
TYPE Original Research
PUBLISHED 12 July 2023
DOI 10.3389/frobt.2023.1152595

OPEN ACCESS

EDITED BY

Manuel Giuliani,
University of the West of England,
United Kingdom

REVIEWED BY

Costas Tzafestas,
National Technical University of Athens,
Greece
Michael Hagenow,
University of Wisconsin-Madison,
United States

*CORRESPONDENCE

Lisa Scherf,
lisa_katharina.scherf@tu-darmstadt.de

RECEIVED 28 January 2023
ACCEPTED 14 June 2023
PUBLISHED 12 July 2023

CITATION

Scherf L, Schmidt A, Pal S and Koert D
(2023), Interactively learning behavior
trees from imperfect human
demonstrations.
Front. Robot. AI 10:1152595.
doi: 10.3389/frobt.2023.1152595

COPYRIGHT

© 2023 Scherf, Schmidt, Pal and Koert.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permitted which does
not comply with these terms.

Interactively learning behavior
trees from imperfect human
demonstrations

Lisa Scherf1,2*, Aljoscha Schmidt1, Suman Pal3 and
Dorothea Koert1,2

1Interactive AI & Cognitive Models for Human-AI Interaction (IKIDA), Technische Universität Darmstadt,
Darmstadt, Germany, 2Centre of Cognitive Science, Technische Universität Darmstadt, Darmstadt,
Germany, 3Telekinesis, Intelligent Autonomous Systems Group, Department of Computer Science,
Technische Universität Darmstadt, Darmstadt, Germany

Introduction: In Interactive Task Learning (ITL), an agent learns a new task
through natural interaction with a human instructor. Behavior Trees (BTs) offer a
reactive, modular, and interpretable way of encoding task descriptions but have
not yet been applied a lot in robotic ITL settings. Most existing approaches that
learn a BT from human demonstrations require the user to specify each action
step-by-step or do not allow for adapting a learned BTwithout the need to repeat
the entire teaching process from scratch.

Method: We propose a new framework to directly learn a BT from only a few
human task demonstrations recorded as RGB-D video streams. We automatically
extract continuous pre- and post-conditions for BT action nodes from visual
features and use a Backchaining approach to build a reactive BT. In a user
study on how non-experts provide and vary demonstrations, we identify three
common failure cases of an BT learned from potentially imperfect initial human
demonstrations. We offer a way to interactively resolve these failure cases by
refining the existing BT through interaction with a user over a web-interface.
Specifically, failure cases or unknown states are detected automatically during
the execution of a learned BT and the initial BT is adjusted or extended according
to the provided user input.

Evaluation and results: We evaluate our approach on a robotic trash disposal
task with 20 human participants and demonstrate that our method is capable of
learning reactive BTs from only a few human demonstrations and interactively
resolving possible failure cases at runtime.

KEYWORDS

human-robot interaction, interactive task learning, behavior trees, learning from
demonstration, robotic tasks, user studies, failure detection, failure recovery

1 Introduction

The multitude of possible tasks and user preferences in everyday scenarios renders pure
pre-programming of future robots inadequate. The ability to learn new tasks from non-
expert users becomes therefore a key component for the development of intelligent robotic
systems (Laird et al., 2017).

Behavior Trees (BTs) offer a reactive, modular, and interpretable way of encoding
task descriptions and have recently gained increasing attention in the robotic community

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2023.1152595
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2023.1152595&domain=pdf&date_stamp=2023-07-07
mailto:lisa_katharina.scherf@tu-darmstadt.de
mailto:lisa_katharina.scherf@tu-darmstadt.de
https://doi.org/10.3389/frobt.2023.1152595
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2023.1152595/full
https://www.frontiersin.org/articles/10.3389/frobt.2023.1152595/full
https://www.frontiersin.org/articles/10.3389/frobt.2023.1152595/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Scherf et al. 10.3389/frobt.2023.1152595

FIGURE 1
Overview of the proposed approach. First, the user provides few demonstrations of a task. Task-relevant features are extracted and the demonstrations
are segmented into high-level action sequences. Based on the features and action labels, pre- and post-conditions for all actions are computed. A
Backchaining approach is used to build an initial Behavior Tree from those conditions which can directly be executed by the robot. During execution,
failure cases are automatically detected and resolved using input provided by the user via a web-interface and the initial Behavior Tree and
corresponding action conditions are thereby iteratively adapted.

(Marzinotto et al., 2014; Paxton et al., 2017; Colledanchise and
Ögren, 2018; Fusaro et al., 2021).

However, only a few existing approaches learn BTs directly from
human task demonstrations (Robertson andWatson, 2015; Sagredo-
Olivenza et al., 2017;French et al., 2019; Gustavsson et al., 2021) or
allow for adapting or refining the learned BT without having to
repeat the entire teaching process (Helenon et al., 2021; Iovino et al.,
2022a). In particular, when dealing with incomplete or imperfect
task demonstrations this results in frustrating teaching routines and
a higher risk of failures at execution time.

In this paper, we propose ILBERT (Interactively Learning
BEhavioR Trees), a new framework for learning a BT from only
a few human demonstrations and interactively refine the learned
BT during runtime. We use visual feature extraction for high-
level action segmentation and a backchaining approach to learn
an initial BT directly from video demonstrations. At execution
time, we resolve failure cases by refining or extending the learned
BT according to interactive user input over a graphical user
interface.

To determine different states for action execution in the
BT, we extract pre- and post-conditions from the human task
demonstrations. Unlike related approaches (Colledanchise et al.,
2019; Gustavsson et al., 2021; Iovino et al., 2021), we use continuous
conditions instead of binary ones and extract these conditions from
human video demonstrations instead ofmanually pre-defining them
for each action. However, the initial demonstrations and resulting
pre- and post-conditions may not cover all situations that can
occur at execution time of the learned BT. Therefore, during task
execution, our approach automatically detects states not seen during
demonstrations and requests additional input from the user to refine
or extend the initially learnedBT. Figure 1 summarizes our proposed
approach.

We investigate two main research questions in experimental
evaluations on a robotic trash disposal task with a Franka Erika

Panda robot. First, we analyze human demonstrations in a pilot
study in order to evaluate what kind of task demonstrations non-
expert users provide to our robot and when and why BTs, learned
with our proposed approach from this initial set of demonstrations
fail. Second, we propose an interactive approach to refine and
extend the learned BT at runtime to resolve the observed failure
cases and evaluate our approach in a subsequent user study.
Demonstration data from the pilot study is used to train an
action classifier that predicts high-level action sequences from
extracted video features for the second study. The experimental
evaluation shows that our proposed approach results in successful
refinement and solving of potential failure cases after initial
BT learning. In addition, we analyze user satisfaction regarding
the resulting task performance and interaction with the overall
system.

Overall, the main contributions of our paper are the following.
First, we present an approach to directly learn a BT from human
video demonstration, including automatic action segmentation and
extraction of pre- and post-conditions for action execution using
visual features. Second, we analyze potential cases where imperfect
non-expert human demonstrations may lead to failure cases of
the initially generated BT. Third, we implement and evaluate an
interactive approach to resolve such failure cases during execution
by refining or extending the BTwith user input over a graphical user
interface and additional demonstrations.

The rest of the paper is structured as follows. In Section 2,
we provide a summary on BTs and discuss related approaches.
Afterwards Section 3 introduces our novel framework for interactive
learning of a BT from a few human video demonstrations. In
Section 4, we analyze potential failure cases resulting from imperfect
human demonstrations, evaluate our proposed method on a robotic
task with human users, and discuss the results. Lastly, Section 5
concludes the paper and gives an outlook on future research
directions.

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2023.1152595
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Scherf et al. 10.3389/frobt.2023.1152595

2 Background and related work

In this section, we first provide a summary on the concept of
Behavior Trees and afterwards discuss related works on learning
Behavior Trees.

2.1 Behavior trees

Behavior Trees are control structures used to switch between
different tasks in an autonomous agent.They initially emerged in the
gaming industry as an alternative to Finite State Machines (Mateas
and Stern, 2002; Millington and Funge, 2018). Over the last years,
they have shown their great potential for structuring robot behaviors
(Colledanchise and Ögren, 2018; Iovino et al., 2022b).

In comparison to Finite State Machines, BTs provide the
advantages of uncoupled modularity and more straightforward
reusability of (sub-)behaviors as well as built-in reactiveness and
improved human readability (Colledanchise and Ögren, 2016;
Colledanchise and Ögren, 2018; Han et al., 2021).

A BT is a directed rooted tree built from internal nodes and leaf
nodes. The leaf nodes execute (sub-)tasks, i.e., behaviors, whereas
all internal nodes are control flow nodes. An example BT can be
seen on the top right in Figure 1, where control nodes are depicted
in rectangular shapes and execution nodes as ellipsoids. During the
execution of the BT, the root node is ticked at a specified frequency
and passes the tick signal to its children. A ticked node returns
RUNNING to its parent during execution, SUCCESS if its goal
is achieved, or FAILURE otherwise. Execution nodes can encode
Actions for a robot to execute or conditions that may encode,
e.g., checks of environmental or internal status or sensor feedback.
The most commonly used control nodes are Sequence nodes and
Fallback nodes (depicted in orange with symbol → and purple
with symbol ? in Figure 1). Sequence nodes execute the subsequent
children nodes in a sequence and return SUCCESS if all children
succeeded or FAILURE once one of the children fails. Fallback nodes
also execute their children in a sequence but return FAILURE only
if all children fail and SUCCESS as soon as one child succeeds.

It can be noted that BTs are, by definition, close toDecision Trees
(Colledanchise and Ögren, 2016; French et al., 2019). However, BTs
offer built-in reactivity since nodes can be executed for longer than
one tick using the RUNNING state, which allows other actions to
preempt running ones by returning FAILURE.

There are different existing code frameworks that implement BTs
(Ghzouli et al., 2020). For the experiment in this paper, we used the
BehaviorTree.CPP Library (Faconti, 2018) due to its compatibility
with ROS. Trees are defined here using an XML-based format and
can be visualized using the graphical user interface Groot (Faconti,
2018, Faconti, 2019).

For further details on BTs in robotics and AI, we refer to
(Colledanchise and Ögren, 2018).

