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Abstract

The search for a logic capturing Ptime is one central question of finite model theory and
descriptive complexity theory: Is there a reasonable logic in which exactly the polynomial-
time decidable properties of finite relational structures, e.g., of finite graphs, are definable?
This thesis continues the search and investigates all current approaches and candidates
for such logics. We examine and compare their expressive power, show limitations, and
study the combination and relationship of them. We contribute the following new results:

First, we show that the quantifier depth of 3-variable first-order logic with count-
ing needed to distinguish two n-element structures is in O(n log n). Equivalently, the
2-dimensional Weisfeiler-Leman algorithm stabilizes in O(n log n) iterations. This up-
per bound matches the known Ω(n) lower bound up to a logarithmic factor. We use
representation-theoretic arguments for matrix algebras closely related to the algorithm.

Second, we consider the logic of Choiceless Polynomial Time (CPT). This logic ex-
presses all choice-less polynomial-time computations on relational structures. CPT is a
promising candidate for a logic capturing Ptime. Because proving or disproving that
CPT captures Ptime is currently out of reach, capturing Ptime with CPT on restricted
classes of structures is studied. Capturing Ptime is usually achieved by defining canon-
ization. We show that CPT canonizes structures with bounded color class size for which
every color class induces a dihedral automorphism group. The canonization is based on
a new normal form, a classification of certain subdirect products of dihedral groups, and
the existing canonization for structures with bounded color class size and abelian colors.

Third, we consider the combination of two approaches to capture Ptime. We combine
CPT with witnessed symmetric choice (CPT+WSC). This restricted choice-mechanism
guarantees that the result of a CPT-computation is independent of the choices made.
While defining canonization is the usual way to capture Ptime, it is unknown whether
canonization has to be definable. For CPT+WSC, we show that a CPT+WSC-definable
isomorphism test for a class of structures implies a CPT+WSC-definable canonization. If
isomorphism for this class is actually polynomial-time decidable, capturing Ptime with
CPT+WSC is equivalent to defining isomorphism in CPT+WSC.

Fourth, we further investigate witnessed symmetric choice. Showing that witnessed
symmetric choice makes CPT more expressive would separate CPT from Ptime, which
itself is an open problem. We consider inflationary fixed-point logic with counting (IFPC)
as base logic, for which witnessed symmetric choice strictly increases expressiveness. We
separate IFPC+WSC from Ptime and show that the further extension with an operator
based on logical interpretations (IFPC+WSC+I) is strictly more expressive. Hence, at
least for IFPC, witnessed symmetric choice alone is too weak to capture Ptime. We also
make a first step to separate IFPC+WSC+I from Ptime.

Last, we consider extensions of IFPC by operators from linear algebra. We separate
rank logic, the second promising candidate, from Ptime. Rank logic extends IFPC by
an operator to define ranks over finite fields. We show that rank logic fails to define
isomorphism for certain structures for which isomorphism is polynomial-time decidable
and actually CPT-definable. Hence, rank logic cannot even capture CPT. We also show
that the more general linear-algebraic logic fails to define this isomorphism problem. This
logic encompasses every extension of IFPC by linear-algebraic operators over finite fields.
Consequently, linear algebra over finite fields is too weak to capture Ptime.
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Zusammenfassung

Die Suche nach einer Logik für Polynomialzeit (Ptime) ist eine zentrale Frage der end-
lichen Modelltheorie und der deskriptiven Komplexitätstheorie: Gibt es eine vernünftige
Logik, die genau die in Polynomialzeit entscheidbaren Eigenschaften endlicher relationa-
ler Strukturen, z. B. endlicher Graphen, definiert? Diese Arbeit setzt die Suche fort und
betrachtet alle derzeitigen Ansätze und Kandidaten für solche Logiken. Wir untersu-
chen und vergleichen deren Ausdrucksstärke, zeigen Limitierungen und studieren deren
Kombination und Beziehungen zueinander. Wir tragen folgende neue Ergebnisse bei:

Wir zeigen zuerst, dass die Quantorentiefe, die in Logik erster Stufe mit 3 Varia-
blen und Zählen benötigt wird, um zwei n-elementige Strukturen zu unterscheiden, in
O(n log n) ist. Dies ist äquivalent dazu, dass der 2-dimensionale Weisfeiler-Leman Al-
gorithmus nach O(n log n) Iterationen stabilisiert. Diese obere Schranke entspricht der
bekannten Ω(n) unteren Schranke bis auf einen logarithmischen Faktor.

Wir betrachten zweitens die Logik Choiceless Polynomial Time (CPT). Diese Lo-
gik drückt alle wahlfreien Polynomialzeit-Berechnungen auf relationalen Strukturen aus.
CPT ist ein vielversprechender Kandidat für eine Logik für Ptime. Wir untersuchen die
logische Charakterisierung von Ptime auf Klassen von Strukturen. Dies zeigt man meis-
tens durch das Definieren einer Kanonisierung. Wir zeigen, dass CPT für Strukturen mit
beschränkter Farbklassengröße, für welche jede Farbklasse eine Diedergruppe als Auto-
morphismengruppe induziert, eine Kanonisierung definiert. Diese basiert auf einer neuen
Normalform und einer Klassifizierung spezieller subdirekter Produkte von Diedergruppen.

Wir kombinieren drittens zwei verschiedene Ansätze: Wir erweitern CPT um bezeugte
symmetrische Wahl (CPT+WSC). Dieser eingeschränkte Wahlmechanismus garantiert,
dass das Ergebnis einer CPT-Berechnung immer unabhängig von den getroffenen Wahlen
ist. Auch wenn Kanonisierung der übliche Weg ist, um Ptime zu charakterisieren, ist es
unbekannt, ob Kanonisierung definierbar sein muss. Wir zeigen, dass in CPT+WSC ein
definierbarer Isomorphietest eine definierbare Kanonisierung impliziert. Wenn Isomorphie
für eine Klasse von Strukturen in Polynomialzeit entscheidbar ist, dann ist in CPT+WSC
das Charakterisieren von Ptime äquivalent zum Definieren von Isomorphie.

Viertens untersuchen wir bezeugte symmetrische Wahl genauer. Ein Beweis, dass be-
zeugte symmetrische Wahl CPT ausdrucksstärker macht, würde CPT von Ptime trennen,
was selbst ein offenes Problem ist. Wir betrachten inflationäre Fixpunktlogik mit Zählen
(IFPC), für welche bezeugte symmetrische Wahl die Ausdrucksstärke strikt erhöht. Wir
trennen IFPC+WSC von Ptime und zeigen, dass die Erweiterung mit einem Opera-
tor basierend auf logischen Interpretationen (IFPC+WSC+I) strikt ausdrucksstärker ist.
Also ist bezeugte symmetrische Wahl zu schwach, um Ptime in IFPC zu charakterisieren.

Zuletzt betrachten wir Erweiterungen von IFPC mit Operatoren aus der linearen Al-
gebra. Wir trennen Ranglogik, den zweiten vielversprechenden Kandidaten, von Ptime.
Ranglogik erweitert IFPC mit einem Operator, der Ränge über endlichen Körpern de-
finiert. Wir zeigen, dass Ranglogik Isomorphie für eine Klasse von Strukturen nicht
definiert, für welche Isomorphie sogar CPT-definierbar ist. Also umfasst Ranglogik nicht
einmal CPT. Wir zeigen weiterhin, dass die allgemeinere linear-algebraische Logik dieses
Isomorphieproblem ebenso nicht definiert. Diese Logik umfasst jede Erweiterung von
IFPC mit linear-algebraisches Operatoren über endlichen Körpern. Folglich ist lineare
Algebra über endlichen Körpern zu schwach um Ptime charakterisieren.
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Chapter 1

Introduction

A logic in the context of model theory is, roughly speaking, a fixed syntactical way to
describe properties of a class of mathematical objects. These objects are often called
structures. Model theory considers logics and their relation to structures. For example,
one important question in model theory is to investigate which semantic properties of a
class of structures are definable in a logic of interest. Finite model theory only considers
finite structures, for example, finite graphs. Taking into account only finite structures
makes a remarkable difference. Many tools and results from classical (or infinite) model
theory fail in the restriction to finite structures (see, e.g., [61] for a discussion). Hence,
researchers had to develop new tools or to change perspective. Because of the focus on
finite structures, finite model theory is naturally relevant for computer science where the
objects of interest are almost always finite. In fact, finite model theory has applications,
for example, in database theory, artificial intelligence, or descriptive complexity theory.
This thesis will focus on the latter. Descriptive complexity theory studies the relation
between classical computational complexity classes and logics as follows: Computational
complexity theory examines the complexity of decision problems. A decision problem is
the task to decide whether a problem instance has a certain property or not, for example,
to decide whether a graph is connected or not. Complexity of decision problems is studied
with respect to time and space bounds of a deciding algorithm. Such a bound defines the
class of decision problems decidable within that bound. The two probably most prominent
complexity classes are Ptime and NPtime, the classes of decision problems decidable
in polynomial time (in the size of problem instance) by a deterministic, respectively
nondeterministic, Turing machine.

From a logical point of view, one studies how difficult it is to describe such a class
of problems. Every logic defines the class of decision problems that are definable within
this logic, that is, there is a formula of the logic which is exactly satisfied by the positive
instances of the problem. In this way, one can study the complexity of decision prob-
lems by asking in which logic they are definable or by asking how difficult it is to define
them in a certain logic. Such a notion of difficulty can, for example, be the number of
nested quantifiers or the number of variables that are required to define the problem.
One major goal of descriptive complexity theory is to align these two notions of complex-
ity, i.e., to find logical correspondences for the complexity classes from computational
complexity theory based on Turing machines (see [38, 44, 72] for textbook references).
Given a complexity class of interest, the goal is to find a logic which captures this class.
This roughly means that exactly all the decision problems contained in the given com-
plexity class are definable in this logic. The seminal result of descriptive complexity
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theory is Fagin’s result [39] that existential second-order logic captures the complexity
class NPtime. This result is now known as Fagin’s Theorem. Similarly, by putting
restrictions on the possible quantifier alternations in second-order logic, one can capture
every complexity class in the polynomial-time hierarchy. Full second-order logic captures
the whole polynomial-time hierarchy. Extensions of second-order logic by appropriate
transitive closure operators capture Pspace [65] and Exptime [71]. Various results for
complexity classes below NPtime exist: There are rather natural logics capturing Ptime,
Logspace, and NLogspace on ordered structures, that is, on relational structures for
which one relation is a total order on their universe (e.g., a total order on the vertices of
a graph). It is unknown whether these classes can be captured without the restriction to
ordered structures.

The question whether logics capturing these three classes on all (unordered) structures
exist are important open problems in finite model theory. Research regarding these
question often proceeds as follows: Starting with a complexity class C and a logic L that
is a candidate for capturing C, one studies whether L defines all properties of C or not.
If not, L is separated from C. Such a separation provides insights into the limitations of
L-expressiveness. To overcome this lack of expressiveness, L can be extended by some
means. The extended logic thereby becomes a new candidate for capturing C. There may
be different possibilities of extending L to define the L-undefinable properties yielding
multiple candidates. These candidates can be compared to understand the expressiveness
of the different extensions: Do the different extensions have the same expressiveness? Is
one extension weaker (which, in particular, separates the weaker extension from C)? How
expressive are combinations of different extensions? In the case that one is neither able
to separate L from C nor to show that L captures C, one can restrict the structures
that are considered. By considering larger classes of structures, one can on the one
hand try to eventually approach all structures and on the other hand understand the
difficulties to prove or disprove that L captures C. These approaches were carried out
for different logics and for both Logspace and Ptime, where the latter is arguable
the more important class. In this thesis, we focus on capturing Ptime and extend the
frontier of current research. We will investigate all current candidates for logics that may
capture Ptime. All these candidates are based on different approaches and not much of
their relationship is known. We will study the expressiveness of some of these candidates
showing new definability results. In particular, we show that one candidate captures
Ptime for a larger class of structures. We will combine two of the different, at first sight
rather incompatible approaches and find out interesting properties of this combination.
Last, we will separate another candidate from Ptime and thus rule it out as a candidate.
All these results provide further insights into the logical structure of Ptime.

In the following section, we will firstly go into more details about the quest for a
logic capturing Ptime, secondly review the three current candidates for a logic capturing
Ptime, and thirdly discuss the contribution of this thesis.
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1.1 The Quest for a Logic Capturing PTIME

Without the restriction to ordered structures, the question whether there is a logic cap-
turing Ptime remains wide open. Ptime is, at least from a theoretical point of view,
the accepted class of problems decidable by efficient algorithms. Thus, the question for a
logic capturing Ptime is not only one of the central open questions in descriptive com-
plexity theory [50], but it is also of relevance, for example, in database theory. Indeed,
the question was first posed by Chandra and Harel [22] in the context of database theory:
Is there an effective enumeration of all Ptime-properties, or to phrase it differently, is
there a natural and polynomial-time evaluable query language, i.e., a logic, expressing
all polynomial-time decidable properties? Gurevich [61] posed the question for a logic
capturing Ptime and, in particular, gave precise requirements on what is now regarded
as a reasonable logic capturing Ptime (see [50, 94] for a comparison of [22] and [61]).
He conjectured that no such logic exists. On the one hand, proving this result would
separate Ptime from NPtime, which can be seen as another motivation for the quest of
a logic for Ptime. On the other hand, a positive answer to the question would provide
more insights into the structure of Ptime-properties and polynomial-time algorithms.

While proving the nonexistence of a Ptime-capturing logic should be hard (since it
would separate Ptime from NPtime), showing the existence of such a logic seems to be
difficult too. At the core of the 40 years old problem lies a mismatch between algorithms
and logics. When designing algorithms, one is used to making arbitrary choices. For ex-
ample, consider a depth-first search in a graph: the choice of the next vertex to traverse is
essentially an arbitrary choice. But how do deterministic algorithms actually make these
choices? Conceptually, vertices of a graph cannot always be distinguished by intrinsic
properties (e.g., consider a clique). The crucial point here is that the algorithm actually
does not get the graph as input, but an ordered version of the graph, that is, a graph
with a total order on the vertices. This order is unavoidable because of the need to write
the graph on the tape of a Turing machine (or in the memory of a computer). However,
this order is not unique. Permuting the vertices of a graph, that is essentially choosing a
different order, may result in a different encoding. In general, it is not known whether a
unique encoding can be computed in Ptime (which is actually the task of graph canon-
ization and will be discussed later). Hence, the proof that the algorithm correctly decides
a property implicitly includes a proof that the algorithm is order-invariant, which means
that the algorithm outputs the same result for all possible orders. And, of course, there
are algorithms which are not order-invariant. Moreover, it is even undecidable whether
a given Turing machine is order-invariant.

For a logic, the situation changes. The formulas of a reasonable logic in the sense
of Gurevich are enumerable. In particular, it is decidable whether a given string is a
well-formed formula. Reasonable logics are required to be isomorphism-invariant, that
is, two isomorphic graphs satisfy exactly the same sentences of the logic: Whether a
sentence is satisfied by a graph or not only depends on the structure of the graph but
not on the “names” of its vertices. In particular, a logic is invariant under permuting
the vertices of a graph, i.e., choosing a different order. This means that logics, unlike
algorithms, have to ensure isomorphism-invariance syntactically. As already mentioned,
when equipping the input graph with a total order, there is a logic capturing Ptime:
This logic is the extension of first-order logic by an inflationary fixed-point operator as
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shown in the Immerman-Vardi Theorem [69, 114]. Given such a total order, there is no
need for arbitrary choices anymore and thus polynomial-time Turing machines can be
simulated within this logic.

Fixed-Point Logics. First-order logic itself defines only local properties (see [38]). For
example, the class of connected graphs is not definable in first-order logic. To support
inductive definitions, extensions of first-order logic by inductive fixed-point operators were
studied. Consider a formula Φ defining a k-ary relation Φ(R), that is, a set of k-tuples of
vertices, in terms of a given k-ary relation R. An inductive fixed-point operator considers
the series of k-ary relations defined by R0 = ∅ and Ri+1 = Φ(Ri). This sequence does not
necessarily stabilize. In case that it stabilizes, a fixed-point of Φ is reached. There are
two important approaches to guarantee that a fixed-point is reached: The first approach
is the so-called least fixed-point operator. Using syntactic restrictions to the fixed-point-
defining formula Φ, it is ensured that the formula is monotone, that is, for all k-ary
relations R ⊆ R′, it holds that Φ(R) ⊆ Φ(R′). In this case, the former sequence is
guaranteed to stabilize and the reached fixed-point is indeed the unique least fixed-point
of Φ. The other approach is the already mentioned inflationary or inductive fixed-point
operator. In this case, consider the series defined via R0 = ∅ and Ri+1 = Ri ∪ Φ(Ri).
Because all the Ri are k-ary relations, a fixed-point is reached at the latest when Ri

contains all k-tuples of vertices. We call fixed-point logic IFP the extension of first-order
logic with the inflationary fixed-point operator. First, it was shown that the extension by
the inflationary and the one by the least fixed-point operator are equally expressive on
finite structures [63]. It was later shown that their expressiveness is actually the same on
all structures [81]. For both operators, the sequence of k-ary relations satisfies Ri ⊆ Ri+1.
The fixed-point is reached within a polynomial number of steps because there are only
polynomially many k-tuples for a fixed k. Thus, fixed-point logic can be evaluated in
polynomial time.

There is also a third variant of defining fixed-points via the partial fixed-point op-
erator. One considers the same series of relations as for least fixed-points but without
ensuring that the fixed-point defining formula is monotone. If no fixed-point is reached,
the operator evaluates to the empty relation. For partial fixed-points, the sequence of
relations may need an exponential number of steps to stabilize (or to guarantee that it
will never stabilize). The extension of first-order logic with a partial fixed-point operator
can be evaluated in Pspace, and on ordered structures indeed captures Pspace [1,114].

Concerning the quest for a logic capturing Ptime, consider again inflationary fixed-
point logic (IFP). It defines a rich class of properties and, by the mentioned Immerman-
Vardi Theorem, captures Ptime on ordered structures. Nevertheless, there are very
simple non-IFP-definable properties, for example whether a graph has an even number of
vertices, which obviously can easily be decided in Ptime. To deal with this lack of natural
numbers in IFP, Immerman [70] proposed the fixed-point logic with counting (IFPC)
extending IFP with numbers and a counting operator. IFPC easily defines whether a
graph has an even number of vertices (cf. Figure 1.1). Actually, IFPC was a candidate
for a logic capturing Ptime until Cai, Fürer, and Immerman [20] provided a clever
graph construction separating IFPC from Ptime. The construction assigns to every
base graph two non-isomorphic graphs: one is called even and the other one is called
odd. Nowadays, the graphs are known as CFI graphs. The CFI query is to decide
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whether a given CFI graph is even. This query is decidable in Ptime, but is undefinable
in IFPC. Although IFPC fails to capture Ptime, IFPC captures Ptime on many classes
of graphs or structures including planar graphs [49], relational structures of bounded
treewidth [56], interval graphs [82], graphs with excluded minors [51,52], which subsumes
many previous results, and graphs of bounded rank width [57].

Capturing PTIME via De�nable Canonization. The proofs of Fagin’s Theorem and the
Immerman-Vardi Theorem encode Turing machines into the corresponding logic. How-
ever, to encode Turing machines in IFP or IFPC, the availability of an order is crucial.
It is not clear how such an encoding can be done without an order. To show that IFPC
captures Ptime on a class of unordered graphs, the routinely employed way is the one
via definable canonization (e.g., [52, 56, 57, 82]). In general, canonization is the task of
assigning to a given graph (or relational structure in general) an isomorphic but totally
ordered copy, the so-called canon, such that the canons of two isomorphic graphs are
equal. If canonization for a class of graphs is definable in IFPC (or any other logic which
is at least as expressive as IFP), then the Immerman-Vardi Theorem can be exploited
to capture Ptime on that class because canons are totally ordered. So the problem of
defining canonization is closely related to capturing Ptime. In general, it is not known
whether graph canonization is (algorithmically) polynomial-time computable. Closely-
linked to canonization is isomorphism testing, i.e., to decide whether two graphs are
isomorphic. Graph isomorphism itself is not known to be in Ptime, either. However,
graph isomorphism is decidable in quasi-polynomial time due to Babai [9], which makes
graph isomorphism one of the rare candidates of NP-intermediate problems [74]. Ev-
ery polynomial-time canonization algorithm implies a polynomial-time isomorphism test.
The converse direction is unknown. However, for many graph classes with a polynomial-
time isomorphism test, a polynomial-time canonization algorithm is known (see [109] for
an overview). The situation is quite similar in logics: For many graph classes, for which
IFPC defines the isomorphism problem, it is also known that IFPC defines canonization
(e.g., [52, 57]), but a general reduction is unknown. We will address this issue again for
logics that are more expressive than IFPC. For a graph class with a polynomial-time
isomorphism test, isomorphism of graphs of the class is, by definition, a Ptime-query.
Hence, a logic capturing Ptime has to define isomorphism for these graphs. Since the
commonly used approach to capture Ptime is to define canonization, one actually would
try to define canonization.

Let us for the moment accept that capturing Ptime is closely related to canonization,
which itself is closely related to graph isomorphism. As already mentioned, IFPC fails
to capture Ptime as shown by the CFI graphs. Therefore, research investigated log-
ics more expressive than IFPC that potentially capture Ptime. Before discussing these
logics, we first discuss some challenges for candidates of logics capturing Ptime. First,
it is of particular interest whether the CFI query is definable. The CFI construction
and variations of it are essentially the only known way to construct non-IFPC-definable
Ptime-properties [20, 45, 64, 66, 68]. From another perspective, one can ask whether a
logic captures Ptime on a graph class with a known polynomial-time canonization al-
gorithm for which it is known that IFPC fails to capture Ptime. On these classes, at
least graph isomorphism has to be definable. Probably, the simplest such graph class
is the class of vertex-colored graphs of q-bounded color class size, i.e., at most q many
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vertices have the same color. In particular, CFI graphs of color class size 4 suffice to
separate IFPC from Ptime. Graphs of bounded color class size can be canonized using
group-theoretic techniques [8, 10, 41]. These techniques inherently rely on choosing gen-
erating sets of groups, so another example of algorithms making arbitrary choices. As a
consequence, it is not clear how these group-theoretic techniques can be expressed in an
isomorphism-invariant logic. Using algorithmic group theory turned out to be very fruit-
ful in the context of graph isomorphism testing. It led to Luks’ famous polynomial-time
isomorphism test for graphs of bounded degree [90], which uses a more general and more
complicated machinery than needed for bounded color classes. Hence, graphs of bounded
color class size are one of the next reasonable classes on which we should try to capture
Ptime on.

1.2 Approaches to Capture PTIME

In current research, there are three different approaches [103] to obtain stronger logics
which potentially capture Ptime. These approaches come from very different directions
and not much about their relation is known. This thesis will discuss all of them.

Choiceless Polynomial Time. The logic of Choiceless Polynomial Time (CPT) was in-
troduced by Blass, Gurevich, and Shelah [18] to capture all choice-free computations
on relational structures. Originally, CPT was presented as an abstract state machine
programmable in a pseudo-code like syntax. Instead of receiving its input as a string
(with the already discussed order-related encoding problems), it directly computes on
a relational structure and on hereditarily finite sets constructed over its universe. The
general idea is to eliminate choices by parallel computations for all possible choices. That
is, whenever a hereditarily finite set is constructed, the machine can either process all
of its contained elements in parallel or none of them. Picking one element arbitrarily
out of a set is not possible. The logic CPT is obtained as the polynomial-time fragment
of these machines by using explicit polynomial bounds. The absence of choices makes
CPT choice-free and, in particular, isomorphism-invariant. Thus, CPT satisfies Gure-
vich’s conditions for a logic that might capture Ptime. Akin to IFPC, CPT possesses a
counting or cardinality operator that determines the size of a hereditarily finite set. It
was already shown [18] that such an operator is needed to define the parity of the number
of vertices of a graph.

It turned out that CPT has multiple equivalent definitions: Rossman [106] and Grädel
and Grohe [43] provided more “logical” definitions based on fixed-point iterations on
hereditarily finite sets. Later on, Grädel, Pakusa, Schalthöfer, and Kaiser [46] showed that
CPT can also be characterized by iteratively applied first-order interpretations. Lastly,
Grohe, Schweitzer, and Wiebking [59] proved CPT as expressive as a machine model
called Deep Weisfeiler Leman, which is based on Turing machines modifying relational
structures in an isomorphism-invariant manner. So CPT can be seen as a natural and
robust way to capture the concept of choice-free computations.

In some sense, CPT overcomes the restriction of first-order logic and its extensions
with fixed-point operators to define relations of fixed arity. For example, CPT is able to



1.2. Approaches to Capture Ptime 7

define tuples whose lengths are not bounded by a constant as long as at most polynomially
many such tuples are constructed. Thus, CPT captures Ptime on padded structures [19],
that is, on arbitrary structures extended by large cliques (see also [82] for an improved
bound on the needed size of the clique). While adding large cliques does not change
the expressiveness of IFPC, in CPT one can consider all possible orders of the small
interesting part of the input to exploit the Immerman-Vardi Theorem. Because the
clique is sufficiently large, the number of considered orders is still polynomial in the size
of the input. In particular, CPT is strictly more expressive than IFPC.

It was shown by Dawar, Richerby, and Rossman [34] that CPT defines the CFI query
for CFI graphs obtained from ordered base graphs. Ordered base graphs are precisely
the base graphs of color class size one. In particular, this restricted form of the CFI
query includes the color class size four CFI graphs, which suffice to separate IFPC from
Ptime. The construction uses deeply nested sets to determine the parity of CFI graphs.
This technique was generalized by Pakusa, Schalthöfer, and Selman [104] to base graphs
of logarithmic color class size and to base graphs whose maximal degree is linear in the
number of vertices. However, this technique to define the CFI query can probably not be
used to define the unrestricted CFI query [100]. So it remains an open problem whether
CPT defines the unrestricted CFI query. Indeed, the unrestricted CFI query is a candidate
for separating CPT from Ptime [102]. Moreover, Rossman [106] showed that there is
a polynomial-time computable function which is not CPT-definable. This however does
not separate CPT from Ptime because Ptime only considers polynomial-time decidable
properties. Another possibility to separate CPT from Ptime was recently established
by Pago [102] who shows that CPT has the same power to distinguish graphs as the
bounded-degree extended polynomial calculus. However, no sufficient strong bounds are
known for that calculus.

Regarding canonization and capturing Ptime in CPT, Abu Zaid, Grädel, Grohe,
and Pakusa [118] made a first step towards canonizing relational structures of bounded
color class size. The authors only consider structures whose color classes are of bounded
size and additionally abelian: For every color class, the automorphism group of the
substructure induced by this color class is abelian. This restriction is used to replace
the group-theoretic algorithms in the canonization algorithm for structures of bounded
color class size by checking a certain class of linear equation systems over finite rings for
solvability. The technique to check these systems for solvability is based on the techniques
of [34] and [104] used to define the CFI query.

Algebraic Operators. As noted before, certain problems of linear algebra, such as solv-
ing linear equation systems for example, became important for capturing Ptime. Solving
linear equations over finite fields is polynomial-time computable by Gaussian elimination
for example, which however also depends on making choices (choosing the row and col-
umn of the coefficient matrix to process next). In particular, the CFI graphs are a graph
encoding of a certain class of linear equation systems over the two element field F2. In-
deed, the CFI query reduces to solving a system of linear equation systems over F2 [27].
Hence, the definability or undefinability of problems of linear algebra are of interest. It
was observed by Rossman [17] that the determinant of a matrix over a commutative ring
of characteristic 0 is CPT-definable. This was extended by Blass and Gurevich to finite
fields [17]. Later, it was shown that the determinant over finite fields is indeed IFPC-
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definable [27]. The authors also prove that the rank of a matrix over Q is IFPC-definable.
However, the CFI graphs show that this cannot be the case for the rank over F2. It was
shown by Atserias, Bulatov, and Dawar [6] that infinitary finite-variable counting logic,
which subsumes IFPC, fails to define the solvability of equation systems over every fixed
abelian group and, in particular, of linear equation systems over finite fields. This poses
the question of descriptive complexity of linear algebra [68,82,103].

Hence, considering extensions of IFPC by operators for linear algebra seems natural.
There are different possibilities for such extensions, for example, by generalized Lindström
quantifiers for the solvability of linear equation system [24, 103]. Of particular interest
was rank logic introduced by Dawar, Grohe, Holm, and Laubner [27]. Rank logic extends
IFPC by a rank operator rkp for every finite prime field Fp. The rkp-operator evaluates to
the rank of a definable matrix over Fp. The rank operator is quite expressive. It subsumes
the counting operator, can be used to express graph connectivity (in the absence of the
fixed-point operator), and defines the CFI query. The latter is not surprising because
the CFI query reduces to solving linear equations systems over F2, which reduces to
computing ranks over F2. However, it turned out that using a different rank operator rkp
for every finite prime field is too restrictive. The CFI construction can be generalized
from F2 to every finite prime field Fp and even to general abelian groups [13, 45, 95].
Using CFI graphs over Fp, Grädel and Pakusa [45] showed that the CFI query over Fq
cannot be defined by only using rkp-operators for p 6= q. So, when considering the class
of CFI graphs over all finite prime fields, this version of rank logic fails to define the CFI
query because a finite formula can only contain finitely many rkp-operators. The authors
proposed an alternative uniform rank operator rk, where the characteristic of the prime
field is defined by a term of the logic, so the characteristic depends on the input structure.
Uniform rank logic defines the CFI query over all prime fields. Additionally, it was shown
by Pakusa [103] that rank logic captures Ptime on relational structures with 2-bounded
color classes.

Ehrenfeucht-Fraïssé-like pebble games, also known as back-and-forth games, are a
powerful tool for showing that two structures can be distinguished (or cannot be dis-
tinguished, respectively) by a logic. Such game-based characterizations exist for finite-
variable first-order logic and for its extension with counting (see [98]). This fruitful cor-
respondence can, in some sense, also be established for rank logic. Dawar and Holm [29]
provided a game characterization of finite-variable first-order logic extended by a rank
quantifier. This game is based on matrix equivalence (which implies equal ranks) and
was generalized by the authors to simultaneous similarity of sequences of matrices, which
is called the invertible-map game. The invertible-map game has the benefit that its in-
duced equivalence relation on finite structures is polynomial-time decidable, which for
the version with ranks is unknown. As shown by Dawar, Grädel, and Pakusa [25], the
invertible-map game precisely characterizes the so-called linear-algebraic logic. This logic
is an infinitary logic with a Lindström quantifier for every linear-algebraic operator, that
is, for every mapping of a sequence of matrices over a prime field to some number, which
is invariant under isomorphisms of the underlying vector space. Hence, linear-algebraic
logic is a very expressive logic. It is also non-effective because it is infinitary and not re-
stricted to computable linear-algebraic operators. The relevance of linear-algebraic logic
stems from the fact that it encompasses every extension of first-order or fixed-point logics
by any linear-algebraic operators over finite fields. It was shown [25] that, akin to rank
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logic, linear-algebraic operators for every prime field are needed to define the CFI query
over all prime fields in linear-algebraic logic. This implies that to capture Ptime with
some extension of IFPC by linear-algebraic operators over finite fields, one always has to
consider all finite fields.

Symmetric Choice. The last approach to capture Ptime is to directly allow for choices
in the logic. In a first step, Arvind and Biswas [5] extended IFP by a nondeterminis-
tic choice in the fixed-point operator. Such an inflationary fixed-point operator defines
a relation R as follows: At every step, not all tuples satisfying the fixed-point-defining
formula are added to R, but a single tuple not already contained in R is nondetermin-
istically chosen (if such a tuple exists) and only this tuple is added to R. However, this
unrestricted form of choice breaks isomorphism-invariance. The authors showed that the
fragment of the logic evaluating equally for all choices indeed captures Ptime. But this
fragment is not a reasonable logic in the sense of Gurevich: It is undecidable whether such
a formula defines a choice-invariant property, that is, the logic has no decidable syntax.

Gire and Hoang [42] introduced the concept of symmetric choice to syntactically guar-
antee isomorphism-invariance. The authors studied the logic IFP+SC by extending IFP
as follows: An inflationary fixed-point operator with symmetric choices uses two formulas
Φ and Ψ to define a fixed-point. The formula Φ defines a fixed-point iteration. At every
stage in the iteration, the formula Ψ defines a choice-set of tuples, from which one tuple is
chosen. This tuple is passed to Φ to define the next stage in the fixed-point computation.
The important restriction is that choice-sets always have to be orbits, that is, for every
pair of tuples a and b in the choice-set, there must be an automorphism of the input
structure mapping a to b. With this restriction, the defined fixed-point is semidetermin-
istic (in the sense of [36]): All possible fixed-points are related by an automorphism.
Hence, all fixed-points satisfy the same IFP-formulas (or, in general, formulas of any
other isomorphism-invariant logic). This is used to guarantee isomorphism-invariance:
Every fixed-point operator with symmetric choice provides a formula, which is evaluated
on the defined fixed-point. So a fixed-point operator with symmetric choice actually
only defines a truth-value and thus is deterministic (because truth-values are trivially
isomorphism-invariant). While IFP+SC is a reasonable logic in the sense of Gurevich,
it is unknown whether IFP+SC can be evaluated in Ptime. To evaluate IFP+SC, one
needs to compute orbits to check that all choice-sets are indeed orbits. However, com-
puting orbits is polynomial-time equivalent to deciding graph isomorphism for which the
complexity status is unknown.

Gire and Hoang [42] resolved this issue by replacing symmetric choice with witnessed
symmetric choice (which is called specified symmetric choice in [42]) resulting in the
logic IFP+WSC. A WSC-fixed-point operator consists of another formula, which has to
define witnessing automorphisms proving that the choice-sets are indeed orbits. That
is, the obligation to check that choice-sets are orbits is moved from the evaluation to
the formulas themselves. In this way, IFP+WSC can be evaluated in polynomial-time.
IFP+WSC is strictly more expressive than IFP because it defines the CFI query for
ordered base graphs [42]. Defining the CFI query for ordered base graphs in IFP+WSC
is comparatively easier than defining it in CPT [34].

Afterwards, IFP+SC was studied by Dawar and Richerby [31]. The authors allowed
for nested symmetric choice operators and proved that parameters of choice operators
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1.1 Relations between various extensions of �xed-point logic and CPT. The �gure shows the
inclusions between �rst-order logic FO, �xed-point logic IFP, �xed-point logic with counting IFPC,
rank logic, and Choiceless Polynomial Time CPT. It is unknown whether rank logic is contained
in CPT or not. Vertices show queries separating the logics. Gray vertices indicate candidates for
separating queries. The pink vertex is a new result of this thesis.

increase the expressiveness. They also showed that nested symmetric choice operators
are more expressive than a single one and conjectured that the expressiveness increases
further with additional nesting depth. We remark that when dropping the restriction of
the choice-sets to be orbits, then the approaches of [5] and [42], albeit different, have the
same expressiveness [32].

One severe restriction of symmetric choice is that orbits need to be definable. If orbits
are not definable, then symmetric choice is not beneficial. However, it might be the case
that the input structure is reducible to an easier structure, for which orbits (or witnessing
automorphisms) can be defined. The logical concept of a reduction is an interpretation.
Gire and Hoang [42] considered the closure of IFP+WSC under an operator for inter-
pretations. This operator evaluates a formula in the image of an interpretation and this
image possibly has different orbits. The resulting logic IFP+WSC+I simulates counting,
that is, IFP+WSC+I subsumes IFPC, which IFP+WSC is indicated to fail to do [42].
This leaves IFP+WSC+I as a candidate of a logic capturing Ptime, but Dawar and
Richerby conjectured that this is not the case [31].

1.3 Contribution

This thesis provides new results for all the three approaches mentioned before. We will
make progress in the questions whether CPT captures Ptime or not, whether Ptime
can be captured by extending IFPC with operators from linear algebra, and how these
extensions relate to CPT (cf. Figure 1.1). We will study how witnessed symmetric choice
relates to CPT and whether witnessed symmetric choice is needed in the presence of
counting (so in IFPC and not in IFP) to get a better understanding of its power. However,
the first result considers 3-variable counting logic.
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Quanti�er Depth of 3-Variable Counting Logic. Chapter 3 considers 3-variable counting
logic, the 3-variable fragment of first-order logic extended by a counting quantifier. Finite-
variable counting logics play an important role in descriptive complexity theory [48]. In
particular, IFPC can be embedded into infinitary counting logic [98]. Because the model-
theoretic technique of Ehrenfeucht-Fraïssé-like pebbles games can be applied to finite-
variable counting logics [20,66], these games can be used to prove that IFPC distinguishes
(or fails to distinguish) structures [20, 57, 76]. Apart from that, finite-variable counting
logics have a connection to machine learning [53,93,110,117], the Sherali-Adams hierarchy
of a natural linear integer programming formulation of graph isomorphism [7,58], and to
homomorphism counts from graphs of bounded treewidth [35].

Determining the quantifier depth of a formula of k-variable counting logic that is max-
imally required to distinguish n-element structures is an open problem. For arbitrary k,
no better upper bound than the trivial one of nk − 1 is known. For 3-variable counting
logic, the best known upper bound is O(n2/ log n) by Kiefer and Schweitzer [79]. We will
prove an O(n log n) upper bound for 3-variable counting logic, which matches the best
known lower bound of Ω(n) by Fürer [40] up to a logarithmic factor. Recently, the upper
bound was generalized in joint work with Martin Grohe and Daniel Neuen to k-variable
counting logic yielding an O(nk−1 log n) upper bound [57].

We will exploit the correspondence between (k + 1)-variable counting logic and the
k-dimensional Weisfeiler-Leman (k-WL) algorithm [20,98]. For the case k = 2, the 2-WL
algorithm computes a coloring of all vertex pairs of a graph by iteratively applying the
2-WL refinement. The 2-WL refinement colors a vertex pair (u, v) based on the colors
of all walks of length 2 from u to v. Either the partition into color classes is properly
refined or the process stabilizes. The iteration number of the 2-WL refinement needed to
stabilize corresponds to the maximal quantifier depth of a formula of 3-variable counting
logic to distinguish vertex pairs in the graph.

To prove the O(n log n) upper bound, we take an algebraic point of view. We exploit
the one-to-one correspondence between coherent configurations, so in particular, the col-
oring output by 2-WL, and coherent algebras [67]. We introduce another refinement
called the walk-refinement that refines the color of a vertex pair (u, v) by the multiset of
colors of all walks (of unrestricted length) from u to v. One iteration of walk-refinement
has the same distinguishing power as a certain matrix algebra induced by the partition
into color classes. Whenever the walk-refinement strictly refines the colors, we obtain a
strictly larger algebra. Using arguments from representation theory, we prove that every
proper chain of these algebras has length at most O(n). Hence, walk-refinement stabilizes
after O(n) iterations. We actually prove that this bound is tight using the same graphs
as [40]. We obtain the O(n log n) bound on the iteration number of 2-WL by showing
that a single step of walk-refinement is subsumed by logarithmically many iterations of
2-WL refinement. In particular, both refinements produce the same stable coloring.

The results in this chapter are joint work with Pascal Schweitzer and Ilia Ponomarenko
and appeared at LICS 2019 [87].

Canonizing Structures with Dihedral Colors in CPT. In Chapter 4, we take the next step
towards canonizing structures with bounded color class size in CPT. Since there is a CPT-
definable canonization for structures with bounded and abelian colors [118], we consider
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structures with bounded and dihedral or cyclic colors. A color class is dihedral (or cyclic,
respectively) if it induces a substructure whose automorphism group is a dihedral (or
cyclic, respectively) group. A dihedral group is the automorphism group of a regular
n-gon consisting of rotations and reflections. We call the group odd if n is odd. In
particular, dihedral groups are non-abelian for n > 2. We show that the following classes
of structures have a CPT-definable canonization:

(a) q-bounded ternary relational structures with odd dihedral or cyclic colors and

(b) q-bounded binary relational structures with dihedral or cyclic colors.

We thereby provide the first CPT-definable canonization for a class of q-bounded struc-
tures with non-abelian color classes. In particular, we show that CPT captures Ptime
on such classes.

Our approach consists of two steps. As a first step, we propose a normal form for
arbitrary finite q-bounded structures. Then, in a second step, we use group-theoretic
arguments to canonize structures with dihedral colors given in the aforementioned normal
form. Concretely, the first step is a reduction transforming the input structure into
a normal form, which ensures that a color class and its adjacent color classes form a
“rigid assemblage”. That is, locally the automorphism groups form 2-injective 3-factor
subdirect products or they are quotient groups of other color classes. In the case of 2-
injective 3-factor subdirect products, the automorphisms of three adjacent color classes
are not independent of each other. This means that no nontrivial automorphism of the
substructure induced by these three color classes is the identity on two of them. This
normal form is not specific to dihedral colors and is possibly of more general interest.

It was not necessary to consider 2-injective groups for abelian colors yet, but it is
for non-abelian colors. Towards a reduction step, a purely group-theoretic analysis of
2-injective groups is given by Neuen and Schweitzer [97]. The main insight is basically
that such groups decompose naturally into structurally simpler parts which are related
via a common abelian normal subgroup. We extend the techniques to canonize abelian
color classes and show how they can be combined with the analysis of 2-injective groups
to obtain a canonization procedure for said structures with dihedral colors in CPT. That
is, we provide new methods to integrate group-theoretic reasoning, which is at the core
of canonizing q-bounded structures algorithmically, into logics.

The results in this chapter are based on joint work with Pascal Schweitzer and appeared
at CSL 2021 [88].

CPT, Witnessed Symmetric Choice, and De�nable Isomorphism. We consider CPT-
definable isomorphism tests and how these can be used to capture Ptime. Progress in
the quest for a logic capturing Ptime usually comes in one of two flavors, which we have
already discussed: Research results either show that some logic captures Ptime for a
more extensive class of structures, or a logic is separated from Ptime. In Chapter 5,
we take a different point of view. The ultimate goal is to provide a reduction from a
definable canonization of a class of structures to a definable isomorphism test for the
same class. Such a reduction is not known in general and defining canonization often
appears to require considerably more effort than defining isomorphism (e.g., [51,52,57]).
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We extend CPT with a suitable operator for witnessed symmetric choice (CPT+WSC).
For this extended logic, we show that a CPT+WSC-definable isomorphism test implies a
CPT+WSC-definable canonization. Thus, we reduced capturing Ptime in CPT+WSC
to defining isomorphism. In that sense, our result can be seen as a simplification to
capture Ptime in CPT+WSC.

So why should witnessed symmetric choice in CPT suffice to show that isomorphism
testing and canonization are equivalent? Here we build on two existing results. The first
one [59] shows that a CPT-definable isomorphism test implies a CPT-definable complete
invariant, that is, a CPT-definable ordered object which is equal for two input structures if
and only if they are isomorphic. The second, more classical result is due to Gurevich [62].
It shows how an algorithm computing complete invariants can be turned into an algorithm
computing a canonization. This algorithm requires that the class of graphs is closed under
individualization (that is, under coloring individual vertices). Although being closed
under individualization is a problem in some contexts [80, Theorem 33], this requirement
is usually not a restriction [80, 91]. The canonization algorithm repeatedly uses the
complete invariant to compute a canonical orbit, chooses and individualizes one vertex
in that orbit, and proceeds until all vertices are individualized. Thereby, a total order
on the vertices is defined (which is semideterministic). This algorithm can be expressed
in CPT+WSC. Hence, a definable complete invariant can be turned into a definable
canonization.

So far, a CPT-definable isomorphism test implies a CPT+WSC-definable canoniza-
tion. However, we prefer that a definable isomorphism test implies a canonization in
the same logic. To show this statement for CPT+WSC, we lift the result that definable
isomorphism implies a definable complete invariant from CPT to CPT+WSC. That is,
we show that a CPT+WSC-definable isomorphism test implies a CPT+WSC-definable
complete invariant and hence a CPT+WSC-definable canonization. This step is based
on the characterization of CPT via the Deep Weisfeiler-Leman computation model [59],
which we extend with witnessed symmetric choice.

The results in this chapter are based on joint work with Pascal Schweitzer and appeared
at LICS 2022 [89].

IFPC, Witnessed Symmetric Choice, and Logical Interpretations. We have already dis-
cussed that witnessed symmetric choice increases the expressiveness of IFP and that it
enables us in CPT to prove that definable isomorphism is equivalent to definable can-
onization. In Chapter 6, we want to understand the expressive power of witnessed sym-
metric choice and its interplay with the operator for logical reductions in general and not
specifically for IFP. Most of the existing results showing that (witnessed or unwitnessed)
symmetric choice or the interpretation operator increase the expressiveness of IFP in
some way are based on simulating counting [31,42]. However, counting is not the actual
reason for using witnessed symmetric choice. Counting can be achieved more naturally in
IFPC. Thus, it is unknown whether the interpretation operator increases expressiveness
of IFPC+WSC. In CPT, it is not possible to show that witnessed symmetric choice or
the interpretation operator increase expressiveness without separating CPT from Ptime.
This question itself is still open.
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This turns IFPC into a natural base logic for studying the interplay of witnessed
symmetric choice and the interpretation operator. On the one hand, separation results
based on counting are not applicable in IFPC. On the other hand, there are known
IFPC-undefinable Ptime properties, namely the already mentioned CFI query, which
can be used to separate extensions of IFPC. We define the logics IFPC+WSC and
IFPC+WSC+I extending IFPC with witnessed symmetric choice and the latter addi-
tionally with the interpretation operator. We show that the interpretation operator
increases expressiveness, that is, we separate IFPC+WSC from IFPC+WSC+I. In par-
ticular, we separate IFPC+WSC from Ptime. This separation is established as follows:
We show, in some sense similar to CPT+WSC using Gurevich’s canonization algorithm,
that if IFPC+WSC+I distinguishes orbits, i.e., the orbits can be defined and ordered,
then IFPC+WSC+I defines a canonization. We apply this approach to CFI graphs: We
show that if IFPC+WSC+I canonizes a class of colored base graphs closed under individ-
ualization, then IFPC+WSC+I canonizes the CFI graphs over that class of base graphs.
The conclusion is that for IFPC+WSC+I a class of CFI graphs is not more difficult than
the corresponding class of base graphs, which is different in many other logics. However,
to canonize the CFI graphs, the nesting depth of WSC-fixed-point operators and inter-
pretation operators increases. We prove that this increase is unavoidable: Two nested
WSC-fixed-point and interpretation operators are more expressive than a single one.

Finally, to prove that the interpretation operator indeed increases expressiveness, we
construct a Ptime-property definable in IFPC+WSC+I but not in IFPC+WSC. This
property is a variant of the CFI query that combines CFI graphs with the multipede
construction of Gurevich and Shelah [64]. These multipedes are asymmetric structures,
i.e., structures without nontrivial automorphisms, for which isomorphism is not IFPC-
definable. We show that for a suited combination of CFI graphs with multipedes, we
obtain asymmetric structures for which orbits are not IFPC+WSC-definable. Hence,
witnessed symmetric choice is not beneficial on these structures, and so IFPC+WSC is
not more expressive than IFPC on these structures. In particular, IFPC+WSC does not
define their isomorphism problem. However, the isomorphism problem of said structures
can be reduced via an interpretation to the CFI query, which is IFPC+WSC+I definable.

In this way, we separate IFPC+WSC from Ptime. Such a result does not follow from
existing ones because separating IFP+WSC from Ptime is based on counting in [42].
Moreover, we show that IFPC+WSC is not even closed under FO-interpretations. The
same construction shows that IFP+SC is not closed under FO-interpretations. Thereby,
we answer an open question of Dawar and Richerby [31].

The results of this chapter appeared at ICALP 2023 [86].

Separating Rank Logic from PTIME. In Chapter 7, we separate rank logic from Ptime.
To do so, we consider the CFI query over all rings Z2i . The result of Grädel and
Pakusa [45], which shows that the CFI query over Fp is not definable using rank op-
erators over Fq for all p 6= q, can be extended to the rings Z2i . It suffices to consider the
rank operator over F2. We then show that the characteristic 2 invertible-map game fails
to distinguish all non-isomorphic CFI graphs over Z2i . This implies that rank logic fails
to define the CFI query over Z2i . We thereby rule out rank logic as a candidate for a
logic capturing Ptime. Because isomorphism of CFI graphs over Z2i reduces to solving
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linear equation systems over Z2i , this answers the question of solvability of linear equation
systems over finite rings in rank logic [6], at least for the case that the ring is part of the
input, in the negative. Actually, we even consider CFI graphs over ordered base graphs.
From a variant of the canonization for structures with bounded and abelian color classes
in CPT [103] it follows that CPT defines the CFI query for ordered base graphs over Z2i .
Hence, we showed that rank logic does not even capture CPT (cf. Figure 1.1).

Recall that the power of the invertible-map game to distinguish graphs is actually
captured by the more general linear-algebraic logic [29]. Dawar, Grädel, and Pakusa [25]
generalized the result of the characteristic of rank operators and the CFI query from
rank logic to linear-algebraic logic: The CFI query over Fp cannot be defined in linear-
algebraic logic using linear-algebraic operator over fields Fq for all q 6= p. This result
generalizes to the rings Z2i : The CFI query can only be defined, if possible at all, using
linear-algebraic operators over F2. Together with our result that the invertible-map game
over F2 fails to distinguish all non-isomorphic CFI graphs over all rings Z2i , we obtain
that linear-algebraic logic fails to define the CFI query over Z2i . This finally settles the
question of capturing Ptime by extending IFPC with operators of linear algebra over
finite fields: Linear algebra over finite fields is too weak to capture Ptime.

An extended abstract of the results in this chapter appeared at LICS 2021 [84]. The
full results appeared in the Journal of the ACM [85]. Combining the results for rank
logic with linear-algebraic logic is joint work with Anuj Dawar and Erich Grädel and
appeared in the Journal of Logic and Computation [28].

Structure of this Thesis. This thesis is organized as follows: In the preliminary Chap-
ter 2, we fix our notation and provide the necessary background on finite model theory
and, in particular, on descriptive complexity theory. We start with the O(n log n) upper
bound on the quantifier depth of 3-variable counting logic and the iteration number of
2-WL in Chapter 3. We then turn to CPT in Chapter 4 and show that canonization of
structures with dihedral color classes is CPT-definable. Afterwards, Chapter 5 considers
the extension of CPT with witnessed symmetric choice and proves definable isomorphism
and definable canonization to be equivalent for CPT+WSC. In the next Chapter 6, we
investigate the relation of counting, witnessed symmetric choice, and the interpretation
operator in IFPC. Finally, rank logic is separated from Ptime in Chapter 7. We draw a
conclusion in Chapter 8.

Every chapter provides a short introduction to the topic and discusses further back-
ground and related work. To some extent, these introductions repeat some material of
this introductory chapter to be more self-contained. Additional more specific preliminar-
ies, if needed, will be discussed in the individual chapters where they are relevant. Every
chapter ends with a short discussion of its results.
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Chapter 2

Preliminaries

In this chapter, we fix our notation and provide necessary background on finite model
theory and descriptive complexity theory, which we need throughout this thesis. We
assume that the reader is familiar with basic notions from finite model theory.

• Section 2.1 introduces notation and basic notions for finite relational structures and
in particular for graphs.

• Section 2.2 reviews the concept of a reasonable logic by Gurevich and what it means
that a logic captures Ptime. It also provides related notions for logics in general.

• Section 2.3 considers extensions of first-order logic: inflationary fixed-point logic
with and without counting (IFPC and IFP), finite variable counting logics Ck, and
their characterization via the bijective pebble game.

• Section 2.4 reviews the logic of Choiceless Polynomial Time (CPT).

• Section 2.5 introduces logical interpretations and focuses on IFPC-interpretations
and CPT-interpretations.

• Section 2.6 uses interpretations to consider the concept of definable canonizations.

• Section 2.7 introduces the 2-dimensional Weisfeiler-Leman refinement and its con-
nection to 3-variable counting logic C3.

• Section 2.8 discusses the CFI construction and compares different variants of it.
Although the CFI construction is in some sense specific, it will play an important
role throughout this thesis and hence is presented in this chapter.

For more background material, we refer to textbooks [38,44,52,72,98]. Notation or further
background only needed in individual chapters will be introduced at the beginning of the
corresponding chapters.

We write N for the natural numbers, Z for the integers, and Fp for the finite prime
field of order p. For a positive j ∈ N, we denote by Zj the ring of integers modulo j. Its
elements are {0, . . . , j − 1}. We denote by [k] the set {1, . . . , k} for every k ∈ N. The
disjoint union of two sets N and M is N ]M . We denote by {{a1, . . . , ak}} the multiset
containing the elements a1, . . . , ak.

Let N and I be finite sets. The set of I-indexed tuples over N is denoted by N I . For
a tuple t̄ ∈ N I , the entry for index i ∈ I is written as t̄(i). The restriction of t̄ ∈ N I
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to J ⊆ I is denoted by t̄|J ∈ NJ and satisfies t̄|J(i) = t̄(i) for all i ∈ J . In the case that
J 6⊆ I, we write t̄|J as an abbreviation for t̄|J∩I . We extend the notation to sets of tuples
T ⊆M I :

T |J :=
{
t̄|J

∣∣∣ t̄ ∈ T }.
For a set of tuples T ⊆ NJ , the extension of T to I is

T |I :=
{
t̄ ∈ N I

∣∣∣ t̄|J ∈ T }.
For two finite index sets I and J , an I×J matrixM over N is a mappingM : I×J → N .
We write M(i, j) for the entry at position (i, j). If 0, 1 ∈ N , then 1I denotes the I × I
identity matrix and 0I denotes the I × I zero matrix. We omit the subscript if I is clear
from the context. If binary addition + is defined on N , we write ∑ t̄ := ∑

i∈I t̄(i) for a
tuple t̄ ∈ N I and likewise ∑ f := ∑

i∈I f(i) for a function f : I → N .
For k ∈ N, a tuple t̄ ∈ Nk = N [k], and i ≤ k, we also write ti for the i-th entry. The

length of t̄ is |t̄| = k. The concatenation of two tuples s̄ ∈ Nk and t̄ ∈ N ` is denoted
by s̄t̄ ∈ Nk+`. The set of all tuples over N of length at most k is N≤k and the set of all
tuples of finite length is N∗. An m× n matrix over N is an [m]× [n] matrix.

2.1 Relational Structures

A relational signature is a set of relation symbols {R1, . . . , R`} with associated arities
ar(Ri) for every i ∈ [`]. We use letters τ and σ for signatures. Let τ = {R1, . . . , R`} be
a signature. A τ-structure is a tuple

A =
(
A,RA

1 , . . . , R
A
`

)
where RA

i ⊆ Aar(Ri) for every i ∈ [`]. The set A is called the universe of A and its
elements atoms. We use fraktur letters A and B for relational structures and denote
their universes always by A and B. For atoms, we use the letters u, v, and w. The order
of A is the size |A| of its universe. The arity of A is the maximal arity of its relations.
For σ ⊆ τ , the reduct A � σ is the restriction of A to the relations contained in σ. For
a subset A′ ⊆ A, we denote by A[A′] the induced substructure of A by A′, i.e., the
τ -structure with universe A′ and relations

RA[A′] := RA ∩ (A′)ar(R)

for every R ∈ τ . The notation is also used for a pair of a structure and atoms. For a
tuple ū ∈ A∗, we set (A, ū)[A′] := (A[A′], ū′) for the tuple ū′ ∈ (A′)∗ obtained from ū by
deleting all entries not in A′. We sometimes view a tuple ū ∈ A∗ as a set and write A[ū]
for A[{ui | i ∈ [|ū|]}].

A relational structure A is ordered if one of its relations is a total order on A. A total
preorder � on a set M is a reflexive, transitive, and total binary relation. It induces
the equivalence relation u ∼ v if and only if u � v and v � u for every u, v ∈ M .
A relational structure A is colored if one of its relations is a total preorder �A on A.
The �-equivalence classes are called the color classes. The color classes of A are ordered



2.1. Relational Structures 19

by �. The structure A has q-bounded colors or is q-bounded if every color class of A
has size at most q. In that sense, an ordered structure is a structure with 1-bounded
colors.

In this thesis, we almost always consider finite relational structures and thus also just
call them structures. We will point out when structures are infinite or not relational.

Graphs. A graph is a binary {E}-structure and a colored graph is a binary colored
{E,�}-structure. The atoms of a graph are usually called vertices. Let G = (V G, EG)
be a graph. We usually just write G = (V,E) for graphs. As a binary structure, the
edge relation is always directed. We call G undirected if, for every u, v ∈ V , we have
(u, v) ∈ E if and only if (v, u) ∈ E and write {u, v} ∈ E. A simple graph is an undirected
graph without loops. For a set V ′ ⊆ V , we denote by G− V ′ the graph obtained from G
by removing the vertices in V ′. For a set of edges E ′ ⊆ E, we denote by G−E the graph
obtained from G by removing the edges in E ′. For two vertices u, v ∈ V , we denote their
distance in G by distG(u, v). For two sets X, Y ⊆ V and a vertex u ∈ V , we set

distG(X, Y ) := min
u∈X,v∈Y

distG(u, v),

distG(u, Y ) := distG({u}, Y ).

The set of neighbors of a vertex u ∈ V is denoted by NG(u). The k-neighborhood
of u is

Nk
G(u) :=

{
v ∈ V

∣∣∣ distG(u, v) ≤ k
}
.

The subgraph of G induced byW ⊆ V is G[W ]. The graph G is k-connected if |V | > k
and, for every V ′ ⊆ V of size at most k− 1, the graph G−V ′ is connected. That is, after
removing an arbitrary set of k − 1 vertices, G is still connected. The girth of G is the
length of a shortest cycle in G. A graph G is a minor of a graph H if G can be obtained
from H by deleting vertices, deleting edges, and contracting edges. The treewidth of a
graph measures how close a graph is to being a tree (see, e.g., [33] for a formal definition).
We omit a formal definition here and only use the fact that if a graph G is a minor of H,
then the treewidth of G is at most the treewidth of H.

Permutation Groups and Orbits. Let Ω be a finite set. We write Sym(Ω) for the sym-
metric group with domain Ω, i.e., the group of all permutations of Ω. Let Γ ≤ Sym(Ω)
be a finite permutation group with domain Ω and let p be a prime. The order ord(σ) of
an element σ ∈ Γ is the smallest number ` ≥ 1 such that σ` is the identity. If, for every
σ ∈ Γ, there is an ` such that σ is of order p`, then Γ is called a p-group. The orbit of
u ∈ Ω is the set

orbΓ(u) :=
{
σ(u)

∣∣∣ σ ∈ Γ
}

of all elements in the domain, onto which u is mapped by Γ. In this way, Ω is partitioned
into orbits. This notation generalizes to k-tuples. A k-orbit is a maximal set O ⊆ Ωk

such that, for every ū, v̄ ∈ O, there is a σ ∈ Γ such that σ(ū) = (σ(u1), . . . , σ(uk)) = v̄.
We write orbk(Γ) for the set of k-orbits of Γ. The group Γ is transitive if |orb1(Γ)| = 1.
If additionally |Γ| = |Ω|, then Γ is called regular.
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Isomorphisms, Automorphisms, and Orbits of Structures. Let τ be a relational signa-
ture. For two τ -structures A and B, an isomorphism ϕ : A→ B is a bijection A→ B
such that ū ∈ RA if and only if ϕ(ū) = (ϕ(u1), . . . , ϕ(uar(R))) ∈ RB for every R ∈ τ and
every ū ∈ Aar(R). For ū ∈ Ak and v̄ ∈ Bk, the structures (A, ū) and (B, v̄) are isomor-
phic, denoted (A, ū) ∼= (B, v̄), if there is an isomorphism ϕ : A→ B satisfying ϕ(ū) = v̄.
An automorphism ϕ of (A, ū) is an isomorphism ϕ : (A, ū) → (A, ū). We say that ϕ
stabilizes ū and write Aut((A, ū)) for the group of all automorphisms stabilizing ū, i.e.,
Aut((A, ū)) is a permutation group with domain A. We say that the tuple of atoms ū
is fixed. We will use the same notation also for other objects beside tuples, e.g., for
automorphisms stabilizing relations. The letters ϕ and ψ are used for isomorphisms or
automorphisms. The set of k-orbits of (A, ū) is orbk((A, ū)) := orbk(Aut((A, ū))). For
k = 1, we just write orb((A, ū)) := orb1((A, ū)).

2.2 Logics and Capturing Polynomial Time

In descriptive complexity theory, one considers isomorphism-closed classes K of relational
τ -structures, that is, if A ∈ K and A ∼= B, then B ∈ K for all relational τ -structures A
andB. An isomorphism-closed class of relational τ -structures is a class of τ-structures.
A boolean τ-query is a class of τ -structures. While a query is just the same as a class,
for queries one focuses on deciding them. A polynomial time boolean query Q is a
class Q such that there is a polynomial time algorithm M deciding Q. That is, there
exists a polynomial p(n) such that M decides whether A is in Q in time at most p(|A|)
for every τ -structure A. We follow [50] for the notion of a logic capturing Ptime. On an
abstract level, a logic L provides for every relational signature τ

1. a decidable set L[τ ], whose elements are called L[τ ]-sentences, and

2. a function that maps every L[τ ]-sentence Φ to a class of τ -structures KΦ called the
query defined by Φ. That is, L is isomorphism-invariant.

A boolean τ -query is definable in L if there exists an L[τ ]-sentence defining it. A logic L
captures Ptime if for every signature τ

1. every polynomial time boolean τ -query is L-definable and

2. the logic L can be evaluated in polynomial-time, that is, there is a computable
function mapping every Φ ∈ L[τ ] to a polynomial p(n) and an algorithm M such
that M decides whether A is in KΦ in time p(|A|) for every τ -structure A.

In this exact sense, Gurevich [61] asked whether there is a logic capturing Ptime. While
it seems to be difficult to answer this question, one can consider restricted classes of
structures. Let J be a class of τ -structures for some signature τ . A logic L captures
Ptime on J if

1. for every polynomial time boolean τ -query Q, there is an L[τ ]-sentence Φ such that
for every A ∈ J we have A ∈ KΦ if and only if A ∈ Q and



2.3. Extensions of First-Order Logic 21

2. there is a computable function mapping every Φ ∈ L[τ ] to a polynomial p(n) and
an algorithm M such that M decides whether A is in KΦ in time p(|A|) for every
τ -structure A ∈ J .

Basic Notation for Logics. The sentences of all logics occurring in this thesis are com-
posed of formulas and terms and use variables, which can be bound by quantifiers or
operators. An unbound variable is called free. A formula or term without free variables
is closed. A sentence is a closed formula. For a formula or term Φ, we use the usual
convention and write Φ(x1, . . . , x`) to say that all free variables of Φ are among the xi.
For a logic L and a signature τ , the L[τ ]-formulas of a logic are the formulas using (some
of) the relation symbols in τ . We use the letters Φ and Ψ for formulas and the letters s, t,
and sometimes r for terms. For an L[τ ]-formula Φ(x̄) with k many free variables x̄ and
a τ -structure A, we denote by ΦA the set of k-tuples ū satisfying Φ in A, that is, Φ is
satisfied if Φ is evaluated in A when interpreting xi as ui for every i ∈ [k]. Similarly, for
an L[τ ]-term s(x̄), we denote by sA the function mapping tuples ū for the free variables
to whatever object the term defines (e.g., a number). Sometimes it is necessary to extend
a relational signature by another relation symbol. For simplicity, we write L[τ, R] for
L[τ ∪ {R}] for a signature τ and a relation symbol R. Given two logics L and L′, we
write L ≤ L′ if every boolean query definable in L is also definable in L′. This condition
only requires that for every L[τ ]-sentence there is an equivalent L′[τ ]-sentence. However,
for many logics and, in particular, all logics considered in this thesis, the expressive power
on formulas can be reduced to the expressive power on sentences [98].

Distinguishing Structures. Let L be a logic and τ be a signature. An L[τ ]-sentence Φ
distinguishes two τ -structures A and B if exactly one of A and B is contained in KΦ.
The logic L distinguishes A and B if there is some sentence distinguishing A and B.
Otherwise, A and B are L-equivalent which is denoted by A ≡L B. The notion of
distinguishing structures naturally generalizes to tuples of atoms: Let A and B be two
τ -structures and ū ∈ A` and v̄ ∈ B`. We say that a logic L distinguishes (A, ū) from
(B, v̄) if there is an L[τ ]-formula Φ with ` many free variables such that ū ∈ ΦA and
v̄ /∈ ΦB. Otherwise, (A, ū) and (B, v̄) are L-equivalent denoted by (A, ū) ≡L (B, v̄).

2.3 Extensions of First-Order Logic

Fixed-Point Logic with Counting. We recall fixed-point logic with counting IFPC
(proposed in [70], see also [98]). Let τ be a signature and A = (A,RA

1 , . . . , R
A
` ) be a

τ -structure. We extend τ and A with counting. We define τ# := τ ] {·,+, 0, 1} and
A# := (A,RA

1 , . . . , R
A
` ,N, ·,+, 0, 1) to be the two-sorted τ#-structure that is the disjoint

union of A and N. The structure A# is not relational, but A will always be relational.
IFPC is a two-sorted logic. Element variables range over the atoms and numeric

variables range over the natural numbers. For element variables we use the letters x, y,
and z, for numeric variables the Greek letters ν and µ, and for numeric terms the letters s
and t. IFPC[τ ]-formulas use the signature τ# and extend first-order logic (FO) by a
fixed-point operator and a counting term. When quantifying over numeric variables,
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their range needs to be bounded to ensure Ptime-evaluation: For an IFPC[τ ]-formula Φ,
a closed numeric IFPC[τ ]-term s, a numeric variable ν possibly free in Φ, and a quantifier
Q ∈ {∀, ∃}, the formula

Qν ≤ s. Φ
is an IFPC[τ ]-formula. An inflationary fixed-point operator defines a relation R.
We allow R to mix atoms with numbers. For an IFPC[τ, R]-formula Φ and variables x̄ν̄
possibly free in Φ, the fixed-point operator

[ifpRx̄ν̄ ≤ s̄. Φ] x̄ν̄

is an IFPC[τ ]-formula. Here s̄ is a tuple of |ν̄|many closed numeric terms which bound the
values of ν̄ similar to the case of a quantifier. IFPC-terms are built from the constants 0
and 1, the binary functions + and ·, and counting terms, which are the crucial element
of IFPC. Let Φ be an IFPC[τ ]-formula with possibly free variables x̄ and ν̄ and let s̄ be
a |ν̄|-tuple of closed numeric IFPC[τ ]-terms. Then

#x̄ν̄ ≤ s̄. Φ

is a numeric IFPC[τ ]-term.
IFPC-formulas (or terms) are evaluated over A#. For a numeric term s(x̄ν̄), we denote

by sA : A|x̄| × N|ν̄| → N the function mapping the values for the free variables of s to the
value that s takes in A#. Likewise, for a formula Φ(x̄ν̄), we write ΦA ⊆ A|x̄| × N|ν̄| for
the set of values for the free variables satisfying Φ. For an IFPC[τ ]-formula Φ(ȳx̄µ̄ν̄) and
a |ν̄|-tuple s̄ of closed numeric terms, the counting term is evaluated as follows:

(#x̄ν̄ ≤ s̄. Φ)A(ūm̄) :=
∣∣∣{ w̄n̄ ∈ A|x̄| × N|ν̄|

∣∣∣ ni ≤ sAi for all i ∈ [|ν̄|], ūw̄m̄n̄ ∈ ΦA
}∣∣∣ .

Now let Φ(ȳx̄µ̄ν̄) be an IFPC[τ, R]-formula and s̄ be a |ν̄|-tuple of closed numeric terms.
To evaluate the inflationary fixed-point operator [ifpRx̄ν̄ ≤ s̄.Φ] x̄ν̄, let ū ∈ A|ȳ| and
m̄ ∈ N|µ̄| and inductively define a series of relations RA

i called stages via

RA
0 := ∅,

RA
i+1 := RA

i ∪
{
w̄n̄ ∈ A|x̄| × N|ν̄|

∣∣∣ ni ≤ sAi for all i ∈ [|ν̄|], ūw̄m̄n̄ ∈ Φ(A,RA
i )
}
,

where (A, RA
i ) denotes the (τ ∪ {R})-structure obtained from extending A with RA

i . By
definition, RA

i ⊆ RA
i+1 ⊆ A|x̄| × {0, ..., sA1 } × · · · × {0, ..., sA|ν̄|} for every i ∈ N. Because

IFPC-terms always evaluate to a number polynomial in the size of the input structure,
the series stabilizes after a polynomial number of steps, i.e, RA

` = RA
`+1 =: RA

ūm̄ for some
` ∈ N. The fixed-point operator evaluates as follows:

([ifpRx̄ν̄ ≤ s̄. Φ] x̄ν̄)A :=
{
ūv̄m̄n̄

∣∣∣ v̄n̄ ∈ RA
ūm̄

}
.

Fixed-Point Logic. Fixed-point logic (without counting) IFP extends first-order logic
only with the inflationary fixed-point operator. IFP is the fragment of IFPC not using
numeric variables and counting terms.

Theorem 2.1 (Immerman-Vardi Theorem [69, 114]). IFP captures Ptime on the class of
ordered structures.
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Finite Variable Counting Logic. The k-variable first-order logic with counting Ck
extends the k-variable fragment of first-order logic with counting quantifiers ∃≥nx̄.Φ
stating that at least n distinct atoms satisfy the formula Φ (see [98]). Bounded variable
logics with counting are a useful tool to prove IFPC-undefinability. Every IFPC-formula
using k many variables is equivalent on structures of size up to n to a CO(k)-formula. For
Ck-equivalence, we write ≡kC for ≡Ck . The logics Ck are used to prove IFPC-undefinability
as follows: If there is a boolean τ -query Q and, for every positive k ∈ N, there is a pair
of τ -structures Ak ≡kC Bk such that Ak ∈ Q and Bk /∈ Q, then IFPC does not define Q.

The logic Ck can be characterized by an Ehrenfeucht-Fraïssé-like pebble game – the
bijective k-pebble game [66]. The game is played on two structures A and B by two
players called Spoiler and Duplicator. There are k many pebble pairs (pi, qi) for i ∈ [k].
Positions in the game are tuples (A, ū;B, v̄) for tuples ū ∈ A≤k and v̄ ∈ B≤k of the same
length. In position (A, ū;B, v̄), a pebble pj is placed on the atom ui and the pebble qj
is placed on vi from some j ∈ [k]. It will not matter which pebble pair (pj, qj) is used
for the i-th entry of ū and v̄. In the initial position, no pebbles are placed and both ū
and v̄ are the empty tuple. The game proceeds as follows: If |A| 6= |B|, then Spoiler
wins. Otherwise, Spoiler picks up a pair of pebbles (pi, qi) (which may or may not be
already placed on the structures). Duplicator answers with a bijection λ : A→ B. Spoiler
places the pebble pi on an atom w ∈ A and qi on λ(w) ∈ B. If in the resulting position
(A, ū;B, v̄) there is no pebble-respecting local isomorphism, that is, the map defined
via ui 7→ vi is not an isomorphism (A[ū], ū) → (B[v̄], v̄), then Spoiler wins. Otherwise,
the game continues with the next round. Duplicator wins if Spoiler never wins. We say
that Spoiler (or Duplicator, respectively) has a winning strategy in position (A, ū;B, v̄)
if Spoiler (or Duplicator, respectively) can always win the game regardless of the moves
of the other player.

Lemma 2.2 ([66]). For all finite τ -structures A and B and all tuples ū ∈ A≤k and v̄ ∈ B≤k
of the same length, Spoiler has a winning strategy in the bijective k-pebble game in position
(A, ū;B, v̄) if and only if (A, ū) 6≡kC (B, v̄).

2.4 Choiceless Polynomial Time

The logic Choiceless Polynomial Time (CPT) was introduced by Blass, Gurevich,
and Shelah [18] using abstract state machines. To give a concise definition of CPT, we
follow Grädel and Grohe [43] and use ideas of Pakusa [103] to enforce polynomial bounds.

Hereditarily Finite Sets. For a set of atoms A, the set of hereditarily finite sets
over A, denoted by HF(A), is the inclusion-wise minimal set such that A ⊆ HF(A) and
a ∈ HF(A) for every finite a ⊆ HF(A). A set a ∈ HF(A) is transitive, if c ∈ b ∈ a for
some b implies c ∈ a. The transitive closure TC(a) of a is the least (with respect to set
inclusion) transitive set b such that a ⊆ b.

The Logic BGS. Let τ be a relational signature and extend τ by adding set-theoretic
function symbols τHF := τ ] {∅,Atoms,Pair,Union,Unique,Card}, where ∅ and Atoms are
constants, Union,Unique, and Card are unary, and Pair is binary. The hereditarily finite
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expansion HF(A) of a τ -structure A is the τHF-structure over the universe HF(A) defined
as follows. All relations in τ are interpreted as they are in A. The special function symbols
have the expected set theoretic interpretation:

• ∅HF(A) := ∅ and AtomsHF(A) := A,

• PairHF(A)(a, b) := {a, b},

• UnionHF(A)(a) := {b | b ∈ c for some c ∈ a},

• UniqueHF(A)(a) :=
b if a = {b},
∅ otherwise, and

• CardHF(A)(a) :=
|a| if a /∈ A,
∅ otherwise,

where the number |a| is encoded as a von Neumann ordinal.
Note that the Unique function is invariant under automorphisms because it only evaluates
nontrivially when applied to singleton sets.

The logic CPT is obtained as the polynomial-time fragment of the logic BGS (named
after Blass, Gurevich, and Shelah). BGS-terms are composed of variables, function
symbols from τHF, and the two following constructs: If s(x̄y) and t(x̄) are BGS[τ ]-terms
and Φ(x̄y) is a BGS[τ ]-formula, then the comprehension term

{ s | y ∈ t,Φ }
is a BGS[τ ]-term, which binds the variable y. If s(x̄y) is a BGS[τ ]-term, then the itera-
tion term

s[y]∗

is a BGS[τ ]-term that binds the variable y1. BGS[τ ]-formulas are obtained by the usual
boolean connectives from relations R(t1, . . . , tk) for R ∈ τ of arity k and BGS[τ ]-terms
t1, . . . , tk and from equality t1 = t2 for BGS[τ ]-terms t1 and t2.

Let A be a τ -structure. BGS-terms and formulas are evaluated over HF(A). For a
BGS[τ ]-term s with k many free variables x̄, we denote by sA : HF(A)k → HF(A) the
function mapping values for the free variables x̄ to the value that s takes in HF(A).
Similarly, for a formula Φ with k many free variables x̄, we denote by ΦA the set of all
ā ∈ HF(A)k satisfying Φ in HF(A). For BGS[τ ]-terms s(x̄y) and t(x̄) and a BGS[τ ]-
formula Φ(x̄y), the comprehension term {s | y ∈ t,Φ} has the following semantics:

{ s | y ∈ t,Φ }A(ā) :=
{
sA(āb)

∣∣∣ b ∈ tA(ā) and āb ∈ ΦA
}

for every ā ∈ HF(A)|x̄|. An iteration term s[y]∗, for a BGS[τ ]-term s with free variables x̄,
and a tuple b̄ ∈ HF(A)|x̄| of sets for the free variables defines a sequence of sets via a0 := ∅
and ai+1 := sA(b̄ai). Let `(s[y]∗,A, b̄) be the least number i such that ai+1 = ai if it exists.
The iteration term evaluates as follows:

(s[y]∗)A(b̄) :=
a` if ` := `(s[y]∗,A, b̄) exists,
∅ otherwise.

1Here we differ from the definition in [43], in which s is only allowed to have one free variable y.
For CPT, allowing more free variables does not increase expressiveness, but for our extensions later it is
useful to allow additional free variables in an iteration term.



2.5. Logical Interpretations 25

Choiceless Polynomial Time. A CPT[τ ]-term (or formula, respectively) is a tuple (t, p)
(or (Φ, p), respectively) of a BGS[τ ]-term (or formula) and a polynomial p(n). The
semantics of CPT is derived from BGS by replacing t with (t, p) everywhere (or Φ with
(Φ, p), respectively) with the following exception for iteration terms:

(s[y]∗, p)A(b̄) :=


a` if ` := `(s[y]∗,A, b̄) exists,

` ≤ p(|A|), and |TC(ai)| ≤ p(|A|) for every i ∈ [`],
∅ otherwise,

where the sets ai are defined as above. The size of ai is measured by |TC(ai)| because,
by transitivity, TC(ai) contains all sets bk ∈ · · · ∈ b1 ∈ ai occurring somewhere in the
structure of ai. To ensure evaluation of CPT in polynomial time, it suffices to put
polynomial bounds on iteration terms because all other terms increase the size of the
defined sets only polynomially.

2.5 Logical Interpretations

A logical interpretation is the logical correspondence to an algorithmic reduction. An
interpretation transforms a relational structure to another one. For extensions of first-
order logic, the notion of an interpretation can be defined rather uniformly. We define
IFPC-interpretations and explain afterwards how to alter the definition to obtain, for
example, IFP-interpretations or FO-interpretations. The notion of a CPT-interpretation
is defined afterwards.

IFPC-Interpretations. An IFPC[τ, σ]-interpretation defines a partial function mapping
τ -structures to σ-structures, where the function is defined in terms of IFPC-formulas
operating on tuples of the input τ -structure. In the case of IFPC, these tuples not only
contain atoms but also numbers. For the sake of readability, in the following we use x̄, ȳ,
and z̄ for a tuple of both element and numeric variables and ū, v̄, and w̄ for a tuple
of both atoms and numbers. Let σ = {R1, . . . , R`} be a signature. A d-dimensional
IFPC[τ, σ]-interpretation Θ(z̄) with parameters z̄ is a tuple

Θ(z̄) =
(
Φdom(z̄x̄),Φ∼=(z̄x̄ȳ),ΦR1(z̄x̄1 . . . x̄ar(R1)), . . . ,ΦR`(z̄x̄1 . . . x̄ar(R`)), s̄

)
of IFPC[τ ]-formulas and a j-tuple s̄ of closed numeric IFPC[τ ]-terms, where j is the
number of numeric variables in x̄. The tuples of variables x̄, ȳ, and all the x̄i are of
length d and agree on whether the k-th variable is an element or numeric variable.

Let A be a τ -structure and ū ∈ (A∪N)|z̄| match the types of the parameter variables z̄
(element or numeric). We now define Θ(A, ū). Assume that, up to reordering, the first j
variables in x̄ are numeric variables and set D := {0, ..., sA1 } × · · · × {0, ..., sAj } × Ad−j.
We define the σ-structure B = (B,RB

1 , . . . , R
B
` ) via

B :=
{
v̄ ∈ D

∣∣∣ ūv̄ ∈ ΦA
dom

}
,

RB
i :=

{
(v̄1, . . . , v̄ar(Ri)) ∈ Bar(Ri)

∣∣∣ ūv̄1 . . . v̄ar(Ri) ∈ ΦA
Ri

}
for every i ∈ [`]
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and a relation ∼ := {(v̄, w̄) ∈ B2 | ūv̄w̄ ∈ ΦA∼=}. The relation ∼ is a congruence relation
if, for every i ∈ [`] and all (v̄1, . . . , v̄ar(Ri)), (w̄1, . . . , w̄ar(Ri)) ∈ Bar(Ri) such that v̄k ∼ w̄k
for every k ∈ [ar(Ri)], we have (v̄1, . . . , v̄ar(Ri)) ∈ RB

i if and only if (w̄1, . . . , w̄ar(Ri)) ∈ RB
i .

