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A B S T R A C T

Due to the end of Moore’s Law and Dennard Scaling, performance
gains in general-purpose architectures have significantly slowed in
recent years. While raising the number of cores has been a viable
approach for further performance increases, Amdahl’s Law and its im-
plications on parallelization also limit further performance gains. Con-
sequently, research has shifted towards different approaches, including
domain-specific custom architectures tailored to specific workloads.

This has led to a new golden age for computer architecture, as noted
in the Turing Award Lecture by Hennessy and Patterson, which has
spawned several new architectures and architectural advances specifi-
cally targeted at highly current workloads, including Machine Learn-
ing. This thesis introduces a hierarchy of architectural improvements
ranging from minor incremental changes, such as High-Bandwidth
Memory, to more complex architectural extensions that offload work-
loads from the general-purpose CPU towards more specialized accel-
erators. Finally, we introduce novel architectural paradigms, namely
Near-Data or In-Network Processing, as the most complex architec-
tural improvements.

This cumulative dissertation then investigates several architectural
improvements to accelerate Sum-Product Networks, a novel Machine
Learning approach from the class of Probabilistic Graphical Models.
Furthermore, we use these improvements as case studies to discuss
the impact of novel architectures, showing that minor and major ar-
chitectural changes can significantly increase performance in Machine
Learning applications.

In addition, this thesis presents recent works on Near-Data Process-
ing, which introduces Smart Storage Devices as a novel architectural
paradigm that is especially interesting in the context of Big Data. We
discuss how Near-Data Processing can be applied to improve perfor-
mance in different database settings by offloading database operations
to smart storage devices. Offloading data-reductive operations, such
as selections, reduces the amount of data transferred, thus improving
performance and alleviating bandwidth-related bottlenecks.

Using Near-Data Processing as a use-case, we also discuss how Ma-
chine Learning approaches, like Sum-Product Networks, can improve
novel architectures. Specifically, we introduce an approach for offload-
ing Cardinality Estimation using Sum-Product Networks that could
enable more intelligent decision-making in smart storage devices.
Overall, we show that Machine Learning can benefit from developing
novel architectures while also showing that Machine Learning can be
applied to improve the applications of novel architectures.
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Z U S A M M E N FA S S U N G

Aufgrund des Endes von Moore’s Law und Dennard Scaling haben
Leistungszuwächse in typischen Architekturen signifikant abgenom-
men. Während das Hinzufügen zusätzlicher Kerne anfangs ein sinn-
voller Ansatz für zusätzliches Leistungswachstum war, so sind die
entsprechenden Zuwächse aufgrund von Amdahl’s Law und dessen
Auswirkungen auf Parallelisierung ebenfalls begrenzt. Als Konse-
quenz musste sich die Forschung in Richtung neuer Ansätze, wie
beispielsweise domänen-spezifische Architekturen, orientieren.

Die entsprechende Umorientierung wird in der Turing-Award-
Vorlesung von Hennessy und Patterson als ein neues goldenes Zeit-
alter der Computerarchitektur beschrieben, welches schon damals
einige neuartige und hochspezialisierte Architekturen für künstli-
che Intelligenz hervorgebracht hatte. Diese Thesis stellt eine Hier-
archie entsprechender architektonischer Anpassungen auf, welche
von kleinen inkrementellen Verbesserungen, wie der Verwendung
von High-Bandwidth Memory, zu deutlich komplexeren architektoni-
schen Erweiterungen reicht, die das Offloading bestimmter komplexer
Aufgaben ermöglichen. Zum Schluss wird auf neue architektonische
Paradigmen, wie Near-Data oder In-Network Processing, eingegan-
gen, die die komplexeste Form von architektonischen Veränderungen
repräsentieren.

Diese kumulative Dissertation untersucht dann eine Reihe entspre-
chender architektonischer Verbesserungen zur Beschleunigung von
Sum-Product Networks, die ein Beispiel für neuartige Ansätze im
Bereich des maschinellen Lernens sind. Darüber hinaus nutzen wir
die Verbesserungen zur Diskussion entsprechender Ansätze und wie
kleine und große architektonische Änderungen die Leistung in An-
wendungen des maschinellen Lernens erhöhen können.

Zusätzlich präsentiert diese Thesis neuartige Forschungsarbeiten
aus dem Bereich des Near-Data Processing, welche sich mit intelli-
genten Speichermedien befassen, die insbesondere in Big-Data An-
wendungen interessant sind. Wir diskutieren, wie Near-Data Proces-
sing angewendet werden kann, um die Leistung in verschiedenen
Datenbankszenarien zu erhöhen, indem Datenbankoperationen auf
intelligente Speichermedien ausgelagert werden. Insbesondere die
Auslagerung datenreduzierender Operationen, wie Selektionen, ver-
ringert die Menge an zu übertragenden Daten, wodurch die Leistung
erhöht werden kann.

In der Umkehrung betrachten wir auch, wie Ansätze des maschinel-
len Lernens verwendet werden können, um neuartige Architekturen,
wie beispielsweise intelligente Speichermedien, zu verbessern. Speziell
betrachten wir die Verwendung von Sum-Product Networks für das
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Offloading der Cardinality Estimation, die in intelligenten Speicherme-
dien verwendet werden könnte, um bessere Entscheidungen zu treffen.
Insgesamt zeigen wir, dass sowohl maschinelles Lernen von neuar-
tigen Architekturen profitieren kann, aber auch, dass maschinelles
Lernen eingesetz werden kann, um die Anwendung von neuartigen
Architekturen zu verbessern.
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Part I

S Y N O P S I S





1
I N T R O D U C T I O N

Over the last years, ML and Big Data have become two of the most
active fields of research within computer science. Especially recent
developments like ChatGPT and similar models have sparked a strong
and growing interest in the fields of ML and Artificial Intelligence (AI),
also by the general public. A significant driver for the success of ML

are the continuously increasing sizes of corresponding models and
training data sets. In addition, specific improvements to existing and
the development of novel hardware architectures have also contributed
to the success. Interestingly, this trend goes both ways: Specific novel
architectures tailored towards ML are built, and ML-based methods
are used to improve existing architectures and their applications. Ex-
amples of this development can be found almost everywhere: From
many big companies like Google developing custom chips for their ML

applications, such as Google’s Tensor Processing Unit (TPU) [26, 27],
over the inclusion of AI Engines in AMD’s newest Ryzen 7000 chips
[2], to ML-based branch prediction in regular CPUs [46]. As a result, ML

has become an integral part of computer science and impacts us all
on a regular basis.

While many parts of regular systems have already been improved
by and for ML, one part that is still a lot less tailored towards ML

is persistent storage. The only significant improvement to persistent
storage in recent years was the development of SSDs, which effectively
replace Hard Disk Drives (HDDs) in high-performance systems due to
the lower latencies and increased throughput. In addition, eliminating
moving parts also means that SSDs typically have a longer lifetime or
mean time to failure. In contrast, ML-related improvements to other
components are much more common. This is especially interesting
when we consider the growing relevance of persistent storage. Simply
considering Large Language Models: The relatively early ELMo (re-
leased 2018, [41]) has 94 million parameters. Only about a year later,
GPT-2 was released and already had 1.5 billion parameters [44]. The
currently largest known model is Megatron-Turing NLG [48] with 530

billion parameters, which was released in 2022. Please note that it is
suspected that GPT-4 is already using at least a trillion parameters.
While a technical report on GPT-4 does not include a specific number
[39], it would fit the current trend, which is also shown in Fig. 1.1.

While Large Language Models (LLMs) are still relatively new, we
currently see an exponential growth in the number of parameters.
Accordingly, the size of models and their corresponding training data
is also increasing. For example, GPT-3 was trained on 45 TB of data

3
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Figure 1.1: Number of parameters for well-knwon Large Language Models.

and requires about 800 GB of storage capacity [5]. The sheer size of
these models already motivates improvements in persistent storage.
However, in addition to simply storing LLMs, intelligent storage sys-
tems might also become more relevant in the future, as they could
help pre-process the vast amount of data required for training in AI

applications. Moreover, matching improvements could also carry over
into different Big Data applications.

One possible improvement to make storage systems smarter is Near-
Data Processing (NDP), which aims to move computation closer to
persistent storage to reduce unnecessary data movement, improving
storage performance. In corresponding devices, this is possible because
NDP can reduce the required bandwidth of different applications,
as data-reductive operations like selections and projections can be
applied before data is transported using the slower system buses. As a
result, reduced pressure allows these buses to be used for other tasks.
Moreover, moving computational load away from the CPU can also
increase responsiveness in applications like databases.

Overall, it is clear that advances in computer architecture can sig-
nificantly improve applications from the fields of Big Data and AI.
Therefore, this thesis investigates several recent advances in computer
architecture and how they have improved specific applications, like
probabilistic inference. To this end, this work introduces the concept
of novel computer architectures and why they have become relevant
in the following Chapter 2. Based on this concept, the subsequent
Chapter 3 discusses different levels of granularity or scopes at which
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computer architectures can be optimized or tailored towards specific
workloads.

Chapter 4 gives an overview of how novel computer architectures
can be used to offload and accelerate an application from the field of
AI. Specifically, we introduce Sum-Product Networks (SPNs), a modern
model from the class of Probabilistic Graphical Models (PGMs), and
how corresponding inference tasks can be offloaded and accelerated
using novel architectures. A more detailed look at this topic can be
found in Part ii.

In Chapter 5, we shift the focus from AI towards Big Data and take
a more in-depth look at the new architectural paradigm of NDP. In ad-
dition, the chapter serves as an overview of the publications included
in Part iii that discuss using smart storage devices for offloading and
accelerating database-related workloads.

While Chapter 4 and Chapter 5 focus on the application of novel
architectures to improve AI or Big Data applications, the focus of
Chapter 6 inverts this and instead shows that AI can also be applied
to solve issues in novel architectures. Specifically, we discuss using
SPNs for Cardinality Estimation, which could help improve potential
applications of smart storage devices.

Finally, Chapter 7 will conclude this thesis. It summarizes the contri-
butions and an outlook on the potential future of novel architectures,
AI and Big Data.





2
A RT I F I C I A L I N T E L L I G E N C E A N D N O V E L
A R C H I T E C T U R E S

Two of the most formative minds in computer architecture are John L.
Hennessy and David A. Patterson. Both were awarded the 2017 Turing
Award for their work in computer architecture. In their Turing Award
Lecture "A New Golden Age for Computer Architecture" [22], they
give a detailed history of how computer architecture has advanced
over the years. For completeness, the following chapter will reiterate
the advances described in [22]. From this baseline, we discuss how
their predictions became true in the field of AI, focusing on new
architectural paradigms and Domain-specific Architectures (DSAs).

2.1 moore’s law, dennard scaling and the end of the

line

Moore’s Law is among the most well-known laws of computer archi-
tecture. Named after Gordon Moore’s observation in 1965 that the
number of components in an Integrated Circuit (IC) are doubling every
year [37]. Based on that observation, Moore’s Law was derived. About
ten years later, in 1975, it was updated since the increase in compo-
nents had slowed down. The newer version predicted a doubling of
components every second year. While Moore’s Law did persist for
many years, it started to slow down around 2004.

In conjunction with Moore’s Law, a less well-known prediction
was made by Robert H. Dennard [7]. The so-called Dennard Scaling
stated that power density would stay constant with smaller transistors.
The main observation of Dennard was that voltage and current are
proportional to the linear dimensions of a transistor. At the same time,
the power of an IC is proportional to the capacitance. Since capacitance
depends on the area of an IC instead of the linear dimensions, a
reduction in transistor area allows a corresponding increase in clock
frequency without impact on the power density.

Through the conjunction of Moore’s Law and Dennard Scaling,
computer chips could increase their performance simply by shrinking
down transistors and packing more of them into the same area. Unfor-
tunately, Dennard Scaling abstracts two essential details, which only
became relevant with the increasingly tiny transistors of recent years:
Leakage current and threshold voltage. While the dynamic switching
power of a transistor or IC adheres to Dennard Scaling, leakage current
and threshold voltage do not scale with the area or linear dimensions
of the transistors. In contrast, leakage currents increase when transistor

7
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size is decreased due to the proportional reduction in insulation. The
resulting problem is called Power Wall and limits the clock frequency
of modern CPUs to roughly 4 GHz.

Due to the end of Dennard Scaling and Moore’s Law around 2004,
developments in computer architecture moved more towards adding
additional cores. Multi-core systems are particularly interesting in
consumer-facing electronics like regular workstations or smartphones
since they allow for the concurrent execution of different programs or
tasks. Given a higher number of cores, execution of background tasks
can occur concurrently without context switching, which improves
system responsiveness and eliminates corresponding lags and freezes.
While this can also be achieved by using fast context switches, using
multiple slower cores can achieve the same effect using less power.

While adding cores is helpful in systems with lots of multi-tasking,
it is also limited in its scalability. The main problem can be attributed
to situations where the performance of a single task is the determining
factor. While many tasks can be parallelized to a certain degree, almost
all have at least a small portion that has to be executed sequentially,
even if it is only synchronization or communication between concur-
rent subtasks. Unfortunately, the sequential portion of a program will
hence always limit the speedup that can be achieved using multiple
cores. This limitation was first described by Gene Amdahl and is
hence called Amdahl’s Law [3]. The corresponding correlation be-
tween speedup, sequential code, and the number of cores is illustrated
in Fig. 2.1.

To further elaborate on this correlation, let us consider the following
Eq. (2.1).

S =
1

rs +
rp
n

(2.1)

The speedup S is determined by the number of cores n used to execute
the parallel part rp and the sequential part rs = 1 − rp, executed by a
single core. We can see that the sequential part dominates the overall
maximum speedup, as we cannot reduce the corresponding execution
time by adding cores. Assuming that the parallel part is infinitely
parallelizable, reducing its runtime to almost nothing, rp

n would equal
0. Thus the upper bound of the speedup can be described by Eq. (2.2).

Smax =
1
rs

(2.2)

The critical issue hidden in Amdahl’s Law is that no matter how many
cores we package into a single CPU, performance improvements will
degrade, as sequential portions will limit overall performance. Thus,
adding more cores will yield diminishing returns sooner or later.

According to [22], this point was reached in 2015, and we have
reached the so-called End of the Line. While the current outlook for
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Figure 2.1: Maximum possible speedup as dictated by Amdahl’s Law, de-
pending on the number of processor cores and the sequential
portion of the code. Replotted based on [22].

computer architecture seems dire, the End of the Line only applies to
general purpose ICs, such as CPUs and GPUs.

2.2 domain-specific architectures

Hennessy and Patterson end their Turing Award Lecture on the topic
of Domain-specific Architectures (DSAs). While the End of the Line
will be a significant issue in further increasing the performance of
general-purpose processors, there is still massive potential for novel
architectures. Specifically, DSAs offer huge optimization potential since
they can be tailored towards a single application instead of many.
One example described by [22] is the use of caches. While caches are
generally crucial for performance in general-purpose processors, they
have two disadvantages. First, if the computation requires a huge
dataset, caches do not work, as they are continuously overwritten.
Additionally, if caches do work, this is primarily due to locality, which
means that most of the cache is idle. While caches most definitely
have a significant impact on general-purpose applications, there are
domains where caches are more or less useless.

Considering AI as an example domain, caches do not significantly
impact the performance since the datasets are typically way beyond
the capacity of the caches. This is also prevalent in Google’s TPU, also
used as an example in [22]. The original TPU v1 came without any
caches and is one of the first examples of a DSA, targeted explicitly
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at tensor processing in the context of ML. Presented by Google in
2016, the TPU v1 is a PCIe-based accelerator card tailored towards
the acceleration of Neural Network (NN) inference. To this end, it
comes with a Matrix Multiplication Unit (MMU) capable of executing
a 256 × 256 matrix multiplication of 8-bit integers.

While Google’s TPU v1 is an exciting piece of hardware and an excel-
lent example for the predicted Golden Age of Computer Architecture, it
is basically just a harbinger of what was about to come. While there is
probably no better source for the history of computer architecture than
Hennessy and Patterson, the following sections will now discuss ad-
vances in computer architecture that happened after their outstanding
Turing Award Lecture.

2.3 artificial intelligence architectures

The prior section already introduced the Google TPU v1, which was
among the first DSAs in the field of AI. The main goal of the TPU

was accelerating NN inference. More specifically, the goal was the
offloading and acceleration of the TensorFlow library [34]. Now and
then (2016), TensorFlow is among the most important libraries in ML.
One advantage of TensorFlow is its support for Nvidia GPUs, which
helped improve training times by exploiting the available parallelism.
While GPUs already offer tremendous training performance, specifi-
cally tailored hardware like the TPU allow for even better performance.
Additionally, tailored hardware is often more energy efficient as well.

Since 2016, Google has developed three improvements over the
original TPU v1. The most recent v4 was released in 2021. Interestingly
enough, the improvements to the TPU are similar to how general-
purpose hardware evolved. For example, on-chip memory has in-
creased from 28 to 144 MiB, and clock frequency has gone from 700 to
1050 MHz. While these improvements are valuable for overall perfor-
mance, they are not that interesting from an architectural perspective.
Simply put, these improvements can be attributed to using a more
modern technology node (7 nm in the v4 vs. 28 nm in the v1).

In contrast, one significant improvement is the switch from DDR3

memory to High-Bandwidth Memory (HBM), which AMD, Samsung,
and SK Hynix originally developed. HBM stacks a number of DRAM

dies. While typical DRAM implementations use relatively narrow inter-
faces (64 or 128 bit for CPUs and up to 512 bit for GPUs), HBM natively
uses 1024 bit per stack. In some GPUs, four corresponding stacks (of
four DRAM-dies each) are used, which yields a 4096 bit memory inter-
face. Due to this, throughput in the TPU v4 is 1200 GBps, whereas the
TPU v1 only achieved 34 GBps. This represents a 35x increase in mem-
ory throughput, achieved by implementing a significant architectural
improvement.
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Switching from DRAM to HBM is a relatively simple architectural
improvement that can be used to increase performance. We will discuss
a similar case in more detail in Chapter 11. At a higher level of
granularity, the use of a TPU could also be considered an architectural
extension, as less optimized processing units such as CPUs and GPUs

are replaced by a new processing unit more specific to the relevant
application. Generally speaking, the resulting systems are still typical
general-purpose systems, but they feature a co-processor that can be
used for specific tasks. Systems that use multiple types of processors
are typically called heterogeneous systems.

A step further from application-specific co-processors or accelerator
cards are complete systems designed around specific applications.
Examples of this can be found in the more data-flow-oriented sys-
tems developed by Graphcore, Cerebras, and SambaNova. The overall
system is entirely targeted at a specific application in those cases.
Considering the Graphcore Intelligence Processing Unit (IPU) as an
example: The IPU comes in so-called pods, each featuring a high-
performance general-purpose compute server, as well as several IPU

machines. The resulting overall system is typically a complete server
rack instead of a single workstation or server. Each IPU machine fea-
tures four IPU processors, which are made up of 1472 independent
cores. Overall, an IPU machine delivers 1.4 PFLOPS, and pods typically
contain up to 64 IPU machines.

In comparison, these new data-flow architectures represent a much
more significant architectural change than the development of the
TPU. Instead of adapting an existing architecture, it is rebuilt from the
ground up, allowing for much more optimization toward a particu-
lar goal. While all of the aforementioned architectures are relatively
new, most of them have already been used in academic or industrial
applications. For example, the survey by Emani et al. [14] compares
these architectures with the Nvidia A100 GPUs in the context of ML

and more specifically on LLMs. While the paper does not offer a clear
winner, it does offer some interesting insights on the device selection.
Additionally, it also highlights that porting effort is required to fully
utilize the capabilities of novel architectures. More recently, there are
also a number of publications, such as [54] and [13], that investigate
the use of novel dataflow architectures in other scientific applications,
including SARS-CoV-2 simulations.





3
A R C H I T E C T U R A L O P T I M I Z AT I O N S A N D
A D A P TAT I O N S

In the prior Chapter 2, we have given an overview of different novel
architectures that have become relevant within the field of AI. This
chapter introduces different scopes at which architectural optimiza-
tions and adaptions can be applied. To this end, we define a baseline
architecture in Section 3.1. Then, using this as a baseline, we will
discuss incremental changes and extensions in Sections 3.2 and 3.3.
The final Section 3.4 introduces even more advanced adaptions that
go beyond the original baseline.

3.1 general-purpose architectures

Computer architecture generally describes the structure of computers
using their components. Due to the increasing complexity of com-
puters, the term architecture can generally be used at very different
scopes. For example, the Instruction Set Architecture (ISA) defines how
an abstract processor can be programmed. It defines a memory model,
the number of registers, their size, and similar system characteristics.
A corresponding microarchitecture then describes a concrete imple-
mentation of a given abstract ISA. For the scope of this work, we use
the term architecture at a much broader scope. Instead of looking
at the components of a CPU, we look at the components of a typical
computer system. Accordingly, the general-purpose baseline architec-
ture is a simplified model, which is shown in Fig. 3.1. Note that the
shown architecture already includes a GPU and a Network Interface
Card (NIC), as both are commonly included in regular desktop or
mobile computers.

Compared to the previously described ISAs, the abstraction level of
this model is much higher, which allows us to focus on the relevant
concepts without requiring extensive knowledge about the intricacies
of different system buses or other low-level details. In addition, this
model corresponds to the perspective of most users and a significant
portion of developers since most programming models and languages
are still centered around this perspective.

The baseline architecture is mainly defined by the CPU and its main
memory. This perspective is suitable since it allows the model to
capture very different systems without including superfluous low-
level details. For example, the model can depict servers, workstations,
and embedded systems. While the system bus will typically be PCIe in
servers and workstations, corresponding on-chip buses can be used in

13
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Figure 3.1: Simplified general-purpose Architecture of a typical contempo-
rary computer.

embedded System-on-a-Chips (SoCs). While this certainly impacts the
system performance, it does not impact the following considerations
regarding the adaptation and optimization of the architecture towards
particular use cases, such as AI.

3.2 incremental improvements

Incremental improvements are the first kind of architectural changes
we can apply to a given system architecture. In general, incremental
changes have been the driver for increasing performance in general-
purpose systems for quite some time. For example, let us consider the
PCIe standard. PCIe is used in many general-purpose computers to
allow extension using accelerator cards. Initially released in 2003, PCIe
Gen 1 can transfer 0.25 GBps per lane using up to 16 lanes. While
this was in line with the required transfer bandwidths at the time,
more recent workloads also require more bandwidth, which is why
the more recent PCIe Gen 5 supports up to 15.059 GBps per lane. The
evolving PCIe standards are one example of incremental changes to
an existing architecture.

Generally speaking, incremental improvements are changes to the
system that do not require programmers to rethink their programs.
For example, moving from regular DRAM to HBM will typically not
break existing hardware accelerators or software, as memory accesses
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are still processed in a similar, if not the same, way. Furthermore,
considering existing applications, incremental improvements are typi-
cally backward compatible so that existing applications do not have
to be adapted. Depending on the scope of the change, adaptations to
software might help exploit the novel capabilities. However, they are
often not required since compilers or interpreters and the Operating
System (OS) typically hide these low-level architectural details.

The simplicity and backward compatibility of minor incremental im-
provements are the main reasons general-purpose architectures evolve
step-by-step using many different incremental changes. In Domain-
specific Architectures (DSAs), the impact of incremental changes is
typically predictable. For example, considering the TPU, it was clear
that in the original v1, memory bandwidth was an issue. Accord-
ingly, the following v2 immediately switched to HBM, which increased
memory bandwidth by almost 20x. The predictable nature of minor
architectural changes makes them comparably cheap and low-risk. In
addition, due to them being more manageable in their implementation
overhead, they can be used reactively. Specifically, if the relevancy of
a workload increases, an incremental improvement can be applied
to adapt to the changed overall workload. Examples of incremental
improvements are illustrated in Fig. 3.2 and we will discuss a number
of matching publications as part of this cumulative dissertation in the
following Chapters 8, 9 and 11. These chapters will specifically look at
optimized digital arithmetic and the use of HBM in the context of ML

inference acceleration.

3.3 architectural extensions and offloading

While incremental improvements are a reasonable way of consistently
evolving an existing architecture, they are unsuitable for tackling more
significant shifts in the typical workloads. Extending the architecture
to ensure that the desired performance goals are met can be a better
approach in those cases. However, due to the more complex nature of
developing architectural extensions, they are much more uncommon
than incremental improvements. While they are less common, most
general-purpose systems still feature at least one specific extension,
specifically GPUs. In addition, several common extensions are typically
included in the mainboards of general-purpose machines.

To understand the rise of a specific architectural extension, consider
how GPUs became relevant: The typical general-purpose workload
suddenly shifted when operating systems moved from pure textual
IO to more visual user interfaces. As a result, graphics-related com-
putations became much more common, especially since they have to
be performed continuously at a relatively high frequency to enable
fluid interaction with the system. With the corresponding increase
in graphics- and geometry-related computations, it made sense to
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Figure 3.2: Examples for incremental improvements to the baseline system
architecture.

introduce a specific co-processor to the system, which was optimized
toward these workloads.

GPUs, as a common example of an extension to an existing architec-
ture, are often integrated into the system using PCIe-based accelerator
cards that can be plugged into the system’s mainboard. Sometimes,
the GPU is integrated into the same chip or die as the CPU. In embed-
ded systems, this is often the case with System-on-a-Chips, which can
also incorporate additional extensions. In desktops and workstations,
corresponding chips are sold as CPU with integrated graphics (Intel)
or as Accelerated Processing Units (AMD). In contrast, servers are
commonly configured without a GPU, as they do not offer a regular
graphical user interface. The GPU is such a common example that it is
intentionally included in the baseline architecture from Section 3.1.

A more recent example of an architectural extension is Google’s
Tensor Processing Unit, also shown in Fig. 3.3. With the recent shift
towards ML workloads (at least at Google), it became reasonable to
develop a corresponding accelerator card that could be used to offload
these workloads. Interestingly enough, ML workloads were already
being offloaded to GPUs since their massively parallel architecture was
well suited for NN training and inference. However, the development
of the TPU allowed Google to optimize even more toward their specific
use cases.
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Figure 3.3: Baseline architecture with an additional Tensor Processing Unit-
extension for ML workloads.

Designing and implementing a novel architectural extension takes
time and effort. The number of different architectural extensions is
quite limited. Apart from widespread use cases, such as graphics,
audio, or networking, there are very few applications for which spe-
cific high-end extension cards exist. Interestingly enough, FPGA-based
accelerator cards offer a compromise since they can be configured
to represent arbitrary hardware designs. Accordingly, they can be
configured to realize novel architectural extensions without the cost of
developing a matching chip and board, which makes them extremely
interesting in research. Looking specifically at FPGAs and NNs, many
recent works are investigating the use of FPGAs for NN-acceleration,
which is highlighted by Guo et al. in [19]. The work surveys more than
20 approaches from the last ten years and only includes NN-based im-
plementations. Beyond that Parts ii and iv feature several FPGA-based
approaches for an architectural extension of the acceleration of SPN

inference.

3.4 novel architectural paradigms

While the architectural optimizations discussed in the two prior sec-
tions already offer great potential to improve existing architectures,
there is still an even more complex approach. Instead of adapting
an existing architecture like the baseline architecture introduced in
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Section 3.1, architectures can also be created from scratch. While de-
veloping these novel architectures is much more complex, it also offers
much more potential for optimization. This potential is also one of
the reasons why these novel architectures are typically oriented to-
ward a particular paradigm or, instead, a corresponding paradigm
shift. Since these architectures are tailored toward concrete goals and
requirements, comparing or generalizing them is challenging. Thus,
the following sections introduce three examples of novel architectural
paradigms: Data-Flow, In-Network, and Near-Data Processing.

3.4.1 Data-Flow Processing

With the recent developments in AI, computations are often based on
data flow instead of control flow. However, in typical programming
languages, commands are executed in a sequence occasionally broken
by control-flow statements, such as if-else commands or loops. Thus,
Control-Flow Graphs (CFGs) describe programs using unbroken se-
quences of commands called basic blocks as nodes and control flow as
the edges connecting them. This structure does not apply in Dataflow
Processing (DFP) as computations are typically represented using
graphs, or more specifically, Directed Acyclic Graph (DAG). Instead of
describing control flow, the edges in those Data-Flow Graphs (DFGs)
represent the data flow. While DFGs typically encode a single opera-
tion per node, DFP breaks this convention. Instead, nodes may contain
more complex computations, including local control flow. Each node
can be executed as soon as its predecessors have finished and the
corresponding output data is available. In addition, approaches like
Streaming and Pipelining can increase throughput by overlaying the
execution of multiple instances.

Data-flow-based models have become increasingly attractive, as
recent models from the field of AI and ML can easily be captured by
them. Examples of such models are Sum-Product Networks and many
kinds of NNs, which are based on DAGs without any control flow. Since
DFP-based models are well suited to represent complex and relevant
ML problems, there has been a lot of research and development to-
wards hardware that can execute corresponding compute graphs. In
this section, we want to introduce two different architectures based on
this novel paradigm. Graphcore’s IPU architecture, as well as the AMD
Xilinx Artificial Intelligence Engines (AIEs), were initially targeted at
data centers to accelerate matching workloads in the cloud. Interest-
ingly, through the acquisition of Xilinx by AMD, AIEs are now also
being marketed towards desktop and mobile markets.

Both architectures are based on a similar programming model:
Instead of writing a single program representing the overall problem,
the developers write several smaller programs (called codelets) defined
by their inputs and outputs and a function containing the actual
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computation. Using these codelets, the programmers then define a
graph of computations by defining the data flow between them. The
resulting compute graph is then compiled for the specific architectures,
both based on two-dimensional arrays of compute cores. Additionally,
the cores are interconnected to allow some form of data exchange
between cores. Accordingly, the data flow defined by the compute
graph is mapped to corresponding data movement, whereas each
codelet is compiled to machine code for one of the cores. The compiler
also infers how to perform the required data movements defined by
the compute graph’s edges.

Considering the hundreds or even thousands of cores of these
architectures, they are examples of truly massively parallel Multiple
Instruction, Multiple Data (MIMD) architectures, which are especially
interesting in contrast to GPUs. While they are also massively parallel,
they instead use a Single Instruction, Multiple Data (SIMD) or Single
Instruction, Multiple Threads (SIMT) approach, where multiple cores
are grouped, executing one stream of instructions on different streams
of data, which is a lot less flexible in comparison to the MIMD offered
by DFP architectures.

3.4.2 In-Network Processing

A different approach also targeted at data centers is In-Network Pro-
cessing (INP). The main goal of INP is moving workloads away from
local machines towards compute resources available on the local or
global network, which is primarily achieved using Smart Network
Interface Cards (NICs). Like regular NICs, the smart versions are PCIe-
based extension cards with high-speed network interfaces. In some
cases, INP is also realized using smart switches, which unify the func-
tionality of regular switches with additional compute capabilities.
Generally speaking, most commercial INP approaches focus primarily
on networking-based applications or algorithms, such as packet in-
spection. While this is reasonable from a commercial perspective, INP

offers much more potential when considering new workloads, such
as ML inference. Especially interesting are corresponding FPGA-based
data-center accelerator cards, which unify 100G networking interfaces
with the compute capabilities of modern FPGA.

One significant advantage of those devices is their sheer amount of
bandwidth. For example, some off-the-shelf devices offer up to four
external 100G interfaces in addition to internal interfaces like PCIe.
This bandwidth is especially interesting since FPGA-based accelerators
are frequently optimized towards throughput using hardware pipelin-
ing. The functionality of those accelerators can then be exposed to
the local network using corresponding networking stacks that enable
clients to send their workloads to the network-attached FPGAs. Further-
more, since the workload can reach the FPGA via its dedicated network
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interfaces, no additional intervention from the server hosting these
cards is required, which additionally decreases latency. Accordingly,
network-based offloading using FPGAs has been of increasing interest
as it democratizes the provided functionality. A conceptual setup is
shown in Fig. 3.4.

Another major advantage of INP is the shared nature of the function-
ality. Instead of fitting many different workstations with FPGA-based
accelerator cards to perform an offloadable workload, it can be hosted
in a single machine, which acts as a server, decreasing cost since fewer
accelerator cards are required. Additionally, due to the reconfigurable
nature of FPGAs, they can be reused for different workloads. Corre-
sponding setups often make sense when the offloaded workloads
increase without reaching the critical mass to warrant specific accel-
erators. This is also the case for accelerators that are not FPGA-based.
Since they are not limited to a single system, the workloads from
multiple clients can be pooled together to increase utilization. One
such example of INP will be discussed in the included publication in
Chapter 10.

3.4.3 Near-Data Processing

The last novel paradigm we introduce is Near-Data Processing (NDP).
The focus of NDP is mostly on smart storage devices that can be used
to offload typical Big Data workloads. To understand the objective of
NDP, we must first consider general-purpose databases or key-value
stores. They are typically used to store big datasets and enable quick
and easy access to the hosted data. Additionally, a big concern in
such systems is scalability. While small databases and stores might be
hosted on regular machines, production databases of companies will
typically reside in specific machines that offer multiple terabytes of
working memory in addition to tens or even hundreds of terabytes of
persistent memory, such as flash-based SSDs or HDDs. Due to the vast
working memory, corresponding databases can typically hold most
of the relevant data in their working memory, so access is generally
fast. Problems typically only arise if more extensive parts of the less
frequently accessed data are inspected since this will require vast data
transfers to the host CPU. In addition to the bandwidth required for
the data transfers, the CPU typically has to loop over many or even all
dataset entries to locate the relevant ones. Considering the increasing
size of modern databases and datasets, this can lead to situations
where the system responsiveness can suffer.

Considering the typical database server, they will likely employ
regular SSDs, which use flash memory to store the data. Interestingly,
the bottleneck in modern SSDs is often not the actual flash memory’s
bandwidth or latency but the underlying system bus (PCIe/NVMe).
In smart storage devices, scanning and filtering operations could be
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performed before the data is transferred via system buses, which
in turn has the potential to reduce the required bandwidth. To this
end, smart storage devices combine persistent flash memory with
additional computational capabilities that can be used to perform
some computations on the data before it is transferred to the host CPU.
Instead of the typical data-to-code approach, this code-to-data approach
could alleviate bandwidth-related bottlenecks. Additionally, due to the
offloading of corresponding workloads, overall system responsiveness
would not necessarily be reduced since the computation can now be
performed asynchronously by the storage device.

The lack of suitable devices is a central issue in investigating NDP.
At the time of writing, only four devices could generally be defined
as smart storage devices that unify reasonable capacities of persistent
flash storage with the required computational capabilities. Addition-
ally, all of those devices come with certain caveats. For example, the
Fidus Sidewinder is an FPGA-based accelerator card, which can hold
up to two NVMe-based SSDs. While this could be considered smart
storage, access to the flash storage must be propagated through the
flash controllers on the SSDs. This indirect access is problematic, as the
controllers typically rely on intermediate abstractions like the Flash
Transaction Layer (FTL), which takes care of wear-leveling and similar
flash-related issues. While this makes sense in consumer-facing SSDs,
it also reduces the available bandwidth, thus limiting the potential of
NDP.

Similarly, the Samsung SmartSSD unifies a Samsung SSD with an
FPGA-based accelerator card in a single case. Within the case, an addi-
tional switch connects both devices to the host and each other. While
this does enable high-speed peer-to-peer communication between the
SSD and the FPGA, it does not actually unify the functionality, as the
accelerator card only comes with 4 GB of on-board DRAM, which is
most likely not enough to perform significant operations on terabytes
of data. Additionally, due to the peer-to-peer nature of the intercon-
nection, bandwidth is also shared when communication is supposed
to include storage, compute, and host. The remaining two devices
are the COSMOS+ OpenSSD and the prodesign HAWK/FALCON.
Both devices unify persistent flash memory with FPGA-based compute
capabilities. Due to the flash controllers being realized using the FPGA,
all requested data travels through the FPGA, which enables bump-in-
the-wire NDP, where data is automatically pre-processed while it is
transported to the host. Unfortunately, corresponding approaches are
still theoretical. Additionally, the COMOS+ relies on relatively old
hardware, specifically a Xilinx Zynq-7000, which only offers limited
resources for implementing flash controllers and additional accelera-
tors. While the prodesign HAWK might solve this problem with its
state-of-the-art Xilinx Versal FPGA, it is unfortunately not yet avail-
able with the required flash extension. The included publications in
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Chapters 12 to 14 discuss NDP using the COSMOS+ in more depth.
Specifically, these chapters discuss the offloading of key-value store
operations using custom and generated FPGA-based accelerators.





4
A C C E L E R AT I N G S U M - P R O D U C T N E T W O R K
I N F E R E N C E

The previous Chapter 2 already showed the relevance of novel archi-
tectures to AI. In this chapter, we are going to introduce SPNs as one
potential AI workload that profits from the use of novel architectures.
To this end, the following sections will first discuss SPNs in general
and then describe and discuss several approaches of using modern
architectures to accelerate SPN inference.

4.1 introduction to sum-product networks

NNs and Deep Learning (DL) have been responsible for most of the
recent success in AI and ML. However, due to the sustained advances
in ML, the research focus has broadened, and other models are also in-
vestigated more. One class of models also receiving increased interest
are PGMs. The general idea behind PGMs is using graphs to represent
relations between different probabilistic variables. Bayesian Networks
and Markov Random Fields are generally the most well-known ex-
amples for PGMs. A more recent example are SPNs, proposed by Poon
et al. [42]. While the original publication only introduces the general
idea, a later version includes initial training approaches for SPNs [43].

Exact inference is one significant advantage of SPNs over other
DL techniques. In this context, exact inference refers to the fact that
SPN inference computes a probability using the given partial or com-
plete evidence, which is one of the main features that differentiates
PGMs from DL approaches. The resulting probability is comparable,
inherently enabling uncertainty quantification. For example, we can
implement classification using SPNs by querying the probability of a
given sample belonging to a specific class. This approach will yield
different probabilities for each class, and comparing them will allow
us to classify the sample. In this situation, the comparison between the
probabilities tells us whether a decision was close or not. Additionally,
if a sample significantly differs from the samples of the training data,
the probability will be extremely low, indicating the corresponding
uncertainty. In contrast, NNs are typically more of a black box and
output only the resulting classification, which does not indicate how
certain that decision has been. Lastly, the inference is not only exact
but also tractable w.r.t to its size, as the nodes can simply be evaluated
bottom-up yielding a result. For other PGMs, evaluation requires multi-
ple passes, as the nodes and edges encode more complex probabilistic
relationships.
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Figure 4.1: Example SPN, taken from Chapter 10

More formally, SPNs capture joint probabilities over a set of random
variables using a rooted DAG. An example is depicted in Fig. 4.1. Note
that the graph is made up of three distinct types of nodes:

• The terminal leaf nodes are univariate distributions over a single
random variable. Different distributions, such as Gaussian or
Poisson distributions [35], can be used. Additionally, histograms
can be used to approximate more complex distributions or as a
replacement in discrete cases [36].

• Product nodes are used to represent factorizations over indepen-
dent distributions. For consistent SPNs, it is additionally required
that all children of a product node depend on either the non-
negated or the negated random variable, but not both at the
same time.

• Weighted Sum nodes represent mixture models over distribu-
tions. For complete SPNs, the child nodes of weighted sums must
use the same set of random variables.

An SPN is considered to be valid if and only if it is complete and
consistent.

4.1.1 Inference

Due to the structure of SPNs, the inference is a simple bottom-up pass.
Using the given evidence, the leaf nodes are evaluated and their results
are forwarded performing the operations indicated by the nodes. The
root of the SPN will then yield the inference result. In addition, SPNs

allow different kinds of queries. Specifically, we want to introduce
joint and marginal queries relevant to this work.

A query is considered a joint query if it uses complete evidence. For
example, in a valid SPN, this implies that the value of each random
variable is known. Thus the joint query can be answered by evaluating
the terminal leaf nodes using the random values. The results of the
terminal nodes are then propagated upwards while corresponding
multiplications and additions are evaluated. Finally, after evaluating
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Figure 4.2: Inference example in an SPN, representing the joint probability
distribution P(A, B). In joint inference, all histograms output a
corresponding value (a), while in marginal inference some his-
tograms are marginalized and always output the value 1.0 (b).
Taken from Chapter 15.

the root node, the resulting probability is the result of the joint query,
as shown in Fig. 4.2 (a).