2.2 Learning behavior trees

There are several approaches to design BTs for specific tasks
(Iovino et al., 2022b). BTs can be hand-coded or constructed
manually using supporting design tools, such as the GUI Editor
Groot. CoSTAR (Paxton et al., 2017) enables non-expert users to

create robust robotic task plans using a BT-based task editor
integrating perception.This simplifies implementation butmanually
designing the tree step-by-step is still necessary and challenging for
more complex tasks. BTs have also been used as control structures
to manually combine movement primitives over a graphical user
interface in guided robot skill learning (Knaust and Koert, 2021).
Besides manual construction, BTs can be built using a planning
algorithm to compute a plan to solve a task and then convert this
plan into a BT. Genetic Programming can, for example, be used
to automatically build a BT starting from a set of actions and
conditions and a reward or fitness function (Scheper et al., 2016;
Colledanchise et al., 2018; Iovino et al., 2021). However, defining
such a function can be difficult, especially for everyday-life users.
Similarly, Banerjee (2018) proposes to first autonomously learn a
reinforcement learning control policy and then convert this policy
into a BT based on canonical BTs, which is a reduced representation
of BTs.

Learning from demonstration (LfD) offers a promising
alternative that particularly also enables non-expert users to teach
robots new tasks (Ravichandar et al., 2020). However, to the best of
our knowledge, there are so far only few works that have learned
behavior trees from demonstrations (Robertson and Watson, 2015;
Sagredo-Olivenza et al., 2017; French et al., 2019; Gustavsson et al.,
2021).

One such approach is to learn a decision tree (DT) from
demonstrated state-action pairs and afterwards convert the learned
DT into an equivalent Behavior Tree (Sagredo-Olivenza et al., 2017;
French et al., 2019). This was proposed first to assist game designers
in programming non-player characters (Sagredo-Olivenza et al.,
2017) and later extended and applied to learn a robot house cleaning
task (French et al., 2019). Specifically, French et al. (2019) generate a
DecisionTree (DT) fromuser demonstrations in the formof selected
actions via a user interface.

Gustavsson et al. (2021) propose a method to learn a BT from
kinesthetic demonstrations. In addition, they propose a clustering
approach to identify adequate reference frames for each action.
The BT is built using Backchaining with pre-defined binary
pre- and post-conditions. The Backchaining algorithm was first
proposed by Colledanchise et al. (2019) and presents a planner to
automatically grow a BT. The algorithm grows the tree iteratively
by replacing failing pre-conditions with subtrees representing
an action with an appropriate post-condition that satisfies the
failed condition. Styrud et al. (2022) combineGenetic Programming
with Backchaining to counterbalance the shortcomings of both
methods and make learning more efficient. Our method also uses
Backchaining to build a BT. However, we automatically extract pre-
and post-conditions for each action from human demonstrations
instead of defining them manually beforehand as opposed to the
approaches in Gustavsson et al. (2021); Colledanchise et al. (2019).
In addition, we use continuous pre- and post-conditions instead of
binary features (Colledanchise et al., 2019; Gustavsson et al., 2021).

An alternative approach to learn a BT from human
demonstrations is to directly map all demonstrations to subtrees
consisting of Sequence nodes of all shown actions and place the
subtree under a Fallback node in the BT. Robertson and Watson
(2015) apply this method to learn a BT for the strategy game
StarCraft. However, this results in large and hard-to-read BTs (>
50.000 nodes) whose structure limits reactivity.

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2023.1152595
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Scherf et al. 10.3389/frobt.2023.1152595

Few works interactively learn or refine BTs through interaction
with a human user. Suddrey et al. (2022) build a BT based on natural
language instructions and use an interactive dialogue with the user
to request additional information and resolve ambiguities. Similarly,
Iovino et al. (2022a) combine themethod ofGustavsson et al. (2021)
with an interactive disambiguation framework (Doğan et al., 2022)
to resolve ambiguities in a scene during BT execution through verbal
interaction with the user. However, they focus solely on failure cases
that arise from ambiguous objects in the scene. In Helenon et al.
(2021), speech commands are combined with gestures in order to
learn a BT. The approach allows incrementally learning tasks with
growing complexity by interacting with the user. However, the user
has to specify each action step-by-step, which can be cumbersome
for complex tasks. In contrast tomost interactive approaches to learn
a BT (Helenon et al., 2021; Doğan et al., 2022; Suddrey et al., 2022),
we directly learn a BT from video recordings of full human task
demonstrations.

Overall we found a lack of evaluations of the proposed
systems for BT learning with non-expert users on robotic tasks
(Helenon et al., 2021; Iovino et al., 2021) and a lack of user studies
with a focus on physical demonstrations of complete task sequences
(Colledanchise et al., 2018; Gustavsson et al., 2021; Suddrey et al.,
2022).

3 Interactively learning behavior trees
from demonstrations

This section introduces our novel framework for Interactively
Learning BEhavioR Trees from a few human demonstrations
(ILBERT). In contrast to related approaches, task demonstrations
are directly recorded as RGB-D data. We automatically extract
task-relevant features and segment the demonstrations into high-
level action sequences (Section 3.1). Based on the features and
action sequences, pre- and post-conditions for each action are
learned (Section 3.2.1), and an initial BT is built using Backchaining
(Colledanchise et al., 2019) (Section 3.2.2). This initial BT might
not cover all possible situations because of the limited number of
potentially imperfect demonstrations. Therefore, failure cases that
might occur during the execution of the learned BT are detected
automatically and can be interactively resolved through user input
via a web-interface (Section 3.3). The initial BT and corresponding
conditions are updated accordingly. Figure 1 shows an overview of
the pipeline. In the following, we explain each step in more detail.

3.1 Feature extraction and action
segmentation

In contrast to other related approaches (French et al., 2019;
Helenon et al., 2021), we want to directly learn a BT from recordings
of complete human task executions instead of requiring the user to
explain each action step-by-step.

Therefore, we record human task demonstrations with a RGB-
D camera and segment these recordings into high-level action
sequences ad0,…,a

d
Nd for each demonstration d ∈D using a pre-

trained classifier that maps a sliding window of i frames over a set
of j features x0,…xj ∈ X to one of m actions a0,… am in a set of
pre-defined actions A:

cθ (X0..i) :ℝi×j↦A (1)

where θ denotes the model parameters. Inspired by Sieb et al.
(2020), we use object-object and hand-object distances as features
X for action segmentation. In order to extract those features, we
use MediaPipe (Zhang et al., 2020) to infer relevant 3D landmarks
(i.e., wrist, thumb, and index-fingertip) of the user’s hand for each
video frame. Using ArUco markers, we additionally obtain a 3D
pose estimation of task-relevant objects (i.e., trash, trashcan, and
lid). Since the ArUco detection fails to detect the marker during
fast movements of the object due to motion blur, we are using
the CMT tracking algorithm (Nebehay and Pflugfelder, 2015), in
addition. It is a keypoint-based method for long-term model-free
object tracking. The tracker is re-initialized each time the ArUco
detection successfully detects a marker. If no marker is detected,
the tracker predicts the position. By using keypoints to detect the
marker, the method accounts for in the object’s scale and rotation
and can detect the marker despite motion blur. We use a moving
average filter to reduce the noise in the features.

We train the classifier on manually labeled recordings of human
demonstrations. Since some actions might occur less frequently
than others for a given task, the dataset is balanced in advance.
We compared various standard machine learning models for the
experiments in this paper and report the results in Section 4.3.1.

It should be noted that the action segmentation is not the main
focus of this paper but a small part of the overall developed system.
The concrete classification model is interchangeable and could be
replaced with more advanced methods in future work.

3.2 Backchaining with continous pre- and
postconditions

Backchaining was proposed by Colledanchise et al. (2019) as
a planning algorithm to build a BT based on pre- and post-
conditions for each action. It has already been used to learn a
BT from kinesthetic demonstrations based on manually defined
action conditions (Gustavsson et al., 2021). The integration into a
framework for interactive disambiguation based on a user’s verbal
input (Iovino et al., 2022a) indicates that Backchaining is well suited
for an interactive task learning setting. The use of pre- and post-
conditions allows us to detect unseen states and reason about correct
actions.

In contrast to other approaches that learn from human
demonstrations (Colledanchise et al., 2019; Safronov et al., 2020),
we use continuous pre- and post-conditions instead of only binary
features. Additionally, we directly learn pre- and post-conditions for
each action from human demonstrations instead of defining them
manually beforehand, as in Gustavsson et al. (2021); Iovino et al.
(2022a).

3.2.1 Pre- and post-condition extraction from
human demonstrations

In this section, we explain our approach to automatically extract
pre- and post-conditions fromhumandemonstrations in the formof
RGB-D video data. Similar to the action classification (Section 3.1)
we first extract object and hand positions from the demonstrations

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2023.1152595
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Scherf et al. 10.3389/frobt.2023.1152595

and afterwards compute pre- and post conditions from K pre-
defined visual features f ∈ F based on object-object and object-
hand distances. We remove feature value outliers by applying value
constraints ω1(f),ω2(f) and removing all values below the 5th and
above the 95th percentile. Outliers can be caused by inaccuracies in
the object and hand tracking.

From the action classifier, we obtain the high-level action
sequences ad0,…,a

d
Nd for all human demonstrations d ∈D and define

O as the set of all shown actions.
For each action a ∈O, we define pre- and post-conditions

as value ranges between minimum values c−pre(a, f),c−post(a, f) and
maximum values c+pre(a, f),c

+
post(a, f) for a feature f and action a

Cpre (a) : ={[c−pre (a, f) ,c+pre (a, f)] | f ∈ Fpre (a)}

Cpost (a) : ={[c−post (a, f) ,c
+
pre (a, f)] | f ∈ Fpost (a)} ,

(2)

where Fpre(a) and Fpost(a) are feature subsets used as pre- and
post-conditions for an action a. A condition is true if all features lie
within the condition ranges. A pre-condition has to be true before
action execution and is checked during action execution to allow
reactivity of the corresponding BT node. Post-conditions specify
which and to what range an action changes a particular feature.
While we specify pre-conditions for all features (Fpre(a) = F), the
number of post-conditions can vary since most actions affect only a
subset of all features (Fpost(a) ⊆ F).

