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Abstract

Upscaling scenarios are indispensable elements of prospective life cycle assessment

(LCA). However, current studies reveal confusing terminology and a wide range of

approaches in this area. Therefore, we first defined the term upscaling scenario as

the description of a possible future target stage of emerging technology, including

the development pathway from a current stage within the course of research and

development to this future stage. Second, we developed the novel systematic scheme

UpFunMatLCA for generating explorative scenarios based on possible development

pathways of the specific group of emerging functionalmaterial (FunMat)-based energy

technologies, including status quo developments. UpFunMatLCA represents a three-

step extension of conventional LCAs to upscale the life cycle inventory of emerging

FunMats. UpFunMatLCA is based on a clear definition of a current status quo (con-

ceptual, lab, or pilot stage) and a target matured (fab) development stage. A core part

of UpFunMatLCA is the so-called upscaling module, providing specific modeling meth-

ods and data for the upscaling of FunMats. Using perovskite solar cells, photovoltaic

devices based on several FunMats and attached with great expectations regarding the

future efficient provision of solar energy, we demonstrate the application of UpFun-

MatLCA, focusing on the upstreamgreenhouse gas (GHG) emissions of the prospective

manufacturing. In the discussion, we point out the application area of UpFunMatLCA

and the possible extension to depict further environmental impacts beyond GHG

to contribute to the sustainability assessment of emerging technologies in the early

stages of development.
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1 INTRODUCTION

The energy transition to sustainable, renewable, and low-carbon technologies is also a material transition. Energy technologies such as photo-

voltaics (PV), batteries, or fuel cells are highly dependent on the development and advancement of the so-called functional materials (FunMat)

(Kuznetsov & Edwards, 2010; Schebek et al., 2019). In contrast to structural materials characterized mainly by their mechanical, load-bearing

capacity, FunMats are featured by their physical–chemical properties responding to electrical, magnetic, optical, or chemical influences and cover

glass, metals, polymers, carbons, ceramics, composites, and semiconductors, which form the basis of sustainable energy technologies (Chung, 2021;

Kuznetsov & Edwards, 2010). Furthermore, fostering sustainable development of energy technologies research initiatives such as Horizon 2020

demand the inclusion of environmental assessment methods such as the life cycle assessment (LCA). Accordingly, LCA integrated into fundamental

research projects enables sustainable guidance of the research and development of emerging FunMats at the point with the highest design free-

doms. However, this stage is also the stage with the highest uncertainties about the future performance of mature technology. Therefore, LCA, as

designed for matured technologies, requires a thorough interpretation for application to emerging technologies.

The comparability of LCA on emerging and mature technologies is highly dependent on the technology maturity and stage of development.

Gavankar et al. (2015) found a dependence of the technology maturity on environmental performance and recommended the interpretation of

LCA results exclusively under the specification of the technology maturity using known classification schemes such as the technology readiness

level (TRL) (National Aeronautics & Space Administration (NASA), 2007) and manufacturing readiness level (MRL) (US DoD, 2015). Both concepts

describe the technologyormanufacturing development from the lowest, the conceptual fundamentals (TRL/MRL1) to thehighest levels, the proven

applicable technology (TRL 9) or the full ratemanufacturing (MRL 10). For example, looking at perovskite solar cells (PSC), one promising emerging

PV technology with an outstanding record power conversion efficiency of 25.7% (UNIST Korea) in the laboratory (lab) (TRL < 4) in 2022 (National

Renewable Energy Laboratory (NREL), 2022), a review on the environmental performance of emerging PVs showed two things (Weyand et al.,

2019). First, LCAs on PSC mainly focus on upstream emissions of lab manufacturing and are based on lab data. Second, these LCAs indicate much

higher cumulative energy demands, greenhouse gas (GHG) emissions, and other environmental impacts than mature technologies of the first and

second PV generation and other emerging PVs, although PSCmanufacturing is expected to show lower upstream impacts. As themain contributor,

the inefficient manufacturing with energy-intensive equipment in lab compared with mature technologies fabricated commercially (fab) was iden-

tified (Weyand et al., 2019). Therefore, a final statement as to whether PSCs could become more environmental friendly than their competitors is

challenging based on these LCAs.

In the LCA community, this challenge of LCA on emerging technologies has been recently acknowledged under the term prospective or ex ante

LCA (Arvidsson et al., 2017; Cucurachi et al., 2018). This term distinguishes traditional so-called conventional or ex post LCAs, which assess mature

technologies at a current development stage (status quo)with real-world data, and prospective or ex ante LCAs. Both terms encompass the environ-

mental assessment of emerging technologies as guidance of technology development. The difference is that ex ante LCAs focus on the assessment

before market introduction (van der Giesen et al., 2020), whereas “an LCA is prospective when the (emerging) technology studied is in an early

phase of development (. . . ), but (. . . ) is modeled at a future, more-developed phase” using the definition of Arvidsson et al. (2017). Consequently,

prospective LCA also allows assessing future developments of established technologies integrating forecasting methods, as van der Giesen et al.

(2020) stated. In our study, we use the broader term, prospective LCA. The model or “procedure that projects how (. . . ) [an emerging] technology

currently available at a lower TRLmay look and function at a higher TRL” is defined as upscaling method using the definition of Tsoy et al. (2020) in

the following.