If ∼ is a congruence relation, then B/∼ denotes the quotient of B by ∼. We finally define

Θ(A, ū) :=
B/∼ if ∼ is a congruence relation on B,

undefined otherwise.

An interpretation is called equivalence-free if Φ∼=(z̄x̄ȳ) is the formula x̄ = ȳ.
If we consider a logic L extending IFPC, then the notion of an L[τ, σ]-interpretation

is defined exactly in the same way by replacing IFPC-formulas or terms with L-formulas
or terms. For logics not possessing numeric variables like FO or IFP, the notion of an
interpretation is similar and just omits the numeric part, i.e., there is no numeric term s
bounding the range of numeric variables.

CPT-Interpretations. The notion of a CPT-interpretation is formally much simpler.
Again, let σ = {R1, . . . , R`} be a signature. A CPT[τ, σ]-interpretation Θ(x̄) with
parameters x̄ is a tuple

Θ(x̄) =
(
suniv(x̄),ΦR1(x̄ȳ1), . . . ,ΦR`(x̄ȳ`)

)
of a CPT[τ ]-term suniv(x̄) and CPT[τ ]-formulas ΦR`(x̄ȳi) such that |ȳi| = ar(Ri) for
every i ∈ [`]. For every τ -structure A and ā ∈ HF(A)|x̄|, the image Θ(A, ā) of Θ is the
σ-structure B = (B,RB

1 , . . . , R
B
` ) defined by

B := sAuniv(ā),
RB
i :=

{
b̄ ∈ Bar(Ri)

∣∣∣ āb̄ ∈ ΦA
Ri

}
for every i ∈ [`].

Note that we also could use CPT-formulas in the setting of the IFPC-interpretation
and operate on d-tuples. However, the notion of a dimension is not useful for a CPT-
interpretation. Tuples of varying (and in particular unbounded) length can be encoded
by the CPT-term suniv. Hence, the restriction to d-tuples of the universe would be an
unnecessary restriction and indeed incompatible with the concept of CPT. Similarly, no
equivalence relation is needed because the equivalence classes can be defined as a set by
suniv directly.

Logical Reductions. Let L be a logic. A boolean τ -query P is L-reducible to a
boolean σ-query Q if there is a parameter-free L[τ, σ]-interpretation Θ such that, for every
τ -structure A, it holds that A ∈ P if and only if Θ(A) ∈ Q. A logic L′ is closed under
L-interpretations (or L-reductions) if, for every signature τ , every boolean query P
that is L-reducible to an L′-definable boolean query Q is itself L′-definable (cf. [37, 98]).
We say that L′ is closed under interpretations if L′ is closed under L′-interpretations.
The logics IFP and IFPC are closed under interpretations [98]. The same holds for CPT.
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2.6 Definable Canonization

By the Immerman-Vardi Theorem, a polynomial-time evaluable logic L that is at least
as expressive as IFP captures Ptime on ordered structures. That is, on every class of
structures for which L defines a total order, L captures Ptime. But there are structures,
on which every isomorphism-invariant logic fails to define a unique total order. Consider
complete graphs as an example: For all total orders, there is an automorphism mapping
one to the other. Hence, L cannot define one of them. To overcome this restriction, one
can try to not define a total order on the input structure but a total order on an isomorphic
copy. For example for a complete graph of order n, one can, in IFPC, consider the vertex
set [n] and then add all possible edges. Using the natural order on [n], one obtains a
unique total order on this copy. The mapping of some structure to an isomorphic and
ordered copy is naturally defined via an interpretation.

De�nition 2.3 (Canonization). Let K be a class of τ -structures and let L be a logic. An
L-canonization for K is an L[τ, τ ] {≤}]-interpretation Θ satisfying the following:

1. ≤Θ(A) is a total order on Θ(A) for every A ∈ K,

2. A ∼= Θ(A) � τ for every A ∈ K, and

3. Θ(A) ∼= Θ(B) if and only if A ∼= B for every A,B ∈ K.

The structure Θ(A) is called the Θ-canon (or just the canon if unambiguous) of A. We
say that L canonizes K if there is an L-canonization for K.

Condition 1 requires to define an order on Θ(A), Condition 2 requires that Θ(A) is isomor-
phic to A after removing the order, and Condition 3 requires that the canons of isomorphic
structures are isomorphic as ordered structures. That is, there is only one function, which
is possibly an automorphism, namely mapping the i-th vertex of one structure to the i-th
vertex of the other. In an algorithmic context, one usually requires equality instead of
isomorphism as ordered structures [109]. For a logic L possessing numbers (as, e.g., IFPC
or CPT), Condition 3 can equivalently be stated with equality: There is an interpretation
mapping ordered structures to structures whose universes are numbers by mapping the
i-th vertex according to the order to the number i. This interpretation maps isomorphic
ordered structures to the same structure. While Condition 3 is essential for algorithmic
canonizations, it is implied by Condition 2 for L-definable canonizations: Let A,B ∈ K.
If A ∼= B, then Θ(A) ∼= Θ(B) because L is isomorphism-invariant. If Θ(A) ∼= Θ(B),
then by Condition 2,

A ∼= Θ(A) � τ ∼= Θ(B) � τ ∼= B.

By combining a definable canonization with the Immerman-Vardi Theorem 2.1, we obtain
the following:

Lemma 2.4. Let K be a class of τ -structures and L be a polynomial-time evaluable logic
such that IFP ≤ L. If L defines a canonization for K, then L captures Ptime on K.

When defining canonizations, it will be of particular interest to determine the orbit-
partition of a structure by a formula in the following sense.
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De�nition 2.5 (Distinguishable Orbits). For k ∈ N, a logic L distinguishes k-orbits of a
class of τ -structures K if there is an L-formula Φ(x̄, ȳ) with |x̄| = |ȳ| = k such that, for
every A ∈ K,

(a) the formula Φ defines a total preorder � on Ak via ū � v̄ whenever (ū, v̄) ∈ ΦA and

(b) the �-equivalence classes correspond to the k-orbit partition of A.

Note that, because Φ defines a total preorder, Φ not only defines the k-orbit partition
but also orders the k-orbits.

2.7 The Weisfeiler-Leman Refinement

We review the Weisfeiler-Leman refinement. For every fixed dimension k ≥ 1, the
k-dimensional Weisfeiler-Leman refinement computes an isomorphism-invariant coloring
of k-tuples of a relational structure (of arity at most k). For our purpose, it suffices to
consider the 2-dimensional Weisfeiler-Leman refinement [116].

Edge-Colored Graphs. An edge-colored directed graph is a tuple G = (V,E, χ),
such that (V,E) is a graph and χ : E → C is a coloring function into some set C of
colors. We will often consider complete directed graphs (with loops), i.e., the case E = V 2.
For a tuple of m > 1 vertices (v1, . . . , vm) ∈ V m, we set

χ(v1, . . . , vm) :=
(
χ(v1, v2), χ(v2, v3), . . . , χ(vm−1, vm)

)
and, for a single vertex v ∈ V , we set χ(v) := χ(v, v). A coloring χ induces a partition
π(χ) of the vertex pairs. For two colorings χ and χ′, we write π(χ) � π(χ′) to say that
π(χ) is at least as fine as π(χ′). If not ambiguous, we may just write χ � χ′. If
π(χ) = π(χ′), we also write χ ≡ χ′. We say that χ respects converse equivalence if

1. χ assigns different colors to loops and edges, that is, χ(u, u) 6= χ(v, w) for every
u, v, w ∈ V with v 6= w and

2. χ(u1, v1) = χ(u2, v2) implies χ(v1, u1) = χ(v2, u2) for all u1, u2, v1, v2 ∈ V , that is,
the color χ(u1, v1) determines the color χ(v1, u1).

An arbitrary coloring χ can be turned isomorphism-invariantly into a converse-equiva-
lence-respecting coloring χinit as follows:

χinit(u, v) :=
(
χ(u, v), χ(v, u), δu,v

)
,

where δu,v is the Kronecker delta which is 1 if u = v and 0 otherwise. We refer to χinit as
the initial coloring of G.

A k-walk or walk of length k from v1 to vk+1 is a tuple (v1, . . . , vk+1) ∈ V k+1. Its
color is χ(v1, . . . , vk+1). We say that tuples in Ck are (potential) k-walk colors in χ and
omit the coloring if it is clear from the context.
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General Re�nements. A refinement r is a function which for every edge-colored graph
G = (V,E, χ) yields a new coloring χr such that χr � χ and which is isomorphism-
invariant: For all isomorphic edge-colored graphs G = (V,E, χ) ∼= G′ = (V ′, E ′, χ′),
that is, there is a color-preserving isomorphism mapping each vertex to a vertex of the
same color, we have (V,E, χr) ∼= (V ′, E ′, χ′r). We write χr for the application of the
refinement r to the coloring χ and χmr for m applications of r, i.e.,

χ0
r := χinit,

χm+1
r := (χmr )r.

We denote by χ∞r the stable coloring, i.e., the coloring χmr for the smallest m such that
χmr ≡ χm+1

r . The stable coloring χ∞r always exists because the sequence

χ0
r � χ1

r � · · · � χmr

necessarily stabilizes after |V |2 many steps.
Let G′ = (V ′, E ′, χ′) be an edge-colored complete graph and assume u, v ∈ V and

u′, v′ ∈ V ′. We say that the refinement r distinguishes (u, v) from (u′, v′) inm iterations
if χmr (u, v) 6= (χ′)mr (u′, v′). The refinement r distinguishes G and G′ in m iterations if
the multiset of colors after m iterations is different, that is{{

χmr (u, v)
∣∣∣ u, v ∈ V }} 6= {{

(χ′)mr (u′, v′)
∣∣∣ u′, v′ ∈ V ′ }}.

The iteration number of the refinement r on the graph G is the number of applications
of r needed to obtain the stable coloring.

In the context of refinements, considering edge-colored graphs is more natural than
considering relational structures. To relate edge-colored graphs with logics, we turn an
edge-colored graph G = (V,E, χ) for χ : E → [`] into the binary relational structure
AG = (V,RAG

1 , . . . , RAG
` ) where

RAG
i =

{
(u, v) ∈ E

∣∣∣ χ(u, v) = i
}

for every i ∈ [`]. Likewise, every binary relational structure A = (A,RA
1 , . . . , R

A
` ) can be

turned into the edge-colored graph GA = (A,A2, χ) where

χ(u, v) =
{
i ∈ [`]

∣∣∣ (u, v) ∈ RA
i

}
.

A refinement distinguishes two binary relational structures A and B if the edge-colored
graphs GA and GB are distinguished by the refinement. The analogous definition applies
to pairs of atoms of binary relational structures.

The Weisfeiler-Leman Re�nement. Assume G = (V,E, χ) is an edge-colored graph and
assume χ respects converse equivalence. The 2-dimensional Weisfeiler-Leman refine-
ment WL is defined as follows:

χWL(u, v) :=
{{
χ(u,w, v)

∣∣∣ w ∈ V }}.
Intuitively, WL refines the color of a vertex pair with the colors of all triangles containing
this pair. Indeed, this definition gives a refinement: Because loops and non-loops always
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have distinct colors, the presence of the color χ(u, u, v) (or χ(u, v, v)) in the multiset
ensures that pairs colored differently remain colored differently after applying WL. In
particular, we do not need to include the color χ(u, v) of the previous iteration in the
new color explicitly to ensure that WL is a refinement. There is a close connection between
the WL refinement and the 3-variable counting logic C3.
Lemma 2.6 ([20]). For all G = (V,E, χ), G′ = (V ′, E ′, χ′), u, v ∈ V , and u′, v′ ∈ V ′, the
following statements are equivalent:
(a) There is a C3-formula of quantifier depth m distinguishing (AG, uv) and (AG′ , u

′v′).

(b) The 2-dimensional Weisfeiler-Leman refinement WL distinguishes the pairs (u, v)
and (u′, v′) in m iterations (starting with the initial colorings of G and G′).

It follows that the WL refinement distinguishes exactly the same graphs as the logic C3
and the bijective 3-pebble game by Lemma 2.2.

2.8 The CFI Construction

This section presents the so-called CFI graphs introduced by Cai, Fürer, and Immer-
man [20]. This graph construction produces non-isomorphic graphs, which cannot be
distinguished in IFPC. At the core of the construction are the so-called CFI gadgets. In
the original work [20], such a gadget consists of gadget and edge vertices, which are also
known as inner and outer vertices, respectively. We provide multiple variants of the CFI
construction. We begin with the original construction with gadget and edge vertices and
later introduce two further variants: one only using gadget vertices and one only using
edge vertices. CFI graphs will be used at multiple places in this thesis. Depending on
the use, it will be beneficial to work with a different variant of the CFI graphs. The main
benefits of each variant are discussed in this section. Most of the following lemmas are
well-known. We will give selected proofs or proof sketches for illustration.

2.8.1 The Original CFI Construction
A base graph is a simple, connected, and possibly colored graph G = (V,E,�) (un-
colored graphs are seen to be colored monochromatically). The vertices of G are called
base vertices and its edges base edges. We use fraktur letters u, v, and w for base
vertices and the letter e for a base edge.

A CFI graph is obtained from G by first replacing every base vertex by a gadget.
Second, gadgets of adjacent base vertices are connected by adding edges between them.
The gadget for the base vertex u ∈ V consists of a set of gadget vertices Au

g, a set of
edge vertices Au

e, and a set of edges Eu between them:

Au
g :=

{
(u, ā)

∣∣∣ ā ∈ FNG(u)
2 ,

∑
ā = 0

}
,

Au
e :=

{
(u, v, b)

∣∣∣ v ∈ NG(u), b ∈ F2
}
,

Au
ge := Au

g ∪ Au
e,

Eu :=
{
{(u, ā), (u, v, b)}

∣∣∣ (u, ā) ∈ Au
g, (u, v, b) ∈ Au

e, ā(u) = b
}
.
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(a) A part of a base graph
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(b) Two connected CFI gadgets

2.1 Construction of a CFI graph with gadget and edge vertices. Figure (a) shows a part of a
colored base graph G. Figure (b) shows the two gadgets for the red base vertex u and the blue base
vertex v in the graph CFI(G, f). The �gure assumes that f({u, v}) = 0. Gadget vertices inherit the
color from their base vertex. An edge vertex of the gadget of u inherits the color from the ordered
pair (u,w) of the corresponding neighbor w of u. This color is indicated by asymmetrically coloring
a vertex in the �gure with two colors.

For every base edge e = {u, v} incident to u, there is a pair of edge vertices (u, v, 0) and
(u, v, 1) called the edge-vertex-pair of (u, v). Note that, for every base edge {u, v} ∈ E,
there are two edge-vertex-pairs, namely the one of (u, v) and the one of (v, u). For
every collection of one base vertex per edge-vertex-pair (u, v1, b1), . . . , (u, vd, bd), where
NG(u) = {v1, . . . , vd} such that b1 + · · · + bd = 0, there is a gadget vertex (u, ā) with
ā(vi) = bi for every i ∈ [d] adjacent to these edge vertices. Note that |Au

g| = 2d−1 and
that |Au

e| = 2d. For a gadget vertex u = (u, ā) and a base vertex v ∈ NG(u), we write
u(v) for ā(v).

De�nition 2.7 (Origin of CFI Vertices). The origin of a gadget vertex u = (u, ā) ∈ Au
g is

orig(u) = u. The origin of an edge vertex v = (u, v, b) ∈ Au
e is orig(v) = (u, v). We extend

the notation to tuples. The origin of a k-tuple w̄ is orig(w̄) = (orig(w1), . . . , orig(wk)).

We now compose CFI gadgets to a CFI graph. For a function f : E → F2, the CFI graph
(with gadget and edge vertices) Age = CFIge(G, f) = (Age, E

Age ,�Age) is defined as
follows:

Age :=
⋃
u∈V

Au
ge,

EAge :=
⋃
u∈V

Eu ∪
⋃

{u,v}∈E

{
{(u, v, a), (v, u, b)}

∣∣∣ a+ b = f({u, v})
}
,

that is, we replace every base vertex by a CFI gadget and connect, for every base edge
{u, v} ∈ E, the edge vertex pairs of (u, v) and (u, v) by a perfect matching according
to f (cf. Figure 2.1). If f({u, v}) = 0, then we add the edges {(u, v, 0), (v, u, 0)} and
{(u, v, 1), (v, u, 1)}. If otherwise f({u, v}) = 1, then we add the edges (u, v, 0), (v, u, 1)
and (u, v, 1), (v, u, 0). The vertices Ag := ⋃

u∈V A
u
g are the gadget vertices of G and

likewise Ae are the edge vertices of G. The coloring is inherited from the base graph,
that is, base and edge vertices always receive different colors and obtain their color from
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their origin (see Figure 2.1 again). Formally,

u �Age v ⇔


u ∈ Ag and v ∈ Ae, or
u, v ∈ Ag and orig(u) � orig(v), or
u, v ∈ Ae and orig(u) � orig(v),

for every u, v ∈ Age, where � is extended to pairs V 2 using the lexicographical order.

De�nition 2.8 (Twisted Base Edge). Let f, g : E → F2 be two arbitrary functions. A base
edge e ∈ E is twisted by f and g if f(e) 6= g(e).

2.8.2 Automorphisms and Isomorphisms of CFI Graphs
The crucial property of CFI graphs is that they have a rich automorphism structure. Let
G = (V,E,�) be a base graph and f : E → F2. We first consider the automorphisms
of a single gadget in CFIge(G, f) for some base vertex u ∈ V , i.e., the automorphism of
the subgraph induced by Au

ge. We assume that all neighbors of u are colored differently.
Then all edge-vertex-pairs in the gadget of u are colored differently. By the construction
of the gadget vertices, exchanging the two vertices of an even number of edge-vertex-pairs
extends to an automorphism of the gadget. All automorphisms of the gadget are obtained
in this way because we assumed that all edge-vertex-pairs are colored differently [20,
Lemma 6.1].

We now turn to isomorphisms of the CFI graph CFIge(G, f). Assume that e1, e2 ∈ E
are base edges and let g : E → F2 be another function. Now consider the function
ge1,e2 : E → F2 defined via

ge1,e2(e) :=
g(e) + 1 if e ∈ {e1, e2} and e1 6= e2

g(e) otherwise.

If e1 6= e2, then the functions f and gū twist the edge e1 (or the edge e2, respectively)
if and only if f and g do not twist e1 (or e2, respectively). The crucial property of CFI
graphs is the following:

Lemma 2.9. For every g : E → F2 and every path v̄ = (v1, . . . , v`) in G of length ` > 2
(which may contain vertices multiple times), there is an isomorphism

ϕv̄ : CFIge(G, g)→ CFIge(G, g{v1,v2},{v`−1,v`})

which is the identity map on all vertices apart from the gadgets vertices with origin vi for
some 1 < i < ` and the edge vertices with origin (vi, vi+1) or (vi+1, vi) for some 1 < i < `
(note that, by definition, all CFI graphs over the same base graph have the same vertex
set).

For a formal proof of the lemma in a more general setting we refer to [45, Lemma 3.11].
The path-isomorphism ϕv̄ is composed of automorphisms of the gadgets of the base
vertices v2, . . . , v`−1. For the gadget of vi, the automorphisms exchanges the two vertices
with origin (vi, vi+1) and the two vertices with origin (vi, vi−1). Because the vertices of
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an even number of edge-vertex-pairs, namely two, are exchanged, we indeed obtain an
automorphism. Combining all these automorphisms yields the desired isomorphism. In-
tuitively, the lemma states that we can move twists along paths in the base graph. Assume
that the base edge {v1, v2} is twisted by f and g but {v`−1, v`} is not. Then, after apply-
ing the path-isomorphism ϕv̄, the base edge {v1, v2} is not twisted by f and g{v1,v2},{v`−1,v`}
but the base edge {v`−1, v`} is now twisted.

Lemma 2.9 has several consequences. The most important one is that, for a base
graph G, there are only two CFI graphs over G up to isomorphism. Multiple twists can
all be moved to the same base edge using path-isomorphisms because base graphs are
connected. If the number of twists is even, then they cancel:

Lemma 2.10 ([20, Lemma 6.2]). CFIge(G, f) ∼= CFIge(G, g) for every f, g : E → F2 twisting
an even number of base edges, that is, ∑ f = ∑

g.

CFI graphs CFIge(G, f) for which ∑ f = 0 are called even and the others are called odd.
If we are only interested in CFI graphs up to isomorphism, we write CFIge(G, 0) for the
even and CFIge(G, 1) for the odd CFI graph over G.

Automorphisms and Orbits. If we consider the special case of paths forming a cy-
cle in Lemma 2.9, we obtain automorphisms of CFI graphs because ge,e = g for every
g : E → F2 and e ∈ E. Formally, we need to consider paths (v1, . . . , v`, v1, v2) so that
the same base edge {v1, v2} is twisted twice, that is, the base edge is not twisted. Now
assume that G = (V,E,≤) is a totally ordered base graph. Then G has no nontriv-
ial automorphism and every automorphism of CFIge(G, g) is composed of multiple such
cycle-automorphisms.

If the base graph itself has nontrivial automorphisms, then the CFI graph inherits
these automorphisms. For a (not necessarily ordered) base graph G = (V,E,�), every
automorphism of CFIge(G, g) is obtained from an automorphism of the base graph and a
“CFI automorphism” where G is assumed to be totally ordered [102]. One consequence
is that the two edge vertices of an edge-vertex-pair form a 1-orbit if and only if its origin
base edge is contained in a cycle in G:

Lemma 2.11. Let G = (V,E,�) be a base graph, {u, v} ∈ E be a base edge, f : E → F2,
Age = CFIge(G, f), ū ∈ A∗g, and v̄ ∈ A∗e. Then {w ∈ Age | orig(w) = (u, u)} ∈ orb((A, ū))
if and only if there is a cycle containing the edge {u, v} in

G−
{
{w,w′}

∣∣∣ (w,w′) = orig(vi), i ≤ |v̄|
}
−
{

orig(ui)
∣∣∣ i ≤ |ū|}.

Proof. Set E ′ := {{w,w′} | (w,w′) = orig(vi), i ≤ |v̄|} and V ′ := {orig(ui) | i ≤ |ū|}.
Assume that there is a cycle in G−E ′ − V ′ containing {u, v}. Then we can use a cycle-
automorphism for that cycle to exchange the two edge vertex pairs with origin (u, v) by
Lemma 2.9. Because this automorphism is the identity on all vertices apart from the
ones whose origin is contained in the cycle, it stabilizes ū and v̄.

For the other direction, assume that there is an automorphism ϕ mapping one edge
vertex with origin (u, v) to the other one. Then, in particular, ϕ has to exchange both.
We can assume that ϕ is base-vertex-respecting, that is, ϕ maps vertices to vertices
of the same origin. If ϕ was not base-vertex-respecting, then ϕ induces a nontrivial
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automorphism of the base graph, whose inverse can be combined with ϕ to a base-
vertex-respecting automorphism. But a base-vertex-respecting automorphism of (A, ūv̄)
is composed of cycle-automorphisms not using the base edges E ′ and not using the base
vertices V ′. So there is a single cycle in G− E ′ − V ′ containing {u, v}.

Intuitively, fixing a tuple of edge vertices corresponds to removing the origin base edges
from the base graph and fixing a tuple of gadget vertices corresponds to removing the
origin base vertices from the base graph. Fixing a gadget vertex is equivalent to fixing
its adjacent edge vertices:

Lemma 2.12. Let G = (V,E,�) be a base graph, f : E → F2, and Age = CFIge(G, f).
Then, for every gadget vertex u ∈ Ag, we have Aut((Age, u)) = Aut((Age, NAge(u)).

In particular, if � is a total order on NAge(u), then we can equivalently fix a tuple of edge
vertices instead of fixing a gadget vertex. In this way, we can also determine the 1-orbits
of gadgets vertices from the 1-orbits of adjacent edge vertices. For example, for ordered
base graphs, fixing one gadget vertex splits the whole gadget up into singleton 1-orbits.

Lemma 2.13. Assume G = (V,E,≤) is an ordered base graph and let f : E → F2 and
Age = CFIge(G, f). Then, for all gadget vertices u, v ∈ Ag that have the same origin
u = orig(u) = orig(v), we have {v} ∈ orb((Age, u)).

Proof. Let u, v ∈ Ag have the same origin u. We show that there is no automorphism
of (Age, u) that maps v to any other vertex. Let NAge(u) = {w1, . . . , wd}. Because G is
totally ordered, we have that Aut((Age, u)) = Aut((Age, w1, . . . , wd)) by Lemma 2.12. Let
ϕ ∈ Aut((Age, w1, . . . , wd)) be arbitrary. Then v is adjacent to wi if and only if ϕ(v) is
adjacent to wi for every i ∈ [d]. Because every gadget vertex is adjacent to exactly one
vertex per edge-vertex-pair of its gadget and because there are no gadget vertices with
the same neighborhood, it follows that v = ϕ(v). Since ϕ was arbitrary, the vertex v is
contained in a singleton orbit.

Determining the k-orbit partition for k ≥ 2 is more complicated. However, in the case of
highly connected base graphs, this becomes easier. We sketch the proof of the following
lemma to illustrate the requirement of high connectivity on the base graph.

Lemma 2.14 ([45, Lemma 3.14]). Let G = (V,E,≤) be an ordered and (k + 2)-connected
base graph and Age = CFIge(G, f) for some f : E → F2. Assume w̄ ∈ A≤kge and {u, v} ∈ E
such that no vertex in w̄ has origin u, v, (u, v), or (v, u). Then the two edge vertices with
origin (u, v) form an orbit of (Age, w̄), i.e., {u ∈ Age | orig(u) = (u, v)} ∈ orbk((A, w̄)).

Proof. We first assume that w̄ only consists of gadget vertices. Let Vw̄ ⊆ V be the set
of origins of vertices in w̄. Because every vertex in G has degree at least k + 2 (G is
(k + 2)-connected), the vertices u and v have degree at least 2 in G− Vw̄. Because G is
(k + 2)-connected, there is a u-v-path in G − Vw̄ not using the edge {u, v} (removing v
from G− Vw̄ removes at most k+ 1 vertices from G). So there is a cycle in G− Vw̄ using
the edge {u, v} and thus there is an automorphism exchanging the two edge vertices with
origin (u, v) by Lemma 2.11.

Now assume that there is an edge vertex with origin (u, v) in w̄. Let w̄′ be obtained
from w̄ by replacing this edge vertex with a gadget vertex with origin u. Every automor-
phism stabilizing w̄′ also stabilizes w̄ by Lemma 2.12.
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2.8.3 CFI Graphs and IFPC

CFI graphs provide difficult instances for IFPC. For a class of base graphs K, the class
of CFI graphs over K is

CFIge(K) :=
{

CFIge(G, f)
∣∣∣ G = (V,E,�) ∈ K, f : E → F2

}
.

The CFI query is to decide whether a given CFI graph is even, so formally the CFI
query for K is the set{

CFIge(G, f)
∣∣∣ G = (V,E,�) ∈ K, f : E → F2,

∑
f = 0

}
( CFIge(K)

or, abbreviated, {CFIge(G, 0) | G ∈ K}. The CFI query is not IFPC-definable. Cai,
Fürer, and Immerman [20] showed that if every separator of a base graph G consists of at
least k+1 many vertices, then the even and the odd CFI graphs over G are Ck-equivalent.
Later, Dawar and Richerby showed a stronger result in terms of the treewidth of the base
graph.

Lemma 2.15 ([33, Theorem 3]). If an ordered base graph G is of minimum degree 2 and has
treewidth at least k, in particular, if G is k-connected, then CFIge(G, 0) ≡kC CFIge(G, 1).

The important consequence of Lemma 2.15 is that the CFI query for a class of base
graphs of unbounded treewidth is not IFPC-definable.

Corollary 2.16. For every class of base graph of unbounded treewidth K, IFPC does not
define the CFI query over K.

However, the CFI query is polynomial-time decidable, e.g., by reducing the CFI query to
solving linear equation systems [27]. We will discuss the connection between CFI graphs
and linear equation systems in more detail in Chapter 7.

Corollary 2.17. IFPC < Ptime.

We want to note that while distinguishing CFI graphs is hard, defining the orbits of CFI
graphs is very easy in some cases. For example, IFPC does not define the CFI query on
a class of base graphs of unbounded connectivity by Lemma 2.15. But for ordered base
graphs of connectivity 2 (in which every vertex is contained in a cycle), the 1-orbits are
easily definable (and actually distinguishable in the sense of Definition 2.5) in IFPC: By
Lemma 2.11, every edge-vertex-pair forms an orbit and thus the gadget vertices of the
same gadget form an orbit. This means that the coloring of these CFI graphs coincide
with the 1-orbit partition.

2.8.4 Variants of the CFI Construction

We now introduce two variants of the CFI construction, one only using gadget vertices
and one only using edge vertices.
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(a) Connecting gadget
vertices directly
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(b) Connecting edge vertices using hyperedges

2.2 CFI graphs with either gadget or edge vertices. This �gure shows variants of the CFI
construction (compare with Figure 2.1): Figure (a) shows how gadget vertices are connected directly
without edge vertices. Every edge vertex is turned into a complete bipartite graph. Figure (b) shows
the other alternative: Edge vertices are connected by hyperedges. Every gadget vertex is turned into
a hyperedge. The di�erent line styles and colors of the hyperedges are only used to distinguish them
visually.

CFI Graphs only Using Gadget Vertices. The edge vertices in the CFI graphs considered
so far make it easy to connect gadgets and are helpful for a nice presentation. However,
we then have to deal with two types of vertices, which in some proofs cause unnecessary
case distinctions. To eliminate these case distinctions, we now consider a variant of the
CFI graphs only requiring the gadget vertices. This variant was, e.g., used by Fürer [40].

Again, let G = (V,E,�) be a colored base graph and f : E → F2. We define the CFI
graph (with gadget vertices) Ag = CFIg(G, f) = (Ag, E

Ag ,�Ag) as follows. For a base
vertex u ∈ G, the set Au

g is defined as before. We define (cf. Figure 2.2a)

Ag :=
⋃
u∈V

Au
g,

EAg :=
⋃

{u,v}∈E

{
{(u, ā), (v, b̄)}

∣∣∣ (u, ā) ∈ Au
g, (v, b̄) ∈ Av

g, ā(v) = b̄(u) + f({u, v})
}
.

The total preorder �Ag is defined as before: u �Ag v if and only if orig(u) � orig(v) for
every u, v ∈ Ag. Alternatively, one can think of obtaining CFIg(G, f) from CFIge(G, f) by
adding an edge between all gadget vertices u and v, for which there is a path (u,w,w′, v)
for two edge vertices w and w′, and then deleting all edge vertices (compare Figures 2.1b
and 2.2a). In the CFI graph Ag, two gadgets for adjacent base vertices u and v are
connected by two complete bipartite graphs between the sets M u

a = {u ∈ Au
g | u(v) = a}

and M v
b = {v ∈ Au

g | v(u) = b} for a, b ∈ F2. If f({u, v}) = 0, then the sets M u
0 and M v

0
and the sets M u

1 and M v
1 are connected by a complete bipartite graph. In the other case

that f({u, v}) = 1, then the sets M u
0 and M v

1 and the sets M u
1 and M v

0 are connected.
Figure 3.2 in Section 3.5 shows a more complex example than Figure 2.2a.

CFI Graphs only Using Edge Vertices. While CFI graphs only using gadget vertices
have many nice properties, they have one drawback: Fixing one vertex of a CFI graph
fixes the whole gadget of the vertex as seen in Lemma 2.13. This is not the case for
the other alternative: CFI graphs that only use edge vertices (see, e.g., [66]). Here we
replace gadget vertices by hyperedges. We view the resulting hypergraph as a relational
structure (in the same way as we view graphs as relational structures). However, we call
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these hypergraphs or structures just CFI graphs. Let G = (V,E,�) be a colored base
graph of maximal degree d and f : E → F2. The CFI graph (using edge vertices)
Ae = CFIe(G, f) = (Ae, E

Ae , RAe ,�Ae) is defined as follows (cf. Figure 2.2b):

Ae :=
⋃
u∈V

Au
e,

EAe :=
⋃

{u,v}∈E

{
{(u, v, a), (v, u, b)}

∣∣∣ a+ b = f({u, v})
}
,

RAe :=
⋃
u∈V

{
{(u, v1, b1), . . . , (u, vd′ , bd′)}

∣∣∣ NG(u) = {v1, . . . , vd′}, b1 + · · ·+ bd′ = 0
}
.

The total preorder �Ae is again defined as before: u �Ae v if and only if orig(u) � orig(v)
for every u, v ∈ Ae. Because G is of maximal degree d, every hyperedge contains at most d
many vertices and Ae is a relational structure of arity at most d (and can be turned into
a structure of arity exactly d by repeating the last entry in the tuples encoding the
hyperedges). This is the major drawback of the construction only using edge vertices:
If our aim is to construct a class of structures of the same signature, then the degree
of the base graphs must be bounded by a constant. Hence, this construction cannot be
combined with a graph class of unbounded connectivity, so in particular, of unbounded
degree, for which defining k-orbits is easy (as we will see in Chapter 7).
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Chapter 3

The Iteration Number of the
2-Dimensional Weisfeiler-Leman
Algorithm

This chapter considers the classical 2-dimensional Weisfeiler-Leman algorithm [116] and
shows that the algorithm stabilizes after at most O(n log n) many iterations of the
2-dimensional Weisfeiler-Leman refinement on n-vertex graphs. By the close connection
to 3-variable counting logic C3 (Lemma 2.6), there is, for every C3-formula distinguishing
two n-vertex graphs, a C3-formula of quantifier depth at most O(n log n) distinguishing
the same graphs (we will actually consider binary structures in this chapter). We thereby
improve the known O(n2/ log n) upper bound of Kiefer and Schweitzer [79]. To prove
this bound, the authors use combinatorial techniques and a case distinction into small
and large vertex-color classes. In this chapter, we use an algebraic approach to show
the O(n log n) bound. We exploit a one-to-one correspondence between coherent config-
urations and coherent algebras [67]. The WL algorithm produces the former as output,
whereas the latter are semisimple matrix algebras closed with respect to the Hadamard
multiplication. Our upper bound matches, up to a logarithmic factor, the best known
lower bound of Ω(n) by Fürer [40].

Related Work. Deep Stabilization (see [115]), developed by Weisfeiler and Leman, is
a generalization of the classic 2-dimensional WL algorithm. It can in turn be seen as a
restricted form of the k-dimensional WL algorithm (for a suitable k) in the sense of Babai
(see [20]), which was independently introduced by Immerman and Lander [9, 73]. For
each k ∈ N, both generalizations give a polynomial-time algorithm that, as k increases,
can distinguish more and more non-isomorphic graphs. The k-dimensional algorithm
iteratively refines a coloring of all k-tuples of vertices of the graph until this process
stabilizes.

While at first it was unclear whether the algorithm (for some k) solves the graph
isomorphism in polynomial time, Cai, Fürer, and Immerman [20] answered this question
in the negative. The close correspondence between 2-WL and C3 generalizes to arbi-
trary k, that is, k-WL and Ck+1 distinguish the same graphs (or structures). So the CFI
graphs, providing two non-isomorphic graphs indistinguishable by Ck for every k, also
prove that k-WL does not solve the graph isomorphism problem for a fixed k. However,
the Weisfeiler-Leman algorithm (or, more precisely, its 1-dimensional version also known
as color refinement) is continuously and repeatedly applied in all state-of-the-art graph
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isomorphism solvers [3,92]. Babai employs the k-dimensional WL algorithm, with k log-
arithmic in the input, as a subroutine in his quasi-polynomial time algorithm for graph
isomorphism testing [9]. The techniques of the WL algorithm were also applied in the
context of group-CSP [13] (constrained satisfaction problems in which the constraints are
cosets of a group).

Regarding bounds, Berkholz and Nordström [14] proved a lower bound on the number
of iterations of the k-dimensional WL algorithm for finite structures. Specifically, they
show for sufficiently large k the existence of n-element relational structures distinguished
by the k-dimensional WL algorithm but for which nΩ(k/ log k) iterations do not suffice. The
bound was recently improved to nΩ(k) [55]. For a different logic, namely the 3-variable
existential negation-free fragment of first-order logic, Berkholz also developed techniques
to prove tight bounds [12]. In contrast to these bounds, Fürer’s lower bound [40] of Ω(n)
mentioned above is applicable to graphs and in fact also applies to all fixed dimensions k.

For the 1-dimensional version, the trivial lower bound of n− 1 iterations on n-vertex
graphs is tight [75]. There are more results for restricted graph classes. The k-dimensional
Weisfeiler-Leman algorithm distinguishes all graphs of treewidth k [76] but needs possibly
linearly many iterations. But the (4k + 3)-dimensional algorithm needs at most logarith-
mically many iterations to distinguish treewidth k graphs. A similar result was shown
for planar graphs: 3-dimensional Weisfeiler-Leman distinguishes all planar graphs [78]
(and it is open whether the 2-dimensional algorithm suffices [77]). However, there is a
constant k such that the k-dimensional algorithm distinguishes all planar graphs after
logarithmically many iterations [54].

Overview of this Chapter. The 2-dimensional Weisfeiler-Leman refinement refines the
color of a vertex pair (u, v) by the multiset of colors of the vertex pairs (u,w) and (w, v)
for every other vertex w. That is, the WL refinement considers all walks of length 2
from u to v. Generalizing the idea of considering walks of length 2, we consider a new
type of refinement, which we call the walk refinement, in Section 3.1. In one iteration
it distinguishes pairs of vertices not only according to the multiset of 2-walks between
them, but rather considers the multiset of all walks of arbitrary length between the
two vertices. Naturally, considering all walks cannot be weaker than considering 2-walks.
However, using arguments from linear algebra, it can be proved that it suffices to consider
walks of bounded length. This in turn can be used to argue that the walk refinement is
subsumed by a logarithmic number of traditional 2-walk refinements. In particular, the
two kinds of refinement yield the same stabilization and their iteration numbers differ by
at most a logarithmic factor.

The cornerstone of our argument is then to show that the number of iterations of
the walk refinement is at most linear in the number of vertices in Section 3.2. This is
done by observing that the result of the walk refinement corresponds to a semisimple
matrix algebra. Multiple iterations of the walk refinement must therefore correspond to
an increasing chain of semisimple subalgebras of a full matrix algebra. We can show that
the length of such a chain is at most O(n), which gives a linear upper bound for the
iteration number of repeated walk refinement.

Since our upper bound on the iteration number of the WL refinement is tight up to
a logarithmic factor, the question arises whether the factor of log n can be removed. We
show that the walk refinement requires Θ(n) iterations on the same graphs, for which
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Fürer [40] showed that the WL refinement requires Θ(n) iterations. This leaves the
problem open whether our method can be pushed further.

To show that the walk refinement requires Θ(n) many iterations, we follow an ap-
proach similar to the one used to show that 2-WL requires Θ(n) many iterations. We
associate with the walk refinement a variant of a counting logic in Section 3.3 and a spe-
cial Ehrenfeucht-Fraïssé-like Duplicator-Spoiler game in Section 3.5. We call them the
bijective walk pebble game and the walk counting logic, respectively. They are suitable
adaptations of the bijective 2-pebble game and the logic C3 that are associated with the
classic Weisfeiler-Leman (2-walk) refinement. The close correspondences between aspects
of refinement algorithm, game, and logic translate to our scenario (Theorem 3.21). In
particular, we prove tight bounds on the length of shortest winning strategies and opti-
mal quantifier depth, respectively, of Θ(n) in Section 3.6 (Theorem 3.29, Corollaries 3.30
and 3.31). That is, for walk-refinement the linear lower bound is tight. We end with a
discussion in Section 3.6.

3.1 The Walk Refinement

We introduce a new refinement called the walk refinement (cf. Section 2.7 for the necessary
preliminaries in this chapter, in particular for the formal definition of a refinement).
Assume G = (V,E, χ) is a complete and colored graph, that is, E = V 2 and χ : E → C
is a function into some set C of colors, and v1, . . . , vm ∈ V . Recall that

χ(v1, . . . , vm) =
(
χ(v1, v2), χ(v2, v3), . . . , χ(vm−1, vm)

)
from Section 2.7.
De�nition 3.1 (k-Walk Re�nement). For k ≥ 2, the k-walk refinement is the function
that for a colored complete graph G = (V,E, χ) yields the new coloring χW[k] defined by

χW[k](u, v) :=
{{
χ(u,w1, . . . , wk−1, v)

∣∣∣ w1, . . . , wk−1 ∈ V
}}
.

Intuitively, the k-walk refinement refines the color of a vertex pair (u, v) with the color
sequence of the traversed vertex pairs along walks, taken over all possible walks of length k
from u to v (collected in a multiset). Note that, if χ respects converse equivalence, then χ
assigns different colors to loops and the refinement implicitly also refines with respect to
walks of shorter lengths k′ < k (indeed, the information is contained in the walks whose
first k−k′ steps are of color χ(u), i.e., which are stationary at u). So the k-walk refinement
is indeed a refinement, i.e., χW[k] � χ, because walks of length 1 are just the old colors. It
is easy to see that the k-walk refinement is isomorphism-invariant and preserves converse
equivalence.

From what we just argued, obviously χW[k] � χW[j] if k ≥ j. Also note that the 2-walk
refinement is exactly the 2-dimensional Weisfeiler-Leman refinement. Thus, for k ≥ 2,

χW[k] � χWL � χ.

We argue next that the k-walk refinement can be simulated with a logarithmic number
of Weisfeiler-Leman refinements. In this chapter, we will always use “the Weisfeiler-
Leman refinement” to refer to the classic 2-dimensional Weisfeiler-Leman refinement (WL)
defined in Section 2.7.
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Lemma 3.2. If k ≥ 2, then χdlog ke
WL � χW[k].

Proof. Let C be the set of colors of χ : V 2 → C and likewise let Ci be the set of colors
of χiWL : V 2 → Ci. We show by induction that after i ≥ 1 iterations of the Weisfeiler-
Leman refinement, for each color d ∈ Ci, there is a function d̂ : C(2i) → N with the
following property: For all u, v ∈ V of color χiWL(u, v) = d and for all 2i-walk colors
(c1, . . . c2i) ∈ C(2i) in χ, there are exactly d̂(c1, . . . , c2i) many (c1, . . . , c2i)-colored walks
between u and v in χ. In particular, the number of (c1, . . . , c2i)-colored walks is the same
for all such u and v. This implies χiWL � χW[2i].

For i = 1, the Weisfeiler-Leman refinement assigns colors such that every color
just contains the possible 2-walk colors. So assume i > 1. Let u, v ∈ V be vertices,
d1, e1, . . . , dn, en ∈ Ci be colors of χiWL,

d =
{{

(d1, e1), . . . , (dn, en)
}}
∈ Ci+1

be a color of χi+1
WL , and (c1, . . . , c2i+1) ∈ C(2i+1) be a 2(i+1)-walk color. We set

d̂(c1, . . . , c2i+1) :=
∑
j∈[n]

d̂j(c1, . . . , c2i) · êj(c2i+1, . . . , c2i+1).

By induction hypothesis, d̂i and êi yield the correct number of 2i-walks and so d̂ yields
the correct number of 2i+1-walks.

This lemma corresponds to the known fact that in C3 walks of length k can be defined
by a formula of quantifier depth dlog ke. These walks can be counted using counting
quantifiers similarly. Considering paths, we see that the k-walk refinement cannot be
simulated with fewer than a logarithmic number of Weisfeiler-Leman refinements, and
in that sense the bound in the lemma is tight. On the other hand the relation can be
strict, that is, χdlog ke

WL ≺ χW[k]. However, the Weisfeiler-Leman and the k-walk refinement
produce the same stable partition because finitely many steps of one subsume a single
step of the other.

Lemma 3.3. If k ≥ 2, then χ∞WL ≡ χ∞W[k].

Proof. Assume that χ∞W[k] ≡ χjW[k] and χ∞WL ≡ χjWL for some suitable j. Then

χjW[k] � χjWL ≡ χ
j·dlog ke
WL � χjW[k]

by Lemma 3.2, and hence χ∞WL ≡ χ∞W[k].

We remark that it is possible that the partitions produced by the Weisfeiler-Leman re-
finement and the partitions produced by the k-walk refinement all disagree except for the
stable partitions in the end (for example, this is the case for the graphs CFIg(G2

n, 0) for
2 ≤ n ≤ 10 used in Section 3.5 as shown by computer calculations with k = n).

We define the walk refinement χW as the finest k-walk refinement. More precisely,
we define it as χW[k] for the smallest k, for which χW[k] induces the finest partition over
all choices of k. We will prove in Section 3.2 that the n2-walk refinement always produces
this finest partition, and thus k ≤ n2. From that we will conclude that χW ≡ χW[n2] and
χ
O(logn)
WL � χW . This will allow us to bound the iteration number of the Weisfeiler-Leman

refinement by bounding the iteration number of the walk refinement.
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3.2 Iteration Number of the Walk Refinement

In this section we show that the walk refinement stabilizes after O(n) iterations. We
interpret the partitions produced by the walk refinement as matrix algebras. If the walk
refinement strictly refines the partition, then the algebra is strictly enlarged. We obtain
the linear bound by observing that these algebras can be nested at most a linear number
of times. Throughout this section, let G = (V,E, χ) be a complete and colored graph
with V = [n] and assume that χ : E → C respects converse equivalence.

3.2.1 Background on Matrix Algebras

In this section we make use of standard material from representation theory, see for
example [119]. Let S be a set of n×n matrices over the complex numbers C. We denote
by CS the C-linear span of S and with

S≤k :=
{
M1 · . . . ·Mj

∣∣∣ j ≤ k,Mi ∈ S for all i ∈ [j]
}

the set of all products of matrices in S with at most k factors. Clearly, S≤k ⊆ S≤k+1 for
every k ∈ N. We write Ŝ for the union of all S≤k. For a color c ∈ C, we denote by Mc

the n× n color c adjacency matrix, that is,

Mc(i, j) :=
1 if χ(i, j) = c,

0 otherwise.

The set of all color adjacency matrices is denoted byMχ := {Mc | c ∈ C}. The coloring χ
thereby induces an n× n matrix algebra 〈χ〉 over the complex numbers:

〈χ〉 := CM̂χ.

The algebra 〈χ〉 is closed under (conjugate) transposition because χ respects converse
equivalence.

We write Mk(C) for the (full) matrix algebra of all k × k matrices over the complex
numbers. It is a well-known fact that a matrix algebra A ⊆ Mn(C) closed under conjugate
transposition is always semisimple. Indeed, if M is in the Jacobson radical of A, so is
M∗M . But M∗M is diagonalizable (because it is Hermitian) and nilpotent (because the
radical is nilpotent, see Lemma 1.6.6 in [119]) and hence M∗M = 0 and so M = 0. Then
the radical itself is 0, which is one characterization of semisimplicity. By the theorem
of Wedderburn (Corollary 1.4.17 in [119]), a semisimple matrix algebra A ⊆ Mn(C) is
always isomorphic to a direct sum of full matrix algebras, that is,

A ∼= Ma1(C)⊕ · · · ⊕Mak(C),

for some positive integers k and a1, . . . , ak. The direct sum decomposition is unique up to
reordering. We will prove a bound on the length of proper chainsA1 ( · · · ( Am ⊆ Mn(C)
of semisimple matrix algebras. This is the essential theorem to bound the iteration
number of the walk refinement:
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Theorem 3.4. Let A1 ( · · · ( Am ⊆ Mn(C) be a chain of semisimple strict subalgebras.
Then m ≤ 2n.

To prove the theorem, we need several auxiliary lemmas, which may be self-evident for
a reader familiar with the theory of semisimple algebras. They show that such chains
behave well with respect to the direct sum decompositions of the Ai.

Lemma 3.5. If there is an algebra monomorphism

Ma1(C)⊕ · · · ⊕Mak(C)→ Mm(C),

then ∑k
i=1 ai ≤ m for all a1, . . . , ak,m ∈ N.

Proof. For each i ∈ [k], there are exactly ai many diagonal matrices in Mai(C) with one
entry 1 and all other 0. These matrices are nonzero, idempotent, and pairwise orthogonal
(i.e., the product of any two of them is 0). It follows that the direct sum, and hence the
monomorphism image, contains a set of d = ∑k

i=1 ai many nonzero, idempotent, and
pairwise orthogonal elements. Let M1, . . . ,Md ∈ Mm(C) be the matrices of this set.
Since all Mi are nonzero, each has rank at least 1. Assume i 6= j ∈ [d]. Then Mi +Mj is
idempotent, orthogonal to all other M`, and satisfies

rank(Mi +Mj) = rank(Mi) + rank(Mj)

(see e.g., Theorem IV.12 in [2]). Because the maximal rank of an m×m matrix is m, it
follows by induction that d = ∑k

i=1 ai ≤ rank(∑k
i=1Mi) ≤ m.

Lemma 3.6. Assume a1, . . . , ak, b1, . . . , b` ∈ N and let

ϕ :
k⊕
i=1

Mai(C)→
⊕̀
j=1

Mbj(C)

be an algebra monomorphism. Then for every i ∈ [k], there is a j ∈ [`] such that πj ◦ ϕ
maps Mai(C) injectively into Mbj(C), where πj is the projection onto the j-th component
Mbj(C).

Proof. Full matrix algebras are simple, i.e., contain no proper nontrivial two-sided ideals.
For a simple algebra A, every homomorphism ψ : A → B into some algebra B is either
injective or zero (otherwise, ker(ψ) is a proper nontrivial two-sided ideal of A). Assume
i ∈ [k]. The map πj ◦ ϕi : Mai(C) → Mbj(C) is an algebra homomorphism for all j ∈ [`],
where ϕi is the restriction of ϕ to the i-th component Mai(C). For every j ∈ [`], the
homomorphism πj ◦ ϕi is either injective or zero. Now, πj ◦ ϕi must be injective for
some j because if all πj ◦ ϕi were zero, ϕ was not injective.

Lemma 3.7. Let A ⊆ B ⊆ Mn(C) be two semisimple matrix algebras with direct sum
decompositions

A ∼= Ma1(C)⊕ · · · ⊕Mak(C) and
B ∼= Mb1(C)⊕ · · · ⊕Mb`(C).

Then 2(∑k
i=1 ai)− k ≤ 2(∑`

j=1 bj)− ` with equality exactly if A ∼= B.
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Proof. First, we pick an algebra monomorphism

ϕ :
k⊕
i=1

Mai(C)→
⊕̀
j=1

Mbj(C).

Second, for each i ∈ [k], we choose an f(i) = j such that πj ◦ ϕ maps Mai(C) injec-
tively into Mbj(C). Such choices exist by Lemma 3.6. For each j ∈ [`], we obtain a
monomorphism ⊕

i∈f91(j)
Mai(C)→ Mbj(C)

by restricting πj ◦ ϕ. From Lemma 3.5 it now follows that bj ≥
∑
i∈f91(j) ai. Then, to

show that 2(∑k
i=1 ai)− k ≤ 2(∑`

j=1 bj)− `, simply observe that, for each j ∈ [`], we have

2bj − 1 ≥ 2
( ∑
i∈f91(j)

ai

)
− |f 91(j)|

(since bj > 0) and that summing up over all j yields the desired equation. Finally,
consider the case that A ∼= B and let j ∈ [`]. Then

2bj − 1 = 2
( ∑
i∈f91(j)

ai

)
− |f 91(j)|

and because bj ≥
∑
i∈f91(j) ai, it follows that |f 91(j)| = 1 and bj = af91(j). Thus, f is a

bijection satisfying ai = bf(i) for all i ∈ [k] and ϕ is an isomorphism.

We now conclude the proof of Theorem 3.4.

Proof of Theorem 3.4. For all i ∈ [m], assume that

Ai ∼=
ni⊕
j=1

Maij(C)

and define si := 2(∑ni
j=1 aij) − ni. Then sm ≤ 2n − 1 by Lemma 3.5. Moreover, for

all i ∈ [m− 1], we have si ≤ si+1 by Lemma 3.7, and in fact even si < si+1 since equality
would imply Ai = Ai+1. Thus, m ≤ 2n.

3.2.2 Matrix Algebras and the Walk Refinement
A matrix M ∈ Mn(C) distinguishes (u1, v1) from (u2, v2) if M(u1, v1) 6= M(u2, v2) and
a set S ⊆ Mn(C) distinguishes (u1, v1) from (u2, v2) if S contains a matrix distinguishing
them. We now show that with one iteration of the walk refinement we can distinguish
the same vertex pairs as with the induced algebra 〈χ〉. Let c1, c2 ∈ C be colors. Then
(Mc1 ·Mc2)(u, v) is the number of (c1, c2)-colored walks from u to v. In general, let
c1, . . . , ck be colors. Then (Mc1 · . . . ·Mck)(u, v) is the number of (c1, . . . , ck)-colored walks
from u to v. Because the walk refinement and the induced algebra essentially count
colored walks, they distinguish the same vertex pairs:
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Lemma 3.8. Let u1, v1, u2, v2 ∈ V . The walk refinement χW distinguishes (u1, v1) from
(u2, v2) if and only if the induced algebra 〈χ〉 distinguishes them.

Proof. On the one hand, assume that the walk refinement distinguishes the vertices, i.e.,
χW(u1, v1) 6= χW(u2, v2). Then there is a sequence of colors c1, . . . , ck such that the
number of (c1, . . . , ck)-colored walks between u1 and v1 is different from the number of
such walks between u2 and v2. Hence, Mc1 · . . . ·Mck distinguishes the two vertex pairs.

On the other hand, let M ∈ 〈χ〉 distinguish (u1, v1) and (u2, v2). The matrix M is a
linear combination of products of color adjacency matrices:

M =
m∑
i=1

zi ·
ki∏
j=1

Mcij ,

where zi ∈ C and cij ∈ C for all i ∈ [m] and j ∈ [ki]. There must be an i such that∏ki
j=1Mcij distinguishes (u1, v1) and (u2, v2) because M distinguishes them. Hence, the

number of (ci1, . . . , ciki)-colored walks between u1 and v1 is different from the number of
such walks between u2 and v2 and the pairs are distinguished by the walk refinement.

Corollary 3.9. Either 〈χ〉 ( 〈χW〉 or χ ≡ χW .

The induced algebra gets strictly larger if the partition induced by the walk refinement
gets strictly finer. We obtain the bound on the walk refinement iterations because the
algebras can only be nested 2n many times.

Theorem 3.10. The walk refinement stabilizes in 2n iterations.

Proof. Assume that m is the smallest number such that χmW ≡ χ∞W . Because the walk re-
finement preserves converse equivalence, the algebras 〈χ〉, 〈χW〉, . . . , 〈χmW〉 are semisimple.
Then from Corollary 3.9 it follows that

〈χ〉 ( 〈χW〉 ( · · · ( 〈χmW〉

and from Theorem 3.4 that m ≤ 2n.

To obtain a bound on the iteration number of the Weisfeiler-Leman refinement, it remains
to relate the Weisfeiler-Leman refinement and the walk refinement.

Lemma 3.11. χW ≡ χW[n2] and χO(logn)
WL � χW .

Proof. We first show χW ≡ χW[n2]. A close inspection of the proof of Lemma 3.8 shows
that CM≤k

χ distinguishes the same vertex pairs as the k-walk refinement. It suffices to
show that CM̂χ = CM≤n2

χ , which implies 〈χ〉 = CM≤n2
χ and χW ≡ χW[n2]. The argument

is well-known: Let S be a set of n× n matrices. Clearly,

dimCS≤k ≤ dimCS≤k+1.

If dimCS≤k = dimCS≤k+1, then CS≤k = CS≤j for all j ≥ k. Hence, CŜ = CS≤n2 be-
cause the dimension can be at most n2. Now χ

O(logn)
WL � χW follows by Lemma 3.2.
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Theorem 3.12. The 2-dimensional Weisfeiler-Leman algorithm stabilizes after O(n log n)
iterations on n-vertex graphs.

Proof. Combining Theorem 3.10 with Lemmas 3.3 and 3.11 proves the claim.

Corollary 3.13. If two n-vertex graphs can be distinguished by a C3-sentence, then there
is also a C3-sentence of quantifier depth at most O(n log n) that distinguishes the two
graphs.

We argued that the length of the involved matrix algebras (the smallest number k such
that CS≤k = CŜ) is at most n2. We remark that there is even an O(n log n) bound [111]
for the length of matrix algebras. But this bound does not improve our bound on
Weisfeiler-Leman iterations asymptotically.

3.3 Walk Counting Logic

TheWeisfeiler-Leman refinement can distinguish the same graphs as the counting logic C3.
Moreover, the number of Weisfeiler-Leman iterations needed to distinguish two vertex
pairs equals the minimum quantifier depth of a formula distinguishing them. As we have
already seen, for k ≥ 2, the k-walk refinement distinguishes the same vertex pairs, too.
But the required iterations of the walk refinement do not correspond to the quantifier
depth of C3. We now introduce k-walk counting logic Wk for which such a corre-
spondence holds. The logic is defined for binary structures. To relate this logic to the
walk refinement, we need to switch between binary structures and their representation
as edge-colored graphs (cf. Section 2.7). For the sake of readability, we identify a binary
relational structure A with its induced edge-colored graph GA. For example, we refer
with the initial coloring of A to the initial coloring of GA and say that the walk refine-
ment distinguishes two binary structures A and B if the walk refinement distinguishes
the graphs GA and GB.

A Wk-formula can use multiple variables but has at most two free variables, which
is indicated using the notation Φ(x, y). Wk-formulas are formed from atomic 2-variable
first-order formulas (so of R(x, y) and x = y), usual boolean connectives such that the
number of free variables remains two (e.g., Φ(x, y) ∧ Ψ(x, y)), and the following k-walk
quantifier. If Φ1(x1, x2),Φ2(x2, x3), . . . ,Φk(xk, xk+1) areWk-formulas such that the vari-
ables xi are pairwise distinct, then

Φ(x1, xk+1) = ∃j(x2, . . . , xk).
∧
i∈[k]

Φi(xi, xi+1)

is a Wk-formula for every j ∈ N. Note that by renaming the variables in the Φi, we can
assume that everyWk-formula uses at most k+1 many variables. If the free variables of Φ
are x̄ (and hence |x̄| ≤ 2), then for a binary structure A, the walk quantifier Φ is satisfied
by a tuple ū ∈ A|x̄| if there are j many distinct tuples (v2, . . . , vk) ∈ Ak−1 satisfying the
conjunction ∧i∈[k] Φi(xi, xi+1) when interpreting xi by vi for every 2 ≤ i ≤ k. We write
ΦA ⊆ A|x̄| for the set of tuples ū satisfying Φ in A.

Note that Wk-sentences can, for example, be obtained by setting Φ1(x1, x2) to be the
formula x2 = x2 and setting Φk(xk, xk+1) to be xk = xk. This restricts the top most walk
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quantifier to quantify over walks of length k − 2. The restriction could be relaxed, but
that would complicate the definition and is not needed for our purpose. Syntactically,Wk

is not a subset ofWk+1, but obviously for everyWk-formula there is an equivalentWk+1-
formula. We call the union of the Wk-logics for all k ∈ N the walk counting logic.
Consequently, the number of variables in walk counting logic is unbounded.

Let A be a binary relational τ -structure and let χ : A2 → C be a coloring of A.
A Wk[τ ]-formula Φ(x, y) identifies a color c ∈ C in χ if (u, v) ∈ ΦA if and only if
χ(u, v) = c for all u, v ∈ V . We now show that with Wk-formulas of quantifier depth m
one can distinguish at least as many atom pairs as with m iterations of the k-walk
refinement.

Lemma 3.14. Let A be a binary relational τ -structure, χ the initial coloring for A, and c
a color produced by χmW[k]. Then there is a Wk[τ ]-formula Φ(x, y) of quantifier depth m
identifying c in χmW[k]. Moreover, Φ only depends on τ , |A|, and c (but not on A).

Proof. The proof is by induction on m. If m = 0, then there is a set σ ⊆ τ such exactly
the pairs (u, v) receive color c that are exactly contained in all σ-relations and for all of
which it holds that either u = v or u 6= v. This is identified by the formula∧

R∈σ
R(x, y) ∧

∧
R∈τ\σ

¬R(x, y) ∧ Φ,

where Φ(x, y) is x = y or x 6= y depending on c.
Let c be a color in the (m + 1)-th iteration. Hence, c is a multiset of k-walk colors

in χmW[k]. Let (c1, . . . , ck) occur with multiplicity j in c. Then there are Wk-formulas Φci

of quantifier depth m identifying ci in χmW[k] for every i ∈ [m] by the induction hypothesis.
The Wk-formula

Φ(c1,...,ck)(x1, xk+1) := ∃jx2, . . . , xk.
∧
i∈[k]

ϕci(xi, xi+1)

is satisfied by atoms u and v assigned to x1 and xk+1, respectively, if and only if there
are at least j many (c1, . . . , ck)-colored walks from u to v in χmW[k]. Then the conjunction

∧
(c1,...,ck)∈c

Φ(c1,...,ck)

identifies c in χm+1
W[k] and is of quantifier depth m+ 1.

Similar to counting logics and the WL-refinement, when one is interested in distinguish-
ing structures rather than distinguishing atom pairs, one (sometimes) needs an additional
quantifier. This is the case because a refinement distinguishes two graphs after m appli-
cations if the multisets of colors of both graphs are different. Hence, there is a hidden
quantifier saying that there is a color, that occurs with different multiplicity in both
graphs.

Lemma 3.15. If m iterations of the k-walk refinement distinguish two binary relational
structures A and B, then a Wk-sentence of quantifier depth m + 1 (or m + 2 if k = 2)
distinguishes A and B.
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Proof. Assume m iterations of the k-walk refinement distinguish A and B and let χA

and χB be the coloring obtained for A and B, respectively. Then there is a color c
occurring for a different number of atom pairs, say n1 and n2 with n1 > n2, in χA

and χB, respectively. Let Φ(x, y) be the Wk-formula from Lemma 3.14 of quantifier
depth m that identifies atom pairs of color c in both colorings. Now, for k > 2, the
Wk-formula ∃n1x, y.Φ(x, y) is of quantifier depth m+ 1 and distinguishes the structures.

Now assume that k = 2 (and hence the prior formula is not a valid W2-formula).
Let D be the multiset of c-outdegrees of all atoms of A, that is, for an atom u, the
number of atoms v such that χA(u, v) = c. Then the sum of all c-outdegrees (respecting
the multiplicity) is n1. Let D be the set of all possible c-outdegree multisets with sum n1.
Then the W2-formula ∨

D∈D

∧
(i,d)∈D

∃ix. ∃dy. Φ(x, y)

distinguishes A and B, where (i, d) ∈ D says that d occurs with multiplicity i in D.

3.4 The Bijective Walk Pebble Game

We now describe a game called the bijective k-walk pebble game, which corresponds
to the k-walk refinement and k-walk counting logic. It is an adaptation of the bijective
3-pebble game to agree with the k-walk refinement.

There are two players, Spoiler and Duplicator. The game is played on two binary rela-
tional τ -structures A andB. Spoiler obtains k+1 pairs of pebbles (p1, q1), . . . , (pk+1, qk+1)
labeled with numbers 1 to k+ 1. We say that the pebble pairs (pi, qi) and (pi+1, qi+1) for
all i ∈ [k] and the pairs (pk+1, qk+1) and (p1, q1) are consecutive. Given a pebble pair
(pi, qi), we will for simplicity write (pi+1, qi+1) for the next consecutive pebble pair, in
particular, in the case i = k+ 1, where (p1, q1) is meant. A position in the game is a pair
(A, ū;B, v̄) for ū ∈ A≤k+1, v̄ ∈ B≤k+1, and |ū| = |v̄|. The pebble pi is placed on ui and
the pebble qi is placed on vi for every i ∈ [|ū|]. In the initial positions, the tuples ū and v̄
are empty. If |A| 6= |B|, Spoiler wins immediately. One round consists of the following
three moves:

1. If there are pebbles already placed on the structures, Spoiler can choose a pair of
pebbles (pi, qi), replace it with (p1, q1) and then must also replace the next consec-
utive pair (pi+1, qi+1), if it is placed on the graph, with (pk+1, qk+1). In either case,
Spoiler then picks up all pebble pairs apart from the first and last.

2. Duplicator chooses a bijection λ : Ak−1 → Bk−1.

3. Spoiler places the pebbles pi for 2 ≤ i ≤ k onto atoms of A, where Spoiler may
place multiple pebbles on the same atom. Assume pebble pi is placed onto atom ui
and λ(u2, . . . , uk) = (v2, . . . , vk). Then, Spoiler also places the pebbles qi onto vi
for all 2 ≤ i ≤ k.

Thus, as opposed to a bijection between atoms in the classic game, Duplicator chooses
a bijection from the k-walks in A from p1 to pk+1 to the k-walks from q1 to qk+1 in B
(hence the name walk pebble game).
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We say that Spoiler wins the game after them-th round, if there are consecutive pebble
pairs (pi, qi) and (pi+1, qi+1) placed on atoms (u, v) ∈ A2 and (u′, v′) ∈ B2, such that the
induced substructures (A[u, v], uv) and (B[u′v′], u′v′) are not isomorphic. Duplicator wins
the game if Spoiler never wins the game. Spoiler can force a win after the m-th round
or has a winning strategy in m rounds if Spoiler can always win the game after the
m-th round for all possibles moves of Duplicator. With bijective walk pebble game
we refer to the game in which Spoiler is allowed to choose the number k in the beginning.

Note that, similar to the toplevel quantifier of a Wk-sentence, in the first round only
k − 1 many pebbles are placed on the graph and hence they describe a (k − 2)-walk.
This also ensures in the case k = 2 that the game becomes the bijective 3-pebble game
(besides some irrelevant replacements of pebble pairs).

In the following, let A and B be two arbitrary but fixed binary τ -structures. Fur-
thermore, let u, v ∈ A, and u′, v′ ∈ B. We say that the bijective k-walk pebble game
distinguishes (u, v) from (u′, v′) in m rounds if Spoiler has a winning strategy in m
rounds in the game in position (A, uv;B, u′v′). If uv and u′v′ do not induce a local
isomorphism, then they are distinguished in 0 rounds.

Lemma 3.16. Let u, v ∈ A and u′, v′ ∈ B. If there is a Wk-formula Φ(x, y) of quantifier
depth m that distinguishes (u, v) from (u′, v′), then they are also distinguished by the
bijective k-walk pebble game in m rounds.

Proof. Assume that Φ(x, y) distinguishes (u, v) from (u′, v′) and that the pebble pairs
(p1, q1) and (pk+1, qk+1) are placed on these atoms. The proof proceeds by induction
on m. If m = 0, Φ(x, y) is quantifier free, hence (u, v) is contained in a relation in
which (u′, v′) is not contained (or vice versa), hence the two induced substructures are
not isomorphic and Spoiler wins the game immediately.

Assume Φ(x, y) has quantifier depth m + 1. If Φ = ¬Ψ, then Ψ distinguishes (u, v)
from (u′, v′), too. If Φ = Ψ1 ∧ Ψ2, one formula of Ψ1 and Ψ2 distinguishes (u, v) from
(u′, v′). Hence, we can assume that Φ is a walk quantifier:

Φ(x1, xk+1) = ∃jx2, . . . , xk.
∧
i∈[k]

Φi(xi, xi+1).

Assume w.l.o.g. that (u, v) ∈ ΦA and (u′, v′) /∈ ΦB. Duplicator chooses a bijection
λ : Ak−1 → Bk−1. There must be a tuple (w2, . . . , wk) ∈ Ak−1 serving as witness of the
quantifier in A but λ(w2, . . . , wk) = (w′2, . . . , w′k) does not serve as witness for B because
otherwise (u′, v′) ∈ ΦB. Then Spoiler places for 2 ≤ i ≤ k the pebble pi on wi and the
pebble qi on w′i. There must be an i ∈ [k] such that (wi, wi+1) ∈ ΦA

i and (w′i, w′i+1) /∈ ΦB
i

because otherwise (w′2, . . . , w′k) is a witness. The formula Φi is of quantifier depth m
and the i-th and (i + 1)-th pebble pairs are placed on the correct atoms. Thus, Spoiler
removes all other pebbles and wins the game in m additional rounds by the induction
hypothesis.

Lemma 3.17. If there is a Wk-sentence Φ of quantifier depth m distinguishing A and B,
then Spoiler has a winning strategy in m rounds in the bijective k-walk pebble game played
on A and B.
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Proof. Assume that Φ is a sentence of quantifier depth m > 0 which distinguishes the
structures A and B. For the same reasons as in Lemma 3.16, we can assume that Φ is a
walk-quantifier:

Φ = ∃jx1, . . . , xk−1.
∧

i∈[k−2]
Φi(xi, xi+1).

Again as in Lemma 3.16, for each bijection λ : Ak−1 → Bk−1, there exists a witness
(w1, . . . , wk−1) ∈ Ak−1 for A such that λ(w1, . . . , wk−1) = (w′1, . . . , w′k−1) is not a witness
for B. Again, there is an i ∈ [k − 2] such that Φi distinguishes (wi, wi+1) and (w′i, w′i+1).
When Spoiler places the pebbles pi on the wi and the pebbles qi on the w′i, then Spoiler
can force a win in m − 1 additional rounds by Lemma 3.16. So overall Spoiler has a
winning strategy in m rounds.

Lemma 3.18. Let u, v ∈ A and u′, v′ ∈ B. If the bijective k-walk pebble game distinguishes
(u, v) from (u′, v′) in m rounds, then m iterations of the k-walk refinement distinguish
them in A and B, respectively.

Proof. Assume that the pebble pairs (p1, q1) and (pk+1, qk+1) are placed on (u, v) and
(u′, v′) and Spoiler has a winning strategy in m additional rounds. Let χA and χB be the
initial colorings of A and B. The proof proceeds by induction on m. If m = 0, then the
pair (u, v) induces a substructure not isomorphic to the one induced by (u′, v′). Hence,
χ(u, v) 6= χ′(u′, v′).

Assume Spoiler can force a win in the game in m + 1 additional rounds. Whatever
bijection Duplicator chooses, Spoiler can place the pebbles forcing a win in m additional
rounds. This means, by the induction hypothesis, that for every bijective mapping be-
tween the k-walks from u to v in (χA)mW[k] and the k-walks from u′ to v′ in (χB)mW[k],
there is a walk that is mapped to a walk of a different color. Hence, there is a k-walk
color that occurs with different multiplicity from u to v in (χA)mW[k] than from u′ to v′
in (χB)mW[k]. This just says that the atom pairs obtain different colors in (χA)mW[k] or
(χB)mW[k], respectively.

Lemma 3.19. If Spoiler can force a win in the bijective k-walk pebble game played on A
and B in m rounds, then the k-walk refinement distinguishes A and B after m − 1
iterations.

Proof. At the beginning of the game, Duplicator chooses a bijection. For every such
bijection, Spoiler can place the pebbles forcing a win in m − 1 additional rounds. As
in and by Lemma 3.18, there is no bijective mapping between the walks in A and those
in B such that assigned walks have the same color after m − 1 iterations of the k-walk
refinement. This implies that the multiset of colors after m − 1 iterations of the k-walk
refinement are different, that is, the k-walk refinement distinguishes A and B after m−1
iterations.
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Theorem 3.20. For all binary τ -structures A and B, u1, u2 ∈ A, and v1, v2 ∈ B, the
following are equivalent:

1. (u1, u2) and (v1, v2) are distinguished by m iterations of the k-walk refinement on
A and B.

2. (A, u1u2) and (B, v1v2) are distinguished by a k-walk counting logic Wk[τ ]-formula
of quantifier depth m.

3. Spoiler has a winning strategy in the m-round bijective k-walk pebble game in posi-
tion (A, u1u2;B, v1v2).

Proof. The claim follows immediately from Lemmas 3.14, 3.16, and 3.18.

To distinguish structures (instead of atoms of structures), one needs one additional quan-
tifier or round compared to the walk-refinement. This is similar to the case of C3 and the
Weisfeiler-Leman algorithm (but note that C3 needs up to 2 additional quantifiers).

Theorem 3.21. For all binary τ -structures A and B, the following are equivalent:

1. A and B are distinguished by m iterations of the k-walk refinement.

2. A and B are distinguished by a k-walk counting logic Wk[τ ]-sentence of quantifier
depth m+ 1.

3. Spoiler has a winning strategy in the (m + 1)-round bijective k-walk pebble played
on A and B.

Proof. The claim follows immediately from Lemmas 3.15, 3.17, and 3.19.

Corollary 3.22. For all binary τ -structures A and B, the following are equivalent:

1. A and B are distinguished by the walk refinement,

2. A and B are distinguished by walk counting logic, and

3. Spoiler has a winning strategy in the bijective walk pebble game played on A and B.

In particular, these equivalences imply that the upper bound for the walk refinement
(Theorem 3.10) translates to the game and logic scenarios as follows.

Corollary 3.23. For all binary τ -structures A and B of order |A| = |B| = n, if Spoiler
has a winning strategy in the bijective walk-pebble game on the two structures A and B,
then Spoiler has a winning strategy requiring O(n) rounds.

Corollary 3.24. For all binary τ -structures A and B of order |A| = |B| = n, if the
structures A and B are distinguished by walk counting logic, then they can be distinguished
by a walk counting logic sentence of quantifier depth O(n).
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n columns

3.1 The base graph G2
n. Every vertex in the graph is identi�ed by its distance to the degree 1

vertex at the right and the two degree 2 vertices on the le�.

3.5 A Linear Lower Bound for the Walk Refinement

In this section we show that there are graphs on which the walk refinement stabilizes
only after Ω(n) iterations. Specifically, we show this for the same graphs for which Fürer
already showed that the WL refinement requires Ω(n) iterations [40]. We do this by
demonstrating that Duplicator has a strategy in the bijective walk pebble game played
on these graphs that delays the win of Spoiler for at least Ω(n) rounds. The graph class
used by Fürer are CFI graphs over grids of height 2.

3.5.1 Lower Bound for the Weisfeiler-Leman Refinement

We recall the necessary parts of Fürer’s lower bound on the iteration number of the
d-dimensional WL refinement. We only deal with the 2-dimensional case. Let n ≥ 3 be
arbitrary but fixed and let G2

n be the 2×n grid with an additional vertex attached to one
corner (depicted in Figure 3.1). In this graph all vertices can be uniquely identified by
their distance to the unique vertex of degree 1 as well as the distance to the two adjacent
vertices of degree 2 (because n ≥ 3). Indeed, all vertices of G2

n are C3-distinguishable. So
we actually can think of G2

n as being totally ordered.
We consider the CFI construction only using gadget vertices (cf. Section 2.8.4). The

graph CFIg(G2
4, 0) is shown in Figure 3.2. The graphs CFIg(G2

n, 0) and CFIg(G2
n, 1) are not

isomorphic and can be distinguished by the (2-dimensional) Weisfeiler-Leman refinement.
Hence, Spoiler has a winning strategy in the bijective 3-pebble game and consequently
also in the bijective walk pebble game. Note that, since vertices of G2

n have degree at
most 3, every gadget has size at most 4. Thus, CFIg(G2

n, 0) and CFIg(G2
n, 1) have Θ(n)

many vertices.
We recall some facts for the bijective 3-pebble game played on CFI graphs over these

grids [40]. Intuitively, since Duplicator can move the twist to different base edges using
isomorphisms (Lemma 2.9), Spoiler needs to “catch” the twist with the pebbles. If a
pebble pi is placed on a vertex u with origin u in CFIg(G2

n, 0), then all pebble-respecting
automorphisms fix all vertices with origin u (by Lemma 2.13). If qi is placed on a vertex u′
with the same origin u in CFIg(G2

n, 1), then every pebble-respecting isomorphism has to
map u to u′. But also, the image of every vertex with origin u is determined by mapping u
to u′ (also as a consequence of Lemma 2.13). Hence, it does not matter on which vertex
originating from v Spoiler places a pebble and we can simply say that Spoiler places a
pebble on v.
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(a) The even CFI graph CFI(G2
4, f) where f assigns 0 to every base edge

(b) The odd CFI graph CFI(G2
4, g) where g assigns 1 to the highlighted base edge

3.2 CFI graphs over grids. The �gure shows two CFI graphs over the base graph G2
4. A dashed

cycle indicates a base vertex and hence a CFI gadget. Figure (a) shows an even CFI graph and (b) an
odd one. Between them, the highlighted base edge is twisted.

The general strategy of Spoiler is to maintain a pebbled separator in the base graph.
Through such a separator, Duplicator cannot move the twist because these gadgets are
fixed as explained.
De�nition 3.25 (Wall). A set of vertices of CFIg(G2

n, a) (for a ∈ F2) is called a wall if its
origin is a separator of G2

n, that is, a set of vertices whose removal separates the graph
into at least two connected components.
We say that Spoiler builds a wall if the vertices covered by the pebbles form a wall.
To avoid a quick win for Spoiler, Duplicator picks the bijection so that it is origin-
respecting. That is, Duplicator maps a vertex u to a vertex u′ with the same origin.
Our strategy for Duplicator in the bijective walk-pebble game described below has this
property, too. Consequently, when asking whether the pebbles form a wall or not, it does
not matter whether we consider the pebbles on CFIg(G2

n, 0) or CFIg(G2
n, 1). Since we will

only consider origin-respecting strategies, we will often simply think of the base vertices
as being pebbled.

Let V ′ be a set of base vertices of G2
n. A component of the graph G2

n, with respect
to V ′, is an inclusion-wise maximal and nonempty set of base edges C satisfying the
following property: For all base edges e1, e2 ∈ C, there is a path (v1, . . . , vj) only using
base edges {vi, vi+1} ∈ C for all i ∈ [j − 1] such that e1 = {v1, v2}, e2 = {vj−1, vj}, and
v2, . . . , vj−1 /∈ V ′. A component C contains a base vertex v if all base edges incident
to v are contained in C. The size of the component is the number of vertices it contains.
A component is nontrivial if its size is nonzero.
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We are interested in components with respect to the pebbled vertices. Intuitively,
one can think of components as the parts of the graph G2

n obtained by deleting only the
vertices covered by pebbles, but not the edges incident to these vertices. This results in
“dangling” edges in nontrivial components (edges, which were incident to only one vertex
covered by a pebble) and edges not incident to any vertex forming the trivial components
(edges, whose both endpoints are covered by a pebble). By Lemma 2.9, the component C
containing a base edge e contains exactly all the base edges to which a twist from e can be
moved using pebble-respecting isomorphisms. Hence, the parity of twists in a component
is invariant under pebble-respecting isomorphisms.

De�nition 3.26 (Twisted Component). Let f, g : E → F2 and V ′ be a set of base vertices
of G2

n. We call a component C twisted with respect to f , g, and V ′ if C is a component
with respect to V ′ and contains an odd number of base edges twisted by f and g.

