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Abstract

More than 20 years ago, the first ion acceleration experiments were performed using Target Normal Sheath
Acceleration (TNSA). Most TNSA experiments relied on low repetition rates and fixed foil targets. Recent
technological advances have enabled the development of laser-plasma accelerators with high repetition rates.
The core aspect of the high repetition rate is gas or liquid-based targets, of which the liquid leaf target
seems particularly promising. Despite the potential to achieve high repetition rate laser pulses for TNSA, the
predictive capabilities of the proposed Liquid Leaf target remain limited.

This research investigates the plasma generated by a Liquid Leaf target and its interaction with any laser
using particle-in-cell simulations. A surrogate model is developed to predict the full spectrum of the generated
beam and the maximum ion energy. This model also allows numerical optimization of the experiment. A
surrogate model for the neutron yield is also developed based on Monte Carlo simulations and artificial neural
networks. Combining these models makes it possible to determine the potential of a compact laser-driven
neutron source.

Optimizing a laser plasma experiment is performed as an example for two different optimization conditions,
focusing on maximizing the proton yield. The optimized solutions utilize an effect caused by different ions,
oxygen, and hydrogen, propagating in the same expanding plasma. These ions interact, causing spectra to
deviate from plasma expansion models. This effect can be predicted and applied to other applications outside
neutron production.

The neutron model allows comparing different designs of compact neutron sources. This allows determining
the particle numbers and repetition rates required to make laser-driven neutron sources competitive. Since
simulations are insufficient for real-world applications, a new method is proposed to improve data analysis
using radiochromic film stacks. The method uses algorithmic solutions to reduce operator inaccuracy while
increasing the evaluation speed, allowing Big Data analysis of laser-plasma acceleration data to be performed
soon.

vi



Zusammenfassung

Vor mehr als 20 Jahren wurden die ersten Ionenbeschleunigungsexperimente mit der Target Normal Sheath
Acceleration (TNSA) durchgeführt. Die meisten dieser TNSA Experimente beruhen auf niedrigen Wiederhol-
ungsraten und festen Folientargets. Jüngste technologische Fortschritte haben es ermöglicht, Laser-Plasma-
Beschleuniger mit hoher Repetitionsrate zu entwickeln. Der Kernaspekt für die hohe Repetitionsrate sind
auf Gas oder Flüßigkeiten basierende Targets, von dem das Liquid Leaf-Target besonders vielversprechend
erscheint. Trotz des Potenzials, Laserpulse mit hoher Repetitionsrate für TNSA zu erzielen, sind die Vorher-
sagemöglichkeiten des vorgeschlagenen Liquid Leaf-Targets nach wie vor begrenzt.

In dieser Forschungsarbeit wird das von einem Liquid Leaf-Target erzeugte Plasma und seineWechselwirkung
mit einem beliebigen Laser mit Hilfe von Particle-in-Cell-Simulationen untersucht. Es wird ein Ersatzmodell
entwickelt, um das gesamte Spektrum des erzeugten Strahls und die maximale Ionenenergie vorherzusagen.
Dieses Modell ermöglicht auch eine numerische Optimierung des Experiments. Auf der Grundlage von
Monte-Carlo-Simulationen und künstlichen neuronalen Netzen wird außerdem ein Ersatzmodell für die
Neutronenausbeute entwickelt. Die Kombination dieser Modelle ermöglicht, das Potential einer kompakten
lasergetriebenen Neutronenquelle zu bestimmen

Die Optimierung eines Laser-Plasma-Experimentes wird exemplarisch für zwei verschiedene Optimierungs-
bedingungen durchgeführt, wobei der Schwerpunkt auf der Maximierung der Protonenausbeute liegt. Die
optimierten Lösungen nutzen einen Effekt, der durch verschiedene Ionen, Sauerstoff und Wasserstoff, verur-
sacht wird, die sich im selben expandierenden Plasma ausbreiten. Diese Ionen wechselwirken untereinander,
sodass die Spektren von Plasmaexpansionsmodellen abweichen. Dieser Effekt kann vorhergesagt und auf
andere Anwendungen außerhalb der Neutronenproduktion angewendet werden.

Das Neutronenmodell ermöglicht es verschiedene Designs kompakter Neutronenquellen zu vergleichen.
Damit werden die erforderlichen Teilchenzahlen und Wiederholungsraten bestimmt, damit lasergetriebene
Neutronenquellen wettbewerbsfähig werden. Da Simulationen für reale Anwendungen nicht ausreichen, wird
eine neue Methode zur Verbesserung der Datenauswertung unter Verwendung radiochromatischer Filme
vorgeschlagen. Die Methode nutzt algorithmische Lösungen zur Verringerung der Ungenauigkeit durch den
Operateur und erhöht gleichzeitig die Auswertegeschwindigkeit, was in naher Zukunft die Durchführung von
Big-Data-Analysen von Laser-Plasma-Beschleunigungsdaten ermöglicht.
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1. Introduction

“Pleasure to me is wonder – the
unexplored, the unexpected, the thing
that is hidden and the changeless thing
that lurks behind superficial mutability.”
– H.P. Lovecraft

In recent years, there has been growing interest in developing compact, high-intensity neutron sources
for various applications ranging from materials science and engineering, via nuclear medicine, to homeland
security applications. Compact laser-driven ion accelerators are promising candidates for compact high-
intensity neutron sources. These sources use lasers to accelerate protons or deuterons, which collide with a
target material to produce neutrons via nuclear reactions.

Compactifying Ion Acceleration

Conventional radio-frequency-based particle accelerators have played a significant role in advancing fields
such as physics, biology, and medicine since the 1930s, and they still belong to some of the largest and most
complex machines ever built (Livingston 1980) (Bryant 1994) (Crockcroft et al. 1932). These conventional
accelerators are restricted to specific sizes for needed energy and beam parameters. A major limiting factor is
the accelerating field, which is limited by the resonator’s material. Superconducting niobium based cavities can
reach up to 35MVm−1 (Padamsee et al. 1998, Sec. 13.2) while normal conducting copper cavities can reach
up to 100MVm−1 (CLIC et al. 2018, Sec. 1, Sec. 3.2.1). An accelerating field, several orders of magnitude
larger, can be reached if acceleration is induced inside a plasma, which does not have similar boundaries.

The acceleration in a plasma relies on the capability to heat the plasma as quickly and efficiently as possible.
The development of chirped pulse amplification by Donna Strickland and Gérard Mourou in 1985 (Strickland
et al. 1985) paved the way to high intensity and high energy short pulse laser systems, which enable this kind
of acceleration. Strickland and Mourour received the Nobel prize in 2018 for their work on chirped pulse
amplification.

The resulting high-power laser system allowed the acceleration of ions from the laser-plasma interaction
via different mechanisms. One of those mechanisms – Target Normal Sheath Acceleration (TNSA) – was
measured first by Snavely et al. in 2000 (Snavely et al. 2000). TNSA accelerates ions from a plasma with a
high acceleration gradient in the order of 106MVm−1 ∼ TVm−1 Some centimeters of acceleration space can
acquire the same energy as hundreds of meters long conventional accelerators.

This process has some disadvantages, though. One of which is the resulting exponential ion spectrum. It
complicates beam transport and its subsequent usage in applications that need well-defined energies, such as
ion therapy (Katayama et al. 2022) (Eickhoff et al. 2003) (Schardt et al. 2010) (Linz et al. 2007) or as an
injector for conventional accelerators (Aymar et al. 2020).

A first application for which these ion beams could be used is a compact neutron source, which converts
most if not all ions to neutrons independent of the beam quality (Katayama et al. 2022) (Favalli et al. 2019)
(Kleinschmidt et al. 2018) (Roth, Jung, et al. 2013). The disadvantage of having an exponential spectrum
does not matter in this case, and the high beam current becomes favorable for a maximized neutron yield.
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Advanced Scientific Tools with Neutrons

James Chadwick first discovered neutrons in 1932 (Chadwick 1932). In the decades since their discovery,
neutrons have been used in a wide range of scientific research, from understanding the fundamental properties
of materials to exploring the structure of biological molecules.

One of the earliest applications of neutrons was in nuclear physics, where they were used to study the
structure of atomic nuclei. In the 1940s and 1950s, researchers began using neutron scattering to study
the structure of materials, including metals and polymers (Hahn et al. 1939). The first neutron scattering
experiment was conducted in 1946 by Clifford Shull and Ernest Wollan, who used neutrons to study the
crystal structure of a single crystal of zinc sulfide (Shull et al. 1948).

The development of more powerful neutron sources in the 1960s and 1970s, such as the high-flux reactor
at the Institute Laue-Langevin (ILL) in France, allowed researchers to use neutrons to study the structure and
behavior of a broader range of materials, including complex biological molecules. It led to the development
of several scattering methods, such as small-angle scattering and reflectometry using neutrons. Refer for a
detailed discussion to (Ashkar et al. 2018, and the sources therein). In addition to neutron scattering, neutrons
are used in various other analysis methods, such as neutron activation analysis and neutron radiography.
While activation analysis can be used to identify the elemental composition of a sample, radiography is used
to create images of the internal structure of objects.

Neutrons are an important tool for industrial and scientific applications because they have unique properties
that allow them to probe the structure and composition of materials in ways other probes cannot. Neutrons
have no electrical charge, which makes them ideal for studying the structure of materials without altering their
electrical properties. Ions would change the electrical properties through ion implantation (Ziegler 1988). No
charge means no Coulomb interaction, such that the only reaction possible is with the nucleus of an atom with
the strong nuclear force.Although they have no charge, they have a non-vanishing magnetic momentum and a
non-zero spin. These traits make them useful for various magnetic and structural studies (Lakey 2009, and
the sources therein). Since neutrons can be produced with a large range of energies the spectrum of possible
applications is also enlarged further. High energy neutrons can penetrate deep into dense matter, such as
metals and concrete, which allows for testing and imaging areas where no gamma ray has imaged before.
This makes neutrons invaluable for various industrial and scientific applications, including material science,
biology, semiconductor and microelectronics, oil and gas exploration, quality control, and nuclear reactors.

1.1. The Demand and Supply Mismatch in the European Neutron Landscape

Neutrons are an essential tool, and the demand for neutrons is not only high but increasing. A study by
Gutberlet et al. evaluated the peer-reviewed publications for neutrons scattering experiments and found that
Europe’s scientific community published 42 689 peer-reviewed articles from 2005 to 2015 (Gutberlet et al.
2018, Fig. 2). This is more than half of all publications worldwide about neutron scattering in the respective
time frame (81 307) and therefore underlines the importance of the neutron landscape in Europe.

How does this split up into research area, and how does the field behaves after 2015? To answer this,
the published data of a representative of the neutron-producing facilities is investigated. Due to the well-
documented publication counts, the Heinz Maier-Leibnitz Zentrum’s (MLZ) research neutron reactor FRM II
is selected as a field representative. The information from the corresponding annual reports can be split into
different counts and estimate a trend from 2015 to 2021. The publication trend for the source increases over
the years until 2021, as displayed in Figure 1.1b. This figure also shows the split between Grand Challenges,
Keys Technologies, and Basic Research MLZ. Figure 1.1c shows the three areas split into the more complex
fields it comprises. Considering the trend of the displayed data, it can be deduced that demand for neutron
radiation for experimentation will continue to increase in the following years.
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Figure 1.1.: The decreasing neutron supply (a) and indicator for the increase in demand (b) and (c). Data for (a)
taken from (ESFRI Physical Sciences and Engineering StrategyWorkingGroup - NeutronLandscape
Group 2015, pp. 66-77). Data for (b) and (c) taken from (FRM II – Forschungs-Neutronenquelle
Heinz Maier-Leibnitz 2016, pp. 126-127),(FRM II – Forschungs-Neutronenquelle Heinz Maier-
Leibnitz 2017, pp. 96-97),(FRM II – Forschungs-Neutronenquelle Heinz Maier-Leibnitz 2018, pp.
110-111), (FRM II – Forschungs-Neutronenquelle Heinz Maier-Leibnitz 2019, pp. 96-97),(FRM II
– Forschungs-Neutronenquelle Heinz Maier-Leibnitz 2020, pp. 106-107),(FRM II – Forschungs-
Neutronenquelle Heinz Maier-Leibnitz 2021, pp. 94-95),(FRM II – Forschungs-Neutronenquelle
Heinz Maier-Leibnitz 2022, pp. 100-101).
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This, on the one hand, underlines the diverse range of applications of neutron radiation. On the other hand,
many applications are part of research topics such as environmental research, energy research, or industrial
applications, none of which will decrease demand in the following years. If further innovation for neutron
applications shows up, the demand will increase further.

Although the demand increases, reactor-based neutron sources are successively being shut down. This
reduces the number of available beam days for neutron-based experiments. Three cases of the predicted
beam days in Europe can be found in Figure 1.1a. Some facilities of the European research landscape are
currently under construction or are being expanded; even if they are finished in time and the run time of
some reactors is prolonged, the decrease can not be compensated. Three scenarios for available beam times
were investigated in (ESFRI Physical Sciences and Engineering Strategy Working Group - NeutronLandscape
Group 2015, pp. 66-77). The Enhanced scenario assumes Institute Laue-Languvin (ILL) operation until 2030
and European Spallation Source (ESS) operation with 35 instruments beyond 2035. The Baseline scenario
assumes ILL operation at the full output until 2023 and ESS operation with 22 instruments beyond 2028,
while the Degraded scenario assumes ILL operation at the reduced output until 2023 and ESS operation with
only 22 instruments beyond 2028 while more reactors are shut down.

Considering different conditions for the operation of large-scale neutron sources, all three predicted scenarios
have a net beam day loss in the order of thousand beam days. To counteract and close the emerging gap,
small, compact, fast-to-construct, and easy-to-operate neutron sources are needed.

Fill the Void with Compact Laser-Driven Neutron Sources

The proposed solution’s concept for decentralized compact neutron sources is sketched in Figure 1.2a, where
the relevant degrees of freedom are visible. Different energy spectra can be used based on the acceleration
mechanism, either mono-energetic particle bunches from conventional or exponential or varying shapes from
laser-driven accelerators. On one side, the spectrum of incoming ions can vary to a large degree, depending
on the accelerator and the converter can also have any arbitrary shape. To grasp the physical situation, a
photograph of a laser-based neutron source during interaction is presented in Figure 1.2b.

More applications for neutron radiation have been discussed recently, resulting in a higher demand for
neutrons despite the mentioned loss in beam days. These applications include integrity tests for concrete
bridges or buildings, nuclear waste management and test of castor integrity, or homeland security application
at airports or customs (Nakai et al. 2010; Alvarez et al. 2014). These innovative applications need small,
portable devices that provide high-quality neutron radiation.

Accelerator-based neutron generators are normally used in a pitcher-catcher configuration (Mima et al.
2022, Ch. 2, Fig. 2) as displayed in Figure 1.2b and Figure 1.2c. The accelerator is pitching ions, which are
then converted into neutrons. Neutrons can not be directly accelerated since they have no charge and only
exist inside a nuclear bound (Krieger 2018, Sec. 13.1 and 13.5.3). Therefore, a large amount of energy has
to be transmitted onto the neutron to split this bound and pass kinetic energy. The full setup is sketched in
Figure 1.2c.
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1.2. Outline of the Thesis

This thesis deals with the modeling and physical optimization of a setup for compact laser-driven neutron
sources that can achieve high repetition rates and therefore become competitive with the yield of conventional
sources while being smaller.

Chapter 2 explains the fundamental physics and lays the foundations to understand the subsequent system
and its behavior. At first, the laser-based acceleration processes are displayed and TNSA with its relevant
physics is discussed. Then, the fundamental physics of nuclear conversion and the relevant traits of the
neutron converters are discussed.

Chapter 3 gives the necessary concepts about the numerical methods used in the course of the thesis. The
first point is the particle-in-cell method, followed by the Monte Carlo method for nuclear reactions. Followed
by definitions and descriptions of artificial neural networks and how they can be used for surrogate modeling.
The chapter closes with a section on sensitivity analysis.

Chapter 4 shows how the Maxwell-Vlasov set of equations can be simplified and its relevant dimensionality
can be reduced. Furthermore, a developed model for the cut-off energy is displayed.

Chapter 5 addresses the main problem of surrogate modeling with artificial neural networks; how to get
consistent data. It expands on measuring laser-accelerated beams via radiochromic film stacks and introduces
a procedure to evaluate a large data set consistently. The procedure developed evaluates a detailed data set
and uses simulated data to test and ensure its validity.

Chapter 6 models the surrogates for the ion accelerations and the neutron production. Their traits and
sensitivities are discussed, and a case study for the optimization is presented. It further introduces a parameter
that has to be measured experimentally to fit the model onto a real machine.

Chapter 7 concludes the thesis. It reviews the surrogates developed, correlates several observations from
different chapters with each other, and discusses the application of the developed models in real-world
applications. It finally outlines the next steps for a more precise model to achieve a full design study.

1.3. Scientific Contribution

The summary of the scientific contributions of this thesis is given below. Further references to papers and
codes are given in the corresponding chapters and the bibliography.

Development of a Tool for Automatized Data Evaluation for Radiochromic Film Based Particle Spectra

Data-driven modeling for laser-accelerated ions was, until now, not possible for the full particle spectrum.
A tool and an innovative evaluation method for radiochromic film stacks were developed and published. It
allows evaluating these stacks with a constant bias despite the current individual bias of each user. This
enables comparable data sets over a large number of data and further accelerates the evaluation, allowing
more data to be evaluated and revisited.

Development of a Liquid Leaf Surrogate Model from Particle In Cell Simulations

An extensive simulations study of ample parameter space was done for the high repetition system utilizing a
liquid leaf target. This allowed determining a surrogate based on this data and deriving optimum working
points under variable conditions. It is further possible to evaluate the importance of the parameters from the
total variation, allowing for global insights into the physics of the spectrum and cut-off energy formations of
laser-accelerated ions.

5



Development of a Surrogate Model for Thick Target Yields of Neutrons

A second surrogate model maps any arbitrary light ion spectrum to neutron yields. It is based on an extensive
data set based on nuclear Monte Carlo simulations. Due to its generality, it is a valuable model for comparing
different accelerator concepts with the same assumptions and cross-sections. This comparability is essential
to check the efficiencies of different setups to minimize bias and variations from individual numerical configu-
rations. For this model, a Monte Carlo-like setup was developed and implemented to map the uncertainty of
the input data to the model’s final predictions.

First optimization results for Neutron Yields from Ion Beams from Liquid Leaf Targets

The combination of the different surrogates allows to design and predict parameters for a compact neutron
source with an arbitrary amount of conditions. A first suggestion for a working point is made and its limitations
are discussed.
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(c) Pitcher catcher representation for a laser-driven ion source. The laser comes from the left and hits
a plasma target (Pitcher). The laser heats the system, and ions are accelerated. They impinge
on the catcher, where the ions convert to neutrons. Two neutron components are displayed, a
homogeneous 4π distributed component, and a directional superposed element in the forward
direction. The neutron flux is moderated by a moderator surrounding the catcher; changes in the
moderator’s geometry do allow for adjustment of the final spectrum.

Figure 1.2.: Overview about the concept for a compact neutron source and its implementation using laser-
driven ion acceleration.
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2. Physical Fundamentals

“Our best ideas are often those that
bridge between two different worlds.”
– Marvin Minsky

Laser-driven particle accelerators are a new branch of particle acceleration technology that overcomes the
limitation of acceleration field gradients. They are generally capable of creating much higher acceleration
fields of 106MVm−1 compared to classical particle accelerators with some MVm−1. This allows much shorter
accelerators but also has complications, as shown in the following section.

Several acceleration methods have emerged utilizing lasers, which have been tailored for different particle
species. This is done before an in-depth discussion on laser-based ion acceleration. All are based on the
Lawson–Woodward theorem (Lawson 1975) (Sprangle et al. 1996), which states that an electromagnetic
wave can accelerate particles if at least one of the following conditions is violated:

i) The electromagnetic field exists in a vacuum with no boundaries present.

ii) The particle is highly relativistic (v ≈ c) along the acceleration path.

iii) No additional static electric fields are present.

iv) The expansion of the wave is infinite.

In the case investigated here, real laser pulses are applied. These real pulses have a finite spatial size, follow
a Gaussian-like intensity distribution, and are also limited in time. Furthermore, particles are supposed to
be part of a plasma. Therefore, the condition that a boundary-free vacuum exists is also not fulfilled. The
intensities of the investigated lasers are also so high not only the electric field but also the magnetic field has
to be taken into account (Iλ2

µ ≈ 1017Wµm2 cm−2) (Kruer et al. 1985, Eq. 1). Assuming furthermore that
in a natural system, the target starts ”cold” either as part of a liquid or a solid target negates the condition
of the highly relativistic movement. This allows several flavors or types of laser-driven particle acceleration
(section 2.1). As will be shown, most of them rely on the acceleration of particles from a plasma. Therefore,
traits for this principle will be given as well (section 2.2) just before the relevant process is described in detail
(section 2.3).

2.1. Laser Acceleration Schemes

An implemented system violates at least one condition of the Lawson Woodward Theorem. Violating the
conditions ii) and iv) can be achieved by using a laser to irradiate matter to accelerate particles.

Properties of Laser-Induced Electromagnetic Waves

Electromagnetic waves created by ”Light Amplification by the Stimulated Emission of Radiation” (short LASER)
have the traits of being monochromatic, directional and coherent (Sigrist 2013, Sec. B 3) (Demtröder 2016,
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Ch. 8). Monochromatic means that the wavelength contains only one central wavelength λL and a very small
bandwidth of superposing wavelengths ∆λL, in an ideal case ∆λL = 0. Directional means that it is emitted in
a specific direction with a narrow size inside the focus. Coherent means that all waves in the laser pulse are
in phase in space and time. Utilizing the chirped pulse amplification (Strickland et al. 1985) method allows
the laser to reach highest intensities which results in creating hot plasmas from solid or liquid matter and
triggering the processes that result in particle acceleration. The following section will briefly describe some of
these to complement the field and the detailed ion acceleration discussion.

A real laser pulse is the sum of the different frequency components the laser generates. The amplified
spontaneous emission is strongly damped for modern laser systems, so it is irrelevant compared to the main
pulse. Pre-pulses are preceding the main pulse and have a lower intensity. They are created through multiple
reflections and nonlinear coupling (Keppler, Sävert, et al. 2015) (Didenko et al. 2008). An example pulse is
displayed in Figure 2.1.

−2.5 −2 −1.5 −1 −0.5 0

·106

10−14

10−11

10−8

10−5

10−2

Time / fs

I
/
I m

ax

Figure 2.1.: PHELIX contrast spectrum from shot database with number 20180905. The full spectrum has
a length of 2.5 ns, while the main pulse (at t = 0) has a length of around 500 fs and 200 Joule
beam energy.

Dielectric Laser Acceleration

Dielectric laser acceleration is an acceleration scheme that utilizes the deformation of electrical fields inside
a dielectric structure. The field distribution of the electric field can be varied and optimized by introducing
dielectric structures. These structures can be varied and implemented to use accelerator components for
electrons, additionally violating condition i). (Schmickler 2020, pp. 265-284) (Niedermayer et al. 2021)
(Egenolf 2020) It is important to note that the laser field is not supposed to destroy the structure and hence
needs low-intensity laser light. DLAs can reach arbitrary high energies, enabling high-energy beam target
interactions for a high-energy collider. The major limitation for DLA is the bunch current, which is limited to
a maximum of 7.3 fC per bunch (Egenolf 2020). This maximum bunch current is too low and, together with
the necessary staging, is a disadvantage if not even a show stopper for using compact neutron sources based
on the electron-target interactions.
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Wakefield Acceleration

Wakefield Acceleration is a type of particle acceleration for electrons based on a plasma. The idea is that
a plasma wave is excited, accelerating electrons in the plasma. This plasma wave can be excited by either
a laser pulse and its corresponding ponderomotive force or by an external particle beam injected into the
plasma. Therefore, the literature distinguishes between laser-driven wakefield accelerators (LWFA) and
particle-driven wakefield accelerators (PWFA). These accelerators consist of plasma cells containing gas.
The gas is pre-ionized, for example, using a high-voltage discharge just before the wave is excited. Due to
construction, repetition rates of up to 0.5 kHz were already achieved (He et al. 2013). Details about this type
of acceleration can be found, for example, in the proceeding of the CERN accelerator school on high wakefield
accelerators (Schmickler 2020).

Ion Acceleration

A laser can be used to accelerate ions from plasmas. The starting point is a solid state, a liquid, or a gaseous
target. Irradiating the target with a high-intensity laser ionizes the existing atoms and heats the target. The
energy deposited while heating up is deposited in the electrons, which drive the acceleration process inside
the plasma. Depending on the laser parameters, this dynamic process deviates for different intensities and
target densities. The Target Normal Sheath Acceleration (short TNSA) is a process thoroughly investigated
and is therefore the acceleration type, discussed in this thesis. A detailed discussion of the TNSA process is
given in section 2.3.

2.2. Fundamentals of High Energy Density Physics

Plasma-based acceleration relies on the understanding of the relevant basic quantities and concepts of plasma
physics. This will be presented concisely in the following section together with an explanation of the most
important processes for the subsequent laser-plasma interaction.

2.2.1. Basic Plasma Quantities

A plasma is a state of matter that contains ions and their freed electrons. The degree of the ion’s ionization
is in general non homogeneous and is a result of the different processes to be presented. In contrast to
conventional gas, collective effects govern the dynamics of a plasma. These collective effects are a direct result
of the long-range Coulomb interaction due to the material’s ionization. While a gas molecule is electrically
neutral and only interacts via collisions, plasma ions, and electrons do interact via the Coulomb interaction.

If an additional charge is introduced, this charge gets screened over a specific distance. This length scale
after which the charge effect is not measurable anymore is called Debye length. The Debye length can be
derived from the system’s Poisson equation (Piel 2017, Ch. 2.2.1) and is given as

1

λ2
D

=
e2ne0

ε0kBTe⏞ ⏟⏟ ⏞
1/λ2

De

+
Z2e2ni0

ε0kBTi⏞ ⏟⏟ ⏞
1/λ2

Di

, (2.1)

where ε0 is the vacuum permittivity, Z the ion’s charge number, e the elementary charge, kB Boltzmann’s
constant, nα0 and Tα are the particle density and the temperature of the ions and electrons respectively. In
many cases, the ion temperature is low compared to the hotter electron temperature, which allows the ion’s
term to be dropped. If a system with several ion species is investigated the ion term is substituted by a sum.
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Assuming a non-isothermic plasma makes it necessary to consider different temperatures for the different ion
species. This modifies the equation to

1

λ2
D

=
e2ne0

ε0kBTe
+
∑︂
j

Z2
j e

2nj

ε0kBTj
(2.2)

λD =

√︄
ε0kB/e2

ne/Te +
∑︁

j Z
2
j nj/Tj

(2.3)

The plasma appears neutral from the outside for lengths larger than the Debye length. But since the plasma
is not neutral over smaller length scales, plasma is said to be quasi-neutral. Overall positive and negative
charges must be present in approximately the same number. The quasi-neutrality condition is then⃓⃓⃓⃓

⃓⃓∑︂
j

Zjeni0,j − ene0

⃓⃓⃓⃓
⃓⃓≪ ene0. (2.4)

The Debye length and particle’s thermal velocity can define a characteristic plasma time scale τ . This time
scale describes how long electrons need to get to the screening position and how long it needs to screen the
plasma. Since ions are heavier and less mobile than electrons, the ion influence can be neglected. Hence, the
plasma’s time scale and the corresponding plasma frequency can be defined as

ωpe = τ−1 ≈ ve
λDe

=
(kBTe/me)

1/2

λDe
=

(︃
ne0e

2

ε0me

)︃1/2

. (2.5)

These relations are unique features of a plasma. To show the collective behavior, plasma has to be larger than
the Debye length and exist longer than the characteristic time scale τ , otherwise, the collective effects do
not manifest. Furthermore, these quantities must be resolved in numerical simulations to model a plasma
properly. This gives a physical constraint for the Courant-Friedric-Lewy conditions, which is further discussed
in section 3.1.

2.2.2. Laser Plasma Interaction

As plasma dynamics are largely dictated by electron movement, understanding and controlling the electron
temperature is essential to control the full process. The temperature increases when more energy is deposited
inside the target, leaving the main question open, which processes coupled energy into the plasma and how
significant are they?

For an incoming electromagnetic wave, plasma can be described as a boundary condition similar to dielectric
materials. Therefore the plasma can be categorized as over- or under-dense respectively. This state is defined
by the ratio of the plasma frequency ωpe and the laser frequency ωL,

ωpe

⎧⎪⎨⎪⎩
< ωL under dense
= ωL critically dense
> ωL over dense.

(2.6)

If the system is under-dense, the electromagnetic wave can propagate into the plasma. The plasma behaves
slowly compared to the wave’s oscillation and the effective refraction index inside the plasma is nonlinear. If
the system is over-dense, the plasma boundary behaves like a mirror. If the system is critically dense, incoming
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Table 2.1.: Atom densities, full ionization intensities, and critical wavelength for several elements utilized as
targets in laser-plasma experiments. The ionization threshold energies were taken from the NIST
database (Kramida 2006) all other quantities were calculated by the relations given in this thesis.

Elements Z Full Ionisation at Atom Density ni comment λc

/Wcm−2 in cm−3 in nm

Hydrogen 01 1.4E14 5.3E22 137
Carbon 06 6.4E18 1.1E23 95
Oxygen 08 3.6E19 ∼E19 gaseous 10 000
Silicon 14 1.1E21 4.9E22 143
Copper 29 8.6E22 8.5E22 108
Gold 79 4.8E25 5.9E22 130
Water (H2O) 8+2 6.4E18 3.3E22 molecule 174

light excites evanescent waves in the plasma, getting exponentially damped. Hence, the critical density at
which ωp = ωL characterizes a system,

1
!
=

ω2
p

ω2
L

=
e2ne0
ε0me

·
λ2
L

4π2c2
⇒ nc ≃ 1021λ−2

µ cm−3, (2.7)

where λµ is the laser wavelength given in microns. Several densities for some materials relevant to laser-plasma
experiments are given in Table 2.1. The incoming laser deposits energy in the plasma. This increases the
electron temperature Te and causes the ionization of atoms.

Ionization

The governing effect for ionization is dependent of the laser’s intensity:

I0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
≤ 1× 1010Wcm−2 impact ionization
≤ 1× 1012Wcm−2 multi photon interaction
≤ 1× 1013Wcm−2 tunnel ionization
≥ 1× 1013Wcm−2 direct ionization

(2.8)

The low-intensity part is dominated by collisions, while collision-based ionization can be neglected for high
intensities. Both, tunnel and direct ionization, are due to the laser’s electric field suppressing the atomic
potential barrier. If the electric field suppresses the barrier’s threshold E′

ion below 0MeV the atom is ionized
directly. Otherwise, the tunnel effect allowing an electron to tunnel out of the atom is boosted. This behavior is
sketched in Figure 2.2. These relations can be expressed mathematically by superposing the atom’s Coulomb
potential with the potential of an external electric field, for an ion at position x0:

V (x) = − 1

4πε0

Ze

|x0 − x|
− Eextx (2.9)

The calculation of the extrema yields a local maximum at xmax, inserting V (xmax) allows to determine the
threshold field for direct ionization as well as the intensity needed to achieve this field:

Eext =
E2

ion
4Z

⇒ Ith
Wcm−2

≈ 4× 109
E4

ion/eV
Z2

(2.10)
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Figure 2.2.: Illustration of the barrier suppression model. The dotted line indicates the undisturbed electric
potential, and the dashed lines show the externally applied field which strengthens the potential
on one side and weakens the potential on the other. The solid line gives the superposition of
both.