Current literature identifies confusing terminology regarding the term upscaling and awide range of upscalingmethods (Bergerson et al., 2020).

Systematic reviewson the challenges of prospective LCAsonly touchupon the topic of upscalingmethods regarding theprojectionof future process

performances and the modeling of life cycle inventory data subdivided into the foreground and background systems and the prediction of future

performances due to an increase of the physical process size (Hetherington et al., 2014; Moni et al., 2020; Thonemann et al., 2020; van der Giesen

et al., 2020). In some studies, the development of scenarios is recommended to upscale technology maturity and inventory data using data sources

such as “scientific articles, patents, expert interviews, [or] unpublished experimental data” (Arvidsson et al., 2017) or estimation methods such as

process simulation, manual calculations, molecular structure models, or proxy (Tsoy et al., 2020). Even though Thonemann and Schulte (2019) do

not directly use the term scenario, their presented four-step approach includes the assessment of the status quo and two prospective upscaled

processes, the “best-case” and “scaled process,” which are similar to a baseline, best-case, and realistic scenario. Generally, scenarios in prospective

LCAs often focusmerely on a hypothetical future technologymaturity but not on the development pathways to this technologymaturity. However,

the term scenario, as initially intended in future research, encompasses both the “conceptual future” and the “paths of development (. . . ) fromwhich

a specific conceptual future results” (Kosow & Gassner, 2008). Therefore, we introduce the term upscaling scenario and define it as the descrip-

tion of a possible future stage of emerging technology, including the development pathway from a current stage within the course of research and

development to this future stage.

The upscaling framework of van der Hulst et al. (2020) introduces experience mechanisms taking into account the size and learning effects as

main drivers of technology development from TRL 1 to TRL 9 and above using MRL and market penetration levels (MPL), as another classification
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F IGURE 1 Workflow of the UpFunMatLCAwith the three upscaling Steps I–III (markedwith orange circles) as extensions to the four life cycle
assessment (LCA) phases in prospective LCAs and the division of the three user groups—LCA practitioner, cooperation with technology developer,
and user of prospective LCA study (symbols are used according to ISO 5807 (ISO 5807 1985)).

scheme.Whereas the size effect stems from themere increase of the physical dimensions, such as the manufacturing size of products, the learning

effect covers all changes resulting from experience gain of daily routines at production sites. Other authors provide a comprehensive summary of

available upscaling methods with linkage to TRL developments (Buyle et al., 2019) or focus on single experience mechanisms based on size effects

(Caduff et al., 2011; Kawajiri et al., 2020) or learning effects (Bergesen & Suh, 2016; Thomassen et al., 2020). Accordingly, previous studies and

frameworks support structuring a prospective LCA case study and developing upscaling scenarios in terms of identifying key drivers or descriptors.

However, the term scenario is not used in these studies.

Considering the gap between the theoretical and practical implementation of upscaling scenarios in prospective LCA case studies on emerging

FunMats, we present a scheme for generating upscaling scenarios of emerging FunMat-based energy technology called UpFunMatLCA. UpFun-

MatLCA aims to generate fast and easily qualitative and quantitative scenarios for the transfer into the life cycle inventory (LCI) of prospective LCA.

It enables the selection of suitable upscaling methods based on selected upscaling leaps to generate one or more scenarios from predefined devel-

opment pathways in a consistent, transparent, and comparable manner for modeling foreground and background systems and upscaling LCI data.

The selection of these predefined development pathways does not aim to generate best- or worse-case scenarios but somewhat realistic scenarios

that intend to represent possible development pathways of FunMats based on current technology developers’ knowledge or specific decisions dur-

ing technology development. Therefore, the generated scenarios are explorative in the sense that they assess possible technology developments

focusing on salient characteristics and interactions of main contributors or key drivers. The predefined development pathways are not complete

for all available and forthcoming FunMats but can be extended analogously by further expert knowledge or new research insights. Using the case

of GHG emissions of PSC from lab to fab, we illustrate the application of UpFunMatLCA and provide all vital information and data for generating

upscaling scenarios.

2 METHODOLOGY OF UPFUNMATLCA—SCHEME FOR GENERATING UPSCALING SCENARIOS OF
EMERGING FUNMAT-BASED ENERGY TECHNOLOGIES IN PROSPECTIVE LCA

UpFunMatLCA, shown in Figure 1, stands for the systematic arrangement of three developed upscaling steps as an extension of conventional

LCAs for attaining and integrating upscaling scenarios into the first two LCA phases, goal and scope definition and LCI, according to the ISO
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standards 14040 (2006) and ISO 14044 (2006). The other two LCA phases, encompassing life cycle impact assessment (LCIA) and interpreta-

tion, are out of the scope of UpFunMatLCA and are conducted as in conventional LCAs. The upscaling scenarios, as defined in the introduction,

are applied for an emerging FunMat “for which there is just an experimental proof of concept, a validation in the lab, or pilot plant” (Cucurachi

et al., 2018) and which shows the possible application in future energy technology. The three upscaling steps of UpFunMatLCA were devel-

oped from the five phases of the scenario technique of Kosow and Gassner (2008), combined with a systematic review of upscaling in LCA and

the involvement of technology expertise. More information on the development of UpFunMatLCA is explained in Table S1 of the Supporting

Information S1.