With 3 pebbles, Spoiler can build at most one wall and hence in the bijective 3-pebble
game there are at most two nontrivial components. Hence, there is exactly one twisted
component. When a trivial component is twisted, Spoiler wins the game. To delay
the win of Spoiler, Duplicator maintains a single twisted component, whose size only
decreases by a constant per round.

3.5.2 Lower Bound for the Walk Refinement

The situation changes in the bijective walk pebble game, since the game does not have
a bound on the number of pebbles that are used. In the situation where more than two
pebbles are placed on the graph, there are possibly many components (Spoiler may cover
every vertex and every edge). But, once Spoiler has to remove all but two pebbles, there
can be at most one wall again. Let n ≥ 3 and k ≥ 2 be arbitrary but fixed, G2

n = (V,E),
and Af := CFIg(G2

n, f) for every f : E → F2. Recall that CFI graphs over the same base
graph always have the same vertex set A independent of f . We describe a strategy of
Duplicator in the bijective k-walk pebble game played on CFIg(G2

n, 0) and CFIg(G2
n, 1)

with the following properties:

1. If the size of the twisted component is at most n− 2, its size reduces by at most 2
after one round.

2. If the size of the twisted component is greater than n− 2 (e.g., in the beginning of
the game), the size of the twisted component is at least n− 4 after one round.

Combining these properties, Spoiler needs at least Ω(n) many rounds to win. Intuitively,
the existence of such a strategy comes from the fact that in the bijective walk pebble game
Duplicator needs to preserve adjacency and/or equality only for consecutive pebble pairs.
This allows Duplicator to fix the twist locally, possibly introducing global inconsistencies
but never introducing inconsistencies between consecutive pebble pairs. We describe a
strategy how Duplicator can introduce these inconsistencies only on edges incident to a
single chosen base vertex.

Let v ∈ V be a base vertex of degree 3 and let e1 and e2 be two distinct base edges
incident to v. Furthermore, let u1, u2 ∈ A. We define a function λu1u2

e1e2
: Ak−1 → Ak−1 as
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follows (note that e1 and e2 determine their common incident base vertex v uniquely):
Let (w2, . . . , wk) ∈ Ak−1 and set w1 := u1 and wk+1 := u2. We define

λu1u2
e1e2 (w2, . . . , wk) := (w′2, . . . , w′k)

entry-wise for 2 ≤ i ≤ k by the following case distinction. Set wi := orig(wi) for every
i ∈ [k + 1].

1. If wi 6= v, we set w′i := wi.

2. If wi = v, let j < i and ` > i be the unique indices such that

wj 6= wj+1 = · · · = wi = · · · = w`−1 6= w`.

We pick a base edge e incident to v by a second case distinction:

(a) If e′1 := {wj,wi} and e′2 := {wi,w`} are distinct base edges, let e /∈ {e′1, e′2} be
the third base edge incident to v.

(b) Otherwise, {wj,wi} = {w`,wi} or at least one of {wj,wi} and {wi,w`} is
not a base edge. Hence, when passing through v at position i, the walk
(w1, . . . ,wk+1) uses at most one base edge e′ incident to v. Let the edge
e ∈ {e1, e2} \ {e′} be the smallest one according to the C3-definable order of
base vertices (and thus edges) incident to v (the actual order does not matter
as long as we always use the same one).

Finally, let ψ be the unique isomorphism ψ : CFIg(G2
n, g) → CFIg(G2

n, g
′) for some

g, g′ : E → F2 such that g and g′ twist exactly the edges e1 and e and ψ is the
identity on all vertices apart from the ones with origin v = wi (which exists by
Lemma 2.9). Note that ψ is equal for all such g and g′. We set w′i := ψ(wi).

Lemma 3.27. The function λu1u2
e1e2 is a bijection for all u1, u2 ∈ A and all distinct base

edges e1 and e2 incident to the same degree 3 base vertex v.

Proof. The function λu1u2
e1e2 maps a k-walk to a k-walk with the same origin. For two

k-walks with the same origin, the construction of λu1u2
e1e2 uses the same isomorphism ψ.

Since all chosen ψ are bijections, the map λu1u2
e1e2 is a bijection.

Lemma 3.28. Let v ∈ V be a base vertex of degree 3, let e1, e2 ∈ E be distinct base edges
incident to v, let f, g : E → F2 such that e1 is the only base edge twisted by f and g, and
let u1, u2 ∈ A such that v is in the twisted component (with respect to f , g, u1, and u2).
Consider the bijective k-walk pebble game in position (Af , u1u2;Ag, u1u2) when it is Dupli-
cator’s turn to choose a bijection (in particular, we assume that the pebbles induce a local
isomorphism). If Duplicator chooses λu1u2

e1e2 as bijection, then for all (w2, . . . , wk) ∈ Ak−1

and λu1u2
e1e2 (w2, . . . , wk) = (w′2, . . . , w′k) picked and pebbled by Spoiler, the following holds:

(a) Spoiler does not win in this round.

(b) For every i ∈ [k], there is an isomorphism ϕi : Ag → Ag′i
satisfying ϕi(w′j) = wj for

every j ∈ {i, i+ 1}.
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v′ v

v′′

e1

e2

e3

G1 G2

3.3 The situation in Lemma 3.28(c). Dashed edges may exist but do not have to and the two
subgraphs G1 and G2 are indicated by dotted lines. The base edge e1 is twisted.

(c) Assume e1 = {v, v′} and e2 = {v, v′′} such that {v, v′′} is a separator of G2
n sepa-

rating G2
n into two subgraphs G1 and G2, v′ is contained in G1, and G2 has ` many

vertices. Then for every i ∈ [k], the twisted component with respect to f , g′i, wi,
and wi+1 has size at least min{`, 2n− `− 2}.

Proof. Note that v /∈ {orig(u1), orig(u2)} because v is in the twisted component. We first
prove Part (a). Assume that Spoiler picks the walk (w2, . . . , wk) ∈ Ak−1 and assume that
λu1u2
e1e2 (w2, . . . , wk) = (w′2, . . . , w′k). We set w1 := u1, w′1 := u1, and likewise wk+1 := u2

and w′k+1 := u2. Also, set wi := orig(wi) = orig(w′i) for every i ∈ [k + 1]. Then the
pebble pi is placed on wi and the pebble qi is placed on w′i for every i ∈ [k+ 1]. To show
that Spoiler does not win in this round, we show that the i-th and (i+ 1)-th pebble pair
induce a local isomorphism for every i ∈ [k]. So let i ∈ [k] be arbitrary but fixed.

(i) Assume wi 6= v and wi+1 6= v. In this case we have w′i = wi, w′i+1 = wi+1, and
e1 6= {wi,wi+1}. Thus, the pebbles define a local isomorphism.

(ii) Assume wi = wi+1 = v. In this case w′i = ψ(wi) and w′i+1 = ψ(wi+1) for some
isomorphism ψ. Because ψ is a bijection and inside a gadget there are no edges,
the pebbles define a local isomorphism.

(iii) Lastly, assume wi = v and wi+1 6= v. In this case w′i = ψ(wi) and w′i+1 = wi+1 for
another isomorphism ψ : Ag → Ag′ such that g and g′ twist e1 and another edge e
incident to v. By construction, e 6= {wi,wi+1}. Since f and g only twist e1, f and g′
twist exactly the edge e. Recall that ψ was chosen such that it is the identity on
all vertices that do not originate from v. In particular, ψ(wi+1) = wi+1.
Assume that {wi,wi+1} = e1. Then

{wi, wi+1} ∈ EAf if and only if
{wi, wi+1} /∈ EAg if and only if

{w′i, w′i+1} = {ψ(wi), ψ(wi+1)} /∈ EAg′ if and only if
{w′i, w′i+1} ∈ EAg

because f and g twist the base edge e1 and g and g′ twist the base edge e1, too.
Otherwise, {wi,wi+1} 6= e1 and the reasoning is similar using that f and g (or g
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and g′, respectively) do no twist {wi,wi+1} (by replacing “/∈” with “∈” in the prior
equation). So the pebbles define a local isomorphism.
The case where wi+1 originates from v but wi does not is symmetric.

We now show Part (b). Let i ∈ [k] and assume that Spoiler picks up all pebbles apart
from the i-th and (i+1)-th pebble pair. Consider again the same situation as in Part (a):
In Case (i), the identity map is the desired isomorphism. In Cases (ii) and (iii), the
isomorphism ψ = ψ91 has the desired property (path-isomorphisms are always self-inverse
because twisting an edge twice is the identity map).

Finally, we show Part (c). The situation is shown in Figure 3.3. If G2 contains ` many
vertices, then G1 contains `′ := 2n−`−1 many vertices. Assume again that Spoiler picks
(w2, . . . , wk) ∈ Ak−1 and λu1,u2

e1e2 (w2, . . . , wk) = (w′2, . . . , w′k). As before, we set w1 := u1,
w′1 := u1, wk+1 := u2, and w′k+1 := u2. For every i ∈ [k+ 1], the pebble pi is placed on wi
and the pebble qi is placed on w′i. Assume that Spoiler chooses the i-th and (i + 1)-th
pebble pair to remain and picks up all other pebbles.

We first note that if wi and wi+1 do not form a wall, then the twisted component
has size 2n − 1. In the case of a wall, we make the following case distinction. Set
w1 := orig(wi) = orig(w′i) and w2 := orig(wi+1) = orig(w′i+1).

• Assume v /∈ {w1,w2}. In this case v is in the twisted component because e1 is
incident to v. The twisted component has size at least min{`, `′}+ 1.

• Assume v = w1 and w := w2 is adjacent to v. If {v,w} ∈ {e1, e3}, where e3 is the
third edge incident to v, then there is no wall (cf. Figure 3.3). So w = v′ and thus
the twist can be moved to e1 or e3 by the choice of ψ in the construction of λu1u2

e1e2 .
Then the twisted component has size min{`, `′}. The case where w = w2 and w1
is adjacent to v is analogous.

• Assume v = w1 and w := w2 is not adjacent to v. In the construction of λu1u2
e1e2 , the

isomorphism ψ is chosen such that the twist is moved to e1 or e2. If w is in G1, the
twisted component has size `+ 1 if the twist was moved to e2 and size `′ − 1 if the
twist was moved to e1. Otherwise, w is in G2. Since the twist can be moved to e1
or e2, the twisted component has size ` + 1. Again, the case where w1 and w2 are
swapped is analogous.

Theorem 3.29. For all k ≥ 2 and n ≥ 3, Duplicator has a strategy in the bijective k-walk
pebble game played on the graph CFIg(G2

n, 0) and CFIg(G2
n, 1) such that Spoiler wins in

Ω(n) rounds at the earliest.

Proof. Let f, g : E → F2 such that ∑ f = 0 and ∑ g = 1. We show that Duplicator has a
strategy such that after m rounds played on CFIg(G2

n, f) and CFIg(G2
n, g)

1. there exists a pebble-respecting isomorphism

ϕ : CFIg(G2
n, g)→ CFIg(G2

n, g
′)

such that the pebbles are placed on the same vertices u1 and u2 on CFIg(G2
n, f) and

CFIg(G2
n, g
′) and
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u1

u2

v

v′

e1

e2

(a) u1 and u2 are adjacent

u1

u2

v
e1

e2

(b) u1 and u2 are not adjacent

3.4 The two possible situations in Theorem 3.29. The base vertices u1 and u2 are covered
by pebbles (indicated by circles) and form a wall. Dashed edges may or may not exist. The other
edges have to exist because the twisted component has size at least 3. The twisted component is to
the right of the wall, where the base edge e1 is twisted.

2. the twisted component with respect to f , g′, u1, and u2 has size at least n− 2(m+ 1)
and Spoiler can win only if its size is at most 2.

Clearly, in the beginning of the game there are no pebbles placed and there is only one
twisted component of size 2n+ 1.

Assume inductively that after m rounds the pebbles are placed on u1 and u2 in
CFIg(G2

n, f) and CFIg(G2
n, g
′), that the twisted component has size at least n−2(m+1) > 2,

and its Duplicator’s turn to pick a bijection. (If less than 2 pebbles are placed, we just
assume that the remaining ones are all placed at the same vertex at a harmless place,
e.g., on the unique vertex originating from the unique base vertex of degree 1). There
are two cases:

(a) The twisted component has size at most n− 2. Then, in particular, Spoiler builds
a wall. Let the pebbles be placed on base vertices u1 := orig(u1) and u2 := orig(u2).
Duplicator picks v as depicted in Figure 3.4:

• If u1 and u2 are adjacent, we possibly exchange names of u1 and u2 such that v
is the neighbor of u1 in the twisted component of degree 3 and v′ is the common
neighbor of v and u2. Up to isomorphism (Lemma 2.9), we w.l.o.g. assume
that e1 := {u1, v} is the only edge twisted by f and g′. Set e2 := {v, v′}.
Duplicator chooses the bijection λu1u2

e1e2 (Lemma 3.27).
• If otherwise u1 and u2 are not adjacent, v is the neighbor of both u1 and u2

in the twisted component. We possibly exchange names of u1 and u2 so that
e2 := {u2, v} is a separator of the graph and set e1 := {u1, v}. Then Duplicator
chooses the bijection λu1u2

e1e2 .

In both cases, by Lemma 3.28(a), Spoiler does not win in the current round, by
Lemma 3.28(b), there is the desired pebble-respecting isomorphism when Spoiler
picks up all pebbles apart from a consecutive pebble pair, and by Lemma 3.28(c),
the size of the new twisted component is at least n− 2(m+ 2).

(b) The twisted component has size greater than n − 2. Let {u1, u2} be a base edge
that forms a separator of G2

n separating G2
n into two subgraphs containing at least
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n − 2 vertices such that u1 has a neighbor of degree 3 in the twisted component.
Such a separator exists because the size of the twisted component is greater than
n − 2. Duplicator proceeds with this choice of u1, u2, and v as in the case before.
After the current round, the twisted component has size at least n− 4.

Together with Theorem 3.21, we obtain the following corollaries:

Corollary 3.30. Every walk counting logic formula which distinguishes CFIg(G2
n, 0) and

CFIg(G2
n, 1) has quantifier depth Ω(n).

Corollary 3.31. The walk refinement distinguishes CFIg(G2
n, 0) and CFIg(G2

n, 1) in Ω(n) it-
erations. In particular, the walk refinement stabilizes on CFIg(G2

n, 0) as well as CFIg(G2
n, 1)

in Ω(n) iterations.

Recall that CFIg(G2
n, 0) and CFIg(G2

n, 1) have Θ(n) vertices, so both corollaries give bounds
that are linear in the number of vertices.

We want to remark that 4 pebble pairs already suffice for Spoiler to reduce the size
of the twisted component by 2 in each round: Spoiler places the pebbles always on four
vertices originating from a 4-cycle starting in the middle of the graph. Then Spoiler
moves two of them so that together the 4 pebbles cover a 4-cycle that shares an edge
with the 4-cycle of the previous round. Overall, this strategy requires n/2 + 1 rounds if
n is even and (n + 1)/2 + 1 rounds otherwise. In particular, the 4-walk refinement has
the same iteration number as walk-refinement on these graphs. Nevertheless, after only
one iteration, the n-walk refinement distinguishes vertices of different gadgets, but the
4-walk refinement does not. With only 3 pebble pairs the size reduces by at most one
per iteration (as already shown in [40]).

3.6 Discussion

We showed that the 2-dimensional Weisfeiler-Leman refinement stabilizes an n-vertex
graph after O(n log n) iterations. Hence, in the counting logic C3 we only require a
quantifier depth ofO(n log n). This matches the best known lower bound of the form Ω(n)
up to a logarithmic factor. Thus, the question remains what the precise bound is, and
whether the iteration number can be superlinear. At least for the walk refinement we
now have matching linear lower and upper bounds.

Recently, our algebraic approach was generalized from the 2-dimensional WL algo-
rithm to the k-dimensional WL algorithm to establish the first nontrivial general upper
bound of O(nk−1 log n) on its iteration number [55]. The approach is similar: First, re-
gard the coloring of k-tuple as a matrix algebra, whereby the crucial point is to provide a
suitable embedding of k-tuples of a graph into V k−1×V k−1 matrices, where the vertex-set
of the graph is V . This is not as straightforward as in the 2-dimensional case. Second,
show that these algebras are semisimple, and lastly apply our bound on the length of
chains of semisimple matrix algebras (Theorem 3.4).

It also remains an open problem whether our techniques can be applied to finite-
variable first order logic without counting. The combinatorial techniques from [79] show-
ing the upper bound of O(n2/ log n) also translate to the setting without counting. Our
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techniques strongly rely on counting, since only the counting itself ensures the correspon-
dence to matrix algebras that we exploit.

A combinatorial argument for the O(n) bound for the walk refinement or for the
O(n log n) bound for the 2-dimensional Weisfeiler-Leman algorithm could help to under-
stand these questions.
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Chapter 4

Canonization of Structures with
Bounded Dihedral Colors in CPT

This chapter turns to capturing Ptime on a more extensive class of structures with the
logic Choiceless Polynomial Time (CPT). One next reasonable major goal is to capture
Ptime on the class of structures with q-bounded colors for each q ∈ N, i.e., on col-
ored structures in which every color class has size at most q. Structures with bounded
color class size can be canonized in polynomial time (see [8,10,41]) using group-theoretic
techniques. Canonizing structures with q-bounded colors requires easy group-theoretic
techniques compared to Luks’s polynomial-time isomorphism algorithm for graphs of
bounded degree [90] or Babai’s quasipolynomial-time isomorphism algorithm for arbi-
trary graphs [9]. Because these group-theoretic techniques inherently rely on choosing
generating sets, it is not clear how this approach can be used in a choiceless logic. Indeed,
we still do not know how to transfer these techniques into logics.

A first result towards the canonization of structures with bounded color class size in
CPT was the canonization of structures with bounded and abelian colors due to Abu
Zaid, Grädel, Grohe, and Pakusa [118]. These structures have the additional restric-
tion that every color class induces a substructure with an abelian automorphism group.
The authors use a certain class of linear equation systems to encode the group-theoretic
structure of abelian color classes and solve these systems in CPT. Considering dihedral
groups is a next natural step because dihedral groups are extensions of abelian groups
by abelian groups or, more precisely, extensions of a cyclic group by another cyclic group
and, in particular, the automorphism groups of regular n-gons. Dihedral groups for n
odd are also called odd and the others are called even. As such, dihedral groups are,
in some sense, the easiest non-abelian groups. We consider structures with q-bounded
and dihedral or cyclic colors, that is, the automorphism group of every color class is a
dihedral or cyclic group. We show that, for every q ∈ N, CPT canonizes

(a) q-bounded ternary relational structures with odd dihedral or cyclic color classes
and

(b) q-bounded binary relational structures with dihedral or cyclic color classes.

Thereby, CPT captures Ptime on these structures. The general strategy of our canon-
ization is to reduce the dihedral groups in some way to abelian groups and then exploit
the canonization procedure for them. However, we will see that this turns out to require
effort.
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Related Work. There already exist various results for CPT regarding structures with
bounded color class size in addition to the ones mentioned above. As seen in Section 2.8,
CFI graphs of totally ordered base graphs of bounded degree are graphs with bounded
color class size. Indeed, 3-regular base graphs, so CFI graphs of color class size 4, suffice
to show that IFPC does not define the CFI query and thus to separate IFPC from
Ptime [20]. Dawar, Richerby, and Rossman [34] showed that the isomorphism problem
of CFI graphs can be solved in CPT for ordered base graphs (of arbitrary degree), that is,
for base graphs of color class size 1. This result was strengthened by Pakusa, Schalthöfer,
and Selman [104] to base graphs with logarithmic color class size. The techniques of [34]
and [104] are generalized in [118] to solve the equation systems mentioned before.

Recently, limitations of CPT were studied by Pago [100–102], but a separation of
CPT from Ptime still seems to be out of reach. An approach similar to CPT was made
to try to capture Logspace via a logic called Choiceless Logarithmic Space by Grädel
and Schalthöfer [47]. Choiceless Logarithmic Space is contained in both Ptime and CPT
and is strictly more expressive than all logics for Logspace that have been known so far.
Nevertheless, the authors proved that Choiceless Logarithmic Space is strictly contained
in Logspace, i.e., it fails to capture Logspace.

Overview of this Chapter. We first review necessary preliminaries for groups in Sec-
tion 4.1. Next, we consider dihedral groups and 2-injective 3-factor subdirect products
of dihedral and cyclic groups in Section 4.2. Such a product is a subgroup of the direct
product of three groups and has the crucial property that no element is the identity in
exactly two of the factors. We classify all 2-injective 3-factor subdirect products of dihe-
dral and cyclic groups. Dihedral groups, which are the automorphism groups of regular
n-gons, have a natural notion of reflections and rotations. They key insight is that most
of these 2-injective 3-factor subdirect products are rotate-or-reflect groups, that is, every
element is either composed of a rotation in every factor or of a reflection in every factor.

The next step in Section 4.3 is to introduce a normal form for structures with bounded
color class size. In this normal form, there are two types of connections between color
classes: Either, the automorphism group of three adjacent color classes form a 2-injective
subdirect product or the automorphism group of one color class is a quotient of the auto-
morphism group of an adjacent one. We prove that arbitrary structures with q-bounded
colors can be reduced to said normal form by a CPT-interpretation in a canonization-
preserving way: Given a CPT-definable canonization for the resulting normal form, we
obtain a CPT-definable canonization for the original structures. If the class of automor-
phism groups of the color classes in the original structures is closed under sections, i.e.,
under subgroups and quotients, then the reduction preserves the class of automorphism
groups. This is the reason for considering combinations of dihedral and cyclic groups.

Towards canonizing structures with dihedral colors, we start by a preprocessing step
in Section 4.4. The preprocessing makes the dihedral automorphism group explicit in the
structure by essentially defining a canonical n-gon in every color class. Next, we consider
tree-like cyclic linear equation systems (TCES) in Section 4.5. TCESs are a special class
of linear equations systems and generalize the equation systems used in [118] to canonize
structures with bounded and abelian colors. We show that solvability of a certain subclass
of TCESs is CPT-definable.

Finally, we show in Section 4.6 that the color classes of dihedral structures in said



4.1. Preliminaries 65

normal form decompose into reflection components. In a reflection component every
automorphism either is a reflection or a rotation in all color classes contained in the
reflection component. To prove this, we exploit the characterization of 2-injective sub-
direct products of dihedral and cyclic groups. However, reflection components are not
really independent but can have “global” dependencies. Here, odd dihedral groups turn
out to be easier. For these, reflection components can only be connected via abelian
color classes. For even dihedral groups, there is a single non-abelian exception that can
connect reflection components, which complicates matters. This exception restricts us to
binary structures when allowing all dihedral groups. In each reflection component, the
reflections can be forbidden in two canonical ways (essentially, by the two possibilities to
turn an undirected cycle, i.e., an n-gon, into a directed cycle). For each such orientation,
the reflection component has abelian colors since all reflections are removed. We then
use the CPT-canonization for abelian color classes to canonize reflection components. To
combine the canons of all reflection components, we encode the automorphisms of each
reflection component via a TCES. We use the CPT-definable solvability test of TCESs
to obtain canonizations of each reflection component, which are compatible with each
other. That is, we encode the “global” dependencies by TCESs.

Towards generalization, it unfortunately becomes cumbersome to exploit the group
structure theory in CPT, which is heavily required to execute the approach. Extending
the treatment of linear equation systems, which is a subroutine in [118], to dihedral groups
requires significant work already. We still follow the strategy of [118] and use equation
systems, TCESs in our case, to encode the global dependencies. But because we use the
more general notion of a TCES, we have to adapt all operations used on these equations
systems to work in the more general setting (e.g. the check for solvability). This becomes
even more technically involved than the techniques of [118] already are. We end with a
discussion in Section 4.7.

4.1 Preliminaries

Groups. All groups considered in this chapter will be finite. We make use of standard
group notation: Let Γ be a group. The identity (or trivial) element of Γ is written as 1.
The group operation is written as multiplication, i.e., the product of g, h ∈ Γ is gh. Recall
that we denote the order of an element g ∈ Γ by ord(g). The number of elements |Γ|
of Γ is called the order of Γ. For elements g1, . . . , gi ∈ Γ, we denote by 〈g1, . . . , gi〉
the group generated by {g1, . . . , gi}. We additionally use the notation for subgroups
∆1, . . . ,∆i ≤ Γ, where 〈∆1, . . . ,∆i〉 is the group generated by all elements contained in
the subgroups. The index [Γ : ∆] of a subgroup ∆ ≤ Γ in Γ is [Γ : ∆] = |Γ|/|∆|.
A (right) coset of Γ is a set Γg := {hg | h ∈ Γ}. A normal subgroup N / Γ is a
subgroup N ≤ Γ satisfying gN = Ng for all g ∈ Γ. Let N / Γ. The quotient group Γ/N
is the group of cosets gN for all g ∈ Γ. Two groups Γ1 and Γ2 are isomorphic, denoted
Γ1 ∼= Γ2, if there is a group isomorphism from Γ1 to Γ2.

Of special interest in this chapter are permutation groups. Let Γ ≤ Sym(Ω) be a
finite permutation group with domain Ω. Recall that the orbit of u ∈ Ω in Γ is the set
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of points onto which u can be mapped, i.e.,

orbΓ(u) =
{
σ(v)

∣∣∣ σ ∈ Γ
}

=
{
v ∈ Ω

∣∣∣ σ(u) = v for some σ ∈ Γ
}
.

If the group is clear from the context, we just write orb(u). The set of orbits of Γ is
orb(Γ) := {orb(u) | u ∈ Ω} and defines a partition of Ω. The group Γ is called transitive
if Γ has only one orbit, i.e., orb(Γ) = {Ω}. An action of a group Γ on a set Ω′ is a
homomorphism from Γ to Sym(Ω′). By considering the image of group elements under
the homomorphism, we can speak about orbits of group elements on Ω′. In that sense,
the k-orbits of Γ are the orbits of Γ acting on Ωk component-wise. Lastly, the finite
permutation group Γ is regular if Γ is transitive and |Γ| = |Ω|. Let Ω′ ⊆ Ω. We denote
by StabΓ(Ω′) := {σ ∈ Γ | σ(Ω′) = Ω′} the setwise stabilizer of Ω′ in Γ. For u ∈ Ω, we
write StabΓ(u) for StabΓ({u}). We define

Γ|Ω′ :=
{
σ|Ω′

∣∣∣ σ ∈ StabΓ(Ω′)
}

to be the stabilizer of Ω′ restricted to Ω′.
Let Γ ≤⊗i∈[r] Gi be a subgroup of the direct product of the groups Gi. We denote by

πΓ
j : Γ → Gj the natural projection onto the j-th factor and with πΓ

j : Γ → ⊗
i∈[r]\{j}Gi

the projection onto all factors other than the j-th one. If, for every i ∈ [r], the groups Gi

are permutation groups acting on pairwise disjoint sets Ωi, we also write πΓ
Ωj and π

Γ
Ωj . We

omit the group and only write πj and πj if Γ is clear from the context. In this chapter, we
diverge from our usual notation and use the letters G and H for factors of direct products
of groups.

Canonical labelings. Given a τ -structure A and a canon B of A, that is, an ordered
τ ] {≤}-structure with B � τ ∼= A, the set of canonical labelings of A to B is the
set of isomorphisms Iso(A,B � τ). For readability, we also just write Iso(A,B) in the
case that B is a canon of A (and hence there are no isomorphisms A → B but only
A→ B � τ). Slightly abusing terminology, the canonical labelings form a coset, that is,
Iso(A,B) = Aut(A)ϕ for every ϕ ∈ Iso(A,B).

4.2 Classification of 2-Injective Subdirect Products of
Dihedral Groups

In this section we focus on dihedral groups and classify all 2-injective 3-factor subdirect
products of dihedral and cyclic groups. We first recall some existing definitions and
introduce new ones, which are then used to state our classification concisely. The rest of
the section is used to prove this classification.

2-Injective Subdirect Products. A group Γ ≤ G1 × G2 × G3 is called a (3-factor)
subdirect product if the projection to each factor is surjective, that is, πΓ

i (Γ) = Gi

for all i ∈ [3]. It is called 2-injective if ker(πΓ
i ) = {1} for all i ∈ [3], that is, each

projection onto two components is an injective map. Another way of looking at this
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is that two components of an element of Γ determine the third one uniquely. Simple
examples of 2-injective subdirect products are diagonal subgroups: For a group G, the
group {(g, g, g) | g ∈ G} ≤ G3 is called the diagonal subgroup.

Dihedral Groups. For n ≥ 3, the dihedral group Dn of order 2n is the automorphism
group of a regular n-gon in the plane. It consists of n rotations and n reflections and acts
naturally on the set of n vertices of the polygon. In the degenerate cases D1 and D2 of
orders 2 and 4, respectively, the dihedral group is abelian. For n > 2 it is non-abelian. We
write Cn for the cyclic group of order n. It holds that D1 ∼= C2 and D2 ∼= C2

2. For n > 2,
the notion of rotations and reflections of dihedral groups can be defined independently
of the action of the group, but it coincides with the intuition of the action on regular
n-gons.

De�nition 4.1 (Rotation and Re�ection). Let n > 2. We call an element r ∈ Dn a rotation
if ord(r) ≥ 3 or r commutes with all elements of Dn which have order at least 3. An
element α ∈ Dn is called a reflection if it is not a rotation. We extend this notion to
tuples g = (g1, . . . , gk) ∈ Dn1 × · · · × Dnk : If gi is a rotation (or reflection, respectively)
for all i ∈ [k], then g is called a rotation (or reflection, respectively).

Note that we regard the identity 1 as a rotation. In this section, we use the letters r and s
for rotations and the letters α and β for reflections. In particular, if we for example write
(r, α) ∈ D4 × D6, then we implicitly require r to be a rotation and α to be a reflection.
Assume for n > 2 that r, s ∈ Dn are rotations and α, β ∈ Dn are reflections. Then rs = sr
and αβ are rotations and rα = αr91 is a reflection. For k ≥ 1 and ni > 2 for every i ∈ [k],
the direct product Dn1 × · · · × Dnk contains mixed elements that are neither a reflection
nor a rotation. Subgroups of such a group may or may not contain such mixed elements.

De�nition 4.2 (Rotate-or-Re�ect Group). Let Γ ≤ Dn1 ×· · ·×Dnk and ni > 2 for all i ∈ [k].
We call Γ a rotate-or-reflect group if every g ∈ Γ is a rotation or a reflection.

De�nition 4.3 (Rotation Subgroup). We define the rotation subgroup of Dn for n > 2 as

Rot(Dn) := { g ∈ Dn | g is a rotation } ∼= Cn.

For a group Γ ≤ Dn1 × . . .× Dnk with ni > 2 for all i ∈ [k], we define

Rot(Γ) := Γ ∩ (Rot(Dn1)× · · · × Rot(Dnk)) .

Corollary 4.4. If Γ ≤ Dn1 × · · · × Dnk is a rotate-or-reflect group, then

Rot(Γ) = Γ ∩ (Rot(Dn1)× Dn2 × · · · × Dnk) .

By symmetry, restricting any other factor to its rotation subgroup yields the same group.

Now, we are prepared to state the classification of 2-injective subdirect products of di-
hedral groups and cyclic groups. For this we analyze how reflections and rotations of
dihedral groups in 2-injective subdirect products can be combined. We will see that if no
factor is isomorphic to D1, D2, or D4 we always obtain a rotate-or-reflect group. Specifi-
cally, the goal of this section is to prove the following two theorems (the mentioned double
CFI group is defined in Section 4.2.2, see Figure 4.1):
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Theorem 4.5. Let Γ ≤ Dn1 × Dn2 × Dn3 be a 2-injective subdirect product. Then exactly
one of following holds:

1. n1, n2, n3 > 2 and Γ is a rotate-or-reflect group.

2. ni ≤ 2, nj, nk > 2 for {i, j, k} = [3], and πi(Γ) is a rotate-or-reflect group.

3. n1 = n2 = n3 = 4 and Γ is isomorphic to the double CFI group Γ2CFI.

4. n1, n2, n3 ≤ 2 and Γ is abelian.

We also have to consider the case that some factors are cyclic groups.

Theorem 4.6. Let Γ ≤ Cn1 × Dn2 × Dn3 be a 2-injective subdirect product. Then exactly
one of the following holds:

1. n1 ≤ 2, n2, n3 > 2, and π1(Γ) is a rotate-or-reflect group.

2. n1 = n2 = n3 = 4 and Γ ∼= Γ2CFI ∩ (Rot(D4)× D4 × D4).

3. n1, n2, n3 ≤ 2 and Γ is abelian.

Furthermore, there are no 2-injective subdirect products of Dn ×G2 ×G3 for n > 2 if G2
and G3 are abelian groups.

We also checked the classification with a computer program written in the computer
algebra system GAP [60] up to ni = 20.

4.2.1 Dihedral Groups not of Order 2, 4, or 8
We first consider the more general case where all factors are dihedral groups Di for
i /∈ {1, 2, 4}. For this, we collect some basic facts about 2-injective subdirect products.

Lemma 4.7. Let Γ ≤ G1 × G2 × G3 be a 2-injective group and gi ∈ Gi for every i ∈ [3].
If (g1, g2, g3) ∈ Γ, then ord(gi) divides the least common multiple lcm{ord(gi+1), ord(gi+2)}
(addition on indices is meant to be wrapping around). In particular:

(a) If g1 6= 1, then (g1, 1, 1) /∈ Γ.

(b) If ord(g1) > ord((g2, g3)), then (g1, g2, g3) /∈ Γ.

Proof. By symmetry, we only consider i = 1. Suppose for (g1, g2, g3) ∈ Γ that ord(g1)
does not divide ` := lcm{ord(g2), ord(g3)}. Then (g`1, g`2, g`3) = (g`1, 1, 1) ∈ Γ \ {1}, which
contradicts 2-injectivity. Items (a) and (b) follow immediately.

For a 2-injective subdirect product Γ, we define

HΓ
i := ker(πΓ

i ) =
{

(g1, g2, g3)
∣∣∣ gi = 1

}
.

We set HΓ := 〈HΓ
1 , H

Γ
2 , H

Γ
3 〉. In the following we just write Hi (or H, respectively) for HΓ

i

(or HΓ, respectively) if the group Γ is clear from the context. Note that HΓ
i defines an

isomorphism between πi+1(HΓ
i ) and πi+2(HΓ

i ) (indices again wrapping around) since the
entries for gi+1 and gi+2 are in one-to-one correspondence when gi = 1.
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Lemma 4.8 ([97]). Let Γ ≤ G1 × G2 × G3 be a 2-injective subdirect product and i ∈ [3].
Then the map defined via gi+1 7→ gi+2 whenever (g1, g2, g3) ∈ HΓ

i is an isomorphism
ϕ : πi+1(HΓ

i )→ πi+2(HΓ
i ) (indices again wrapping around).

Proof. Assume by symmetry that i = 1. We first show that ϕ is bijective (and in
particular a well-defined map). Suppose that (1, g2, g3), (1, h2, g3) ∈ HΓ

1 for g2 6= h2
and thus ϕ(g2) = g3 = ϕ(h2). We obtain a contradiction to Lemma 4.7(a) because
1 6= (1, g2, g3)(1, h2, g3)91 = (1, g2h

91
2 , 1) ∈ HΓ

1 ⊆ Γ.
Now, let (1, g2, g3), (1, h2, h3) ∈ HΓ

1 . By definition ϕ(g2) = g3 and ϕ(h2) = h3. Because
(1, g2, g3)(1, h2, h3) = (1, g2h2, g3h3) ∈ HΓ

1 , it holds that ϕ(g2h2) = g3h3 = ϕ(g2)ϕ(h2).
Thus, ϕ is a group isomorphism.

Theorem 4.9 ([97]). Let Γ ≤ G1 × G2 × G3 be a 2-injective subdirect product. Then
[Gi : πi(H)] = [Γ : H].

Now, we turn to dihedral groups.

Lemma 4.10. Let Γ ≤ Dn1 × Dn2 × Dn3 be a 2-injective subdirect product and ni /∈ {1, 2}
for all i ∈ [3]. If (α1, r2, r3) ∈ Γ for a reflection α1 and rotations r2 and r3, then there is
an element (r′1, α′2, α′3) ∈ Γ such that r′1 is a rotation and α′2 and α′3 are reflections.

Proof. For each i ∈ {2, 3}, we pick a reflection αi in Dni . Because Γ is a subdirect product,
there is, for every i ∈ {2, 3}, an element hi = (gi,1, gi,2, gi,3) ∈ Γ such that gi,i = αi. We
make the following case distinction:

1. One of the hi already has the desired form of having a reflection in the first com-
ponent and rotations elsewhere. In this case we are done.

2. If one hi = (β1, β2, β3) only consists of reflections, then

hi(α1, r2, r3) = (β1α1, β2r2, β3r3) = (r′1, α′2, α′3) ∈ Γ

has the desired form.

3. If h2 = (s1, α2, s3), we make another case distinction on h3. If h3 = (s′1, s′2, α3),
then

h2h3 = (s1s
′
1, α2s

′
2, s3α3) = (r′1, α′2, α′3) ∈ Γ

has the desired form. Otherwise, h3 = (β′1, s′2, α3) and

h2h3 = (s1β
′
1, α2s

′
2, s3α3)

only consists of reflections. Thus, we reduced to Case 2.

4. Otherwise, h2 = (β1, α2, s3) and we perform the same case distinction on h3. If
h3 = (s′1, s′2, α3), then h2h3 only consists of reflections and we reduced to Case 2. If
otherwise h3 = (β′1, s′2, α3), then h2h3 has the desired form similar to Case 3.

Lemma 4.11. Let Γ ≤ Dn1 × Dn2 × Dn3 be a 2-injective subdirect product and ni /∈ {1, 2}
for all i ∈ [3]. If, for every i ∈ [3], the group πi(Hi) contains no reflections, then Γ is a
rotate-or-reflect group.
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Proof. If there is a violating element in Γ, then it consists of one rotation and two re-
flections or of two rotations and one reflection. By Lemma 4.10, we can assume that
the element consists of one rotation and two reflections and that up to reordering of the
factors (r1, α2, α3) ∈ Γ. In particular, ord(r1) ≤ 2 by Lemma 4.7(b). If r1 = 1, then
(α2, α3) ∈ π1(H1), which contradicts that there is no reflection in π1(H1). Otherwise,
ord(r1) = 2 and in particular n1 > 3 (D3 contains no rotation of order 2). Consider a
k-th root s1 of r1 such that sk1 = r1 for some k > 1 (s1 exists because n1 > 3). Because Γ
is a subdirect product, there is an element (s1, g2, g3) ∈ Γ. Now, ord(s1) > 2 and thus
one of g2 and g3 is a rotation of order greater than 2 by Lemma 4.7, say up to reordering
g2 = s2. Then (r1, α2, α2)(s1, s2, g3)k = (1, α2s

k
2, α3g

k
3). Clearly, α2s

k
2 is a reflection, hence

α3g
k
3 is a reflection (Lemma 4.8), and (α2s

k
2, α3g

k
3) ∈ π1(H1), which again contradicts that

π1(H1) contains no reflection. We conclude that Γ is a rotate-or-reflect group.

Lemma 4.12. Let Γ ≤ Dn1×Dn2×Dn3 be a 2-injective subdirect product and ni /∈ {1, 2, 4}
for some i ∈ [3] and nj > 2 for all j ∈ [3]. Then Hi contains only rotations.

Proof. By symmetry, we fix w.l.o.g. i = 1. For the sake of contradiction, suppose that
(1, g2, g3) ∈ H1 is an element which is not a rotation. Then g2 or g3 is not a rotation.
Because H1 defines an isomorphism between π2(H1) and π3(Hi) (Lemma 4.8), g2 = α2
and g3 = α3 must both be reflections.

Let r1 ∈ Dn1 be a rotation such that ord(r1) > 2 and ord(r2
1) > 2, which is possible

because n1 /∈ {1, 2, 4}. Then, by being subdirect, there is an element (r1, h2, h3) ∈ Γ.
The elements h2 and h3 cannot be both of order at most 2 by Lemma 4.7(b). So assume
w.l.o.g. that ord(h2) > 2 and hence h2 = r2 is a rotation. If h3 = r3 is a rotation, too,
then

(r1, r2, r3)(1, α2, α3) = (r1, r2α2, r3α3) ∈ Γ

yields a contradiction to Lemma 4.7(b) because ord(r1) > 2 and riαi are reflections of
order 2 (for i ∈ {2, 3}).

So, finally h3 = β3 must be a reflection. But then consider

(r1, r2, β3)2(1, α2, α3) = (r1
2, r2

2α2, α3) ∈ Γ

and note the last two components are reflections of order 2 but the first component has
order greater than 2. This again contradicts Lemma 4.7(b).

Corollary 4.13. Let Γ ≤ Dn1×Dn2×Dn3 be a 2-injective subdirect product and ni /∈ {1, 2, 4}
for all i ∈ [3]. Then Γ is a rotate-or-reflect group.

Proof. This follows from Lemmas 4.11 and 4.12.

The previous corollary classifies all 2-injective subdirect products of dihedral groups as
rotate-or-reflect groups if D1, D2, and D4 are not involved as one of the factors. We now
analyze how rotations and reflections of the single factors can be combined if these groups
are involved.
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4.2.2 The CFI Group and the Double CFI Group
The following exception where rotations can be combined with reflections will be of
particular interest.

De�nition 4.14 (CFI Groups). We call the following group ΓCFI < D3
1 the CFI group:

ΓCFI :=
{

(g1, g2, g3) ∈ D3
1

∣∣∣ g1g2g3 = 1
}
,

that is, ΓCFI is the group consisting of those triples that contain an even number of the
nontrivial elements of D1. We call the wreath product Γ2CFI := ΓCFI oC2 the double CFI
group.

The CFI group ΓCFI is the automorphism group of the degree 3 CFI gadgets where each
edge-vertex-pair is colored uniquely (cf. Section 2.8), or more precisely, the induced auto-
morphism group on the edge vertices. The double CFI group Γ2CFI is the automorphism
group of two such CFI gadgets, which has the additional automorphism exchanging the
two gadgets (cf. Figure 4.1 for two colored graphs whose automorphism groups are iso-
morphic to ΓCFI and Γ2CFI, respectively). It is straightforward to verify that the CFI
group is a 2-injective subdirect product. We now show how the double CFI group can
be realized as a 2-injective subdirect product Γ2CFI < D3

4 (cf. Figure 4.1b): Let r ∈ D4 be
a rotation of order 4 and α, α′ ∈ D4 be reflections such that αα′ = r2 (i.e., {α, α′} is a
conjugacy class, that is, α and α′ are the two reflections at the diagonal of the square),
and β ∈ D4 be a reflection with β /∈ {α, α′}. Then

Γ2CFI ∼=
〈
(1, α, α), (α, 1, α), (1, α′, α′), (α′, 1, α′), (β, β, β)

〉
=
〈
(1, α, α), (α, 1, α), (r, r, β)

〉
.

The elements with the two reflections α and α′ generate the two independent CFI groups,
respectively, and (β, β, β) exchanges the two CFI groups (swaps top with bottom in
Figure 4.1b).

Lemma 4.15. There is (up to isomorphism) exactly one 2-injective subdirect product of D3
4

that is not a rotate-or-reflect group, namely the double CFI group.

Proof. The group D4 has the following normal subgroups: D4,D2,C4,C2,C1. Note that the
normal subgroup C2 of D4 is generated by the 180 degree rotation (and not by a reflection
because reflections do not generate normal subgroups). The Hi must be isomorphic to
one of these normal subgroups because H2 defines an isomorphism between π1(H2) and
π3(H2) (Lemma 4.8) and thus π1(H2) ∼= π3(H2) ∼= H2. Furthermore, |πi(H)| = |πj(H)|
for all i, j ∈ [3] by Theorem 4.9. We now show that if Γ is not a rotate-or-reflect group,
then Hi

∼= D2 for all i ∈ [3]. First, if all Hi are cyclic groups, then Γ is a rotate-or-reflect
group by Lemma 4.11.

Second, we show that (up to reordering) H1 ∼= D4 is contradictory. Let r ∈ D4 be a
rotation of order 4. There is a rotation s of order 4 such that g = (1, r, s) ∈ H1 ⊆ Γ
because H1 defines an isomorphism between its projections to the second and third com-
ponent (Lemma 4.8). Since π1(H) = D4, there is an h = (α, h2, h3) ∈ H2 ∪ H3 ⊆ Γ.
W.l.o.g. assume h = (α, β, 1) ∈ H2. Then gh = (α, βr, s) ∈ Γ which is impossible by
Lemma 4.7(b) because α and βr are reflections of order 2 and s is of order 4.
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(a) The CFI group ΓCFI (b) The double CFI group Γ2CFI

4.1 The CFI group and the double CFI group. The �gure shows two vertex-colored graphs whose
automorphism groups are the CFI group (Figure (a)) and the double CFI group (Figure (b)). The edge
colors in Figure (b) are only for illustration: Each color forms an undirected cycle of length 4 and
induces the automorphism group D4 of its color class.

Third, assume that (up to reordering) H1 ∼= D2, H2 6∼= D2, and H3 6∼= D2. Because the
case of one Hi

∼= D4 was proved contradictory, it follows that H2 and H3 are isomorphic
to C4, C2, or C1. Suppose H2 ∼= Cj for some j ∈ [2]. Then π1(〈H1, H2〉) ∼= Cj because
the first entry of elements in H1 equal 1. So D2 ≤ πi(H) because H1 ∼= D2 and the
rotations in Cj do not generate an element of order 4. In particular, |πi(H)| ≥ 4 for
every i ∈ {2, 3}. Then |π1(H)| ≥ 4 by Theorem 4.9 and so H3 ∼= C4 (H3 6∼= D2 by
assumption and H3 ∼= D4 was already proved inconsistent). Hence, |π1(H)| = 4 but also
|π2(H)| = |D4| = 8 contradicting Theorem 4.9. The case H3 ∼= Cj for some j ∈ [2] is
symmetric. So the case H2 ∼= H3 ∼= C4 remains. Then π1(H) ∼= C4 but π2(H) ∼= D4,
which contradicts Theorem 4.9 again.

Lastly, we assume that (up to reordering) H1 ∼= H2 ∼= D2. Then π3(〈H1, H2〉) is
either D2 or D4 (depending on whether H1 and H2 contain reflections from the same
conjugacy class or not). In the case that π3(H1) 6= π3(H2), H1 and H2 use reflections from
different conjugacy classes of D4. Let α and α′ be these reflections such that (1, β, α) ∈ H1
and (β′, 1, α′) ∈ H2. Then (1, β, α)(β′, 1, α′) = (β′, β, r) ∈ Γ where r is the rotation of
order 4 and thus contradicts Lemma 4.7(b). So π3(H1) = π3(H2), that is, both kernels use
the same reflections of D4. Let α ∈ D4 be one of these reflections. Then (1, β, α) ∈ H1,
(β′, 1, α) ∈ H2, and (1, β, α)(β′, 1, α) = (β′, β, 1) ∈ H3. So H3 contains reflections and
cannot be isomorphic to D4 by the prior reasoning, i.e., H3 ∼= D2.

So we have shown that, unless Γ is a rotate-or-reflect group, we have Hi
∼= D2 and

πi(H) = D2 for all i ∈ [3]. That is, all Hi use reflections of the same conjugacy class of D4
for each component (there are two embeddings of D2 in D4). We apply an isomorphism
to Γ, such that the embedding is the same for each component. Let α, α′ ∈ D4 be the
two reflections of this embedding of D2 into D4 and r ∈ D4 be a rotation of order 4. We
assume that (1, α, α), (1, α′, α′) ∈ H1 and (α, 1, α), (α′, 1, α′) ∈ H2. In the case that α gets
combined with α′ we apply isomorphisms to the first and/or second factor exchanging α
and α′. Then H3 also combines α with α.

Recall that r is a rotation of order 4. Now (r, g, h) ∈ Γ, one of g and h has to equal r
or r91, too, by Lemma 4.7(b) and the other one cannot equal 1 because H2, H3 6∼= D4.
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Assume, w.l.o.g., that g = r (if needed, we reorder the factors, and if g = r91, we apply
another isomorphism to the second factor exchanging r and r91 but which is constant
on the reflections). Let β and β′ be the reflections not in the conjugacy class of α.
Then αβ, αβ′, α′β, α′β′ ∈ {r, r91}. Suppose first that h = s is a rotation. But then
(r, r, s)(1, α, α) = (r, rα, sα) ∈ Γ which is a contradiction to Lemma 4.7(b).

So h is a reflection. If h ∈ {α, α′}, then ((r, r, h)(1, h, h))2 = (r, rh, 1)2 = (r2, 1, 1) 6= 1
because h and rh are reflections and r is of order 4. This contradicts Lemma 4.7(a). Hence,
h ∈ {β, β′}, say up to isomorphism h = β, and finally ∆ := 〈(r, r, β), (α, 1, α), (1, α, α)〉 is
isomorphic to the double CFI group. Note that |H| = |〈H1, H2, H3〉| = 16, that |∆| = 32,
and that [Γ : H] = [D4 : π1(H)] = [D4 : D2] = 2 = [∆ : H] by Theorem 4.9. Hence
|∆| = |Γ| and Γ ∼= ∆ is isomorphic to the double CFI group.

4.2.3 Products Involving D4, D2, or D1

We complete the classifications of 2-injective subdirect products of dihedral groups in the
case that D4, D2, or D1 occur as factors.

Lemma 4.16. Let Γ ≤ Di × Dj × Dk with i ∈ [2] and j, k > 2 be a 2-injective subdirect
product. Then π1(Γ) is a rotate-or-reflect group.

Proof. For the sake of a contradiction, suppose (g, r, α) ∈ Γ. By Lemma 4.7(b), r is of
order at most 2 because g and α are of order at most 2. Let s ∈ Dj be a rotation of order
greater 2 and, because Γ is a subdirect product, let (h, s, s′) ∈ Γ be an element whose
second component is s (the last component must be a rotation of order larger than 2).
Then (gh, rs, αs′) ∈ Γ, gh and αs′ are of order at most 2, and rs is a rotation with
ord(rs) > 2. This is a contradiction to Lemma 4.7(b).

Lemma 4.17. There are no 2-injective subdirect products of Di × G2 × G3 if i > 2 and
both G2 and G3 are abelian.

Proof. Suppose Γ ≤ Di × G2 × G3 is a 2-injective subdirect product and α, r ∈ Di such
that αr 6= rα. Two such elements exist because i > 2 and Di is non-abelian. Consider
two elements g = (α, g2, g3), h = (r, h2, h3) ∈ Γ for some g2, h2 ∈ G2 and g3, h3 ∈ G3. Now
gh = (αr, g2h2, g3h3) and hg = (rα, g2h2, g3h3) 6= gh contradicting 2-injectivity of Γ.

Lemma 4.18. There are no 2-injective subdirect products of D4 × D4 × Di if i /∈ {1, 2, 4}.

Proof. Suppose Γ ≤ D4 × D4 × Di is a 2-injective subdirect product and i /∈ {1, 2, 4}.
Let r ∈ Di be a rotation with ord(r) = i and (g, h, r) ∈ Γ for some g, h ∈ D4. For all
g, h ∈ D4, it holds that ord(g), ord(h) ∈ {1, 2, 4} contradicting Lemma 4.7.

Lemma 4.19. Let Γ ≤ D4×Dn2×Dn3 be a 2-injective subdirect product. If n2, n3 /∈ {1, 2, 4},
then Γ is a rotate-or-reflect group.

Proof. We assume that n2, n3 /∈ {1, 2, 4} and apply Lemma 4.11. We have to show that
πi(Hi) contains no reflection for every i ∈ [3]. By Lemma 4.12, this is the case for H2
and H3. Assume that (1, α2, α3) ∈ H1 and note that πi(H1) /Dni for every i ∈ {2, 3}. So
πi(H1) ∈ {Dni ,Dni/2} for every i ∈ {2, 3} (if ni is odd, Dni/2 of course does not exist).
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Recall that by Theorem 4.9, we have [Dni : πi(H)] = [Γ : H]. If π2(H1) = Dn2 , then
π2(H) = Dn2 and

1 = [Dn2 : π2(H)] = [Dn1 : π1(H)]

and so π1(H) = D4. So one of H2 and H3 contains reflections because the first entry of
all elements in H equals 1, which is a contradiction.

Otherwise, π2(H) = π2(H1) = Dn2/2, by symmetry π3(H) = π3(H1) = Dn3/2, and
[Dn1 : π1(H)] = 2. So π1(H) = 〈π1(H2), π1(H3)〉 ∈ {D2,C4}. If π1(H) = D2, then H2
or H3 again contain reflections. Thus, π1(H) = C4. Let r ∈ C4 < D4 be a rotation of
order 4. There is an element (r, r′, 1) ∈ H3. Hence, (r, r′, 1)(1, α2, α3) = (r, r′α2, α3) ∈ Γ,
which is a contradiction to Lemma 4.7(b).

Proof of Theorem 4.5. Let Γ ≤ Dn1 × Dn2 × Dn3 be a 2-injective subdirect product. If
ni ≤ 2 for all i ∈ [3], then Γ is abelian. If ni ≤ 2 for exactly one i ∈ [3], then πi(Γ)
is a rotate-or-reflect group by Lemma 4.16. The case that ni ≤ 2 for exactly two i is a
contradiction to Lemma 4.17 because D1 and D2 are the only abelian dihedral groups.

Lastly, consider the case that ni > 2 for all i ∈ [3]. If ni = 4 for all i ∈ [3], then Γ is
a rotate-or-reflect group or the double CFI group by Lemma 4.15. The case ni = nj = 4
and nk /∈ {1, 2, 4} for {i, j, k} = [3] is impossible due to Lemma 4.18. If ni = 4 for exactly
one i ∈ [3], then nj /∈ {1, 2, 4} for every j 6= i. Consequently, Γ is a rotate-or-reflect
group by Lemma 4.19. If ni 6= 4 for all i ∈ [3], then Γ is a rotate-or-reflect group by
Corollary 4.13.

4.2.4 Combinations with Cyclic Groups

Finally, we consider 2-injective subdirect products of a mixture of dihedral and cyclic
groups.

Lemma 4.20. There are no 2-injective subdirect products of Ci ×Dj ×Dk if i /∈ {1, 2, 4}.

Proof. The proof is essentially a simpler version of the proof of Lemma 4.12. We show that
the reflections in the dihedral group cannot be combined with the rotations in the cyclic
groups. Suppose there is a 2-injective subdirect product Γ ≤ Ci×Dj×Dk. We argue first
that there is an element (r, α2, α3) ∈ Γ. Let α ∈ Dj be a reflection and (r, α, g) ∈ Γ for
some r ∈ Ci and g ∈ Dk. If g is a reflection, we are done. Otherwise, g = r3. Let α′ ∈ Dk

and (r′, g′, α′) ∈ Γ be arbitrary (the latter exists because Γ is subdirect). Again, if g′ is a
reflection, we are done. Otherwise, g′ = r2 and (r, α, r3)(r′, r2, α

′) = (rr′, αr2, r3α
′) is the

desired group element. Then ord(r) ≤ 2 by Lemma 4.7(b).
Let s ∈ Ci be a rotation with ord(s) /∈ {1, 2, 4} and (s, g, h) ∈ Γ be some group ele-

ment. By Lemma 4.7(b), one of g and h must have order greater 2, say w.l.o.g. g = r2.
If h = r3 is a rotation, too, then (r, α2, α3)(s, r2, r3) = (rs, α2r2, α3r3) ∈ Γ. This
contradicts Lemma 4.7(b) because ord(rs) > 2. If h = β3 is another reflection, then
(r, α2, α3)(s, r2, β3)2 = (rs2, α2r

2
2, α3) ∈ Γ. As before, ord(rs2) > 2 but the other compo-

nents are reflections contradicting Lemma 4.7(b).

Lemma 4.21. Let Γ ≤ Ci×Dj ×Dk be a 2-injective subdirect product, i ≤ 2, and j, k > 2.
Then π1(Γ) is a rotate-or-reflect group.
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Proof. The case i = 2 follows immediately from Lemma 4.16 because C2 ∼= D1. The case
i = 1 implies that H = H1 = Γ (Theorem 4.9). Because H1 defines an isomorphism
between π2(H1) and π3(H1) (Lemma 4.8), π1(Γ) is a rotate-or-reflect-group.

Lemma 4.22. Let Γ ≤ C4 × Dn2 × Dn3 be a 2-injective subdirect product and ni > 2 for
i ∈ {2, 3}. Then n2 = n3 = 4 and Γ ∼= Γ2CFI ∩ (Rot(D4)× D4 × D4).

Proof. We first show that [Γ : H] > 1. Suppose that [Γ : H] = 1. By Theorem 4.9
it holds that πi(H) = Dni for every i ∈ {2, 3} and hence that πi(H1) = Dni for every
i ∈ {2, 3} because H2 and H3 can only use rotations (they are normal subgroups and
define isomorphisms to subgroups of C4). Furthermore, π1(Hi) = C4 for some i ∈ {2, 3}
because π1(H) = C4, say w.l.o.g. for i = 2. So there is an element g = (1, α2, α3) ∈ H1 and
an element h = (r1, r2, 1) ∈ H3 such that ord(r1) > 2. But then gh = (r1, α2r2, α3) ∈ Γ
contradicting Lemma 4.7(b). So [Γ : H] > 1 and in particular π1(H) ∈ {C2,C1}.

Next, we want to show that there is an element (1, α′2, α′3) ∈ Γ and n2 ≥ 4. We know
there is an element g = (r1, α2, g3) ∈ Γ. We make a case distinction on g3.

• Assume g3 = α3 and then, by Lemma 4.7(b), ord(r1) = 2. Let s1 ∈ C4 be of order
4 and consider the element h = (s1, h2, h3) ∈ Γ. Hence,

gh2 = (r1s
2
1, α2h

2
2, α3h

2
3) = (1, α′2, α′3).

One of h2 and h3 must be of order greater 2, so be a rotation. Assume w.l.o.g.
h2 = s2 (in both cases there is an element (1, α′2, α′3)). Now

gh = (r1s1, α2s2, α3h3) = (s91, α2s2, α3h3).

Because ord(s911 ) = 4 and ord(α2s2) = 2, it holds that ord(α3h3) = 4. In particular,
h3 = α′3 is a reflection and hence s2 is of order 4. So we have n2 ≥ 4.

• Assume g3 = r3. Let s2 ∈ Dn2 be a rotation of maximal order ord(s2) = n2.
Then s2α2 6= α2s2 and there is an element h = (s1, s2, h3) ∈ Γ. If h3 = s3,
then gh = (r1s1, α1s2, r3s3) and hg = (r1s1, s2α1, r3s3), which is a contradiction to
2-injectivity.
So h3 = β3 must be a reflection. By Lemma 4.7(b), ord(s1) = 4 because ord(s2) > 2
(and C4 contains only rotations of order 1, 2, and 4). Then also ord(s2) = 4
implying n2 ≥ 4. Considering gh = (r1s1, α1s2, r3β3) and Lemma 4.7(b), we obtain
ord(r1s1) ∈ {1, 2}. So either r1s1 = 1 or r1s

91
1 = 1 (recall that ord(r1) = 2) and one

of gh and gh91 is equal to (1, α′2, α′3) ∈ Γ.

It follows that π2(H1) = π2(H) = Dn2/2 (because it contains reflections) and, by The-
orem 4.9, that π3(H1) = Dn3/2 and thus n2 = n3 (H1 defines an isomorphism) and
π1(H) = C2.

We now show that n2 = n3 = 4. Assume n2 > 4 and let h = (s1, s2, β3) be the element
as in the case g3 = r3. Recall that ord(s2) = n2. There is a rotation s′2 ∈ Dn2 such that
ord(s2s

′
2) /∈ {1, 2, 4}: If n2 6= 8, we pick s′2 := s2. Then ord(s2s

′
2) ∈ {n2, n2/2}. If n2 = 8,

we pick s′2 := s2
2 and then ord(s2s

′
2) = 8. We consider an element g′ = (s′1, s′2, g′3) ∈ Γ

and g′2 = s′3 by Lemma 4.7 because ord(s′1) ∈ {1, 2, 4}. Finally, hg′ = (s1s
′
1, s2s

′
2, β3s

′
3),
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ord(s2s
′
2) /∈ {1, 2, 4}, and ord(s1s

′
1), ord(β3s

′
3) ∈ {1, 2, 4} contradicting Lemma 4.7. The

case n3 > 4 follows by symmetry.
Now, Γ contains elements generating a group isomorphic to Γ2CFI∩(Rot(D4)×D4×D4).

One can show this using the same argument with conjugacy classes of reflections as in
the proof of Lemma 4.15. The order of this group is 16, the order of H is 8, so Γ cannot
contain any other elements.

Proof of Theorem 4.6. From Lemma 4.20 it follows that n1 ∈ {1, 2, 4}. Assume n1 ≤ 2.
If n2, n3 > 2, then π1(Γ) is a rotate-or-reflect group due to Lemma 4.21. If n2 ≤ 2,
then n3 ≤ 2 by Lemma 4.17 and Γ is abelian. Assume otherwise n1 = 4. If n2, n3 ≤ 2,
then there is an element (g1, g2, g3) ∈ Γ and ord(g1) = 4, but ord(g2), ord(g3) ≤ 2 contra-
dicting Lemma 4.7(b). Otherwise, n2, n3 > 2 by Lemma 4.17. Then n2 = n3 = 4 and
Γ ∼= Γ2CFI ∩ (Rot(D4)× D4 × D4) by Lemma 4.22. By Lemma 4.17, 2-injective subdirect
products of a non-abelian dihedral group and two abelian groups do not exist.

4.3 Normal Forms for Structures

In this section we will introduce a certain normal form for q-bounded relational struc-
tures. In said normal form, 2-injective subdirect products play an important role as
local automorphism groups. We will show that arbitrary q-bounded τ -structures can be
reduced to this normal form in CPT in the following canonization-preserving manner:

De�nition 4.23 (Canonization-Preserving Reduction). A canonization-preserving CPT-
reduction from a class of τ -structures K to a class of σ-structures J is a pair of CPT-
interpretations (Θ,Π) with the following properties:

(a) Θ is a CPT[τ, σ]-interpretation mapping K-structures to J -structures.

(b) Π is a CPT[τ ] (σ ] {≤}), τ ] {≤}]-interpretation mapping pairs of a K-structure
and an ordered J -structure to ordered K-structures.

(c) For every CPT-canonization Υ of J , the CPT-interpretation mapping A ∈ K to
Π((A,Υ(Θ(A)))) is a canonization of K.

We also say that K can be reduced canonization preservingly in CPT to J if there is a
canonization-preserving CPT-reduction from K to J .

That is, if K can be reduced canonization preservingly to J in CPT, then a CPT-
canonization of J implies a CPT-canonization of K. Note that the interpretation Π
not only takes the canonized J -structure but also the original K-structure as input. In
particular, this allows for the possibility that Θ is not injective. For example, Θ can
remove some parts of the input which can be canonized by Π and thus produce the
same J -structure for different K-structures. The concept of a canonization-preserving
reduction is akin to the concept of Levin reductions between problems in NPtime that
allow us to pull certificates back. These reductions are thus certificate-preserving.

Before we can turn to 2-injective subdirect products as local automorphism groups,
we ensure that the structures satisfy some more basic properties. It will be necessary to
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distinguish between the arity of relations connecting different color classes and the ones
only connecting tuples inside the same color class.

De�nition 4.24 (Heterogeneous Tuples and Arity). A relation RA is homogeneous if, for
every ū ∈ RA, there is a color class C ∈ CA such that ū ∈ Car(R). Otherwise, RA is
heterogeneous. The heterogeneous arity of a q-bounded relational structure A is the
minimal number r such that ar(R) ≤ r for every heterogeneous relation RA of A.

For all reductions we are going to define it will be important that we preserve the occurring
automorphism groups of the color classes, that is, we do not change the structure of the
color classes essentially.

De�nition 4.25 (Preserving Automorphism Groups). A canonization-preserving CPT re-
duction (Θ,Π) from a class of q-bounded τ -structures K to another class of q′-bounded
τ ′-structures J preserves the automorphism groups of the color classes if, for
every A ∈ K and every C ∈ CΘ(A), there is a C ′ ∈ CA such that Aut(Θ(A)[C]) is a section
(i.e., quotient group of a subgroup) of Aut(A[C ′]).

4.3.1 Transitivity and Clean Relations
In the first step, we will achieve that for every set I of s many color classes of the
structure, the automorphism group of the substructure induced by the color classes in I
acts transitively on every color class in I.

De�nition 4.26 (Color-Class-Transitive). A q-bounded structure A is called s-color-class-
transitive if, for every I ⊆ CA satisfying |I| ≤ s, the group Aut(A[I])|C is transitive for
every C ∈ I.

Lemma 4.27. For all q, k ∈ N and every signature τ , CPT distinguishes k-orbits for the
class of τ -structures of order at most q.

Proof. Recall that to distinguish k-orbits in CPT, one has to define the k-orbit partition
and to order the k-orbits. The k-orbits of a structure A are exactly the equivalence classes
on k-tuples induced by first order logic with |A| many variables. These classes can be
ordered [98]. Because |A| is bounded by q, there is a CPT-term defining the k-orbits and
a CPT-formula defining a total order on them.

We use the former lemma to preserve the automorphism groups of small structures when
only considering some of their orbits: For a union of k-orbits V ⊆ Ak of a structure A
of order at most q, we define ` additional relations that induce the same automorphism
group on V as A induces on V .

Lemma 4.28. For all q, k ∈ N, every signature τ , and ` = (qk)(qk), there are CPT-
formulas Φ1(x, ȳ), . . . ,Φ`(x, ȳ) with |ȳ| = qk such that the following holds: For every
τ -structure A of order |A| ≤ q and every union of k-orbits V ⊆ Ak, the relations

SA
i =

{
ū ∈ (V k)(qk)

∣∣∣ (V, ū) ∈ ΦA
i

}
(tuples in V are Kuratowski-encoded) satisfy for the permutation group Γ with domain Ak
induced by Aut(A) that Aut((V k, SA

1 , . . . , S
A
` )) = Γ|V .
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Proof. We use Lemma 4.27 to define and order the (k · qk)-orbits of A. We identify Ak·(qk)

with (Ak)qk via the natural bijection. In this way, we only consider the (k · qk)-orbits,
which are a subset of (V k)(qk). Note that |V | ≤ |A|k ≤ qk and that there are at most
|A|(k·qk) ≤ ` many such orbits. For every i ∈ [`], we define Φi to be satisfied for the tuples
in the i-th such orbit or to be never satisfied if i exceeds the number of orbits.

By construction, every ϕ ∈ Aut((V k, SA
1 , . . . , S

A
` )) can only map qk-tuples (of V k) onto

each other which are in the same qk-orbit of Γ. So for every ϕ ∈ Aut((V k, SA
1 , . . . , S

A
` )),

there is a ψ ∈ Aut(A) inducing the action of ϕ on V k, i.e., Aut((V k, SA
1 , . . . , S

A
qq)) ⊆ Γ|V .

We have equality because every ψ ∈ Aut(A) set-wise stabilizes all (k · qk)-orbits, i.e.,
stabilizes all SA

i .

Note that the restriction that V is a union of orbits is no restriction at all because every
CPT-definable set is a union of orbits.

Lemma 4.29. For all numbers q, r, s ∈ N and every signature τ , there is a signature σ and
a canonization-preserving CPT-reduction from q-bounded τ -structures of heterogeneous
arity r to q-bounded and s-color-class-transitive σ-structures of heterogeneous arity r.
The reduction preserves the automorphism groups of the color classes.

Proof. Let q, r, s ∈ N and τ be a signature. Set σ := τ ] ({S} ∪ {Si | i ∈ [qq]}), where
ar(S) = 2 and ar(Si) = q for every i ∈ [qq]. We define a CPT[τ, σ]-interpretation Θ as
follows: Let A be a q-bounded τ -structures of heterogeneous arity r. Set

J :=
{
I ⊆ CA

∣∣∣ |I| ≤ s
}

to be the set of all sets of up to s many color classes. The total order of the color classes
extends to a total order on J = {I1, . . . , Im}. For every set I ∈ J , recall that orb(A[I])
denotes the partition of the structure A[I] into 1-orbits. For every atom u ∈ A, let orbI(u)
be the 1-orbit of A[I] containing u if u ∈ A[I] and ∅ otherwise. Finally, we define

orb(u) :=
(
orbI1(u), . . . , orbIm(u)

)
.

Note that there is a lexicographical order �lex on ⊗i∈[m](orb(A[Ii]) ∪ {∅}) given by the
order on J and the orders on the orb(A[Ii]) from Lemma 4.27.

We now define the σ-structure B = Θ(A) on the universe B := A. For every relation
R ∈ τ , we define RB := RA. We set SB :=�A and refine the preorder �A by the preorder
u �B v := orb(u) �lex orb(v). This preorder is CPT-definable using Lemma 4.27. To
define the relations Si, let C ′ be a color class of the preorder �B. Because �B refines �A,
there is a color class C of �A such that C ′ ⊆ C. We exploit Lemma 4.28 (for k = 1) to
define q-ary relations SB

C′,1, . . . , S
B
C′,qq over C ′ such that

Aut((C ′, SB
C′,1, . . . , S

B
C′,qq)) = Aut(A[C])|C′ .

We combine them for every color class C ′ of �B into the q-ary relations SB
1 , . . . , S

B
qq :

SB
i :=

⋃
C′∈CB

SB
C′,i

for every i ∈ [qq]. The relation Si is homogeneous for every i ∈ [qq]. The structure B
is clearly q-bounded because we only split color classes. It has heterogeneous arity r
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because we only added homogeneous relations. Moreover, B is s-color-class-transitive by
the definition of �A′ .

It is easy to see that Θ can be extended to a canonization-preserving CPT-reduction
(Θ,Π): The interpretation Π interprets � in the canon of A as S in the canon of B and
all R ∈ τ are interpreted in the canon of A as in the canon of B. To show that (Θ,Π)
preserves the automorphism groups of the color classes, let C ′ ∈ CB. By construction,
there is a C ∈ CA such that C ′ ⊆ C. Because of the application of Lemma 4.28, it holds
that Aut(B[C ′]) = Aut(A[C])|C′ . Thus, Aut(B[C ′]) is a quotient of the set-wise stabilizer
StabAut(A[C])(C ′) ≤ Aut(A[C]), i.e., Aut(A′[C ′]) is a section of Aut(A[C]).

In the previous lemma, we added homogeneous relations whose arity is possibly larger
than the arity of the original structure (by applying Lemma 4.28). This was necessary
to preserve the automorphism groups of the color classes. We remark that in the can-
onization for abelian color classes [103, Theorem 6.8] it is not necessary to augment the
structure to maintain the automorphism groups. The next step is to ensure that every
tuple in a heterogeneous relation contains at most one atom of the same color class. We
formalize the notion as follows.

De�nition 4.30 (Clean Relation). Let A be a q-bounded τ -structure and R ∈ τ . The
relation RA is clean if, for every ū ∈ RA, there are distinct C1, . . . , Car(R) ∈ CA such that
ū ∈ C1 × · · · × Car(R). The structure A is clean if RA is clean or homogeneous for every
R ∈ τ .

De�nition 4.31 (Basic Constituent). Let A be a q-bounded τ -structure. We call a tuple
T = (C1, . . . , C`) ∈ C`

A a basic constituent of A if RA ∩ (C1 × · · · × C`) 6= ∅ for some
R ∈ τ and there are i, j such that Ci 6= Cj. The set of all basic constituents of A is
denoted by TA. We omit the subscript if A becomes clear from the context.

Note that tuples contained in different basic constituents can never be mapped onto each
other by an automorphism.

Lemma 4.32. For all numbers q ∈ N and r ≥ 2 and every signature τ , there is a sig-
nature σ and a canonization-preserving CPT-reduction from q-bounded τ -structures of
heterogeneous arity r to q-bounded and clean σ-structures of heterogeneous arity r. The
reduction preserves s-color-class-transitivity for every s ∈ N. It preserves the automor-
phism groups of the color classes.

Proof. Let q ∈ N, r ≥ 2, and τ be a signature. Set σ := τ ] {S}. We define a CPT[τ, σ]-
interpretation Θ. Let A be a q-bounded τ -structure of heterogeneous arity r. The
σ-structure B = Θ(A) is defined as follows: We set B := A× [r] and define �B such that
(u, i) �B (v, j) if and only if (u, i) is lexicographically smaller than (v, j) for all u, v ∈ A
and i, j ∈ [r]. We define

SB :=
{ (

(u, i), (u, j)
) ∣∣∣ u ∈ A, i 6= j ∈ [r]

}
,

RB :=
{ (

(u1, 1), . . . , (uar(R), ar(R))
) ∣∣∣ ū ∈ RA

}
if RA is heterogeneous,

RB :=
{ (

(u1, i), . . . , (uar(R), i)
) ∣∣∣ ū ∈ RA, i ∈ [r]

}
if RA is homogeneous,

for every R ∈ τ . The interpretation is clearly CPT-definable.
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For all C ∈ CA and i ∈ [r], we denote by Ci the set C × {i} ⊆ B. By construction
of �A, the color classes of B are exactly the Ci for all C ∈ CA and i ∈ [r]. We see that RB

is homogeneous if RA is homogeneous for every R ∈ τ . We also see, for every R ∈ τ , that
the relation RB is clean if RA is heterogeneous because (u, i) and (v, j) are never in the
same color class if i 6= j. Finally, SB is a heterogeneous relation of arity 2 ≤ r. So B is
a clean q-bounded σ-structure of heterogeneous arity r.

We complete Θ to a canonization-preserving CPT-reduction (Θ,Π) as follows: Note
that, for all C ∈ CA and i 6= j ∈ [r], the relation SB connects Ci and Cj by a perfect
matching identifying the copies (u, i) and (u, j) of the same atom u ∈ A. That is, when
contracting S in a canon of B, we obtain a canon of A, which is easily CPT-definable.
To see that (Θ,Π) preserves the automorphism groups of the color classes, simply note
that B[Ci] ∼= A[C] by construction (homogeneous relations are copied into Ci) for every
C ∈ CA and i ∈ [r].

Finally, let s ∈ N and assume that A s-color-class-transitive. Let

I ′ =
{
C

(1)
i1 , . . . , C

(k)
ik

}
⊆ CB

be a set of k ≤ s many color classes for C(1), . . . , C(k) ∈ CA and i1, . . . , ik ∈ [r]. We
consider the substructure B[I ′] and contract SB yielding the structure B∼I′ . It suffices
to show that Aut(B∼I′) acts transitively on every color class of B∼I′ because SB just
identifies the copies of the atoms in B. Set I := {C(1), . . . , C(k)}. Then B∼I′ ⊆ A[I]
(after identifying contracted copies of u in B∼I′ with u ∈ A) by definition of B. The
structureB∼I′ is not necessarily equal to A[I] because some tuples in relations ofB∼I′ are
missing. However, every tuple ū ∈ RA[I]\RB∼I′ is contained in a different basic constituent
of A than every tuple v̄ ∈ RA[I] ∩RB∼I′ for every R ∈ τ . That is, Aut(A[I]) ⊆ Aut(B∼I′)
and thus Aut(B∼I′) acts transitively on every color class Cj

ij for j ∈ [k] because Aut(A[I])
does so.

4.3.2 2-Injective Subdirect Products and Quotients
In the end, we want to achieve that the automorphism group of three color classes is
always a 2-injective subdirect product. We also need the more general notion of r-injective
subdirect products, which is a straightforward generalization: A group Γ ≤ ⊗i∈[r+1]Gi is
called a subdirect product if πΓ

i (Γ) = Gi for every i ∈ [r+1]. It is called r-injective if
ker(πΓ

i ) = 1 for every i ∈ [r+ 1]. Before we can proceed to reduce to r-injective subdirect
products, we need to modify the color classes to allow further operations on them.

De�nition 4.33 (Regular Color Classes). Let A be a q-bounded structure. A color class
C ∈ CA is called regular if Aut(C) is a regular permutation group. The structure A has
regular color classes if every C ∈ CA is regular.

Recall that C denotes the structure A[C] if A becomes clear from the context. Also, recall
that a permutation group Γ ≤ Sym(Ω) is regular if Γ is transitive and |Ω| = |Γ|. We now
show that we can replace every color class C of a structure by a regular color class C ′
satisfying Aut(C) ∼= Aut(C ′).

Lemma 4.34. For every permutation group Γ ≤ Sym(Ω) with domain Ω, there is a
|Ω|-orbit of Γ on which Γ acts regularly.
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Proof. Assume w.l.o.g. that Ω = [k] and consider the k-orbit O of Γ containing the k-tuple
(1, . . . , k). By definition of an orbit, Γ acts transitively on O. By construction of O, if
ϕ, ψ ∈ Γ satisfy ϕ(ū) = ψ(ū) for some ū ∈ O, then we have ϕ = ψ because, for every ū, it
holds that Ω = {ui | i ∈ [k]} (otherwise ū cannot be in the same orbit as (1, . . . , k)).

Lemma 4.35. For all q, r ∈ N and every signature τ , there are q′, σ, and a canonization-
preserving CPT-reduction from q-bounded and clean τ -structures of heterogeneous arity r
to q′-bounded and clean σ-structures of heterogeneous arity r with regular color classes.
The reduction preserves s-color-class-transitivity for every s ∈ N. It preserves the auto-
morphism groups of the color classes.

Proof. Let q, r ∈ N and τ be a signature. Set q′ := qq, ` := q′q
′ , and σ := τ ] ({S} ]

{S1, . . . , S`}), where ar(S) = 2 and ar(Si) = q′ for every i ∈ [`]. We now define a
CPT[τ, σ]-interpretation Θ. Let A be a clean q-bounded τ -structure of heterogeneous
arity r. The structure B := Θ(A) is defined as follows: For every color class C ∈ CA, we
define, using Lemma 4.27, the minimal q-orbit OC of A[C] such that the induced action
of Aut(A[C]) on OC is regular. Such an orbit always exists by Lemma 4.34. Next, we
define, using Lemma 4.28, for every color class C ∈ CA, q′-ary relations SB

C,1, . . . , S
B
C,`

on OC such that the group Aut((Oq′

C , S
B
C,1, . . . , S

B
C,`)) is isomorphic to the permutation

group ΓC on Oq′

C induced by Aut(A[C]). We define

B :=
⋃

C∈CA

OC ,

SB :=
{

(ū, v̄) ∈ B2
∣∣∣ u1 = v1

}
,

SB
i :=

⋃
C∈CA

SB
C,i,

RB :=
{

(ū1, . . . , ūar(R)) ∈ Bar(R)
∣∣∣ (u1

1, . . . , u
ar(R)
1 ) ∈ RA

}
,

for all R ∈ τ and i ∈ [`]. The preorder �B is defined such that ū �B v̄ if and only if
ū ∈ Cq

1 and v̄ ∈ Cq
2 for some C1, C2 ∈ CA with C1 �A C2. That is, we replace every color

class C ∈ CA with a color class C ′ ∈ CB on which Aut(A[C]) acts regularly (which is
the group ΓC). Hence, B has regular color classes. Because we applied Lemma 4.28, we
ensured that Aut(B[C ′]) = ΓC , which is isomorphic to Aut(A[C]) because the action of
Aut(A[C]) is regular. Hence, we preserve the automorphism groups of the color classes.