In general, marginal queries can be evaluated in the same manner.
The terminal leaf nodes of marginalized random variables are set to
the probability value 1. The remaining bottom-up evaluation of the
DAG stays the same. The process is also shown in Fig. 4.2 (b).

4.1.2 Learning and Training

Due to their structure, building SPNs by hand is relatively simple,
which is especially interesting, if they are used to model less complex
probability distributions. However, while this approach is interesting,
it does not scale. Accordingly, different approaches aim at the auto-
matic learning and training of SPNs. In general, these approaches fall
into two categories. First, some approaches assume that the general
structure of the SPN is already known. Instead of creating a new SPN

from scratch, the weights of the weighted sums are adjusted to learn
an underlying probability distribution. Such approaches are gener-
ally called Weight Learning. In contrast, Structure Learning tries to
generate the overall structure, including weights, from scratch.

The general approach in weight learning is typically based on the
Expectation Maximization (EM) algorithm, a cornerstone of statistical
ML. In the original work by Poon et al. [42], they generate a dense
structure and then use EM to adjust the weights. Depending on the
initial structure and the underlying dataset, the resulting SPN may
contain branches with weights very close to 0. Then, these branches can
be pruned to reduce the size of the SPN. The corresponding algorithms
are discussed in [15] and [43]. Additionally, later approaches extend
on the idea and enable learning of arbitrary leaf node distributions [9].
An even more exciting approach are Random Tensorized Sum-Product
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Networks (RAT-SPNs) [40], which use randomly generated structures
and Weight Learning for training. The most significant advantage of
this approach is its simplicity. Interestingly, the resulting SPNs can
compete with NNs[40].

In contrast to Weight Learning, Structure Learning is more complex.
Initial approaches like [8] and [16] use clustering to create the structure
of the SPN. These approaches exploit completeness and consistency to
derive nodes recursively by trying to find independent subsets of
random variables. If that is possible, corresponding product nodes are
generated. If not, weighted sums are generated. Finally, the approach
is applied recursively until the subsets contain only a single random
variable. Concurrently, the dataset is clustered and divided depending
on the independence of the random variables.

4.2 accelerated inference

In the following Sections 4.2.1 to 4.2.3, we are going to discuss sev-
eral different approaches to accelerate SPN inference. First, we are
going to discuss more traditional acceleration approaches, such as
CPU- and GPU-based acceleration in Section 4.2.1. Then, the following
Sections 4.2.2 and 4.2.3 will introduce different FPGA-based acceler-
ation approaches using four recent publications that are also part
of this cumulative dissertation (cf. Chapters 8 to 11). We will also
compare existing prior and related work. The corresponding sections
will also discuss how different approaches exploit traditional and
novel architectures and how they fit into the hierarchy of architectural
improvements presented in Chapter 3.

4.2.1 CPU- and GPU-based Acceleration

While SPNs research has gained much traction in the ML community,
corresponding research focuses mainly on general training and in-
ference instead of acceleration. While the two primary SPN libraries,
LibSPN and SPFlow, generally support acceleration, it is typically
achieved using approaches based on TensorFlow, a well-known frame-
work in the ML space. Its aim is mainly to enable acceleration of ML

tasks, like inference and training using GPUs. Originally, TensorFlow
was developed by Google to accelerate inference and training of NNs.
While it does offer a relatively simple way of interacting with GPUs

from Python, its bias towards NNs is also one of its weaknesses. Due
to their structure, SPN inference is not as easily transformed into
tensor-based operations. Thus, acceleration using the library-provided
TensorFlow support is only a minor improvement.

In contrast, the works by Sommer et al. [49–51] offer a more promis-
ing approach. In [51], they first introduced the SPN Compiler (SPNC),
which builds on the popular compiler frameworks Low-Level Virtual
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Machine (LLVM) and Multi-Level Intermediate Representation (MLIR)
to implement a tool flow that enables the compilation of SPNs to CPUs

and GPUs. The general way to use SPNC is via a provided Python inter-
face that wraps the whole SPNC tool flow and integrates well with the
SPFlow library. Then, using serialization and protocol buffers, the SPNs

can be transferred from SPFlow to SPNC, translating the models into
its target-agnostic HiSPN dialect. Dialects are MLIR’s way of defining
domain-specific intermediate representations. The main goal of the
HiSPN dialect is to represent a given model. Therefore, as part of
the compilation flow, the model is lowered into the LoSPN dialect,
representing the corresponding model more functionally. Using the
LoSPN representation of the SPN, it is then possible to compile for
CPU and GPU. In both cases, platform-specific optimizations, such as
vectorization using AVX and AVX2, are applied to ensure that the
capabilities of the target architecture are used.

In their initial publication [51], they compare their compilation-
based approach against a Python baseline, achieving a speedup of
814.8x using an AMD Ryzen 9 3900XT with 32 GB RAM. For their
evaluation, they use a benchmark set from [38], where SPNs are used
to identify speakers in different clean and noisy speech samples. Note
that the benchmarks are performed throughput-oriented: The model
is transformed or compiled using either TensorFlow or SPNC once.
Afterward, the corresponding inferences are performed as a batch.
Execution time is measured, including compilation time. While it is ev-
ident that the Python baseline is not competitive against a compilation-
based approach, it is still interesting since it could be assumed that
compilation time may be an issue. In their work, they show that
TensorFlow-based acceleration only yields speedups of 1.5x and 1.4x
using a Ryzen 9 3900XT and an Nvidia RTX2070 Super, respectively.
In contrast, the compilation-based approach achieves the speedup
mentioned above of 814.8x using AVX2 vectorization. Interestingly
enough, the GPU cannot compete with a speedup of only 524.7x. This
is because of the additional data transfer overhead required to get the
input and output data to and from the GPU.

The original tool flow was further evaluated in a range of different
CPUs in a subsequent publication [49]. Specifically, the evaluation
includes an embedded device to show that the approach applies to
cheaper and smaller devices in addition to the high-end devices from
the earlier work. Moreover, the functionality is extended to support
vectorization using AVX-512. While prior work relied on the Libmvec
library for AVX and AVX2 support, Intel SVML support is used to
allow the mapping of elementary functions to AVX-512. Exploiting
AVX-512 in an Intel Xeon Platinum 9242 CPU with 384 GB RAM further
increases the speedup over the Python baseline to 976x.

The most recent paper [50] on the SPNC elaborates more on the
underlying compilation flow using MLIR. In addition, a novel graph
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partitioning approach is presented, which aims to enable the compila-
tion of even larger SPNs, which became relevant due to novel training
approaches and using SPNs. In comparison, the speaker identifica-
tion benchmark consists of 628 different SPNs, each able to identify
a unique speaker; more recent work on RAT-SPNs [40] used only ten
SPNs, which in turn were much larger. Compared to 2,500 operations
per SPN in the original benchmarks, RAT-SPNs typically contain more
than 300,000 operations. The vastly increased number of operations
made compilation as a singular graph impractical. Using the novel
graph partitioning approach makes compilation of very large RAT-SPNs

tractable and compilation times are similar to the TensorFlow-based
approach introduced in [40]. Due to the tensorized nature of RAT-SPNs,
TensorFlow-based performance is much better than for generic SPNs, es-
pecially on GPUs. Comparing on a GPU, TensorFlow achieves a speedup
of 3x over SPNC, while SPNC achieves a speedup of 3.8x on a CPU. Inter-
estingly, SPNC performance on a CPU is on par with TensorFlow-based
execution on a GPU, which is especially interesting considering the
cost of high-performance GPUs.

4.2.2 FPGA-based Acceleration

The general idea of FPGA-based acceleration of SPN inference was ini-
tially presented by Sommer et al. [52]. Using textual representations
of SPNs, a Scala-based compilation flow reads in and pre-processes
the model. Most pre-processing focuses on making the model as reg-
ular as possible. For example, product nodes with more than two
children are split up to ensure that all arithmetic operations are bi-
nary. In addition, analysis passes determine the number of random
variables used in the SPN, as that information is required to generate
a hardware design. After the transformations and analyses, the tool
flow then generates a fully spatial, fully pipelined Chisel3 module,
where each operation in the DAG of the model directly corresponds to
a hardware operator. The hardware operators were generated using
the FloPoCo 1 library in the original implementation [11]. FloPoCo
provides a floating-point encoding and matching arithmetic operators.
While FloPoCo generally allows custom configuration of the number
of exponent and mantissa bits for the encoding, the authors use a
typical 64 bit encoding. The resulting datapath was the centerpiece of
an accelerator, which also provided corresponding control and data
interfaces. The authors synthesize bitstreams for the Xilinx VC709 eval-
uation board using a set of typical benchmarks from several datasets.
The bitstreams are evaluated for their end-to-end inference throughput
compared to a Source-to-Source compiler that transforms SPN models
into TensorFlow- or C-code.

1 https://www.flopoco.org/
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s Exponent Mantissa

Figure 4.3: Floating Point binary format, simplified from Chapter 9.

s Exponentz

Figure 4.4: Logarithmic Number Scale binary format.

This approach was not nearly as sophisticated as the compilation
flow discussed in Section 4.2.1. However, it was still a much more
reasonable baseline than the Python-based implementation used in
SPFlow. For all sixteen benchmarks, the FPGA-based implementation
outperforms GPU by quite a considerable margin, achieving speedups
of up to 100x. For ten of the sixteen benchmarks, the FPGA also
outperforms a CPU by up to 6x. For smaller benchmarks, the CPU-
implementation offers higher throughput since there are no additional
overheads for data transfer. In those six cases, the CPUs is up to 13.5x
faster.

Offloading SPN, inference like this is a typical example of an archi-
tectural extension. Assuming that SPN inference is a recurring task,
it would make sense to try and offload it to more specialized hard-
ware. Since developing novel accelerator cards is quite expensive,
FPGA-based accelerator cards like the VC709 offer a more reasonable
way of evaluating potential architectural extensions. In addition, due
to their reconfigurability, they can also be used to test out different
approaches. While the original work presents an architectural exten-
sion, the corresponding work was also incrementally improved in
subsequent publications.

An optimized logarithmic number system was introduced in the
publication included in Chapter 8 to replace the floating-point encod-
ing. The main difference between logarithmic number systems and
floating point numbers should become clear, when we consider Fig. 4.3
and Fig. 4.4, which depict how both encodings represent numbers
in binary. Note that these specific formats are taken from Chapters 8

and 9 and already optimized towards SPN inference. Floating Point
numbers are encoded using a fixed-point mantissa and a biased expo-
nent, which is used to change the order of magnitude of the number
(cf. Eq. (4.1)).

A = (−1)s × (1.0 + Mantissa)× 2Exponent−Bias (4.1)

In contrast, logarithmic number systems only use an fixed-point
exponent, as shown in Eq. (4.2). To encode 0, an additional bit (z in
Fig. 4.4) is required.

B = 2(−1)s×Exponent (4.2)
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Since log-likelihoods are commonly used in ML to represent very
small probabilities better, it was reasonable to assume that a number
system with logarithmic scaling would also achieve similar error
margins while using less of the logic resources on the FPGA. Therefore,
in addition to the changed encoding, the encoding was optimized
towards the FPGA-based implementation, and the number of bits was
fine-tuned towards each specific benchmark. Using this approach, the
resulting accelerators could uphold a maximum relative error margin
of 10−6 while saving up to 50% of Slices and DSP Slices on a VC709

FPGA accelerator card. The contributed logarithmic number system is
one instance of an incremental improvement. While the prior work
[52] was already able to achieve similar performance, switching to a
new encoding significantly increased the resource efficiency.

Since the switch to a logarithmic number system had improved
resource utilization significantly, the following publication (cf. Chap-
ter 9) applied an even more sophisticated software simulation to
fine-tune the encoding to given error margins. In addition, a novel
custom floating-point format and a format based on Posit numbers
were included in the framework. All three encodings were additionally
optimized, and the Posit implementation was pipelined. Using the
software simulation, all encodings were fine-tuned to match certain
error margins. The Source-to-Source compiler used for the CPU- and
GPU-baseline was also improved, and GPU compilation moved from
TensorFlow to native CUDA. Similar to the prior work, FPGA-based
acceleration was able to significantly outperform CPU and GPU for all
but the smallest three benchmarks. While performance was not signifi-
cantly increased over prior work, the corresponding publication offers
insight into the suitability of different number systems: Specifically,
the custom floating-point and the logarithmic format are reasonable
choices, depending on the ratio of sums and products within a model.
In cases with very few additions, the logarithmic number system
is more resource- and energy-efficient. Interestingly, the Posit-based
encoding could not keep up with the other two due to inefficient
run-length encoding for an additional scaling factor, which is not
present in the other two formats. While the Posit-based encoding was
not as efficient, all three encodings were able to outperform CPU- and
GPU-based execution for the bigger benchmarks, as shown in Fig. 4.5.
Only for smaller benchmarks, the CPU achieved higher performance,
because expensive data-transfers could be omitted.

The resulting tool flow offers increased flexibility, since the encoding
can be fine-tuned and matched to the application. The evaluation of
the work included in Chapter 9, it also became clear that the Posit
number system is not optimal for probability-based applications on
an FPGA. Additionally, we were able to find a deciding factor that
determines, whether the logarithmic or the custom floating point
number system were better suited. Specifically, the ratio between
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adders and multipliers is important, since multiplications become
much more simple in a logarithmic number system, while additions
become more complex. If an SPN has a multiplier-to-adder ratio of
about 8 : 1 or more, a logarithmic number system will be more
resource and energy efficient.

The architecture’s scalability was evaluated in a more recent pub-
lication in Chapter 11. Specifically, the architecture was adapted to
use HBM, which had become more common on FPGA-based accelerator
cards. Since the throughput of the accelerators had already reached
line rate in prior work, the use of HBM was expected to allow further
performance scaling. In addition, due to improvements in the archi-
tecture in a separate earlier publication (discussed in the following
Section 4.2.3) and newer FPGAs with more hardware resources, the
accelerators could now be replicated for parallel execution of multiple
inferences. While the achieved performance gains were less than ex-
pected due to the limitations of the PCIe bus, the throughput was still
increased by 1.5x over prior work. The switch from regular DRAM to
HBM is also a fitting example of an incremental improvement to the
architecture.

While the original work on offloading of SPN inference is an ex-
cellent example of an architectural extension, the three subsequent
publications are all examples of incremental improvements. Exploiting
different approaches like HBM or specialized data types can signifi-
cantly impact an architecture’s performance and efficiency. This was
especially highlighted in Chapter 9, which also performs a power eval-
uation and optimizes multiple data types for the application. While
this saves hardware resources on the FPGA, it also translates into a
corresponding reduction in power consumption.

4.2.3 In-Network Acceleration

The prior sections have introduced different approaches to accelerate
SPN inference. Apart from the CPU-based implementations, all are
offloading-based approaches, where a PCIe-based accelerator card
is used to offload a recurring workload. Additionally, some of the
presented works also improved the general offloading approach by
exploiting additional changes to the architecture, such as HBM.

We further investigate a novel architectural paradigm in Chapter 10.
Instead of locally offloading SPN inference, this functionality is in-
tegrated into an INP stack. To this end, the architecture of the SPN

accelerators was reworked to support streaming-based inference pro-
cessing. Additionally, the accelerators were extended to enable the
pass-through of additional meta-data. Using the meta-data and an
adapted networking stack, the SPN inference can be performed from
a remote machine by sending a packet or frame with the inference
input to the accelerator using 100G networks. Furthermore, since the
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networking stack is flexible, inference can be realized using different
networking protocols, depending on how the functionality is supposed
to be exposed.

This INP approach is especially promising for end users. While
AI and ML workloads are becoming increasingly common, it is still
impractical for most users to have specific ML hardware in their private
systems. Even workstations in academic or industrial institutions
would typically not feature ML acceleration due to the high cost of
high-end FPGAs and GPU. Moving the functionality to the network
effectively democratizes it and enables many clients to request and
use the inference without the need for costly hardware.

One downside of INP is the additional latency for network com-
munication. While the increase in latency can be relatively small in
compact, local setups, it will typically be much higher in remote or
cloud setups, as the data has to be transported using the regular in-
ternet infrastructure. Thus, corresponding approaches are typically
limited to applications that do not require extremely low latencies.





5
N E A R - D ATA P R O C E S S I N G A N D S M A RT S T O R A G E

While the prior chapter primarily focused on architectural extensions,
this chapter looks at the novel architectural paradigm NDP. Specifically,
we want to look at the nKV system, which investigates NDP using
a RocksDB-based key-value store on the COSMOS+ OpenSSD to
accelerate database operations, such as the GET and SCAN operations.
In addition, the nKV system can perform more complex algorithms,
like the Betweenness Centrality algorithm, using the accelerated GET
and SCAN operation.

5.1 introduction to nkv

We have already introduced the general concept of NDP in Section 3.4.3.
In this section, we are going to introduce nKV, which is a key-value
store that relies on native storage to improve performance and to
enable efficient NDP on the COSMOS+ OpenSSD. In contrast to tra-
ditional approaches, native storage exposes the actual physical flash
memory to the key-value store. Instead of intermediate layers like the
FTL, the key-value store can directly access the flash memory by its
physical addresses. This approach’s main advantage is removing in-
termediate layers that typically increase overheads. Additionally, nKV
can exploit the underlying architecture of the flash memory, which
is typically organized in multiple channels and Logical Units (LUNs).
Finally, moving the control towards the key-value store allows the
exploitation of the internal bandwidth of the flash memory, which is
typically not possible if the operating system or intermediate layers
control the flash memory.

In addition, the direct control of the flash memory also allows the
key-value store to control where intermediate data is stored during
the execution of requests, allowing nKV to manipulate intermediate
data. This can be used to implement NDP functionality in the absence
of more elaborate systems. One potential future avenue for research
would be bump-in-the-wire NDP, which manipulates or transforms
requested data without materializing intermediate results. While this
is not yet possible in nKV, the advantages of native storage already
allow for increased performance.

By allowing interaction with the requested data, nKV also enables
NDP. Unfortunately, the ARM cores used in the Zynq-7000 chip on the
COSMOS+ are already used to run the firmware. Due to this, the best
option for offloading computational load like GET or SCAN operations
was using FPGA-based hardware accelerators. We will go into more
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depth on this topic in one of the following sections (Section 5.3)
and the corresponding publications in Chapters 12 to 14. Section 5.2
will show how the concept of smart storage and NDP has evolved
historically. Lastly, Section 5.4 will classify NDP within the hierarchy
of architectural improvements.

5.2 prior and related work

The following section will introduce related approaches in NDP. This
section is loosely based on Section 12.7 of the previously published
Chapter 12.

The concept of NDP was initially developed in the 1970s. Back then,
the concept was known under the term database machine, which referred
to architectures explicitly targeted at hosting databases. The term
originated in [10], but there were other approaches, like Active Disks
[1, 45] and IDISK [30], that were quite similar. However, a significant
issue of these approaches was the proprietary nature, which made
these machines expensive. As a result, corresponding approaches
did not gain any significant relevance, which was often attributed to
the limited IO bandwidths and the limitations in storage parallelism,
which limited overall system performance.

Recent advances in storage technology, especially moving away
from mechanical storage mediums, have significantly changed typical
storage devices’ characteristics. Most notably, mechanical mediums
always suffered from limited parallelism, as a read-write head is
required to move to the correct position on the tape or disk to read
or write data. Specifically, the rise of flash memory alleviates this
problem by using electric charges to store information.

Relying on flash memory, SSDs have become the typical persistent
storage in most systems. HDDs are typically only used when cost-
efficiency is problematic. Due to the much higher memory parallelism
in typical SSDs, they have also become more attractive to researchers.
Starting in 2013, the term Smart SSD was introduced and generally
referred to devices that unified storage and compute capabilities in a
single device. A matching prototype from Samsung is first discussed in
[12], where an ARM core inside the SSD is used to perform queries from
the TPC-H benchmark. A similar approach is presented in [29]. Both
approaches are similar because they target offloading and acceleration
of relational databases and the corresponding queries. Soon after, a
more general interface for extending the functionality of a smart SSD

was presented by Seshadri et al. in [47]. In contrast to the previous
examples, the presented Willow SSD is a more advanced NVMe-based
SSD, while the prior examples were SATA-based.

A similar approach using FPGA-based acceleration was presented
by Woods et al. in [57]. Their IBEX system uses a SATA-based SSD

connected to an FPGA. Requests are forwarded from a MySQL server
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to the FPGA, which accesses the SSD to retrieve the data. Simple query
processing for some data types allowed the processing of selections.
Additionally, the framework supported an FPGA-based approach for
string matching from prior work [53].

Based on these initial works, several different systems were de-
veloped, all targeted at different flavors of NDP using either simple
embedded processors or FPGAs to perform typical query workloads.
The most relevant examples are Biscuit [18] and JAFAR [4, 58], which
both consider selection as a candidate for NDP. In contrast, YourSQL
[25] and a similar approach [32] were aimed at the acceleration of join
operations. Overall, all of these approaches are mainly focused on
relational databases.

While most of the previously mentioned work focused on relational
databases, some approaches are more focused on key-value stores.
The earliest approaches were PapyrusKV [31] and Minerva [6]. With
the advance of distributed systems in data centers, key-value stores
also gained more relevance, which is one of the reasons why more
recent work is typically focused on key-value-based approaches. In
addition, key-value stores can be used as storage engines for relational
databases, and thus acceleration and offloading in key-value stores can
be transferred to relational databases. The more distributed approach
in many commercial key-value stores is also why Remote Direct
Memory Access (RDMA)-based research has increased. Corresponding
academic implementations are Caribou [24], BlueDBM [28], and Kanzi
[21]. While Kanzi and Caribou use DRAM for storage, BlueDBM also
incorporates persistent flash memory. All three are focused around
kev-value stores that are distributed over multiple nodes. In those
cases, the scope of NDP is generally broader, as operations are pushed
to nodes instead of performing them on the overarching distributed
key-value store.

5.3 offloading and acceleration in smart storage sys-
tems

A more recent approach at NDP is the nKV system, which is shown
in Fig. 5.1. The basic idea behind nKV is using native storage in com-
bination with NDP. To this end, the corresponding work relies on the
COSMOS+ OpenSSD, which offers a completely open SSD architecture.
The hardware and firmware of the COSMOS+ are publicly available
and can be adapted for specific use-cases. The hardware, consisting
of a flash controller and the NVMe-endpoint, are realized using the
programmable logic of the Xilinx Zynq-7000 SoC. The ARM cores of
the Zynq are used to implement the firmware. With the overall system
described in [33], a regular consumer SSD can be approximated. While
the performance of the COSMOS+ is not competitive with consumer
devices, it is still a valuable resource for evaluating novel approaches.
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Figure 5.1: Architecture of the nKV system, taken from Chapter 12.

The nKV system relies heavily on the prior work presented in
[55], which already exploited the open nature of the COSMOS+ to
remove unnecessary intermediate layers. In addition, they adapted the
RocksDB key-value store, originally developed at Facebook, to take
direct control over the physical flash memory. Direct control’s main
advantage is removing intermediate layers, which eliminates write
amplification. Write amplification occurs in SSDs, as flash memory
has to be erased before it can be rewritten. While write operations
typically manipulate single flash pages, erase operations are mostly
implemented on a more coarse-grained level and erase multiple pages
at the same time. Thus, writing a single flash page will typically
incur matching re-writes, due to the erase operation. Additionally,
intermediate abstraction layers form the operating system oftentimes
also incur additional write and erase operations. In contrast, direct
control of the physical memory reduces the number of unnecessary
writes incurred by intermediate layers and from operations performed
by the operating system.

Based on the prior work, nKV was implemented and initially pre-
sented in the publications included in Chapters 12 and 13. The corre-
sponding publications establish a baseline for an FPGA-based smart
storage device (based on the COSMOS+ OpenSSD) that can be used as
a regular SSD while enabling additional NDP operations to be executed.
Furthermore, the chapters go into more depth on how typical key-
value operations like GET and SCAN can be accelerated by exploiting
parallelism using the available logic resources of the Zynq-7000. In
addition, both works demonstrate and discuss the impact of software-
hardware co-design since more complex algorithms profit from hard-
ware acceleration and intelligent orchestration from the firmware. The
works also demonstrate that a significant advantage can be gained
from moving to native storage. For example, we achieved a speedup
of 1.4x for the SCAN operation by exploiting native storage. If we also
deploy multiple hardware accelerators, this speedup can be increased
to about 2.1x.

While big data applications can be optimized and improved using
hardware acceleration, it typically requires a lot of time to design and
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and flash memory, corresponding memory controllers and addi-
tional compute capabilities in the form of accelerators.

implement the required accelerators. In addition, hardware and soft-
ware have to be co-designed and integrated, which further increases
development times. To circumvent this problem, Chapter 14 introduces
a framework that can generate hardware accelerators for common op-
erations automatically based on a model of the used data structures.
The work exploits that most key-value stores used application-specific
data structures instead of entirely unstructured data. Extracting the
underlying data structures from C-code enables the automatic gen-
eration of hardware accelerators similar to the custom ones used in
prior work. In addition, the corresponding interface code can also
be generated, which reduces the overhead of designing and testing
custom accelerators. While the automatically generated accelerators
perform slightly worse for the GET operation, their performance is on
par for the more complex SCAN operation. This is especially interest-
ing, since the tool flow presented in Chapter 14 is fully automatic and
requires almost no intervention or optimization and still offers similar
performance to the custom accelerators built in Chapters 12 and 13.

5.4 discussion

Generally speaking, a smart SSD could be classified as a typical archi-
tectural extension. After all, SSDs are typically devices that can simply
be plugged into the mainboard of a regular desktop or server machine.
The capabilities provided by an SSD are also relatively concise, and on
the first glance, NDP might not be a significant architectural change.
This is also obvious in Fig. 5.2, which depicts how a smart SSD would
be integrated into a the baseline architecture from Section 3.1.

The reason, we still consider NDP a novel architectural paradigm
lies in the programmability issue. Due to the novelty of smart storage
devices, there is currently no framework or compute model in place
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that simplifies the programming of those devices. Accordingly, actu-
ally using smart storage for any offloading tasks is still complex and
tedious. In addition, it requires knowledge about the application do-
main, persistent storage, low level firmware and potentially hardware
design, which further increases the complexity of working with smart
storage.

Considering the development of general-purpose GPU computing
or the more recent TPUs, we can see that novel paradigms can become
increasingly important. With research, development and adoption,
the novel paradigms become more well-known, which leads to the
development of compute models and programming abstractions that
make these novel architectures accessible to regular programmers.
Something similar is already happening for INP, with increasing num-
bers of hardware vendors developing and selling corresponding smart
NICs. With regards to programmability, languages like P4 are already
in place to make smart NICs accessible, with a recent survey discussing
over 75 publications [17].

Based on the prior paragraphs, it is clear that a major dividing
factor between common architectural extensions and novel architectural
paradigms is their adoption, which is typically driven by matching
workloads. GPUs only became common, because most users prefer the
simplicity of a graphical interface over text-based interfaces. Similarly,
TPUs became important, because Google had to tackle ML workloads.
Due to their importance, TPUs moved from being a completely novel
paradigm to a relatively common (but still proprietary) architectural
extension in less than ten years. While TPUs and GPUs are more recent
examples, there is a significant number of similar examples, from
floating-point and vector extensions in the ISAs of almost all general-
purpose CPUs to network interfaces. If the functionality or performance
increase is beneficial to a significant number of users, the adoption of
matching architectural extensions increases, making the costly research
and development worthwhile.

For NDP, adoption is still low and it is not yet clear, whether NDP-
based smart SSDs will be as common as GPUs or TPUs in the future.
Recent work has definitely shown the potential of NDP and how it can
impact Big Data applications. With the increasing importance of Big
Data and AI, it seems likely that smart storage will be one of the keys
to continuous improvements in corresponding fields.



6
A RT I F I C I A L I N T E L L I G E N C E I N S M A RT S T O R A G E
S Y S T E M S

The prior Chapters 4 and 5 have already introduced SPNs and NDP.
Specifically, the corresponding chapters have discussed using novel
architectures to accelerate SPN inference and how smart storage devices
are examples of novel architectures that could help improve database
systems. Both chapters show how computer architectures can benefit
AI and Big Data. In this chapter, we investigate a different approach,
where SPNs are applied to solve a problem that arises in one of the
potential applications of a novel architecture, namely a NDP-based
smart storage device. To this end, we give a theoretical introduction
to the issue of result set handling in smart storage and why it is an
essential issue in Section 6.1. Using this background, we discuss prior
work on Cardinality Estimation using SPNs in Section 6.2 and how it
could be applied to smart storage devices. This section also serves as
an overview of the publication in Chapter 15, which investigates the
use of FPGA-based SPN inference for Cardinality Estimation.

6.1 result set handling

In the prior Chapter 5, we have already introduced and discussed nKV,
a key-value store that uses NDP and native storage on the COSMOS+ to
offload and accelerate typical key-value store operations, such as GET
and SCAN. The corresponding Section 12.3.5 discusses the handling
of result sets as one of the issues that arise in smart storage devices.
In typical storage devices, requests read or write a certain amount of
data. Since the data is only read or written, its size is known and fixed
throughout this process. Thus, the data transfers are pre-determined
and relatively easy to perform using a Direct Memory Access (DMA)
engine.

In smart storage devices, this is more complex since operations
may interact with the data. For example, while the amount of data
loaded from the flash memory is pre-determined, pre-processing, like
selections, may reduce the volume of data. Therefore, the data transfers
must be adjusted to achieve performance increases. In the original
publication on nKV, this problem is circumvented by passing a result
size with the NDP request that indicates an expected maximum transfer
size. This size is then used to allocate the given space in the DRAM of
the COSMOS+, and the result of the selection is stored there before it
is transferred back using DMA.

43
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For some operations, this is a good approach. For example, con-
sidering the GET operation, a single key-value pair is retrieved. The
maximum transfer size is typically known or can be easily approxi-
mated by simply tracking the maximum size of key-value pairs. Since
key-value stores are often used to store application-specific data, the
key-value pairs typically have a known structure that can also be used
to determine the result size. However, the number of results might
not be known for more complex operations. While this already shows
the importance of this issue, it is also likely to get even more complex
with further advances in NDP approaches.

In addition, there is also a performance-related side to this issue. The
COSMOS+ features a specific memory hierarchy, including persistent
flash memory, onboard DRAM, on-chip Block Random-Access Memory
(BRAM), and the corresponding L2/L1 caches in the ARM Cortex-
A9 of the Zynq-7000 SoC. Since DMA requires that the result set is
stored at least temporarily, choosing a reasonable layer of the memory
hierarchy becomes an issue. If a more reductive operation is used,
the result may fit into the caches or BRAM. Since BRAM and L1 caches
can typically be accessed in a single cycle, they offer low latency
and high throughput. Unfortunately, they are also relatively costly, so
their capacity is typically small. Specifically on the COSMOS+, BRAM

capacity is 19.1 Mb, and the L1 cache is 32 KB. Moving to DRAM, the
COSMOS+ features 1 GB, albeit part of that is required to run the
firmware. Thus, intermediate results bigger than a few hundred MB
have to be stored in flash memory. While this still allows offloading
of workloads, it also requires the device to split its available flash
bandwidth, likely reducing the performance of the NDP request.

While there is some prior work on this issue by Vinçon et al. [56],
there has yet to be a consensus on how this issue can be solved. One
problem in this context is the shift in how those workloads are handled.
In non-NDP approaches, the database is an application running on a
regular OS. The OS will automatically handle memory allocations and
ensure the data can be stored somehow. Even in worst-case scenarios,
the system will typically raise exceptions and inform the user of those
issues. In smart storage systems, the firmware is much less elaborate
and such issues would typically result in data loss or even undefined
behavior.

6.2 cardinality estimation and sum-product networks

A possible solution to the issue of result set handling might be car-
dinality estimation, a process already being researched extensively
in typical relational databases. In the context of relational databases,
the cardinality of a table is the number of rows in that table. Using
different approaches, it is possible to estimate the number of rows in
a relational database table. This information is especially valuable in
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query optimization, as it can be used to order the atomic operations
in more complex queries in a way that reduces the overall runtime,
which is typically achieved by estimating the result size of different
operations and performing those first that reduce the amount of data
the most.

Most relational database systems include some cardinality estima-
tion in their query optimization process, and several such approaches
are discussed in a recent survey by Harmouch et al. [20]. Cardinality
estimation approaches generally are based on sampling or sketching the
dataset. For sampling, a reduced dataset is used to estimate the car-
dinality of the entire dataset. In sketching-based approaches, a sketch
of the dataset is created by applying a hash function. The sketch is
then used for estimating cardinalities. While the survey is limited to
sampling- and sketch-based approaches, more recently, work has been
done on using ML techniques for cardinality estimation. Specifically,
SPNs can encode the distributions of underlying datasets. Hilprecht et
al. first introduced a corresponding approach in [23].

The work by Hilprecht et al. introduces so-called Relational Sum-
Product Networks (RSPNs), which can be used to estimate cardinalities.
Additionally, they can be used to perform Approximate Query Process-
ing (AQP). To this end, RSPNs introduce extensions specifically targeted
at relational databases. Training RSPNs on singular tables yields models
that can predict the cardinalities of queries. To predict more complex
queries, multiple RSPNs are trained on the different tables of a rela-
tional database. The authors use this approach to target the TPC-H
benchmarks and show that the SPN-based approach generally yields
competitive results. In addition, due to the tractable inference on SPNs,
cardinality estimation using SPNs is also relatively fast, with the fastest
queries only taking about 260 µs using automatically generated and
compiled C++ code on a CPU.

Interestingly, the extensions introduced by RSPNs are interesting
for general-purpose databases, but are not required to achieve bet-
ter results. Thus, the publication included in Chapter 15 shows that
regular SPNs can estimate selectivity, which can be used to determine
cardinality by multiplying with the dataset size. The work also inves-
tigates how different kinds of queries can be estimated using SPNs

and determine several classes of queries and how they have to be
handled. The two dividing factors are the number of queried columns,
and whether we query based on equality. Generally speaking, queries
operating on single columns and queries using only equality opera-
tions are relatively accurate with estimations only deviating from the
correct result by up to 0.075. For more complex queries using ranges
and operating on multiple columns, the estimations deviate up to
0.1. Applying these results and combining them with the prior works
from Part ii, the work presents an approach for using regular SPNs

for cardinality estimation using FPGA-based accelerators that could
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be integrated into smart storage devices. In addition, the work also
investigates the use of corresponding accelerators in regular databases,
showing speedups of almost 40x over the prior work by Hilprecht et al.

While the integration into an actual smart storage device was be-
yond the scope of the publication, the evaluation highlights that even
the limited resources of the COSMOS+ are sufficient to implement
cardinality estimation.



7
C O N C L U S I O N

In Chapters 1 and 2, we have discussed the new golden era for com-
puter architecture and the corresponding increase in interest in novel
computer architectures. Especially the recent hype for ML, AI and Big
Data has been an important driver for the research and development
of architectural improvements. Since this trend has been in progress
for a few years now, there are already some interesting new architec-
tures, such as Google’s TPU or Graphcore’s IPU. Based on this trend,
we discuss different scopes of architectural improvements in Chap-
ter 3, introducing a hierarchy for the classification of architectural
improvements ranging from minor incremental changes to complex
and costly redesigns based on new paradigms like NDP, INP and DFP.

Chapter 4 then introduces SPNs as a modern ML workload that can
be accelerated using FPGA-based accelerators. The chapter introduces
four publications, which are also included in Part ii, that highlight
how architectural changes can impact performance. Specifically, the
publications investigate custom data types and how they can increase
resource and energy efficiency, as well as the impact of HBM and
replication, showing that a significant issue is data movement and the
limitations imposed by PCIe. One solution to this problem is the use
of 100G networking, which is also discussed in Chapter 10.

Chapter 5 discusses the novel architectural paradigm NDP and corre-
sponding smart storage devices. The chapter introduces nKV, a novel
key-value store that is based around the COSMOS+ OpenSSD, which
is used as a smart SSD allowing the offloading of database-specific
operations to the storage device. A main advantage of NDP is the
reduction in bandwidth requirements, as unnecessary data transfers
can be omitted by applying data-reductive operations before data
transfers occur.

While Chapters 4 and 5 show the impact of novel, tailored and
optimized computer architectures on modern ML and Big Data appli-
cations, Chapter 6 investigates the use of an ML-based approach for
improving the applications of smart storage devices. The correspond-
ing publication explores the use of FPGA-based SPN accelerators for
Cardinality Estimation and how this could be used in the future to
solve problems arising in NDP scenarios.

Overall, we show the potential offered by novel architectures, espe-
cially in the context of Big Data and ML. In addition, we also show
that ML also offers great potential in improving the applications of
novel architectures. In conjunction, this thesis confirms the new golden
age for computer architecture declared by Hennessy and Patterson.
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While recent advances in computer architecture already contribute
significantly to the success and progress of AI, examples like smart
storage also show that there is still much more potential. Especially
novel paradigms like NDP and INP have the prospect to shape and
impact the computer systems of tomorrow.
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abstract

FPGAs have been successfully used for the implementation of dedi-
cated accelerators for a wide range of machine learning problems. The
inference in so-called Sum-Product Networks can also be accelerated
efficiently using a pipelined FPGA architecture.

However, as Sum-Product Networks compute exact probability val-
ues, the required arithmetic precision poses different challenges than
those encountered with Neural Networks. In previous work, this preci-
sion was maintained by using double-precision floating-point number
formats, which are expensive to implement in FPGAs.

In this work, we propose the use of a logarithmic number system
format tailored specifically towards the inference in Sum-Product Net-
works. The evaluation of our optimized arithmetic hardware operators
shows that the use of logarithmic number formats allows to save up to
50% hardware resources compared to double-precision floating point,
while maintaining sufficient precision for SPN inference at almost
identical performance.
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8.1 introduction

In the past, most of the work on FPGA-based accelerators for machine
learning inference has focused on the acceleration of (artificial) neural
networks [8], such as the very popular convolutional neural networks.

In contrast, in [10, 11] an automatic tool-flow for mapping the in-
ference for so-called Sum-Product Networks (SPN) to an FPGA-based
accelerator was developed. Sum-Product Networks are a very promis-
ing type of machine learning network, that belong to the class of
tractable probabilistic models and share similarities with probabilistic
graphical models (PGM).

Compared to “classical” neural networks, SPNs allow exact inference,
thereby allowing them to explicitly deal with uncertainty over the
inputs. However, the fact that Sum-Product Networks compute exact
probabilities poses a number of unique challenges to the hardware
implementation. Most of the optimization techniques employed for
the hardware mapping of neural networks, such as quantization of
weights, are not readily applicable to SPNs.

In [10], the use of double-precision allowed the preservation of
sufficient accuracy at the cost of a relatively high resource require-
ment per operator. To circumvent this problem, we seek to use an
optimization which is commonly used in ML. The use of logarithmic
scaling is often used on CPUs and GPUs even though the scaling has
to be emulated. Using the flexibility of FPGAs, we aim to implement
the logarithmic scaling through a logarithmic number system (LNS).
This allows us to maintain sufficient accurary with smaller bitwidths,
leading to significant resource savings.

8.2 sum-product networks

Probabilistic models can be used to solve a range of machine learn-
ing problems. For example, the problem of multi-class classification
can be solved with probabilistic queries on a PGM by determin-
ing the class with the highest probability, given some evidence, i.e.,
arg maxc P(class = c|evidence).

While PGMs are very versatile, they generally suffer from one
disadvantage: In general, inference in unrestricted PGMs (e.g. Baysian
Networks) is intractable. SPNs overcome this limitation and allow
to compute exact probabilities in time linear wrt. to the network size.
Additionally, SPNs inherit the universal approximation property from
mixture models, as mixture models can easily be represented as SPNs
using a single sum-node. This means that SPNs are able to represent
any prediction function, similar to deep neural networks.
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Figure 8.1: Example of a valid SPN, capturing the joint probability distribu-
tion of the variables x1, x2 and x3.