2.2.3. Heating Processes

The relevant heating process depends on the specific laser/plasma setup and so far there is no global theory
about which process is relevant in which case (Gibbon 2005, Ch. 5.5.6). For this work high laser intensities
(IL ≥ 1× 1018Wcm−2) are investigated.

In this regime, the particle-particle collision frequency is low and negligible compared to the collision-free
processes and the discussion is limited to the collision-free processes. These processes are discussed in this
section.

Ponderomotive Force

The acceleration of electrons in the laser field, caused by the spatial and temporal limits of the pulse is a result
of the ponderomotive force. Particles in an electromagnetic field experience the Lorentz force

F⃗L = q
(︂
E⃗ + v⃗ × B⃗

)︂
, (2.11)

where E⃗ and B⃗ are the electric and magnetic field of the electromagnetic wave, q and v⃗ are the particle’s
charge and velocity respectively. The ponderomotive force results from the electric field strength’s gradient
along the transverse component of a real laser. It describes the resulting movement of charged particles inside
the laser’s electric field. It can be derived by time averaging the electric field component of the Lorentz force
for the time-constraint laser. Detailed step-by-step derivation can be found in many books on plasma physics
(e.g. (Piel 2017, Sec. 3.7.1.) (Gibbon 2005, Sec. 3.2.)), the ponderomotive force is given as

F⃗ p = − q2

4mω2
L
∇⃗E2

0 . (2.12)

Where ωL is the field’s oscillation frequency, e and m are the particle’s charge and mass respectively and E0 is
the electric field.
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Figure 2.3.: Situation for the laser hitting a pre-expanded target under an angle Θ. The plasma is underdense
for most of the domain.

Some remarks concerning the behavior of the ponderomotive force: Firstly, the charge is taken into account
with a quadratic dependency, the direction of the force is therefore independent of the particle’s charge.
Secondly, the particle oscillates with the field’s oscillation frequency. Thirdly, the particle drifts along the
negative gradient of the squared electric field and therefore towards the region of the lower field. The
derivation of the ponderomotive force includes linearization and time averaging of the Lorentz force. This
implies that higher-order terms are neglected and only the lower-order electric field contributes.

Relativistic j x B Heating

If the intensity of an electromagnetic wave is high enough, then the higher order terms of the Lorentz force’s
v⃗ × B⃗-term have to be taken into account as well. This was firstly considered by Kruer and Estabrook (Kruer
et al. 1985, Eq. 1) who arrived at the expression for a modified ponderomotive force, including the magnetic
field term

F⃗ p = −m

4

∂v2os(x)

∂x
[1− cos (2ωLt)] e⃗x inserting vos =

qE⃗0(x)

mωL
(2.13)

= − q2

4mω2
L

∂E⃗
2

0(x)

∂x
[1− cos (2ωLt)] e⃗x

where x denotes the longitudinal direction into the plasma direction as indicated in Figure 2.3. The first
summand is the regular ponderomotive force, while the second summand introduces a fast oscillating part
caused by the magnetic field acting on the charged particles in the longitudinal direction. Further calculations
by Wilks et al. (Wilks et al. 1992, Eq. 2, Fig. 3) yield the so-called Ponderomotive Scaling model of the hot
electron temperature

T
pm
e = mec

2

(︄√︃
1 +

a20
2

− 1

)︄
with a0 =

eE0

cmωL
(2.14)
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Figure 2.4.: Traits of the resonance absorption. The curve for the absorption in (a) and the curve for the ideal
absorption angle in (b).

This ponderomotive heating is frequently used as an approximation of the hot electron temperatures, although
it has the tendency to overestimate the hot electron temperature (Cui et al. 2013, Eq. 2, Sec. 4), (Kluge et al.
2011, Eq. 9, Fig. 1. Fig 3), (Flacco et al. 2010, Fig. 5), (Cialfi et al. 2016, Fig. 5). Concluding, different
heating processes are more dominant in different regimes.

Resonance Absorption

Laser light is generally reflected at the density nc cosΘ, where nc is the critical density and Θ the incidence
angle, as displayed in Figure 2.3. An evanescent wave can penetrate the plasma further towards the nc limit,
while p-polarized laser light can trigger waves in the area between nc cosΘ and nc. The reason for the latter
is due to p-polarised waves an electric field component parallel to the gradient of the electron density exists.
This field can excite plasma oscillations. The efficiency of this process is dependent on the plasma scale length
and the incidence angle. If the scale length is large, then a self-similar solution exists, which depends on the
wave vector k = 2π/λL and the scale length L−1 = |∂x ln(Ne)|x=xc

, where Ne is the number of electrons. The
fractional absorption ηra for kL ≫ 1 can be determined self-similarly as (Gibbon 2005, Ch. 5.5.1.)

ηra =
1

2

[︃
2.3ξ exp

(︃
−2ξ3

3

)︃]︃
with ξ = (kL)1/3 sinΘ (2.15)

ηra is displayed in Figure 2.4a. The ξ value at the maximum is ξmax = 0.793. Solving the ξ identity for the
angle ξ = ξmax allows predicting the ideal angle for the maximal resonance absorption.

Brunel Absorption

Resonance absorption does break down for very steep plasma gradients. If a steep gradient exists and is
irradiated by a laser with some electric field component normal to the plasma surface, this component causes
electrons to accelerate back and forth around the plasma boundary, heating the plasma during the deceleration
inside the plasma. The derivations from Brunel (Brunel 1987, Eq. 10) and Gibbon (Gibbon 2005, Ch. 5.5.2.)
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Figure 2.5.: Plot for hot electron temperature Te for different a0 values following Equation 2.17. WithC1 ≈ 0.33
and C2 ≈ 0.06.

both result in the same expression for the Brunel absorption ηB as

ηB =
1

πa0
f
[︂(︁
1 + f2a20 sin2Θ

)︁1/2 − 1
]︂ sinΘ
cosΘ

with f = 1 +
√︁
1− ηa, (2.16)

where f is the field amplification factor and ηa = (4/π)a0(sin3Θ/ cosΘ) the fractional absorption rate.

Hot Electron Prediction

Cialfi (Cialfi et al. 2016, Eq. 5, Fig. 4) developed a model capable of reproducing the hot electron temperature
for many targets. The model combines the ponderomotive scaling with the Brunel absorption weighted by
empirically determined values:

Te/MeV = C1 × 0.511

[︄√︃
1 +

a20
2

− 1

]︄

+ C2 × 0.511

[︄√︃
1 + f2

a20
2

sin2Θ− 1

]︄
tanΘ, (2.17)

where C1 and C2 are the process’s empirical weighting factors dependent on the laser and target parameters.
They are in good approximation constant for the variation of a0 but vary for different laser and target
parameters and the different simulation dimensions.

2.3. Target Normal Sheath Acceleration

The following section first discusses the physics of TNSA. Secondly, an analytical model for understanding
TNSA time evolution will be discussed. The third part explains the basic idea of multi-species interaction. The
fourth part considers the beam divergence, while the fifth part focuses on the different types of targets. The
final part of this section discusses some further literature about TNSA. Further details and numerous studies

17



Laser
Plasma

Ionbeam

j⃗ret

j⃗ret

j⃗fast

Figure 2.6.: TNSA setup. A high-intensity short-pulse laser hits the target. The target is heated up and
electrons start to move along the target and are scattered. Idealized electron trajectories are
indicated by black errors. The laser follows a Gaussian profile indicated by the purple lines.

can be found in the literature. Exemplary for these studies are (Roth and M. Schollmeier 2014) (Snavely
et al. 2000) (Berglund et al. 1998) (Borghesi et al. 2013) (Laser-Driven Sources of High Energy Particles and
Radiation 2019, and the sources therein), where the work from Snavely et al. presented the first experimental
result measuring TNSA.

Physical Description of the Process

TNSA is a process for the acceleration of ions from a plasma. The process starts, when the target, placed
inside a vacuum, from which the ions should be accelerated is irradiated by a short-pulse laser. Short pulse
in this context means in the order of ps or shorter. Short pulsed lasers do not follow a single ideal Gaussian
distribution. Instead, these pulses follow a complex time and spatial distribution, as mentioned in section 2.1
and exemplary depicted in Figure 2.1. These corrections result in an effective train of pulses hitting the
target. The pulses hitting the target before the main pulse hits are generally orders of magnitude smaller than
the main pulse. This smaller intensity domain is triggering the first ionization of the target as described in
section 2.2.2, which also causes the first expansion of the plasma into the vacuum and therefore creates a
plasma in front of the target. The plasma created before the main pulse hits is called pre-plasma.

The main pulse with intensities ≥ 1× 1018Wcm−2 further ionizes and significantly heats up the plasma.
Plasma heating results from several competing processes as described in subsection 2.2.3. As discussed before,
plasma heating can be regarded as heating electrons exclusively. The hot electrons can then be characterized
by at least one hot electron temperature Te and the underlying Maxwell-Jüttner distribution (Jüttner 1911b)
(Jüttner 1911a). This process’s hottest electron’s Debye length can be larger than the target’s extension. We
can estimate the order of magnitude using the approximate electron density of η · ne ≈ η · 3.3× 1023 cm−3,
where η is the number of electrons with high kinetic energy and the result for Te from Figure 2.5. Assuming a
low number of high energy electrons η < 1% with a high temperature of Te > 2MeV, the Debye length is
λDe > 130nm. Schollmeier reported in his thesis Debye lengths of a tenth of micrometers, while the targets
under investigation are maximal 3µm thick (M. S. Schollmeier 2009, p. 25). The plasma is neutral at the
start of the process, but since the hottest and fastest electrons can leave the target, the plasma gets charged
over time.

The hot electron flux through the target creates strong magnetic fields. These magnetic fields need a large
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current to be induced and this current is limited by the Alfven limit, which would have to be exceeded during
the process (Roth and M. Schollmeier 2016a, p. 233) (Alfvén 1942). Luckily, the plasma can sustain a
large current that exceeds the Alvfen limit for a short time scale and short distances. For larger times beam
filamentation and subsequent return currents have to be taken into account (Davies 2006). These currents
transport electrons from the low-temperature part of the plasma back to the hot spot. They get heated and
follow the flow toward the ends of the target, further charging up the plasma. The strong magnetic field
created by the flux of hot electrons forces the electrons, leaving the target, onto curved trajectories. These
trajectories resemble a fountain as indicated in Figure 2.6.

Over time, the increasing charge of the target and the large fields trap more and more hot electrons, which
form an electron sheath behind the target. The hottest and fastest electrons are in the middle of the laser focus
which deviates over the full depth of the target and causes an approximately Gaussian electron distribution
centered around the projected focus point (M. S. Schollmeier 2009, p. 69).

After a characteristic time for the individual ion species, the corresponding ions also start to move and see
the electric field from the charge separation. This field is similar to that of a plate capacitor and allows a first
simple estimation of the reached maximum particle energies via the energy transfer in a homogeneous electric
field

Ekin ∝ q2i
mi

(2.18)

The electron sheath has a finite width and the time that the field is seen can be determined. The ions reaching
the sheath first, see the full field and start to screen the electron charge, reducing the effective electric field
for all slower ions. The acceleration process’s important part is the number of electrons and the charge in
the sheath created. Despite the goal of accelerating ions, the process is driven by electron dynamics. For
highest intensities of ∼ 1024Wcm−2 calculations predict, that ions can be accelerated directly in the laser
field enabling higher energies than possible with TNSA, refer to section 4.1 and (Laser-Driven Sources of High
Energy Particles and Radiation 2019, and the sources therein).

The full process can not be solved analytically and we can give neither an approximate nor a closed
solution. Evaluating the full dynamics of the process is only possible by using numerical simulations. Different
simulation schemes exist and are valid in different parts of the process, while hydrocodes (Fryxell et al. 2000)
(Büchner et al. 2010, and the sources therein) can model and calculate the first part of the process, from laser
irradiation over the initial ionization towards the initial heating up, particle-in-cell method, which is described
in section 3.1, has to be used to model the main pulse interaction, the particle dynamics, and the time until the
acceleration phase is over. The scope of this work is to model the TNSA main pulse interaction until the end
of the acceleration phase. Hence particle-in-cell simulations are used, for the initial particle and temperature
distributions are chosen to represent the impact of the pre-pulse effect. The dedicated parameters for this are
given in subsection 6.1.1.

Several models to describe the acceleration have been developed (Mora 2003) (Mora 2020) (Passoni, Zani,
et al. 2014) (Perego, Batani, et al. 2012) (Passoni, Bertagna, et al. 2010). These models reduce the system’s
dimensionality and either model the situation with a fluid approach or approximate the problem with a
static charge separation approach. An alternative as presented in section 2.3.4 relies heavily on experimental
data and only reproduces observations. The model used in this work is based on a fluid approach and was
developed by Patrick Mora. With this model, several predictions can be made which are consistent with
PIC simulations. The model can further be expanded to accommodate several effects observed, as will be
presented for multi-species plasmas in subsection 2.3.2. The base model is discussed further which allows
quantifying the hot electrons’ influence on the ion spectrum and increases the understanding of relevant
effects.

19



0

1

x/a.u.

n
/n

e0

ni
ne

Positively charged
Negatively charged

Figure 2.7.: Starting conditions for the charge and particle distribution in Moras model at t = 0.

2.3.1. Moras Model

In several publications, Patrick Mora developed models for TNSA ion acceleration (Mora and Thomas M. An-
tonsen 1997) (Quesnel et al. 1998) (Mora 2003) (Mora 2005) (Mora 2020). The model, discussed here,
assumes a simple representation of the plasma expansion into a vacuum, driven by hot electrons (Mora 2003).

The model assumes a one-dimensional, one-species plasma. It consists of one type of cold ions, occupying
the half-space x < 0, and hot electrons following the Boltzmann distribution with the characteristic hot
electron temperature Te.

ni(x) =

{︄
nio for x < 0

0 for x > 0
and ne = ne0 exp

(︃
eΦ

kBTe

)︃
, (2.19)

where ni0 is the homogeneous distributed ion density, Φ is the electrostatic potential, and kB Boltzmann’s
constant.

The expressions above hold for the starting time t = 0, it is displayed in Figure 2.7 Taking the equation
of motion and the continuity equation allows determining a self-similar solution for the ion expansion in
a vacuum. The model yields four core results for the problem, which can be given with some dedicated
quantities: Euler’s constant is denoted with e, cs is the ion’s acoustic velocity, and ωpi is the ion’s plasma
frequency. Firstly, the electric field at the ion front position can be calculated by solving Poisson’s equation with
the given distribution in Equation 2.19. The solution of the full-space integration to acquire the expression for
the electric field at the ion front is

Efront(t) =

(︂
ne0kBTe

ε0

)︂1/2
(︂
2e+ ω2

pit
2
)︂1/2 (2.20)

Secondly, the velocity of the ion front is given by solving the equation of motion after inserting the given
electric field by integrating the field over time from the start t′ = 0 to the time t′ = t as

vfront(t) = 2cs ln

⎛⎝ωpit√
2e

+

√︄(︃
ωpit√
2e

)︃2

+ 1

⎞⎠ . (2.21)
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Thirdly, the position of the ion front can be acquired by again integrating the velocity from 0 to t as

xfront(t) = 2
√
2e

(︃
ε0kBTe

ne0e2

)︃1/2

⏞ ⏟⏟ ⏞
=λD0

⎡⎣ωpit√
2e

ln

⎛⎝ωpit√
2e

+

√︄(︃
ωpit√
2e

)︃2

+ 1

⎞⎠−

√︄(︃
ωpit√
2e

)︃2

+ 1 + 1

⎤⎦ . (2.22)

Fourthly, the energy spectrum is given by the shape dN/dE and the cut-off energy Ec(t)

dN

dE
(E, t) =

ni0cst√
2EZkBTe

exp

(︄
−
√︃

2E

ZkBTe

)︄
and Ec = 2ZkBTe

[︃
ln
(︃
2
ωpit√
2e

)︃]︃2
(2.23)

cs is the ion acoustic velocity while ωpi is the ion plasma frequency and e is Euler’s constant. They are defined
by the relations:

cs =

(︃
ZkBTe

mi

)︃1/2

ωpi =

(︃
ne0Ze2

miε0

)︃1/2

(2.24)

These results are powerful in interpreting numerical and physical experimentation and are widely used. The
results are implemented for example in radiochromic film evaluation software (Schmitz, Metternich, et al.
2022) (Schmitz and Endl 2022) or are generally used as reference. It is noteworthy, that the model only
takes one ion species into account. Huebl et al. (Huebl et al. 2020) extended the discussion towards a second
heavier ion species, showing that the output spectrum varies and effects on the lighter spectrum can be seen.
A further addition to the model incorporating an arbitrary number of ion species is, together with a detailed
explanation of Huebl et al. model presented in subsection 2.3.2.

2.3.2. Multi Species Effect

As presented in the already mentioned study by Huebl et al. (Huebl et al. 2020) having several particle species
in an expanding plasma, these particles interact. This deviates from Mora’s exponential particle spectrum of a
mono-species plasma by a compression of the lighter ion spectrum.

Starting with Mora’s model, each ion species deviates from the others by density, charge, and mass. For
each combination, the electric field from the acceleration is constant and applies to all species at once if
the plasma is homogeneous. The driving source of the acceleration is the electric field, counteracted by the
particles’ inertia. As a result of this lower inertia particles are accelerated first, followed by those of higher
inertia. The higher inertia particles co-propagate then with the lower energy particles with a lower inertia
and both are following the higher energy particles with higher inertia.

The particles interact then via coulomb interaction locally, so the particles of lower inertia get pushed away
from the higher inertia particles. This accelerates the low energy low inertia particles causing a compression
of the particle spectrum as displayed in Figure 2.8. As displayed, the resulting spectra deviate from the
classical Mora in the interaction region. The spectrum for lower energies, where both particle species are
co-propagating is not as smooth, because the particles share the acceleration field, which randomizes which
particle species gets a kick from the acceleration field. This behavior was also measured by Alejo (Alejo et al.
2014) using a differential Thomson Parabola setup. The spectrum, extracted from the paper is displayed in
Figure 2.9. Due to the nature of the experiment, only one species could be measured, but the deviation from
an exponential shape is a sufficient indicator for a multi-species effect. The effect is further smoother than the
one presented in Figure 2.8, which is due to the lack of transverse moments in the PIC simulations, which will
be discussed further in section 3.1 and section 6.1.
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Figure 2.8.: PIC simulated multi-species system. Consisting of H2O with eight-fold ionized Oxygen. Classical
Mora solution is indicated with dotted lines, while the solid and dashed lines give the simulated
spectra, respectively.

2.3.3. Divergence of the Beam

Experiments and simulations (Schmitz, Metternich, et al. 2022, and the sources therein) have shown that the
opening angle is energy dependent. Studies have shown that larger energies have smaller opening angles and
a laminar behavior, which is also shown by Lecsz et al. (Lécz 2013, Sec. 6.3.) (Lécz et al. 2015, Eq. 6, Fig. 11).
While the TNSA accelerated ions have a close to zero transverse temperature (Roth and M. Schollmeier 2016b,
Eq. 43, p.250) the full beam can have a large divergence in the order of 20◦. This is not a contradiction, since
the transverse temperature, also designated as transverse emittance, is an inter-particle quantity describing
momentum deviation and turbulent flow or the lack thereof inside the particle beam, while the divergence is
a global description of the particle beam envelope. The beam is opening up while being laminar inside.

The physical reason for this is the already mentioned shape of the electron cloud and the shock waves
expanding inside the target. A good plot of this and a describing model can be found in the work of Zeil et al
(Zeil et al. 2010, Fig 8). This deformation curves the planar back side and strengthens the off-axis acceleration.
Since the fastest ions see the highest field in the center the deviation for slower ions increases. In addition to
the model from Lecz, two empirical functions are used to describe the angle envelope. They are discussed by
Schmitz et al. (Schmitz, Metternich, et al. 2022) and are repeated here for completeness. The easiest function
is a simple quadratic polynomial

Θ(E) = a+ b · E + c · E2, (2.25)

which behaves nonphysical in the high energy limit but explains the typical plateau visible at low energies. In
the low energy limit, the function goes towards a plateau and stays there, the value a is a measure of the
maximum angle achieved.

A more sophisticated model is the partial function model: Laser-accelerated ion beams, accelerated via the
TNSA mechanism, have a specific cut-off energy. RCFs only allow measuring particles with energy higher or
equal to the Bragg-peak energy of the first active layer. This means that the definition interval is limited. It,
therefore, makes sense to force the functional values in the upper and lower interval limits to zero. An ansatz
for the angle dependency is then

Θ(E) = a ·

√︄
−2 ln

(︃
E

b

)︃
·
(︃
E − d

b

)︃1/c

. (2.26)

The parameter b is the maximal energy of the ion beam while d is the value for the lower energy cut-off. This
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Figure 2.9.: Deuterium spectrum fromamulti-species target, reproduced from (Alejo et al. 2014). AThompson
parabola setup joined with a particle filter is used to measure the spectrum.

scales the function from d to the cut-off energy. c and a scale the curvature of the function accordingly. For
low energies, the distribution approaches 0 indicating a finite beam size. The function approaches zero for
high energies as well, limiting the beam’s maximum energy as well.

The model from Lecz is more complicated and is developed in detail in the corresponding thesis. All three
models are plotted in Figure 2.10. The plot shows all 3 models. It is evident, that the model from Lecz does
not reproduce the plateau at low energies, which results from assuming a point like heating on the backside of
the target. This assumption is not true due to the hot electron’s broadening as shown by Marius Schollmeier
in his thesis (M. S. Schollmeier 2009, Ch. 4.1.). A hybrid model cutting of the model at a specific point can be
a better description of the angle.

2.3.4. Targetry for Laser-Driven Ion Acceleration

As already mentioned above, the divergence and the ion species to be accelerated are relevant. An important
part of the whole process is the plasma target itself. The schematics in Figure 2.11 display some of the more
conventional targets used for particle acceleration via TNSA. From advanced studies for approaches like
proton fast ignition even more complex targets are known (Prencipe et al. 2017, e.g. Fig. 5). This includes
several modifications like cones to guide the laser or coils to modify the exiting ion beam characteristics.

This thesis aims to optimize a system for high-repetition usage. The more complex a target, the less suited
it is for high-repetition operation. A good overview of the current state of the art for high repetition rate
targets is given in (Prencipe et al. 2017). Several complications are evident, especially for the rapid supply of
targets and positioning. It is therefore advisable to use simple targets and find a way to replace them quickly.

The simplest way is to use a foil, as displayed in Figure 2.11a. It can be fixed easily in the position needed
for the experiment. The particles being accelerated in this case usually come from a contamination layer on
the back of the foil. This can be used to accelerate heavier particles if the contamination layer and the lower
mass particles can be removed. Unfortunately, a mounted foil is unfeasible in continuous operation due to
difficulty exchanging the targets quickly and precisely. An additional problem that comes up with foil targets is
the debris caused by the irradiation. The debris consists of target shrapnels which are not accelerated properly
but get ejected with the resulting shock wave. The debris damages optics and surrounding components and is
problematic, especially for high repetition rates. In the long term, when the laser interaction is done, the target
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Function (Equation 2.25) and the dashed line represents the best fit for the Partial Function
(Equation 2.26). The blue data points are taken from the beamtime P218, which was performed
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(Germany) in the frame of FAIR Phase-0. This plot was taken from the corresponding publication
by Schmitz et al. (Schmitz, Metternich, et al. 2022).

(a) Thin foil based target, green is
the species to be accelerated, gray
marks the area of heavier ions
which works as substrate.

(b) Jet target, normally supplied as
a liquid or in a gaseous state.
Characteristic cylindrical shape.
Acceleration-ready low-mass par-
ticles are distributed homoge-
neously.

(c) Liquid leaf target or modified gas
jet. The irradiated area is basi-
cally as plane as a thin foil tar-
get. Acceleration-ready low-mass
particles are distributed homoge-
neously.

Figure 2.11.: Different targets as used in TNSA experiments. The red arrow indicates the incoming laser
wave.
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is basically evaporated. The resulting vapor is then coating all optics and components in the experimental
area, reducing the efficiency of the optical elements.

A regular cylindrical jet is the simplest way for a flowing liquid or gaseous target as displayed in Figure 2.11b.
This is simple to create and is quickly replaceable, no mechanical interlock has to be set and regeneration of the
target is fast. The cylindrical geometry has a major disadvantage though. Target Normal Sheath Acceleration,
accelerates the particles along the normal of the target’s surface. With a cylindrical surface, the curvature is
high and accelerated particles diverge more than for a comparable flat target (Obst et al. 2017, Fig. 3, Fig. 4,
Fig. 5).

Figure 2.11c then displays a geometry that combines both advantages, a flat target with a homogeneous
particle distribution. An example of such a target is given by George et al. (George et al. 2019, Fig. 4, Fig.
5). This can be achieved by colliding two cylindrical liquid jets under an angle Θ and utilizing momentum
conservation and surface tension. The collision causes for example water to fan out into the normal with
respect to the axis of collision. This leaf which is perpendicular to the laser is furthermore planar in the focus
area of the laser. This work is investigating a liquid leaf target for the production of the primary particle. Its
assumed parameters are discussed in detail in subsection 6.1.1.

TNSA Models in the Literature

Much of the literature about laser-driven ions consists of simplified relations and scaling laws based on different
experiments or simulations. All of them use solid thin foils with adsorbed layers and the general quantity
of interest is the cut-off energy of the ion spectrum (Fuchs et al. 2005) (Zeil et al. 2010) (Borghesi et al.
2013) (Fourmaux et al. 2013) (Brenner et al. 2011) (Perego, Zani, et al. 2011) (Keppler, Elkina, et al. 2022)
(J. Schreiber et al. 2006).

The pre-plasma can be described as an exponential plasma skirt extending the central main part of the
target. An exponential function is fully characterized by its decay constant and the starting amplitude. The
decay constant in literature is called scale length- The pre-pulse can indirectly influence this scale length and
an influence on the acceleration process is measurable (Keppler, Elkina, et al. 2022). If proper reproducible
pre-plasma shaping is achieved, then an improvement of this can be utilized as well.

An interesting notion is that a laser-irradiated target gets hotter and then simultaneously expands in
forward and backward directions. It has been shown in simulations that both bunches, propagating in different
directions have spectra that are similar to each other (Fourmaux et al. 2013). It might therefore be possible to
use two bunches simultaneously, doubling the number of accelerated ions.

The scaling laws developed based on experimental data are of interest for the ion scaling discussion and
for our own data rescaling and validation. A reduced model that takes the acceleration time into account
was developed by Karl Zeil et al. (Zeil et al. 2010, Eq. 3). It describes only the cutoff energy and neglects or
simplifies the acceleration dynamics as

Emax = E∞ tanh2
(︃

τL
2τ0

)︃
with: E∞ = 2mec

2

√︃
ηPL

Pe
and: τ0 =

R√︁
2E∞/m

, (2.27)

where τL is the laser pulse length, PL the laser power, R is the size of the hot electron spot at the rear side of
the target, Pe = 8.7GW the relativistic power unit and η is the conversion efficiency (around 20%).

A more advanced model considering the process dynamics is the model proposed by Schreiber et al. (J.
Schreiber et al. 2006). The model does not provide an explicit dependence from hot electron energies which
is a good trait since it does not give wrong estimates due to over- or underestimation of Te.

τL
τ0

= X

(︃
1 +

1

2

1

1 +X2

)︃
+

1

4
ln
(︃
1 +X

1−X

)︃
with τ0 = B/v(∞) (2.28)
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where, B = rLd tanΘ andX =
√︁
Em/Ei,∞. One important result of this model is the prediction of an optimal

pulse length.

2.4. Neutron Conversion Processes and Characteristics

So far the acceleration process has been discussed. Therefore the acceleration or part of the full setup is
done, what remains is the conversion part as displayed in Figure 2.12. Therefore, this section focuses on

Accelerator Converter

Neutrons

Ions Converter

Figure 2.12.: Accelerator as a pitcher of ions, converter as catcher of ions. The ions are converted to neutrons
and emitted from the converter.

understanding neutron production from light ion projectiles. It summarizes the nuclear physics relevant
for producing neutrons and is based on (Mayer-Kuckuk 2013). Several parts in this section are calculated
by the author to complement missing numerical values in literature, to discuss traits of the converter to be
determined, or to construct geometric formulas needed in the conclusion of the proposed design.

A nuclear process is initialized by a collision of the projectile a with the target atom A. Both particles must
be close, approximately some fm, so the short-range strong interaction can trigger an interaction between the
particles. A considerable amount of kinetic energy is needed to get so close together since the projectile has to
overcome the target’s Coulomb potential. The heavier the atoms are, the higher the corresponding charge
number Z and the more energy is necessary to overcome the Coulomb barrier. It is therefore advisable to use
the lightest ions with the lowest Z that are reasonably usable.

As soon as the particles undergo a reaction in general a number of particles have to go out of the reaction.
Analog to the ingoing particles, the outgoing is denoted b for the ejectile and B for the heavy nucleus.
This reaction equation fulfills several conservation laws: energy, momentum, charge, and baryon number
conservation. These laws limit the number of possible reactions. The reaction itself can be noted comparably
to chemical reactions as a+A → B + b or more compact as A(a, b)B. The reaction probability is given by the
cross-section σ of the reaction, which means that a higher cross-section implies a higher probability of this
reaction occurring. This cross-section depends on the particle dynamics and the input energies, which means
that the prevalent reaction can change for different conditions. The cross-section is measured in barn, equal
to 100 fm2.

The nuclear reactions relevant to this work are the reactions for generating neutrons. Since different
applications vary in the neutron energies, beam quality, and the number of neutrons needed, a model
optimizing and predicting a source has to be able to deal with different conditions and be adaptable. This
implied that the nature of the neutron and the production process has to be understood, the production
process is one part of this work.
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Figure 2.13.: Overview of the neutron energy and the termini used. The blue strip denotes the order of
magnitude of the kinetic neutron energy in eV with an indicated logarithmic scale. Above
the scale are the formal definitions, while below the scale are definitions from the neutron
radiography community. Data taken from (Krieger 2018, pp. 354-355, Tab. 13.1, Tab. 13.2).

2.4.1. Neutron Traits, Production, and Yields

The importance of neutrons for different applications has already been discussed in chapter 1. Why are
neutrons of interest for applications and what is different from other types of radiation? The most distinct
difference is that neutrons have no electric charge to cause Coulomb repulsion. They, therefore, do not scatter
at the shell of an atom but only on the nucleus itself. They, as mentioned previously, do not interact with
Coulomb potential but only with the strong nuclear force This results in a higher resolution of features in
scattering experiments but they can also easily initiate nuclear reactions inside a target. Which one happens
depends on the incoming energies and again cross-sections express the probability of a reaction happening
(Krieger 2018, Sec. 13.8) (Mayer-Kuckuk 2013, Sec. 5.2.).

