
Proceedings of the ASME 2009 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference

IDETC/CIE 2009
August 30-September 2, 2009, San Diego, USA

DETC2009-87298

A NEW EVENT MODEL FOR PML

Prof. Dr.-Ing. Reiner Anderl
Department of Computer Integrated Design

Technische Universität Darmstadt
Petersenstraße 30, 64287 Darmstadt, Germany

Email: anderl@dik.tu-darmstadt.de

Dipl.-Ing. Jochen Raßler
Dipl.-Wirtsch.-Ing. Thomas Rollmann

Department of Computer Integrated Design
Technische Universität Darmstadt

Petersenstraße 30, 64287 Darmstadt, Germany
Email: rassler@dik.tu-darmstadt.de

rollmann@dik.tu-darmstadt.de

ABSTRACT
Processes are very important for the success within many

business fields. They define the proper application of methods,
technologies and company structures in order to reach business
goals. Not only manufacturing processes have to be defined from
the start point to their end, also other processes like product de-
velopment processes need a proper description to gain success.
For example in automotive industries complex product develop-
ment processes are necessary and defined prior to product devel-
opment.

This paper is an advancement of PML - the object-oriented
Process Modeling Language, introduced in earlier publications.
A new Event Model for PML is introduced and the association
to the resources model and the product data model is described.
The concepts are shown by some examples to illustrate their us-
age.

INTRODUCTION
All over industrial appliance the necessity of well-defined

and powerful processes are known. These processes range from
manufacturing processes over business processes to product de-
velopment processes. During the last decades they have been
analyzed and defined in the companies.

But within most areas the well-known and defined pro-
cesses are represented with old methodologies, while discipline-
specific methods have been developed to a new level. Appli-

cations here are cross-enterprise collaboration, e. g. in manu-
facturing or product development networks, and cross-discipline
collaboration like mechatronical product development. Within
cross-company networks companies are not integrated by sole
vendor-customer relationships anymore, but by their whole pro-
cess maps. The cross-discipline collaboration is similar. It used
to be integration by the means of interfaces and key objectives,
but now it is integrated at any time of the process. The given
processes lead to two major problems. First of all cross integra-
tion is new every time a new collaboration starts. Typically a
company is involved in several different collaboration networks
at a time. They are all different but principally support the same
processes. The second problem is that most existing process de-
scriptions are based on procedural process descriptions. These
are not powerful enough to meet the requirements of describing
cross collaboration.

A short example is given to illustrate the problem. Within
product development the VDI2221 describes the process of prod-
uct development. It describes a sequential process allowing some
iteration. The ideas behind that process are roughly 50 years old
now. Products and with that product development have changed
dramatically. Mechatronical product development requires a co-
ordinated development process of several disciplines like me-
chanical, electrical and electronical engineering or software de-
velopment. Especially software development does not fit prop-
erly into the VDI2221 process. With the ”Münchner Vorgehens-
modell” (MVM) a new approach on a process model for prod-

1 Copyright c© 2009 by ASME



uct development has been defined. The MVM defines some im-
portant stages, which are common for every product develop-
ment process. According to the MVM, every specific develop-
ment may take its own way between these stages. Still there is
no proper description for flexible processes, but processes like
MVM or cross collaborations are required.

These examples show that a new concept for describing pro-
cesses is necessary. Introducing object orientation, which means
a paradigm change in process modeling, leads to more flexi-
bility, modularization, and more manageable processes. These
have been the main ideas to develop a true object oriented pro-
cess modeling language, which has been mathematically derived
from UML and has therefor been called PML, Process Modeling
Language.

PREVIOUS WORK ON PML
In [1] we have introduced PML, the Process Modeling Lan-

guage, by deriving UML in an abstract manner. This mathemati-
cal model has been used as a motivation to build up PML analog
to UML to use the UML concepts. This means PML is, as well
as UML, entirely object oriented. Regarding to Östereich [2] the
main concepts of object orientation are

• classes and instances
• relations between classes, which can be inheritance as gener-

alization and specialization; associations, aggregations and
compositions as content descriptions

• data encapsulation and thus structuring of data and their re-
lated operations

• messages between objects
• polymorphism
• usage of design patterns
• usage of components.