In order to decide which features f should be included
in Fpost(a) for each action a, we calculate three metrics
m1 (a, f), m2 (a, f), m3 (a, f) based on the corresponding set of
feature value sequences {Ψa, f ,υ}υ=1,…,ϒa

of all ϒa action occurrences
of a specific action a over all demonstrations. Each feature value
sequence consists of values Ψa, f ,υ: = {ψa, f ,υ

0 , .,ψ
a, f ,υ
Pυ
} from the start

frame to the end frame of the action occurrence υ for each feature
f. The intuition behind these three metrics is to use the variance in
features to decide whether a feature is changed by an action inspired
by Abdo et al. (2013).

First, we compute the mean difference of start and end values of
all feature sequences Ψa,f,υ over all ϒa action occurrences

m1 (a, f) =
1
ϒa
∑

1≤υ≤ϒa

|ψa, f ,υ
Pυ
−ψa, f ,υ

0 | , (3)

where ψa, f ,υ
0 and ψa, f ,υ

Pυ
are the start and end values for feature f and

action occurrence aυ.
Second, we compute the mean number of frames where the

feature value change exceeds a threshold based on theminimum and
maximum value of this feature over all action occurrences

m2 (a, f) =
1
ϒa
∑

1≤υ≤ϒa

|K (a, f,υ) |

where K (a, f,υ): =
{
{
{

|

|
i
ψa, f ,υ
i+1 −ψ

a, f ,υ
i−1

2

> 1

max
1≤ῡ≤ϒa
{max

j
ψa, f ,ῡ
j }− min

1≤ῡ≤ϒa
{min

j
ψa, f ,ῡ
j }

}}}
}}}
}

.

(4)

Third, we compute the variance of end values over all
demonstrations

m3 (a, f) = Var [L (a, f)]

whereL (a, f) : = {ψa, f ,υ
Pυ
|υ ∈ [1,ϒa]} .

(5)

Based on these three metrics, we decide whether a feature is
a relevant post-condition of an action and should be included in
Fpost(a) according to

Fpost (a): = { f ∈ F |m1 (a, f) >m−1∧ m
−
2 <m2 (a, f) <m

+
2∧

m3 (a, f) <m
+
3 } ,

(6)

where m−1 , m
−
2 , m
+
2 and m+3 are hand-tuned thresholds. For the

experiments in this paper, we setm−1 = 0.33,m
−
2 = 0.2,m

+
2 = 0.8, and

m+3 = 0.2.
For each action and feature in Fpre(a) and Fpost(a),

we now want to define minimum and maximum values
c−pre(a, f),c+pre(a, f),c−post(a, f),c

+
post(a, f) for the condition ranges in

Cpre(a), and Cpost(a).
For a post-condition for a feature f and action a, we consider the

last δ frames over all action occurrences and the remaining frames
for the corresponding pre-condition. In our experiments, we use
δ = 3.We computeminimumandmaximumvalues for the condition
ranges Cpre(a),Cpost(a) over these feature values

c−pre (a, f) =min({ψa, f ,υ
0:Pυ−δ−1
|υ ∈ [1,ϒa]}) for f ∈ Fpre (a)

c+pre (a, f) =max({ψa, f ,υ
0:Pυ−δ−1
|υ ∈ [1,ϒa]}) for f ∈ Fpre (a)

c−post (a, f) =min({ψa, f ,υ
Pυ−δ:Pυ
|υ ∈ [1,ϒa]}) for f ∈ Fpost (a)

c+post (a, f) =max({ψa, f ,υ
Pυ−δ:Pυ
|υ ∈ [1,ϒa]}) for f ∈ Fpost (a) .

(7)

We post-process these ranges Cpre(a),Cpost(a), so that the pre-
and post-conditions of an action for a given feature do not overlap
and that all initial ranges are not smaller than a predefined threshold
τ(f) (in our experiments, we use τ(f) = 1.5 cm as a threshold for all
features except the finger distance).

At last, the conditions have to be adapted so that the pre-
and post-conditions of adjacent actions fit together. Algorithm 1
summarizes the details of the entire condition computation.

3.2.2 Backchaining
The extracted pre- and post-conditions for each action,

together with the action sequences of all demonstrations, are
used to construct an initial BT using the Backchaining algorithm
(Colledanchise et al., 2019). First, we define a goal condition G
as the post-condition ranges of the last shown action of the
demonstrations, assuming that the goal state is identical for all
demonstrations for a particular task. This goal condition is placed
at the root sequence of the tree. The tree is then iteratively
searched for a failing condition using self-simulation as proposed
by Safronov et al. (2020), starting iteratively from all start condition
rangesS(d) of all demonstrations. Here, the start conditionS(d) is a
set of pre-condition ranges of the first action of each demonstration
d. In each step, a subtree whose post-condition satisfies the failed
pre-condition replaces this condition until the goal condition is
reached. However, the generated order might result in logical
conflicts. There might be conflicting conditions in the same path
of the tree resulting in, e.g., a gripper that is supposed to be
closed and opened simultaneously. Since this can never be fulfilled,
such conflicts need to be resolved. We use a conflict-resolving
strategy adapted from Safronov et al. (2020). The conflicting subtree
is moved leftwards and upwards until the conflict is resolved. Lastly,
the resulting BT can be pruned by removing unnecessary conditions.
An overview of the Backchaining algorithm is given inAlgorithm 2.

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2023.1152595
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Scherf et al. 10.3389/frobt.2023.1152595

Require: O: action shown in human

demonstrations, F: features, D:

demonstrations

τ(f),ζ,ω1(f),ω2(f)for f ∈F:parameters

 for a ∈O do

  for f ∈F do

   Remove outliers

   Calculate metrics m1 (a,f), m2 (a,f), m3 (a,f)

(Equation 3, 4, 5)

   Determine relevant post-conditions Fpost(a)

for each action a according to Equation 6

  end for

  Cpre(a): = {[c−pre(a, f),c+pre(a, f)]|f ∈Fpre(a)} ⊳ Define

condition ranges (Equation 7)

  Cpost(a): = {[c−pre(a, f),c+pre(a, f)]|f ∈Fpost(a)}

  Adapt conditions so that pre- and

post-conditions do not overlap

  Widen small condition ranges below a value

difference τ(f)

 end for

 for d ∈ D do

  for nd ∈ [0,Nd] do ⊳ Adapt conditions of

adjacent actions

   a← adnd

   â← ad
nd+1

   for f ∈Fpost(â) do

    if notf ∈Fpost(a) then

     c−pre(â, f) =min(c−pre(â, f),c−pre(a, f))

     c+pre(â, f) =max(c+pre(â, f),c+pre(a, f))

    else

     c−pre(â, f) =min(c−pre(â, f),c−post(a, f))

     c+pre(â, f) =max(c+pre(â, f),c
+
post(a, f))

    end if

   end for

  end for

 end for

 for d ∈ D do

  S(d): = {[c−pre(ad0, f),c
+
pre(a

d
0
, f)]|f ∈Fpre} ⊳ Define

start conditions

 end for

G: = {[c−post(a
0
nd
, f),c+post(a

0
nd
, f)]|f ∈Fpost} ⊳ Define goal

conditions

Algorithm 1. Condition Computation.

We learn reactive behavior trees that can solve the given task
despite external influences. Therefore, the learned BT is ticked
regularly with a given frequency.The generic BT actionsmust return
RUNNING while a lengthy action is performed. If an action returns
RUNNING, the tick is propagated upwards to the root node, and the
tree is ticked again. In this way, the feature state can be continuously
monitored and the executed action can be changed if the pre-
conditions are no longer fulfilled. In this way, safety checks, e.g., that
no human is too close to the robot can be easily integrated.

while G ≠ True do

 for d ∈D do

  Search for failing condition by

self-simulation starting with S(d)
  Search action that satisfies the failed

condition

  Replace failed condition with subtree

  Search and fix potential conflicts

 end for

end while

Prune unnecessary nodes

Algorithm 2. Backchaining Algorithm (adapted from Safronov et al. (2020))

3.3 Interactive handling of failure cases

We propose a method of learning a BT from only a few human
demonstrations. As a result of this, the user effort is kept low, and
after only a short training phase, the robot is already able to execute
the initial BT. However, few demonstrations might not cover all
possible scenarios or failure cases, and handling such incomplete
demonstrations is a challenge (Gustavsson et al., 2021).

In a study with 22 participants on how non-expert users
demonstrate a robotic task (Section 4.2), we identified three main
problems when executing BTs learned from such imperfect human
demonstrations. In the following, we shortly describe these potential
failure scenarios and explain how we propose to resolve them
automatically in our interactive approach. An overview of all failure
cases and how they are resolved based on the user input is shown in
Figure 8.

3.3.1 Resolving a pre-condition failure
Wedetect failure cases as either failing pre-conditions before and

during an action or failing post-conditions after the execution of an
action (yellow in Figure 8). A condition fails if the corresponding
feature does not lie within the defined value range.

There are two reasons why a pre-condition could fail: Either the
robot is trying to execute the correct action, but the pre-conditions
of this action do not include the current situation, or a suboptimal
post-condition lead to a wrongly ticked action in the BT. If an
action is, for example, already successfully executed but the post-
condition is suboptimal and therefore not fulfilled, the robot could
still try to execute this action. In order to decide how to resolve the
situation, the system explains what actions it is trying to perform
next to check if the correct subtree in the BT is ticked. The user
is asked if the robot is indeed pursuing the correct actions. If
the user does not confirm, the robot asks which action must be
performed instead. In this case, a post-condition must have been
learned incorrectly (blue in Figure 8). Given the current feature
values ψ̂ f

cur and the correct action, it is possible to backtrack the BT
and identify the suboptimal post-condition. This post-condition is
changed in a way that the tick would have ended up in the suggested
action according to the current feature values. Here, each feature
range in the post-condition is compared with the current feature
values. If the value exceeds themaximumvalue of the post-condition
range c−post(a, f), it is set to the current feature value increased by

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2023.1152595
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Scherf et al. 10.3389/frobt.2023.1152595

Require: ϵ: parameter increasing the amount of

change

 if c−
pre∕post

(a, f) > ψ̂f
cur then

  c−
pre∕post

(a, f) = (1− ϵ) ⋅ ψ̂f
cur

 else if c−
pre∕post

(a, f) < ψ̂f
cur then

  c+
pre∕post

(a, f) = (1+ ϵ) ⋅ ψ̂f
cur

 end if

Algorithm 3. Pre-condition and Post-condition Adaptation

the parameter ϵ: c+post(a, f) = (1+ ϵ) ⋅ ψ̂
f
cur. The same applies for the

minimumvalue of the condition c−post(a, f) if the current feature value
is lower: c−post(a, f) = (1− ϵ) ⋅ ψ̂

f
cur. In our experimental evaluation ϵ is

set to 0.1. The pre- and post-condition adaptation is summarized in
Algorithm 3.