The relation S relates q-tuples with equal first entry. Intuitively, we use the set of
q-tuples with equal first entry u to represent the atom u in the definition of the RB. That
is, we can turn Θ into a canonization-preserving CPT-reduction (Θ,Π) as follows: Given
a canon of B, the interpretation Π contracts S to obtain a canon of A, which is easily
CPT-definable.

We finally show that the reduction preserves s-color-class-transitivity for every s ∈ N.
This can easily be seen because every automorphism of a B-color class is induced by an
automorphism of the corresponding A-color class and the automorphism group of every
B-color class is transitive by construction (because B has regular color classes). Hence,
if A is s-color-class-transitive, so is B.

Next, we exploit regularity of the color classes to construct quotient groups. They will
be important to reduce to 2-injective subdirect products.
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C ′N -quotient
of C

C N / Aut(C)

orbit-map N -orbit

4.2 Quotient color classes. The �gure illustrates quotient color classes. On the right, a color
class C containing 8 atoms. The automorphism group Aut(C) is regular. Assume N / Aut(C) and
N ∼= C2. Thus, every N -orbit contains two atoms. The N -orbits are drawn in di�erent colors. The
color class C ′ on the le� is an N -quotient of C : The color class C ′ contains, for every N -orbit O,
one atom which is adjacent via the orbit-map to the atoms in O. These edges form the orbit-map.
The di�erent colors for the edges are only used for illustration.

De�nition 4.36 (Quotient Color Class). Let A be a q-bounded τ -structure, C,C ′ ∈ CA be
distinct regular color classes, and N / Aut(C). We say that C ′ is an N-quotient of C
if Aut(C ′) ∼= Aut(C)/N and there is an R ∈ τ such that RA|C∪C′ is a function C ′ → C
determining the orbit partition of N acting on C, i.e.,{{

u ∈ C
∣∣∣ (u, v) ∈ RA

} ∣∣∣∣ v ∈ C ′ } = orb(N).

The relation RA is called the orbit-map of C (cf. Figure 4.2).

The following lemma states that quotient groups of regular permutation groups can be
defined using the orbits of the normal subgroup.

Lemma 4.37. Let Γ ≤ Sym(Ω) be a regular permutation group and N / Γ. Then Γ acting
on the set orb(N) forms a regular permutation group isomorphic to Γ/N .

Proof. Since N is normal in Γ, every permutation σ ∈ Γ induces a permutation σN of the
N -orbits. Thus Γ induces a permutation group Γ′ on orb(N). One easily checks that the
map ϕ : Γ/N → Γ′ defined by σN 7→ σN is an isomorphism. The group Γ′ is transitive
because Γ is transitive. Assume there is an N -orbit of size k. Then |N | = k because
otherwise Γ was not regular. But so all N -orbits have size k and

|orb(N)| = |Ω|/k = |Γ|/k = |Γ/N | = |Γ′|.

Hence, Γ′ is regular.

We exploit the previous lemma to construct quotient color classes.

Lemma 4.38. For every q ∈ N and every signature τ , there is a CPT-term s(x, y) and
CPT-formulas Φ(x, y, z1, z2) and Ψi(x, y, z̄′) for all i ∈ [qq] such that, for every q-bounded
τ -structure A, every regular color class C ∈ CA, and every N / Aut(C), the following
holds:



4.3. Normal Forms for Structures 83

1. The term s defines a set C ′ = sA(C,N) (for some fixed encoding of permutation
groups as hereditarily finite sets).

2. The formula Φ defines a relation

RA
orb :=

{
(u, v) ∈ C ′ × C

∣∣∣ (C,N, u, {v}) ∈ ΦA
}
.

3. For every i ∈ [qq], the formula Ψi defines an q-ary relation on C ′q

SA
i :=

{
ū ∈ (C ′q)q

∣∣∣ (C,N, ū) ∈ ΨA
i

}
.

4. In the (τ ] ({Rorb} ∪ {Si | i ∈ [qq]}))-structure obtained by extending A with
RA

orb, S
A
1 , . . . , S

A
` and adding C ′ (as new color class with fresh atoms) to A, the

color class C ′ is an N-quotient of C and RA
orb is the orbit-map. The color class C ′

is regular.

Proof. Let q ∈ N, τ be a signature, A be a q-bounded τ -structure, C ∈ CA, Γ = Aut(C),
and N / Γ. The term s defines C ′ := orb(N) to be the N -orbits using Lemma 4.27. The
orbit-map will be realized by

RA
orb :=

{
(O, u) ∈ C ′ × C

∣∣∣ u ∈ O }.
Let AC = (C ∪ C ′, RA

orb,�C) ∪ C be the structure consisting of C and the attached new
atoms and �C be defined such that C ≺C C ′. Let ∆ = Aut(AC) ≤ Γ × Sym(C ′) and
(ϕ, ψ) ∈ ∆ for ϕ ∈ Γ and ψ ∈ Sym(C ′). By Lemma 4.37, the automorphism ϕ permutes
the N -orbits and its action is regular. Because every orbit O ∈ C ′ is adjacent to exactly
all atoms contained in O via Rorb, ψ has to be the permutation of N -orbits corresponding
to ϕ. So Γ′ := ∆|C′ is the permutation group of N -orbits given by Γ and from Lemma 4.37
it follows that Γ′ ∼= Γ/N . We apply Lemma 4.28 and define homogeneous q-ary relations
SA

1 , . . . , S
A
qq on C ′ such that Aut((C ′, SA

1 , . . . , S
A
qq)) ∼= Γ′. Then, after adding C ′ and

RA
orb, S

A
1 , . . . , S

A
qq to A, the color class C ′ is an N -quotient of C and RA

orb is the orbit-
map.

Now we are prepared to turn to structures with 2-injective subdirect products as local
automorphism groups:

De�nition 4.39 (Injective Quotient Structure). Let A be a q-bounded structure. For a basic
constituent T = (C1, . . . , Cj) ∈ TA, we set ΓA

T := Aut(A[⋃i∈[j] Ci]) ≤
⊗
i∈[j] Aut(Ci). The

structure A is called an (r − 1)-injective quotient structure if there is a partition
{Agr, Aex} of A with the following properties:

1. The structure A is of heterogeneous arity r, is clean, and has regular color classes.

2. There is exactly one heterogeneous 2-ary relation RA
orb ⊆ Aex ×Agr such that every

other heterogeneous relation RA satisfies ar(R) = r and RA ⊆ Argr. A color class
C ⊆ Agr (or C ⊆ Aex, respectively) is called a group color class (or an extension
color class, respectively).
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2-injective 3-factor
subdirect productquotient

group color classes

extension color classes

4.3 Injective quotient structures. The group color classes are at the top and the extension color
classes at the bottom. The horizontal lines depict relations of arity 3. All three color classes connected
by such a relation, that is, a basic constituent, form a 2-injective 3-factor subdirect product. A vertical
line between a group and an extension color class depicts the orbit-maps.

3. For every group color class C, there is exactly one extension color class C ′ such
that (C,C ′) is a basic constituent. Moreover, C is an N -quotient of C ′ for some
N / Aut(C ′) and RA

orb is the orbit-map.

4. The group constituents TA
gr ⊆ TA of A is the set of all basic constituents only

consisting of group color classes. For every T ∈ TA
gr, the group ΓA

T is an (r − 1)-
injective subdirect product.

We leave out the superscripts if the structure A is clear from the context. Intuitively, an
(r− 1)-injective quotient structure consists of two different types of color classes, namely
the group and extension color classes. Every group color class in a quotient of exactly
one extension color class (thus the name extension color class) and connections between
the group and extension color classes are established solely via the orbit-map Rorb. There
are no connections between the extension color classes. All connections between group
color classes are given by r-ary relations such that, for each group constituent T ∈ TA

gr,
the induced automorphism group ΓA

T on its r many color classes is an (r − 1)-injective
subdirect product. Also consider Figure 4.3, which shows a sketch of a 2-injective quotient
structure. This means, in an (r − 1)-injective quotient structure there are two types of
local automorphism groups: (r − 1)-injective subdirect products on r many color classes
and “quotients” on two color classes, where the automorphism group of one is a quotient
of the other realized by the orbit-map.

Lemma 4.40. For all q ∈ N, 2 ≤ r, and every signature τ , there is a signature σ and a
canonization-preserving CPT-reduction (Θ,Π)

• from q-bounded, clean, and r-color-class-transitive τ -structures of heterogeneous ar-
ity r

• to q-bounded r-injective quotient σ-structures.

If A is actually of heterogeneous arity r′ ≤ r, then for every T = (C1, . . . , Cr) ∈ TΘ(A)
gr

and every r′ < i ≤ r, it holds that |Ci| = 1.
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Proof. Let q ∈ N, 2 ≤ r, and τ be a signature. We first assume that every relation in τ
has arity at least r. If not, we increase the arity to r. Homogeneous relations for arity less
than r are extended to arity r by repeating the last entry. For heterogeneous relations, r
many new singleton color classes are added, whose atoms are used to extend tuples of
length less than r to r. The atom in the i-th new singleton color classes is used in the
i-th position to extend the tuples. This is clearly canonization-preserving and preserves
r-color-class-transitivity and being clean.

Set σ := τ ] {Rorb, S1, . . . , Sqq}, where ar(Rorb) = 2 and ar(Si) = q for every
i ∈ [qq]. We now define a CPT[τ, σ]-interpretation Θ. Let A be a q-bounded, clean,
and r-color-class-transitive τ -structure of heterogeneous arity r. For every basic con-
stituent T = (C1, . . . , Cr) ∈ TA, we set NT

i := ker(πΓT
i ) for every i ∈ [r]. Note that

ΓA
T := Aut(A[⋃i∈[r] Ci]) ≤

⊗
i∈[r] Aut(Ci). Because A is r-color-class-transitive, it follows

that ΓA
T is a subdirect product for every T ∈ TA. Moreover, NT

i /Aut(Ci) via the canonical
isomorphism (g1, . . . , gr) 7→ gi (note that gj = 1 for all j 6= i).

We first note that, for every T ∈ TA and every i ∈ [r], the group NT
i is CPT-definable.

For all T = (C1, . . . , Cr) ∈ TA and i ∈ [r], we define using Lemma 4.38 disjoint sets CT,i,
binary relations RA

orb;T,i ⊆ Ci × CT,i, and q-ary relations SA
1;T,i, . . . , S

A
qq ;T,i ⊆ Cq

T,i such
that CT,i is the NT

i -quotient of C and RA
orb;T,i is the orbit-map. We define the structure

B := Θ(A). Its universe is given by

Bgr :=
⋃

T∈TA,
i∈[r]

CT,i, Bex := A, and B := Bgr ]Bex.

Relations are interpreted as follows:

RB
orb :=

⋃
T∈TA,
i∈[r]

RA
orb;T,i

SB
j :=

⋃
T∈TA,
i∈[r]

SA
j;T,i j ∈ [qq],

RB :=
{
ū ∈ Br

gr

∣∣∣ v̄ ∈ RA, (vi, ui) ∈ RB
orb for every i ∈ [r]

}
if RA is heterogeneous,

RB := RA if RA is homogeneous,

for every R ∈ τ . That is, we now relate the orbits in RB (see Figure 4.4). Finally, the
preorder �B is obtained from �A by creating new color classes for every CT,i (which can
obviously be ordered in CPT).

Claim 1. The structure B is an r-injective quotient structure.

Proof. For Condition 1, B is clean and of heterogeneous arity r. The “old” color classes
are still regular and the new are so by Lemma 4.38. Condition 2 is satisfied because
the only heterogeneous relation connecting Bgr and Bex is by construction the binary
relation Rorb. Every other heterogeneous relation is of arity r. To show Condition 3,
let CT,i ∈ CB be a group color class for some C ∈ CA, T ∈ TA, and i ∈ [3]. Then, by
construction, CT,i is only related to C (seen as extension color class of B) via Rorb.

To finally show Condition 4, let T ′ ∈ TB
gr. By construction, there is a T ∈ TA such

that T ′ = (C1,T,1, . . . , Cr,T,r) and Ci,T,i is an NT
i -quotient of Ci (note that the Ci are color
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(a) The input structure (b) The construction of Lemma 4.40

4.4 The construction in Lemma 4.40. Figure (a) shows the input structure. Each circle represents
one color class with drawn tuples of two relations (red and blue) between two orbits of each color
class (there can of course be more orbits and tuples of the red and blue relations). Figure (b) shows
the altered structure: For the basic constituents of the red and blue relations, there are new group
color classes (on the top for red and on the bottom for blue), where the orbits are contracted to a
single atom. The “old” color classes became extension color classes.

classes of both A and B). We argue that ΓB
T ′
∼= ΓA

T/N
T
1 / . . . /N

T
r and hence ΓB

T ′ is an
r-injective subdirect product. First note that

ΓA
T/N

T
1 / · · · /NT

r = ΓA
T ′/(NT

1 · · ·NT
r ) and

NT := NT
1 · · ·NT

r / ΓA
T .

Hence, ΓA
T/N

T defines a permutation group on orb(NT ), which are precisely the orbits of
NT
i on Ci for every i ∈ [r]. That is,

orb(NT ) =
⋃
i∈[r]

orb(NT
i |Ci).

We now study these orbits: Let R ∈ τ , ū ∈ RA ∩⊗i∈[r] Ci, and σi ∈ NT
i for every i ∈ [r].

Then (σ1 · · ·σr)(ū) ∈ RA because NT
i ≤ ΓA

T for every i ∈ [3]. It follows that v̄ ∈ RA

whenever vi ∈ orbNT
i

(ui) for every i ∈ [3], that is,
⊗
i∈[r]

orbNT
i

(ui) ⊆ RA.

We define a map ϕ : ΓA
T/N

T → ΓB
T ′ as follows: Let σNT ∈ ΓA

T/N
T , which induces a

permutation on the NT -orbits σNT . Via Rorb (recall that the Ci are also color classes
of B) the permutation σNT induces a permutation σ′NT on the atoms of the Ci,T,i for
every i ∈ [r]. We have already seen that⊗i∈[r] orbNT

i
(ui) ⊆ RA if and only if v̄ ∈ RA. The

heterogeneous relations in B are defined accordingly, that is, heterogeneous relations are
invariant under σ′NT . To show that σ′NT ∈ ΓB

T ′ , it remains to consider the homogeneous
relations. These are constructed precisely such that Aut(Ci,T,i) ∼= Aut(Ci)/NT

i and are
thus invariant under σ′NT , i.e., σ′NT ∈ ΓB

T ′ . In particular, the prior reasoning also holds
in the other direction, thus ϕ is an isomorphism, and thus ΓB

T ′ is an r-injective subdirect
product. a

We extend the interpretation Θ to a canonization-preserving reduction (Θ,Π): Given
a canon of B, we can distinguish group from extension color classes using Rorb. The
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universe of the canon of A are the extension color classes of the canon of B, homogeneous
relations are just copied, and heterogeneous relations R ∈ τ are defined on the extension
color classes using Rorb: A tuple ū is in R in the canon of A if there is a tuple v̄ in R in the
canon of B such that (ui, vi) is in Rorb for every i ∈ [r]. This is clearly a CPT-definable
interpretation.

The reduction obviously preserves the automorphism groups of the color classes. For
every extension color class in B, there is by construction a color class in A with the same
automorphism group. For every group color class in B, its automorphism group is by
construction the quotient of the automorphism group of some color class of A.

To the end, assume that A is of heterogeneous arity r′ ≤ r. Then, by our assumption
in the beginning, the heterogeneous relations were extended using a singleton color class
to have arity r. That is, for every basic constituent T = (C1, . . . , Cr) ∈ TA, the color
classes Cr′+1, . . . , Cr are distinct and new singleton color class by construction. Because
every quotient of a singleton color class is a singleton color class, every group constituent
of B has the same property.

We conclude the section on normal forms:

Theorem 4.41. For all q ∈ N, r ≤ 2, and every signature τ , q-bounded τ -structures of
heterogeneous arity r can be canonization-preservingly reduced in CPT to

(a) q′-bounded 2-injective quotient τ ′-structures for some q′ and τ ′ and to

(b) q′-bounded (r − 1)-injective quotient τ ′-structures for some q′ and τ ′. The latter
reduction preserves the automorphism groups of the color classes.

Proof. We first show Part (b). By Lemma 4.29, we reduce to q-bounded and r-color-
class transitive structures of heterogeneous arity r. We then further ensure that the
structures are clean using Lemma 4.32 preserving r-color-class-transitivity and hetero-
geneous arity r. Next, we make the color classes regular by Lemma 4.35, now yielding
q′-bounded structures. We still preserve r-color-class-transitivity, heterogeneous arity r,
and cleanness. Finally, we reduce to r-injective quotient structures with Lemma 4.40.
All reductions preserve the color classes of the automorphism groups and so does their
composition, too.

For Part (a), we first need to reduce the arity of the structure to 3 and then apply
Part (b). We sketch how a q-bounded structure A can be reduced to have arity 3: For
simplicity, we first apply Lemma 4.32 to obtain clean relations. We split a relation R of
arity r > 3 in two relations R1 and R2 of arity r−1 and 3 as follows: Let C1, . . . , Cr ∈ CA

be distinct color classes. For every ū ∈ RA ∩ (C1 × · · · × Cr), we add new atoms for the
pairs (ur−1, ur) to the universe and define R1 such that (u1, . . . , ur−1, (ur−1, ūr)) ∈ RA

1
and ((ur−1, ūr), ur−1, ur) ∈ RA

2 . The new atoms form a new color class. Its automorphism
group can be ensured to be isomorphic to Aut(A[Cr−1 ∪ Cr]) using Lemma 4.28. By
iteratively applying this reduction, one can reduce the arity down to 3.

Of course, one could reduce the arity of the structures to 2 by encoding every tuple in a
relation by a new atom adjacent to the atoms in the tuple. Obviously, the automorphism
group of these new atoms must be the automorphism group of the tuples in the relations,
so we have indeed encoded the structure in a graph, but are still faced with exactly the
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same groups. The new color classes obtained by our proposed construction can be much
simpler, depending on the actual group. In the following, we will consider structures of
arity at most 3.

4.4 Structures with Dihedral Colors

We now consider structures whose color classes have dihedral automorphism groups.

De�nition 4.42 (Dihedral Colors). For a q-bounded structure A, a color class C ∈ CA is
called dihedral, abelian, or cyclic if Aut(C) is a dihedral, abelian, or cyclic group,
respectively. The structure A has dihedral colors or is dihedral if every C ∈ CA is
dihedral or cyclic.

Here, we include cyclic automorphisms group in the definition of structures with dihedral
colors. We do so because we want that the class of groups admissible for the color
classes is closed under taking subgroups and under taking quotient groups. So the class
is preserved by the reduction in Theorem 4.41. We now show that the automorphism
group of a regular and dihedral color class can be made explicit in the following sense:

De�nition 4.43 (Color Class in Standard Form). Let A be a q-bounded structure with di-
hedral colors. We say that a color class C ∈ CA is in standard form if there are two
relations RA and SA of arity 2 such that following holds:

• If Aut(C) ∼= C|C|, then each of RA[C] and SA[C] forms a directed cycle of length |C|
on C.

• Otherwise, Aut(C) ∼= D|C|/2, RA[C] defines two directed and disjoint cycles of length
|C|/2, and SA[C] connects the cycles by a perfect matching such that the two cycles
are directed into opposite directions (cf. Figure 4.5).1

We say that the relations RA and SA induce the standard form of C. The color
classes of A are in standard form if every color class is in standard form.

For cyclic groups, we require two relations only for technical reasons: We can treat the
cyclic and dihedral case uniformly. In that case, one can always pick RA = SA as we
see in the following. For dihedral groups, we indeed need two relations for the group D2
because for D2 the directed cycles are just two undirected edges and they cannot not be
distinguished from the perfect matching (cf. Figure 4.5).

Corollary 4.44. Let A be a q-bounded structure with dihedral colors. If C ∈ CA is in
standard form induced by the relations RA and SA, then Aut(C) = Aut((C,RA[C], SA[C])).

We show that every regular and dihedral color class can be converted to standard form
in CPT.

1The two relations form the Cayley graph generated by a reflection and a rotation of maximum order,
but we will not need this fact.
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4.5 Dihedral color classes in standard form. The dihedral group D5 on 10 atoms and the D2 on
4 atoms in standard form. The two relations are drawn in di�erent line styles.

Lemma 4.45. For every q ∈ N and every signature τ , there are two CPT-formulas that
given a q-bounded τ -structure A and a regular and dihedral color class C ∈ CA define
homogeneous relations inducing the standard form of C.

Proof. Let q ∈ N, τ be a signature, A be a q-bounded τ -structure, C ∈ CA be a regular
and dihedral color class, Γ = Aut(C), and n = |C|. We consider the 2-orbits of Γ. There
are only two cases because C is regular:

1. Assume that Γ ∼= Cn. Let r be a rotation of order n. Let O be a 2-orbit such that
(u, r(u)) ∈ O for some u ∈ C. By iterating r, (rk(u), rk+1(u)) ∈ O for every k and
thus O contains a directed cycle of length n because Γ is transitive. Because Cn is
of order n, every 2-orbit has size at most n. Hence, |O| = n and O forms a directed
cycle. To define such an orbit in CPT, we just pick the smallest orbit according to
the defined order that has the mentioned properties (Lemma 4.27). We use O for
both relations inducing the standard form.

2. Assume Γ ∼= Dn/2. By the reasoning for cyclic groups above, there is a 2-orbit O1
containing a directed cycleO′ ⊆ O1 of length n/2. Because C is regular, all rotations
r ∈ Γ map an atom contained in O′ to an atom contained in O′ and all reflections
map atoms in O′ to atoms in O1 \ O′. Hence, O1 contains two disjoint directed
cycles of length n/2. Because |Γ| = n, the orbit O1 is the union of these two cycles.
Let u and v be atoms not in the same cycle. Then (by the argument above),
there is a reflection α ∈ Γ with α(u) = v and α(v) = u. We pick the or-
bit O2 with (u, v), (u, v) ∈ O2. Let r ∈ Γ be a rotation of order n/2. Then
(rk(u), rk(v)), (rk(v), rk(u)) ∈ O2 for every k. So |O2| ≥ n, that is, O2 exactly
contains these elements and thus is a perfect matching between the two directed
cycles in O1.
In CPT, we first define the minimal orbit O1 satisfying the required conditions, and
then the minimal orbit O2 satisfying the conditions with respect to O1. The two
orbits induce the standard form of C.

By iteratively applying the previous lemma, we can assume that up to a CPT-definable
interpretation the color classes of a structure with dihedral colors are in standard form.
We just define two relations, each the union of the first (respectively, second) relation
defined in the previous lemma for each color class. This reduction is clearly canonization-
preserving because we just have to remove the added relations.
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4.5 Treelike Cyclic Linear Equation Systems

Before we begin to canonize structures with dihedral colors, we need to discuss a special
class of linear equation systems. These linear equation systems are later used to encode
the canonical labelings, which is important for our canonization approach. We start with
the definition of cyclic linear equations systems from [118].

De�nition 4.46 (Cyclic Linear Equation System). Let V be a set of variables. A cyclic
constraint on W ⊆ V is a solvable set of linear equations containing, for each pair
of variables u, v ∈ W , an equation of the form u − v = d for some d ∈ Zq. A cyclic
linear equation system (CES) over Zq (for q a prime power) is a triple (V, S,�) where
� ⊆ V 2 is a total preorder and S is a linear equation system over V that contains a cyclic
constraint on each �-equivalence class.

As for structures, the total preorder � induces a total order on the �-equivalence classes,
which we call variable classes. For our use in CPT, the linear equation system S is
represented by a set of constraints. A constraint ∑u∈W auu = d for W ⊆ V itself is
encoded by the tuple ({(au, u) | u ∈ W}, d) (tuples themselves are Kuratowski-encoded).

Theorem 4.47 ([118]). Solvability of CESs over the ring Zq is CPT-definable for every
prime power q.

We relax the requirement on the order on the variables being total:

De�nition 4.48 (Tree-Like Cyclic Linear Equation System). A tree-like cyclic linear equa-
tion system (TCES) over Zq for a prime power q is a tuple (V, S,�) with the following
properties:

• The variable classes form a rooted tree with respect to being a direct successor
in �. (That is, � is a preorder such that for all u, v, w ∈ V with u ≺ v, u ≺ w,
and v and w incomparable (v 6� w and w 6� v), there is no u′ ∈ V with v � u′ and
w � u′.)

• S is a linear equation system on V containing for every variable class a cyclic
constraint.

• For every constraint ∑u∈W auu = d with W ⊆ V and ai, d ∈ Zq in S, every pair
of variables u, v ∈ W is �-comparable. (That is, a constraint can only use the
variables from the classes on a root-to-leaf path of the tree.)

Note that TCESs are a strict generalization of CESs. We show that solvability of a
certain subclass of TCESs can be defined in CPT. In principle, we follow the same
strategy of [103, 118] to solve CESs. Thus, before we turn to solving TCESs, we sketch
the method to solve CESs. As a first step, we preprocess a (T)CES, such that every
variable class contains exactly q many variables [103, Lemma 5.3] and that u− v = d 6= 0
for all equations with u 6= v in the cyclic constraints. This step is necessary to define
hyperterms.
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4.5.1 Hyperterms
Let S = (V, S,�) be a CES over Zq with variable classes C1 ≺ · · · ≺ Cn. For all
variables u, v ∈ Ci in the same variable class, there is a constraint u − v = d for some
d ∈ Zq. Hence, we can pick any variable u ∈ Ci and substitute all other variables
of the class Ci with a term of the form u − d. Of course, we cannot do this in CPT
because we cannot choose u canonically. Assume for the moment that we picked for
every variable class one variable and substituted all other variables in that fashion. Then
we obtain a linear system of equations S ′ with a total order on the variables, which can
be extended to a total order on the equations. So we can write the system in matrix form
Mū + b̄ = d̄, where M is the (ordered) m × n coefficient matrix and b̄, d̄ ∈ Zmq . Here d̄
is the original right-hand side of the equation system S and b̄ collects the constants
that arose from substituting the variables. Now, consider another choice when picking
the variables, yielding another system S ′′. Then we can write S ′′ as Mū + b̄′ = d̄ with
the same coefficient matrix M and the same right-hand side d̄. The only change is the
tuple b̄′, the difference coming from the different constants arising when substituting two
variables of the same class. Hyperterms are hereditarily finite sets built from variables
and constants. They constitute a succinct, simultaneous encoding of all possible ways to
pick the variables and the resulting tuple b̄′. The encoding is performed in a way that
allows us to use hyperterms to mimic algebraic operations involving linear terms over
the variables in CPT. We summarize properties and capabilities of hyperterms, without
explicitly describing how hyperterms are constructed and without providing proofs. For
details, we refer to [103,118].

Clearly, only assignments V → Zq satisfying the cyclic constraints of a (T)CES are
candidates for solutions when checking whether a (T)CES is solvable. We call these
assignments reasonable assignments, write LS for the reasonable assignments of S,
and leave out the subscript if S is clear from the context. Let T, T1, and T2 be hyperterms.

1. There is a CPT-term that, for each variable class Ci, defines the coefficient ci(T )
of Ci in T . Intuitively, ci(T ) is the coefficient of some (and thus every) variable
u ∈ Ci in the hyperterm T after all other variables of Ci have been substituted by u
in the way explained before.

2. Under an assignment ρ ∈ L, hyperterms can be evaluated to T [ρ] ∈ Zq. Given ρ,
this can be done in CPT (but we usually do not have access to a single assignment ρ).

3. For every choice of a variable ui ∈ Ci for each i ∈ [n], there is an equivalent linear
term t = ∑

i∈[n] aiui+b with ai = ci(T ) for T , that is T [ρ] = t[ρ] := ∑
i∈[n] aiρ(ui)+b

for all assignments ρ.

4. Every constant b ∈ Zq and every variable u ∈ V is a hyperterm.

5. There are CPT-terms realizing addition and scalar multiplication on hyperterms
that behave as expected with respect to evaluation and coefficients. This means,
T1[ρ]+T2[ρ] = (T1+T2)[ρ] and b·T [ρ] = (b·T )[ρ] for all i ∈ [n], b ∈ Zq, and ρ ∈ L. In
particular, the coefficients of the variable classes satisfy ci(T1 +T2) = ci(T1)+ci(T2)
and ci(b · T ) = b · ci(T ) for all i ∈ [n] and b ∈ Zq. Addition on hyperterms is not
associative (because of the involved set constructions) and we stipulate evaluation
to be from left to right.
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6. The hyperterm T is called constant if T [ρ] = d for some constant d ∈ Zq and all
reasonable assignments ρ ∈ L. We call d the value of T . There is a CPT-term that
defines the value of constant hyperterms. Necessarily, ci(T ) = 0 for all i ∈ [n] if T
is constant.

7. There is a CPT-term that extends the preorder � to all linear equations t = d ∈ S.
Furthermore, there is a CPT-term that translates a linear term t to an equivalent
hyperterm Tt (and hence a linear equation t = d ∈ S into an equivalent hyperequa-
tion Tt = d) such that �-equivalent linear equations are translated into the same
hyperequation, in particular, the linear equations have the same solutions. In this
way, we obtain an equivalent system of hyperequations Hyp(S) with a total order
on the hyperequations.

8. The operations preserve set-theoretical membership. If the transitive closure of
T1 + T2 (or of d · T , respectively) contains a variable u, then the transitive closure
of T1 or T2 (or of T , respectively) contains u.

Only Properties 6 and 7 depend on the totality of the preorder �. Because Hyp(S) is
equivalent to S (i.e., they have the same satisfying assignments) we can focus on checking
ordered systems of hyperequations for solvability.

In general, a system of hyperequations Ŝ (for S) is an ordered set of hyperequa-
tions, where the hyperterms are constructed as above (so with respect to V and the cyclic
constraints contained in S). In particular, Hyp(S) is such a system. Because systems
of hyperequations are ordered (both the variable classes and the hyperequation are), we
can consider the ordered m× n coefficient matrix MŜ of Ŝ defined via MŜ(j, i) := ci(Tj)
for all j ∈ [m] and i ∈ [n], where m is the number of hyperequations in Ŝ and Tj = dj is
the j-th hyperequation for every j ∈ [m].

4.5.2 Gaussian Elimination for Rings Zq

We want to apply a variant of Gaussian elimination adapted for the ring Zq with q a
prime power. Recall that Gaussian elimination for fields uses elementary row operations
to convert the coefficient matrix to an upper triangular matrix (note that this is only a
reasonable notion for matrices with a total order on both row and column indices). Then
solvability can be tested by checking whether all atomic equations, i.e., equations with
all coefficients 0, are solvable. From a CPT-perspective, it is important to have a total
order on the variable classes to pick the next class whose coefficient should be eliminated.
We also need the total order on the constraints to pick the unique constraint, in which the
coefficient is not to be eliminated. We now sketch how the solvability check needs to be
adapted for rings Zq and, in particular, which additional constraints must be satisfied by
the coefficient matrix such that we can check solvability similarly to fields. For simplicity,
consider an ordinary and ordered linear system of equations in matrix form Mū+ b̄ = d̄
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with upper triangular coefficient matrix

M =



a1,1 · · · a1,n
0 a2,2 · · · a2,n
... . . . . . . ...
0 · · · 0 ak,k · · · ak,n
0 · · · 0 · · · 0
... . . . ...
0 · · · 0


such that ai,i 6= 0 for i ≤ k and variables ū = (u1, . . . , un). Assume we found an
assignment ρ for the variables uj+1, . . . , un (j + 1 ≤ k) satisfying all equations that use
only these variables. We consider the j-th equation ∑

j≤i≤n aj,iui + bj = dj. We solve
for the variable uj and obtain aj,juj = dj − bj −

∑
j<i≤n aj,iρ(ui). In a field, we can

divide both sides by aj,j, but in the ring Zq this is not possible in general. To overcome
this problem, [103] makes use of the fact that divisibility in Zq for prime powers q is
a total preorder and rearranges the order of the variables as follows: The variable u is
considered smaller than v if there is some coefficient of u in some equation that divides
every coefficient of v. If that is the case for both u and v, they are ordered according
to the given order on the variables. Then the variables are eliminated according to this
rearranged order. When eliminating variable u, the equation containing this minimal
coefficient (with respect to divisibility) is picked to remain. In all other equations u is
eliminated (if there are multiple such equations, we pick one using the total order on the
equations). Consequently, it holds that aj,j | aj,i for all i ∈ [n] and that aj,j | aj+1,j+1 for
all j ∈ [k]. Hence, once we ensure that aj,j also divides (dj − bj), we can divide by aj,j.
Coefficient matrices satisfying this property are said to be in Hermite normal form:
De�nition 4.49 (Hermite Normal Form, [103]). A system of hyperequations Ŝ is inHermite
normal form if, for some total ordering of its variable classes C1 ≺ · · · ≺ Cn and some
order of its equations, its m× n coefficient matrix MŜ satisfies the following conditions:

1. MŜ = (ai,j)i∈[m],j∈[n] is upper triangular.

2. aj,j | ai,i for all j < i ≤ k, where k ∈ [n] is maximal such that ak,k 6= 0.

3. aj,j | aj,i for all j ∈ [k] and i ∈ [n].
To check a system of hyperequations for solvability, it is not sufficient to check the atomic
equations. Recall from the case of linear equations above, that we have to ensure that
aj,j | (dj − bj) and that for a hyperequation Tj = dj, there is always an equivalent linear
equation ∑

i∈[n] aj,iui + bj = dj. Also, recall that we do not have access to bj directly
because it depends on the choice of the ui. It turns out that a system of hyperequation
Ŝ over Zq in Hermite normal form is solvable if and only if the following two conditions
hold [103, Lemma 5.21]:

1. Every atomic hyperequation in Ŝ is solvable.

2. For every non-atomic hyperequation T = d in Ŝ, it holds that p`T = p`d is solvable,
where q is a power of p and p` be the smallest power of p annihilating all coefficients
of T , i.e., p`T is constant.
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From the second condition we deduce for non-atomic hyperequations that 0 = p`(dj− bj)
and that aj,j | (dj−bj). We show this in more detail later in our extension of the algorithm
for TCESs. It is clear that the former conditions can be checked in CPT because the
value of constant hyperterms is CPT-definable.

4.5.3 Solving TCESs in CPT

Let T = (V, S,�) be a TCES over Zq. We now write CT for the set of all variable
classes and cC(T ) for the coefficient of the variable class C in a hyperterm T . We call the
directed tree on the variable classes induced by � the variable tree, where there is an
edge (C,C ′) if and only if C ≺ C ′ and there is no other variable class with C ≺ C ′′ ≺ C ′.

We first discuss how a TCES T is translated into a system of hyperequations: Because
every equation in T only uses variables on a root-to-leaf path in the variable tree, all
relevant variable classes for a single linear equation in T are totally ordered. So we
can apply the translation for CESs to the equation. We do this for all equations of T .
The obtained hyperequations form a system of hyperequations Hyp(T ) equivalent to T .
However, the variable classes of Hyp(T ) are not totally ordered as in the case for CES.

This complicates matters when checking such a system of hyperequations for solvabil-
ity: We have seen in the previous section, that it is essential to reorder the variable classes
to successfully apply Gaussian elimination to rings Zq for prime powers q. In the case
of CESs, this was possible because reordering a linear order yields a linear order again.
However, if we reorder the preorder inducing the variable tree according to divisibility
of the coefficients of the variables, then the result is not necessarily a tree anymore. In
other words, reordering variables with regard to divisibility of the coefficients may not be
compatible with the tree-like structure of the equation system.

Overall, we are unsure how to check solvability of a TCES in CPT. Hence, in the
following, we will only look at a certain restricted class of TCESs, where divisibility of the
coefficients of “critical” variable classes is not important. As we argue later, this suffices
for our overall goal of canonizing structures with dihedral colors. Before defining this
class of TCESs, we need to introduce some terminology for the structure of the variable
tree.

De�nition 4.50 (Local Component and Global/Local Variables). Let T = (V, S,�) be a
TCES. A set L ⊆ CT of variable classes is called a local component if it satisfies the
following (cf. Figure 4.6):

1. The induced subgraph of L in the variable tree is a path.

2. For every C ∈ L, if C is of out-degree at least 2 in the variable tree, then the
children of C are not in L.

3. L is maximal with respect to set inclusion.

A variable occurs in an equation if its coefficient in the equation is nonzero. A variable is
local if in every equation in which it occurs, only variables of the same local component
occur, too. Other variables are called global. An equation is local if it contains at least
one local variable and global otherwise.
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variable class

constraint

local component

local constraint

4.6 The variable tree of a TCES. The variable tree (a vertex represents a variable class) of an
example TCES with all local components. A constraint is depicted by a blue line and only uses
variables from vertex classes covered by the line. Constraints only use variables from root-to-leaf
paths and local constraints are contained within a local component.

On the local components, the preorde � induces a tree in which every local component
has degree at least 2 or is a leaf. Note that local equations can only use variables of
the same local component. Also, note that a global equation may also do so namely if
all variables occurring in the equation are global. Furthermore, in a local equation the
coefficient of global variables of the same local component can be nonzero.

We extend the definition to variable classes: A variable class is called global if it
contains some global variable. Likewise, the other variable classes are called local. Note
that a global variable class can contain both, global and local variables, and that we
cannot simply split the class because we need to maintain that every class contains q
many variables. However, when we are working with hyperterms, it will not be important
whether there is a local variable in a global variable class, but only that the class occurs
in global equations.

De�nition 4.51 (Weakly Global TCES). A TCES T = (V, S,�) over Zq is called weakly
global if

• q is a power of an odd prime and every equation (equivalently every variable) is
local or

• q = 2` is a power of 2 and, for every global variable u ∈ V , the equation 2u = 0 is
contained in S.

Note that every CES is a weakly global TCES because a CES only has one local compo-
nent. We first note that weakly global TCESs for odd prime powers are easy:

Corollary 4.52. Solvability of weakly global TCESs over Zq for every odd prime power q
is CPT-definable.

Proof. A weakly global TCESs for odd prime powers consists only of local equations, so
is just a disjoint union of CESs, one for each local component. Hence, we can solve each
CES by the methods of [103,118] in parallel.
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In the case that q = 2` is a power of 2, the constraints connecting the CESs induced by
the local components are formed by variables that can be either assigned to 0 or 2`−1

in a satisfying assignment. Hence, these variables are actually over Z2, but embedded
in Z2` . In Z2, divisibility of coefficients does not become an issue because Z2 = F2 is a
field. We now consider systems of hyperequations and adapt the notions of global and
local variables and equations to these systems.
De�nition 4.53 (Tree-Like System of Hyperequations). A tree-like system of hyper-
equation T̂ for a TCES T over Zq is a set of hyperequations built from hyperterms
constructed for T (so using the variable classes and cyclic constraints of T ) satisfying the
following:

1. The preorder � of T induces a tree on the variable classes and, for every hyperequa-
tion T = d, the transitive closure of T (set-theoretically) only contains variables
which are �-comparable2.

2. There is a preorder on the hyperequations such that, for every root-to-leaf path in
the variable tree, the preorder is a total order on the subset S ′ ⊆ S of hyperequations
in which only variable classes contained in said path have nonzero coefficients.

A hyperequation T = d in T̂ is global if it (set-theoretically) contains variables from
different local components. Other hyperequations are local. A variable class is global
if (some of) its variables are contained in a global hyperequation and local otherwise.
Finally, T̂ is called weakly global if q is odd or, for every global variable class C, the
system T contains a hyperequation T = 0 such that C is the only color class with nonzero
coefficient in T and cC(T ) = 2.
When converting a weakly global TCES to a system of hyperequations, the resulting
system is tree-like and weakly global.
Lemma 4.54. For every weakly global TCES T , the system of hyperequations Hyp(T ) is
tree-like and weakly global.
Proof. Let T be a weakly global TCES. Clearly, Hyp(T ) is tree-like because a hyperequa-
tion T = d obtained from a linear equation (set-theoretically) only contains variables of
variable classes used by the linear equation. When converting an equation 2u = 0 for
u ∈ C to a hyperequation T = 0, then cC(T ) = 2 and the coefficient for every other color
class is 0 (otherwise T would not be equivalent to 2u = 0). Even more, T set-theoretically
only contains variables from C. Because T contains for every global variable u the equa-
tion 2u = 0 and because a variable class C in Hyp(T ) is global if and only if C is global
in T , the system Hyp(T ) is weakly global.

4.5.4 Systems of Hyperequations over Z2`

As explained before, we can solve weakly global TCESs over Zq if q is an odd prime
power. So fix ` ∈ N and consider the power 2` of 2. We first make the following simple
observation:

2This is a stronger condition than requiring that all variable classes with nonzero coefficient are
�-comparable, because some hyperterm operations may set the coefficient of a variable class to zero, but
the hyperterm as a set only grows, so its transitive closure still contains the variables of that class.
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Lemma 4.55. Let T be a weakly global TCES. If T is solvable, then the following condi-
tions hold for all global variable classes C:

(a) There are at most two global variables u, v ∈ C.

(b) Let u, v ∈ C be global variables with u 6= v. Then the equation u − v = 2`−1 is
contained in the cyclic constraint for C.

Proof. To show Part (a), assume there are 3 global variables u1, u2, u3 ∈ C ∈ CT and
hence there are equations 2ui = 0 for all i ∈ [3], so ρ(ui) ∈ {0, 2`−1} for all satisfying
assignments ρ and i ∈ [3]. But by the cyclic constraints, we have that ρ(ui) 6= ρ(uj) for
all i 6= j (recall that we ensured that for cyclic constraints ui−uj = d it always holds that
d 6= 0). To show Part (b), assume that the equation u− v = d for d 6= 2`−1 is contained
in the cyclic constraints (again, we ensured d 6= 0). Then all reasonable assignments
necessarily violate ρ(u), ρ(v) ∈ {0, 2`−1} and T cannot be solvable.

The prior lemma expresses formally that we embed Z2 into Z2` . We surely can check
in CPT whether a TCES satisfies the two properties granted by the lemma for solvable
TCES. So we in the following always assume that all TCESs satisfy them. We adapt the
required normal form for the coefficient matrix:

De�nition 4.56 (Local Hermite Normal Form). Let T̂ be a tree-like system of hyperequa-
tions over Z2` . We say that T̂ is in local Hermite normal form if there are (not
necessarily CPT-definable) total orders on the variable classes C1 ≺ · · · ≺ Cn and on
the hyperequations in S such that the induced and ordered coefficient matrix MT̂ of T̂
satisfies the following:

The coefficient matrix MT̂ is upper triangular (whereby the coefficients of global
variables are taken modulo 2) and, for every local component L, the submatrix ML of all
local equations of L has the following properties:

1. All global variable classes of L are at the end of the linear order.

2. ML has the following shape:

ML =
(
M local

L Mglobal
L

)
where M local

L is the submatrix of all columns of the local variable classes.

3. M local
L is in Hermite normal form.

In that case we also say that L is in local Hermite normal form.

Note that M local
L does not contain zero rows because the equation encoded by a zero row

would be either global or atomic – both not local equations of L. We are only interested
in the coefficients for global variable classes modulo 2 because the values of these variables
are 0 or of order 2 and hence only the parity of coefficients is important. Note that we
cannot simply replace the coefficients by the parity because there is no such operation on
hyperterms.

Before we address solvability of weakly global TCESs in local Hermite normal form,
we revisit the problem of defining the value of a hyperterm. Consider some TCES T .



98 Chapter 4. Canonization of Structures with Bounded Dihedral Colors in CPT

Now, we are not interested anymore in constant hyperterms T of T , which are those for
which T [ρ] is constant for all reasonable assignments ρ ∈ LT . Rather, we will consider an
even more restricted set of assignments. In the case of global variables, only assignments
are of interest that assign global variables values of order at most 2 because otherwise
the constraints 2u = 0 are violated. We refine our definition of reasonable assignments
for weakly global TCESs.

De�nition 4.57 (Reasonable Assignments of a Weakly Global TCES). For a weakly global
TCES T = (V, S,�) over Z2` , an assignment V → Z2` is called reasonable if it satisfies
all cyclic constraints and all constraints 2u = 0 for all global variables u. The set of the
reasonable assignments of T is denoted by LT .

Now, we can keep our definitions of constant hyperterms. Regarding the coefficient of
constant hyperterms, we now obtain the following characterization:

Lemma 4.58. Let T̂ be a weakly global system of hyperterms over Z2` and T be a hyperterm
in T̂ . The hyperterm T is constant if and only if cC(T ) = 0 for all local variable classes C
and cC(T ) ≡ 0 (mod 2) for all global variable classes C.

Proof. The condition on the local variable classes is the same as for CES (recall that,
restricted on a local component, a TCES is just a CES). So we can assume that cC(T ) = 0
for all local variable classes C. Consider a linear term t = ∑

C∈CV aCuC + b that is
equivalent to T . For the sake of contradiction, suppose aC = cC(T ) ≡ 1 (mod 2) for
some global color class C. Let ρ ∈ LT be a reasonable assignment (which always exists
due to the properties granted by Lemma 4.55 hold). Let ρ′ be another assignment that
assigns the same values as ρ apart from ρ′(u) = ρ(u) + 2`−1 for all variables u ∈ C. Then
the assignment ρ′ is still reasonable, but evaluates differently for t: t[ρ] = t[ρ′] + 2`−1.
Hence, T was not constant.

For the other direction, assume that cC(T ) ≡ 0 (mod 2) for all global color classes C.
Let ρ ∈ LT be a reasonable assignment. Then t[ρ] = ∑

C∈CV aCρ(uC) + b = b because
the coefficients of all local variable classes are 0 and cC(T ) annihilates values of order at
most 2 for all global color classes.

Lemma 4.59. There is a CPT-term that, for every weakly global system of hyperequa-
tions T̂ over Z2` and every constant hyperterm T of T̂ whose transitive closure (set-
theoretically) contains only variables from a single root-to-leaf path in the variable tree,
defines the value of T .

Proof. Recall that a hyperterm is a nested set of variables and constants, in particular
it can set-theoretically contain (at some level) a variable, even if its variable class has
coefficient 0. A TCES restricted to one root-to-leaf path is a CES. We apply the same
procedure to define the value of T as in [103, Lemma 5.11], but we have to argue that the
procedure treats global variable classes correctly (which only have coefficient 0 modulo 2).

The procedure follows inductively the order of the CES. Let C be the smallest variable
class (with respect to the order) of which a variable is set-theoretically contained in T .
We consider all possible reasonable assignments of all variables in these class. For each
such assignment, we syntactically replace all occurrences of the variables according to the
assignments in T . Because T was constant, the result is the same for all assignments: By
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Lemma 4.58, the values for global variables are always annihilated because the assignment
only uses values of order at most 2 and the coefficient is 0 modulo 2. We then proceed
with the next class. In the end, we are left with a variable free hyperterm whose value
can be defined easily as shown in [103, Lemma 5.11].

We are ready to characterize solvable systems of tree-like hyperequations in local Hermite
normal form:

Lemma 4.60. A weakly global tree-like system of hyperequations T̂ over Z2` in local Her-
mite normal form is solvable if and only if the following holds:

(a) Every atomic equation is solvable.

(b) For every non-atomic equation T = d in T̂ , the following holds: Let 2k be the
minimal power of 2 that annihilates the coefficients of every local variable class
in T . If all local variables classes have coefficient zero, we set k = 1. Then 2kT is
constant and 2kT = 2kd is solvable.

Proof. If T̂ is solvable, then surely Condition (a) is satisfied. Condition (b) follows from
Lemma 4.58 because k ≥ 1 and T̂ is weakly global and solvable.

For the other direction, assume that Conditions (a) and (b) hold. Recall that changing
the order of the variable classes or equations does not affect solvability. We order the
variable classes C1 ≺ · · · ≺ Cn as given by local Hermite normality and pick, for every
variable class Ci, one variable ui ∈ Ci. Let MT̂ ū+ b̄ = d̄ be the equivalent linear system,
where MT̂ = (ai,j)i∈[m],j∈[n] is the m × n coefficient matrix as granted by local Hermite
normality, d̄ contains the same values as the right-hand side of T̂ , and ū = (u1, . . . , un).
Such a system exists by the properties of hyperterms. Note that we do not want to
construct a satisfying assignment in CPT but only show that it exists and hence we can
order the variable classes and pick the variables.

Let ρ ∈ LT be a reasonable assignment such that ∑i∈[n] ak,iρ(uk) + bk = dk for all
j < k ≤ n but not for k = j (that is, all rows not among the first j rows in MT̂ are
satisfied) and j is minimal. If j = 0, then T̂ is solvable. So suppose that j ≥ 1. We show
that this contradicts minimality of j. By Condition (a), all atomic equations are solvable
and so the j-th equation is not atomic. Because MT̂ is upper triangular, ρ satisfies all
equations in which only the variables uj+1, . . . , un occur. We consider the j-th equation∑
i∈[n] aj,iui + bj = dj, which additionally uses the variable uj. Note that we can change

ρ(uj) without affecting the equations with index greater than j because MT̂ is upper
triangular. We show that we can find a value ρ(uj) of appropriate order also satisfying
the j-th equation. We make the following case distinction:

• The j-th equation is global. Then 2ρ(ui) = 0 for every i ∈ [n] for which aj,i 6= 0
because all variables classes Ci with nonzero coefficient aj,i are global. That is,
2(∑i∈[n] aj,iρ(ui) + bj) = 2bj. Because 2bj = 2dj is solvable by Condition (b), it
follows that 2(dj − bj) = 0. So dj − bj and b := (dj − bj) −

∑
i∈[n],i 6=j aj,iρ(ui) are

of order at most 2 because ρ is reasonable. Because T̂ is in local Hermite normal
form, aj,j ≡ 1 (mod 2) and we set ρ(ui) := b.
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• The j-th equation is local. Then, by local Hermite normality, the variable uj is
local and aj,j | aj,i for all i for which ui is local.
Let 2k be the smallest power of 2 annihilating all these aj,i. In particular, k ≥ 1
and 2kTj = 2kbj. So 2k(dj − bj) = 0 by Condition (b). We show aj,j | (dj − bj).
Every b ∈ Z2` can be written as b = 2k′ · b′, for a unit b′ ∈ Z2` of order 2` and k′
is independent of the choice of b′. The minimal power of 2 annihilating b is 2`−k′ .
Hence, aj,j = 2`−kd for some unit d and k ≥ 0 because aj,j | aj,i and 2` is the
smallest power of 2 annihilating the aj,i. Next, dj − bj = 2`−k′d′ for 0 ≤ k′ ≤ k for
a unit d′ because 2k annihilates dj − bj. This means that aj,j | (dj − bj) because
2`−k | 2`−k′ and d | d′ (both d and d′ are units).
Lastly, aj,j | aj,iρ(ui) for all i for which the variable class Ci is global because
aj,j 6= 0 and ρ(ui) and thus aj,iρ(ui) are of order at most 2. We conclude that
aj,j | (dj − bj) −

∑
i∈[n],i 6=j aj,iρ(ui) =: b and thus there is a value ρ(uj) satisfying

aj,jρ(uj) = b.

Corollary 4.61. Solvability of weakly global tree-like systems of hyperequations in local
Hermite normal form is CPT-definable.

Proof. Let T̂ be a weakly global system of hyperequations. Recall that we first check
the conditions of Lemma 4.55. Assume that the check is successful and let T = d be a
hyperequation in T̂ . Let k be the smallest k ≥ 1 such that 2k annihilates all coefficients of
local variable classes in T . Then, by Lemma 4.58, we know that the term 2kT is constant
because T̂ is weakly global and k ≥ 1. So we can use Lemma 4.59 to define the value of
2kT and check the conditions of Lemma 4.60 to define whether T̂ is solvable.

To define solvability of weakly global TCESs in CPT, it only remains to convert a weakly
global tree-like system of hyperequations into local Hermite normal form. We treat local
and global hyperequations differently. For the local ones we use Gaussian elimination for
rings as described in Section 4.5.2. For the global ones, Gaussian elimination for fields
suffices.

Lemma 4.62. There is a CPT-term that converts a weakly global tree-like system of hy-
perequations over Z2` into an equivalent one in local Hermite normal form.

Proof. Let T̂ be a weakly-global system of hyperequations. We first define the global
variable classes and rearrange the orders of every local component such that the global
variables are at the end. Second, we transform the local variables and local hyperequa-
tions of each local component into Hermite normal form. This can be done as described
in [103] and outlined above where we ignore the coefficients of global variables (of course,
they are manipulated when adding equations, but we do not care about divisibility for
them and are allowed to do so as stated by local Hermite normality). The local compo-
nents can be processed in parallel because they are independent of each other.

Third, we need to process the remaining global equations. The local components are
processed inductively following the tree on the local components induced by the pre-
order � of T̂ . We now write C � L if C � C ′ for some C ′ ∈ L and C ≺ C ′ if additionally
C /∈ L. Let L be a local component. Assume that, for every local component L′ that is a
direct successor of L, the equation system of all equations with nonzero coefficient of at
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least one variable class C � L′ is in local Hermite normal form. We can simply combine
these systems (i.e., form the union of all equations) for all direct successors of L and
still obtain an equation system in local Hermite normal form. We cannot define an order
between these successors, but any order of them yields an upper triangular coefficient
matrix because a branch of the variable tree cannot use variables of another one.

Let G ⊆ L be the set of global variable classes of L. Let SG ⊆ S be the set of global
equations in which some variable classes in G have nonzero coefficient but all variable
classes C ≺ L have coefficient zero (the others with nonzero coefficient are already in
local Hermite normal form by the induction hypothesis). The variable classes G are the
largest ones (with respect to �) ocurring with nonzero coefficent in SG and thus SG only
uses variable classes on the path from L to the root of the variable tree. Because T̂
is tree-like, the order on the hyperequations is total on SG. Also, the variable classes
occurring with nonzero coefficients in SG are ordered. Thus, we can apply Gaussian
elimination on SG (recall we are working modulo 2 in a field) to bring the equations in
SG into upper triangular form. Note that we only add hyperterms with variables of the
same root-to-leaf path here, and hence the resulting equation system is tree-like again.

Finally, the coefficient matrix enlarged by the variable classes in L is in local Hermite
normal form. Of course, we cannot process the local components one-by-one, but we
have to process the local components of the same level in the tree in parallel. This is, as
discussed before, possible because they are independent of each other.

Theorem 4.63. Solvability of weakly global TCESs over Zq for every prime power q is
CPT-definable.

Proof. Let T be a TCES over Zq. If q is a power of an odd prime, it can be solved
with the procedure for CESs (Corollary 4.52). If q is a power of 2, we first translate T
into the weekly-global tree-like system of hyperequations Hyp(T ) (Lemma 4.54), apply
Lemma 4.62 to convert Hyp(T ) to local Hermite normal form, and then check it for
solvability using Corollary 4.61.

We note that solving a linear equation system over Zp` can be reduced to solving multiple
linear equation systems over Zp for example by using Hensel’s Lemma. But this technique
requires not only to check an equation system for solvability, but also to compute a
solution. This cannot be done in CPT in general because there are TCESs for which
every solution is equivalent to exponentially many other solutions (under automorphisms
of the system).

4.5.5 Intersecting Solution Spaces of TCESs

To canonize structures with dihedral colors later, we need to combine two TCESs T1
and T2 into a TCES T , such that the solution space of T is the intersection of the solutions
spaces of T1 and T2. For two CES with the same variable classes this is indeed easy: We
just take the disjoint union of the equations and one of the preorders. For TCESs, the
situation is more complicated because the tree structures might not be compatible (so we
cannot just take the preorder of one TCES). We will now devise a strategy to combine
TCESs under certain conditions. Our solution allows that the variables (and their orders)
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disagree in the different TCES to a certain extent. In the following we write L(T ) for
the solution space of a TCES.

De�nition 4.64 (Topmost Variables). Let T = (V, S,�) be a TCES. We say that the
variables in V ′ ⊆ V are the topmost variables of T if V ′ is the set of all variables of the
local component Lr that contains the root class of the variable tree (formally, V ′ = ⋃

Lr).

De�nition 4.65 (Compatible TCES). Let Ti = (Vi, Si,�i) be two TCESs over Zq for i ∈ [2]
using variables Vi and with topmost variables V ′i . We call T1 and T2 compatible if
V1 ∩ V2 = V ′1 ∩ V ′2 and V ′1 ∩ V ′2 is a union of variable classes of Ti for all i ∈ [2].

The common topmost variables are required to be a union of color classes of both TCES
because the two TCES can define different orders on the topmost variables.

De�nition 4.66 (Ordered Union of TCESs). Let Ti = (Vi, Si,�i) be two TCESs with topmost
variables V ′i for all i ∈ [2]. The ordered union of T1 and T2 is defined as

T1 <∪ T2 := (V1 ∪ V2, S1 ∪ S2,�1 ∪ �′2 ∪ �′),

where �′2 = �2[V2 \ (V ′2 ∩ V ′1)] and �′ is defined by V ′1 ≺′ V ′2 \ V ′1 and V ′i ≺′ Vj \ V ′j for all
i, j ∈ [2].

Note that given an order on the Ti, that is, T1 can be CPT-distinguished from T2, then
the ordered union T1 <∪ T2 is CPT-definable.

Lemma 4.67. Let Ti = (Vi, Si,�i) be two TCESs over Zq for i ∈ [2] using variables Vi
and with topmost variables V ′i . If T1 and T2 are compatible, then T1 <∪T2 is again a TCES
with topmost variables V ′1 ∪ V ′2 and satisfies L(T1 <∪ T2) = ⋂

i∈[2] L(Ti)|V1∪V2. If both T1
and T2 are weakly global, then T1 <∪ T2 is weakly global, too.

Proof. The order � = �1 ∪�′2 ∪�′ as defined above forms a tree on the variable classes:
By the condition V1∩V2 = V ′1 ∩V ′2 , the only common variables of the two TCESs are the
common topmost ones. On the common variables, we use the order �1. With �′ we order
the topmost variables of T2 not common with T1 after the topmost variables of T1. That
is, considering T2, we just reorder the variable classes of the root local component because
V ′1 ∩ V ′2 is a union of T2-variable classes. Reordering the variable classes of the root local
component of T2 does not change its tree structure (i.e., its local components and the
induced tree on them). By construction, T1 <∪T2 has topmost variables V ′1∪V ′2 . One easily
sees that the variables used in a constraint in Ti for every i ∈ [2] are still contained in a
root-to-leaf path in the variable tree of T1 <∪ T2. Because the set of equations of T1 <∪ T2
is the union of the equations of both TCESs,

L(T1 <∪ T2) =
⋂
i∈[2]

L(Ti)|V1∪V2

follows immediately.
Assume that T1 and T2 are weakly global. Because every local component of Ti is

contained in a local component of T1 <∪ T2 for all i ∈ [2], every global equation of T1 <∪ T2
is a global equation of T1 or T2. It follows that every global variable of T1 <∪T2 is a global
variable of T1 or T2 and thus that the required constraints of the form 2u = 0 are present
for all global variables.
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We generalize our notation and write T = (Tp1 , . . . , Tpk) for a sequence of TCESs with
pairwise disjoint variables over pairwise coprime prime powers pi. We denote the so-
lution space of T by L(T ). A series of TCESs (T1, . . . , Tk) has the topmost variables
V ′ = V ′1 ∪ · · · ∪ V ′k if Ti has the topmost variables V ′i for every i ∈ [k].

We now want to form the union of two series of TCESs: Let T = (Tp1 , . . . , Tp`) and
T ′ = (T ′q1 , . . . , T ′q`′ ) be two series of TCESs. We assume that if pi and qj are prime powers
of the same prime, then actually pi = qj. This can always be ensured as follows. Assume
w.l.o.g. that pi < qj. We turn Tpi into a TCES over Zqj by adding constraints pi · u = 0
for all variables of Tpi . These constraints embed Zpi into Zqj . We write T <∪ T ′ for the
series of TCESs obtained by forming the union of all Tpi and T ′qj whenever pi = qj. The
remaining TCESs are just copied. Lemma 4.67 generalizes to series of TCESs by making
the assumptions of the lemma for all TCESs Tpi and T ′qj for which pi and qi are powers
of the same prime.

4.6 Canonizing Structures with Dihedral Color Classes

In this section, we finally consider canonization of structures with dihedral color classes.
Recall that, for our canonization problem, the reduction to normal forms (Theorem 4.41)
shows that we can assume the input structure to be a dihedral 2-injective quotient struc-
ture. Our further strategy is as follows: We want to reduce canonization of dihedral
2-injective quotient structures to that of structures with abelian color classes and then
apply the canonization for abelian color classes. The main idea is to artificially prohibit
reflections in one color class and then hope that this prohibits reflections in other color
classes as well. For this, we want to exploit the classification of 2-injective subdirect
products of dihedral groups (Theorems 4.5 and 4.6) saying that most 2-injective sub-
direct products are rotate-or-reflect groups. In particular, if we prohibit reflections in
one color class of a rotate-or-reflect group, then reflections in the other color classes are
prohibited, too. This effect of prohibiting reflection continues through most 2-injective
subdirect products and quotient color classes. However, it does not have to reach all
color classes since some 2-injective subdirect products are not rotate-or-reflect groups
(for example if one factor is abelian). We will call the parts of the structure in which
reflections are linked in this way and can only occur simultaneously reflection compo-
nents. We analyze how reflection components can depend on each other. It will turn
out that different reflection components can indeed only be connected through abelian
color classes. We will call these color classes border color classes. Overall, we will follow
a two-leveled approach: On the top-level, we deal with the dependencies between the
border (and all other abelian) color classes and, on the second level, we consider each
reflection component on its own and how it is embedded in its border color classes. To
ensure that the border color classes are indeed all abelian, we have to forbid the single
exception in Theorem 4.5, which is not a rotate-or-reflect group, namely the double CFI
group.

De�nition 4.68 (Double-CFI-Free Structure). We call a 2-injective dihedral quotient struc-
ture A double-CFI-free if, for every basic constituent T ∈ TA

gr, the group ΓA
T is neither

isomorphic to the double CFI group Γ2CFI nor to Γ2CFI ∩ (Rot(D4)× D4 × D4).
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We consider two natural classes of structures that are double-CFI-free after applying the
preprocessing.

De�nition 4.69 (Odd-Dihedral). A dihedral q-bounded structure A is odd-dihedral if, for
every dihedral color class C ∈ CA, there is an odd k ∈ N such that Aut(C) ∼= Dk.

Lemma 4.70. Let A be a dihedral q-bounded structure of arity at most 3. If A satisfies
one of the following conditions, then the 2-injective quotient structure A′ obtained after
applying Theorem 4.41 is double-CFI-free:

1. A is odd dihedral.

2. A is a binary structure.

Proof.

1. Let A′ be the 2-injective quotient structure obtained by the preprocessing steps
and let C ′ ∈ CA′ have a dihedral automorphism group. By Theorem 4.41 and
Lemma 4.40, there is a color class C ∈ CA such that Aut(A′[C ′]) is a section of
Aut(A[C]). By assumption, there is an odd k such that Aut(A[C]) ∼= Dk and thus
Aut(A′[C ′]) ∼= Dk′ for an odd k′. So in A′ no color class has an automorphism group
isomorphic to D4 and thus A′ is double-CFI-free.

2. For every 2-injective subdirect product occurring in A, there is at least one factor
such that the projection on it is the trivial group by Lemma 4.40. This is not the
case for the two forbidden groups, so they cannot occur.

4.6.1 Reflection Components

Let q ∈ N, τ be a signature, and A = (Agr]Aex, R
A
1 , . . . , R

A
k ,�A) be an arbitrary dihedral

q-bounded 2-injective double-CFI-free quotient τ -structure in standard form, which we
fix throughout this section. Whenever we construct a CPT-term in the following, it does
not depend on A but is evaluated on A and it satisfies the claimed properties for all
dihedral 2-injective double-CFI-free quotient τ -structures.

We introduce notation: We use the set O := {�, �} to denote orientations (e.g., think
of the two possible ways to turn an undirected cycle into a directed cycle). For an
orientation o ∈ O, we set õ := o′ as the reverse orientation, so that O = {o, o′}.

De�nition 4.71 (Orientation). We say that a structure A′ = (Agr ]Aex, R
A
1 , . . . , R

A
k ,�A′) is

an orientation of A if �A′ refines �A with the following property: For every color class
C ∈ CA that is split by �A′ , the group Aut(A[C]) is non-abelian and dihedral and C is
split into two color classes C�and C�, such that each of the two classes contains one of
the two oriented cycles inducing the standard form in C. We say that A′ orients C.

By splitting the color class C in the above manner, we precisely forbid the reflections in C.
Note that an orientation modifies only the preorder of the structure. Hence, defining an
orientation of A is always canonization preserving because we can easily undo the changes
in CPT.
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For a dihedral color class C, we can define in CPT two orientations Ao
C for both

o ∈ O that only orient C (by the two possible orderings of Co ≺′ C õ). Of course, we
cannot choose one orientation canonically. But the orientation of C can canonically be
propagated to other color classes in the following cases:
(a) whenever C is part of a rotate-or-reflect group (because once we cannot reflect in

one component, we cannot do so in the others) and

(b) whenever C ′ is a quotient of C or vice versa (because, unless C ′ is already abelian,
removing reflections in C also removes reflection from quotients and vice versa).

We now formalize the propagation of orientations.
De�nition 4.72. We define the relation ⇑ on the color classes of A as follows: C1 ⇑ C2 if
and only if both C1 and C2 are dihedral and one of the following conditions hold:
(a) C1, C2 ⊆ Agr and there is (up to reordering of the color classes) a group constituent

T = (C1, C2, C3) ∈ Tgr

(b) Ci ⊆ Agr, Cj ⊆ Aex, and Ci is a quotient of Cj for {i, j} = [2].
The equivalence relation

W

is the reflexive and transitive closure of ⇑.
Note that if C1

W

C2 and C1 6= C2, then both C1 and C2 are non-abelian. First, we show
that if C1

W

C2 and given an orientation of C1, we can define an orientation of both C1
and C2 in CPT. Second, we analyze how the structure A decomposes into

W

-equivalence
classes.

4.6.1.1 Propagation of Orientations

To analyze the effect of orienting one component of a 2-injective subdirect product, we
use the classification of 2-injective subdirect products of dihedral groups (Theorems 4.5
and 4.6).
Lemma 4.73. Let T = (C1, C2, C3) ∈ Tgr be a group constituent. Then one of the following
holds:

1. ΓT is abelian, in particular Ci is abelian for all i ∈ [3].

2. ΓT is a rotate-or-reflect group, in particular Ci is non-abelian for all i ∈ [3].

3. Up to permutation of the color classes, C1 and C2 are non-abelian, Aut(C3) is iso-
morphic to one of {D2,C2,C1}, and πC3(ΓT ) is a rotate-or-reflect group.

Proof. If Conclusion 1 does not hold, then, w.l.o.g., C1 is non-abelian. By the properties of
2-injective quotient structures, ΓT is a 2-injective subdirect product. If Ci is non-abelian
for every i ∈ [3], then the group ΓT is either a rotate-or-reflect group or the double CFI
group by Theorem 4.5. The later one is impossible because A is double-CFI-free.

Assume C2 is non-abelian and C3 is abelian. If Aut(C3) is a cyclic group, then πC3(ΓT )
is a rotate-or-reflect group by Theorem 4.6 and Aut(C3) ∈ {C2,C1}. The double CFI case
is not possible again because A is double-CFI-free. If Aut(C3) is not a cyclic group, then
Aut(C3) ∼= D2 because D2 is the only non-cyclic abelian dihedral group. Finally, it cannot
be the case that both C2 and C3 are abelian by Theorem 4.6.
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Lemma 4.74. There is a CPT-term that, for every T = (C1, C2, C3) ∈ Tgr and every
orientation A′ orienting at least one of C1, C2, and C3, defines another orientation A′′

orienting all non-abelian color classes of C1, C2, and C3.

Proof. Let T = (C1, C2, C3) ∈ Tgr and A′ orient at least one of C1, C2, and C3. If A′
orients all of the non-abelian color classes, we just set A′′ := A′. Otherwise, we set
V := ⋃

i∈[3],Ci not abelianCi to be the atoms in non-abelian color-classes (in A). Then ΓA
T |V

is a rotate-or-reflect group by Lemma 4.73 and thus ΓA′
T |V cannot contain any reflections.

We define and order the 2-orbits of ⋃i∈[3]Ci under ΓA′
T using Lemma 4.27. Then, for each

color class with dihedral automorphism group, the two directed cycles belong to different
orbits and we define �′′ accordingly.

It remains to consider quotient color classes:

Lemma 4.75. There is a CPT-term that, for every dihedral extension color class C ⊆ Aex,
every non-abelian N-quotient C ′ ⊆ Agr of C (where N /Aut(C)), and every orientation A′

orienting one of C and C ′, defines an orientation A′′ orienting both C and C ′.

Proof. Let C, C ′, N , and A′ be as required by the lemma. Note that N ≤ Rot(Aut(C))
because Aut(C ′) is non-abelian and all normal subgroups of a dihedral group are abelian.
Because N does not contain reflections, an atom in one standard form cycle of C is
never in the same N -orbit as an atom of the other cycle. In particular, the atoms of one
standard from cycle of C are adjacent via the orbit-map relation only to atoms in one
standard form cycle of C ′ (and the same for the other standard from cycles of C and C ′).
Hence, if there is an order on the two cycles of C (or C ′, respectively), we can lift the
order to the two cycles of C ′ (or C, respectively) via the orbit-map. This approach is
clearly CPT-definable.

Corollary 4.76. There is a CPT-term that, for every C1

W

C2 ∈ CA and every orienta-
tion A′ orienting C1, defines an orientation A′′ orienting both C1 and C2.

Proof. Because

W

is the reflexive and transitive closure of ⇑, it suffices to show that the
lemma holds for the relation ⇑. Let C1 ⇑ C2 ∈ CA and A′ be an orientation orienting C1.
If C1 and C2 are non-abelian group color classes and up to reordering of the color classes
(C1, C2, C3) ∈ Tgr is a group constituent, then the claim follows by Lemma 4.74. Other-
wise, w.l.o.g., C1 is a non-abelian quotient of C2 and the claim follows by Lemma 4.75.

4.6.1.2 Reflection Components and Border Color Classes

Corollary 4.76 shows that given an orientation of one color class C, we can orient theW

-equivalence class of C in CPT. This observation gives rise to the following definition:

De�nition 4.77 (Re�ection Component). We call a

W

-equivalence class D ⊆ CA containing
only non-abelian color classes a reflection component.

Figure 4.7 shows an example of a dihedral 2-injective structure with its reflection com-
ponents. Recall that by definition of

W

, the abelian color classes are all in singleton
equivalence classes. Because all color classes of a reflection component can be oriented
by orienting only a single color class, we can speak of the two orientations of a reflection



4.6. Canonizing Structures with Dihedral Color Classes 107

π1 rotate-or-
re�ect group

π1 rotate-or-
re�ect group

rotate-or-
re�ect group abelian group

re�ection componentborder color class

4.7 A 2-injective quotient structure with dihedral colors. A dihedral color class is drawn as
hexagon, a cyclic color class as directed hexagon (cf. Figure 4.3). The group color classes are at
the top and the extension classes are at the bottom. The horizontal lines depict relations of arity 3.
A vertical lines between group and extension color classes depict the orbit-maps. The re�ection
components are encircled in blue and border color classes are green. By the classi�cation of the
2-injective subdirect products of dihedral and cyclic groups, all occurring groups are either abelian
or rotate-or-re�ect-groups.

component D. They can be defined in CPT by first orienting the smallest color class
(with respect to �) contained in D and then applying Corollary 4.76. We make some
simple observations:

Corollary 4.78. There is a CPT-term defining the set of all reflection components of A.

Corollary 4.79. The two orientations A[D]o for o ∈ O of every reflection component D
have abelian colors.

Corollary 4.80. Aut(A[D]) is a rotate-or-reflect group for every reflection component D.

Corollary 4.81. Canonization of dihedral q-bounded 2-injective double-CFI-free quotient
τ -structures containing at most one reflection component is CPT-definable for all q and τ .

Proof. Assume that A has only one reflection component D. We define the two orienta-
tions Ao for o ∈ O of A by orienting the reflection component D. Both Ao have abelian
color classes. We define canons can(Ao) using the CPT-canonization for q-bounded struc-
tures with abelian colors [118]. From these, we define two canons can(Ao) of A by undoing
the orientation. If they are different, we output the lexicographically smaller one. Oth-
erwise, we output the unique element contained in the set {can(A�), can(A�)}.

We now deal with the case that A contains multiple reflection components and thus have
to deal with the restrictions that possible canons of one reflection component impose on
other reflection components. To do so, we will define the canonical labelings (recall, the
set of isomorphisms into the canon) of a reflection component. Because this set can be
exponentially large, we will encode it as a solution of an equation system (similar to the
approach to define canonization of abelian color classes). In fact, we will use the two
equations systems given for the two orientations of a reflection component D to define
an equation system for D. However, we will actually not be interested in the entire set
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of canonical labelings, but only in their restrictions onto the color classes connecting a
reflection component to the rest of the structure. We now analyze properties of color
classes that connect different reflection components.

De�nition 4.82 (Border Color Class). Let D ⊆ CA be a reflection component. We call a
color class C ∈ CA a border color class of D if C /∈ D and C is related to a color class
contained in D. We denote by B(D) the set of all border color classes of D.

See Figure 4.7 for an illustration of border color classes.

Corollary 4.83. There is a CPT-term that, for every reflection component D, defines the
set of border color classes B(D).

Lemma 4.84. Let D ⊆ CA be a reflection component and C ∈ B(D) be a border color
class of D. Then Aut(C) is isomorphic to one of {C1,C2,D2} and C is a group color class.

Proof. Let C ′ ∈ D be related to C (such a C ′ exists by the definition of a border color
class). Because C ′ ∈ D, its automorphism group is non-abelian. We first make a case
distinction on C. If C ⊆ Agr is a group color class, we make a second case distinction
on C ′. If C ′ ⊆ Agr is a group color class, too, let C1 = C, C2 = C ′, and C3 be the
three related group color classes forming a 2-injective subdirect product. Because C ′
is non-abelian, at least two of the Ci are non-abelian by Lemma 4.73. So at least one
of C1 and C3 is non-abelian (because C2 = C ′ is non-abelian). If C1 = C is non-abelian,
then C

W

C ′ contradicting that C ∈ B(D). So C must be abelian and hence Aut(C) is
isomorphic to D2,C2, or C1 by Lemma 4.73.

If C ′ ⊆ Aex is an extension color class, then C is a quotient color class of C ′. In
particular, C is a group color class. If C is non-abelian, then C

W

C ′ contradicting
C ∈ B(D). The only abelian quotients of C are isomorphic to D2,C2, or C1. Finally,
consider the case that C ⊆ Aex is an extension color class. Then C ′ ⊆ Agr is a quotient
of C and because C ′ is non-abelian, so is C. In particular, we have C

W

C ′. Once again,
we obtain a contradiction to C ∈ B(D).

We have seen that the border color classes of a reflection component D are all abelian
group color classes. Additionally, two reflection components can only be connected
through them (there could, e.g., be other cyclic groups between the border color classes).
In other words, the reflection components are embedded in a global abelian part of the
structure (cf. Figure 4.7).

De�nition 4.85. For a reflection component D, we define AD := A[B(D) ∪ ⋃D]. We
denote the two CPT-definable (abelian) orientations of AD by Ao

D for o ∈ O.

4.6.1.3 Canonical Labelings of Reflection Components

Let D be a reflection component and assume we are given canons can(Ao
D) for all o ∈ O

(with respect to some fixed canonization). We denote by can(Ao
D) the structure obtained

from can(Ao
D) by undoing the orientation as explained earlier, i.e., by undoing the refine-

ment of the preorder. Then AD
∼= can(Ao

D) � τ , i.e., can(Ao
D) is a canon of AD.

Let ≤ be the lexicographical order on ordered τ -structures. We define the canon
can(AD) to be the ≤-minimal canon can(Ao

D) with o ∈ O. We now analyze the canonical
labelings of a reflection component.
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Lemma 4.86. If can(Ao
D) < can(Aõ

D) for some o ∈ O, then we have Iso(AD, can(AD)) =
Iso(Ao

D, can(Ao
D)).

Proof. Assume can(Ao
D) < can(Aõ

D) for some o ∈ O. We first show

Iso(Ao
D, can(Ao

D)) ⊆ Iso(AD, can(AD)).

Because Ao
D has just a finer preorder than AD and by construction can(AD) = can(Ao

D),
a canonical labeling in Iso(Ao

D, can(Ao
D)) is also a canonical labeling in Iso(AD, can(AD)).

We now show the reverse direction. Because Iso(AD, can(AD)) = Aut(AD)ϕ for all
ϕ ∈ Iso(AD, can(AD)) and Iso(Ao

D, can(Ao
D)) ⊆ Iso(AD, can(AD)). In particular, we have

that
Iso(AD, can(AD)) = Aut(AD)ϕ

for every ϕ ∈ Iso(Ao
D, can(Ao

D)). Fix an arbitrary ϕ ∈ Iso(Ao
D, can(Ao

D)) and assume
ϕ′ ∈ Iso(AD, can(AD)). Then there is a ψ ∈ Aut(AD) such that ϕ′ = ψ ◦ ϕ. The
automorphism ψ is either a rotation or a reflection on all group and extension color
classes of D simultaneously by Corollary 4.80. If ψ is a reflection on one (and hence
all by Corollary 4.80) color classes, then it exchanges the two cycles of the standard
form within each color class and in particular A�

D
∼= A�

D contradicting our assumption.
Hence, ψ is a rotation on all color classes and thus ψ ∈ Aut(Ao

D), i.e., Aut(Ao
D) = Aut(AD).

Then
ϕ′ = ψ ◦ ϕ ∈ Aut(Ao

D)ϕ = Iso(Ao
D, can(Ao

D)).

Lemma 4.87. If can(A�
D) = can(A�

D), then Iso(AD, can(AD)) = ⋃
o∈O Iso(Ao

D, can(Ao
D)).

Proof. The inclusion Iso(Ao
D, can(Ao

D)) ⊆ Iso(AD, can(AD)) follows because, for every
o ∈ O, we have can(AD) = can(Ao

D) analogously as in Lemma 4.86. For the other di-
rection, we have

Iso(AD, can(AD)) = Aut(AD)ϕ
for some fixed (and thus every) ϕ ∈ Iso(A�

D, can(A�
D)). Let ϕ′ ∈ Iso(AD, can(AD)). Then

there is a ψ ∈ Aut(AD) such that ϕ′ = ψ ◦ ϕ. Now ψ is either a reflection or a rotation
on all color classes of D simultaneously by Corollary 4.80. If ψ is a rotation everywhere,
then ψ ∈ Aut(A�

D) and thus

ϕ′ = ψ ◦ ϕ ∈ Aut(A�
D)ϕ = Iso(A�

D, can(A�
D)).