As a rule of thumb, it can be assumed that the probability of inducing a nuclear reaction increases the
lower the energy of the incoming neutron. Low energy means low velocity; with low velocity, the time to
interact with a target nucleus increases, increasing the cross-section. Several definitions for the neutron
energy’s nomenclature exist in literature two of the often used variants are displayed in Figure 2.13. This
work will directly take energy value to avoid confusion and ambiguities in the discussion. Neutron energies
can be adjusted by moderating the beam. Moderation is the process of scattering inside a material. Neutrons
traveling through the moderator are scattering with the surrounding atoms. Due to this, the energy of the
neutrons changes and it converges towards the converter’s thermal energy. While it is usually the case, that
the neutron energy is reduced, energy can also be gained if the converter has higher thermal energy than the
incoming neutron beam.

Neutron sources can be constructed with four different mechanisms (Krieger 2018, Pages 332-344). Ra-
dioactive isotopes (e.g. Americium-Beryllium sources or Californium) can be used. They have a fixed emission
behavior and follow a distribution defined by their decay process. They normally do not exceed some MeV
kinetic energy. Secondly, nuclear reactors can be utilized as neutron sources, since fast neutrons are a product
of nuclear fission. While reactor neutrons can reach high energies, a large support system is needed and
the process of fission creates a large amount of nuclear waste. Thirdly, fusion approaches using for example
pyroelectric fusion (Naranjo et al. 2011) or a Farnsworth-Hirsch Fusor (Miley et al. 2000) can be used. They
are commercially available but have rather low neutron rates. The fixed maximum energies on this would
be 1011 n/s for 14 MeV neutrons for the Farnsworth-Hirsch Fusor and 105 n/s for 14 MeV neutrons for the
pyroelectric approach. Fourthly, accelerator-based methods can be used. This approach is discussed further
since the work in this thesis is part of the accelerator-based approach.
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Accelerator-based methods use light ions as projectiles and can be distinguished by the target and the
energy, high Z targets and high energy create neutrons through spallation. Spallation is based on crushing
nuclei with incoming particles, which is for example used at the European Spallation Source (Garoby et al.
2017, pp. 66ff) (Krieger 2018, Sec. 13.5.1). Spallation needs a high particle energy starting at 200MeV,
while the European Spallation Source for example aims to operate at 2GeV. A realistic concept utilizing a
compact particle accelerator for producing neutrons has to produce neutrons utilizing light ion reactions with
low energies up to approximately 100MeV. Yang et al. demonstrated the neutron production from TNSA ions
in 2004 (Yang et al. 2004).

Light ion induced Neutron Reaction with low Z Targets

As discussed in section 2.3 about TNSA, light ions with the highest Z/m ratio are accelerated to the highest
energies and are therefore preferable. This means that reactions mainly from impinging protons and deuterons
are evaluated. Higher ionized heavy ions can reach the same Z/m ratio, their effect on the neutron thick
target yield is negligible. High ionized oxygen (which can get the highest energies and is therefore the most
relevant) is strongly dominated by the Coulomb interaction, which reduces the neutron production further.
Therefore, with comparable kinetic energies, the yield of for example Oxygen is assumed to be negligible. The
governing reactions for the low Z projectiles and a selected number of targets at energies below the spallation
threshold are

Be-Target

{︄
d+9

4Be → 10
5 B+ n+ 4.36MeV

p+9
4Be → 9

5B+ n− 1.85MeV
(2.29)

Li-Target

{︄
d+7

3Li → 8
4Be+ n+ 15.03MeV

p+7
3Li → 7

4Be+ n− 1.65MeV
(2.30)

V-Target

{︄
d+51

23V → 52
24Cr+ n+ 8.28MeV

p+51
23V → 51

24Cr+ n− 1.54MeV
(2.31)

Ta-Target

{︄
d+181

73 Ta → 182
74 W+ n+ 4.87MeV

p+181
73Ta → 181

74 W+ n− 0.97MeV.
(2.32)

F-Target

{︄
d+19

9 F → 20
10Ne+ n+ 10.62MeV

p+19
9 F → 19

10Ne+ n− 4.02MeV.
(2.33)

Each reaction has a Q-value which describes whether the reaction is endo- (Q < 0) or exotherm (Q > 0). If it
is exotherm, then the reaction will pass additional energy to the emitted neutron, if it is endotherm, then it
needs at least the given energy to undergo the reaction. This energy does not completely go to the ejected
neutron but can also be passed to the remaining nucleus, exciting it. The excited nucleus can then enter its
ground state by emitting a photon of the corresponding energy, triggering further reactions. Formally written,
the maximum energy of an ejectile can be calculated by

max
(︂
E

ejectile
kin

)︂
≈ E

proj
kin +Q. (2.34)

The Q-value is a direct result of the mass difference before and after the reaction and can therefore be
calculated by the equation

Q = Mprojectile +MTarget −Mejectile −MProduct. (2.35)

As displayed in the list of reactions above, Beryllium, Lithium, Vanadium, and Tantalum targets are investigated.
Fluorine is only investigated as part of a LiF Target which is used to mitigate the difficult material parameters
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of Lithium which are mentioned below. The materials were selected due to their promising results in literature
(Rücker et al. 2016, Fig. 1, Fig. 2, Tab. 1).

Reactions, Cross Sections, and Thick Target Yields

A projectile can either cause direct nuclear reactions or start compound reactions. A major difference between
these processes is the characteristic time it takes the particle to interact. The direct reactions emit the ejectile
directly after the interaction. The characteristic time is therefore the time it takes the projectile to pass by
the target nucleus, which is with 10−22 s. Compound reactions on the other hand form a compound nucleus,
consisting of the projectile and the target nucleus, which then emits the neutron.

The compound nucleus’s components are indistinguishable, effectively adding both nuclei’s baryons together.
This resulting compound nucleus decays in a timescale of 10−16 s to 10−18 s, leaving the nucleus enough time
to reach the thermal equilibrium. Decaying nuclei in thermal equilibrium have no information about the
original momenta and the emission is therefore isotropic. The equilibrium might not be reached for kinetic
energies larger than the binding energy, and a reaction can occur in pre-equilibrium. Pre-equilibrium reactions
have not lost all of their momenta and did not thermalize, such that a residual momentum is passed on to the
neutron, causing preferred emission into the forward direction (Kleinschmidt 2017, Sec. 3.2, p. 52).

It has been calculated, that the process of deuteron break up is only relevant for targets with a high Z
(Zimmer 2020, Sec. 2.4.1). This can be understood if the deuteron is assumed as a proton and a neutron,
traveling together confined with a binding energy of 2.225MeV. Since the neutron is electrically neutral, the
Coulomb field of the target acts only on the proton. If the force on the proton is larger than the binding
energy, the proton splits from the neutron and reacts independently with the target. This process, therefore,
has a low cross-section. The dominant process for light target nuclei is deuteron stripping. It occurs when
the deuteron’s wavefunction overlaps with the target’s wavefunction. In this configuration, either of the two
projectile nucleons can form a compound nucleus with the target, while the other continues through the target
and undergoes further reactions. This is supported by the three-body treatment (Johnson et al. 1974, Sec. 2).

All of these reactions and the corresponding channels have a reaction probability. The quantity describing
this on a microscopic scale is the cross-section of the reaction. In experiments, special effort has to be taken to
measure this cross-section directly, the targets are as thin as possible such that ideally, only one interaction
happens. Created ejectiles (neutrons in this case) interact with the rest of the converter, reducing energy and
direction information. The spectrum that can be measured directly after the converter is therefore already
partly moderated and deviates from the spectrum expected from the cross-sections alone. If the effects of the
converter’s finite size are considered, the resulting spectrum is called thick target yield. Since the thick target
yield is the observable of interest for a real experiment all subsequent modeling in this work takes the thick
target yield and not the cross-section into account.

Nuclear Converter

Different projectile and target combinations can penetrate the corresponding converter differently. All ion
beams impinging on the converter should be stopped to convert as many ions to neutrons as possible. A
key measure is the penetration depth of particles. An analytical estimate for this would be the Bethe-Bloch
formula (Bethe 1930, Sec. 20, pp. 397-400 ) (Bloch 1933, Eq. 71) which is still commonly used but got
several extensions and corrections over time. A well-known tool to calculate the ion stopping power and
the penetration depth is the software tool SRIM (Biersack et al. 1980). These relations can then be used to
determine the needed converter length if the maximum ion energies are known. SRIM results are displayed in
Figure 2.14. Independent of their physical performance in creating neutrons, engineering problems, and
material traits must also be considered. Lithium for example is an alkali metal and as such highly reactive.
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Figure 2.14.: The traveling ranges for three different projectiles and five targets. Curves calculated using
SRIM.

Literature tells us it is a good neutron converter, but its stability is an issue due to its reactivity. Contact with
hydrogen, oxygen, or water triggers chemical reactions and creates hydrogen gas. A way to mitigate this
Lithium problem is by using compound materials, e.g. LiF. The fluoride component causes the material to
stabilize but on the other hand, reduces the number of neutrons produced. Beryllium on the other hand
is highly toxic and problematic if parts of it evaporate. Each converter’s traits must be considered for the
actual implementation. For the task of finding ideal parameters and optimizing the yield, these traits can be
neglected.

When the material is known, the converter’s transverse and longitudinal expansion must be determined.
This correlates largely with the incoming beam’s transverse divergence. Assuming a point source as the
origin and the laminar flow for the ion as in subsection 2.3.3, allows a construction based on the outermost
particle trajectory as displayed in Figure 2.15. Due to the already mentioned nuclear reactions, particles
inside matter straggle lateral and longitudinal. This straggling is an additional uncertainty that has to be
quantified and considered. The maximum angle Θmax can also be determined by fitting an example data
set as in subsection 2.3.3. As displayed in Figure 2.15b the effective length Seff can be calculated using the
Pythagorean theorem.

The converter is generally placed close to the source d, the only condition is that potential plasma debris
does not damage the target. A liquid leaf targeted with water does not produce damaging debris. The TNSA
ions are space charge negated, due to co-moving electrons, so the impinging protons do not charge the target.
The converter can therefore be placed closely at the plasma target with arbitrary small values of d. Due to
the small distance, the beam dynamics for this application can be neglected. Each particle that exceeds the
mentioned minimal energy for neutron production has a chance to create neutrons and contributes to the thick
target yield. Particles with energies below the necessary energy can be neglected. Therefore, applying TNSA as
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(a) Sketch of the full converter geometry with the corresponding
labels.
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Figure 2.15.: Sketch of the full converter geometry and positioning and straggling inside the converter. All
parameters of a cylindrical target can be expressed by the maximum angle Θ and the distance
from the source. The rotational axis in (a) is denoted by a dash-dotted line.

Table 2.2.: Parameters and relations for constructing the converter’s geometry.

Parameter Conditions Equation

Θ

∆Θ ∆Θ = arctan
(︂
Slateral
SWW

)︂
d Plasma Debris
r1 r1 < r r1 = tanΘ · d
r2 r2 = r − r1

r2 = sWW cos (90◦ −Θ)
sww Dependent of energy (sww + svacc) /svacc = r/r1
svacc Distance in vacuum svacc = d/ cosΘ
Seff Incorporate straggling Seff =

√︂
S2
WW + S2

lateral
ℓproj ℓproj ≤ ℓ ℓproj = r2/ tanΘ
ℓ Maximum penetration depth
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a neutron source is easy to implement, since no dedicated acceptance for the beam or specific mono-energetic
bunches has to be used.

2.4.2. Moving Source Model of Thick Target Yield

Now going one step further from the microscopic view of single atoms to the full spectrum Y , a description
of Y is needed that reproduces the input parameter’s dependency. This can be achieved for example with
measurements or Monte Carlo simulations as explained in section 3.2. These results can be used to create a
model F , which can be evaluated quickly for arbitrary inputs. A fast model allows performing optimizations,
which usually take in the order of 1000 iterations to find maxima. If the model further allows for different
optimization conditions to be used, then the model is ideal. The model F to aid in the optimization is called a
surrogate model and it is supposed to describe the double differential thick target neutron yield.

d2 Y
dΘ dEn

⃓⃓⃓⃓
⃓ Bunch
Converter

= F (Bunch,Converter) , (2.36)

Bunch is the sum of all incoming projectile particles and Converter is the specific target that creates the
neutron spectrum. A full description of the bunch includes the projectile’s kinetic energy Ep, the ion species,
and the number of particles Np (Ep). For the converter, the main quantities are material and geometry.

A model used in the literature is the moving source model (Lawrence Heilbronn 2005, Sec. 6, and the
sources therein). This model assumes that the source particle poops out neutrons according to a Maxwellian
distribution. Assuming that several of these sources exist and superposing them allows describing the thick
target yields.

d2 Y
dΘ dEn

=
∑︂
i

d2 Yi
dΘ dEn

(2.37)

The functional relationship taken from the mentioned literature yields a full expression for a thick target yield
spectrum as

d2Y
dΘdEn

=
N0(Θ)√︁
2πσc(Θ)2

exp

(︄
− [En − Ec(Θ)]2

2σc(Θ)2

)︄
(2.38)

+
2∑︂

i=1

Ni

√
En

2(πTi)3/2
exp

(︃
−En − εi − 2

√
Enεi cosΘ

Ti

)︃
.

The parameters in this model are defined as

Source Intensity : N1, N2, N3N01, N02, ..., N0j

Nuclear kinetic Energy : ε1, ε2, ε3

Nuclear Temperature : T1, T2, T3

Peakenergy : Ec1, ..., Ecj

Energyvariance : σc1, ..., σcj

Total number of fit parameters : 3 · j + 6, where j is the number of measured scattering angles.

The model has many degrees of freedom and can fit and interpolate an extensive range of data. The model is
not precise when the data is sparse or when the data covers several orders of magnitude in short intervals. This
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(a) Thick target neutron yield for Be(d,n)X reaction with
30MeV/A under 0◦. The yield is normalized to the mini-
mum yield value to adjust the fit range.

(b) Thick target neutron yield for Be(d,n)X reaction with
30MeV/A under 90◦. The yield is normalized to the mini-
mum yield value to adjust the fit range.

Figure 2.16.: Moving source model fitted to example data. Upper plots: Blue denotes the normalized spectral
data, while the non-dashed lines give the three different parts of the model. The solid line is then
the superposition and, therefore, the model’s result. Lower plots: Blue denotes the deviation
from model and data, while the inner, green dashed line denotes the ±25% interval and the red
dashed line the ±50% interval.

leads to problematic behavior at the spectrum’s lower and higher energy end. As displayed in Figure 2.16, the
best fit does not necessarily yield exactly the structure as measured or simulated. The model was developed
for high-energy heavy ion beams. As visible, it might reproduce a dedicated spectrum to a limited extent as in
Figure 2.16a. At the same time, the application on different scattering angles deviates further to the extent
that the model’s error gets too high to use it as in Figure 2.16b. Despite the deviation, this moving source
model will be compared with its ideal result to the model developed in this thesis later.

33





3. Numerical Fundamentals

“’Forty-two,’ said Deep Thought, with
infinite majesty and calm.”
– Sir Douglas Adams

The two major physics concepts explained in chapter 2 live on different scales and have different processes
which are relevant to them. It is, therefore, necessary to apply disjunct methods for both cases. While the
plasma dynamics of TNSA require a particle-in-cell code (section 3.1), the nuclear processes rely on Monte
Carlo simulations (section 3.2). Acquiring data allows afterward to calculate surrogate models using artificial
neural networks (section 3.3) which can then be used and further physically interpreted with methods from
the field of uncertainty quantification and sensitivity analysis (section 3.4).

3.1. Particle-in-Cell Method

The data for the surrogate is created by the simulation code SMILEI (Derouillat et al. 2018), which uses
the particle-in-cell (PIC) method. A more general approach and discussion of the method can be found in
corresponding textbooks (Birdsall et al. 2004) (Arber et al. 2015). PIC is a simulation method that assumes a
kinetic approach to plasma simulations: It aggregates several physical particles into a few macro particles,
which are living in a continuous space, and tracks these particles’ positions (x⃗) and momenta (p⃗). The relevant
electromagnetic fields are not sampled continuously to save time and memory, they are sampled on a discrete
grid. The PIC loop as depicted in Figure 3.1 converts during one time-step from particle quantities, sampled
continuously, to field quantities sampled discretely and vice versa. For more details see (Derouillat et al.
2018, Sec. 2.6). The Newton/Lorentz pushers or the Poisson/Maxwell solvers are fully or partially used
depending on the implementation. While the Poisson equation is normally used for static problems and
generally calculated only at time t = 0, it is listed in the PIC loop where it belongs if used.

Since several physical particles are aggregated into one macro particle, the macro particles consist of
distribution functions and specific weights allowing the conversion back to their physical equivalent. The
distribution function for these macro particles is given in the SMILEI introduction paper as

fs (t, x⃗, p⃗) =

Ns∑︂
p=1

wpS
(︁
x⃗− x⃗p(t)δ

(︁
p⃗− p⃗p(t)

)︁)︁
, (3.1)

where Ns is the number of macro particles, wp is the macro particle weight, S the shape function and δ the
Dirac delta distribution. The shape function S(x) is recursively defined,

S(x) =
D∏︂

µ=1

ŝ(n)(xµ) with ŝ(n)(x) =

∫︂ +∞

−∞
P (x′ − x)ŝ(n−1)(x′)dx′, (3.2)

where P is the Crenel function, which has the value of 1 if ∥x∥ ≤ ∆x, ∆x being the distance between two grid
points, and D is the number of spatial dimensions. Following the construction rule, higher-order functions are
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(︂
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∆φ = ϱ

dB⃗
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dE⃗
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F⃗ p ⇒
(︁
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)︁

(︂
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⇒

(︂
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)︂
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Figure 3.1.: Flow chart for the PIC cycle for one-time step. Added with double-edged arrows are the governing
relations in the specific step and a short notation for conversion done. i indexes quantities living
on a grid, while p indexes the macro particles living in a continuous space.
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Figure 3.2.: SMILEI shape functions for one spatial component.

constructed. These functions are given in the appendix of the SMILEI introduction paper (Derouillat et al.
2018, Appendix A). For the case of one spatial dimension, the shape functions are displayed in Figure 3.2.
Higher-order particle shape function causes a higher smoothing effect on the particle spectrum. Reducing
the order, therefore, causes higher fluctuation in the resulting particle spectrum, while higher orders smooth
the spectrum, physics might get lost if the order is too high. This trait off has to be considered when the
simulation is set up.

Limitations of PIC

PIC is a widely used numerical technique for simulating the behavior of charged particles in electromagnetic
fields. However, this method can be subject to a range of numerical limitations that can affect the accuracy
and reliability of the simulation results. Two specific limitations that can arise in PIC simulations are the
numerical Cherenkov effect and grid heating.

Grid heating is a type of numerical error that can occur when the PIC simulation is run with insufficient
grid resolution. This error arises because the electric and magnetic fields are not discretized finely enough,
resulting in energy being deposited into the grid instead of the particles. This can lead to inaccurate simulation
results, especially when the simulation involves complex electromagnetic fields or highly energetic particles.

The choice of the time step is also an important consideration in PIC simulations. Choosing an inappropriate
time step can lead to numerical instability or inaccurate results. Additionally, the time step must be large
enough to ensure reasonable computational efficiency. This consideration is especially relevant in simulations
of highly dynamic or complex systems. This is conditioned by the Courant–Friedrichs–Lewy condition (Courant
et al. 1928). The equation

CFL =
u∆t

∆x
(3.3)

describes the number of cells a particle can pass during one time step. The solution will only converge if
CFL < 1, which can then be rewritten as

∆t ≤ CFL√︂
c2

∆x2 + c2

∆y2
+ c2

∆z2

. (3.4)
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If, however, the CFL number is too close to 1, a numerical Cherenkov effect (Godfrey 1974) might occur, which
introduces further instabilities.

The numerical Cherenkov effect is a type of numerical instability that can occur in PIC simulations. It
arises from discretizing the electric and magnetic fields on the numerical grid. It can lead to unphysical
behaviors such as particles traveling faster than light or artificially amplified waves. Particle noise can worsen
this instability, a limitation arising from the finite number of particles used to represent the plasma in the
simulation.

In summary, the numerical Cherenkov effect and grid heating are two specific numerical limitations that can
occur in PIC simulations. These are related to more general limitations such as particle noise, grid resolution,
and time step limitations. These limitations must be carefully considered when designing and running PIC
simulations, to ensure that the results are accurate and reliable.

Dimensionality in PIC Codes

PIC codes are numerically expensive. The numerical costs are higher the more dimensions are used. While
one-dimensional simulations can run on a regular desktop, three-dimensional simulations with more than
40 000 core hours are not feasible without utilizing a large cluster. They are even more unfeasible to be
used in large bulk as the basis for surrogate models. The focus of this work, therefore, revolves around
one-dimensional simulations.

3.2. Nuclear Monte Carlo Code

Numerical experiments for neutron production and transport are only possible if the neutron transport
equation is solved (Duderstadt 1976, Ch. 4 II). The production part is included with a dedicated source term.
Determining the source term is a tedious task and needs experimental input. Several databases, e.g., JENDL,
FENDL (Shibata et al. 2011) (Forrest et al. 2012) exist, already giving the needed source term data. They
vary due to being measured or calculated with varying measurement methods or assumptions.

The neutron transport equation’s solution can be obtained with deterministic or probabilistic methods.
For the set of deterministic methods, the discrete ordinates method is the most common: The solution of
the equation is calculated for average particles only. An extensive collection of different methods of discrete
methods can be found in (Adams et al. 2002). The probabilistic or Monte Carlo method simulates individual
particles and records specific aspects (called tallies) of their trace and behavior. A final result can be achieved
by applying the central limit theorem to these tallies. While the deterministic approach generally yields more
complete results than probabilistic methods, there are some compelling reasons to use Monte Carlo methods.

Therefore, Monte Carlo does not use discrete phase spaces and is not averaging. The version of the transport
equation solved by Monte Carlo does not include space or time derivatives; therefore, no approximations in
space or time are required. Monte Carlo is, therefore, capable of representing all aspects of physical data
compared to the approximated discrete method.

Furthermore, Monte Carlo succeeds, while discrete methods can not correctly model complex problems
and geometry. It succeeds in describing complex geometries and tells the whole story of a particle in this
numerical experiment. From injection/creation of the particle, the entire trace is followed, and all physical
interactions are calculated until the particle is stopped or decayed. Doing this for as many particles as possible
finally allows for generalizing the observations.

Following the path of the particle, if it collides or interacts with matter, several nuclear reactions can take
place, which of these will happen is determined by random numbers (therefore the name Monte Carlo). Cross-
sections weigh the different possibilities for a dedicated reaction. Step by step, stepping through the particle’s
trajectory allows the later average to achieve predictions close to a real-world experiment. The interested

38



reader is referred to further literature about particle transport using Monte Carlo methods (Haghighat 2020).
This work uses the Monte Carlo Code PHITS (Sato, Niita, et al. 2013; Sato, Iwamoto, et al. 2018) in Version
3.28. More details about the specific setup can be found in subsection 6.2.2.

3.3. Surrogate Modeling with Artificial Neural Networks

Surrogate modeling is widely applied in science, technology, engineering, and mathematics. It is used if
measurements can not be easily measured or derived and a model of the outcome is used. Most design
problems, in engineering or science, require a certain number of experiments and/or simulations to reach
optimization goals with a function on dedicated design variables. A surrogate is mainly used in engineering
sciences, but strictly speaking, all physical models are surrogates themselves.

Another way to think about a surrogate is the black box. Some input quantities or design variables go
in and corresponding outputs get out. The surrogate is then the black box that directly correlates input to
output and does not assume any physics or equations whatsoever. The more complicated a system is, the more
design variables must be considered. If a system is easily understandable, meaning that a closed mathematical
formulation exists such that an analytical solution can be found, it can be directly optimized.

Therefore, as soon as many design variables are relevant and the effort of physical or numerical experiments
gets too high, sophisticated methods must be applied. Compact particle accelerators driven by laser-plasma
interaction, as investigated in this thesis, are governed by complex equations, namely the Maxwell-Vlasov
equation system in section 4.1 and do not allow for easy analytical calculations. This makes it necessary to
thoroughly evaluate the physical process and the equations and find an effective approach to get the best
parameters for the desired optimization goal.

In this work, complex surrogates based on artificial neural networks are used. Therefore some basic
fundamentals of machine learning are illustrated and the general usage of these methods is discussed.

Machine Learning Fundamentals

The details of this chapter come from different sources and give a not complete bus sufficient context for
the following work. Contents are collected and summarized from the book by Goodfellow (Goodfellow et al.
2016) and the extensive course by ECT* (Hjorth-Jensen et al. 2020). The fields of machine learning and
artificial intelligence are closely connected. While machine learning focuses on learning relations from given
data, artificial intelligence focuses more on the capability of a system to interact with its environment and
learn from these interactions as well.

The methods presented and used in this thesis focus on machine learning and getting information from a
structured data set. Data used in this approach was simulated and its labels and results are clearly given. The
methods used are therefore from the subfield of supervised learning with labeled data sets. Artificial neural
networks (ANN) are applied to the problem. Several layers are used. This classifies the problems further as
deep learning problems. An illustration of the field and its different branches is displayed in Figure 3.3.

Our surrogate aims at predicting numerical values and our data is well labeled. We can therefore sort the
problem into the supervised learning and regression category. Regression problems can generally be written as

y (x⃗, w⃗) = f

⎛⎝ M∑︂
j=i

wjΦj (x⃗)

⎞⎠ , (3.5)

where f is an activation function, which defaults to the identity for linear regression, wj are the adjustable
weights of the problem, Φj are the nonlinear basis functions of the regression model and M is the number of
basis functions.
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Machine Learning

Supervised Unsupervised

Deep

(a) Definitions of the different
fields of artificial intelligence.

Machine Learning

Supervised Learning

Classification Regression

Unsupervised Learning

Clustering Association Dimensionality
reduction

(b) Detailed tree structure of the different machine learning methods. As soon as
a network introduces more than one hidden layer it gets deeper.

Figure 3.3.: Overview of the field of machine learning and its internal structure. Machine Learning has three
subsets: supervised, unsupervised and deep learning. They are not mutually exclusive as deep
learning methods can be applied in supervised learning problems.

The goal is to fit the given y (x⃗, w⃗) onto the data y0 (x⃗) by variation of w⃗. This variation is given by a loss
function which has to be defined. The network is calculated by applying a minimization to the loss function.

The classical setup of a fully connected feed-forward network is displayed in Figure 3.4. A neural network
has layers, each consisting of a number of neurons or nodes. ”Fully connected” means that each neuron of a
layer has a connection to each neuron of the following layer. Feed-forward means that the data flow is from
the beginning to the end without any cycles or feedback mechanisms inside the network. When the number
of layers is larger than two, we get hidden layers that are not visible from the outside. Then, a network can
be regarded as being a deep neural network. The deeper a network gets, the more layers and neurons are to
be considered. Thus, the complexity of the network increases, as well as the numerical costs, but also the
capability of approximating even more complex functions.

Each neuron consists of three parts, the Aggregator – summing up the input from the previous neurons –
the Activator – applying the activation function on the input– and the Distributor – passing the result of the
activation function to each following neuron. It could be said that a piece of information (or parameters for
a regression problem) has to follow a path through the network. The information that makes the network
successful is the weights, which are applied to the connection between two neurons and which modify the
output from the previous neurons. By setting the activation function f to identity, the regression problem from
Equation 3.5 becomes a simple weighted sum and outputs the mean value. While the weights are essential
to store information, the activation function and its non-linearity is important to get from a simple mean
calculation towards a universal function approximation.

ANNs can have a variety of shapes, while the basic structure is always neurons ordered in layers. The
weights of the connections and non-linear activation functions are essential for the approximation of complex
relations.

Advantages and Drawbacks of Neural Networks

As mentioned, ANNs can approximate complex relations and functions, even if they are not explicitly given. If
the parameters are chosen correctly, the network can learn and generalize these relations from input and
output data alone. This includes potential higher-order dependencies of the output on the input parameters.
The networks can be evaluated in milliseconds, and they can also be differentiated using gradient tape
methods (Abadi et al. 2015). Both are essential parts of implementing optimization methods utilizing the
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Figure 3.4.: Simple example for a neural network. A real network can vary in the number of hidden layers
and the number of neurons in each layer. All paths, indicated by the arrows, have a weight. Each
neuron can be separated into three smaller components, which describe the function in detail.
The structure is displayed in the dotted part on the right side. The aggregator calculates the
weighted sum which is then passed to the activator which applies the activation to the calculated
sum. The values are passed through a distributor to the following neurons in the final step. A
simple mean is calculated if the activator is set to the identity.

network.
ANNs have some drawbacks as well. First of all, ANNs are unphysical. In general, networks do not know

anything about the underlying physics, except for physics-informed neural networks, which are out of scope
of this thesis. It is, therefore, complicated or impossible to get the physical meaning of the approximated
function. This can be counteracted by applying sensitivity analysis to the network as defined in section 3.4.
The second drawback is the lack of an underlying theory. However, networks do work, it is known which
parameters can be varied to achieve convergence, and networks can approximate models to arbitrary precision.
But since a dedicated sound theory is lacking, networks created by different methods/scientists deviate in
their structure and are therefore not fully reproducible. The third drawback is the high number of data points
and extensive computing resources needed to create a converged neural network. It is unknown how much
data is necessary for a defined number of input parameters nor how many neurons and layers are needed,
which results in a larger number of more or less brute force methods to determine these hyperparameters.

Hyperparameter Tuning

A neural network is defined by its hyperparameters. They are fixed throughout the training but are variable
on a meta-level. For each set of hyperparameters, the network performance changes. It is, therefore, difficult
to get the perfect set of hyperparameters. To achieve a good set of hyperparameters, one must use experience
and educated guesses or brute force, as many hyperparameter tuners do.

There is a large zoo of hyperparameters that can be tuned. The detailed set is discussed in subsection 6.1.2
and subsection 6.2.3. Due to the sheer amount of hyperparameters, their discussion is out of scope for this
thesis. The reader is referred to further literature (Abadi et al. 2015, and the sources therein).
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Advanced Methods

Some final remarks on advanced machine learning methods are important to understand the full scope. ANNs
based on low fidelity or low dimensional simulations can easily support a low amount of high fidelity or high
dimensional data model. This is done by a method called Transfer Learning (Spears et al. 2018, Sec. VIII
C) (Humbird et al. 2020). A large amount of low-dimensional, quick-to-acquire data is used to pre-train the
network and learn the underlying fundamental processes. The less copious data with a higher fidelity and
prediction power is then used to retrain several layers while the rest is kept constant.

3.4. Sensitivity Analysis

Sensitivity analysis explores the relationship between model parameters and outcomes, while one or more
parameters are perturbed over their plausible ranges or probability distributions, and corresponding effects
on outcomes are examined.