If the user confirms the robot’s next planned actions, an
existing pre-condition must be extended to include the current
state (magenta in Figure 8). This scenario can occur if the human
demonstrations of the currently correct action did not include the
current feature state. If a user demonstrates theMove-to-Trash action
for only one position of the trash, the pre-conditions of this action
would, for example, fail for a different trash positioning for the
feature dis_trash_trashcan. Since the robot knows which condition
is failing, it can suggest the most helpful action based on the pre-
and post-conditions. The user either confirms this action or selects
a different action, and the range of the failed pre-condition of this
action is adapted according toAlgorithm 3. Similar to the adaptation
of post-conditions, the minimum and maximum condition values
c−pre(a, f),c+pre(a, f) are increased or decreased if the current feature
value ψ̂ f

cur is lower or higher in comparison. If it is lower, c−pre(a, f)
is set to (1− ϵ) ⋅ ψ̂ f

cur and if it is higher c+pre(a, f) is set to (1+ ϵ) ⋅ ψ̂ f
cur

where ϵ is a parameter used to increase the change of the adapted
range limit. Inaccuracies in the features can otherwise lead to
repeated failures during execution because a feature keeps exceeding
the range limits and is only marginally changed in each step.

3.3.2 Resolving a post-condition failure
After an action succeeds and returns RUNNING, we check if the

resulting feature state satisfies the learned post-conditions of this
action. Due to differences between the human demonstrations and
the robot’s action execution, the action-outcome might not match
the learned post-conditions. In this case, the user is asked whether
the last action has been successfully executed and adjusts the post-
condition based on the current state according toAlgorithm 3 (blue
in Figure 8). If the action Release-Trash is, for example, successfully
executed but the resulting distance between the robot grippers does
not match the finger distance shown in the human demonstrations,
the post-condition regarding this feature would fail.

3.3.3 Resolving unseen situations with additional
demonstrations

In case a pre-condition fails, it may happen that the robot can
not resolve the situation with any of the demonstrated actions so
far (green in Figure 8). This may happen if a user demonstrates
a pick-and-place task where the object is well-placed for grasping
but during robot execution another object is placed on top of this

object and first has to be put aside to fulfill the task. The learned
BT would then fail since this situation and the required actions
were not shown in the human demonstrations. In this case, the
user can show additional demonstrations of the required action
or sequence of actions until the previously failed pre-condition
in the initially learned BT is satisfied. Those demonstrations are
used to compute conditions for the new actions as described in
Section 3.2.1. The failed pre-condition is then replaced iteratively by
the newly demonstrated actions using the Backchaining approach
(Section 3.2.2) until the failed pre-condition is satisfied.

After an adaptation of the learned BT and corresponding
conditions as described in the previous sections, it is necessary to
make sure that all pre- and post-conditions of adjacent actions still
fit together and, if necessary, adapt them accordingly (Algorithm 1).

It should be noted that rebuilding the entire tree is not necessary
to resolve the described failure cases. Instead, the failing condition
is adapted or replaced by a subtree. As a result, the BT grows, and
conditions are refined as the robot deals with new situations, but the
initial BT structure remains unchanged. Here, our approach avoids
repeating a similar demonstration multiple times since only local
changes are required, and the previously learned BT is exploited.

4 Experimental evaluation on a
robotic trash disposal task

We evaluate our method on a robotic trash disposal task with a
Franka Erika Panda robot arm. In a pilot study with 22 participants,
we analyze what kind of task demonstrations non-expert users
provide and what failure cases occur when executing a BT learned
from these potentially imperfect and incomplete demonstrations. In
a second study, we evaluate our resulting overall system, including
interactive resolving of failure cases at execution time of the BT with
20 human participants. We use the demonstration data from the
pilot study to train an action classifier that predicts high-level action
sequences fromRGB-D video recordings of human demonstrations.
In the following, we first describe the experiment setup in detail
in Section 4.1. Afterwards, in Section 4.2, we analyze the human
demonstrations from the pilot study. Lastly, we evaluate the overall
interactive approach and analyze user satisfaction regarding the
overall system in Section 4.3.

4.1 Trash disposal task setup

Figure 2 shows the experiment setup for the trash disposal task.
The robot is supposed to learn how to pick up trash (empty tetra-
pack) placed in the area marked in green Figure 2A and dump it
in a trashcan. If the lid is placed on top of the trashcan, the robot
should learn howfirst to put the lid aside.Theobjects trash, trashcan,
and lid are highlighted in yellow in Figure 2B. An Azure Kinect
RGB-D camera (magenta in Figure 2A) is used to record all human
demonstrations and obtain RGB and depth information about the
scene.In order to learn a task representation in the form of a BT,
we map the human’s high-level actions to the robot’s pre-defined
high-level actions. The set of actions consists of Move-to-Trash,
Grasp-Trash, Move-to-Trashcan, Release-Trash, Move-to-Lid, Grasp-
Lid, Move-to-Drop-Off, Release-Lid. All actions are implemented as

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2023.1152595
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Scherf et al. 10.3389/frobt.2023.1152595

FIGURE 2
(A) A participant is demonstrating the task. The demonstration recording can be started using the web-interface on the tablet (blue). The
demonstration is recorded by the Kinect Azure camera (magenta). Before the start of a demonstration, the participant is asked to place the trash
somewhere in the area marked in green. (B) The robot is executing the task while the user provides input via the tablet (blue). The task-relevant objects
(lid, trashcan, trash) are highlighted in yellow.

custom reactive action nodes in the BehaviorTree.CPP framework
(Faconti, 2018). Action nodes frequently return RUNNING before
they finish and either return SUCCESS or FAILURE in order to
be able to react to external changes. The user can communicate
with the system via a web-interface on a tablet (highlighted in blue
in Figure 2). This web-interface is used for the recording of the
demonstrations (Figure 2A) and for interactive handling of failure
cases during robot execution of the initially learned BT (Figure 2B).
The web-interface dialogue is shown in Figure 8.

4.2 Pilot study to identify imperfections in
human demonstrations

In related approaches that learn BTs from human
demonstrations, there is a lack of experimental analysis on
how non-experts actually demonstrate tasks and what could be
potential pitfalls when learning BTs from such demonstrations.
Experiments are either conducted with a user familiar with the
system (Helenon et al., 2021; Iovino et al., 2022b) or only consider
natural language instructions (Suddrey et al., 2022) or kinesthetic
teaching (Gustavsson et al., 2021) but no human demonstrations
of complete task sequences. However, we consider it crucial
to use insights about how people demonstrate tasks to handle
imperfect demonstrations. In order to investigate what kind
of task demonstrations non-expert users provide to our robot
and to analyze possible failure cases of BTs learned from such
demonstrations, we asked 22 participants (9 male, 13 female) to
demonstrate the trash disposal task, as described in Section 4.1.
In the beginning, we gave the participants written instructions
explaining the general experiment setup and procedure. We asked
them to demonstrate the task with slow movements and only use

their right hand. Each participant was instructed to demonstrate
the task three times and vary the demonstrations in between these
three trials. We did not explicitly state how they should vary the
demonstrations.

Not only for learning BTs from demonstrations but also formost
other LfD approaches, variations are essential to learn meaningful
task representations that generalize well to different situations
(Abdo et al., 2013; Knaust and Koert, 2021). With our experiment,
we contribute an analysis that provides insights on how non-expert
users vary their demonstrations and discuss potential failure cases
that could occur when learning a BT from these demonstrations
using the approach described in Section 3.2.

Before each demonstration, we asked the participants to place
the trash somewhere in the area marked in green, shown in
Figure 2A, and then start the demonstration using the web-interface
(Figure 8A). The demonstrations were recorded with a framerate
of 30fps by an Azure Kinect RGB-D highlighted in magenta in
Figure 2.

4.2.1 Analysis of variations in human
demonstrations

We analyze variations in the human demonstrations based on
recorded object positions and a questionnaire that participants
answered after providing the demonstrations.

The reported variations based on the questionnaire are shown
in Figure 3A. Five of all 20 participants stated that they did
not intentionally vary their demonstrations since they either
forgot this request or did not know what to vary. The other
participants reported differentways of varying their demonstrations,
which can be grouped into seven categories. Seven participants
demonstrated different trajectories when they reached out to the
trash and then moved the trash to the trashcan. Six participants

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2023.1152595
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Scherf et al. 10.3389/frobt.2023.1152595

FIGURE 3
(A) Reported ways the participants tried to vary their task demonstrations. Some participants reported multiple types of variation. (B) Trash placement
along the x-axis before all three demonstrations over all participants.

reported variations in speed and trash placement. Nine participants
changed the way they grasped and released the trash over
their demonstrations. Only four participants stated that they
varied their demonstrations by incorporating the lid of the
trashcan in some of their demonstrations, either placing the
lid on the trashcan before a demonstration or placing it on
top of the trashcan after they put the trash in the trashcan.
Some variations were only shown by one participant, such as
varying the height of the trash when releasing it or deliberately
hitting the trashcan with the trash before correctly releasing
it in the trashcan to show the robot the position of the
trashcan.

The positioning of the trash for all participants along the x-
axis is shown in Figure 3B. Participants 11, 14, 15, 16, 19, and 21
reported that they intentionally varied the trash positioning within
their three demonstrations. Particular notable, there are also subjects
that did not report a variation in the trash positioning and still varied
the positions (e.g., participant 5). Some subjects only marginally
changed the trash placement with position differences below 10 cm
within the demonstrations (e.g., participants 10, 12, 22).