8.2.1 Model Representation

A Sum-Product Network captures the joint probability P(X1, X2, ...)
over a set of variables, called the scope of the SPN. The graph structure
of the SPN, used to represent this joint probability distribution, is a
rooted, directed acyclic graph with three different kinds of nodes:
Sum, product and leaf nodes. With these three node types, an SPN
can be defined recursively as follows:

1. A tractable, univariate distribution is an SPN. This corresponds
to the leaf nodes in the network. 2. A product of SPNs over different
scopes (i.e., random variables) is an SPN, represented by a product
node in the network. Essentially, a product node corresponds to a
factorization over independent distributions. 3. A convex combination
(i.e., weighted sum) of SPNs over the same scope is an SPN. This
is equivalent to a mixture of multiple distributions over the same
variables and represented by a sum node and the weights associated
with each of the child nodes. An example SPN is given in Fig. 8.1.

8.2.2 Inference

To answer probabilistic queries using SPNs the following scheme
is used: Given (partial) evidence, histograms at the leaf nodes are
evaluated, mapping input values to probabilities. As in [10], based on
[9], all leave nodes use discrete input values. Using the probabilities
of the leaves, nodes are evaluated bottom-up to calculate the resulting
probability. The evaluation always results in a single probability value.

The basic case is the computation of the joint probability P(X1, X2, ...),
which corresponds to a single evaluation with full evidence. In order to
marginalize out one or multiple variables, it is sufficient to replace the
leaf nodes for these variables with the value 1 and evaluate the SPN.
Both cases can be combined to compute the conditional probability:
P(Y|X) = P(Y,X)

P(X)
.

In this work, we focus on the joint computation, but the accelerator
can be extended to also compute marginals and conditional probabili-
ties.
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8.3 prior work

8.3.1 Logarithmic Number Scale on FPGA

Regarding the use of LNS, there has been extensive research. Especially
for digital signal processing it gained traction through the works
of Lewis, which employed a function interpolation scheme using
interleaved memory to calculate the logarithmic addition [5]. This
resulted in the development of an arithmetic unit (AU) which, at the
time, outperformed all similar floating point-based AUs [6].

A very similar interpolation-based approach for calculating the log-
arithmic addition was later used [3]. The work additionally compared
FP and LNS and determined, that for LNS to outperform FP in latency
and required area, it was necessary that about 70% of operations were
multiplicative.

8.3.2 SPN Inference on FPGA

To the best of our knowledge, the work presented in [10] is the first and
to date only approach to accelerate SPN inference on FPGAs. In that
work, an automatic toolflow that maps the inference in Sum-Product
Networks to a fully pipelined FPGA-accelerator was developed. The
toolflow uses a fully spatial mapping, i.e., for each arithmetic operator
in the SPN, there is a corresponding hardware operator in the datapath.
For the implementation of the hardware arithmetic operators, the
FloPoCo framework [2] was used, with a numeric format similar to
IEEE-754 double precision, achieving end-to-end speedups of 6x over
an x86-CPU and 38x over a Tensorflow-based GPU-implementation.

In this work, we design LNS operators as drop-in replacement for
the FloPoCo-operators in [10] and reuse the automatic toolflow to
automatically map SPN inference to the FPGA.

8.4 approach

Similar to Haselman et al. [3], we use a fixed-point number to encode
the exponent EA for a probability value A. In addition to the exponent,
a zero-flag ZA and a sign-flag SA are used to denote special cases and
the sign of the exponent. Since we only consider probabilities (values
between 0 and 1), the sign-flag is inherently also a flag that indicates
that the linear-scale value is 1, similar to the zero-flag which indicates
a linear-scale value of 0.

In contrast to the encodings used by Haselman et al. [3] or Detrey et
al. [1], this encoding removes the additional sign-bit, which is used to
encode the overall sign for representing negative numbers. In addition,
we chose to change from 2’s complement encoding of the exponent to
an encoding with an explicit sign-flag. Additionally, we do not encode
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special cases such as NaN or ±∞. Thus we are able to save a bit, while
the magnitude of the exponent gains an additional bit in comparison
to [3].

8.4.1 LNS Multiplication

The multiplication of values in linear scaling corresponds to an ad-
dition in logarithmic scale. This is also visible in the corresponding
logarithmic property: log2(x × y) = log2(x) + log2(y). Assuming cor-
rect input values and neither input being 0 nor 1, the calculation is a
simple addition of the exponents. If either Zero-flag is set, the result is
zero (linear-scale multiplication by 0). Additionally, if the addition of
exponents overflows, this results in a value that is too small and thus
saturated towards 0.

While the resulting sign is SR = SA ∨ SB, the exponent is ER =

EA + EB. Additionally, the zero-flag is ZR = ZA ∨ ZB. The special
case handling will override ER and SR to zero, if one of the operands
zero-flag was set, or if the calculation of ER overflowed.

In actual hardware, this is split into 3 pipeline stages: Decoding,
calculation and special-case handling.

8.4.2 LNS Addition

In contrast to multiplication, addition is not simplified in the logarith-
mic scale. Instead, the calculation of an addition in logarithmic scale
is harder than in linear scale. The main challenge with the logarith-
mic addition is obvious in the corresponding logarithmic property:
log2(x + y) = log2(x) + log2(1 + 2(log2(y)−log2(x))). Similar to [1, 3], we
implement this using a simple piecewise polynomial of second degree.

The implementation of the interpolation poses an additional chal-
lenge, since it relies on binary arithmetic. The required bitwidth of
these operations depends on the bitwidths of the exponents. For in-
creased accuracy of these operations, the operations internal to the
interpolator are up to twice the regular bitwidth. To achieve acceptable
clock frequencies, we have to pipeline these operations and exploit the
available special function slices.

For binary additions, this does not pose much of a challenge, since
the carry-save chains on modern FPGAs generally allow additions of
at least 40 bits without problems. Dividing the operands in chunks
of corresponding size allows easy chaining of these adders using
intermediary pipeline registers. The resulting adders are similar to
pipelined Ripple-Carry Adders.

In contrast, the creation of the corresponding multipliers is much
more complex. For FPGA applications, the de-facto standard for gener-
ating these multipliers is given by the work of Kumm et al. [4], which
relies on integer linear programming (ILP) to calculate resource-optimal
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multiplier compositions. Adapting their approach, it was possible to
also avoid the high LUT utilizations of [10]. By solely using DSP-tiles,
the resulting ILP solutions are perfectly tiled to map to DSPs only.
Depending on the placement of the DSP-tile, Vivado then infers DSPs
only if they are used efficiently or if a corresponding directive is used.
Evaluating both approaches, we found the inference-option to be more
resource efficient.

Using these binary additions and multiplications as primitives,
we built the interpolation unit which calculates the interpolating
polynomial ax2 + bx + c. The coefficients a, b, c are pre-computed and
stored in read-only memory (ROM). To reduce the size of these ROMs,
we store only the fraction-bits and a single integer bit due to the
observation by Vouzis et al. [13], that interpolation coefficients for this
interpolated function are positive and in the range [0, 1].

Using the interpolation unit we can now compose a unit for logarith-
mic addition by considering all possible cases under the assumptions
that |A| ≥ |B|, x = interpolate(EB − EA) and Fu = underflow(x). 1. ZR

is set only if ZA and ZB were set. 2. SR is unset, unless ZR or Fu. 3. If
ZR is set and SR is unset, ER = 0. In all other cases, ER = EA − x.

To actually implement this, a pipelined approach is used. After
splitting the operands into exponents and flags, an additional stage
ensures that |A| ≥ |B| holds, switching the operands if necessary.
Then the difference of the exponents is calculated and pushed into the
interpolation unit. Using the interpolation result and the flags we can
detect the special cases and handle them accordingly.

8.5 evaluation

8.5.1 Benchmarks

For full comparability, we use the same set of benchmark datasets as
in [10]. That set contains benchmarks of two different types, count-
based and binary. While the count-based examples are taken from the
well-known NIPS1 corpus, the binary benchmarks are pre-processed
and provided by [7] and [12]. A more detailed description of each of
the datasets can be found in [10].

8.5.2 Parameters

We tuned the parameters of our operators (i.e. integer & fractional
bit-width, interpolation error ceiling) using an iterative process. We
identified a configuration with eight integer-bits, 32 fraction bits and
an interpolation error of 2−21.5 as minimal configuration to maintain
sufficient accuracy across all benchmarks. The acceptable interpolation
error depends on the size of each benchmark, with smaller SPNs

1 archive.ics.uci.edu/ml/datasets/bag+of+words
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tolerating higher interpolation error (2−18.5 for NIPS5) and bigger
SPNs requiring smaller interpolation errors (2−21.5 for Accidents).

8.5.3 FPGA Resource Consumption

As target device for the FPGA evaluation, we select the Xilinx VC709

development board, containing a Virtex7-device (xc7vx690) and 4 GiB
of RAM. With the improvements in TaPaSCo and Vivado we opted to
reproduce the results from [10] using current tool versions TaPaSCo
2019.10 and Vivado 2019.1, again for better comparability.

To achieve the best possible results, we employed the design-space
exploration feature of TaPaSCo, which automatically maximizes the
design frequencies. The resulting frequencies and resource utilizations
can be found in Table 8.1. For brevity, those numbers are given relative
to the entire FPGA in percent2.

Throughout the complete set of Benchmarks, the LNS-based im-
plementations require fewer Slices and fewer DSPs than their FP-
counterparts. Due to the use of ROMs for storing the coefficients for
the interpolation, BRAM utilization is higher in LNS-implementations.
The BRAM requirements are slightly more than doubled for the exam-
ples Accidents and NIPS80. However, that increase is almost irrelevant,
since the original BRAM requirements were always below 5%, and
thus the worst-case example (NIPS80) only requires 10% of BRAM.

In contrast, the resulting utilizations of Slices and DSPs are always
reduced, depending on the size of the SPN and its adder-to-multiplier-
ratio. For small examples such as NIPS10, the utilization is reduced by
1.8% and 2.2% for slices and DSPs, respectively. In the biggest example
(NIPS80), the reduction grows to 44.8% fewer slices and 23.7% fewer
DSPs.

8.5.4 Performance Evaluation

Similar to [10], we compare our accelerators to CPU- and GPU-
implementations. For the CPU, we use the best results obtained in [10].
For the GPU, we implemented a custom CUDA-based compilation
flow and evaluated it using the Nvidia CUDA compiler nvcc in version
10.0.130 and an Nvidia 1080Ti (11GB). Our new flow is up to 90x faster
than the one used in [10].

Regarding throughput, the FPGA-implementations will generally
outperform CPU and GPU, unless data transfer overhead exceeds
a threshold. Examples for this are NIPS5, NIPS10 and NIPS20. For
these, the throughput of the CPU exceeds the corresponding through-
put of all other implementations. As soon as the networks become
larger, the FPGA-implementations will outperform CPU and GPU by

2 The absolute number of resources available are 433,200 (LUT), 866,400 (Register),
108,300 (Slices), 1,470 (BRAM) and 3,600 (DSP), respectively.
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many times. For the example Netflix, the throughput of both FPGA-
implementations is more than 11.4x of CPU and 4.7x of the GPU.
Fig. 8.2 shows the throughput of all implementations.

Comparing the throughputs of both FPGA-implementations, only
minor differences exist. On average, the more area-efficient LNS-
variants have 1.1% reduced throughput. Note that GPU and FPGA
throughput data includes PCIe data transfer overhead. Similar to [10],
this can be up to 80% of overall compute time (NIPS20).

8.6 conclusion & outlook

In this work, we have developed a specialized logarithmic number
format for the use in Sum-Product Network inference and imple-
mented highly efficient, pipelined hardware arithmetic operators for
addition and multiplication. Our hardware operators seamlessly in-
tegrate with the existing framework developed in [10], which allows
to automatically generate fully pipelined FPGA-accelerators for SPN
inference.

We compared our implementation with the existing work [10] and
CPU- and GPU-implementations of SPN inference. Our evaluation
shows that we can maintain sufficient precision with just 42 bits for
the LNS format, whereas the FloPoCo-operators in prior work use
66 bits, leading to reductions in logic resource consumption (Slices,
DSPs) of up to 50%. At the same time, we are able to maintain similar
performance to [10], significantly outperforming the GPU- and CPU-
based implementations in thirteen out of sixteen examples.

In the future, we plan to extend the synthesis flow for other types
of queries, such as marginalization.
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abstract

Probabilistic Graphical Models (PGM) have recently received increas-
ing attention for various machine learning tasks and approaches for
their acceleration on FPGAs have been presented.

In this work, we investigate three different arithmetic formats,
namely customized floating-point, Posit and logarithmic number sys-
tems with regard to their suitability for the inference in PGMs, specifi-
cally so-called Sum-Product Networks (SPN). Based on results from
an automatic design-space exploration developed in this work, we
implement hardware arithmetic operators for each format, optimized
for SPN inference.

Our evaluation shows that the choice of the most area-efficient
solution depends on the relation between the numbers of adders
to multipliers in the network. Up to 57% and 68% of Slice and DSP
reductions, respectively, could be obtained compared to previous work.
With regard to performance, all formats achieve similar results and
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outperform CPU and GPU-based implementations of SPN inference
by factors up to 12x and 4.6x, respectively.

9.1 introduction

Next to GPUs and custom ASICs, such as Google’s TPU, FPGAs have
established themselves as a succesful implementation platform for the
acceleration of machine learning (ML) tasks, in particular for inference.
Besides numerous works on the acceleration of the inference in neural
networks, for example convolutional neural networks (CNN) for com-
puter vision applications, new approaches to accelerate inference in
probabilistic models on FPGAs have recently been presented.

One such approach for the inference in so-called Sum-Product Net-
works (SPN) was developed in [26, 27, 29]. Compared to neural net-
works, Sum-Product Networks, which belong to the class of tractable
Probabilistic Graphical Models (PGM), can better deal with missing
input features and, as SPNs compute exact probability values, are also
able to express uncertainty over their outputs.

However, this ability also poses new challenges to the implemen-
tation of such networks on FPGAs. In [26, 27], the authors used a
double-precision floating-point format to preserve accuracy. Such an
arithmetic format is expensive to implement on FPGAs. Therefore,
in this work, we seek to optimize the hardware arithmetic operators
to reduce resource usage, while preserving sufficient accuracy. To this
end, we will investigate three different arithmetic formats, namely
“traditional” but customized floating point, logarithmic number sys-
tem (LNS) and Posit, with regard to their suitability for FPGA-based
accelerators for SPN inference.

We exploit an automatic and efficient design-space exploration (DSE)
flow, based on software-only emulation of the arithmetic formats
for SPN inference, to determine the minimal bit-widths required
to preserve accuracy with each of the formats prior to hardware
generation.

Based on the findings from our DSE, we then implement hard-
ware arithmetic operators for each of the three investigated arithmetic
formats, optimized for the inference in Sum-Product Networks on
FPGAs. The optimized arithmetic operators are used to generate fully
pipelined datapaths, which are integrated into a SoC-design provid-
ing the host-CPU software interface. In our extensive evaluation, we
investigate which arithmetic format is most suited for SPN inference
on FPGAs and compare the performance of the generated datapaths
with CPU and GPU-based implementations of SPN inference.
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9.2 spn background

Sum-Product Networks [22] belong to the class of probabilistic models,
which can be used for a range of different machine learning tasks.
As they are also able to take the statistical nature of the data into
account, and deal well with uncertainty and missing features, this
class of models has received increasing attention recently.

After a probabilistic model has been trained from data, different
machine learning problems, such as classification and regression, can
be solved by using probabilistic queries on the trained model. An
example for such a query would be to determine which news-article a
user is most likely interested in, based on information on whether or
not he or she has looked at other articles before.

In comparison with other probabilistic models and other ML-tech-
niques, such as deep neural networks, SPNs exhibit a number of
interesting characteristics, that makes them attractive for use in a range
of different applications. For example, SPNs have already been used
succesfully for sequence labeling [24], i.e., classifying the characters
in a handwritten sequence, or in path planning algorithms for mobile
robots [23].

One very important property of SPNs for their practical usage is the
efficiency of the inference: While in general, inference for unrestricted
PGMs is intractable, the inference in SPNs is guaranteed to be linear
w.r.t. the number of nodes [3, 22]. This tractable inference is key to
efficiently answering probabilistic queries in practical applications.

Another interesting property of SPNs is their expressiveness: From
mixture models, which can easily be represented by a shallow Sum-
Product Network with a single sum-node, SPNs inherit the universal
approximation property [20]. This means that Sum-Product Networks
can represent any prediction function, similar to deep neural networks.

One of the most interesting properties about Sum-Product Networks,
that also makes SPNs stand out from other ML-techniques such as
deep neural networks, is the precision of the inference process. Whereas
neural networks generally compute approximate values, Sum-Product
Networks are instances of Arithmetic Circuits [30] and therefore facili-
tate the computation of exact probability values. Beyond more precise
answers to queries, this also offers the advantage that the inference
process can be combined with anomaly detection by comparing the
respective probabilities from different SPNs, and also better account
for the statistical nature of the data.

In this work, we focus on the inference process in a pre-trained
SPN. In this case, the learning has taken place offline on a traditional
CPU-based machine.
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Figure 9.1: Example of a valid SPN representing the joint probability
P(x1, x2, x3, x4).

9.2.1 Model Representation

A Sum-Product Network captures the joint probability P(X, Y, Z)
over a set of variables {X, Y, Z} in the form of a rooted, directed
acyclic graph (DAG). An example for a valid SPN over the variables
{x1, x2, x3, x4} can be found in Fig. 9.1. The graph representation of
SPNs is composed from three different kinds of nodes, with some
additional restrictions to guarantee the validity of the SPN:

• Leaf nodes represent univariate distributions over a single vari-
able. In this work, based on the approach proposed by Molina et
al. [19], we represent these univariate distributions by histograms
for an efficient mapping to the FPGA.

• Factorizations over independent distributions are represented
by product nodes in the graph. The child nodes of a product
node are defined over different scopes, i.e., each sub-tree uses a
distinct set of variables.

• Mixtures over distributions defined over the same set of variables
are represented by sum-nodes, where each child node is addi-
tionally associated with a weight. The child nodes of a sum node
are defined over the same scope, i.e., the same set of variables
appears in each subtree.

9.2.2 Inference

The inference process depends on the kind of probabilistic query that
should be answered. Common to all kinds of inference is the bottom-
up evaluation of the SPN graph, eventually yielding a probability
value at the root of the graph.

The most basic kind of inference in an SPN is the joint computation,
yielding the joint probability for given input values, i.e., full evidence.
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In the first step, the leaf nodes are queried with the value of the
associated input variable, yielding a probability value. In this work,
the univariate distributions at leaf nodes associated with an input
variable are modeled using histograms, which are simply indexed with
the input value. The resulting probability values are then propagated
upwards through the tree. At product nodes, the child node values
are multiplied with each other. When a sum node is reached, the child
node values are first multiplied with the corresponding weight and
then summed up.

Marginalization [20] of variables is another possible kind of query
that can be answered by inference. To this end, the leaf nodes as-
sociated with the marginalized input variables are replaced by the
probability 1. The remaining leaf nodes are just queried with the
associated input values from the partial evidence. The rest of the
inference process is identical to the joint computation. Through the
combination of joint computation and marginalization, it is also possi-
ble to compute conditional probabilities using the following equation,
where the numerator of the fraction corresponds to the joint computa-
tion and the denominator can be computed by marginalization of Y:
P(Y|X) = P(Y,X)

P(X)
.

In this work, we focus on joint computation, but the datapath ar-
chitecture can easily be extended to support other kinds of inference,
such as marginalization.

In prior work, accelerators for the inference in other Probabilistic
Graphical Models such as Bayesian Networks (BN) [1] or Markov
Random Fields (MRF) [5] were developed. However, as discussed in
the previous section, the inference in these kinds of PGMs differs
significantly from Sum-Product Networks and the techniques used in
these works cannot be applied to SPNs without further ado.

To the best of our knowledge, the only approach to accelerate SPN
inference on FPGAs was presented in [26, 27]. In this work, we seek
to extend the automatic toolflow from this work with three different
arithmetic formats.

9.3 arithmetic number formats

9.3.1 Fixed Point

Fixed-point arithmetic can be implemented very efficiently in FPGAs.
Yet, we do not consider fixed-point further in this work, because with
SPNs, very small numbers can still represent significant results. In [19],
the authors reported on relevant log-likelihoods as small as −144 and
a first analysis of the dynamic range of the results of our benchmark
networks showed that the smallest numbers are as small as 1.85 · 10−88.
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As each number can also be as large as one, at least 292 bits would be
necessary to encode this number. A binary multiplier of corresponding
size would require over 200 DSP-slices and is thus not a viable option.

The fact that such small numbers can still be significant for the
outcome of the SPN and the result of the ML-task is also the reason
why we use comparisons in log-space to compute the deviation from
reference results in the rest of this work.

9.3.2 Floating Point

As motivated above, for applications requiring a large dynamic range,
the word length w of fixed-point numbers may get excessively large.
Floating point (FP) numbers provide a much wider dynamic range,
at the cost of a reduced precision, for the same number of bits. An
FP number X according to the IEEE 754 standard is represented as
X = (−1)s × 1. f × 2e−e0 , where s is the sign bit (0 for positive, 1 for
negative), f is the fraction and e is the exponent field. The exponent
field e is a we bit unsigned integer that represents the signed exponent
e − e0, where e0 is called the bias defined as e0 = 2we−1 − 1. As the
FP format is normalized such that the leading bit of the significant is
equal to ‘1’, only the fractional bits of the mantissa are stored in wm

bits.

9.3.3 Posit

The Posit arithmetic format is a comparably young format, introduced
in 2017 as an implementation of type-3 unum (universal number)
arithmetic [12]. The Posit format is characterized by two parameters,
the total number of bits in the format w and the number of bits used
to represent the exponent wes.

As shown in Fig. 9.2, the Posit number representation is composed
of four parts.

Negative numbers are encoded as 2’s complement where the most
significant bit (s) indicates the sign of the number.

The next component, the so-called regime, distinguishes Posit from
traditional floating point formats. The regime is represented using
a variable run-length (or thermometer) encoding, i.e., a sequence of
bits with identical value terminated by a bit of the opposite value,
where the length of the sequence represents the encoded value. As
an example, the sequence 0001 encodes the value −3, whereas the
sequence 110 encodes the value 2.

The third component, the exponent, is encoded as a binary number
using a fixed size of wes bits. In contrast to IEEE754 floating point, the
exponent only encodes positive numbers and no bias is used.

The last component is the mantissa, which is stored just as in IEEE754

floating point, with an implicit leading 1 omitted. The mantissa occu-
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s Regime Exponent Mantissa

wr bits,

variable run-length encoding
wes bits Remaining wm bits

w bits

Figure 9.2: Posit binary format.

pies the remaining wm bits, that are left after the run-length encoding
of the regime and the fixed-size exponent.

Because the length of the regime is only limited by w − 1, the
mantissa and also the exponent may not be present at all.

Given the sign bit s, a regime value r, the exponent e and the man-
tissa f , the number represented in Posit can be computed as follows:
(−1)S × useedr × 2e × 1. f , where useed = 22wes . As an example, with
w = 7 and wes = 2, the bit-sequence 0 01 11 10 encodes the decimal
value (−1)0 × (222

)−1 × 23 × 1.102 = 0.75.
Multiple previous works have developed Posit arithmetic hardware

operators for FPGAs. While [15] and [21] found that Posit incurred a
significant area overhead over traditional floating point, the operators
developed in [4] required resources comparable to FP implementations
and for the particular application investigated in this work, floating
point could be replaced with a smaller bit-width and more area-
efficient Posit format. As only the operators from [15] are available
open-source, we build on this library for the implementation of the
Posit hardware operators in this work. We extend the operators to
meet our requirements as described in Section 9.5.3.

9.3.4 Logarithmic Number System

Originally, Logarithmic Number Systems (LNS) were developed as an
alternative to floating point numbers. The general idea behind LNS is
that instead of storing a real number as a combination of an integer
exponent and a fixed-point number, only the logarithm log2(A) = EA
is stored as a fixed-point exponent. In general purpose applications,
LNS-numbers are then encoded as follows: A = −1SA × 2EA and a flag
is used for zero values [6, 14].

Due to the logarithmic nature of the encoding, all calculations are
performed in a logarithmic scale. Thus, logarithmic properties apply
and log2(a × b) = log2(a) + log2(b), greatly simplifying multiplicative
calculations.

In contrast to this, additive arithmetic operations become more
complex. Assuming that x > y holds, addition and subtraction are
given by log2(x± y) = log2(x)+ log2(1± 2(log2(y)−log2(x))). The second
part of the equation is usually implemented through a helper function
h, and the allowed interpolation error determines how this function
is implemented in hardware. In this work, we adapt the approach
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from [29], which was optimized for SPNs and uses a quadratic spline
interpolation for h.

9.4 design-space exploration using software emulation

A fair comparison of the three arithmetic formats considered requires
that the individual parameters of the different formats (e.g. overall
bitwidth) are optimized as much as possible.

To this end, prior work such as [25] has often used theoretical worst-
case analyses based on error-models for fixed- and floating-point
arithmetic operators. However, these analyses tend to overestimate
the error that occurs during actual computation. Besides that, error
analysis models for Posit and LNS are not readily available and many
of the application-specific optimizations to the hardware operator
implementations described in Section 9.5 cannot easily be modelled in
such error models.

Therefore, we take a different approach: Using a C++-based soft-
ware emulation of the individual SPN and the different arithmetic
formats, the design-space is traversed to determine the best viable
configuration for each arithmetic format on a per-benchmark basis.
We use the available benchmark data to run the software emulation
with each configuration and only accept a configuration, if it maintains
a given error-threshold. As the representativeness of the training data
is key to the ML training itself, the design-space exploration will yield
configurations that work for all relevant input combinations. This
approach is also common when quantizing neural networks [13].

9.4.1 Implementation

Using a graph-based intermediate representation and an abstract
syntax tree (AST) infrastructure, we generate C++ code emulating the
behavior of each of the different arithmetic formats in hardware as
closely as possible.

The design-space of possible configurations is then automatically
traversed. For each configuration, we generate and compile the C++
code and run the SPN inference on a CPU. If the maximum error does
not exceed the configurable error threshold, we accept the configura-
tion.

The performance of the DSE can be improved significantly by in-
vestigating multiple configurations in parallel and additionally paral-
lelizing the CPU-based execution using OpenMP. This way, we could
reduce the time required to determine the correct floating-point config-
uration for the largest benchmark instance NIPS80 from 656 seconds
to only 138 seconds.
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Table 9.1: Configuration of the three arithmetic formats for each of the bench-
marks maintaining an error of 1 × 10−6.

FP Posit LNS

Benchmark we wm w wes wI wF h-Error

Accidents 8 26 36 4 7 32 21.5

Audio 9 28 36 4 8 30 20.5

MSNBC 200 8 26 32 4 7 31 19.5

MSNBC 300 8 24 32 4 7 31 20.5

Netflix 9 26 36 4 8 30 20.5

NLTCS 7 26 32 3 6 30 19.5

Plants 8 28 36 5 7 31 20.5

NIPS5 7 24 30 3 5 26 18.5

NIPS10 7 24 32 3 6 27 20.0

NIPS20 8 24 34 3 7 29 19.5

NIPS30 8 26 34 4 7 29 19.5

NIPS40 9 26 34 4 7 30 19.5

NIPS50 9 26 34 5 8 30 19.5

NIPS60 9 26 36 5 8 30 19.5

NIPS70 9 26 36 5 8 30 20.5

NIPS80 10 26 36 5 9 31 19.5

9.4.2 Accuracy Results

For the following accuracy evaluation, an error threshold of 1 × 10−6

was used. Note that we compute the error in log-space to determine
the error independently from the magnitude of the values. For each of
the arithmetic formats, different parameters can be chosen: For floating
point, the number of bits in the mantissa (wm) and the exponent (we)
can be configured. The Posit format is parameterized by the total
number of bits (w) and the number of bits used for the exponent (wes).
The LNS format can be configured by three parameters: The number
of integer (wI) and fraction (wF) bits in the fixed-point format of the
exponent and the maximum error allowed for the interpolation (Error)
of the helper function h used in LNS-addition.

The configurations identified through our design-space exploration
for each benchmark can be found in Table 9.1. The plots in Fig. 9.3
show how the maximum error develops across different configura-
tions for each arithmetic format in the NIPS80 benchmark, the largest
instance in our benchmark set.

For floating point, a minimum number of exponent bits (we) is
required to be able to represent small but significant values in the
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Table 9.2: Comparison of the per-operator resource requirements and
pipeline depth, using configurations for NIPS80 (cf. Table 9.1).

Format Op. Slice DSP BRAM pipeline depth

FP
Adder 106 0 0 5

Mult. 86 2 0 5

Posit
Adder 374 0 0 7

Mult. 340 4 0 12

LNS
Adder 757 20 1.5 64

Mult. 36 0 0 3

first place. Beyond that, a certain number of mantissa bits (wm) is
required to represent numbers sufficiently accurate so the error will
not accumulate beyond the error threshold.

With Posit, a minimum number of bits for the exponent (wes) and
the total size of the format (w) is required. However, if the size of the
exponent is increased beyond that minimum number, the total number
of bits also has to be increased, otherwise the number of bits remaining
for the mantissa (max. w − wes − 3) is no longer sufficient. So for Posit,
the sweet spot is reached when wes is just large enough to encode all
relevant exponents.

The direct comparison of floating-point and Posit shows, that the
total bitwidth of the formats is typically relatively close. This result
aligns with the findings in [8]. The probabilistic values computed
inside the SPN tree are very small, and lie outside of the golden range
identified in [8]. In that range, relatively small Posit formats can be
used to replace significantly larger floating-point formats.

The LNS format will only produce correct results, if the number of
integer bits (wI) is sufficiently large to represent all relevant exponents,
therefore the plot in Fig. 9.3c shows the development of the error de-
pending on the fraction bits (wF) of the exponent and the interpolation
error of the addition helper function h for wI = 9. The number of
fraction bits must be sufficiently large to represent numbers with a
certain accuracy and, at the same time, the allowed interpolation error
of h must be sufficiently small so the LNS addition does not introduce
excessive error.

9.5 implementation of hardware arithmetic operators

Based on the findings from the automatic DSE presented in the previ-
ous section, specialized hardware arithmetic operators for SPN infer-
ence were developed. This section details the implementation for each
arithmetic format. An overview of the resource requirements of the
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Figure 9.4: FP Adder dual path mantissa processing

individual operators can be found in Table 9.2. The operators were
designed as drop-in replacement for the operators in [26] to enable
reuse of the automatic toolflow in this work.

9.5.1 Floating Point

The floating point implementations used in this work are based on
the FloPoCo tool [9] which was extended for the specifics of SPN. All
of our extensions have been made publicly available in the FloPoCo
git repository [7]. Note that subnormal numbers are not supported in
FloPoCo as they are very costly to implement and the loss in dynamic
range can be easily compensated by adding one additional mantissa
bit.

9.5.1.1 Floating Point Adder

Addition in FP is a much more time and resource consuming operation
compared to FP multiplication. The basic algorithm to perform a
floating point addition requires the following computation steps: 1)
computing the exponent difference, 2) alignment of the operands, 3)
mantissa addition, 4) alignment and rounding of the result, and, 5)
handling of special values. All these computations lie on the critical
path where the large bit shifters required for the two alignment steps
are among the most demanding. Also, faithful rounding does not help
much for addition. However, a well-known technique to reduce the
delay is the dual-path (DP) architecture [11]. The observation here is
that two cases exist that can be treated separately: 1) when subtracting
two numbers with similar magnitude, only a small operand shift is
necessary while a full result shifter is required; 2) in all other cases,
the operand shift has to be large while a small shift for the result
is sufficient. In the DP adder, the computations for both cases are
computed in parallel, and the correct result is selected at the end.
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Table 9.3: Direct comparison of the FP adder before and after their optimiza-
tion using the configurations for NIPS80 (cf. Table 9.1).

Operator Slice DSP PD Freq. [MHz]

FP Adder Single Path 138 0 8 384

FP Adder Dual Path 184 0 7 274

FP Adder (only pos. args.) 106 0 5 389

Fig. 9.4 shows the data path for processing the mantissa, omitting the
control signals for brevity. The first case is called the close-path (shown
on the left in blue) and the second case the far-path (shown on the
right in green). While for the operand alignment only a 1-bit right shift
(R1-Shift) is necessary in the close-path, a full right shifter (R-Shift)
is necessary in the far-path. In contrast, the result of the close-path
requires a leading zero counter (LZC) and full right shifter, while the
the far-path only requires a 2-bit shift (R2-Shift) for normalization and
rounding.

To implement SPNs, we can make use of the dual-path idea by
exploiting the fact that all values in SPNs are restricted to be positive
and only additions occur. Hence, the close-path in a dual-path archi-
tecture will never be active in an SPN. To this end, we extended the
dual-path implementation of the FPAdd operator in FloPoCo with an
option to optimize the adder only for positive numbers, which omits
all components from the close-path as well as the output multiplexer.

To gauge the effects of this optimization, we performed a synthesis
experiment on the single operators (using the same setup later de-
scribed in Section 9.6.2). The results are given in Table 9.3, showing
the logic resources, the pipeline depth (PD) as well as the max. clock
frequency. As there are two options for the FP adder in FloPoCo, a
single path and a dual path, we synthesized both. As expected, the
dual path has one pipeline stage less compared to the single path, but
at the expense of a larger chip area. Remarkably, our optimization
for only positive operands (listed as “only pos. args.”) leads to a slice
reduction of 23.2% and 42.4% compared to the single and dual path
options, respectively, while reducing the pipeline depth by 3 and 2

cycles at the same time.

9.5.1.2 Floating Point Multiplier

The computation of an FP multiplication is much simpler compared to
addition: 1) the mantissas are multiplied, 2) the exponents are added,
and, finally 3) the result is normalized and rounded. This normaliza-
tion requires only a small shift by one bit position and can usually be
merged with the output MUX that is necessary for the special values.
Besides this, the rounding mode has the most influence on the used
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resources. In contrast to correct rounding, faithful rounding requires
only about half the number of bits plus some guard bits of the man-
tissa multiplication result [2]. Hence, a truncated integer multiplier
can be used for the mantissa which requires less chip area. Therefore,
the FP multipliers in this work use faithful rounding based on the
work in [2].

9.5.2 Logarithmic Number System

For the implementation of the LNS hardware operators, we employ
the implementation of Weber et al., presented in [29]. They developed
pipelined and parameterized LNS adders and multipliers targeted
towards SPNs.

As discussed earlier, multiplication in the logarithmic space can be
implemented as a simple binary addition, and consequently consumes
less than half (36 vs. 86, cf. Table 9.2) of the slices compared to the
floating-point multiplier, and no DSPs.

On the other hand, the much more complex calculation for addition
in logarithmic space, for which a quadratic spline interpolation was
used in [29], results in a larger chip area for the logarithmic adder,
which consumes 757 slices and 20 DSPs, compared to 106 slices and
no DSPs for FP.

9.5.3 Posit

For the implementation of the Posit hardware operators, we build
upon PACoGen [15], an open-source project providing Posit basic
arithmetic operators. These implementations are generally only real-
ized as combinatorial circuits.

To ensure a fair comparison between the arithmetic formats regard-
ing operating frequency, we introduced pipelining into the existing,
parameterized implementation. The resulting multiplication operator
requires almost five times the logic resources (340 vs. 86 slices), and,
even though we adopted the optimal DSP allocation scheme from [17],
twice the number of DSPs (4 vs. 2), as the floating-point multiplier. In
case of the addition, the additional decoding logic for the regime and
the higher internal precision cause the Posit adder to use significantly
more resources than its floating-point counterpart (374 vs. 106 slices,
cf. Table 9.2).

9.6 evaluation

9.6.1 Benchmarks

In order to be able to compare the performance and FPGA resource
usage directly to [26], we use the same set of benchmarks. The set
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contains two kinds of benchmarks: Count-based examples, which are
taken from the NeurIPS corpus [10] and capture information about the
frequency of words in texts, and examples with binary input variables,
which were pre-processed by [18] and [28] and capture statistical data,
such as usage statistics of services. More detailed information on the
individual benchmarks can be found in [26].

9.6.2 FPGA Implementation Results

We first compare the resource usage of the three different arithmetic
formats for the benchmark set, using the configurations from Table 9.1.
Xilinx Vivado 2019.1 and TaPaSCo 2019.10 (pre-release) are used to
generate bitstreams for a Xilinx Virtex 7 FPGA device (xc7vx690), all
numbers given here are taken from the post-place&route reports. We
use the automatic design-space exploration feature of TaPaSCo [16]
to determine the best possible frequency. All bitstreams are tested in
actual hardware on a Xilinx VC709 development board, verifying that
the configurations determined by our DSE (cf. Section 9.4) maintain
the given error bound of 1 × 10−6.

The FPGA implementation results are given in Table 9.4. For brevity,
numbers are given relative to the entire FPGA, the absolute number of
resources available are 108,300 (Slices), 1,470 (BRAM) and 3,600 (DSP),
respectively.

Through our automatic design-space exploration to determine the
minimum viable configuration and the optimization to the floating
point operators described in Section 9.5.1, the resource usage com-
pared to the results reported in [26], decreases by up to 57% in logic
slices (avg. 38.5%) and up to 68% in DSP (avg. 62.9%). Additionally,
the clock frequency increases by up to 75 MHz (avg. 46.6 MHz). The
decrease in resource consumption is also depicted in Fig. 9.5.

The comparison between customized floating-point (CFP) and Posit
shows that the latter requires significantly more logic (avg. +53%)
and, except for benchmarks Audio and Plants, which contain a low
number of adders in comparison to the number of multipliers, also
twice the number of DSPs. The BRAM utilization is almost identical,
the frequency is typically lower for Posit (avg. 30 MHz less) and the
pipelines are notably deeper. Overall, one can conclude that Posit is
less suitable for SPN inference than floating-point, probably because
the numbers involved in SPN inference lie outside of the golden range
(cf. Section 9.4.2), where Posit could make up for the additional decod-
ing logic by using much narrower bitwidths. However, the Posit-based
arithmetic still outperforms the double-precision arithmetic used in
[26] by up to 22.6% in slices (avg. 9.5%) and 36% in DSP (avg. 34.2%).

When compared with floating-point, LNS requires slightly more
slices (avg. +7.57%) and significantly (avg. +56%) more BRAM, which,
however, is not a critical resource in our case. The frequencies are
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Figure 9.5: Improved resource and maximum frequency for floating-point
arithmetic in comparison with prior work [26].

comparable, with winners in both formats. The pipelines are much
deeper, mainly due to the long latency (64 cycles) of the LNS adder.
The DSP usage comparison between floating-point and LNS is highly
dependent on the multiplier/adder-ratio (given as M/A in Table 9.4)
of the examples. Only if there are roughly nine times more multipliers
than adders, LNS outperforms floating-point with regard to the DSP
usage (NIPS10 is an outlier, probably due to the very low DSP usage
in both formats). Overall, it seems that LNS is only suitable for such
SPNs with a much higher number of multipliers than adders. Yet,
the LNS-based arithmetic is able to outperform the FloPoCo double-
arithmetic results from [26] by up to 57.5% in slices (avg. 33.7%) and
86% in DSP (avg. 66%), in particular for examples with only a few
adders.

To further validate our results, we also tested relaxed error condi-
tions, namely 1× 10−4 and 1× 10−2, for benchmarks Accidents and Au-
dio, which were chosen because of their very different adder/multiplier-
ratio. We have to omit detailed results for brevity here, but overall,
the relation between LNS- and floating-point format found in the
evaluation for 1 × 10−6 persists for relaxed error conditions: LNS is
only able to save resources in comparison to floating-point, if the SPN
contains very few adders compared to the number of multipliers.

