selected uniformly at random (UAR) and
the EV is then drawn UAR from the corresponding chunks’ subspace.

7.2.2 Contact Period Sub-Protocol

Transmissions in this regime are generally ground-station-initiated. In order to waste as
little time as possible for control overhead, acknowledgments (ACKs) are used rarely.

The GS repeatedly transmits broadcast messages containing a destination address, chunk
ID, sequence number, and a information vector, as depicted in Fig. 7.5. Each node receiving
a message regardless of the message’s destination address, processes the message by
injecting the contained LC into its decoder and storing the sequence number in a ring
buffer. Normally, the GS transmits messages with dest = 0xFF, signaling that is does
not request ACKs. If the GS has transmitted more than 𝑁unACKed messages since the last
ACK message from a satellite was received, it switches the dest field to the address of the
satellite that is angularly closest to the current GS antenna direction. If a satellite receives
a GS message with a dest matching its own address where 𝑖 ≔ sqn, it immediately
responds with an ACK message that contains a bitvector encoding for each sequence
number ∈ [𝑖 + 1 − 2𝑁unACKed, 𝑖]ℤ whether the corresponding message has been received.
The GS keeps requesting ACKs until an ACK message is received. When receiving an ACK
message, the GS switches back to not requesting ACKs for the next 𝑁unACKed messages.
For a visualization of the contact period sub-protocol including this ACK mechanism, see
Fig. 7.3.

Due to the ACK mechanism, the GS knows a subset of all messages that have been received
by at least one satellite. The GS uses its own EAGER decoder into which it injects all
messages whose successful reception was ACKed in the bitvector of an ACK message.
From its own decoder, it can roughly determine whether enough messages have reached
orbit to decode the whole transmission. Whether the GS should stop transmitting once
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Fig. 7.3.: Schematic example of the contact period sub-protocol. Circled check marks and crosses
indicate packet loss. The GS requests an ACK from satellite 5 in messages 144–146.
Note that sqn 144 is not being ACKed, even though it was received by satellite 6. ACK
requests are used rarely in order not to waste a full round-trip time (RTT) waiting after
each transmission. ACK messages are ignored by other satellites.
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this condition is met depends on whether the user, i. e., the satellite mission’s operator,
deems minimizing consumed GS contact time to be most important, or prioritizes other
metrics.

Therefore, we define two operation modes for the contact period sub-protocol: in frugal
mode, the GS stops transmitting as soon as a sufficient set of messages is ACKed to be in
orbit ; in generous mode, the GS unconditionally keeps pumping messages into orbit until
the transmission to every single satellite is completed.

7.2.3 Inter-Satellite Sub-Protocol

Medium Access Control

This chapter focuses on RLNC protocol feedback mechanisms, so we are by no means in-
terested in MAC here. However, in order to simulate an RLNC data dissemination protocol
in a discrete event simulator for the sake of empirical evaluation, we need some kind of
MAC mechanism that decides which nodes transmit at what time, hopefully suppressing
primary and hidden terminal problem (HTP)-type interference. This mechanism does
not need to be realistic for practical applicability. As long as we apply the very same
mechanism to all protocol variants that we compare against each other, we have good
reason to expect that artifacts of MAC have little influence on the qualitative aspects of
our results.

Since fair channel access seems to be adequate in an equidistant string-of-pearls orbital
configuration, we use a fair, fixed, hard-coded MAC schedule as a cheap trick. However,
the rest of the protocol does not rely on the fixed schedule so that it could be substituted by
different MAC approaches, be it TDMA or carrier sense multiple access (CSMA) style.

Time is partitioned into slots of all equal length 𝑇slot: Slot𝑖 = [𝑡0 + 𝑖𝑇slot, 𝑡0 + (𝑖 + 1)𝑇slot)
with 𝑡0 being some reference point in time (a.k.a. “Epoche”). A satellite with an address 𝑘
may transmit a message in slot 𝑖 if and only if

𝑄𝑖 mod |𝑄| = 𝑘 mod |𝑄|

where 𝑄 is a permutation of [0, |𝑄|)ℤ. Given that satellites’ addresses are consecutive
with respect to their equidistant positions in the formation, this hard-coded MAC scheme,
despite being a tad inflexible, ensures

• fairness of transmission opportunities,
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Fig. 7.4.: Example of the fixed hard-coded MAC schedule used by the toy protocol for its inter-
satellite sub-protocol.

• a fixed distance of simultaneously transmitting satellites (suppressing HTP-type
interference),

• and that between consecutive transmissions of one satellite, both of its direct neigh-
bors have an opportunity to transmit a message.

In our evaluation we use 𝑄 = (0, 2, 4, 1, 3), a visualization of which is given in Fig. 7.4.

Recoding Protocol

In each slot where a satellite would be allowed to transmit a coded message according to
the MAC protocol, the recoding protocol decides

0. whether to include a recoded linear combination,

1. if (1), from which chunk to recode that combination,
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2. what information describing its own decoder state to piggybag in the message
header.

If no LC but some decoder state information is to be transmitted, a header-only message is
transmitted. If neither is required, the slot remains unused by that satellite.

The message structure used by the recoding protocol is depicted in Fig. 7.5. Recoding
messages are always of message type 2. The dest field is used only to encode “node src
transmits this message because of its current knowledge about dest’s decoder state.”
Each of the 𝑛CI chunk info fields encodes a triple (𝑖, rank𝑖, ℎ𝑖), corresponding to the src’s
current decoder state.

Before describing the recoding protocol itself, we want to state and explain its desired
properties:

• Nodes shall avoid transmitting linear combinations that are not innovative to any
of its neighbors.

• If a node has reason to believe that for at least one chunk there is at least one
neighbor, such that a randomly recoded LC of that chunk is innovative for the
neighbor, a node should transmit an LC rather than stay silent.

• Transmitting an LC that is innovative for multiple neighbors is favorable over
transmitting an LC that is innovative only for one neighbor.

• When the satellites reach the state that all satellites’ decoders represent the same
vector space, i. e., the span of all LCs received in orbit, they shall quickly and robustly
fall silent. Even in the case that this decoder state is not of full rank, because there
simply are not enough LCs received in orbit, we want to avoid indefinite feedback
ping-pong as well as indefinitely repeated but unanswered transmissions. Every
transmission costs energy as well as channel resources that could be used differently.

