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Abstract 

During the design of learning factories, the configuration of the technical system plays an important role. The selection of 

factory elements for learning factories usually takes place based on intuition. Intuitive selection has the disadvantage that the 

best possible selection is only achieved by chance. In this paper, a method is presented that is based on solving an optimisation 

problem, which ensures the best possible selection of factory elements considering a target function with restrictions like the 

budget or the usable area. For this purpose, four steps are distinguished: First, requirements for the technical configuration are 

derived from the primary goals of the learning factory (step I). Then, factory areas and configuration alternatives containing a 

combination of factory elements are derived from the products and processes (step II). The utility values of the potential 

configuration alternatives are determined based on an evaluation method (step III). Subsequently, the best possible combination 

of configuration alternatives is determined algorithmically by solving an optimisation problem (step IV). This procedure 

extends the design approach of Abele et al. (2019). It is applied to a learning factory for a company in the mobility industry to 

evaluate its superiority to an intuitive approach.  
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1. Introduction

Learning factories are characterised by the versatile opportunities for competence development in realistic and

safe learning environments as well as for applied research in production [1]. To design learning factories, additional 

aspects are necessary compared to conventional factory planning [2], which are addressed in various design 

approaches [3]. One of necessary aspects is the selection of the best possible combination of factory elements. 

Existing design procedures do not describe a systematic and objective selection of factory elements, which are 

selected intuitively [3]. Furthermore, there is no evaluation of the added value for the use of systematic methods. 

This publication proposes and evaluates an optimisation model for the configuration of learning factories, which 

is derived in Chapter 2. To solve the optimisation problem, a procedure is necessary, that is presented in Chapter 3. 

This procedure is applied to configure a learning factory for an industrial company. The use case is described in 

Chapter 4 and different options for analysing possible configurations based on the presented procedure are shown. 

Chapter 5 provides a comparison of the intuitive approach with the new procedure presented in this publication. 

Conclusions are summarised in Chapter 6. 

2. Optimisation model for the configuration of learning factories

The goal in configuring learning factories is to select the best possible factory elements, e. g. machines or

assembly stations with the highest utility in relation to defined targets and requirements. At the same time resources 
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are usually limited, e. g. the factory area or the budget [4]. Here, an optimisation problem is underlying, which can 

be modelled as follows: The learning factory is divided into i factory areas. Each factory area i contains a certain 

number of factory elements, which are grouped into configuration alternatives j, see Fig. 1. The configuration of 

learning factories requires a decision regarding each factory area i. For example, for a sawing factory area, there 

could be a total of three configuration alternatives containing one or many sawing machines to choose from. To 

model this, the configuration alternatives within a factory area should be mutually exclusive. Each configuration 

alternative has a certain utility uij, which can be determined, for example, based on specified criteria by the simple 

additive weightage method, that is used for the evaluation of factory elements for learning factories [5]. In most 

cases, the configuration alternatives with the highest utility uij cannot be selected for each factory area, because the 

area of the learning factory CArea or the available budget CBudget (or other ressources Ck) are limited. The best 

possible combination of factory elements therefore consists of the configuration alternatives that, on the one hand, 

meet all resource constraints (such as area or budget) and, on the other hand, generate the highest utility. 

 

Fig. 1. Configuration alternatives for factory areas in learning factories. 

To model optimisation problems, decision variables, a target function, and constraints must be specified. The 

decision variables describe which configuration alternative is selected. Binary variables for each configuration 

alternative xij are used for the given optimisation model. Here, xij=1 if in the factory area i the configuration 

alternative j is selected; otherwise xij=0. The target function U is composed of the sum of all utility values uij over 

all selected configuration alternatives in each factory area. Since only one configuration alternative is to be selected 

per factory area, the sum of all decision variables xij must be 1 in each factory area. The constrained resources can 

be modelled in such a way that the sum of all resource consumptions wijk by the configuration alternatives must 

not exceed a certain capacity Ck for the resource k (e. g. the budget). Furthermore, the actual measurements are 

relevant for the factory layout – not only the factory area as a number. Therefore, additional constraints must be 

considered, that include the length and width of each factory element [6]. 
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When looking at the formulated optimisation model, it is noticeable that it is a multidimensional multiple-choice 

knapsack problem (MMKP) [7], to which further constraints of the two-dimensional packing problem are added. 