In this work, two different disjunct methods are used to determine the sensitivities of the surrogate models.
The combination of both methods mitigates difficulties in the interpretation of artificial neural networks. With
this, the importance of specific parameters for a model can be evaluated. One way to quantify the impact
of the model parameters upon the model output is with the variance-based global sensitivity analysis, also
known as the Sobol’ method (Sobol’ 2001). The PAWN method was used for a second sensitivity analysis to
complement Sobol’s method due to its shortcomings for the higher order of the input features.

3.4.1. Sobol’ Method

A model, formally given by
Y = f

(︂
X⃗
)︂
, (3.6)

where X⃗ is the n-dimensional input vector of the model and Y its scalar output. The input vector is assumed
to be independent, uniformly distributed, and scalable onto the n-dimensional hypercube. This is valid for the
models developed in this work, which are based on the physical inputs.

The ANOVA representation of f is a decomposition of the model into 2n summands, (Sobol’ 2001, Sec. 2)

Y = f0 +

n∑︂
i=1

fi (Xi) +

n∑︂
i<j

fij (Xi, Xj) + · · ·+ f1,2,...,i,...,n (X1, X2, . . . , Xi, . . . , Xn) . (3.7)

The components can be determined from the model itself from the expected value E of the model by

f0 = E (Y ) (3.8)
fi = E (Y |Xi)− f0

fij = E (Y |Xi, Xj)− f0 − fi − fj

...

Herein fi describes the effect on Y varying only the i-th component, and fij gives the effect on Y if the
i-th and j-th components are varied simultaneously. Squaring and integrating each component yields the
conditional variance V of the model

V =

∫︂
f2 dX − f2

0 and V1,...,n =

∫︂
f2
1,2,...,n dX1 . . .dXn.
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For these variances, the additivity of the integral holds and

V =

n∑︂
i=1

n∑︂
i<j

V1,2,...,n.

This allows defining the Sobol’ indices as

S1,2,...,n =
V1,2,...,n

V
. (3.9)

These indices are also known as global sensitivity indices. They describe how much variation of the output
model Y can be explained by the variance of an input variable or by the variation of a combination of input
variables. If only a variation of one input variable is used, it is called first-order influence, and if two input
variables are varied, it is the second-order, and so on. The sum of these Sobol’ indices is by construction one.
If the sum is smaller than one for a defined number of indices, then the indices’ order cannot explain the full
model variations.

The different components can also be expressed through the total Sobol’ indices, which are faster to calculate.
However, they only estimate the total variation caused by a single input, including the interaction terms, which
are counted several times. Its sum is, therefore, not normalized to one. The Sobol’ indices are calculated
utilizing a Monte Carlo sampling of parameters and the corresponding model outputs, subsequently used to
determine the relevant expected values and variances. This is problematic for the higher-order interaction
terms since the number of necessary samples increases, and the curse of dimensionality hinders further
evaluation. The interested reader is referred to the publications from Sobol’ and Satelli for further details
(Sobol’ 2001) (Saltelli 2002) (Saltelli et al. 2010).

Sobol’s method assumes that the output is a smooth function of the input parameters and may not be appro-
priate for non-smooth or discontinuous functions. It also assumes that the input parameters are independent,
which may not be the case in some systems, especially for systems utilizing complex representations. This
makes it necessary to use a second method to evaluate sensitivities.

3.4.2. PAWN Method

The PAWN method introduced by Pianosi et al. (Pianosi et al. 2015) uses a different approach for the case, in
which the variance might not be a good measure for the outcome of a system. Its idea is that the influence
of a given input, measured as the variation in the output’s cumulative distribution function, is determined
when the uncertainty about that input is removed. This is done by computing the Kolmogorov-Smirnov test
KS between the model output and the conditional distribution function when xi is fixed.

KS (xi) = max
y

⃓⃓
Fy(y)− Fy|xi

(y)
⃓⃓
. (3.10)

Here F are the cumulative distribution functions for the conditions in the index. They can be approximated
easily numerically but are also independent of statistical momenta in the data, which is their main difference
from the Sobol’ method. Furthermore, we can easily see that the PAWN calculation has to be done for several
xi since the result changes for different xi. The PAWN indices Ti can then be found by any measure measure
deemed appropriate to extract the data from the resulting data set (e.g. maximum, median, mean),

Ti = measure
xi

[KS (xi)] . (3.11)

It utilizes the traits of the Cumulative Distribution Functions with similar Monte Carlo sampling as for the
Sobol’ indices, giving a different approach to determine the sensitivity of a model. A combination of these
two methods was also proposed by Baroni et al. (Baroni et al. 2020).
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4. Dimensional Reduction and Cut-Off Modeling

“Electricity flows,
Charged particles dance and glow,
Maxwell’s dance with Vlasov.”

This chapter takes a deeper look into some advanced aspects of the fundamentals. First, the equations
governing the collision-free part of the TNSA process are discussed. The dimensionality of the governing
Maxwell-Vlasov equation system is reduced, and the resulting quantities are interpreted and used for an
alternative representation of the underlying physics. The second part of this chapter is an overview of the
Single Quantity Variation model. It is introduced, and its limitations are identified.

4.1. Maxwell-Vlasov System

This chapter investigates the Maxwell Vlasov System to identify relevant parameters utilizing the Buckingham
Pi Theorem (Buckingham 1914) (Buckingham 1915). The assumption is that the mean free path is larger
than the target thickness and the whole process can therefore be assumed as collision-free (Mulser et al. 2010,
Sec. 8.3, p. 363-364). The system governing the high-power laser interaction with matter under the condition
of collisionless interaction is the Maxwell-Vlasov system given in Equation 4.1 – Equation 4.5.

∇ · B⃗ = 0 (4.1)

∇ · E⃗ =
ϱ

ε0
(4.2)

∇× E⃗ = −∂B⃗

∂t
(4.3)

∇× B⃗ = µ0j⃗ + µ0ε0
∂E⃗

∂t
(4.4)

0 =
∂fα
∂t

+ v⃗α · ∇fα + qα

(︂
E⃗ + v⃗α × B⃗

)︂
· ∂fα
∂p⃗

(4.5)

The charge density ϱ, the current j⃗, and the particle’s velocity in the system can be generally described by the
equations given in Equation 4.6.

ϱ =

∫︂ ∑︂
α

fαd3p⃗ j⃗ =

∫︂ ∑︂
α

fαvαd3p⃗ vα =
p⃗

mα

(︃
1 +

p2

m2
αc

2

)︃−1/2

(4.6)

The charge density fα can be expressed by the product of a dimensionless distribution function ˆ︁fα with the
peak charge distribution nα as fα = nα

ˆ︁fα. The laser fields oscillate with the laser frequency ωL.

E⃗ (r⃗, t) = E0 · Ω(r⃗, t)
ˆ︁
E⃗ cos

(︂
k⃗ · r⃗ − ωLt+Φ

)︂
and B⃗ (x⃗, t) =

1

c
k⃗ × E⃗, (4.7)
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Figure 4.1.: Overview sketches of the plasma distribution function and the assumed Gaussian laser pulses.

where E0 is the amplitude of the wave, k⃗ the wave vector, Φ a phase correction, Ω the envelope of the electric
field as indicated in Figure 4.1 (b), and B⃗ the corresponding magnetic field. This system of equations can only
properly be solved with numerical methods. The method of choice in this work is the PIC method described
in section 3.1. As mentioned, the system under investigation has several quantities that must be considered.
These quantities can be identified by applying normalizations through problem-relevant quantities. A rescaled
electric field can also express the magnetic field.

t̃ =
t

τ
r̃ =

r⃗

L
E⃗ = E0

ˆ︁
E⃗

p̃ =
p⃗

p0
p0 =

eE0

ω
B⃗ =

E0

c
ˆ︁
B⃗

These substitutions have to be inserted into the Maxwell-Vlasov EQS. The substituted equations are then
minimized and the fundamental quantities can be extracted. They are displayed in Table 4.1.

4.1.1. Buckingham Pi Theorem

The Buckingham Pi Theorem allows reducing the system of relevant physical quantities to effective dimension-
less quantities. Their construction directly results from the theorem and are labeled as Πi. This construction
is sketched in Buckinghams publications as well. The theorem establishes a connection between the dimen-
sionality of the equation and the physical quantities. Writing this in a formal way results in the two equations
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that these parameters have to follow:

Πj =

n∏︂
i=1

Q
aij
i (4.8)

0 =

n∑︂
i=1

aij , (4.9)

where Qi denotes the dimensional parameter of the problem. The proof assumes dimensional homogeneity of
equations and can be found in the corresponding paper (Buckingham 1914, pp. 350-351). Construction of
the Π parameters can be achieved by following the steps below.

1. List problem’s dimensional parameters
2. List primary dimensions
3. Calculate the number of dimensionless groups
4. Choose j repeating variables
5. Construct dimensionless groups

Applying Buckingham on Maxwell-Vlasov EQS

Now the theorem is applied to reduce the EQS. The first step is to list the quantities and their corresponding
fundamental dimension. The Maxwell-Vlasov EQS which is to be solved is given in SI units. Table 4.1 lists the

Table 4.1.: Overview of the dimensional quantities of the Maxwell-Vlasov EQS. Dimensions are listed in SI
base dimensions. Buckingham Π parameters are calculated by defining primary quantities used
multiplicatively in each parameter. N is the number of parameters, and j gives the number of
base dimensions. The SI base dimensions are T: Time, L: Length, C: Current, M: Mass

Quantity sign Dimensions Type

1 Laser frequency ωL T−1 Primary
2 Pulse length τL T
3 Scale length L L
4 Permeability µ0 M1 L1 T−2 C−2 Primary
5 Permittivity ε0 M−1 L−3 T4 C2 Primary
6 Charge density nα C1 T1 L−3

7 Charge to mass ratio q/m C1 T1 M−1 Primary
8 Electric field E0 M1 L1 C−1 T−3

N = 8 j = 4

problem’s quantities and the relevant base dimensions used in the problem. The difference N − j gives the
number of Π parameters for this system.

The next step is to choose j repeating or primary variables relevant to the problem. No definite recipe
for choosing the correct j values exists. In this work, the used primary quantities are marked in Table 4.1.
It is important to choose 4 parameters that somehow describe the dynamics and traits of the problem as
well as possible such that no trivial solutions are acquired. In this case, the laser frequency, the permittivity,
the permeability, and the charge-to-mass ratio. Using this and Equation 4.8 allows to write the construction
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relations of the Π parameters.

Π1 = ωa1
L εb10 µc1

0 (q/m)d1α · τ1L (4.10)

Π2 = ωa2
L εb20 µc2

0 (q/m)d2α · L1 (4.11)

Π3 = ωa3
L εb30 µc3

0 (q/m)d3α · n1
α (4.12)

Π4 = ωa4
L εb40 µc4

0 (q/m)d4α · E1
0 (4.13)

Taking these Πi and the condition from Equation 4.9 allows for constructing a linear equation system to
determine the unknown exponents. The following equation shows the construction for Π1, this is analog for
the other parameters. Inserting the corresponding dimension into the construction yields Equation 4.14

[Π1] =
{︁
T−1

}︁a1 {︁M−1L−3T 4C2
}︁b1 {︁M1L1T−2C−2

}︁c1 {︁C1T 1M−1
}︁d1 {T}1 !

= 1 (4.14)

This can be rewritten as a linear equation system using the condition given in Equation 4.9. Solving it then
yields,

T :
L :
M :
C :

⃓⃓⃓⃓
⃓⃓⃓⃓−a1 4b1 −2c1 d1 = −1

−3b1 c1 = 0
−1b1 c1 −1d1 = 0
2b1 −2c1 d1 = 0

⃓⃓⃓⃓
⃓⃓⃓⃓⇒

⃓⃓⃓⃓
⃓⃓⃓⃓a1 = 1
b1 = 0
c1 = 0
d1 = 0

⃓⃓⃓⃓
⃓⃓⃓⃓⇒ Π1 = ωLτL (4.15)

Solving the EQS and resubstituting the values into the original equation yields the final value for the Π1.
Repeating the above steps for all Πi then yields a set of dimensionless parameters.

Π1 = ωLτL (4.16)

Π2 = ωLL
√
µ0ε0 =

ωLL

c
(4.17)

Π3 =
qαnα

ε0mαω2
L
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
nee

ε0meω2
L

for electrons

nαZαe

ε0mαω2
L

for ions
(4.18)

Π4 =
qαE0

mαωL

√
µ0ε0 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
E0

ωLc

e

me
for electrons

E0

ωLc

Zie

mi
for ions

(4.19)

Some remarks on the notation: nα also contains the charge of the corresponding particle type, qαnα = NαZ
2
αe

2,
where Nα is the particle density. Two of the resulting parameters are ambiguous since they contain the Z/m
ratio which yields different values for the different particle species.

The calculated Πs are mathematical quantities and have a physical meaning. Each of them describes a
different relevant quantity of the system.

• Π1 measures the number of oscillations in the laser field.
• Π2 describes the irradiation and focus size of the laser.
• Π3 is the ratio of the electron density to the critical plasma density, measuring the plasma optical density.

It combines the laser with the target.
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• Π4 describes each species’ particle dynamic inside the laser’s electric field. For electrons, Π4 is identical
to the dimensionless quiver velocity a0 (Gibbon 2005, Eq. 2.19, p. 29). The meaning is equivalent for
the different ion species.

These quantities are sufficient to express the Maxwell Vlasov EQS in an alternative form:

∇̃ · ˆ︁B⃗ = 0 (4.20)

∇̃ · ˆ︁E⃗ = 4π

∫︂ ∑︂
α

Π2 ·Π3α

Π4α
d3 p̃⏞ ⏟⏟ ⏞

=0 for t=0

(4.21)

∇̃ × ˆ︁
E⃗ = −Π2

Π1

∂
ˆ︁
B⃗

∂t̃
(4.22)

∇̃ × ˆ︁
B⃗ =

Π2

Π1

∂
ˆ︁
E⃗

∂t̃
+

∫︂ ∑︂
α

4πΠ2Π3αp̃√︂
p̃2Π2

4α + 1

ˆ︁fα d3 p̃ (4.23)

0 =
1

Π1

∂ ˆ︁fα
∂t̃

+
1

Π2

Π4αp̃√︂
p̃2Π2

4α + 1

∂ ˆ︁fα
∂r̃

+

⎛⎝Zα
ˆ︁
E⃗ +

Π4α√︂
p̃2Π2

4α + 1

˜︁p⃗× ˆ︁
B⃗

⎞⎠ ∂ ˆ︁fα
∂˜︁p⃗ (4.24)

The Zα indicates the charge number of the species normalized to the elementary charge (e.g. for electron:
Ze = −1 or proton: Zp = +1) The similitude only gives conditions for the system before a dynamical process
or time evolution happens such that the full numerical solution for a set of parameters still has to be acquired.
Since this set of equations defines the system at t = 0, where the system is still neutral, one can further
assume, that both divergence equations are 0.

4.1.2. Scaling of Systems

Furthermore, if the different Πi are the same, then all PDEs have the same prefactor and the corresponding
systems are similar. These similarity conditions can be used to scale a system, reducing the number of
simulations needed. This is because if the parameters are constant, the particle dynamics are the same and
only one simulation is needed for all constant Πi. These similar systems S1 and S2 can be determined by
equating the quantities of the systems. Exemplary for Π1:

ΠS1
1 = ΠS2

1 ⇒ ωS1
L τS1L = ωS2

L τS2L (4.25)

In theory, as long as Π1,Π2,Π3α,Π4α are the same, systems with different physical parameters are similar.
Further, the similarity can be made more powerful, e.g. by reducing the number of Πi. One important

example from literature is the S-similarity(Pukhov et al. 2006)(Ryutov et al. 2006b)(Ryutov et al. 2006a). In
the limit for high-power lasers and relativistic electrons where a0 ≫ 1 (or Π4e ≫ 1), the square root terms
can be simplified: √︂

p̃2Π2
4e + 1

Π2
4e≫1
≈ Π4ep̃ (4.26)

The uncertainty of this approximation is displayed in Figure 4.2. Inserting this into the Maxwell-Vlasov
equation reduces the number ofΠ parameters and therefore the number of constraints of the EQS. The quotient
between Π3 and Π4 can be used to eliminate both variables from the corresponding electron equations:

ΠS = Π3e/Π4e =
ˆ︁neec

ωLE0
(4.27)

49



0 2 4 6 8 10

100

101

10−1

100

101

102

←

←

Π4e (a0)

f
(Π

4
e
)

→

≤ 1%

≤ 5%

σ
f
(Π

4
e
)/
%

f :
√
a2 + 1 f :

√
a2

Figure 4.2.: Validity of the reduced similarity. The validity of the solution increases with higher a0. The dotted
line shows the relative uncertainty of the approximation to the real solution. The red lines indicate
the area where this uncertainty is below the threshold of 5% to 1%.

Further on it has to be taken into account that if ions are implemented with a momentum of 0, and since
they have a higher mass than the corresponding electrons, they can be assumed frozen.

me ≪ mi (4.28)

This decouples the electrons from the ions until the ions start moving. This means that the ion component in
Π3 does not contribute to the magnetic field and is therefore negligible.

4.1.3. Correlating Dimensionless Parameters and Physical Input

The system has a dedicated number of Π Parameters which must be considered. Each particle species has its
own Π3 and Π4. In the case of a liquid leaf target investigated here, the multiplicity is at least 4: electrons,
oxygen, hydrogen, and deuterium. This ambiguity can be resolved by considering the ratio of H2O and D2O
molecules. The electron count is directly correlated to the charge states of the ions constituting the plasma
(refer to section 2.2). Due to the low ionization energy (Table 2.1), hydrogen and deuterium are assumed
to be fully ionized, the ambiguity in Π3 and Π4 can then quickly be broken down on the mean ionization
state of oxygen Zeff and the mixture between the lighter ions labeled mix. Defining Π3 via oxygen and Π4

via electrons allows resolving the ambiguity by inserting the conditions. The results are given in Table 4.2.
The definitions of the Πi are given in Equation 4.16 – Equation 4.17. Taking the definitions, inserting the
mentioned particle species relations, and correcting the laser intensity due to the oblique incidence angle
allows rewriting the definitions as Equation 4.29 – Equation 4.30.

Π1 =
2πcτL
λL

Π2 =
2πFWHM

λL
(4.29)

Π3 =
Z2
effe

2nOλ
2
L

ε04π2mOc2
Π4 =

(︃
ELλ

2
L sin (ΘL)

τLπFWHM2 · 1.37× 1018

)︃2

(4.30)
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Table 4.2.: Resolving the of Π parameters’ ambiguity.

Parameter Definition

Π1 ωLτL
Π2 ωLL/c

Π3O Zeff
O /mO × nO/ωL

2

Π3e Π3O ×
(︁
Zeff

O + 2
)︁
× mO

me
· qe
e·Zeff

O

Π3H Π3O × 2mix× mO
mH

· qH
e·Zeff

O

Π3D Π3O × 2 (1−mix)× mO
mD

· qD
e·Zeff

O

Π4e qe/me × E0/ωLc (a0)
Π4H Π4e × me

mH
· qH

qe

Π4D Π4e × me
mD

· qD
qe

Π4O Π4e × me
mO

· Zeff
O
qe

Table 4.3.: Two different parameterizations for describing the Maxwell-Vlasov EQS for a Liquid-Leaf Target.
The analysis has shown that nine parameters are needed.

Physical Buckingham
Parametrization Parametrization

1 Laser Pulse Time Π1

2 Laser Irradiation Size Π2

3 Laser Wavelength Π3O

4 Laser Energy Π4e

5 Ionization of oxygen Zeff
O Ionization of oxygen Zeff

O

6 D/H Mixtures D/H Mixtures
7 Laser Incidence Angle ΘL Laser Incidence Angle ΘL
8 Laser Polarization Laser Polarization
9 Plasma Slab Thickness Plasma Slab Thickness

The final count of relevant quantities to describe the full H2O/D2O system is nine: Four Πi, two parameters
to deal with the ambiguity Zeff

O and the mixture parameters, one parameter for the plasma slab dT (particle
density is fixed) and two for dealing with laser’s polarization: Selection whether p / s linear polarization
and the incidence angle ΘL. The system can therefore be fully described by taking nine parameters into
account, which is the number of parameters used for the simulation and modeling in subsection 6.1.1 and
subsection 6.1.2. Two problem parametrizations are given in Table 4.3

Concluding this section: Firstly, dimension-free parameters have been found that describe the similarity of
the system. Secondly, scaling based on the similarities and further reduction was investigated. Thirdly, the
number of relevant parameters to describe the TNSA system for the collision-free state is nine. Fourthly, two
different parametrizations for the simulations are given. These results go directly into the simulation setup
and the evaluation presented in chapter 6.
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4.2. Single Quantity Variation

An important step in modeling was achieved in 2021 (Zimmer et al. 2021). This study used a large number of
experimental data to determine empirical scalings of proton cut-off energies.

Sources in literature (e.g. (Fuchs et al. 2005) (Torrisi 2015)) are often governed by the ponderomotive
scaling, which correlates the cut-off energy to laser’s a0 and therefore also to the peak intensity I0. The
resulting relation Ec ∝

√
I0 works if used in a system with similar parameters. The predictions then match the

observations, but this model breaks if used to compare different systems. This is due to the multi-parameter
input and variations in the individual quantities constituting the peak intensity. In the mentioned paper, the
deviation of the experimental data from this model is up to ±400%.

It could be shown that the prediction of the cut-off energies can be improved by splitting the intensity into
its constituting components and fitting each under the constraint that the others remain constant. This single
quantity variation results in a model that works well for the training data. The resulting fits can then be
written as a product of the fitting functions.

E∗
c

Er
c

=

(︃
E∗

L

Er
L

)︃0.59±0.03(︃τ∗L
τ rL

)︃−0.090±0.008(︃r∗s
rrs

)︃−0.58±0.16(︃d∗T
drT

)︃−0.16±0.10

, (4.31)

where Ec is the cut-off energy, EL the laser energy, τL the laser pulse length, rs the irradiation spot size of the
laser, and dT the target’s thickness. ∗ indicates the new system, while r indicates the reference system from
which the new system is extrapolated. It is important to note that the model’s quality depends on the selected
reference system. It can only properly determine the cut-off energy if the selected reference system is as close
to the new one. Mitigating this bias is possible by sampling different systems and statistically evaluating
them, effectively bootstrapping the model on a discrete basis. Further uncertainties are introduced with the
uncertainty on the fit parameters in the exponent and with the assumption that the entire system can be
broken down into a product of power laws, neglecting higher-ordered dependencies.

It gives a lower estimate for the cut-off energy than other models (J. Schreiber et al. 2006) or (Fuchs et al.
2005) and is the first step towards a global modeling approach. The major limitation of assuming all other
input quantities as a constant is overcome by the model devised in section 6.1.
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5. Automatic Radiochromic Film Stack Evaluation

“Data cleaning first,
Then comes pre-processing next,
Modeling begins.”

Characterization of laser-based ion sources and the corresponding optimization towards improved perfor-
mance and pulse shaping demands high-resolution measurements of the three-dimensional distribution of
laser-accelerated ion beams. If the ion beam traits can not be determined, any effort to find descriptions and
optimizations for the full process will be more difficult, if not impossible. Numerical approaches, namely PIC
simulations, are necessary to complement experiments with precise and ideal cases to fill regions of void in
the global parameter space. Although numerical simulations are important, they are insufficient since they
are either numerically expensive or do not allow for exact predictions of the real world, as already discussed
in section 3.1.

One way to measure the entire distribution, spatially and in the momentum space radiochromic films (RCFs)
(Soares 2009). RCFs are and will likely be the essential tool for the complete beam evaluation since they are
in use for over two decades (Snavely et al. 2000) now and have several developments and research done with
and about them. The most critical diagnostic is currently implemented with the well-known behavior and the
following three points.

The first reason is their inherent safety from electromagnetic pulses, accompanying the laser-plasma
interaction during the ion acceleration process. This is due to a lack of electronic components needed to
operate RCF stacks.

The second reason is the possibility for absolute calibration of the RCFs that allows the determination of the
total dose deposited. This enables a wide range of cross-calibration applications for other diagnostics.

The third reason is the ability to resolve the ion bunches’ spatial and spectral distributions. No other
diagnostic can deliver the same amount of information about an experiment in a single shot. A detailed
discussion of different ion detection methods and their advantages can be found in the referenced thesis by
Markus Hesse (Hesse 2022, Ch. 3).

Most applications require reproducible beams with high repetition rates, but the other beam parameters
might broadly vary. RCF-based detectors are mainly assembled by hand and can only be used for single shots.
For this reason, they are not practical as the primary diagnostic for high repetition rate experiments. However,
many new detectors under development for high repetition rate laser ion acceleration experiments cannot be
calibrated in advance. Therefore they need to be cross-calibrated using RCFs (Hesse et al. 2021) (Green et al.
2011) (Metzkes, Karsch, et al. 2012) (Huault et al. 2019) (Dover et al. 2017) (Metzkes, Zeil, et al. 2016).

An automated evaluation and reconstruction procedure of digitized RCFs is introduced to foster the modeling
and increase experimental validation capabilities. This procedure is implemented in python and provided
(Schmitz and Endl 2022). It comprises an algorithm for evaluating RCFs, allowing the reproducible evaluation
of data and its application to large data sets. The contents of this chapter are also published by the author
(Schmitz, Metternich, et al. 2022).
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5.1. Radiochromic Film Stacks – Foundations and Limitations

First, a description of radiochromic films and their principle of operation is given which serves as a basis to
discuss the limitations and problems in the second part.

5.1.1. Interaction of Radiation with RCF Stacks

When a RCF is irradiated, it undergoes a chemical process called polymerization, which leads to a change
in the optical density (OD) of the RCF (Niroomand-Rad et al. 1998; Zhang et al. 2018). The change of the
OD correlates directly to the deposited energy into this specific RCF. The deposited energy in relation to the
irradiated mass is also known as dose (D). Using the stopping power relations allows us to determine the
initial particle energies and estimate the corresponding number of particles.

The energy spectrum of laser plasma accelerated ions is generally not monoenergetic. This profile can
be measured if several individual RCFs are combined into one RCF stack as indicated in Figure 5.4a. This
configuration allows to measure the dose in dependence on the particle’s penetration depth and to calculate
the corresponding number of particles. The penetration depth correlates directly to the energy of the particles.

When measuring TNSA ion beams, it is important to consider the dose contribution on the RCF from all
impinging types of radiation. TNSA beams consist of several ion species and electrons while additional gamma
radiation is created during the laser-plasma interaction. Different types of radiation cause different changes
in the OD of the individual RCF layer, the total OD can be expressed as a superposition of these contributions:

ODtotal = ODfilm + ODion + ODγ + ODelectron (5.1)

where ODfilm is the original OD before irradiation, ODion is the effect caused by ion irradiaton, ODγ is the
change caused by gamma radiation and ODelectron is the change induced by electrons. A consistent evaluation
is based on finding the area of the RCF, where the ions deposit energy. Ions deposit more energy inside a RCF
than electrons or gamma radiation. Therefore, the area with the highest level of OD is of relevance (Clark et al.
2000; Hey et al. 2008). Electrons and gamma radiation induce a parasitic signal that must be filtered out.

The electrons are separated into two parts: the first has high energy and consists of the electrons leaving
the target before the charge separation is built up. They can penetrate the full stack and their signal can
be seen on EBT3 layers with a higher sensitivity to any kind of ionizing radiation than HD-v2 layers. The
second part consists of electrons co-moving with the accelerated ions. Their velocities are the same as the
ion distribution and they are stopped in the first passive layer, therefore not contributing to the measured
signal. The gamma radiation is assumed to produce a homogeneous signal on the specific layer. The angular
distribution of the photons (Brady et al. 2014; Capdessus et al. 2013; Ridgers et al. 2012; X.-B. Wang et al.
2020; Vyskočil et al. 2020) has two characteristic intensity peaks at relatively large angles. In between these
angles, where the RCFs are located, the intensity of gamma rays is relatively low and comparably constant,
when projected on the RCFs.

Concluding the shapes for the OD components: the gamma component comprised a constant offset, while
the electron component has a low intensity while having a finite spatial distribution. The ion component has a
high intensity with a finite spatial distribution.

A further remark on the differences which are visible in Figure 5.4 and, for example, in the work of F.
Wagner (Wagner, Deppert, et al. 2016, Fig. 4b): Due to a decrease in energy deposition from ions and a lower
number of particles, the contribution of the ion part gets less dominant the further they penetrate the stack.
The electron contribution from the previously mentioned high energy part stays with a comparatively similar
size and intensity, becoming measurable and more dominant on the later high-sensitivity films.
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5.1.2. Limitations and Complications with RCF Evaluation

As displayed above, one essential step for the evaluation is to separate the ion signal from the parasitic
contributions. This already gives the first problematic point for RCF evaluations. The current approach for
filtering the measurement data relies rather on an educated guess than a systematic method. Scientists select
the irradiated area on the RCFs bye eye based on the investigated radiation type. This manual selection
might lead to incorrect doses and nonreproducible results, biasing the result. Furthermore, it increases the
evaluation time by a significant proportion. If the aforementioned discrimination is not done properly, even
fundamental properties of the spectrum, e.g. the cut-off energy, might change significantly, due to a mismatch
in the stack’s stopping power relations.

The dose from the ions is the core quantity for calculating the energy spectrum. A spectrum is verified
by matching a calculated dose, created by the spectrum, with the measured dose. If there are deviations
in the calibration or in the response function then the dose varies. If the irradiated areas vary, which can
happen since the current state of the art is the manual selection of the irradiated areas, then the dose varies.
Hence, the resulting fit parameters for the spectrum will vary as well. Therefore, a consistent and reproducible
determination of the area irradiated by the ion beam is of utmost importance.

The user’s choice of the irradiated area by ions introduces a measurable bias in the evaluation results. This
bias was measured in Barbara Endl’s Bachelor’s Thesis (Endl 2021, Sec. 2.2.2, p. 8), created at TEMF and
supervised by the author. For this study, the manually selected ion areas, defined by several scientists, were
evaluated and the deposited energy in MeV for each pixel was calculated.

4 different experts (persons A-D) on RCFs participated in this study. Each expert received 2 different
data sets (one shot each) to evaluate. Results of the experts’ segmentations are presented in Fig. 5.1. The
differences in the segmentations of the ion beam area decrease with the penetration depth, the user bias,
therefore, gets less with later layers.

Some example results of the thesis are displayed in Figure 5.2. The results of two full RCF stacks employed at
an experiment at the PHELIX laser at GSI, Darmstadt were evaluated, which results in a total of 15 investigated
films. Displayed are only two representatives of the data sets: Figure 5.2a shows the original scan from
image No 12, a later layer with low irradiation in one of the data sets used for this study. f the experts did
not evaluate thislayer, because they did not identify a signal on the layer. If the data is taken into ac done
by users A, C, and the algorithm, enhancing the scaling, converting to hue, and applying the filter methods,
allowed to determine an existing signal. These are displayed in Figure 5.2b – Figure 5.2d.