• We also do not want data dissemination to stall if there are at least two satellites with
unequal decoder state vector space. Most importantly, we must avoid an unfinished
dissemination stall if the set of LCs received in orbit is sufficient to decode the whole
transmission. The last point is of paramount importance, because it leads to an
unrecoverable deadlock if the GS uses frugal mode.

Chunk selection Each node maintains a neighbor table containing the rank and possibly
decoder state hash of each chunk for each neighbor node. A node 𝑎 computes for each
neighbor 𝑏 and each chunk 𝑖 the decoder superiority 𝜂𝑖

𝑎,𝑏 as a rough estimate for the lower
bound of the number of innovative LCs of chunk 𝑖 that node 𝑏 can receive from node 𝑎 and
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Fig. 7.5.: Message structure of the toy protocol’s three different message types. The parts’ sizes
are given in units of bit and byte (B).
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inject. From the decoder superiorities, a per-chunk fitness value is computed according to
(7.0).

𝜑𝑖
𝑎 = ∑
𝑏∈neighbors(𝑎)

𝑓(𝜂𝑖
𝑎,𝑏) + feedback urgency term (7.0)

where 𝑓(𝑥) =
⎧{
⎨{⎩

0 if 𝑥 ≤ 0

2 − 1
𝑥

else

By using the non-linearly saturating but monotonically increasing function 𝑓 to rescale
𝜂𝑖

𝑎,𝑏, we achieve that a chunk with two neighbors of decoder superiority ≥ 1 always has
higher fitness than a chunk with only one such neighbor.

Decoder state feedback Each node maintains two sets of chunk indices called regular
feedback set and urgent feedback set. Whenever the node’s decoder rank corresponding to
a chunk changes (i. e., increases), the corresponding chunk index is added to the regular
feedback set. Whenever a node 𝑎 receives a non-innovative LC of chunk 𝑖 from a node 𝑏
in a message with dest = 𝑎 and 𝜑𝑖

𝑎 < 1, this necessarily means that node 𝑏’s neighbor
table with regard to node 𝑎 and chunk 𝑖 is outdated. Therefore, 𝑖 is added to the urgent
feedback set. Elements of the urgent feedback set are always immediately cleared from
the regular feedback set.

In each slot where a node is allowed to transmit according to the MAC schedule, a sequence
of up to 𝑛max

CI records, i. e., triples (𝑖, rank𝑖, ℎ𝑖), is included in the message header. If a
chunk 𝑖 is selected (according to the chunk fitness rules) for transmission of an LC, 𝑖 is
used for the first chunk info (and cleared from both feedback sets). Then, chunk indices
for the remaining chunk info records are popped from the urgent feedback set and then
from the regular feedback set, until either these sets are emptied or the desired maximum
per-message number 𝑛max

CI has been selected.

If not a single chunk info record is to be transmitted (which is only the case if no LC is to
be transmitted as well), no message will be transmitted. If there is no chunk selected for
transmission of an LC but chunk info records need to be transmitted, the message will
consist of the header only.

This feedback mechanism based on chunk info records ensures that every change of a
satellite’s decoder state will be announced in one transmission. If that message gets lost,
the rules of urgent feedback ensure that this information will be retransmitted in the
following messages until transmissions of non-innovative LCs originating from message
loss are being suppressed.
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We use

(feedback urgency term)𝑖 =
⎧{
⎨{⎩

1
2𝑁2 if 𝑖 in any feedback set

0 else

in (7.0). This means that if chunk selection according to only decoder superiority values
yields more than one fittest chunk, we break ties so that chunks requiring feedback is
required for are favored.

Remaining header fields Thesrc andnum_chunk_infos header fields are trivially
set to the node’s own address and the number of chunk info records encoded in the message.
If the message from src = 𝑎 includes an LC from chunk 𝑖, dest is set to the address of
the neighbor 𝑏 that maximizes 𝜂𝑖

𝑎,𝑏, breaking ties randomly. Thus inconsistencies in the
satellites’ neighbor tables are robustly revealed.

Decoder superiority heuristics Last but not least we have not yet discussed, what
heuristic is used by nodes to compute 𝜂𝑖

𝑎,𝑏 from the own decoder state and the neighbor
table.

Using the chunk ranks as only input variables, we use bounds that directly follow from
linear algebra in case of ranks being unequal: a random element of a subspace of dimension
rank𝑎(𝑖) is with high probability not inside a subspace with smaller dimension rank𝑏(𝑖).
Since injecting a single LC can increase a decoder’s rank at most by one, it follows that at
least a sequence of rank𝑎(𝑖) − rank𝑏(𝑖) random LCs from 𝑎 can be innovatively injected
into 𝑏.

𝜂𝑖
𝑎,𝑏 =

⎧{
⎨{⎩

rank𝑎(𝑖) − rank𝑏(𝑖) if rank𝑎(𝑖) > rank𝑏(𝑖)

0 else
(7.1)

We call (7.1) the pessimistic decoder superiority heuristic. For this heuristic we can anticipate
one significant problem: considering two neighboring nodes, this heuristic allows only the
node with greater chunk rank to transmit LCs. Since every innovative LC increases the
receiver’s rank by 1, this process directly leads to the situation where both decoders have
the same rank, then no further transmission can happen. Since different linear subspaces
can have equal rank, this can lead to the situation that we definitely want to avoid: for an
arbitrary chunk, all nodes in the network reach the same (but not full) rank. Due to the
pessimistic heuristic, no messages belonging to this chunk are transmitted anymore, and
the dissemination stalls, regardless of whether a full rank could be achieved or not. We
call this phenomenon the “pessimistic stall.”
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An obvious solution to avoid this is to offset the pessimistic heuristic by one, resulting in
the optimistic decoder superiority heuristic (7.2).

𝜂𝑖
𝑎,𝑏 =

⎧{
⎨{⎩

1 + rank𝑎(𝑖) − rank𝑏(𝑖) if rank𝑎(𝑖) ≥ rank𝑏(𝑖) and rank𝑏(𝑖) < 𝑚

0 else
(7.2)

While this successfully avoids stalling of data dissemination, it leads to the complementary
problem that in a situation where all nodes’ decoders represent equal linear subspaces not
being of full rank, all nodes still keep on transmitting messages that are useless, because
the contained LCs are non-innovative to every node.

Therefore, we propose the hash-based decoder superiority heuristic (7.3), that equals the
pessimistic heuristic for unequal ranks and judges based on decoder state hash values in
case of equal rank.

