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Figure S 1: Full XRD patterns of the different thin films recorded in Bragg Brentano 

Geometry. The grey line shows the theoretical pattern of (PEA)4AgBiBr8 perovskite. The grey 

drop lines indicate the theoretical pattern of the 3D double perovskite Cs2AgBiBr6. The black 

line is the obtained pattern from the pure 3D solar cell, the red line shows the experimental 

pattern of the solar cell with the 0.01 M hybrid as active layer, the blue and green line show 

the experimental patterns of solar cells comprising the 0.06 M and 0.1 M hybrid respectively. 

The red drop line indicates the reflections arising from the gold electrode. 
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Figure S 2: Detector-image of GIWAXS measurement performed on thin films treated with 

0.01 M PEABr and measured with an increased integration time. 
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Figure S 3: SEM topview images of the investigated thin films. Top line shows the through-

lens detector (TLD) images. Lower line shows the images obtained with a circular backscatter 

detector (CBS). The 3D reference is shown on the left upper side, the 0.1 M hybrid in the 

right upper and the 0.06 M hybrid on the left lower side and the 0.01 M on the right lower 

side. 
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Figure S 4: J-V curves of the solar cells investigated in this paper. The curves show rather low 

hysteresis between the forward and the reverse scan. 
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Figure S 5: SEM cross-sections of the investigated solar cells. On the right, the layer-stacks of 

the 3D perovskite and the 2D/3D hybrid perovskite solar cells are shown. 
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Figure S 6: Semi-ln plots of the light intensity dependent VOC measurements. The parameters 

are shown as indicated in the legend. 

 

Figure S 7: EQE EL and MPP measurements of the 0.01 M (red line) and the 3D reference 

(black line) solar cells. 
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Figure S 8: UV-Vis absorption spectra obtained from thin films on FTO substrates. Color 

coding as indicated in the legend. 
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Figure S 9: XPS spectra of the 2D/3D hybrid (red lines) and 3D reference (black line) thin 

films. a) Survey, b) Cs3d, c) N1s, d) Ag3d, e) Bi4f and f) Br3d, all expressing shifts of 100 or 

150 meV. 
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Figure S 10: UPS spectra of the 2D/3D hybrid (red lines) and 3D reference (black line) thin 

films. a) Cut-off measured by applying a 6V bias, b) valence band edge. UPS spectra of doped 

Spiro-OMeTAD with LiTFSI thin film. c) Cut-off measured by applying a 6V bias, d) valence 

band edge. 

The Cut-off (        ) provides the work function (  ) of the material (the distance between 

the vacuum level and the Fermi level) through this equation:               , with    

the excitation energy, i.e. the He I discharge (21.2 eV). 

The doped Spiro-OMeTAD thin film was prepared inside the ultra-high vacuum system and 

directly transferred to the analytic chamber for UPS analysis. It was prepared by the co-

evaporation of LiTSFI and Spiro-OMeTAD. The base pressure of the deposition chamber was 

6.0.10
-8

 mbar and it increased to 2.5.10
-7

 mbar during the deposition process. A current of 625 

mA and of 434 mA was applied to the Al2O3 crucibles containing, respectively, Spiro-

OMeTAD and LiTFSI. Co-evaporation lasted 2 hours.  

The VBM of the 3D reference and the 2D/3D hybrid perovskite were measured similarly with 

UPS. We believe that the preparation or the transfer of the samples to Darmstadt might have 

induced some surface contaminations. The escape depth of the photoelectrons is higher for 
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XPS than for UPS. Therefore, XPS measurements are less influenced by theses 

contaminations and are more reliable. However, it should be pointed out that the main 

conclusion of this section remains unchanged if we take the VBM difference obtained with 

XPS or with UPS. Because of the optical band gap difference a 0.15 eV (XPS) difference or a 

0 eV (UPS) difference still induce an additional electron blocking layer at the 2D/3D 

interface. 

 

Figure S 11: a) SEM cross-sectional image of the measured (PEA)4AgBiBr8 thin films with a 

photograph in the inset. b) Direct Tauc plot of pure (PEA)4AgBiBr8 thin films on FTO. 

 

Figure S 12: Band structure calculations. a) Shows the PBE-SOC-TS band structure of 

(PEA)4AgBiBr8, showcasing the characteristic conduction band splitting of the Bi 6p orbitals 

(b), already well described for Cs2AgBiBr6.
[1]

 Furthermore, the band gap nature changes 

drastically, with the lowest band transition being centered at the Γ point in the Brillouin 

zone.
[2]

 The absolute band gap is underestimated significantly (~ 1.3 eV), a known deficiency 

of the DFT-PBE method, whereas other characteristics like the electronic nature are expected 

to be predicted accurately.
[3]

 The atomic contribution to the frontier orbitals is also identical to 

other previously published 2D Ag-Bi phases, consisting of mostly halide p and Ag d orbitals 

in the valence band, with the conduction band predominantly made up of Bi p and a 

contribution of halide p orbitals.
[2,4]
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