The results do not deviate as much for a more visible contrast as presented in Figure 5.2e. It is visible that
the segmentations by the algorithm and the users differ. These differences are indicated by the blue and red
color coding in the whole figure.

Therefore, an algorithmic solution developed in the thesis and its different segmentation methods tested
have comparable quality, and the results are similar to the experts’ results (Endl 2021, Sec. 2.2.2, p. 8).
The solution to keeping this deviation to a minimum is to keep the discrimination conditions constant and
define an algorithm that ensures the same consistent bias utilizing a new approach based on computer vision
methods and the inherent properties of the RCFs.

Another issue is the ambiguity of the species causing the observed dose. The dose, as an observable, is
a superposition of different types of radiation with different intensities. This means several beam setup
possibilities create the same dose profile, and additional diagnostics, for example, Thomson parabolas, are
necessary to solve this ambiguity problem.

Furthermore, most evaluation methods can only calculate spectra that follow an analytical expression.
On the other hand, this makes it impossible to determine multi-species effects or other deviations from the
analytical expression. This last point can also be mitigated by adjusting the evaluation method. During this
work, a procedure was developed to mitigate two of the mentioned issues.
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(a) MeV maps of the first data set.
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(b) Violin plot display of the first data set.
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(c) MeV maps of the second data set.

A B C D
User

0

10k

20k

30k

40k

En
er

gy
 D

is
tr

ib
ut

io
n 

/ M
eV

/p
x

(d) Violin plot display of the second data set.

Figure 5.1.: Overview plots for the user bias study. Left is the segmented film, already converted to MeV
representation. Right is the corresponding violin plot to display the differences in the final
distribution.

5.2. Pythonic Radiochromic Film Evaluation Software

The pythonic Radiochromic film Evaluation Software (pyRES) implements the methods presented in this
chapter. This procedure ensures the reproducibility and fast evaluation of RCF stacks. It includes routines
for the deconvolution of the beam’s energy distribution, accounting also for non-exponential distributions
expected from other acceleration mechanisms. It further incorporates image processing methods to keep the
segmentation conditions stable and reproducible.

5.2.1. Discrimination of the Radiation Types via Automatic Segmentation

The irradiated area can be identified as a segment in a picture (Jähne 2005, Ch. 16). pyRES relies on digital
image processing techniques to identify these segments to identify regions of a specific type of radiation.
In order to ensure reproducibility, fixed and quantifiable conditions to filter the measurement data are
implemented. The algorithm for determining the segmentation boundary is displayed in Figure 5.3. Two types
of automatic segmentation are implemented; one based on the Hue-Saturation-Value (HSV) representation of
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the color space and one based on the converted deposited energy (MeV map) of the corresponding RCF.
While the definition of colors using the Red-Green-Blue (RGB)-triple is well known, HSV for the representa-

tion of color is less intuitive but useful. RGB is the Cartesian representation of the color space and HSV is a
representation of the color space using a cylindrical coordinate system spanned by H – hue, S – saturation, and
V – value (Jähne 2005, Sec. 6.3.4). The HSV branch of the algorithm converts the scanned image from the
regular RGB color space into the HSV space and works on the resulting hue component. RCFs undergo a rapid
change in the OD if irradiated. Converting the OD image to grayscale and applying the HSV parametrization
yields that the hue is the relevant grayscale parameter. A visualization of this can be seen on the left side
of Figure 5.3. The irradiated area has a light shade in this representation, while the non-irradiated area is
dark. Taking a histogram for the hue allows separating the black background easily from the rest of the RCF.
This allows the creation of a binary mask to separate the background from the signal. The method using
HSV and more specifically the hue value is more efficient than relying on RGB-coded images since only one
component has to be taken into account. If different amounts of radiations are measured, then different color
value changes in the RGB space have to be compared, the projection to HSV reduces this to one component,
the hue component is displayed in Figure 5.3. Segmenting this hue representation is then easily possible with
the mentioned histogram method.

The MeV segmentation branch, on the other hand, converts the image directly to the corresponding
deposited energies and then works on the resulting MeV map. This MeV map is generated by applying the
calibration curves (Appendix A) to the image. It displays the deposited energy for each pixel given in MeV.
Again, the segmentation method for this is the threshold segmentation method as in the HSV segmentation.

Both segmentation variants work rather similarly and use the inherent variation of the RCFs OD change
after irradiation. Part of the algorithm is finding the corresponding thresholds. Finding absolute conditions
for determining the proper segmentation threshold in computer vision is tedious, complex, and not always
possible. The default values we found are presented in the corresponding paper (Schmitz, Metternich, et al.
2022). These conditions can be set and varied for the specific evaluation, such that dedicated data tests can
be done and flexibility is ensured. These fixed global parameters, on the one hand, ensure reproducibility
across users and experiments and on the other hand allow a high degree of automatization which is useful for
data-driven modeling and its subsequent applications.

HSV segmentation as well as MeV segmentation are capable of creating fairly similar results. The MeV
segmentation sometimes overestimates the threshold, especially for HD-v2 layers, irradiated with rather low
intensities. Examples of these types of layers can be seen in Figure 5.4 for the 14.3 MeV and 15.6 MeV layers.

(a) Test RCF im-
age No 12.

(b) Difference
between A
and C.

(c) Difference
between C
and Algo-
rithm.

(d) Difference
between A
and Algo-
rithm.

(e) Test RCF im-
age No 5.

(f) Difference be-
tween B and
D.

(g) Difference
between A
and Algo-
rithm.

(h) Difference
between C
and Algo-
rithm.

Figure 5.2.: Evaluation plots taken from the mentioned thesis. Displayed are on the left side the original
picture where the users and the algorithm worked, and on the right side, the difference between
the created binary masks. The red/blue area denotes where areas are selected which are only in
one of the compared masks.
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Figure 5.3.: Algorithm for determining the binary masks describing the outer ion beam contour. The colors
indicate whether that part works on the original image data (blue) or the already converted
energy data (green). These methods are tested for EBT3 and HD-v2 layers. Both film types can
be segmented by HSV segmentation. The MeV segmentation can be used to verify the HSV
segmentation for EBT3 layers and additionally allows for a more precise determination of the
electron signal (light blue shade). Both methods are explained in section 5.2.2. The binary mask
in the final step can then be used to define the ion beam area and to deal with background γ
radiation and the electron signal on EBT3.
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4.3 7.2 9.3 11.2 12.8 14.3 15.6 17.6 19.4 21.0 22.6 24.1 25.5MeV

(a) Overview of a RCF stack, taken from the LIGHT beam time in January 2021 at GSI Helmholtzzentrum, Darmstadt. Displayed are
the active layers which in the experiment are stacked together with passive Al and Ni layers. The energies denoted are the value
of the respective Bragg Peak of the layer. While the first seven layers are HD-v2 films (lighter background), the last six layers are
chosen to be EBT3 films (dark green background).
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(b) Display of the corresponding MeV map for the layers displayed above. Different energy thresholds are indicated by different colors.
The normalized color bar is given below the plot, while the normalized factor – the image’s individual maximum deposited energy
per pixel – is given above the corresponding image. Important to note is the light blueish contour on the last six EBT3 layers,
which can be interpreted as an electron signal.

(c) The binary mask for the above MeV map is displayed here. This binary mask is derived by the segmentation algorithm. While
HD-v2 layers are segmented via the hue segmentation approach, EBT3 layers are segmented via the MeV threshold approach.

(d) Display of the binary mask on the measured RCF data.

Figure 5.4.: Intermediate results for all evaluation steps for the source shot.

Example results of the segmentation are displayed in Figure 5.3 and Figure 5.4. Combining Figure 5.4b
and Figure 5.4d allows a comparison between the actual image, its calculated binary mask, and the deposited
energy map. The colors indicate different energy levels normalized to the maximum dose value stored in each
individual layer.

5.2.2. Automatised Ion Beam Evaluation

The beam segmentation of the RCF measurements provides the input data for automatically evaluating the
ion spectrum. First, the beam’s divergence is explained and its calculation is explained. Secondly, the different
methods to determine the energy spectrum are explained in the section.
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Table 5.1.: Parameters for the simulated RCF stack’s angle fit. The parameters for the simulation are given in
the Defined column, while the algorithm’s output is given in the Reconstructed column. Uncertain-
ties are given in the one-sigma interval.

Parameter Defined Reconstructed Unit

a 28.19 28.83± 0.50 deg
b −0.23 −0.29± 0.09 deg/MeV
c −0.020 −0.016± 0.003 deg/MeV2

Determination of the Ion Beams Spatial Distribution

The spatial distribution of the particle beam is one of the two intermediate results needed to reproduce the full
beam. RCFs allow the measurement of the size of the beam at the position of the individual layer by taking
the relevant OD change into account. Since the OD change on the layer can only properly indicate the outer
radius of the beam, additional models have to be assumed for the behavior inside the beam. One possibility
is that a laminar beam drifts without internal or external forces. This assumption is justified at sufficiently
large distances from the target (Romagnani et al. 2005) (Lécz et al. 2015) (M. Schollmeier et al. 2014)
(Nürnberg et al. 2009). For a laminar beam, the opening angle provides information about the transverse and
longitudinal momenta:

Θ(E) = arctan
(︃
ptrans
plong

)︃
, (5.2)

where p indicates a particle’s transverse or longitudinal momentum respectively.
The laminar flow and the varying size of the RCFs imply the shape of an opening cone for each energy

value. The origin of this opening cone constitutes a virtual source which, due to reconstruction, is supposed to
be in front of the laser irradiated target’s side (Nürnberg et al. 2009, Fig. 8). The opening angle of the beam
can be experimentally evaluated by fitting the shape of a circle or an ellipsis to the aforementioned found
contour for the ion signal on the individual RCF layer and applying the relevant trigonometric functions.

If a circle is fitted – as done in the course of this article – its radius can be given as the mean radius with
the corresponding standard deviation. If an ellipsis is fitted, this method can result in two different opening
angles for both transverse components. According to theory (Roth and M. Schollmeier 2014, pp. 235-237, Eq.
5, Fig. 3), the TNSA opening angle is an ideal circle, which might deviate due to experimental uncertainty,
misalignment, laser aberrations, or the specific target structure.

The trigonometric relationships allow calculating a linear opening angle by taking the distance from the
target to the individual RCF layer and the radii of the beams on these layers into account. These angle values
can then be fitted with several methods for properly interpolating the full spatial spectrum.

As mentioned above, an ideally circular distribution of the RCFs allows for determining the effective radius
of the distribution. This radius is the half-opening angle of the accelerated particles, its error is determined as
the standard deviation of the contour from the mean radius. The experimental data for the half opening angle
from the source shot in Figure 5.4 is displayed in Figure 5.8 together with fits described in subsection 2.3.3.

Figure 5.5 visualizes the corresponding angle fit with data extracted from a simulated stack, the fit results
are compared to the simulation in Table 5.1. The data shows that the reproduction is close to the given
simulation, which validates the automatic segmentation approach for the divergence calculation.

The importance of the laminar flow model is shown when going from the determined envelope angle
toward the reconstruction of the beam’s particle distribution function in the transversal components. This
reconstruction assumes that the particles are homogeneously distributed on the cutting plane with the RCF
layer and implies that a fixed cone exists for each energy. The half-envelope angle describes the boundary for

60



5 10 15 20 25 30
Energy / MeV

5

10

15

20

25

30

H
al

f E
nv

el
op

e 
An

gl
e 

/ d
eg

re
e Quadratic fit

Simulation

Figure 5.5.: The half envelope angle data from a simulation using the spectrum parameters given in table
5.1. Empirical fits are applied to interpolate the angle. The dashed line represents the QUADRATIC
FUNCTION given in subsection 2.3.3. The parameters are calculated to be a = 28.83 deg, b =
−0.29 deg/MeV, c = −0.016 deg/MeV2.

this cone.

Determination of the Ion Beam’s Energy Spectrum

The previously calculated energy-dependent divergence angle has to be complemented with the energy-
dependent particle counts. Both are needed to reconstruct the 3D particle distribution. To calculate the
spectrum, the deposited energy in the individual RCF layer has to be matched to the dose. The ideal case
would be a direct deconvolution inverting

Edep =

∫︂ Ec

Emin

dN
dE

(E)Eloss(E)dE (5.3)

where Edep is the deposited energy, Eloss(E) is the energyloss characteristic of the individual RCF and dN/dE
is the energy distribution of the ion beam.

However, due to a stack’s limited number of active layers, the resulting equation system (Equation 5.3) is
under-determined. Several passive layers sandwich these active layers as for example depicted in Figure 5.4a.
Charged particles continuously deposit energy while passing matter. Lower energy particles have a shorter
penetration depth than higher energy particles. The higher energy particles deposit energy in all layers before
they reach their corresponding Bragg peak resulting in an ambiguity in earlier layers. Only the active layers
provide sampling points; information is missing for the passive layers. Increasing the number of active layers
increases the preparation time needed, the accumulating costs of the diagnostic, and the time required for
scanning the resulting layers. A proper inversion, for example, with the GRAVEL method (Chen et al. 2014),
is therefore impossible due to underdetermination caused by ambiguity.

This sparse data issue can be overcome by applying model assumptions of the dose in the passive layers.
The first approach displayed here works with the assumption of a strong model, which forces the resulting
spectrum into a given distribution. This is called the Convolutional Approach and was originally presented in
(Nürnberg et al. 2009). The second approach is model-free and only assumes a linear interpolation between
the data points. This is called the Linear Interpolation Approach.

Further methods are for example the Graphical Subtraction Method (GSM) (Nürnberg et al. 2009), and the
Image Merging Method (IMM) (M. Schollmeier et al. 2014). These methods are not considered since they
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either lack numerical stability and assume strong models (GSM) or require many user inputs unsuitable for
automatic application (IMM).

Convolutional Approach The main approach to dealing with the low number of sampling points resulting in
the ambiguities mentioned above is using a convolution approach, described in more detail in the corresponding
publication (Nürnberg et al. 2009). For this approach to work, a model for the particle spectra has to be
assumed, which is in good agreement with conventional thin film TNSA targets, an exponential function e.g.

dN(E)

dE
=

N0

E
exp

(︃
− E

kBTe

)︃
. (5.4)

This exponential function is convoluted with the RCFs response function given by an a priori SRIM (Ziegler
et al. 2010) or Monte Carlo calculation. The function’s parameters are then varied in the least squares sense
until they reproduce the RCFs deposited energy values.

Due to the nature of the approach, several different models and arbitrary functions could be used, allowing
for easy testing of possible new theories as soon as they emerge. It has also been shown by Wagner et al.
(Wagner, Bedacht, et al. 2015, Eq. 3, Fig. 4) that this works even if different models are superposed by adding
up different functions:

dN(E)

dE
=
∑︂
i

(︃
dN(E)

dE

)︃
i

. (5.5)

While this convolutional approach is numerically stable, it can only reproduce the model function given.
The lower the uncertainty of the result, the higher the possibility that the assumed spectrum matches the
observation. On the other hand, it does not provide information about what a deviating spectrum looks like.
A result for this convolutional approach is given in Fig. 5.6.

Linear Interpolation Approach In this section, we report an additional deconvolution method that can be
used to obtain the energy spectrum from the RCF data without making any assumptions about the distribution
of the spectrum. This approach follows the same idea as the method by Schollmeier et al. (M. Schollmeier
et al. 2014, Sec. 3.A). Since the implementation is not given in detail, it is unclear to what extent the two
algorithms are identical and whether the approach of Schollmeier et al. can also be used for unconventional
ion spectra. Therefore, the main difference is this algorithm’s open-source implementation and the dedicated
goal to investigate unconventional spectra. The algorithm presented here already takes the discretization of
the data into account. The equations, therefore, differ from the ones given by Schollmeier et al..

Important to note that the spectrum is assumed to be continuous, which is achieved by linear interpolation
between the sampling points. However, this assumption does not limit the shape of the resulting spectrum in
any way. Each irradiated active layer has a specific Bragg peak energy, which means that the particles with
this kinetic energy are stopped and deposit a significant part EBragg of their initial energy in this layer. The
idea is, therefore, to take this Bragg peak energy as the sampling position in the energy spectrum, ranging
from the lowest resolved Bragg peak energy Emin to the highest resolved Bragg peak energy Emax. Therefore,
the sampling points Ei are part of the corresponding closed interval. To do this, one must also consider that
higher energy particles do not get stopped in this layer but still deposit energy.

Only the layers that got irradiated are considered for the analysis of RCF stacks. The last layer irradiated
then defines the interval’s maximum energy value, and it is reasonable to assume that no higher energy
component was measured. One can therefore expect that the particle count (N) on the last layer is given by
the ratio of the measured deposited energy in the last layer to the particles’ Bragg peak energy in the last
layer only:

N(Emax) = Emeasured
dep (Emax)/E

Bragg
part (Emax). (5.6)
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After completing the first step, the stack is evaluated from the back to the front with the same method. The
active layer under discussion is denoted with an integer i. The steps for this algorithm are mentioned below:

1. The first step is always to determine an initial particle number for each layer. This is done by dividing
the full deposited energy by the Bragg peak energy:

Nmax(Ei) = Emeasured
dep (Ei)/E

Bragg
part (Ei). (5.7)

At this point, the particle count at Ei is calculated only with the Bragg Peak energy at Ei taken into
account. No contributions from particles with an energy higher than Ei are included yet. If now the
energies E > Ei are included, their contributions add up, and the calculated deposited energy gets
higher than the measured energy, effectively overestimating the particle count at Ei. A simple linear
interpolation then does the interpolation of the particle count from two adjacent data points at Ei and
Ei+1. Allowing for subsequent corrections as discussed in the next step.

2. To deal with the overestimation of particles at Ei, the particle count N (Ei) has to be varied until the
different deposited energies match. Starting from the last measured irradiated layer going to the front:
a) Calculate the layers’ contribution with Ej > Ei to the layer with Ei and subtract it from the

deposited energy.

Ecalc
dep (Ei) = Emeasured

dep (Ei)−
∫︂ Emax

Ej

Ei
part(j). (5.8)

The newly calculated deposited energy is then used to calculate a more precise particle number
N(Ei).

b) Equation 5.8 subtracts every higher energy component except the part from Ei to Ei+1. The
particle count is, therefore still overestimated. The number of particles N(Ei) is reduced until the
calculated deposited energy, including the area from Ei to Ei+1 matches the assumed spectrum.
The previously not included area is linearly interpolated in between the two energies.

c) If the energies are still not matching when N(Ei) = 0 (this can occur if there are too many particles
in the triangle formed by the linear interpolation between the sampling points N(Ei) and N(Ei+1).
An additional sampling point Ev is inserted between Ei and Ei+1 with N(Ev) = 0 in this case. This
additional sampling point in the energy domain is increased until the measured and calculated
deposited energies matched. With this mechanism, increasing the spectrum’s cut-off energy is
possible by setting a virtual sampling point at higher energy.

The final spectrum reproduces the measured deposited energy in the RCF stack precisely to an allowed
uncertainty that can be fixed a priori. An ambiguity still exists since the spectrum determined is only a
representation of all possible solutions reproducing the deposited energy. Keeping the input parameters, cut-off
energy, and maximum dose deviation constant ensures a reproducible data evaluation. Furthermore, additional
diagnostics might be used to verify the particle spectrum’s shape and reduce the number of ambiguities. This
ambiguity in the spectrum can also be reduced by applying theoretical models that default to the convolutional
approach. In other words: this method uses measured values without considering any measurement errors.

The energy distribution by the linear method is more susceptible to measurement errors than the convolu-
tional approach, as seen in Figure 5.6. This is caused by the nature of the different approaches. The linear
approach directly works on the measured deposited energy and is therefore susceptible to the fluctuations
measured from each data point, which directly converts into the displayed fluctuations. Conversely, the
convolutional approach implicitly fulfills a regression on the data and is, therefore, smooth. Less variation in
the data results in less variation in the resulting spectra, as shown in Figure 5.7a.
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Figure 5.6.: Results for both deconvolution methods. Differences are due to the different approaches’
behaviors. The red lines indicate the Bragg peak energies of the stack used and, therefore, the
resolution of the data. The first set of curves consists of the blue dotted line, and the black dashed
lines. They describe the result of the convolutional approach together with its corresponding
confidence band. The second set of curves is the solid blue line and the light blue area giving
the 1-σ interval of the linear approach.

The spectra also have dedicated features at the lower and higher energy end: The linear approach can not
extrapolate beyond the lower end, where no signal could be measured. The spectrums behavior before the
first active layer can not be determined, the algorithm assigns a constant value, but it has no deeper physical
meaning. On the higher energy part a more consistent statement for the cut-off energy can be found, a small
extrapolation is possible. The convolutional approach, on the other hand, allows extrapolation following the
given model function. Still, finding a good cut-off energy is problematic, such that additional information has
to be put into the complete representation, e.g. from the geometry of the used stack.

For unconventional spectra, as predicted for example by Huebl et al. (Huebl et al. 2020), Hegelich et al.
(Hegelich et al. 2006) and which are under investigation for high repetition rate experiments, the linear
interpolation has to be used.

5.3. RCF Application

5.3.1. Energy Spectrum Verification with Simulated RCF Stacks

The second part of the algorithm, namely the spectrum’s deconvolution, is also validated. This is achieved
by comparing the algorithm’s output to well-defined input spectra. The input spectra are defined by two
distribution functions: The exponential function is given in Equation 5.9 as

dN
dE

=
N0

E
exp

(︃
− E

kBT

)︃
, (5.9)
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Table 5.2.: Parameters for the RCF stacks. Results are given for a simulated 7- and a 14-layer stack. Defined
denotes the simulation parameters, while Reconstructed denotes the output of the evaluation
algorithm. The uncertainties are passed as one-sigma intervals.

Exponential spectrum

Parameter Defined Reconstructed Unit

14 Layers 7 Layers

N0 1.36 1.16± 0.04 1.18± 0.33 1012

kBT 6.37 7.11± 0.20 8.86± 2.17 MeV

Step spectrum

Parameter Defined Reconstructed Unit

14 Layers 7 Layers

N0 1.36 2.5 2 1012

E0 20.00 18.25 19.5 MeV
∆E 6.00 6.55 9.5 MeV

Experimental spectrum from Figure 5.4a

N0 3.7± 0.2 1011

kBT 7.4± 0.4 MeV
Ec 25.5 MeV

while the step wise function is displayed in equation 5.10 as

dN
dE

=

⎧⎪⎨⎪⎩
0 for E < E0 −∆E

N0 for E0 −∆E < E < E0 +∆E

0 for E > E0 +∆E.

(5.10)

Table 5.2 gives the chosen parameters and the evaluation results. The results show that both implemented
algorithms are capable of reproducing the defined spectra as presented in Figure 5.7a. The uncertainties
are inherent to the dosimetry approach which can be counteracted in the experiment by using more active
layers and adjusting passive layers to prevent saturated signals. The deconvolution presented in Figure 5.7b
shows a step function as proton distribution. Due to its shape, the conventional convolutional method does not
achieve a meaningful conclusion, if these functional dependencies are not inserted. The linear deconvolution
method reaches the displayed solution. One can see that the plateau varies but is still in the same order of
magnitude and that the two steps are drifted apart. This drift is caused by the lack of measurement precision
since only the active layers in the stack give sampling points. The method is therefore not precise enough to
fix the step’s sharp boundaries.

One important restriction has to be addressed though: All evaluation methods are based on matching
calculated deposited energy from the fitted spectrum to the measured deposited energy. This means a
spectrum is a valid solution if it reproduces the measured dose distributions. Thus, each particle distribution
reproducing the dose distribution is a valid result. The results can still vary within the given models or
methods uncertainties. The final spectrum resulting from the evaluation methods (confer to section 5.2.2)
therefore always represents all possible solutions. Using the same evaluation conditions and algorithm ensures
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(a) Results for a simulated 14 layer stack. Displayed
are the results from the Convolutional and Linear
approaches. Also displayed is the theoretical input
used to create the simulated stack.
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(b) Result for the linear interpolation method for a
step function like particle bunch as defined in ta-
ble5.2. The dashed line denotes the actually given
distribution. The uncertainty exists along the full
curve but is low. This is a direct result of the shape
of the function in combination with a low uncer-
tainty from the simulation.

Figure 5.7.: Consistency plots for the algorithm. The numerical parameters are displayed in table 5.2.

that comparable representatives are returned. The conclusion is that the algorithmic approach ensures the
reproducibility of the evaluation inside the methodological constraints.

As mentioned in subsection 5.1.1, the different radiation components influence the evaluation results and
an exact differentiation of the radiation types is only possible to a certain extent.

5.3.2. Comparison with the Analytical Model by Lecz et al.

The previous sections have shown that our segmentation scheme can isolate the ion signal on the RCFs and
thereby reconstruct the beam energy-dependent divergence angle. In addition, we can reconstruct the beam
energy distribution.

As an application, we discuss the comparison to the analytical model by Lecz et al. (Lécz et al. 2015, Eq.
15, Fig. 11) for the transverse divergence of TNSA beams from solid targets. This model is a 2D extension of
Mora’s plasma expansion subsection 2.3.1 and considers several experimental parameters and assumptions.
Unknown parameters of the model can then be fitted to the reconstructed divergence angle data via a least
squares approach and result in physical predictions of the cut-off energy, the hot electron spread angle inside
the target, and the hot electron density. Results are displayed in Table 5.3.

The empirical models from section 5.2.2 do not have a supporting theoretical model but apparently reproduce
the measured results over a more extensive energy range (see Figure 5.8). The model by Lecz et al. has a
good agreement for the high energy part (here for E > 18MeV) and also the capability to fit the behavior of
the envelope at the top part of the spectrum. The deviation in the low energy (here for E < 18MeV) part
is caused by its theoretical assumptions, as mentioned in the corresponding publication. The threshold of
18MeV is determined for this data set by comparing the differences of the fitted curve to the experimental
data and varies according to the specific experimental parameters.

Important to note is that the model by Lecz et al. can predict the spectrum’s ion cut-off energy. This 2D
model, taking the ion opening angle into account, can model the angle opening angle above the highest energy
until the curve reaches 0. The model helps extrapolate the fit until it hits the axis of the abscissa. The energy
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Figure 5.8.: Comparison of Lecz et al. model with two standardized empirical models. The blue data points
are taken from the source shot under investigation in this paper. The solid line gives the best fit
for the dataset for Lecz’s model. The dashed line is the result for the PARTIAL FUNCTION and the
dotted line represents the best fit for the QUADRATIC FUNCTION given in subsection 2.3.3. Both of
the last functions are purely empirical.

value at the intersection of fit and the axis of abscissa is then the value of the cut-off energy. As shown in
Figure 5.8, the model yields a smaller cut-off energy than the partial function. The discrepancy might result
from some of the conditions assumed by Lecz and can therefore vary. Comparing the cut-off energy to the one
calculated by the deconvolution, it is larger than the 25.5MeV calculated (confer to Table 5.2). The fit could
therefore be used to correct the cut-off energy towards higher values. However, whether this value is more
”correct” has to be measured using a more detailed RCF stack which is seldom used due to the relatively high
costs.

5.3.3. Full Reconstruction of TNSA Ions

A full reconstruction of the ion beam can be attempted by utilizing the evaluation method and the numerical
relations given in this chapter and in chapter 2. A representation of this reconstruction is displayed in
Figure 5.9. Due to the exponential energy distribution, and the variation in the envelope, values at different
energies have to be sampled. This shape could be achieved by assuming the laminar flow model, which means
having each energy uniformly distributed on the corresponding circle. For each energy, the weight is known,
meaning that the total dose and behavior can be estimated as if it were the entire beam. Further, for each
particle, the momenta are known, such that tracking of the particles can be added.

The sampling is randomized within the measured boundaries, so the model quality increases if more samples
are used. However, this result has a significant problem: the same assumptions are taken to evaluate the RCF
stacks. Particle distribution is assumed to follow the laminar flow model, space charge effects are neglected,
and only one type of particle is considered. Both describe the visible results but do not describe the dynamic
process happening.

Extending the model to incorporate space charge, different distributions, and several particle species is
possible and doable if the corresponding data can resolve this.
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Table 5.3.: Relevant quantities and results for Lecz et al. model. The upper part has values that must be
inserted into themodel and given by the experiment, while the lower quantities are the two degrees
of freedom the model fits. The cut-off energy is an additional value the fit yields but is not a
degree of freedom for this fit.

Physical quantity Source shot

Pulse duration / fs 650
Normalized vector potential a0 11.46
Irradiation size FWHM /µm 3.5
Target thickness / µm 10
Hot electron temperature / MeV 1.9

Fit Results:

Electron spread-angle / ◦ 46
Hot electron density / m−3 0.79× 1026

Additional Result:

Cut-off energy / MeV 26.44
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(a) 10 energy samples were taken, and each step in the en-
ergy spectrum was resampled with 300 particles each.
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Figure 5.9.: Full reconstruction of aTNSAproton bunch. The divergence and energy spectrumwas determined
using pyRES.
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6. Surrogate Model for the Compact Laser-Driven
Neutron Source

“Data points in hand,
Surrogate models take a stand,
Simplify the world.”

This chapter’s goal is the full description of the surrogate models, based on artificial neural networks. Two
models were developed for a final model that maps laser and target parameters. The first model aims to
describe the laser plasma TNSA process and maps from the laser and plasma parameters onto the resulting
proton spectrum, while the second model describes the neutron production and maps from incoming particles
to outgoing neutron spectra.

For each model first, the numerical basis is explained, which for the first model are PIC simulations and
nuclear Monte Carlo models for the second. The model based on PIC, which aims to describe the TNSA process,
is also investigated based on sensitivity analysis to discuss the order of the model that can be described. The
neutron model is further evaluated using a bootstrapping method to determine the uncertainty of the full
spectrum.

As mentioned in previous chapters, optimization of any kind is only possible if the algorithm optimizing has
access to a fast and cheap model to evaluate. While the effort of creating training data and conditioning the
networks takes a considerable amount of time, the resulting surrogate is fast and easy to evaluate. It can be
used by anyone with basic knowledge of physics and minimal programming skills. Deep knowledge about the
simulations, their implementations, and further detailed knowledge is not needed anymore.

6.1. Surrogate for the Laser Accelerated Ions

The surrogate model for the laser-accelerated ions is based on a large simulations study for several parameters.
This simulation is discussed first, while the modeling is discussed in the second part of this section. Part of
this section was done in a master’s thesis supervised by the author (Kreuter 2021) and the later results and
further discussion were published (Schmitz, Kreuter, et al. 2023). This section is based on the article and
some further thoughts and discussions.

6.1.1. Simulation Setup of the Liquid Leaf Target

As mentioned above, the model is a result of a large number of particle-in-cell simulations (section 3.1) done
with the SMILEI PIC code (Derouillat et al. 2018).