Following the scheme, the technology developer and LCA practitioner are jointly guided through the selection of predefined development path-

ways representing possible future design choices and their evaluation supporting the process of data acquisition and specification of assumptions

that forms the basis of the upscaling scenarios. Thus, amutual understanding is fosteredwithin theworking process,whichwill serve as the common

ground for understanding and interpreting LCA results and support sound decisionmaking.

The three steps of UpFunMatLCA are specified as follows:

Step I. Upscaling Definition:

For a stringent definition of the term upscaling in terms of the technology maturity, the starting point or baseline scenario, referred to as the

current stage of the technology development, and the forecasted endpoint after upscalingmust be defined, referred to as the target stage.

Step II. Upscaling Leap:

The upscaling leap representing the technology maturity of emerging FunMat from the current to the target stage is defined by the so-called

upscaling mechanisms. According to van der Hulst et al.’s (2020) experience mechanisms, the upscaling mechanisms describe the changes or

innovations expected during technology development.

Step III. UpscalingModel andData:

The implementation of a specific upscaling leap andmodeling of upscalingmechanisms takes place in Step III. To this end, the so-called upscaling

modules are introduced. These modules reflect independent units that include upscaling methods and data specified for the upscaling of FunMats

and are ready for the implementation in LCI of prospective LCAs.

Documenting each upscaling step is essential for two reasons: First, the readers of prospective LCAs are a broad audience consisting of LCA

practitioners in general but mainly of non-LCA experts, such as technology developers, who are interested in the environmental performance of

their technology or forced to conduct similar LCAs themselves, or policymakers, who are interested in incorporating LCA results into decisionmak-

ing. Second, in contrast to conventional LCAs, the scenario assumptions in terms of the high design freedoms result in a high dependency on the

decisions made on future conditions, materials, andmanufacturing processes and the results in terms of the environmental performance of emerg-

ing technologies. To this end, we introduce a documentation template that gives an overview and summary of the salient characteristics of each

upscaling scenario (Table S2 of the Supporting Information S1 or applied in Table 1).

In the following, each step of UpFunMatLCA is explained inmore detail.

2.1 Step I—Upscaling Definition: Definition of the technology maturity

Theoretically, the definition of the technologymaturity at the current and target stage can be done by the selection of each level using the standard

classification schemes of TRL (NASA, 2007) and MRL (US DoD, 2015). However, even though the detailed assignment of TRLs/MRLs is desir-

able in technology development (NASA, 2007), the interest of LCA on emerging FunMats is not in upscaling between closely spaced or adjacent

TRL/MRL levels but between general stages of development—such as “from lab to fab.” Additionally, in practice, this level of detail is not feasible

since changes in technologies with TRLs lower than 7 (MRLs lower than 8) occur iteratively, and available LCI data often cannot be attributed to a

detailed TRL/MRL or stem from different levels in LCA. Therefore, we combine both classification schemes into one generic technology scale with

five generic development stages to define the current and target stages. Furthermore, this technology scale incorporates theMPL similar to van der

Hulst et al. (2020) to classify the dissemination of the technology aftermarket launch. Using the characteristics summarized in Figure 2, the current

stage, which represents an emerging material or technology at the status quo, is defined as either the conceptual, lab, or pilot stage; whereas the

target stage, which represents the projected matured technology, is defined as either the fab-early or fab-mature stage. In addition, the definition

of technology maturity encompasses the definition of the temporal coverage in terms of the base year and the target year of modeling and the

definition of themanufacturing dimensions or product sizes of the current and target stages.
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F IGURE 2 Generic technology scale for the definition of themodeled development stages illustrating the schematic dependency of the
intensity of technologymaturity, knowledge, and uncertainty on the five generic development stages (as summary and extension of Arvidsson
et al., 2017; Bergerson et al., 2020; Grübler, Nakićenović, and Victor 1999; van der Hulst et al., 2020; National Aeronautics & Space Administration
(NASA), 2007; USDoD, 2015), more details are available in Table S3 of the Supporting Information S1).

2.2 Step II—Upscaling Leap: Selection of upscaling mechanisms for describing the leap from current to
target stage

Upscaling mechanisms are the key drivers of the scenarios or the descriptors of the upscaling leap from the current to the target stage.

These mechanisms are specified for FunMats based on thorough literature research and exchange with technology developers, aiming to select

predefined development pathways consistently, transparently, and without additional extensive research. Therefore, we focus on the following

upscalingmechanisms.

2.2.1 Generic upscaling mechanisms for FunMat

Focusing on the upstream life cycle processes, including rawmaterial processing andmanufacturing of emerging FunMats, we discern three general

upscaling mechanisms: changes in the (A) manufacturing processes, (B) materials, and (C) external developments. Whereas (A) and (B) belong to

changes in the foreground system, (C) depends on background system’s changes. The characteristics of each upscaling mechanism are summarized

in Figure 3 and as follows:

A. Process learning subsumes innovations regarding themanufacturing processes.

A-1 Technological learning reflects changes in the type of manufacturing processes from the current to the target stage. Accordingly, the

manufacturing equipment changes in the type and requires mapping from current to target stage equipment. Furthermore, the change in

manufacturing processes can occur between any development stage, from lab to fab-early (Figure 3).



