
Supporting Information

for Small, DOI: 10.1002/smll.202206085

Understanding Humidity-Enhanced Adhesion of Geckos:
Deep Neural Network-Assisted Multi-Scale Molecular
Modeling

Tobias Materzok,* Hossein Eslami, Stanislav N. Gorb,
and Florian Müller-Plathe

License: CC BY 4.0 International - Creative Commons, Attribution

https://creativecommons.org/licenses/by/4.0/


SUPPORTING INFORMATION
Understanding Humidity-enhanced Adhesion of Geckos: Deep Neu-
ral Network-assisted Multi-scale Molecular Modeling
Tobias Materzok* Hossein Eslami Stanislav N. Gorb Florian Müller-Plathe

Tobias Materzok, Prof. Dr. Hossein Eslami, Prof. Dr. Florian Müller-Plathe
Email Address: t.materzok@theo.chemie.tu-darmstadt.de
Eduard-Zintl-Institut für Anorganische und Physikalische Chemie and Profile Area Thermofluids and In-
terfaces
Technische Universität Darmstadt
Alarich-Weiss-Str. 8
D-64287 Darmstadt
Germany
Prof. Dr. Hossein Eslami
Department of Chemistry, Colleges of Sciences
Persian Gulf University
Boushehr 75168
Iran
Prof. Dr. Stanislav N. Gorb
Zoological Institute Functional Morphology and Biomechanics
Kiel University
Am Botanischen Garten 1-9
D-24118 Kiel
Germany

1



Figure S1: (A) Experimental setup of atomic force microscopy (AFM) experiments that investigate gecko single-spatula
adhesion, e.g., by Huber et al.[1][2][3]. A single seta is glued to a cantilever, and then an ion beam is used to cut off
everything except isolated single spatulae. Since setae are around 100 µm long, the surface is far away from the AFM
tip. (B) The simulation setup used in this work and explained in more detail elsewhere[4]. A virtual ”cantilever” (e.g., a
non-interacting particle) is linked to the spatula shaft haft with a harmonic spring and pulled vertically upwards.

1 Deep neural network

A deep neural network is a network of nodes. A fully connected layer consists of N hidden layers, and
each node of one hidden layer is connected to all nodes of the previous hidden layer, as well as with all
nodes of the next hidden layer. Each node is essentially an activation function that computes the output
using the sum of the node’s inputs that are weighted by their corresponding weight wij. Linear activation
functions like the Rectified Linear Unit (ReLU) or the Scaled Exponential Linear Unit[5] (SELU) are most
commonly used for regression problems like ours. The output of one node oj is the transform of the sum
over all inputs w1j · x1 to wnj · xn, essentially

∑n
i=1wijxi with the activation function φ. We use a bias b

as well (Equation 1).

oj = φ(
n∑

i=1

wijxi + b) (1)

where

φ(x) =

{
x, if x > 0.
αex − α, if x ≤ 0.

(2)

The networks’ weights are tuned such that the input to the network reproduces the output. The back-
propagation algorithm computes the gradient of a loss function with respect to the weights that can then
be used to update weights to minimize the loss using, e.g., gradient descent. Grid-based hyperparameter
search found optimal results for network architecture, activation functions of layers, loss function and op-
timization method. It resulted in us using the mean squared error as the loss function and Adam[6] for
stochastic optimization. In this work, we use the Keras library[7] on top of Tensorflow[8].

Figure 2 illustrates the DNN network architecture. The input vector is connected to a fully connected
layer (6x64). We use a Keras Gaussian noise layer with a standard deviation of 0.1 to regularize the inputs
(the input ranges from 1 to 3000 kJ mol−1 nm−2). To reduce overfitting and improve model generalization,
we applied a Keras Gaussian noise layer to the output. The standard deviation of the latter Gaussian is
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Figure S2: Structure of the deep neural network with two inputs k and kb and two outputs E and ν.

wt% RH (%) Emeso (GPa) vmeso k (kJ mol−1 nm−2) kb (kJ mol−1 nm−2)
0 0 4.529 ± 0.033 0.409 ± 0.002 198 1282
5 52 4.038 ± 0.045 0.435 ± 0.002 109 1250
10 86 3.838 ± 0.040 0.422 ± 0.002 135 1139
20 100 2.247 ± 0.025 0.496 ± 0.004 3 794

Table S1: The predicted anisotropic force constant coefficients of the mesoscale keratin material and the corresponding Young’
moduli and Poisson’ ratios.

computed as 10% of the standard deviation of the mean over the whole output data, where the previously
computed Young’ moduli E and Poisson’ ratios ν are used as the output.