9.6.3 Power Evaluation

Next to the required chip area, we are also interested in the impact of
the arithmetic format onto power consumption.
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Table 9.5: Power consumption of the datapath.

Power Consumption [Watt]

Benchmark [26] CFP Posit LNS

Accidents 12.493 3.069 5.267 3.721

Audio 18.427 5.518 8.358 2.818

In order to investigate the power consumption of the different
arithmetic formats, we consider only the datapath itself, leaving out
the memory infrastructure and TaPaSCo platform infrastructure. We
again run synthesis and P&R for the Xilinx VC709 board using Vivado
2019.1. Afterwards, we use Mentor Questasim 2019.2 to run a post-
implementation timing simulation to capture signal activity information
from a run with actual inference input data. Using this activity infor-
mation, we then use the Vivado 2019.1 power analysis for an estimate
of the power consumption of the datapath.

As the post-implementation timing simulation can take several
days for larger circuits, we again limit our investigation to the two
benchmark instances Accidents and Audio, that we selected for the
reasons described in the previous section. In addition to the three
arithmetic formats investigated in this work, we also conduct the
measurement for the double-precision FloPoCo-format from prior
work [26].

The results from the power analysis (Table 9.5) align with our
findings for the chip area in the previous sections: In the benchmark
instance Accidents, where the customized floating-point was the most
area-efficient format, it also requires the least power, followed by LNS.
For the benchmark instance Audio, where LNS was the most area-
efficient format due to the low number of adders in the SPN, LNS also
requires the least power. Just as before, Posit is not able to keep up
with the two other formats with regard to power usage.

Compared to the double-precision format from prior work, the SPN-
optimized arithmetic formats developed in this work are able to save
significant amounts of power.

9.6.4 Performance Evaluation

In this section, we evaluate the performance of three arithmetic formats
implemented on the FPGA and compare it to a CPU and GPU-based
implementation of SPN inference.

9.6.4.1 CPU & GPU Baseline

Based on the compiler infrastructure that we created for the design-
space exploration (cf. Section 9.4), we additionally built a custom



9.6 evaluation 89

Fi
gu

re
9
.6

:T
hr

ou
gh

pu
t

of
th

e
C

PU
,G

PU
an

d
FP

G
A

-i
m

pl
em

en
ta

tio
ns

in
sa

m
pl

es
/

µ
s.

Ea
ch

gr
ou

p
re

pr
es

en
ts

an
ex

am
pl

e
SP

N
.T

he
si

ng
le

ou
tli

er
is

th
e

C
PU

th
ro

ug
hp

ut
fo

r
ex

am
pl

e
N

IP
S5

w
hi

ch
am

ou
nt

s
to

39
8.

8
sa

m
pl

es
/

µ
s.



90 comparison of arithmetic number formats for spn inference

compilation flow mapping an SPN description to optimized C++ and
CUDA-code, both using double-precision floating-point arithmetic.
In both cases, we compiled using -O3 and -ffast-math to enable
aggressive compiler optimizations. Our C++ compilation flow on an
AMD Ryzen 1600X performs on par with the CPU-baseline from [26],
and our CUDA compilation flow is able to outperform the original
Tensorflow-based GPU-mapping from [26] by a factor of up to 90x on
a Nvidia 1080Ti GPU.

9.6.4.2 Performance Comparison

For the comparison, we run the inference on the VC709 development
board, coupled with an AMD Ryzen 1600X. Our measurements of the
throughput in Fig. 9.6 also include the time required to transfer the
data between host and FPGA.

For the three smallest count-based samples (NIPS5-20), the CPU
provides the best throughput. For these small networks the overhead
for data-transfer to the accelerator (GPU or FPGA) clearly dominates
the execution time. With our optimized CUDA compilation flow, the
GPU provides better throughput than the CPU for the remaining
benchmarks, in particular for the binary examples.

Despite the large differences in the pipeline-depth (cf. Table 9.4),
the performance for the three arithmetic formats implemented on the
FPGA varies only slightly. Overall, all three versions deliver very simi-
lar performance (with an overall difference of less than 2%). Compared
to the previous FPGA implementation in [26], the new formats provide
better throughput (geo.-mean. 2.1x speedup). This is partly due to the
higher operator frequencies, but also caused by improvements to the
underlying TaPaSCo framework.

All three formats significantly outperform the CPU. Except for the
three benchmarks mentioned earlier, the speedup reaches as high as
factor 12x (geo.-mean 2.5x). The three FPGA versions also provide
significantly higher throughput than the GPU-based implementation,
here, the speedups reach up to 4.6x (geo.-mean. 2.1x).

Again, note that our measurements include the PCIe data-transfer to
the FPGA memory. On shared-memory systems such as Zynq MPSoC,
the speedup over the CPU and the GPU would reach up to 37x and
14x, respectively.

9.7 conclusion & outlook

In this work, we have investigated three different arithmetic formats
with regard to their suitability for Sum-Product Network Inference
on FPGAs. We have developed an automatic design-space explo-
ration framework, which allows us to efficiently identify the minimum
bitwidth required for each of the formats to maintain a given error
margin. Based on the findings from the DSE, hardware arithmetic
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operators, optimized for SPN inference, for each of the formats were
implemented.

Our evaluation shows that customized floating-point is the most
resource-efficient format for SPN inference, and is only outperformed
by a logarithmic number system format for SPNs with very few adders
compared to the number of multipliers. All three investigated arith-
metic formats deliver almost identical performance and significantly
outperform CPU and GPU-based implementations of SPN inference,
by factors up to 12x and 4.6x, respectively.

In future work, we will investigate how the hardware arithmetic
operators can be optimized further, e.g., by using fused operators.
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abstract

FPGAs are an interesting platform for the implementation of network-
attached accelerators, either in the form of smart network interface
cards or as In-Network Processing accelerators.

Both application scenarios require a high-throughput hardware net-
work stack. In this work, we integrate such a stack into the open-source
TaPaSCo framework and implement a library of easy-to-use design
primitives for network functionality in modern HDLs. To further fa-
cilitate the development of network-attached FPGA accelerators, the
library is complemented by a handy simulation framework.

In our evaluation, we demonstrate that the integrated and extended
stack can operate at or close to the theoretical maximum, both for the
stack itself as well as an network-attached machine learning inference
appliance.
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10.1 introduction

Numerous previous works have demonstrated the huge potential
for acceleration that can result from attaching FPGAs directly to the
network. In such scenarios, FPGAs can not only be used to implement
smart network interface cards (SmartNIC) [13] and accelerate the
network protocol stack, but they can also be employed to additionally
offload parts of the application itself, e.g., machine learning inference
in the case of Microsoft’s Brainwave project [10], or network security
[19].

While these approaches already demonstrate significant speedup,
even more potential can be unlocked by moving the computation into
the network, as so-called In-Network Processing (INP) [16, 26, 36]. This
does not only allow moving computation closer to the origin of the
data, but also facilitates distributed processing across the network.

However, with the network hardware available today, In-Network
Processing is still severely limited. On the one hand, platforms such
as Barefoot’s Tofino provide high performance, but are limited with
regard to programmability and the available memory on the device
[41]. On the other hand, platforms providing full programmability,
e.g., through Micro-C, provide only limited performance. FPGAs with
high-speed network interfaces can provide both, high flexibility for
the design and high performance.

Independent of whether FPGAs should be used as INP acceler-
ator or SmartNIC, the availability of a high-throughput hardware
network stack is crucial for successful deployment, and such a stack
was presented by Ruiz et al. in [24].

In order to make this particular stack more accessible to researchers
and designers, and to facilitate and automate the design of network-
attached, FPGA-based accelerators, we integrate this stack with the
open-source [32] TaPaSCo framework. This integration not only makes
the network stack available in highly complex heterogeneous System-
on-Chip (SoC) designs, but also allows using TaPaSCo’s automatic
design-space exploration for automatic and efficient traversal of large
design spaces for network-attached accelerators.

After providing details on some modifications to the original stack
(Section 10.4.1), making the stack more flexible, and describing the
integration with TaPaSCo (Section 10.4.2), we present a library of
easy-to-use design primitives (Section 10.4.3) that allow accelerators
to communicate with the network stack on multiple protocol levels.
As testing and verification through simulation are important steps
of any design process, we also present a fast hardware/software-co-
simulation for network-attached accelerators (Section 10.4.5).

To demonstrate how the design primitives and hardware/software-
co-simulation facilitate the design of accelerators, we present a case
study, transforming a host-attached FPGA-based accelerator for Sum-
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Product Network inference [29] into a network-attached accelerator
(Section 10.6). Before that, we evaluate the raw performance of the
network stack and various configurations in Section 10.5.

We also provide related work in Section 10.2, necessary background
information in Section 10.3, and a conclusion and outlook to future
development in Section 10.7.

10.2 related work

FPGA-based network stacks are well established in the academic and
commercial domain with several implementations that provide dif-
fering feature sets, connection speeds, and latencies. Compared to
traditional software stacks, most of them lack more complex features
like IP segmentation and only support particular default configura-
tions without optional protocol extensions.

The availability of commercial TCP Offload Engines (TOE) that
are capable of 100 Gigabit (100G) is still limited. One of them is
developed by the Fraunhofer Heinrich-Hertz-Institute and Missing
Link Electronics [35], which supports a single TCP session and can
typically implement send and receive buffers in BRAM due to their
low memory space requirements.

Most commercial TOEs support sub-100G connection speeds and
are optimized for low latency [1, 2, 12, 34]. A typical application field
is High-Frequency Trading (HFT), where any reduction in latency may
increase the profitability of a financial trading algorithm.

Notably, ultra-low latency stacks generally tend to support fewer
concurrent sessions, because FPGAs only offer a limited amount of
low-latency on-chip memory, which is required for the per-connection
TCP buffers.

In addition, there are various FPGA-based network stacks pursuing
different design goals in the academic space: For example, the authors
in [42] describe a hybrid approach where only the most data-intensive
parts of the TOE are implemented in hardware, while the more control-
intensive parts are handled by firmware running on a CPU.

The work in [17] presents a TOE that can achieve 4 Gbps of through-
put from up to 2048 receive sessions, and 40 Gbps of throughput
to up to 20480 transmit sessions, targeting asymmetric workloads
such as video on demand. It does not support jumbo frames, and the
maximum segment size (MSS) is fixed to 1460 bytes. The memory
architecture uses external SRAM for storing per-session state informa-
tion and DRAM for the send and receive buffers.

The authors of a 100G-capable intrusion-prevention system in [43]
observed that a per-session receive buffer with a fixed size is often
unnecessary, since only 0.3% of network packets arrive out of order
and require buffering for reordering. A more memory-dense buffer
architecture based on linked lists and dynamic allocation that supports
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as many as 100k concurrent sessions while still fitting into BRAM is
developed. Packets that arrive in order are handled on a constant-time
fast path without being buffered, whereas out-of-order packets are
handled on a slow path that requires non-deterministic amounts of
time.

A 10G-capable TCP/UDP network stack is presented in [27] which
was designed to scale well in the number of sessions, verifiably achiev-
ing 10k open connections, however, at the cost of increased latencies.
Unlike most published TOEs, this project handles the complexities
of the TCP protocol through the use of high-level synthesis (HLS).
By designing the stack in C++, the entire implementation comprises
less than 8k lines of code and is thus significantly more compact than
comparable implementations in HDL.

Several other research projects are based on this stack: For example
IBM’s cloudFPGA [40], which seeks to deploy large-scale datacenter
applications on network-attached FPGAs, or the HLS-based HFT ap-
plication in [7], which builds on top of the UDP stack and achieves a
round-trip latency of 869 ns.

The Limago network stack published in [24] used the 10G stack
from [27] as a basis, which was then upgraded for 100G support. The
authors added several new features in order to achieve this higher
link speed, such as TCP window scaling and a hash table based on
cuckoo-hashing, which replaces the previous slower session lookup
mechanism. During this upgrade process, methods to improve check-
sum calculation in hardware were investigated in [31]. The authors
concluded that an HLS-based approach does not perform satisfactorily
and consequently developed a solution in VHDL.

Most of Limago’s upgrades are also part of the 100G TOE published
by ETH Zurich in [38], which is the successor to the 10G stack in [27].
It is also the hardware network stack implementation used in this
work.

10.3 background

This section presents necessary background information on the em-
ployed TCP/IP stack and the TaPaSCo framework.

10.3.1 Hardware TCP/IP Stack

The design of a 100G hardware TCP/IP stack is a significant under-
taking that is off the scope of this paper. Instead, an existing TCP/IP
stack published by the Systems Group at ETH Zurich is leveraged. An
early 10G-capable variant of the stack is presented in [27], which has
been upgraded for 100G support in [24]. The TCP/IP stack sets itself
apart from other hardware TCP/IP stacks reviewed in Section 10.2 in
several ways.
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Except for few SystemVerilog-based wrapper modules, the entire
project is implemented in C++ using Vivado HLS [39]. Designing the
TCP/IP stack in a high-level language sacrifices some control over the
resulting circuity but also increases productivity, in particular with re-
gards to the highly control-intensive TCP protocol implementation. In
addition, an HLS-based design methodology comes at the advantage
of an easily maintainable and extensible codebase.

The TCP/IP stack is designed to support a large number of TCP
sessions, which is demonstrated in experiments in [27] with 10,000

concurrent connections. Each session requires unique send and receive
buffers, where the size of a single buffer ranges from 64 KiB to 256

KiB, depending on the TCP window scaling configuration. For 10,000

sessions, this yields a total required buffer size between 1.3 GB and
5.2 GB, which can only be implemented in off-chip memory like
DRAM. This is a deliberate tradeoff that chooses a higher number of
concurrent sessions at the cost of increased latency [27, p.42].

Per-session information, such as the connection status or timer val-
ues of the retransmission mechanism, is kept in BRAM-based tables
indexed by a session ID. The session IDs are stored in a hash ta-
ble, which handles collisions and realizes single-cycle lookups and
deletions [24].

Hardware designs that use the TCP/IP stack are split into three AXI-
Stream-interconnected Xilinx Vitis kernels: the user kernel containing
the user logic of a network application, the network kernel containing
the TCP/IP stack itself, and the CMAC kernel containing the Ethernet
subsystem and physical layer implementation. The network kernel
internally consists of multiple HLS-based IP cores that are wrapped
by a SystemVerilog top module. The host software uses an OpenCL
API provided by the Xilinx Runtime “XRT” to interact with the FPGA
design.

10.3.2 The TaPaSCo Framework

The Task Parallel System Composer (TaPaSCo) [18] is an open-source
framework providing a toolflow for the automated generation of
System-on-Chip FPGA designs with a particular focus on task-parallel
computation. TaPaSCo aims to increase the portability and scalability of
FPGA designs.

TaPaSCo includes base FPGA designs, referred to as platforms,
for multiple Xilinx FPGA families. The platform typically contains
platform-specific implementations of the memory subsystem, inter-
rupt subsystem, interface to the host CPU, distribution networks for
clock and reset signals, and a status core containing descriptive infor-
mation about the design.

The platform acts as a hardware abstraction layer and provides a stan-
dardized interface to the architecture component of TaPaSCo, which
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itself is decoupled from the underlying FPGA technology. The architec-
ture contains TaPaSCo Processing Elements (PE), which are application-
specific compute kernels that can be implemented by the user either
in an HDL or HLS based design flow. Due to the separation between
platform and architecture, a PE needs to be designed only once and can
be used across all FPGAs supported by TaPaSCo without any changes,
which increases a design’s portability.

Different types of PEs can be instantiated in different multiplicities,
yielding what is called a composition. TaPaSCo supports automated De-
sign Space Exploration (DSE), which can assist in finding a throughput-
optimal composition. These mechanisms allow to easily scale a design
without changing the actual user logic of the PEs.

Further to the hardware toolflow, TaPaSCo provides a runtime with
a C/C++ API that allows host software to interact with the FPGA
design. In particular, the API provides functionality to schedule jobs
onto PEs, handle data transfers between host and FPGA, and monitor
the execution state of individual PEs.

TaPaSCo contains several plugins, referred to as features, which add
optional functionality that is not available across all supported FPGAs
but specific to a particular platform. The Network feature adds an
Ethernet subsystem to the FPGA design and selectively connects PEs
to it, effectively providing them with link-level access to a network. The
feature is available on multiple TaPaSCo platforms in a 10G variant.
On the Xilinx Alveo U280 and the BittWare XUP-VVH platform, the
Network feature additionally supports the instantiation of a 100G
Ethernet backend. Three different operating modes are supported by
the Network feature: In singular mode, a single PE is attached to the
Ethernet subsystem, whereas in both broadcast and round-robin mode,
the subsystem is shared by multiple PEs. We will use this feature in
singular mode to implement the CMAC portion of the network stack
architecture that was outlined in Section 10.3.1.

10.4 implementation

This section describes the contributions with the goal of providing
assisting tools and libraries for developing networked applications on
FPGAs with the TaPaSCo framework.

10.4.1 Modification and Extension of the Network Stack

In preparation of using the TCP/IP stack withing the TaPaSCo ecosys-
tem, we replaced the host software of [38], which uses OpenCL and
the Xilinx Runtime XRT, with an implementation that makes use of
the TaPaSCo runtime.
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10.4.1.1 Parameterizable Data Width

While the TCP/IP stack’s individual HLS cores are designed with
parameterizable bit width, several of the HDL modules instantiate
fixed-width IP cores.

The TaPaSCo Network feature supports both 10G and 100G Ethernet
subsystems that have data interfaces of different bit widths. With the
objective to attach to both subsystems natively, we reworked the
TCP/IP stack to be more flexible and allow build-time configuration
of the data bit width.

10.4.1.2 Issues with Buffer Memory Addresses

The TCP/IP stack can bypass the TCP receive buffer and directly
deliver received data to the application layer. This is an optional
configuration aimed at reducing latency. By default, the bypass opti-
mization is enabled, such that the receive buffer is not used. In the
original release [38], both logical and arithmetical errors existed in the
calculation of buffer memory addresses, leading to data corruption
when buffer bypassing is disabled. Using the simulation infrastructure
presented in Section 10.4.5, we were able to track down the issues and
fix them.

10.4.2 Integration with the TaPaSCo Framework

With its Network feature, the TaPaSCo framework already supports
the automated instantiation of an Ethernet subsystem within an FPGA
design. We use this subsystem to complement those parts implemented
by the TCP/IP stack into a full implementation of the internet protocol
suite.

In preparation for protocol comparisons during the experimental
evaluation, we extended the Network feature with support for the
Xilinx Aurora 64B/66B [3] point-to-point link-layer protocol, which can
now optionally be used instead of the Ethernet link-layer protocol.
Both Ethernet and Aurora can use the same physical layer implemen-
tation.

Since the AXI-Stream data interfaces of both Xilinx CMAC [37], and
Xilinx Aurora [4] IP are clocked at higher frequencies (approx. 322

MHz and 403 MHz, respectively) than the TCP/IP stack within the
PE (250 MHz), a clock domain crossing is required on the data path
between them. This is implemented by an AXI-Stream interconnect
that is optionally instantiated by the TaPaSCo Network feature. To
prevent a continuous transaction coming from a slow clock domain
from being broken into multiple partial transfers within a faster clock
domain, the interconnect is configured to packet mode, which buffers
the entirety of a frame and forwards it in one piece. As the Xilinx
CMAC contains only minimal internal buffering and implements cut
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through semantics on both RX and TX data paths [37, p.11], disabling
the packet mode may result in a buffer-underrun in the CMAC and a
corrupted packet on the wire.

The 100G network bandwidth places high demands on the band-
width of the RX and TX buffer memories. In our case, even when
using the RX buffer bypass, a DRAM-based memory subsystem would
limit the achievable network throughput. To avoid being bound by
memory performance, we instead make use of the High-Bandwidth
Memory (HBM) feature of TaPaSCo, which allows a PE to attach to
high-bandwidth on-chip memory modules. In the resulting FPGA de-
sign, the DRAM-based memory subsystem for TCP buffers is replaced
by an HBM-based subsystem. With this optimization, we achieve a
full saturation of the link bandwidth and are not limited by memory
bandwidth, as long as RX buffer bypassing is enabled (a detailed
evaluation follows in Section 10.5.4).

10.4.3 Design Primitives for Network Access

The interface between the TCP/IP stack and the user kernel comprises
16 AXI-Stream interfaces. Of those, 4 are used for UDP-related func-
tions and 12 for TCP-related functions. The source code release of the
TCP/IP stack in [38] contains a basic C++ library that simplifies the
design of HLS-based user kernels by appropriately interacting with
the 16 AXI-Stream interfaces. This HLS toolflow is also available for
the TaPaSCo integration, but finer-grained control over the generated
circuity may be required for more sophisticated user kernels. This
is generally achieved by designing the user kernel in a dedicated
HDL. Because of its good integration with TaPaSCo, the Bluespec [8]
language is chosen as the target HDL.

To facilitate the development of Bluespec-based user kernels, we
implemented a novel library that exposes all functionality of the
TCP/IP stack via an idiomatic Bluespec API. Like the C++ library,
the Bluespec library on the backend attaches to the 16 AXI-Stream
interfaces of the TCP/IP stack and appropriately interacts with them.

The bit width of any data-carrying AXI-Stream interface changes
depending on the configured data width of the TCP/IP stack. However,
the user-visible bit width of the Bluespec library API is not determined
by the TCP/IP stack configuration but can be freely chosen by the
user. The library contains custom AXI-Stream width-converters that
adapt the bit width of the TCP/IP stack to the user-configured API
bit width. As a result, user kernels are portable across 10G and 100G
subsystems when using our Bluespec library.

The library’s TCP support is fully featured and supports data trans-
ferring, the opening and closing of connections, and putting a TCP
port into listen state. Whenever a new packet shall be transmitted
by the user kernel, it must first be announced to the TCP/IP stack.
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Data transmission can only start once the TCP/IP stack confirms the
announcement with a status message. According to the authors, the
duration of this handshaking sequence varies between 10 and 30 clock
cycles [38], during which the stack must e.g. verify that the TCP send
buffer has enough free capacity for the new packet. To maximize link
utilization, the announcement of new packets and the transfer of data
words belonging to an already announced packet are automatically
pipelined by the library. Furthermore, the interface exposed to the
user kernel is transfer-based rather than packet-based, meaning that
the user can simply supply a stream of payload data which is then
split into MSS-sized packets by the library automatically.

The user-facing UDP Bluespec interface is less complex than the one
for TCP. It consists of methods for getting and putting data words and
metadata of a new packet, where metadata includes a packet’s length,
the source and destination port, and the destination IP address.

The Bluespec library is available as free and open-source software
[6].

10.4.4 Creating a TCP/IP-capable Design

This section describes how the individual parts, described in previ-
ous sections, are combined into a complete design that is capable of
network communication via TCP/IP. A mapping between the seven
layers of the OSI Reference Model [44] and the individual parts that
implement those layers is provided below.

• Layers 1, 2 (partially: MAC sublayer) are implemented by the
Ethernet subsystem instantiated by the TaPaSCo Network feature
that includes modifications as described in Section 10.4.2. De-
pending on the TaPaSCo configuration, a 10G or a 100G backend
is used.

• Layers 2 (partially), 3, 4 are implemented by the TCP/IP stack
that includes modifications as described in Section 10.4.1. The
data width of the stack matches that of the Ethernet backend.

• Layers 5, 6, 7 are implemented by the user kernel using the
Bluespec library introduced in Section 10.4.3. Alternatively, HLS-
based user kernels are also supported.

Fig. 10.1 shows a visualization of how a TCP/IP-capable TaPaSCo
PE, consisting of a user kernel using the Bluespec library and a TCP/IP
stack, integrates with the subsystems of a TaPaSCo design. The figure
also shows a set of SPN accelerators attaching to the user kernel which
are used in the case study in Section 10.6. In addition to the AXI-Lite
control port, the PE module has two AXI-Full interfaces to the memory
subsystem, and an RX and TX AXI-Stream interfaces to the TaPaSCo
Ethernet subsystem. The dedicated memory subsystem is needed for
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Figure 10.1: Architecture of a TCP/IP-capable PE with connections to
TaPaSCo subsystems.

hosting TCP TX and RX buffers, which generally are too large to be
implemented in internal memory such as BRAM (cf. Section 10.3.1).

When creating a TCP/IP-capable design for either the XUP-VVH or
the AU280 board, which both use an FPGA of the Xilinx UltraScale+
family, special care has to be taken when placing the FPGA design.
Internally, these particular FPGAs are not one monolithic chip, but
are divided into three separate dies that are referred to as super logic
regions (SLR). The SLRs are mounted on a silicon interposer and
interconnected using a Stacked Silicon Interconnect. For designs where
components are spread over different SLRs, timing closure may be
hard to achieve because the connections between SLRs are limited
and induce a higher-than-normal delay. For instance, the HBM ports
are located in the bottommost SLR, whereas the GTY transceivers
that attach to the boards’s QSFP28 connector may be located in the
uppermost SLR.

To remedy timing failures due to suboptimal placement onto SLRs,
manual placement hints or SLR crossing register slices, which trade
improvements in frequency for additional latency and area, can be
used.

10.4.5 Fast Hardware/Software-Co-Simulation of TCP/IP-capable Applica-
tions

This section describes the approach of simulating the behavior of a
user kernel and the TCP/IP stack in a way that is not purely static and
testbench-driven but dynamic in the sense that the simulated model
can interact with its environment by exchanging Ethernet packets with
the host operating system running the simulator.

A TCP/IP-capable TaPaSCo PE consists of several components im-
plemented in different languages, with each offering its own simula-
tion infrastructure: HLS modules can be natively compiled and tested,
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Bluespec modules can be simulated using Bluesim, and SystemVerilog
modules can be simulated using an HDL-Simulator.

Seeing that both C++ and Bluespec can be compiled to Verilog, the
fully integrated design can be simulated at the HDL level. While this
HDL simulation is slower than a simulation of individual Bluespec or
C++ components, it is the only way of assessing the behavior of the
whole system.

The Vivado Simulator is a mixed-language (Verilog, SystemVerilog,
VHDL), event-driven HDL simulator that is part of the Vivado software
suite. It is chosen as the underlying HDL simulator since it integrates
well with the remainder of the Vivado-based development flow of both
TaPaSCo and the TCP/IP stack and since it supports the simulation of
encrypted Xilinx IP cores. It contains the proprietary Xilinx Simulator
Interface, a C API that allows a C/C++-based testbench to interact
with a device under test (DUT) by reading and writing its top-level
signals. A testbench implemented in C/C++ can use external libraries
or operating system APIs, thus realizing complex interactions with
a DUT that would be challenging to implement in an HDL-based
testbench.

10.4.5.1 Architecture

To effectively simulate the behavior of a TCP/IP-capable TaPaSCo
PE, the testbench must model the Ethernet layer to which the PE
connects via its AXI-Stream ports. While hard-coding several test
Ethernet frames into the testbench may be reasonable for stateless
upper-layer protocols, this quickly becomes infeasible for the TCP
protocol, where state information is attached to each TCP session
e.g. in the form of sequence and ACK numbers. This implies that an
effective testbench for TCP-based applications needs to be capable
of processing network packets by, at least partially, implementing all
involved network protocols.

Implementing any packet processing logic in Verilog seems unpro-
ductive, considering that even basic software implementations of a
TCP/IP stack in high-level languages span several thousand lines of
code (e.g., [21] and [33], both Linux userspace stacks with roughly 4k
resp. 6k lines of C, or [28], a standalone embedded stack with roughly
24k lines of Rust).

Therefore, the complexity of the simulator architecture is reduced
by (1) implementing the testbench in a higher-level language (C++)
and (2) offloading packet processing itself to the Linux TCP/IP stack.

10.4.5.2 High-level language for testbench

The Vivado Simulator can be instructed to compile an HDL design
into a C library that implements a behavioral simulation model of the
design. A testbench written in C/C++ can be linked with this library
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and use the Xilinx Simulator Interface (XSI) for communication with
the top module. By appropriately calling XSI functions, the testbench
can write values to top-level HDL ports, read current values from
those ports, and advance the simulation time.

10.4.5.3 Linux Stack Offloading

Since the testbench is C++-based, it may leverage arbitrary APIs of the
host operating system. In this particular case, it hands over any packet
parsing and processing tasks to the fully-featured Linux TCP/IP stack,
such that the simulator itself does not need to include dedicated logic
for this.

The simulator interacts with the Linux TCP/IP stack via a TAP
device, which is a type of virtual network interface. A TAP device
behaves like a standard Linux network interface, but rather than
attaching to a physical network interface controller that interacts with
a transmission medium, the data stream on the data link layer is
exposed via a file descriptor. This file descriptor is read and written by
a simulator component called AXI-TAP Bridge that translates between
HDL signals and Ethernet frames.

Like the TAP device, the FPGA TCP/IP stack implements all upper-
layer protocols down to the link layer, thus it is possible to bridge
the Linux TCP/IP stack and the FPGA TCP/IP stack on this layer,
effectively emulating the physical layer. An overview of the simulator
architecture in relation to protocol layers and the positioning of the
AXI-TAP Bridge is shown in Fig. 10.2.

In more detail, after reassembling an Ethernet frame from AXI-
Stream beats, which are transmitted by the FPGA stack via its TX
AXI-Stream port, this frame is written to the TAP device. The frame
is then parsed and processed according to its content by the Linux
TCP/IP stack. Conversely, any application data sent from a userspace
process via the TAP network interface is encoded by the Linux TCP/IP
stack into Ethernet frames that are translated by the AXI-TAP Bridge
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into AXI-Stream beats which are written to the FPGA stack via its RX
AXI-Stream port.

10.4.6 FSM-based Simulator Architecture

A primary concern of the C++-based testbench is to interact with
the AXI-Stream ports of the TaPaSCo PE simulation model for the
exchange of Ethernet frames. In addition to these two AXI-Stream
ports, the TaPaSCo PE contains an AXI-Lite control interface, which
also needs to be driven by the testbench to set the PE arguments or
control its execution state.

Seeing that AXI-Stream is unidirectional and AXI lite supports full-
duplex, there are a total of four independent data streams to and
from the TaPaSCo PE. While the AXI-Lite control interface is not
strictly performance-critical, the AXI-Stream channels are. Waiting for
a TVALID or TREADY signal in one channel must not block the other
from sending or receiving data, as this would inaccurately model the
underlying full-duplex connection of a real-world application.

As a result, the testbench must be able to handle four independent
data streams to and from the PE simultaneously. This is achieved by
an architecture of four FSMs that execute in parallel, where each FSM
handles one data stream by interacting with its associated HDL signals
in each clock cycle.

Read and write operations on the AXI-Lite interface are each imple-
mented by an FSM that has a command queue for the addresses and
data to be read or written. They are used e.g. to set an argument of
the PE or to determine the return value of the PE.

The TX and RX AXI-Stream interfaces are each implemented by
an FSM that is able to process one data word per clock cycle. Eth-
ernet frames coming from the TAP device are split into individual
AXI-Stream beats and transferred onto the RX AXI-Stream interface.
AXI-Stream beats coming from the TX interface are buffered and re-
assembled into an Ethernet frame, which is then forwarded to the TAP
device.

10.4.7 “In Circuit” Emulation

The proposed architecture enables arbitrary userspace software like
wireshark, netcat or custom Python applications to interact with the live
simulation model. Using these high-level tools significantly simplifies
the development and debugging of TCP/IP-capable TaPaSCo PEs.
The simulator supports two methods of interacting with the AXI-Lite
control interface of the PE. First, a simple UNIX signal handler can
trigger a predetermined AXI transaction, and second, arbitrary AXI
transactions can be triggered via a UDP control socket.

The simulator is available as free and open-source software [20].
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10.5 evaluation

In order to evaluate the achievable network performance of TaPaSCo
designs, throughput and latency measurements using the network
protocols TCP, UDP, plain Ethernet, and Aurora are performed and
compared with each other.

10.5.1 Experimental Setup

Multiple experiments are conducted using a setup consisting of two
FPGA boards, one BittWare XUP-VVH and one Xilinx Alveo U280,
connected via a 100 Gigabit network link.

Early experiments have shown that in setups consisting of one
FPGA and one commodity server, the server-side often severely limits
network performance. Achieving throughput close to the line rate
requires non-trivial optimizations on the server-side, as demonstrated
in [15]. Therefore, we do not further consider this type of setup in the
evaluation of this work. Instead, we use one of the FPGAs as traffic
generator to test the true capabilities of the setup in a throughput test.

The FPGA designs for benchmarking different network protocols
are generated using TaPaSCo and contain exactly one PE that operates
at 250 MHz. At this frequency, the 512 bit AXI-Stream interface be-
tween PE and Ethernet or Aurora subsystem can provide a theoretical
throughput of 128 Gbps. A simulation of the TCP/IP stack using an
MSS of 4 KiB shows that a link utilization of over 97% is reached on
this AXI-Stream interface. The resulting net data rate is sufficient to
saturate the 100 Gbps line rate of the Ethernet backend.

Since a TCP buffer implementation in DRAM was found to bottle-
neck the system even when using RX buffer bypassing, if not men-
tioned otherwise, the buffers are implemented in HBM, which was
found to not limit performance.

The benchmark PE implements both a throughput and a latency
test, in both cases using a server-client-architecture. For the protocols
TCP and UDP, it contains the TCP/IP stack and uses the Bluespec
networking library introduced in Section 10.4.3 as foundation for the
test implementation.

The throughput achievable on the link between the two FPGAs
using a particular setup is measured by timing the duration it takes to
transfer 100 GB of data. Network packets are sent from the client to
the server PE as fast as possible. The amount of payload per packet
is configurable and is varied between 1 KiB and 8 KiB, depending on
the specific experiment.

For the case of TCP, splitting the 100 GB transfer into MSS-sized
packets is handled by the Bluespec network library. For UDP and
Ethernet, this is implemented within the user kernel itself. Depending
on the specific network protocol, different amounts and different kinds
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Figure 10.3: Throughput of TCP, UDP, and Ethernet, for different payload
sizes per packet. Note that the y-axis does not start at zero.

of packet headers are prepended to the payload. While the payload
size is kept constant across protocols, this results in overall packets of
varying sizes. As Aurora is a packet-less protocol, splitting the data is
not required in the Aurora-based test. Instead, all data is transmitted
in a single headerless frame.

The latency of the link between the two FPGAs is measured as the
round-trip time (RTT) of a 32 byte-sized ping packet. UDP, Ethernet,
and Aurora are connectionless protocols where the ping packet can be
sent to a server without any prerequisites. The same is not true for a
TCP-based latency test, where a TCP connection has to be established
prior to transmitting the ping packet.

10.5.2 Throughput

In this experiment, the relationship between the choice of network
protocol, the payload size, and the measured throughput is evaluated.
The payload size affects the fraction of protocol overhead, and thus
places an upper bound on the achievable throughput. The experiment
is conducted using receive buffer bypassing (see Section 10.5.4 for
more details). Furthermore, a TCP window size of 256 KiB is used.

The usable throughput at the application layer (”goodput“) is ob-
viously lower than the bandwidth of the 100G network link, and
depends on the ratio between payload size and total size of an Ether-
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net frame. For plain Ethernet using an MTU of 4 KiB, the theoretical
goodput is equal to

100Gbps · 4KiB
4KiB + 8B + 14B + 4B + 12B

= 99.081Gbps. (10.1)

Using an MSS of 4 KiB and assuming an IPv4 header with no options
(20 byte), a TCP header with no options (20 byte), and taking into
consideration the overhead from Eq. (10.1), the theoretical goodput of
a TCP connection is given by

100Gbps · 4KiB
4KiB + 38B + 20B + 20B

= 98.131Gbps. (10.2)

Assuming equivalent constraints as with TCP, the UDP protocol
achieves a theoretical goodput of

100Gbps · 4KiB
4KiB + 38B + 20B + 8B

= 98.414Gbps. (10.3)

Since Aurora is not a packet-based protocol, it does not carry any
packet header overhead. In its reference implementation, however,
the clock compensation mechanism inhibits data transmission for a
maximum of 8 clock cycles every 4992 clock cycles [4, p.20], resulting
in a different kind of protocol overhead. Assuming an infinite data
frame, the worst-case goodput of Aurora 64B/66B amounts to

100Gbps · 4992B
5000B

= 99.840Gbps. (10.4)

Fig. 10.3 shows throughput measurements for payload sizes between
1 KiB and 8 KiB. The payload size of 1460 bytes is significant, as it is
the largest MSS that fits into an Ethernet frame with default MTU of
1500 bytes. As both UDP and TCP operate on top of Ethernet, both
carry a higher protocol overhead and achieve strictly lower throughput.
For the same reason, UDP performs better than TCP, particularly for
small payloads.

Fixing the packet based protocols to a payload size of 4 KiB, the
measured throughput and calculated optimum for TCP, UDP, Ethernet,
and Aurora are shown in Fig. 10.4. With this setup, the measured
throughput of all protocols is virtually equivalent to the theoretical
optimum derived in Eqs. (10.1) to (10.4).

The achievable throughput of a protocol expectedly is inversely
proportional to the amount of overhead carried by it. From this per-
spective, Aurora is of particular relevance since it can be considered
the limit case where packet header overhead is reduced to zero. How-
ever, due to the clock compensation overhead, Aurora cannot achieve
perfect bandwidth utilization.
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10.5.3 Latency

A comparison of RTT latency measurements for different protocols
is shown in Fig. 10.5. Naturally, both UDP and TCP have a higher
latency than Ethernet since these protocols are constructed on top of
Ethernet. Also expectedly, TCP has the highest latency of all since
its implementation is by far the most control-intensive. All latency
measurements for TCP are executed within an established TCP session.

The average duration of a TCP handshake, which is necessary for
establishing a TCP connection, is 2579 ns, i.e. slightly faster than
the RTT of a ping packet. This is plausible because the data-less
handshake packets do not traverse the full TCP/IP stack, such that the
handshaking sequence is processed faster than a data-carrying ping
packet.

10.5.4 RX Bypass

This section presents the examination of the configurable receive
buffer bypass of the TCP/IP stack for TCP connections. For this, two
variables are considered: (1) whether or not the bypass is enabled in the
FPGA design, (2) which memory technology is used to implement the
buffers. Memory subsystems based on HBM and BRAM are evaluated,
resulting in four possible configurations that are compared in terms
of throughput and latency.
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Figure 10.5: RTT latencies using different protocols. For TCP, the duration of
the handshake is not included.

10.5.4.1 Throughput

Fig. 10.6 shows the results of a throughput test for all four configura-
tions. The theoretical maximum is calculated according to Eq. (10.2)
and is marked in the figure. The two configurations using receive
buffer bypassing perform extremely close to the theoretical maximum,
regardless of the memory technology used. The throughput of the
HBM-based system approximately halves if the bypass is disabled,
whereas the BRAM-based system achieves the same performance with
or without bypassing.

Regardless of the configuration, all transmitted data is written to
memory once. However, assuming there are no retransmissions, this
data is never read back. Disabling the bypass further increases memory
pressure, since all received data is written to memory and read back
shortly after when the application requests new data from the receive
buffer. For HBM specifically, this access pattern yields suboptimal
performance due to bus turnaround times between write and read
operations [5, p.23].

The throughput result of the HBM-based configuration without
bypass is noticeably low, yet plausible, considering that data must
be written to and read from memory at approximately 50 Gbps (6.25

GBps). In [9], a sequential combined read/write throughput of 12.9
GBps was measured using a single HBM channel on an Alveo U280,
which aligns with the throughput result of the experiment in this
work. It is thus concluded that memory performance can impede the
achievable throughput performance, and that memory pressure can
be relieved by employing RX buffer bypassing.
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10.5.4.2 Latency

For each of the four possible configurations, Fig. 10.7 shows both the
duration of a TCP handshake (HS) as well as the RTT of a ping packet
that is sent immediately after the handshake completes. It is noticeable
that the duration of the TCP handshake is largely unaffected across
all different configurations. This is expected because data-less TCP
control packets like SYN, SYN+ACK, and ACK are never buffered and
thus independent of the buffer architecture.