The configurations with the highest utility that meet all restrictions are optimal. 
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3. Procedure to configure learning factories 

To use the deducted optimisation model for the configuration of learning factories, a systematic procedure is 

required. This procedure is based on the design approach of [1,8] that is frequently applied [3]. The goal of the 

procedure is to find the optimal configuration based on the described optimisation model. The developed procedure 

is divided into four steps, see Fig. 2. 

Fig. 2. Procedure for the configuration of learning factories. 

In step I, requirements for the configuration of the learning factory are identified. In the case of learning 

factories with the primary purpose of training, the requirements originate from the intended competencies (learning 

targets) as well as the organisational framework conditions. Here, the morphology of learning factories can be used 

[9, 10]. Furthermore, a certain budget (or a budget range) for the configuration and the dimensions of an existing 

or planned factory should be defined. For the next steps, these requirements must also be structured into the areas 

of product, configuration alternative, factory area or the entire learning factory. For each requirement, it must be 

determined whether it is a mandatory or optional. Mandatory requirements are used for the pre-selection of 

products, factory areas and configuration alternatives in step II, while the optional requirements determine the 

utility value of each configuration alternative in step III. 

In step II, as a prerequisite the manufactured product or the provided service to be provided by the learning 

factory must be clarified [11]. Necessary process steps can then be derived from the product or service. Direct 

production processes and indirect support processes are assigned to the possible areas of the learning factory. 

Subsequently possible factory elements must be researched that meet all associated mandatory requirements. The 

collected factory elements for each factory area are grouped into configuration alternatives with different resource 

consumptions. 

In step III, the pre-selected configuration alternatives are evaluated. For this purpose, evaluation criteria are 

derived from the optional requirements of step I. These must be operationalised with measurable variables in such 

a way that an objective evaluation is possible. Exemplary evaluation criteria and further details on the evaluation 

procedure can be found in Kreß & Metternich (2021) [5]: e. g. for the primary purpose of training, the interaction 

capability of the factory elements should be considered in relation to the intended competencies. Afterwards, the 

evaluation criteria must be weighted (e. g. with a pairwise comparison of all evaluation criteria) and all 

configuration alternatives are to be evaluated based on the operationalised evaluation criteria. 

In step IV, the learning factory is configured, so that one configuration alternative is selected per factory area. 

For this purpose, the developed algorithms for the optimisation model are applied, e. g. with the USBB algorithm 

of Kreß & Metternich (2021) to solve the MMKP exactly [12]. In addition, different configuration scenarios (with 

variations regarding the budget or the final dimensions of the learning factory) can be analysed. To cope with 

uncertainties of the evaluation criteria, the weights can be systematically varied. With the help of the developed 

configuration system, the learning factory planner always obtains the best possible solution with the highest overall 

utility value U [13]. In this step, a prototypic factory layout is also designed. This can be determined, using the 

next-fit or best-fit method. The next-fit method generates layouts that represent simple material flows in the value 

stream. For this purpose, the factory elements are sorted according to their material flow and placed in the learning 

factory. [14]. In the best-fit method, the factory elements are sorted in descending order of size and placed in the 

learning factory [15]. Layouts of the best-fit method show a better use of the area without taking the material flow 

relationship into account. Furthermore, layouts can be generated algorithm-based on an additional optimisation 

problem with the objective of improving the material flow between the factory areas, see Kreß et al. (2021) [16]. 

4. Application and analysis 

The presented procedure based on the optimisation model for the learning factory configuration was developed 

and applied in a project with a German railroad infrastructure company. First, a mobile learning system was 
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developed to introduce competency-based learning [17]. In a next step, the learning factory was developed and the 

steps I to IV were carried out. 

