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This supporting information S1 provides more details on the development of the scheme and 

the data used for the practical implementation of the case study.  

 

1 Introduction – Background on LCA and technology development 

1.1 LCA description for technology developer only 

LCA is a method standardized in the ISO 14040/14044 (ISO 14040 2006; ISO 14044 2006) 

for the evaluation of a full range of environmental impacts throughout the life cycle of 

products and services: It is also applied widely to technologies based on FunMat (Smith et al. 

2019). The integration of LCA in the early stages of the maturation process has several 

advantages: LCA integrates environmental and sustainability indicators into technology 

development, enables the identification of unintended consequences, and gives 

environmental-friendly guidance before costly investments and resources are made. 

Technology developers can thus take actions to eliminate these consequences while 

supporting the prioritization of research activities (Smith et al. 2019). To this end, the 

following four LCA phases are applied according to the standards (ISO 14040 2006; ISO 

14044 2006):  

1) The goal and scope definition (G&S) encompasses the framework conditions such as 

the G&S of the LCA, the so-called functional unit as a reference unit, system boundaries, and 

the so-called product system. The product system represents the modeled life cycle. It is 

differentiated into upstream, encompassing processes from the raw material extraction to the 

manufacturing stage, operation, corresponding to the use phase, and downstream 

processes, referring to the recycling and end-of-life treatment of materials at the end of the 

product life cycle.  

2) Life cycle inventory (LCI): In this phase, extensive data collection occurs. To this end, 

the product system is divided into a foreground and background system. Generic or 

secondary data from LCA databases such as ecoinvent (ecoinvent 2020), IDEA (National 

Institute of Advanced Industrial Science and Technology 2018), or GaBi Databases (Sphera 

Solutions Inc. 2020) is usually used for the background system; the foreground system 



 

S-1 

corresponds to case study-specific data preferably from primary sources. For example, for 

emerging FunMat, the primary data on material inventories and processing energies are 

collected either from or together with technology developers during their investigations. 

3) In life cycle impact assessment (LCIA), the environmental impacts are quantified per 

impact category indicator. The considered indicators are selected depending on the G&S of 

the LCA study and the potential environmental impacts resulting from the assessed 

technology. For example, regarding climate-friendliness, LCIA focuses on energy-related 

impacts or other impacts involving GHG emissions rather than on impacts corresponding to 

materials like resource depletion or release of toxic substances during the extraction of raw 

materials. 

4) In the interpretation phase as the last phase, the LCA results are processed as a basis 

for recommendations and decision-making, addressing uncertainty issues. 

1.2 Systematic review on upscaling in prospective LCA 

A systematic review was conducted to identify the relevant scientific works published on 

technology development and upscaling emerging technologies in prospective LCA. The 

review covered the two literature databases Web of Science and ScienceDirect using the 

keywords “life cycle assessment”, “LCA” combined with “upscaling”, “up-scaling”, “scale-up”, 

“learning” and “emerging technology” (with different spelling). As a result, we came up with 

36 publications. In a first evaluation round, we checked the abstracts for the scope of the 

publications and excluded four publications. A second evaluation excluded publications with 

limited focus on a case study. Here, 19 publications were excluded. Finally, one publication 

was extended and in total 13 publications were assessed focusing on the topics: 

 Classification schemes of technology maturation considered 

 Inclusiong of technology maturation 

 Upscaling data, techniques and models 

Author Database Excluded, 
missing scope 

Excluded, only 
case study 

Bergerson et al. (2020) WoS or Science direct no no 

Buyle et al. (2019) WoS or Science direct no no 

Cucurachi, van der Giesen, and Guinée (2018) WoS or Science direct no no 

Gavankar, Suh, and Keller (2015) WoS or Science direct no no 

Hetherington et al. (2014) WoS or Science direct no no 

Kawajiri et al. (2020) WoS or Science direct no no 

Moni et al. (2020) WoS or Science direct no no 

Thonemann and Schulte (2019) WoS or Science direct no no 

Thonemann, Schulte, and Maga (2020) WoS or Science direct no no 

Tsoy et al. (2020) WoS or Science direct no no 

van der Giesen et al. (2020) WoS or Science direct no no 

van der Hulst et al. (2020) WoS or Science direct no no 

Arvidsson et al. (2017) Additional no no 
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1.2.1 Upscaling effects: Size, learning and experience effect 

The concept of economy of scale, originating from economic analysis, is the empirical finding 

that manufacturing at a bigger size with a higher TRL or MRL decreases costs. In 1936, 

Theodore Wright described this concept mathematically by the so-called size effect as a 

function of the initial cost C0 of the first production capacity X0 to the future cost at any time 

Ct of the future production capacity Xt and the scaling factor b (Eq. 1) (Wright 1936). Eq. 1 is 

also known as Wright’s law.  