When enabling the buffer bypass, the RTT decreases by approx. 27%
for BRAM and by approx. 29% for HBM. This decrease is caused by
the fact that a received ping packet is now directly delivered to the
application, instead of being first written to memory and then read
back before being delivered to the application. This bypassing takes
place at the server, when receiving the initial ping packet, and at the
client, when receiving the ping reply. Generally, the TCP receive buffer
is essential if the application layer cannot process bursts of incoming
packets at line rate or if packets regularly arrive out-of-order and
require buffering for reordering.

10.5.5 Resource Utilization

In Table 10.1, the stack’s resource utilization is summarized for a
configuration that implements both the TCP and the UDP protocol,
one that implements only UDP, and one that implements only TCP.
As expected, the implementation of the TCP protocol proves to be the
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Figure 10.7: Latency results of a TCP ping test, with and without buffer
bypass, for HBM and BRAM based buffer implementations. The
figure shows the duration of the TCP handshake (HS) and the
subsequent RTT of a ping packet.

Table 10.1: Overview of resource utilization of different TCP/IP stack config-
urations.

Component CLB LUTS Registers Block RAMs

abs. % abs. % abs. %

TCP & UDP 121491 9.3 212599 8.2 463.0 23.0

TCP only 114966 8.8 185244 7.1 439.5 21.8

UDP only 32395 2.5 93886 3.6 120.0 6.0

most resource-intensive. The TCP-only configuration requires almost
four times the number of LUTs and BRAMs and almost twice the
number of registers compared to the UDP-only version. As a result,
the TCP-only configuration is similar in resource utilization to the
combined TCP and UDP configuration.

10.6 case study : in-network acceleration of sum-product

network inference

In order to demonstrate how the design primitives described in Sec-
tion 10.4.3 can be used to realize a network-attached accelerator for an
actual application and which handy role simulation (Section 10.4.5)
can play in the design process, we will use an existing FPGA-based
accelerator [29, 30] for the inference in so-called Sum-Product Networks
(SPN) as an example.
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Figure 10.8: Example for the graph structure of a Sum-Product Network,
capturing the joint probability distribution over a set of variables.

10.6.1 Sum-Product Network Background

Similar to other probabilistic (graphical) models, Sum-Product Net-
works [22] are recently receiving increasing attention from industry
and academia alike. Due to their true probabilistic semantics, Sum-
Product Networks can much better cope with the uncertainties found
in real-world applications and are also able to quantify their uncer-
tainty over their own output by means of probabilities, which makes
them an appealing complement and alternative to currently more
widely used machine learning techniques such as neural networks.

Sum-Product Networks capture the joint probability over a set of
variables in the form of a directed acyclic graph (DAG), with three
different types of nodes. Leaf nodes represent univariate distribu-
tions (e.g., Gaussian) over a single variable. Product nodes, on the
other hand, represent a factorization of independent subsets of vari-
ables, while the weighted sum nodes indicate a mixture of multiple
distributions. An example is shown in Fig. 10.8.

The graph structure of an SPN can either be handcrafted, comple-
mented by weight learning, or automatically be learned from training
data. An overview of the various available learning algorithms can
be found in [25]. The survey also provides a nice overview of a wide
range of usage examples for Sum-Product Networks, ranging from
medical imaging [23] to approximate query processing for databases
[14].

After the graph structure has been obtained, inference can be used
to answer probabilistic queries. To this end, the SPN DAG is traversed
in a bottom-up fashion starting at the leaf nodes, where the (partial)
input evidence is used to obtain probabilities. After propagating these
probabilities through the graph, performing the respective operations,
the final probability value is obtained at the single root node of the
SPN.

The existing SPN accelerator [30], which we use as an example here,
is designed to accelerate this inference step. Training of the SPN is
assumed to have taken place beforehand.
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10.6.2 Streaming-based Accelerator

In our prior work, we have employed SPN-accelerators to accelerate
batch-wise processing of SPN inference queries [29, 30]. For the work
presented here, due to the streaming-based interfaces of the network-
ing stack, we had to adapt the corresponding accelerators to make
them compatible. In prior work, the accelerator uses four distinct
sub-modules for the SPN inference. 1) A control register allows con-
figuration of the accelerator. 2) A Load Unit is responsible for loading
input data from on-device DRAM. 3) The SPN-Datapath performs
the actual inference and is fed by the Load Unit. 4) Results from the
SPN-Datapath are passed to a Store Unit, which will write back the
data.

In this work, we have adapted the SPN-Datapath from prior work
to run as a free-running kernel. This means that no configuration is
necessary. Additionally, the Load- and Store Unit have been stripped
from the accelerator. Instead of using AXI4 for loading and storing
the input- and output-data, we now rely on AXI-Stream to feed data
directly into the SPN-Datapath. The results are then passed on via
a second AXI-Stream interface. Overall, this makes the accelerators
a lot more light-weight and reduces the control- and configuration
overhead to zero. Data is pushed into the accelerator via AXI-Stream
and results can be received via a second AXI-Stream interface. The
bitwidths of both of those interfaces may be varied depending on the
underlying SPN. The AXI-Stream slave interface (used for receiving
input-vectors) is sized according to the size of a single input-vector (in
this work, we use up to 640 bit wide input-vectors). The AXI-Stream
master interface (used for sending the inference results) is 64 bit wide,
due to the fact that the output is a single IEEE 754 double precision
float. The accelerator is able to accept a complete input-vector every
cycle. Due to its deeply pipelined nature, the accelerator is able to
processes a single input-vector every cycle, assuming the the pipeline
is kept full. The latency of the accelerator depends on the underlying
SPN, since the SPN datapath varies in depth with the corresponding
SPN.

10.6.3 Network Integration

The data path of the Xilinx CMAC is implemented by a 64-byte-wide
AXI-Stream interface. Since the AXI-Stream slave interface of an SPN
can have an arbitrary byte-width, a width-conversion is necessary in
the general case when connecting the RX-path of the CMAC and slave-
side of the SPN. The same is required for connecting the master-side
of the SPN to the TX-path of the CMAC. In both cases, a Multiple-In
Multiple-Out (MIMO) module is employed for this purpose.
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Table 10.2: Degree of replication of different NIPS-SPNs used in the experi-
mental evaluation.

NIPS Variant 10 20 30 40 50 60 70 80

Number of Instances 5 3 2 2 1 1 1 1

To leverage the full bandwidth of the network connection while
keeping the clock frequency of the SPN in an acceptable range, it may
be necessary to replicate the SPN accelerator module several times in
order to multiply the inference rate. The architecture of the TaPaSCo
PE we used during the evaluation is equal to the one previously shown
in Fig. 10.1.

10.6.4 Experimental Evaluation

In this section, we will discuss the results of the experimental evalua-
tion using the SPN-accelerators presented in the prior sections. Each
of the eight NIPS accelerator represents a different benchmark from
the NeurIPS corpus [11], and the number indicates the number of
inputs in the input-vector of the corresponding SPN. For example,
NIPS10 will use 10 input-values, with each input-value being 8 bits
wide. Thus the overall size of the input vector is 10 bytes or 80 bits.

Since all of the used NIPS-SPNs are able to run at 250 MHz, we have
to use replication, to ensure that the full available network bandwidth
can be exploited. At 250 MHz, we have to make sure that the SPNs can
accept at least 50 bytes of data per cycle. Thus, for NIPS10, we need
to replicate it five times to achieve this. Larger SPNs (like NIPS80) do
not need to be replicated. The specific degree of replication that we
used during evaluation is listed in Table 10.2.

The resulting throughputs are depicted in Fig. 10.9. It is important
to note, that due to the point-to-point nature of the Aurora protocol,
it did not make sense to include it in the evaluation. This is due to
the fact that it would be incompatible with the concept of replicating
accelerators to exploit the available bandwidth. Instead, the results are
limited to the comparison of TCP, UDP and plain Ethernet.

Apart from that, Fig. 10.9 shows that the throughput is very close
to the theoretical limit of 100 Gbps for all different protocols. This
shows that the presented networking stack does not only work with
synthetic benchmarks, but also with more real-world applications, like
SPN inference. Additionally, the peak throughput was achieved for
many different accelerators using different input-widths, which also
highlights the flexibility of the stack.
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Figure 10.9: Throughput of different SPN variants using different network
protocols for input and output data transfer.

10.7 conclusion & outlook

In this work, we have integrated a high-throughput hardware network
stack into the open-source TaPaSCo framework. During the integration
process, several limitation of the existing stack have been removed
and a combination with faster HBM memory was developed to allow
for flexible configuration of the stack and better performance.

Next to that, we also developed a library of easy-to-use design prim-
itives for network-attached accelerators in a modern HDL. The library
is complemented by a simulation framework which leverages the
Linux TCP stack to allow implementing testbenches for accelerators
in high-level languages such as C/C++ or Python. The combination of
the design primitives, the new simulation framework and TaPaSCo’s
automatic design-exploration framework make network-attached SoC-
designs more accessible for researches and significantly facilitate the
design process.

Our evaluation demonstrates that the integrated stack is able to
achieve the maximum theoretical possible throughput. This finding has
been confirmed in the case study, using a machine learning inference
accelerator for Sum-Product Networks as an example, which also
demonstrates how the design primitives can be used to attach existing
accelerators to the network.
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abstract

Due to the memory wall becoming increasingly problematic in high-
performance computing, there is a steady push to improve memory
architectures, mainly focusing on better bandwidth as well as latency.
One of the results of this push is the development of High-Bandwidth
Memory (HBM) which is an alternative to the regular DRAM typically
used by accelerator-cards.

This work adapts an existing accelerator architecture for inference
on Sum-Product Networks (SPN) to exploit the HBM present on
more recent high-performance FPGA-accelerator cards. The evalua-
tion shows that the use of HBM enables almost linear scaling of the
performance due to the embarrassingly parallel nature of batch-wise
SPN inference. It is also shown that the only hindrance to this scaling
is the limited bandwidth available for data-transfers between host and
FPGA. Even with this bottleneck, the prior FPGA-based implementa-
tion is outperformed by up to 1.50x (geo.-mean 1.29x). Similarly, the
CPU and GPU baselines are outperformed by up to 2.4x (geo.-mean
1.6x) and 8.4x (geo.-mean 6.9x) respectively.
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Based on the evaluation, the scaling potential of HBM-based FPGA-
accelerators is explored to give an outlook on what is to come with
future generations of PCIe-based interfaces.

11.1 introduction

Artificial intelligence and machine learning (ML) have become per-
vasive in our every-day life, being deployed in applications such
as voice-based smart assistants or in medical applications. Most of
the progress made in recent years has not only been enabled by im-
provements to the ML models themselves, but also by the constant
improvement of the execution hardware, which needs to provide suf-
ficient computational power to train models with multiple billions
of parameters, and compute inference quickly enough for real-time
applications.

Much work on the acceleration of machine learning models has
focused on (deep) neural networks (NN). Next to GPUs and dedicated
ASIC-accelerators built for the single purpose of accelerating machine
learning training and inference, such as Google’s TPU or Graphcore’s
IPU, FPGAs have proven to be a compelling platform for deep neural
network (DNN) acceleration [2].

However, despite their broad adoption, deep neural networks can
still suffer from serious limitations in real-world usage scenarios. This
has sparked an increased interest in probabilistic models, which are
much better able to cope with real-world uncertainties. While infer-
ence for many probabilistic models is intractable in the general case,
so-called Sum-Product Networks (SPN) [13] combine the strengths of
probabilistic models with tractable inference for real-world applica-
tions. These properties make SPNs not only an interesting candidate
model for ML applications, but also an attractive application for ac-
celeration on different target-platforms, including GPUs [14, 16, 17],
custom ASIC processors [14] and also FPGAs [3, 15, 17].

In our prior work, we developed an architecture for high-throughput
inference in Sum-Product Networks, based on FPGAs available in
Amazon’s AWS cloud [11]. As a single instance of the pipelined ac-
celerator for SPN inference did not fully exploit the available FPGA
resources, we developed a multi-core architecture, with multiple identi-
cal accelerators conducting inference in parallel. However, even though
we employed up to four parallel memory banks, the memory accesses
during the computations quickly became a bottleneck, in particular
due to the relatively low arithmetic intensity of SPN inference.

A promising alternative to overcome this limitation is the use of
High-Bandwidth Memory (HBM), which FPGA vendors are now increas-
ingly integrating into their products. Being composed of dozens of
small, independent blocks of memory, HBM allows multiple memory
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accesses to be performed in parallel and thus increases the available
memory bandwidth.

This work presents our contribution, which is an adapted accelera-
tor architecture that exploits the highly parallel interface of HBM on
FPGAs for high-throughput inference for Sum-Product Networks. The
pipelined multi-core accelerator architecture is automatically gener-
ated from an SPN description, and is automatically integrated in a
heterogeneous system. In addition, the hardware accelerator is com-
bined with an efficient, multi-threaded software runtime interface
on the host, to ensure a high-throughput supply of input data for
the FPGA accelerator. Our contribution here includes the adapted
overarching accelerator architecture, as well as the improved software
runtime interface.

11.2 background

11.2.1 Sum-Product Networks

In recent years, research interest in machine learning and artificial in-
telligence has been very high. Especially DNNs have been researched
and improved to a great extent. A different, less explored model are
Sum-Product Networks (SPN) [13]. Stemming from the class of prob-
abilistic graphical models, they are able to capture joint probability
distributions over many different random variables. Their two major
advantages are their tractability and their ability to handle uncertainty.
With regard to tractability, inference on SPNs can be performed in
linear time w.r.t. the size of an SPN. With regards to uncertainty, SPNs
are able to handle uncertainties like missing features or unclear classi-
fications, due to the fact that they compute actual probability values.
A very interesting example for this is discussed in the work by Pe-
harz et al. [12] which uses randomly generated SPNs for classification
tasks. Confronting an SPN trained for the image classification bench-
mark MNIST with out-of-domain images yields lower probabilities
and thereby indicates that the SPN is uncertain about the resulting
classification.

In general, SPNs are directed acyclical graphs, comprising three
distinct node types: 1) The leaf nodes represent univariate probability
distributions over single random variables. 2) Product nodes repre-
sent factorizations of independent variables. 3) Sum nodes represent
mixtures of distributions.

Using these three node types, SPNs are capable of capturing com-
plex joint probability distributions. To achieve this, the general process
is as follows: For each dataset, an independence check is performed
to determine if there are any independent variables. If so, this is rep-
resented in the SPN using a product node. If this is not the case, the
dataset is divided by clustering. The resulting sub-datasets are then
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(a) (b)

Figure 11.1: Different types of SPNs. (a) shows a typical SPN with Gaussian
leaf nodes. (b) shows a Mixed SPN using histograms to approxi-
mate the gaussian distributions of (a).

recursively traversed, until the data can be represented using a single
univariate distribution. Due to this very simple structure, SPNs are a
very simple and concise way of representing complex joint probability
distributions. To perform inference on an SPN, a simple bottom-up
evaluation has to be performed.

In this work, we rely on a specific flavor of SPNs called Mixed SPNs
[9]. The main difference between pure SPNs and mixed ones is the
fact that the leaf nodes are approximated using simple histograms
(c.f. Fig. 11.1). These histograms can easily be mapped to hardware
as shown in [15, 17, 18]. Specifically, we will build upon our prior
work [11], which explored the application of SPNs in a heteroge-
neous reconfigurable cloud (Amazon AWS F1 Instances with FPGA
accelerators).

11.2.2 High-Bandwidth Memory

In their current UltraScale+ series, Xilinx offers some FPGAs which
include High-Bandwidth-Memory (HBM) in addition to conventional
off-chip SDRAM. As the name implies, this new type of memory
provides significantly more memory bandwidth compared to off-chip
SDRAM: According to Xilinx the HBM used on their FPGAs can
achieve up to 460GB/s. However, this number can only be achieved
when issuing multiple memory requests in parallel, making it nec-
essary to adapt existing architectures in order to actually exploit the
additional bandwidth.

The HBM on these Xilinx FPGAs has a capacity ranging from 4GB
to 16GB and is split into two stacks. Each stack features 16 memory
channels with a width of 256 bit, each connected to its own memory
region. By default, each of these channels can only access its associated
memory region. Each of these memory channels is exposed to the user
logic via one AXI3 interface, resulting in a total of 32 AXI3 interfaces
for the HBM.
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 450 MHz w/o Smart Connect
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Figure 11.2: Maximum throughput when issuing linear read and write ac-
cesses in parallel to one HBM memory channel for two different
configurations and different request sizes. The first configura-
tion runs the block generating the accesses with the 450 MHz
clock used by the HBM and natively connects both. The second
configuration runs the PE at half the clock frequency but the
interface width is doubled. An AXI Smart Connect is used to
perform clock- and data-width-conversion.

Xilinx offers an optional crossbar which, when enabled, hides the
partitioning from the user and allows to access the entire memory space
from each AXI interface. However, this comes at the cost of additional
latency and decreased performance, where the actual impact is highly
dependent on the concrete access pattern. For the rest of this work,
we will not use the crossbar, since we aim to explore the maximally
achievable performance.

Figure 11.2 shows the performance for one HBM memory chan-
nel. The performance data is generated using a special benchmark
hardware block which generates linear memory reads and writes in
parallel, as this is the access pattern used by our SPN accelerators.
There are two major insights: First, the throughput caps at a request
size of 1 MiB, as no further performance improvements are observed
beyond this. And second, there is no significant performance benefit
when running the benchmark block at 450 MHz with a connection to
the HBM at its native interface width versus running the block at half
the clock frequency and in turn doubling the interface width. This is
a valuable insight, as it is often not possible to run user logic at 450

MHz. Because we do not use the crossbar, the different HBM memory
channels are completely independent and performance scales linearly
w.r.t. to the number of channels/accelerators used.
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11.3 approach

In this section, we will introduce our approach for scaling up the
number of SPN-accelerators using HBM. Additionally, we will discuss
the motivation and reasoning for the upscaling.

11.3.1 Motivation

Considering the theoretical advantages of SPNs over other machine
learning models, they have an obvious place in many real-world
applications. The fast inference that can be achieved using FPGA-
accelerated SPNs is an additional advantage. Since FPGAs are not
as wide spread as GPUs, using the reconfigurable cloud is also a
reasonable choice (as described in [11]). Unfortunately, looking at the
architecture used by [11], there is an obvious problem: Due to the size
of the SPN accelerators, as well as their memory-bandwidth require-
ments, it becomes increasingly hard to map them to Amazon AWS F1

instances. Looking at the NIPS80 benchmarks from [11], we can see
that combining bigger accelerators with multiple memory controllers
leads to a trade-off: Either we sacrifice memory controllers, which
limits the overall throughput of the system by reducing the amount
of data that can be accessed in parallel. Or, we reduce the number
of accelerators, which means that fewer inferences can be handled
concurrently. Specifically, the logic resources on the F1 are insufficient
to hold the combination of four NIPS80 accelerators with four separate
memory controllers. Thus, only two accelerators were used, which
in turn slowed performance for that benchmark. Alternatively, it was
possible to use a single memory controller in combination with three
SPN accelerators, which also had a performance cost.

If we take into account the advantages of HBM memory (described
in Section 11.2.2), it seems very reasonable to replace the use of on-
board DRAM with use of on-chip HBM. The HBM controllers are
implemented as hard IP and thus do not consume FPGA resources.
This, in turn, should allow the use of more accelerator-cores. Since
soft memory controllers are also sensitive to clocking constraints, their
removal should also improve the problem of globally deteriorating
clock frequencies encountered in [11]. Specifically, the use of additional
soft memory controllers had a larger impact on the achievable clock
frequency than the addition of extra SPN accelerators. Last but not
least, the independent HBM blocks can be exclusively assigned to
individual SPN accelerators, avoiding interference between them. This
should also be another advantage over the shared use of on-board
DRAM.
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Figure 11.3: Architecture of the SPN-Accelerator

11.3.2 SPN-Accelerator

Fundamentally, the basic SPN accelerator-cores have a simple archi-
tecture. The accelerator is connected to a memory via a AXI4 Full
interface, which typically enables access to the on-board DRAM. The
same interface can be used to access on-chip BRAM or HBM without
requiring big changes to the accelerator. To ensure compatibility to all
kinds of AXI-based memories, we made our interface generation more
generic to also cover HBM memories. Accelerators are controlled by
an AXI4 Lite Interface, which exposes a simple register file to the user.
Due to the increased address-width of the HBM-data-channel, we had
to adapt the control registers to 64 bit. Within the accelerator (also de-
picted in Fig. 11.3), there are multiple submodules which orchestrate
the batch-wise inference: First, the Load Unit loads the data from the
memory and pushes it into the Sample Buffer. This buffer collects
incoming data until a complete vector of input values has been built.
Then, the vector is pushed into the SPN Datapath. The result values
of the SPN Datapath are collected in a Result Buffer. The result buffer
collects 64 bit result values, until a 512 bit word is complete. This word
is then pushed into the Store Unit, which will handle the AXI4 Write
to store the results back to memory.

The most important part of the accelerator is the SPN Datapath,
which can be generated automatically from a textual description of
the SPN. The textual description is compatible with the SPFlow li-
brary [10], which enables a very simple and streamlined development
toolflow. SPNs can be easily trained and evaluated using SPFlow,
afterwards exporting them to the textual description for hardware-
generation. In addition to the SPFlow-compatibility, the generator
offers great flexibility with regards to the used internal number for-
mat. In prior work, the different number formats were discussed in
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more detail [17], but in general, the generator supports a Custom
Floating Point (CFP) format as well as a Logarithmic Number System
(LNS) format. Both formats can be configured at a very fine granu-
larity. For CFP, the number of exponent- and mantissa-bits can be
configured, as well as the used rounding scheme. For both formats,
the generated digital arithmetic is optimized towards the use on FP-
GAs. The optimizations of LNS are further discussed in [18], while
the CFP format is described in detail in [17]. For this work, we chose
the suitable configurations determined in [17].

11.4 implementation

To enable the use of HBM, we have made two distinct changes to our
prior work: First, we adapted the on-chip architecture to use HBM in
a manner that enables the use of many parallel SPN accelerators. In
addition, we made some improvements to the software-interface to
ensure that the parallelism provided by the many HBM channels is
actually exploited.

11.4.1 On-Device Architecture

We use the open-source framework TaPaSCo [7] as a basis for our
architecture. However, several modifications had to be made to accom-
modate the requirements for our use-case.

The biggest change is, of course, the use of HBM instead of off-chip
DDR-SDRAM memory. We use a dedicated HBM block (and thus
memory channel) per SPN accelerator. However, it is not possible to
run the SPN accelerators at the 450 MHz of clock frequency used
by the HBM. In order to achieve the same memory throughput, we
run the accelerators at the more easily achievable half frequency (225

MHz), but double the interface width to 512 bit. As discussed in
Section 11.2.2, this indeed does not affect memory performance. We
use an AXI SmartConnect between the accelerator and the HBM, which
is responsible for data-width- and clock-conversion. It also performs
protocol conversion, as the accelerators use AXI4, while the HBM only
supports AXI3. Additionally, we employ register slices on these AXI
connections where necessary, to achieve routability. This setup ensures
that there are no unnecessary dependencies between the accelerators
which might impact performance.

11.4.2 Parallel Runtime

To allow users to easily interface with the SPN inference accelerators
on the FPGA, we have developed a software runtime, based on the
TaPaSCo API. In contrast to prior work, where important parameters
and information had to be supplied manually by the user, the new
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software runtime can now query the TaPaSCo system and the acceler-
ator itself for these parameters, making it easier to interact with the
accelerator. To this end, the accelerator was extended with a second
execution mode to read out the configuration parameters specified at
synthesis time.

In addition to providing an easy-to-use interface to the user, the
second important task of the runtime is to orchestrate the execution of
the accelerator instances on the FPGA.

As described in Section 11.4.1, accelerator instances on the FPGA are
directly coupled to a dedicated HBM memory channel per instance,
i.e., each accelerator instance only has access to a single HBM memory
block. However, TaPaSCo currently does not support to split the
device address space into distinct memory regions, so we cannot rely
on TaPaSCo’s memory management API to allocate and manage the
HBM address space. Instead, our SPN runtime implements its own
thread-safe device memory manager, which allows to manage the
distinct HBM memory blocks separately. The device memory manager
in our runtime supports allocation and freeing of memory blocks in a
specific HBM block, making it possible to establish distinct address
regions for each HBM block.

Prior work [11] also showed that overlapping the data-transfers
between host and device with the execution on the accelerator can
reduce overall execution time. To implement such a scheme, each
compute job is broken down into multiple sub-jobs, according to a
user-specified block-size. Each CPU thread then performs the same
sequence of tasks: First, the data is transferred to the on-chip HBM.
Then the SPN-accelerator is invoked and the CPU-thread waits for it
to finish. As soon as the accelerator finishes the inference task, the
CPU thread triggers the transfer of the results from HBM to the host.

By assigning multiple CPU threads to one accelerator instance on
the FPGA, we can effectively overlap data transfers and computations,
as one thread will be able to perform data transfers for block n + 1,
while another thread is waiting for the FPGA accelerator instance to
complete computation of block n.

In the prior work, up to four threads per SPN accelerator were
used to achieve maximum throughput. In our current implementation,
measurements have shown that the DMA over PCIe bandwidth is
already fully utilized with just two threads per SPN accelerator.

11.5 evaluation

To evaluate how the use of HBM impacts SPN inference, we will first
take a look at the hardware utilization and (potential) scaling capa-
bilities of our approach. Afterwards we compare the results against
our prior work focusing on AWS F1 [11], which mainly assesses the
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performance of SPN inference in a cloud computing setting. For all
benchmarks we rely on datasets from the well-known NIPS corpus1.

11.5.1 Resource Utilization

Compared to our prior work, there are three significant changes which
impact the resource utilization: 1) Due to the exclusive use of HBM, it
is not necessary to include soft DRAM controllers in our design. The
HBM controllers are hardened IP, which means they do not require
logic resources. Conversely, using a soft DRAM controller requires
a significant amount of FPGA-resources. 2) While we are using the
same SPNs as [11], we exploit additional prior work, which made
the internal arithmetic format more flexible w.r.t. to the bitwidth, and
also optimized the arithmetic for the SPNs [17, 18]. 3) Our evaluation
was performed using a Bittware XUP-VVH accelerator card, which
features a Xilinx UltraScale+ VU37P FPGA. In comparison, Amazon
AWS F1 instances feature a similar FPGA, which does not have HBM
capabilities. Both FPGAs are from the UltraScale+ series, but the AWS
FPGA has slightly fewer logic resources. Additionally, all designs
targeting the F1 instances have to include a shell for the host interface,
which also incurs a resource overhead.

In addition to these differences, the results provided by [11] use
varying numbers of SPN accelerators and memory controllers. For a
valid comparison, we initially limit the scope to benchmarks with four
accelerator-instances with a corresponding memory channel each (i.e.,
up to and including NIPS40). To contrast these with our new HBM-
capable architecture, we built corresponding designs that feature four
accelerator-instances, each connected to a dedicated HBM channel.
The results are shown in Table 11.1.

It is obvious that our new approach is more resource efficient in
almost all resource types. Interestingly, the accelerators used in [11]
generally require fewer LUTs used as Memory. The change to the
custom floating point arithmetic here (originally developed in [17])
could explain this change. In terms of LUTs used as Logic, BRAM
and DSPs, our work typically requires approx. 66% fewer resources.
LUTs used as memory are slightly increased (except for NIPS40). The
number of registers used here is roughly 50% less than in [11].

Overall, the resource requirements have vastly decreased in com-
parison to [11]. This opens up the potential to further replicate the
accelerator to scale up. This allows us, e.g., to fit up to eight NIPS80

accelerators on the FPGA compared to only two in [11].

1 http://archive.ics.uci.edu/ml/datasets/bag+of+words
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11.5.2 Performance Scaling

To describe the scaling of our architecture, we take a closer look at
the very small NIPS10 benchmark. For each processed sample, the
input consists of 10 single-byte values. The result is a single double-
precision value. This means that each processed sample entails a total
data transfer of 144 bits. Using a single SPN accelerator, the architec-
ture is able to process 133,139,305 samples per second. Multiplying
by the number of input and result bits per sample reveals that the
accelerator requires 2.23 GiB/s of memory bandwidth. Given the HBM
performance discussed earlier (c.f. Fig. 11.2), this shows that a single
HBM channel should easily be able to provide the data required for a
single accelerator. Hypothetically, linear scaling should be possible to
at least 32 accelerators, due to the 32 HBM channels (and completely
disregarding the limited logic resources).

To test this hypothesis, we ran multiple performance benchmarks
for each of the benchmark SPNs and measured the end-to-end execu-
tion time required for computing inference over 100,000,000 samples
using up to eight concurrent SPN cores, each controlled by up to
two control-threads. From the results, we conclude that using more
than one control-thread only improves performance for less than four
accelerators. Thus, all of the results presented in this section are mea-
sured with only one dedicated control-thread per SPN accelerator. The
corresponding benchmark results are visualized in Fig. 11.4.

If we look at the right side of Fig. 11.4, the scaling for NIPS10

is obviously slowing at five or more SPN accelerators. Adding ad-
ditional accelerators after that point does not yield any significant
performance improvements. Using five accelerators, we are able to
process 614,654,595 samples per second, which in turn requires ap-
prox. 10.3 GiB/s of memory bandwidth. Due to the use of up to eight
independent HBM channels with approx. 12 GiB/s each, the available
memory bandwidth should not be an issue.

To further investigate this point we performed a separate set of
benchmark runs. In the second run, we disregarded the host-to-device
data-transfer times and only measured the on-device computation
including the HBM accesses. The results are shown on the left in
Fig. 11.4. It is clear that almost linear scaling is achieved for up to
eight concurrent accelerators. This makes sense, since the batch-wise
inference on SPNs is embarrassingly parallel. This trend is also likely to
continue at least until all 32 HBM channels are used by at least one
SPN accelerator. Unfortunately, scaling up that far is not possible due
to the limited FPGA logic resources, as well as routing scarcity.

After examining these results, we conclude that the issue is caused
by the host-to-device data-transfers, which are performed using DMA-
transfers via the PCIe 3.0 x16 interface of the accelerator card.
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11.5.3 Scaling Limitations

The previous Section 11.5.2 shows that scaling is limited due to the
host-to-device data-transfers as well as the available FPGA-resources.
Disregarding these limitations, we want to give a perspective on the
theoretical limitations of our approach focusing only on the HBM.
According to the specification, the theoretical peak bandwidth of the
HBM on the BittWare XUP-VVH platform is 460 GB/s (approx. 428

GiB/s). From the HBM benchmark shown in Fig. 11.2, we see that the
practical performance is around 12 GiB/s per channel, assuming that
that the blocks accessed are reasonably large.

Given the required data rates for the NIPS10 benchmark (144 bits
per sample, 2.23 GiB/s), this means that a channel is easily able to
accommodate at least four accelerators. Multiplying by the number of
channels (32) would mean that overall, up to 128 NIPS10-accelerators
could be used without any memory bandwidth limitations. The re-
quired memory bandwidth in that case would be 32 ∗ 4 ∗ 2.23 GiB/s
= 285 GiB/s, which is still well below the theoretical limit, as well
as the practical limit (32 ∗ 12 GiB/s = 384 GiB/s). Due to the inde-
pendent nature of the HBM channels, it is relatively likely that this
setup would actually allow linear scaling up to the practical limit of
the HBM memory.

The HBM-scaling potential is further highlighted in Fig. 11.5. Using
the data-sizes and samples per second for each benchmark, we cal-
culated the required memory throughput of each of the benchmark
SPNs. The resulting values are compared against the HBM throughput
limitations. The comparison is drawn versus the single-channel result
from our HBM benchmark shown in Fig. 11.2, the practical limitation
imposed by 32 channels running at maximum channel throughput
and the theoretical limit (as quoted by Xilinx). The vast memory
bandwidth provided by HBM could theoretically allow the use of
64 accelerator-instances for all benchmarks, effectively boosting the
current performance by up to 8x. For the smaller benchmarks NIPS10

and NIPS20, up to 128 instances could be served by the HBM, which
in turn would double performance over 64 instances. While these
values are currently out of reach, the improvements provided by the
upcoming generations of PCIe will help improve the performance.

To put this into perspective, we look at NIPS80: Using 80 single-byte
input values, we are able to process 116,565,604 samples per second.
The input data alone requires a bandwidth of 8.7 GiB/s. When we
consider the theoretical peak bandwidth of PCIe 3.0 x16, the one-
directional theoretical limit is 15.754 GB/s (14.67 GiB/s), which is
in practice never reached. For example, current PCIe-based DMA-
engines like the Xilinx QDMA or Corundum [1] typically achieve
speeds of 100 Gb/s which equates to 11.6415 GiB/s for single-direction
transfers. The difference to our NIPS80 example can be explained by
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imperfect overlapping of the data transfers and the interference with
the actual computation. Since the upcoming PCIe generations are
specified to double the bandwidth with each generation, it is likely that
corresponding DMA-engines will allow single-direction bandwidths
of approx. 23 GiB/s, 46 GiB/s and 92 GiB/s for PCIe 4.0, 5.0 and 6.0
respectively. While this is still not comparable to the bandwidth of the
on-chip HBM, it would definitively allow scaling much further.

In addition, this problem could also be circumvented by different
approaches, where host-to-device data-transfers can be omitted due
to shared memory, such as the Intel HARP prototype which unifies a
high-performance FPGA with a server-grade CPU.

Last but not least, it is important to consider different approaches
for delivering data to the SPN accelerators. In [3] for example, we used
a streaming-based version of our accelerators to integrate them into a
100G network for in-network inference. The experimental results show
that using a reasonable degree of replication, the SPN-accelerators
are perfectly capable of performing inference at line rate. In light of
the recent advancements in networking and shared memory systems,
the potential of HBM becomes even more interesting as a reasonable
option for buffering, especially when multiple 100G links are used to
transport data in between multiple nodes.

11.5.4 End-to-End Performance

In the previous sections, we have discussed the performance results
achieved in this work in the context of HBM performance and scaling
properties. While the scaling potential is not fully exploited due to the
bottleneck imposed by the host-to-device data-transfers, we still want
to give a perspective on the overall end-to-end inference performance
achieved with the HBM-based architecture.

To this end, we use the performance data including host-to-device
data-transfers and compare it against the results reported by [11]. In
this work, the AWS F1-based accelerator is evaluated against a Nvidia
Tesla V100, as well as a 12-core Xeon E5-2680 v3 CPU. Both here and
in [11], large inference runs are executed to measure the runtime.
From the resulting total runtime and the known size of the datasets,
the number of samples processed per second can be calculated. The
resulting number of samples per second is shown in Fig. 11.6. The
figure gives the best-case result for each target platform and each
benchmark from this and the prior work [11].

From these results, it is clear that the Nvidia Tesla V100 is unsuit-
able for SPN inference due to its much lower overall performance. In
contrast, the CPU baseline is able to outperform the AWS F1-based as
well as the HBM-based implementation for the small NIPS10 bench-
mark. The reason for this is the lower compute intensity of smaller
SPNs. Since NIPS10 just has a small number of nodes, the cost of the
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Figure 11.6: Peak performance measurements for the different benchmark
SPNs on different target platforms. The number of samples
per second is calculated from the end-to-end execution time.
For AWS F1, V100 and HBM, host-to-device data transfers are
included in the runtime.

data transfers outweighs the increased compute performance, which
results in the CPU outperforming GPUs and FPGAs. However, the
CPU’s advantage vanishes for increasing SPN sizes: For NIPS20, our
HBM-based implementation is already able to outperform the CPU
by a speedup of 1.21x. From NIPS20 to NIPS80 the advantage of the
FPGA becomes even greater, yielding a maximum speedup of 2.46x
for NIPS80. The geometrical mean of the speedups is 1.6x for the CPU.
Regarding the V100, the maximum speedup of the HBM-FPGA is 8.4x,
and the geometrical mean of the speedups is 6.9x.

In comparison to the previous FPGA-implementation, the speedup
of using HBM is similar for almost all examples, and close to the
geo.-mean speedup of 1.29x. This is somewhat disappointing, given
that our implementation here uses at least twice as many accelerator
instances. This less-than-expected speedup can be explained by the
scaling limitations due to the limited PCIe bandwidth, as discussed in
Section 11.5.2. For the largest SPN (NIPS80), the prior work was not
able to use more than two accelerator-cores (instead of four for the
smaller benchmarks). In this case we achieve a speedup of 1.5x.

In context of the adapted architecture from [3], we can get a per-
spective on the maximum performance of the NIPS80 accelerator:
With the 99.078 Gbit/s peak throughput described there, and the 88

bytes of data per sample, we derive a theoretical peak performance of
140,748,580 samples per second. Comparing that to the measured peak
performance of 116,565,604 samples per second we achieve in this
paper, we see that the streaming-based architecture delivers about 17%
increased performance. The reason for this is the much more stream-
lined architecture, which does not require any memory accesses. In
addition, refresh cycles of the HBM also play a role at this level of
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performance. Taking these factors into account, the HBM-based ar-
chitecture is very close to its theoretical peak performance, which is
capped by the maximum PCIe throughput. Lastly, it is important to
realize that the HBM-based architecture targets a different use-case
than the streaming-based one: While the in-network streaming imple-
mentation makes sense on a very large scale (i.e. data-centers), the
HBM-based architecture could be used in smaller high-performance se-
tups. This would also remove the necessity of costly 100G networking
infrastructure associated with the streaming approach.

11.6 related work

While SPNs are still a lesser known machine learning model, they
are gaining traction in the field of machine learning. As discussed in
Section 11.2.1, they have recently been used in the context of databases,
specifically for cardinality estimation as well as approximate query
processing [4]. To our knowledge, there is no prior work on accelerat-
ing SPN inference (independent of specific applications) apart from
our own prior work. Our own prior work begins with [15], which
introduced an automatic toolflow to map SPNs to the FPGA. In subse-
quent publications [17, 18], we looked into the impact of the arithmetic
number formats. To this end, [18] introduced a custom logarithmic
number system, which enables the computation of very small probabil-
ity values, and decreases the number of hardware resources required.
[17] introduces a customized floating point format, as well as posit
number format based on PaCoGen [5]. In [17], the different number
formats are optimized towards the SPN use-case and evaluated against
each other. In [11], we adapted the original framework from [15] to
the UltraScale+-based FPGAs in the Amazon AWS F1 instances. The
evaluation showed that the reconfigurable cloud offers high inference
performance without the need for expensive on-site FPGA-accelerator
cards. Additionally, the F1 instances are able to outperform other state-
of-the-art cloud-based hardware, such as a Xeon E5 CPU, and a Nvidia
Tesla V100 GPU, for the more compute-intensive SPNs. In our most
recent work [3], we adapted the SPN-accelerators to a streaming-based
architecture, which in turn allowed us to integrate them into a 100G
network for in-network processing of SPN inference. The correspond-
ing work shows the potential of 100G networking for data-delivery to
network-attached accelerators, as well as potential performance achiev-
able using our SPN accelerators. It also shows inference throughput of
99.089 Gbit/s, coming very close to the practical limitations of 100G
networking.

While there is (to our knowledge) no other work on hardware-
acceleration of SPNs, there is similar work targeting Arithmetic Cir-
cuits (AC). Similar to SPNs, ACs are probabilistic graphical models.
Both models share similarities and ACs can be transformed into SPNs
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under certain conditions. Shah et al. [14] have presented a custom
processor architecture based on ACs that is able to outperform the
Nvidia Jetson TX2 embedded GPU by 12x.

Regarding the use of HBM, the available FPGA-specific research is
still rather sparse. This is mainly due to the fact that HBM-enabled
FPGA-accelerator cards are relatively new and typically come at a
rather high cost. Despite this, there are two important works that
explore the advantages and disadvantages of HBM. The work by Lu
et al. [8] uses a number of micro-benchmarks to explore the differ-
ent available memory technologies in recent FPGA-accelerator cards.
Specifically, off-chip DRAM is compared against the on-chip HBM
memory in a Xilinx Alveo U280 accelerator-card, which features a
similar FPGA chip as the one used in our work. The paper goes into
detail, how HBM and DRAM can best be used to achieve maximum
bandwidth. The other work by Kara et al. [6] examines the use of HBM
in the context of a columnar database. Using three database-specific
workloads (selection, join, and stochastic gradient descent), the com-
bination of FPGA and HBM is compared against a 14-core Xeon E5

and a dual-socket POWER9 system. In their work, they are able to
outperform the server-grade CPU-based implementations by up to
12.9x for the join operation.