If ψ is a reflection everywhere, then ψ ∈ Iso(A�
D,A

�
D) = Iso(A�

D,A
�
D) (equality holds

because reflections are self-inverse). So ϕ′ = ψ ◦ ϕ ∈ Iso(A�
D, can(A�

D)).

4.6.2 Canonizing Structures with Abelian Color Classes
To encode the canonical labelings of reflection components with equation systems, we
need more details on the CPT-canonization of structures with abelian color classes
from [103, 118]. The canonization proceeds inductively: It canonizes an induced sub-
structure consisting of at most r many color classes, where r is the bound on the arity,
and adds it to the already computed partial canon computed so far. Because the added
substructure is of constant size, one can consider all possible ordered versions of it, and
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pick the minimal one compatible with the existing canon. This compatibility check is
done by checking whether an equation system encoding the canonical labelings of the
canon so far and another one encoding the canonical labelings of the new substructure
are solvable together. The following theorem is a precise statement of the canonization for
bounded abelian colors with all properties needed in this thesis (cf. [103, Lemma 6.12]).
For a finite set M , denote by O(M) the set of orderings M → [|M |].

Theorem 4.88 ([103, Section 6.2.2]). For all q, r ∈ N and every signature τ , there is a
CPT-term that, for q-bounded τ -structure A with transitive and abelian colors of arity r,
defines a canon can(A) on the universe [|A|], cosets of orderings ΛC = Aut(C)σC ⊆ O(C)
with σC ∈ O(C) for every color class C ⊆ CA, pairwise coprime prime powers p1, . . . , p`,
distinct variable sets V1, . . . , V`, and a sequence of CESs S = (Sp1 , . . . ,Sp`) such that Si
is a CES over Zpi using variables Vi and there is a canonical embedding

ι :
⊗
C∈CA

ΛC →
⊗
i∈[`]

ZVipi ,

with the following properties:

1. L(S) ⊆ im(ι) and ι91(L(S)) = Iso(A, can(A)) via the canonical isomorphism between
O(A) and ⊗C∈CA

O(C) given by the total order on the color classes.

2. For every C ∈ CA the following holds: Let q1, . . . , qk be the prime powers such
that Aut(C) ∼=

⊗
i∈[k] Cqi. Then there are numbers j1, . . . , jk ∈ [`] and variable sets

V C
1 ⊆ Vj1 , . . . , V

C
k ⊆ Vjk such that qi | pj and there are constraints qi · u = 0 for all

u ∈ V C
i in Spj embedding Zqi into Zpj for all i ∈ [k].

3. There is a CPT-term (not depending on A) that, for every C ∈ CA, defines the
variable sets V C

i from above such that V C
i ⊆ HF(C) and the cyclic constraints on

these variable sets. It actually suffices to evaluate the term on C.

We do not write the cosets ΛC as Aut(C)σC , because we cannot choose some σC ∈ ΛC

in CPT. The set ⊗C∈CA
ΛC naturally corresponds to a subset of O(A), namely to the

orderings refining the preorder on A. In the following, we just identify these sets. Now,
we show that we can start the canonization of abelian color classes with a TCES, that
describes initial restrictions on the color classes. First, we define the set of orderings
encoded by a TCES.

De�nition 4.89 (Orderings Encoded by a TCES). Let A be a q-bounded structure with
abelian color classes, ΛC be the cosets of orderings for every C ∈ CA, p1, . . . , p` the prime
powers, V := V1 ∪ · · · ∪ V` the variables, and ι the embedding given by Theorem 4.88.
Furthermore, let T be a series of TCESs using variables VT such that V is contained in
the topmost variables of T . We say that T encodes the set of orderings Λ ⊆ O(A) if
L(T )|V ⊆ im(ι) and ι91(L(T )|V ) = Λ.

Lemma 4.90. For all q, r ∈ N and every signature τ , there is a CPT-term that, for
every q-bounded structure A of arity r with transitive abelian color classes and every
series of weakly global TCESs T encoding a nonempty set of orderings Λ ⊆ O(A),
defines a canon can(AT ), cosets of orderings ΛC for every C ∈ CA, pairwise coprime
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prime powers p1, . . . , p`, variables V1, . . . , V`, and a series of CESs S satisfying the con-
ditions of Theorem 4.88 such that S encodes Iso(A, can(AT )) and T <∪ S encodes the set
Iso(A, can(AT )) ∩ Λ 6= ∅.

Proof Sketch. Note that the condition that S encodes Iso(A, can(AT )) is equivalent to the
conditions on the embedding ι in Theorem 4.88. Let q, r ∈ N, τ be a signature, and A
and T as required. We use T as an initial equation system in the canonization. Because T
encodes a nonempty set of orderings, we just forbid some orderings initially, but at least
one remains. So the canonization is done as before: We add induced substructures
of constant size and accumulate all additional constraints in a series of CESs S using
variables V . Then S encodes the set Iso(A, can(AT )). The union T <∪ S encodes the
intersection of both encoded sets by Lemma 4.67 and is weakly global because S is
weakly global. Checks for solvability can be done in CPT by Theorem 4.63.

4.6.3 Canonizing Structures with Dihedral Colors

For canonizing dihedral colors we want to maintain an equation system encoding all
canonical labelings of all abelian color classes (and hence including all border color classes)
that extend to canonical labelings of the input structure. This suffices to encode the
dependencies between different reflection components because – as we have seen in the
previous section – they can only be connected via abelian color classes. As initialization
step, we apply the canonization for abelian colors to all abelian color classes. Then we
want to inductively add one reflection component D in each step (possibly restricting
the canonical labelings of the border color classes). But a reflection component is not of
constant size, so we cannot try out all orderings. To overcome this limitation, we want
to define a canon of the reflection component D by taking the existing partial canon into
account. That is, given an equation system encoding all canonical labelings of the partial
canon computed so far, we want to increase both, the equation system and the canon,
by D in one step.

Fix q ∈ N and a signature τ . For a dihedral q-bounded structure A, we denote the
set of abelian color classes of A by AA ⊆ CA and leave out the subscript if A becomes
clear from the context. From now, we assume that the abelian color classes AA of A are
smaller than the non-abelian ones (according to the total preorder). If not, we can easily
reorder them canonization-preservingly. The algorithmic approach for the canonization
is given in Figure 4.8. Recall that for a set of I-indexed tuples T ⊆ M I and J ⊇ I,
the extension of T to J is denoted by T |J , that is, the maximal set of J-indexed tuples
T ′ ⊆ MJ such that T ′|I = T . For I ⊆ J ⊆ K and T ⊆ MJ , we use T |KI as shorthand
notation for (T |I)|K . For a set I ′ of subsets of I, we write T |J ′ for T |⋃J ′ . Likewise,
for a set K ′ of subsets of K such that ⋃K ′ ⊇ J , we write T |K for T |

⋃
K′ . We apply

the notation also to functions J → M . We first argue that this algorithm indeed is a
canonization and second that it is CPT-definable. From now, we fix an arbitrary dihedral
q-bounded double-CFI-free 2-injective quotient τ -structure A with reflection components
D1 < · · · < Dm. The algorithm maintains canons can(Ai) of Ai := A[A ∪ ⋃j∈[i] Dj] and
sets Λi of canonical labelings.
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Input: A dihedral q-bounded double-CFI-free 2-injective quotient τ -structure A
Output: The canon can(A) of A

1 Compute the set A ⊆ CA of abelian color classes;
2 Compute all re�ection components D1 < · · · < Dm of A;
3 Compute can(A0) := can(A[A]) and Λ0 := Iso(A[A], can(A[A])) using the canonization for

abelian colors;
4 for i ∈ [m] do
5 D := Di;
6 De�ne the two orientations AoD for o ∈ O;
7 Compute can(AoD) and Λo := Iso(AoD, can(AoD)) such that Λi−1 ∩ Λo|A 6= ∅ with the

canonization for abelian colors for both o ∈ O;
8 if can(AoD) < can(AõD) for some o ∈ O then
9 can(Ai) := can(Ai−1) ∪ can(AoD);
10 Λi := Λi−1 ∩ Λo|AB(D);
11 else
12 can(Ai) := can(Ai−1) ∪ can(A�

D) ∪ can(A�
D);

13 Λi := Λi−1 ∩ (Λ� ∪ Λ�)|AB(D);
14 can(A) := can(Am);

4.8 CPT-canonization of 2-injective double-CFI-free structures. The pseudocode of the algorith-
mic approach to canonize q-bounded structures with dihedral colors in CPT. This section discusses
how the algorithm can be implemented in CPT.

Lemma 4.91. For every i ≤ m, we have Ai
∼= can(Ai) � τ and Λi = Iso(Ai, can(Ai))|A.

Proof. For the case i = 0, we have A0 = A[A] and both can(A0) and Λ0 are given by the
canonization of abelian colors as required (Theorem 4.88). So inductively assume i > 0,
Ai−1 ∼= can(Ai−1) � τ , and Λi−1 = Iso(Ai−1, can(Ai−1))|A. Let D = Di and Ao

D be the
two orientations of AD for o ∈ O. Using the canonization for abelian colors, we obtain a
canon can(Ao

D) of Ao
D and the set Λo = Iso(Ao

D, can(Ao
D)) of canonical labelings such that

Λi−1∩Λo|A 6= ∅ for both o ∈ O (Lemma 4.90). We perform the same case distinction as in
Line 8: If can(Ao

D) < can(Aõ
D) for some o ∈ O, then Iso(AD, can(AD)) = Iso(Ao

D, can(Ao
D))

by Lemma 4.86 and for can(Ai) = can(Ai−1) ∪ can(Ao
D) it holds that

Iso(Ai, can(Ai)) = Iso(Ai−1, can(Ai−1))|Ai ∩ Iso(Ao
D, can(Ao

D))|Ai ,

where Ai is the universe of Ai and

Λi = Λi−1 ∩ Λo|B(D)|A = Iso(Ai−1, can(Ai−1))|A ∩ Iso(Ao
D, can(Ao

D))|AB(D).

The reflection component D is only connected to its border color classes B(D) ⊆ A. So
we finally have (

Iso(Ai−1, can(Ai−1))|Ai ∩ Iso(Ao
D, can(Ao

D))|Ai
)∣∣∣

A

= Iso(Ai−1, can(Ai−1))|A ∩ Iso(Ao
D, can(Ao

D))|AB(D)

and so Λi = Iso(Ai, can(Ai))|A. The case can(A�
D) = can(A�

D) proceeds similarly using
Lemma 4.87.
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To express the algorithm in CPT, the main obstacle is that the sets Λi cannot be de-
fined directly in CPT because they are possibly exponentially large. Hence, we adapt
the approach of the canonization for abelian color classes and encode the sets Λi with
sequences of weakly global TCESs Ti. We maintain that the variables VA of the abelian
color classes A are contained in the topmost variables of the Ti. Again, all following
CPT-terms do not depend on A but are evaluated on A.

It is clear that Lines 1 to 6 are CPT-definable. The reflection components in Line 2
are CPT-definable by Corollary 4.78. In Line 3, we use the CPT-canonization for abelian
color classes. It defines, apart from the canon, a series of CESs T0 encoding Λ0 using
variables VA (and hence has topmost variables VA) by Theorem 4.88.

For Line 7, we use Lemma 4.90 to define the canons can(Ao
D) that are compatible

with the canon can(Ai−1) computed so far. We use Ti−1 as an initial equation system to
canonize Ao

D, which has topmost variables VA. Because there is at least one canonical
labeling, ∅ 6= L(Ti−1) ⊆ L(T0). So Lemma 4.90 can be applied and we obtain two
sequences of CESs SoD. Note that the variables VB(D) of the border color classes of D are
contained in VA and the variables of SoD for all o ∈ O.

Lines 8 to 12 are CPT-definable: In Line 10, we set Ti := Ti−1 <∪ SoD. Because the
common topmost variables of Ti−1 and SoD are VB(D), we can apply Lemma 4.67 to show
that Ti encodes Λi: The variables in VA are contained in the topmost variables of Ti, the
TCES Ti encodes Λi−1 ∩ Λo|A|A, and Ti is weakly global because Ti−1 is weakly global
(and SoD is a CES).

The intersection in Line 13 can be performed again due to Lemma 4.67. So we are only
left to show that, given a CES SoD that encodes Λo = Iso(Ao

D, can(Ao
D)) for a reflection

component D and both o ∈ O, we can define a series of weakly global TCESs with VB(D)
contained in its topmost variables encoding (Λ�∪Λ�)|AB(D). We show this in the following
section.

4.6.4 Equation Systems for Reflection Components
Fix an arbitrary 1 < i ≤ m, let T = Ti−1 be the series of weakly global TCESs for the
partial canon can(Ai−1) defined so far, and letD = Di be the next reflection component to
canonize. Let the variables of the border color classes of D be B = B1 < · · · < Bk. Recall
that these variables are CPT-definable only from the border color classes (Theorem 4.88)
and that T already contains cyclic constraints for these variables (because B ⊆ VA). In
particular, B is contained in the topmost variables of T , which contain VA.

Next, let Ao
D be the two orientations of D for both o ∈ O. Further, let can(Ao

D)
be the canons defined in Line 7 and let So be the series of CESs encoding the sets
Λo := Iso(Ao

D, can(Ao
D)) for both o ∈ O as defined before (using Lemma 4.90). Note that

the two series of CESs use the same variables for the border color classes (because they are
equal in both orientations). We have to consider the remaining case can(A�

D) = can(A�
D)

and thus can(AD) = can(A�
D) = can(A�

D). We would like to define a unique isomorphism
in Iso(A�

D,A
�
D) = Iso(A�

D,A
�
D). But this is not possible in general. Instead, we show that

a unique restricted isomorphism in Iso(A�
D,A

�
D)|B(D) (which possibly extends to multiple

isomorphisms between the orientations) is CPT-definable.
Note that, by Lemma 4.84, every border color class has an automorphism group

isomorphic to C`2 for some ` ∈ {0, 1, 2} (and are in particular all abelian). Hence, all
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variables for the border color classes range over Z2 by Theorem 4.88. (Precisely, B are
variables over Zp for p a power of 2 and there are constraints 2u = 0 for all u ∈ B
embedding Z2 in Zp, as already discussed for TCESs in Section 4.5.3).

We adapt both series of CESs such that their variables are different, but such that
a variable of a border color class of So can still be identified with a variable of a border
color class of S õ. This can for example be achieved by renaming the variables as follows:
u 7→ (u,AoD). We denote by V o (and Bo, respectively) the changed variables for both
o ∈ O. For two tuples b̄o ∈ ZBo2 , we write b̄� = b̄� if b̄� and b̄� are equal up to the
one-to-one identification of the variables.

Lemma 4.92. There is a CPT-term that on input T and D defines two tuples b̄o ∈ ZBo2
for both o ∈ O (that are equal up to identification of the variables, i.e., b̄� = b̄� in the
above notational convention) such that, for every solution āo of So, there is a solution āõ
of S õ such that āo|Bo + b̄o = āõ|Bõ.

Proof. We first show that for two solutions āo of So for both o ∈ O, the tuple āo|Bo− āõ|Bõ
has the desired property. In the next step, we show how we can define such two tuples
āo|Bo in CPT. For both o ∈ O, we identify ZBo2 with ZB

o
1

2 × · · · × ZB
o
k

2 via the canonical
bijection Bo → ⋃

i∈[k] B
o
i . We will define two tuples of tuples

b̄o =
(
b̄o1, . . . , b̄

o
k

)
∈ ZB

o
1

2 × · · · × ZB
o
k

2 .

Let āo be a solution of So for both o ∈ O. The two tuples āo encode isomorphisms
ϕo : Ao

D → can(Ao
D) � τ via the embedding ι given by canonization for abelian colors

(cf. Theorem 4.88). They induce two isomorphisms ψo := ϕo ◦ (ϕõ)91 : Aõ
D → Ao

D (recall
that can(Ao

D) = can(Aõ
D)). We cannot describe the action of the isomorphisms ψo on the

reflection component D by tuples (because D is not abelian). But on the border color
classes the action is precisely given by āo|Bo − āõ|Bõ . Restricted to the i-th C2-group
(recall that all border color classes have automorphism group C`2 for some ` ∈ {0, 1, 2}),
both ψo are the identity if āo(u) − āõ(u) = 0 for some (and thus every) u ∈ Bo

i . If
otherwise āo(u) − āõ(u) = 1, then both are the nontrivial element of C2. Now let ā′o be
another solution of So. It again encodes an isomorphism ϕ′o : Ao

D → can(Ao
D) � τ . Then

ϕ′õ := ϕ′o ◦ψõ : Aõ
D → can(Aõ

D) is an isomorphism that is encoded by a solution āõ of S õ.
It satisfies

(ϕ′õ)91 ◦ ϕ′o = (ϕ′o ◦ ψõ)91 ◦ ϕ′o = (ψõ)91 = ψo.

Hence, we have that
āo|Bo − āõ|Bõ = ā′o|Bo − ā′õ|Bõ .

Note that (āo− āõ)(u) = (āo− āõ)(v) for all u, v ∈ Bo
i and every i ∈ [k] because whenever

u 6= v, the cyclic constraints imply āo(u) 6= āo(v) = āo(u) + 1 and so(
āo − āõ

)
(v) = āo(u) + 1− (āõ(u) + 1) =

(
āo − āõ

)
(u)

(recall that we are working in Z2). Hence, the desired tuples b̄o correspond to a tuple
in Zk2 because b̄oi contains either only zeros or only ones. To define the b̄o in CPT, we
want to choose the lexicographically minimal one. This cannot be done straightforwardly,
because k is not bounded.
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We construct the tuples b̄o inductively and fix the entries for one variable set Bo
j per

step. Assume we have defined (b̄o1, . . . , b̄oj−1) such that there is a solution āo|Bo ∈ L(So)
for every o ∈ O such that(

b̄o1, . . . , b̄
o
j−1

)
= āo|Bo1∪···∪Boj−1

− āõ|Bõ1∪···∪Bõj−1
.

To define b̄oj , we want to solve the equation system

ā� ∈ L(S�)
ā� ∈ L(S�)

ā�(u)− ā�(u) = b̄�i (u) i ∈ [j], u ∈ Bi

ā�(u)− ā�(u) = b̄�i (u) i ∈ [j], u ∈ Bi

for the two possible values of b̄oj . Equivalently, we consider the two possible values of b̄õj :
Note that

b̄�i (u) = ā�(u)− ā�(u) = ā�(u)− ā�(u) = b̄�i (u)
because we are working in Z2. But the equations above do not define a series of TCESs
because there is no order between the variables B�

i and B�
i . Hence, we solve four equations

systems, two for each possible value of b̄oi and two for each possible order setting B�
i < B�

i

or vice versa (for which the equation system has obviously the same solutions).
The equation system is solvable for at least one possible value of b̄oi because, by the in-

duction hypothesis, there are solutions āo|Bo ∈ L(So) such that b̄oi = (āo− āõ)|Boi for every
i < j. Thus, additionally setting b̄oj = (āo − āõ)|Boj is a solution for the equation system
above. If the system is solvable for both possible values of āo, we choose b̄oi (u) = 1. The
enlarged tuple (b̄o1, . . . , b̄oj) satisfies the induction hypothesis, too, because by construction
there are solutions āo ∈ L(So) that satisfy (b̄o1, . . . , b̄oj) = āo|Bo1∪···∪Boj − āõ|Bõ1∪···∪Bõj (as part
of the solution of the equation system above).

We now use the tuples b̄o to represent the canonical labelings of the border color classes,
which additionally extend to canonical labelings of the reflection component, as a TCES.

Lemma 4.93. There is a CPT-term that on input T and D defines a series of weakly
global TCESs TD with the following properties:

1. B is contained in the topmost variables of TD.

2. TD encodes the set Iso(AD, can(AD))|B(D) = Λ� ∪ Λ�.

3. The size of TD is polynomial in |D|.

Proof. Let b̄o be the two tuples given by Lemma 4.92. We define a set of two variables
Bα := {α�, α�} (and set αo := AoD), VD := B∪Bα∪V �∪V �, and �D such that it respects
the orders on B and V o and satisfies B ≺ Bα ≺ V o for all o ∈ O. The variable sets V �

and V � of the CESs S� and S�, respectively, are incomparable.
We want to define a TCES TD such that c̄ ∈ L(TD) if and only if then there is an

o ∈ O and a āo ∈ L(So) such that c̄ = āo|B. To do so, we guess two solutions āo ∈ L(So)
(one for each o ∈ O) with the property that āo|B + b̄o = āõ|B (Lemma 4.92). Then we
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want to ensure that c̄ = ā�|B or c̄ = ā�|B. To allow that one equality does not hold, we
use the additional variables α� to express the constraints c̄ = āo|B +αo · b̄o. By enforcing
that exactly one of α� and α� is 1, we obtain the desired system. Finally, to make the
system linear, we encode the multiplication αo · b̄o. This is possible because b̄o does not
depend on āo and can be defined before defining the following TCES:

ā� ∈ L(S�)
ā� ∈ L(S�)

c̄(u) = ā�(u) = ā�(u) if b̄�(u) = b̄�(u) = 0, u ∈ B
c̄(u) = ā�(u) + α� = ā�(u) + α� if b̄�(u) = b̄�(u) = 1, u ∈ B

1 = α� + α�

where āo is indexed by V o and c̄ is indexed by B and ranges over Z2. If the variable αo is
assigned to 1, then c̄ = āo|Bo+b̄o and otherwise c̄ = āo|Bo . Because of the cyclic constraint
1 = α� +α�, we add the tuple b̄o to a solution āo of So for exactly one orientation o ∈ O.

Clearly, TD has topmost variables B and, because the size of the So is polynomial
|D|, so is the size of TD. We argue that TD is weakly global: The only global equations
are the equations relating c̄(u) and āo(u). These variables and so all global variables are
over Z2 (embedded in Z2` by equations 2u = 0, as discussed earlier). It suffices to show
that TD encodes the set

Iso(AD, can(AD))|B(D) =
⋃
o∈O

Iso(Ao
D, can(Ao

D))|B(D)

by Lemma 4.87. So we have to show that

L(TD)|B = L(S�)|B� ∪ L(S�)|B�

because So encodes Iso(Ao
D, can(Ao

D)). Let c̄ ∈ L(TD)|B, so there is a solution consisting
of c̄, α�, α�, ā�, and ā� of TD with αo = 0 for some o ∈ O (which must be the case by the
cyclic constraint on α� and α�). In particular, we have āo|Bo = c̄ and āo ∈ L(So). Thus,
c̄ ∈ L(So)|Bo .

For the reverse direction, let āo ∈ L(So) for some o ∈ O. Then by Lemma 4.92 there
is a solution āõ ∈ L(So) such that āo|Bo − āõ|Bõ = b̄o. So c̄ = āo|Bo , αo = 0, αõ = 1, āo,
and āõ form a solution of TD, in particular, c̄ = āo|Bo ∈ L(TD)|B.

Now, we finally defined all operation on TCESs needed for our canonization and conclude:

Theorem 4.94. Canonization of q-bounded dihedral double-CFI-free 2-injective quotient
τ -structures is CPT-definable for every q ∈ N and every signature τ .

Proof. By Lemma 4.91, we indeed are able to define a canon if we can encode the sets Λi

in CPT. The discussion after Lemma 4.91 and Lemma 4.93 show that the sets can be
encoded by CPT-definable series of TCESs.

Theorem 4.95. For every q ∈ N and every relational signature τ , canonization of the
following classes of structures is CPT-definable:

1. q-bounded ternary relational τ -structures with odd dihedral or cyclic colors and
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2. q-bounded binary τ -structures with dihedral or cyclic colors.

Proof. The claim follows from Lemma 4.70 and Theorem 4.94.

From the Immerman-Vardi Theorem (Theorem 2.1) it follows that CPT captures Ptime
on these classes:

Corollary 4.96. For every q ∈ N and every relational signature τ , CPT captures Ptime
on the class of q-bounded ternary τ -structures with odd dihedral or cyclic colors and on
the class of q-bounded binary τ -structures with dihedral or cyclic colors.

4.7 Discussion

We separated a relational structure into 2-injective subdirect products and quotients,
gave a classification of all 2-injective subdirect products of dihedral and cyclic groups,
and used this classification to canonize relational structures with bounded dihedral colors
of arity at most 3. We showed that the structure decomposes into reflection components
and that in these components either all color classes have to be reflected or none. If
we exclude a single 2-injective subdirect product, namely the double CFI group, the
reflection components can only have abelian dependencies. This is always true for binary
structures because the said group cannot be realized by binary structures with dihedral
colors. In fact, we demonstrated the increase of complexity when considering structures
of arity 3 instead of 2. Apart from the fact that the double CFI group does not appear, a
classification of 1-injective 2-factor subdirect products of dihedral groups is much easier.
Considering higher arity, already 3-injective 4-factor subdirect products of dihedral groups
cannot be classified to be (almost) abelian or reflect-or-rotate groups. If one instead tries
to reduce the arity of the structures, one needs not only to work with a class of groups
closed under taking quotients and subgroups (which is the case for dihedral and cyclic
groups), but also closed under taking direct products.

One natural way to exclude the double CFI group is a restriction to odd dihedral
colors. The difficulty with even dihedral groups might indicate that looking at odd
(non-dihedral) groups could be a reasonable next step. A natural graph class with odd
automorphism groups are tournaments. Since such groups are solvable, there is hope for
an inductive approach exploiting the abelian case. It could be possible that the techniques
developed in this chapter transfer to this case. Just like dihedral groups, odd groups are
closed under taking quotients and subgroups. However, they are also closed under direct
products (and are solvable), which would allow a reduction of the arity. Thus, it is possible
to apply our reduction to quotients and 2-injective groups. As a next step, one could try
to follow a similar strategy as for dihedral colors: Identify components of the structure,
in which the complexity of all color classes decreases simultaneously, when a single color
class is made easier (similar to reflection components). This might not immediately result
in abelian groups, but recursion on the complexity of the groups could be a reasonable
option, e.g., on the length of the composition series or on the nilpotency class.
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Chapter 5

Choiceless Polynomial Time with
Witnessed Symmetric Choice

We now address the question of isomorphism testing versus canonization in logics and in
particular in CPT. That is, we consider the question whether a definable isomorphism
test implies a definable canonization. Grohe, Schweitzer, and Wiebking [59] introduced
the Deep Weisfeiler Leman computation model (DeepWL) to show that a CPT-definable
isomorphism test implies a CPT-definable complete invariant. A complete invariant is
similar to a canonization: For every structure, a complete invariant defines an ordered
object such that the ordered objects obtained for two structures are equal if and only
if the two structures are isomorphic. The crucial difference to a canonization is that
the object defined by the complete invariant is not an isomorphic (and ordered) copy
of the input structure but just some ordered object. So in the setting of a complete
invariant, the Immerman-Vardi Theorem cannot be exploited to capture Ptime. In
an algorithmic context, Gurevich [62] showed how to turn a complete invariant into a
canonization algorithm. The only requirement is that the considered class of structures
is closed under individualization, so intuitively under coloring some atoms with unique
colors. Gurevich’s algorithm uses the complete invariant to compute a canonical orbit of
the input structure, chooses an arbitrary atom in that orbit, and individualizes it. This
process is continued until all atoms are individualized and thus a total order is computed.
Because the algorithm only chooses from orbits, the resulting ordered object is indeed
equal for all choices.

However, it is not clear whether Gurevich’s algorithm can be implemented in CPT
because it is based on making choices. To implement Gurevich’s algorithm, we consider
the extension of CPT with witnessed symmetric choice called CPT+WSC. Witnessed
symmetric choice allows for arbitrary choices from definable orbits: One defines an orbit in
the logic, from which an arbitrary element is chosen. The restriction to choose from orbits
ensures isomorphism-invariance of the logic. To evaluate such a logic, we need to check
whether the defined choice-sets are indeed orbits. Because it is unknown whether orbits
can be computed in polynomial-time, the logic has to additionally provide witnessing
automorphisms. That is, for every choice-set and all elements a and b in this choice-
set, the logic has to define an automorphism mapping a to b. In this way, checking
whether the choice-sets are indeed orbits becomes easy and the logic can be evaluated in
polynomial-time.

In that fashion, Gurevich’s canonization algorithm becomes CPT+WSC-definable
because the algorithm indeed repeatingly defines and chooses from orbits. However, we
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have to extend the algorithm to provide witnessing automorphisms. It will turn out that
Gurevich’s algorithm can be exploited again to produce these witnessing automorphisms.
So we can turn a CPT+WSC-definable complete invariant into a CPT+WSC-definable
canonization. However, [59] only shows that a CPT-definable isomorphism test implies
a CPT-definable complete invariant (and thus, by the prior reasoning, a CPT+WSC-
definable canonization). Actually, we are interested in a logic in which isomorphism
testing implies canonization. So we extend the results of [59] from CPT to CPT+WSC
and indeed prove that for CPT+WSC isomorphism testing implies canonization and thus
also implies that CPT+WSC captures Ptime.

Related Work. IFP extended with symmetric choice (IFP+SC), that is, with choices
from definable orbits but without providing witnessing automorphisms, was first stud-
ied by Gire and Hoang [42]. Symmetric choice is integrated into a fixed-point operator
to allow for repeated choices. The authors also considered witnessed symmetric choice
(IFP+WSC) where certifying automorphisms have to be provided. As discussed be-
fore, these witnessing automorphisms are required to ensure polynomial-time evaluation.
Dawar and Richerby [31] provided a more sophisticated definition of the semantics of
this fixed-point operator with symmetric choice. We essentially follow this approach to
integrate witnessed symmetric choice into CPT. We review further existing work on in-
tegrating different concepts of choice into fixed-point logic at the beginning of Chapter 6,
which considers extensions of IFPC with witnessed symmetric choice.

As already discussed in Chapter 1, CPT defines a canonization for padded struc-
tures [19], bounded and abelian structures [118], and (some) bounded and dihedral struc-
tures as seen in Chapter 4. All these approaches are somehow orthogonal to witnessed
symmetric choice. They exploit the fact that some set of objects, for which it is not
known whether they form orbits, is small enough to try out all possible choices.

Overview of this Chapter. We first extend CPT with a fixed-point operator with wit-
nessed symmetric choice in Section 5.1 and obtain the logic CPT+WSC. We make some
small but important formal changes to the fixed-point operators with symmetric choice
considered in [31,42]: The formula that defines the witnessing automorphisms has access
to the defined fixed-point. This is necessary to exploit Gurevich’s algorithm to define
witnessing automorphisms. To allow access to the defined fixed-point, we have to put
(potentially) stronger conditions on the defined orbits, which we will discuss later in more
detail. The defined fixed-points are semideterministic, that is, all fixed-points resulting
from different choices are related by an automorphism. These fixed-points have to be
turned into an isomorphism-invariant value, to which the WSC-fixed-point operator eval-
uates. For IFP+WSC, this is achieved using quantifiers [31, 42]. We generalized the
usage of quantifiers to arbitrary formulas called output formulas. While in the first-order
setting the fixed-point operator can only define relations, in the CPT setting we can
of course define arbitrary hereditarily finite sets. For these sets, using output formulas
seems more suitable than solely using quantifiers. Equipped with these changes, defining
Gurevich’s canonization algorithm in CPT+WSC and extending it to provide witnessing
automorphisms becomes rather straightforward in Section 5.2. We prove the equivalence
between isomorphism testing and canonization in CPT+WSC, apart from the one crucial
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step, namely the one that definable isomorphism implies a definable complete invariant
in CPT+WSC.

This step is shown in Section 5.3. For this, we consider the DeepWL computation
model, which is used to show that a CPT-definable isomorphism test implies a CPT-
definable complete invariant [59]. We extend DeepWL with witnessed symmetric choice.
The proof in [59] is based on a translation of CPT to DeepWL, a normalization procedure
in DeepWL yielding the complete invariant, and a translation back into CPT. Unfor-
tunately, it turned out that this normalization procedure cannot be easily adapted to
DeepWL with witnessed symmetric choice. At multiple points we have to change small
but essential parts of definitions and so cannot reuse many results of [59]. The reason is
that DeepWL always processes all elements of a hereditarily finite set in parallel, which
is incompatible with choices: We cannot compute with multiple choices (out of the same
choice-set) at the same time in the same structure because these choices influence each
other. This will force us to nest DeepWL-algorithms to resemble nested fixed-point op-
erators with witnessed symmetric choice. We end with a discussion and open questions
in Section 5.4.

5.1 CPT with a Symmetric Choice Operator

We start by extending BGS with a fixed-point operator with witnessed symmetric
choice (WSC-fixed-point operator). The logic BGS+WSC is the extension of BGS logic
by the following operator to construct formulas. If

• sstep(z̄xy) is a BGS+WSC[τ ]-term,

• schoice(z̄x) is a BGS+WSC[τ ]-term,

• swit(z̄xy) is a BGS+WSC[τ ]-term, and

• Φout(z̄x) is a BGS+WSC[τ ]-formula,

then
Ψ(z̄) = WSC∗xy.

(
sstep(z̄xy), schoice(z̄x), swit(z̄xy),Φout(z̄x)

)
is a BGS+WSC[τ ]-formula. The free variables of sstep and swit apart from x and y and
the free variables of schoice and Φout apart from x are free in Ψ. In particular, y is only
bound in sstep and swit. We call sstep the step term, schoice the choice term, swit the
witnessing term, and Φout the output formula. Intuitively, we want to iterate the
step term sstep(x, y) until we reach a fixed-point for the set x. However, we choose before
each step an element y of the choice-set defined by the choice term schoice(x). Once a
fixed-point is reached, the witnessing term swit must provide automorphisms for every
intermediate step witnessing that we indeed chose from orbits (details later). Finally, Ψ
is satisfied if the output formula Φout(a) is satisfied where a is the set computed through
iteration with choice. Because we always choose from orbits, Φout(a) is satisfied by some
fixed-point a if and only it is satisfied for every possible fixed-point a (details also later).
In this way, the evaluation of BGS+WSC-terms and formulas is still deterministic, so
does not depend on any choices made in the fixed-point computation.
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We remark that here it seems reasonable to allow free variables in iteration terms.
Otherwise, they cannot be used in sstep, schoice, swit, and Φout. While for CPT or BGS
it is clear that nested iteration terms, that is, nested fixed-point computations, can be
eliminated, this is not clear for BGS+WSC.

An Example. To illustrate the definition, we discuss an example. A universal vertex is a
vertex adjacent to every other vertex. A graph G = (V,E) is a threshold graph if we can
reduce it to the empty graph by repeatedly removing a universal or an isolated vertex.
We describe a CPT+WSC-sentence that defines the class of threshold graphs (which we
only do for illustration as the class of threshold graphs is already IFP-definable). The
intuitive idea is the following: The set of vertices that are universal or isolated form an
orbit (note that a graph on more than one vertex cannot have a universal and an isolated
vertex at the same time). Thus, we use a WSC-fixed-point operator to choose one such
vertex, remove it, and repeat this, until no vertex can be removed anymore.

We start with the choice term schoice(x). For a set x ⊆ V the following term defines
the set of vertices that are universal or isolated in G[V \ x]:

r := Atoms \ x,
schoice(x) :=

{
y
∣∣∣ y ∈ r, (∀z ∈ r. y = z ∨ E(y, z)

)
∨
(
∀z ∈ r. y = z ∨ ¬E(y, z)

) }
.

The step term sstep(x, y) adds a chosen vertex y to those already removed:

sstep(x, y) := x ∪ ({y} ∩ Atoms).

The intersection with Atoms is needed to reach a fixed-point when all vertices are removed
from the graph. In that case, schoice defines the empty choice-set, y is the empty set, and
the intersection with Atoms prevents that ∅ is added to x. As certification, the term
t(z, z′) defines the transposition of z and z′ and the witnessing term swit(x) collects all
transpositions of pairs of vertices in the choice-set:

t(z, z′) :=
{

(x, x)
∣∣∣ x ∈ Atoms \ {z, z′}

}
∪
{

(z, z′), (z′, z)
}

swit(x) :=
{
t(z, z′)

∣∣∣ (z, z′) ∈ x2
}
.

Finally, the output formula Φout(x) := x = Atoms checks whether all vertices have been
removed. Overall, the following formula defines the class of threshold graphs:

WSC∗xy. (sstep, schoice, swit,Φout).

The WSC-fixed-point operator will compute the fixed-point of the variable x starting
with a1 = ∅ as initial value for x. First, the term schoice(a1) is evaluated to define the first
choice-set b1 of all universal or isolated vertices of G. One such vertex u1 ∈ b1 is chosen
and the step term sstep(a1, {u1}) is evaluated yielding a2 = {u1}.

Now inductively assume that ai contains all vertices removed so far. Then bi is the set
of all universal or isolated vertices of G−ai. The set bi is now an orbit of (G, ai) (in fact,
an orbit of (G, a1, . . . , ai)). So again, a vertex ui ∈ bi is chosen and added by sstep to ai
yielding the set ai+1 = ai ∪ {ui}. Assume the case that bi is empty in the end. Nothing
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is chosen and the step term is evaluated and yields sstep(ai, ∅) = ai, so a fixed-point is
reached. The output formula defines whether it was possible to remove all vertices.

Finally, the WSC-fixed-point operator evaluates the witnessing term to certify that
indeed all choices where made from orbits. As argued before, all choice-sets are indeed
orbits. The term swit(bi) outputs, for every bi, a set of automorphisms, that for all
u, v ∈ bi, contains an automorphism mapping u to v. Hence, it is certified that the
choice-sets indeed are orbits.

5.1.1 Semantics of Symmetric Choice Operators
We now define the precise semantics of the WSC-fixed-point operator. We consider
evaluation of WSC-fixed-point operators for arbitrary isomorphism-invariant functions in
place of the choice, step, and witnessing terms. This makes the definition independent
of the semantics of CPT and we can reuse it later in Section 5.3. For a finite set of
atoms A, an automorphism of an HF(A)-set a is a permutation ϕ of A such that ϕ(a) = a
by applying ϕ to every occurrence of an atom in a. Formally, for every b ∈ HF(A), we
define

ϕ(b) :=
ϕ(b) if b ∈ A
{ϕ(c1), . . . , ϕ(ck)} if otherwise b = {c1, . . . , ck}.

De�nition 5.1 (Isomorphism-Invariant Function). For a structure A and a tuple ā ∈ HF(A)∗,
a function f : HF(A)k → HF(A) is called (A, ā)-isomorphism-invariant if for every
automorphism ϕ ∈ Aut((A, ā)) and every b̄ ∈ HF(A)k we have f(ϕ(b̄)) = ϕ(f(b̄)).

De�nition 5.2 (Witnessing an Orbit). For a τ -structure A and a tuple ā ∈ HF(A)∗, a set M
witnesses an HF(A)-set N as orbit of (A, ā) if M ⊆ Aut((A, ā)) and, for all b, c ∈ N ,
there is a ϕ ∈M satisfying ϕ(b) = c.

Note that this definition in principle also allows witnessing proper subsets of orbits.
However, the sets N of interest in the following will always be given by an isomorphism-
invariant function and so N can never be a proper subset of an orbit. Now fix an
arbitrary τ -structure A and a tuple ā ∈ HF(A)∗. Let fA,ā

step, f
A,ā
wit : HF(A)×HF(A)→ HF(A)

and fA,ā
choice : HF(A) → HF(A) be (A, ā)-isomorphism-invariant functions. We define the

(possibly infinite) unique least rooted tree T (fA,ā
step, f

A,ā
choice) whose vertices are labeled with

HF(A)-sets (so two nodes in the tree can have the same label) and which satisfies the
following:

(a) The root is labeled with ∅.

(b) A vertex labeled with b ∈ HF(A) has for every c ∈ fA
choice(b) a child labeled with

fA
step(b, c).

Let P(fA,ā
step, f

A,ā
choice) be the set of tuples p = (b1, . . . , bn) of HF(A)-sets such that n ≥ 2,

b1 = ∅, bn−1 = bn, bi−1 6= bi for all 1 < i < n, there is a path of length n in T (fA,ā
step, f

A,ā
choice)

starting at the root, and the i-th vertex in the path is labeled with bi for all i ∈ [n]. The
tree T (fA,ā

step, f
A,ā
choice) models the computation for all possible choices and P(fA,ā

step, f
A,ā
choice) is

the set of all possible labels yielding a fixed-point. For the sake of readability, we call the
elements of P(fA,ā

step, f
A,ā
choice) also paths.
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We say that the function fA,ā
wit witnesses a path p = (b1, . . . , bn) ∈ P(fA,ā

step, f
A,ā
choice) if,

for every i ∈ [n − 1], it holds that fA,ā
wit (bn, bi) witnesses fA,ā

choice(bi) as an (A, ā, b1, . . . , bi)-
orbit. Finally, we define

WSC∗(fA,ā
step, f

A,ā
choice, f

A,ā
wit ) :=

{
bn
∣∣∣ (b1, . . . , bn) ∈ P(fA,ā

step, f
A,ā
choice)

}
if fA,ā

wit witnesses all paths in P(fA,ā
step, f

A,ā
choice) and WSC∗(fA,ā

step, f
A,ā
choice, f

A,ā
wit ) := ∅ otherwise.

Lemma 5.3. If fA,ā
wit witnesses some path in P(fA,ā

step, f
A,ā
choice), then P(fA,ā

step, f
A,ā
choice) is an orbit

of (A, ā).

Proof. Let p∗ = (b∗1, . . . , b∗k) ∈ P(fA,ā
step, f

A,ā
choice) be a witnessed path, let Pi be the set of

prefixes of length i of the paths in P(fA,ā
step, f

A,ā
choice), and let p∗i be the prefix of length i

of p∗. We prove by induction on i that Pi is an orbit. For the root ∅, the claim trivially
holds. We show that p = (b1, . . . , bi+1) is in Pi+1 if and only if there is an automorphism
ϕ ∈ Aut((A, ā)) such that ϕ(p∗i+1) = p. First, assume that p ∈ Pi+1. Let pi be the prefix
of length i of p. By the induction hypothesis, there is an automorphism ϕ ∈ Aut((A, ā))
such that ϕ(p∗i ) = pi. By definition of T (fA,ā

step, f
A,ā
choice), for some c∗i ∈ f

A,ā
choice(b∗i ) and some

ci ∈ fA,ā
choice(bi) it holds that

b∗i+1 = fA,ā
step(b∗i , c∗i ) and bi+1 = fA,ā

step(bi, ci).

Because fA,ā
choice is isomorphism-invariant, we have that fA,ā

choice(bi) = ϕ(fA,ā
choice(b∗i )). Be-

cause p∗ is witnessed, fA,ā
choice(b∗i ) is an orbit of (A, āp∗i ) and so fA,ā

choice(bi) is an orbit of
(A, āpi) = ϕ((A, āp∗i )). It follows that ϕ(c∗i ) and ci are in the same orbit of (A, āpi). So
let ψ ∈ Aut((A, āpi)) such that ψ(ϕ(c∗i )) = ci. We now have

ψ(ϕ(b∗i+1)) = ψ(ϕ(fA,ā
step(b∗i , c∗i ))) = fA,ā

step(ψ(ϕ(b∗i )), ψ(ϕ(c∗i ))) = fA,ā
step(bi, ci) = bi+1

because fA,ā
step is isomorphism-invariant. Because ψ stabilizes b1, . . . , bi, we finally have

that (ψ ◦ ϕ)(p∗i+1) = p.
Second, assume that ϕ ∈ Aut((A, ā)) such that p = ϕ(p∗i ). Then by the induction

hypothesis, pi = ϕ(p∗i ) ∈ Pi. As before, let c∗i ∈ f
A,ā
choice(b∗i ) such that b∗i+1 = fA,ā

step(b∗i , c∗i ).
Because fA,ā

choice is isomorphism-invariant, it holds that ϕ(c∗i+1) ∈ fA,ā
choice(ϕ(b∗i ), ϕ(c∗i )). Be-

cause fA,ā
step is isomorphism-invariant, it holds that

bi+1 = ϕ(b∗i+1) = ϕ(fA,ā
step(b∗i , c∗i+1)) = fA,ā

step(ϕ(b∗i ), ϕ(c∗i+1)) = fA,ā
step(bi, ϕ(c∗i ).

That is, the vertex corresponding to bi (when following the tree T (fA,ā
step, f

A,ā
choice) starting

at the root) has a child labeled with bi+1 and hence p ∈ Pi+1.

Corollary 5.4. The function fA,ā
wit either witnesses all paths in P(fA,ā

step, f
A,ā
choice) or none of

them.

Proof. If there is a witnessed path p∗ = (b∗1, . . . , b∗k) in P(fA,ā
step, f

A,ā
choice), then the set

P(fA,ā
step, f

A,ā
choice) is an orbit. The claim follows because fA,ā

choice is isomorphism-invariant:
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So for every other path p, there is a ϕ ∈ Aut((A, ā)) such that p = ϕ(p∗) and, in par-
ticular, p = (b1, . . . , bk) (i.e., p and p∗ have the same length). Let i ∈ [n − 1]. We
have

fA,ā
wit (bn, bi) = fA,ā

wit (ϕ(b∗n), ϕ(b∗i )) = ϕ(fA,ā
wit (b∗n, b∗i )) ⊆ ϕ(Aut((A, ā, b∗1, . . . , b∗i )))

= Aut(A, ā, b1, . . . , bi).

Assume d, e ∈ fA,ā
choice(bi, ci). Then again, because fA,ā

choice is isomorphism-invariant, we have
ϕ91(d), ϕ91(e) ∈ fA,ā

choice(b∗i , c∗i ). Because p∗ is witnessed, there is a ψ ∈ fA,ā
wit (b∗n, c∗i ) such

that ψ(ϕ91(d)) = ϕ91(e). Hence, ψ ◦ ϕ is contained in fA,ā
choice(bi, ci) and maps d to e.

Corollary 5.5. WSC∗(fA,ā
step, f

A,ā
choice, f

A,ā
wit ) is an (A, ā)-orbit.

Proof. Assume that there is a non-witnessed path (or no path) in P(fA,ā
step, f

A,ā
choice). In

this case, WSC∗(fA,ā
step, f

A,ā
choice, f

A,ā
wit ) = ∅ trivially satisfies the claim. Otherwise, there

is a witnessed path, P(fA,ā
step, f

A,ā
choice) is an orbit, all paths have the same length, and

WSC∗(fA,ā
step, f

A,ā
choice, f

A,ā
wit ) is the set of all sets b that are the last entry of some path

in P(fA,ā
step, f

A,ā
choice). Because P(fA,ā

step, f
A,ā
choice) is an orbit, in particular, the last vertices

in every root-to-leaf-path (which are necessarily at the same depth) form an orbit and
the claim follows.

Now we define the semantics of the WSC-fixed-point operator: For a BGS+WCS-term s
with free variables x1, . . . , xk and a tuple ā ∈ HF(A)` for some ` ≤ k, we write sA(ā) for the
“partial” application of the function sA, that is, for the function HF(A)k−` → HF(A) de-
fined by b̄ 7→ sA(āb̄). Let sstep and swit be BGS+WSC-terms with free variables z̄xy, schoice
be a BGS+WSC-term with free variables z̄x, and Φout be a BGS+WSC-formula with free
variables z̄x. We define(

WSC∗xy. (sstep, schoice, swit,Φout)
)A :={

ā ∈ HF(A)|z̄|
∣∣∣ āb ∈ ΦA

out for all b ∈ WSC∗(sAstep(ā), sAchoice(ā), sAwit(ā))
}
.

In [31], the fixed-point operator with symmetric choice is not evaluated on A, but on the
reduct A � τ ′, where τ ′ ⊆ τ is the subset of relations of the τ -structure A used in the
fixed-point operator. This ensures that adding unused relations to structures does not
change the result of a formula (the additional relations potentially change the orbits of the
structure and choices cannot be witnessed anymore), which is a desirable property of a
logic [37]. We do not use the “reduct semantics” in this chapter. We could in principle use
it but then Section 5.3 would get even more technical without providing further insights.
In Chapter 6, which considers extensions of IFPC with witnessed symmetric choice, we
consider the reduct semantics in more detail.

Failure on Non-Witnessed Choices. While the semantics defined as above results in
a reasonable logic, we want a special treatment of the case when choices cannot be
witnessed. Whenever during the evaluation of a formula, there is a path in P(fA,ā

step, f
A,ā
choice)

that is not witnessed, we abort evaluation and output an error to indicate there was a
non-witnessed choice. Formally, we extend the evaluation by an error-marker †. For a
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structure A, evaluating a term s becomes a function sA : HF(A)k → HF(A) ∪ {†} and
evaluating a formula Φ becomes a function ΦA : HF(A)k → {>,⊥, †}. Whenever a †
occurs, it is just propagated. We omit the formal definitions here. Later, we will see that
the error marker is necessary to guarantee polynomial-time evaluation.

Stabilizing Intermediate Steps. We defined the evaluation of choice terms similar to [31]
using the tree T (fA,ā

step, f
A,ā
choice). However, our definition is different in one crucial aspect: In

the setting of Lemma 5.3, we require that fchoice(bi) defines an orbit of (A, ā, b1, . . . , bi),
where in [31] an orbit of (A, ā, bi, ci) is required. That is, in BGS+WSC one has to
respect in some sense all choices made in previous intermediate steps during the fixed-
point computation. This is crucial to prove Lemma 5.3. This is not required in [31]
because the authors only need that the vertices in T (fA,ā

step, f
A,ā
choice) on the same level are in

the same orbit. We actually need that the paths in the tree in their entirety form an orbit
to establish Corollary 5.4. Due to this corollary, we can give the witnessing term access
to bn when witnessing (A, ā, b1, . . . , bi)-orbits. Accessing the defined fixed-point to witness
intermediate choice-sets will become crucial in the following, namely to define Gurevich’s
algorithm in Section 5.2. We do not require that the actual chosen elements ci are fixed
by the automorphisms because, in contrast to [31], the choice term only gets the bi as
input and not the ci. So if ci and c′i result in the same next intermediate step bi+1, the
subsequent computation will be the same for both choices. For the very same reason and
again in contrast to [31], it is sufficient to label the vertices in the tree T (fA,ā

step, f
A,ā
choice)

only with the intermediate steps bi and not additionally with the chosen elements.

5.1.2 CPT+WSC

Similarly to how CPT is obtained from BGS, we obtain Choiceless Polynomial Time
with witnessed symmetric choice (CPT+WSC) by enforcing polynomial bounds on
BGS+WSC terms and formulas: A CPT+WSC-term (or formula, respectively) is a pair
(s, p(n)) (or (Φ, p(n)), respectively) of a BGS+WSC-term (or BGS+WSC-formula, re-
spectively) and a polynomial. For BGS-operators, we add the same restrictions as in CPT.
For a WSC-fixed-point operator WSC∗xy. (sstep, schoice, swit,Φout), a structure A, and a tu-
ple ā ∈ HF(A)∗, we restrict P(fA,ā

step, f
A,ā
choice) to paths (b1, . . . , bk) of length k ≤ p(|A|) for

which |TC(bi)| ≤ p(|A|) for all i ∈ [k]. If there is a path in P(fA,ā
step, f

A,ā
choice) of length greater

than p(|A|) or in some path there is a set not bounded by p, then the WSC-fixed-point
operator evaluates to †.

It is important that |WSC∗(sAstep(ā), sAchoice(ā), sAwit(ā))| is not required to be bounded
by p(|A|). In fact, using WSC-fixed-point operators only makes sense if the set is allowed
to be of superpolynomial size, as otherwise we could define it with a regular iteration
term. It is also important to output † and not ∅ when the polynomial bound is exceeded
because in that case we cannot validate whether all choice-sets are orbits (and so it might
depend on the choices whether the bound is exceeded or not). To evaluate the witnessing
term we need access to the fixed-point, which cannot be computed if the polynomial
bound is exceeded. Because the WSC-fixed-point operator can only choose from orbits,
CPT+WSC is isomorphism-invariant:
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Lemma 5.6. For every structure A, every CPT+WSC-term s, and every CPT+WSC-
formula Φ, the evaluating functions sA and ΦA are unions of A-orbits.

Proof. The proof is straightforward by structural induction on terms and formulas using
Corollary 5.5.

While Lemma 5.6 only concerns automorphisms, it is easy to see that CPT+WSC also
respects isomorphism between different structures. Using multiple structures would
make Section 5.1.1 formally more complicated without providing new insights. Using
Lemma 5.6 we can show that model checking for CPT+WSC can be done in polynomial
time. Formulas and terms cannot be evaluated naively because, as we have seen earlier,
the sets WSC∗(sAstep(ā), sAchoice(ā), sAwit(ā)) are possibly not of polynomial size.

Lemma 5.7. For every CPT+WSC term (s, p(n)) or formula (Φ, p(n)), we can compute
in polynomial time on input A and ā ∈ HF(A)k the set sA(ā) or the truth-value ΦA(ā),
respectively.

Proof. The proof is by structural induction on terms and formulas. We show that sA(ā) or
sΦ(ā) can be computed in polynomial time for every tuple ā ∈ HF(A) of suitable length.
Assume by the induction hypothesis that CPT+WSC-terms s and t and formulas Φ
and Ψ can be evaluated in polynomial time. We can surely evaluate comprehension
terms, iterations terms, and all formulas composed of s, t, Φ, and Ψ apart from WSC-
fixed-point operators in polynomial time. So we have to consider a WSC-fixed-point
operator

WSC∗xy. (sstep, schoice, swit,Φout).
Because W := WSC∗(sAstep(ā), sAchoice(ā), sAwit(ā)) is an orbit of (A, ā) by Corollary 5.5,
it suffices to compute one b ∈ W (or determine that none exists) and check whether
āb ∈ ΦA

out by Lemma 5.6. Given b, the check can be done in polynomial time by the
induction hypothesis. Some b ∈ W can be computed by iteratively evaluating schoice to
define a choice-set, selecting one arbitrary element out of it, and then evaluating sstep
with this choice until either a fixed-point b is reached or more than p(|A|) iterations are
performed. In the later case output †. If this is not the case, then we check whether swit
witnesses the computed path. If the path is not witnessed, then we abort with output †
and otherwise by Corollary 5.4 we computed one b ∈ W . If we have to construct a set c
with |TC(c)| > p(|A|) at any point during the evaluation, then output † as well. If we
always chose from orbits, then we would have constructed such an excessively large set c
for all possible choices. Otherwise, if some choice-set would not be an orbit we would fail
to witness the orbits and output † as well. We need to evaluate sstep, schoice, and swit at
most p(|A|) many times, so computing b is also done in polynomial time.

5.1.3 Defining Sets
The WSC-fixed-point operator can only output truth-values. These are, by design,
isomorphism-invariant. We now discuss alternatives: Let f : HF(A)k → HF(A) be some
function that we want to define with an iteration term with choice (the domain is the set
of possible values for the parameters). To obtain a logic with well-defined semantics, we
need that ϕ(f(ā)) = f(ā) for every ϕ ∈ Aut((A, ā)). This clearly holds if f only returns
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truth-values (e.g., encoded by ∅ and {∅}). We do not know how to decide in polynomial
time whether the condition ϕ(f(ā)) = f(ā) is satisfied for all ϕ ∈ Aut((A, ā)) during the
evaluation. So we consider functions f : HF(A)k → HF(∅), which generalizes the case of
truth-values but still is syntactically isomorphism-invariant. We define an iteration term
for this case:

WSC∗xy. (sstep, schoice, swit, sout),
where sstep, schoice, swit, and sout are BGS+WSC-terms. The only difference to the itera-
tion term with choice seen so far is that the output formula is replaced with an output
term. Let W = WSC∗(sAstep(ā), sAchoice(ā), sAwit(ā)) to define the evaluation as follows:(

WSC∗xy. (sstep, schoice, swit, sout)
)A

(ā)

:=

⋃
b∈W sAout(āb) if sAout(āb) ∈ HF(∅) for all b ∈ W,
∅ otherwise.

If sAout(āb) ∈ HF(∅) for all b ∈ W , then sAout(āb) = sAout(āb′) for all b, b′ ∈ W . If W 6= ∅,
then the iteration term evaluates to sAout(āb) for some and thus every b ∈ W . Otherwise,
it evaluates to ∅. We now show that the extended WSC-fixed-point operator does not
increase the expressive power of CPT+WSC:

Lemma 5.8. For every signature τ and for all CPT[τ ]-terms sstep, schoice, swit, and sout,
there is a CPT[τ ]-term t such that, for all τ -structures A, it holds that(

WSC∗xy. (sstep, schoice, swit, sout)
)A

= tA.

Proof. Let p(n) be the polynomial bound of the CPT+WSC-term and n = |A|. Let a
be a set constructed during the evaluation. Because of the polynomial bound, we have
|TC(a)| ≤ p(n). The set a corresponds to a directed acyclic graph (DAG), where the leaves
are either atoms or ∅. By the condition |TC(a)| ≤ p(n), the DAG has at most p(n) many
vertices. Note that HF(∅) can be totally ordered in CPT. In particular, if a ∈ HF(∅), then
the DAG corresponding to a can be totally ordered. Given the DAG, we can reconstruct a
in CPT. Let ttoDAG(z) be a CPT-term, which, given a set a ∈ HF(∅), outputs the totally
ordered DAG corresponding to a (that is, we can assume that its vertex set is [|TC(a)|]) as
a set containing the edges of the DAG. If a 6∈ HF(∅), then ttoDAG outputs ∅. Furthermore,
let tfromDAG(z) be the term recovering a from this set. First,

Φ := WSC∗xy.
(
sstep, schoice, swit, (sout 6= ∅)⇒ (ttoDAG(sout) 6= ∅)

)
defines whether sout only outputs HF(∅)-sets. Second,

r :=
{

(i, j)
∣∣∣ i, j ∈ [p(|Atoms|)],WSC∗xy. (sstep, schoice, swit, (i, j) ∈ ttoDAG(sout))

}
defines the DAG given by ttoDAG (with possible some isolated vertices, which can easily be
ignored). Last, Unique({tfromDAG(r) | Φ}) is equivalent to WSC∗xy. (sstep, schoice, swit, sout),
where we use p(n)2 as new polynomial bound (because we just try all pairs i, j).

With an easy inductive argument one sees that also nesting the extended iteration terms
does not increase the expressive power.
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5.2 Canonization in CPT+WSC

In this section, we work with classes of relational τ -structures K. We always assume
that these only contain connected structures because we are interested in isomorphism
testing and canonization. The case of unconnected structures reduces to connected ones.
We now introduce various notions related to defining canonization (Definition 2.3) and
distinguishing k-orbits (Definition 2.5).

De�nition 5.9 (De�nable Isomorphism). A logic L defines isomorphism for a class of
τ -structures K if there is an L-sentence Φ such that, for all A,B ∈ K, the disjoint union
A ]B satisfies Φ if and only if A ∼= B.

In the case that L is CPT+WSC, we require in the previous definition that Φ never
outputs †. In all following definitions, we also require without further mentioning that †
never occurs for any input.

De�nition 5.10 (Complete Invariant). For L ∈ {CPT,CPT+WSC}, an L-definable com-
plete invariant of a class of τ -structures K is a closed L-term s which satisfies the
following: sA = sB if and only if A ∼= B for all A,B ∈ K.

To show that a CPT+WSC-definable complete invariant implies a CPT+WSC-definable
canonization, we need not only to consider a class of τ -structures K, but all pairs (A, ū)
for A ∈ K and ū ∈ A∗. Intuitively, we consider all possible individualizations of some
atoms of A, i.e., assigning each atom in ū a unique fresh color. In that sense, we want
to work with a class of structures closed under individualization. Some formulas we are
going to define in fact iteratively individualize atoms. So it will be convenient to capture
the individualized atoms by CPT+WSC “internal” tuples, that is, many formulas will
have a free variable ι to which we can pass a tuple (encoded using sets) containing the
tuple of individualized atoms. Thus, instead of assuming that the classes of structures
are closed under individualization, we work with the free variable ι to which all possible
tuples can be passed and require in our definitions that certain properties hold for all
possible tuples passed into ι.

In what follows, we will always assume that tuples do not contain duplicates. More-
over, we will freely switch between the “internal” representation of tuples in CPT and
the “external” tuples of individualized atoms whenever needed. For the sake of shorter
formulas, we introduce a slightly special concatenation operation for tuples of atoms in
CPT+WSC. This operation is shorthand notation for a more complex but uninteresting
CPT-term. Let x and y be variables. We write xy for a CPT term satisfying the following
equations:

(xy)A(ū, v) = ūv for all ū ∈ A∗, v ∈ A, v 6= ui for every i ≤ |ū|,
(xy)A(ū, v) = ū for all ū ∈ A∗, v ∈ A, v = ui for some i ≤ |ū|,

(xy)A(ū, {v}) = (xy)A(ū, v) for all ū ∈ A∗, v ∈ A,
(xy)A(ū, ∅) = ū for all ū ∈ A∗.

We additionally use the notation xy to concatenate two tuples such that duplicates in the
second tuple are removed. We write xi for the term extracting the i-th position of a tuple
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or the empty set if i is larger than the length of the tuple (i is encoded as a von Neumann
ordinal). Lastly, we extend the notation from variables to arbitrary CPT+WSC-terms s
and t and write st for the CPT+WSC-term appending the result of t to the result of s
in the way defined above. Clearly, all these terms can be defined in CPT+WSC (or in
CPT if s and t are CPT-terms, too).

In the CPT-setting, individualized atoms can be encoded by tuples of unbounded
length. But because we need the same notions also in Chapter 6, in which we work in a
first-order setting, we encode the individualized atoms by an additional binary relation.
We reserve the special relation symbol E for this relation in this Chapter.

De�nition 5.11 (Individualization of Atoms). Let A be a relational structure. A binary
relation EA ⊆ A2 is an individualization of V ⊆ A if EA is a total order on V and
EA ⊆ V 2. We say that EA is an individualization if it is an individualization of some
V ⊆ A and that the atoms in V are individualized by EA.

De�nition 5.12 (Closure under Individualization). Let K be a class of τ -structures. The class
KE is the class of (τ ∪{E})-structures such that (A,EA) ∈ KE for every A ∈ K and every
individualization EA. A class of σ-structures J is closed under individualization if
J = J E.

The relation EA defines a total order on the individualized atoms, so intuitively it as-
signs unique colors to these atoms. Instead of (A,EA), one can think of (A, ū) where
u1 EA · · · EA u|ū| are the pairwise distinct atoms individualized by EA. In this chapter
we can represent tuples of arbitrary length by a hereditarily finite set. Hence, for the
sake of readability, we continue to work with structures (A, ū). We add a free variable ι
to formulas defining isomorphism, distinguishing orbits, or defining complete invariants
and to interpretations defining a canonization. The free variable ι is used for the tuple
of individualized atoms, e.g., in the following two lemmas.

Lemma 5.13. If an L-term s(ι) is a complete invariant for a class of τ -structures KE,
then there is a CPT-formula Φ(x, y) such that, for every A ∈ K, the relation ≤ defined
by a ≤ b if ab ∈ ΦA is a total order on {sA(ū) | ū ∈ A∗}.

Proof. Let A ∈ K and ū ∈ A∗ be arbitrary. Because classes of structures are isomorphism-
closed, there is another structure B ∈ K and a tuple v̄ ∈ B∗ such that (A, ū) ∼= (B, v̄) and
A ∩B = ∅. Let ϕ : (A, ū)→ (B, v̄) be an isomorphism. Then sA(ū) = sB(v̄) = ϕ(sA(ū)),
but this implies sA(ū) ∈ HF(∅) for all A ∈ K and ū ∈ A∗. Sets in HF(∅) can easily be
compared and ordered in CPT by a formula Φ(x, y) as long as there size is polynomial
in the input structure. Because all sets in {sA(ū) | ū ∈ A∗} are L-definable, these sets
are polynomially sized and Φ(x, y) indeed defines a total order on {sA(ū) | ū ∈ A∗} as
required.

Lemma 5.14. If there is an L-definable complete invariant for a class of τ -structures KE,
then KE has L-distinguishable k-orbits for every k ∈ N.

Proof. Let k ∈ N, sinv(ι) be an L-definable complete invariant for KE, and let Φinv(x, y)
be a CPT-formula defining a total order on the invariant by Lemma 5.13. We define

Φorb(ι, x, y) := Φinv
(
sinv(ιx), sinv(ιy)

)
.
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The L-formula Φorb(ι, x, y) orders two k-tuples ū and v̄ according to the order of Φinv(x, y)
on the complete invariants when individualizing ū and v̄, respectively. So Φorb is a total
preorder. For a structure A ∈ K and a tuple w̄ ∈ A∗, two k-tuples ū, v̄ ∈ Ak are in the
same k-orbit of (A, w̄) if and only if (A, w̄ū) ∼= (A, w̄v̄). This is the case if and only if
sAinv(w̄ū) = sAinv(w̄v̄), that is, Φorb defines and orders the k-orbits of (A, w̄).

Before we show that defining isomorphism and defining canonization are equivalent in
CPT+WSC, we need the following rather technical notion of defining certain 1-orbits,
which will simplify the following proofs.

De�nition 5.15 (Ready for Individualization). A class of τ -structures KE is ready for in-
dividualization in a logic L if there is an L-sentence Φ defining, for every A ∈ KE, a
set of atoms O = ΦA such that

(a) O is a 1-orbit of A, i.e., O ∈ orb(A) and

(b) if there is a 1-orbit disjoint with the E-individualized atoms, then O is disjoint with
the E-individualized atoms.

Of course, we will use the additional variable ι in the CPT-setting also for this definition.
We now show that Gurevich’s algorithm [62], which turns a complete invariant into a

canonization, is CPT+WSC-definable. Intuitively, we iteratively individualize an atom
of a nontrivial orbit which is minimal according to an isomorphism-invariant total order
on the orbits. We continue this procedure, until all atoms are individualized and thereby
defined a total order on the atoms (see Figure 5.1 for an example). While the order
itself is not unique, the isomorphism type of the ordered structure is unique, because we
always chose from orbits. This way, we obtain the canon by renaming the atoms to be just
numbers. We now define this approach formally: Let KE be a class of τ -structures ready
for individualization in CPT+WSC and let sorb(ι) be the corresponding CPT+WSC-term
defining a 1-orbit with the required properties.

For every A ∈ K and every ū ∈ A∗, we define a set labels(A, ū) as follows: If all atoms
are individualized, i.e., every atom is contained in ū, then we set

labels(A, ū) := {ū}.

Otherwise, let O = sAorb(ū) be the 1-orbit given by sorb. In particular, this orbit is disjoint
with ū. We define

labels(A, ū) :=
⋃
w∈O

labels(A, ūw).

For w̄ ∈ labels(A, ū), let ϕw̄ : A → [|A|] be defined via v 7→ i if and only if v = wi. It is
easy to see that labels(A, ū) is an (A, ū)-orbit. Hence, the definition

canon(A, ū) := ϕw̄((A, ū))

is well-defined and independent of the choice of the atom w̄ ∈ labels(A, ū) because
ϕw̄((A, ū)) = ϕw̄′((A, ū)) for all w̄, w̄′ ∈ labels(A, ū).

Lemma 5.16. For all A,B ∈ K, all ū ∈ A∗, and all v̄ ∈ B∗, we have canon(A, ū) ∼= (A, ū)
and canon(A, ū) = canon(B, b̄) if and only if (A, ū) ∼= (B, b̄).
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5.1 Gurevich’s canonization algorithm on an example graph. The top row shows the sequence
of graphs with individualized vertices (shown by Roman numerals) in the algorithm. The bottom row
shows the orbit partition of the graphs (vertices with the same number are in the same orbit). In each
step, one vertex of the orbit with minimal number is chosen and individualized. This process yields
the total order shown on the top right. Another order obtained from di�erent choices in shown below.
Both orders induce to the same canon.

Proof. Let A,B ∈ K, ū ∈ A∗, and v̄ ∈ B∗. First, because the ϕw̄ are bijections for every
w̄ ∈ labels(A, ū), it follows that canon(A, ū) ∼= (A, ū). Second, because the order on the
1-orbits defined by sorb is isomorphism-invariant, canon(A, ū) = canon(B, v̄) if and only if
(A, ū) ∼= (B, v̄). This is essentially the argument why Gurevich’s canonization algorithm
in [62] is correct.

Lemma 5.17. If a class of τ -structures KE is ready for individualization in CPT+WSC,
then CPT+WSC defines a canonization for KE-structures.

Proof. To implement the former approach in CPT+WSC, we first introduce some nota-
tion. We define a fixed-point operator with deterministic choice, which behaves similarly
to the WSC-fixed-point operator, but in which choices are resolved by a total order.

DC∗xy. (sstep, schoice, sorder),

where sstep, schoice, and sorder are CPT+WSC-terms. The first terms sstep(x, y) and
schoice(x) behave exactly as in the symmetric choice operator: sstep defines a step function
and schoice a choice-set (of atoms). But the third term sorder defines a total order on the
atoms and is used to resolve the choices deterministically by picking the minimal one.
The operator evaluates to the fixed-point obtained in that manner or to ∅ if the polyno-
mial bound is exceeded. Because all choices are resolved by a total order, this fixed-point
operator can be simulated by a plain iteration term.

We define a CPT+WSC-interpretation Θ(ι) whose universe is [|A|]. The total order ≤
is just the natural order on [|A|]. For every k-ary relation E ∈ τ , we define a formula
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5.2 Witnessing automorphisms for Gurevich’s algorithm. Witnessing automorphisms for the
example in Figure 5.1: The goal is to witness that {u, v} is an orbit in the graph in which one vertex (I)
is individualized. Gurevich’s canonization algorithm is used to canonize the two graphs, in which u
or v, respectively, is individualized (formally, we use the already de�ned order to resolve choices in
this instance of the algorithm). The obtained total orders induce the witnessing automorphism.

ΨR(ι, i1, . . . , ik) as follows:

tlabel(o, ι) := DC∗xy.
(
ιxy, sorb(ιx), o

)
,

twit(o, ι) :=
{{

(tlabel(o, ιx)j, tlabel(o, ιy)j)
∣∣∣ j ∈ [Card(Atoms)]

} ∣∣∣∣ x, y ∈ sorb(ι)
}
,

ΨR(ι, i1, . . . , ik) := WSC∗xy.
(
ιxy, sorb(ιx), twit(y, x), R(xi1 , . . . , xik)

)
.

Fix an arbitrary structure A ∈ K. Set A< to be the set of all A-tuples of length |A|
containing all atoms exactly once (i.e., the set of all total orders on A). Additionally, fix
an arbitrary ū ∈ A∗.

Claim 1. If w̄ ∈ A<, then tAlabel(w̄, ū) ∈ labels(A, ū).

Proof. Recall here that the tuple operation ιxy discards duplicates from x and y. In
the first iteration, we add ū and another atom to x (or just ū if already all atoms are
individualized). In every iteration, we choose the minimal atom according to w̄ from the
orbit given by sorb until all atoms are individualized. Then nothing is added to x anymore
and a fixed-point is reached. This process follows exactly the definition of labels(A, ū). a

Claim 2. If w̄ ∈ A<, then tAwit(w̄, ū) witnesses that sAorb(ū) is an orbit of (A, ū).

Proof. Assume O = sAorb(ū), v, v′ ∈ O, w̄ ∈ labels(A, ūv), and w̄′ ∈ labels(A, ūv′). Then ϕw̄
is an isomorphism (A, ūv)→ canon(A, ūv) and an isomorphism (A, ū)→ canon(A, ū) be-
cause O is the orbit given by sorb. Likewise, ϕw̄′ is an isomorphism (A, ū)→ canon(A, ū).
We have ϕ91w̄′ ◦ ϕw̄ = {(cj, dj) | j ∈ |A|} ∈ Aut((A, ū)) and (ϕ91w̄′ ◦ ϕw̄)(v) = v′. By
Claim 1, it easy to see that, given some tuple in A<, the term twit exactly defines such
automorphisms for every pair of atoms in the orbit provided by sorb (see Figure 5.2 for
an illustration of witnessing automorphisms for the example in Figure 5.1). a

Claim 3. WSC∗
(
(ιyz)A(ū), (sorb(ιy))A(ū), tAwit(ū)

)
= labels(A, ū).

Proof. As in Claim 1, the WSC-fixed-point operator expresses precisely the definition of
labels(A, ū). By Claim 2, all choices are witnessed because every automorphism stabilizing
some tuple v̄ ∈ A∗ stabilizes all prefixes of v̄. Thus, it also stabilizes all tuples defined
earlier in the iteration. Because we consider the result under all possible choices, the
claim follows. a
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Finally, we show that Θ(A, ū) � τ = canon(A, ū). By Claim 3, (ū, i1, . . . , i`) ∈ ΨA
R if and

only if (i1, . . . , i`) ∈ Rϕw̄(A,ū) for some (and thus every) w̄ ∈ labels(A, ū). This is exactly
the definition of canon(A, ū). Hence, we obtained a CPT+WSC-definable canonization
(Lemma 5.16).

Lemma 5.18 ([59]). If CPT defines isomorphism of a class of binary τ -structures K closed
under individualization, then there is a CPT-term defining a complete invariant for K.

While this lemma is only for binary structures, it can also be applied to arbitrary
structures. Every τ -structure can be encoded by a binary structure using a CPT-
interpretation Θ (in fact, an FO-interpretation suffices) such that Θ(A) ∼= Θ(B) if and
only if A ∼= B. Given a definable isomorphism test for a class of τ -structures K, we can
define an isomorphism test on Θ(K) and vice versa.

Corollary 5.19. If CPT defines isomorphism of a class of τ -structures K closed under indi-
vidualization, then CPT+WSC defines canonization of K-structures and captures Ptime
on K-structures.

This corollary is asymmetric in the sense that we turn an isomorphism-defining CPT-
formula into a canonization-defining CPT+WSC-formula. The next goal is to prove
the symmetric version, which starts with an isomorphism-defining CPT+WSC-formula
(rather than a CPT-formula). We begin with the following theorem (which, similarly to
Lemma 5.18 can also be used for non-binary structures).

Theorem 5.20. If CPT+WSC defines isomorphism of a class of binary τ -structures K,
then CPT+WSC defines a complete invariant for K-structures.

The long proof of this theorem is deferred to Section 5.3. Assuming Theorem 5.20 for
now, we conclude:

Theorem 5.21. Let K be a class of τ -structures closed under individualization. The fol-
lowing are equivalent:

1. K is ready for individualization in CPT+WSC.

2. K has CPT+WSC-distinguishable 1-orbits.

3. K has CPT+WSC-distinguishable k-orbits for every k ∈ N.

4. CPT+WSC defines isomorphism of K.

5. CPT+WSC defines a complete invariant for K.

6. CPT+WSC defines a canonization for K.

Proof. We show 4⇒ 5⇒ 3⇒ 2⇒ 1⇒ 6⇒ 4. Theorem 5.20 proves 4⇒ 5, Lemma 5.14
proves 5 ⇒ 3, Lemma 5.17 proves 1 ⇒ 6, and 3 ⇒ 2 is trivial. To show 2 ⇒ 1, one
can pick the minimal orbit according to the given preorder satisfying the requirement of
ready for individualization. Finally, 6 ⇒ 4 is shown by comparing the two canons of the
two structures given as the disjoint union. This is done as follows: Let scanon be a closed
CPT+WSC-term defining a canonization, that is, it evaluates the interpretation defining
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the ordered copy as an HF(∅)-set using numbers as atoms. Let scc be a CPT+WSC-
term defining the set of the two connected components of the disjoint union, i.e., the
set of the two universes of the structures to test for isomorphism. To evaluate scanon on
a single component of the disjoint union, we need to forbid automorphisms exchanging
the components (in the case that they are isomorphic), so scanon indeed can ignore one
component and just canonize the other. The idea is to add a free variable x to scanon which
will hold a set of atoms forming a component. Let s′canon(x) be the CPT+WSC-term with
a free variable x (unused in scanon) obtained from scanon in the following way: We replace
every occurrence of Atoms in scanon with x and in every WSC-fixed-point operator we add
the tautology x = x in the step, choice, and witnessing term. This way, every WSC-fixed-
point operator has x as free variable and, in particular, all witnessing automorphisms need
to stabilize the component held by x. Hence, the formula Card({s′canon(x) | x ∈ scc}) = 1
is satisfied if and only if both components of the disjoint union are isomorphic.

Finally, we can prove that a definable isomorphism test implies a definable canonization
in CPT+WSC.

Theorem 5.22. If CPT+WSC defines isomorphism of a class of τ -structures K closed
under individualization, then CPT+WSC defines a canonization of K-structures and cap-
tures Ptime on K-structures.

Proof. Let K be a class of τ -structures, for which CPT+WSC defines isomorphism. Can-
onization of K is CPT+WSC-definable by Theorem 5.21 for K and so by the Immerman-
Vardi Theorem 2.1 CPT+WSC captures Ptime.

Corollary 5.23. If graph isomorphism is in Ptime, then CPT+WSC defines isomorphism
on all structures if and only if CPT+WSC captures Ptime.

5.3 Isomorphism Testing in CPT+WSC

The goal of this section is to prove Theorem 5.20, which states that a CPT+WSC-
definable isomorphism test implies a CPT+WSC-definable complete invariant. The proof
of Lemma 5.18 in [59], which proves the same statement for CPT, uses the equivalence
between CPT and the DeepWL computation model. This model ensures that a Turing
machine can only access and modify a relational structure in an isomorphism-invariant
way. For DeepWL, the authors of [59] show that on input A ]B a DeepWL-algorithm
never needs to “mix” atoms of the two structures. This implies that if there is a DeepWL-
algorithm to decide isomorphism, it essentially suffices not to compute on input A]B but
to consider the output of another algorithm on input A and on input B. The run of the
Turing machine in the latter DeepWL-algorithm turns out to be a complete invariant if
the DeepWL-algorithm decides isomorphism. To prove Theorem 5.20, we extend DeepWL
with witnessed symmetric choice and essentially follow the same proof idea albeit with
necessary adaptations. For a more elaborate introduction into DeepWL we refer to [59].

In the rest of this section, we assume that all structures are binary relational struc-
tures. Moreover, we see all relation symbols as binary strings such that Turing machines
with a fixed alphabet can compute with relation symbols.
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Coherent Con�gurations. Before introducing DeepWL, we need some background on
coherent configuration. We start with introducing terminology for general binary rela-
tional structures, which can be seen as edge-colored graphs. Let A be a binary τ -structure.
The inverse of a relation EA (for some E ∈ τ) is(

EA
)91 :=

{
(v, u)

∣∣∣ (u, v) ∈ EA
}
.

We call E undirected if EA = (EA)91 and directed otherwise. We use {u, v} ∈ EA as
notation for {(u, v), (v, u)} ⊆ EA. For π ⊆ τ , two atoms u, v ∈ A are π-connected if
there is a path from u to v only using edges contained in a relation in π. Similarly, we
define π-connected components and strongly π-connected components (π-SCCs).

We now turn to coherent configurations. Let H be a binary σ-structure. A relation
R ∈ σ is called diagonal if RH ⊆ diag(H) := {(u, u) | u ∈ H}. The structure H is a
coherent configuration if it satisfies the following properties:

1. The σ-relations partition H2, that is, {RH | R ∈ σ} is a partition of H2. In
particular, all relations RH are nonempty.