The simulations mirror a real experiment but in reduced dimensions to sample a larger parameter space in
a reasonable time. 1.5D simulations are done, meaning particles can move only in 1 spatial direction but 3
momentum components are considered, while electric and magnetic fields are also sampled in 3 dimensions.
This setup saves calculation time since fewer spatial dimensions must be considered. However, the calculations
can still resolve higher-order effects (e.g. j ×B-heating).
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Further, an additional method to include an angle dependency is applied by applying a transversal Lorentz
boost to the system. The corresponding article (Schmitz, Kreuter, et al. 2023) introduces this Lorentz boost
method, which is given in Appendix B.1. A sketch of the full setup is displayed in Figure 6.1.

n0

Θ

d2d1 d3

•py
px

Figure 6.1.: Simulation setup for the PIC simulations. Green indicates the plasma slab of the liquid jet. The
density distribution is indicated with the dashed curve. The incoming laser is displayed with a
red arrow and the defined angle relative to the target’s normal. At the defined acceleration time,
the momenta of the particles are registered.

Plasma Target

The target in the conducted simulations models a liquid leaf target under development at TU Darmstadt
Institute of Nuclear Physics and which is similar to the work by George et al. (George et al. 2019). The liquid
leaf target’s width is some cm, while the typical irradiation size of a laser is in the order of µm. The surface
roughness is assumed to be negligible and the plasma surface can therefore be considered planar.

When the target is only dependent on one coordinate it can be described fully by its particle density profile.
The simulation therefore only allows movement along the x coordinate and is then independent of y and z.
It is further assumed that the plasma is expanded when the main pulse hits the target and assume that the
pre-plasma and skirt follow an exponential profile. The scale length for the exponential profile as 0.4µm was
chosen to be longer than a comparable setup with a cryogenic (i.e. less evaporative) jet target (Obst et al.
2017) while still ensuring a well-defined plasma border. The exponential profile thus takes the shape

nexp(x) =
n0

1 + exp(−(x− xfront)/ls)
(6.1)

where ls = 0.4µm and xfront is the location of the target front. The skirt has an identical functional shape for
the backside of the target.

Since a liquid leaf target evaporates, the typical vapor density distribution for a liquid leaf target is assumed
as,

nLJT(r) ≈ n
(︁
rjet
)︁ (︂rjet

r

)︂2 L√
r2 + L2

, (6.2)

where n
(︁
rjet
)︁
is the water vapor density at the liquid jet surface, L ≈ 3 cm is the liquid jet length, and rjet is

the liquid jet radius (Cappa et al. 2005, Eq. 3). Note that the second term in the above expression has been
squared as we expect a faster drop-off of the liquid leaf density in our proposed experimental setup.

The assumed particle densities are n0 = 6.68× 1028 m−3 and n
(︁
rjet
)︁
= 1.62× 1023 m−3 stemming from the

liquid density of water and the density estimated at the saturation vapor pressure at 0 ◦C (Cappa et al. 2005).
A cut-off of the profile 4µm before and after the target is introduced to optimize the simulation’s performance.
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The multi-species effect (see subsection 2.3.2) is investigated through a variation of the ion species mixture
inside the target. The simulations, therefore, included regular water, heavy water, and a potential mixture
between the two. This mixture is indicated by the mixture parameter listed in Table 6.1, which was varied in
discrete steps. Therefore the simulation consists of up to four species: electrons e−, hydrogen H+, deuterium
D+, and oxygen On+. All particle species follow the same initial distribution function defined above.

The ion species are initialized cold while the electrons received an initial temperature of 30 keV to simulate
interaction with a pre-pulse. The length of one cell is the Debye length at the initial electron temperature. For
the time resolution, a CFL number of 0.98 was used. The interpolation order of the particle shape functions is
set to four and the particle per cell count is 800.

Laserpulse

In a 1.5D simulation, only the laser pulse is given by its time profile and assumed to be Gaussian. The
tgaussian time profile in Smilei, which was used, has the following shape:

Ienvelope(t) =

{︄
exp

(︂
−(t−τL)

2

(τL/2)2/ ln(2)

)︂
if t ≤ 2τL

0 otherwise
, (6.3)

where τL is the main laser pulse duration. In this work, lasers that have a pulse duration τL < 1 ps and an
a0 > 1 were assumed. The laser energy EL, pulse length τL, polarization, incident angle θL, wavelength λL
and the target thickness dT are variable. They are uniformly sampled from the defined intervals in Table 6.1.
The full system can be covered with 9 parameters. This count follows the discussion in section 4.1. The ranges
of these parameters were chosen under two different sometimes contradictory paradigms; one is to allow
the similitude equations in section 4.1 to take full effect while the second paradigm is to allow experimental
validation of the model.

Table 6.1.: The physical parameters used for sampling the input files to the 1.5D PIC simulations. Mixture
defines the percentage of hydrogen substituted by deuterium.

No Attribute Sign Range Units

1 Laser Energy EL [0.001, 50] J
2 Laser Focus-FWHM FWHM [2,20] µm
3 Laser Pulse length τL [15, 150] fs
4 Laser Polarization {s, p}
5 Laser Incidence angle θL [0, 85] ◦

6 Laser Wavelength λL [550, 1100] nm
7 Target Thickness dT [0.6, 3] µm
8 Target Mixture Mix [0, 100] %
9 Target Oxygen Charge Zeff {7, 8}

Simulation Output Quantities

The diagnostics recorded are the particles’ x-coordinate, all components of the momentum p⃗, and the macro-
particle weight w at the acceleration time

tacc = τL + dT/cs , (6.4)
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where cs is the ion-acoustic velocity. Lecz (Lécz 2013, Eq. 4.1, p. 47) has found that this is a suitable
acceleration time after which an isothermal plasma expansion model no longer holds. From these recorded
values the energy spectrum of the particles in the lab frame is reconstructed by using Eq. (B.5). Since all
energy spectra have an individual shape and cut-off energy, the spectra were each normalized to the energy
range [0, 1], counted into 100 bins, and stored as a list together with their respective cut-off energies. In order
to keep the numbers more practical, their logarithm was used. The entry for the results of a simulation thus
has the following shape: {ln

(︂
dn
dE

)︂
Bin 1

, . . . , ln
(︂

dn
dE

)︂
Bin 100

, Emax}. Exponentiating and re-scaling by Emax

restores the original energy spectrum accordingly. This same recording scheme is used for all four species for
all simulations.

The parameters in Table 6.1 are uniformly sampled except for the laser energy EL which was sampled
following a square root scale and the mixture was varied in discrete steps. This type of sampling results in
significantly more simulations with low a0 than with high a0. To deal with this additional constraints for a0
were introduced. Although the laser focus-FWHM is technically not relevant in the 1D case we sampled it
nonetheless such that together with the sampled laser energy and pulse length, the correct a0 was written in
the input file. This also ensures comparability with higher-order simulations and experimental data.

Simulation Statistics

We used the setup described above to create a dataset of simulations for our subsequent surrogate model. All
parameters were stochastically sampled, and their combination can be considered a sparse grid. The number
of simulations varies between the different species. The number of simulations for hydrogen is 508 200 and
the number of simulations for deuterium is 762 426. The reduced model, which utilizes only the pure H2O
data without D2O component consists of a subset of the full data set and has 68 973 entries.

Limitations of 1.5D PIC

These low-dimensional simulations do have some drawbacks. While they, together with the introduced
transversal Lorentz boost method (Appendix B.1, and Schmitz, Kreuter, et al. 2023), are capable of describing
several effects, some are not possible. The main effect is the expansion of the plasma behind the target. In
one spatial dimension, no transversal drift of the particles is possible. Therefore also, no decay of space charge
effects exists. The expansion continues until infinity if it is not stopped. This is mitigated using the introduced
tacc in Equation 6.4. Furthermore, divergence opening angles cannot be evaluated because of the lack of
transversal particle movement.

Data Discussion by Example

An example of the spatial distribution from the simulations is given in Figure 6.2. An example of the energy
spectrum is displayed in Figure 2.8.

In this simulation, the target consists of regular water fully ionized by the implied laser pre-pulse. Thus,
the three species (e−, H+, and O8+) are initialized with a density ratio of 10 : 2 : 1, respectively, so overall
neutrality is conserved. The species’ positions are displayed at t = tacc in Figure 6.2. In this simulation the
laser incidence angle is 0◦, the target thickness is 2µm, and the dimensionless laser amplitude is a0 = 20.
The figures show that the species have different positions at the measured time, which means the species are
accelerated separately by the sheath field.

The ion front position at the acceleration time for different species varies due to the different charge and
mass values as mentioned in subsection 2.3.2. Calculating the expected variation by numerical integration,
following the relation from Huebl et al. (Huebl et al. 2020, Eq. 2), for only fully ionized oxygen and
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Figure 6.2.: Example PIC simulation of water leaf target TNSA experiment. The plot shows the particle
distribution at the previously proposed acceleration time tacc (Eq. (6.4)).

hydrogen present, yields a scaling factor of xO8x

F /xHF ≈ 0.68. The corresponding factor from Figure 6.2 is
xO

8x

F,sim/x
H
F,sim ≈ 0.67± 0.01, where the uncertainty results from the binning.

The general TNSA mechanism is still applicable. The dynamics of the different particle species with each
other are more complex, but the general behavior appears to follow classical TNSA theory. This is also more
clearly displayed and backed up by the obtained kinetic energy spectra of the ion species after acceleration.
An example of kinetic spectra can be found in Figure 2.8. It displays the hydrogen and oxygen ion energy
spectra and Mora’s predicted ideal curve.

6.1.2. Surrogate for the Liquid Leaf Target

Different simulations have to be correlated to each other in order to find relations. The resulting interpolation
then allows an optimization of the full setup. This was acquired by a neural network approach with fully
connected topologies utilizing Keras (Chollet et al. 2015) and Tensorflow 2 (Abadi et al. 2015).

Model Training

To predict a particle spectrum two models are needed. One model continuously maps

{E,mix, EL, rL, τL, s/p-pol., θL, λL, dT} → ln
(︃
dn
dE

(E)

)︃
, (6.5)

while a second model only predicts the maximum energy (i.e. when to cut off the continuous spectrum from
the first model). Two models for each particle species of interest were developed, one pair for protons and one
pair for deuterons. Both model pairs contain different ratios between H2O and D2O. In the corresponding
publication (Schmitz, Kreuter, et al. 2023) only proton models are discussed, incorporating a reduced and a
full model, which is used to show that the full model reproduces the reduced model in the limit.
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Table 6.2.: Architectures of the fully connected network (FCN) for the reduced and full model pair. The dN/dE
columns describe the full spectrum models, while the cutoff column describes the maximum
energy model for hydrogen ions. The inputs to the networks are 7,8 or 9-dimensional vectors
respectively while the outputs are scalar. The numbered layers are the hidden layers.

Layer dN/dE Cutoff

Input 9 8
1 460 320
2 460 284
3 460 288
4 460 512
5 460 32
6 460 480
7 460 512
8 460 32
9 460 –

10 460 –
11 460 –

Output 1 1

The energy spectrum is a graph of a continuous function f , the first model maps {x, [system parameters]}
to f(x) while the second model predicts the point x at which the graph gets cut off. Details about the training
parameters and the procedure are given in Appendix B.3. Schematics of the finished models can be seen in
Table 6.2.

Hydrogen Model Pair The precision of the maximum energy models, which attempt to map the physical
parameters onto Emax can be estimated rather easily. The model achieved a mean squared error of 7.25MeV2

(confer to appendix B.3)., meaning the average error on the prediction of the hydrogen spectrum’s maximum
energy is projected to be around ±2.7MeV.

The model predicting the spectral shape is a little bit more complicated: To more intuitively evaluate the
model’s predicting capabilities and potential shortcomings, ten simulations with equal parameters (except
for random seed) were computed such that their hydrogen ion energy spectra could be compared to the
predicted spectrum of the model. All the spectra are plotted in Figure 6.3a. The overall agreement of the
model with the simulations is evident. The maximum energy predicted by the model falls centrally between
the maximum energies of the ten simulations, only differing from the simulation average by 0.2MeV. Looking
at more intricate features of the simulation spectra, however, it is clear that the model possibly generalized
slightly too much. At around 10MeV a dip, possibly due to multi-species effects, can be observed in most
simulations and is barely present in the model prediction. Generally, the fluctuations in the simulation spectra
are greatly reduced in the neural network predicted spectrum. A reason for this is likely the sheer vastness of
differing spectra the model was trained on. Since the parameter space for the training simulations was so
large, the model had to generalize to many different output spectra. From the paper, the plot in Figure 6.3b
is displayed which correlates the reduced model with the full model and therefore shows, that the models
reproduce each other in the corresponding limit. This is expected behavior since there is a statistical variation
in the training of neural networks. Important to note is the deviation in the spectra for different mixture ratios.
An influence of the mixture parameter on the spectrum is visible and tuning, utilizing this effect, is possible.
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Figure 6.3.: Hydrogen model plots.

Deuteron Model Pair The deuteron model pair was trained exactly the same as the hydrogen model pair but
with an additional parameter and a larger dataset. They converged with a mean squared error of 6.76MeV2

resulting in a prediction error of ±2.6MeV for the maximum energy of the hydrogen spectrum (confer to
appendix B.3). Again, as given above, the sensitivity of the spectral model is more complicated to estimate.
The shape however is not smooth, which might result from the co-propagating particles occupying the same
space.

Model Efficiency

Calling the models in a Python code environment is similar to calling any other function and takes around
20ms on a personal laptop. This time is in stark contrast to the four hours on 16 CPUs taken to run a similar
1D PIC simulation on the HPC cluster. To put this in perspective, the model can run inference roughly 720 000
times, while one PIC simulation calculates.

Other attempts at fitting the regression problem using various kernel combinations and Gaussian Process
Regression (Bishop 2006) were made, however, they never produced energy spectrum predictions that even
came close to the neural network prediction seen in Figure 6.3a, usually being off from simulations by orders
of magnitude. As expected, the adaptability of modern unparameterized machine learning methods such as
neural network models stands out from other regressors.

6.1.3. Application of the Model

With a trained surrogate in hand, it is possible to take advantage of the model to perform a numerical
optimization of an experiment and evaluate the model’s interpretability.
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Figure 6.4.: Deuteron predictions for the optimum proton energy deposition. Input parameters are taken
from Table 6.3 The mixture is given as a deuterium ratio in the legend.

Optimization of Parameters for Laser Plasma Interactions

In this section, a TNSA experiment with a water-leaf target is optimized. The aim is to get an ideal set of laser
and target parameters and apply the previously obtained reduced machine-learning model pair.

Some base parameters are fixed. They are chosen based on a reals system that has a proven repetition rate of
at least 1Hz: Ti:Sa lasers with a central wavelength of 800nm and p polarized laser light. Exemplary systems
would be the VEGA-3 laser at the Centro De Laseres Pulsados in Salamanca, Spain (CLPU) (VEGA 2022) or the
DRACO laser at the Helmholt-Zentrum Dresden-Rossendorf (Schramm et al. 2017). Following the procedure
in this section, the model can also be applied to any other system, if its parameters are inside the model’s
minimal and maximal physical parameters (see Table 6.1). If the system’s parameters are not included, the
model could be expanded by retraining with additional data, using transfer learning (Spears et al. 2018), or
other modern domain adaptation methods (M. Wang et al. 2018). The assumed initial parameters are stated
in Table 6.3. Optimization can have different meanings, therefore, two different goals are investigated in this
section. The first goal is to find the maximum cut-off energy, while the second goal is to maximize the laser
energy deposition into the plasma.

As mentioned, the polarization and central laser wavelength were fixed but all other parameters were
allowed change, as long as they stayed within the given physical constraints. Since the obvious solution to
maximizing output energy is to maximize input energy (as seen in Zimmer et al. 2021 and section 4.2), the
optimizations were computed under the constraint of a constant dimensionless laser amplitude a0. This
ensures optimization by exploiting complicated relationships between the physical parameters of the system;
a task that can only be feasibly solved with a rapidly callable model.

The optimization was implement using SciPy Python library (Virtanen et al. 2020) and the Byrd-Omojokun
algorithm (Lalee et al. 1998). The Byrd-Omojokun algorithm allows to include both, boundary conditions
according to Table 6.1 and the equality constraint of constant a0, to leverage the aforementioned non-trivialities
of the system.

The optimized parameters are displayed in Table 6.3. The optimizer seems to have taken advantage of
incidence angle-dependent absorption effects such as resonance absorption. Additionally, by dramatically
increasing laser focus while simultaneously decreasing laser power (energy over time) the maximum ion
energy could be optimized without changing the dimensionless laser amplitude a0. Overall, the optimizer
increased the maximum ion output energy by a factor of roughly 4. The hydrogen energy spectra for these
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Table 6.3.: Table of the physical parameters to be optimized for the laser system. Both initial and optimized
values are shown. Rows in bold remained fixed during optimization. The dimensionless laser
amplitude a0 also remained fixed during optimization to encourage the convergence towards
non-trivial parameter combinations. ηconv is a measure for energy conversion efficiency (see Eq.
(6.6)), normalized to the initial parameter case.

No Attribute Initial Optimized Optimized Units
(Emax) (E-conversion)

1 Laser energy 30 6.6 1.4 J
2 Focus-FWHM 20 4.2 2 µm
3 Pulse length 30 149.9 137.6 fs
4 Polarization p p p
5 Incidence angle 12.2 32.2 29.3 ◦

6 Wavelength 800 800 800 nm
7 Thickness 2 3.0 3.0 µm

Emax 13.8 51.5 51.2 MeV
ηconv 1.0 7.8 41.3

optimized parameters and the initial parameters are depicted in Figure 6.5.
A more intricate measure of a TNSA experimental system is the laser-ion energy conversion efficiency, i.e.

the measure of how much of the laser’s input energy gets transported into the accelerated particles. Consider
thus the optimization of the ratio of the total kinetic energy of the ions EH to the laser pulse energy EL:

argmax
x∈{params}

EH(x)

EL
= argmax

x∈{params}

1

EL
·
∫︂ Emax

0

dN
dE

· E dE , (6.6)

where dN
dE (E, x) and Emax are given by the neural network models, and {params} is the set of all parameter

combinations within the ranges specified in Table 6.1. It is important to note that the SMILEI output gives dn
dE ,

which must be scaled by a unit volume V to arrive at the expression needed. For further explanation of how
to arrive at the above integral term, the reader is referred to Appendix B.2. Allowing the variation of laser
energy EL increases the complexity of the problem, but the optimization is still successful. The optimization
described in Eq. (6.6) was carried out by solving the numerical integration using the composite trapezoidal
rule and once again employing the Byrd-Omojokun algorithm. The optimized parameters are displayed in
Table 6.3.

Surprisingly, despite having a slightly lower maximum ion energy than the first optimization task, the
calculated energy conversion efficiency is more than five times greater. This strongly indicates that laser
coupling into the target in a laser-plasma experiment depends on the system’s physical parameters in a highly
non-trivial way.

Sensitivity Analysis

Artificial neural networks are generally difficult to interpret. Nevertheless, the importance of specific pa-
rameters for a model can be evaluated. One way to quantify the impact of the model parameters upon the
model output is with the variance-based global sensitivity analysis, also known as the Sobol method and
the complementary PAWN method introduced in section 3.4. The number of evaluations of the model is
N × (2D + 2), where D is the number of input features and N is the number of samples drawn. N is ideally
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Figure 6.5.: Energy spectra of H-ions for a TNSA water leaf target experiment using both initial VEGA-3 as
well as optimized parameters with respect to the maximum ion energy. Predicted spectra by
the neural network model and spectra from a 1D PIC simulation are shown. The parameters are
given in Table 6.3.

selected as 2n, where we selected n = 18 resulting in 262144 drawn samples and they were used for both
methods.

Hydrogen Model The Hydrogen model has 8 cut-off energy features mapped to 1 output prediction for the
maximal energy. The results of the Sobol analysis are given in Figure 6.6.

The larger the value of a Sobol index is, the more influence the independent parameter has on the result.
The total Sobol indices, normally referred to as ST , measure the features’ total importance. The total Sobol
indices can neither describe how much of the variance is attributed to which combination of parameters nor
are they normalized for the total expression. This is due to multiple counting of effects, e.g. if there is a
second-order contribution for ΘL and rL, then this contribution is added to both of the values in the total
representation. It doubles the counting for the second order, triples for the third order, and so on.

Due to this complication, determining higher-order dependencies makes it necessary to display the first and
second-order Sobol indices, as done in Figure 6.6b. The values are displayed in a matrix, so the interaction
between (xi, yj) can be displayed. The first-order Sobol indices are shown on the main diagonal (xi = yj).
It is evident from the plot, that the sum does not add up to 1, leaving approximately 10% of data variance
unexplained. The consequence is that even higher-order interactions are necessary to explain the variation of
the model fully. Full calculation of higher orders has been omitted as it was deemed unfeasible due to the
extreme computational cost for higher dimensions.

The results of the PAWN method are displayed in Figure 6.7. PAWN can only measure the full importance
of the individual parameters. A subsequent division into main effects and higher order is not possible. The
importance ranking from PAWN does not entirely match the order found by the Sobol method but is rather
close. If not the total, but the sum of first and second-order Sobol is taken, then the first two features change
places.

The Conclusions from the sensitivity analysis are thus: Higher-order interactions are important in this
model and a simple optimization (e.g. maximizing only one quantity) is not sufficient. The previously
presented optimizations take this implicitly into account. Furthermore, the incidence angle and the irradiation
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Figure 6.6.: Sobol sensitivity analysis results showing the influence of various physical parameters on the
cut-off energy of H-ions for a TNSA water leaf target experiment, for the full model utilizing only
the H2O data. Errors are given in the 95% confidence level.
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Table 6.4.: Importance ranking of the model parameters as calculated by the Sobol and PAWN methods.

Importance Sobol PAWN

1 rL ΘL

2 ΘL rL
3 EL EL

4 τL τL
5 λL λL

6 dT dT
7 Pol Pol

area appear to be important. The angle ΘL’s high influence is expected, considering laser-ion absorption
mechanisms, and is faithfully implemented into the 1D simulation space using the Lorentz boosted geometry
(see Appendix B.1). While the third quantity, the laser energy, directly scales the laser’s dimensionless
amplitude a0, the irradiation radius rL’s influence is more difficult to understand. The irradiation area is not
directly represented in a 1.5D PIC simulation. However, since a0 is dependent on rL an indirect influence is
included.

Deuteron Model Calculating the same sensitivity indices for the deuterons results in the corresponding
Sobol and PAWN indices, given in Figure 6.8 and Figure 6.9.

Sensitivity Analysis Discussion

The performed sensitivity analysis on the models allows evaluation of the importance of the different parame-
ters. Since not all variations can be explained, it is evident that the model describing the laser-plasma system
is non-linear. It should be noted that a deep learning model approximates the physical system very well. It
does not, however, provide a closed-form solution for the underlying physics, which would require further
theoretical work.

The models apply regression for the simulated data and, as such, can reproduce a mean curve for the data,
which is, for example, displayed in Figure 6.5 or in Figure 6.3a. The spectral models consider the energy bin
value and predict the continuum of accelerated ions. This means the dependency on the bin’s energy would
also be included. An explainable analysis of considering all energy bin values becomes infeasible as each bin
would require a separate Sobol/PAWN analysis.

The cut-off energy of a TNSA spectrum is the main parameter investigated in the literature, which is also
discussed in section 4.2 and in the corresponding paper (Zimmer et al. 2021). The Sobol analysis indicates
that several parameters are of importance. Therefore, having only a single parameter to describe the cut-off is
insufficient. Since second-order Sobol indices are not zero, the parameters’ interaction must also be considered.

Since the model is not explaining the cut-off variation thoroughly, when only 1st and 2nd-order variations
are considered, even higher-order variations have to be used to describe the total variation of cut-off energy.
Such a significant reliance on higher-order interactions implies that simple scaling models are not ideal for
optimizations since these effects can not be considered. A model capable of approximating highly non-linear
effects, such as this neural network model, should thus be preferred.
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Figure 6.8.: Sobol sensitivity analysis results showing the influence of various physical parameters on the
cut-off energy of Deuterons for a TNSA water leaf target experiment, for the full model utilizing
only the D2O data. Errors are given in the 95% confidence level.
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Figure 6.9.: PAWN indices for the Deuteron model as a measure for parameter importance. Boxes consist of
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Figure 6.10.: Sobol sensitivity analysis results showing the influence of various physical parameters on the
cut-off energy of H-ions for a TNSA water leaf target experiment for the full model utilizing only
the H2O data and the Buckingham parametrization. Errors are given in the 95% confidence
level.

Ion Surrogate using Buckingham Parameters

Going one step further in the modeling, the determined parameters in section 4.1 can fully represent the
physical system. This is based on the construction in Table 4.2.

Taking these relations and mapping the physical parameters onto the corresponding Buckingham space
allows for retraining the models. With this representation, all advantages of dimensional analysis can be
applied, and systems can be scaled. The sensitivity analysis plots for the cut-off energy model for the
Buckingham parameter model are presented in Figure 6.10 and Figure 6.11. The Sobol’ indices show a
large dependent significance angle and mostly negligible values for all other parameters. This has a very
obvious s,elf-evident construction of the model, that the angle ΘL is also relevant to calculate Π4, such that
the input variables are not independent of each other. This is one of the reasons for the introduction of a
second complementary method. The PAWN indices show that the importance of the angle is still high, but the
difference between other parameters is not as high as for the Sobol indices.

As seen for all three cases investigated, the incidence angle always has high importance in these models.
This also correlates to the results of the Lorentz boost method presented in (Schmitz, Kreuter, et al. 2023)
and section B.1. The governing effect in the heating process follows the same characteristic as the resonance
absorption explained in subsection 2.2.3. Furthermore, the angle and the focus size defined are essential in
the definition of irradiation. This directly biases the laser a0, which is a direct indicator of the strength of the
laser, and it, according to the relations calculated in section 4.1, is the component that defines the plasma
dynamics.

Due to the use of the Lorentz boost method, the capability to simulate the angle variation in 1D PIC is

82



Mix 1 2 3 Pol L 4 dT

0.0

0.2

0.4

0.6

0.8

1.0

PA
W

N
 In

flu
en

ce

0.
15

0.
12 0.
14

0.
05 0.

15

0.
52

0.
12

0.
12

Figure 6.11.: PAWN indices for the full model in Buckingham parametrization as a measure for parameter
importance. Boxes consist of uncertainty values, minimum, median, maximum, and upper
uncertainty values. The numerical value given is the median.

acquired. Since higher dimensional effects, which can be represented only in 2D or 3D PIC simulations, are
neglected, the resonance absorption process is dominant. Mitigation is possible if higher-order simulations
or experimental data are also used for the model. This could be done with transfer learning (confer to
section 3.3).

6.2. Surrogate for the Neutron Thick Target Yields

After the ions are accelerated the conversion to neutrons has to be modeled, such that it is possible to optimize
and predict the relevant spectra. This implies two conditions: Firstly a quick evaluation and high inference
speed are necessary, and secondly, a large parameter space has to allow for significant changes. The model
should further be capable of comparing both conventional and laser-driven ion sources.

Conventional accelerators produce monoenergetic particle bunches. These mono-energetic bunches are
simple to deal with in a modeling and optimization sense. On the other hand, the particle bunches created by
laser-driven ions are more complex and not necessarily stable. Furthermore, the variation introduced by the
multi-species effect complicates the spectrum further. Optimization tasks take in the order of 1000 evaluations,
making optimizing the system even more unfeasible without a fast and reliable model.

To mitigate these problems, neutron production samples in the full parameter range of the ion spectrum
were put together.

This allows predicting the full double differential neutron yield Y by solving

Y(Θ, En) =

Ec∫︂
Emin

dN
dE′ (Ep)⏞ ⏟⏟ ⏞
Ion spectrum

· d2Y
dΘdEn

(Ep)⏞ ⏟⏟ ⏞
Surrogate F

dEp, (6.7)

where E′ is the spectral binning width, En the neutron’s energy, Ep the projectile’s energy, Ec is the cut-off
energy of the spectrum, and Emin the minimal relevant energy of the spectrum.

The minimal relevant energy is either determined by the minimal measured energy of the ion spectrum or
the minimum neutron production energy, whichever is higher. The minimum neutron production energy is
approximately given by the Q-values introduced in section 2.4, Equation 2.29 – Equation 2.33. If the model is
evaluated for a mono-energetic beam, the ion spectrum is a Dirac delta distribution and is only evaluated at
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the defined constant projectile energy. Such a model would ideally utilize experimental and simulated data to
acquire a resulting surrogate as presented in Figure 6.12.

Simulation
Data

Experiment
Data

Surro-
gate F

Verify

Contributing to Surrogate

Figure 6.12.: Ideal setup of a neutron surrogate.

6.2.1. Experimental Data

The model’s first pillar is experimental data, which is problematic for several reasons. Firstly, not much data
was measured (or published) in the range of interest. Most data was measured for high energy beams and
higher Z material as usable with the approach presented here.

Secondly, the type of data. Most were measured to determine the reaction cross-section, which made it
necessary to use thin targets. These thin targets neglect the scattering and further reactions a thick target
has on the resulting neutron beam, which makes the data not comparable. The difference was thoroughly
discussed in section 2.4. The thin target data was also used to create the databases for the Monte Carlo
codes, which are necessary for all relevant simulation codes. To avoid circular reasoning, results should not
be compared with the same data used to calculate them.

Thirdly, experiments for this model were planned but ultimately did not result in usable neutron spectra
due to a mismatch in the conventional accelerator parameters. Either energies were unreachable, or bunch
lengths were too long to calculate the neutron’s respective energies. The few remaining usable data sets are
insufficient to contribute to the surrogate.

The model, therefore, only relies on simulated data. This results in potential offsets to the actual neutron
yield. Still, since validating any arbitrary setup in the competitor range with the same model is possible, this
systematic deviation does not matter. It is further not necessary to rely on the varying rigor of the different
groups, publications, and models to be comparable since they can all be reproduced by the achieved surrogate.

The potential global offset can be corrected. If, at later times, sufficient experimental data is available. If so,
the transfer learning approach can be applied to fit the model onto the experimental data. For now, the model
is purely simulation-based. Since the simulations are important for the surrogate, how are they acquired?

6.2.2. Simulation for the Neutron Surrogate

The data for the surrogate is created by Monte Carlo simulations of the relevant physical processes as described
in section 3.2. Simulations are done using the PHITS (Sato, Iwamoto, et al. 2018) code in Version 3.28A with
the FENDL (Forrest et al. 2012) library.
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Figure 6.13.: Simulation description plots. They are created using PHITS Angel tool.

Table 6.5.: Monte Carlo input parameters. The maximum number of sampled parameters is given in the last
column. Rectangular brackets indicate numerical intervals with the lower value left and the upper
value right inside the bracket.

Quantity Values Possibilities

projectile deuterons, protons 2
Ekin / MeV [3, 97] 56
Element Li, LiF, Be, Va, Ta 5
Length / mm [0.02, 104.45] 356
Angle / ◦ [0, 180] 21

The observable is the double differential neutron yield F which is determined by measuring the number of
neutrons crossing a detector surface. Several detectors are implemented to resolve the scattering angle. The
detectors are implemented as rings around the detector, so the solid angle is maximized and the individual
scattering angle stays constant. This is illustrated in Figure 6.13a and Figure 6.13b, where the black lines
indicate the boundaries for each individual detector. Concrete parameters for the scattering angle (center of
the detector) Θ and its size ∆Θ are listed in the appendix in table C.1. The results have to be normalized to
keep the different rates comparable.

d2Y0
dΘdEn

(E,Θ) =
1

∆E

1

∆A
· Φn (E,Θ) (6.8)

where Φn denotes the measured neutron flux, ∆E the measured neutrons energy bin width, Θ the scattering
angle, and ∆A the detector’s area.