We identified three prominent failure cases that can occur
when executing a BT learned directly from recorded human
demonstrations, as described in Section 3.2. First, showing only
minor variations in the demonstration can lead to failures or
unknown situations when the robot executes the initial BT learned
from a few demonstrations. Suppose the user, for instance, only
marginally changes the trash placement for all demonstrations. In
that case, the condition ranges will only cover this specific case and
lead to a pre-condition failure if the trash is placed slightly more to
the left or right. The same applies for variations in the movements
and usage of the lid.

To be able to handle such pre-condition failure cases during
execution time and still be able to learn from only a few human
demonstrations, we propose interactively refining failing pre-
conditions as described in Section 3.3.1.

A second failure case can occur caused by differences in the
demonstrated actions and corresponding robotic actions. If the
demonstrations of the actionMove-to-Trashcan, for example, always
end around a certain position above the trashcan and this end
position differs for the robotic action, the learned post-condition of

this action fails during execution. In this case, the post-condition of
this action has to be refined as described in Section 3.3.2.

Since only four out of all 20 participants included the lid of the
trashcan in their demonstrations, the learned BT would fail for all
other participants in situations were the lid is placed on top of the
trashcan. In this case, the required action sequence to first put the
lid aside is not shown in the demonstrations. In such cases where
required actions were not shown in the demonstrations used to learn
the initial BT, we propose extending the BT according to additional
human demonstrations of those actions (Section 3.3.3).

In pilot tests, we observed that some users only performed
movements along one axis resulting in right-angled movement,
presumably to imitate a robot and support learning of the task
by the robot. We suspect that users intentionally adapt their
demonstrations if they are aware that those demonstrations are
used to teach a robot a task. To gain deeper insights into this
phenomenon, after the experiment, we specifically asked the
participants in a questionnaire whether they demonstrated the task
how they would usually perform it or if they demonstrated the
task as they expected the robot to perform the task. Out of all 22
participants, 12 users stated that they performed the task as they
would usually perform it. On the other hand, ten subjects reported
adapting their demonstrations to the expected robot behavior.

4.3 Evaluation of interactive BT learning on
robotic trash disposal task

We conducted robotic experiments with 20 participants (8male,
12 female) to evaluate the overall system, including the pipeline to
learn an initial BT directly from a few human video demonstrations
and interactive refinement of this initially learned BT during robot
execution. Here, we use a classifier trained on the demonstration
data collected in the pilot study described in Section 3.1 for action
segmentation.

Of all 20 participants, 15 were between 18 and 25 years old and
five between 26 and 35 years old. The subjects mainly reported a low
level of prior experience with robots. In particular, eleven persons
never had direct contact with robots before, five persons reported

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2023.1152595
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Scherf et al. 10.3389/frobt.2023.1152595

less than ten encounters with robots, and only five persons had
contact with robots more than ten times.

The experiment can be divided into two parts. First, the
participants showed three task demonstrations, and an initial BT
was built as described in Section 3.2. Afterwards, the robot executed
the BT, and the participants should interactively resolve eventually
occurring failure cases. In the following, we first present the results
of the action segmentation trained on the dataset collected in
the pilot study (Section 4.3.1). Then, we analyze the results of
the action segmentation, pre- and post-condition computation,
and BT building in Section 4.3.2. Section 4.3.3 evaluates all failure
cases during execution and how those failures are resolved. The
user satisfaction regarding the interaction with the overall system
according to the User Experience Questionnaire (UEQ) is analyzed
in Section 4.3.4. The reactivity of the learned BTs is showcased in
Section 4.3.5, and an example of how additional demonstrations can
be used to extend an initial BT for the trash disposal task is described
in Section 4.3.6.

4.3.1 Training of classifier for action
segmentation

On the recorded dataset, we compare different supervised
standard machine learning models for action segmentation as
extracting the demonstrated action sequence is a necessary part of
the overall developed pipeline. In addition, we report challenges
encountered when segmenting pick-and-place actions from human
demonstrations.

As described in Section 4.2, in the pilot study the subjects
first demonstrated the task three times without further instructions
on how to perform the task precisely. After they completed these
three trials, we additionally collected demonstrations with more
detailed instructions in order to have a well-structured dataset
to train an action classifier for the trash disposal task. Here, we
first asked them to demonstrate the task three times from pre-
defined varying starting positions of the trash without moving
the trash lid. Afterwards, we specifically asked them to first place
the lid on the trashcan before demonstrating the task again three
times.

As features for the classifier, we used the distances between hand
to trash, hand to trashcan, trash to trashcan, thumb to index-finger,
hand to lid, trash to lid, trashcan to lid, and the velocity of the trash.

All distances and velocities are computed based on the extracted
object positions and hand features, as described in Section 3.1.

A rolling window of five frames before and five frames after
each frame was used. We manually labeled the videos of human
demonstrations to obtain the ground truth labels. The action
classification results for all models are shown in Table 1. We trained
the models in a k-fold cross-validation fashion on the balanced
dataset of 21 participants and used the remaining participant for
validation. We report the mean of the model scores over all 22 folds.
The best results are achieved using a Support Vector Machine with a
polynomial kernel of degree 3, as highlighted in Table 1. It achieves
a weighted accuracy score of 0.849, F1-score of 0.856, precision of
0.843, and recall of 0.897. The precision using a Random Forest
model is slightly higher with 0.856. However, the Random Forest
model only achieves an accuracy of 0.725 on the validation dataset.

Throughout the pilot study, we observed two general problems
that can occur when learning a robotic pick-and-place task from
human demonstrations. First, humans tend to only marginally open
and close their fingers when demonstrating grasp or release action.
This makes it difficult to reliably detect those actions and learn
meaningful conditions based on the distance between thumb and
index-finger. Second, without a fixed starting and end position for
the user’s hand, the user might unintentionally skip actions that
are necessary for the robot to perform the task. Some participants
already placed their hand above the trash at the beginning of
their demonstration so that the action Move-to-Trash is not shown.
However, the robot must first execute the action Move-to-Trash
to reach this position above the trash from its start position. To
avoid these problems, we adapted the written instructions about
demonstrations before the second study. Specifically, we ask the
participants to keep their hand wide open unless they are grasping
the trash and include a fixed start and end position of the user’s
hand for the demonstrations. However, it should be noted that these
modifications of the instructions may constrain the users in how
they demonstrate.

Since those changes in the instructions may result in slightly
different demonstrations, we extended the training dataset with
additional demonstrations of the task with a fixed start and end
position of the hand and a wider open hand. In total, we added 20
demonstrations without usage of the lid and 22 demonstrations of
the task with the lid placed on the trashcan in the beginning.

TABLE 1 Action segmentation results on the prestudy dataset for different models.

Model Acc. Train Acc. Test F1 train F1 test Precision Recall

Logistic Regression 0.824 0.800 0.802 0.795 0.771 0.871

Perceptron 0.777 0.754 0.775 0.752 0.735 0.869

Linear SVC 0.839 0.812 0.811 0.803 0.779 0.877

SVC Polynomial Kernel 3 0.913 0.849 0.894 0.856 0.843 0.897

KNN 0.985 0.751 0.971 0.841 0.833 0.864

Decision Tree 1.0 0.666 1.0 0.801 0.802 0.821

Random Forest 1.0 0.725 1.0 0.853 0.856 0.867

MLP 0.951 0.797 0.937 0.853 0.845 0.883

The bold values highlight the highest value achieved for each evaluation metric.

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2023.1152595
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Scherf et al. 10.3389/frobt.2023.1152595

TABLE 2 Action segmentation results on the extended dataset for different models.

Model Acc. Train Acc. Test F1 train F1 test Precision Recall

Logistic Regression 0.837 0.813 0.820 0.808 0.785 0.882

Perceptron 0.781 0.752 0.792 0.772 0.752 0.870

Linear SVC 0.849 0.824 0.828 0.818 0.796 0.885

SVC Polynomial Kernel 3 0.916 0.853 0.900 0.863 0.850 0.901

KNN 0.982 0.766 0.967 0.843 0.835 0.867

Decision Tree 1.0 0.683 1.0 0.807 0.808 0.821

Random Forest 1.0 0.759 1.0 0.860 0.861 0.875

MLP 0.952 0.813 0.941 0.863 0.856 0.887

The bold values highlight the highest value achieved for each evaluation metric.

FIGURE 4
(A) Detected hand and object positions for the objects trash, trashcan, and lid. The participants are asked to start and end the demonstration with the
hand placed close to the robot gripper. (B) Extracted features for one exemplary demonstration. The segmented actions using the trained classifier are
shown with vertical lines.

The action segmentation results trained on this extended dataset
are reported in Table 2. Again, the Support Vector Machine with
a polynomial kernel of degree 3 achieves the best results with
a weighted accuracy score of 0.853, F1-score of 0.863, precision
of 0.850, and recall of 0.901. Again, the precision of the trained
Random Forest model is slightly higher with 0.861, and a Multilayer
Perceptron (MLP) achieves a similar F1-score. Since, overall, the
Support Vector Machine outperforms the other classifiers, we
used this model trained on the extended dataset for our robotic
experiments described below.

4.3.2 Experimental evaluation of BT building
from human demonstrations

At the beginning of the experiment, participants were given
written instructions explaining the task and how to start the
recording of the demonstrations using the web-interface shown in
Figure 8A. Compared to the first study, they were asked to keep their
hand wide open unless they grasp the trash and start and end their
demonstrations with the hand placed close to the robot gripper, as
shown in Figure 4A.

After reading the instructions, the participants recorded three
demonstrations, fromwhich a BTwas built according to the pipeline

described in Section 3. For the given task, we used the condition
features described in Table 3.

Figure 4 illustrates these extracted features over a complete task
demonstration for one participant. Here, the distance between the
lid and the trashcan is not visualized since the lid was not used
in the demonstrations, and the value is, therefore, constant. We
used a moving average filter over five frames to reduce the noise
in the features. One can see that during the Move-to-Trash action,
the distance between hand and trash and hand and lid decreases.

TABLE 3 Description of all condition features used for the robotic trash
disposal task.