2. Every relation R ∈ σ is either disjoint from or a subset of diag(H).

3. Every relation R ∈ σ has an inverse R91 ∈ σ, i.e., (RH)91 = (R91)H.

4. For every triple (R, S, T ) ∈ σ, there is a number q(R, S, T ) ∈ N such that whenever
(u, v) ∈ RH, there are exactly q(R, S, T ) many w ∈ H such that (u,w) ∈ SH and
(w, v) ∈ TH.

The number q(R, S, T ) is called the intersection number of (R, S, T ). The function
q : σ3 → N given by (R, S, T ) 7→ q(R, S, T ) is called the intersection function of H.
The σ-relations are called colors. Diagonal σ-relations are called fibers. A color R ∈ σ
has an (S, T )-colored triangle if q(R, S, T ) ≥ 1. This can be extended to paths:
A color R has an (S1, . . . , Sk)-colored path if, for every (u, v) ∈ RA, there is a path
(w1, . . . , wk+1) such that w1 = u, wk+1 = v and, for every i ∈ [k], we have (wi, wi+1) ∈ SH

i .
By the properties of coherent configuration, this is either the case for every (u, v) ∈ RA

or for no such edge. We say that a color has k many colored triangles or colored paths if
we want to specify the exact number of these triangles or paths.

The coherent configuration H refines a τ -structure A if H = A and, for every
σ-relation R and every τ -relation E, either RH ⊆ EA or RH ∩ EA = ∅. A coherent
configuration H refining a structure A is a coarsest coherent configuration refining A if
every coherent configuration H′ refining A also refines H. Given a τ -structure A, a coarsest
coherent configuration refining A can be computed canonically with the two-dimensional
Weisfeiler-Leman algorithm. We denote this configuration by C(A).

Structures with Sets as Vertices. In the following, relational structures in which some
“atoms” are obtained as HF-sets of other atoms play an important role. We formalize
this as follows: For a signature τ = {E1, . . . , Ek}, a finite binary τ-HF-structure A is a
tuple (A,AHF , EA

1 , . . . , E
A
k ), where A is a finite set of atoms, AHF ∈ HF(A) \A is a finite

set of HF(A)-sets, and EA
i ⊆ (A ∪AHF )2 for all i ∈ [k], that is, the universe of A is a set

of atoms A and some HF(A)-sets AHF . We call A atoms and V(A) := A∪AHF vertices.
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In that sense, every τ -HF-structure A can be turned into a τ -structure Aflat, where the
sets in AHF become fresh atoms. Conversely, every τ -structure is also a τ -HF-structure,
where the set AHF is empty.

An automorphism of the τ -HF-structure A is a permutation ϕ of A such that

(a) ϕ is an automorphism of AHF , that is, ϕ(AHF ) = AHF , and

(b) (u, v) ∈ EA
i if and only if ϕ(u, v) ∈ EA

i for all i ∈ [k] and all u, v ∈ V(A).

A τ -HF-structure A has potentially fewer automorphisms than the τ -structure Aflat be-
cause the condition that ϕ is an automorphism of AHF vanishes for Aflat. Using this
notion of automorphisms, A-orbits and (A, ā)-orbits (for a tuple ā of HF(A)-sets) are
defined as before.

The disjoint union of two HF-structures A and B is the structure A ]B with atom
set A ] B that is defined as expected. For an HF-structure A and a set M ⊆ V(A) such
that M ⊆ HF(A ∩M), that is, M contains only HF-sets formed over atoms contained
inM , the substructure of A induced byM is denoted A[M ]. We define C(A) := C(Aflat),
that is, coherent configurations are always computed with respect to Aflat.

5.3.1 DeepWL
We are going to introduce the notion of a DeepWL-algorithm from [59]: A DeepWL-
algorithm is a two-tape Turing machine using the alphabet {0, 1} with three special
states qaddPair, qscc, and qcreate. The first tape is called the work-tape and the sec-
ond one the interaction-tape. The Turing machine computes on a binary relational
τ -HF-structure A, but it has no direct access to it. Instead, the structure is put in the so-
called “cloud” which maintains the pair (A, C(A)). The Turing machine only has access to
the algebraic sketch D(A) = (τ, σ,⊆τ,σ, q), which gets written on the interaction-tape
and consists of the following objects:

1. τ is the signature of the HF-structure A.

2. σ is the signature of the canonical coarsest coherent configuration C(A) refin-
ing Aflat.

3. ⊆τ,σ := {(R,E) ∈ τ×σ | RC(A) ⊆ EA} is the symbolic subset relation. It relates
a σ-color R to the τ -relation E which is refined by σ, i.e., RC(A) ⊆ EA.

4. q is the intersection function of C(A).

In the following and unless stated otherwise, we always use τ for the signature of the
HF-structure A in the cloud and σ for the signature of C(A), which we assume to be
disjoint from τ . We call relations R ∈ σ colors and relations E ∈ τ just relations.
If E (or R) is a diagonal relation, then we identify E (or R, respectively) with the set
{u | (u, u) ∈ EA} and call E a vertex class (or R a fiber). In the rest of this chapter,
we use the letters R, S, and T for colors and the letters E and F for relations. We use
the letters C and D for vertex classes and the letters U and V for fibers. Although the
cloud contains the pair (A, C(A)), we will just say that A is in the cloud and interpret
σ-colors R in A, i.e., just write RA for RC(A).
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With the special states qaddPair, qscc, and qcreate, the Turing machine can add vertices
to the structure in the cloud in an isomorphism-invariant manner. If A is the input
structure to the DeepWL-algorithm, then the vertices of the HF-structure in the cloud
will be pairs 〈a, i〉 of an HF(A)-set (or atom) a ∈ HF(A) and a number i ∈ N. The
number i is encoded as an HF(∅)-set and 〈a, i〉 denotes the Kuratowski encoding of pairs1).
Using the number i, we can create multiple vertices for the same a ∈ HF(A) as follows.
Whenever i many vertices for the set a exist (possible zero many), we add the vertex
〈a, i + 1〉. So, when describing how vertices are added, we can identify them with their
HF(A)-sets and assume that the numbers are picked as described.

Now assume that A is the τ -HF-structure in the cloud at some point during the
execution of the DeepWL-algorithm. To enter the states qaddPair and qscc, the Turing
machine has to write a single relation symbol X ∈ τ ∪ σ on the interaction-tape. To
enter qcreate, a set π ⊆ σ has to be written on the interaction-tape. We say that the
machine executes addPair(X), scc(X), and create(π).

(a) addPair(X): For every (u, v) ∈ XA, a new vertex 〈u, v〉 is added to the structure
(by the former convention, actually a vertex 〈〈u, v〉, i〉 is added). Additionally, new
relations Eleft and Eright are added to τ containing the pairs (〈u, v〉, u) and (〈u, v〉, v),
respectively. We call these relations the component relations.

(b) scc(X): For every strongly X-connected component c, a new vertex c is added
(note that c is itself an HF(A)-set). A new membership relation symbol Ein is
added to τ containing the pairs (c, u) for every X-SCC c and every u ∈ c.

(c) create(π): A new relation symbol E is added to τ , which is interpreted as the
union of all R ∈ π.

Whenever new relation symbols have to be picked, we choose the smallest unused one
according to the lexicographical order (recall that relation symbols are binary strings).
Each of these three operations modifies the HF-structure A in the cloud. Afterwards, the
coherent configuration C(A) is recomputed, the new algebraic sketchD(A) is written onto
the interaction-tape, and the Turing machine continues. A DeepWL-algorithm accepts A
if the head of the work-tape points to a 1 when the Turing machine halts and rejects
otherwise. For a more detailed definition and description of a DeepWL-algorithm we
refer to [59].

Di�erences and Equivalence to [59]. Our definition of a DeepWL-algorithm differs at
various places from the one given in [59], which we discuss now: We omit the forget-
operation, which allows the machine to remove a τ -relation from the structure in the
cloud. However, [59] proves that this operation is not needed because the algebraic
sketch D(A′) of the structure A′ obtained from A by removing some relations can be
computed from the sketch D(A):

Lemma 5.24 ([59, Lemma 22]). There is a polynomial-time algorithm that, for every al-
gebraic sketch D(A) of a binary structure A, every subset τ̃ ⊆ τ , and every vertex class
C ∈ τ , computes the algebraic sketch D(A[CA] � τ̃).

1While in the previous sections we only used the pair encoding implicitly, here we use the explicit
〈·, ·〉 notation for the sake of readability.
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Note that the algorithm from the lemma has no access to A but solely to D(A) and so
can be executed by a DeepWL-algorithm without modifying the cloud. So it suffices to
remember the set of relations to remove. In particular, for every DeepWL-algorithm de-
ciding isomorphism the equivalent DeepWL-algorithm constructed in Theorem 11 of [59]
does not use the forget-operation.

Instead of the scc-operation a contract-operation is given in [59]. The contract-
operation contracts the vertices of the SCCs and does not create a new one for each
SCC. A structure A resulting from a contract(X) operation can be obtained from the
structure A′ resulting from the scc(X)-operation by removing the vertices incident to X.
While our operations do not allow removing these vertices, they form a union of fibers and
the algebraic sketch D(A) can be computed from D(A′) by Lemma 5.24. For polynomial-
time DeepWL-algorithms, not removing these vertices only creates a polynomial over-
head. The other way around, the scc-operation can be simulated by first copying the
vertices incident to X (using an addPair-operation for the fibers incident to X) and
second executing a contract-operation on the copies.

Our operations produce new component or membership relations, while in [59] a global
component relation is maintained but the added vertices are put in a new vertex class.
Surely, one is computable from the other. Our version of DeepWL computes on HF-
structures while [59] uses plain relational structures and new vertices are just added as
fresh atoms. For now, this does not make a difference because the coherent configura-
tion C(A) = C(Aflat) is computed on Aflat. However, seeing the vertices as hereditarily
finite sets possibly removes automorphisms of the structure. We will now show that with
our altered operations the automorphisms of the cloud as HF-structure coincide with the
automorphisms of the cloud as plain relational structure. This is one major reason why
we use different operations when dealing with symmetric choice: Algebraic sketches can
be computed with respect to plain relational structures while still maintaining automor-
phisms of the HF-structure. This will become crucial later when we will simulate an
extension of DeepWL with witnessed symmetric choice in CPT+WSC.

Automorphisms and HF-Structures. The following lemma justifies to compute C(A) on
the structure Aflat and that DeepWL does not need to access the HF-structure of A if the
original input was a τ ′-(non-HF)-structure.

Lemma 5.25. Let A0 be a binary relational structure and let A be a HF-structure obtained
by a DeepWL-algorithm in the cloud on input A0. For every automorphism ϕ ∈ Aut(Aflat),
it holds that ϕ|A ∈ Aut(A).

Proof. The vertex set of the HF-structure A is the union of the atoms A = A0 and some
HF(A)-sets AHF . Every scc-operation creates, for every corresponding SCC c, a ver-
tex for the HF-set c and the membership relation coinciding with “∈” on the HF-sets.
Similarly, every addPair-operation introduces (Kuratowski-encoded) pairs and the com-
ponent relations identifying the single entries in the pairs. That is, the structure of the
vertices as HF-sets is encoded by the membership and component relations as a DAG
using A as sinks. Because a DeepWL-algorithm only adds but never removes relations,
the membership and component relations are still present in A.

Now let ϕ ∈ Aut(Aflat). To show that ϕ|A ∈ Aut(A), we have to show that ϕ|A is
a permutation of A that satisfies ϕ|A(AHF ) = AHF . We first note that ϕ cannot map
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an atom in A to a vertex in AHF because atoms have no outgoing edge of a component
relation or of a membership relation while all vertices in AHF have one. Hence, ϕ set-
wise stabilizes A and AHF , i.e., ϕ(A) = A and ϕ(AHF ) = AHF . In particular, ϕ|A is a
permutation of A.

Let a ∈ AHF . The HF(A)-set a is the unique vertex of the DAG representing a via the
membership and component relations. So ϕ(a) is the unique vertex of an isomorphic DAG,
which we obtain by applying ϕ to the DAG representing a. Thus, ϕ(a) = ϕ|A(a) (note
that ϕ permutes A∪AHF and ϕ|A permutes A and is applied to the atoms in a). Because,
as already seen, ϕ(AHF ) = AHF , it follows that ϕ(AHF ) = ϕ|A(AHF ) = AHF .

This lemma is important when we extend DeepWL with witnessed choice: To compute
(HF-set respecting) orbits of A, it suffices to compute orbits of Aflat and so to consider
C(Aflat). Note that the lemma does not hold if the forget-operation of [59] is available
(that can be used to forget a component or membership relation) or the scc-operation is
replaced the by contract-operation (then also a membership-relation is lost).

5.3.2 DeepWL with Witnessed Symmetric Choices
We extend the DeepWL computation model with witnessed symmetric choice. Here,
we need two different notions: We start with DeepWL+WSC-machines and use them
afterwards to construct DeepWL+WSC-algorithms. A DeepWL+WSC-machine M
is a DeepWL-algorithm, whose Turing machine has two additional special states qchoice

and qrefine. To enter qchoice, the machine M has to write a relation symbol X ∈ τ ∪ σ
on the interaction-tape. To enter qrefine, M has to write a relation symbol X ∈ τ ∪ σ
and a number i ∈ N on the interaction-tape. We say that the machine M executes
choice(X) and refine(X, i). The DeepWL+WSC-machineM is choice-free if it cannot
enter qchoice syntactically. That is, qchoice is not in the range of the transition function of
the underlying Turing machine ofM . DeepWL+WSC-algorithms are defined inductively:

De�nition 5.26 (DeepWL+WSC-algorithm). If Mout is a DeepWL+WSC-machine, Mwit is
a choice-free DeepWL+WSC-machine, andM1, . . . ,M` is a possibly empty sequence of
DeepWL+WSC-algorithms, then the tuple M = (Mout,Mwit,M1, . . . ,M`) is a
DeepWL+WSC-algorithm. The machine Mout is called the output machine ofM
and the machine Mwit is called the witnessing machine ofM.

Note that the base case of the former definition is the case ` = 0, i.e., the sequence
of nested DeepWL+WSC-algorithms is empty. The nested algorithms can be used
by the machines Mout and Mwit as subroutines. We first discuss the execution of a
DeepWL+WSC-algorithm and in particular the use of subroutines intuitively. A for-
mal definition will follow. Let M = (Mout,Mwit,M1, . . . ,M`) be a DeepWL+WSC-
algorithm. As first step, we consider the executions of the DeepWL+WSC-machinesMout

and Mwit.

(a) Assume a DeepWL+WSC-machine M ∈ {Mout,Mwit} executes refine(X, j). If
j > `, then M just continues. If otherwise j ∈ [`], then the DeepWL+WSC-
algorithm Mj is used to refine the relation X: Let A be the content of the cloud
of M when M executes the refine-operation. If X is directed, the algorithmMj
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is executed on (A, uv) (u and v are individualized by putting them into singleton
vertex classes) for each (u, v) ∈ XA. Otherwise X is undirected, so XA = (XA)91,
then for each {u, v} ∈ XA, the algorithm Mj is executed on (A, {uv}) (the undi-
rected edge is individualized by creating a new vertex class only containing u and v).
The algorithmMj modifies its own cloud independently of the cloud of M . IfMj

accepts (A, uv) for every (u, v) ∈ XA (or (A, {uv}) for every {u, v} ∈ XA), then
nothing happens and M continues. Otherwise, a new relation E ′ is added to the
cloud of M , where E ′ consists of all (u, v) ∈ XA (or all {u, v} ∈ XA, respectively),
for whichMj accepts the input.

(b) Assume a DeepWL+WSC-machineM ∈ {Mout,Mwit} executes choice(X). If X is
a directed relation, then an arbitrary (u, v) ∈ XA is individualized andM continues.
If otherwise X is undirected, then an undirected edge {u, v} ∈ XA is individualized.
The edges are individualized as described in the refine-operation.

The algebraic sketch is recomputed and written onto the interaction-tape whenever the
structure in the cloud is modified by refine(X, j) or choice(X). The machineM accepts
the input if the symbol under the head on the work-tape is a 1 when M halts and rejects
otherwise. Later, we will formally define the execution with choices using a tree, similar
to the definition of the iteration terms with choice in CPT+WSC in Section 5.1.1.

We now turn to the DeepWL+WSC-algorithmM. To execute the algorithmM on
input A0, the output machine Mout is executed on A0. Let A be the content of the
cloud when Mout halts. For every choice-operation executed by Mout, the witnessing
machine Mwit is executed. Let k be a number not exceeding the number of choice-
operations, choice(Xi) be the i-th executed choice-operation (for someXi in the current
signature) for every i ∈ [k], and Ai be the content of the cloud, when the i-th choice-
operation is executed for every i ∈ [k]. For the k-th choice-operation choice(Xk), the
machine Mwit has to provide automorphisms witnessing that XAk is an (A0,A1, . . . ,Ak)-
orbit (details follow later). That is, similarly to the WSC-fixed-point operator, all inter-
mediate steps of the fixed-point computation have to be fixed by the witnessing automor-
phisms. Recall again that we are working with HF-structures with the same set of atoms,
so all vertices are HF(A0)-sets, so the notion of an (A0,A1, . . . ,Ak)-orbit is well-defined.

The input of Mwit is the labeled union AdAk, which is the union A∪Ak equipped
with two fresh relation symbols E1 and E2 labeling the vertices of A and Ak, i.e.,

EAdAk
1 := V(A) and

EAdAk
2 := V(Ak).

So Mwit is able to reconstruct A and Ak and to determine how A and Ak relate to each
other: Since the atoms of both A and Ak are HF(A0)-sets, common vertices are “merged”
in the union. When the witnessing machine Mwit halts, it has to write a relation symbol
onto the interaction-tape. The relation has to encode a set of witnessing automorphisms
(details on the encoding follow later).

If all choices are successfully witnessed, M accepts A0 if Mout accepts A0 the input
and rejects otherwise. If some choice could not be witnessed, we abort the computation
and output †. If an executed subalgorithm Mi outputs †, then M also outputs †. We
also say thatM fails ifM outputs †.
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Semantics of the new Operations. Both, the refine- and the choice-operation, con-
tain some special cases in its semantics. First, both operations treat directed and undi-
rected relations differently. For undirected relations X, an undirected edge {u, v} ∈ XA

is individualized and not just a directed one. Second, a refine-operation does not create
a new relation in the case that every (u, v) ∈ XA or every {u, v} ∈ XA are accepted
byMj. Creating a new relation containing the same edges as X would seem more natu-
ral. Indeed, for general DeepWL+WSC-algorithms, these special cases do not change the
expressive power. But later in Section 5.3.4, we will introduce the notion of a normal-
ized DeepWL+WSC-algorithm, which will put additional restrictions on, e.g., addPair-
operations. Here the precise semantics of the refine- and choice-operations will matter,
in particular, it will be crucial to prove Lemma 5.57.

Encoding Automorphisms. We now discuss how sets of automorphisms are encoded.
Let A0 be the input structure and A be the current content of the cloud. A tuple of
relations (Eaut, Edom, Eimg) and a vertex wϕ encode the partial map ϕ : A → A as
follows: We have ϕ(u) = v in the case that v is the only vertex for which there exists
exactly one w such that (wϕ, w) ∈ EA

aut, (w, u) ∈ EA
dom, and (w, v) ∈ EA

img. A tuple of
relations (Eaut, Edom, Eimg) encodes the set of partial maps

N =
{
ϕ
∣∣∣ wϕ encodes ϕ for some (wϕ, w) ∈ EA

aut

}
.

For a tuple ā ∈ HF(A0)∗, the tuple (Eaut, Edom, Eimg) witnesses a relation EA
orb as (A0, ā)-

orbit if the set N witnesses EA
orb as (A0, ā)-orbit.

Execution with Choices. Intuitively, we have to nest DeepWL+WSC-algorithms to en-
sure that DeepWL+WSC-algorithms “return” an isomorphism-invariant result (accept
or reject). This corresponds to the output formula in a WSC-fixed-point operator, which
ensures that it defines an isomorphism-invariant query. We now define the execution of
a DeepWL+WSC-algorithm formally. We need to deal with choices to obtain a well-
defined notion. In the following, we will assume that all considered Turning machines
always terminate. We can do so because we will be only interested in polynomial-time
Turing machines in this chapter.

A configuration c of a DeepWL+WSC-machine M is a tuple of a state q(c) of the
Turing machine contained in M and the content of the two tapes of the machine. As-
sumeM = (Mout,Mwit,M1, . . . ,M`) is an arbitrary DeepWL+WSC-algorithm and A0
is an input HF-structure to M. Let δA0 be the transition function of Mout: For con-
figurations c and c′ of Mout and HF-structures A and A′, both with atom set A0, we
have δA0(c,A) = (c′,A′) if Mout, started in configuration c with A in the cloud, executes
the first choice-operation (or halts if no choice-operation is executed) in the config-
uration c′ with A′ in the cloud. In particular, no choice operation is executed in the
computation from (c,A) to (c′,A′). If all DeepWL+WSC-algorithms M1, . . . ,M` are
deterministic, i.e., accept, reject, or fail independent of the choices made during the ex-
ecution of the Mi, then all refine-operations executed by Mout are deterministic and
so δA0 is indeed a well-defined function. We view a tuple (c,A) as an HF(A0)-set: The
configuration c is encoded as an HF(∅)-set and the vertices of A itself are HF(A0)-sets.
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To define the run of the DeepWL+WSC-algorithmM in the presence of choices, we
reuse the WSC∗-operator from Section 5.1.1. The set of possible runs ofM is the set

WSC∗(δA0
step, δ

A0
choice, δ

A0
wit),

where we define the functions δA0
step, δA0

choice, and δA0
wit using δA0 as follows. In the beginning,

the function δA0
choice outputs the empty choice-set (i.e., makes no choice) and the func-

tion δA0
step starts the output machine in the initial configuration cout0 (initial state, empty

work-tape, and D(A0) written on the interaction-tape) with the initial input structure A0
in the cloud, that is,

δA0
step(∅, ∅) := (cout0 ,A0),
δA0
choice(∅) := ∅.

Next, whenever a choice(X)-operation is executed, δA0
choice outputs the relation X̃A in

the current content of the cloud A, where X̃A := XA if the relation X is directed and
X̃A := {{u, v} | (u, v) ∈ XA} if X is undirected:

δA0
choice((cout,A)) :=

X̃A if q(cout) = qchoice and X is on interaction tape in cout,
∅ otherwise.

After choosing a set a (of size at most 1 encoding a directed or undirected edge), a
is individualized as described earlier and the resulting structure is denoted by (A, a).
Then δA0

step continues with the next configuration ĉout according to the transition function
ofMout in the structure (and the new algebraic sketch written onto the interaction-tape):

δA0
step((cout,A), a) :=

δA0(ĉout, (A, a)) if q(cout) = qchoice,

(cout,A) otherwise.

If in the end of the computation a halting state is reached (so q(cout) 6= qchoice), then δA0
choice

returns the empty set, nothing is chosen, and δA0
step reaches a fixed-point.

The function δA0
wit maps a pair ((c,A), (c′,Ak)) to the set of partial maps encoded by

the relation which is written on the interaction-tape when Mwit halts on input A d Ak.
Because Mwit is choice-free, we do not have to deal with choices here. Recall from
the WSC∗-operator, that for a choice(X)-operation, the relation X has to be an orbit
which fixed all intermediate steps: Let choice(X1), . . . , choice(Xk) be the sequence of
all already executed choice-operations and let A1, . . . ,Ak be the contents of the cloud
when the corresponding choice-operation is executed. Then the set XAk

k has to be an
(A0,A1, . . . ,Ak)-orbit2 (recall again, that all structures A0, . . . ,Ak have the same atom
set A0), which δA0

wit has to witness. Also, recall from the definition of the WSC∗-operator,
that the input to δA0

wit is indeed the pair ((c,A), (c′,Ak)) of the reached fixed-point (c,A)
and the intermediate step (c′,Ak) on which the k-th choice-operation is executed.

2Formally, by the definition of the WSC∗-operator, XAk

k has to be an (A0, (c1,A1), . . . , (ck,Ak))-orbit,
where ci is the configuration of the Turing machine at the moment when the i-th choice operation is
executed. But since the ci are encoded as HF(∅)-set, they are invariant under all permutations of the
atoms.
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LetW = WSC∗(δA0
step, δ

A0
choice, δ

A0
wit). The algorithmM accepts A0 if for some (and thus

for every) (c,A) ∈ W , the head of the work-tape in c points to a 1, fails if W = ∅, and
rejects otherwise. Note thatW = ∅ if and only if there are non-witnessed choices because
we assumed that our DeepWL+WSC-algorithms always terminate and so a nonempty
fixed-point is always reached.

Lemma 5.27. Every DeepWL+WSC-algorithm M = (Mout,Mwit,M1, . . .M`) satisfies
the following:

1. The class of structures accepted byM is closed under isomorphisms.

2. The algorithmM always accepts, rejects, or fails independent of the choices made
in the execution of Mout.

3. If all choices were witnessed, then the series of configurations of Mout is the same
for all possible choices.

Proof. The proof is by induction on the nesting depth of DeepWL+WSC-algorithms. Let
M = (Mout,Mwit,M1, . . .M`) be a DeepWL+WSC-algorithm, A0 be the input struc-
ture, and assume inductively that the claim holds for the DeepWL+WSC-algorithms
M1, . . . ,M`. So every refine-operation executed by Mout is isomorphism-invariant.
Additionally, all other operations apart from choice modify the cloud in an isomorphism-
invariant manner and the algebraic sketch itself is isomorphism-invariant [59]. Because δA0

“stops” the execution when the first choice-operation is encountered, δA0 is well-defined
(i.e., deterministic) and isomorphism-invariant. That was exactly our assumption on δA0

in the former paragraph. Likewise, the function δA0
wit is isomorphism-invariant because

the machine Mwit is choice-free. Thus, δA0
choice is isomorphism-invariant because δA0

step is
isomorphism-invariant, which is the case since the relation used as choice-set only de-
pends on the configuration returned by δA0

step. That is, we can apply the lemmas in
Section 5.1.1. By Corollary 5.5, the set WSC∗(δA0

step, δ
A0
choice, δ

A0
wit) is an orbit of A0. If

WSC∗(δA0
step, δ

A0
choice, δ

A0
wit) = ∅, then some choice could not be witnessed, which by Corol-

lary 5.4 is either the case for all possible choices or never occurs. Otherwise, the con-
figuration c is the same for all tuples (c,A) ∈ WSC∗(δA0

step, δ
A0
choice, δ

A0
wit) because the config-

uration c is invariant under all permutations of the atoms (because c is an HF(∅)-set).
So the algorithm either accepts or rejects for all possible choices (and Parts 1 and 2 are
proved).

To see Part 3, note that we can replace the configuration c of the Turing machine in
the tuples (c,A) with the sequence of all visited configurations so far without breaking
one of the arguments before. Then not only the last configuration is an orbit, but also
the sequence of visited configurations, which is thus invariant under all automorphisms
(given that all choices were witnessed).

The former lemma has the consequence that, apart from possibly choice-operations,
none of the operations change the automorphisms of the structure in the cloud.

Corollary 5.28. Assume M = (Mout,Mwit,M1, . . .M`) is a DeepWL+WSC-algorithm,
M ∈ {Mout,Mwit}, and A is the current content of the cloud of M (at some point during
its execution). Assume that M executes addPair, create, scc, or refine and let A′ be
the content of the cloud of M after the execution. Then Aut(A) = Aut(A′).
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Proof. Recall that an automorphism of an HF-structure is a permutation of the atoms,
which extends to all vertices. By construction, the addPair-, create-, and scc-operations
are isomorphism-invariant. By Lemma 5.27, also the refine-operation is isomorphism-
invariant because the class of structures accepted by DeepWL+WSC-algorithm used to
refine a relation is isomorphism-closed.

Internal Run. The internal run of a DeepWL-algorithm is the sequence of configurations
of the Turing machine (the state and the content of the two tapes) during the run. Note
that in particular the algebraic sketches computed during the computations are part of
the internal run because they are written onto the interaction-tape. As we have already
seen, the internal run of a DeepWL-algorithm is isomorphism-invariant [59]. To define
the internal run of a DeepWL+WSC-algorithm, we have – beside the internal run of
the output machine – to take all internal runs of the witnessing machine to witness the
different choice-sets and the internal runs of the subalgorithms into account. The internal
run is defined inductively over the nesting depth of DeepWL+WSC-algorithms.

LetM = (Mout,Mwit,M1, . . . ,M`) be a DeepWL+WSC-algorithm and assume that
we have defined the internal run run(Mi,A) for every i ∈ [`] and every HF-structure A.
The internal run run(M,A) of a DeepWL+WSC-machineM ∈ {Mout,Mwit} on input A
is the following: Let c1, . . . , cn be the sequence of configurations of the Turing machine
of M . By Lemma 5.27, the sequence is unique if all choices will be witnessed, which we
assume for now. Furthermore, let k1 < · · · < km be all indices such that q(ckj) = qrefine

and M executes refine(Xj, ij) such that ij ≤ `. Let Aj be the content of the cloud
before executing refine(Xj, ij) for all j ∈ [m]. We define

rj :=
{{

run(Mij , (Aj, x))
∣∣∣ x ∈ X̃Aj

j

}}
for every j ∈ [m],

run(M,A) :=
† if † ∈ ri for some i ∈ [m],
c1, . . . , ck1 , r1, ck1+1, . . . , ckm , rm, ckm+1, . . . , c` otherwise.

The internal run, denoted run(M,A), of the DeepWL+WSC-algorithmM on input A is
defined as follows: Let c1, . . . , c` be the sequence of configurations of the output Turing
machine Mout. Furthermore, let k1 < · · · < km be all indices such that q(ckj) = cchoice.
Let the corresponding choice-executions be choice(Xj), where the current content of
the cloud is Aj, for every j ∈ [m]. Let Am+1 be the final content of the cloud when Mout

halts. We define

r̂j := run(Mwit,Am+1 d Aj) for every j ∈ [m],

run(M,A) :=
run(Mout,A), r̂1, . . . , r̂m if all choices are witnessed,
† otherwise.

Using Lemma 5.27, it is easy to see that run(M,A) is isomorphism-invariant and thus it
can be canonically encoded as a 0/1-string.

Computability. Let M = (Mout,Mwit,M1, . . . ,M`) be a DeepWL+WSC-algorithm.
The algorithm M decides a boolean query Q of a class of τ -structures K if M
accepts A ∈ K whenever A satisfies Q and rejects otherwise (and in particular never
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fails). The algorithm M computes a function f : K → {0, 1}∗ if, for every A ∈ K,
the machine Mout has written f(A) onto the work-tape when it halts on input A andM
never fails.

Definitions 5.9 and 5.10 of definable isomorphism and complete invariant are easily
adapted to DeepWL+WSC: DeepWL+WSC decides isomorphism of a class of struc-
tures K if there is a DeepWL+WSC algorithm which accepts A]B if and only if A ∼= B
for all A,B ∈ K. DeepWL+WSC computes a complete invariant for K if there is a
DeepWL+WSC algorithm computing a function f : K → {0, 1}∗ such that f(A) = f(B)
if and only if A ∼= B for all A,B ∈ K.

Next, we define the runtime of a DeepWL+WSC-machine M ∈ {Mout,Mwit} on
input A0. Every transition taken by the Turing machine counts as one time step. When-
ever a cloud-modifying operating is executed and the algebraic sketch D(A) of the new
structure in the cloud A is written onto the interaction-tape, we count |D(A)| many time
steps, where |D(A)| is the encoding length of D(A). Following [59], the encoding of D(A)
is unary and so the runtime of M is at least |A0|. When M executes refine(X, i) for
i ≤ ` and the current content of the cloud is A, we count the sum of runtimes of Mi

on input (A, x) for every x ∈ X̃A. The runtime of M is the sum of the runtime of the
output machine Mout and the runtimes of the witnessing machine Mwit to witness all
choices. A DeepWL+WSC-algorithm (or machine) runs in polynomial time if there
exists a polynomial p(n) such that p(|D(A0)|) bounds the runtime on input A0 for every
HF-structure A0 (or possibly for every A0 in a class of HF-structures of interest). Note
that ifMout,Mwit,M1, . . . ,M` run in polynomial time, thenM runs in polynomial time:
The size of the structure in the cloud is polynomially bounded and the machines Mout

and Mwit can execute only polynomially bounded many refine-operations.

5.3.2.1 Derived Operations

From the special operations addPair, scc, and choice we can derive additional opera-
tions, which then can be used for convenience. These are:

1. Ordered inputs: Currently, the structure A put in the cloud is the only input to a
DeepWL+WSC-machine or algorithm. We allow a pair (A, z̄) of a structure A and
a binary string z̄ ∈ {0, 1}∗ placed on the working tape as input.

2. Ordered input for refine-operations: We similarly extend refine-operations to
support refine(C, i, z̄) executions, where z̄ ∈ {0, 1}∗ is an additional binary string
initially put on the working tape.

3. rename(E,F ): If F is an unused relation symbol in the signature τ , the machine
exchanges a relation symbol E with F . Otherwise, no change is made.

4. addUPair(X): This operation creates unordered pairs, i.e., sets of size at most
two for the X-edges: Let A be the current structure in the cloud. For every
{u, v} such that (u, v) ∈ XA, a new vertex is added and the membership relation⋃

(u,v)∈XA{({u, v}, u), ({u, v}, v)} is created.
While adding the ability to rename relations seems useless, it simplifies proofs because
we do not have to maintain bijections between relation symbols of different structures.
Instead, we just can rename them accordingly.
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Lemma 5.29. Ordered input to DeepWL+WSC-algorithms and the operations addUPair,
rename, and refine(C, i, z̄) can be simulated with the existing operations with only a
polynomial overhead.

Proof. We describe how the new operations can be simulated.

1. Ordered inputs can be simulated in the original DeepWL+WSC model as follows:
Let A be an input HF-structure, z̄ ∈ {0, 1}∗, and m = |z̄|. We encode z̄ into the
string z̄′ := 0414z10z21z30z41 . . . zm. There is only one position at which 0414 occurs
as substring of z̄′, namely the first. We encode z̄′ into A using vertex classes. Let
m′ = |z̄′|. We add m′ many vertex classes C1, . . . , Cm′ such that

CA
i =

∅ if z′i = 0,
A if z′i = 1,

for every i ∈ [m′]. The string z̄′ can be read off the algebraic sketch: The algorithm
starts at the lexicographically greatest relation symbol. Using the algebraic sketch
the algorithm decides whether it encodes a 0 or a 1. This process is continued
until the substring 0414 is found. The algorithm computes z̄ from z̄′. Surely, the
new vertex classes do not change the automorphisms of the structure A, so exactly
the same orbits are witnessed after adding C1, . . . , Cm′ . Using Lemma 5.24, we
can always compute the algebraic sketch of the structure without the new vertex
classes.

2. refine(C, i, z̄): We proceed in the very similar way and encode z̄ by the string z̄′ as
defined before using vertex classes. But now, the vertex classes C1, . . . , Cm′ , where
m′ = |z̄′|, have to be created by the DeepWL+WSC-algorithm. This can easily be
done by executing create(πi) for every i ∈ [m′], where πi = ∅ if z′i = 0 and πi is
the set of all fibers if z′i = 1.
The DeepWL+WSC-algorithm used to refine C first reads off z̄′ from the algebraic
sketch and then, by Lemma 5.24, computes the algebraic sketch without the vertex
classes C1, . . . , Cm′ .

3. rename(E,F ): The DeepWL+WSC-machine maintains the bijection between cur-
rent and renamed relation symbols on its tape. The bijection is passed through
refine-operations using ordered input.

4. addUPair(X): We first execute addPair(X), so we obtain vertices 〈u, v〉 for every
(u, v) ∈ XA and component relations Eleft and Eright. Let π be the set of colors
which have an (Eleft, E

91
right)- and an (Eright, E

91
left)-colored triangle. Next, create(π)

is executed and a relation F obtained. The relation F contains precisely all pairs
(〈u, v〉, 〈v, u〉) for every {u, v} ∈ XA. We execute scc(E). We obtain, for each
F -SCC, a new vertex and the membership relation Ein. Although the new vertices
are created for the sets {〈u, v〉, 〈v, u〉}, they resemble the sets {u, v}. The mem-
bership relation Fin for these sets is obtained as the union of colors, which have
an (Ein, Eleft)- and an (Ein, Eright)-colored triangle. For the pairs (u, v) ∈ XA for
which (v, u) /∈ XA, we have not created an F -SCC vertex because these pair ver-
tices are not incident to F . Instead, we can just use the pair vertices themselves
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(no automorphism can map u to v or vice versa in this case). We can define the
relations refining Eleft and Eright incident to such pair vertices and also include them
in Fin. As before, the sketch without the additionally created pair vertices can be
computed using Lemma 5.24.
Regarding witnessing choices, the addUPair-operation is isomorphism-invaraint.
Because we did not use a choice-operation in the simulation, we have not changed
the automorphisms of the HF-structure in the cloud by Corollary 5.28. So exactly
the choices in the execution with the addUPair-operation are witnessed as in the
execution with the simulation.

Finally, it is easy to see that the simulations run in polynomial time, where the size of a
tuple (A, z̄) is |D(A)|+ |z̄|.

5.3.3 From CPT+WSC to DeepWL+WSC
In this section, we translate a CPT+WSC-formula into an equivalent polynomial-time
DeepWL+WSC-algorithm. The following translation is based on the translation of CPT
into interpretation logic in [46] and the translation of interpretation logic into DeepWL
in [59]. However, we avoid the route through interpretation logic by directly implement-
ing the ideas of [46] in DeepWL+WSC. To avoid case distinctions, we assume in the
following that the occurring CPT+WSC-terms or formulas never output †. Although a
†-respecting translation can be given, it is not needed for our purpose (all isomorphism-
defining CPT+WSC-formulas never output †).

We simulate the evaluation of a BGS+WSC-term (or formula) with a DeepWL+WSC-
algorithm. Recall that the vertices of the structure in the cloud during the execution of
a DeepWL+WSC-machine on input structure A are pairs 〈a, i〉 of a set a ∈ HF(A) and
a number i ∈ N, where 〈a, i〉 is encoded as an HF(A)-set itself. For the simulation of a
BGS+WSC-term (or formula) on input structure A, we encode two types of objects by
vertices of the structure in the cloud:

1. A hereditarily finite set a ∈ HF(A) is encoded by a vertex 〈a, i〉 for some number i.
We maintain a relation E∈, which serves as containment relation between the
vertices, that is, it corresponds to “∈” on the encoded sets. There is an exception for
the empty set: Because a DeepWL+WSC-algorithm cannot create a vertex for the
empty set, we encode ∅ by 〈A, i〉 for some number i. Here we require that i 6= j for
the number j for which 〈A, j〉 encodes A. We apply this recursively: Whenever ∅ is
part of an HF(A)-set, e.g., {∅}, we consider the set obtained from replacing ∅ by A.
We will be able to distinguish the encoding vertices, e.g., the vertices encoding {∅}
and {A}, using the containment relation. Note that the containment relation is
different from the membership relation obtained from scc-operations.

2. A tuple ā ∈ HF(A)k of hereditarily finite sets is encoded by a vertex 〈ā, i〉 for some
number i (for an appropriate encoding of tuples as hereditarily finite sets). We
maintain a sequence of incident relations E1, . . . , Ek, such that every Ej has out-
degree 1 and associates to 〈ā, i〉 a vertex 〈aj, `〉 for some number `. We call these
relations the tuple relations. We remark that the tuple relations in general will
be different from the component relation of the addPair-operations.
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We now introduce an intermediate version of DeepWL+WSC-algorithms. This inter-
mediate version is needed for the recursive translation of CPT+WSC-terms and formu-
las. A choice-free DeepWL+WSC-algorithm is a tuple (Mout,M1, . . . ,M`) con-
sisting of a choice-free DeepWL+WSC-machine Mout and DeepWL+WSC-algorithms
M1, . . . ,M`. The computation of a choice-free DeepWL+WSC-algorithm is exactly
the same as the one of a regular DeepWL+WSC-algorithm, but since the output ma-
chine Mout is choice-free, no witnessing machine is needed. Note here that for a choice-
free DeepWL+WSC-algorithm the subalgorithms M1, . . . ,M` are not choice-free. The
benefit of choice-free algorithms is that they can be composed more easily, e.g., they can
be executed one after the other without worrying about witnessing choices.

De�nition 5.30 (Simulating CPT+WSC with DeepWL+WSC). Let A be a binary (non-HF)
τ -structure. An HF-structure A′ is compatible with A if A′ = A and Aut(A) = Aut(A′).

(a) A choice-free DeepWL+WSC-algorithmM simulates a CPT[τ ]-term s(x̄) on A
if, for every HF-structure A′ compatible with A and every vertex class C of A′
encoding HF(A)|x̄|-tuples, the algorithmM on input A′ and C computes a vertex
class Cs and a relation Eio with the following property:

• EA′′
io ⊆ CA′ × CA′

s is functional and surjective (where A′′ is the content of the
cloud after the execution ofM) and

• (u, v) ∈ EA′′
io if and only if the vertex u encodes a tuple ā ∈ HF(A)|x̄|, the

vertex v encodes a set b ∈ HF(A), and b = sA(ā).

The relation Eio is called the input-output relation.

(b) A choice-free DeepWL+WSC-algorithm M simulates a CPT[τ ]-formula Φ(x̄)
that is not a WSC-fixed-point operator (but may contain such operators as sub-
formulas) on A if, for every HF-structure A′ compatible with A and every vertex
class C of A′ encoding HF(A)|x̄|-tuples, the algorithmM on input A′ and C defines
a vertex class CA′′

Φ ⊆ CA′ of all C-vertices encoding a tuple ā ∈ ΦA.

(c) Last, a (non choice-free) DeepWL+WSC-algorithmM simulates a WSC-fixed-
point operator Φ(x̄) on A if, for every HF-structure A′ compatible with A and
every singleton vertex class C of A′ encoding an HF(A)|x̄|-tuple ā, the algorithmM
accepts on input A′ and C if and only if ā ∈ ΦA.

We say that a (choice-free) DeepWL+WSC-algorithm M simulates a CPT[τ ]-term or
formula s ifM simulates s on every τ -structure.

The former definition is intricate because of the free variables. For a BGS+WSC-
sentence Φ, a DeepWL+WSC-algorithm M simulating Φ accepts exactly the struc-
tures satisfying Φ. We will translate CPT+WSC-formulas and terms to polynomial time
DeepWL+WSC-algorithms by induction on the nesting structure of the WSC-fixed-point
operators. We call a WSC-fixed-point operator Ψ directly nested in a CPT+WSC-
formula (or a term) Φ if there is no WSC-fixed-point operator Ψ′ 6= Ψ such that Ψ is a
subformula of Ψ′ and Ψ′ is a subformula of Φ.
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Lemma 5.31. For every CPT+WSC-formula Φ (or term) which is not a WSC-fixed-point
operator, there is a choice-free polynomial-time DeepWL+WSC-algorithm simulating Φ if,
for every WSC-fixed-point operator Φ′ directly nested in Φ, there exists a polynomial-time
DeepWL+WSC-algorithm simulating Φ′.

Proof. In the following, we use relation symbols X ∈ τ ∪σ for the sets XA, where A is the
current content of the cloud of the DeepWL+WSC-machine we are going to define. In
that sense, for example, X \Y has a well-defined notion. This simplifies notation because
we do not have to always introduce the current content of the cloud.

The proof is by induction on the CPT+WSC formula or term. Let Φ be a CPT+WSC
formula (or r be a CPT+WSC-term). Let the directly nested WSC-fixed-point op-
erators of Φ (or r, respectively) be Φ̂1, . . . , Φ̂` and let, inductively, M1, . . . ,M` be
DeepWL+WSC-algorithms, such that Mi simulates Φ̂i for every i ∈ [`]. We now de-
fine a DeepWL+WSC-machineMout such that the choice-free DeepWL+WSC-algorithm
(Mout,M1, . . . ,M`) simulates Φ (or r, respectively). We start with a vertex class C
whose vertices encode the values for the free variables. Then we perform the computa-
tions to simulate the formulas and terms. During the simulation we want to ensure that
for every encoded set a there is exactly one vertex of the form 〈a, i〉. We thus want to
avoid duplicates (with the already mentioned exception for the empty set). So whenever
we want to execute an addPair-, addUPair-, or scc-operation, we actually have to check
whether the resulting vertices already exist. This can be done using the containment
relation E∈ (and for the scc-operation due to the fact that SCCs can be computed by
DeepWL [59, Lemma 4]). From now on, we implicitly assume that these checks are al-
ways done and just say that we execute the addPair-, addUPair-, or scc-operations. We
make the following case distinction for Φ and r:

• Ψ = ECPT(x, y): Here ECPT is a relation symbol of the signature of the CPT+WSC-
formula, which is thus contained in the current structure in the cloud. Given a
vertex class C encoding the values for the pair xy, we return the vertex class C ′
consisting of all C-vertices for which the tuple relations are adjacent to atoms
contained in the relation ECPT as follows: Let E1 and E2 be the tuple relations
for the first and second component of C. Then we want to return the vertex
class containing the vertices which have an (E1, ECPT, E

91
2 )-colored cycle. Due to

coherence, there is a union of fibers π ⊆ σ, which contains precisely these vertices.
We execute create(π) and output the resulting relation.
In the following, we will for readability not mention the required create-operations
or that we can find the union of fibers π if we want to obtain a relation of pairs
with a (F1, . . . , Fk)-colored path (for some relation symbols F1, . . . , Fk).

• Ψ is s(x̄) = t(ȳ): Given a vertex class C corresponding to the free variables x̄ ∪ ȳ,
we can use C for the free variables x̄ and ȳ by only using a subset of the tuple
relations. We use the choice-free DeepWL+WSC-algorithms simulating s and t
to obtain vertex classes Cs and Ct together with the input-output relations Eio,s
and Eio,t. Precisely one Cs-vertex u and one Ct-vertex v are obtained from the same
C-vertex w if the edge (u, v) has an (E91io,s, Eio,t)-colored triangle. We now create a
vertex class C ′ from the fibers refining C which have an (E91io,s, Eio,t)-colored cycle,
that is, the two vertices u and v are actually the same. This is exactly then the
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case when the outputs of s and t are equal. Note that here it is crucial to perform
the cleanup steps unifying vertices encoding the same set after every step.

• Ψ = ¬Φ: Given a vertex class C, we obtain by induction a vertex class CΦ. Then
we return C \ CΦ.

• Ψ = Φ1(x̄)∧Φ2(x̄): Given a vertex class C, we obtain by induction vertex classes CΦ1

and CΦ2 and we just return CΦ1 ∩ CΦ2 .

• Ψ = Φ̂i(x̄): Let C be a vertex class encoding the values for the variables x̄. The
machine executes refine(C, i) and returns the resulting vertex class (note that C is
a vertex class and so the fact that refine-operations treat directed and undirected
relations differently does not matter here). By the induction hypothesis, this vertex
class contains precisely the vertices encoding the tuples satisfying Φ̂i.

• r = Atoms: We create a relation E connecting all atoms of the input structure (all
vertices, which have no outgoing edge of some membership or component relation)
and execute scc(E). We obtain a single additional vertex in a vertex class CAtoms
and a membership relation connecting it to the atoms, which is merged into the
containment relation E∈ (using a create- and a rename-operation). (Of course, as
described before, we create the vertex class CAtoms only once.)

• r = ∅: In the same way as in the Atoms case, we obtain a single vertex in its own
vertex class C∅, but now we do not merge the created membership relation into
the containment relation E∈. While ∅ is encoded by a vertex for the atoms, with
respect to automorphism this does not make a difference because every automor-
phism stabilizes the set of all atoms and C∅ and CAtoms contain different vertices
〈A, i〉 and 〈A, j〉 for i 6= j, where A is the set of atoms. So no automorphism can
exchange these two vertices.

• r = Pair(s(x̄), t(ȳ)): Given a vertex class C encoding values for the free variables
x̄∪ ȳ, we can use C for the free variables x̄ and ȳ by only using a subset of the tuple
relations. Then we use the choice-free DeepWL+WSC-algorithms simulating s and t
to obtain vertex classes Cs and Ct together with the input-output relations Eio,s
and Eio,t. Then precisely the Cs-vertices u and Ct-vertices v are obtained for the
same C-vertex w if the pair (u, v) has an (E91io,s, Eio,t)-colored triangle. That is, there
is a union of colors E= containing exactly all such pairs (u, v). Then the machine
executes addUPair(E=) and obtains the vertex class Cr and a new membership
relation F . The membership relation F connects Cr-vertices to Cs- and Ct-vertices.
The input-output relation Eio,r is the union of colors which have an (Eio,s, F

91)- and
an (Eio,t, F

91)-colored triangle. Finally, the machine merges F into the containment
relation E∈.

• r = Unique(s(x̄)): Given a vertex class C, we define the vertex class Cs with input-
output relation Eio,s and containment relation E∈ using the induction hypothesis.
The vertex class Cs can be partitioned into C1

s and C 6=1
s , where C1

s -vertices have pre-
cisely one outgoing E∈-edge and C 6=1

s -vertices do not. Let E1
io,s := Eio,s ∩ (C × C1

s )
be the subset of Eio,s leading to a Cs-vertex encoding a singleton set (which is
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(a) Translation of r = {s(x̄y) | y ∈ t(x̄),Φ(x̄y)}
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(b) Translation of r = s[x]∗

5.3 Translation of comprehension and iteration terms into DeepWL. Figure (a) shows the trans-
lation of a comprehension term into DeepWL. Figure (b) shows the translation of an iteration term.
Both �gures are drawn for a single vertex u in the input vertex class C and shows all vertices created
for u.

DeepWL-computable). We similarly partition C into C1 and C 6=1, where C1 con-
tains all C-vertices incident to E1

io,s.
The machine makes the following case distinction: If |C 6=1| = 0, set Cr := C ′ and
otherwise set Cr := C ′ ∪ C∅. For the C1-vertices, we obtain the input-output rela-
tion E1

io,r as the relation with an (E1
io,s, E∈)-colored triangle. For the C 6=1-vertices,

let E 6=1
io,r = C 6=1 × C∅ be the relation containing all edges between C 6=1 and the

singleton vertex class C∅. Finally, output Eio,r := E1
io,r ∪ E

6=1
io,r.

• r = Card(s(x̄)): Define for a given vertex class C the vertex class Cs, the input-
output relation Eio,s, and the containment relation E∈ using the induction hypoth-
esis. We partition Cs into C1

s , . . . , C
k
s , such that Ci

s-vertices have i many outgoing
E∈-edges. Then the machine defines, for all i ∈ [k] such that Ci

s 6= ∅, the i-th
von Neumann ordinal, defines Cr as the union of these ordinals, and outputs Eio,r
accordingly.

• r = {s(x̄y) | y ∈ t(x̄),Φ(x̄y)}: We start with the vertex class C and define by
induction the vertex class Ct, the input-output relation Eio,t, and the containment
relation E∈ (cf. Figure 5.3a). Then the machine defines vertex classes encoding
the tuples for the variables x̄y: Let Ex̄y be the relations with an (Eio,t, E∈)-colored
triangle. These relations associate an input tuple with an element contained in the
output set of t. The machine executes addPair(Ex̄y) and obtains a vertex class Cx̄y
with component relations Ex̄ := Eleft and Ey := Eright.
By the induction hypothesis, we obtain the vertex class CΦ ⊆ Cx̄y of Cx̄y-vertices
satisfying Φ. With CΦ as input vertex class, the machine obtains Cs again by
induction and obtains the input-output relation Eio,s.
We define a relation F connecting Cs-vertices originating from the same Ct-vertex: F
is given by the union of all colors R which have an (E91io,s, Ey, E

91
∈ , E∈, E

91
y , Eio,s)-

colored path. We then execute scc(F ) to obtain a vertex class Cr and a new
membership relation E ′∈. Finally, the input-output relation Eio,r consists of the
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edges with an (Eio,t, E∈, E
91
y , Eio,s, E

′91
∈ )-colored path and the machine merges E ′∈

into the containment relation E∈.

• r = s[x]∗: Let s have free variables ȳx. We start with the vertex class C for
the free variables ȳ (cf. Figure 5.3b). We then execute addPair(E∅) for the relation
E∅ = C×C∅. We obtain the vertex class C0 and the component relations E0 := E91left
between a C-vertex and the corresponding C0-vertex and F 0

x := Eright defining the
tuple relation to the entry for x.

Let Ci be the vertex class containing the current input values after the i-th iteration.
Let the relation Ei relate the values for ȳ with the extended tuples ȳx in Ci (maybe
not all ȳ are related because a fixed-point for them is already computed). If i
exceeds the maximal number of iterations (given by the polynomial bound of the
CPT-term), set Ci+1

∗ := ∅ and Ei+1
∗ to be the relations with an (Ei, F )-colored

triangle, where F = Ci × C∅.

Otherwise, the machine defines, starting with Ci, a vertex class Ci
s and the input-

output relation Ei
io,s using the induction hypothesis. Let F i

x be the tuple relation
of Ci for x. We partition Ei

s into Ei
fix := Ei

s∩F i
x and Ei

continue := Ei
s\F i

x. In Ei
fix, the

set for the variable x contained in Ci is equal to the output after applying s once
more, so we reached a fixed-point. Set Ci

∗ to be the subset of Ci
s which is incident

to Ei
fix and set Ei

∗ to be the relation with an (Ei, Ei
fix)-colored triangle incident

(so Ei
∗ associates the input values of y with the computed fixed-point).

If Ei
continue = ∅, the machine stops looping. Otherwise, the machine executes the

operation addPair(F i), where F i are the edges with an (Ei, Ei
continue)-colored tri-

angle, and obtains the vertex class Ci+1, the relation Ei+1 relating a C-vertex with
the corresponding Ci+1-vertex and the relation F i

x for the value of x. That is, the
machine combines the input variables for ȳ with the new set for x. Now the machine
continues looping.

When the loop is finished, the machine outputs the union of the Ci
∗ and the union

of the Ei
∗ is the input-output relation.

Note that we did not use a choice-operation and so, by Corollary 5.28, we indeed can
use the induction hypothesis because we do not change the automorphisms of the input
structure. Hence, the structure in the cloud is always compatible with the input structure.

We finally have to argue that the constructed choice-free DeepWL+WSC-algorithm
runs in polynomial time. Let p be the polynomial given with the CPT+WSC-formula
or term. In every translation step, the machine executes at most a polynomial number
of steps because the number of iterations in the iteration term is bounded by p. Also,
the size of the structure in the cloud is bounded by a polynomial in the size of the
transitive closure of all sets encoded so far, which itself is bounded by a polynomial.
Whenever a directly nested WSC-fixed-point operator is simulated, one of the simulating
DeepWL+WSC-algorithms Mi is called a polynomial number of times. Because all
theMi run in polynomial time, the whole simulation runs in polynomial time.



154 Chapter 5. Choiceless Polynomial Time with Witnessed Symmetric Choice

Lemma 5.32. Assume that Φ(z̄) = WSC∗xy. (sstep(z̄xy), schoice(z̄x), swit(z̄xy),Φout(z̄x)) is
a CPT+WSC-formula and that, for every WSC-fixed-point operator Φ′ directly nested
in Φ, there is a polynomial-time DeepWL+WSC-algorithm simulating Φ′. Then there is
a polynomial-time DeepWL+WSC-algorithm simulating Φ.

Proof. We will construct DeepWL+WSC-machinesMout andMwit in a way such that the
DeepWL+WSC-algorithm (Mout,Mwit,M1, . . . ,M`) simulates Φ. The DeepWL+WSC-
algorithms Mi are the ones simulating the directly nested WSC-fixed-point operators
and will be used by choice-free DeepWL+WSC-algorithms simulating sstep, schoice, swit,
and Φout.

The machine Mout proceeds similarly to the plain iteration term in Lemma 5.31: For
two singleton vertex classes C and D we say that Mout creates a pair of C and D
whenMout executes addPair for the single edge between the C- and the D-vertex. Given
a singleton vertex class C and the step term sstep, the machine first creates a pair of C
and C∅ resulting in the singleton vertex class C0. Now, in the i-th iteration, let Ci

be the singleton vertex class encoding the current set in the fixed-point computation.
The machine Mout first checks whether i exceeds the maximal number of iterations.
If so, it sets Cout := C0 (the input values paired with the empty set). Otherwise, it
simulates, using Lemma 5.31, the choice term schoice on input Ci yielding a singleton
vertex class Ci

schoice
encoding the choice-set. Let Ci

orb be the vertex class incident via
the containment relation to the Ci

schoice
-vertex. Then the machine executes choice(Ci

orb)
yielding a singleton vertex class Ci

ind (because we choose from a vertex class, we do
not have to deal with the difference of the choice-operation for directed or undirected
relations). Next, Mout creates a pair of Ci and Ci

ind and simulates the step term sstep
(Lemma 5.31) with the newly created tuple vertex as input. This results in a singleton
vertex class Ci

sstep . Then the machine creates again a pair of C and Ci
sstep resulting in the

singleton vertex class Ci+1. If Ci = Ci+1 (again it is important that vertices encoding
the same set are not created twice), then a fixed-point is reached and the machine sets
Cout := Ci+1. Otherwise, it starts the next iteration. Once Cout is computed (note
that Cout is always a singleton vertex class because C is),Mout simulates Φout on input Cout
(again using Lemma 5.31 for which we can w.l.o.g. assume that Φout is not a WSC-fixed-
point operator by considering Φout ∧ Φout). If the simulation outputs Cout (so Φout is
satisfied), Mout halts and accepts. Otherwise, Mout halts and does not accept. Note that
the polynomial bound is not exceeded because Φ does not output † by assumption.

The machineMwit just simulates the term swit (again by Lemma 5.31), given the vertex
classes Ci and Cn, where n is the last iteration of the loop. At this point, there is a subtle
difference between CPT+WSC and DeepWL+WSC. The CPT+WSC-term swit gets the
i-th and n-th step of the fixed-point computation as input to witness the choices. In
DeepWL+WSC, we get the labeled union AndAi of the final content of the cloud An and
the content of the cloud Ai of the i-th choice-execution, which is to be witnessed. In our
setting, this means that AndAi contains the vertex classes Ci and Cn but also the vertex
class Ci

schoice
encoding the choice-set3. The witnessing term swit defines automorphisms

witnessing that Ci
schoice

is an orbit of Ai and stabilizes the Cj for all j ∈ [i]. But in

3If a relation named Ci is also present in An, then Ci is not a singleton vertex class in An d Ai, but
we can obtain the correct one by taking the Ci vertex which is also contained in the special E2 relation
given by the labeled union. We similarly process the other vertex classes.
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DeepWL, also the choice-sets have to be fixed. By Lemma 5.6, the CPT+WSC term schoice
is isomorphism-invariant, so all the Cj

schoice
are indeed fixed for all j ∈ [i], too. That is,

exactly those orbits are witnessed in the computation of the DeepWL+WSC-algorithm
which are witnessed in the evaluation of the WSC-fixed-point operator (from which we
assumed that all are witnessed). Arguing that the constructed DeepWL+WSC-algorithm
runs in polynomial time is similar to Lemma 5.31.
Lemma 5.33. If a boolean query Q of a class of binary τ -structures K-structures is
CPT+WSC-definable, then there is a polynomial-time DeepWL+WSC-algorithm decid-
ing Q.
Proof. Let Φ be a CPT+WSC formula defining the query Q. In particular, Φ never
outputs † on K-structures. By applying Lemmas 5.31 and 5.32 recursively on the nesting
structure of theWSC-fixed-point operators, we can translate Φ into a polynomial time and
(possibly choice-free) DeepWL+WSC-algorithmM simulating Φ. Whenever needed, we
extend choice-free DeepWL+WSC-algorithms to DeepWL+WSC-algorithms by adding
a witnessing machine which immediately halts.

5.3.4 Normalized DeepWL+WSC
For our aim to prove Theorem 5.20, we translated an isomorphism-defining CPT+WSC-
formula into a polynomial time isomorphism-deciding DeepWL+WSC-algorithm in the
last section. The next goal, which we address in this section, is to show that the
isomorphism-deciding DeepWL+WSC-algorithm can be turned into a DeepWL+WSC-
algorithm that computes a complete invariant. Recall that an isomorphism-deciding
DeepWL+WSC-algorithm gets as input the disjoint union of the two connected struc-
tures, for which it has to decide whether they are isomorphic. Using the addPair- and
scc-operations, the algorithms is able to create vertices composed of vertices from both
structures, i.e., it mixes the structures. The ultimate goal in this section is to show that
this mixing is not necessary: We will show that every DeepWL+WSC-algorithm com-
puting on a disjoint union of structures can be simulated by a DeepWL+WSC-algorithm
not mixing the two structures. We will call such non-mixing algorithms normalized.
A normalized algorithm can compute on each structure separately. Exploiting this, we
will obtain a complete invariant. We will follow the idea of [59] to show that every
DeepWL+WSC-algorithm can be simulated by a normalized one. However, we have to
differ from the construction in many points. These changes are crucial in the presence of
choices.

5.3.4.1 Pure DeepWL+WSC

As first step to simulate one DeepWL+WSC-algorithm with another DeepWL+WSC-
algorithm, we show that we can make some simplifying assumptions on the algorithm to
be simulated. This will simplify simulating it. We adapt the notion of a pure DeepWL-
algorithm from [59] to DeepWL+WSC-algorithms.
De�nition 5.34 (Pure DeepWL+WSC-algorithm). A DeepWL+WSC-algorithm is pure if
addPair(R) and scc(R) are only executed for colors (or fibers) and refine(U, i) and
choice(U) are only executed for fibers.
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Lemma 5.35. For every polynomial-time DeepWL+WSC-algorithm deciding a boolean
query Q or computing a function f , there is a pure polynomial-time DeepWL+WSC-
algorithm deciding Q or computing f .

Proof. We show that addPair(X)-, scc(X)-, refine(X, i)-, and choice(X)-operations
can be simulated by respective operations applied only to colors and fibers. The case for
addPair(X) and scc(X) is similar to the proof of Lemma 7 in [59]:

addPair(X): First decompose X into its colors R1, . . . , Rk using the symbolic subset
relation. Then execute addPair(Ri) for every i ∈ [k], obtain membership relations Ei for
every i ∈ [k]. Create a new relation which is the union of all Ei and serves as membership
relation of the simulated addPair(X)-operation. This way, we create the same vertices
in the cloud as the addPair(X)-execution would do. By Lemma 5.24, we can compute
the algebraic sketch without the relations Ei.

scc(X): By Lemma 4 of [59], we can compute a relation which exactly contains the
pairs of vertices in the same X-SCC using a pure DeepWL-algorithm (and this algorithm
only executes create and no other operations, so can be directly transferred into our
DeepWL-definition). If there is an X-SCC which is not discrete, i.e., it contains at least
two vertices from the same fiber, we can identify a color R refining X, such that the R-
SCCs are nontrivial. We execute scc(R) and obtain new vertices and a new membership
relation F . Next, we consider the relation X ′, which consists of

(a) the edges of X not incident to an R-SCC and

(b) the edges (u,w) for which there is an edge (u, v) in X such that v is contained in
an R-SCC and w is the R-SCC vertex for v, that is, v is adjacent to w via the
membership relation F .

The relation X ′ is a union of colors, which can be identified using the symbolic subset
relation. We create X ′ using create for the appropriate set of colors. If the X ′-SCCs
are still not all discrete, we repeat the procedure.

Now consider the case that all X-SCCs are discrete. Conceptually, we want to pick
from every X-SCC the vertex in the minimal fiber U as a representative of that SCC. We
create a copy of the U -vertices by executing addPair(U). While iteratively creating the
SCC-vertices, we maintain a relation which associates the SCC-vertices to the vertices
in the X-SCCs, for which they were created. Using this relation, we can define the
membership relation.

So, to simulate scc(X), we do not create exactly the same vertex (as HF-set) because
we pick the minimal fibers as representative. Regarding witnessing automorphisms, nei-
ther picking only a representative nor creating the intermediate SCC-vertices makes a
difference: Because we did not use a choice-operation to simulate the refine-operation,
the structure in the cloud has the same automorphisms as the structure that is simulated
by Corollary 5.28. Again by Lemma 5.24, we can compute the algebraic sketch without
the additional vertices and relations.
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refine(X, k): Let X consist of the colors R1, . . . , Rm, which we find using the symbolic
subset relation. We execute refine(R1, k), . . . , refine(Rm, k) and obtain new relations
E1, . . . , Em. The union of these relations precisely corresponds to the relation outputted
by refine(X, k). So we can assume that X is a color R. If R is not a fiber, then we do
the following: If R is an undirected color, then execute addUPair(R) and obtain a new
vertex class C and a membership relation F . We decompose C into its fibers U1, . . . , U`,
execute refine(Ui, k) for every i ∈ [`], and obtain the vertex classes D1, . . . , D` (in case
refine(Ui, k) does not create a vertex class, i.e., the algorithm used to refine Ui accepts
all vertices in Ui, we set Di := Ui). Let D be the union of the Di for all i ∈ [`]. The
relation E refining R is obtained as the set of R-edges with an (F 91, C, F )-colored path.
If E contains the same edges as R, then we do nothing, otherwise E is the output of the
simulated refine-operation.

If R is a directed color, then execute addPair(R) and obtain the vertex class C and
the component relations Fleft and Fright. Next, we execute refine(C, k) (for which we
again decompose C into fibers), and obtain the vertex class D refining C. Similarly to the
unordered case, we obtain the relation E refining R as R-edges with an (F 91left, D, Fright)-
colored path. If E and R contain the same edges, we do nothing, otherwise E is the
output of the simulated refine-operation.

The algorithm used to refine has to be altered to also perform the same operations to
first create a new relation corresponding to the individualized D-vertex. Again by Corol-
lary 5.28, the simulation does not alter the automorphisms of the structure in the cloud
and by Lemma 5.24, the algebraic sketch without the additional vertices and relations
can be computed.

choice(X): If choice(X) is executed for a relation E consisting of more than one color,
then E is not an orbit and the given algorithm does not decide a query or computes a
function because it is going to fail (recall that failing is not allowed when deciding a
query or computing a function). So we can assume that X is a color R. Analogously
to the refine-case, we execute addUPair(R) or addPair(R), depending on whether R is
undirected or not, and obtain a vertex class C. Next, we execute choice(C) yielding a
singleton vertex class containing a C-vertex u. Using the vertex u, we can define a relation
containing a single (directed or undirected) R-edge analogously as in the refine-case.

It is easy to see that a set of automorphisms witnessesR (seen as directed or undirected
edges depending on whether R is directed or not) as orbit if and only if it witnesses C as
orbit. Additionally, both individualizing an R-edge and individualizing the corresponding
C-vertex results in an HF-structure with the same automorphisms. By Lemma 5.24, we
can compute the algebraic sketch without the additional vertices and relations.

5.3.4.2 Normalized DeepWL+WSC

We now formalize the notion of an DeepWL+WSC-algorithm not mixing the two con-
nected components of the structure in the cloud. To do so, we adapt the notion of a
normalized DeepWL-algorithm from [59] to DeepWL+WSC. Recall that, for the aim of
testing isomorphisms, the input structure is the disjoint union of two connected struc-
tures.
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De�nition 5.36. (Normalized HF-Structure) An HF-structure A is normalized if there
are connected HF-structures A1 and A2 such that A = A1 ]A2. The Ai are the compo-
nents of A. The vertices of a normalized structure are called plain. The edges

Eplain(A) := V1(A)2 ∪ V2(A)2

are called plain and the edges

Ecross(A) := V1(A)× V2(A) ∪ V2(A)× V1(A)

are called crossing. A relation or color is called plain (or crossing) if it only contains
plain (or crossing, respectively) edges.

Observe that also the atom set of A is the disjoint union A = A1 ] A2 and that the
components A1 and A2 of A are unique because the Ai are connected. Also observe
that if a DeepWL+WSC-machine is executed on A1 ] A2 and at some point during its
execution the structure in the cloud is still normalized, then every vertex w is contained
in HF(Ai) for some i ∈ [2]. That is, one of the following holds:

• w ∈ V(Ai),

• w was added by an addPair-execution for a pair (u, v) of vertices u, v ∈ HF(Ai), or

• w was obtained as a vertex for an SCC c ⊆ HF(Ai) during an scc-execution.

In particular, addPair(X)- and sccX-operations were only executed for plain X.

Lemma 5.37 ([59]). The relation of all plain (respectively crossing) edges is DeepWL-
computable.

De�nition 5.38 (Normalized DeepWL+WSC). A DeepWL+WSC-machineM is normalized
if, for every normalized HF-structure A, the structure in the cloud of M is normalized
at every point in time during the execution of M on A. A DeepWL+WSC-algorithm
M = (Mout,Mwit,M1, . . . ,M`) is normalized if Mout, Mwit, and M1, . . . ,M` are nor-
malized.

The current definition has a severe issue, namely the way in which sets of witnessing
automorphisms are encoded by the witnessing machine: With the encoding of automor-
phisms we previously described, a set of automorphisms can only be encoded by non-plain
vertices. So normalized DeepWL+WSC-algorithms need to use a different encoding of
automorphisms to witness choices. For the moment, we do not need to give a precise
definition for this encoding because it is irrelevant for the following lemmas. We will
thus define the encoding later in Section 5.3.4.6 once we have established the required
formalism.

Normalized structures have the important property that every crossing color is actu-
ally a “direct product” of two fibers. That is, crossing colors do not provide additional
information and this is the reason why general DeepWL+WSC-algorithms can ultimately
be simulated by normalized ones.
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(a) (b) (c) (d)

5.4 Illustration of refine-operations and the “direct product” property. This �gure shows
an example for the problem with refine-operations and the “direct product” property. Figure (a)
shows a coherent structure A1 ] A2 with a black �ber satisfying the “direct product” property, i.e.,
all edges between black vertices are light blue. Assume that in each component the black vertices
can be ordered. Figure (b) shows the structure obtained a�er re�ning the light blue color with an
algorithm accepting exactly the edges between the i-th black vertices in both structures. This yields a
red color. The structure is again coherent but does not have the “direct product” property. Ordering
the vertices is not passed through the refine-operation. Figure (c) shows the structure resulting a�er
�rst ordering the black vertices and then executing the same refine-operation. This structure has
the “direct product” property: Figure (d) shows the decomposition of the light blue relation and the
red relation into colors.

Lemma 5.39 ([59, Lemma 8]). Let A = A1 ] A2 be a normalized HF-structure.

1. For every crossing color R of A, there are two plain fibers U and V such that
RA = (UA × V A) ∩ Ecross(A).

2. C(Ai) is equal to C(A)[V(Ai)] � σi up to renaming colors for every i ∈ [2], where σi
is the set of all colors R ∈ σ for which RA ∩ V(Ai)2 6= ∅.

3. There is a polynomial-time algorithm that on input D(A1) and D(A2) computes
D(A).

4. The two sketches D(A1) and D(A2) determine D(A): if D(A) 6= D(B) for another
HF-structure B = B1 ]B2, then {D(A1), D(A2)} 6= {D(B1), D(B2)}.

5.3.4.3 The “Direct Product” Property and refine-Operations

We now develop tools to deal with normalized DeepWL+WSC-algorithms. First, we
investigate the refine-operation. Intuitively, our goal is to preserve the “direct product”
property for crossing colors as stated in Lemma 5.39. In principle, if we only create plain
vertices, this property is preserved, but a refine-operation can violate it.

We give an illustrating example (cf. Figure 5.4): Assume we are given a normalized
HF-structure A = A1 ] A2, both components of the same size, where all vertices are in
the same fiber and consequently all crossing edges are in the same color R (Figure 5.4a)
Further, assume that some DeepWL+WSC-algorithm can linearly order the vertices in
each component. Then we can define an algorithmM with the following property. For
{u, v} ⊆ RA, the algorithm accepts (A1 ] A2, {u, v}) if and only if u and v are each the
i-th vertex in their component for some i. If we refine R with M, then a relation E
containing a perfect matching between the components is added (Figure 5.4b). But
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the information, that the atoms can be ordered, is not “returned”. The result is again
a coherent configuration with only one fiber and so the “direct product” property is
violated. To avoid this problem, we need to distinguish the atoms first and then execute
the refine-operation (Figure 5.4c).

We will show now that this strategy generalizes to arbitrary refine-operations. To
do so, we need to establish the following technical lemmas. The first lemma states that
instead of computing on A1]A2, we can also compute on the structure (A1]A2, A1) (that
is, we add a vertex class containing all vertices of A1), where we artificially distinguish
the two components, i.e., we remove automorphisms exchanging the components.

Lemma 5.40. For every normalized DeepWL+WSC-algorithm M, there exists a nor-
malized algorithm M̂ such that, for all connected HF-structures A1 and A2, the algo-
rithm M accepts (respectively rejects) A1 ] A2 if and only if M̂ accepts (respectively
rejects) (A1 ] A2, A1). Polynomial running time is preserved. For all HF-structures
A1, A2, B1, and B2, it holds that

if run(M,A1 ] A2) 6= run(M,B1 ]B2),
then run(M̂, (A1 ] A2, A1)) 6= run(M̂, (B1 ]B2, B1)).

Proof. The proof is by induction on the nesting depth of DeepWL+WSC-algorithms. Let
M = (Mout,Mwit,M1, . . . ,M`) be a normalized DeepWL+WSC-algorithm. By the in-
duction hypothesis, let M̂1, . . . ,M̂` be normalized DeepWL+WSC-algorithms satisfying
the claim for the algorithmsM1, . . . ,M`. We construct DeepWL+WSC-machines M̂out

and M̂wit, i.e., for M ∈ {Mout,Mwit} we construct a DeepWL+WSC-machine M̂ . Let
A1 ]A2 be a normalized HF-structure on which M is executed. By Lemma 5.24, M̂ can
compute the algebraic sketch D(A1 ] A2) from D((A1 ] A2, A1)) and thus track the run
ofM . Note that by Lemma 5.39, the sketches of the individual components in D(A1]A2)
and D((A1 ] A2, A1)) are equal possibly up to renaming of the colors. Additionally, the
crossing colors of (A1 ] A2, A1) are always directed.

If M executes create(π) and π contains a color R occurring in both components,
then M̂ uses the two colors R1 and R2, each occurring in one component, whose union
is equal to R. Every addPair-, scc-, and refine-operation executed by M is executed
in the same way by M̂ respecting the renamed colors: Whenever M uses a color or
relation, which is now split into two sets (one in each component), M̂ creates the union
of these colors/relations and uses this union. The refine-operations yield the correct
result by the induction hypothesis. To continue to track the run of M , we again exploit
Lemma 5.24 to compute the sketch without the additionally created relations.

Whenever M executes choice(R) (if choice is executed for a relation consisting of
multiple relations, then the algorithm will fail), we make the following case distinction.
Let A′ = (A′1 ] A′2, A1) be the current content of the cloud. If R is a crossing color, M̂
executes choice(S) for the color S satisfying SA′ = RA′ ∩ (A′1 ×A′2) (which is DeepWL-
computable). If R was a directed color, then there is nothing more to do because the
individualized edge (u, v) is contained in RA′ . If R was an undirected color, then a directed
edge (u, v) instead of the undirected edge {u, v} is individualized. Recall that (u, v) is
individualized by creating two singleton vertex classes and that {u, v} is individualized
by creating a two-element vertex class. So we create the union of the two singleton color
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classes. This corresponds to individualizing the undirected edge and we can continue to
track the run of M .

If R is a plain color containing edges of both components, then M̂ executes choice(S)
for the color S satisfying SA′ = RA′ ∩ (A′1)2. Otherwise, R is a plain color containing
only edges of one component and M̂ simply executes choice(R). It is easy to see that
if R is an orbit of A′1 ]A′2, then S is an orbit of (A′1 ]A′2, A1). Again by Lemma 5.24, we
compute the sketch without the additional created relations to track the run of M .

We finally have to modify the witnessing machine M̂wit. Independent of the precise
way we will encode sets of witnessing automorphisms for normalized DeepWL+WSC-
machines, we may proceed as follows (an explicit description of the encoding is given in
Section 5.3.4.6): The witnessing machine M̂wit first computes the set of automorphisms
given by Mwit. Then it removes the automorphisms exchanging the two components and
outputs the set of remaining automorphisms. This way, all choices are witnessed if all
choices in the execution ofM are witnessed.

Finally, assume A1,A2,B1, and B2 are connected HF-structures. Furthermore, sup-
pose run(M,A1 ]A2) 6= run(M,B1 ]B2). The machine M̂ tracks the run of M . Hence,
the run of M̂ contains the configurations of the Turing machines in M and also the alge-
braic sketches in the run of M . These sketches were computed by M̂ using Lemma 5.24.
So run(M̂,A1]A2) can be extracted from run(M̂, (A1]A2, A1)) (and likewise forB1]B2).
We conclude that run(M̂, (A1 ] A2, A1)) 6= run(M̂, (B1 ]B2, B1)).

We now identify sets of runs as a possibility to distinguish vertices, so that executing a
refine-operation on a crossing relation preserves the “direct product” property.

Lemma 5.41. For every normalized DeepWL+WSC-algorithm M, every normalized
HF-structure A = A1 ] A2, every crossing color RA = (UA × V A) ∩ Ecross(A) for some
fibers U and V , every vertex u ∈ UA ∩ Vi(A) for some i ∈ [2], and all edges
{u, v}, {u, v′} ∈ RA ∪ (R91)A, we have the following: If M accepts (A, {u, v}) and M
does not accept (A, {u, v′}), then{

run(M, (A, {w, v}))
∣∣∣ w ∈ U ∩ Vi(A)

}
6=
{

run(M, (A, {w, v′}))
∣∣∣ w ∈ U ∩ Vi(A)

}
.

Proof. LetM be a normalized DeepWL+WSC-algorithm, A = A1 ] A2 be a normalized
HF-structure, and assume R, u ∈ UA ∩ Vi(A), {u, v}, and {u′, v′} satisfy the condi-
tions of the lemma. AssumeM accepts (A, {u, v}) andM does not accept (A, {u, v′}).
We prove that run(M, (A, {u, v})) /∈ {run(M, (A, {w, v′})) | w ∈ UA ∩ Vi(A)}. Sup-
pose, for the sake of contradiction, that there exists a vertex u′ ∈ UA ∩ Vi(A) such
that run(M, (A, {u, v})) = run(M, (A, {u′, v′})). At some point during the execution
of M, the runs run(M, (A, {u′, v′})) and run(M, (A, {u, v′})) have to differ because
run(M, (A, {u, v})) = run(M, (A, {u′, v′})) is accepting and run(M, (A, {u, v′})) is not
accepting. Because M is normalized, at every point in time the current content of the
cloud B satisfies V(B) = V1(B) ∪ V2(B). Before the first moment where the two runs
differ, the component of v′ is equal in both clouds because the same operations were
executed and the initial components of v′ were equal (in (A, {u, v′}) and in (A, {u′, v′})
the same vertex is individualized in this component). In particular, the components have
the same sketches. SoM can only have a run on {u′, v′} that is different from its run on
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{u, v′} if the sketches of the components of u and u′ differ (Lemma 5.39). But this contra-
dicts that run(M, (A, {u, v})) = run(M, (A, {u′, v′})) because the sketches are contained
in the run.