We should note here that we scaled the Poisson ratio to be in the same order of magnitude as Young’s
modulus. Since E of our united-atom gecko keratin ranges from around 2000 MPa to 4500 MPa and
Poisson’s ratio from 0.4 to 0.5, we multiplied the latter by 10000 to make ν range between 4000 and 5000.
Generally, it makes training a neural network easier if all input and outputs are regularized to the same
scale.

Except for the output layer, which uses a linear activation function φ(x) = x, all layers use the scaled
exponential linear unit[5] (SELU) activation function (Equation 2) with a LeCun[9] kernel initializer and
biases are initialized with ones.

2 Computational Details

The united-atom (UA) gecko keratin model uses the GROMOS 54A7 force field[10, 11, 12, 13] for all atoms
present in the system, keratin protein and surface.

In an earlier coarse-grained study[14], we found that only the gecko keratin’s intrinsically disordered
protein regions (IDRs) directly contact the surface and not the beta-folded region of the keratin protein
that polymerizes into nanofibrils. Thus, only the IDRs of the gecko keratin protein are responsible for the
adhesive energetic interaction between spatula and surface. Therefore, we amorphized a gecko beta-keratin
protein (Ge-cprp-9) and only considered the intrinsically disordered parts of the protein.

The exact equilibration protocol, including energy minimization, amorphization at 1300 K with a subse-
quent cooldown, and multi-step equilibrations in the NPT ensemble with and without soft-core potentials,
go beyond this SI.

United-atom keratin simulations are carried out using the GROMACS 2018 software package[15], the
GROMOS 54A7 force field[10, 11, 12, 13], and the SPC/E water model[16]. The production runs to
calculate Young’s modulus are performed in three-dimensional periodic boundary conditions (PBC). The
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Figure S3: Average force-displacement curves of the mesoscale spatula pull-off at 4 different implicit water contents (legend).
The loading rate is 1.66 · 1012 pN s−1. The average force curve is computed from 10 independent samples, and the standard
deviation of the mean is used as the error.

timestep is 2 fs, and a velocity rescale[17] thermostat keeps the temperature at 300 K. A semi-isotropic
Berendsen[18] barostat with a compressibility of 4.5 · 10−5 bar−1 in x and y, and a compressibility of 0
bar−1 in z, keeps the pressure of the system at 1 bar. Therefore, only size fluctuations in x and y are
possible. The system is uniformly strained in the z dimension with a straining rate of 0.00001 nm ps−1 =
1.0 mm s−1. Production runs are repeated five times for five independently generated systems (n = 25).
Young’s modulus is computed with a linear fit to the first 1% strain. Poisson’s ratio is the average over
strain 1% to 5% and calculated using equilibrium runs, i.e., straining the system and running production
run at a constant strain.

Mesoscale keratin simulations use the GROMACS 2018 and 2021 software package[15] and are carried
out with the force field we derived previously[4], except for the bond force field parameterized in this work
using the DNN. The timestep is 20 fs. Van der Waals interactions are modeled using a Lennard-Jones
(12-6) potential with a cutoff of 12 nm and the potential-shift-Verlet scheme[19] as a cutoff modifier for
a physically[20] smooth transition at the cutoff. A velocity rescale[17] thermostat with a coupling time
of τT = 2 ps keeps the temperature at 300 K. For simulations in the NPT ensemble used for validating
Young’s modulus and Poisson’s ratio of the DNN predicted anisotropic force constant coefficients k and kb
a Berendsen[18] semi-isotropic barostat is used, as explained above and in more detail in previous work[4].
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Figure S4: (Top) Spatulae at a material softness corresponding to a low (≈ 0%) humidity (0% water content) attached to
rough surfaces of increasing peak density (from top left with ρPeak = 0 µm−2 to bottom right with 394.12 µm−2). The
average height between the peak and valley is 16 nm for all surfaces. (Bottom) View from below the surface, where only
surface beads (cyan) that interact with the spatula (red) are shown. The ratio Avalley/ASp between the area between peaks
and the spatula area is noted underneath each surface.
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Figure S5: (Top) Spatulae at a material softness corresponding to a high (> 86%) humidity (20% water content) attached
to rough surfaces of increasing peak density (from top left with ρPeak = 0 µm−2 to bottom right with 394.12 µm−2). The
average height between the peak and valley is 16 nm for all surfaces. (Bottom) View from below the surface, where only
surface beads (cyan) that interact with the spatula (red) are shown. The ratio Avalley/ASp between the area between peaks
and the spatula area is noted underneath each surface.
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The prominent material-softening hypothesis in humidity-enhanced gecko adhesion is investigated by a bottom-up coarse-
grained mesoscale model of an entire gecko spatula designed without explicit water particles present, so that capillary
action and water-mediation are excluded. We show that on nanoscopic flat surfaces, the softening of keratin by water
uptake cannot nearly account for the experimentally observed increase in gecko sticking power.
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