WEYAND ET AL. 681

F IGURE 3 Schematic illustration of the scope of the upscalingmechanisms concerning a specific “leap” from one to another generic
development stage for the upscaling of emerging FunMat-based technologies. Legend: orange arrows, possible leap of the process learning
modules; blue arrows, possible leap of thematerial learningmodules; purple arrows, possible leap of the external developments module; red star,
change of material system is always related to a conceptual change, resulting in a new life cycle assessment.

A-2 Size scalingdisplays the size effect resulting fromthe improvementsdue to the increaseof themanufacturing size fromcurrent lab samples

in square centimeters to target mass-produced modules in the square meter range. This mechanism can be applied at each development

stage for upscaling from general conceptual to fab-mature or in between (Figure 3) if the respective manufacturing equipment changes

only in size but not type.

A-3 Industrial learning incorporates efficiency increase due to the experience gained fromdaily routines at production sites of industrial man-

ufacturing, the so-called experience effect (Abell & Hammond, 1979). Accordingly, industrial learning occurs only between fab-early and

fab-mature (Figure 3).

B. Material learning subsumes innovations regarding the material system, including the related raw materials, and is intimately linked to the

natural science-based development process of novel materials.

B-1 Change of material system results in a conceptual change of the entire considered product system independently of the current stage.

One example would be the change from a dye sensitized to a PSC, which corresponds to a new technology system and thus requires an

entirely new LCA.

B-2 Choice of input materials encompasses the optimization of material systems in terms of change of single input materials (e.g., the

substitution of lead by tin in PSC or the change of substrate material from glass to plastic).
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B-3 Optimization of input materials involves minimizing material inputs by either directly reducing production losses or recycling production

waste.

C. External developments subsume innovations resulting from the external progress of the background system over time.

C-1 Incremental learning of the background system includes, for example, efficiency gains during the extraction of rawmaterials or transition

of the energy system to renewable technologies.

2.2.2 Selection of the upscaling mechanisms

At the start of the upscaling, the upscaling leap from the current to the target stage preselects the relevant upscaling mechanisms using Figure 3.

Then, the final upscaling mechanisms are selected considering the following three options: (1) all preselected upscaling mechanisms, (2) focus on a

single upscaling mechanism, for example, the main contributor at the current stage, (3) interactions between the upscaling mechanisms, for exam-

ple, the manufacturing process depends on the choice of materials, and, thus, a combination of the process and material learning mechanisms is

necessary.

2.3 Step III—Upscaling Model and Data: Implementation of upscaling—modeling of upscaling modules for
process learning

In Step III—Upscaling Model and Data (Figure 1), the implementation of upscaling takes place. To this end, we focus on the three upscaling mod-

ules (AM-1–3) of the process learning mechanism, introduce their general upscaling methods and explain the associated additional data collection

processes compared to conventional LCI.

2.3.1 AM-1 Technological learning module “mapping of technologies”

According to van der Hulst et al. (2020), the modeling method of this module includes learning “from existing industrial processes through an anal-

ysis of functions, dimensions, and similarities.” Therefore, a qualitative mapping from the current manufacturing process to the target counterpart

is recommended for implementing technological learning based on comprehensive research of technical literature and patents. Furthermore, the

quantitative implementation of this module can be done according to the size scalingmodule (see below).

2.3.2 AM-2 Size scaling module “equipment scaling”

For the mathematical implementation of the size effect, we translate the two published models of Kawajiri et al. (2020) into the assumption that

the energy demand of a manufacturing process and the power demand of the respective equipment will decrease per manufactured square meter

by increasing manufacturing size of the FunMat from current to target stage. Accordingly, for implementing the size effect, the empirical data sets

of the two technical parameters, nominal power and maximum manufacturing area of respective equipment, need to be collected from technical

data sheets and product specifications of respectivemanufacturing equipment. Themodeling is based on the two scaling parameters, scaling factor

b and scaling coefficient c. Both scaling parameters are derived from the log-form relationship between the two technical parameters using the

ordinary least square regressionmethod. For FunMat, we adjust the twomodels as follows and use Equations (1)–(3) to project the energy demand

permanufactured area at the target stage.

Model 1 is referred to as empirical scaling since only empirical data of the manufacturing processes and respective equipment is used. Here, the

power demand Pit per manufacturing process i at the target stage t is calculated based on Equation (1), where bj, cj stand for the scaling factor and

coefficient of the respective equipment j and Sit for the equipment capacity of themanufacturing process i in terms of themanufacturing area at the

target stage t:

Model 1: Empirical scaling:

Pit = cj ⋅ Sit
bj (1)

In contrast, Model 2 is referred to as individual scaling since individual data measured at the current stage is integrated into the calculation of P

according to Equation (2). Here, Pit, Sit, bj, and cj are used as in Equation (1), and Pi0 stands for the measured power demand of each manufacturing

process i and Si0 for themanufacturing area at current stage 0:
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Model 2: Individual scaling:

Pit = Pi0 ⋅
(
Sit
Si0

)bj

(2)

Finally, the power demands Pi at the target stage t are used to calculate the resulting energy demand using Equation (3):

Et_total =
n∑
i=1

Pit ⋅ tpit (3)

where Et_total is the total upscaled energy demand at target stage t, Pit the power demand and tpit the processing time at target stage t per

manufacturing process i.

