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Abstract
This special issue on “digital-based production” gives an overview about the current research on the integration of digital 
technologies into production processes and their fields of application. It covers topics from Industry 4.0, artificial intelligence 
and data analytics to the Industrial Internet of Things and Cyber-Physical Production Systems. This issue offers valuable 
insights for those interested in improving production efficiency, quality, and sustainability through digital technologies. In this 
foreword, we describe promising application fields of digital-based production and classify the submitted articles accordingly.
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1 Introduction

Digital-based production is an integrated approach that 
uses digital technologies to monitor, analyse, simulate, and 
improve production processes, machines, equipment, and 
complete systems. In recent years smart sensors, new com-
munication standards, cyber-physical systems, the Industrial 
Internet of Things (IIoT) and Artificial Intelligence (AI) are 
starting to pervade manufacturing systems [1]. The increased 
use of these technologies in manufacturing processes has led 
to a greater availability of data. At the same time, the cost 
of computing power, storage, and hardware is decreasing. 
In combination with an improved access to almost ready to 
use Machine Learning (ML) algorithms, this opens up new 
and promising fields of application for the manufacturing 
industry.

2  Application fields in digital‑based 
production

The various use cases in relation to digital-based produc-
tion can be classified into four application fields, according 
to [1]: condition monitoring and predictive maintenance, 

quality management, process monitoring and optimization 
and energy monitoring and flexibility.

Condition monitoring is the continuous monitoring of 
a machine or system's performance and condition, with 
the aim of detecting any potential problems or issues. The 
collected data is analysed to identify trends or deviations 
from normal behaviour and to support root cause problem 
solving [2]. Predictive maintenance techniques anticipate 
equipment failures, the prediction of the remaining useful 
lifetime (RUL) and allow the recommendation of appropri-
ate measures to improve equipment uptime. In particular, 
the prediction of the RUL of machines and components can 
– if accurately assessed – provide valuable information for 
maintenance planning and decision-making [3]. An exam-
ple for a direct approach on tool condition monitoring and 
lifetime assessment, give Jourdan et al. (2021) who have 
developed a system that can measure the degree of wear of 
a saw blade during operation [4]. For this purpose, a high-
resolution camera takes images of the saw blade, which will 
subsequently be analysed by computer vision and an ML 
algorithm to detect the edge of the saw blade and the tips 
of the saw teeth. The degree of wear is then determined by 
the difference in length of the non-worn saw tooth to the 
measured actual condition.

In the context of quality management, predictive qual-
ity is expected to enhance classical quality assurance which 
is essentially based on measuring parts today. Predictive 
quality allows the determination of quality characteristics 
of a part or a product based on process and machine data 
without a dedicated measuring operation on the part itself. 
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Furthermore, the detection of abnormalities based on pro-
cess data allows real-time correction by modifying process 
or control parameters [5]. However, obstacles such as costs 
and adequate data acquisition pose challenges. In another 
example, drilling holes are classified by analysing process 
data using a random forest classifier [6]: While it is not 
possible to distinguish between the classes OK and NOK 
with conventional analysis, the ML approach allows this 
classification.

Process monitoring refers to the use of various tools 
and techniques to continuously monitor the behaviour and 
performance of a process plant or system, with the goal of 
detecting and diagnosing abnormal events or faults in real-
time [7]. Consequently, the aim of process optimization is 
to improve the overall efficiency and productivity of the pro-
cess by identifying and eliminating waste, minimizing down-
time, and optimizing resource utilization. The application 
field process monitoring and optimization can be classified 
into the categories process, production planning and sched-
uling and value stream [1]. To improve productivity, qual-
ity, and efficiency, comparing collected data to optimized 
Key Performance Indicators (KPIs) is recommended. Intel-
ligent machining parameter optimization is used to minimize 
machining time, improve productivity, and ensure product 
and tool quality, using sensor technology, high-frequency 
image data, and Computer-Aided Manufacturing (CAM) for 
in-process monitoring and control. Data-driven simulation-
based optimization provides real-time decision-making 
based on the current system state but requires a well-struc-
tured data exchange framework. Via web-based applications, 
process data and analyses can be accessed from anywhere 
without having to pass through the automation pyramid. 
Digital twins represent a replica of physical assets in the real 
factory and allow its simulation, control, and improvement. 
In contrast, a digital shadow is a reflection of the relevant 
data in a factory. Intelligent algorithms such as genetic algo-
rithms can optimise various manufacturing problems, and 
data process mining can analyse complex value streams that 
include product variety and dynamic changes in production. 
For instance, Ziegenbein (2022) discusses the potential of 
integrating ML methods into industrial production processes 
to achieve predictive quality, a better understanding of pro-
cesses, development of knowledge, and savings through pro-
cess optimization [8]. Further use cases were implemented 
in the process learning factory “Center for Industrial Produc-
tivity” [9], such as a digital twin of a value stream, through 
which relevant data in a database is used with a backflow of 
information for decision-making [10].