𝜂𝑖
𝑎,𝑏 =

⎧{{
⎨{{⎩

rank𝑎(𝑖) − rank𝑏(𝑖) if rank𝑎(𝑖) > rank𝑏(𝑖)

1 if rank𝑎(𝑖) = rank𝑏(𝑖) and ℎ𝑎(𝑖) ≠ ℎ𝑏(𝑖)

0 else

(7.3)

While this requires some overhead, namely a decoder capable of computing a decoder state
that uniquely depends on the represented subspace, as well as including hash values of that
decoder state in the message headers, it solves both of the aforementioned problems.

Of course one could conceive a plethora of different methods to fix these problems without
resorting to hash values, but instead to propagate the information that a non-innovative
LC has been received back to the transmitter:

• Using the optimistic heuristic, nodes receiving a non-innovative LC from an equal-
rank neighbor could notify the neighbor of this fact.

• Using the pessimistic heuristic, nodes stalling transmissions due to all neighbors’
chunk ranks being equal to their own could transmit probe messages, containing
only encoding vectors, to overcome indefinite stalling.

In parallel to the development of EAGER we have played around with such protocol
variants but did not get evaluation results that were promising enough in comparison to
the hash-based heuristic. Therefore, and because every of these variants adds another
layer of protocol complexity, we refrain from describing them in detail or including them
in the evaluation presented here.
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7.3 Evaluation

To evaluate the usefulness of a unique and thereby hashable decoder state in RLNC used for
OTAP, we compare different variants of the protocol described in the last section against
each other. We consider scenarios with a number of satellites in string-of-pearls orbital
configuration with 66° inclination, 600 km orbital altitude, and 100 km orbital distance
between each pair of adjacent satellites. As goal of each simulation run we consider the
broadcast of one bulk file, e. g., a firmware image, from a single GS to each satellite in the
formation.

The complete and error-free reception of the transmission payload at every satellite can
be considered the non-negotiable main objective. Depending on the satellite mission, an
operator might seek to optimize the transmission process with respect to different metrics.
In each simulation run, we measured each of the following secondary metrics:

Time to last byte The total time span from the beginning of transmission of the first
message from the GS until each satellite has decoded the full bulk transmission. A
satellite operator will update the firmware for a certain reason, e. g., a bug-fix, and
will likely want the new firmware version to be used as soon as possible. If the
GS is instructed to transmit the bulk file at a point in time when no satellite is in
contact range, it will need to wait until the beginning of the next contact period.
Since neither GS-to-satellite nor inter-satellite transmissions related to the OTAP
goal can take place during this initial waiting time, it is excluded from the time to
last byte measured.

Consumed GS contact time In transmitting OTAP messages to satellites, the GS con-
sumes channel resources that otherwise could be used for different tasks, like teleme-
try or command. For each message transmitted by the GS, we count the transmission
time and, if the transmitted message contains an ACK request, the time that the GS
waits for a potential ACK response message from the satellite.

Number of messages and number of bytes transmitted in orbit For each mes-
sage transmitted by a satellite that is not an ACK to the GS, we count the message
as well the total number of bytes the message consists of, including all headers and
check sums. The total number of bytes transmitted can serve as a proxy for the
energy consumed by satellites for the OTAP objective as well as for the amount
of channel resources consumed that could otherwise have been used for different
inter-satellite communication purposes. However, optimizing an OTAP protocol for
this secondary metric alone does not make sense in the context of evaluating RLNC-
based multi-hop OTAP techniques: in the scenarios that we consider, every satellite
is in principle a direct neighbor of the GS and therefore a single-hop transmission,

7.3 Evaluation 147



e. g., using a rateless code, is sufficient to achieve OTAP without inter-satellite
communication at all.

7.3.0 Orbital and Geographical Scenario Setup

As foundation for our evaluation, we modeled the scenarios in the ESTNeT [56] simulator.
Each simulation’s topology consists of one satellite ground station located at Würzbug
(Germany) and equipped with a transmitter operating at 15W transmit power and a
steerable high-gain Yagi antenna with 21° half-power beam width (HPBW) as well as ten
satellites in a string-of-pearls configuration, each equipped with a transceiver operated at
2.5W transmit power and an idealized omnidirectional antenna. Packet loss was simulated
using the signal-to-interference-plus-noise-based probabilistic error model of ESTNeT’s
APSK radio channel. For background noise power we implemented and used an isotropic
scalar model in which noise depends on the receiving satellite’s position according to data
gathered by the UWE-3 mission in 2014 for a center frequency of 437.2MHz [107].

All metrics that we measure strongly depend on the lengths of GS-to-satellite contact
periods, the corresponding maximum elevation angles, et cetera. In order not to choose
the absolute time of our experiments and the orbits’ right ascension of the ascending node
(RAAN) arbitrarily, we adjusted the orbital elements so that the geometrical center point
of the formation passes zenithally over the satellite GS during the first contact period. As
geographical location of the satellite GS we use the University of Würzburg, where the
UHF satellite GS of the UWE-1 through UWE-4 satellite missions is operated.

During each contact period, the GS does not track (i. e., point its high gain antenna at)
individual satellites but instead sweeps its antenna over the formation in a fashion that
we call sweep-tracking.

Where not stated differently, each data point in each plot within this chapter corresponds
to ten independently seeded simulation runs and error bars depict 95 % confidence inter-
vals.

7.3.1 Sweep Tracking

Given a string-of-pearls configuration of 𝑁sat equidistantly spaced satellites numbered
consecutively from 0 for the leading satellite through 𝑁sat − 1 for the trailing satellite, let
[𝑡b, 𝑡e] be a formation contact period where satellite 𝑖b rises at 𝑡b and satellite 𝑖e sets at 𝑡e.
For typical contact periods we will just have 𝑖b = 0 and 𝑖e = 𝑁sat − 1, but different values
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with 𝑖b ≤ 𝑖e are possible if either the contact period’s maximum elevation is very small or
the formation is very long.