11.7 conclusion

In this work we presented an improved accelerator architecture that
exploits the parallelism of multiple HBM channels to speed-up infer-
ence on SPNs. While the overall performance of our adaption yields
speedups of up to 1.5x over the prior work, as well as speedups of 2.46x
and 8.4x over a data-center CPU and GPU respectively, the results still
fell short of our expectations. We explored this issue and discovered
host-to-device DMA transfers via PCIe to be the hard bottleneck.

From our experiments, we conclude that without the host-to-device
data-transfers, and disregarding logic and routing resource limitations,
almost linear scaling is possible for at least eight accelerators. This
trend can likely be continued for up to 64 or even 128 accelerators.
While our expectations for the use of HBM have not been met, the cur-
rent implementation still outperforms prior implementations using the
same approach, with CPU-inference of the small NIPS10 benchmark
being the only exception. It is important to note that the accelerator
card used, was attached using PCIe 3.0 x16. While this is the current
de-facto standard, the first PCIe 4.0 devices are already available for
end-users. Next-generation PCIe 5.0 and 6.0 devices are also planned
to ship within the next two years. Given the ongoing effort in im-
proving PCIe in the future, it is only a matter of time until the full
potential of on-chip HBM can be fully exploited for even faster SPN
inference. If we take other advancements like 100G networking into
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account, it becomes clear that the data-delivery is a very important
issue. Especially the combination of HBM and 100G networking could
be very interesting for high-throughput data-processing in the context
of machine learning and artificial intelligence.
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abstract

Massive data transfers in modern key/value stores resulting from low
data-locality and data-to-code system design hurt their performance
and scalability. Near-data processing (NDP) designs represent a fea-
sible solution, which although not new, have yet to see widespread
use.

In this paper we introduce nKV, which is a key/value store utilizing
native computational storage and near-data processing. On the one hand,
nKV can directly control the data and computation placement on the
underlying storage hardware. On the other hand, nKV propagates the
data formats and layouts to the storage device where, software and
hardware parsers and accessors are implemented. Both allow NDP
operations to execute in host-intervention-free manner, directly on
physical addresses and thus better utilize the underlying hardware.
Our performance evaluation is based on executing traditional KV
operations (GET, SCAN) and on complex graph-processing algorithms
(Betweenness Centrality) in-situ, with 1.4×-2.7× better performance on
real hardware – the COSMOS+ platform [7].
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Figure 12.1: KV-Store transferring data along a traditional I/O stack (a); and
(b) nKV executing operations in-situ on native computational
storage.

12.1 introduction

Besides substantial data ingestion, yielding an exponential increase
in data volumes, modern data-intensive systems perform complex
analytical tasks. To process them, systems trigger massive data trans-
fers that impair performance and scalability, and hurt resource- and
energy-efficiency. These are partly caused by the scarce bandwidth in
combination with poor data locality, but also result from traditional
(data-to-code) system architectures.

Near-Data Processing (NDP) is a code-to-data paradigm targeting in-
situ operation execution. In other words, operations are executed as
close as possible to the physical data location, utilizing the much bet-
ter on-device I/O performance. NDP leverages several trends. Firstly,
hardware manufacturers can fabricate combinations of storage and com-
pute elements economically, and package them within the same device
– so called NDP-capable computational storage. As a result, even com-
modity storage devices nowadays, have compute resources that can
be effectively used for NDP, but are executing compatibility firmware
(to traditional storage) instead. Secondly, with semiconductor storage
technologies (NVM/Flash), the device-internal bandwidth, parallelism,
and latencies are significantly better than the external ones (device-to-
host). Both lift major limitations of prior approaches like ActiveDisks
[1, 24] or Database Machines [5].

Wide-spread, high-performance persistent key-value stores like Lev-
elDB or RocksDB [10] tend to rely on a traditional layered-storage
stack (Fig. 12.1). It simplifies their architecture, allows for more flexi-
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bility and eases data management and administration. However, lay-
ers within the DBMS (e.g. Storage Manager or access methods), but
also underlying the file- and operating system encapsulate informa-
tion and functionality necessary for the successful utilization of NDP
techniques. Firstly, NDP operations executed on-device require the
physical address ranges of the data to be processed. In traditional stor-
age, address information is scattered along the layers of the storage
stack (DBMS, File System, OS) and hidden behind layers of abstrac-
tion (Fig. 12.1). Secondly, NDP-operations need to navigate through
and interpret the physical data on-device. To this end data formats
and layout accessors are necessary on device. However, data format
definitions are only available within the DBMS or sometimes within
the application on top. Moreover, data layouts (page or record) and
traversal methods for the data organization (files or LSM-trees) are
typically hard coded in the DBMS and thus not available on device.

To address the above, in this paper, we present nKV, which is a
key/value store utilizing native computational storage and near-data pro-
cessing (Figure Fig. 12.1). nKV eliminates intermediary layers along
the I/O stack (e.g. file system) and operates directly on NVM/Flash
storage. nKV directly controls the physical data placement on chips
and channels, which is critical for utilizing the on-device I/O proper-
ties and compute parallelism. Furthermore, nKV can execute various
operations such as GET or SCAN or more complex graph processing al-
gorithms like Betweenness Centrality as software NDP on the ARM-cores
and as hardware-software NDP (HW/SW-NDP) using corresponding
FPGA-based accelerators. The necessary FPGA hardware is built in the
form of simple processing elements that can be used to offload certain
tasks from the ARM-cores. Under nKV we target host-intervention-free
NDP-executions, i.e. the NDP-device has the complete address in-
formation, can interpret the data format and access the data in-situ
without host interaction. To reduce data transfers nKV also employs
novel ResultSet-transfer modes. nKV is resource efficient as it elimi-
nates compatibility layers and utilizes freed compute resources for
NDP. nKV performs 1.4×-2× better than RocksDB: GET latency – 1.4×;
SCAN – 2×; BC execution time – 2.7×.

This paper is organized as follows. In the next section we describe
the data organization of RocksDB and the challenges it poses to NDP.
In Section 12.3 we describe the architecture of nKV and how those
NDP-challenges are addressed in terms of interface extensions (Sec-
tion 12.3.1), in-situ data processing (Section 12.3.2), as well as opera-
tions and algorithms (Section 12.3.3). The architecture of the underly-
ing NDP hardware accelerators is described in Section 12.5. We discuss
the experimental results in Section 12.6 and conclude in Section 12.8.
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12.2 background

In contrast to traditional data organizations, where data is updated
in-place, LSM-trees [22] have been proposed as an out-of-place update
structure to tackle the sustained update and insertion rates of modern
workloads and provide query capabilities at the same time. Classical
LSM-trees [22] comprise multiple B-Tree-structured index components
(C0 to CK, Fig. 12.2) that are stored in new locations and have constant
size ratios r = |Ci+1|/|Ci|, i ∈ [0, K). An insert or update operation
hits the C0 component that is located in memory. Once it reaches
a size threshold, it is flushed to disk and is merged with the C1

component. The merge processes gradually move data from C0 to CK,
purge outdated KV-Pairs, reclaim space and indirectly ensure hot-cold
data separation.

nKV builds on RocksDB [10], which introduces one independent
LSM-Tree per column family to separate the access characteristics of
different database objects. Modern LSM-Tree variants (surveyed in
[20]) are multi-levelled. Modifications to an LSM-Tree are first placed
in the main memory component C0, which comprises a set of MemTa-
bles in RocksDB. These are realized as memory-efficient data structures
such as SkipLists. Whenever a MemTable reaches a given size limit,
it becomes immutable and a new one is created to accommodate fur-
ther modifications. Later on, immutable MemTables are transformed
into Sorted String Tables (SST) and flushed to the secondary storage
(Fig. 12.2), whereas each LSM-tree component C1..CK comprises mul-
tiple SSTs. Thereby, the contained key-value pairs are placed into
multiple data blocks in sort order of the key. Furthermore, an index block
that comprises key-offset pairs pointing to each data block (a sparse
index) is prepended. Index blocks reduce the access complexity to
key-value pairs within the SST.

During the flush to C1 no merge occurs for performance reasons.
Consequently, overlapping key-value ranges of SSTs can occur (con-
sider SST12-SST1n, C1, Fig. 12.2). Merge steps to underlying layers
C2 . . . CK, called compactions, take either SSTs only on the level above
or combine them with SSTs on the target layer, based on the given
strategy (e.g. tiered or levelled). Either way, all KV pairs of the in-
put SSTs are sorted, out-dated entries are pruned, and the results
are stored in new SSTs on the target level (see dotted box, Fig. 12.2).
Hence, key ranges in SSTs bellow C1 do not overlap anymore. Yet,
keys may appear on multiple levels with different values (consider
Key11 or Key70), to account for the temporal distribution of updates to a
given key-value record.

For instance Key70 has been updated multiple times: Key70 on C1 is
the most recent record and its existence invalidates Key70 on C2 and
C3.
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To retrieve a key-value record based on the key, the GET(key) first
traverses the MemTables and the immutable MemTables on C0. If the
respective key is not found, the index block of one or more SSTs in
C1 has to be read (as SSTs may overlap on C1, but not on C2...CK). By
parsing the key-offset pair, the data block, which might contain the
key, can be identified and also has to be read from secondary storage.
If the key is still not found, layers (C2...CK) have to be traversed
similarly. Due to the data organization and the compaction process, a
key can now reside only in a single SST per level. Range scans with or
without key predicates behave similarly, but are more complex and are
supported by other internal structures (like fence pointers). Consider
SCAN([Key68, Key70]), which traverses all levels and retrieves Key70
from C1, and Key69 and Key68 from C3.

However, if a scan involves value predicates, e.g. SCAN(0 ≤ Val ≤
7), the only option is to iterate over the entire dataset, yielding a
significant increase of I/O transfers, which in turn has enormous
potential to be improved via NDP.

12.3 architecture of nkv

Native computational storage. One of the underlying design princi-
ples behind nKV is that native storage enables efficient NDP (Fig. 12.1
and Fig. 12.3). In this sense nKV extends [28]. Native storage is stor-
age that is operated without intermediary/compatibility layers of
abstraction along the critical I/O path, and is directly controlled by
the database. This means that nKV can directly operate on NVM/Flash
storage using physical addresses and thus can precisely control phys-
ical placement of SST data. It is this physical placement that allows
utilizing the on-device I/O bandwidth and the FPGA’s compute par-
allelism.

nKV physically places SST data blocks and SST index blocks on differ-
ent LUNs and Channels (see Fig. 12.2 and Fig. 12.4). This allows for
reaching the internal bandwidth (Table 12.2) by requesting index and
data blocks asynchronously and utilizing processing parallelism of
FPGA-based processing elements (PEs). Besides, individual levels of
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the LSM-Tree are physically separated on different chips and LUNs to
improve I/O throughput and parallelism since I/O-heavy compaction
jobs do not block the entire device, reducing demand pressure on the
bus.

Furthermore, nKV operates directly with physical addresses, to
access (read or write) precisely the physical pages that are needed.
This, in turn, is essential for reducing read- and write-amplification.
Moreover, it inherently avoids costly host round-trips for logical-to-
physical address translation. Native storage eliminates these infor-
mation hiding effects incurred through layers of abstraction and thus
simplifies the NDP-operations. Hence, native storage leads to leaner
NDP-functionality.

Computation Placement. By using native computational storage,
nKV can directly place computations on the heterogeneous on-device
compute elements, such as ARM-cores or FPGA-based processing
elements. nKV can execute various operations such GET, SCAN or
more complex graph processing algorithms like Betweenness Centrality
as software NDP on the ARM-cores or with hardware support from the
FPGA (cf. Section 12.5). The experimental evaluation indicates that
some NDP operations such as NDP_GET(key) perform best on the
ARM-cores, while other operations like NDP_SCAN(value_condition),
benefiting from parallelism, perform best on the FPGA. For its NDP-
operations nKV utilizes hardware/software co-design to handle the proper
separation of concerns and achieve best performance.

12.3.1 NDP Interface Extensions

NVMe support. nKV has a dedicated high-performance user-space and
in-DBMS NVMe layer (Fig. 12.3). It is very lean and tightly integrated
with the rest of nKV. The native NVMe integration can control multiple
NVMe submission and completion queues either through dedicated
threads or through the transactional context. Moreover, it reduces the
I/O overhead as it allows the seamless creation of I/O and NDP tasks,
the precise allocation of transfer buffers for the DMA engine, and pri-
oritizable placement within the NVMe submission queues. The deep
database integration additionally avoids expensive synchronization be-
tween user- and kernel-space, and shortens the I/O paths even further
as no drivers are involved along the critical access paths. Internally,
the native storage command set is translated to specific NVMe I/O
and NDP tasks. Although these resemble the standardized NVMe
commands, they define a new category - n over NVMe. In nKV, they
can be scheduled either for synchronous or for asynchronous execution.

Command set. Besides the classical native storage interface, nKV
introduces NDP-Extensions [28] in terms of a generic NDP_EXEC()
command. It takes the following parameters, among others:

(i) Command Identifier – Unique identifier of the NDP function;
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(ii) the SearchKey or SearchKeyRange(s) – for GET or SCAN;

(iii) the ResultsSet Size;

(iv) AddressMappings – these are ranges of physical addresses, where
the physical data to be processed is located;

(v) Min/Max Keys – RocksDB supports a type of zone map range
filter that can be used on device to skip processing some index/-
data blocks;

(vi) Miscellaneous – command specific parameters such as data format
definitions.

nKV composes the NVMe command based on the given parameters,
current state and address information, and its transactional context.
After placing it in the NVMe submission queue and DMA transferring
the parameters to the device, the NDP command is then executed. The
result set is handled by the ResultSet processor, which also observes
the execution status. Finally the ResultSet is transferred to nKV by the
DMA engine. An NDP-operation can invoke multiple low-level NDP
commands synchronously or asynchronously.

12.3.2 In-situ Data Access and Interpretation

Under nKV, the NDP-device can interpret the data format and access
the data without host intervention (synchronization with the host) [29].
To this end, nKV extracts definitions of the Key- and Value-formats, and
passes them as input parameters to the NDP-commands. Moreover,
the data format such as the Key- and Value-formats can be automatically
extracted from the DB-catalogue (system-defined) or can be defined by
the application.

nKV employs a thin on-device NDP-infrastructure layer that sup-
ports the execution and simplifies the development of NDP-operations
(Fig. 12.3). It comprises data format parsers and accessors that are imple-
mented in both software and hardware (Fig. 12.4). The in-situ accessors
traverse and extract the contained sub-entities of the persistent data.
Whereas, the in-situ data format parsers process the layout of each per-
sistent entity, and extract the sub-entities by invoking further accessors
(Fig. 12.4).

KV-Stores like LevelDB or RocksDB [10] organize the persistent LSM-
Tree data into so called String Sorted Tables (SST) – see Section 12.2. To
process a GET(key) request, for instance, nKV first identifies the respec-
tive SST and invokes an NDP_GET command with the corresponding
physical address ranges, the respective Key- and Value-formats as well as
further parameters. First, the SST layout accessor is invoked to access the
data and the index blocks. Subsequently, the index block parser is acti-
vated to interpret the data and verify if the key is present and extract its
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Figure 12.4: In-situ access and data interpretation in nKV, based on layout
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offset. If this is the case, data block accessor and parser are invoked to
extract the Key/Value entry. In case of an NDP_SCAN(key_val_condition)
operation, the KV accessor is subsequently invoked to extract it, fol-
lowed by a field parser to extract its value and verify the condition. This
way, nKV extends scans in classical KV-Stores. Typically, they are only
able to process filter criteria on key-embedded attributes, but not filter
predicates involving the value.

12.3.3 Operations and Algorithms

Lookup. KV-Stores offer fast (low-latency, high parallelism) retrieval of
a value, based on its key, through the GET(key) operation. In nKV, this
operation first performs a lookup within main-memory components
(MemTables, Fig. 12.2) regardless of execution model.

If the search key is not found, the lookup will proceed scanning the
deeper LSM-Tree levels by processing their indices first and eventually
their associated data blocks. Both, index and data block scanning are
I/Os intensive in the traditional stack (Fig. 12.1), while with NDP,
these can be performed efficiently on-device.

Scan. As mentioned in Section 12.3.2, Scans can be performed either
on Key- or Value-embedded attributes. The index blocks of the LSM-
Tree might be leveraged to navigate to necessary data blocks for key-
attribute scans, similar to the Lookup operation. However, there is no
auxiliary structure to accelerate scans on value-embedded attributes.
Either way, multiple data blocks have to be examined depending
on the selectivity of the filter-predicate. Consequently, Scans usually
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result in a high amount of data transfers, which NDP can significantly
reduce.

User-defined Function: Betweenness Centrality. Many applications
involve more complex algorithms. Such user-defined functions (i.e.
Betweenness Centrality) can also be supported by nKV. The specific
algorithm implemented within nKV relies on [6] and measures the
degree, to which nodes stand among each other. The logic involves
shortest-path searches over the given nodes and therefore results in a
variety of lookups and scans involving random and sequential I/O.

12.3.4 Data Consistency, Database Maintenance and NDP

In parallel to the execution of NDP functionality, nKV allows the
processing of database maintenance e.g. compactions. Such parallel
operations might result in new data or even changes to the LSM-Tree.
Yet, as nKV’s NDP-operations are executed on a snapshot of the physi-
cal data, concurrent modifications do not effect its consistency. This
can be ensured by firstly, the underlying mechanism of Copy-on-Write
(CoW), secondly the precise placement through the native storage
interface, and thirdly, the direct control of the physical GC by nKV.
Moreover, nKV requires no on-device bad-block re-mapping like other
native storage management solutions [4], since bad-block management
and wear-leveling are handled directly within the database engine
[23]. Thus native storage management [23] leverages the the above
issues by DBMS managed physical-to-logical address mapping and
data placement.

12.3.5 Result Set Handling

Unnecessary data transfers may occur depending on how the result
of an NDP-operation is transferred back. Therefore, ResultSet man-
agement additionally helps to avoid unnecessary stalls of processing
resources. nKV aims to reduce the data transfer overhead caused by a
Volcano-style record-at-a-time model. Instead it aims to bulk-transfer
the ResultSet. The former is simpler, but leads to more frequent shorter
burst transfers causing bus overhead. The latter results in fewer, but
longer bursts leveraging the throughput-optimized PCIe.

Each NDP call in nKV defines a maximum ResultSet size as a pa-
rameter. The NDP ResultSet-Processor (Fig. 12.3) allocates on-device
resources for it: either in DRAM, or if the contention is high, it allo-
cates a temporary region on Flash. As long as the actual result size
does not exceed the predefined one, the ResultSet is sent back as bulk
DMA-transfer, to leverage the full performance of the DMA engine.
Alternatively, it may be pipelined to the next NDP-operation. Further-
more, nKV has a built-in extension mechanism that in the worst case
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may preemptively request more physical space from the DBMS, as it
manages the logical-to-physical address mapping [23].

12.4 hardware-architecture

The COSMOS+ platform [7] is a PCIe-based extension-card. It contains
all the required hardware-modules to function as a regular NVMe-
based SSD. It can be fitted with up to 2 DIMM-extensions containing
Flash modules. The available Toggle-NAND Flash-extensions can be
configured in SLC or MLC mode. In SLC mode, each cell stores a
single bit, while in MLC mode two bits are stored in each cell. In
comparison, data retrieval is faster and simpler in SLC mode, which
in turn offers higher performance. Additionally, in SLC mode cells
can be programmed and erased more often. In this work, they are
configured as SLC with 16 dies organized in two channels.

The main computational engine of the COSMOS+ platform is a
Xilinx Zynq-7000 SoC (XC7Z045-3FFG900) that combines two 667 MHz
ARM Cortex-A9 cores with an FPGA (Fig. 12.5). In the COSMOS+
platform [7], the FPGA-portion is used to implement the required
SSD-infrastructure. This infrastructure is made up of two separate
domains: The first one is responsible for accessing the flash memory.
It comprises one or many Tiger4-controllers with corresponding low-
level flash interfaces. For each channel, a distinct Tiger4-controller, as
well as a low-level interface, is required.

The second domain contains primarily an NVMe-Core, which allows
access from the host to the device via the NVMe interface. The NVMe-
Core also wraps the actual low-level PCIe-interface.

Both of these domains are running at different clock-frequencies.
While the flash domain uses a 100 MHz clock, the NVMe-Core is
running at 250 MHz. When planning to extend this platform, the
following aspects are relevant:

1) The amount of resources on the FPGA-portion (PL) of the SoC
is limited. While the platform can be fitted with more flash-DIMMs,
this also requires more flash controllers. This in turn impacts the
resource requirements. In this work, one flash-DIMM is used with 2

flash controllers. While this limits the available flash memory and the
corresponding parallelism, it also frees up resources for different use
(i.e. computational processing elements).

2) Since the different domains are running at different clock-frequen-
cies, the extensions should be able to run at the same clock-frequencies.
In the case of the COSMOS+ platform, this is not a huge problem, since
most hardware-accelerators can run at 100 MHz and can therefore
reside in the flash-domain.

A simplified view of the architecture is depicted in Fig. 12.5. It
also includes the nKV hardware extensions described in this work
(Section 12.5).
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Figure 12.5: A simplified view of the architecture of the COSMOS+ OpenSSD
[7], including the proposed extension.

12.5 hardware-acceleration

Using the baseline architecture (Fig. 12.5), specific processing elements
(PEs) are implemented, allowing to move computation from software
running on the ARM-cores to the programmable logic of the SoC,
potentially improving latency, throughput, and available parallelism.
The PEs are written in Chisel3 [3] using a relatively simple architecture
that can be subdivided into four distinct domains (cf. Fig. 12.6):

The control-domain consists of a register file, holding a number
of control registers, which are accessible using an AXI4-Lite interface.
The corresponding addresses are mapped into the address space of
the processing system (PS), so that the ARM-cores can read and write
these registers and thereby control and configure the PE. The control
registers hold the required parameters for the functionality provided
by the processing elements (e.g. the memory addresses of the input
and output). In addition, the signaling to the ARM-cores is also done
using these registers. One register indicates whether the PE is busy,
while another can be used to trigger the execution.

The memory-domain contains a load and a store unit. These are
connected to the PSs DRAM-interface, allowing the PE to access the
device DRAM. Both the load and the store unit perform data transfers
in chunks of 32 KB, which corresponds to the size of a single data-
block in our RocksDB-configuration. The transfers are performed
using AXI4 bursts to maximize throughput. The data-width of the
AXI4-Bus is 64 bits and the AXI burst length is 16. Generally, longer
bursts allow higher throughput, due to the sequential access pattern.
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Figure 12.6: The overall Microarchitecture of the proposed Parser Processing
Elements.

Unfortunately, the Zynq-7000 family only supports a maximum burst
length of 16.

The accessor-domain is responsible for converting the different data
granularities (64 bit words vs tuples) between the memory and the
computational domain. The tuple input buffer will buffer incoming 64

bit data words from the load unit, until a complete tuple is available.
This will then be passed to the filtering unit. Similarly, the tuple output
buffer will receive a resulting tuple and split it into words of 64 bits
to allow transfer to memory via the store unit. In this context, a tuple
corresponds to a key-value pair (kv-pair).

The computational domain is comprised of two distinct modules.
The first one is the filtering unit, which accepts single kv-pairs as input.
Depending on the control registers, the filtering unit will then pass
on matching kv-pairs to the data transformation, while non-matching
ones are discarded. In the current implementation, the filtering unit
can be configured to apply a single predicate on a kv-pair. This is
done using three parameters: the column selector (i ∈ [0, n − 1], where
n is the number of distinct data-fields), the compare operator (op ∈
{nop,=, ̸=,>,≥,<,≤}) and a reference value (c) to compare against.
Considering a kv-pair t = (t0, t1, t2, . . . , tn−1), the following expression
is evaluated: r = ti op c. If r is true, the kv-pair will be passed on, else
it will be discarded.

The last module transforms the data into the required output format.
This corresponds to a projection of tuples and allows the automatic
removal of RocksDB-metadata or unnecessary tuple elements. The
transformed tuple is passed back to the accessor-domain, to be stored
back to the device DRAM. The complete microarchitecture of the PEs
is also depicted in Fig. 12.6.

Building atop of the baseline architecture of COSMOS+ (Fig. 12.5),
we developed an extended architecture, which contains additional
processing elements. In particular, we built two different processing
elements for the specfic evaluation dataset (the database-of-research-
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Table 12.1: FPGA-Resource Utilization of the Baseline and extended Architec-
tures, including hierarchical utilizations of relevant sub-modules.

Slices BRAM DSPs

abs. % abs. % abs %

Baseline 14544 26.61 78 14.31 0 0

Tiger4 8174 5.81 15 2.75 0 0

NVMe-Core 4312 7.89 29 5.32 0 0

LL Flash 475 0.87 5 0.92 0 0

Extended 35667 65.26 101 18.53 0 0

paper-PE 33103 15.14 0 0.0 0 0

ref-PE 4012 1.84 0 0.0 0 0

Available 54650 100.00 545 100.00 900 100

papers): One for the data of the paper themselves (paper-PE), and
another one for the data of the references (ref-PE). Initial experiments
showed, that the paper-PE can process a 32 KB block of data faster
than the two Tiger4s controllers are able to provide it (due to the flash
latency). Thus, we employ a single paper-PE in the final architecture.
For the handling of the paper references in the database, much more
data has to be processed multiple times. In this case, the flash latency
becomes less relevant, since the reference data is cached in the on-
device DRAM and does not have to be fetched from flash memory
each time. Thus, the architecture can keep multiple ref-PEs busy. To
keep the interconnects balanced, we opted for seven ref-PEs, yielding
a total of eight PEs (including the single paper-PE). Generally, it would
be possible to increase the number of PEs, but all active PEs compete
for access to the on-device DRAM. Thus, there will be a point of
diminishing returns considering overall throughput as soon as the full
memory bandwidth is saturated. Instead of replicating PEs for more
throughput, it might be more reasonable to use multiple different PEs
to increase flexibility of the hardware acceleration.

The baseline and extended hardware designs were synthesized and
implemented using Xilinx Vivado v2019.1. The resulting resource uti-
lizations are reported in Table 12.1, both in terms of absolute numbers,
as well as relative to the resources available on the Zynq 7045 chip.
The baseline results indicate that the Zynq has many spare resources.
Even though small, a large fraction of its hardware resources are un-
used. The main reason for this lies in the flash-configuration. For a
platform with two flash-DIMMs and the full parallelism, eight flash
controllers and flash interfaces are needed. In our design, we only use
one flash-DIMM with two controllers/interfaces, which vastly reduces
the resource-requirements.

These free resources are then leveraged by our extended architecture
to offload computations from the ARM-core to the FPGA. In doing
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so the hardware accessors and format parsers can be instantiated
multiple times. In fact, nKV uses two different kinds of parsers with
up to seven instances.

Another interesting point is the vast difference in resource require-
ments between the paper-PE and the ref-PE. The reason for this lies in
the different sizes of the parsed kv-pairs. The kv-pairs processed by
the paper-PE are 136 bytes each, while the kv-pairs processed by the
ref-PE are merely 36 bytes each. Apart from the data-size, the number
of distinct data fields also plays an important role, due to the number
of required comparators.

Finally, there is a complete lack of DSP utilization. DSPs are hard-
wired special-function slices which provide fast arithmetic and logical
operations, that are typically relevant in the context of digital signal
processing. For our work, DSPs could be interesting for arithmetic
comparisons as well as pattern recognition.

For future extensions of this work, the above could be exploited to
reduce Slice-utilization, or to implement more complex functionality
within the PEs.

12.6 evaluation

For the evaluation, the COSMOS+ board [7] (see Fig. 12.5) is attached
over PCIe 2.0 x8 as an NVMe block device supported by Greedy FTL
to realize traditional storage. The host server is equipped with a 3.4
GHz Intel i5, 4GB RAM and runs Debian 4.9 with ext3. We configure
both RocksDB [10] and COSMOS+ [7] with a 5MB cache. COSMOS+
is directly mapped into the userspace and controlled by native NVMe.

We evaluate nKV on a 2.4GB research paper graph dataset from Mi-
crosoft Academic Graph [27]. It comprises approx. 48 million Key/Value-
pairs: 3.8M papers, 40M references, 18K venues, and 4.2M authors.
For each experiment, we report the average execution times of three
cold test runs. The baseline for our experiments is RocksDB using
block-device storage (Blk) on top of GreedyFTL and ext3. Performance
results of GET(key), SCAN(value_predicate) and BC are reported for
three different stacks: Blk as baseline, software NDP (NDP:SW) on the
ARM and FPGA-assisted NDP (NDP:SW+HW).

12.6.1 Low-level Flash Properties

Physical data placement and the on-device Flash characteristics play
an essential role in nKV. The following Table 12.2 shows the on-device
latency and bandwidth, measured by directly issuing page reads to
the Flash Management Unit. The level of parallelism is controlled by
data placement on either different Channels, LUNs or both. While
a single page-read takes approx. 300 µs, careful data placement on
Channels and LUNs reduces latency down to 94 µs with full paral-
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Table 12.2: Flash Latencies and Bandwidth (BW) of the COSMOS+ OpenSSD
for different levels of parallelism.

Pages Parallelism Duration per Page [¯s]

1 1 Ch. 1 LUN 300.00

4 2 Ch. 2 LUN 113.50

8 2 Ch. 4 LUN 94.12

Access Pages Parallelism BW [ MB/s] IOPS

Random 1500 1 Ch. 1 LUN 52 3000

1500 2 Ch. 1 LUN 102 6000

1500 1 Ch. 8 LUN 108 6000

1500 2 Ch. 8 LUN 213 13000

Seq. 640 2 Ch. 8 LUN 217 13000
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Figure 12.8: GET execution times for Blk, NDP:SW and NDP:SW+HW.

lelism (Table 12.2). However, an upper limit of around 217 MB/s can
be observed for sequential and random workloads, which is due to
the bus limitations of COSMOS+.

12.6.2 Experiment 1: Lean Native Stack

One important conceptional characteristic of NDP with nKV is the re-
moval of traditional compatibility layers to simplify the access stack. To
verify this property, we execute a GET(key) command. We compare the
results of our baseline (Blk) against nKV with software NDP (NDP:SW),
and nKV with Parsers-PE support (NDP:SW+HW) – Fig. 12.8.

nKV utilizes the native data placement and improves the round-trip
time by 1.4× due to native NVMe and mapping the device into its
userspace. This reduces the execution time from 7.9 ms to 5.7 ms, as
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Figure 12.9: SCAN execution times for Blk, NDP:SW and NDP:SW+HW.

shown in Fig. 12.8. Interestingly, there is no benefit from hardware
PEs since the gains from concurrent executions are limited due to the
sequential nature of first reading and then processing Flash data.

12.6.3 Experiment 2: Data Transfer Reduction

While the relatively simple GET-operation does not benefit from the
hardware PEs, this changes for bigger and more complex operations
like the SCAN. In addition to the vastly reduced latency, the use of
NDP has additional effect on the overall system. While all three im-
plementations read similar amounts of data from flash (492.3 MB ±
0.2 MB due to caching), the required DMA data transfers vary. For
NDP-operations, a single DMA transfer is required to push down the
additional parameters. We draw the following conclusions. Firstly, ef-
ficient ResultSet handling reduces the transfer overhead by employing
large bulk DMA transfers. Secondly, due to on-device filtering the
amount of data to be transferred also decreases depending on the
predicate selectivity.

The execution time is reduced by more than 2x (from 6.96 s to 3.35

s) as shown in Fig. 12.9.

12.6.4 Experiment 3: Native Computational Storage

Native Computational Storage plays an essential role for nKV. Especially
with complex graph analysis operations like Betweenness Centrality
(BC) the concepts of native data placement, flash parallelism and
computation placement can be leveraged to improve the performance.
An execution on a smaller graph, benefits the software implementation.
For a large number of edges, the complexity is high and multiple HW
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Figure 12.10: Betweenness centrality (BC) execution times for Blk, NDP:SW
and NDP:SW+HW.

Parsers can be utilized to improve performance. With a total of 7 HW
Parsers nKV achieves 2.7x speed-up for 2.037.755 edges (Fig. 12.10).

12.6.5 Experiment 4: Execution Parallelism

In large graph processing the number of applied HW Parsers is im-
portant to balance between FPGA utilization, memory bandwidth
limitations and performance. nKV allows to configure the number of
HW Parsers individually for each NDP operation. In Fig. 12.11 BC
is executed with 2.037.755 edges using a different number of ref-PEs.
Clearly, increasing the number of PEs per operation, yields better
speed-ups. Using seven PEs instead of three PEs results in a speed-up
of 1.25x. While the data suggests that more parsers are better, it is
important to note that all instances compete for DRAM accesses. Thus,
adding more parsers will yield diminishing returns due to memory
contention and increased randomness in the memory access patterns.

12.7 related work

The Near-Data Processing is deeply rooted in database machines [5] de-
veloped in the 1970s-80s or Active Disk/IDISK [1, 17, 25] from the late
1990s. Besides dependence on proprietary and costly hardware, the
I/O bandwidth and parallelism are claimed to be the limiting factors.
While not surprising, given the characteristics of magnetic/mechani-
cal storage combined with Amdahl’s balanced systems law [11], this
conclusion needs to be revised. Storage devices built with modern
semi-conductor storage technologies (NVM, Flash) are offering high
raw bandwidths with high levels of parallelism on-device.
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parser.

With the advent of Flash technologies and reconfigurable processing
elements, Smart SSDs [9, 16, 26] were proposed. An FPGA-based
intelligent storage engine for databases is introduced with IBEX [30].
Biscuit [12] is a timely proposal for a general NDP framework. JAFAR
[2, 31] is one of the first systems to target NDP for DBMS (column-
store) use, whereas [15, 19] target joins besides scans. The use of
NDP in the realm of KV-Stores has been investigated in [8, 18]. Kanzi
[13], Caribou [14] and BlueDBM [21] are RDMA-based distributed
KV-Stores investigating node-local operations.

Much of the prior work on persistent KV-Stores and NDP focusses
on bandwidth optimizations. NoFTL-KV [28] addresses the problem of
write-amplification. The NDP extensions demonstrated by nKV target
the read-amplification, latency improvements and computational storage.

12.8 conclusion

In this paper we introduced nKV – a key-value store designed for
native computational storage and near-data processing. nKV controls
physical data placement directly and hence the on-device I/O par-
allelism. Along the same lines, nKV can place NDP operations on
different compute elements on device (ARM or novel FPGA PEs) and
also configure the hardware per operation accordingly, e.g. the number
of hardware parsers used. Both placement methods impact the perfor-
mance of NDP operations, GET is faster on the ARM, while SCANs
are faster with hardware support. nKV is based on the principle of
explicit cross-layer data formats, hence hardware or software layout
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accessors and format parsers are deployed an can be used for different
operations.
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abstract

Massive data transfers in modern data-intensive systems resulting
from low data-locality and data-to-code system design hurt their
performance and scalability. Near-data processing (NDP) designs
represent a feasible solution, which although not new, has yet to see
widespread use.

In this paper we demonstrate various NDP alternatives in nKV,
which is a key/value store utilizing native computational storage and
near-data processing. We showcase the execution of classical operations
(GET, SCAN) and complex graph-processing algorithms (Betweenness
Centrality) in-situ, with 1.4×-2.7× better performance due to NDP.
nKV runs on real hardware - the COSMOS+ platform.

13.1 introduction

Near-Data Processing (NDP) is a code-to-data paradigm targeting in-situ
operation execution, i.e. as close as possible to the physical data lo-
cation, utilizing the much better on-device I/O performance. NDP
leverages several trends. Firstly, hardware manufacturers can fabricate
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Figure 13.1: KV-Store transferring data along a traditional I/O stack (a); and
(b) nKV executing operations in-situ on native computational
storage.

combinations of storage and compute elements economically, and package
them within the same device – so called NDP-capable computational
storage. As a result, even commodity storage devices nowadays have
compute resources that can be effectively used for NDP, but are execut-
ing compatibility firmware (to traditional storage) instead. Secondly,
with semiconductor storage technologies (NVM/Flash) the device-
internal bandwidth, parallelism, and latencies are significantly better
than the external ones (device-to-host). Both lift major limitations of
prior approaches like ActiveDisks or Database Machines.

In this paper, we demonstrate nKV, which is a RocksDB-based key/-
value store utilizing native computational storage and near-data processing
(Fig. 13.1). nKV eliminates intermediary layers along the I/O stack
(e.g. file system) and operates directly on NVM/Flash storage. nKV
directly controls the physical data placement on chips and channels,
which is critical for utilizing the on-device I/O properties and com-
pute parallelism. Furthermore, nKV can execute access operations
like GET or SCAN, or more complex graph processing algorithms
such as Betweenness Centrality as software NDP on the ARM cores or
with FPGA hardware support (NDP:HW+SW). Under nKV we target
intervention-free NDP-execution, i.e. the NDP-device has the complete
address information, can interpret the data format, and access the data
in-situ (without any host interaction). To reduce data transfers nKV also
employs novel ResultSet-transfer modes. nKV is resource efficient as it
eliminates compatibility layers and utilizes freed compute resources
for NDP.
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We demonstrate nKV for the use-case of a database of research
papers, and on a 2.4GB graph dataset with 48 million KV-pairs. Our
demonstration scenarios involve interacting with the paper DB, brows-
ing and analyzing it: (a) Analysis scenario (BC): verifies if the 10-year
best paper award was awarded the most prominent paper from 10

years ago and offers some unexpected insights; (b) Latency-based (GET):
we let the audience pick a paper from the BC ResultSet and dis-
play its details; (c) Bandwidth-based (SCAN): we retrieve other papers
from same Venue/Author/Year. nKV performs 1.4×-2× better than
RocksDB: GET latency – 1.4×; SCAN bandwidth – 2×; Betweenness
Centrality – 2.7×.

13.2 architecture of nkv

This section offers a brief overview of the key architectural modules
of nKV. More details are provided in [16].
NDP Interface Extensions. nKV defines NDP-Extensions besides the
native storage interface. Furthermore, nKV has a dedicated high-
performance in-DBMS NVMe layer (Fig. 13.2). It does not rely on
an NVMe kernel driver, but is deeply integrated in the DBMS and
hence runs in user-space. The native NVMe integration reduces the I/O
overhead, as it avoids expensive switches between user and kernel
space (drivers), and shortens the I/O even further, as no drivers are
needed. This lean stack improves execution times for I/O and NDP, especially
for short-running calls e.g. GET.
Computation Placement. By using native computational storage, nKV
can place computations directly on the heterogeneous on-device com-
pute elements, such as ARM CPUs or the FPGA. nKV can execute
various operations such as GET or SCAN, or more complex graph
processing algorithms like Betweenness Centrality as software NDP on
the ARM cores, or with hardware support from the FPGA. nKV demon-
strates that hardware implementations alone cannot reach the best
performance as pure software implementations do not. For its NDP-
operations nKV utilizes hardware/software co-design to handle the proper
separation of concerns and achieve best performance.
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In-situ data access and interpretation. Under nKV the NDP-device can
interpret the data format and access the data without host intervention.
To this end, nKV extracts definitions of the Key- and Value-formats
[15]. These are then passed as input parameters to NDP-commands.
Moreover, the data format such as the Key- and Value-formats can be
automatically extracted from the DB catalogue (system-defined), or can
be defined by the application.

nKV employs a thin on-device NDP-infrastructure layer that sup-
ports the execution and simplifies the development of NDP-operations
(Fig. 13.2). It comprises data format parsers and accessors that are imple-
mented in both software and hardware (Fig. 13.3). The in-situ accessors
are used used to traverse and extract the contained sub-entities of the
persistent data. Whereas, the in-situ data format parsers process the
layout of each persistent entity, and extract the sub-entities by invoking
further accessors (Figure Fig. 13.3).