The cylindrical particle beam is inserted at position (0, 0,−9) into positive z direction with a radius of
r0 = 0.5 cm. Energy and particle type of the incoming particles are subject to variation as indicated by
Table 6.5. The target is implemented as a cylinder along the z-axis centered around (0, 0, 0) with a radius
r = 1.5 cm and a variable length as well as a variable material, as indicated by Table 6.5, too. One condition
has been fulfilled in the random sampling of the domain. The full bunch had to be stopped inside the target.
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It is possible, however, that the target is longer than necessary. This was allowed because the effect of low
neutron absorption and moderation in a longer target is included. The target cylinder’s radius was fixed
at 2.5 cm. A total 54 768 neutron yield simulations in the mentioned setup were acquired for the surrogate
model.

6.2.3. Thick Target Yield Model

With the large amount of data calculated for the modeling, a numerical surrogate can be directly calculated.
Due to the complicated nonlinear relation coming together, a neural network is applied. The moving source
model (subsection 2.4.2) did not lead to a sufficiently good result, so the approach using an artificial neural
network was chosen.

Data Preparation

For an efficient surrogate, the input data was organized following the concept of one hot encoding (OHE).
The categorical features of data were labeled according to a binary representation of the values, while the
continuous data was scaled from 0 to 1.

For the one hot encoded data, the 2 different projectiles can be labeled by a single bit: Deuterium is labeled
with 1 and Hydrogen is labeled with 0. For the converter materials under investigation, this makes it necessary
to have 3 bits to describe all possibilities fully: ’Li’–’000’, ’LiF’–’001’, ’Be’– ’010’, ’Va’–’011’, ’Ta’– ’100’
In total the number of inputs has to be adjusted: Neutron Energy, Projectile Energy, Length, Angle, Projectile
OHE, 3× Target OHE, which totals 8 input parameters. The neutron energy is a normalized measure for the
position of the determined count rate.

A further important note, which is relevant to the convergence of the system is the preparation of the
training data itself. Without preparation, convergence is bad and not existent. The data was first resampled
to increase the density of the data points in the higher energy part of the spectrum. This resampling was done
with cubic spline interpolation of the Monte Carlos output data and joined with the raw data, doubling the
number of data points for learning while keeping the spectral shape intact.

Because of the large range of input data, varying by several orders of magnitude, numerical stability is an
issue. While some data points contribute much to the mean squared error training quantity, some with a
lower numerical value did not contribute much. As a result, the training process was highly unstable, which
needed to be mitigated. This was fixed by applying a transformation to the data. First, the logarithm to the
base 10 was taken, then the full data set was renormalized, to the smallest value. The final data reached from
1 to the normalized maximal value and all data was larger than 0.

Cut-Off Energy of a Neutron Spectrum

The same approach for the model was chosen as for the ion model in subsection 6.1.2. Two models were
trained, one for the spectrum and one for the cut-off energy. Training cut-off positions together with the
spectrum is difficult since a cut-off represents a discontinuity in the spectrum. Discontinuities are not smooth
and can only be approximated with an even larger data set.

This can be circumvented by splitting the data into spectral shapes and cut-offs, equivalent to the ion model.
The spectral shape is then normalized from minimal data at 0 to maximal non-zero data at 1, while the cut-off
model basically predicts the relevant scaling.

The topologies of the networks are displayed in Table 6.6. Better results might be acquired by dropout
optimization or other sophisticated methods, but time constraints did not permit further optimizing the
topology.
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Table 6.6.: Topologies for the two networks needed to predict the thick target neutron yields. The numbered
layers are the hidden layers. A

Layer Spectrum Cutoff

In 8 7
1 200 260
2 200 180
3 200 180
4 200 340
5 200 180
6 200 180
7 200 340
8 – 340
9 – 180
Out 1 1

Training Results and Model Validity

For these topologies, the resulting training error for the cut-off model results in a prediction uncertainty of
±3MeV. To understand the result for the spectrum, a set of example plots is displayed in Figure 6.14 and
Figure 6.15. A few remarks on the model’s validity can be derived from the figures.

1. The model is only valid in the region of fit, defined by the parameters in Table 6.5.
2. After the cutoff energy, the spectrum generally deviates, implying that the physical cutoff is not learned

by the spectral model and therefore yields wrong results in the high-energy end of the spectrum.
3. The model can predict the lowest energy neutrons, which can not be seen in the Monte Carlo spectra.

This has two reasons: First, the model itself is regression-based, and as can be seen, higher energy
projectile energies do have neutron signals in the low energy regime. The effect of the regression is
calculating a corresponding mean value from all calculated spectra and therefore yielding a non-zero
contribution. Second, the reason for zero count rates is the bulky target, the lowest neutrons created by
low-energy projectiles can not leave the target and are stuck there.

4. The proton Lithium reaction has a characteristic high energy peak in the forward direction. As visible
Figure 6.14 (a) this peak is suppressed by the bulky target. Due to the nature of the regression model,
the model further suppresses the peak and is therefore impossible to resolve it.

Despite these limitations, the model can predict spectra that are quite accurate over a large energy domain in
milliseconds evaluation time and allows the needed quick evaluations of neutron production.

If compared to the results of a moving source model (confer to subsection 2.4.2), which are close to the
curves presented in Figure 2.16, the accuracy and predictability of this model are significantly better in each
aspect. As already mentioned in the corresponding section and the given source, this is because of the moving
source model’s bad fit for the low-energy regime.

Uncertainty Quantification for the Model

The uncertainty bands given in Figure 6.14 and Figure 6.15 are the 95% are calculated by a Monte Carlo
approach themselves. The data has been resampled and evaluated several times in a bootstrapping sense
(Efron et al. 1994). The data from the simulation had uncertainties, which were used to resample data
according to their uncertainty and the likelihood of the distribution. With this variation, 10 different spectra
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Figure 6.14.: Comparison of our model with results from PHITS. Displayed are samples for proton-induced
neutron production. Dashed lines indicate the Monte Carlo data indicated by D and solid lines
give the corresponding model output indicated by M.
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Figure 6.15.: Comparison of our model with results from PHITS. Displayed are samples for deuterium-induced
neutron production. Dashed lines indicate the Monte Carlo data indicated by D and solid lines
give the corresponding model output indicated by M.
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Table 6.7.: Parameters for several compact neutron source accelerators. The same projectile and target
types are fixed to compare different spectra. The source is given in the text.

Name Projectile Energy /MeV Target Current / 10−4 A dT / mm

IAEA2 p 40 Be 50 20
IAEA4 p 40 Be 1250 20
RANS p 7 Be 1 0.3
HBS p 70 Be 1000 16

SONATE p 20 Be 1000 2

were acquired. For each spectrum 10 models were evaluated, its mean and deviation calculated, and the
results are the spectra displayed here. With this method, the direct uncertainty of the network-based model
could be acquired and a more quantitative description of the results is possible.

6.2.4. Application of the Model

The trained model can be quickly applied to determine spatially distributed neutron spectra. This model can
now be used to validate different ion beam parameters against each other.

TNSA’s exponential spectra must be separated into quasi-mono-energetic pieces to calculate the yield. The
neutron spectrum for each piece has to be calculated and superposed with the multiplicity in the particle
count to reach the final spectrum. This can be formally written as

d2Y
dΘdEn

=
∑︂
Ep

Np
(︁
Ep
)︁
· F̂
(︁
En,Θ, Ep

)︁
(6.9)

and with the infinitesimal limit for Ep → 0:

=

∫︂
Np
(︁
Ep
)︁
· F̂
(︁
En,Θ, Ep

)︁
dEp, (6.10)

where Y is the neutron yield, Θ the scattering angle, En the energy of the neutron, Np the number of incoming
projectiles, Ep the energy of the projectile, and F̂ is the unit surrogate model, which is normalized to one
projectile particle. Ep is sampled according to the needed precision. We used a bin width of ∆E = 1MeV.
Setting the model up like this allows to apply and verify this model on mono-energetic spectra and on laser-
accelerated ions and ensure their direct comparability. Furthermore, the model after the limit is a convolution
of the spectrum with the production model, similar to the integral equation given in Equation 5.3. The model
will now be applied to conventional accelerators and some already-done TNSA experiments.

Neutron Production from Conventional Accelerators

The parameters for the conventional accelerator are extracted from several reports focused on developing
compact ion-based neutron sources. Namely the projects HBS in Jülich (Rücker et al. 2016), RANS at
RIKEN in Japan (Otake 2018), SONATE at CEA-Saclay (Thulliez, Loı̈c et al. 2020), and from the technical
report of the IAEA in Vienna (Compact Accelerator Based Neutron Sources 2021). A first exemplary set is
tabulated in Table 6.7 and the model’s results are displayed in Figure 6.16a and Figure 6.16b. Differences
in the spectrum result from the different particle energies, and level differences from the different particle
counts. A difference in the spectral shape in dependence on the angle also appears obvious. This variation
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Figure 6.16.: Model output for the conventional accelerators in p+Be configuration.

indicates that pre-equilibrium reactions (section 2.4) are more dominant in the forward direction, which
shows that the understanding of the processes happening is in good agreement. The neutron counts are
realistic compared to publications of the respective collaboration. SONATE, for example, has around 106

neutrons in the forward direction for neutrons below 400 keV and after a moderator, the loss, therefore, is the
same order of magnitude. HBS also, according to the design reports, is supposed to achieve something in the
order of 1012. All these numbers are not exactly comparable, due to the already mentioned complications
between simulation, experiment, and different simulation databases. Despite these problems, the model is
in the same order of magnitude as other calculations. It can therefore be concluded, that it reproduces the
physics quite well and the next step in comparing laser-driven sources can be taken.

Neutron Production from Laser-Driven Ion Accelerators

In this section we calculate the neutron yield for TNSA accelerated spectra and assume the functional
dependency given in Equation 5.9.

These not mono energetic beams can be dealt with with the already mentioned split along several energies.
For this first part, four different spectra are used. Two from DRACO with a 10 J and 18 J laser respectively (Kroll
et al. 2022) and two from PHELIX, where one of the highest energy spectra (Hornung et al. 2020) and the
lower one is the source shot evaluated in chapter 5. The proton + Beryllium case spectra are displayed together
with the conventional spectra in Figure 6.17. The laser spectra are similarly scaled as the conventional ones.
All spectra give the mean neutron yield for 1 second of operation. The TNSA sources are all below conventional
accelerators, this is due to the low repetition rate of the dedicated laser system. For PHELIX a repetition rate
of 1/5400 Hz reduces the yields considerably, while the 1Hz of DRACO further does not improve the signal.

Considering a sweep of the full angle space, integrating over all neutrons yields Figure 6.18.
The solution for the problem of TNSA-based neutron sources can only be the scaling of the repetition rate,

hence the discussion of the liquid leaf as a target that enables high repetition rates.

6.3. Neutron Yields from Liquid-Leaf Protons

This section puts everything investigated so far together. The aim is to get a pitcher-catcher setup for proton-
induced nuclear reactions to produce neutrons. Starting on the design the physical laser parameters already
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Figure 6.17.: Comparison of the result for conventional machines with TNSA-based laser accelerated spectra.
The thick black line denotes the lower boundary of the plots in Figure 6.16.
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Figure 6.18.: Energy integrated neutron yield for (p,Be) reactions
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found in section 6.1.3 and displayed in Table 6.3 are used. Fixing a Ti:Sa system, with p-polarized laser
light, allows fixing λL = 800nm. With this, the optimization leaves basically two reasonable solutions, once a
laser pulse is optimized for the maximum cut-off energy, and once the laser is optimized for maximal energy
deposition.

The ion spectra calculated by the ion model are from a one-dimensional model; no experimental data
were available to validate the model. This leads to one major issue, the unit for the count-rate dn/dE is in
eV−1m−3 which needs to be corrected. In one dimension the transversal directions extend to infinity. As a
result, the n is a surface density and as such has to be multiplied with a proper volume for a physical particle
count. A new parameter for this model is introduced to solve this problem, which scales the full count rate
onto the interval from 0 to 1. This parameter has the same meaning as ni0 in subsection 2.3.1 and as N0

in chapter 5. The initial ion rate can later be extracted from higher-order simulations or experiments. This
parameter can then be defined as

NL
0 = max

∀E

(︃
dn
dE

(E)

)︃
. (6.11)

For each spectrum, this normalization is applied. Due to the additive nature of the neutron model, a global
scaling factor of the result can be factored out. The resulting model is a normalized weighted sum, and the
true scaling factor can be determined with an experimental input. A RCF (confer to chapter 5) or a comparable
measurement could be done to determine this factor.

Physical Optimization

New particle-in-cell simulations were done for the two parameter sets, given in Table 6.3. These spectra
are normalized by NL

0 and displayed in Figure 6.19. Compared to the results in the table, the simulation
does deviate. The cut-off energies are lower, than predicted, but are still inside the model’s uncertainty.
The simulation for the maximal cut-off energy gives the cut-off at 50.5MeV, where the model’s prediction
is (51.5± 2.7)MeV. The cut-off position for the maximized conversion efficiency from the test simulation is
48.5MeV, where the model’s prediction is (51.2± 2.7)MeV. Example plots are displayed in Figure 6.20 and
are directly scalable with the product of the introduced factor and the repetition rate of the laser NL

0 × νrep.
These plots complement Figure 6.16 and Figure 6.17. For this case, the results for the conventional accelerators
are used as a benchmark. The calculated combined scaling factor is given in Figure 6.21. Only the curves
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Figure 6.20.: Exemplary plots for both optimized liquid leaf parameter sets with a Beryllium target. Ion input
for the model was scaled with NL

0 and a 1Hz.
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the conventional accelerators.
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Table 6.8.: Numerical values for the NL
0 × ν product and the calculated ν for two exemplary NL

0 values.

IAEA2 IAEA4 HBS SONATE RANS

Cut-off 1017 3× 1018 2× 1018 8× 1017 2× 1013

NL
0 = 1010 107 3× 108 2× 108 8× 107 2× 103 Hz

NL
0 = 1012 105 3× 106 2× 106 8× 105 2× 101 Hz

for the maximized cut-off energy case are given. The results for maximized energy conversion only deviate
minimally from these curves. The results are essentially the same. Extracting the numerical values for the
curves in Table 6.8. As visible, a competitive setup is difficult to reach for the large accelerator-based concepts.
According to the dedicated application, this competitive setup assumes a higher neutron yield in each energy
bin and might not be necessary. For the low energy machines, for example, RANS, a repetition rate of some
Hz appears to be sufficient.

The yield can be boosted by an additional factor of two if the expanding plasma from the front side (confer
to section 2.3 or (Fourmaux et al. 2013)) is used as well. Utilizing both beams is complicated; whether it
is applicable depends on application and usability. The main problem is that the neutron yield from both
catchers superpose and signals can be misinterpreted during the experiment.

Deuterons have a higher yield but are not discussed in this combined part. They have the same Z/m ratio
as the eightfold ionized oxygen and contributed significantly to the accelerated particles. Due to the higher
plasma frequency ∝ Z2/m, it started to move earlier than deuterium and significantly reduced its acceleration
efficiency. This caused the model for deuterium to be suppressed in yield and maximum energy and increased
the model’s fluctuations.

This has to be tackled by an additional campaign to fix the proper ionization rates of oxygen to yield realistic
behavior for deuterium.
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7. Final Review and Conclusion

“Neutrons probe deep,
Unveiling secrets within,
Science finds truth there.”

As presented in the previous chapters two components for a joined surrogate model were determined. Both
parts can be used to understand and optimize an ion source or compare the neutron yield from proton and
deuteron reactions. First, both models and their respective traits and problems are reviewed. Then in the
second part, the application to the real world is discussed. The last two parts then conclude and make an
outlook for further developments.

7.1. Model Review

Both models’ capabilities and drawbacks are reviewed in this section.

The ion surrogate can predict ion spectra, especially protons, depending on the physical parameters. The
model focuses on the proton behavior, since the model for the deuterium spectrum resulted in some unexpected
behavior, contradicting higher-order PIC simulations. Sensitivity analyses have made it possible to predict
the existence of proton cut-off energy variations, depending on higher-order combinations of their respective
input parameters. These higher-order input dependencies allow for non-trivial optimization of the full system.
Because the model, as mentioned in section 6.1, is trained exclusively on 1D PIC data it has certain limitations.

• One dimensional simulation as mentioned in subsection 6.1.1 would accelerate particles into infinity
and it can therefore overestimate the spectral energy cut-off. This was successfully dealt with using the
acceleration time determined by (Lécz 2013, Eq. 4.1, p. 47). Proper scaling of such an improved system
towards a 2D or 3D PIC simulation also exists, such that the model can be regarded as scalable towards
higher dimensional simulations (Sinigardi et al. 2018).

• Effects of transverse particle movement can not be taken into account. The lack of transverse move-
ment results that the multi-species-based variation being more discontinuous than measured in the
experiments.

• The spectral predicted value dn/dE is not equal to the particle counts dN/dE, n is particle density with
the number of particles per volume. Taking the output in particles per cubic meter overestimates the
direct count by several orders of magnitude since the irradiated volume is much smaller than cubic
meters.

• Further limitations arise from the ionization state of the Oxygen particles used in the simulations. While
the ionization energies necessary (confer to Table 2.1) are known, it is not clear how the charge state
distribution inside the plasma behaves. Applying a tunnel ionization model for the acceleration field on
the back side ions underestimates the ionization state because collisions are not taken into account. Full
ionized oxygen was assumed for the model presented here, which is also not the ideal representation of
the system. As discussed in section 6.1 the high ionized oxygen suppresses the acceleration efficiency of
deuterium. The fewer oxygen ions are highly ionized, the better the acceleration for deuterium.
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These limitations can be overcome by applying the transfer learning method using higher dimensional
simulations and experimental data or introducing a better model for the ionization of oxygen.

The neutronmodel is successfully used to evaluate and compare different types of accelerators. The behavior
for the same machine with different particle intensities is consistent. The uncertainty is small in a large energy
range and the cutoff values determined correlate well with the expected cut-off from the Q-values (confer
to section 2.4). Although the predictions are good in the area where they are needed the model has some
limitations.

• The geometry of the converter was fixed as a cylinder with a constant diameter and a flexible length.
This does not allow for optimization in the geometry shape.

• Some data sets were not successfully calculated, this implies that there might be issues with the code
and that the predictions for Vanadium targets might not be true.

• The model lacks absolute validation. As mentioned in subsection 6.2.3 the ideal workflow, verifying
simulated data with experimental data and applying a correction was not possible. The lack of comparable
experimental data makes it further difficult to verify the simulation model with other published studies.
The results, therefore, have to be compared with the same model.

The neutron transport equation, which is a basis for the neutron production simulations could be solved more
efficiently by applying more sophisticated methods from the field of machine learning. Further comparable
experimental data to introduce a numerical benchmark of the model with the real world can increase the
model’s performance and validity.

7.2. Application to Real-World Machines

These models should be used to identify ideal working points to aid the design and setup of machines and
experiments. Since the assumed physical parameters are not directly measured in an experiment, some
transfer has to be done to make the models applicable. For example, the laser irradiation size on the target
can not even be measured at all, during the experiment. This makes it necessary to correlate the measurable
parameters to the needed physical parameters. This means that if the system is known well enough a map
between the systems’ observables O and the physical parameters P used in this thesis can be constructed.

P = f(O), (7.1)

strictly speaking, f is a surrogate model itself. f can be determined by dedicated experiments and supported
with simulations of the corresponding laser facility under investigation. This surrogate f is then machine-
dependent and can vary, while the model presented here is universally valid as long as it is not extrapolated
beyond the region of input parameters.

The inversion of f allows determining the observable parameters needed for the ideal work point. As soon
as the different optima for a system are known, the ideal machine values can be used to regulate a machine.
This is exemplarily sketched in Figure 7.1.

Experimental Validations

Experimental validations of the neutron model are straightforward since the model allows to predict neutron
yields for laser-driven and accelerator-driven spectra simultaneously.

Validation of the ion model needs a little bit more work to be validated. First, the whole spectrum has
to be measured, and the deviations from the exponential curve must be measurable. To achieve this, an
experimental setup that can resolve particle species and spectral distribution has to be used (Alejo et al. 2014).
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Figure 7.1.: Application flow in a real machine.

If RCFs are supposed to be used, their setup and traits must be aligned with proper calibrations (Appendix
A) to get remotely close to the sensitivity needed. Secondly, when the data is available, the model has to be
scaled or retrained in a transfer learning sense to fit the data onto a real system.

Even if the system is not adjusted as explained, the model’s prediction can still lead to islands of efficient
acceleration parameters, which can be directly checked. The calculations in section 4.1 have shown that the
governing equation system can be reduced to the Buckingham representation. In this representation, each set
of physical parameters resulting in the same Πi result in the same particle dynamics and therefore yield the
same result. It is, therefore, possible to verify the results for other laser systems that were not investigated.
An example calculation was given in subsection 4.1.2.

7.3. Conclusion

In the course of this thesis, the fundamentals for compact laser-driven ion accelerators using TNSA have
been discussed. This led to a discussion of the fundamental equations systems and the investigation of
their similarities. Due to the non-existence of closed-form solutions, data-driven modeling was attempted.
The proposition and implementation of an algorithmic data processing tool mitigated problems with the
experimental data sets. The modeling approach using neural networks and numerical simulations allows, for
the first time, to quickly predict full particle spectra and generate insight into the governing equation system.
Finding a nontrivial optimum for energy deposition in a laser-driven proton beam was achieved. Furthermore,
comparable spectra for conventional and laser-driven neutron sources were calculated.

These results can be applied to real machines and deliver pointers toward more efficient usage.

7.4. Outlook

The results presented so far have some limitations, as discussed above. The models are set up so that further
improvement is possible. Both models can be improved by including relevant experimental data and applying,
for example, transfer learning better to fit the models onto the physical domain of interest.

The ion prediction model can further be improved by including 2D or 3D particle-in-cell simulations. This
would then incorporate transverse motion inside the target and is expected to smooth out the multi-species
effects on the spectrum.

The developed tool for the enhanced evaluation of radiochromic film stacks can also further be improved by
adding additional capabilities. When all supporting data is supplied by the tool itself, and the evaluations no
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longer rely on externally generated data, the reproducibility of the data sets is further strengthened.
For a possible design study for new machines based on liquid leaf targets, these imprecisions should be

tackled further to enhance the prediction level of the models. It should, as mentioned previously, be supported
by an experimental study, to fix the scaling parameter NL

0 and to show the system’s high repetition rate
operation capabilities.
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A. Radiochromic Films – Functionality, Calibrations,
and Limitations

Radiochromic films, mainly conceived and designed for dose verification in radiotherapy, are also widely
used to characterize and quantify the ultra-intense proton pulses produced in laser-particle acceleration.
Their capability to withstand and measure high doses and insensitivity to electromagnetic disturbances make
them ideal for the harsh environment encountered in relativistic laser-matter interaction experiments. The
film’s response, i.e. the amount of darkening per absorbed dose, is non-linear. Consequently, quantitative
dose measurements require a calibration of the response curve over the application dose range. With new
generations of RCF being developed, these calibrations must be redone. Differences in thickness, density,
and composition of the active layer, and even the crystallinity of the color molecules affect the response, and
a simple scaling from one generation to the next is generally impossible. Even for the same film type, the
manufacturer advises that “...the thickness of the active layer will vary slightly between different production
lots...” (Ashland Global Holdings Inc, Delaware, U.S. 2022), leading to different response curves for films
from different production batches.

A.1. Calibration Model

The first part of this section describes the data pipeline to enable calibration and describes the relations
necessary to express the relevant quantities. The second part of this section gives then the actual fit model
and describes the concrete bootstrap steps to determine the model’s uncertainty.

Preparing Input Data

The relevant quantities, color, and dose, have to determine from the measured data.

Determining the Color Values

Experimental data are taken for several dose values. Each dose value can be assigned a color value triple Ξ
consisting of the R, G, B values for the dose. All equations, therefore, apply for each of these components
individually as indicated by the index i. They are obtained from the scanned RCFs by

Ξi =

(︁
65535− PHi

)︁
−
(︁
65535− BGi

)︁
65535

=
BGi − PHi

65535
(A.1)

where PH is the pixels mean value and BG corresponds to the mean background value. BG is determined
from samples before calibration and PH is the current signal during calibration or later also the measured
signal. Equation A.1 also implies that the Ξ ranges from 0 to 1 while 0 corresponds to a white and 1 to a
black pixel. The scanned RCFs’ color scaling is given by 16-bit integers, such that 65535 is the maximum
achievable integer in the scanning range.
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The uncertainty on this value can be assumed to be determined via the quadratic addition of both components

σΞi =

√︂
σBG2

i + σPH2
i

65535
(A.2)

Determining the Dose Value

The dose D can be calculated with the relation given in Equation A.3. This relation is valid for a fixed energy
target, in this case for protons impinging on the RCF with 68MeV.

D =
Q · Eloss[eV]
A · x · ϱ

(A.3)

whereQ is the charge crossing the RCF, Eloss is the energy loss of the projectile inside the RCF, A the irradiated
area, x the thickness of the RCF and ϱ the density of the irradiated RCF.

All of these quantities have uncertainties. The value and the uncertainty for Eloss are calculated by Monte
Carlo simulations, while the other parameters are measured quantities. These values are assumed to be
statistically uncorrelated, therefore the covariance terms are equal zero, which allows the final uncertainty to
be calculated as

(σD)2 =

(︃
Eloss

A · x · ϱ
σQ

)︃2

+

(︃
Q

A · x · ϱ
σEloss

)︃2

+

(︃
Q · Eloss
A2 · x · ϱ

σA

)︃2

+

(︃
Q · Eloss
A · x2 · ϱ

σx

)︃2

+

(︃
Q · Eloss
A · x · ϱ2

σϱ

)︃2

(A.4)

By construction and normalization, the calibration function is forced through the origin, which is an
additional point that has to be taken into account.

Calibration Function

The calibration function to be fitted for each R, G, and B component is a rational function. This prevents
polynomial overshoot and reproduces the physics and saturation behavior observed in RCFs. It is also, except
for a small modification the same as presented in the GafChromic manual.

Ξ(D)i = D
ai + biD

ci +D
. (A.5)

a, b, c are the calibration parameters. If b is set to zero the function is the same as given in the manual. This
parameter will appear to be very small in the current results. It is still important since it changes the saturating
behavior if higher doses are applied.

Uncertainty on the Fit Parameters

A large problem now is minimizing the resulting uncertainties and finding the best fit for the data. Normally
a least-squares problem is used to minimize the residuals using an established algorithm. This is problematic
since a least-squares problem can not deal with the 2-dimensional uncertainties in the input data. The data has,
as discussed above, uncertainties in the color value and in the dose value creating a non-linear optimization
problem. A proposed way to deal with this is using a Monte Carlo approach re-sampling N data points
according to the specific uncertainties and doing descriptive statistics on the N + 1 variants:

1. Define probability density function for each dimension:
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D: Normal distribution with
µ = D and σGauß = σD.

Ξ: Normal distribution with
µ = Ξ and σGauß = σΞ

2. Resample data N times with random variables following the distribution functions above.

3. Fit each of the N + 1 data sets with unweighted least-squares fits.

4. Descriptive statistics on the resulting parameters to get mean values, variances, and covariances.

Applying these steps and supplying the relevant quantities to the evaluation is necessary. A final remark for
the calibration is that it is advantageous to limit the fit parameters value to R+, such that the resulting rational
function is invertible.

A.2. Application and Uncertainty Quantification

The fit values a, b, c and their corresponding uncertainties and covariances are the results of the calibration.
With the inverted fit function (Equation A.5), color can then be correlated to the deposited dose in the RCF.
All 3 RGB components have to be taken into account.

Di(Ξi) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−ai + Ξi +

√︂
(a2i − 2aiΞi + 4biciΞi + Ξ2

i

2bi

ciΞi

(ai − Ξi)
2 for b = 0

(A.6)

Weighting

All RGB channels have to be considered for calculating the proper dose value since different channels saturate
at different dose values. The valid use range of the RCF can therefore be increased. It has been shown in the
past, that RCFs could be used for ranges up to 4 times higher than the manufacturer gave. This is a feature
that is important for our application in dosimetry for laser-driven proton beams.

Taking these different saturation ranges into account makes it necessary to define the weight of the individual
color channel. The weight in this case is a measure of the degree of saturation which can be determined by
the derivative of the fit function with respect to the dose value. If the derivative goes toward 0 the signal is
saturated, as long as this is not the case, the signal can be properly used. The derivative is given as

∂ Ξ(D)

∂D
=

ac+ bD(2c+D)

(c+D)2
(A.7)

This approach applies only the conversion for the color codes still in the dynamic range when the derivative is
not close to zero.

Uncertainty Quantification

In the following section, a detailed discussion of the uncertainties is presented. The base equation for this
discussion is given by

σ2 (y) =

N∑︂
i=1

N∑︂
j=1

∂f

∂xi

∂f

∂xi
σ (xi, xj) , (A.8)
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where y is the measured or output value, xi the input value, f is the functional relation and σ describes
the corresponding uncertainties. For i = j this defaults to the Gaussian error propagation while in the full
expression, i ̸= j yields the corresponding covariance terms.

The numerical data and the results taken from the calculation show, that the covariance terms are non-zero
and can also be negative. Therefore, the resulting uncertainty might be reduced by considering the covariances.

Components for the Dose Error

Applying the Equation A.8 on the converted equation yields the final uncertainty on the dose value. This
makes it necessary to determine the partial derivatives which are given below:

∂D

∂a
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1

2b

(︄
−1 +

a− Ξ√︁
a2 − 2aΞ + Ξ(4bc+ Ξ)

)︄

− cΞ

(a− Ξ)2
for b = 0

(A.9)

∂D

∂b
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−1

2b

2bcΞ√
a2 − 2aΞ + 4bcΞ + Ξ2

+

−a+ Ξ+
√
a2 − 2aΞ + 4bcΞ + Ξ2

2b

0 for b = 0

(A.10)

∂D

∂c
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ξ√︁

a2 +−2aΞ + Ξ (4bc+ Ξ)

Ξi

(ai − Ξi)
2 for b = 0

(A.11)

∂D

∂Ξ
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1

2b

(︄
1 +

−a+ 2bc+ Ξ√︁
a2 − 2aΞ + Ξ(4bcΞ)

)︄

ci (ai + Ξi)

(ai − Ξi)
3 for b = 0

(A.12)

A.3. Experimental Data

These methods have been applied to several sets of calibration data, to make it usable for the developed
routine and its implementation presented in chapter 5 and (Schmitz, Metternich, et al. 2022) (Schmitz and
Endl 2022). The plasma physics groups at GSI and IKP TU Darmstadt supplied the data and reevaluated
during this study.