If 𝑖b = 𝑖e, we simply fall back to tracking that individual satellite alone. Otherwise, we
compute

𝜏(𝑡) ≔ 𝑖b + (𝑖e − 𝑖b) ⋅ 𝑠 (
𝑡 − 𝑡b
𝑡e − 𝑡b

) for 𝑡 ∈ [𝑡b, 𝑡e] (7.4)

where 𝑠 is a continuous scaling function 𝑠 ∶ [0, 1] → [0, 1] satisfying 𝑠(0) = 0 and
𝑠(1) = 1. For sake of simplicity we can for now assume 𝑠 to be the identity function. In
this trivial case, 𝜏 just linearly maps the interval [𝑡b, 𝑡e] to the interval [𝑖b, 𝑖e]. In the GS’s
horizontal coordinate system, let 𝑑𝑖(𝑡) be the function that yields the direction in which
the satellite 𝑖 is located at time 𝑡 and let 𝑑antenna(𝑡) be the direction of the GS’s antenna at
time 𝑡. Then, sweep tracking is defined by (7.5).

𝑑antenna(𝑡) =
⎧{
⎨{⎩

𝑑𝜏(𝑡)(𝑡) if 𝜏(𝑡) ∈ ℤ

Slerp(𝑑⌊𝜏(𝑡)⌋(𝑡), 𝑑⌊𝜏(𝑡)⌋+1(𝑡); frac(𝜏(𝑡))) else
(7.5)

This means, when 𝜏(𝑡) happens to be integer, satellite 𝜏(𝑡) is pointed to directly, and
between these points in time, the antenna direction is gained by interpolating between
the adjacent satellites’ directions by means of spherical linear interpolation.

In our evaluation we use a simple one-parameter family of functions

𝑠𝜎(𝜏) = 𝜏 + 𝜎
sin(2𝜋𝜏)

2𝜋
with 𝜎 ∈ [−1, 1]

where we complement the linear identity function part with an additive sinusoidal com-
ponent resulting in more horizon-focused (𝜎 < 0) or zenith-focused (𝜎 > 0) sweep
tracking.

The goal and effect of sweep tracking is similar to the method that we published in [6],
which was, because of lack of communication, developed and implemented independently
at the same time and for the same purpose.

7.3.2 External Boundary Conditions

There are a number of boundary conditions that we have to assume to set up our experi-
ments. These are external in the sense that they are given by the satellite mission itself and
can therefore hardly be influenced in order to improve OTAP performance. In order to
broaden the scope of our results, we varied some of them across different experiments:
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Number of satellites We varied the number of satellites in the formation between ten,
which corresponds to the number of satellites in the CloutCT mission [106], and 50,
which outnumbers any string-of-pearls configuration satellite mission we are aware
of. Since a formation of ten satellites is currently of greater practical relevance
considering currently operated and planned multi-satellite missions, and the results
corresponding to greater numbers of satellites do not bring any additional insights
qualitatively, all figures presented in the work correspond to ten satellites.

Bulk transmission payload size The size of the payload to be broadcast to every
satellite was varied between 300 kB and 3MB, leading to transmissions ranging from
requiring only a fraction of one contact period and no inter-satellite communication
to requiring multiple GS overflights.

Other external conditions where not varied; instead, reasonable values where chosen. This
includes the orbital parameters, the geographical location of the GS, the GS’s and satellites’
antennas, the noise and error model, and the channel carrier frequency, modulation, and
baud rate.

7.3.3 Protocol Parameters

From the protocol design perspective there is also a great number of parameters that can
and have to be chosen in order to transmit a bulk file using RLNC, namely the

• chunk selection heuristic (optimistic/pessimistic/hash-based)

• transmission strategy of the GS (frugal or generous)

• finite field (order as well as generating polynomial) over which the code is imple-
mented

• chunk size 𝑚

• chunk overlap ℓ

• number of chunks 𝑁

• information vector size 𝐾

• value range of the hash function used to compare decoder states [0, ℎbound)ℤ

• maximum number of chunk info records per message 𝑛max
CI

• sweep tracking parameter 𝜎
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The one parameter that we are most interested in is the chunk selection heuristic, because
if we can answer which chunk selection heuristic leads to the best OTAP performance,
we know whether being able to compare decoder states based on hash values yields any
benefit.

The GS’s transmission strategy is adjusted differently according to which metrics we look
at. When looking at the time to last byte, it makes sense to let the GS transmit as many
combinations as possible until the entire transmission process has finished. If the goal
however is to minimize the GS contact time used for the transmission, we put the GS into
frugal mode, meaning that it falls silent as soon as it knows that the set of all messages
received in orbit is sufficient to decode the coded bulk transmission.

Even though wewere in principle able to simulate the transmission of messages of arbitrary
size, the probabilistic error model implemented by ESTNeT makes message loss probability
explicitly depend on the message size. To make things worse, this error model does not
include the burstiness of noise, implying that the packet-size-dependence of message loss
probabilities is hardly realistic in an environment where a significant share of background
noise can be assumed to originate from other systems’ radio transmissions (i. e., interference
of nodes not modelled) and military radar systems. To limit the influence of these effects
on our simulation result, we try to keep the message sizes within a small window across
all experiments. We use a constant but feasible maximum message size of 𝑆 = 256B
including all headers, and set the other parameters accordingly.

As finite field we use an order of 28 so that each byte of payload can be encoded exactly
with one finite field element.

All other parameters’ effects on OTAP performance were investigated empirically. How-
ever, the other parameters cannot be chosen independently, but must meet certain require-
ments in order to respect the needs of the transmission: chunk size and information vector
size must together be small enough that the maximum total message size is not exceeded;
the number of chunks must be large enough to allow the whole payload to be encoded.

Apart from the sweep tracking parameter 𝜎, we use the following set of independent
parameters to determine chunk size, chunk overlap, number of chunks, information vector
size, and value range of hash function.

serialized chunk info record size To encode a chunk info record in the header, in-
stead of using fixed size fields for chunk id, chunk rank, and chunk hash, we use one
unsigned integer of size 𝑤CI that encodes these three numbers. Since chunk rank
values can only lie in [0, 𝑚]ℤ, chunk id values lie in [0, 𝑁)ℤ, we encode a chunkinfo
record as

CIserialized𝑖 ≔ rank(𝑖) + (𝑚 + 1) ⋅ (𝑖 + 𝑁 ℎ𝑖) (7.6)
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which is smaller than 2𝑤CI and can therefore be encoded as 𝑤CI bit unsigned integer
as long as

ℎ𝑖 < ⌊
2𝑤CI

(𝑚 + 1) ⋅ 𝑁
⌋ = ℎbound. (7.7)

Maximum number of chunk info records per message Since each message con-
sists of (see Fig. 7.5) 3 bytes for source address, destination address, and number
of chunk infos plus no more than 𝑛max

CI ⋅ 𝑤CI/8 byte for the chunk infos, there are
𝑆′ ≔ 𝑆 − 3B − 𝑛max

CI ⋅ 𝑤CI bit left for linear combinations, i. e., for encoding vector
and information vector.