Feature Description

dis_xy_trashcan_lid Distance in xy direction between trashcan and lid

dis_xy_trash_trashcan Distance in xy direction between trash and trashcan

dis_z_trash_trashcan Distance in height between trash and trashcan

dis_hand_trash Distance between wrist and trash

dis_fingers Distance between index-finger and thumb

dis_hand_lid Distance between wrist and lid

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2023.1152595
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Scherf et al. 10.3389/frobt.2023.1152595

The distance between the thumb and index-finger changes for the
action Grasp-Trash, whereas the features dis_hand_trashcan and
dis_hand_lid change during the action Move-to-Trashcan. For the
action Release-Trash, the distance between the thumb and index-
finger changes, and also the distance between trash and trashcan
and hand and trash since the trash falls down. The learned post-
conditions of each action reflect the features changed by each action.
The learned conditions for one participant over all actions and
features are visualized in Figure 5. The feature values corresponding
to a pre-condition are shown in blue and all post-conditions are
shown in orange.

A BT learned from the given human demonstrations is shown
in Figure 6A. For better readability, the subtrees for the actions
Move-to-Trash, Grasp-Trash, and Release-Trash are collapsed. The
RangeCondition nodes represent the learned conditions with the
respective feature and upper and lower values. During execution,
the root is ticked with a frequency of 0.1 Hz. In the beginning,
all features are requested in the RequestFeatures node. Since the
distance between the trashcan and lid stayed the same for all
demonstrations, the goal condition of this feature is already fulfilled
in the beginning. Next, we check if the pre-condition of the
action Move-to-Trashcan regarding the distance between trash and
trashcan is already fulfilled. If the trash is still far from the trashcan,
the fallback subtree is ticked. In this subtree, the pre-conditions of
the action Move-to-Trash are first checked, and if possible, Move-
to-Trash is executed. Then, the action Grasp-Trash is performed
if the pre-conditions allow it. The same applies for the action
Move-to-Trashcan and Release-Trash. Finally, we check if all goal
conditions are fulfilled, and if they are, the execution of the BT is
terminated.

In Figure 7A, we analyze the number of successful completions
of each step of the pipeline, including feature extraction and action
segmentation, condition computation and BT building, as well as
robot execution of the learned BT and interactive resolvent of
failure cases. In case a BT was successfully built from the human
demonstrations, all failure cases during execution could be solved
based on the user input, and the robot could successfully finish
the task for those learned BTs. However, the feature extraction
and action segmentation results failed for 10 participants, which
hindered the condition computation and BT building in those
cases. Using correct labels from manual annotations, the condition
computation and BT building were successful for 14 participants.
In order to be able to test the interactive refinement through user
communication for all participants, we used a fallback BT in the
experiments in case no BT could be built. The robot execution
of the learned BT and interactive resolvent of failure cases was
successful for all 20 participants. In the following, the failures during
the different steps of the pipeline and corresponding reasons are
analyzed in more detail.

For the 10 participants, the action classifier did not extract the
correct action sequence in at least one of the three demonstrations.
The confusion matrix for the action segmentation over all
demonstrations is shown in Figure 9. Adjacent actions such asMove-
to-Trash and Grasp Trash are often confused since it is hard to tell
in which frame exactly an action starts and another action ends.
Reasons for problematic action segmentation failures are broken
down in Figure 7B. The hand or object detection failed for eleven
demonstrations, resulting in partially wrong features and incorrectly
predicted actions. In particular, one participant wore a long-sleeved
t-shirt which hindered Media Pipe’s hand tracking at the beginning

FIGURE 5
All feature values corresponding to pre-conditions (blue) and post-conditions (orange) for one participant over all actions and features. If an action
changes a features, this feature is used as a post-condition for this action. The pre-conditions of all subsequent actions are adapted according to this
post-condition.

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2023.1152595
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Scherf et al. 10.3389/frobt.2023.1152595

FIGURE 6
(A) Example of a BT built using the three demonstrations of one participant. For better readability, the subtrees of the Move-to-Trash, Grasp-Trash, and
Release-Trash action are collapsed. Each action is included in form of a Fallback node with the post-conditions on the left and the pre-conditions and
corresponding action node on the right. (B) Expanded BT using additional human demonstrations of how to put aside the lid before moving towards
the trash. The corresponding subtrees of the initially learned BT are highlighted in green and yellow. The added subtree based on the additional
demonstrations is marked in magenta.

FIGURE 7
(A) Number of successful completions of each step of the pipeline including feature extraction and action segmentation, condition computation and
BT building, and robotic task execution with user input assuming successful completion of the previous step. The number of successful completions
over all 20 participants is reported. (B) Action segmentation failures and corresponding reasons for all 60 shown demonstrations. (C) Failures during
condition computation and BT building assuming correct action labels. The actions causing problems are reported.

of all three demonstrations. In seven of all 60 demonstrations,
the trash could not be detected correctly for all frames, and in
one demonstration the lid detection failed. Those errors in object
detection often occurred at the end of the demonstration, which is
also reflected in a high confusion of the actionsNothing asMove-to-
Trash. Especially the detection of the trash after the action Release-
Trash was problematic since the ArUco marker was not visible
inside the trashcan and in this case often detected at an incorrect
position. For seven demonstrations, the pre-trained action classifier
assigned incorrect labels despite an accurate feature extraction. For

all cases where at least one demonstration was incorrectly labeled,
the conditions could not be learned correctly and the BT could not
be built. However, for all cases where the correct action sequence
was predicted, meaningful conditions could be extracted and an
executable BT was successfully built.

In order to be able to test the interaction during robot execution
for all participants, a fallback BT was used in case the BT could
not be built. Figure 7C illustrates how often a BT could be built
successfully in case we use manually annotated action labels. In this
case, meaningful conditions could be extracted, and a BT was built

Frontiers in Robotics and AI 13 frontiersin.org

https://doi.org/10.3389/frobt.2023.1152595
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Scherf et al. 10.3389/frobt.2023.1152595

FIGURE 8
(A) Overview of the web-interface for demonstrating and recording a new task. First, the user selects the button “Demonstrate skill”. The recording is
then started and stopped by pressing the “Start” and “Stop” button. (B) Webinterface dialogue for different failure cases (yellow) and corresponding
answer possibilities. If a post-condition fails, the user can confirm to adapt the failed condition (blue). In case of a pre-condition failure, the user
provides further information about the currently required action in order to adapt its pre-conditions (magenta). If the robot is currently trying to
achieve an action that has already been executed, its post-conditions have to be adapted (blue). In case the currently required action was not shown in
the demonstrations, additional demonstrations are needed (green).

FIGURE 9
(A) Confusion matrix showing the predicted high-level actions compared to the manually labeled ground truth actions. The absolute number of frames,
as well as the normalized value is reported in brackets below. (B) Results for the six constructs of the User Experience Questionnaire (UEQ) over 17
participants. The median is shown in orange and the green triangles show the mean. Values above 0.8 (green line) are considered a positive evaluation.

Frontiers in Robotics and AI 14 frontiersin.org

https://doi.org/10.3389/frobt.2023.1152595
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Scherf et al. 10.3389/frobt.2023.1152595

for 14 of all 20 participants. For five participants, the finger distance
is not recognized as a relevant post-condition for the action Grasp-
Trash resulting in a BT only consisting of the actionsMove-to-Trash,
Move-to-Target, and Release-Trash. For one participant, the same
problem occurs for the Release-Trash action.

4.3.3 Experimental evaluation of interactive
failure case handling

The goal of the second part of the study was to evaluate if the
robot can successfully execute the learned BT and if failure cases
during execution can be resolved by refining this initial BT with the
help of the user.

For the robot execution, we replace the wrist position of the user
with the position of the robot’s end-effectorminus a small offset.The
index-finger and thumbposition are replacedwith both gripper ends
of the robot. Since the human hand can be opened wider than the
robot gripper, we map the distance between both gripper ends to a
range between 0 and 14 cm.

In written instructions, the participants were asked to watch the
robot while it performs the learned task and provide guidance if
the robot asks for help via the web-interface. Based on this input,
the initial BT and learned conditions were updated as described in
Section 3.3. After the robot successfully solved the task once with
the help of the user, the robot executed the updated BT a second
time. Since the BT is updated using the user’s input, we expect fewer
failure cases and, therefore, fewer requests for help the second time.
Theweb-interface dialogue for different failure cases is schematically
shown in Figure 8B.

In Table 4, all adjusted pre- and post-conditions for the first
and second task execution are summarized for all ten successfully

built BTs from human demonstrations. For this analysis, we exclude
the cases where the participants continued with a fallback BT since
the same structure and condition ranges of this fallback BT lead
to similar failure cases during robot execution. On average, 4.67
pre-conditions and 1.89 post-conditions were changed during the
first robot execution per participant. The required user input for the
execution of the already adjusted BTwas less, with an average of 1.78
pre-conditions and 0.11 post-conditions adjusted according to the
user input. The number of required adjustments can vary, among
other things, based on the learned structure of the BT. Reasons
for failures during the execution of the initial BT in the first robot
execution run are mostly differences between the implementation
of the robotic actions and how the users demonstrated them. In
the first experiment run, the pre-condition of the action Move-to-
Trash regarding the feature dis_hand_trash failed seven out of ten
times. The reason lies in the implementation of the robot action
Move-to-Trash, since the robot first moves to a pre-grasp position
above the trash, and thereby the distance between the gripper and
trash exceeds the upper limit of the feature range shown in the
human demonstrations. A different implementation of the robotic
action could avoid this failure. However, because of the proposed
interactive approach, such failure cases can still be solved during
execution.The lower number of failure cases during the execution of
the already adjusted BT shows that the BT is improved through the
interaction with the user. It has to bementioned that the comparably
high number of failures for action Move-to-Trash regarding the
feature dis_xy_trash_trashcan during the second run occurred 5
out of 6 times during the interaction with one particular user.
This user confused the actionsMove-to-Trash andMove-to-Trashcan
which resulted in sub-optimal input and a repeated failure of this

TABLE 4 Analysis of pre- and post-condition changes during robot execution for different actions and features for the first and second robot execution.