C� = C� �X�
X�

�
�

 (Eq. 1) 

The size effect in a narrower sense means the reduction of unit costs simultaneously by 

increasing physical dimensions such as the manufacturing size. Consequently, this effect 

displays any economic, technical, or other effect related merely to the size, volume, or 

throughput of a process or technology. Thus, factor b is derived from empirical technology 

data at different dimensions by using regression analysis. The rationales behind this are 

decreasing marginal costs by dividing overhead costs by a larger number of products and 

better equipment utilization. 

Beyond that, Wright discovered a cost reduction due to gained experience of the employees 

and an associated productivity increase, the so-called learning effect. Later the Boston 

Consulting Group (BCG) also established the term experience effect as a collection of 

various learning effects (Boston Consulting Group 1968). Learning and experience effects 

cannot be dedicated to single changes and are usually not considered separately. Therefore, 

we use the term learning effect synonymously for both effects in the following. The learning 

effect means that technologies can be manufactured more efficiently with each increase of 

their cumulative production rate due to increased experience of the daily routines at the 

production site of mass production. This effect is modeled using the so-called experience 

curve concept, based on data from real manufacturing sites or market data.  

2 Methodology of UpFunMatLCA - Scheme for Generating Upscaling Scenarios of 

Emerging Functional Material Based Energy Technologies in Prospective LCA  

In the following, the development of the three-step scheme UpFunMatLCA are explained in 

more detail. The general scheme is developed using the five phases of the scenario 

technique of Kosow and Gassner (2008) (Table S1). 
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Table S1 The connection of the generated upscaling scenarios using the three steps of 
UpFunMatLCA and the five phases of scenario technique of Kosow and Gassner (2008) 

Three steps of 

UpFunMatLCA  

Five phases of Kosow and 

Gassner (2008) 

Explanation 

Aim of UpFunMatLCA Phase 1: Scenario field 

identification 

The scenarios' purpose is to upscale an emerging FunMat from 

the current to a target development stage in prospective LCA. 

The problem of upscaling is the projection of the future process 

performances of emerging FunMats and modeling of life cycle 

inventory data based on the current stage of development. 

Therefore, the aim is to generate realistic scenarios that intend 

to represent possible development pathways of FunMats 

based on current technology developers’ knowledge or specific 

decisions during technology development. These scenarios are 

used to model the foreground and background system and 

upscale the life cycle inventory data. The focus of the 

foreground system is not the full life cycle of FunMats but the 

limitation to the upstream processes, including processes from 

raw material extraction to manufactured FunMat.  

Step I: Upscaling 

Definition and Step II: 

Upscaling Leap 

Phase 2: Identification of 

key factors 

The key factors or descriptors of the upscaling scenarios are 

the upscaling mechanisms. These are already explained in 

more detail in our study. To identify the key factors, we 

developed Step I and Step II of UpFunMatLCA. Here, first, the 

current and target stage is defined and results second, in a 

clear delimitiation of the development path and upscaling leap. 

Based on the upscaling leap, the relevant upscaling 

mechanisms are selected.  

Step III: Upscaling Model 

and Data 

Phase 3: Analysis of the 

key factors 

The analysis of the key factors and the data collection process 

of the scenarios is implemented as upscaling modules in Step 

III. The upscaling module includes the upscaling method 

depending on the selected upscaling mechanism. 

Upscaling scenarios Phase 4: Scenario 

generation 

Following the three steps of UpFunMatLCA, upscaling 

scenarios are generated. 

LCIA + interpretation of 

the upscaling scenarios 

Phase 5: Scenario transfer The upscaling scenarios are used to model the foreground and 

background system and upscale LCI to assess the future 

possible environmental impacts of emerging FunMats in 

prospective LCA. Accordingly, the upscaling scenarios are 

transferred to the LCIA and interpretation. 