Sustainability in general refers to the ability to meet the 
needs of the present generation without compromising the 
ability of future generations to meet their own needs [11]. 
In the context of manufacturing, sustainability also includes 
improving resource efficiency, reducing energy consumption, 

increasing the use of renewable energy, and promoting the 
circular economy by designing products and processes that 
reduce waste and extend product lifecycles. According to the 
International Organization for Standardization (ISO), energy 
efficiency as a part of sustainability in manufacturing is “the 
relationship between the energy inputs and the outputs in the 
manufacturing process, including energy losses” [12]. Digitali-
zation and data analysis have the potential to improve energy 
efficiency and sustainability in industry. For instance, the ETA 
learning factory at PTW focuses on increasing transparency 
and optimizing energy systems through data-driven methods 
[13]. Energy metering points can be used to collect data to 
feed into an energy prediction model that has been developed 
by Sossenheimer et al. (2020) and is used to forecast energy 
demand [14], avoid load peaks and align energy demand with 
energy supply: Advanced signal processing and ML tech-
niques, such as short-term load forecasting, enable efficient 
energy purchasing and cost reduction [15]. Energy-adaptive 
production planning and optimized supply system control can 
result in significant energy savings with the use of optimiza-
tion techniques like genetic algorithms or deep reinforcement 
learning [16].

In Fig. 1, the application fields are summarized based in 
the categories use-case, data and information, digitalization 
of physical quantities, integration and communication, signal 
processing and analysis [1, 17].

The application fields illustrate current fields of research 
and practical application in the field of digital-based produc-
tion. However, pure technical progress does not usually lead 
to the spread of new technologies. Corresponding business 
models are also required, especially for ML applications [18]. 
Dimensions like value proposition, value creation, revenue 
mechanism, and customer benefit need to be addressed sys-
tematically to successfully anchor a business model [19]. Data-
based business models may involve value creation through ML 
algorithms that can analyse data from various sources, such 
as sensors, equipment, and production lines, to identify pat-
terns and make predictions. The revenue mechanism in this 
scenario could involve selling the ML solutions to other manu-
facturers, final customers or using them internally to improve 
operational efficiency and increase profitability. Finally, the 
customer dimension addresses the needs and preferences of 
different stakeholders within the manufacturing organization, 
such as plant managers, production engineers, and the aspects 
of acceptance and usability.

3  Classification of articles based 
on the application fields

In the following, the articles of this special issue are classi-
fied according to the application fields shown. For this pur-
pose, the articles were categorized:
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• In the field of condition monitoring and predictive 
maintenance, the articles cover the topics optimization 
and prediction in tool management, the evaluation of 
data quality using machine learning algorithms and the 
prediction of missing KPIs.

• In the field of quality management, defects to hybrid 
glass fiber components are evaluated, quality for mill-
ing processes is predicted and workshop operation 
status for quality control in discrete manufacturing is 
evaluated.

• In the field of process monitoring and optimization, prod-
uct and process configurations are considered using data 
analytics, varying time series representation learning 
techniques and their performance evaluation in clocked 
manufacturing are studied and industrial cast aluminium 
alloys processes are analysed using machine learning.

• In the field of energy efficiency and flexibility, a data-
based methodology for evaluating the potential of indus-
trial energy systems for connecting to district heating 
systems is developed, a method for measuring process-
specific induced strains and mechanical stresses of the 
machined workpiece as well as temperature gradients in 

the cutting tool is presented and the modular lightweight 
design of robot systems for aircraft production was fur-
ther developed.

Table 1 summarizes the result. This classification is 
intended to assist the reader of this special issue in select-
ing publications.

The integration of cyber-physical systems into digitized 
production has changed and will change manufacturing in 
many ways. The ability to bridge the gap between the physi-
cal and the digital world will enable real-time monitoring, 
control, and optimization of production processes. This will 
enable greater flexibility, efficiency, and agility in manufac-
turing, improve product quality, and reduce waste. If models 
of machines, processes or entire value streams are fed with 
real data in real time, it will be possible to detect deviations 
before they occur. Simulation, among other things, can help 
here. On the basis of such digital process twins, it will then 
be possible to make qualified decisions from the process 
image in order to proactively steer a machine or a process 
in the desired direction. To be successful in the long run, 
digital solutions must always consider the end user, their 
specific competence set and the application context.

Fig. 1  Application fields of 
digital-based production, based 
on [1, 17]
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