It is obvious that object orientation has many strengths. It helps
in supporting flexible and yet powerful designs, modularization
and reuse of parts of the design, manageable models, even if they
are very complex, and a data oriented design. Thus object orien-
tation, and particularly UML, as it has been emerged as one of
the most powerful and most used object oriented notations, is an
applicable starting point for an object oriented process modeling
language.

Fig. 1 and fig. 2 show the UML and the PML class diagrams.
The first field shows the class indicator, which has to be filled
with the data class name or the process class name. In UML
the second field shows the attributes, the third field the methods.
PML has been derived mathematically, so the second field in the
PML class diagram holds the methods. You have to note that the
UML method and the PML method may be the same, but do not
necessarily have to be the same. So a more convenient name for
the second field in the PML diagram would be activity to have
a more appropriate differentiation between both diagrams. The

third field in the PML diagram describes the resources needed to
run the methods, or activities respective.

Figure 1. UML CLASS DIAGRAM

Figure 2. PML CLASS DIAGRAM

Fig. 3 shows the UML relations that have been introduced to
PML. Starting from the top these are inheritance, which means
class 2 is derived from class 1 and hence inherits all methods and
resources. The second relation is the association, which can be
interpreted as a link between both classes. An association may
be adjusted and can be written with cardinalities to indicate the
number of used classes. The third and fourth relations are aggre-
gation and composition, which are ”has” or ”consists” relations.
The difference between both relations is that class 1 can exist
without the existence of class 2 in the case of an aggregation, but
not in the case of a composition. Both relations can be modeled
with cardinalities, but the composition always must have a 1 at
the side of class 1.

In UML data encapsulation means that one class holds some
attributes and methods. The latter are responsible to modify the
attributes. In PML data encapsulation means that a class has
some activities and some resources. The resources are needed
for the runtime of the activities. Hence data encapsulation in
PML can also be addressed as activity encapsulation.

Messages in UML as well as in PML are important to com-
municate between objects, that are instances of classes. The mes-
sage system introduced in [1] and [3] was very easy and is ob-

2 Copyright c© 2009 by ASME



Figure 3. UML AND PML RELATIONS: A) INHERITANCE, B) ASSOCI-
ATION, C) AGGREGATION, D) COMPOSITION

solete with the presence of this publication. We introduce a new
event model, which develops a new message system for objects,
that is more appropriate for process modeling.

Another important concept of object orientation is polymor-
phism, which is enabled by inheritance. Polymorphism means
that a subclass can be used where a superclass is expected, thus
the details may be introduced at runtime. Fig. 4 shows a model of
a splitting process. Every time the exact splitting process (linear
flow splitting, linear bend splitting, linear bending) is unknown
at modeling time, one would use the SplittingProcess class and
use the correct splitting subclass at runtime, as LinearFlowS-
plitting, LinearBendSplitting, and LinearBending are subclasses
from SplittingProcess.

Figure 4. INHERITANCE IN PML

In [1] we have introduced a new understanding of the no-
tions process and project. Using the object oriented concept of
process modeling one uses PML class diagrams to model pro-
cesses. Those process descriptions are quite generic, as for exam-
ple the details and the amount of certain resources are unknown
– and uninteresting to a certain level – at modeling time. Those
details are filled in at instantiation time. Instantiation time basi-
cally is the same as starting a project. Using the model of fig.

Table 1. PML VISIBILITY MODIFIERS AND ACCESS LEVELS

Modifier Class Package Subclass World

public Y Y Y Y

protected Y Y Y N

no modifier Y Y N N

private Y N N N

4 the production process is described in a generic way, which
means the production of a part is a sequence of any number and
order of LinearFlowSplitting machines, LinearBendSplitting ma-
chines, and LinearBending machines. As soon as a project starts,
the number and order of those machines have to be defined, at lat-
est as soon as the production starts. Thus the order and amount of
machines then depends on a given product and has to be defined
at runtime.

In [1] we introduced a simple example to illustrate the above
explained concepts. In [3] PML has been used to model the
product development and manufacturing process of integral sheet
metal design, starting with requirements engineering, defining
product development, and finally the manufacturing. The re-
mainder of this paper is used to introduce a new event model and
the connection of PML with product data models and resource
models.