This upscaling module uses empirical data based on historical findings. In many cases, this data is helpful since similar equipment is provided in

most labs. However, historical findingsmight bemissing in the case of newmanufacturing processes; thus, this upscalingmodule cannot be applied.

2.3.3 AM-3 Industrial learning module “experience in industrial manufacturing”

Based on production-site-specific data, the standard methods of the experience concept can be applied, as shown in Bergesen and Suh (2016) and

Louwen et al. (2016). For emerging technologies, there is usually no data from mass production. For the sake of completeness, this module is vital

to mention here. The implementation of this module can be done qualitatively, or the effect of industrial learning can be studied based on general

information on industrial learning of related technologies and applied to emerging technologies.

3 CASE STUDY: UPSTREAM GHG EMISSIONS OF PSC FROM LAB TO FAB

The goal of the case study is to present the application of UpFunMatLCA by upscaling the GHG emissions of PSC samples manufactured at the

lab (current stage) but projected and evaluated as fab PV material (target stage). In particular, the extra data collection processes to fill the three

upscalingmodules AM-1–3with data are demonstrated.

3.1 Case study description

The PSC samples selected were manufactured as part of the material development of the Surface Science Group of the Technical University

of Darmstadt, aiming for the optimization of PSC’s performances to the physical optimum (Dachauer et al., 2019; Mortan et al., 2019, 2020;

Wittich et al., 2018). They represent a typical PSC device, including several FunMats and manufacturing processes (Figure 4) commonly used in

many research labs (Chen et al., 2017). The modeled life cycle of PSC samples as the product system, divided into upstream, operation, and down-

streamprocesses, is illustrated in Figure 4. As the systemboundary, we focus on upstreamprocesses. Therefore, key performance parameters, such

as the efficiency necessary to model the use phase, are not considered. Accordingly, as recommended byWeyand et al. (2019), the functional unit

is defined as “1m2 manufactured PSC area.” The inventory data of the foreground system is generated from primary data collection for the current

stage. For the target stage, the inventory is modeled based on the developed upscaling modules (see later). Data from literature and GaBi Profes-

sional (version: SP36, 2018) substitutes missing foreground data. The LCA database ecoinvent (version 3.7.1 cut-off) is used as background data.

The GHG emissions are reported in kg CO2-eq using the characterization model and factors of the Global Warming Potential for 100 year time

horizon (GWP100) from the Intergovernmental Panel on Climate Change (IPCC) (2013).

Furthermore, we distinguish the resulting GHG emissions into the material-embedded and processing energies related emissions to investigate

the hypothesis that the processing energy is themain contributor to the GHG emissions of lab-scaled PSC samples.

3.2 Developed upscaling scenarios

Using UpFunMatLCA, three upscaling scenarios are generated, including the current and two target stages. Each step of the scenario generation

(Steps I–III) is summarized in Table 1 using the documentation template of UpFunMatLCA. The extra data collection processes of the three applied

upscalingmodules (AM-1, AM-2, and AM-3) to the conventional LCI are explained in the following.
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F IGURE 4 Product system of the selected perovskite solar cell samples at the status quo (extended fromWeyand et al., 2019), differentiated
into (1) foreground (white filled boxes) and background processes (grey filled boxes), (2) considered (black border) and unconsidered (grey dashed
border) upstream, operation and downstream processes. The colored arrowsmark the involvement of the upscalingmechanisms. Elementary
flows aremarked by italic font.

3.2.1 AM-1 Mapping of technologies

For this upscaling module, we conducted patent and literature research. However, only the literature review provided relevant data for the tech-

nological mapping. In addition, the patent review included only scattered data on futuremanufacturing processes. Table 2 summarizes themapping

results from the current to target stage manufacturing processes. There are several target manufacturing processes with related equipment from

which onemust be selected. The patent and literature review are available in Supporting Information S2, Tabs “AM1[. . . ].”

3.2.2 AM-2 Equipment scaling—empirical and individual

For developing this upscalingmodule, two types of data were used:
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TABLE 1 Key characteristics of the three generated upscaling scenarios using UpFunMatLCA.

Current stage Target stages

Step I—Upscaling Definition

Name GLab (baseline) GFabE GFabM

General description Status quo: PSC samples

manufacturedwith a size of

20× 20mm2 in lab surroundings;

primary data was collected during

labmanufacturing of 20 PSC

samples in total over the period

from 2016 to 2020.

The cell architecture with

corresponding layer FunMats and

manufacturing processes is

illustrated in Figure 4.

Prospective 1: Aims for the

demonstration of the size scaling

module, thus, increasing

manufacturing size from

20× 20mm2 to 5m2; same layer

FunMats, samemanufacturing

processes used as at status quo.

2030 is assumed asmarket

introduction year of PSCmaterials

with lowMPL (<50%).

Prospective 2: Aims for the

demonstration of all three process

learning upscalingmodules, thus,

increase of manufacturing size

from 20× 20mm2 to 5m2; same

layer FunMats, new prospective

manufacturing processes, mass

production.

2050 is assumed as the year with

MPL> 50%.