KV-Stores like LevelDB or RocksDB organize the persistent LSM-
Tree data in to so called Sorted String Tables (SST). To process a GET(key)
request, for instance, nKV first identifies the respective SST and in-
vokes an NDP_GET() command with the physical address ranges (of
these SSTs), the respective Key- and Value-formats as well as further
parameters. First, the SST layout accessor is invoked to access data
and index blocks. Subsequently, the index block parser is invoked to
interpret the data, verify if the key is present, and extract its location.
If this is the case, the data block accessor and parser are invoked to
extract the Key/Value entry. In case of an NDP_SCAN(key_val_condition)
operation, the KV accessor is subsequently invoked to extract it, fol-
lowed by a field parser to extract its value and verify the condition. The
result are massive I/Os since especially SCANs must retrieve a huge
number of data blocks.
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Native computational storage. To make efficient use of the on-device
I/O nKV extends [14] and employs native storage (Fig. 13.1 and Fig. 13.2).
This way it eliminates intermediary layers along the critical I/O path
like the file system, and can operate directly on NVM/Flash storage
using physical addresses. nKV can therefore precisely control physical
placement of SST data, which is critical for utilizing the on-device
I/O properties and compute parallelism. I.e. nKV physically places
SST data blocks and SST index blocks on different LUNs and Channels
to utilize the on-device parallelism and lower the processing latency.
This accelerates especially the demonstrated I/O-intensive operations
SCAN and BC significantly. Native storage is essential for reducing
read- and write-amplification, and also for executing NDP-operations
avoiding information hiding through these layers of abstraction.
ResultSet Handling. nKV aims to bulk-transfer the ResultSet of an
NDP-Operation to avoid the data transfer overhead caused by a record-
at-a-time model. Thus nKV materializes the ResultSet, partially or fully,
depending on the NDP operation. It is then DMA-transferred with
multiples of the COSMOS+’s DMA-engine transfer unit (4KB).

13.3 demonstration walk-through

Demo Setup.
The demonstration setup comprises a desktop PC as host equipped

3.4 GHz Intel I5 CPU, 4 GB RAM, connected to COSMOS+ via NVMe
over PCIe (Fig. 13.4). The COSMOS+ [2] has a Zynq 7045 SoC with an
FPGA, two 667 MHz ARM A9 CPU Cores and an MLC Flash module
configured as SLC. We configure both RocksDB and COSMOS+ with
5 MB cache.

We demonstrate nKV on the use-case of a database of research
papers, and on a rather smaller 2.4GB dataset due to practical run-
time constraints of the demo. This graph dataset includes 48 million
Key/Value-pairs, comprising approx. 3.8M papers, 40M references,
18K venues, and 4.2M authors. BC operates on a graph with varying
number of relevant edges: from 2.5K to 2 million. The audience will
browse and analyze the paper set using a GUI (Fig. 13.5), triggering
different operations on the paper graph in different scenarios.
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Figure 13.5: Interactive GUI.

13.3.1 Demonstration Walk-Through

1. Complex Graph Analysis – BC. The demo starts by letting the
audience pick a DB conference venue and an year (e.g., VLDB, 2000).
Subsequently, nKV executes Betweenness Centrality to determine the
most prominent paper from that year. The audience can then verify if
that paper had indeed been awarded the 10-year best paper award ten
years later. Expect some unexpected(!) insights.

Under the hood, nKV executes a complex NDP operation pipeline,
comprising a SCAN followed by a BC. Based on the audience selection,
nKV first filters out the relevant papers and references by running
a SCAN and applying val_condition on the values of all paper KV-
pairs. This is only possible since the data formats are available in-
situ, and the format parses and layout accessors execute on-device. The
intermediary result is materialized on-device, which is essential for
such NDP-pipelines. Subsequently, BC is executed on the intermediary
results. nKV switch between software NDP or software/hardware
NDP. We demonstrate how the hardware accessors and parsers can be
instantiated multiple times, and run in parallel on the FPGA yielding
best results.

Observation: nKV executes NDP-pipelines and complex operations
in-situ. Given the high parallelism and significant compute intensity,
NDP:SW+HW yields best results.

2. Latency – GET. After the BC analysis, the audience can interactively
pick a paper from the BC ResultSet and have its details displayed.

Under the hood, the NDP execution of GET is performed in SW and
in NDP:SW+HW. Since only a single NDP_GET() is executed at a time,
nKV utilizes native data placement, but not the on-device parallelism.

Observation: Latency-critical operations are 1.4× faster and best
results are achieved with NDP:SW, closely followed by NDP:SW+HW
(Fig. 13.7).
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Figure 13.6: Betweenness Centrality: (A) BC on different stacks; (B) BC with
different levels of parallelism; (C) BC execution time vs number
of relevant edges (complexity).
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3. Bandwidth – SCAN. After the audience has been presented the
details of a paper (previous scenario), they can opt for retrieving other
papers from the same Venue/Author/Year.

Under the hood, this results in an NDP SCAN(value_condi- tion).
The operation is performed with different selectivities and different
result set sizes, based on the audience selection (Fig. 13.8). Importantly,
the selection condition is on the value, which requires NDP format
parsers and layout accessors to be evaluated in-situ. Conversely, the
Blk RocksDB stack transfers the entire data to the host, to interpret the
values there, apply the val_condition, and eventually discard most of
the data. Fig. 13.9 shows the extra read volume transferred by the Blk
to perform the same SCAN.

Observation: Bandwidth-critical scan and selection operations re-
quire I/O bandwidth and high hardware parallelism. Hence, using
NDP:SW+HW yields the best performance and outperforms the tradi-
tional stack by 2×.
4. Parallelism and Native Computational Storage Last but not least
we execute BC again, however this time we demonstrate the effect of
configurable parallelism in native computational storage, whenever nKV
executes a complex operation (Section 13.3.1).
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Figure 13.8: SCAN performance: (A) SCAN on different stacks
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Figure 13.9: SCAN performance: (B) Data Transfer Volume
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nKV can configure the degree of parallelism required by each NDP-
operation. While the amount of compute parallelism is limited for
NDP:SW, as there are few ARM cores, the same does not apply to
the FPGA. As described in Section 13.2, there can be multiple parallel
instances of the hardware accessors and parsers on the FPGA. These
are relatively space-efficient, as 16 instances fit even into the small
Zynq 7045 FPGA. Interestingly, operating with the maximum available
parallelism does not always yield the the best results (Section 13.3.1).

Observation: nKV can employ the FPGA for NDP:SW+ HW, in-
creasing the level of computational storage parallelism. However, this
capability only translates into performance benefits for complex opera-
tions.

13.4 related work

The Near-Data Processing approach is deeply rooted in well-known
techniques such as database machines or Active Disk/IDISK. With the
advent of Flash technologies and reconfigurable processing elements
Smart SSDs [4, 8, 13] were proposed. An FPGA-based intelligent
storage engine for databases is introduced with IBEX [17]. JAFAR
[1, 18] is one of the first systems to target NDP for Column-stores
use, whereas [7, 10] target joins besides scans. Recently, Samsung
announced its KV-SSD [11]. The use of NDP in the realm of KV-Stores
has been investigated in [3, 9]. Kanzi [5], Caribou [6] and BlueDBM
[12] are RDMA-based distributed KV-Stores investigating node-local
operations.

Much of the prior work on persistent KV-Stores and NDP focuses
on bandwidth optimizations. NoFTL-KV [14] addresses the problem of
write-amplification. The NDP extensions demonstrated by nKV target
the read-amplification, latency improvements and computational storage.

13.5 conclusion

We demonstrate nKV, which is a key/value store utilizing native com-
putational storage and near-data processing. We showcase the execution
of classical operations (GET, SCAN) and complex graph-processing
algorithms (Betweenness Centrality) in-situ, with 1.4×-2.7× better per-
formance due to NDP. nKV runs on real hardware - the COSMOS+
platform. nKV utilizes the the available I/O and compute parallelism
on the native computational storage through direct data and operation
placement. Complex operations (BC, SCAN) benefit from it, whereas
others (GET) benefit from software NDP.
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abstract

Near-Data Processing is a promising approach to overcome the limita-
tions of slow I/O interfaces in the quest to analyze the ever-growing
amount of data stored in database systems. Next to CPUs, FPGAs will
play an important role for the realization of functional units operating
close to data stored in non-volatile memories such as Flash.

It is essential that the NDP-device understands formats and lay-
outs of the persistent data, to perform operations in-situ. To this end,
carefully optimized format parsers and layout accessors are needed.
However, designing such FPGA-based Near-Data Processing acceler-
ators requires significant effort and expertise. To make FPGA-based
Near-Data Processing accessible to non-FPGA experts, we will present
a framework for the automatic generation of FPGA-based accelerators
capable of data filtering and transformation for key-value stores based
on simple data-format specifications.

The evaluation shows that our framework is able to generate ac-
celerators that are almost identical in performance compared to the
manually optimized designs of prior work, while requiring little to
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no FPGA-specific knowledge and additionally providing improved
flexibility and more powerful functionality.

14.1 introduction

The rate at which new data is produced and stored every day has
constantly been increasing in recent years, and with the advent of
the internet-of-things (IoT), this trend will continue in the foreseeable
future. A substantial amount of the data produced every day is stored
in database systems, such as key-value stores (KV-store). Of course,
this data is not write-only: To make sense (and gain value) out of the
stored data, it needs to be analyzed, ever more so now in the golden
age of Big Data and Machine Learning.

Data analytics has been limited by slow I/O interfaces to the at-
tached storage devices such as non-volatile memory (NVM). This
severely hampered the processing of stored data. An interesting ap-
proach to overcome this limitation is Near-Data Processing (NDP):
Instead of moving huge amounts of data from storage via the I/O-
bottleneck to the CPU for analysis, which will eventually yield a result
typically much smaller in size than the input data, Near-Data Process-
ing places the computation much closer to the data. With hardware
vendors being able to economically integrate processing units with
non-volatile memories on a single chip or board, Near-Data Processing
can help to overcome the limitations on data analytics imposed by
slow I/O interfaces.

One example for a Near-Data Processing system for key-value stores
was presented by Vinçon et al. in [18, 19]: By combining what they
refer to as Native Computational Storage, which removes unnecessary ab-
straction layers and unifies information about data format and layout
in a single layer with NDP capabilities, they were able to demonstrate
speedups of up-to factor 2.7x for real-world data analysis. For their
approach, they did not only use standard CPUs, but also leveraged the
computational power and parallelism of FPGAs. However, the FPGA-
based NDP processing elements (PEs) in their work were hand-crafted,
requiring significant development effort and expertise.

In addition, not only do data storage formats evolve over time,
but the specific data representation requirements in the actual NDP-
operations also tend to change over time. Hand-crafting highly opti-
mized NDP-accelerators becomes impractical in such scenarios, which
may include data analytics on big data sets, or evolving feature vectors
in machine learning.

In this work, based on the nKV architecture [18], we present a
framework to automatically generate FPGA-based NDP accelerators
from data format specifications. The generated PEs are able to filter
and transform data from key-value stores, based on user-specified
filter predicates and transformation rules. The PEs are integrated in a
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system-on-chip (SoC) architecture for the Cosmos+ OpenSSD platform
[17].

In the evaluation, we compare the performance of the automatically
generated accelerators with hand-crafted designs and assess the im-
pact of the data format on the hardware footprint of the generated
accelerators.

14.2 motivation

In general, the development of hardware accelerators for specific ap-
plications is a tedious task that requires knowledge of the application
domain, as well as expertise in accelerator development and device
specifics. Typically, using the database specification, a corresponding
hardware accelerator will be implemented using some form of Hard-
ware Description Language (HDL) such as Verilog or VHDL. As soon
as the accelerator design is finished, a suitable software interface has
to be implemented. Depending on the target platform, this interface
may vary. For the OpenSSD Cosmos+, the HW/SW interface has to
be developed as device firmware, which is executed on the ARM-
cores of the device. Since the architecture and the accelerator design
impact how the accelerator is controlled, it is necessary to consider
both when developing the software interface. As soon as the software
interface is implemented, all of the components can be integrated.
In this stage, the firmware is adapted to use the software interface
to access the accelerator. Lastly, the hardware design (including the
accelerator) has to be synthesized into a bitstream, which is used to
program the FPGA-portion of the Zynq-7000 SoC on the Cosmos+.
After compilation and synthesis has finished, the accelerated system
can be deployed and used.

A major problem of this toolflow is the required cross-domain
knowledge. Especially the PE development requires experience with
hardware development, as well as a good knowledge of the target
platform. Additionally, HW-SW dependencies exist, which makes
it impractical to develop the software interface without a finalized
accelerator design.

In this work, we aim to implement a framework which allows the
automatic generation of the accelerator design by composing fixed archi-
tecture templates. These templates allow for the concurrent generation
of the software interface. The merit of this approach is twofold: First,
hardware development expertise is no longer required. The proposed
framework is usable without any knowledge about hardware devel-
opment or HDLs. Instead, the required information is provided to
the tools in a simple C-style syntax. Additionally, the dependency
between the accelerator design and the interface development is re-
moved, allowing an overall faster development cycle.
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14.3 near-data processing background

14.3.1 Background: Key-Value Stores

In this work, we focus on Near-Data Processing for wide-spread, high-
performance Key-Value (KV) Stores, in particular RocksDB [8]. In order
to provide querying capabilities in combination with high sustained
insert and update rates, modern KV-Stores often use out-of-place
update approaches such as Log-Structured Merge-Trees (LSM-Tree)
[14].

An LSM-tree employs multiple components C0...Ck. All insertions
and updates are performed on the first component C0, typically located
in memory. After C0 reaches a defined size threshold, its content,
i.e., the insertions and updates, is flushed to persistent memory and
merged with component C1. Over time, the merges will gradually
move data from C0 to Ck to ensure a separation of hot and cold data.
During each merge process, outdated key-value pairs are purged and
their space is reclaimed.

RocksDB uses LSM trees in a multi-leveled variant [13]. The com-
ponent C0 comprises multiple MemTables and is located in volatile
memory, while the remaining components C1...Ck reside in persistent
memory (e.g., Flash). Whereas the MemTables in C0 are typically im-
plemented using a memory-efficient structure such as skip-lists, the
data is transformed into the so-called Sorted String Tables (SST) format
during the flush from C0 to the persistent component C1. Each compo-
nent C1...Ck in persistent memory comprises multiple SSTs. Each SST
in turn is composed by an index block and a number of data blocks. The
key-value pairs are stored in the data-blocks in key-sorted order.

During the merge process, as part of the LSM tree algorithm, the
SSTs are compacted, i.e., outdated entries are pruned. Nevertheless, as
the compaction process only happens as part of the merge process,
multiple key-value pairs for the same key can be present on different
levels of the LSM tree hierarchy. For example, a more recent key-value
pair k, v′ in component C2 supersedes a pair k, v in component C5.
For performance, no compaction takes place during the flush from
component C0 to component C1.

Access operations to the key-value store, such as GET or SCAN
require to traverse multiple index blocks, starting at the MemTables in
component C0. Assuming that the key is not present there, all index
blocks of every SST from C1 need to be traversed (remember that no
compaction is performed during the flush, thus multiple pairs for a
key can be present in C1), followed by traversing a single index block
in the remaining index components C2...Ck. SCAN operations with a
value predicate (e.g., SCAN(0 < Value < 42)) even require traversal
of the entire data-set.
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The NDP PEs generated by our tool-flow operate on SST files using
parallelized NDP operations for faster access.

14.3.2 nKV: Near-Data Processing Architecture

The NDP PEs developed in this work is based on the nKV Near-Data
Processing architecture developed by Vinçon et al. [18]. Their archi-
tecture and custom key-value store exploits two key insights: First,
while intermediate layers and abstraction such as block devices and
file systems simplify the architecture and implementation of key-value
stores such as RocksDB, they also introduce inefficiencies and compli-
cate the implementation of true near-data processing. For NDP to be
effective, it needs to operate directly on the physical addresses of the
data in the key-value store. Therefore, nKV uses native computational
storage, i.e., the intermediate abstraction layers along the critical I/O
path have been removed and nKV directly operates on Flash storage,
using physical addresses.

Having control over the physical placement of data also allows
nKV to optimize the placement of data. By distributing data on in-
dependent Flash channels and LUNs, nKV facilitates parallel access
and processing of data [18]. Moreover, keeping the data of different
LSM-tree index components separated on different Flash chips, avoids
blocking of the entire bus by compaction jobs taking place as part of
the LSM-tree merge.

The second important insight that underlies nKV is the fact that
placing the computation closer to the data can significantly reduce the
amount of data transferred, and consequently speed-up access. Many
KV-store operations, such as the SCAN-operation on value predicates
explained in the previous section, are very I/O-intensive, requiring
much more data to be moved from storage to the processor than
what is required for the final result of the operation. Using Near-Data
Processing, i.e., placing the computation much closer to the data, does
not only reduce the I/O complexity of the operations, but also allows
for higher degrees of parallelism, as the device-internal bandwidth
of storage devices (e.g., parallel access to different Flash channels)
is typically much higher than the bandwidth of the I/O interface to
the processor. In a similar fashion, NDP also achieves much shorter
latencies.

In general, KV-Stores employ concrete data formats defined by ei-
ther the application or by the database object itself (e.g. table), when
applied as a DBMS storage engine, the data catalog. The nKV ar-
chitecture exploits on-device data access and allows for data format
interpretation in-situ. While information about the layout and format
of data is scattered and encapsulated across multiple abstraction lay-
ers in classical KV-stores, nKV removes these layers and introduce
on-device infrastructure for data format parsers and accessors in both
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Figure 14.1: Comparison of traditional KV-store and the nKV-architecture
with native computational storage and Near-Data Processing.

soft- and hardware. The infrastructure operates on the SST format and
allows interpretation of the data format and data access without host
intervention.

The difference between the nKV architecture, with its native compu-
tational storage and use of NDP, and traditional KV-store setups, such
as RocksDB, can be seen in Fig. 14.1: While RocksDB has to retrieve
large amounts of data from the storage through intermediate layers to
perform the requested operation on the host CPU, the nKV architec-
ture can leverage the full device-internal bandwidth of the Flash and
perform the requested operation on-device, eventually transferring
only the much smaller result set back to the host.

While the prior FPGA-based NDP PEs for nKV were designed
manually, this work will target the existing nKV architecture, and
provide an automated tool-flow for generating FPGA-based hardware
accelerators for NDP operations.

14.4 near-data processing accelerator generation

Our implementation targets the Cosmos+ OpenSSD platform [17],
which features a Xilinx Zynq-7000 SoC (XC7Z045). Additionally, the
Cosmos+ offers two kinds of memory: Fast but volatile DRAM, and
slow but persistent Flash memory.

The Cosmos+ baseline architecture enables it to be used as a “plain”
NVMe SSD. To this end, the programmable logic (PL) of the Zynq
SoC is used to implement an NVMe interface as well as controllers for
the the attached Flash memory. Specifically, the Tiger4 Flash memory
controller is used [17]. This baseline architecture is extended with
FPGA-based NDP processing elements (PEs) in [18], which supports
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Figure 14.2: Overall system architecture based on the Cosmos+ OpenSSD
platform, extend with FPGA-based NDP accelerators.

hardware/software co-execution for NDP in conjunction with the
Zynq ARM cores. While [18] uses manually developed PEs, in this
work we will introduce a way to automatically generate them from
abstract specifications .

When adding FPGA-based PEs, a balance between Flash parallelism
and compute parallelism has to be struck, since both the Flash memory
controllers and the PEs compete for FPGA resources on the reconfig-
urable portion of the Zynq-7000. In this work, we use a single Flash
DIMM and two separate Flash controllers for the Flash memory. The
resulting system architecture is shown in Fig. 14.2.

To reduce the implementation complexity, the PEs are not directly
coupled to the Flash memory. Instead, the data is first buffered in
DRAM, and the results are also initially collected in DRAM. While
this might seem counter-intuitive, this detour does not have significant
negative performance impact due to two issues: First, the overall
Flash bandwidth achievable using two Tiger4 controllers is only about
200 MB/s. Second, most of the data will be accessed multiple times,
and thus profits from being stored in faster DRAM (compared to the
relatively slow Flash memory).

14.4.1 NDP Accelerator Architecture Template

While the concrete functionality of the accelerators is automatically
generated to match the specified filtering and data transformations, all
accelerators use the same architectural template as a basis. This template,
which is also depicted in Fig. 14.3, comprises four main components.
The first component, the control component (Fig. 14.3.a) is simply a
register file, which is mapped into the memory space of the on-chip
ARM core. The registers can then be used for communication between
CPU and PE.
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The second component, marked (b), of the template is concerned
with loading and storing data from/to memory. As described in
the previous section, the PEs do not have direct access to the Flash
memory. Instead, the input data is loaded from the DRAM via the
corresponding AXI4 interface provided by the Zynq PS. The loading
and processing of data takes place at a granularity of 32KB blocks.

The two tuple buffers in the accessor component, marked (c), are
responsible for converting between the native bit-size of the memory
interface (64 bit on Zynq-7000), and the actual size of a tuple in the
KV-store (i.e., a key-value pair).

The computation component, marked (d) in Fig. 14.3, consists of
two main functional units: The filtering unit will discard any tuple
that does not match a user-specified predicate. Predicates can evaluate
elements of the key, as well as the value and, in contrast to prior work
[18], can also be defined across multiple columns. This is achieved
by the option of chaining multiple filtering units, each evaluating a
single predicate. The number of filtering stages is configurable, and
the framework will automatically generate the required logic.

The second functional unit is the data transform unit, which trans-
forms the tuples that passed the filter, as defined by the user. Example
for transforms include discarding RocksDB meta-data, or unnecessary
columns. Both units, the filtering unit as well as the data transfor-
mation unit, are generated automatically, as described in the next
section.

14.4.2 Automatic Generation of NDP Accelerators

In general, the underlying abstraction of most contemporary databases
is structured application data. An example for this structuring are
relational databases, that impose a database scheme on all of the stored
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/* @autogen define parser Point3DTo2D with

chunksize = 32, input = Point3D , output = Point2D ,

mapping = {output.x = input.y, output.y = input.z }

*/

typedef s t r u c t { u i n t 3 2 _ t x , y , z ; } Point3D ;
typedef s t r u c t { u i n t 3 2 _ t x , y ; } Point2D ;

Figure 14.4: Example Code showing how a PE is defined for automatic gen-
eration. The generated PE will automatically transform data
from the Point3D-type to Point2D-type, discarding the field x.
Additionally, the Point3D-structs can be filtered using predicates
on all of the present fields (x, y and z).

data. As an alternative to relational databases, key-value stores employ
a less structured way of storing data. While key-value stores typically
do not enforce a structure, most applications still use structured data.
Thus, the application might use string-based key-value stores to store
the binary data, maintaining the application-level structuring of the
data outside the KV-store. The application would then use an internal
record-based datatype (e.g. structs), and transform this data into a
corresponding key-value pair. The resulting key-value pair obviously
has the same structure as the underlying struct.

For our automatic generation, we have to assume that the data is
structured, as we would not be able to interpret the value data for
filtering or other processing otherwise. Typically, an application will
use data-classes or structs to represent this structure. By interpreting
these type-definitions, our tools can generate the matching hardware
NDP units for the specified data structures. In our framework, we
rely on C-inspired type-definitions, as well as annotations for the
specification of the PEs. This allows the database engineer to reuse
his application code for the generation of PEs. An example for the
specification of a PE is given in Fig. 14.4.

From the parsed type-definitions and annotations, an internal repre-
sentation of these types is built. This internal representation is limited
to data-types that are suitable for hardware-processing. Specifically, in-
tegers and single/double precision floating point types are supported.
In addition to these primitive types, it is also possible to work with
(nested) arrays and (nested) structs. For byte-arrays, it is also possible
to flag them as string-data using a prefix annotation. If the annotation
is given, the corresponding byte-array will be split into a prefix that
is handled as a regular field, while the rest of the byte-array is not
used for predicate-evaluation. The reason for this lies in the potential
sizes of strings, which makes them very hard to process in hardware.

For example, the output of the Tuple Input Buffer is just a sequence
of bits containing the complete data of the corresponding struct. With
the information gathered by the contextual analysis, these bits can
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be interpreted. For example, consider a struct Point which encodes
the coordinates x, y and z (all 32 bit integers) of a point in three-
dimensional space. The hardware now knows, that the first 32 bits
encode x, while the second 32 bits encode y, etc. Using this information,
it is now possible to filter points that lie behind a certain threshold
(filtering), or project the 3D-data into a two-dimensional space (data
transformation).

Contextual Analysis As described previously, the contextual analy-
sis phase of our tools is responsible for computing the data-layouts
from the parsed representations of the type-definitions. To simplify
this process, the contextual analysis performs multiple transformations
on the struct data-type. The input to the contextual analysis are trees
representing the struct-types. Each node describes a different part of
the overall structs, with leaf nodes representing actual primitive types
(e.g., integers), while regular nodes can be nested structs or arrays.
In the first step, arrays that are annotated to represent strings are
transformed into structs, which contain a prefix-field followed by an
array, which contains the rest of the string (postfix). After strings are
resolved in this manner, the next step removes arrays completely from
the tree, by flattening them into structs with a corresponding sequence
of scalar element fields. In essence, an array uint_32t [2] becomes
the struct struct {uint_32t elem_0, elem_1;}. Since the data layout
is identical for both, this scalarization simplifies the following steps. In
a final step, the contextual analysis determines the largest relevant field.
Relevant fields are those that can be used for filtering predicates. In
our case, this includes all primitive fields except string-postfixes. Using
the size of the largest field, the contextual analysis then determines,
whether other fields have to be padded. The padding ensures that all
relevant fields can be processed in a single comparator unit.

Memory Interface The memory interface contains a Load- and a
Store-Unit, both having access to the PS-DRAM via a shared AXI4 Full
interface. In contrast to [18], we opted for more flexible units. Vinçon
et al. rely on fully static units that always load and store complete data
blocks (32 KByte). While this keeps the hardware footprint minimal,
it is not very efficient with regard to the use of memory bandwidth.
Due to the Data Transformation step, which often removes elements
such as metadata from the tuples, the output is almost always smaller
than 32 KByte. As memory contention is a major bottleneck, reducing
the number of memory accesses will improve the performance. In our
work, the Load- and Store-Unit can be configured (using the Control
Register File) to store variable amounts of data, thereby reducing
unnecessary memory accesses and memory contention.

Tuple Buffers The Tuple Buffers transform the unstructured data
retrieved from memory into processable structured data, and back
again for storage. To do this, a buffer is used to group the incom-
ing stream of 64 bit words, until one or more complete tuples are
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available. According to the padding and type information gathered
by the contextual analysis phase, this word is split into a vector of
correspondingly padded words. A second vector contains all of the
disregarded string-postfixes. The string-postfixes are carried along the
computations, but cannot be accessed. The Output Buffer reverses the
transformation of the Input Buffer, so that the result can be stored
back by the Store Unit.

Filtering Unit This module provides the selection-functionality on
the incoming stream of tuples. To do this, hardware is generated that
allows the comparison of tuple-members against a given reference-
value using a set of compare-operations. An important extension over
the work presented in [18] is the fact that the set of operators can be
easily extended in our toolflow. Each operation is represented using a
function mapping two data-words to a boolean value, which in turn is
used to determine, whether a tuple is filtered out. Using a user-defined
set of operations or the pre-defined standard set of operations ( ̸=,
==, >, >=, <, <=, nop), the Compare Unit is generated. Since our
toolflow relies on the Chisel3-framework [3] for the implementation
of the actual hardware, this also enables flexibility. For example, the
framework supports interfacing to Verilog and VHDL, which in turn
allows addition of custom compare-operations. A schematic view of
the filtering unit is shown in Fig. 14.5.

The input and output are FIFOs. In each cycle, a present tuple is de-
queued from the input FIFO and one of its elements is selected using a
multiplexer. This element is used as input to the Compare Unit which
also uses the compare_value and operator_select to determine the ex-
act operation to perform. The resulting signal is used to determine,
whether the current tuple is to be enqueued into the output queue.
A very important advantage of this architecture is the chainability.
Due to the clear interface, this unit can be chained multiple times to
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allow the evaluation of multiple predicates in a pipeline, which was
not possible with the architecture in [18].

Data Transformation Unit The Data Transformation Unit is auto-
matically generated from the given struct-types. Both input and output
are tuple-FIFOs. During the generation of the Data Transformation
Unit, the framework will automatically match each (nested) field of the
output-struct to the appropriate (if any) field of the input-struct. Using
this mapping of input- to output-fields, hardware will be generated
that implements this transformation. In general, there are three cases:
1) When the input and output are of the same struct-type, tuples are
simply passed through. 2) If the output-struct contains only (nested)
fields that are also present in the input-struct, the mapping is automat-
ically derived. 3) If the output struct-type contains (nested) fields that
are not present on the input, the user has to specify which (nested)
input-field is to be used. While this is very flexible, it also requires
user interaction in the form of corresponding annotations. An example
for this is shown in Fig. 14.4 with the mapping-key. Using this key, it is
defined that y and z are used for the projection into 2-d space. Without
a mapping, the toolflow would default to the second case and use x
and y for the projection.

Composition All of the described modules are then composed
into a PE. Due to their latency-insensitive design, the corresponding
interfaces can be directly wired-up. Additionally, all modules are
automatically connected to their respective control registers. The con-
trol register file is automatically configured to provide the required
number of registers.

14.4.3 Automatic Generation of the Software Interface

In addition to automatically generating the PEs for performing the
NDP operations, we also added a tool pass, which automatically
generates a software-interface for controlling the PEs. The reasoning
behind this is to allow a database-engineer to use the PEs without
any additional knowledge about how they work and how they are
controlled.

Using the information about the Control Register File and the behav-
ior of the PEs, we generate the software-interface bottom-up: First, we
generate compiler-macros for encoding the different addresses. From
these macros, we built simple software-functions for accessing the
different control registers. In a final step, we use these access-functions
to built more complex functionality, such as synchronous and asyn-
chronous filtering functions using one or multiple of the filtering
stages. For debugging-purposes, functions are generated for printing
the state of the PE and for outputting the corresponding data-types.
All generated functions are collected in a single header-only library
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/** Control Register Addresses. */

# def ine START 0

# def ine BUSY 4

[ . . . ]
# def ine FILTER_OP_0 60

# def ine CYCLE_COUNTER 64

/** Generated Functions */

u i n t 3 2 _ t f i l t e r _ s y n c ( . . . ) { . . . }
u i n t 3 2 _ t f i l t e r _ a s y n c ( . . . ) { . . . }
void wait_unti l_done ( . . . ) { . . . }

Figure 14.6: Snippet from the generated software-interface that can be used
to interact with the PEs.

file, which can then be added to the project by the database-engineer
in order to exploit the PEs.

An example-snippet of the generated header-only library file is
given in Fig. 14.6.

14.5 evaluation

We will first compare our automatically generated PEs against the
hand-crafted units used in [18]. Since [18] has already shown that the
NDP approach outperforms the typical non-NDP approach, we will
omit this discussion. Then, we will examine the hardware utilizations
of the generated PEs and determine their usability on the OpenSSD
Cosmos+ SSD platform. All hardware-syntheses are run targeting the
Xilinx Zynq-7000 SoC (XC7Z045). In all designs, the Flash controllers
and processing elements are clocked at a frequency of 100 MHz,
while the NVMe-Core is clocked at 250 MHz, which is in line with
the original baseline. While a higher frequency could improve the
performance of the PEs, the main bottleneck in this architecture is the
available Flash bandwidth.

Performance For the performance evaluation, we use the same
benchmarks as in [18]. They work on a sample dataset for a publica-
tion reference graph. The nodes of the graph are papers published
in journals and conferences. The edges of the graph are references
between those papers. Overall, the dataset is comprised of 3,775,161

Paper-Entries and 40,128,663 references between them. For the evalua-
tion, we run GET- and SCAN-operations using the same software-NDP
baseline as well as the adapted algorithm, which uses the correspond-
ing PEs. Note that for both operations the execution is implemented
in a hybrid way, where the software executes a very general algorithm
and exploits the hardware whenever datablocks have to be filtered or
transformed.

The resulting NDP-runtimes for GET are shown in Fig. 14.7 (a).
Note that both the NDP hardware and software runtimes we report
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Figure 14.7: Execution times of the GET and SCAN operations, comparing
our work to the work provided in [18]. For both Operations
execution is executed with HW-acceleration (HW) and without
(SW).

for GET are slightly slower (ca. 10%) than those given in [18]. This is
due to updated firmware for the COSMOS+ board, which traded some
performance for higher reliability. As described in [18], it also makes
sense that the GET-operation does not profit greatly from hardware
support, since it is sequential and the configuration-overhead (i.e.,
writing control registers) of accelerators is too high to make an overall
difference. Even though, the GET-operation does not improve, the
automatically generated PEs are similar in performance in comparison
to the ones used by [18].

The SCAN operation has much longer runtimes, making the minor
firmware-induced timing variations between [18] and our measure-
ments negligible. As in [18], the hardware-accelerated NDP SCAN is
faster than the software version. The performance of our generated
accelerator is on par with the manually optimized one as shown in
Fig. 14.7 (b). Using the generated PEs slightly increases the runtime
by 0.018 seconds from 5.512 seconds to 5.530 seconds.

An additional extension of our work is the possibility to gener-
ate PEs featuring multiple filtering stages. Using multiple pipelined
filtering stages allows the implementation of more complex NDP-
functionality. Moreover, due to the use of elastic pipelines, additional
filtering stages will only add very small increases to the overall execu-
tion times. Since the filtering stages are able to process a tuple per cycle,
the increase in latency of additional filtering stages will be marginal.
Especially for compute-bound tasks, this would give the hardware
accelerators an edge over the use of the on-device ARM-cores.

Hardware Utilization We generated accelerators that provide the
same filtering and transformation functionality as [18] and compare
our hardware utilization against theirs. Specifically, we use 1 paper-PE
to process the nodes in the graph and 7 ref-PEs to process the edges.
Since [18] only reports slices for the PEs, we limit our comparison to
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Table 14.1: FPGA Resource Utilization of the PEs used in [18] and our work.
The design contains the complete COSMOS+ OpenSSD platform
as well as 1 paper-PE and 7 ref-PEs.

Slice Util. (abs.) Slice Util.(%)

[18] Our Work [18] Our Work

Overall 40821 41934 74.70 76.73

paper-PE 9480 14348 17.35 26.25

ref-PE 1277 1446 1.41 2.65

Available 54650 54650 100.00 100.00

slices as well. Please note that each of our generated accelerators also
uses a single BRAM slice, which was not the case for the custom built
processing elements of [18].

Table 14.1 shows the corresponding utilization results. It is notewor-
thy that for both of the PE-types, the resource utilization has grown.
Some of this can be attributed to the improved Load- & Store units,
which have become more flexible. Specifically, instead of always pro-
cessing blocks of a certain size, our infrastructure can be configured
to load only partial data blocks. Analogously, the Store-Unit can be
configured to write back partial blocks. Since the Data Transformation
will typically strip data away, this reduces the overall amount of data
read and written, which in turn reduces memory contention. Also,
note that the overall increase is less than expected, considering the size
increases of the individual PEs. This is due to a more efficient use of
interconnects in our refined architecture template.

We also evaluated the amount of hardware required for multi-staged
filtering, as well as for different tuple sizes. For the first part, we
take a closer look at the correlation between tuple-sizes and required
hardware. For this part of the evaluation, we rely on out-of-context
synthesis. In out-of-context syntheses, only a selected part (in our case
the PE) is synthesized without the rest of the surrounding architecture.
The resulting utilizations represent the amount of logic resources
required without very dense packing. For the generation of the PEs,
we used a number of different input formats that feature tuple sizes
ranging from 64 bits up to 1024 bits. For of these sizes, we specified
a struct with the corresponding number of uint32_t and uint8_t

values. Input and output types are identical and mapped automatically.
For each size, we generate a PE that is able to compute on the complete
tuple (at the granularity of 32-bit fields) and another PE, where half of
the data is discarded using string-prefixes.

The results are shown in Fig. 14.8. An interesting observation is the
fact that for smaller PEs, the use of string-prefixing yields a higher
slice-requirement. At a first glance, this would make the prefixing
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Figure 14.8: Out-of-Context Slice Utilization of generated PEs in correlation
to the size of the processed tuples. Half refers to accelerators
using the prefixing, whereas Full refers to the ones using all
data.

irrelevant. To understand why prefixing is still necessary in some
cases, we have to consider that the critical part of our hardware is
the Filtering Unit with the compare operations at its core. In Fig. 14.9,
all fields have a width of 32 bit, which means that the corresponding
compare-operators are also 32 bit operators. For the 1024 bit struct,
the corresponding string-data would have an overall size of 512 bits. A
full-width compare unit would vastly increase the amount of required
hardware. Thus it is still reasonable to use the prefixing.

Lastly, we take a closer look at the multi-stage feature and the result-
ing hardware-requirements. For this part of the evaluation, we reuse
the same data-formats as in the previous step, but focusing on 256

bit structs only. For both (with and without string-prefixes), we built
accelerators with up to 5 filtering stages for more complex predicates.
Of these, especially the 2-staged ones are interesting, since they could
be used to implement RANGE_SCANs. Again, the utilization results
were obtained using out-of-context synthesis.

Looking at the results shown in Fig. 14.9, we can see an almost linear
correlation between the number of stages and the slice requirement.
Additionally, we observe that the increase per additional stage is small
compared to the overhead incurred by the fixed part of the template
(Load/Store Unit, Tuple Buffers). This implies that multi-stage filtering
incurs only minor additional cost, while offering a lot more flexibility.

14.6 related work

The first approaches for Near-Data Processing, moving computation
closer to the data date back to as early as the 1970s. However, ap-
proaches such as database machines [5] or ActiveDisk [1, 12, 15] were
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severely limited by the I/O-limitations and memory bandwidth of
mechanical hard-drives.

Only after the wide-spread availability of modern non-volatile stor-
age solutions, e.g., Flash-based SSDs, significant advances in the perfor-
mance of Near-Data Processing systems became possible. Approaches
such as SmartSSD [7, 11, 16] exploit the much higher I/O-bandwidth
of modern storage devices as, for example, provided by parallel, in-
dependent Flash-channels. JAFAR [2, 20] was one of the first systems
focusing on Near-Data Processing for DBMS. Biscuit [10] was another
approach targeting NDP for DBMS, namely MySQL. In contrast to
our work, they only employed the ARM-based CPUs found in com-
modity SSD hardware for software-based Near-Data Processing, but
also identified the lack of a usable framework for programming NDP
PEs as an important issue. Our framework allows to automatically
generate FPGA-based Filtering and Data Transformation units from
simple user-input. It thus offers a solution to make FPGA-based NDP
acceleration accessible to non-FPGA experts.

With their HRL architecture [9], Gao et al. present a new hardware
architecture targeting NDP that combines fine-grained reconfigurable
regions, as found on FPGAs, with coarse-grained regions as common
in Coarse-Grained Reconfigurable Arrays (CGRA). Their overall sys-
tem architecture combines this accelerator with DRAM in an Hybrid
Memory Cube (HMC), but does not include non-volatile memories.

Architectural challenges and other considerations on how to inte-
grate FPGAs into Near-Data Processing architectures were discussed
by Dhar et al. [6] and Becher et al. [4]. While Dhar et al. envisioned
an architecture featuring Flash storage and a combination of FPGA
and High-Bandwidth Memory (HBM), with the FPGA processing
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data cached in HBM, the ReProVide architecture proposed by Becher
et al. uses a combination of an ARM CPU and an FPGA, similar to
our approach. In the multiple dynamically reconfigurable regions
of the FPGA, different pre-synthesized NDP PEs can be used. How-
ever, these accelerators must be hand-crafted and cannot be generated
automatically.