VISIBILITY MODIFIERS
As known from UML and object oriented programming lan-

guages PML also contains visibility modifiers to control the ac-
cess to activities. These modifiers are public, protected, private,
and package private (no modifier). Table 1 shows the access lev-
els for all modifiers, which should be self explaining. The mod-
ifiers have standard symbols in PML diagrams, which are + for
public, # for protected, - for private and none for package private.

A NEW EVENT MODEL
In [1], [3], and [4] we modeled events as assurances. But

events are the messages in processes.
Before we introduce the new event model we want to take

a look at UML messages and their implementation in software.
Above we learned that messages are the concept of object com-
munication. Thus an object sends a message to another object to
start an operation, e.g. get some attributes or to start a calcula-
tion. An operation listens to certain messages to start running [2].
In software this means an object calls an operation from another
object [5]. If an operation is called, the needed parameters have
to be used to call the object’s operation. In UML and hence soft-

3 Copyright c© 2009 by ASME



ware the parameters are certain data structures, regarding to the
concept of data modeling and data encapsulation. Thus data is
the center of object oriented modeling.

The same is true for process modeling, but as we have
learned, the activities are the center of the process model, that’s
why we used the notion of activity encapsulation. Taking this
thoughts into account the events in PML are very important and
thus under-represented using assurances to model the conditions
for activities to run. That’s the reason why we introduce a new
event model for PML.

Fig. 5 shows the PML class with events. This notation fol-
lows the well known UML notation for methods. A method has
a parameter list, which may be empty or have any number of
named events. Every method has an event as return value, but this
can also be void, which means no return value. Thus the message
system known from UML and software is similar in PML.

Figure 5. PML CLASS WITH EVENTS

One main difference between the methods in UML and PML
is obvious. UML is data oriented, methods need data as parame-
ters and has data as return values. Hence other UML classes can
be used as parameters or return values. PML uses events as pa-
rameters and return values. But the classes modeled in PML are
process classes, thus they can’t be used as parameters or return
values for other methods. Still the goal is to have a complete ob-
ject oriented notation for process modeling. For this reason we
introduce a new event class, which is shown in fig. 6. An event
class is quite similar to a UML class or a PML process class, ex-
cept that it only consists of two fields: a name field and a field
for information or data.

To be compliant with the object oriented methodology
events have to be inheritable. Inheritance in events supports two
main concepts of object orientation. First the events can be struc-
tured hierarchically, second polymorphism can be used at run-
time. This may be useful for several applications, we want to
explain two simple yet diverging cases. Imagine a calculation in
a process, e. g. a FEA calculation. The result may be positive or
negative, the following subprocesses depend on the calculation

Figure 6. PML EVENT

result. The calculation method may be modeled with an event
named Calculation done as a return value. Two other activities
may listen to messages from the calculation method, but one lis-
tens to a successful calculation, the other one to a failure. If
inheritance is used two subclasses from Calculation done may
be modeled with the names Calculation successful and Calcula-
tion failed. As the calculation method is expected to return a Cal-
culation done event, every child of this event class basically is a
Calculation done event and thus it is a type safe operation to re-
turn a child of this class. Another example may be a process that
logs the results of the whole process chain or of a given group of
processes. If all returning events are modeled using inheritance,
the logging process can take the parent event as parameter and
thus listens to every child event.

It is obvious that more than one activity may listen for a
given event. This directly leads to concurrent processes, which
are often useful and standard in large development or manufac-
turing processes. To merge concurrent processes events from
all running processes can be parameters of a following activity,
hence an asynchronous synchronization is implemented.

To model events the same methods as known from data mod-
eling in UML or process modeling in PML can be used. Where
the events are modeled is up to the process designer, but we rec-
ommend to use an own page for events for clarity of the process
model.

Fig. 6 shows the information list in the second field of a
PML event. The information list is a set of data resulting from an
activity and may be used by a following activity. This set of data
may be modeled with UML and its details are described in the
next section. For now it is important to know that the information
list may hold calculation results, protocols of the runtime of an
activity etc.

The strengths of the new event model are that the events
are object oriented and thus fit into the object oriented notation
system. Object oriented modeling methods can be used for the
processes and the events as well. Polymorphism and concurrent
processes are supported by the new event model. Going one step
further one can see that activity diagrams and sequence diagrams
known from UML become less important, if the process class
model and the event model follow a clear design. We will show
this later on in this paper.