 

In Table S2, the template for documenting the salient characteristics of each upscaling 

scenario is presented. 

Table S2 Template for documenting upscaling in a prospective LCA 

  Current stage Target stage 

Step I - Upscaling Definition     

Name   

General description   

Generic development stage   

Temporal coverage   

Manufacturing dimensions   

Step II - Upscaling Leap   

Selected upscaling mechanisms    

Step III - Upscaling Data and Model   

Modeled modules   
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2.1 Step I – Upscaling Definition: Definition of the technology maturity 

The investigation of upscaling in terms of projection of future technology developments has 

since long been the interest of economics to assess impacts on production costs, unit costs 

of technical equipment, products, and entire businesses in the future. For this purpose, 

general classification schemes to describe the maturation process and the status quo of the 

technology development and concepts for upscaling in economics have been introduced and 

applied in the LCA of technology development. 

In the following, we explain the development of the generic technology scale from common 

classification schemes of technology development and description of technology maturity.  

Table S3 Delimitation of the developed generic technology scale from common classification 
schemes and literature 

Our technology scale TRL (NASA, 2007) MRL (US 

DoD 2015) 

EARTO (2014) Hulst et al. 

(2020) 

Emerging  Generic 

conceptual 

1-2 Basic principles 

and technology 

concept  

1-2 Invention (TRL 

1-2) 

 

Generic lab 3-4 Proof-of-

concept, 

validation in lab 

3-4 Concept 

validation (TRL 

3-4) 

 

Generic pilot 5-7  Technology 

demonstration 

5-8 Prototyping and 

incubation (TRL 

5) 

Pilot production 

and 

demonstration 

(TRL 6-7) 

 

Mature Generic fab-

early 

8-9 System test, 

launch and 

operations 

9 Initial market 

introduction 

(TRL 8) 

Industrial early 

production 

(MPL 0-5% + 

5-50%) 

Generic fab-

mature 

n.c.  10 Market 

expansion (TRL 

9) 

Industrial 

mature 

production 

(MPL 50-

100%) 
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2.2 Step II – Upscaling Leap: Selection of upscaling mechanisms for describing the 

leap from current to target stage 

2.2.1 Generic upscaling mechanism for FunMat 

A) Process learning 

This mechanism subsumes innovations regarding the manufacturing processes. For a 

systematic distinction, we restrict process learning to the case of a given, i.e., non-changing 

material system, where only its specific manufacturing processes will change, i.e., the direct 

processing and manufacturing of FunMat. Similar to the innovative character of FunMat, 

these manufacturing processes may also be novel or are often only recently introduced for 

the respective emerging FunMat. In the terminology of LCA, these processes are attributed 

to the foreground system. In contrast, the background system comprehends the mining and 

processing processes of raw materials, the manufacturing of bulk intermediate products, and 

all infrastructure processes, e.g., power generation. These processes are usually long known 

technologies, which can generally be expected to undergo mainly incremental efficiency 

gains. If significant technology changes occur, they are not specific to the manufacturing of 

FunMat but have broader impacts on the general economy. Thus, the background system is 

incorporated in the upscaling mechanism C) external developments.   

In LCA, the impacts of changing foreground manufacturing processes can be principally 

assessed via sensitivity analysis, assuming percent improvement of the processes (Glogic et 

al. 2019). On the one hand, the realistic setting of parameter variation requires in-depth 

knowledge of the specific processes for the respective FunMat and respective data, which 

often are not readily available. On the other hand, process changes are the most crucial 

aspect with impacts notably on the energy demand of emerging technologies. To account for 

this most crucial step, we discern three sub mechanisms:  

A-1 Size scaling: For the mathematical implementation of this size effect into the upscaling 

module, we use two recently published models for size scaling (Kawajiri et al. 2020) and 

implement them into the size scaling module according to Eq. 2 and Eq. 3: notably for layer-

based FunMat. For these types of technologies, we formulate the assumption specifically in 

the way that the energy demand of a process will decrease per manufactured square meter 

by increasing the manufacturing size from the current stage (e.g., lab samples in square 

centimeter range) to mass-produced goods (in m² range). 