Pre-condition Move to Trash Grasp Trash Grasp trashcan Release Trash Goal

1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

dis_xy_trashcan_lid 0 0 0 0 0 0 0 0 0 0

dis_xy_trash_trashcan 1 6 1 2 4 2 0 0 0 0

dis_z_trash_trashcan 0 0 0 0 9 0 1 0 0 0

dis_hand_trash 7 0 0 0 0 0 0 0 5 3

dis_fingers 0 0 5 0 0 0 0 0 0 1

dis_hand_lid 0 0 1 1 1 0 11 0 0 1

Total 8 6 7 3 14 2 12 0 5 5

Post-condition Move to Trash Grasp Trash Grasp Trashcan Release Trash Goal

1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

dis_xy_trashcan_lid 0 0 0 0 0 0 0 0 0 0

dis_xy_trash_trashcan 0 0 0 0 2 1 0 0 0 0

dis_z_trash_trashcan 0 0 0 0 0 0 5 0 0 0

dis_hand_trash 4 0 0 0 0 0 0 0 0 0

dis_fingers 1 0 7 0 0 0 0 0 0 0

dis_hand_lid 0 0 0 0 0 0 0 0 0 0

Total 5 0 7 0 2 1 5 0 0 0

Frontiers in Robotics and AI 15 frontiersin.org

https://doi.org/10.3389/frobt.2023.1152595
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Scherf et al. 10.3389/frobt.2023.1152595

pre-condition until the user realized the mistake. A more detailed
explanation of all actions in the web-interface in the form of an
additional info button could improve the interaction and was also
suggested in some of the user’s comments in the subsequent user
experience questionnaire. Other reasons for failures during the
second run of the improved BT can be inaccuracies in the object
tracking that cause a feature to exceed the learned and already
improved feature ranges. For all 20 participants, both the first and
second robot execution of the BT ended with successful completion
of the task with the help of the user input.

4.3.4 User experience
The results of the User Experience Questionnaire (UEQ)

(Schrepp et al., 2017) are shown in Figure 9. We excluded the
answers of three participants since their answers showed a big
difference between the evaluation of different items of the same scale.
This is considered a problematic data pattern in the UEQ and hints
at randomor not serious answers. For the remaining 17 participants,
all six constructs of the UEQ questionnaire show a median (orange)
of above 0.8, which is considered a positive evaluation. Here, the
range of the scale is between −3 (horribly bad) and +3 (extremely
good). In particular, the constructs “Attractiveness” (Mean: 1.70,
Mdn: 2.0), “Perspicuity” (Mean: 1.61, Mdn: 2.0), “Dependability”
(Mean: 1.40, Mdn: 1.5), “Stimulation” (Mean: 1.88, Mdn: 2.0), and
“Novelty” (Mean: 1.50, Mdn: 2.0) were rated positively. The only
item that was evaluated with a value below 0.8 on average is the
item “slow/fast” with a value of −0.6, which represents a more
or less neutral evaluation. This results in lower values for the
corresponding construct “Efficiency” (Mean: 0.83, Mdn: 1.0). One
reason could be the design of the web-interface that required the
user to press “Trash Disposal” again in the web-interface after every
interaction and corresponding refinement of the BT to continue
the robot execution. Three participants suggested automatically
continuing the task in their comments and removing this step that
was considered unnecessary.

4.3.5 Reactivity of learned behavior trees
Reactivity is one of the main advantages of Behavior Trees. Our

approach of interactively learning a Behavior Tree with continuous
pre- and post-conditions fromhumandemonstrations preserves this

reactivity. This requires all actions to be implemented as reactive
action nodes, so that the robot can react to external changes during
execution. One example of is shown in Figure 10. The robot first
moves to the trash, grasps it, and starts to move toward the trashcan.
In between the action Move-to-Trashcan, the trash is removed from
the robot’s gripper and placed again on the starting position. Since
the pre-conditions of the action Move-to-Trashcan are not fulfilled
anymore when the trash is removed from the gripper, the action
Move-to-Trashcan is preempted. The next tick of the BT triggers the
action Move-to-Trash and the robot moves toward the trash again.
This example showcases the reactivity of the learned BT. If an action
fails during execution, the robot can adapt to the new situation and
still successfully execute the task. Examples for such failure cases for
the given trash disposal task could be that the robot fails at grasping
the trash or drops the trash while moving toward the trashcan.

4.3.6 Including additional human demonstrations
In addition to the interactive refinement of action conditions,

our approach allows to include additional demonstrations in the
initially learned BT, as described in Section 3.3.3. This way, it is
possible to include new actions or action sequences if an unseen
situation requires so. In our study on how non-expert users
demonstrate the task (Section 4.2) we saw that most users only
demonstrate how to dispose of the trash if the lid of the trashcan is
already set aside. A BT learned from such imperfect demonstrations
that can not solve the task successfully if the lid is placed on top
of the trashcan. If the user wants to teach the robot how to first
set aside the lid, it is necessary to show additional demonstrations
of the required actions and include them in the initial BT. It
would be possible to teach the robot a new BT from scratch by
demonstrating the whole task starting with the lid on top of the
trashcan three times. However, by just demonstrating the part of
the task unknown to the robot and exploiting the already learned
BT the user effort can be kept low. First, an initial BT is built
from three human demonstrations starting with the lid already set
aside, as shown in Figure 11A. If the robot executes this BT and
the lid is on top of the trashcan, the pre-condition of the action
Move-to-Trash regarding the feature dis_trashcan_lid fails. Since
the currently required action was not shown in the previous task
demonstrations, the user has to provide new demonstrations until

FIGURE 10
Example showcasing the reactivity of the learned BT. The robot picked up the trash and moves towards the trashcan. Inbetween the action
Move-to-Trash, the trash is removed from the gripper and placed somewhere else (highlighted in green). The action is preempted and the robot
switches again to the action Move-to-Trash.

Frontiers in Robotics and AI 16 frontiersin.org

https://doi.org/10.3389/frobt.2023.1152595
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Scherf et al. 10.3389/frobt.2023.1152595

FIGURE 11
(A) Initial human demonstrations of the trash disposal task with the lid already set aside at the beginning. (B) In order to be able to execute the task if
the lid is on top of the trashcan, the user has to show additional demonstrations showing how to set aside the lid before the Move_to_Trash action.

the end of the action corresponding to the failed pre-condition
(here Move-to-Trash), as shown in Figure 11B. This action must
be included in the demonstrations to ease the transition between
the new actions and the first action of the initial BT. A subtree is
then added to the initial BT based on the additional demonstrations
as described in Section 3.3.3. In Figure 11, we exemplary show
that a BT learned from human demonstrations (Figure 6A) can
be successfully extended using additional human demonstrations.
The resulting BT is illustrated in Figure 6B. The corresponding
subtrees of the initially learned BT are highlighted in yellow and
green. The subtree corresponding to the additional demonstrations
is highlighted in magenta. For better readability, some actions and
subtrees are collapsed.

5 Conclusion

In this paper, we introduced ILBERT, a new framework to
interactively learn a BT from human demonstrations. In contrast
to related approaches, we directly learn a BT from only a few
RGB-D video recordings of human task demonstrations and
automatically extract a set of continuous pre- and post-conditions
for action executions from visual features. In a study on how
non-expert users demonstrate tasks to a robot, we identified
three main causes for failures when learning a BT from a
few human demonstrations. We automatically detect and resolve
these failure cases at runtime by requesting interactive help
from the user via a web-interface and adapting the BT and
corresponding conditions based on the user input.We evaluated the
resulting system on a robotic trash disposal task with 20 subjects.
While the automatic condition computation, BT building, and
interactive refinement showed good results, the action classifier
used for experiments in this paper should be replaced by a more
robust approach in the future. Evaluation of the UEQ revealed
an overall high level of user satisfaction with the developed
system.

5.1 Limitations

We believe that our approach of interactively learning robot
behaviors in form of Behavior Trees from potentially imperfect
human demonstrations offers a user-friendly way to teach a robot
new skills.However, there are still several limitations to the proposed
work.The approachwas evaluated on a rather simple pick-and-place
task and itwould be interesting to see how the approach could extend
to more complex task scenarios. The BT-based framework allows
arbitrary actions to be implemented as action nodes. However, a
reliable object tracking and action recognition is required in order to
be able to compute meaningful conditions and build an executable
Behavior Tree. In addition, task-relevant features have to be pre-
defined. While we propose a new method to extract continuous
pre- and post-conditions directly from human demonstrations, the
method requires a number of task-dependent hyper-parameters.

5.2 Future work

For future work, we consider it interesting to extend
the proposed framework to learn from multimodal human
demonstrations and also offer multimodal interaction channels
such as speech and gestures.Moreover, wewant to explore alternative
approaches for automatic pre- and post-condition extraction from
human demonstrations across different task settings. Abdo et al.
(2013) cluster feature values at the beginning and end of an action
where each cluster represents a different way how an action was
demonstrated. They introduce a variance measure based on these
clusters in order to identify relevant conditions of an action. A
similar approach could be used to improve the current condition
computation, as well as to determine relevant action conditions
out of a larger set of features as the set of task-relevant features.We
also want to conduct a further study on how non-experts can be
better guided to provide meaningful additional demonstrations
in case of failures due to unseen situations and whether they

Frontiers in Robotics and AI 17 frontiersin.org

https://doi.org/10.3389/frobt.2023.1152595
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Scherf et al. 10.3389/frobt.2023.1152595

can learn over time how to provide a more complete set of
few initial demonstrations for the robot to learn from. Another
interesting future direction is to use interactive human input
within the proposed framework not only to resolve BT failures
at execution time but to additionally include user feedback to refine
the action classifier in a semi-supervised manner (Gassen et al.,
2023; Rangnekar et al., 2023) or for interactive object detection
(Lombardi et al., 2022).

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Ethics statement

The studies involving human participants were reviewed and
approved by ethic committee of Technische Universität Darmstadt.
The patients/participants provided their written informed consent
to participate in this study. Written informed consent was obtained
from the individual(s) for the publication of any potentially
identifiable images or data included in this article.

Author contributions

LS contributed by writing the manuscript, developing the
proposed approach, coding, planning, preparing, and executing the
experiments. AS contributed to the development and coding of the
proposed approach and writing of manuscript. SP contributed to
the development of the approach. DK contributed to the planning

of the experiments and the writing of the manuscript. All authors
contributed to the article and approved the submitted version.

Funding

This work was funded by the German Federal Ministry of
Education and Research (project 01IS20045).