Now we want to compute the set {run(M, (A, {w, v})) | w ∈ U ∩ Vi(A)} using a
DeepWL+WSC-algorithm. We start with the case where a directed edge (w, v) instead
of the undirected one {w, v} is individualized.

Lemma 5.42. For every normalized DeepWL+WSC-algorithm M, every normalized
HF-structure A = A1 ] A2, every crossing color RA = (UA × V A) ∩ Ecross(A) for some
fibers U and V , all numbers i and j such that {i, j} = [2], and every vertex v ∈ V A∩Vj(A),
there is a normalized DeepWL+WSC-algorithm computing on input v (given as a single-
ton vertex class) the set {

run(M, (A, wv))
∣∣∣ w ∈ U ∩ Vi(A)

}
if, for every (u, v) ∈ RA, the algorithm M does not fail on input (A, uv). Polynomial
runtime of the algorithm is preserved.

Proof. LetM be a normalized DeepWL+WSC-algorithm. ForM, letM′ be a normalized
DeepWL+WSC-algorithm, which on input i, v, and w (given as singleton vertex classes)
simulates M and decides whether the i-th position of the run run(M, (A, wv)) is a 1
ifM does not fail. Similarly, letM′′ be a normalized DeepWL+WSC-algorithm, which
on input i, v, and w decides whether |run(M, (A, wv))| ≥ i unless M fails.

Let A = A1 ] A2 be a normalized HF-structure, RA = (UA × V A) ∩ Ecross(A) be a
crossing color and v ∈ V A ∩ Vj(A) for some {i, j} = [2] such that M does not fail on
input (A, uv) for every (u, v) ∈ RA. We construct a machine which computes the runs
run(M, (A, wv)) in parallel for all w ∈ UA. The runs are encoded as binary 0/1-strings,
which are encoded by vertex classes C1, . . . , Cm, and D1, . . . , Dm, where Ci contains all
U -vertices for which the i-th bit of the run is a 1, and Di contains all U -vertices for
which the run has length at least i. Initialize D0 := U , that is, D0 contains exactly the
U -vertices on which the run of M has length at least zero. Starting from i = 0, we
first determine the vertex class Di+1 by executing refine(Di,M′′, i + 1) (we actually
have to execute refine(Di, k, i + 1), where k is the index of M′′ in the list of nested
subalgorithms). By definition ofM′′, Di+1 contains exactly the U -vertices, on which the
run ofM has length at least i. If Di+1 = ∅, then we stop because we computed all runs.
Otherwise, we determine Ci+1 as a subset of Di+1 by executing refine(Di+1,M′, i + 1)
(again, we need to replaceM′ by the corresponding number). By definition ofM′, the
class Ci+1 contains exactly the U -vertices for which the (i+ 1)-th bit in the run of M is
a 1. Finally, we increment i and repeat. We now have encoded the runs run(M, (A, wv))
with the vertex classes C1, . . . , Cm and D1, . . . , Dm. So we can determine which runs
occur. Now it is easy to compute the set {run(M, (A, wv)) | w ∈ U} and to write it onto
the tape because the runs can be ordered lexicographically.

Regarding the runtime, its easy to see that M′ and M′′ run in polynomial time
because they just simulate M and check the run of M. Because the length of the run
ofM is bounded by a polynomial, so is the number of iterations and the number of needed
relations. That is, also the size of the algebraic sketch is bounded by a polynomial.
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Lemma 5.43. For every normalized DeepWL+WSC-algorithm M, every normalized
HF-structure A = A1 ] A2, every crossing color RA = (UA × V A) ∩ Ecross(A) for some
fibers U and V , and every i ∈ [2], we have the following: There exists a normalized
DeepWL+WSC-algorithm computing a function f such that if, for every (u, v) ∈ RA, the
algorithmM does not fail on input (A, uv), then

f(v) 6= f(v′) whenever{
run(M, (A, {w, v})))

∣∣∣ w ∈ U ∩ Vi(A)
}
6=
{

run(M, (A, {w, v′}))
∣∣∣ w ∈ U ∩ Vi(A)

}
for all v, v′ ∈ V A∩Vj(A) such that {i, j} = [2] (the input vertex to f is given as singleton
vertex class). Polynomial runtime is preserved.

Proof. Let M be a normalized DeepWL+WSC-algorithm and let M̂ be the normal-
ized DeepWL+WSC-algorithm given by Lemma 5.40 forM, that is, M̂ accepts (A, uv)
if and only if M accepts (A, {u, v}) for every (u, v) ∈ RA and every crossing color
RA = (UA × V A) ∩ Ecross(A) of every normalized HF-structure A. Note here that indi-
vidualizing u implicitly distinguishes the two components and we do not need to create
a vertex class for A1. Given v as singleton vertex class, we compute using Lemma 5.42
the set f(v) := {run(M̂, (A, wv)) | w ∈ U ∩ Vi(A)}. By the properties of M̂ granted by
Lemma 5.40, it follows that

if
{

run(M, (A, {w, v}))
∣∣∣ w ∈ U ∩ Vi(A)

}
6=
{

run(M, (A, {w, v′}))
∣∣∣ w ∈ U ∩ Vi(A)

}
,

then
{

run(M̂, (A, (w, v)))
∣∣∣ w ∈ U ∩ Vi(A)

}
6=
{

run(M̂, (A, (w, v′)))
∣∣∣ w ∈ U ∩ Vi(A)

}
.

Finally, we want to use this function f to refine vertex classes. That is, we want to execute
a refine(C, f)-operation, which splits a vertex class C such that two C-vertices u and v
end up in different classes if and only if f(u) 6= f(v).

Lemma 5.44. Let M be a normalized and polynomial-time DeepWL+WSC-algorithm,
which computes a function f . Then we can simulate a refine(C, f)-execution using a
normalized polynomial-time DeepWL+WSC-algorithm.

Proof. The proof is similar to the one of Lemma 5.42. We use vertex classes encoding
the values of f . We create a DeepWL+WSC-algorithmM′, which, for every normalized
structure A and every vertex class C, takes a C-vertex u (as singleton vertex class) and
an additional number i as input. It decides whether the i-th bit of f(u) is 1. We create
another algorithm M′′ that takes a C-vertex u and a number i as input and decides
whether |f(u)| ≥ i. Use M′ and M′′ iteratively to obtain vertex classes refining C
encoding f(u) for every C-vertex u analogously to the proof of Lemma 5.42. We then
create new vertex classes for distinct output of f containing the C-vertices of that value.
Because f is computed by a polynomial-time machine, the length of f is bounded by a
polynomial and so again is the number of iterations and created relations.

In Section 5.3.4.6, we will use the lemmas of this section to simulate a refine-operation
as already discussed: First split the vertex classes suitably and then execute the refine-
operation.
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5.3.4.4 Building Plans

To simulate arbitrary DeepWL+WSC-algorithms by normalized ones, we need to com-
pute the algebraic sketch of the non-normalized HF-structure in the cloud of the simulated
algorithm from the normalized HF-structure in the cloud of the simulating algorithm. For
this, we introduce the notion of a building plan.
De�nition 5.45 (Building Plan). Let A = A1]A2 be a normalized HF-structure. A vertex
plan for A is a set {C,D} of vertex classes C,D ∈ τ . A relation plan for A defining a
relation symbol E /∈ τ is a pair (E, {{F1,i, F2,i} | i ∈ [k]}), where Fj,i ∈ τ for all j ∈ [2]
and i ∈ [k]. A building plan for A is a pair Ω = (ω, κ), where ω is a finite set of vertex
plans and κ is a finite set of relation plans where each relation plan defines a different
relation symbol.
Intuitively, a building plan Ω describes a non-normalized HF-structure Ω(A) in terms of a
normalized HF-structure A and a recipe to construct vertices mixing the two components
of A. A vertex plan {C,D} says that, for every u ∈ CA and v ∈ DA in different
components of A, the vertex {u, v} is added to the structure (recall that we are defining
an HF-structure). A relation plan (E, {{F1,i, F2,i} | i ∈ [k]}) specifies a new relation E
between the created vertices: A pair ({u, v}, {u′, v′}) is contained in EΩ(A) if and only
if there is some i ∈ [k] such that (u, u′) ∈ FA

1,i and (v, v′) ∈ FA
2,i. Lastly, a special

relation Ep relating every vertex {u, v} that is created to the original vertices u and v is
added. Formally, the structure Ω(A) is defined as follows:
De�nition 5.46 (Structure De�ned by a Building Plan). Let Ω = (ω, κ) be a building plan
for a normalized HF-structure A. The structure Ω(A) is defined as follows: For every
vertex plan {C,D} ∈ ω, define

EA
{C,D} := (CA ×DA ∪DA × CA) ∩ Ecross(A),

ẼA
{C,D} :=

{
{u, v}

∣∣∣ (u, v) ∈ EA
{C,D}

}
,

and ẼA
ω := ⋃

{C,D}∈ω Ẽ
A
{C,D}. The atoms of Ω(A) are the ones of A, the vertices are

V(Ω(A)) := V(A) ∪ ẼA
ω , and the signature of Ω(A) is τ ] {Ep} ] {E | (E,M) ∈ κ}. The

relations are defined via

EΩ(A)
p :=

⋃
{u,v}∈ẼA

ω

{
({u, v}, u), ({u, v}, v)

}
,

EΩ(A) :=
{

({u, v}, {u′, v′})
∣∣∣ (u, u′) ∈ FA

1,i, (v, v′) ∈ FA
2,i, i ∈ [k]

}
for every

(
E, { {F1,i, F2,i} | i ∈ [k] }

)
∈ κ.

The added vertices {u, v} are called crossing. The set of all crossing vertices of Ω(A)
is Vcross(A). We call edges (w,w′) ∈ Vcross(A)2 inter-crossing. A relation or color is
inter-crossing if it only contains inter-crossing edges. A vertex class or fiber is called
crossing if it only contains crossing vertices.
Later, we are interested only in the substructure of Ω(A) induced by the crossing vertices.
But for HF-structures, this is actually ill-defined because the crossing vertices do not
contain the atoms of A. So we turn to the non-HF-structure Ω(A)flat and define

Ωcross(A) := Ω(A)flat[Vcross(Ω(A)flat)].
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Here, we refer with Vcross(Ω(A)flat) to the set of atoms in Ω(A)flat which are crossing
vertices in Ω(A). We now show that the fibers of crossing vertices, or the colors of inter-
crossing edges, respectively, are already determined by plain fibers and plain relations.

Lemma 5.47. For every normalized HF-structure A and every building plan Ω for A, the
structure Ω(A) satisfies the following:

(A1) Every vertex of Ω(A) is either plain or crossing.

(A2) Ω(A)[V(A)] = A.

(A3) Every relation of Ω(A) is either plain or inter-crossing or the special relation Ep.

(A4) For every crossing vertex u ∈ Vcross(A) and every i ∈ [2], there exists exactly one
vertex u(i) ∈ Vi(A) such that (u, u(i)) ∈ EA

p . Moreover, {u(1), u(2)} 6= {v(1), v(2)} for
all distinct u, v ∈ Vcross(A).

(A5) For every crossing vertex u ∈ Vcross(A) its fiber Uu is uniquely determined by
the set of fibers {Uu(1) , Uu(2)} of the plain vertices u(1) and u(2), that is, whenever
{Uu(1) , Uu(2)} = {Uv(1) , Uv(2)}, then Uu = Uv. Additionally, for every pair of vertices
v1 ∈ UA

u(1)∩V1(A) and v2 ∈ UA
u(2)∩V2(A), there is a crossing vertex w in the fiber Uu

such that w(1) = v1 and w(2) = v2.

(A6) In the same sense, the color R(u,v) of every inter-crossing edge (u, v) is uniquely
determined by the set of plain colors {R(u(1),v(1)), R(u(2),v(2))}.

Proof. Let A = A1 ]A2 be a normalized HF-structure and Ω = (ω, κ) be a building plan
for A. Properties A1 to A4 immediately follow from the construction of Ω(A). To show
Property A5, let u be a crossing vertex in fiber Uu and let Uu(i) be the fiber of u(i) for every
i ∈ [2]. First consider the claim that for all v1 ∈ UA

u(1) ∩ V1(A) and v2 ∈ UA
u(2) ∩ V2(A),

there is a crossing vertex w such that w(1) = v1 and w(2) = v2. Because the crossing
vertex u exists, there is a vertex plan {C,D} ∈ ω such that {u(1), u(2)} ∈ ẼA

{C,D}. Assume
w.l.o.g. that u(1) ∈ CA and that u(2) ∈ DA. Because v1 ∈ UA

u(1) ⊆ CA and v2 ∈ UA
u(2) ⊆ DA,

it follows that {v1, v2} ∈ ẼA
{C,D} and so by definition of Ω(A) there is a crossing vertex w

such that w(1) = v1 and w(2) = v2. To show that the fiber Uu is uniquely determined by
{Uu(1) , Uu(2)}, it suffices to consider the special case of A6 when considering loop colors.

It remains to prove Property A6. Let (u, v) be an inter-crossing edge of color R(u,v).
Let the color of (u(i), v(i)) be R(u(i),v(i)) for every i ∈ [2]. For the first direction, let
(u′, v′) be a crossing edge such that R(u′,v′) = R(u,v). Because every crossing vertex is
adjacent via Ep to exactly one plain vertex in each component, every inter-crossing edge
has exactly two (Ep, Si, E91p )-colored paths, where Si is a plain color, for every i ∈ [2].
For (u, v), we have that {S1, S2} = {R(u(1),v(1)), R(u(2),v(2))}. Because (u′, v′) has the same
color as (u, v), the same holds for (u′, v′), i.e.,{

R(u′(i),v′(i))

∣∣∣ i ∈ [2]
}

=
{
R(u(i),v(i))

∣∣∣ i ∈ [2]
}
.

For the remaining direction, we have to show that two inter-crossing edges (u1, v1) and
(u2, v2), for which {

R
u

(i)
1 ,v

(i)
1

∣∣∣ i ∈ [2]
}

=
{
R
u

(i)
2 ,v

(i)
2

∣∣∣ i ∈ [2]
}
,
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have the same color R(u1,v1) = R(u2,v2), where (u1, v1) and (u2, v2) are arbitrary. To do so,
we construct a coherent configuration H, such that H refines C(Ω(A)), H has the required
property regarding colors of inter-crossing edges, and H[Vi(A)] = C(Ω(A))[Vi(A)] for
every i ∈ [2]. Then every coarser coherent configuration has the same property for inter-
crossing edges, too. We only sketch the construction, the idea is based on the proof of
Lemma 10 in [59]. The main difference is that [59] gives the construction for the Eω
relation and not the Ẽω relation (cf. the proof of Lemma 5.48). Essentially, we replace
ordered pairs of two colors with a set of at most two colors. The coherent configuration
is defined as follows: The plain edges are colored according to C(A). Every inter-crossing
edge (u, v) is colored with the set of colors {R(u(1),v(1)), R(u(2),v(2))} of its corresponding
plain edges. Note that by Lemma 5.39, this also determines the color of the edges
(u′(i), v′(j)) whenever u′, v′ ∈ {u, v} and {i, j} = [2], i.e., u′(i) and v′(j) are in different
components, because the color of an edge determines the fiber of its endpoints. Similarly,
an edge (u, v) of a crossing vertex u and a plain vertex v is colored with the fiber of u
(which is defined in the inter-crossing case for loops), the fiber of v, and whether (u, v) is
contained in Ep. Clearly, the sketched coherent configuration has the required property
by construction.

We say that the plain vertices u(1) and u(2) are the vertices corresponding to the
crossing vertex u. Likewise, the plain edges (u(1), v(1)) and (u(2), v(2)) correspond to the
inter-crossing edge (u, v). The set of colors {E(u(1),v(1)), E(v(2),v(2))} corresponds to the color
E(u,v) (and similarly for crossing vertices). In some sense, Properties A5 and A6 mean
that we actually do not need to construct the crossing vertices because all information is
determined by the corresponding plain vertices and edges. We now show this formally.
Lemma 5.48. There exists a normalized DeepWL-algorithm that for every normalized
HF-structure A and every building plan Ω = (ω, κ) for A computes D(Ω(A)) in polynomial
time.
Proof. We show that there is a (non-normalized) DeepWL algorithm M which, on in-
put A in the cloud and Ω = (ω, κ) on the work-tape, constructs the structure Ω(A)
in the cloud by first executing an addPair-operation on a crossing relation and then a
contract-operation. This is done as follows. The crossing relations E{C,D} and Ẽ{C,D}
are DeepWL-computable for every vertex plan {C,D} ∈ ω. In particular, the cross-
ing relation ẼA

ω = ⋃
{C,D}∈ω Ẽ{C,D} is DeepWL-computable. The algorithm M executes

addUPair(Ẽω) and obtains the relation Ep as membership relation. For every relation
plan (E, {{F i

1, F
i
2} | i ∈ [k]}) ∈ κ, the algorithm M defines EΩ(A) as follows. For every

i ∈ [k], the algorithmM defines the relation Ei to be the relation with an (Ep, F i
1, E

91
p )-

and an (Ep, F i
2, E

91
p )-colored path. Then E is obtained as the union of all Ei. Similar

to Lemma 5.29, the addUPair-operation can be simulated in the DeepWL-model of [59]
by first an addPair-execution and then a contract-execution. Recall that contract(R)
contracts every R-SCC to a singleton vertex. So we first execute addPair(Ẽω) and
then contract the edges between the two vertices 〈u, v〉 and 〈v, u〉 to obtain vertices
{〈u, v〉, 〈v, u〉}.

We now argue that there is a normalized DeepWL-algorithm M̂ computing the sketch
of Ω(A) without executing the operations (in fact, without modifying the cloud at all).
Using Lemma 10 of [59], M̂ computes the sketch after the addPair-execution in polyno-
mial time (which is possible because Ẽω is crossing). Next, M̂ computes the the sketch
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after the contract-execution using Lemma 9 of [59]. Finally, the inter-crossing relations
described by κ are unions of inter-crossing colors and the subset-relation can be computed
in polynomial time.

De�nition 5.49 (E�cient Building Plan). A building plan Ω = (ω, κ) for a normalized
τ -HF-structure A is called efficient if, for every u ∈ V(A), there is a vertex class C ∈ τ
such that u ∈ CA and there is a vertex plan {C,D} ∈ ω for some D ∈ τ .

Intuitively, an efficient building plan makes use of all plain vertices of A, which means
that A does not contain unnecessary vertices to construct Ω(A).

Lemma 5.50. If Ω is an efficient building plan for a normalized HF-structure A, then
|A| ≤ 2|Vcross(Ω(A))|.

Proof. Every crossing vertex in Vcross(Ω(A)) is, by Property A4, incident to exactly two
plain vertices. So there are at most twice as many plain as crossing vertices.

Lemma 5.51. Let A be a normalized HF-structure and Ω be a building plan for A. Then
Aut(A) = Aut(Ω(A)) (note that both structures are HF-structures with atom set A). For
every crossing fiber U , it holds that if UΩ(A) is an Ω(A)-orbit, then for the corresponding
plain fibers {U1, U2} of U , the set ẼA

{U1,U2} is an A-orbit.

Proof. We first show that Aut(A) ⊆ Aut(Ω(A)). The structure Ω(A) is defined in an
isomorphism-invariant manner. Whenever a vertex or relation is added, it is done for all
vertices/edges of a given vertex class/relation (cf. the proof of Lemma 5.48 that shows
that Ω(A) can be obtained from A by a DeepWL-algorithm). So every automorphism
of A extends to an automorphism of Ω(A). To show Aut(Ω(A)) ⊆ Aut(A), note that A
is contained in Ω(A). Also, note that all relations added in Ω(A) are new ones and no
relation of A is changed. It is never possible that an automorphism maps a crossing vertex
to a plain vertex because the Ep relation is directed from crossing to plain vertices. So
every automorphism of Ω(A) is an automorphism of A.

For the second part, let U be a crossing fiber such that UΩ(A) is an Ω(A)-orbit. By
construction of the Ep relation, an automorphism ϕ satisfies ϕ(u) = v if and only if
ϕ({u(1), u(2)}) = {v(1), v(2)} for all u, v ∈ UΩ(A) (cf. Property A4). Because ẼA

{U1,U2}
contains exactly these pairs {u(1), u(2)}, it is an Ω(A)-orbit, too, and thus also an A-orbit
since Aut(A) = Aut(Ω(A)).

Comparison to [59]. To show that every DeepWL-algorithm can be simulated by an
equivalent normalized DeepWL-algorithm, almost normalized structures are used as in-
termediate step in [59]. The structures obtained from building plans differ at some points
from the almost normalized structures:

• Our notion of crossing vertices is defined only for building plans and not for general
DeepWL-algorithms (and is for undirected crossing edges).

• Our relation Ep does not distinguish between u(1) and u(2). This is needed so that
a choice-operation on crossing vertices does not necessarily distinguish the two
components.
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• The relation Ep assigns to every crossing vertex exactly one plain vertex in each
component. This ensures that choice-sets can still be witnessed.

• Properties similar to A5 and A6 are always satisfied for almost normalized structures
in [59]. In combination with refine- and choice-operations, this would not be the
case anymore.

5.3.4.5 Building Plans and scc-Operations

Before we can start to design normalized DeepWL+WSC-algorithms, we have to investi-
gate scc-operations. Assume that for an inter-crossing relation E the scc(E)-operation
is to be executed and we want to find a building plan simulating this. The challenge
is to construct new plain vertices so that we find plain vertex classes which correspond
to the vertex class obtained by scc(E). The first step is to analyze the SCCs of the
corresponding plain colors of E in the components. In a second step, we show how we
can define a building plan to simulate the scc(E)-operation. We start with a lemma
regarding SCCs in coherent configurations.
Lemma 5.52. Let H be a coherent configuration with signature σ and R, S ∈ σ be colors
connecting vertices of the same fiber, i.e., RH ⊆ (UH)2 and SH ⊆ (UH)2 for some fiber
U ∈ σ. Then

1. every R-connected component is strongly R-connected and

2. every {R, S}-connected component is strongly {R, S}-connected.
Proof. We start with Claim 1: If R is itself a fiber, all connected components are trivial
and the claim follows. Otherwise, let c be an R-connected component. Then we can
assume that H is a primitive coherent configuration, otherwise we can restrict H to c (all
edges leaving c have different colors than edges contained in c). Finally, it follows from
Theorem 3.1.5. in [23] that c is strongly R-connected because R is not a fiber.

To show Claim 2, let c be an {R, S}-connected component. To prove that c is strongly
{R, S}-connected, let (u1, . . . , uk) be a {R, S}-path in c. We show that there is an
{R, S}-path (v1, . . . , vm) such that v1 = uk and vm = u1. To do so, it suffices to show
that, for every i ∈ [k − 1], there is a {R, S}-path from ui+1 to ui. So let i ∈ [k − 1] and
w.l.o.g. assume that (ui, ui+1) ∈ RH. Then by Claim 1, the vertices ui and ui+1 are in
the same R-SCC. In particular, there is an R-path and so also an {R, S}-path from ui+1
to ui.
Lemma 5.53. Let A = A1 ]A2 be a normalized HF-structure, Ω be a building plan for A,
R be an inter-crossing color of B = Ω(A) such that R-edges connect vertices of the same
fiber UR, i.e., RB ⊆ (UB

R )2, and S, T ∈ σ be the corresponding plain colors of R. If c is
an R-SCC, then {u(i) | u ∈ c} is an {S, T}-SCC for every i ∈ [2].
Proof. Define

Ki :=
{

(u, v) ∈ RB
∣∣∣ (u(i), v(i)) ∈ SA

}
.

That is, if S 6= T , we partition RB into K1 and K2 depending on whether the corre-
sponding S-edge is in A1 or in A2. If S = T , we just have K1 = K2 = RB. For a set c of
crossing vertices we define c(i) := {u(i) | u ∈ c}. We start to analyze the SCCs formed by
the Ki-edges.
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Claim 1. Let i ∈ [2] and c be a Ki-SCC. Then the set c(i) is an S-SCC. For j ∈ [2] such
that {i, j} = [2], the set c(j) is a T -SCC.

Proof. We consider the part of the claim regarding S-SCCs. The part regarding T -SCCs
is symmetric. Clearly, if (u1, . . . , uk) is a Ki-path, then (u(i)

1 , . . . , u
(i)
k ) is an S-path. So c(i)

is contained in an S-SCC. If S-edges connect vertices in different fibers, then all S-SCCs
are singletons. That is c(i) cannot be strictly contained in an S-SCC.

So it remains to consider the case when S connects vertices in the same fiber. Then
also T has to connect vertices in the same fiber (otherwise R would not be a color). Let
{U, V } be the fibers corresponding to UR. If U has an incident S-edge, then V has an
incident T -edge (because otherwise R would be empty, which is not allowed for colors).
We show that c(i) is an S-connected component. This implies by Lemma 5.52 that c(j)

is an S-SCC. Let (u1, u2) ∈ SA be such that u1 ∈ c(i). We show that there is an R-edge
(v1, v2) such that (v(i)

1 , v
(i)
2 ) = (u1, u2) and v1, v2 ∈ c, which implies that u2 ∈ c(i) and

by induction that c(i) is an S-connected component. Because u1 ∈ c(i), there is a vertex
v1 ∈ c such that v(i)

1 = u1. Assume w.l.o.g. that u1 ∈ UA. Then v
(j)
1 ∈ V A, where

{i, j} = [2]. Because u1 has an incident S-edge (namely (u1, u2)), v(j)
1 has an incident

T -edge (v(j)
1 , w). Because S and T connect vertices of the same fiber, u2 ∈ UA and

w ∈ V A. Then by Property A5 there is a vertex v2 such that v(i)
2 = u2 and v

(j)
2 = w.

Now, we have that (v1, v2) ∈ RB by Property A6, that (v(i)
1 , v

(i)
2 ) = (u1, u2) ∈ SA, and that

(v(j)
1 , v

(j)
2 ) = (v(j)

1 , w) ∈ TA. That is, v1 and v2 are in the same R-connected component.
This, by Lemma 5.52, implies that v1 and v2 are in the same R-SCC and thus v2 ∈ c. a

Claim 2. Let S connect vertices of different fibers U and V and let T connect vertices of
the same different fibers but in the other direction, i.e., SA ⊆ UA×V A and TA ⊆ V A×UA

for U 6= V . Let i ∈ [2] and c be an R-SCC. Then the set c(i) is an {S, T}-SCC.

Proof. If (u1, . . . , uk) is an R-path, then (u(i)
1 , . . . , u

(i)
k ) is an {S, T}-path. So c(i) is con-

tained in an {S, T}-SCC d. For the sake of contradiction, suppose that c(i) is strictly
contained in d. Then there is an {S, T}-path (v1, . . . , v`) contained in d with ` ≥ 3,
v1 ∈ c(i), v` ∈ c(i), and vk /∈ c(i) for every 1 < k < `. We observe the following:

(a) There is a (possibly empty) {S, T}-path (v`, . . . , v`′+1) contained in d such that
v`′+1 = v1 because d is an {S, T}-SCC.

(b) In every {S, T}-path the edge colors S and T alternate. Likewise, the fibers of the
vertices alternate. Thus, every cycle consists of an even number of vertices.

Let (u1, . . . , um′ , u1) be a nonempty R-cycle (which possibly uses vertices multiple times)
such that u(i)

1 = v1, 1 < m ≤ m′, and u(i)
m = v`′ . Such a cycle exists because c is

an R-SCC and v` ∈ c(i). Consider the two following sequences β̄ := (v1, . . . , v`′)m
′ and

ᾱ := (u(j)
1 , . . . , u

(j)
m′)`

′ of plain vertices of length `′ · m′, where j is chosen such that
{i, j} = [2], cf. Figure 5.5.

For a vertex w ∈ V(A), denote by Uw the fiber containing w. For every pair
(w,w′) ∈ V(A)2, denote by R(w,w′) the color containing (w,w′). We show that

{Uβk , Uαk} = {U, V }
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u1

um

um′

R

crossing vertices
of Ω(A)

d \ c(i)

v1

v`′

v`

ST

β̄

m′ times

plain vertices
of Ai

u
(j)
1

u
(j)
m′

T S

ᾱ

`′ times

plain vertices
of Aj

EpEp

5.5 The situation in Claim 2 in the proof of Lemma 5.53. All vertices in U are red, the ones
in V are blue. Whether the vertex v` is in U or in V depends on whether ` is even or odd. The
sequence ᾱ iterates `′ times the cycle (u(j)

1 , . . . , u
(j)
m′ , u

(j)
1 ) and the sequence β̄ iterates m′ times the

cycle (v1, . . . , v`′ , v1). This �gure assumes that v1 ∈ UA. In the case that v1 ∈ V A, the colors S
and T and the �bers U and V need to be swapped.

for every k ∈ [`′ ·m′]: First, consider the case k = 1. By construction,

(β1, α1) = (v1, u
(j)
1 ) = (u(i)

1 , u
(j)
1 ).

Because R connects vertices in the same fiber, the corresponding fibers of UR must
be {U, V } and because u1 ∈ UB

R , it follows that {Uβ1 , Uα1} = {U, V }. Second, as-
sume that {Uβk , Uαk} = {U, V } for some k < `′ · m′. We already have seen that the
fibers U and V alternate on {S, T}-paths, so in particular on the cycles (v1, . . . , v`′ , v1)
and (u(j)

1 , . . . , u
(j)
m′ , u

(j)
1 ). So if Uβk = U , then Uβk+1 = V and vice versa and similar for αk

and αk+1. Hence, {Uβk+1 , Uαk+1} = {U, V }.
By Property A5, there is a sequence of crossing vertices (w1, . . . , w`′·m′) such that

w
(i)
k = βk and w

(j)
k = αk for all k ∈ [`′ · m′]. We prove that (w1, . . . , w`′·m′ , w1) is an

R-cycle. We consider the sequences of colors

R(w(i)
1 ,w

(i)
2 ), . . . , R(w(i)

`′·m′−1,w
(i)
`′·m′ )

, R(w(i)
`′·m′ ,w

(i)
1 ) and

R(w(j)
1 ,w

(j)
2 ), . . . , R(w(j)

`′·m′−1,w
(j)
`′·m′ )

, R(w(j)
`′·m′ ,w

(j)
1 ).

Similar to the case of the fibers, the colors S and T alternate in both sequences and
{R(w(i)

k
,w

(i)
k+1), R(w(j)

k
,w

(k+1)
2 )} = {S, T} for every k < `′ ·m′ and

{
R(w(i)

`′·m′ ,w
(i)
1 ), R(w(j)

`′·m′ ,w
(j)
1 )

}
= {S, T}.

Because S and T are the corresponding colors of R, (wk, wk+1) ∈ RB by Property A6 for
every k < `′ ·m′ and (w`′·m′ , w1) ∈ RB. Thus, (w1, . . . , w`′·m′ , w1) is an R-cycle.

Because β1 = v1 = u
(i)
1 and α1 = u

(j)
1 , we have that w1 = u1 ∈ c. In particular,

the cycle (w1, . . . , w`′·m′ , w1) contains a vertex in c. By construction, w(i)
k = vk for every

1 < k ≤ `′. And by assumption on the path (v1, . . . , v`), vk /∈ c(i) for every 1 < k < `.
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Because ` ≥ 3, there is a 1 < k < ` such that vk /∈ c(i) and thus wk /∈ c. But this means
that there is an R-cycle containing a vertex in the R-SCC c and a vertex not in c, which
is a contradiction. a

First consider the case that S = T . Then K1 = K2 = RB and the claim of the lemma
follows immediately from Claim 1. So consider the case that S 6= T . Let SA ⊆ UA

S × V A
S ,

TA ⊆ UA
T × V A

T , and recall that RB ⊆ (UB
R )2. Then, by Property A5, it follows that

the corresponding fibers for UR are {US, UT} = {VS, VT}. We make the following case
distinction:

• US 6= VS or UT 6= VT : We have US = VT 6= VS = UT because {US, UT} = {VS, VT}.
The assertion of the lemma follows immediately from Claim 2.

• US = VS = UT = VT : Let c be an R-SCC. By Lemma 5.52, it suffices to show
that c(i) is an {S, T}-connected component. So let (u, v) be an {S, T}-edge and
let u ∈ c(i). We show that then also v ∈ c(i) which by induction shows that c(i) is
an {S, T}-connected component. Assume w.l.o.g. that (u, v) ∈ SA. Now for some
Ki-SCC c′ we have that u ∈ c′(i) and by Claim 1 we also have that v ∈ c′(i) because
by Lemma 5.52 the vertices u and v are in the same S-SCC. Because c′ ⊆ c, we
have that c′(i) ⊆ c(i) and thus that v ∈ c(i).

Now that we know that the SCCs of inter-crossing relations correspond to SCCs of the
corresponding plain relations, we show that scc-operations on inter-crossing relations can
be simulated using building plans.

Lemma 5.54. There is a normalized polynomial-time DeepWL-algorithm that, for every
normalized HF-structure A = A1 ] A2, every building plan Ω for A, and every inter-
crossing color R of Ω(A), halts with a normalized HF-structure B in the cloud and writes
a building plan ΩR for B onto the tape which satisfies Ωcross

R (B) ∼= Ωcross(A)R, where
Ωcross(A)R denotes the structure obtained by executing scc(R) on Ωcross(A). If Ω is effi-
cient, then ΩR is efficient, too.

Proof. Let A = A1 ] A2 be a normalized HF-structure, Ω = (ω, κ) be a building plan
for A, and R be an inter-crossing color of Ω(A). We distinguish the following two cases:
Assume first that the color R connects vertices in different fibers U and V , that is,
RΩ(A) ⊆ UΩ(A) × V Ω(A). Clearly, all R-SCCs are trivial and the scc-operation would
create a new vertex for every U - and every V -vertex. To create these vertices with the
building plan, let the corresponding fibers of U and V be U1, U2, V1, and V2. We create
copies of these fibers by executing addPair for the loops and obtain component relations
Eleft and Eright, which coincide. The new vertices end up in new fibers U ′1, U ′2, V ′1 , and V ′2 .
The algorithm updates

ω ← ω ∪
{
{U ′1, U ′2}, {V ′1 , V ′2}

}
and

κ← κ ∪
{

(F, {Eleft, Eright})
}
,

where F serves as new membership relation (and just relates a U -vertex to its copy).
Otherwise, R connects vertices in the same fiber. Let this fiber be U and let U1

and U2 be the fibers corresponding to U and R1 and R2 be the colors corresponding to R.
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Note that in this case every {R1, R2}-SCCs is nontrivial: W.l.o.g. R1 has to connect U1
to U2 and R2 has to connect U2 to U1. Because R1 and R2 are fibers, every U1-vertex
and every U2-vertex has one outgoing and one incoming {R1, R2}-edge, so there must
be a cycle and, in particular, one nontrivial {R1, R2}-SCCs. But by the properties of
a coherent-configuration, every {R1, R2}-SCCs has the same size and is thus nontrivial.
By Lemma 5.53, we can construct vertices for SCCs of the corresponding plain vertices
such that, for every R-SCC, there is a corresponding pair of {R1, R2}-SCCs. So we start
with executing scc({R1, R2}) (formally we have to create a relation as the union of R1
and R2) and obtain a new plain vertex class C containing the new SCC-vertices and a
plain membership relation E. We then create, for each pair of C-vertices in different
components, that is, for such a pair of {R1, R2}-SCCs, new crossing vertices and the
inter-crossing membership relation F by updating

ω ← ω ∪
{
{C,C}

}
and

κ← κ ∪
{

(F, {E,E})
}
.

Indeed, every newly created vertex by ω corresponds to an R-SCC: Because the R-SCCs
are nontrivial, every C-vertex was obtained from an {U1, U2}-SCC containing at least
one U1-vertex and at least one U2-vertex (if U1 = U2 this is trivial and if U1 6= U2 every
nontrivial {R1, R2}-SCC has to contain one U1- and one U2-vertex because R1 has to
connect U1 to U2 and R2 the other way around). Thus, for every pair of C-vertices
in different components, we can find a U1-vertex u ∈ V(A1) in one component and a
U2-vertex v ∈ V(A2) in the other component. By Property A5, there is a U -vertex w
such that w(1) = u and w(1) = v. But this means there is an R-SCC, which corresponds
to the two C-vertices, namely the one containing w. In the same manner, F correctly
defines the inter-crossing membership relation for the new R-SCC vertices.

Finally, to see that B is normalized, note that we only executed a single addPair-
operation or a single scc-operation for a plain relation. It is also clear that the property
of being efficient is preserved because every newly created vertex is in a fiber U ′1, U ′2, V ′1 ,
and V ′2 or in the vertex class C and all of them are used in the building plan. Obviously,
the algorithm runs in polynomial time.

5.3.4.6 Simulation

Finally, we want to simulate arbitrary DeepWL+WSC-algorithms with normalized ones.
Recall that we still have to define how normalized DeepWL+WSC-algorithms encode
sets of witnessing automorphisms. We do this now. Let A be a normalized HF-structure
and Ω be a building plan for A. A tuple of crossing relations (Eaut, Edom, Eimg) and a cross-
ing vertex wϕ encode the partial map ϕ : A→ A as follows (cf. Figure 5.6): We have
ϕ(u) = v in case that there exists exactly one crossing vertex w such that (wϕ, w) ∈ EΩ(A)

aut ,
(w, u′) ∈ EΩ(A)

dom , and (w, v′) ∈ EΩ(A)
img , where u′ and v′ are crossing vertices and u and v are

the only atoms for which (u′, u) ∈ EΩ(A)
p and (v′, v) ∈ EΩ(A)

p . Recall here that every cross-
ing vertex has exactly two Ep-neighbors. So, the other Ep-neighbor of u′ and v′ must not
be an atom. While introducing the vertices u′ and v′ into the definition seems odd at first,
this will simplify technical aspects in the following. A tuple of relations (Eaut, Edom, Eimg)
encodes the set of partial maps {ϕ | wϕ encodes ϕ for some (wϕ, w) ∈ EA

aut}.
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w . . .
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5.6 Encoding of automorphisms for normalized DeepWL+WSC algorithms. An automor-
phism ϕ of a normalized HF-structure A is encoded by a building plan Ω, a tuple of crossing re-
lations (Eaut, Edom, Eimg), and a vertex wϕ: The �gure shows the encoding of ϕ(u) = v. The
vertices wϕ, w, u′, and v′ are crossing vertices of Ω(A). The vertices u and v are atoms and the
other Ep-neighbor of u′ and v′, respectively, is not an atom.

The witnessing machine Mwit of a normalized DeepWL+WSC-algorithm on input A
outputs a set of witnessing automorphisms by writing a tuple (Ω, Eaut, Edom, Eimg) of a
building plan Ω for the final content of the cloud of Mwit and three relations for which Ω
contains a relation plan on the interaction-tape. Note that, with this definition, a nor-
malized DeepWL+WSC-algorithm is formally not a (non-normalized) DeepWL+WSC-
algorithm anymore, because it encodes sets of witnessing automorphisms differently. Now,
we are ready to simulate an arbitrary DeepWL+WSC-algorithm with a normalized one.
De�nition 5.55 (Simulating a Structure). A pair (A,Ω) of a normalized HF-structure A and
a building plan Ω = (ω, κ) for A simulates an HF-structure Â with Â = A if

(S1) Ωcross(A) ∼= Âflat,

(S2) Ω is efficient,

(S3) there is a relation plan (C, {D1, D2}) ∈ κ defining a crossing vertex class C, such
that every isomorphism ϕ : Âflat → Ωcross(A) satisfies ϕ(Â) = CΩ(A), i.e., the atoms
of Â are mapped precisely onto the C-vertices,

(S4) the Ep-relation is a perfect matching between the atoms A of A and CΩ(A), and

(S5) via this bijection between A and CΩ(A) we have that Aut(Aflat) = Aut(Ωcross(A)).

Note that the definition above only relates Ωcross(A) (and not Ω(A)) to Â. This defini-
tion reduces the need for case distinctions in the simulation: Crossing vertices of Ω(A)
are always used to simulate Â and plain vertices are always used to create crossing
vertices. Now that we have a notion of simulating a structure, we can also simulate
DeepWL+WSC-algorithms:
De�nition 5.56 (Simulating an Algorithm). Assume that M = (Mout,Mwit,M1, . . . ,M`)
and M̂ = (M̂out, M̂wit,M̂1, . . . ,M̂`) are DeepWL+WSC-algorithms. The algorithmM
simulates M̂ if Mi simulates M̂i for all i ∈ [`] and, for every structure Â and every
pair (A,Ω) simulating Â, the algorithmM on input (A,Ω) accepts (respectively rejects)
whenever M̂ on input Â accepts (respectively rejects).



174 Chapter 5. Choiceless Polynomial Time with Witnessed Symmetric Choice

We do not care about M̂ failing because in the following we will always assume that this
is not the case.

Lemma 5.57. For every polynomial-time DeepWL+WSC-algorithm M̂, there is a nor-
malized polynomial-time DeepWL+WSC-algorithmM simulating M̂.

Proof. We will construct normalized DeepWL+WSC-algorithms, which uses the addi-
tional operations of Lemma 5.29. One easily sees that the reductions in the proof of
Lemma 5.29 preserve being normalized. The proof of this lemma is by induction on
nesting DeepWL+WSC-algorithms. For this, assume M̂ = (M̂out, M̂wit,M̂1, . . . ,M̂`) is
a polynomial-time DeepWL+WSC-algorithm and assume, by the induction hypothesis,
that there are normalized and polynomial-time DeepWL+WSC-algorithmsMi simulat-
ing M̂i for every i ∈ [`]. By Lemma 5.35, we can assume that M̂ is pure.

Let M̂ ∈ {M̂out, M̂wit}. We will now construct a DeepWL+WSC-machine M sim-
ulating M̂ . Let Â0 be the input HF-structure of M̂ . Let Â0, . . . , Âk be the sequence
of HF-structures in the cloud of M̂ and let (A0,Ω0) simulate Â0. We construct the ma-
chineM inductively (independently of the specific input A0). We say that the machineM
on input (A0,Ω0) simulates the t-th step for t ∈ [k] if the content of the cloud of M
is At and there is a building plan Ωt = (ωt, κt) for At written onto the working tape such
that (At,Ωt) simulates Ât. Assume that we constructed a machineM simulating the k-th
step, then the content of the cloud does not change anymore and we can just track the
run of the Turing machine of M̂ until it halts.

We construct by induction on t a machine M simulating the t-th step for every t ≤ k.
For t = 0, the claim holds by assumption that (A0,Ω0) simulates Â0. Now assume
that M simulates the t-th step and that (At,Ωt) simulates Ât. By Lemma 5.48, the
machine M computes D(Ωt(At)) in polynomial time. From this sketch, it computes
D(Ωcross

t (At)) using Lemma 5.24. Because (At,Ωt) simulates Ât, by Property S1, it holds
that Ωcross

t (At) ∼= Âflat
t and thus D(Ωcross

t (At)) = D(Ât). So M can track the run of M̂
until M̂ executes an operation modifying the cloud. We make a case distinction on this
operation:

addPair(R): The color R is an inter-crossing color in Ωt(At) because Ωcross
t (At) ∼= Âflat

t .
Let R1 and R2 be the two plain colors corresponding to R. The machine M executes
addPair(R1) and addPair(R2) (if R1 = R2, only one operation is executed) and obtains
vertex classes C1 and C2 and component relations Ei,d for all i ∈ [2] and d ∈ {left, right}
(here if R1 = R2, we have C1 = C2 and E1,d = E2,d). We set

ωt+1 := ωt ∪
{
{C1, C2}

}
and

κt+1 := κt ∪
{

(Rd, {{E1,d, E2,d}})
∣∣∣ d ∈ {left, right}}.

That is, precisely for every set {u, v} of vertices u ∈ CAt+1
1 and v ∈ CAt+1

2 , which means
by construction for every set {e1, e2} of edges e1 ∈ RAt

1 and e2 ∈ RAt
2 , which again means

by Property A6 for every edge e ∈ RΩt(At), a vertex is added in Ωt+1(At+1). We create the
component relations from the Ei,d. That is, Ωcross

t+1 (At+1) ∼= Âflat
t+1 and so we maintained

Property S1. Property S2 is satisfied because all newly created plain vertices are either
in C1 or C2. Properties S3 and S4 will always be maintained if they initially hold (and
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we do not remove entries from the building plan). Finally, Property S5 is maintained
because we did not make any choices and thus the automorphism of both structures stay
exactly the same by Corollary 5.28 (note that by Lemma 5.25 both At+1 and Aflat

t+1 have
the same automorphisms). So we simulated the (t+ 1)-th step.

scc(R): Again, R is an inter-crossing color in Ωt(At). The machine M simulates the
scc-operation using Lemma 5.54: Properties S1 and S2 are ensured by the lemma, all
other properties hold by the same reasons as for the addPair-operation, and so the
(t+ 1)-th step is simulated.

create(π): Let π = {R1, . . . , Rk} where all Ri are inter-crossing colors in Ωt(At), and
let E be the relation to be created. Let Si and Ti be the corresponding colors for Ri for
every i ∈ [k] (Property A6). We update

ωt+1 := ωt and
κt+1 := κt ∪

{
(E, { {Si, Ti} | i ∈ [k] })

}
.

Because the cloud of M is not modified, At+1 = At is still normalized. In particular,
Property S2 is maintained because no new vertices are created. By construction Prop-
erty S1 is satisfied. Again by the same reasons as before, the remaining properties are
satisfied and the (t+ 1)-th step is simulated.

refine(U, k): Because M̂ is pure, refine is only executed for fibers. Let U1 and U2
be the plain fibers corresponding to U and let EU be the crossing color such that
EA
U = EA

{U1,U2}, that is, EU precisely connects all the pairs of vertices corresponding to
a U -vertex. We cannot simply execute refine(EU , k,Ωt) because this might create a
relation which connects the two components of At and so the content of the cloud would
not be normalized anymore (recall the example in Section 5.3.4.2). We are going to re-
fine U1 and U2, then decompose EU into multiple colors such that either all edges of a
color are accepted byMk or no edge of the color is. This results in the structure At+1.
We then refine one (crossing) color after the other. This way, for every color, either no
new relation or an empty relation is created and the structure stays normalized.

Let v, v′ ∈ UAt
2 be in the same component of At, say w.l.o.g. v, v′ ∈ UAt

2 ∩ V2(At).
Then by Lemma 5.41, we can distinguish v and v′ using the sets{

run(Mk, (A, {w, v})
∣∣∣ w ∈ UAt

1 ∩ V1(At)
}
and{

run(Mk, (A, {w, v′})
∣∣∣ w ∈ UAt

1 ∩ V1(At)
}

if for some u ∈ UAt
1 we have that (At, {u, v}) is accepted byMk but (At, {u, v′}) is not.

There is a normalized DeepWL+WSC-algorithm computing a function distinguishing
the same (or more) vertices as these sets according to Lemma 5.43 (note that because
we input all (u, v) or {u, v} during the refine-operation,Mk indeed never fails because
otherwise M̂k would have failed). We can refine U2 according to these sets by Lemma 5.44.
The same procedure is performed for U1. After that, we obtain the structure A′t+1 in the
cloud.
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Before we can use Mk to refine the edges, we have to slightly modify it. First
assume that EU is undirected. Then the input of Mk is A′t := ((A′t+1, {u, v}),Ω′t)
where some {u, v} ∈ EAt

U is individualized, i.e., there is a new vertex class C{u,v} only
containing u and v. This corresponds to individualizing one U -vertex (recall that Ep
does not distinguish the two components of A′t). In order to represent this individ-
ualization of the U -vertex, the algorithm Mk modifies the building plan as follows:
κ′t := κt ∪ {(F ′, {(C{u,v}, C{u,v})})} and Ω′t := (ωt, κ′t). In this way, the vertex w cor-
responding to {u, v} in Ω′t(A′t) gets individualized by the relation F ′. Now (A′t,Ω′t) sim-
ulates the structure (Ât, w), where the U -vertex w is individualized. All conditions for
the induction hypothesis are satisfied and we can run the algorithm Mk by the induc-
tion hypothesis. If EU is directed, the same argument applies: If EU is directed, then
EAt
U ⊆ UAt

1 × UAt
2 and thus the ordered tuple (u, v) can be recovered from the set {u, v}.

So we decompose E into colors R1, . . . , Rm and execute refine(Ri, k,Ωt) for every
i ∈ [m]. By Lemma 5.41, either all edges in a color are accepted or none of them. So the
machine can compute the set I := {i ∈ [m] | Mk accepts the Ri-edges} by distinguishing
for every i whether no relation is created (so i ∈ I) or an empty relation is created
(so i /∈ I). After that, the structure At+1 is in the cloud. In particular, At+1 and all
intermediate steps are normalized because we only create empty relations. Let {Si, Ti}
be the corresponding colors for Ri for every i ∈ [m]. We create the vertex class D in
Ωt(At), which is the result of the refine(U, k)-operation of M̂ , as follows:

ωt+1 := ωt,

κt+1 := κt ∪
{

(D, { {Si, Ti} | i ∈ I })
}
.

This establishes Property S1. The other properties still hold for the same reasons as
before and the (t+ 1)-th step is simulated.

choice(U): Recall that in this case M̂ = M̂out because M̂wit is choice-free. Again be-
cause M̂ is pure, U is a crossing fiber in Ωt(At). The machine defines the undirected
relation EU as in the refine-case and executes choice(EU). By the semantics of the
choice-operator, this individualizes an undirected EU -edge (recall that, to individualize
this edge, we obtain a vertex class containing both endpoints of the edge and the two com-
ponents of At are not connected). Using this edge we can individualize the corresponding
crossing vertex in Ωt(At) by defining a singleton fiber V similar to the refine-case.
This shows Property S1. Properties S2, S3, and S4 still hold as seen before. To show
Property S5, observe that every automorphism of Ωcross

t+1 (At+1) is an automorphism of
Ωcross
t (At), which additionally stabilizes the singleton crossing vertex in V . Thus, such

an automorphism also has to stabilize the corresponding undirected EU -edge and so it is
an automorphism of Ωt+1(A). Vice versa, every automorphism stabilizing this edge also
stabilizes the crossing vertex and the (t+ 1)-th step is simulated.

Finally, we have to alterMwit: When M̂wit writes the tuple of automorphism-encoding
relations (Eaut, Edom, Eimg) onto the interaction-tape,Mwit only constructed relation plans
for these relations. Now Mwit writes (Ω, Eaut, Edom, Eimg) onto the interaction-tape,
where Ω is the building plan maintained byMwit. To show that (Mout,Mwit,M1, . . . ,M`)
indeed simulates (M̂out, M̂wit,M̂1, . . . ,M̂`), it remains to show that all choices are wit-
nessed (if not all choices of M̂ are witnessed, M is allowed to do anything). First, the
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machine Mout only executes a choice(EU)-operation when M̂out executes the operation
choice(U). Because EU is undirected and due to the semantics of the choice operator
for undirected edges, we have to witness that ẼU := Ẽ{U1,U2} is an orbit, where {U1, U2}
are the corresponding plain fibers of U (cf. the definition of EU = E{U1,U2}). Assume
that choice(U) is executed with the HF-structure Ât in the cloud. Let N be the set
of automorphisms encoded by (Eaut, Edom, Eimg), which witnesses U as orbit stabiliz-
ing all previous steps Âj1 , . . . , Âj` (where j1 < · · · < j`), in which choice-operations
where executed by M̂out. Then the tuple (Ω, Eaut, Edom, Eimg) precisely encodes the
same set of automorphisms N for At: For every vertex ŵϕ encoding a partial map ϕ

via (Eaut, Edom, Eimg) in Ât, the corresponding vertex wϕ in Ω(At) encodes the same
partial map because of the following. By the definition of encoding automorphisms by
DeepWL+WSC-algorithms, the vertex ŵϕ encodes that ϕ(û) = v̂ for atoms û and v̂ if
there is a unique vertex ŵ such that (ŵϕ, ŵ) is in Eaut, (ŵ, û) is in Edom, and (ŵ, v̂) is
in Eimg. By Properties S3 and S4, the corresponding vertices w, u, and v in Ω(A) are
crossing vertices such that u has û as Ep-neighbor (and no other atom) and likewise v has v̂
as Ep-neighbor. This exactly is the definition of encoding automorphisms for normalized
DeepWL+WSC-algorithms. By Property S5 and Lemma 5.25, the automorphisms of At

and Ât are equal. By Lemma 5.51, N witnesses ẼU as orbit stabilizing ẼAj1
U1 , . . . , Ẽ

Aj`
U`

in
the simulation.

It remains to argue that the algorithm runs in polynomial time. Note that M needs
polynomially many steps to simulate a single step of M̂ . So it remains to argue that
the structure in the cloud is of polynomial size. By Property S2, the building plans are
always efficient. Then, by Lemma 5.50, we have that |At| ≤ 2|Ât|. Because additionally
the number of relations in At is polynomially bounded, |D(At)| is polynomially bounded,
too.

Corollary 5.58. Let K be a class of binary structures. If there is a polynomial-time
DeepWL+WSC-algorithm deciding isomorphism for K, then there is a normalized poly-
nomial-time DeepWL+WSC-algorithm deciding isomorphism for K.

Proof. Let M̂ be a polynomial-time DeepWL+WSC-algorithm deciding isomorphism
for K and let M be a normalized polynomial-time DeepWL+WSC-algorithm simula-
tion M̂ given by Lemma 5.57. Let A1,A2 ∈ K and A = A1]A2. To executeM to decide
isomorphism, we first have to construct a building plan Ω such that (A,Ω) simulates A.
This is done as follows: First, we define the vertex class D of all atoms. Second, we
create a plain vertex ui for both components Ai, and a vertex class D′ only containing u1
and u2. To do so, we define a relation F connecting all atoms in the same component.
We execute scc(F ) and obtain a vertex class D′ containing one vertex per component.
Then we rename every relation E ∈ τ to a fresh relation symbol E ′. We set Ω := (ω, κ),
where

ω :=
{
{D,D′}

}
and

κ :=
{

(C, {D,D′})
}
∪
{

(E, {{E ′, D′}})
∣∣∣ E ∈ τ }.

We claim that (A,Ω) simulates A. With ω, we create, for every atom u ∈ Ai in D, a
single crossing vertex because D′ contains exactly one vertex in Aj (where {i, j} = [2]).
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Two such crossing vertices u and v are in the relation E if between the corresponding
vertices there is a D′-edge (the D′-loop) and an E ′-edge. That is, u(i) = v(i) is a D′-vertex,
so u and v are copies of plain vertices of the same component Aj, and (u(j), v(j)) ∈ EA,
where E was renamed to E ′. So we have established Property S1. Clearly, every vertex
is used in the building plan because every vertex is either in D or in D′, thus Property S2
is satisfied. Every crossing vertex is adjacent via Ep to exactly one atom in A because
the D′-vertices are not atoms. The relation plan (C, {D,D′}) creates a vertex class C
containing all crossing vertices. Because each crossing vertex is Ep-connected to an atom
and every atom to a C-vertex, we established Properties S3 and S4. Lastly, we also
established Property S5 because Ω(A) consists essentially of two copies of A connected
by a perfect matching. A similar construction (but without building plans) can be found
in the proof of Lemma 11 in [59].

5.3.4.7 Deciding Isomorphism and Internal Runs

In this section we prove that, for every class of structures K, isomorphism is decidable
by a polynomial-time DeepWL+WSC-algorithm if and only if a complete invariant is
computable by a polynomial-time DeepWL+WSC-algorithm. To do so, we consider the
internal runs of normalized DeepWL+WSC-algorithms. We say that the components of
a normalized HF-structure A1 ] A1 are distinguished if D(A1) 6= D(A2).

Lemma 5.59. For every normalized polynomial-time DeepWL+WSC-algorithmM, there
exists a normalized polynomial-time DeepWL+WSC-algorithm M′ with the following
properties:

(a) For every normalized HF-structure A, the algorithm M′ accepts (respectively re-
jects) A wheneverM accepts (respectively rejects) A.

(b) For all normalized HF-structures A = A1 ] A2 and B = B1 ]B2, it holds that if
run(M′,A) = run(M′,B), then run(M′,A) ∈ {run(M′,A1 ]Bi) | i ∈ [2]}.

Proof. A normalized DeepWL+WSC-algorithm is nice on input A if

1. whenever refine(X, i) is executed and the components of the current structure in
the cloud A′ are not distinguished, then XA′ = {u1, u2} such that u1 and u2 are in
different components of A′,

2. for every other refine(X, i)-execution, X is a plain color, and

3. whenever choice(R) is executed, then the two components of the current structure
in the cloud are distinguished and R is a plain color.

Note that ifM = (Mout,Mwit,M1, . . . ,M`) is nice on input A, thenM1, . . . ,M` must
be nice on all inputs during refine-operations of Mout or Mwit.

Claim 1. For every normalized polynomial-time DeepWL+WSC-algorithm M, there is
normalized polynomial-time DeepWL+WSC-algorithm M′ such that, for every normal-
ized HF-structure A on whichM does not fail,M′ is nice on A andM′ accepts (respec-
tively rejects) A ifM accepts (respectively rejects) A.
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Proof. Let M be a normalized polynomial-time DeepWL+WSC-algorithm. Let M′′ be
the normalized polynomial-time DeepWL+WSC-algorithm given forM by Lemma 5.40.
That is, for every normalized HF-structure A1 ] A2, M′′ accepts (respectively rejects)
(A1 ] A2, Ai) whenever M accepts (respectively rejects) A1 ] A2 for every i ∈ [2] (the
lemma states it only for i = 1, the case i = 2 follows from exchanging the two compo-
nents). Then define the DeepWL+WSC-algorithm M′ = (Mout,Mwit,M′′) as follows:
First, the machine Mout creates a vertex class C containing one vertex per component by
executing scc(E) for the relation E of plain edges. Next, Mout executes refine(C, 1),
i.e., Mout refines C with M′′ (if C decomposes into two fibers U and V , then Mout ex-
ecutes refine(U, 1) because we are only allowed to refine colors). Individualizing one
C-vertex corresponds to creating a relation containing the vertices of one component,
soM′′ will accept (respectively reject) the C-vertices wheneverM accepts (respectively
rejects) the input toM. ThenM accepts (respectively rejects) accordingly. The witness-
ing machine Mwit is not used and immediately halts. Clearly, M′ accepts (respectively
rejects) ifM does so. We show how we have to modifyM′ such thatM′ is nice on every
input:

1. By construction,M′ executes a single refine-operation when the two components
are not distinguished. Indeed, the refined relation is a vertex class containing a
single vertex of each component. After that, the two components are distinguished
(and remain so) because one of the two vertices is individualized.

2. A choice(R)-operation is only executed after the initial refine-operation, so the
components of the structure A in the cloud are distinguished. Assume that R is a
crossing color, then RA ⊆ UA × V A for two fibers U and V in different components
because A is normalized. We can equivalently execute choice(U) and choice(V ).
The automorphisms witnessing choice(R) will also witness the two other operations
because RA is an orbit if and only if UA and V A are orbits.

3. For all refine(X, i)-operations apart from the first one, the components of the
structure A in the cloud are distinguished. By decomposing X into its colors, we
can assume that X is a color R. If R is a crossing color, then again RA ⊆ UA× V A

for two different fibers U and V in different components because A is normalized
and its components are distinguished. Let Mi be the DeepWL+WSC-algorithm
used to refine R. We know that either every (u, v) ∈ RA is accepted byMi or every
(u, v) ∈ RA is rejected by Mi because M is normalized. These are the two only
possibilities without creating a crossing relation, which would make the structure
non-normalized. So we can equivalently execute two nested refine-operations:
First, we refine U with a new algorithmM′

i. The algorithmM′
i, which gets (A, u)

for some u ∈ UA as input, immediately refines V with the algorithm Mi, which
then gets (A, uv) for some v ∈ V A as input. The algorithm M′

i accepts (A, u)
ifMi accepts (A, uv) for every v ∈ V A. If all U -vertices are accepted byM′

i, then
(A, uv) is accepted by Mi for every (u, v) ∈ RA and thus no relation is created.
Otherwise, Mi rejects (A, uv) for every (u, v) ∈ RA. Thus, M′

i rejects (A, u) for
every u ∈ UA and an empty relation is created. a
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Claim 2. For every normalized DeepWL+WSC-algorithm M and all normalized
HF-structures A = A1 ] A2 and B = B1 ] A2, if M is nice on A and B such that
run(M,A) = run(M,B) 6= †, then run(M,A) ∈ {run(M,A1 ]Bi) | i ∈ [2]}.

Proof. The proof is by induction on the nesting depth of DeepWL+WSC-algorithms.
Let M = (Mout,Mwit,M1, . . . ,M`) be a normalized DeepWL+WSC-algorithm and let
A = A1 ] A2 and B = B1 ] B2 be two normalized HF-structures such that M is
nice on A and B and run(M,A) = run(M,B). Let A1, . . . ,Am be the sequence of
structures in the cloud of Mout on input A, let Ai = Ai

1 ] Ai
2 for every i ∈ [m], and

similarly let B1, . . . ,Bm be the same sequence on input B and Bi = Bi
1 ]Bi

2 for every
i ∈ [m]. Because run(M,A) = run(M,B) implies run(Mout,A) = run(Mout,B), the two
sequences have indeed the same length and satisfy D(Aj) = D(Bj) for every j ∈ [m].
From Lemma 5.39 it follows that{

D(Aj
i )
∣∣∣ i ∈ [2]

}
=
{
D(Bj

i )
∣∣∣ i ∈ [2]

}
for every j ∈ [m]. Moreover, if the components of Aj are distinguished for some j ∈ [m],
then the components of Ak are distinguished for every k ≥ j (and likewise for the Bj).
So there is a permutation ρ : [2]→ [2] such that D(Aj

i ) = D(Bj
ρ(i)) for every i ∈ [2]

and j ∈ [m]. Assume w.l.o.g. that ρ is the identity map. Consider the HF-structure
H = A1 ]B2. We claim that

run(M,H) = run(M,A) = run(M,B).

We first show that run(Mout,H) = run(Mout,A) = run(Mout,B). In particular, the
sequence of structures H1, . . . ,Hm′ in the cloud of Mout on input H will satisfy m′ = m
and Hj

1 = Aj
1 and Hj

2 = Bj
2 for every j ∈ [m]. This implies by Lemma 5.39 that

D(Hj) = D(Aj) = D(Bj) for every j ∈ [m]. We show by induction on j, that Hj
1 = Aj

1
and Hj

2 = Bj
2 and that the configuration of Mout is equal when the j-th cloud modifying

operation is performed on input A, B, and H for all j ∈ [m] (for A and B the claim
follows from run(Mout,A) = run(Mout,B)).

For j = 1, this is the case by construction: H1 = H = A1 ]B2 and Mout is started
in its initial state. So assume that the claim holds for j ≥ 1 and we show that it holds
for j + 1. Because the sketches of the structures in the cloud are equal and the Turing
machine of Mout is in the same configuration, the run of Mout on Hj is equal to the one
on Aj (or equally on Bj) until the next cloud-modifying operation is executed. Because
the Turing machines are in the same configuration, the same operation is executed for Hj

as for Aj and Bj.

(a) If the operation modifying the cloud is an addPair-, scc-, or create-operation,
then the effect of the operation is clearly given by the effect on each component
because Mout is normalized. So, since Hj

1 = Aj
1 and Hj

2 = Bj
2, we have that

Hj+1
1 = Aj+1

1 and Hj+1
2 = Bj+1

2 .

(b) Assume that Mout executes refine(R, k). Because run(Mout,A) = run(Mout,B),
we have {{

run(Mk, (Aj, x))
∣∣∣ x ∈ R̃Aj

}}
=
{{

run(Mk, (Bj, x))
∣∣∣ x ∈ R̃Bj

}}
.
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Recall that R̃Aj = XAj if R is directed and R̃Aj = {{u, v} | (u, v) ∈ RAj} if R is
undirected. So there is a bijection ζ : R̃Aj → R̃Bj such that for every x ∈ R̃Aj we
have run(Mk, (Aj, x)) = run(Mk, (Bj, ζ(x))).
Assume first that R is a crossing color and undirected in Aj, Bj, and thus in Hj. So
the components are not distinguished in all three structures (otherwise, all crossing
colors are directed). BecauseM is nice on A and B, R is a fiber and contains one
vertex per component. So assume RAj = {u1, u2} and RBj = {v1, v2}, and thus
RHj = {u1, v2}. We can assume that ζ satisfies ζ(ui) = vi for every i ∈ [2] because
we assumed that ρ is the identity map and so D(Aj

i ) = D(Bj
i ) for every i ∈ [2].

That is, run(Mk, (Aj, ui)) = run(Mk, (Bj, vi)) for every i ∈ [2].
Let w ∈ RHj and w.l.o.g. assume that w = u1 (the case w = v2 is symmetric).
So (Hj

1, w) = (Aj
1, u1), Hj

2 = Bj
2, and thus (Hj, w) = (Aj

1, u1) ] Bj
2. Because

run(Mk, (Aj, u1)) = run(Mk, (Bj, v1)) andMk is nice on Aj and Bj, we can apply
the outer induction hypothesis and conclude that

run(Mk, (Hj, w)) = run(Mk, (Aj, u1)) = run(Mk, (Bj, v1)).

Note that we assumed that ρ is the identity map and hence

if run(Mk,A
j) ∈ { run(Mk,A

j
1 ]Bj

i ) | i ∈ [2] },
then run(Mk,A

j) = run(Mk,A
j
1 ]Bj

2) = run(Mk,H
j).

In particular, Mk accepts (respectively rejects) (Hj, u1) if and only if Mk ac-
cepts (respectively rejects) (Aj, u1). The same holds (by symmetry) for (Hj, v2)
and (Bj, u2). Thus, the resulting vertex class D of the refine-operation satisfies
DHj+1 = DAj+1

1 ∪DBj+1
2 . That is, Hj+1

1 = Aj+1
1 , Hj+1

2 = Bj+1
2 , and{{

run(Mk, (Hj, w))
∣∣∣ w ∈ {u1, v2}

}}
=
{{

run(Mk, (Aj, w))
∣∣∣ w ∈ {u1, u2}

}}
=
{{

run(Mk, (Bj, w))
∣∣∣ w ∈ {v1, v2}

}}
.

If otherwise R is not crossing or not undirected, then R is a plain color in Aj (and
thus in Bj and Hj) becauseM is nice. So every x ∈ R̃Hj consists solely of vertices
of either V(Hj

1) or V(Hj
2). Assume w.l.o.g. that x consists of vertices of V(Hj

1). Then
(Hj

1, x) = (Aj
1, x), Hj

2 = Bj
2, and (Hj, x) = (Aj

1, x) ]Bj
2.

Because run(Mk, (Aj, x)) = run(Mk, (Bj, ζ(x))), we can apply the outer induction
hypothesis toMk and obtain that

run(Mk, (Aj, x)) = run(Mk, (Bj, ζ(x))) = run(Mk, (Hj, x)).

In particular,Mk accepts (Hj, x) if and only if it accepts (Aj, x). So let Y be the
relation obtained from refine(R, k). Then Y Hj+1 = Y Hj+1

1 ∪ Y Hj+1
2 , Y Hj+1

1 = Y Aj+1
1 ,

and Y Hj+1
2 = Y Bj+1

2 . That is, Hj+1
1 = Aj+1

1 and Hj+1
2 = Bj+1

2 .
Because the components of Aj and Bj are distinguished, ζ maps an edge of the
i-th component of Aj to the i-th component of Bj (otherwise the sketches differ
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immediately). That is,{{
run(Mk, (Aj, x))

∣∣∣ x ∈ R̃Aj
}}

=
{{

run(Mk, (Aj, x))
∣∣∣ x ∈ R̃Aj ∩ V(Aj

1)
}}
∪{{

run(Mk, (Aj, x))
∣∣∣ x ∈ R̃Aj ∩ V(Aj

2)
}}

and likewise for Bj. So we have{{
run(Mk, (Hj, x))

∣∣∣ x ∈ R̃Hj
}}

=
{{

run(Mk, (Aj, x))
∣∣∣ x ∈ R̃Aj ∩ V(Aj

1)
}}
∪{{

run(Mk, (Bj, x))
∣∣∣ x ∈ R̃Bj ∩ V(Bj

2)
}}

and thus{{
run(Mk, (Hj, x))

∣∣∣ x ∈ R̃Hj
}}

=
{{

run(Mk, (Aj, x))
∣∣∣ x ∈ R̃Aj

}}
=
{{

run(Mk, (Bj, x))
∣∣∣ x ∈ R̃Bj

}}
.

(c) Assume that Mout executes choice(R). Because M is nice on A and B, R is a
plain color and the components of Aj and Bj are distinguished. That is,

D(A1) = D(B1) = D(H1) 6= D(A2) = D(B2) = D(H2).

Hence, the components of H are distinguished, too. Because R is plain, R occurs
solely in one component, say w.l.o.g. the first. Let x ∈ R̃Hj be a chosen element
and Hj+1 = (Hj, x). Then (Hj

1, x) = (Aj
1, x), Hj

2 = Bj
2, and (Aj, x) = (Aj

1, x) ]Bj
2

given that we also chose x in the execution of Mout on A (which for the sketch of
course does not matter if all choices are witnessed).

We have proved thatMout satisfies that run(Mout,H) = run(Mout,A) = run(Mout,B). To
show that run(M,H) = run(M,A) = run(M,B), it remains to show that all choices are
witnessed and that whenever the j-th cloud-modifying operation was a choice-operation,
then

run(Mwit,Hm d Hj) = run(Mwit,Am d Aj) = run(Mwit,Bm dBj).
So assume that the j-th operation is a choice(R)-operation for an arbitrary j ∈ [m]. We
have already seen that Hk

1 = Ak
1 and Hk

2 = Bk
2 for every k ∈ {j,m}. The same applies to

Hm d Hj. By analogous reasoning as for Mout, the witnessing machine Mwit satisfies

run(Mwit,Hm d Hj) = run(Mwit,Am d Aj) = run(Mwit,Bm dBj).

In particular, the machine Mwit writes the same tuple (Ω, Eaut, Edom, Eimg) onto the
interaction-tape in all cases. Assume that (Ω, Eaut, Edom, Eimg) witnesses RAj and RBj as
orbit (if that is not the case, then M fails on A and B and there is nothing to show).
Because M is nice on A and B, a choice-operation is executed only if both compo-
nents are distinguished. So no automorphism maps one component to the other and
every automorphism ϕ of Aj is induced by two automorphisms ϕ1 and ϕ2, one for each
component. We write ϕ = (ϕ1, ϕ2). Similarly, every automorphism ψ of Bj decomposes
into ψ = (ψ1, ψ2). Then the map (ϕ1, ψ2) defined by ϕ1 on the first and by ψ2 on the
second component is an automorphism of Hj. Because the defined relations Eaut, Edom,
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and Eimg are isomorphism-invariant (the witnessing machine is choice-free), they encode
a set of automorphisms NAj in Ω(Am d Aj) which decomposes into sets of automor-
phisms NAj

1 = {ϕ | (ϕ, ψ) ∈ NAj

1 } and likewise in NAj

2 such that NAj = NAj

1 × NAj

2 .
Similarly, NBj = NBj

1 ×NBj

2 for Ω(BmdBj). So for the HF-structure HmdHj, the tuple
(Ω, Eaut, Edom, Eimg) encodes the set of automorphisms NHj = NAj

1 ×NBj

2 . Clearly, NHj

witnesses exactly the same plain relations (which are either contained in Aj
1 or in Bj

2) as
orbit, which NA

1 and NB
2 witness as orbits. a

Finally, let M be a normalized polynomial-time DeepWL+WSC-algorithm and let M′

be the nice and normalized polynomial-time DeepWL+WSC-algorithm given by Claim 1
forM. Let A = A1]A2 and B = B1]B2 be two normalized HF-structures on whichM
does not fail. Then M′ accepts (respectively rejects) H if M accepts (respectively re-
jects) H for every H ∈ {A,B}. Assume that run(M′,A) = run(M′,B). Then

run(M′,A) ∈
{

run(M′,A1 ]Bi)
∣∣∣ i ∈ [2]

}
by Claim 2 becauseM′ is nice.

Theorem 5.60. Let K be a class of binary τ -structures. Then the following are equivalent:

1. There is a polynomial-time DeepWL+WSC-algorithm deciding isomorphism on K.

2. There is a polynomial-time DeepWL+WSC-algorithm computing some complete in-
variant for K.

Proof. To prove that Condition 2 implies Condition 1, let M be a DeepWL+WSC-
algorithm computing a complete invariant for K. We want, on input A]B for A,B ∈ K,
to run the algorithm M on both structures in parallel and accept if the invariants are
equal. Here we are faced with a similar issue as in Theorem 5.21: We cannot simulate the
computation on one component in the disjoint union if the components are not distin-
guished because we then possibly cannot witness orbits if the components are isomorphic.
In the DeepWL+WSC setting, a complete invariant is a function f : K → {0, 1}∗. We
first execute scc(E) for the relation of plain edges in A]B. This way, we obtain two ver-
tices uA and vB related to all A-atoms respectively B-atoms in a vertex class C (similar
to the proof of Lemma 5.59). Now, in (A ]B, uH) for H ∈ {A,B}, the components are
distinguished and we can executeM to compute f(H) by ignoring the other component.
Using Lemma 5.44, we execute refine(C, f). If this results into two singleton vertex
classes, then f(A) 6= f(B) and thus A 6∼= B. Otherwise, A ∼= B.

To prove that Condition 1 implies Condition 2, letM be a DeepWL+WSC-algorithm
deciding isomorphism. By Corollary 5.58, we can assume thatM is normalized and, by
Lemma 5.59, we can assume that if run(M,A) = run(M,B), then

run(M,A) ∈ { run(M,A[V1(A)] ]B[Vi(B)]) | i ∈ [2] }

for all normalized HF-structures A and B. We show that

f(A) := run(M,A ] A)
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for every A ∈ K is a complete invariant for K. Clearly, if A ∼= B, then f(A) = f(B)
(runs are isomorphism-invariant). For the other direction, assume that

f(A) = run(M,A ] A) = run(M,B ]B) = f(B).

BecauseM decides isomorphism,M accepts A]A and B]B. By Lemma 5.59, we have

run(M,A ] A) ∈ {run(M,A ]B)},

i.e., run(M,A]A) = run(M,A]B). Thus,M also accepts A]B and we finally conclude
A ∼= B becauseM decides isomorphism.

5.3.5 From DeepWL+WSC to CPT+WSC

To finally prove Theorem 5.20, it remains to show that CPT+WSC simulates polynomial-
time DeepWL+WSC-algorithms.

Lemma 5.61. If a function f is computable (or a boolean query Q is decidable) by a
polynomial-time DeepWL+WSC-algorithm, then f (or Q, respectively) is CPT+WSC-
definable.

Proof. We follow the same strategy as in Lemma 17 of [59]: Polynomial time DeepWL-
algorithms can be simulated in CPT because CPT can execute the two-dimensional
Weisfeiler-Leman algorithm to compute the needed coherent configurations and their
algebraic sketches and because addPair- and scc-operations (the only ones modifying
the vertex set of the cloud) can easily be simulated by set operations. So, we can main-
tain a set representing the vertex set of the structure in the cloud and further sets for
the relations and colors in CPT. To extend this proof to DeepWL+WSC, we again pro-
ceed by induction on the nesting depth of the algorithm. We encode an HF-structure
A = (A,AHF , EA

1 , . . . , E
A
k ) as an HF(A)-set (using Kuratowski encoding for tuples). We

then evaluate CPT+WSC-formulas or terms over the structure with atoms A and no
relations. We denote this structure with A0. The CPT+WSC-formulas and terms will
have a free variable x, to which the A-encoding HF(A)-set is passed.

We show that, for every polynomial-time DeepWL+WSC-algorithm M, there is a
CPT+WSC-term s(x) such that, for every HF-structure A, the term s(x) defines the
final configuration of the output machine on input A (using some appropriate encod-
ing of 0/1-strings in HF(∅)-sets) if M does not fail on input A. To do so, assume
M = (Mout,Mwit,M1, . . . ,M`) is a DeepWL+WSC-algorithm and let by the induc-
tion hypothesis s1(x), . . . , s`(x) be CPT+WSC-terms such that si(x) defines the final
configuration of the output machine of Mi for every i ∈ [`]. Let, for every i ∈ [`],
Φi(x) be a CPT+WSC-formula which defines whether the configuration defined by si(x)
is accepting, i.e., the head on the work-tape points to a 1. The Turing machine of Mout

gets simulated using a WSC-fixed-point operator, which uses a variable y to maintain
the structure in the cloud and the configuration of Mout. As for DeepWL, addPair- and
scc-operations are simulated using set constructions on the structure in the cloud. The
algebraic sketch is defined using the two-dimensional Weisfeiler-Leman algorithm.
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A refine(Ej, i)-operation is simulated as follows: Let A = (A,AHF , EA
1 , . . . , E

A
k ) be

the current HF-structure in the cloud as maintained by the WSC-fixed-point operator.
First assume that Ej is directed. We then obtain with the term{

z
∣∣∣ z ∈ t2+j(y),Φi

(
r(y, {z1}, {z2})

) }
the output of the refine-operation, where

• t2+j(y) defines the (2 + j)-th entry in the tuple encoding A, i.e., the set EA
j ,

• zi defines the i-th entry of the pair z, and

• r(y, {z1}, {z2}) extends the structure in y by the two new relations {z1} and {z2}.

Here, we individualize z1 and z2 by putting them into new singleton relations. In the case
that E is undirected, we proceed similarly but only create one new relation {z1, z2}. So
we can simulate the machine Mout until it makes a choice- operation. We now use the
variable

• x for the input structure,

• y for the pair of the current structure A in the cloud and the current configuration c
of Mout (as before), and

• z for the chosen element for the last choice-operation (or ∅ if the machine has to
be started).

Let sstep(x, y, z) be a CPT+WSC-term which simulates Mout in configuration c and A in
the cloud until Mout executes the next choice-operation or halts. The term sstep(x, y, z)
outputs the pair of the obtained configuration and the obtained structure in the cloud.
If Mout has to be started, i.e., y is assigned to ∅, then the machine is started in the initial
configuration on the structure passed to x. Second, let schoice(y) be a CPT+WSC-term
which defines the choice-set of the next choice-operation to be made (or the empty set if
the machine halted or was started). Third, let swit(y, y′) be the CPT+WSC-term which
simulates the witnessing machine Mwit on the labeled union of the structures passed to y
and y′ and defines the set of automorphisms outputted by Mwit (or more precisely on the
structures contained in the pairs passed to y and y′). Lastly, let sout(y) be a CPT+WSC-
term extracting the configuration of the Turing machine passed to y, which is encoded as
HF(∅)-set. We use the WSC-fixed-point operator defining HF(∅)-sets from Lemma 5.8 to
define the final configuration of Mout whenM is executed on the structure passed to x
via

Φ(x) := WSC∗yz.
(
sstep(x, y, z), schoice(y), swit(y, z), sout(y)

)
,

where we have to replace y′ with z in swit(y, y′) to satisfy the formal requirements of the
WSC-fixed-point operator. Because the elements of the structure in the cloud are ob-
tained by the same HF-sets as by the DeepWL+WSC-algorithm, all choices are witnessed
successfully in the formula if they are witnessed in the algorithm.