A-2 Technological learning: This sub mechanism reflects changes in the type of 

manufacturing processes from the current to target stage. These processes can, in many 

cases, be applied in the lab as well as large-scale manufacturing, e.g., the sputtering process 

(Madou 2012). However, in other cases, due to the changing requirements of mass 

production or automatic production lines, other manufacturing processes have to be 

anticipated for fab scale.  
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A-3 Industrial learning: This sub mechanism incorporates experience from daily routines at 

production sites of industrial manufacturing, displayed in Wright’s law as well but based on 

production-site-specific data. If data from the industrial production site is available, the 

standard methods of the experience concept can be applied as shown in (Louwen et al. 

2016; Bergesen and Suh 2016). However, in case of no data, the effect of industrial learning 

can be studied based on assumptions from general information on industrial learning of 

related technologies. In particular, for emerging FunMat, there is hardly any data from mass 

production.  

B) Material learning 

This mechanism subsumes innovations regarding the material system, including the related 

raw materials, and is intimately linked to the natural science-based development process of 

novel materials.  

B-1 Change of material system: This sub mechanism results in a conceptual change of the 

entirely considered product system independently of the current stage. In LCA, for this case, 

no general upscaling approach can be conceived; instead, this type of change has to be 

mirrored by a complete change of the product system, i.e., a newly modeled LCA inventory.  

B-2 Choice of input materials: Above the complete change of the material system, material 

learning may also encompass the optimization of material systems in changing single input 

materials. One example can be the substitution of lead by tin in PSC or the change of 

substrate material from glass to PET. In these cases, the original product system is kept, but 

respective upstream processes are substituted in LCA. However, these changes may directly 

influence the manufacturing processes since glass withstands higher temperatures than 

PET. In total, due to the wide variety of possible material changes, material learning can be 

characterized as a disruptive change for which the implications to another upscaling 

mechanism also need to be considered. 

B-3 Optimization of input materials: Given that information on losses is available, material 

learning can be mirrored by sensitivity analysis. For example, findings from a study on life 

cycle losses of commercial PVs showed the material losses during the raw material 

extraction and manufacturing of two PV technologies (CdTe and CIGS) have been estimated 

to be between 15-37 % related to the used materials 38. Consequently, similar projections 

need to be derived for FunMats used in PSC devices. 

C) External developments 

C-1 Incremental learning of the background system: This mechanism subsumes 

innovations resulting from the external progress of the background system over time. Here, 

integrated LCA models are developed in the literature, notably to integrate energy scenarios 

in LCA (Arvesen et al. 2018; Hertwich et al. 2015). By using these models, studies showed 

that considering the life cycle impacts of the energy transition could result in 60 % reductions 
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of the GHG emissions of the electricity mix from 2010 to 2050 (Hertwich et al. 2015). 

Furthermore, for PV, temporal reductions of the primary energy consumption per energy 

output of even 70 % are expected from 2010 to 2050 when considering the infrastructural 

change of the energy system and efficiency gains of various industry sectors over time 

(Arvesen et al. 2018). 

2.3 Step III - Upscaling Model and Data: Implementation of upscaling – modeling of 

upscaling modules for process learning  

AM-1 Technological learning module “mapping of technologies” 

No further details are necessary. 

AM-2 Size scaling module “equipment scaling” 

The empirical scaling is used when no data on the energy or power demands of the current 

stage is available, but only the kind of manufacturing process (e.g., sintering) and the 

suitable equipment (e.g., hot plate) is known. Therefore, the empirical scaling can already be 

applied at the conceptual scale. The empirical data usually includes the nominal power, i.e., 

the maximum power demand of the equipment is applied in the calculation. Therefore, the 

empirical scaling represents the worst-case estimation of the target power demand. In 

contrast, for the individual scaling, individualized consumptions from at least the lab stage 

are necessary to apply this model. This model is beneficial in case the actual measured 

power demand is far from the trend of the empirical data.  

As a reference model, we define a “linear scaling” to refer to the typical way of scaling in 

conventional LCAs from “lab to fab” stage without considering size effects – i.e., the “non-

scaling”. This linear scaling is used to compare the effect of both models on the LCA results. 

The graphical illustration of the two scaling models (Eq. 2-3) compared to the linear scaling is 

presented in Figure S1. 