Generic development stage Lab Fab (early) Fab (mature)

Temporal coverage 2020 2030 2050

Manufacturing dimensions 20× 20mm2 5m2 5m2

Step II—Upscaling Leap

Selected upscaling

mechanisms (details to

preselection are shown in

Figure S4, Supporting

Information S1)

None A-1 Technological learning

A-2 Size scaling

A-1 Technological learning

A-2 Size scaling

A-3 Industrial learning

Step III—Upscaling Data andModel

Modeledmodules (description

see below)

None AM-1Mapping of technologies

(Figure 4, Table 2)

AM-2 Equipment scaling—individual

(Supporting Information S2, Tabs

“AM2[. . . ]”)

AM-1Mapping of technologies

(Figure 4, Table 2)

AM-2 Equipment scaling—empirical

(Figure 5)

AM-3 Experience inmanufacturing

I. Over 250 empirical data sets to derive regressionmodels of the six manufacturing processes (Table 1) for applying both the empirical (Model 1,

Equation 1) and individual scaling (Model 2, Equation 2);

II. LCI data of the status quo for the individual scaling (Model 2, Equation 2).

Figure 5 provides the upscaling module, “AM-2 Equipment scaling—empirical,” including the regression models (Figure 5a) and corresponding

data with model accuracy evaluation of the six manufacturing processes (Figure 5b). For five manufacturing processes, the model accuracy results

in a good tomoderate application of this upscalingmodule. Only themodel of spray coating is not in compliancewith the set data quality. Here, R2 is

below0.3, whichmeans that themanufacturing area does not describe the course of the power demand from lab to fab and, thus, that no statement

can be made about the development of the power demand via the manufacturing area (see Supporting Information S2, Tabs “AM2[. . . ]” for more

details on the data quality and model accuracy evaluation). There are three possibilities for modeling the spray coating process in GFabE: (1) using

the upscaling model despite the low accuracy of the upscaling data, (2) linearly scaling using the collected lab data, or (3) excluding this process

due to a lack of representative data. All three cases increase the uncertainty. In (1), the consistency and scenario uncertainty is reduced due to the

modeled fab scale, but the parameter uncertainty increases due to the non-representative upscaling data. In (2) and (3), the scenario and parameter

uncertainty increase due to the linear scaling of the lab data and the lack of representative upscaling data, respectively. Therefore, the impacts of

the spray coating on the results should be investigated. In our case, we assessed the impacts using a sensitivity analysis and found that the effects

of the spray coating are negligible for the three modeling ways, with less than 1%. The detailed results of the sensitivity analysis are summarized in

Table S5 of the Supporting Information S1.

The upscaling module “AM-2 Equipment scaling—individual” is provided in the Supporting Information S2. In addition, all empirical data sets,

derived regression models, scaling parameters, model accuracy evaluation, and collected individualized data are available in the Supporting

Information S2.
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F IGURE 5 Upscalingmodule “AM-2 Equipment scaling—empirical”: (a) Regressionmodels divided into deposition andmaterial conversion
property processes; (b) upscaling data including scaling parameters and accuracy evaluation permanufacturing process/equipment. The detailed
regressionmodels and their model accuracy evaluation are available in the Supporting Information S2, Tab AM2-Upscalingmodule.

3.2.3 AM-3 Experience in manufacturing

For PSC, no mass production data is available. Therefore, we use experience rates from commercial PVs (Louwen et al., 2016). Here, for matured

first-generation PV , mono- and multicrystalline silicon solar cells, experience rates of the manufacturing demands derived from over 40 years of

development indicate reductions of the GWP by 17%−24% (Louwen et al., 2016). This data can be assumed to be a gross estimate for the mass

production of emerging PVs in 2050. To this end, the averaged experience rates of GWP of 20% are implemented into this upscalingmodule.

3.3 Prospective upstream GHG emissions from lab to fab

The prospective upstreamGHGemissions using UpFunMatLCA are shown in Figure 6. Figure 6a shows the results of the three upscaling scenarios,

GLab, GFabE, andGFabM, and compares themwith literature data as validation. GLabwith 490 kg CO2-eq/m
2 is in themiddle of other LCA results,

which assessed PSC at the lab scale. GFabEwith only applied size scalingmodule results in a reduction of 59% for the increasedmanufacturing area

of 5m2 and lies between the pilot and fab scale LCA results. GFabM, including all three process learning modules, lies in the range of the three LCA

studieswith projected fab scale PSCs. In contrast to our case study, these three studies allowonly the evaluation of a single fixed target stage, which

(1) partly included prospectivematerials and processes for commercial fabrication, but was then filled with data from the lab (Celik et al., 2016), (2)

dismissed and reduced materials to “those strictly necessary to assemble the module” (Alberola-Borràs et al., 2018), or (3) used lab materials and

manufacturing processes taken from PSC literature but calculated the energy demand of manufacturing processes “with (. . . ) typical commercially
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F IGURE 6 Projection of the upstream greenhouse gas emissions of the selected perovskite solar cell samples from lab to fab (a) course of the
greenhouse gas (GHG) emissions permanufacturedm2 of the status quo and the two upscaled scenarios, comparedwith harmonized literature
results averaged per study and classified technology scale, (b) resulting GHG emissions of GLab, GFabE, and GFabM andmain contributions of the
layer FunMats andmanufacturing processes. Underlying data for Figure 6 are available in the Supporting Information S3.

available equipment” (Gong et al., 2015). Even though these studies include upscaling methods similar to UpFunMatLCA, they do not allow the

evaluation of the way from a current to a target stage and the flexible integration of possible junctions during technology development.