Relative encoding vector size The encoding vector of a linear combination equals
the full chunk size 𝑚 and therefore requires 𝑚 bytes in the message if a finite field
of order 28 is used. For given 𝑒r ∈ [0, 1) we compute 𝑚 = max{1, ⌊𝑒r ⋅ 𝑆′/B⌋}.
The remainder of the message can be used for the combination’s information vector:
𝐾 = 𝑆′/B − 𝑚.

Relative chunk overlap As with the full chunk size, we specify the overlap of consecu-
tive chunks as a relative quantity ℓr ∈ [0, 1) that expresses the ratio of overlap and
full chunk size: ℓ = ⌊ℓr ⋅ 𝑚⌋

Bulk payload size The ultimate goal of the whole system is to transport a bulk payload
of total size 𝒮. The system of linear equations comprising all chunks has (𝑚 − ℓ) ⋅ 𝑁
rows and each row of the solution carries 𝐾 byte of uncoded payload data. Therefore,
we choose the minimum number of chunks required to encode all payload data:
𝑁 = ⌈ 𝒮

(𝑚−ℓ)⋅𝐾B
⌉

For the serialized chunk info record size we just use 𝑤CI = 32 bit. After some experiments,
we settled for 𝑒r = 0.2, ℓr = 0.1, 𝑛max

CI = 6, 𝜎 = 0.25. To justify this choice, we start the
discussion of the experiments’ results by examining the influence of changing each of
these four parameters, one by one.

We want these parameters to be equal when comparing the different heuristics against
each other. Therefore, we first try to set up a scenario where inter-satellite recoding is
crucial to complete the transmission, but where we hope that neither pessimistic stall nor
optimistic non-innovative babble occurs.

In order for inter-satellite recoded transmissions to be needed at all, it is crucial to choose
a payload large enough that not all satellites can decode the transmission already from the
messages that the GS transmitted during the first formation contact period.

Therefore, we measured for each satellite the number payload bytes received during the
first contact period when the GS is transmitting generously, i. e., not frugally.
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Fig. 7.6.: Minimum per-satellite single-hop goodput during first contact period depending on
sweep tracking parameter 𝜎.

In Fig. 7.6 we plotted the minimum of this number across all satellites over the sweep
tracking parameter 𝜎. This roughly corresponds to the maximum amount of data that can
be transmitted by the GS to all satellites within the first contact period using rateless coding
without any inter-satellite communication. The data reveals that the maximum payload
size that can be transmitted during one overflight, leading to a completed transmission
before the satellites even have a chance to exchange recoded messages, lies somewhere
around 650 kB. For our tuning experiments we chose a slightly larger payload of 750 kB to
ensure that some inter-satellite communication will be needed to finish the transmission
before the start of the next contact period. In addition, we could verify that this is still
small enough that the entire transmission is in orbit after the first contact period, therefore
avoiding the problems of the optimistic heuristic from growing indefinitely.

As we show later, the pessimistic stall problem occurs with a much higher probability
when the GS is operated in frugal mode. Therefore, we conducted the parameter-tuning
experiments in generous GS mode.

Let us first have a look at the sweep tracking parameter 𝜎. Using a generous GS and a
bulk payload size of 750 kB, we varied 𝜎 ∈ [−1, 1] and plotted the time to last byte as well
as the total number of bytes transmitted in inter-satellite communication over 𝜎 in Fig. 7.7.
The value of 𝜎 = 0.25 seems to be a reasonable choice because both metrics seem to have
an optimum somewhat near that value and neither metric worsens steeply on either side.

Next we investigate the influence of 𝑒r, the relative share of encoding vectors in the linear
combination part of a message. Fig. 7.8 shows the time to last byte as well as the total
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Fig. 7.7.: Time to last byte (top) and total inter-satellite transmissions (bottom) depending on
sweep tracking parameter 𝜎 for each heuristic, 750 kB bulk payload and generous GS
transmission strategy.
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number of bytes transmitted in inter-satellite communication, each plotted over 𝑒r for a
generous GS and a bulk payload size of 750 kB. The gross inter-satellite transmissions show
a rather shallow optimum somewhere in the range 𝑒r ∈ [0.20, 0.35]. Without changing
the total message size, this parameter literally encodes the relative share of encoding
vectors, i. e., RLNC-induced overhead in each message, It is quite remarkable that the
total resource consumption hardly depends on the on this overhead for 𝑒r ∈ [0.2, 0.35],
meaning that even nearly doubling the overhead to 35 % seems to be entirely compensated
by the benefits of re-coding. Since the transmission delay seems to worsen significantly
for 𝑒r > 0.2, we chose a value of 𝑒r = 0.2 for the rest of this evaluation.

ℓr is the overlap of successive chunks in units of encoding vector size. The data shown
in Fig. 7.9 suggest that the protocol performance depends only weakly on this parameter.
Both the total inter-satellite transmissions and the time to last byte seem to have an
optimum located somewhere at ℓr ∈ [0.05, 0.2]. However, the metrics’ variation within
that range is so small compared to the corresponding standard deviation that it is hard to
make out a robust optimal value. Therefore, we just note that the technique of overlapped
chunked RLNC does not after all seem to offer overwhelming benefits in our toy protocol
and settle for a value of ℓr = 0.1 for the remainder of this work.