 

 

Linear “non-scaling”: 

Pt=P0(St/S0)
1 

 

Empirical scaling (Eq. 2): 

Pt=c St
b 

 

Individual scaling (Eq. 3): 

Pt=P0(St/S0)
b 

 

Figure S1 Graphical illustration of the model behind the size scaling module according to 
(Kawajiri et al. 2020) 
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AM-3 Industrial learning module “experience of industrial manufacturing” 

No further details are necessary. 
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3 Case study: Upstream GHG Emissions of PSC from Lab to Fab 

3.1 Case study description 

3.1.1 Selected PSC samples 

The PSC samples selected and assessed in this study were manufactured in lab as part of 

the material development of the Surface Science Group of the Technical University of 

Darmstadt. The interest of this material development lies in the fundamental understanding 

of the interplay of each layer or semiconductor band alignment (Hellmann et al. 2019; 

Wussler et al. 2020) to achieve high efficiencies and to find optimal layer combinations and 

manufacturing processes (Mortan et al. 2020; Mortan et al. 2019; Wittich et al. 2018; 

Dachauer et al. 2019). The selected samples are intended to represent a typical PSC 

material with layer materials and manufacturing methods commonly used in many research 

laboratories (Chen et al. 2017).  

One selected sample have solar cell dimension of 32,5 mm2 and a mini-module substrate 

dimension of 4 cm2 shown in Figure S2. In addition, the detailed layer materials, thicknesses 

and manufacturing processes are shown in Figure S2. The detailed experimental procedure 

and flow chart of the manufacturing of the selected PSCs are explained in the following 

subsections.  

 

 

Figure S2 Picture of one selected PSC sample and specifications on the cell architecture and 
manufacturing of the status quo 

The selected samples characterized electrically at the solar simulator setup, respectively 

through UV/Vis absorption spectroscopy, photoluminescence (PL), scanning electron 

microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) 

show a maximum power conversion efficiency of 15.6 %. 
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3.1.2 Experimental procedure 

Front electrode with substrate (S) and front electrode (FE) (Glass coated with fluorine 

doped tin oxide (FTO): Pilkington NSG TEC15 FTO glass substrates have been used, cut 

as 2 cm x 2 cm squares, with a sheet resistance of 12-14 Ω/sq. and a glass thickness of 2.2 

mm. The substrates are cleaned with isopropanol, soap, tap water, distilled water and blown 

dry with a nitrogen gun. 

Electron transport layer (ETL) (compact and mesoporous titanium dioxide (c- and m-

TiO2): The c-TiO2 layer is produced by spray pyrolysis on the glass/FTO substrates. 500 µL 

of titanium diisopropoxide bis(acetylacetonate), 75 wt. % in isopropanol (TIAA) from Merck is 

mixed with 18 mL reaction grade Ethanol. This solution is sprayed using oxygen carrier gas 

onto the glass/FTO substrates, that have been treated for 5 min. in an oxygen plasma oven 

and heated to 450°C for 25 min. prior to deposition.  After the spraying process, the  

glass/FTO/c-TiO2 substrates are annealed for 30 min. at 450°C in atmospheric conditions. 

The m-TiO2 layer is deposited by spin coating 100 µL of a 1:7 weight ratio solution of 18NR-T 

Titania (TiO2) paste from Greatcell Solar and reaction grade ethanol onto each glass/FTO/c-

TiO2 substrates in atmospheric conditions. The solution is dropped on a substrate, before 

spinning at 83 rps (revolutions per second) for 45 s. After drying for 10 min. at 70°C, an 

additional sintering step takes place for 45 min. at 450°C on a hot plate, in atmospheric 

conditions. 

Absorber layer (ABL) (PbI2- and CH3NH3I-precursor): Prior to the deposition of the 

lead(II)iodide layer, the glass/FTO/c-TiO2/m-TiO2 substrates are treated in a UV/ozone oven 

for 15 min. The deposition takes place in a nitrogen (N2) filled glovebox. After each substrate 

has been heated for 2 min. at 80°C on a hotplate, 100 µL of a 555 mg PbI2 (Alfa Aesar 

99.9985%, metal base) in 1 mL DMF (N,N-Dimethylformamide, Merck, 99.8%, anhydrous) 

solution, that has been stirred for at least half an hour at 80°C is dropped onto the hot 

substrates, then spun at 108 rps for 90 s. Each substrate is subsequently dried for 10 min. at 

80°C. 