Calibration was done for two of the latest GAF-ChromicTM films, EBT3 and HD-V2. The dose range was
dynamic from 0.1Gy to 20Gy and 10Gy to 1000Gy respectively. These film types cover a wide dose range, and
their combinations are often used to cover the entire spectrum of proton pulses produced in laser-driven proton
acceleration experiments. The Calibration measurements were done for several RCFs with ionization chambers
located directly behind the aperture. The proton therapy scattering system was employed to achieve a high
spatial homogeneity (< 2%) of the proton beam over an area of 22x12 mm, defined by a rectangular aperture
located a few cm in front of the films to be irradiated. The total number of protons reaching the RCF during
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irradiation was measured by an ionization chamber located directly behind the aperture. The uncertainty in
this measurement is estimated to be approximately ±3%, based on cross-calibration measurements against a
second ionization chamber. The ionization chamber was initially calibrated against the absolute beam current
measurement from a Faraday cup.

The analyzed data is presented below. As can be seen, the relative dose error, the maximum error in dose
determination using the calibration from a different batch, can be as high as 50% to 200%. Having the
calibration data for the actual production batch, though, allows measuring the dose with an uncertainty on
the level of a few percent.

A.4. Limitation of the Data and Improvements

As visible in the data, only a few calibration curves are saturated with the current radiation levels. It has been
shown that, if the different sensitivities of each RGB component are taken into account, dose values of up to
5 kGy or more can be measured (A. Schreiber 2012). It is, therefore, advisable to calibrate to higher energies.
Furthermore, accelerators provide the dose in a longer time scale which further introduces uncertainty and
has to verify to increase precision.

The low energies of the calibration are problematic during evaluation. Irradiated RCFs acquire dose in
dependence on the particle count, their energy, and the governing spectrum. For laser systems such as
PHELIX at GSI, evaluation using the data below saturates too early. The maximum irradiated energy and
its corresponding color values determine this early saturation threshold. Suppose these color values are
passed, and further change is measured. In that case, it is not advisable to extrapolate the fit function since
the non-linear saturation behavior is not precisely known. This introduces a maximal measurable dose that
strongly biases the output since it underestimates particle counts.

A.5. Collection of Evaluated Calibration Data

This section lists the calibration results for both types of functions and both film types investigated.
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calibration_campaign CAL-2019-1
calibration_date 15.11.2019
calibration_done_by Paul Neumayer, Abel Blazevic
calibration_description Irradiation at HZB (Berlin) with 68MeV protons
film_type EBT
film_LOT 03161503
film_number 2

Fit results if b is set to zero.

a b c

R 5.23E-1 0.00 3.22
G 6.23E-1 0.00 1.18E1
B 4.75E-1 0.00 4.13E1

Covariance matrix values if b is set to zero.
σaa σbb σcc σab σac σbc

R 8.28E-5 0.00 3.83E-2 0.00 0.00 1.54E-3
G 9.65E-4 0.00 1.39 0.00 0.00 3.49E-2
B 1.57E-2 0.00 2.17E2 0.00 0.00 1.83
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Fit results if b is left variable.

a b c

R 4.69E-1 2.35E-3 2.69
G 4.82E-1 3.87E-3 8.49
B 3.89E-1 1.16E-3 3.33E1

Covariance matrix values if b is left variable.
σaa σbb σcc σab σac σbc

R 8.20E-4 1.36E-6 1.06E-1 -3.18E-5 -3.22E-4 8.81E-3
G 1.04E-2 7.99E-6 5.73 -2.77E-4 -6.19E-3 2.40E-1
B 2.58E-2 4.02E-6 2.65E2 -2.56E-4 -2.29E-2 2.58
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calibration_campaign CAL-2019-1
calibration_date 15.11.2019
calibration_done_by Paul Neumayer, Abel Blazevic
calibration_description Irradiation at HZB (Berlin) with 68MeV protons
film_type EBT
film_LOT 05191502
film_number 1

Fit results if b is set to zero.

a b c

R 5.13E-1 0.00 3.60
G 6.02E-1 0.00 1.19E1
B 3.84E-1 0.00 3.13E1

Covariance matrix values if b is set to zero.
σaa σbb σcc σab σac σbc

R 1.35E-4 0.00 6.79E-2 0.00 0.00 2.64E-3
G 8.55E-4 0.00 1.39 0.00 0.00 3.30E-2
B 3.83E-3 0.00 5.70E1 0.00 0.00 4.62E-1
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Fit results if b is left variable.

a b c

R 4.61E-1 2.20E-3 3.03
G 3.82E-1 5.98E-3 6.63
B 1.74E-1 3.55E-3 1.28E1

Covariance matrix values if b is left variable.
σaa σbb σcc σab σac σbc

R 1.22E-3 1.88E-6 1.91E-1 -4.56E-5 -5.12E-4 1.45E-2
G 8.16E-3 6.46E-6 4.72 -2.22E-4 -5.13E-3 1.94E-1
B 1.50E-2 4.88E-6 1.12E2 -2.61E-4 -2.18E-2 1.29
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calibration_campaign CAL-2019-1
calibration_date 15.11.2019
calibration_done_by Paul Neumayer, Abel Blazevic
calibration_description Irradiation at HZB (Berlin) with 68MeV protons
film_type EBT
film_LOT 07291902
film_number 6

Fit results if b is set to zero.

a b c

R 6.02E-1 0.00 2.10
G 5.78E-1 0.00 6.70
B 4.05E-1 0.00 1.51E1

Covariance matrix values if b is set to zero.
σaa σbb σcc σab σac σbc

R 1.18E-4 0.00 2.18E-2 0.00 0.00 1.32E-3
G 3.94E-4 0.00 3.22E-1 0.00 0.00 1.04E-2
B 1.32E-3 0.00 6.05 0.00 0.00 8.62E-2
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Fit results if b is left variable.

a b c

R 5.18E-1 4.31E-3 1.59
G 4.47E-1 4.49E-3 4.61
B 2.92E-1 2.80E-3 1.02E1

Covariance matrix values if b is left variable.
σaa σbb σcc σab σac σbc

R 7.94E-4 1.84E-6 3.71E-2 -3.56E-5 -2.08E-4 4.98E-3
G 3.45E-3 4.45E-6 8.80E-1 -1.18E-4 -1.74E-3 5.35E-2
B 9.63E-3 6.25E-6 1.94E1 -2.34E-4 -9.92E-3 4.26E-1
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calibration_campaign CAL-2019-1
calibration_date 15.11.2019
calibration_done_by Paul Neumayer, Abel Blazevic
calibration_description Irradiation at HZB (Berlin) with 68MeV protons
film_type EBT
film_LOT 09121802
film_number 8

Fit results if b is set to zero.

a b c

R 5.56E-1 0.00 2.44
G 5.53E-1 0.00 7.01
B 3.79E-1 0.00 1.51E1

Covariance matrix values if b is set to zero.
σaa σbb σcc σab σac σbc

R 1.97E-4 0.00 4.93E-2 0.00 0.00 2.62E-3
G 4.38E-4 0.00 4.13E-1 0.00 0.00 1.23E-2
B 1.44E-3 0.00 7.64 0.00 0.00 1.01E-1
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Fit results if b is left variable.

a b c

R 4.65E-1 4.44E-3 1.77
G 3.95E-1 5.34E-3 4.31
B 2.05E-1 4.31E-3 6.94

Covariance matrix values if b is left variable.
σaa σbb σcc σab σac σbc

R 1.29E-3 2.83E-6 8.50E-2 -5.63E-5 -3.97E-4 9.73E-3
G 3.64E-3 4.87E-6 1.01 -1.26E-4 -1.96E-3 5.91E-2
B 8.64E-3 6.26E-6 1.77E1 -2.23E-4 -9.65E-3 3.87E-1
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calibration_campaign CAL-2019-1
calibration_date 15.11.2019
calibration_done_by Paul Neumayer, Abel Blazevic
calibration_description Irradiation at HZB (Berlin) with 68MeV protons
film_type HD
film_LOT 01091801
film_number 7

Fit results if b is set to zero.

a b c

R 5.44E-1 0.00 1.78E1
G 5.35E-1 0.00 7.17E1
B 4.11E-1 0.00 1.62E2

Covariance matrix values if b is set to zero.
σaa σbb σcc σab σac σbc

R 1.37E-5 0.00 6.34E-1 0.00 0.00 1.59E-3
G 2.43E-5 0.00 1.28E1 0.00 0.00 1.31E-2
B 4.12E-5 0.00 9.52E1 0.00 0.00 5.34E-2
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Fit results if b is left variable.

a b c

R 5.33E-1 1.55E-5 1.69E1
G 4.96E-1 3.75E-5 6.13E1
B 3.32E-1 5.98E-5 1.10E2

Covariance matrix values if b is left variable.
σaa σbb σcc σab σac σbc

R 5.74E-5 6.56E-11 8.44E-1 -5.44E-8 -4.26E-6 4.94E-3
G 1.58E-4 1.25E-10 1.91E1 -1.30E-7 -3.46E-5 4.63E-2
B 2.90E-4 1.80E-10 1.53E2 -2.14E-7 -1.35E-4 1.95E-1
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calibration_campaign CAL-2019-1
calibration_date 15.11.2019
calibration_done_by Paul Neumayer, Abel Blazevic
calibration_description Irradiation at HZB (Berlin) with 68MeV protons
film_type HD
film_LOT 11171501
film_number 4

Fit results if b is set to zero.

a b c

R 5.93E-1 0.00 1.19E2
G 5.51E-1 0.00 3.72E2
B 3.57E-1 0.00 7.04E2

Covariance matrix values if b is set to zero.
σaa σbb σcc σab σac σbc

R 1.27E-4 0.00 9.85E1 0.00 0.00 9.27E-2
G 3.17E-4 0.00 1.04E3 0.00 0.00 5.34E-1
B 6.11E-4 0.00 1.03E4 0.00 0.00 2.41
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Fit results if b is left variable.

a b c

R 5.21E-1 5.99E-5 9.27E1
G 3.77E-1 1.00E-4 2.08E2
B 2.06E-1 6.83E-5 3.40E2

Covariance matrix values if b is left variable.
σaa σbb σcc σab σac σbc

R 1.00E-3 5.70E-10 1.90E2 -7.18E-7 -2.69E-4 4.01E-1
G 2.23E-3 8.21E-10 2.06E3 -1.30E-6 -1.15E-3 2.08
B 4.28E-3 9.73E-10 2.59E4 -1.97E-6 -4.62E-3 1.04E1
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calibration_campaign CAL-2019-1
calibration_date 15.11.2019
calibration_done_by Paul Neumayer, Abel Blazevic
calibration_description Irradiation at HZB (Berlin) with 68MeV protons
film_type HD
film_LOT 12151402
film_number 3

Fit results if b is set to zero.

a b c

R 6.96E-1 0.00 2.89E2
G 7.24E-1 0.00 9.29E2
B 4.46E-1 0.00 1.78E3

Covariance matrix values if b is set to zero.
σaa σbb σcc σab σac σbc

R 4.51E-4 0.00 7.06E2 0.00 0.00 4.89E-1
G 4.82E-3 0.00 2.99E4 0.00 0.00 1.16E1
B 2.11E-2 0.00 8.18E5 0.00 0.00 1.30E2
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Fit results if b is left variable.

a b c

R 6.51E-1 2.87E-5 2.62E2
G 6.15E-1 4.27E-5 7.63E2
B 3.63E-1 2.26E-5 1.41E3

Covariance matrix values if b is left variable.
σaa σbb σcc σab σac σbc

R 3.43E-3 1.22E-9 1.65E3 -1.91E-6 -1.13E-3 2.21
G 2.17E-2 3.50E-9 5.70E4 -7.99E-6 -1.13E-2 3.39E1
B 3.11E-2 1.49E-9 8.71E5 -4.90E-6 -2.09E-2 1.61E2
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B. Ion Model Remarks

B.1. Transversal Lorentz Boosted 1.5D PIC Simulations

Modeling oblique laser incidence onto a target is inherently at least a 2D problem, which requires substantially
more computational power than a similar 1D geometry to simulate. Bourdier (Bourdier 1983) thus proposed
a method in which a relativistic Lorentz boost is applied to the frame of reference in the simulation. This
method has later been employed by Gibbon et al. (Gibbon et al. 1999) in a PIC code.

Here, we would like to present the implementation of this technique yet again for a modern PIC code while
also correcting some mistakes in the calculations by Gibbon et al.. A schematic of the general principle is
shown in Figure B.1. To obtain the results in the lab frame a back transformation must be applied to the
diagnostics obtained from the simulation. For finding the transformations, a simple Lorentz boost in

Lab Frame

y

x
vy = 0

Plasma

n⃗

k⃗

Θ

Simulation Frame

y′

x′ vy = c sinΘ

Plasma

n⃗

k⃗

−v⃗y v⃗y

Figure B.1.: Schematic of the Lorentz boosted simulation frame versus the implied lab frame. In the simula-
tion frame, the laser appears to be at normal incidence onto the target while the particles appear
to drift in negative y-direction with velocity vy.

y-direction by the velocity vy = c · sin(θ) is applied. In matrix form, this can be represented by:

Λ =

⎛⎜⎜⎝
1/ cos(θ) 0 − tan(θ) 0

0 1 0 0
− tan(θ) 0 1/ cos(θ) 0

0 0 0 1

⎞⎟⎟⎠ , (B.1)

since γ0 =
(︁
1− (vy/c)

2
)︁−1/2

= 1/ cos(θ). This transformation matrix can be used to transform all the
quantities of the particles and the electromagnetic fields. Indicating quantities in the transformed system with
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a prime, we find after carrying out all transformations

k′y = 0

ω′
L = ωL/γ0

a′0 = a0 ,

(B.2)

where k′y is the y-component of the wave vector in the boosted system, showing that the laser is now at normal
incidence. Note that the dimensionless laser amplitude a0 is invariant under the transformation (Gibbon et al.
1999). Further, denoting PIC code units with a tilde, we find

x̃′ = x̃/γ0

t̃
′
= t̃/γ20

(B.3)

giving a re-scaling of both the simulation time as well as the cell grid. The initial particle density is also
affected by

ñ′
0 = ñ0 · γ30 . (B.4)

With these conditions, the particles can be initialized in the boosted frame. The relative velocity vy is added
as a permanent drift which is handled and relativistically added to the particles by the code.
From the diagnostics in the simulation, we can obtain desired quantities via a back transformation. For the
particle kinetic energies, we find using the energy-momentum relation:

Ẽ = γ0(Ẽ
′
+ ṽyp̃

′
y)

= γ0

(︃
1

mec2

√︂
p′2c2 + (m0c2)2 + ṽyp̃

′
y

)︃
⇒ Ekin = γ0mec

2

(︄√︄
p̃′2 +

m2
0

m2
e
+ ṽyp̃

′
y

)︄
−m0c

2 ,

(B.5)

where m0 is the particle rest mass. Noting that B̃′
x = 0, we can find relations to recover the fields of the laser.

The non-zero fields are:

For s-polarization:

Ẽz = Ẽ
′
z

B̃x = ṽyẼ
′
z

B̃y = B̃
′
y/γ0

(B.6)

For p-polarization:

Ẽx = Ẽ
′
x − ṽyB̃

′
z

Ẽy = Ẽ
′
y/γ0

B̃z = B̃
′
z − ṽyẼ

′
x

(B.7)

Using the field transformations and assuming that reflection at the plasma surface does not change polarization,
we find for the absolute magnitude of the Poynting vector:

|S⃗| = |S⃗′| · γ20 , (B.8)
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Figure B.2.: Simulation of laser incidence angles between 0◦ and 85◦. The plot shows the incidence angle
versus the relative absorption of a laser into a hydrogen plasma target (dotted red line) and the
maximum proton kinetic energy behind the target (blue solid line). The laser impinges on the
target with p-polarized fields. Classical resonance absorption, also known as the Desinov curve
(Gibbon 2005), is shown as a dashed line.

with which the relative absorption of the laser into the plasma can be calculated by dividing the incoming
Poynting flux by the outgoing Poynting flux.

It should be noted that while the Lorentz boosted frame method can replicate incidence angle-based
behavior, it cannot replace a 2D or even 3D simulation on all accounts (Gibbon et al. 1999). Firstly, in
general, all physical quantities depend separately on the transformed coordinates x, y, z, t, px, py, pz. Thus, the
Lorentz-boosted simulation can only be used for a problem independent of y and z. Additionally, reducing the
geometry after the boost to 1D limits the spatial dynamics of the particles. Since only the x-axis is present, all
particles (while having 3D velocities) can only move along a straight line (i.e. have only 1 spatial dimension).
This disregards the angular spread at the back of the target so that the particles can be accelerated for longer
times and thus end up with higher energies than a similar 2D simulation. Distinctly 2D effects such as hole
boring can also not be modeled accurately.

To illustrate the capabilities of this method, however, the relative laser absorption of a p-polarized laser
impinging on a hydrogen plasma target was measured for varying laser incidence angles using the above
method in the Smilei PIC code. The resulting absorption curve is shown in Figure B.2. The results agree
well with 2D simulations by Cui et al. (Cui et al. 2013) using a similar target and laser (see Figure B.4 for a
comparison).

Explicit Lorentz Boost for Oblique Laser Incidence

In the following section, the full transformation is discussed in more detail, and explicitly calculate the relations
we mentioned before:
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The transformation matrix for the considered boost in y-direction by vy = c · sin(θ) is given by

Λ =

⎛⎜⎜⎝
1/ cos(θ) 0 − tan(θ) 0

0 1 0 0
− tan(θ) 0 1/ cos(θ) 0

0 0 0 1

⎞⎟⎟⎠ , (B.9)

since γ0 =
(︁
1− (vy/c)

2
)︁−1/2

= 1/ cos(θ). Now all relevant quantities of the system are transformed using the
matrix Λ.
Firstly, the four-position R, the four-momentum P , the four-wave vector K and the four-current J are given
as follows:

R = (ct, x, y, z)⊤

P = (γm0c, px, py, pz)
⊤

K = (ωL/c, k · cos(θ), k · sin(θ), 0)⊤

J = (cρ, jx, jy, jz)
⊤

(B.10)

where k = ωL/c is the magnitude of the wave vector, ρ is the charge density and j⃗ is the current density. Here,
the geometry of the wave vector from Figure B.1 has already been applied, reducing the wave vector to two
spatial dimensions. By left multiplication of Λ these quantities can be transformed into the boosted frame.
This multiplication yields

R′ = (γ0(ct− yβ0), x, γ0(y − ctβ0), z)
⊤

P ′ = (γ0(γm0c− pyβ0), px, γ0(py − γm0cβ0), pz)
⊤

K ′ = (ωL/(cγ0), k0/γ0, 0, 0)
⊤

J ′ = (γ0(cρ− jyβ0), jx, γ0(jy − cρβ0), jz)
⊤

(B.11)

where a prime indicates quantities in the transformed system and β0 = vy/c = sin(θ). Most importantly here
we find k′y = 0 and ω′

L = ωL/γ0. Also, since the particles are assumed cold at t = 0, we find for the initial
density ρ′0 = γ0ρ0.
The next transformation is for the electromagnetic fields. Here, s- and p-polarized incidence lasers have to be
distinguished. To transform the electric and magnetic fields of the incoming laser, the electromagnetic tensor
is used:

Fµν
s-pol =

⎛⎜⎜⎝
0 0 0 −Ez/c
0 0 0 By

0 0 0 −Bx

Ez/c −By Bx 0

⎞⎟⎟⎠ (B.12)

Fµν
p-pol =

⎛⎜⎜⎝
0 −Ex/c −Ey/c 0

Ex/c 0 −Bz 0
Ey/c Bz 0 0
0 0 0 0

⎞⎟⎟⎠ . (B.13)

The Lorentz transformation of such a tensor is given by:

Fµ′ν′ = Λµ′
µΛ

ν′
νF

µν , (B.14)
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where a prime again indicates quantities in the transformed system. The calculated fields are

E′
x = 0

E′
y = 0

E′
z = γ0(Ez − vyBx)

B′
x = γ0(Bx − Ezvy/c

2)

B′
y = By

B′
z = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
s-pol (B.15)

E′
x = γ0(Ex + vyBz)

E′
y = Ey

E′
z = 0

B′
x = 0

B′
y = 0

B′
z = γ0(Bz + Exvy/c

2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
p-pol (B.16)

where E′
x, B

′
x

!
= 0 since the laser is at normal incidence in the boosted system. For absorption measurements,

it is useful to have a look at the transformation of the Poynting Vector S⃗. The definition in a vacuum is

S⃗ =
1

µ0
E⃗ × B⃗ , (B.17)

where µ0 is the vacuum permeability. As an example, only the calculation in the p-polarization case is
presented. The s-polarization calculation is equivalent.

S⃗p-pol =
1

µ0
(EyBz,−ExBz, 0)

⊤ (B.18)

⇒ S⃗
′
p-pol =

1

µ0
(E′

yB
′
z,−E′

xB
′
z⏞ ⏟⏟ ⏞

=0

, 0)⊤ (B.19)

=
1

µ0

(︁
E′

yB
′
z, 0, 0

)︁⊤
. (B.20)

The magnitude of the transformed Poynting Vector is determined as

|S⃗′
p-pol| =

1

µ0

√︂
E′2

y B
′2
z (B.21)

=
1

µ0c
E′2

y , (B.22)

since |B⃗| = |E⃗|/c. On the other hand, inserting the transformation into S⃗, yields

S⃗p-pol =
1

µ0

⎛⎝ E′
yγ0
(︁
B′

z − E′
x
vy
c2

)︁
−γ0 (E

′
x − vyB

′
z) γ0

(︁
B′

z − E′
x
vy
c2

)︁
0

⎞⎠ (B.23)

=
1

µ0

⎛⎝γ0E
′
yB

′
z

γ20vyB
′2
z

0

⎞⎠ (B.24)
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such that the magnitude is given by

|S⃗p-pol| =
γ0
µ0

√︂
E′2

y B
′2
z + γ20v

2
yB

′4
z (B.25)

=
E′2

y γ0

µ0c

√︄
1 + γ20

v2y
c2

. (B.26)

The term in the square root can be resolved elegantly once the definition of vy is inserted:

1 + γ20
v2y
c2

= 1 +
1

cos2(θ)
c2 sin2(θ)

c2
(B.27)

=
1

cos2(θ)
(B.28)

= γ20 , (B.29)

and with that

|S⃗p-pol| =
E′2

y γ0

µ0c
γ0 (B.30)

= |S⃗′
p-pol| · γ20 . (B.31)

Next, the transformed quantities in code units are considered, so as to initialize the particles correctly in the
PIC code. For space coordinate,

x̃′ =
ω′x′

c
= x̃/γ0 , (B.32)

while for the time coordinate, since ỹ′
!
= 0:

0
!
= ỹ′ =

ω′

c
γ0(y − ctβ0) (B.33)

= ỹ − t̃ṽy (B.34)

⇒ t̃
′
= ω′γ0

(︂
t− y

c
β0

)︂
(B.35)

= t̃− ỹṽy (B.36)
= t̃− t̃ṽ2y (B.37)
= t̃/γ20 (B.38)

Finally, the critical density transforms as

n′
c

nc
=

ω′2

ω2
=

1

γ20
, (B.39)

such that the initial particle densities in code units become

ñ′
0 =

n′
0

n′
c
= ñ0 · γ30 . (B.40)
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Figure B.3.: Example results for a Lorentz-boosted simulation with an angle of 40 degrees. The dashed line
denotes the fit of Mora’s model (refer to subsection 2.3.1) to the data.
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Figure B.4.: Plot of the absorption of energy in the Lorentz boosted simulation in comparison to the data
from Cui et al. (Cui et al. 2013) and discussed in subsection 2.2.3.
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B.2. Laser Conversion Efficiency

The laser conversion efficiency is important to characterize particle acceleration, especially laser-plasma
acceleration. To retrieve information about the energy in the output spectrum of a TNSA experiment, consider
first a spectrum dN/dE recorded in multiple energy bins of width ∆E. In this case, the number of particles
in bin i is given by the bin’s height multiplied by its width, i.e.

Ni =

(︃
dN
dE

)︃
i

·∆E . (B.41)

Hence, the total energy of the particles within the bin could be approximated by multiplying the particles in
the bin by the bin’s central energy Ei. Summing over all bins yields the total energy of the particles

Etot =
∑︂
i

(︃
dN
dE

)︃
i

·∆E · Ei , (B.42)

which can be generalized in the continuous limit ∆E → 0, giving

Etot =

∫︂ ∞

0

dN
dE

· E dE . (B.43)

Concretely, adjusting for the output format of the neural network models the total energy is given by

Etot = V ·
∫︂ Emax

0
exp

(︃
ln
(︃
dn
dE

)︃)︃
· E dE , (B.44)

where ln
(︂

dn
dE

)︂
and Emax are given by the neural network models and V is a unit volume. To obtain a measure

for the energy conversion efficiency then, the above integral should be weighted by the laser pulse energy EL,
resulting in the maximization problem shown in Eq. (6.6).

B.3. Neural Network Training and Preparation

This section discusses the chosen parameter ranges for the surrogate models based on neural networks.
Training surrogate models is a tedious and numerically expensive task. This means that the training process’s

parameters and data must be defined clearly and reproducible. This section focuses on the data preparation
task and the numerical hyperparameters chosen for the model. Both parts are important if we want to create
fast converging models.

Data Preparation

Neural networks can only be as good as the data used for training them. Convergence is important and
data, therefore, has to be prepared properly. We can only investigate the multi-species effect and subsequent
optimizations if we consider the full spectrum.

The spectral data for the output spectrum is taken on a logarithmic scale since the count rates vary over
several orders of magnitude. The logarithmic data can be directly used to train a model. We tried using the
data directly, but convergence was problematic. This is due to the noise of the data and the mixture-depending
shifts of multi-species plateaus. The signal variation in both cases is similar and it is therefore difficult for the
network to fit the dependencies. To mitigate this we applied a Savitzky-Golay filter with a window size of 7
points and a 3rd-order polynomial (Savitzky et al. 1964). This filter decreased the noise-based fluctuations
and allowed subsequent convergence. We display a comparison for filtered and unfiltered data in Figure B.5,
showing that the major behavior of the curves is reproduced. Still, the bin-to-bin fluctuations in the mid to
high-energy range are minimized.
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Figure B.5.: Savitzky-Golay filter with window size 7 and a 3rd order polynomial. Blue indicates the raw data,
projected to a wider range for visibility and black indicates the filtered signal.
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Numerical Parameters, Training, and Topology

As none of the architectural parameters for these models were known, some outlying hyperparameters were
decided first. For a regression problem, the Rectified Linear Unit (ReLU) activation function is widely used
and was added to every network layer except the output layer which used the identity activation. Similarly,
we chose the mean squared error, suited for regression problems, as loss and it was minimized using the
Adam optimizer with β1 = 0.9, β2 = 0.999 and ϵ = 1× 10−7. The initial learning rate was 0.001 which was
lowered to a minimum of 0.0001 during training should the optimizer detect a plateau in the validation loss
value (Keras’ ReduceLROnPlateau feature). In order for the physical parameters to be more manageable
numerically, all parameters were divided by the maximum value in their range (see Table 6.1) before being
given to the model.
With these outlying parameters in place, the architecture of the FCNs, i.e. the number of layers and the
number of neurons in each layer, was left variable and was optimized for the problem using a hyperparameter
tuning method. Keras Tuner allows for extensive hyperparameter tuning using various optimization algorithms
(O’Malley et al. 2019).

Recalling section 6.1 and in the corresponding publication (Schmitz, Kreuter, et al. 2023), each simulation
output contains information about 100 locations in the energy spectrum of the particles. Hence, the available
data length for the reduced continuous model was 68973× 100 = 6897300 data points. Of these, 81% were
used for training, 9% were used for validation, and 10% were used for testing. Running Keras Tuner on
Google Cloud Compute Engine API from a Google Colab Notebook, Bayesian Optimization could be performed
for the hyperparameters of the continuous model of hydrogen ions. In order to find a model architecture
that most accurately describes the simulation results the number of layers and the number of neurons for
each layer was first optimized to achieve the lowest possible training loss. Every training used a batch size
of 256 and an early stopping mechanism. After 50 trials, each running training twice in order to lower the
chance of a bad local minimum, a suitable architecture was found. However, this optimized model was only
tuned to minimize the training loss of the model without considering the validation data at all. To generalize
the model, hyperparameter tuning was run again on the optimized architecture, this time with L1 and L2
regularization on each layer as the hyperparameters to be tuned and with the tuning objective set to the
mean squared error on the validation set. A schematic of the final optimized model for the continuous energy
spectrum of hydrogen ions is shown in Table 6.2 (a).
Each hidden layer in the network has L1 regularization strength of 1.98× 10−6 and L2 regularization strength
of 3.07 × 10−8. The network achieved a mean squared error of 3.38 on the 620 757 randomly selected
validation data points. As a reminder, this number is equal to the mean squared error on the ln

(︂
dn
dE (E)

)︂
prediction for input parameters {E, [physical parameters]}.
Equivalently, the second model predicting the maximum ion energy could be tuned and optimized. Since the
maximum energy is only predicted per simulation and not per energy bin of the energy spectra, the second
model was trained on 68 973 unique data points. This significantly smaller dataset made the model training
on a home computer feasible. The optimized model for the maximum energy found L1 regularization strength
of 2.3× 10−4 and L2 regularization strength of 1.1× 10−7.
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C. Modeling of Neutron Production

Table C.1.: Data for detectors implemented in the Monte Carlo model. Radius of the detector sphere is 25 cm.
Area gives the absolute covered area of the specific detector, while Ratio gives the percentage of
full coverage. Every second value is grayed to guide the eye. Θmin and Θmax values describe the
minimum and maximum scattering angle which the detector can measure. Θmean is the central
scattering angle of the detector.

Index Θmin Θmax Θmean σΘ Area Ratio
◦ ◦ ◦ ◦ cm2 %

D01 0 5 0.0 5.0 14.94 0.19
D02 5 10 7.5 2.5 44.72 0.57
D03 10 15 12.5 2.5 74.15 0.94
D04 15 25 20.0 5.0 234.12 2.98
D05 25 35 30.0 5.0 342.26 4.36
D06 35 45 40.0 5.0 440.00 5.60
D07 45 55 50.0 5.0 524.37 6.68
D08 55 65 60.0 5.0 592.81 7.55
D09 65 75 70.0 5.0 643.24 8.19
D10 75 85 80.0 5.0 674.12 8.58
D11 85 95 90.0 5.0 684.52 8.72
D12 95 105 100.0 5.0 674.12 8.58
D13 105 115 110.0 5.0 643.24 8.19
D14 115 125 120.0 5.0 592.81 7.55
D15 125 135 130.0 5.0 524.37 6.68
D16 135 145 140.0 5.0 440.00 5.60
D17 145 155 150.0 5.0 342.26 4.36
D18 155 165 160.0 5.0 234.12 2.98
D19 165 170 167.5 2.5 74.15 0.94
D20 170 175 172.5 2.5 44.72 0.57
D21 175 180 180.0 5.0 14.94 0.19
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