14.7 conclusion & outlook

In this work we have developed a framework for the automatic genera-
tion of FPGA-based accelerators for the use with Near-Data Processing
applications. Our evaluation shows that our automatically generated
accelerators provide almost identical performance compared to a setup
with hand-crafted hardware accelerators. This is worthwhile, since our
approach effectively removes the need for custom hardware develop-
ment and lowers the entry barrier for hardware-accelerated databases.
Moreover, our multi-staged filtering approach enables more powerful
computations with minimal overhead.

While filtering and transformation of data are wide-spread use-cases
that can easily be realized using our framework, more computational
and analytical tasks could also be performed using this architecture.
In future work, we will investigate, how we can leverage the data-
parallelism of the architecture to perform more compute-intensive
tasks. Using our architecture, it is possible to access and process all
tuple-elements in parallel, which could offer great potential for faster
analysis of the processed data.
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abstract

Cardinality Estimation is a key operation in database systems. Based
on prior work, we evaluate the use of Sum-Product Networks (SPNs)
as a means to estimate cardinalities of database queries. We show their
applicability to different classes of queries analytically and empirically,
discussing advantages and disadvantages.

Based on prior work and our additional analysis, we then build
a framework to generate hardware accelerators for cardinality esti-
mation. Our framework is able to generate latency- and throughput-
optimized accelerator variants using a flexible fixed point number
format for the actual inference. We extend the functionality of prior
work to enable the marginal and range-based queries that are relevant
for cardinality estimation.

With our framework, we implement different architectures for dif-
ferent use-cases, including Near-Data Processing on smart storage

207



208 spns for cardinality estimation

devices, as well as general purpose server-side cardinality estima-
tion. Using a PCIe-based accelerator card, we achieve an estimation
latency of 6.62 µs. This corresponds to a speed-up of almost 40x over
CPU-based prior work. Additionally, we show an estimation latency
of less than 2 µs in a Near-Data Processing setup on smart storage.
Furthermore, we investigate the error bounds of the flexible fixed
point number format used and the corresponding resource utilization.

15.1 introduction

In recent years, machine learning and big data have become active
fields of research within computer science. With the development of
models such as ChatGPT by OpenAI, interest in AI has increased fur-
ther. These models deal with an ever-increasing amount of data that is
produced and stored every day, making data storage and management
an equally important field. However, while there have been efforts
to improve storage systems, there is still much more potential for
optimization. New GPUs and CPUs often come with specific optimiza-
tions for machine learning. For example, AMD’s recently announced
Ryzen 7000 chips will feature XDNA AI Engines specifically targeted
at neural networks. Progress in the storage domain has been far slower,
though.

While consumer storage devices have advanced in capacity, latency,
and throughput, most of these advances are not specific to machine
learning. One potential improvement to storage devices for machine
learning applications is the use of Near-Data Processing (NDP), which
offloads computational load from the CPU to the storage device. NDP
is especially interesting in applications where the stored data can
be pre-processed on the storage device itself using data-reductive
operations such as selections. By performing these operations on the
storage device, bandwidth on the PCIe-bus can be freed up, and
the transported data is of greater relevance to the application, as
it contains less data that will be discarded after the transport. For
example, consider training a model on a huge dataset containing
functionally dependant data (e.g. age and birth date). Removing such
redundancies using NDP projection avoids inefficient data transfers
and will also increase performance, if data movement is a bottleneck.

To implement NDP, smart (also called computational) storage devices
such as the Samsung SmartSSD [3] or the Zynq-7000-based COSMOS+
OpenSSD [15] can be employed. The COSMOS+ OpenSSD is a regular
NVMe-based SSD, but its flash controllers are implemented in the
programmable logic (PL) of the Zynq-7000 SoC, and the Cortex A9

cores are used to run firmware. To enable NDP, the hardware on
the PL and firmware of the COSMOS+ can be extended with user-
defined functionality. Thanks to the FPGA-based SoC, simple NDP
operations can be realized in hardware or software, as shown in
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[19]. For more complex NDP operations, result handling becomes an
important problem [16], as intermediary results must be materialized.
Efficient materialization is only possible for results that fit into on-chip
block RAM (BRAM) or on-board dynamic RAM (DRAM), making the
prediction of result sizes of a given query highly relevant to determine
the best result-handling strategy. This process is called Cardinality
Estimation (CE).

While it is often beneficial to perform CE in an NDP manner, CE is
also a key operation in non-NDP-database systems. Specifically, CE
is generally used in query optimization, which translates complex
database queries into a sequence of subqueries, called an execution
plan. Optimally, data-reductive selections and projections are per-
formed early in an execution plan, since this will reduce the runtime
of later, more complex operations like joins.

A relatively novel approach to CE is the use of Sum-Product Net-
works (SPNs), as demonstrated in DeepDB [7]. While that work pro-
vides an interesting proof of concept for using SPNs in CE, it lacks
detail on how queries are actually estimated using SPNs. Instead, the
paper focuses on additional applications of SPNs in database and
storage systems. SPNs are a type of probabilistic graphical model
that can be used for a wide range of tasks, including classification,
regression, and density estimation. In the context of CE, SPNs can be
trained to estimate the cardinality of data sets, which has the poten-
tial to improve performance and accuracy over traditional methods.
However, further research is needed beyond DeepDB to explore the
feasibility and effectiveness of this approach in practical applications.

This paper has three main contributions. First, we evaluate the ad-
vantages and drawbacks of using SPNs for CE. Second, we evaluate
the accuracy of SPNs for estimating cardinality using general-purpose
datasets, and identify cases where the usage of SPNs requires special
care. We also evaluate the impact of the corresponding cases em-
pirically. Third, based on prior work, we build a framework for the
automatic generation of FPGA-based accelerators for SPNs that can
be used to perform cardinality estimation in both NDP- and non-NDP
settings, and which can generate latency- and throughput-optimized
variants for different use-cases. Finally, we discuss different applica-
tions for the generated accelerators and evaluate corresponding system
designs that target different application scenarios. Overall, our work
provides new insights into the feasibility and effectiveness of using
SPNs for CE, and presents a framework for generating FPGA-based
accelerators that can also be used in practical NDP applications.
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Figure 15.1: Inference example in an SPN, representing the joint probability
distribution P(A, B). In joint inference, all histograms output
a corresponding value (a), while in marginal inference some
histograms are marginalized and always output the value 1.0
(b).

15.2 background

15.2.1 Sum-Product Networks

Sum-Product Networks (SPNs) [11] are probabilistic circuits repre-
sented as directed acyclic Graphs (DAGs) that encode joint distribu-
tions over random variables. SPNs consist of three types of nodes:
weighted sums, products, and leaves, which encode univariate or
multivariate distributions over random variables. By performing a
bottom-up pass through the DAG, joint and marginal inference can
be efficiently performed on complete or partial evidence. Figure 15.1
provides an example of joint and marginal inference in an SPN.

Sum-Product Networks (SPNs) can be constructed by hand for a
specific purpose, or automatically trained on a given dataset. Different
training approaches can be classified as structure learning, weight
learning, or a combination of both. Random generation of SPNs with
subsequent weight learning has also been shown to be a practical
approach [10]. For example, an SPN can be learned from scratch by
performing structure learning to identify the relevant independent
variables and their relationships, or refined by adjusting the weights of
an existing SPN to improve accuracy. Relevant for this work is research
on learning SPNs from relational databases [7], with the goals of
performing CE and Approximate Query Processing (AQP) in database
and storage systems. This involves learning the underlying structure
of the database schema and using that information to construct an
SPN that accurately estimates the number of distinct values in a given
query. The ability to automatically learn SPNs from data makes them
a powerful tool for a wide range of applications in machine learning
and artificial intelligence.
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15.2.2 Cardinality Estimation

CE is a key operation in database and storage systems and used to
predict the size (cardinality) of query results. In relational databases,
CE specifically estimates the number of rows in a table or in an inter-
mediary result. CE is often used in query optimization to rearrange
subqueries for improved performance. Most databases use simple
approaches for CE based on approximating data distributions using
histograms and/or cost models. However, recent work suggests that
machine learning and learned models are also a valid approach for CE
[7]. SPNs are a promising approach for CE because they can perform
very precise estimations on actual probabilities, no softmax operator etc.
is used. When executing on FPGAs, custom numerical types can be
exploited to achieve more efficient implementations.

15.3 related work

Cardinality Estimation The core idea of this work is derived from
[7], which uses SPNs to perform CE, as well as AQP. In their work,
Hilprecht et al. define Relational Sum-Product Networks (RSPNs),
which are an extension of regular SPNs aimed towards relational
databases. Specifically, RSPNs typically come in sets or ensembles
which represent multiple datasets or database tables. Additionally,
RSPNs support typical database-specifics like NULL values, handling
of functional dependencies, and incremental training to keep the RSPN
in sync with updates of the dataset. The authors show that CE and
AQP using RSPNs is feasible. While there is prior work on CE for
relational databases, most of those works do not use SPNs as model.
The relatively extensive survey by Harmouch et al. discusses typical
approaches for CE [5].

Near-Data Processing While first experiments towards NDP took
place as early as the 1970s, most of these early approaches (like
database machines [2] and ActiveDisk [1]) were rather unsuccessful,
due to I/O and general bandwidth limitations. More recently, there
has been work with Smart SSDs that exploit the higher bandwidth of
typical flash memories [3].

Also, bump-in-the-wire processing has become more relevant, with
a number of publications by Vincon et al. [19], which introduced the
concept of cross-layer data formats in NDP-based key-value stores. By
giving the storage device knowledge about the structure of the stored
data, typical key-value store operations like GET and SCAN could be
performed on a COSMOS+ OpenSSD. They describe corresponding
implementations in [19], proving that more complex operations like
SCAN can profit from software- and FPGA-based NDP. Furthermore,
the work was later extended by an approach to generate the FPGA-
based NDP operators automatically from annotated code [18]. Lastly,
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the authors have shown the importance of result-set handling and
suggest possible solutions in [16].

Sum-Product Networks The first relevant paper considering the
generation of hardware accelerators for SPN inference was published
in 2018 by Sommer et al. [13]. It originally employed a compiler-like
approach to read SPNs from a textual representation and generate cor-
responding accelerators using FloPoCo 64-bit floating point operators.
In later works, this approach was extended to different custom data
types like a logarithmic number system [17], as well as posit num-
bers and a custom floating point number system [14]. In more recent
works, the SPN accelerators were integrated in different architectures
enabling inference in 100G networks [6] and using fast on-chip HBM
[20].

In parallel, Shah et al. developed a custom architecture for exe-
cuting inference on probabilistic circuits [4, 12]. Their approach also
features improvements to the learning process that ensure that inter-
mediary results are as precise as possible given different configuration
parameters of the overall architecture.

15.4 spns and cardinality estimation

Before discussing the hardware implementation of probabilistic cardi-
nality estimation as FPGA accelerators, we present a brief overview of
key concepts driving the implementation approach. For a comprehen-
sive discussion on incorporating SPNs into database systems, we refer
the reader to Hilprecht et al. [7]. In this study, we focus on applying
FPGA-based cardinality estimation for data distributions represented
as SPNs over histogram leaf nodes. We assume normalized histograms,
where each bucket signifies a probability rather than a density.

15.4.1 Estimating Query Cardinalities

In this section, we describe the probabilistic operations executed for
corresponding database queries. Throughout this section, we represent
the learned probability distribution for a database table T by P(X),
where X is the vector of random variables corresponding to each
column in T. Generally, the estimated cardinality c of a query result
is calculated as an expectation over the learned data distribution by
determining the probability of the provided evidence vector E and
multiplying it by the number of rows n in the table, as follows:

c = Ex∼P(X|E)(X) ≈ n · P(E). (15.1)

Next, we explain how to obtain P(E) for various types of database
queries.
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Single-Column Equality Queries In the most trivial filtering case,
we aim to estimate the outcome of filtering a table for a provided value
in a specific column. The evidence provided to the SPN consists of a
single random variable Xi corresponding to the column i of interest,
resulting in the computation

c ≈ P(Xi = x) · n, (15.2)

effectively marginalizing every other column. In SPNs, the marginaliza-
tion is achieved by outputting the value 1.0 for leaf nodes of marginal-
ized variables.

Range Queries In many applications, we are interested not only
in single values for columns but also in ranges of data, such as “de-
termine the number of scientists who have published fewer than five
papers”. Formally, we aim to evaluate the probability that the value
of a random variable Xi falls within the range [xl , xm] with l < m.
Calculating the probability involves determining the probability of the
or-event of several mutually exclusive events:

P(xl ≤ Xi ≤ xm) =
m

∑
j=l

P(Xi = xj). (15.3)

Since non-leaf operations in SPNs remain constant w.r.t. j in Eq.
15.3, the sum propagates into the histogram leaves corresponding
to Xi. This property enables us to compute the probability of single-
column range queries without evaluating the entire SPN multiple
times. Modifying the comparison operators within the query only
changes the start and end indices for the sum operation.

AND Queries While the previous paragraphs focused on single-
column queries, we can also combine queries. In this work, we restrict
our scope to queries of the form A <= 42 AND B = 123, excluding
queries like A <= 42 OR B >= 10, as the latter would require multiple
SPN passes. Computing such a query is possible, but would require
at least three passes over the SPN: One to determine A <= 42, and
a second one for B >= 10. Since both subqueries might overlap on
the underlying dataset, the overlap has to be determined as well (A
<= 42 AND B >= 10), to ensure that the overlap is not included twice.
Furthermore, we limit the range queries to one predicate over a range
and any number of equality predicates, as we cannot propagate the
sum over all outcomes as before. Formally, we assess the probability
P(xl ≤ Xi ≤ xm, E = e), with Xi corresponding to the column for the
range computation and e representing evidence for other columns
of interest E. This probability is obtained by computing the sum
inside Xi’s histogram nodes, setting all other histograms for relevant
columns to the corresponding evidence, and outputting 1.0 for all
histogram nodes of marginalized columns. For practical purposes, we
later empirically evaluate the effect of approximating cardinalities by
applying the histogram summing of single range queries to multiple
columns.
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15.4.2 Hardware-Specific Model Optimization

While histograms with only a few buckets can be realized easily on
FPGA using on-chip BRAM, histograms with a larger number of
buckets, e.g. for 32-bit integers would either require LUTs with an
infeasible number of entries, or a merging of histogram buckets, which
may result in loss of representation accuracy. While this can be a valid
approach if many adjacent buckets are similar, it is not generally
applicable. Instead, we propose a different solution: Due to the nature
of SPNs to learn distributions over arbitrary data, we can make use
of the underlying probabilistic semantics and simplify the resulting
hardware.

Let Xn denote some n bit wide random variable. Then PL(Xn = x)
denotes the probability output by a histogram leaf L for Xn taking the
value x. Let us now assume w.l.o.g. that we slice Xn evenly into four
bit chunks. Then we can view PL(Xn = x) as the joint probability
P̂L(X4

⌊n/4⌋−1 = xn−1:4·(⌊n/4⌋−1), ..., X4
1 = x7:4, X4

0 = x3:0), with X4
i denot-

ing the random variable corresponding to the i-th nibble of Xn and
xm:n corresponding to the concrete assignments of bits m through n of
x.

Leveraging this insight, we can either retrain the entire SPN by
pre-processing the training data and bit-slicing each data point to
the desired BRAM size or by learning compact SPNs representing
each histogram node and replacing the histogram nodes with the
corresponding SPN.

15.4.3 Empirical Analysis

To determine the feasibility of SPNs for CE, we initially built a software
simulation, capable of executing queries. It supports actual execution
by applying filters to the dataset, as well as performing the inference
of a corresponding trained SPN. For this preliminary evaluation, we
rely on the NIPS dataset, which encodes the frequencies of specific
words in a corpus of ML publications as a big table. The advantage of
the NIPS dataset is the use of many columns with small value ranges,
which enables the enumeration of queries. While other datasets could
also be targeted using the approach described in Section 15.4.2, the
NIPS dataset with its increasing number of columns is well suited
for scaling experiments. This is especially interesting later on, when
evaluating performance and hardware utilization in Section 15.6.

Since we want to focus on the feasibility of employing SPNs for
CE, we use the selectivity of queries for the analysis, as this is the
actual output of the SPN inference. The cardinality is then obtained by
multiplying with the number of entries in the dataset. We obtain the
queries by performing a range analysis on each column. Using these
ranges, we then enumerate all single-column (SC) queries and later
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Figure 15.2: Observed estimation error for range queries on all NIPS datasets.

on combine multiple single-column queries to build multi-column
(MC) queries. For SC queries, we further differentiate between equality
(SCEQ) and range-based (SCR) queries. For MC queries, we differ-
entiate between queries using only the equality operation (MCEQ),
queries using a single range-based operation (MCSR), and queries
using multiple range-based operations (MCMR).

We limit the analysis to MC queries targeting at most three columns,
as bigger queries would most likely be subjected to query optimiza-
tion/planning, which would divide the query into smaller or even
atomic queries. Lastly, we also limit the analysis to queries yielding at
least one result. The reason behind this constraint is simple: SPN infer-
ence returns very small values in those cases where the true selectivity
is zero, yielding very small absolute errors. We exclude those cases
from the examined queries, as they do not matter in typical use cases
of CE, such as buffer allocation in heterogeneous memory hierarchies.
Table 15.1 lists the datasets and the corresponding number of queries
used in the analysis.

Single-Column Equality (SCEQ) First, we enumerate all SCEQ
queries yielding at least one result. For each query, we then execute
the query and the corresponding SPN inference to compute the actual
and estimated selectivity. The leftmost subplot of Fig. 15.2 shows the
distribution of the estimation error. It shows that the estimation error
is below 0.05 for almost all queries over all datasets. The maximum
estimation error is 0.075.
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Table 15.1: Datasets and the corresponding number of examined queries

SC MC

Dataset EQ R EQ SR MR Overall

NIPS5 111 710 9,782 134,682 200,000 345,285

NIPS10 227 1,426 92,548 200,000 200,000 494,201

NIPS20 480 2,882 129,092 200,000 200,000 532,454

NIPS30 740 4,400 165,960 200,000 200,000 571,100

NIPS40 1,027 5,980 200,000 200,000 200,000 607,007

NIPS50 1,255 7,626 200,000 200,000 200,000 608,881

NIPS60 1,573 9,308 200,000 200,000 200,000 610,880

Single-Column Range (SCR) For single-column range queries, we
take a similar approach. As we can see in Fig. 15.2, the distribution
of estimation errors changes. While most estimation errors are still
relatively small, there are fewer cases with an estimation error of less
than 0.01. While the histograms are checked for correct normalization,
they typically cannot add-up to exactly 1.0 due to the use of double-
precision floating point numbers. With the conversion to a fixed-point
number format, additional conversion errors are introduced, which
can add-up when querying a bigger number of buckets.

Multi-Column Equality (MCEQ) As discussed in Section 15.4, the
error of this class of queries should not significantly increase over
SCEQ, as the inference does not introduce any mathematical issues
apart from potential precision errors due to the digital arithmetic.
Accordingly, the estimation error behaves similarly to SCEQ. Addition-
ally, the errors are also typically less than for the SCR queries, since
they are computed over more histogram buckets.

Multi-Column Single Range (MCSR) For these queries, the esti-
mation error also behaves as expected. Interestingly, the impact of
the range-based subquery is not as prevalent as in SCR. While the
range-based subquery will introduce an estimation error, its impact is
not as high, as the rest of the computation is still relatively precise.

Multi-Column Multiple Ranges (MCMR) This class is certainly
the most interesting. As discussed in Section 15.4, the estimation error
in this class should be relatively high, since summing up multiple
histograms actually violates the arithmetic precedence. To achieve an
arithmetically correct result, we would have to transform all range-
based queries into the corresponding set of equality-based queries,
execute each combination and sum up the results. By summing up the
buckets directly, we can perform the estimation in a single pass. As
expected, the violation of precedence leads to more queries yielding
higher estimation errors. But while more queries have higher estima-
tion errors, the worst-case error still remains below 0.1, and is thus
still in the same magnitude as for the other classes. So empirically, it
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is practical to perform cardinality estimation for the given queries on
the given dataset.

15.5 spn accelerators

While SPNs are still a relatively novel ML model, there is already an
extensive body of prior art on using FPGAs to accelerate SPN inference.
In this work, we implement a separate framework that uses a similar
approach to [13]. Instead of using the more complex encodings used
in that prior work, we instead opt for a much less complex fixed-
point based approach. Since SPNs rely on probabilities internally, all
encoded numbers are limited to the range of [0, 1]. Thus, we can use a
single bit to encode the integer portion of the corresponding numbers.
Using the capabilities of Chisel3 for hardware construction, we made
the number of bits for the fractional portion parametrized, which can
then be used to trade-off hardware resources with precision. The key
justification for the simpler fixed-point encoding compared to that of
[13] lies in the different application-specific error requirements. In the
more general prior work [14] the goal was a maximum relative error of
10−6 for all results to ensure that all results could be compared to other
results. While there are certainly applications that require such tight
error margins, CE does not, as we typically only want to distinguish
cases with small or large result sets. The comparison of those cases
is not as relevant, since multiple queries are chained and identifying
a single data-reductive partial query suffices to reduce the result size
of all subsequent partial queries. [7] shows that the estimation errors
using SPNs are much smaller in almost all cases. Thus, using more
complex number encodings for higher accuracy is not applicable for
CE.

For this work, we implement three configurable fixed-point oper-
ators, starting with FxAdder, which adds two fixed-point numbers.
If numerical issues lead to results > 1, the result is saturated to 1.
Second, we implement FxMultiplier that multiplies two fixed-point
numbers using tiled integer multiplication. The tiled multiplication is
built from 24 × 17 bit multiplications to ensure that FPGA DSP slices
are used for fast and area-efficient integer multiplication. The tile-size
is configurable to enable easy porting to other architectures. Lastly,
we implement FxHistogram, which is further described in the follow-
ing paragraph. Using these operators, we can easily generate a fully
spatial, fully pipelined datapath by traversing the SPN, generating
corresponding operators and interconnecting them. To make the accel-
erators as reusable as possible, the fully pipelined datapath is bundled
with some control logic and a buffer FIFO. The resulting core acts as a
free-running kernel: Data is delivered and retrieved via corresponding
AXI-Stream interfaces. Depending on the use-case, different wrappers
can also be generated around the free-running kernel. We provide
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Figure 15.3: FxHistogram Module. Dotted Lines indicate pipeline stages. The
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the used encoding.

Table 15.2: Functionality of FxHistogram and its submodules. b denotes the
memory storing the accumulated histogram buckets.

Probabilities Operands

Op Calculation p1 p2 a −b +c

= (b[i]− b[i − 1]) b[id1] b[id2] p1 p2 0.0

̸= 1 − (b[i]− b[i − 1]) b[id1] b[id2] 1.0 p1 p2

< (b[i − 1]− 0) b[id1] p1 0.0 0.0

≤ (b[i]− 0) b[id1] p1 0.0 0.0

> 1 − (b[i]− 0) b[id1] 1.0 p1 0.0

≥ 1 − (b[i − 1]− 0) b[id1] 1.0 p1 0.0

R (b[j]− b[i]) b[id1] b[id2] p2 p1 0.0

M 1.0 0.0 0.0

two wrappers: One for latency- and one for throughput-optimized
inference (cf. Section 15.5.1).

FxHistogram Module The new FxHistogram module is an im-
provement over prior work, which exclusively focused on equality-
based bottom-up inference. It also provides other compare operations
( ̸=,<,≤,>,≥), as well as range and a marginalize operations.

The new module (shown in Fig. 15.3) enables the use of new opera-
tors, while the implementations from prior work could only compute
equality-based inference. The first step in enabling the additional op-
erations was the introduction of accumulated probabilities. In prior
work, the probability lookup was limited to equality, so the value of
each bucket could simply be stored in read-only memory using the
index of the bucket as address. To enable the computation of ranges
of buckets, we instead compute the accumulated probability. For
each bucket, all probabilities up to and including the current one are
summed and stored. By using this approach, the calculation for each
of the corresponding operations can be achieved using two probability
lookups. The corresponding addresses (idx1 and idx2) are determined
in the Index Determination stage. Depending on the operation, up to
two lookups happen concurrently, yielding the probabilities p1 and
p2. The required calculations always employ three operands (a, b and
c), of which up to two are fixed to 0.0 or 1.0, depending on the op-
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eration performed. The Operand Reordering stage will reorder the
incoming probabilities and add zeroes or ones accordingly, so that
the correct final result can be computed using the normalized com-
putation a − b + c. The exact mathematical calculations, the required
lookups, and the final operands are shown in Table 15.2.

15.5.1 System Integration

Different approaches can be used to integrate the free-running kernel
into a system. For streaming-based accelerators, integration is straight-
forward, but for memory-mapped approaches, two wrapper modules
were implemented: a latency-optimized and a throughput-optimized
variant. Both use an AXI4Lite interface to expose control registers,
as well as an interrupt signal to enable asynchronous execution. The
throughput-optimized variant also provides an AXI4 interface for
batch processing.

Using the latency-optimized variant, we tested the accelerator on
five setups for the NIPS40 dataset, achieving end-to-end execution
times shown in Table 15.3. The software interface runs on the ARM
cores in SoC-based platforms and on the x86 host CPU in PCIe-based
platforms.

Setup (a) integrates the accelerator for a Near-Data Processing sce-
nario on the COSMOS+ smart SSD. Execution of SPN inference takes
6.85 µs, when controlling the accelerator from a baremetal firmware
running on the Cortex A9 of the Zynq 7000 SoC. Polling is used to
determine whether the hardware execution has finished. While (a)
employs actual smart SSD hardware, that COSMOS+ platform with
its Zynq 7000 series device is showing its age. Thus, setup (b) tests
the same accelerator architecture, but on a more recent SoC hardware
(Ultra96, using an Zynq UltraScale+ MPSoC device), where it achieves
a latency of 1.6 µs.

In contrast to the baremetal operation in (a) and (b), the setups (c),
(d), and (e) use the TaPaSCo FPGA framework [8] for hardware system
integration and as a runtime API. Setup (c) uses TaPaSCo on an Ultra96

running an embedded Linux. Setups (d) and (e) target a non-NDP
CE scenario and use PCIe-based accelerator cards (VC709 and Alveo
U280). Both are connected to their respective host via PCIe Gen3 x8

and x16 respectively. While inference is still relatively fast, the added
overheads of the Operating System and interrupts, instead of the
polling used for the smart SSD scenario, increase latency significantly.
This is especially visible for the Ultra96, which now has a slower of
latency of 26.7 µs. The reason lies in the now full-scale OS running on
a small ARM Cortex A53 core, compared to the lightweight firmware
employed when the same platform is used as a more modern smart
SSD stand-in for (b).
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Table 15.3: Hardware Platforms used in Evaluation. Latency measured for
NIPS40.

Test Setup (a) (b) (c) (d) (e)

Platform COSMOS+ Ultra96 Ultra96 VC709 U280

Arch Zynq 7000 Zynq US+ Zynq US+ PCIe PCIe

Fabric Kintex 7 UltraScale+ UltraScale+ Virtex 7 UltraScale+

Driver none none TaPaSCo TaPaSCo TaPaSCo

Control Polling Polling Interrupt Interrupt Interrupt

Freq. 200 MHz 440 MHz 440 MHz 200 MHz 420 MHz

Latency 6.85 µs 1.6 µs 26.7 µs 16.1 µs 21.3 µs

CPU ARM ARM ARM Ryzen Epyc

A9 A53 A53 1600X 7443P

For PCIe-based platforms, the impact of OSs and interrupts is less
significant, due to the far higher performance of the x86 host CPUs.
The resulting latencies are also better than for setup (c), even though
the latency for (d) and (e) now includes PCIe transfers. While the
U280 is the more recent device compared to the VC709, the VC709

still reaches a lower latency. This is due to the different host machines:
The VC709 is connected to a workstation, while the U280 resides in a
server with a more complex PCIe subsystem, which again increases
latency.

15.6 evaluation

To evaluate our framework, we use the different sizes of the NIPS
dataset as scalable benchmarks. Each dataset comes with a correspond-
ing trained SPN, which was created using the SPFlow library [9]. As
queries, we use the large library enumerated and combined queries
we generated for the empirical analysis of SPN-based CE (Table 15.1).
In addition to the different SPNs, we also evaluate the two acceler-
ator objectives (latency- vs. throughput-optimized). Finally, we also
evaluate the error margins of the fixed-point encoding, depending on
the number of bits used. Thus, we generate the multiple versions of
the accelerators using different encodings, resulting in 56 different
accelerators (7 SPNs × 2 variations × 4 encodings).

15.6.1 Benchmarks

While the NIPS dataset we use here is not a traditional database or
cardinality estimation benchmark, it offers a unique advantage in its
scalability. The number of each benchmark indicates the size of the
underlying entries in bytes. For example, a NIPS60 entry is comprised
of 60 separate values (columns) that are encoded with a single byte
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Table 15.4: SPN and Data Characteristics of the used benchmarks

Characteristics Data

+ × Hist. Entry-Size Max. Query Size

NIPS5 1 10 10 5 Bytes 20 Bytes

NIPS10 3 25 24 10 Bytes 40 Bytes

NIPS20 7 56 52 20 Bytes 80 Bytes

NIPS30 10 87 80 30 Bytes 120 Bytes

NIPS40 16 122 112 40 Bytes 160 Bytes

NIPS50 16 143 132 50 Bytes 200 Bytes

NIPS60 13 156 148 60 Bytes 240 Bytes



222 spns for cardinality estimation

each. NIPS thus allows measuring error margins and throughput and
latency depending when scaling the record sizes from 5. . . 60.

The exact characteristics of the SPNs used in the evaluation are
shown in Table 15.4. The Characteristics columns indicate the number
of operations within the trained SPN. The Data columns describe how
the structure of the training and query data. For example, NIPS50

uses a dataset comprised of 50 single-byte values per entry. The
corresponding queries can thus be much bigger, since we need to
pass up to two values and a corresponding query operator. For the
throughput-optimized versions, we always need to pass the complete
query, whereas the latency-optimized version defaults to marginaliza-
tion. Thus, the latency-optimized version can be queried with as little
as four bytes of data. The four bytes contain an additional byte for
padding, because that simplifies the communication with the accelera-
tor due to the memory alignment.

For the performance measurements, we use the full set of queries
generated for the experimental evaluation from Table 15.1.

15.6.2 Fixed-Point Encoding

In a first step, we evaluate the arithmetic error introduced by the value
encoding. Since it is based on fixed-point numbers, the maximum error
can be derived depending on the encoding and the SPN. Additionally,
we use the enumerated and generated queries to gain an empirical
perspective. The results are shown in Fig. 15.4. The plot shows the
theoretical maximum error in light color and the empirical maximum
error in darker color for all datasets and four configurations of the
fixed-point encoding. We observe that the theoretical and empirical
maximum error always differ by at least a factor of 5. The worst case
occurs if each column is queried using a range query. While this can
occur in theory, it does not really make sense in the CE use-case,
as more complex queries would be simplified by the DBMS query
optimizer by decomposing the query into smaller ones. Additionally,
it is clear that increasing the number of bits in the encoding will
reduce the maximum error, since numbers can be represented more
accurately. For a single dataset, adding four bits will reduce the error
by an order of magnitude. Lastly, we observe an increased error
towards the more complex versions of the NIPS dataset like NIPS50

and NIPS60. This is the case because the corresponding SPNs are
more complex with more histograms and more operations. While
more histograms also add more potential for conversion errors during
accelerator generation, additional operations introduce more potential
for accumulating or multiplying conversion errors. Most importantly
for our application, though, the empirical error of the arithmetic is
relatively small compared to the error introduced by the CE algorithm
itself (cf. Section 15.4.3). Thus, narrow fixed-point encodings with 16
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or 20 bits will most likely be sufficient for most practical CE use-cases.
However, for the following evaluation of resource utilization, we will
conservatively use a more accurate 24 bit representation.

Resource Utilization To gauge the resource efficiency of our design,
we used the 24 bit fixed-point accelerators and compared them against
the Custom Floating Point (CFP) variants from [14]. We synthesize
for the VC709 used in that work to achieve comparable results. The
changes in resource utilization from [14] to our work are shown
in Fig. 15.5. The diagram shows that there are no changes in DSP
utilization. This is the case since the multiplications in both variants
are similar in size and can both be performed using two DSP slices
per multiplication. The BRAM utilization for smaller SPNs is slightly
reduced, but will increase for larger SPNs. This change is the result
of three factors: 1) In our work, we need two probability lookups to
enable the more complex operations, which increases the required
memory. While this increase in BRAM utilization could potentially
be alleviated by using dual-ported BRAM, this was not necessary in
this work due to the overall low utilization of BRAM, as shown in
Fig. 15.6. 2) The encoding used in our work is more compact, as no
exponent needs to be stored. This should reduce the required BRAM
by about 30%. 3) The use of accumulated histograms and the Index
Determination stage allows us to store the buckets without replication.
Since 1) and 2) are more or less constant, the changes are mostly due
to 3), which is SPN-dependant. Lastly, we see a relatively constant
reduction in Slice utilization. Overall, our accelerators are much more
resource efficient than those in [14], even with the conservative 24 bit
number format we used here. While BRAM utilization is increased,
this is not as problematic, as overall device BRAM utilization is below
5% for all SPNs.

In addition to these relative numbers in comparison to prior work,
Fig. 15.6 also shows the percentage utilizations of the accelerators
using the 24 bit low-latency configuration on all of the different plat-
forms. Note that the first two columns are architectures based on the
Virtex-7 and Zynq-7000 fabric respectively, while the last two columns
are based on the more modern UltraScale+ fabric. The available logic
resources are listed in Table 15.5. As the ZC706 board uses the same
FPGA device as the COSMOS+ smart SSD, we just report the ZC706

numbers here.
Note that the Ultra96v2 and ZC706 devices are SoCs, which also

contain software-programmable ARM cores and other hardened IP,
e.g., memory controllers, which reduces the number of configurable
FPGA resources required for integrating the accelerators into a big-
ger system. Thus, utilizations on those devices is dominated by the
accelerators themselves, while the designs on the VC709 and Alveo
U280 also implement memory controllers and PCIe cores in soft logic,
which increases configurable resource utilization.
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Figure 15.6: FPGA Resource Utilizations of the different accelerators in a 24

bit low-latency configuration on the different devices.
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Table 15.5: FPGA Resources of the different platforms used in Evaluation

Slices DSPs BRAMs

Alveo U280 162960 9024 2016

Ultra96v2 8820 360 216

VC709 108300 3600 1470

ZC706 / COSMOS+ 54650 900 545

Apart from this, the diagram shows the increasing size of the cor-
responding accelerators, going from the relatively compact NIPS5 to
the much bigger NIPS60. Especially on the smaller Ultra96v2 (third
column from the left), we can clearly see the cost of the bigger SPNs.
In contrast, the other devices (VC709 and Alveo U280) would easily
be able to hold even bigger SPN accelerators, or even multiple replicas
of the same accelerator.

The latter could be used to maintain throughput even when per-
forming CE for more complex queries requiring multiple passes over
the SPN, as discussed in Section 15.4.1). In this manner, these, then
longer running, CE operations could be distributed across the available
SPN replicas.

Lastly, Table 15.6 reports the absolute utilizations on all four plat-
forms for both the latency- and the throughput-optimized versions
of all accelerators. These numbers especially highlight the difference
between SoC- and PCIe-based architectures: For Soc-based architec-
tures the additional overhead for DRAM access incurs little to no
resource overhead, while PCIe-based devices require a lot more Slices
to implement corresponding memory infrastructure.

15.6.3 Performance

For brevity, we focus our performance evaluation on accelerator vari-
ants just using the conservative 24 bit fixed-point encoding, as the
encoding has no relevant impact on performance.

Latency First, we want to look at end-to-end latency. The measure-
ments for the baremetal implementations of NIPS40 from Table 15.3
are used as reference. Additionally, we rely on latency measurements
that reflect real-world implementations, including all necessary data
movements. We achieve this by using the TaPaSCo-based system inte-
grations (cf. test setups (c)-(e)), which also implies additional overhead
for the operating system. The corresponding measurements are shown
in Fig. 15.8. The figure shows that bigger SPNs have higher latencies,
which can be attributed to larger data-transfers, as the actual com-
putation takes less than 1 µs. Interestingly, this behavior is similar
for PCIe-based and SoC-based platforms. While the SoC-based with
their shared memory do not require the data transfers necessary for
the PCIe-attached FPGAs, the slower ARM cores on the SoCs lead to



15.7 conclusion 227

a loss in overall performance compared to the fast x86 cores for the
PCIe hosts. While the latencies are high compared to the baremetal
implementations from Table 15.3, we still outperform prior work [7]
by up to 40x. Even for the biggest SPN (NIPS60), the speed-up is still
more than an order of magnitude. As the prior work did not give
detailed statistics, we compare against their overall best reported result
of 260 µs for a fair comparison.

Throughput The CPU-based prior work [7] does not report through-
put of their implementation, but we are still able to compare our
throughput-optimized accelerators against prior work on regular SPN
inference. While the original work [14] has been refined for maximum
throughput using HBM [20] and 100G networking [6], the correspond-
ing speedups are achieved by replicating accelerators and by over-
lapping data-transfers using multi-threading. While corresponding
techniques could be applied to our accelerators as well, it makes the
comparison between accelerators difficult, as it is hard to isolate the
impact of multi-threading and overlapped data-transfers. We instead
opt for a single-accelerator comparison against [14]. While the prior
work is focused exclusively on inference, the underlying calculations
are identical, as a singular inference pass over the SPN is performed.
Additionally, we focus on PCIe-based accelerators, since the memory
on the Ultra96v2 is much slower and hinders performance.

The throughputs of the different SPNs are shown in Fig. 15.7. Please
note that the size of data-transfers is different for our approach: Since
the histograms are not limited to equality anymore, we need to trans-
port 4x more input-data per inference. The number of the NIPS bench-
mark indicates the number of inputs per inference run. In prior work,
each input was just a single byte. Here, it is four bytes to enable the
additional operations. For the output-data it is the other way around:
In prior work each output was 8 bytes, in our case it is just 4 bytes. Due
to the larger size of the input-data, this should still have a significant
performance impact. Our expectation was an achievable throughput
of roughly 0.25x of the prior work, but this is not the case. The rea-
sons for this are improvements in the TaPaSCo API and architecture.
Instead of using general-purpose AXI-Stream interconnects, we now
rely on more optimized vendor IP. This allows us to outperform prior
work for smaller SPNs. Using the PCIe Gen3 x16 based Alveo U280

with its newer UltraScale+ device increases this advantage even fur-
ther, achieving a 3x increased throughput for NIPS5. Even for the
biggest benchmark, we are still able to keep up with the much less
data-intensive prior work.

15.7 conclusion

In this work, we built on the idea of using SPNs for CE that was origi-
nally proposed in [7], and introduced a framework that exploits FPGAs
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to offload and accelerate CE. We have shown that independently of
the required architecture (traditional DBMS vs. NDP), FPGA-based
CE can easily outperform CPU-based prior work.

With regard to latency, using a PCIe-based accelerator for a tradi-
tional DBMS can make CE up to 40x faster. In embedded NDP setups,
such as a smart computational storage platform, inference latencies
can be reduced to the microsecond range on recent SoCs. While this
shows that FPGA-based CE offers lower latencies than CPUs, the main
advantage of FPGAs lies in throughput-oriented scenarios, such as
the batch-processing of many CEs that can be exploited for traditional
DBMS.

Since the CPU-based prior work does not report throughput, we
instead compare against prior work on regular SPN inference. For
smaller SPNs, our approach is able to outperform prior work even
though CE requires the transfer of approximately 4x more data. For
bigger SPNs, the throughput of prior work is only 2x of ours, despite
the bigger data-transfers. On more recent hardware with PCIe Gen3

x16, performance is similar for the biggest SPN.
Overall, the accelerators are able to perform tens of inferences per µs

(or tens of millions of inferences per s). We also show the advantages
of using a simpler number encoding in use-cases were relative errors
are not as important.
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