4 Copyright c© 2009 by ASME



INTEGRATION IN THE BUSINESS
Processes get their importance by integrating them into the

business. Thus a business model is necessary. There are several
concepts for business modeling, one of the most known surely
is ARIS [6] [7]. Those business models mostly follow certain
modeling techniques, ARIS for example is build upon EPC, the
Event-driven Process Chain. ARIS consists of 3 plains (Exper-
tise concept, Data processing concept, Implementation) and 4
views (Organization, Data, Control, Functions). The plains de-
scribe the know-how of experts from the application to the soft-
ware, hence it is a good model to integrate IT into business. The
views describe the aspects of processes and their related data.
Taking a deeper look at the 4 views, for example the data view,
one must realize that product data and events are mixed, the func-
tion view primarily consists of organizational units etc. Hence a
business model like ARIS does not fit into the concept of PML.

For this reason we developed our own generic business
model. It is build up from 3 orthogonal, independent plains. Fig.
7 illustrates our 3-plain-business-model. The 3 orthogonal plains
are the process plain, the resource plain, and the data plain.

Figure 7. 3-PLAIN-BUSINESS-MODEL

The process plain is best modeled with PML and contains all
processes. These may be product development processes, man-
ufacturing processes, deciding processes, documentation pro-
cesses, administrative processes etc. Generically the process
plain contains all processes, or, in other words, everything that
is dynamic. The process plain also includes the events, which
are signals stating, that a subprocess has been finished and the
results are available.

The resource plain describes all resources of a company. Re-

sources contain the organizational structure, divisions and de-
partments, and finally the employees. The resource plain also
includes expert knowledge, which may be part of departments,
employees, or FMEA documentation etc. Machines and other
material resources are also part of the resource plain. The re-
source plain is best modeled with UML to fit into the object ori-
ented concept of the 3-plain-business-model and to integrate with
PML. But any other notation for resource modeling is thinkable.

The data plain contains all static data and information.
These may be product data, but also meeting minutes, decision
protocols, log files from process results etc. The data plain ba-
sically contains every kind of documentation that evolves within
the processes. Again UML is the first choice for best interaction
with PML and the 3-plain-business-model, but other data model-
ing techniques may be used.

We have mentioned the integration of the 3 plains in several
places throughout the paper. This concept has to be observed
in detail. Processes play an important role in business models,
at least in theory they should hold the leading role. PML is
designed to respect the central role of processes and connects
to the other plains in a smart way. In fig. 2 we have shown
the PML class diagram and mentioned that the third field holds
the resources. These resources are exactly the resources from
the resource plain. If the resources are modeled with UML, the
PML class directly links to an object oriented UML description
of the resource class. This leads to an continuous object oriented
model. Fig. 6 shows the PML events. The second field includes
the information list. The information list contains data, which
may be product data, documentation, calculation results etc. and
is part of the data plain. Again, if the data plain is modeled with
UML the integration is best, as the whole business model is ob-
ject oriented.

If the links to resources and data may be modeled in classic
UML style, associations should be used to model the relations
between PML classes and UML resource classes, and between
PML events and UML data classes.

We have mentioned that the 3 plains in the 3-plain-business-
model are orthogonal and thus independent. In fact, in most busi-
nesses the 3 plains are at least co-dependent, but still can be con-
sidered independent. This may be explained best with examples.
Imagine a company that develops complex products, like cars.
With PML the product development process must be modeled
only once. With instantiation projects for every single car model
are started. Thus, the process is the same, but the projects are
quite different. And that is, what the results are: similar from
the view of developing a car, but different in the sense of which
car is developed. Thus the data plain and the process plain are
independent. The same is true for the resource plain, as a process
needs some resources that do not have to be necessarily within
the company. If the resources are not available within a company,
suppliers may be integrated to follow the defined processes (most
likely they will specialize the processes to implement their own

5 Copyright c© 2009 by ASME



way of development) and hence fulfill the required resources.
Between resources and product data should exist no dependency,
as it doesn’t matter if the company is organized in a hierarchical
structure or works with a matrix structure.

In practice there is a co-dependency between the 3 plains.
This is useful and most often intended, but still a certain amount
of independence exists, thus the orthogonality in its explanations
and illustration is legitimate.

EXAMPLES

Fig. 8 shows the product emergence process of the CRC
666 ”Integral Sheet Metal Design With Higher Order Bifurca-
tions” that has been introduced in [3]. The process model has
been actualized since then and the new event model has been
implemented.