The last thing we varied was 𝑛max
CI , the maximum number of chunk info records included

per message. Requiring a maximum for this number at all can be seen as an artifact of
using slotted MAC. The slots’ length enforces a maximum message size (that we chose
to be 256B as stated earlier) and thereby the maximum number of chunk info records
per message directly influences the size of the encoding vector as well as information
vector. Before we measure the impact of this quantity, we want to reason about a useful
choice. For a satellite in the middle of the formation, we would expect that, under good
conditions, the satellite receives innovative LCs from its direct neighbors on both sides
between two successive transmissions. Each innovative reception results in a chunk rank
change that needs to be published. Assuming that it is not unlikely for the transmitter
to select a different chunk for transmission, there are already three chunks from which
chunk info records are to be transmitted. A requirement for additional chunk info record
can occur for three reasons: retransmission of previously transmitted chunk info records
can be implicitly requested using the dest address; messages received from non-nearest
neighbor nodes can change chunk ranks as well; in case of non-vanishing overlap, EAGER’s
decoding can ripple through, in principle, an arbitrary amount chunks. In fact, it can
happen that before the last innovative message is received, every chunk has a rank of
𝑚 − 1 and each non-empty row of the decoder has two non-zero elements, so that the next
innovative message, regardless of which chunk it belongs to, finalizes the transmission
and effectively increases every chunk’s rank by 1.
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Fig. 7.8.: Time to last byte (top) and total inter-satellite transmissions (bottom) depending on
relative size of encoding vectors 𝑒r for each heuristic, 750 kB bulk payload and generous
GS transmission strategy.
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Fig. 7.9.: Time to last byte (top) and gross inter-satellite transmissions (bottom) depending on
relative chunk overlap ℓr for each heuristic, 750 kB bulk payload and generous GS
transmission strategy.
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So we expect that performance would drop for 𝑛max
CI < 3. On the other end of the spectrum,

we would expect the number of inter-satellite transmitted bytes to rise measurably as soon
as the message header takes up a macroscopic share of the message size. The header of
a typical 3-chunk-info message has 20B, so such a header makes up less than 10 % for
𝑛max
CI = 3 and 20 % for 𝑛max

CI = 37. From that we would expect a very weak decline in
protocol performance as 𝑛max

CI grows to larger two-digit numbers. The results shown in
Fig. 7.10 confirm exactly this expectation, so we somewhat arbitrarily chose 𝑛max

CI = 6 for
the remainder of this evaluation, as this value is deep in the near-optimum region and far
away from values degrading protocol performance.

7.3.4 Comparison of Heuristics

The main question that we want to answer in this chapter is: “Does the ability to compare
RLNC decoders by means of a hash value offer any performance benefits for OTAP in
string-of-pearls-configuration satellite formations?” The answer is “Yes!”, as we see in this
subsection.

We conducted all experiments for parameter tuning in a setting of 10 satellites and a bulk
payload size of 750 kB that we chose specifically to avoid the anticipated weaknesses of the
pessimistic and optimistic heuristic. When a satellite operator wants to use the protocol
not only for benchmarking, but to actually deliver a useful payload to the satellites, the
size of that payload is an externally given constraint.

Therefore, we now stop to scan through protocol parameters and instead vary the payload
size in a range of 300 kB to 3MB. We have already seen during parameter tuning that
the optimistic heuristic performs significantly worst. When going to larger payload sizes
that require multiple contact periods for upload, the optimistic heuristic results in all
satellites permanently forwarding non-innovative LCs between GS contact periods, not
only wasting resources but also leading to quite expensive simulations. Therefore, we did
not include the optimistic heuristic in the following experiments.

In Fig. 7.11 we depict the performance of the protocol variants using different heuristics
for a generous GS and varying bulk payload size. Interestingly, the pessimistic heuristic
seems to marginally outperform the hash-based heuristic, even though the benefit is hardly
significant from a practical point of view.

This picture slightly changes if we run the GS in frugal mode, meaning that it stops
to transmit as soon as a sufficient set of messages has been ACKed by the satellites.
As can be seen in Fig. 7.12, the pessimistic and hash-based heuristic are still roughly
on par quantitatively. However, with some finitely small probability, the anticipated
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Fig. 7.10.: Time to last byte (top) and total inter-satellite transmissions (bottom) depending on
maximum number of chunk info records per message 𝑛max

CI for each heuristic, 750 kB
bulk payload and generous GS transmission strategy.
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Fig. 7.11.: Time to last byte and gross inter-satellite transmissions depending on bulk payload size
for hash-based and pessimistic chunk selection heuristics with generous GS transmission
strategy.
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Fig. 7.12.: Time to last byte and gross inter-satellite transmissions depending on bulk payload size
for hash-based and pessimistic chunk selection heuristics with frugal GS transmission
strategy. The bottom plot shows the probability of pessimistic stall with error bars
depicting Clopper–Pearson intervals for 95% confidence level. The corresponding raw
measurements have been excluded from the data presented in the upper plots. Each
data point was measured with 100 simulation runs. Error bars in the top and middle
figures are drawn but are too small to be visible.
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effect of a pessimistic stall occurs with a small but measurable probability in case of the
pessimistic heuristic. This means that even though the hash-based heuristic does not
offer quantitatively measurable benefits over the pessimistic heuristic in those simulation
runs where the latter leads to complete transmissions, the pessimistic heuristic leads
to an incomplete protocol in the sense that, apart from efficiency considerations, the
pessimistic-heuristic toy protocol is not even guaranteed to continue service until the
whole transmission has been completed. Even though this shortcoming appears to be
rather marginal in terms of its fairly small probability, it qualitatively voids the reliability
of transmissions.

Just looking at the data presented so far, one could think of solving this issue of the
pessimistic heuristic by restricting ground station operation to generous mode. While this
would indisputably restore the reliability of transmissions, it still has two disadvantages:
first, even in generous mode it can happen that enough data is received in orbit at the end
of a contact period, but dissemination using pessimistic heuristic stalls until it resumes
with the next contact period. This next contact period could, however, lie many hours in
the future, meaning that the pessimistic stall increases the time to last byte enormously.
Second, frugal GS mode is actually capable of reducing the consumed GS contact time, as
can be seen in Fig. 7.13. In situations where this metric is deemed most important, using
generous GS mode is simply suboptimal.

Finally, we compare the toy protocol in both ground station modes to pure single-hop
OTAP based on rateless codes, i. e., not using inter-satellite communication at all. Trivially,
single-hop OTAP will outperform the toy protocol in terms of minimizing inter-satellite
communication demand. Therefore, we measured consumed GS contact period time and
time to last byte for the hash-based variant of the toy protocol in frugal and generous
ground station mode as well as single-hop OTAP. We did not implement the latter as a
usable protocol but conducted simulations only as a best-case estimate: assuming a perfect
rateless code, we let the ground station transmit messages using sweep tracking and simply
counted the number of successfully received messages at each satellite. Not implementing
any feedback mechanism for the single-hop case, we assume that a satellite can decode the
bulk payload as soon as 𝑘 = ⌈𝒮/𝐾⌉ different messages have been received. In addition,
we assume that the GS stops transmitting as soon as all satellites have received the bulk
payload. In disregarding both the necessity for a feedback mechanism and the small but
finite imperfection of known rateless codes, we try to assure that the results that we
measure for our idealized single-hop OTAP protocol are better than the results achievable
in practice. The data shown in Fig. 7.13 indicates that the toy protocol significantly
outperforms the idealized single-hop OTAP protocol in terms of time-to-last byte when
using generous GS mode and in terms of consumed GS contact period time when using
frugal mode.
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Fig. 7.13.: Comparison of single-hop OTAP using a rateless code to the toy protocol using hash-
based chunk selection in generous as well as frugal ground station mode.
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7.4 Conclusion

Based on the empirical evaluation of our toy protocol, we have produced two main
findings.