Acknowledgments

The authors would like to thank Nick Dannenberg, Johannes
Heeg, and Adrian Worring for their valuable input and fruitful
discussions at the beginning of this project. In addition, we want to
thank all individuals who participated in our experiments for their
time and valuable feedback.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Abdo, N., Kretzschmar, H., Spinello, L., and Stachniss, C. (2013). “Learning
manipulation actions from a few demonstrations,” in 2013 IEEE International
Conference onRobotics andAutomation, Karlsruhe, Germany, 06-10May 2013 (IEEE),
1268–1275.

Banerjee, B. (2018). “Autonomous acquisition of behavior trees for robot control,”
in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Madrid, Spain, 01-05 October 2018 (IEEE), 3460–3467.

Colledanchise, M., and Ögren, P. (2016). How behavior trees modularize
hybrid control systems and generalize sequential behavior compositions, the
subsumption architecture, and decision trees. IEEE Trans. robotics 33, 372–389.
doi:10.1109/tro.2016.2633567

Colledanchise, M., and Ögren, P. (2018). Behavior trees in robotics and ai. Stockholm:
KTH Royal Institute of Technology.

Colledanchise, M., Parasuraman, R., andÖgren, P. (2018). Learning of behavior trees
for autonomous agents. IEEE Trans. Games 11, 183–189. doi:10.1109/tg.2018.2816806

Colledanchise, M., Almeida, D., and Ögren, P. (2019). “Towards blended reactive
planning and acting using behavior trees,” in 2019 International Conference on
Robotics and Automation (ICRA), Montreal, QC, Canada, 20-24 May 2019 (IEEE),
8839–8845.

Doğan, F. I., Torre, I., and Leite, I. (2022). “Asking follow-up clarifications to resolve
ambiguities in human-robot conversation,” in 2022 17th ACM/IEEE International
Conference on Human-Robot Interaction (HRI), Sapporo, Japan, 07-10 March 2022
(IEEE), 461–469.

Faconti, D. (2018). BehaviorTree.CPP. Available at: https://www.behaviortree.dev/
(accessed January 18, 2023).

Faconti, D. (2019). Mood2be: Models and tools to design robotic behaviors. Tech.
Rep4. Barcelona, Spain: Eurecat Centre Tecnologic.

French, K., Wu, S., Pan, T., Zhou, Z., and Jenkins, O. C. (2019). “Learning
behavior trees from demonstration,” in 2019 International Conference on
Robotics and Automation (ICRA), Montreal, QC, Canada, 20-24 May 2019 (IEEE),
7791–7797.

Fusaro, F., Lamon, E., De Momi, E., and Ajoudani, A. (2021). “A human-aware
method to plan complex cooperative and autonomous tasks using behavior trees,” in
2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids),
Munich, Germany, 19-21 July 2021 (IEEE),522–529.

Gassen, M., Metzler, F., Prescher, E., Prasad, V., Scherf, L., Kaiser, F., et al.
(2023). “I3: Interactive iterative improvement for few-shot action segmentation,”
in 2023 32nd IEEE International Conference on Robot and Human Interactive
Communication (RO-MAN), Busan, SOUTHKOREA, August 28th 2023 - August 31st
2023.

Ghzouli, R., Berger, T., Johnsen, E. B., Dragule, S., and Wa̧sowski, A. (2020).
“Behavior trees in action: A study of robotics applications,” in Proceedings of the 13th
ACM SIGPLAN international conference on software language engineering (New York:
Association for Computing Machinery), 196–209.

Gustavsson, O., Iovino, M., Styrud, J., and Smith, C. (2021). Combining context
awareness and planning to learn behavior trees from demonstration. arXiv preprint
arXiv:2109.07133.

Han, Z., Giger, D., Allspaw, J., Lee, M. S., Admoni, H., and Yanco, H. A. (2021).
Building the foundation of robot explanation generation using behavior trees. ACM
Trans. Human-Robot Interact. (THRI) 10, 1–31. doi:10.1145/3457185

Frontiers in Robotics and AI 18 frontiersin.org

https://doi.org/10.3389/frobt.2023.1152595
https://doi.org/10.1109/tro.2016.2633567
https://doi.org/10.1109/tg.2018.2816806
https://www.behaviortree.dev/
https://www.behaviortree.dev/
https://doi.org/10.1145/3457185*6pt
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Scherf et al. 10.3389/frobt.2023.1152595

Helenon, F., Thiery, S., Nyiri, E., and Gibaru, O. (2021). “Cognitive architecture for
intuitive and interactive task learning in industrial collaborative robotics,” in 2021 the
5th international conference on robotics, control and automation (New York: Association
for Computing Machinery), 119–124.

Iovino, M., Doğan, F. I., Leite, I., and Smith, C. (2022a). Interactive disambiguation
for behavior tree execution. arXiv preprint arXiv:2203.02994.

Iovino, M., Scukins, E., Styrud, J., Ögren, P., and Smith, C. (2022b). A
survey of behavior trees in robotics and ai. Robotics Aut. Syst. 154, 104096.
doi:10.1016/j.robot.2022.104096

Iovino, M., Styrud, J., Falco, P., and Smith, C. (2021). “Learning behavior trees
with genetic programming in unpredictable environments,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May 2021 - 05 June
2021 (IEEE), 4591–4597.

Knaust, M., and Koert, D. (2021). “Guided robot skill learning: A user-study on
learning probabilistic movement primitives with non-experts,” in 2020 IEEE-RAS
20th International Conference on Humanoid Robots (Humanoids), Munich, Germany,
19-21 July 2021 (IEEE), 514–521.

Laird, J. E., Gluck, K., Anderson, J., Forbus, K. D., Jenkins, O. C., Lebiere,
C., et al. (2017). Interactive task learning. IEEE Intell. Syst. 32, 6–21.
doi:10.1109/mis.2017.3121552

Lombardi, M., Maiettini, E., Tikhanoff, V., and Natale, L. (2022). “Icub knows where
you look: Exploiting social cues for interactive object detection learning,” in 2022 IEEE-
RAS 21st International Conference on Humanoid Robots (Humanoids), Ginowan,
Japan, 28-30 November 2022 (IEEE), 480–487.

Marzinotto, A., Colledanchise, M., Smith, C., and Ögren, P. (2014). “Towards
a unified behavior trees framework for robot control,” in 2014 IEEE International
Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May 2014
- 07 June 2014 (IEEE), 5420–5427.

Mateas, M., and Stern, A. (2002). A behavior language for story-based believable
agents. IEEE Intell. Syst. 17, 39–47. doi:10.1109/mis.2002.1024751

Millington, I., and Funge, J. (2018). Artificial intelligence for games. Boca Raton: CRC
Press.

Nebehay, G., and Pflugfelder, R. (2015). “Clustering of Static-Adaptive
correspondences for deformable object tracking,” in 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 07-12 June
2015 (IEEE).

Paxton, C., Hundt, A., Jonathan, F., Guerin, K., and Hager, G. D. (2017). “Costar:
Instructing collaborative robots with behavior trees and vision,” in 2017 IEEE

international conference on robotics and automation (ICRA), Singapore, 29 May 2017
- 03 June 2017 (IEEE), 564–571.

Rangnekar, A., Kanan, C., and Hoffman, M. (2023). “Semantic segmentation with
active semi-supervised learning,” in Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, Waikoloa, HI, USA, 02-07 January 2023,
5966–5977.

Ravichandar, H., Polydoros, A. S., Chernova, S., and Billard, A. (2020). Recent
advances in robot learning from demonstration. Annu. Rev. control, robotics, Aut. Syst.
3, 297–330. doi:10.1146/annurev-control-100819-063206

Robertson, G., and Watson, I. (2015). Building behavior trees from observations in
real-time strategy games. In 2015 International symposiumon innovations in intelligent
systems and applications (INISTA), Madrid, Spain, 02-04 September 2015 (IEEE),
1–7.

Safronov, E., Colledanchise, M., and Natale, L. (2020). “Task planning with belief
behavior trees,” in 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Las Vegas, NV, USA, 24 October 2020 - 24 January 2021 (IEEE),
6870–6877.

Sagredo-Olivenza, I., Gómez-Martín, P. P., Gómez-Martín, M. A., and González-
Calero, P. A. (2017). Trained behavior trees: Programming by demonstration to support
ai game designers. IEEE Trans. Games 11, 5–14. doi:10.1109/tg.2017.2771831

Scheper, K. Y., Tijmons, S., de Visser, C. C., and de Croon, G. C. (2016). Behavior
trees for evolutionary robotics. Artif. life 22, 23–48. doi:10.1162/artl_a_00192

Schrepp, M., Hinderks, A., and Thomaschewski, J. (2017). Construction of a
benchmark for the user experience questionnaire (ueq). Int. J. Interact.MultimediaArtif.
Intell. 4, 40–44. doi:10.9781/ijimai.2017.445

Sieb, M., Xian, Z., Huang, A., Kroemer, O., and Fragkiadaki, K. (2020). “Graph-
structured visual imitation,” in Conference on Robot Learning (PMLR), Cambridge,
MA, USA, 16-18 November 2020, 979–989.

Styrud, J., Iovino, M., Norrlöf, M., Björkman, M., and Smith, C. (2022). “Combining
planning and learning of behavior trees for robotic assembly,” in 2022 International
Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23-27 May
2022 (IEEE), 11511–11517.

Suddrey, G., Talbot, B., and Maire, F. (2022). Learning and executing re-useable
behaviour trees from natural language instruction. IEEE Robotics Automation Lett. 7,
10643–10650. doi:10.1109/lra.2022.3194681

Zhang, F., Bazarevsky, V., Vakunov, A., Tkachenka, A., Sung, G., Chang, C.-L.,
et al. (2020). Mediapipe hands: On-device real-time hand tracking. arXiv preprint
arXiv:2006.10214.

Frontiers in Robotics and AI 19 frontiersin.org

https://doi.org/10.3389/frobt.2023.1152595
https://doi.org/10.1016/j.robot.2022.104096
https://doi.org/10.1109/mis.2017.3121552
https://doi.org/10.1109/mis.2002.1024751
https://doi.org/10.1146/annurev-control-100819-063206
https://doi.org/10.1109/tg.2017.2771831
https://doi.org/10.1162/artl_a_00192
https://doi.org/10.9781/ijimai.2017.445
https://doi.org/10.1109/lra.2022.3194681
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