The example process shows visibility modifiers for all activ-
ities. All modifiers are set to public, thus they can be accessed
from everywhere. The classes, although they do not have mod-
ifiers in this example, must have the public modifier too, as in-
cluded modifiers must not be less restricted than the outer ones.
The main improvement is the new event model implemented in
the CRC666 process. Most of the activities modeled in the pro-
cess have a return value and many of the activities have at least
one parameter in their parameter list.

A good example of the event model are the optimization pro-
cesses modeled here. The class Optimization defines a method
compute(), which returns an event of type Computation done.
The classes TopologyOptimization, GeometryOptimization, and
UnrollingOptimization are subclasses from Optimization and all
implement the compute() method, but every method now has a
parameter in the parameter list and has a return value, which
again is a subclass from Computation done. Thus TopologyOp-
timization listens for the event Spec avail, which is send from
the requirements management process SpecificationDerivation.
As soon as this event occurs, TopologyOptimization starts run-
ning and sends the event Topo done, which is catched from Ge-
ometryOptimization, which again sends a message Geo done.
This message is catched from UnrollingOptimization, which
sends Unroll done after runtime. Topo done, Geo done, and
Unroll done are subclasses from Computation done, which is
shown in fig. 9.

The activity configure() in the Configuration process listens
for more than one event. It listens for Plan done and Man Info.
This means that the activity configure() waits until both events
are available and starts running as soon as both events have oc-
curred. Thus this is an asynchronous merging of concurrent pro-
cesses.

Figure 9. COMPUTATION EVENT

OUTLOOK
In this paper we have summarized previous work done on

PML and introduced some new concepts. First we introduced
the visibility modifiers known from UML and object oriented
programming languages. Then we developed a new event model
that is fully object oriented and fits into the concepts of PML.
The last new concept has been a 3-plain-business-model that in-
tegrates processes, resources, and data, which is supported by
PML.

Currently the authors work at the specification of PML. It
builds up on the Meta Object Facility (MOF) [8] and the UML
Infrastructure [9] as UML does. UML and the MOF are designed
to support extensions like SysML or new related languages as
PML. Hence it is a continuous concept to do it that way.

Further work may be done in the field of an OCL specifi-
cation, to support PDM integration and automatic process repre-
sentation.

REFERENCES
[1] Anderl, R., Malzacher, J., and Raßler, J., 2008. “Proposal for

an object oriented process modeling language”. In Enterprise
Interoperability III, K. Mertins, R. Ruggaber, K. Popplewell,
and X. Xu, eds., Springer-Verlag London Limited, pp. 533–
545.

[2] Oestereich, B., 2001. Objektorientierte Softwareentwick-
lung: Analyse und Design mit der Unified Modeling Lan-
guage, 5., völlig überarbeitete aufl. ed. Oldenbourg,
München.

[3] Anderl, R., Raßler, J., Rollmann, T., and Wu, Z., 2008. “Pml
in application - an example of integral sheet metal design
with higher order bifurcations”. ASME, 2008, New York.

[4] Anderl, R., and Raßler, J., 2008. “Pml, an object oriented
process modeling language”. In Proceedings of the Second
Topical Session on Computer-Aided Innovation, Springer
Boston.

[5] Stroustrup, B., 2005. Die C++–Programmiersprache, 4., ak-
tualisierte und erw. aufl., [nachdr.] ed. Programmer’s choice.
Addison–Wesley, München.

[6] Scheer, A.-W., 1992. Architektur integrierter Information-
ssysteme : Grundlagen der Unternehmensmodellierung, 2.,
verb. aufl. ed. Springer.

6 Copyright c© 2009 by ASME



Figure 8. CRC666 PRODUCT EMERGENCE PROCESS

[7] Scheer, A.-W., 2002. ARIS in der Praxis : Gestaltung,
Implementierung und Optimierung von Geschftsprozessen.
Springer.

[8] Object Management Group, 2008. Mof 2.0 facility and ob-
ject lifecycle specification, (moffol), beta 1. Downloadable
Specification.

[9] Object Management Group, 2007. Omg unified modeling
language (omg uml), infrastructure, version 2.1.2. Down-

loadable Specification, November.

7 Copyright c© 2009 by ASME