In a nitrogen glovebox, a solution of 400 mg methylammonium iodide (MAI, Greatcell Solar) 

and 40 mL anhydrous 2-propanol (99.5%, Merck) is stirred at 70°C until dissolved. After 

reaching room temperature, the solution is added to a Petri dish containing the glass/FTO/c-

TiO2/m-TiO2/PbI2 substrates. After 2 min., each substrate is rinsed in a clean 2-propanol bath 

of excess MAI and immediately blown dry with a pen blower. After additional drying on a hot 

plate for 15 min. at 50°C in the glovebox, the substrates are annealed in a tube furnace, in 

atmospheric air for 20 min. at 120°C. 

Hole transport layer (HTL) (Spiro-MeOTAD): The deposition of the spiro-MeOTAD layer 

takes place on the glass/FTO/c-TiO2/m-TiO2/MAPI substrates, in a nitrogen glovebox. 80 mg 

spiro-MeOTAD (Borun New Material, 99.9%) is mixed in 1 mL chlorobenzene (Merck, 
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anhydrous, 99.8%) with 28.5 µL 4-tert-butylpyridine (Merck, 98%) and with 17.5 µL of a 

solution made from 260 mg Li-TFSI (bis(trifluoromethane)sulfonimide lithium salt, Merck, 

>99%) and 0.5 mL acetonitrile (Merck, anhydrous 99.8%). 100 µL of the resulted spiro-

MeOTAD solution is dropped on a glass/FTO/c-TiO2/m-TiO2/MAPI substrate. After a pause of 

20 s, it is spun at 23 rps for 30 s and left to dry at room temperature in the glovebox. 

Back contact with back electrode (BE) (Gold layer): The gold (Au) layer is deposited by 

argon sputtering on top to the spiro-MeOTAD layer, in a Quorum Technologies Q300TD 

machine with 30 mA current for 120 s, using a steel mask for defining the contacts. 

3.1.3 Detailed flow chart of the status quo 

The detailed manufacturing flow chart collected during lab visits between 2016-2018 are 

shown in Figure S3 
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Figure S3 Detailed process flow chart of the foreground system of the manufacturing stage 
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3.2 Developed upscaling scenarios  

3.2.1 Step 1: Definition of the modelled current and target stages 

Table S4 Generic technology scale extended by the standard cell, module, and manufacturing 
sizes for the definition of the technology maturity of PV case studies (adjusted and combined 
from (Baliozian et al. 2016; Gavankar, Suh, and Keller 2015; Fischer et al. 2020)) 

This study  Generic 
conceptual 

Generic lab Generic pilot Generic fab 

    (early) (mature) 

Cell size - Not classified Not classified 166x166 mm²  

Module size - >0.01 m² 0.01-1.65 m² 60 cells  1.65 m²  
72 cells 1.98 m²  

Manufactured 
size 

- >0.01 m² 0.01-1.65 m² 1-6  modules  1.65 – 10 m² 

Comparison to other literature 

TRL 
according to  
(Baliozian et 
al. 2016) 

0 1-4 5-7 8 9 

Cell size 
according to 
(Baliozian et 
al. 2016) and 
updated 
(Fischer et al. 
2020) 

- Not classified Not classified 125x125 or 156x156 mm²  
166x166 or 182x182 or 210x210 
mm² (2020) 

Module size 
(Fischer et al. 
2020) 

 Not classified Not classified 60 or 72 cells until 2030 

3.2.2 Step 2: Selection of upscaling elements 

Upscaling from generic lab to generic fab-early or generic fab-mature results in the 

preselection of six mechanisms (Figure S4). The change of material system  is excluded 

since the PSC material does not fundamentally change. We focus only on the main 

contributor, thus only the process learning modules are finally selected. 
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Figure S4 Selection of upscaling elements 

3.2.3 Step 3: Extension of the LCI - Data collections of the modeled process learning 

upscaling modules 

AM-1 Mapping of technologies 

The detailed description of this upscaling module AM-1 is available in the Supporting 

Information S2, Tabs “AM1[…]”. 