Step I: The objective of the planned learning factory is to enable blue collar workers (as the target group) to 

perform their processes with confidence and to strengthen interdisciplinary processes and exchanges between 

different departments. Therefore, the primary goal is training. This resulted in 55 different intended competencies 

for the future learning factory based on the competency transformation [18]. For each competence, the 

requirements for the configuration were derived and systematised in factory levels as described in Chapter 3. 

Step II: The primary focus of the learning factory is not a physical product, but a service: the maintenance and 

inspection of the rail system. Therefore, it is considered a leaning factory in the broader sense. To illustrate this 

service, 13 factory areas are needed, such as factory areas for the switch, the overhead line, and an adjacent track. 

In addition, various configuration alternatives were derived for each factory area, from simulated, technically 

simplified to very realistic variants resulting in 40 different configuration alternatives. The total number of possible 

configurations results from the sum product of the number of configuration alternatives per factory area. In total, 

995,328 (=46∙34∙21) combinations are possible for the configuration. 

Step III: Each configuration alternative was evaluated using the operationalized evaluation criteria from Kreß 

& Metternich (2021) [5]. In this case, the most important evaluation criteria are the interaction capability (variable: 

number of interactions), actuality (variable: year of market launch) and the integration of errors and waste (variable: 

number of errors and waste). 

Step IV: Furthermore, possible configurations were calculated based on the optimisation model. Three 

measurement scenarios and three budget variants were used for this purpose, see Fig. 3 (left); this results in nine 

different configuration scenarios. The utility values are given relatively in relation to the overall best solution and 

cost data is scaled linearly for confidentiality reasons. Fig. 3 (left) shows that the highest possible utility values of 

the medium measurements and medium budget variants differ by only 0.6% compared to the high measurement 

and budget variants. The restrictions (budget CBudget and measurements CArea) that limit the configuration are 

marked in yellow. To analyse this aspect deeper, the budget constraint CBudget is varied, and utility-cost curves are 

generated for the three measurement variants of the learning factory (depicted in different colours), see Fig. 3 

(right). Each point on the utility-cost-curve displays one configuration. The curves show that the large measurement 

(in blue) variant has a slightly higher utility compared to the medium measurement variant (in red) – but only if 

the budget is very high, otherwise they share the same configurations. In the further course of the project, the 

medium measurement and medium budget scenario is preferred (marked with a red rectangle) because a high 

overall utility value can be achieved with far less resource investment. In case of planning changes, new optimal 

configurations can be determined in the shortest possible time by using the configuration system – in this use case 

only a few seconds or minutes. 

Fig. 3. Analysis of different configuration scenarios. 

5. Comparison with the intuitive approach 

The procedure for configuring learning factories presented here was compared with the intuitive approach for 

selecting factory elements. The four project members of the learning factory project described in Section 4 had the 

task of intuitively selecting configuration alternatives for a total of nine different scenarios (see Fig. 3) considering 

their learning factory. This results in n=36 configurations with the intuitive approach. The optimal solutions in 

each configuration scenario were not yet known to the project members at this point. It should also be mentioned 
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that the project members evaluated the configuration alternatives before and thus knew the advantages and 

disadvantages of each configuration alternative. For the comparison of the two approaches, it is important that 

only feasible configurations (formulas in Section 2) are considered. This is because infeasible configurations may 

have higher overall utilities U than the optimum, for example, because they use more area or budget than available. 

If infeasible configurations were selected, there was a corresponding note in the survey tool and the project 

members had to readjust their selection.  

The respective normalised utility values unormalised are calculated to evaluate the result with a range between 0 

and 1. For this purpose, the achieved overall utilities of the intuitive selection Uintuitive (minus the minimum possible 

utility Umin of all possible configurations) are divided by the optimal utilities Uoptimal of the respective configuration 

scenario (also minus the minimum possible utility Umin): 

𝑢𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 =  
𝑈𝑖𝑛𝑡𝑢𝑖𝑡𝑖𝑣 − 𝑈𝑚𝑖𝑛

𝑈𝑜𝑝𝑡𝑖𝑚𝑎𝑙 − 𝑈𝑚𝑖𝑛

 

