Supporting information:

Dangling bond defects on Si surfaces and their consequences on energy band diagrams

Dominik C. Moritz^{1*}, Wolfram Calvet¹, Mohammad Amin Zare Pour², Agnieszka Paszuk², Thomas Mayer¹, Thomas Hannappel², Jan P. Hofmann¹, Wolfram Jaegermann^{1,2*}

¹Technical University of Darmstadt, Department of Materials and Earth Sciences, Surface Science Laboratory, Otto-Berndt-Straße 3, 64287 Darmstadt, Germany

² Ilmenau University of Technology, Institute of Physics, Fundamentals of Energy Materials, Gustav-Kirchhoff-Straße 5, 98693 Ilmenau, Germany

> *Corresponding authors: <u>dmoritz@surface.tu-darmstadt.de;</u> jaegermann@surface.tu-darmstadt.de

Figure SI1: UP(HeII) spectra of flashed (sample index i_a and i_b) and flash-annealed (ii_a) Si 100 surface (left) and LEED pattern after flash-annealing at 125 eV beam energy (right) indicating a 2x1 surface reconstruction. Flashed samples do not reveal any LEED pattern.

License: CC BY 4.0 International - Creative Commons, Attribution

Table 2: Oxide thickness calculations according to Seah and Spencer¹.

Sample	p-100: I _{si02} /I _{si}	n-100: I _{sio2} /I _{si}	Average ratio	Thickness /nm
Native oxide	0.19	0.22	0.21	0.81
Thermal oxide	0.29	0.27	0.28	1.05

Oxide stoichiometry O/Si-ratio determined with:

$$c_{O}/c_{Si} = \frac{A_{O}}{A_{Si}}$$

with

$$A_{O} = \frac{I_{O1s}}{ASF(BE) \cdot T_{spec}(BE) \cdot d(BE)}$$
$$A_{Si} = \frac{I_{Si2p \ ox}}{ASF(BE) \cdot T_{spec}(BE) \cdot d(BE)}$$

with raw area of O 1s I_{O1s} and oxide-related Si 2p $I_{Si2p ox}$, Scofield atomic sensitivity factors ASF^2 , spectrometer transmission function $T_{spec}(BE)$ and thin film related escape depth correction d(BE) as

$$d(BE) = \int_{0}^{t} e^{-x/\lambda_{SiO2}(BE)} dx = \lambda_{SiO2}(BE) - \lambda_{SiO2}(BE) e^{-t/\lambda_{SiO2}(BE)}$$
$$= (1 - e^{-t/\lambda_{SiO2}(BE)})\lambda_{SiO2}(BE)$$

with oxide thickness t from Table 2 and inelastic mean free patch of photoelectrons in SiO₂ $\lambda_{SiO2}(BE)$, with $\lambda_{SiO2}(kinetic \, energy \, O \, 1s \approx 900 \, eV) = 2.7 \, \text{nm}$ and $\lambda_{SiO2}(kinetic \, energy \, Si \, 2p \approx 1400 \, eV) = 3.8 \, \text{nm}$ according to Tanuma, Powell and Penn³.

Table 3: Oxide stoichiometry calculations with thin film related escape depth corrections.

Sample	A _{Si}	A ₀	c _{si}	<i>c</i> ₀
p-Si (therm. oxide)	2155.72	4391.02	67.1%	33.9%
n-Si (therm. oxide)	1433.29	2743.03	65.7%	34.3%
p-Si (nat. oxide)	1519.53	2980.78	66.2%	33.8%
n-Si (nat. oxide)	2885.85	5483.23	65.5%	34.5%

Figure SI4: Si 2p fit of H_2 -annealed p-Si(100):H (sample dry-H) and RAS signal of p- and n- prepared Si(100):H.

Figure SI5: LEED of H2-annealed n-Si(100):H (dry-H) at 52 eV shows (2x1)/(1x2) pattern with stronger intensities of the half order spots in the [011] direction confirming a strong prevalence of 1×2 domain. The 2×1 pattern corresponds to Si-Si dimers rotated by 90 4,5 (2×1 domain) from residual terraces with single-atomic layer steps

Figure SI6: Wet-chemical H-terminated Si (111-H) and (100-H) revealing both 1x1 LEED pattern, indicating fully hydrided Si surfaces⁶.

n-Si-H (111)

82eV

n-Si-H (100)

Figure SI7: XA spectra of wet-chemically prepared H-termination of Si with Si $L_{2,3}$ (a) and O K edges (b). The pre-edge feature in Si L-edge is assigned to the unoccupied dangling bond band of non-oxidized surfaces. The pre-edge feature vanishes with oxidation, shifting all acceptor states into the conduction band.

References

- 1. Seah, M. P. & Spencer, S. J. Ultrathin SiO2 on Si II. Issues in quantification of the oxide thickness. *Surf. Interface Anal.* **33**, 640–652 (2002).
- 2. Scofield, J. H. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. *J. Electron Spectros. Relat. Phenomena* **8**, 129–137 (1976).
- Tanuma, S., Powell, C. J. & Penn, D. R. Calculations of electron inelastic mean free paths. III. Data for 15 inorganic compounds over the 50-2000 eV range. *Surf. Interface Anal.* 17, 927– 939 (1991).
- 4. Brückner, S. *et al.* Anomalous double-layer step formation on Si(100) in hydrogen process ambient. *Phys. Rev. B* **86**, 195310–195311 (2012).
- 5. Uhrberg, R. I. G., Hansson, G. V, Nicholls, J. M. & Flodström, S. A. Experimental studies of the dangling- and dimer-bond-related surface electron bands on Si(100) (2×1). *Phys. Rev. B* **24**, 4684–4691 (1981).
- 6. Boland, J. J. Structure of the H-saturated Si(100) surface. *Phys. Rev. Lett.* **65**, 3325–3328 (1990).