AM-2 Equipment scaling – empirical and individual 

Here, only the results of the sensitivity analysis are shown in Table S5. The detailed 

upscaling data of this upscaling module is provided in in the Supporting Information S2, Tabs 

“AM2[…]”..  
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Table S5 Results of the sensitivity analysis of GFabE in purple (underlying data from Table S5 
are available in the Supporting Information S3, purple Tabs “Sensitivity analysis”). 

 

 

AM-3-PSC Learning rate of PSC 

No detailed upscaling data was collected. 

3.3 Prospective upstream GHG emissions from lab to fab 

The underlying data for Figure 6 are available in the Supporting Information S3. 
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hot plate operation, during titanium dioxide compact mixture sintering, per target substrate areakg CO2 eq 25.61% 51.48036 25.61% 51.48036 25.61% 51.48036

hot plate operation, during electron transport layer sintering, per target substrate areakg CO2 eq 18.56% 37.30461 18.56% 37.30461 18.56% 37.30461

hot plate operation, during titanium dioxide mesoporous mixture spin coating, per target substrate areakg CO2 eq 0.07% 0.14922 0.07% 0.14922 0.07% 0.14922

spin coater operation, during titanium dioxide mesoporous mixture spin coating, per target substrate areakg CO2 eq 0.00% 0.00436 0.03% 0.05064 0.00% 0.00436

vacuum pump operation, during gold sputtering, per sputtered target substrate areakg CO2 eq 0.24% 0.47596 0.24% 0.47596 0.24% 0.47596

sputter coater operation, during gold sputtering, per target substrate areakg CO2 eq 0.17% 0.33722 0.17% 0.33722 0.17% 0.33722

hot plate operation, during methylammonium iodide mixture chemical bath coating, per target substrate areakg CO2 eq 0.04% 0.07461 0.04% 0.07461 0.04% 0.07461

hot oven operation, during annealing of active layer, per target substrate areakg CO2 eq 2.48% 4.99422 2.48% 4.99422 2.48% 4.99422

hot plate operation, during lead (II) iodide mixture spin coating, per target substrate areakg CO2 eq 0.67% 1.34297 0.67% 1.34297 0.67% 1.34297

spin coater operation, during lead (II) iodide mixture spin coating, per target substrate areakg CO2 eq 0.00% 0.00872 0.05% 0.10129 0.00% 0.00872

coating operation, during fluorine doped tin oxide coating, per target substrate area, dummykg CO2 eq 0.00% 0 0.00% 0 0.00% 0

spin coater operation, during spiroMeOTAD mixture spin coating, per target substrate areakg CO2 eq 0.00% 0.00291 0.02% 0.03376 0.00% 0.00291

electron transport layer production, titanium dioxide compact mesoporous, wet chemical deposition, perovskite solar cell per target scalekg CO2 eq 68.70% 138.07606 68.85% 139.4254 68.70% 138.07487

back electrode production, gold, wet chemical deposition, perovskite solar cell per target scalekg CO2 eq 21.04% 42.27976 20.88% 42.27976 21.04% 42.27976

hole transport layer production, spiroMeOTAD, wet chemical deposition, perovskite solar cell per target scalekg CO2 eq 2.47% 4.9623 2.45% 4.9623 2.47% 4.9623

active layer production, CH3NH3PbI3, wet chemical deposition, perovskite solar cell per target scalekg CO2 eq 5.89% 11.84135 5.85% 11.84135 5.89% 11.84135

substrate production, glass, perovskite solar cell per target scale - DEkg CO2 eq 1.91% 3.83278 1.89% 3.83278 1.91% 3.83278

front electrode production, fluorine-doped tin oxide, wet chemical deposition, perovskite solar cell per target scale - DEkg CO2 eq 0.00% 1.082E-05 0.00% 1.082E-05 0.00% 1.082E-05

MaE 30.80% 61.9156308 30.80% 61.9156308 30.80% 61.9156308

PEn 69.20% 139.07665 69.95% 140.59569 69.19% 139.07546

Summe 100.00% 200.992281 100.76% 202.511321 100.00% 200.991091

GFabE GFabE 

(linear scaling)

GFabE 

(exclusion of 

spray coater)
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