In contrast to the literature results, the application of UpFunMatLCA enables the evaluation of the various development pathways and the flexi-

ble and transparent inclusion of possible junctions, such as the change of manufacturing processes. Figure 6a also illustrates the course of the GHG

emissions representing the development pathway from lab (S< 0.1m2) to fab (S> 1m2) and the single effects of the three applied process learning

modules. Applying the size scaling and industrial learning modules result in continuous reductions. For size scaling, the reduction increases with

increasingmanufacturing area. Comparing the current and target stages shows reductions permanufacturedm2 of 18% for a targetmanufacturing

area of 0.1 m2, 52% for 1m2, and even 59% for the definedmanufacturing area of 5m2. Technological learning results in a discontinuous reduction

as soon as amanufacturing process change occurs. In our case, GFabM includes the change to slot die coating as a depositionmethod, which occurs

at the transition to commercial fabrication and results in a reduction of GHG emissions by 85% compared to GLab and 63% compared to GFabE.

Figure 6b confirms the hypothesis that the processing energy with 87% is the main contributor to GHG emissions at the current stage and

shows the correlation between the processing energy and theGHGemissions. TheGHGemission reductions result exclusively from the reductions

of the processing energies due to the application of the process learning modules. The high share of fossil fuels in the energy supply of the back-

ground systemcanexplain this correlationbetweenprocessing energy andGHGemission. This correlation is expected to change in futuredue to the

decarbonization of the energy system.However, this change is out of the scope of our case study andmight bemodeledwith the inclusion of upscal-

ing mechanism (C) as discussed below. The material-embedded GHG emissions play a minor role at the current scale. However, these emissions

become more relevant with a more realistic estimation of the processing energy, as shown for GFabE and GFabM. Here, the share of the material-
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embedded impacts increases to 30% and 85%, respectively. Accordingly, the impacts of the materials become pivotal, and the extension of the

material learning upscalingmodule is necessary. Similar correlations are expected for other impact categories such as International Life Cycle Data

System (ILCD) midpoint 2011, human toxicity or freshwater ecotoxicity (European Commission, Joint Research Centre, Institute for Environment

& Sustainability, 2012), as discussed inWeyand et al. (2019).

In contrast, tradeoff categories, such as ILCD midpoint 2011, resource depletion—mineral and fossil (European Commission, Joint Research

Centre, Institute for Environment & Sustainability, 2012), might be unaffected by high processing energies. Here, characterization factors of the

mineral resources such as silver or gold aremuch higher than those of fossil resources. However, the tradeoff evaluation is part of furtherwork and,

thus, out of the scope of our case study.

4 DISCUSSION

The benefit of UpFunMatLCA is threefold. First, it is clearly focused on evaluating the technology maturity of a specific group of emerging tech-

nology, the FunMat-based energy technologies. Thus, UpFunMatLCA contributes to precise terminology in LCA of emerging technologies and the

guidance of technology development using upscaling scenarios. Moreover, it can be combinedwith other effects that require other methodological

approaches in prospective LCA, notably withmarketmaturity (Bergerson et al., 2020). Second, UpFunMatLCA is comprehensive in the sense that it

predefines development pathways in terms of upscaling mechanisms relevant to the specific technology group of emerging FunMat-based energy

technologies. It offers a structured and transparent way to develop upscaling scenarios for prospective LCA and get first insights of the projected

technology, specifically of emerging FunMats, even for LCA practitioners without precise knowledge of the FunMat to be modeled or technology

developerswith basic LCA knowledge. Despite this, we always recommend the cooperation of both experts to conduct LCAs on emerging technolo-

gies. Third, the transparent allocation of upscaling modules to upscaling mechanisms enables transparency and flexible use and advancement of

UpFunMatLCA during technology development. For example, for emerging FunMat, we showed the key mechanism of process learning and intro-

duced upscaling modules to evaluate the GHG emissions more representatively. In addition, the upscaling mechanisms can be extended by other

life cycle phases, such as the use and end-of-life phase.

4.1 Generalization and limitations of UpFunMatLCA

UpFunMatLCA is generally applicable for LCAs on FunMats, not only on PSC, but also on other emerging technologies since these LCAs face the

four similar challenges as those presented for PSC: (1) lab-stage processes representing fab-stage, (2) testing of various materials to find physical

optimum, (3) missing data as shown for FunMats in Smith et al. (2019), and (4) processing energies or manufacturing processes representing the

main contributor to environmental impacts as shown for the case studies on piezoelectric ceramics (Ibn-Mohammed et al., 2016), capacitors (Smith

et al., 2018), or fuel cells (Kawajiri & Inoue, 2016) as examples. These challenges are also present for other emerging materials such as nanomate-

rials (Hetherington et al., 2014) or biochemicals (Ögmundarson et al., 2020a), or emerging technologies in general (Thonemann et al., 2020; Tsoy

et al., 2020). Even though nanomaterials come from a novel scientific field with emerging manufacturing processes, completely novel materials,

and unknown environmental implications (Simon et al., 2016), parts of UpFunMatLCA are still generally applicable to generate upscaling scenarios

considering the following limitations.