The average of the normalised utility values unormalised for the nine different configuration scenarios are shown 

in Table 1 (left). On average, the intuitive configurations achieve 77.13% of the optimal solution (22.87 percentage 

points lower; standard deviation σ = 15.12 percentage points). With a smaller budget, the deviation from the 

optimal result becomes larger. For very restrictive capacities, the intuitive approach achieves less than 62% of the 

optimal solution (more than 38 percentage points lower). In addition, a one-sample t-test [19] was performed to 

test the null hypothesis of whether the normalised utility values unormalised of the intuitive approach are higher than 

the optimal utility values. With a t-statistic of 9.21, the p-value is 1∙10-10. The null hypothesis can therefore be 

rejected: The normalised utility values unormalised of the intuitive approach are thus statistically smaller than the 

optimal utility values with a high level of significance. For comparison, the procedure based on the optimisation 

model reaches 100% in every case, because the optimal solution is found each time.   

Intuitively, other configuration alternatives are selected than the optimum. This can be quantified by the relative 

number of decisions that deviate from the optimal solution for each factory area. It can also be shown that, the 

average number of deviating decisions is 40.83% (standard deviation σ = 19.18%), see Table 1 (right). This 

increases up to 67,50% with smaller capacity limits Ck. Again, a one-sample t-test was performed to show that the 

relative number of deviating decisions is significantly greater than zero (t=12.77; p=1∙10-15). To measure 

objectivity, the interrater reliability is used that is measured by the correlation coefficient of the project 

members [20]. For this purpose, the decision variables xij of the intuitive approach were used and the correlation 

between two project members was determined in each case. Its average is at 41.90% and can thus be assumed to 

be moderate to low [20]. 

Table 1. Normalised utility values of the intuitive approach (left) and deviating decisions for each factory area (right). 

In the intuitive approach, different project members choose different configurations. This indicates that the 

intuitive approach is highly subjective while the optimal procedure is independent of personal decisions. In 

addition, it has been shown that with the procedure based on the optimisation model, multiple options for analysing 

the configuration exist, which facilitates decision-making (e. g. with the utility-cost curve). 

To check the robustness of the optimisation model for configuration, a sensitivity analysis [21] was conducted 

on the weightings of the 13 evaluation criteria. The weighting of an evaluation criterion was varied (positively and 

negatively) until the configuration of the learning factory changed for the first time. On average, the weighting 

must be reduced by 79.24 % - or - increased by 525.55 % until the configuration changes for the first time. 

Especially when the individual weighting values are increased, the value range, which is normalised to 1 to 10, is 

exceeded. Therefore, the optimisation model is very robust in the case of individual errors in the weighting. 
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6. Conclusion 

In this publication, a procedure based on an optimisation model for configuring learning factories is introduced 

and evaluated. The configuration of a learning factory is determined by the selected and evaluated configuration 

alternatives in each factory area. The sum of all utility values is taken into account, considering restrictions such 

as budget or floor space. Based on the optimisation model, a procedure is derived that is divided into four steps: 

requirements for the configuration, the identification of pre-selected configuration alternatives, the evaluation of 

the pre-selected configuration alternatives, and the selection and analysis of the configuration alternatives. 

Compared to the intuitive approach, significantly higher utility values could be achieved with simultaneously 

higher objectivity, which was measured by the interrater reliability. 

The results illustrate that the configuration of learning factories is a complex task for humans. The probability 

of determining the best possible configuration is highly improbable without the application of an optimisation 

model, since there are too many possible combinations for the configuration. The importance is also evident given 

the high cost of the technical infrastructure, especially since the configuration determines the capabilities of the 

learning factory in long term. Thus, the results of this publication suggest for the development of future learning 

factories not to rely on intuition, but to make sound decisions based on the presented procedure. 

In addition, the presented method could be used to determine the best possible combination of factory elements 

in conventional factories. Up to now, only evaluation methods, such as utility analysis, have been used for factory 

planning [2, 22]. However, the considered restrictions, such as the budget or the factory dimensions, are also 

present in conventional factories. The method presented in this publication can therefore be adapted for 

conventional factories to achieve better factory configurations. 
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