First, we have found that a decoder state that uniquely depends on its corresponding linear
subspace of injected rows indeed enables, through hashing of decoder state, feedback
mechanisms and chunk selection heuristics that increase protocol efficiency. To the best
of our knowledge, EAGER decoding is the only known RLNC decoding technique capable
of reaching this unique decoder state at low computational overhead after each step of
incremental decoding.

Second, the quantitative benefit of using overlapped chunked RLNC over separate, non-
overlapping chunks, is rather marginal. It is questionable whether this benefit would even
persist in practice, under more realistic channel conditions, a realistic MAC protocol, and
interdependence with other satellite-to-satellite communication tasks performed on the
same radio channel.
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Epilogue





Conclusion 8
„ODIN! I await thee

Your true son am I
I hail you
now as I die

— Manowar
North-American True Metal Band

In Part I we have shown that the exploitation of knowledge that is shared across multiple
nodes and the removal of redundancies pay out in terms of protocol efficiency. In the
case of the LAMA and CAMELAMA MAC protocols that we presentend in Chapters 2
and 3, the application layer payload, i. e., nodes positions, were used to create a novel
robust low-overhead MAC layer mechanism. In doing so we exploited the application layer
payload for MAC layer purposes, which means that the LAMA family of protocols can
be seen as some esoteric way of cross-layer optimization. In Chapter 4 we demonstrated
the benefits of in-orbit forwarding for real-time traffic monitoring. But instead of plain
forwarding, we used an in-orbit aggregation method to get rid of outdated payload data.
By removing the redundancy that stems from multiple different beacon messages from
the same vessel, we reduced communication demand without sacrificing the overall goal
of up-to-date navigational states. The strategy of exploiting information redundancy is
even clearer in Chapter 5 where we demonstrated the applicability of distributed source
coding (DSC) to real-world satellite measurement data. The idea of DSC in turn is, by
definition, to use knowledge about redundancies in data from separate data sources to
increase coding efficiency and thereby using the available limited channel resources more
efficiently. So even though we did not find a one-size-fits-all method to increase the
efficiency of payload data retrieval, we have demonstrated for different kinds of links
and at different network layers, that it is worth looking for redundancies that could be
exploited using purpose-made protocols.

In Part II on the other hand, being much less focussed on communication protocols, we
have developed a novel decoding technique for RLNC which, due to its feature of bringing
decoder states in incremental decoding to a unique representation, enables efficient and
robust usage of RLNC for satellite formation OTAP. We have demonstrated the benefits of
abandoning the prevailing practice of LU decomposition when solving systems of linear
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equations by means of GE. We found that the eager forward substitution and backward
substitution do not cause any disadvantages compared to decomposition-based approaches
as long as the underlying arithmetic is exact (as opposed to floating point arithmetic). The
advantages gained through non-decomposing EAGER decoding, however, are manifold and
range from more efficient partial decoding of prioritized layered RLNC over no-overhead
joint decodability of chunked RLNC with overlapping chunks to cheaply obtaining a
unique decoder state that allows, by means of hash values, a comparison of the vector
spaces spanned by equal-rank decoder states. Finally, we have shown that especially the
latter turns out useful in the context of satellite OTAP.

Considering the contributions of both parts together, despite being apparently a potpourri
of improvements on different layers in somewhat unrelated use cases, we hope to have
presented some novel ideas. In the end we have shown in various satellite-formation-
related scenarios that even without any ground-breaking innovation, tenacious search
for information redundancies and exploitation thereof through adequate communication
protocols can significantly pay off in terms of increased efficiency as long as one is willing
to hazard the consequences of employing purpose-made protocols.
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Appendix A
A.0 Glossary

AC arithmetic coding. 80, 81, 87, 91, 92

ADS--B automatic dependent surveillance–broadcast. 7, 13, 31, 63

AIS automatic identification system. 3, 7, 8, 13, 14, 16, 22, 23, 29, 31, 33, 34, 50, 51, 55,
59–61, 63–65, 67, 68, 184

BS base station. 15

BSREF bilateral spread row echelon form. 107, 109, 111, 114, 116, 126–128

CAMELAMA Cooperative Awareness and spaceborne Monitoring Enabled by Location-
Assisted Medium Access. 29, 32, 33, 35

CI confidence interval. 24, 118, 119

COTS Commercial-Off-The-Shelf. 5

CSMA carrier sense multiple access. 144

DAC distributed arithmetic coding. xi, 4, 76–85, 87, 88, 90–92

DES discrete event simulation. 33, 51

DOS denial-of-service. 48

DSC distributed source coding. 8, 77, 78, 171

ECEF Earth-centered, Earth-fixed. 55

EV encoding vector. 99, 100, 105, 106, 111, 112, 114, 116, 119, 121, 122

FoV field of view. 34, 56, 59

FPRP Five Phase Reservation Protocol. 15
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GE Gaussian elimination. xi, 95, 96, 102–104, 111, 112, 116, 171

GNSS global navigation satellite system. 9

ground station A satellite ground station is a terrestrial node that is involved in the
operation of one or more satellites. Terrestrial nodes not involved in missions oper-
ation, such as vessels broadcasting automatic identification system (AIS) beacons,
are excluded from this definition despite their communication to satellites. 7

GS ground station. 9, 63, 68, 75, 131, 132, 134–142, 147, 151–154, 156–159, 161–167

HNC Hierarchical Network Coding. 112, 116–118

HPBW half-power beam width. 55, 56, 58, 59

HTP hidden terminal problem. 14, 26, 28, 34, 142, 144

IOA in-order assumption. 117

ISL inter-satellite link. 8, 63

IV information vector. 97, 99, 100, 105, 106

LAMA location-assisted medium access for beaconing applications. 8, 26, 29, 32, 33, 35