The upscaling definition (Step I, Figure 1) and upscaling leap (Step II, Figure 1) could generally be used to define the current and target devel-

opment stage and to identify the key factors in terms of upscaling mechanisms. However, some materials or technologies require extensions of

Figure 3 in terms of additional upscaling mechanisms or modules. The same applies to the implementation of the upscaling model and data (Step

III, Figure 1). For example, the equipment scaling might be replaced by another module for upscaling the manufacturing of emerging biochemicals

(Ögmundarson et al., 2020b), for which quantitative process simulations using software, such as ASPENPLUS®, are commonly used for size scaling

of bioreactors rather than empirical data of manufacturing equipment. Another example relates to the abovementioned embeddedmanufacturing

processes of our upscaling modules. Standard processes such as annealing or sintering can be easily upscaled using our data, regardless of the Fun-

Mat or emerging technology. However, some FunMats, such as piezoelectric ceramics or capacitors, require additional manufacturing processes,

such as ball milling (Ibn-Mohammed et al., 2016) or calcining (Smith et al., 2018), which are not included in our upscaling modules. Accordingly,

these processes must be supplemented in the same way as presented above for the two upscaling modules, technological learning and size scaling.

After that, bothmodules can be easily applied to further FunMats or emerging technologies.

Besides the modeled process learning modules, the material learning and impacts resulting from the materials are relevant to prevent uninten-

tional tradeoffs to other impact categories such as toxicity or resource depletion. For this purpose, future research should include the upscaling

modules of material learning as proposed in our study.

In addition, the upscaling module of the external development of the background system should be included. This module is not exclusively

related to FunMats; thus, existing models and data can be used. For example, the PREMISE approach of Sacchi et al. (2022) enables the modeling
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of prospective background databases by combining integrated assessment models, including the shared socioeconomic pathway scenarios, with

common LCA background databases.

4.2 Position relative to previous literature

UpFunMatLCA can be classified into the context of the technology maturity in contrast to the market maturity and represents an important con-

tribution to the development of structured guidelines for the cooperation of LCA practitioners and technology developers, particularly formaterial

scientists, as called for in Bergerson et al. (2020). Above this, UpFunMatLCA contributes to the specifications of general frameworks on LCA of

emerging technologies such as van derHulst et al. (2020), Thonemann et al. (2020) and Tsoy et al. (2020) and represents amerge and harmonization

of several upscalingmethods, particularly of Kawajiri et al. (2020) and Piccinno et al. (2016).

The general framework of van der Hulst et al. (2020) is specified regarding selecting upscaling mechanisms and modeling these mechanisms

using the introduced upscalingmodules, particularly for emerging FunMats. In this context, we decided to distinguish betweenmaterial and process

learning mechanisms instead of using a chronological distinction of technology maturity from low to high. This distinction enables the focus on key

mechanisms suchasprocess learning,which focuseson themain environmental impacts resulting fromtheprocessing energies of lab-manufactured

FunMats.We also concretized the suggestedmodelingmethods permechanisms bymodeling the introduced upscalingmodules, which are applica-

ble directly in the LCI of prospective LCAs. Similar to van derHulst et al. (2020), wemerged differentmethods fromprevious literature formodeling

the upscaling modules; worth mentioning here are size scaling, as shown in Kawajiri et al. (2020) and Caduff et al. (2014); technological learning as

shown for chemical processes in Piccinno et al. (2016) and industrial learning as shown in Louwen et al. (2016) and Arvesen et al. (2018).

Like Tsoy et al. (2020), we discern three upscaling steps in UpFunMatLCA. Tsoy et al. (2020) derived these steps from the review of ex ante

case studies and focused on the target or referred to there as the “projected” stage. Their upscaling steps give a good overview of available and

applicable data estimation methods. A decision tree guides the LCA practitioner to the most suitable method depending on the research question

of the emerging technology to be assessed. In contrast, our three steps were derived from and specified for the case of emerging FunMats aiming

to model both the current and target stage and the direct implementation into standard LCA practice. To this end, we predefine the modeler’s

decision regarding the data estimation method and provide finalized upscaling modules filled with data directly applicable in LCAs on FunMats but

also on other emerging technologies, as discussed above. Furthermore, these upscalingmodules represent a specification of the four-step approach

of Thonemann et al. (2020) regarding the definition of the assumptions made for upscaling from the current stage (" lab-scale") to the two target

stages proposed there, " best-case" and " scaled" for PVs based on PSC.

4.3 Implication of UpFunMatLCA and future studies

The integration of UpFunMatLCA into themethodology of LCAs is a vital way to assess the future chances and risks of an explicit group of emerging

technology, that is, emerging FunMat-based energy technologies from an early development stage on, despite contradictory requirements of high

uncertainties and room for maneuvering in terms of freedom of design. The UpFunMatLCA presents a structured way to integrate likely future

development pathways into prospective LCA and gain meaningful information on these developments’ environmental impacts. These potential

impacts provide essential insights for future research by indicating possible levers of environmentally friendly technology progress. Therefore,

the comparison with benchmarks is not seen as a final exclusion criterion for emerging technology but rather as an indicator that if the emerging

technology develops in this way, it is highly likely to present the following chances or risks compared to a mature counterpart. The development

of similar uniform schemes is also essential for other technology groups to increase comparability and support the comprehensiveness of the LCA

results on emerging technologies compared tomature technologies. UpFunMatLCA provides an important example to concretize the development

of upscaling scenarios for other technology groups.
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