LC linear combination. 95–97, 99, 100, 102–106, 109, 111, 112, 114–117, 119–125, 127, 129,
136, 140, 141, 144, 147–150, 160, 162

LEO low Earth orbit. 5, 7, 8, 31–35, 49, 50, 129, 134, 137

MAC Medium Access Control. 3, 8, 13, 14, 16, 22, 29, 31–35, 55, 60, 135, 140, 142, 160, 168,
171

MANET Mobile Ad-hoc Network. 6

OTAP Over-the-Air Programming. 9, 129, 131, 134–139, 141, 151, 152, 154, 155, 162,
166–168, 171, 172

PER packet error rate. 23

RAAN right ascension of the ascending node. 152

REF row echelon form. 107
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RLNC random linear network coding. 9, 95–97, 99, 103–105, 117–119, 124, 127–129, 132,
134, 135, 138, 139, 142, 151, 152, 154, 157, 160, 162, 167, 168, 171, 172

RSSI received signal strength indicator. 48

RTT round-trip time. 143

S-AIS Satellite-AIS. 8, 31, 33

SGE Swap Gaussian Elimination. 109, 111

SIC successive interference cancellation. 33, 34

Slerp spherical linear interpolation. 51

SO-TDMA self-organizing time division multiple access. 3, 14–16, 22, 24, 26, 28, 29, 31,
33, 34, 50, 52, 55, 56, 58–61, 64, 67, 68

SREF spread row echelon form. 107

surface The Earth’s surface; all nodes in the Earth’s atmosphere, resting or moving at
suborbital speed, are termed “surface nodes”. 185

TDMA time division multiple access. 15, 16, 140, 144

terrestrial node Synonym for surface node. 184

UAR uniformly at random. 51, 54, 141

USAP Unifying Dynamic Distributed Multichannel TDMA Slot Assignment protocol. 15

WSN wireless sensor network. 6, 7, 9, 131, 134, 136, 137

ZfT Zentrum für Telematik e.V.. 131
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A.1 Glosarry of Mathematical Notation

[𝑎, 𝑏)ℤ ≔ {𝑖 ∈ ℤ ∶ 𝑎 ≤ 𝑖 < 𝑏}, integer interval not containing its nominal
upper bound.

[𝑎, 𝑏]ℤ ≔ {𝑖 ∈ ℤ ∶ 𝑎 ≤ 𝑖 ≤ 𝑏}, integer interval containing its nominal upper
bound.

frac(𝑥) ≔ 𝑥 − ⌊𝑥⌋ ∀𝑥 ∈ ℝ, the factional part of a real number.
max𝑓 𝑆 Maximum of set 𝑆 with respect to function 𝑓, i. e., max𝑓 𝑆 ≔

argmax𝑥∈𝑆 𝑓(𝑥). Whether we mean the unique argmax element, any of
the argmax elements or the whole argmax set depends on the context.

min𝑓 𝑆 See max𝑓 𝑆.

Slerp(𝑝0, 𝑝1; 𝑡) ≔
sin((1 − 𝑡)Ω)

sinΩ
𝑝0 +

sin(𝑡Ω)
sinΩ

𝑝1, where Ω is the angle between the
vectors 𝑝0 and 𝑝1, denotes spherical linear interpolation.

|𝐴| where 𝐴 is a set denotes the cardinality of 𝐴.
|𝑎| where 𝑎 is a real or complex number denotes the absolute value of 𝑎.
‖a‖ where a is an element of a normed vector space denotes the norm of a.

If not stated differently, we assume the euclidean norm.
𝒫𝑆 is the powerset of a set 𝑆.

EAGER notation:

0 and 1 Talking about elements of 𝔽𝑞, we write 0 for the additive identity and 1 for the
multiplicative identity of the finite field.

eliminate By “eliminate 𝑎 using 𝑏” we mean, that given two vectors 𝑎, 𝑏 ∈ 𝔽𝑛
𝑞 with

ℎ(𝑎) = ℎ(𝑏) ≕ 𝑖, we replace 𝑎 with 𝑎 − 𝑎𝑖

𝑏𝑖
𝑏, leaving 𝑏 unaltered.

back-end eliminate By “back-end eliminate 𝑎 using 𝑏” mean, that given two vectors
𝑎, 𝑏 ∈ 𝔽𝑛

𝑞 with 𝑡(𝑎) = 𝑡(𝑏) ≕ 𝑖, we replace 𝑎 with 𝑎 − 𝑎𝑖

𝑏𝑖
𝑏, leaving 𝑏 unaltered.

front-end eliminate Same as “eliminate”.

𝐴, 𝐵, 𝐺, 𝐻, 𝐿, 𝑈, 𝑋, 𝑌 Capital letters denote matrices. 𝐵 is sometimes used for a basis
(tuple of linearly independent vectors).

span𝐴 The linear span of the rows of a matrix 𝐴.

𝐴𝑖 The 𝑖th row of a given matrix, i. e., a vector.

𝐴𝑖𝑗 The 𝑗th element of 𝐴𝑖.

𝑈 (𝑖) denotes the 𝑖th element of a sequence of matrices, where it is assumed that the
computation of 𝑈 (𝑖+1) based on 𝑈 (𝑖) can be implemented in-place.
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𝑎 ≡ 0 All elements of 𝑎 are zero. When referring to a matrix row, e. g., 𝐺𝑖 ≡ 0, this is a
hint that it could be convenient for an implementation to represent 𝐺𝑖 by a special
symbol, e. g., a null-pointer.

diagonal row We call a row 𝐴𝑖 of matrix 𝐴 diagonal, if 𝐴𝑖𝑖 ≠ 0 and 𝐴𝑖𝑗 = 0 ∀𝑗 ≠ 𝑖.
This term is therefore not applicable to the vector that is equal to 𝐴𝑖 by itself but
only in context of the matrix 𝐴.

Rank of a decoder The current rank of the matrix 𝐺 (or 𝐴).

A.2 Colophon

This thesis was typeset with LATEX2𝜀. It uses the Clean Thesis style developed by Ricardo
Langner. The design of the Clean Thesis style is inspired by user guide documents from
Apple Inc.

Download the Clean Thesis style at http://cleanthesis.der-ric.de/.

http://cleanthesis.der-ric.de/
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