For the case of a DeepWL+WSC-computable function f , we extract the content of
the work-tape from the set defined by Φ. For a DeepWL+WSC-decidable query, we check
whether the defined configuration is accepting.
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Corollary 5.62. A function f is computable (or a boolean query Q is decidable) by a
polynomial-time DeepWL+WSC-algorithm if and only if f (or Q, respectively) are defin-
able in CPT+WSC.

Proof. The claim follows from Lemmas 5.33 and 5.61.

We finally prove Theorem 5.20 and show that a CPT+WSC-definable isomorphism test
implies a CPT+WSC-definable complete invariant.

Proof of Theorem 5.20. Let K be a class of binary τ -structures and let Φ be a CPT+WSC-
formula defining isomorphism of K. Then there is a polynomial-time DeepWL+WSC-
algorithm deciding isomorphism of K by Lemma 5.33. By Theorem 5.60, there is a
complete invariant computable by a polynomial-time DeepWL+WSC-algorithm. Finally,
it follows from Lemma 5.61 that this complete invariant is CPT+WSC-definable.

We note that the translation from polynomial-time DeepWL+WSC-algorithms into CPT-
formulas cannot be effective because the polynomial bounding the running time of a
DeepWL+WSC-algorithm is not given explicitly, but CPT-formulas have to provide them
explicitly. However, this could be achieved by equipping DeepWL+WSC-algorithms with
explicit polynomial bounds.

5.4 Discussion

We extended CPT with a witnessed symmetric choice operator and obtained the logic
CPT+WSC. We proved that defining isomorphism in CPT+WSC is equivalent to defin-
ing canonization. A crucial point was to extend the DeepWL computation model to show
that a CPT+WSC-definable isomorphism test yields a CPT+WSC-definable complete-
invariant. Thereby, CPT+WSC can be viewed as a simplification step in the quest for a
logic capturing Ptime as now only isomorphism needs to be defined to be able to apply
the Immerman-Vardi Theorem.

To turn a complete invariant into a canonization within CPT+WSC, we used the
canonization algorithm of Gurevich. To implement it in CPT+WSC, we have to extend
it to provide witnessing automorphisms. For this to work, we needed to give to the
witnessing terms the defined fixed-points as input. This is different in other extensions of
first order logic with symmetric choice [31, 42]. We actually have to require that choice-
sets are orbits respecting all previous intermediate steps in the fixed-point computation.
It appears that this is only relevant if a formula actively forgets previous choices. But how
could forgetting these be beneficial? In any case, we are not sure whether the modification
changes the expressiveness of the logic.

Another question is the relation of CPT+WSC to other logics. Is CPT+WSC more
expressive than CPT? We will see in Section 6.2.3 that CPT+WSC defines the CFI query
for a class of base graphs for which it is not known that the CFI query is CPT-definable.
Do nested WSC-fixed-point operators increase the expressiveness of CPT+WSC? In [31],
it is proved that for fixed-point logic extended with (unwitnessed) symmetric choice, that
nesting fixed-point operators with choice increases expressiveness. We should remark that
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any positive answer to our questions separates CPT from Ptime and hence all questions
might be difficult to answer.

Finally, extending DeepWL with witnessed symmetric choice turned out to be ex-
tremely tedious. While proofs for DeepWL without choice are already complicated [59],
for our extensions the proofs got even more involved. We would like to see more elegant
techniques to prove Theorem 5.20 for CPT+WSC (or even for CPT).
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Chapter 6

Fixed-Point Logic with Counting,
Witnessed Symmetric Choice, and
Interpretations

In the previous chapter, we have seen how witnessed symmetric choice in CPT can be used
to show that a CPT+WSC-definable isomorphism test implies a CPT+WSC-definable
canonization and hence that CPT+WSC captures Ptime (for a class of structures).
However, the question whether witnessed symmetric choice strictly increases the expres-
siveness of CPT remained open. In this section, we want to understand the expressiveness
of witnessed symmetric choice and its combination with interpretations. However, a posi-
tive answer for CPT requires separating CPT from Ptime, which has been open for a
long time. So we will consider IFPC as base logic in the chapter.

(Witnessed) symmetric choice has the drawback that it can only choose from orbits of
the input structure. If orbits cannot be defined or witnessed in the logic, then no choices
can be made. Even if it is possible to reduce the input structure to a simpler one with
definable orbits using an interpretation, it is not clear how choices can be made in the
interpreted structure because the choice-sets have to be orbits of the input structure. To
overcome this problem, Gire and Hoang [42] proposed an interpretation operator, which
evaluates a formula in the interpreted structure. In this way, choices are made from
the interpreted structure and not from the input structure. In particular, every logic
equipped with the interpretation operator is, by construction, closed under interpreta-
tions. But for many logics, such an operator does not increase the expressiveness, e.g.,
for IFP, IFPC, and CPT. For IFP, the extension of IFP with witnessed symmetric choice
(IFP+WSC) is less expressive than the additional extension with the interpretation op-
erator (IFP+WSC+I). The interpretation operator combined with witnessed symmetric
choice simulates counting. However, it was indicated that witnessed symmetric choice
alone fails to simulate counting [42].

We are interested in the relation between witnessed symmetric choice and the inter-
pretation operator not specifically for IFP but more generally. Most of the existing results
by Gire and Hoang [42] and Dawar and Richerby [31], who consider the extension of IFP
with non-witnessed symmetric choice (IFP+SC), show that (witnessed) symmetric choice
or the interpretation operator can be used to define restricted forms of counting that can-
not be defined without them. Essentially, the only non-counting based result shows that
IFP+WSC defines the CFI query for order base graphs [42]. However, counting is not
the actual reason for using witnessed symmetric choice. Counting can be achieved more
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naturally in IFPC. Thus, it is unknown whether the interpretation operator increases
expressiveness of IFPC+WSC.

Overall, IFPC is a natural base logic for studying the interplay of witnessed symmet-
ric choice and the interpretation operator. In IFPC, separation results based on counting
are not applicable. But in contrast to CPT, there are known IFPC-undefinable Ptime
properties, namely the CFI query from Section 2.8, which can be used analyze the ex-
pressiveness of extensions of IFPC. In this chapter, we show that the interpretation
operator increases expressiveness for IFPC+WSC, too. Hence, IFPC+WSC+I is strictly
more expressive than IFPC+WSC. In particular, we show that IFPC+WSC is not even
closed under one-dimensional equivalence-free FO-interpretations. We thereby answer the
question of Dawar and Richerby [31] whether IFP+SC is closed under interpretations.

Next, we show that, with respect to canonization in IFPC+WSC+I, a class of CFI
graphs is not more difficult than the corresponding class of base graphs: If IFPC+WSC+I
canonizes the class of base graphs, then IFPC+WSC+I also canonizes the class of CFI
graphs. This result is special in the sense that it does not hold for many other logics [20,
28, 45, 84] (see also Chapter 7). We exploit this construction to establish a first step
towards proving an operator nesting hierarchy for IFPC+WSC+I by essentially iteratively
applying the CFI construction.

Related Work. The (witnessed) symmetric choice operator is combined with a fixed-
point operator in [31, 42]. There are more approaches to integrate choices in first-order
logic: Choice operators independent of a fixed-point operator were studied. Hilbert’s
ε-operator resolves choices using a global choice function, that is, when making twice a
choice from the same choice-set, the same element is chosen. An ε-invariant formula is a
formula invariant under all possible choice-functions. Blass and Gurevich [16] showed that
for the class of all (not necessarily finite) structures, every ε-invariant FO(ε)-formula is
equivalent to an FO-formula. For the restriction to finite structures, Otto [99] proved that
this is not the case, i.e., FO(ε) is more expressive than FO on finite structures. Blass and
Gurevich [16] also proposed a δ-operator that does not use a choice function and hence
two choices from the same choice-set may result in two different elements. These logics
are no candidates to capture Ptime because of nondeterminism, undecidable syntax, or
too high complexity. A similar statement holds for the nondeterministic version of the
fixed-point operator with choice, where choices can be made from arbitrary choice-sets
and not only from orbits [32]. For a more detailed overview, we refer to Richerby’s PhD
thesis [105].

Symmetric choice becomes useless if a structure only has singleton orbits, or equiva-
lently its only automorphism is the trivial one, because in this case there is nothing to
choose. Such structures are called asymmetric. Multipedes [64] are a class of asymmetric
structures that, for every fixed number of variables k, are not characterized up to isomor-
phism in k-variable counting logic. Asymmetry turns multipedes to hard examples for
graph isomorphism algorithms in the individualization-refinement framework [4,96]. The
size of a multipede not identifiable in k-variable counting logic is large with respect to k.
There exists also a class of asymmetric graphs [30] for which the number of variables
needed for identification is linear. Both classes are based on the CFI construction.

There is another remarkable but not directly connected correspondence to lengths of
resolution proofs. Resolution proofs for non-isomorphism of CFI-graphs have exponential
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size [112]. When adding a global symmetry rule (SRC-I), which exploits automorphisms
of the formula (so akin to symmetric choice), the length becomes polynomial [108]. For
asymmetric multipedes the length in the SRC-I system is still exponential [113]. But
when considering the local symmetry rule (SRC-II), which exploits local automorphisms
(so somewhat akin to symmetric choice after restricting to a substructure with an inter-
pretation), the length becomes polynomial again [108].

Overview of this Chapter. We define the logics IFPC+WSC and IFPC+WSC+I in
Section 6.1 by extending IFPC with a fixed-point operator featuring witnessed symmetric
choice and further with the interpretation operator. We reuse the WSC∗-operator from
Section 5.1.1, which was based on the techniques of [31], to formally define the semantics
of these logics. Following the approach from Chapter 5, the formula that defines the
witnessing automorphisms has access to the defined fixed-point. We show in Section 6.2
that, if a class of base graphs K can be canonized in IFPC+WSC+I, then the class
of CFI graphs over K can be canonized in IFPC+WSC+I, too. Similar to Chapter 5,
we again need to consider the closure under individualization. In this case, Gurevich’s
canonization algorithm [62] can be implemented in IFPC+WSC, too.

To prove that a definable canonization for a class of base graphs implies a definable
canonization for the corresponding class of CFI graphs, we use the interpretation operator
to define, given a CFI graph, the corresponding base graph and its orbits. We show that,
if IFPC+WSC+I distinguishes orbits of the base graphs, then IFPC+WSC+I distin-
guishes also orbits of the CFI graphs and thus canonizes the CFI graphs using Gurevich’s
algorithm. In the CFI-graph-canonizing formula, the nesting depth of WSC-fixed-point
operators increases by one (for Gurevich’s algorithm) compared to the formula that dis-
tinguishes orbits of the base graphs. In the same sense, the nesting depth of interpretation
operators increases by one (to define the orbits of the base graph), too.

In Section 6.3, we show that this increase of the nesting depth is necessary by con-
structing double CFI graphs. We start with a class of CFI graphs CFI(K′) for which a can-
onization is WSCI(IFPC)-definable, that is, definable in the fragment of IFPC+WSC+I
in which at most one interpretation operator can be nested inside one WSC-fixed-point
operator. We create a new class of base graphs K from the CFI(K′)-graphs. Applying the
CFI construction once more, CFI(K) is canonized in WSCI(WSCI(IFPC)) (that is, two
operators can be nested) but not in WSCI(IFPC): To define orbits of CFI(K), we have
to define orbits of the base graph, for which we need to distinguish the CFI graphs in
CFI(K′).

Last, we prove IFPC+WSC < IFPC+WSC+I in Section 6.4 and thereby separate
IFPC+WSC from Ptime. We construct a class of asymmetric structures for which
isomorphism is not IFPC-definable. Because asymmetric structures have only singleton
orbits, witnessed symmetric choice is not beneficial, thus IFPC+WSC = IFPC on these
structures, and isomorphism is not IFPC+WSC-definable. These structures combine
CFI graphs and the multipedes already mentioned [64], which are asymmetric and for
which IFPC fails to distinguish orbits. An interpretation removes the multipedes and
reduces the isomorphism problem to the one of CFI graphs. Thus, isomorphism of this
class of structures is IFPC+WSC+I-definable. We end the chapter with a discussion in
Section 6.5.
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6.1 IFPC with Witnessed Symmetric Choice

We extend IFPC with an inflationary fixed-point operator with witnessed sym-
metric choice. Let τ be a relational signature and R, R∗, and S be new relation symbols
not used in τ of arities ar(R) = ar(R∗) and ar(S). The letter p is used for an element
parameter in this section. We define the WSC-fixed-point operator with parameters p̄ν̄.
If

• Φstep(p̄x̄ν̄) is an IFPC+WSC[τ, R, S]-formula such that |x̄| = ar(R),

• Φchoice(p̄ȳν̄) is an IFPC+WSC[τ, R]-formula such that |ȳ| = ar(S),

• Φwit(p̄ȳȳ′z1z2ν̄) is an IFPC+WSC[τ, R,R∗]-formula where |ȳ| = |ȳ′| = ar(S), and

• Φout(p̄ν̄) is an IFPC+WSC[τ, R∗]-formula,

then

Φ(p̄ν̄) = ifp-wscR,x̄;R∗;S,ȳ,ȳ′;z1z2 .
(
Φstep(p̄x̄ν̄),Φchoice(p̄ȳν̄),Φwit(p̄ȳȳ′z1z2ν̄),Φout(p̄ν̄)

)
is an IFPC+WSC[τ ]-formula. The formulas Φstep, Φchoice, Φwit, and Φout are called step
formula, choice formula, witnessing formula, and output formula, respectively.
The free variables of Φ are the ones of Φstep apart from x̄, the ones of Φchoice apart
from ȳ, the ones of Φwit apart from ȳ, ȳ′, z1 and z2, and the ones of Φout. That is, x̄
is bound in Φstep, ȳ is bound in Φchoice and Φwit, and ȳ′, z1, and z2 are bound in Φwit.
Note that only element variables are used for defining the fixed-point in the WSC-fixed-
point operator. This suffices for our purpose in this thesis and increases readability. We
expect that our arguments also work with numeric variables in the fixed-point. For better
readability, we will now omit the free numeric variables ν̄ when defining the semantics
of the WSC-fixed-point operator. Fixing numeric parameters does not change orbits or
automorphisms.

Evaluation with Choices. Intuitively, Φ is evaluated as follows: Let A be a τ -structure
and ū ∈ A|p̄| be a tuple of parameters. We inductively define a sequence of relations
called stages

∅ =: RA
1 , . . . , R

A
` = RA

`+1 =: (R∗)A

as follows. Given the relation RA
i , the choice formula defines the choice-set TA

i+1 of the
tuples v̄ satisfying Φchoice, i.e.,

TA
i+1 :=

{
v̄
∣∣∣ ūv̄ ∈ ΦA,RA

i
choice

}
.

We pick an arbitrary tuple v̄ ∈ TA
i+1 and set SA

i+1 := {v̄} or SA
i+1 := ∅ if no such v̄ exists.

The step formula is used on the structure (A, RA
i , S

A
i+1) to define the next stage in the

fixed-point iteration:

RA
i+1 := RA

i ∪
{
w̄
∣∣∣ ūw̄ ∈ Φ(A,RA

i ,S
A
i+1)

step

}
.
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We proceed in this way until a fixed-point (R∗)A is reached. This fixed-point and the se-
quence of stages is in general not isomorphism-invariant, i.e., not invariant under applying
automorphisms of (A, ū).

We ensure that Φ is still isomorphism-invariant similar to the case of CPT in Sec-
tion 5.1: First, we only allow choices from orbits, which the witnessing formula has to
certify. Recall from Section 5.1.1 that a set N ⊆ Aut((A, ū)) witnesses a relation R ⊆ Ak

as (A, ū)-orbit if, for all v̄, v̄′ ∈ R, there is an automorphism ϕ ∈ N satisfying v̄ = ϕ(v̄′).
Because we need the notion of witnessing orbits only for isomorphism-invariant sets, we
do not need to check whether R is a proper subset of an orbit. We require that Φwit
defines a set of automorphisms. Intuitively, for v̄, v̄′ ∈ TA

i+1, a map ϕv̄,v̄′ is defined via

w 7→ w′ whenever ūv̄v̄′ww′ ∈ Φ(A,RA
i ,(R

∗)A)
wit .

The set of all these maps for all v̄, v̄′ ∈ TA
i+1 has to witness TA

i+1 as (A, ū, RA
1 , . . . , R

A
i )-

orbit. Note here, that, similar to CPT+WSC, the witnessing formula always has access
to the fixed-point. Actually, we do not require that ϕv̄,v̄′ maps v̄ to v̄′ but only the set of
all ϕv̄,v̄′ has to witness the orbit. If some choice is not witnessed, Φ is not satisfied by ū.
Otherwise, the output formula is evaluated on the defined fixed-point:

ΦA := Φ(A,(R∗)A)
out .

Because all choices are witnessed, all possible fixed-points (for different choices) are re-
lated by an automorphism of (A, ū) and thus either all or none satisfy the output formula.

An Example. We adapt the example from Chapter 5 from CPT+WSC to IFP+WSC
and show that the class of threshold graphs (i.e, graphs which can be reduced to the empty
graph by iteratively deleting universal or isolated vertices) is IFPC+WSC-definable (it
is actually IFP-definable, but illustrates the WSC-fixed-point operator). The set of all
isolated or universal vertices (note that there cannot be an isolated and a universal
vertex at the same time) of a graph forms a 1-orbit. We choose one vertex of that orbit,
collect it in a unary relation R, and repeat. If all vertices are contained in the obtained
fixed-point R∗, then the graph is a threshold graph. The choice formula Φchoice defines
the set of all isolated or universal vertices not in R. The step formula Φstep adds the
chosen vertex, which is the only vertex in the relation S, to R. The output formula Φout
checks whether R∗ contains all vertices and so defines whether it was possible to delete
all vertices:

Φchoice(y) := ¬R(y) ∧
((
∀z. ¬R(y)⇒ E(y, z)

)
∨
(
∀z. ¬R(y)⇒ ¬E(y, z)

))
,

Φstep(x) := R(x) ∨ S(x),
Φout := ∀x. R∗(x).

Witnessing orbits is easy. To show that two isolated (or universal, respectively) vertices y
and y′ are related by an automorphism, it suffices to define their transposition as follows:

Φwit(y, y′, z1, z2) := (z1 = y ∧ z2 = y′) ∨ (z2 = y ∧ z1 = y′) ∨ (y 6= z1 = z2 6= y′).

The formula ifp-wscR,x;R∗;S,y,y′;z1z2 . (Φstep,Φchoice,Φwit,Φout) defines the class of threshold
graphs.
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Formal Semantics. To define the semantics of the WSC-fixed-point operator formally,
we use the WSC∗-operator defined Section 5.1.1. Recall that the WSC∗-operator captures
fixed-point iterations with choices from orbits for arbitrary isomorphism-invariant func-
tions. Let A be a τ -structure and ū ∈ Ak. The WSC∗-operator defines, given isomorphism-
invariant functions fA,ū

step, f
A,ū
wit : HF(A)×HF(A)→ HF(A) and fA,ū

choice : HF(A)→ HF(A), the
set W = WSC∗(fA,ū

step, f
A,ū
wit , f

A,ū
choice) of all HF(A)-sets obtained in the following way. Start-

ing with b0 := ∅, define a sequence of sets as follows: Given bi, define the choice-set
ci := fA,ū

choice(bi), pick an arbitrary di ∈ ci (or d = ∅ if ci = ∅), and set bi+1 := fA,ū
step(bi, di).

Let b∗ := b` for the smallest ` satisfying b` = b`+1 (if it exists, which in our case of
inflationary fixed-points is always the case). Then we include b∗ in W if fA,ū

wit (bi, b∗) de-
fines a set of automorphisms witnessing ci as (A, ū, b1, . . . , bi)-orbit for every i ∈ [`]. Of
course, b∗ is not unique and depends on the choices of the di and thusW is not necessarily
a singleton set. We have seen in Corollary 5.4 that fA,ū

wit witnesses the choices of all di for
either every possible b∗ obtained in the former way or for none of them. In particular, W
is an (A, ū)-orbit (Corollary 5.5). We now define the semantics of the WSC+fixed-point
operator

Φ(p̄) = ifp-wscR,x̄;R∗;S,ȳ,ȳ′;z1z2 .
(
Φstep(p̄x̄),Φchoice(p̄ȳ),Φwit(p̄ȳȳ′z1z2),Φout(p̄)

)
using tuples (implicitly encoded in HF(A)-sets). Let ū ∈ A|p̄|. We set

fA,ū
step(RA, SA) := RA ∪

{
w̄
∣∣∣∣ ūw̄ ∈ Φ(A,RA,SA)

step

}
,

fA,ū
choice(RA) :=

{
v̄
∣∣∣∣ ūv̄ ∈ Φ(A,RA)

choice

}
,

fA,ū
wit (RA, (R∗)A) :=

{
ϕv̄v̄′

∣∣∣ v̄, v̄′ ∈ fA,ū
choice(RA)

}
where

ϕv̄v̄′ =
{

(w,w′) ∈ A2
∣∣∣∣ ūv̄v̄′ww′ ∈ Φ(A,RA,(R∗)A)

wit

}
.

The function fA,ū
step(RA, SA) evaluates the step formula Φstep and adds its output to RA,

which defines the inflationary fixed-point. The function fA,ū
choice(RA) defines the choice-set

by evaluating the choice formula Φchoice. Finally, the function fA,ū
wit (RA, (R∗)A) defines a

set (possibly) of automorphisms by evaluating the witnessing formula Φwit for all tuples
in the current relation. Now set W (A,ū)

Φ := WSC∗(fA,ū
step, f

A,ū
choice, f

A,ū
wit ).

We define the semantics of the WSC-fixed-point operator Φ as follows. Let A be a
τ -structure and let sig(Φ) ⊆ τ be the relation symbols mentioned in Φ (excluding those
bound by fixed-point operators or WSC-fixed-point operators). We define

ΦA :=
{
ū

∣∣∣∣ ū ∈ Φ(A,(R∗)A)
out for some (R∗)A ∈ W (A�sig(Φ),ū)

Φ

}
.

Note that if W (A�sig(Φ),ū)
Φ = ∅, that is, not all choices could be witnessed, then we have

ū /∈ ΦA. Also note that becauseW (A�sig(Φ),ū)
Φ is an (A � sig(Φ), ū)-orbit, ū ∈ Φ(A�sig(Φ),(R∗)A)

out
holds for either every (R∗)A ∈ W (A�sig(Φ),ū) or for no (R∗)A ∈ W (A�sig(Φ),ū). Finally, note
that the WSC-fixed-point operator for IFPC+WSC is evaluated on the reduct A � sig(Φ).
In this way, adding more relations to A which are not mentioned in the formula do not
change the orbit structure of A � sig(Φ) and so does not change whether Φ is satisfied
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or not. This is a desirable property of a logic [37]. This reduct semantics of a choice
operator can also be found in [31]. Finally, we conclude that IFPC+WSC is isomorphism-
invariant:

Lemma 6.1. For every IFPC+WSC[τ ]-formula Φ and every τ -structure A, the set ΦA is
a union of (A � sig(Φ))-orbits.

Proof. The proof is straightforward by induction on the formula using the fact thatW (A,ū)
Φ

is an (A, ū)-orbit by Corollary 5.5.

6.1.1 Extension with an Operator for Logical Interpretations

We now extend IFPC+WSC with another operator using interpretations. First, every
IFPC+WSC-formula is an IFPC+WSC+I-formula. If Θ(p̄ν̄) is an IFPC+WSC+I[τ, σ]-
interpretation with parameters p̄ν̄ and Φ is an IFPC+WSC+I[σ]-sentence, then the in-
terpretation operator

Ψ(p̄ν̄) = I(Θ(p̄ν̄); Φ)

is an IFPC+WSC+I[τ ]-formula with free variables p̄ν̄. The semantics is defined as follows:

I(Θ(p̄ν̄); Φ)A :=
{
ūn̄ ∈ A|p̄| × N|ν̄|

∣∣∣ ΦΘ(A,ūn̄) 6= ∅
}
.

Note that ΦΘ(A,ūn̄) 6= ∅ if and only if Φ is satisfied. The interpretation operator al-
lows to evaluate a subformula in the image of an interpretation. Thus, by definition,
IFPC+WSC+I is closed under interpretations. For IFPC, such an operator does not
increase the expressive power because IFPC is already closed under IFPC-interpretations
(see [98]). For IFPC+WSC, this is not clear: Because Θ(A, ūn̄) may have a different
automorphism structure, Φ may exploit the WSC-fixed-point operator in a way which is
not possible in A. Indeed, we will later see that IFPC+WSC is not even closed under
FO-interpretations. We now study the properties of IFPC+WSC+I and its relation to
IFPC+WSC. To do so, we first consider canonization of CFI graphs in IFPC+WSC+I.

6.2 Canonization of CFI Graphs in IFPC+WSC+I

In this section we show that with respect to canonization the CFI construction from
Section 2.8 “loses its power” in IFPC+WSC+I in the sense that canonizing CFI graphs
is not harder than canonizing the base graphs.

CFI Construction in this Chapter. In this chapter, we only work with the CFI con-
struction using gadget and edge vertices (cf. Section 2.8). For readability, we refer with
CFI(G, g) to CFIge(G, g) in this chapter. In case we are only interested in the isomorphism
type of a CFI graph, so in whether ∑ g = 0 or not, we also write CFI(G, 0) for the even
and CFI(G, 1) for the odd CFI graph.
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6.2.1 Canonization in IFPC+WSC+I

Similar to Chapter 5, we work with a class of base graphs closed under individualization.
Intuitively, this means that the class is closed under assigning some vertices unique new
colors. Recall Definition 5.11 of individualizing a tuple of vertices by a binary relation E
which defines a total order on the individualized vertices. Also, recall the definition of
the closure under individualization KE of a class of τ -structures K (Definition 5.12) that
considers all possible individualizations of all K-structures. We first establish a reduced
version of Theorem 5.21 for IFPC+WSC and IFPC+WSC+I. Note that we do not
include definable isomorphism here.

Lemma 6.2. Let L be one of the logics IFPC+WSC or IFPC+WSC+I and let K be a
class of τ -structures closed under individualization. The following are equivalent:

1. L defines a canonization for K (recall Definition 2.3).

2. L distinguishes the k-orbits of K for every k ∈ N (recall Definition 2.5).

3. K is ready for individualization in L (recall Definition 5.15).

Proof. The proof is similar to the one of Theorem 5.21. We show 1⇒ 2⇒ 3⇒ 1. To show
1⇒ 2, one orders two k-tuples according to the lexicographical order on the canons when
individualizing these tuples (similar to Lemma 5.13, where we use the canons instead of a
complete invariant). For 2⇒ 3, one orders the 1-orbits and picks the minimal (according
to that order) orbit disjoint with the individualized vertices. If such an orbit does not
exist, the minimal singleton 1-orbit is picked. Finally, to show 3⇒ 1, one defines a variant
of Gurevich’s canonization algorithm [62] using a WSC-fixed-point operator in the same
way as in Lemma 5.17. It is easy to see there that once the orbit-distinguishing formula
is an L-formula, then the algorithm can easily be expressed in L (essentially collecting
individualized vertices in a relation).

So, by Lemma 6.2, it suffices to define a single orbit disjoint with the individualized
vertices (if it exists) to obtain a definable canonization, which uses the WSC-fixed-point
operator. This approach simplifies defining canonization using WSC-fixed-point opera-
tors. Their use is hidden in Gurevich’s canonization algorithm: We do not need to define
witnessing automorphisms explicitly.

6.2.2 Defining Orbits of CFI Graphs

We now show that once we define orbits of base graphs (more precisely, of the closure
under individualization of the base graphs), we can define orbits of CFI graphs and hence
canonize them. Here we need the interpretation operator to reduce a CFI graph to its
base graph to define its orbits.

Lemma 6.3. Assume K is a class of colored base graphs with minimal degree 3. If
IFPC+WSC+I distinguishes 2-orbits of KE, then CFI(K)E is ready for individualization
in IFPC+WSC+I.
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Proof. Let G = (V,E,�) ∈ K, g : E → F2, and A = (CFI(G, g),EA), where EA individu-
alizes some vertices of CFI(G, g). We assume that only edge vertices are individualized.
Instead of individualizing a gadget vertex with origin u, one can equivalently individual-
ize an edge vertex with origin (u, v) for every v ∈ NG(u) by Lemma 2.12. This step is
IFPC-definable. We denote by

orig(EA) :=
{

orig(u)
∣∣∣ u ∈ A is individualized by EA

}
the set of (directed) origin base edges of the individualized edge vertices and with
G− orig(EA) the graph obtained from G by deleting the edges in orig(EA) viewed as
undirected edges. Note that individualizing an edge vertex implies individualizing a di-
rected base edge, which is equivalent to individualizing two base vertices. In this way, we
denote by (G, orig(EA)) the graph G when individualizing base vertices such that exactly
the base edges in orig(EA) are implicitly individualized.

We analyze the cases in which there are nontrivial 1-orbits of (A,EA). If there is a
2-orbit of (G, orig(EA)) containing base edges part of a cycle in G− orig(EA), we obtain
a nontrivial 1-orbit of (A,EA):

Claim 1. Let O be a 2-orbit of (G, orig(EA)). If every (directed) edge in O is part of a
cycle in G− orig(EA), then the set of edge-vertex-pairs {u ∈ A | orig(u) ∈ O} is a 1-orbit
of (A,EA).

Proof. Because O is a 2-orbit, either all or none of the directed base edges in O are part
of a cycle in G − orig(EA). By Lemma 2.11, the edge-vertex-pairs with origin in O are
in the same 1-orbit. Using an automorphism of the base graph, the edge vertices with
origin (u, v) ∈ O can be mapped to the edge vertices with origin (u′, v′) ∈ O for all
(u, v), (u′, v′) ∈ O. That is, {u ∈ A | orig(u) ∈ O} is a subset of a 1-orbit of (A,EA). It
cannot be a strict subset because then an edge vertex with origin in O has to be mapped
to an edge vertex with origin not in O. This contradicts that O is an orbit. a

In case that no such 2-orbit exists, there are possibly other nontrivial 1-orbits. They arise
from automorphisms of the base graph. An edge-vertex-pair-order of a set of base
edges E ′ ⊆ E is a set R such that, for every edge-vertex-pair {u1, u2} of origin (u, v) with
{u, v} ∈ E ′, exactly one of u1 and u2 is contained in R. Intuitively, R defines an order
per edge-vertex-pair with origin in E ′, but does not order edge-vertex-pairs of different
origins.

Claim 2. There is an IFPC-formula (independent of G) that defines an edge-vertex-pair-
order on all base edges E if G− orig(EA) has no cycles.

Proof. We first show the following: Whenever for a base vertex there is an edge-vertex-
pair-order R of all incident edges apart from one, then R can be extended to the remaining
incident edge. This is done as follows (cf. Figure 6.1): Let u ∈ V be a base vertex and
let NG(u) = {v1, . . . , vd}. Assume w.l.o.g. that R orders the edge-vertex-pairs of the base
edges {u, vi} ∈ E for every i ∈ [d − 1] and let vi ∈ R be the edge vertex with origin
(u, vi) for every i ∈ [d − 1]. By construction of the CFI graphs, there is exactly one
gadget vertex u of the gadget of u adjacent to vi for all i ∈ [d− 1]. Because every gadget
vertex is adjacent to exactly one edge vertex per incident edge-vertex-pair, we can add
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6.1 Extending edge-vertex-pair-orders. Edge-vertex-pair-orders are extended through one gad-
get as in Claim 2 in the proof of Lemma 6.3: Gadget vertices are drawn in gray and edge vertices
are drawn in light gray (cf. Figure 2.1). The two red-circled vertices are contained in an edge-vertex-
pair-order. Because the shown gadget is of degree 3, there is a unique blue gadget vertex adjacent
to the two red vertices. The blue vertex has a unique additional adjacent vertex which is shown in
red-dotted. By adding this canonical vertex to the edge-vertex-pair-order, it can be extended to the
remaining edge-vertex-pair of the gadget.

this unique edge vertex vd with origin (u, vd) and the unique edge vertex v′d with origin
(vd, u) adjacent to ud to R. These two vertices can clearly be defined in IFPC (without
an order on the vi).

We propagate this approach through gadgets. Assume there is an edge-vertex-pair-
order R of E ′ such that G − E ′ has no cycles. Then G − E ′ is a forest and there are
vertices of degree one in G − E ′ (unless E ′ = E). For all degree-one vertices of G − E ′,
we extend R to the remaining incident edge. So unless E ′ = E, we added more edges
to E ′. Surely, G−E ′ has still no cycles. So we can repeat this process using a fixed-point
operator to define an edge-vertex-pair-order of E.

It is clear that we can turn EA into an edge-vertex-pair-order R of orig(EA) (seen as
undirected edges): For all (u, v) ∈ orig(EA), at least for one of the edge-vertex-pairs with
origin (u, v) is individualized byEA. We put theEA-minimal such vertex u into R. For the
edge-vertex-pair with origin (v, u), we add the unique edge vertex adjacent to u to R (if
both (u, v), (v, u) ∈ orig(EA), we start with the directed edge containing the EA-minimal
vertex). One easily sees that R is IFPC-definable. By assumption, G− orig(EA) has no
cycles and thus we can define an edge-vertex-pair-order of E. a

Claim 3. Assume R is an isomorphism-invariant edge-vertex-pair-order of E, that is,
Aut((A,EA)) = Aut((A,EA, R)), and O is a 2-orbit of (G, orig(EA)). Then the set of edge
vertices {u ∈ R | orig(u) ∈ O} is a 1-orbit of (A,EA).

Proof. Let (u, v), (u′, v′) ∈ O, i.e., there is an automorphism ϕ ∈ Aut((G, orig(EA))) such
that ϕ((u, v)) = (u′, v′). Every automorphism of (G, orig(EA)) induces and automorphism
of (A,EA). So there is an automorphism ψ ∈ Aut((A,EA)) mapping the edge-vertex-pair
with origin (u, v) to the one with origin (u′, v′). Because R is isomorphism-invariant, ψ
has to map edge vertices in R to edge vertices in R. Hence, {u ∈ R | orig(u) ∈ O} is a
subset of a 1-orbit of (A,EA). This set cannot be a proper subset of an orbit because R
is isomorphism-invariant. a

Let Φ2-orb(x̄, ȳ) be an IFPC+WSC+I-formula distinguishing 2-orbits of KE. We cannot
evaluate Φ2-orb on A to define 2-orbits of (G, orig(EA)) because A has a more complicated
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6.2 Distances in CFI graphs. This �gure illustrates the distances in CFI graphs in Claim 4 in the
proof of Lemma 6.3: Gadget vertices are drawn in gray and edge vertices are drawn in light gray
(cf. Figure 2.1). Two gadget vertices in the same gadgets have distance 2 or 4 as shown by the red
and blue path. Two gadget vertices in gadgets for adjacent base vertices have distance 3 or 5 as
shown by the green and brown path.

automorphism structure than G and it is not clear how to witness orbits. Here we use
the interpretation operator. We define an IFPC-interpretation defining the base graph
(G, orig(EA)). Intuitively, we contract all gadgets to a single vertex, remove all edge
vertices, and instead directly connect the contracted gadgets. To do so, we need the
following claim:

Claim 4. For every u ∈ A, it holds that u is a gadget vertex if and only if for every
v ∈ NA(u) there are two distinct w,w′ ∈ NA(v) \ {u} of different color. Every two
distinct gadget vertices u, v ∈ A with origins u = orig(u) and v = orig(v)

(a) have distance 2 or 4 if and only if u = v and

(b) have distance 3 or 5 if and only if {u, v} ∈ E.

Proof. We show the first claim (cf. Figure 6.2). Let u ∈ A. Assume that u is a gadget
vertex with origin u and let v ∈ NA(u). Then v is an edge vertex with origin (u, v).
Because the minimal degree of G is 3, there is another gadget vertex u′ 6= u with origin u
adjacent to v. The edge vertex with origin (v, u) adjacent to v has a different color
than u′. To show the other direction, assume that for every neighbor v ∈ NA(u) there are
two distinct w,w′ ∈ NA(v) \ {u} of different color. For the sake of contradiction, suppose
that u is an edge vertex with origin (u, v). Consider the unique edge v vertex with origin
(v, u) adjacent to u. Every neighbor of v is either u or a gadget vertex with origin v, but
which all have the same color. Hence, u is a gadget vertex.

To show the second claim (cf. Figure 6.2 again), let u = (u, ā) and v = (v, b̄) be
gadget vertices with origins u and v, respectively, i.e., ā ∈ FNG(u)

2 and b̄ ∈ FNG(v)
2 such

that 0 = ∑
ā = ∑

b̄. For Part (a), assume u = v. By construction of the CFI gadget, u
and v are not adjacent and have a common neighbor if and only if ā(w) = b̄(w) for
some w ∈ NG(u). If ā(w) 6= b̄(w) for all w ∈ NG(u), then there is another gadget vertex
to which both u and v have distance 2 because the degree if u is at least 3. For the other
direction, assume u and v have distance 2 or 4. For every neighbor w of u, there is an
{u,w} ∈ E such that w is an edge vertex with origin (u,w) and every neighbor of w is a
gadget vertex with origin u or an edge vertex with origin (w, u). Hence, if u and v have
distance 2, then v = u. The case of distance 4 is similar, here all distance 4 vertices are
either vertices of the same gadget or edge vertices.
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Proving Part (b) is similar: Assume {u, v} ∈ E. If ā(v) = b̄(u), then u and v
have distance 3 (via two edge vertices with origin (u, v) and (v, u)), otherwise they have
distance 5. For the other direction, all distance 3 vertices of u are either gadget vertices
of gadgets whose origin w satisfies {u,w} ∈ E or edge vertices. a

So the interpretation Θ = (Φdom,Φ∼=,ΦE,Φ�,ΦE) defines the base graph:

Φdom(x) := ∀y. E(x, y)⇒ ∃z1, z2. z1 6= x ∧ z2 6= x ∧ E(y, z1) ∧ E(y, z2) ∧ z1 ≺ z2,

Φ∼=(x, y) := x = y ∨ Φ2
dist(x, y) ∨ Φ4

dist(x, y),
ΦE(x, y) := Φ3

dist(x, y) ∨ Φ5
dist(x, y),

Φ�(x, y) := x � y.

We used formulas Φ`
dist(x, y) defining that x and y have distance `. It remains to define ΦE,

for which we omit a formal definition: We use E to define an order on the base edges in
orig(EA) and individualize the corresponding base vertices using this order.

Now we are able to evaluate Φ2-orb on the base graph. We extend Θ by two parame-
ters z1 and z2 for two edge vertices, for which we want to know whether their origins are
in the same 2-orbit of G. We add two fresh binary relation symbols S1 and S2 and let Θ
define Si to contain the origin of the edge vertex of zi for every i ∈ [2]. We lift the total
preorder of the base vertices to the edge vertices using the interpretation operator:

Φbase-orb(z1, z2) := I(Θ(z1, z2);∀x̄ȳ. S1(x̄)⇒ S2(ȳ)⇒ Φ2-orb(x̄, ȳ)).

The formula Φbase-orb defines whether the origins of two edge vertices are in the same
orbit of (G, orig(EA)). Note that Φ2-orb does not mention the additional relations S1
and S2 and thus every WSC-fixed-point operator in Φ2-orb is evaluated on a structure not
containing S1 and S2 (by the reduct semantics) and so indeed on a KE-graph.

Finally, we can indeed check whether there is an orbit as required by Claim 1: Consider
the equivalence classes induced by Φbase-orb on the edge vertices and check the existence
of the required cycle. We define the minimal such orbit if such one exists. If no such orbit
exists, then G−orig(EA) contains no cycles and we can define an edge-vertex-pair-order R
of E by Claim 2 in IFPC. Because R is IFPC-definable, R is in particular isomorphism-
invariant. If there is a nontrivial 2-orbit of G − orig(EA), we pick the minimal one to
define a nontrivial 1-orbit of (A, EA) using R and Claim 3.

If that is also not the case, then there is no nontrivial 2-orbit of G − orig(EA), that
is, there is a definable total order on the (directed) base edges. Together with the edge-
vertex-pair-order R, we define a total order on all edge-vertex-pairs, which can be ex-
tended to a total order on A. We define the minimal vertex which is not individualized in
EA if it exists. Otherwise, all vertices are individualized. We pick the E-minimal one.

Now it is straightforward to show that if IFPC+WSC+I canonizesK, then IFPC+WSC+I
canonizes CFI(K), too.

Theorem 6.4. If IFPC+WSC+I canonizes a class of colored base graphs K closed under
individualization, then IFPC+WSC+I canonizes the class of CFI graphs CFI(K) over K
(and actually its closure under individualization CFI(K)E).
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Proof. Assume that IFPC+WSC+I defines a canonization for K. Then IFPC+WSC+I
distinguishes 2-orbits of K by Lemma 6.2. Hence, CFI(K) is ready for individualization in
IFPC+WSC+I by Lemma 6.3 and so IFPC+WSC+I defines a canonization for CFI(K)
by Lemma 6.2.

Corollary 6.5. If K is a class of base graphs of bounded degree, then IFPC+WSC+I
defines canonization for KE if and only if it defines canonization for CFI(K)E.

Proof. One direction is by Theorem 6.4. For the other direction, let K be graph class
of maximal degree d. Then there is a d-dimensional IFPC-interpretation Θ such that
Θ(G) is the even CFI graph over G for every base graph G ∈ KE. Individualized vertices
are translated into the coloring and thus into gadgets of unique color. Together with
the canonization-defining interpretation and the base-graph-defining one in the proof of
Theorem 6.4, we obtain a canonization for KE.

Note that this approach of defining a CFI graph to canonize the base graph cannot work
for arbitrary base graphs because for large degrees the CFI graphs get exponentially large
(which cannot be defined by an IFPC-interpretation).

We observe: First, Theorem 6.4 can be applied iteratively. If IFPC+WSC+I can-
onizes KE, then IFPC+WSC+I canonizes CFI(K)E, and thus IFPC+WSC+I canonizes
CFI(CFI(K))E. Second, every application of Theorem 6.4 adds one WSC-fixed-point op-
erator (to define Gurevich’s algorithm in Lemma 6.2) and one interpretation operator
(for the base-graph-defining interpretation in Lemma 6.3). More precisely, the nesting
depth of these operators increases. We will show that this is in some sense necessary:
The CFI query on a variation of CFI(CFI(K)) cannot be defined without nesting two
WSC-fixed-point and two interpretation operators.

6.2.3 Intermezzo: The CFI Query and CPT+WSC
We apply the former results to CPT+WSC to define the CFI query for a class of base
graphs in CPT+WSC, for which it is not known that CPT defines the CFI query. Already
defining the CFI-query for ordered base graphs is rather difficult in CPT [34]. The best
currently known result is that the CFI-query for base graphs of logarithmic color class
size or base graphs with linear maximal degree is CPT-definable [104]. The technique for
logarithmic color class size is based on constructing deeply nested sets which are invariant
under isomorphisms of the CFI graphs and encode their parity. For general base graphs,
it is not clear how such sets can be constructed while still satisfying polynomial bounds.

Corollary 6.6. Let K be a class of colored base graphs. If CPT distinguishes 2-orbits
for KE, then CPT+WSC defines the CFI-query for CFI(K).

Proof. By Theorem 5.21, it suffices to show that CFI(K)E is ready for individualization in
CPT+WSC, to obtain a CPT+WSC-definable canonization and in particular to define
the CFI query. We define the orbits of CFI(K)E in the same way as in Lemma 6.3. We
cannot immediately apply the lemma for two reasons:

1. CPT+WSC has no interpretation operator. The interpretation operator is used
in Lemma 6.3 to define the base graph of a given CFI graph and to evaluate the



202 Chapter 6. IFPC, Witnessed Symmetric Choice, and Interpretations

orbit-distinguishing formula on the base graph. This becomes important, when
the orbit-distinguishing formula itself makes choices, so that they can successfully
be witnessed. We, however, assume that the 2-orbits are CPT-distinguishable,
so we can actually define them without using the interpretation operator (also
cf. Corollary 6.8).

2. CPT+WSC is a three-valued logic using the error marker † when choices are not
witnessed. However, we do not rely on this behavior in Lemma 6.3.

Hence, we can show that CFI(K)E is ready for individualization in CPT+WSC.

We show that Corollary 6.6 covers a graph class whose color classes are not of logarithmic
size and their maximal degree is not linear.

Corollary 6.7. There is a class of colored base graphs K = {Gn | n ∈ N}, such that
CPT+WSC defines the CFI-query for K and for every n ∈ N, the graph Gn is O(|Gn|0.5)-
regular and every color class of Gn has size Ω(|Gn|0.5).

Proof. It suffices to construct a class K = {Gn | n ∈ N} of colored base graphs K with the
desired regularity and color-class size properties and which has CPT-definable 2-orbits
by Corollary 6.6. Let n ∈ N be arbitrary but fixed. We define Gn = (V,E,�) as follows:
Start with n many disjoint cliques K1, . . . , Kn of size n. Then connect every Ki to Ki+1
(and Kn to K1) with a complete bipartite graph. Finally, color the graph so that each Ki

is a color class. We now consider the 2-orbits of (Gn, ū) for some arbitrary ū ∈ V ∗. For
every vertex v ∈ V , it is easy to see that the 1-orbit O(v) containing v is O(v) = {v} if v
is contained in ū and otherwise

O(v) =
{
w
∣∣∣ v, w ∈ Ki, w 6= uj for every j ∈ [|ū|]

}
.

Then the 2-orbit of a tuple (u, v) is

O(u, v) =
{

(w,w′)
∣∣∣ w ∈ O(u), w′ ∈ O(v), and w 6= w′ if and only if u 6= v

}
.

Clearly, the graph Gn has order n2, is (3n−1)-regular, and has color class size n, satisfying
the requirements of the lemma. It is also easy to see that CPT defines the partition of
2-orbits shown above and can order it using the total order on the cliques.

6.3 The CFI Query and Nesting of Operators

In this section we show that the increased nesting depth of WSC-fixed-point and inter-
pretation operators used to canonize CFI graphs in Theorem 6.4 is unavoidable. Because
IFPC does not define the CFI query, it is clear that even if the class of base graph has
IFPC-distinguishable orbits (e.g., on a class of ordered graphs of unbounded treewidth),
the CFI query cannot be defined in IFPC. So, the nesting depth of WSC-fixed-point
operators has to increase. However, for orbits distinguishable in IFPC+WSC+I but not
in IFPC it is not clear whether the nesting depth has to increase. We now show that this
is indeed the case.
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Intuitively, we want to combine non-isomorphic CFI graphs into a new base graph
and then apply the CFI construction again. To define orbits of these double CFI graphs,
one has to define the CFI query for the base CFI graphs, which cannot be done without
a WSC-fixed-point operator. However, parameters of WSC-fixed-point operators compli-
cate matters. If parameter of a WSC-fixed-point operator is used to fix a vertex contained
in of the base CFI graphs, then this base CFI graph can be distinguished from all the
others. Hence, orbits of this base CFI graph can be defined without defining the CFI
query. To overcome this problem, we use multiple copies of the base CFI graphs such
that their number exceeds the number of parameters.

If we want to make choices from the base CFI graphs not containing a parameter, we
have to define the CFI query for them which increases the nesting depth. If we do not do
so, we can essentially only make choices in the base CFI graphs containing a parameter
vertex. That is, we can move the twist to the other base CFI graphs. Proving that in this
case the CFI query cannot be defined without more operators requires formal effort: We
introduce a logic that allows for quantifying over all individualizations of the base CFI
graphs containing parameters. This is (potentially) more powerful than making choices,
but we still can prove non-definability of the CFI query. This logic has the benefit that
we can characterize it via a pebble game.

First, we introduce a formalism for nesting WSC-fixed-point and interpretation oper-
ators in Section 6.3.1. Second, we provide a graph construction combining multiple base
CFI graphs in Section 6.3.2. Third, we define a logic quantifying over certain individual-
izations in Section 6.3.3 and prove that it cannot distinguish CFI graphs from the prior
graph construction. Last, we make the argument sketched above formal in Section 6.3.4
and show that these CFI graphs require nested WSC-fixed-point operators.

6.3.1 Nested WSC-Fixed-Point and Interpretation Operators
Let IFPC ⊆ L ⊆ IFPC+WSC+I be a subset of IFPC+WSC+I. We write WSC(L)
for the set of formulas obtained from L using IFPC-formula-formation rules and WSC-
fixed-point operators, for which the step, choice, witnessing, and output formulas are
L-formulas. Likewise, we define I(L): One can use an additional interpretation operator
I(Θ,Ψ), where the interpretation Θ is an L-interpretation and Ψ is an L-formula. Note
that L ⊆ WSC(L), L ⊆ I(L), and that I(IFPC) = IFPC because IFPC is closed under
IFPC-interpretations.

We abbreviate WSCI(L) := WSC(I(L)) and WSCIk+1(L) := WSCI(WSCIk(L)). Our
goal is to provide CFI graphs proving WSCI(IFPC) < WSCI2(IFPC). Note the construc-
tion in Lemmas 6.2 and 6.3:

Corollary 6.8. Let K be a class of colored base graphs.

1. If L distinguishes 2-orbits of KE, then CFI(K)E is ready for individualization in
I(L).

2. If CFI(K)E is ready for individualization in L, then WSC(L) defines a canonization
for CFI(K)E.

3. If L distinguishes 2-orbits of KE, then WSCI(L) defines a canonization for CFI(K)E.
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G1-part
G2-part

G3-part

part vertices

join vertices

6.3 Color class joins. The �gure shows an example of a color class join. For three graphs G1, G2,
and G3, each with three color classes, the �gure shows the color class join Jcc(G1, G2, G3). Edges
inside the graphs G1 to G3 are not drawn. For each color class, one new vertex is added and
connected to all existing vertices of that color class. The new vertices receive new unique colors.

Proof. The first claim follows from the proof of Lemma 6.3. The second claim follows
from the proof of Lemma 6.2 and the fact that implementing Gurevich’s canonization
algorithm requires one WSC-fixed-point operator [89]. Combining the first and second
claim yields the last one.

6.3.2 Color Class Joins and CFI Graphs

We define a composition operation of graphs. Let G1, . . . , G` be a sequence of connected
colored graphs, such that all Gi have the same number of color classes c. The color class
join Jcc(G1, . . . , G`) is defined as follows: Start with the disjoint union of the Gi and add c
many additional vertices u1, . . . , uc. Then add for every i ∈ [c] edges between ui and every
vertex v in the i-th color class of every Gj (cf. Figure 6.3). The resulting colored graph
Jcc(G1, . . . , G`) has 2c many color classes: one color class for each ui and the union of
the color classes of the Gj. We call the Gj the parts of Jcc(G1, . . . , G`). The vertices ui
are called the join vertices and the other ones the part vertices. The part of a part
vertex v is the graph Gj containing v.

The color class join has two crucial properties: First, defining orbits of Jcc(G1, . . . , G`)
is at least as hard as defining isomorphism of the Gj.

Lemma 6.9. If two part vertices v and v′ are in the same orbit of Jcc(G1, . . . , G`), then
the part of v is isomorphic to the one of v′.

Proof. Because every Gi is connected and the part and join vertices have different colors,
an automorphism of Jcc(G1, . . . , G`) mapping v to v′ has to map the part of v to the part
of v′. In particular, these parts are isomorphic.

Second, the automorphism structure of a partGj is independent of individualizing vertices
in other parts (or join vertices).

Lemma 6.10. Let w̄ be a tuple of vertices of Jcc(G1, . . . , G`) and j ∈ [`]. If there is no
i ∈ [|w̄|] such that Gj is the part of wi and if v and v′ are in the same orbit of Gj, then v
and v′ are in the same orbit of (Jcc(G1, . . . , G`), w̄).
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Proof. Because v and v′ are in the same orbit of Gj, there is a ϕ ∈ Aut(Gj) such that
ϕ(v) = v′. We extend ϕ to Jcc(G1, . . . , G`) by the identity on all join vertices and all
parts apart from Gj. Because ϕ respects the colors classes of Gj and the join vertex ui
is adjacent to all vertices in the i-th color class of Gj for every i ∈ [c], adjacency of part
vertices of Gj and join vertices is preserved by ϕ. Thus, ϕ ∈ Aut((Jcc(G1, . . . , G`), w̄))
because the part of wi is not Gj for every i ∈ [|w̄|] and ϕ is the identity on all other
parts.

Color Class Joins of CFI Graphs. Now we apply color class joins to CFI graphs: For
connected colored graphs G, H, and K with the same number of color classes, we define

Jkcc(G,H,K) := Jcc(G, . . . , G︸ ︷︷ ︸
k many

, H, . . . , H︸ ︷︷ ︸
k many

, K, . . . ,K︸ ︷︷ ︸
k many

).

Let K be a class of colored base graphs. For G ∈ K and g ∈ F2, we define

CFIk(G, g) := Jkcc(CFI(G, 0),CFI(G, g),CFI(G, 1)),
CFIk(K) :=

{
CFIk(G, g)

∣∣∣ G ∈ K, g ∈ F2
}
,

CFIω(K) :=
⋃
k∈N

CFIk(K).

Lemma 6.11. Let IFPC ⊆ L ⊆ IFPC+WSC+I be a subset of IFPC+WSC+I closed under
IFPC-formula-formation rules. If L canonizes CFI(K)E, then L canonizes CFIω(K)E.

Proof. First, we can easily distinguish join vertices from part vertices in IFPC for graphs
in CFIω(K)E because the join vertices are in singleton color classes and the part vertices
are not. So for a given part vertex u of G, we can define the set of all part vertices
contained in the same part as u (namely the ones reachable without using a join vertex),
that is, we define the CFI graph in CFI(K) containing u.

Let Θcan be an L-canonization of CFI(K)E. Then we obtain an L-interpretation
Θpart-can(x), which given a CFIω(K)-graph canonizes the part of x. It essentially is Θcan
but only considers the (definable) set of part vertices in the same part as x. So every
choice-set in the evaluation of Θpart-can(x) will be a set of part vertices in the same part
as x and thus a choice-set is an orbit if and only if the corresponding choice-set in the
evaluation of Θcan is an orbit. The witnessing automorphisms are obtained by extend-
ing the witnessing automorphisms defined in Θcan with the identity on all vertices not
in the part of x. In this way, exactly the same choices are successfully witnessed by
Θpart-can as by Θcan. Note that Θpart-can is an L-interpretation because L is closed under
IFPC-formula-formation rules.

We use Θpart-can(x) to define the canon of every part containing an E-individualized
vertex. These canons can be ordered according to the order of the individualized vertices.
For the remaining parts not containing individualized vertices, we use Θpart-can(x) to
determine how many of these parts are even CFI graphs and how many are odd ones. We
obtain a canon for the even and odd graph (if they occur) and define as many copies as
needed (using numeric variables). The copies can be ordered. We take the disjoint union
of all these canons, and lastly add the join vertices, which all is IFPC-definable.
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CFI Graphs of Color Class Joins. Now, we use color class joins as base graphs. We
introduce terminology for CFI graphs over color class joins. Let G1, . . . , G` be a se-
quence of base graphs and h ∈ F2. We transfer the notion of part and join vertices from
H := Jcc(G1, . . . , G`) to A := CFI(H, h). The Gi-part of A is the set of vertices originat-
ing from a vertex or edge of Gi in H. These vertices are called part vertices of Gi. A
vertex is just a part vertex if it is a part vertex of some Gi. The remaining vertices are
the join vertices.

We consider a special class of individualizations of A. Let ū ∈ A∗. A part of A is
ū-pebbled if ui is a part vertex of that part for some i ∈ [k]. Otherwise, the part is
ū-unpebbled. The set of ū-pebbled-part vertices Vū(A) is the set of all join vertices
and all part vertices of every ū-pebbled part. The set of ū-pebbled-part individual-
izations Pū(A) is the set of all individualizations of Vū(A).

De�nition 6.12 (Unpebbled-Part-Distinguishing). For an `-tuple ū ∈ A`, a k-ary relation
R ⊆ Ak is ū-unpebbled-part-distinguishing if there are m ∈ [k] and i 6= j ∈ [`] such
that

1. both the Gi-part and the Gj-part of A are ū-unpebbled,

2. there is a v̄ ∈ R such that vm is a part vertex of Gi, and

3. for every w̄ ∈ R, the vertex wm is not a part vertex of Gj.

Lemma 6.13. Let ū ∈ A`, Gi 6∼= Gj be ū-unpebbled, R ⊆ Ak, and some v̄ ∈ R contain
a vertex of a ū-unpebbled part. If R is an orbit of (A, ū), then R is ū-unpebbled-part-
distinguishing.

Proof. Let the part of vm be ū-unpebbled and let this part be the Gn-part. Assume
that R is an orbit of (A, ū). If the part of wm is neither Gi nor Gj for every w̄ ∈ R,
then n /∈ {i, j}. Thus, R is ū-unpebbled-part-distinguishing because the Gi-part and the
Gn-part are ū-unpebbled, vm is a part vertex of Gn, and for every w̄ ∈ R, the vertex wm
is not a part vertex of Gi.

Otherwise, there is a w̄ ∈ R such that the part of wm is w.l.o.g. Gi. Then no au-
tomorphism can map wm to a vertex whose part is Gj because Gi 6∼= Gj (Lemma 6.9).
Thus, wm is not a part vertex of Gj for every w̄ ∈ R because R is an orbit. It follows
that R is ū-unpebbled-part-distinguishing.

6.3.3 Quantifying over Pebbled-Part Individualizations
We now define an extension of Ck which allows for quantifying over pebbled-part indi-
vidualizations. Our (unnatural) extension Pk can only be evaluated on CFI graphs over
color class joins and will be a tool to show WSC(IFPC)-undefinability. The benefit of
this logic is that we will characterize it via a pebble game.

Whenever Φ(x̄) is a Ck[τ,EP ]-formula (for a binary relation symbol EP /∈ τ), then

(∃PEP . Φ)(x̄)

is a Pk[τ ]-formula. Pk[τ ]-formulas can be combined as usual in Ck with boolean connec-
tives and counting quantifiers. Note that ∃P -quantifiers cannot be nested. Let G1, . . . , G`
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be a sequence of colored base graphs with the same number of colors, g ∈ F2, and
A = CFI(Jcc(G1, . . . , Gn), g). The ∃P -quantifier has the following semantics:

(∃PEP . Φ)A :=
{
ū ∈ A|x̄|

∣∣∣ ū ∈ Φ(A,EA
P ) for some EA

P ∈ Pū(A)
}
.

That is, the ∃P -quantifier quantifies over a pebbled-part individualization for the free
variables of Φ. Note that the quantifier does not bind first-order variables.

We now characterize Pk by an Ehrenfeucht-Fraïssé-like pebble game, which is an
extension of the bijective k-pebble game. The Pk-game is a game between two players
called Spoiler and Duplicator. There are two types of pebbles. First, there a k many
pebble pairs (pi, qi) for every i ∈ [k]. Second, there are pebble pairs (ai, bi) for every
i ∈ N. The game is played on CFI graphs over color class joins A and B satisfying
|A| = |B| (otherwise Spoiler wins immediately). A position in the game is a tuple
(A,EA

P , ū;B,EB
P , v̄), where ū ∈ A≤k and v̄ ∈ B≤k are of the same length, and EA

P and EB
P

individualize vertices (possibly none) originating from up to k parts or join vertices in A
and B, respectively. A pebble pj is placed on ui and the pebble qj is placed on vi for
some j ∈ [k] (again, the exact pebble pair (pj, qj) placed on the i-th entries will not
matter). The pebble ai is placed on the i-th individualized vertex by EA

P and bi on
the i-th individualized vertex by EB

P . The initial position is (A, ∅, ();B, ∅, ()), where ()
denotes the empty tuple. Spoiler can perform two kinds of moves.

• A regular move proceeds as in the bijective k-pebble game: Spoiler picks up a
pair of pebbles (pi, qi). Then Duplicator provides a bijection λ : A → B. Spoiler
places pi on u ∈ A and qi on λ(u).

• A P-move proceeds as follows and can only be performed once by Spoiler (that
is, if EA

P = EB
P = ∅): Spoiler places the pebbles ai (or the pebbles bi, respectively)

exactly on the ū-pebbled-part vertices of A (or on the v̄-pebbled-part vertices of B,
respectively). Duplicator responds by placing the pebbles bi (or the pebbles ai,
respectively) on exactly the v̄-pebbled-part vertices of B (or the ū-pebbled-part
vertices of A, respectively).

If after a move there is no pebble-respecting local isomorphism of the pebble-induced
substructures of A and B, then Spoiler wins. Duplicator wins if Spoiler never wins.

Lemma 6.14. For every k ≥ 3, Spoiler has a winning strategy in the Pk-game at position
(A, ∅, ū;B, ∅, v̄) if and only if the logic Pk distinguishes (A, ū) and (B, v̄).

Proof. Let k ≥ 3. We first consider positions (A,EA
P , ū;B,EB

P , v̄) where Spoiler already
has performed the P -move, i.e., EA

P ,E
B
P 6= ∅. Then the remaining game is essentially

just the bijective k-pebble game, where, for each i ∈ N, the vertices pebbled by ai and bi
are put in a unique singleton relation. Spoiler has a winning strategy at the position
(A,EA

P , ū;B,EB
P , v̄) if and only if Ck distinguishes (A,EA

P , ū) and (B,EB
P , v̄) because for

k ≥ 3 we can define the i-th vertex individualized by EA
P or EB

P .
We now prove by induction on the number of moves, that if Spoiler has a winning

strategy in the Pk-game at position (A, ∅, ū;B, ∅, v̄), then Pk distinguishes (A, ū) and
(B, v̄). If Spoiler wins without performing a P -move, then Spoiler wins the bijective
pebble game and Ck and thus also Pk distinguishes (A, ū) and (B, v̄). So assume Spoiler
eventually performs a P -move.
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Assume that Spoiler performs a regular move and picks up the i-th pebble pair (pi, qi).
The argument is essentially the same as for the bijective k-pebble game: For every bijec-
tion λ : A→ B, there is a w ∈ A such that Spoiler wins the Pk-game when placing pi on
w and qi on λ(w). For all these positions, there is a Pk-formula distinguishing them by
the induction hypothesis. So some boolean combination of these distinguishing formulas
is satisfied by a different number of vertices in (A, ū) and (B, v̄) and we can distinguish
them using a counting quantifier.

Now assume that Spoiler performs a P -move: W.l.o.g. Spoiler places the pebbles ai
on all ū-pebbled-part vertices of A (inducing the individualization EA

P ). Then for ev-
ery placement of the pebbles bi by Duplicator on the v̄-pebbled-part vertices of B (in-
ducing EB

P ), Spoiler has a winning strategy in the bijective k-pebble game at position
(A,EA

P , ū;B,EB
P , v̄) (no P -move is allowed anymore). Then, as argued before, there is

a Ck-formula Φ distinguishing (A,EA
P , ū) and (B,EB

P , v̄). So the Pk-formula ∃PEP .Φ
distinguishes (A, ū) and (B, v̄).

For the other direction, we prove by induction on the quantifier depth that if a
Pk-formula Φ distinguishes (A, ū) and (B, v̄), then Spoiler has a winning strategy in
the Pk-game at position (A, ∅, ū;B, ∅, v̄). If Φ is actually a Ck-formula, then Spoiler wins
the bijective k-pebble game so in particular the Pk-game. If Φ is Ψ ∧Ψ′, Ψ ∨Ψ′, or ¬Ψ,
then one of Ψ and Ψ′ distinguishes (A, ū) and (B, v̄). If Φ is a counting quantifier ∃≤ix.Ψ,
then Spoiler performs a regular move. Because Φ has at most k−1 free variables, Spoiler
can pick up a pair of pebbles (pi, qi). Whatever bijection λ Duplicator chooses, there is
a vertex w such that w.l.o.g. w satisfies Ψ in A but λ(w) does not satisfy Ψ in B. That
is, Spoiler places pi on w and qi on λ(w) and wins by the induction hypothesis.

To the end, assume that Φ is the Pk-formula ∃PEP .Ψ. W.l.o.g. we assume that
(A, ū) satisfies Φ. So there is a EA

P ∈ Pū(A) satisfying ū ∈ Ψ(A,EA
P ) such that for every

EB
P ∈ Pv̄(B), it holds that v̄ /∈ Ψ(B,EB

P ). Because Ψ is a Ck formula, Spoiler has a winning
strategy in the k-bijective pebble game at position (A,EA

P , ū;B,EB
P , v̄). By performing a

P -move and placing the pebbles ai according to EA
P , Spoiler obtains a winning strategy

in the Pk game at position (A, ∅, ū;B, ∅, v̄).

Note that the former lemma only holds for k ≥ 3 because with fewer variables we cannot
define the i-th individualized vertex in Ck and thus cannot check local isomorphisms.
Extending the logic to make the lemma hold for every k only complicates matters and is
not needed in the following.

Lemma 6.15. Let G1, . . . , Gk+1 be a sequence of colored base graphs, each with c > k
many color classes, such that CFI(Gi, 0) ≡kC CFI(Gi, 1) for every i ∈ [k + 1]. Then
Duplicator has a winning strategy in the Pk-game played on CFI(Jcc(G1, . . . , Gk+1), 0)
and CFI(Jcc(G1, . . . , Gk+1), 1).

Proof. Let A = CFI(Jcc(G1, . . . , Gk+1), 0) and B = CFI(Jcc(G1, . . . , Gk+1), 1). We call the
Gj-part in A and B just the j-th part. Let VJ ⊆ A = B be the set of join vertices and
Vj ⊆ A = B be the set of part vertices of the j-th part for every j ∈ [k + 1] (recall that
CFI graphs are defined over the same vertex set).

Duplicator maintains the following invariant. At every position (A,EA
P , ū;B,EB

P , v̄)
during the game, there is an isomorphism ψ : (B, v̄,EB

P )→ (B′, v̄,EB
P ) for some B′ that

moves the twisted edge, so B′ = B, and there is a j ∈ [k + 1] satisfying the following:
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1. If Spoiler has not performed the P -move (i.e., the pebbles ai and bi are not placed),
then the part of every ui and every vi is not the j-th one.

2. If Spoiler has performed the P -move, then no vertex of the j-th part is individualized
by EA

P or EB
P .

3. There is an isomorphism ϕ : (A,EA
P , ū)[A \ Vj] → (ψ(B),EB

P , v̄)[B \ Vj] respecting
the parts, that is, ϕ maps the i-th part of A to the i-th part of ψ(B).

4. (A,EJ , ū)[VJ∪Vj] ≡kC (ψ(B), ψ(EJ), v̄)[VJ∪Vj] for some individualization EJ of VJ .

Note that Property 4 is satisfied either by none or all such individualizations. Clearly,
the invariant is satisfied initially.

Assume that it is Spoiler’s turn and Spoiler performs a regular move. Spoiler picks
up a pebble pair (pi, qi). Now Duplicator has to provide a bijection λ. The bijection λ
is constructed in the following way. We start with the isomorphism ϕ of Property 3
and extend it on the j-th part as follows: If Spoiler has performed the P -move already,
Duplicator uses the bijection λ′ of Duplicator’s winning strategy on (A,EJ , ū)[VJ∪Vj] ≡kC
(ψ(B), ψ(EJ), v̄)[VJ∪Vj] for some and thus every EJ of VJ (Property 4) to extend ϕ on Vj:

λ(w) :=
ϕ(w) if w /∈ Vj,
λ′(w) otherwise.

Because in this game the individualization EJ is used for A and ψ(EJ) is used in for B,
the bijection λ′ necessarily has to map the i-th EJ -individualized vertex to the i-th
ψ(EJ)-individualized vertex. That is, λ and λ′ necessarily agree on the join vertices, that
is, λ(w) = λ′(w) for all w ∈ VJ . Spoiler places pi on w and qi on λ(w). The pebbles still
induce a local isomorphism (because ϕ is an isomorphism and λ′ is given by a winning
strategy). Properties 1 and 2 are obviously satisfied. If w /∈ Vj, then ϕ(w) = λ(w) and the
isomorphism ϕ still satisfies Property 3. If w /∈ VJ , then Property 4 is satisfied because
the new pebbles are not placed on (A,EJ , ū)[VJ ∪ Vj] and (ψ(B), ψ(EJ), v̄)[VJ ∪ Vj]. If
w ∈ Vj, then the pebbles are placed according to a winning startegy of Duplicator and
thus Property 4 is satisfied, too. If otherwise w ∈ Vj, then w is not in the domain of ϕ
and thus ϕ satisfies Property 3. Property 4 is satisfied because λ(w) = λ′(w) and λ′ was
obtained by a winning strategy of Duplicator.

If Spoiler has not performed the P -move, then Duplicator extends ϕ as follows. There
is another ū-unpebbled part different from the j-th one because there are at most k − 1
many pebbles placed (one pebble pair is picked up). Let this be the `-th part for some
` 6= j and let {u, v} be the twisted edge between A and ψ(B), which is contained in
the j-th part (by Property 3). There is a path from one of u or v into the `-th part in
Jcc(G1, . . . , Gk+1) only using vertices of the j-th and `-th part and one join vertex w such
that it does not use the origin of the pebbled vertices: Both Gj and G` are connected,
do not contain any pebbles, and there are c > k color classes, so one join vertex is not
pebbled. Hence, there is a path-isomorphism ψ′ : (B′, v̄) → (B′′, v̄) moving the twist
from the j-th into the `-th part along that path. Thus, we can extend the restriction

ψ′|A\Vj\V` ◦ ϕ|A\V` : (A, ū)[A \ Vj \ V`]→ (ψ′(ψ(B)), v̄)[B \ Vj \ V`]
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to Vj because the twist is now in the `-th part. That is, we obtain an isomorphism
ϕ′ : (A, ū)[A \ V`] → (ψ′ ◦ ψ(B), v̄)[B \ V`] which agrees with ϕ on A \ Vj \ V` apart
from gadget vertices originating from w and the edge vertices originating from the edge
incident to w into the j-th and `-th part. These are the only vertices in A \ Vj \ V` for
which the isomorphism ψ′ is not the identity. Duplicator extends ϕ on Vj using ϕ′ to the
bijection λ.

λ(w) :=
ϕ(w) if w /∈ Vj,
ϕ′(w) otherwise.

Spoiler places pi on w and qi on λ(w). If w /∈ Vj (and so λ(w) = ϕ(w) /∈ Vj), then
Properties 1 to 4 are clearly satisfied (now for ` instead for j) because ϕ is an isomorphism.
For the same reason, the pebbles induce a local isomorphism.

So assume w ∈ Vj. By Property 1, the first pebble is placed on the j-th part and the
`-th part does not contain a pebble. Then the restriction of λ to A \ V` can be turned
into is an isomorphism (A, ∅, ūw)[A \ V`] → (B′′, ∅, v̄λ(w))[B \ V`] by applying a local
automorphism of the gadget ofw (which is not pebbled) that moves the twist from the j-th
into the `-th part according to ψ′. In particular, the pebbles induce a local isomorphism
and Property 3 holds. Property 4 is satisfied because the `-th part does not contain a
pebble: If CFI(G`, 0) ≡kC CFI(G`, 1), then (A,EJ)[VJ ∪ V`] ≡kC (B′′, ψ(EJ))[VJ ∪ V`], too,
because (A,EJ)[VJ ∪ V`] just extends CFI(G`, 0) by gadgets for the join vertices, which
are all fixed by EJ (and likewise for (B′′, ψ(EJ))[VJ ∪ V`] and CFI(G`, 1)).

Finally, let Spoiler perform the P -move. Spoiler places w.l.o.g. the pebbles ai on
the ū-pebbled parts. Duplicator places the pebble bi on ϕ(ai) for all i. Because the
pebbles are placed according to the isomorphism ϕ, there is a pebble-respecting local
isomorphism. Properties 1 and 2 are clearly satisfied. Property 3 is satisfied by ϕ and
Property 4 is satisfied because no pebble is placed in the j-th part (similar to the `-th
part in the former case).

6.3.4 Nesting Operators to Define the CFI Query is Necessary
We use CFI graphs over color class joins of CFI graphs to construct a class of base graphs,
for which WSCI2(IFPC) defines the CFI query but WSCI(IFPC) does not. Fix a class of
totally ordered and 3-regular base graphs K := {Gi | i ∈ N} such that Gi has treewidth
at least i for every i ∈ N. Such a class exists because we can obtain from some graph G′i
of treewidth i (e.g., a clique of size i + 1) a 3-regular graph of treewidth at least i as
follows: If G′i has a vertex u of degree greater than 3, then we obtain a new graph G′′i
by splitting u off into two vertices (onto which we equally distribute the edges incident
to u) and connecting them via an edge. Contracting this edge yields back G′i. Thus, G′i
is a minor of G′′i and thus the treewidth of G′′i is at least the treewidth of G′i. We repeat
this procedure until every vertex has degree 3.

Lemma 6.16. CFI(CFI(Gk, g), 0) ≡kC CFI(CFI(Gk, g), 1) for all k ∈ N and g ∈ F2.

Proof. Let k ∈ N and g ∈ F2. The graph Gk has treewidth at least k. The CFI con-
struction does not decrease the treewidth because Gk is a minor of CFI(Gk, g) (cf. [33]).
Hence, CFI(Gk, g) has treewidth at least k and CFI(CFI(Gk, g), 0) ≡kC CFI(CFI(Gk, g), 1)
by Lemma 2.15.
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Lemma 6.17. WSCI2(IFPC) defines the CFI query for CFI(CFIω(K)).

Proof. IFPC distinguishes 2-orbits of K because K-graphs are totally ordered. By Corol-
lary 6.8, WSCI(IFPC) canonizes CFI(K)E. From Lemma 6.11 it follows that WSCI(IFPC)
canonizes CFIω(G)E and so also distinguishes 2-orbits of CFIω(G)E. Again due to Corol-
lary 6.8, WSCI2(IFPC) canonizes CFI(CFIω(K))E. In particular, WSCI2(IFPC) defines
the CFI query for CFI(CFIω(K)).

To show that WSCI(IFPC) does not define the CFI query for CFI(CFIω(K)), we will use
the following idea: Assume that a WSC-fixed-point operator Φ defines the CFI query and
we evaluate Φ on CFI(CFI`(G)) for some ` > |p̄|. If Φ always defines choice-sets containing
only tuples of vertices in the parameter-pebbled parts, then the twist can be moved in the
parameter-unpebbled parts. Because all choices are made in parameter-pebbled parts,
the output formula of Φ, which is an IFPC-formula, essentially has to define the CFI
query for CFI(CFI(K)), which is not possible (Lemma 6.16). Otherwise, Φ makes a choice
in parameter-unpebbled parts. But for that, Φ has to distinguish CFI(G, 0) from CFI(G, 1)
to define orbits of CFI(CFI`(G)). So the choice IFPC-formula has to define the CFI query
for CFI(K), which is also not possible. Making this idea formal turns out to be tedious.

Lemma 6.18. WSCI(IFPC) does not define the CFI query for CFI(CFIω(K)).

Proof. For a sake of contradiction, suppose that Φ is a WSCI(IFPC)-formula defining the
CFI query for CFI(CFIω(K)). W.l.o.g. we assume that Φ binds no variable twice. Because
I(IFPC) = IFPC, we assume that Φ is a WSC(IFPC)-formula. Let Ψ1(x̄1), . . . ,Ψm(x̄m)
be all WSC-fixed-point operators that are subformulas of Φ. For the moment assume that
all free variables x̄i are element variables. Let the number of distinct variables of Φ be k
and let ` := `(k) ≥ max{k, 3} for some function `(k) to be defined later. We consider
the subclass CFI(CFI`+1(K)) ⊆ CFI(CFIω(K)). We partition K as follows: First, let Korb
be the set of all G ∈ K such that, for every g ∈ F2, there are h ∈ F2, j ∈ [m], and a
|x̄j|-tuple ū of vertices of CFI(CFI`+1(G, g), h)) such that

1. all choice-sets during the evaluation of Ψj(ū) on CFI(CFI`+1(G, g), h) are indeed
orbits and

2. one of these choice-sets is ū-unpebbled-part-distinguishing.

Second, set Kcfi := K \ Korb. Clearly, at least one of Korb and Kcfi is infinite, which is a
contradiction as shown in the two following claims.

Claim 1. Korb is finite.

Proof. We claim that there is an IFPC-formula defining the CFI query for CFI(Korb).
First, we show that there is an IFPC-interpretation mapping for G ∈ Korb (and even
in K) a CFI graph CFI(G, g) and an h ∈ F2 to the graph (CFI(CFI`+1(G, g), h),E) such
that E individualizes the vertices of ` + 1 many CFI(G, 0)-parts, ` + 1 many CFI(G, 1)-
parts, and all join vertices of CFI(CFI`+1(G, g), h). The following mappings are definable
by IFPC-interpretations:
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(a) Map CFI(G, g) to the base graph G (which is an ordered graph).

(b) Map G and g′ ∈ F2 to (CFI(G, g′),≤) such that ≤ is a total order on CFI(G, g′).
This map is IFPC-definable because G is 3-regular.

(c) Map CFI(G, g), (CFI(G, 0),≤0), and (CFI(G, 1),≤1) to (CFI`+1(G, g),E′), where ≤0
and ≤1 are total orders and E′ individualizes all vertices of the `+ 1 many parts of
CFI(G, 0) and CFI(G, 1) as well as the join vertices.

(d) Finally, map (CFI`+1(G, g),E′) and h ∈ F2 to (CFI(CFI`+1(G, g), h),E) such that E
individualizes the required vertices. This map is IFPC-definable since CFI`+1(G, g)
is of bounded degree: The graph G has color class size 1 and is 3-regular, so
CFI(G, h) has color class size 4 and degree at most 3. That is, CFI`+1(G, g) has
color class size 4` + 4 and degree at most 4` + 4 (the join vertices), which is a
constant.

By composing these IFPC-interpretations, we obtain the required one. We now show that
we can simulate each Ψj on (CFI(CFI`+1(G, g), h),E) in IFPC such that we determine the
parity of CFI(G, g).

For every Ψj(x̄j), we consider all h ∈ F2 and all |x̄j|-tuples ū of E-individualized
vertices for the parameters x̄j. We simulate the evaluation of the WSC-fixed-point op-
erator Ψj in IFPC as follows: Because Φ is a WSC(IFPC) formula, the step, choice,
witnessing, and output formula of Ψj are IFPC-formulas. We evaluate the choice formula
and check whether all tuples in the defined relation are composed of ū-pebbled-part ver-
tices. If that is the case, we resolve the choice deterministically using the lexicographical
order of E on the tuples (recall that E individualizes all ū-pebbled-part vertices by con-
struction). Then we evaluate the step formula. The simulation is continued until there is
a choice-set not solely composed of vertices of ū-pebbled-part parts. Because the choice-
set is by definition of Korb an orbit, it is ū-unpebbled distinguishing by Lemma 6.13. So
the choice-set contains (at some index) vertices of the CFI(G, g)-parts and either of the
CFI(G, 0)-parts or of CFI(G, 1)-parts: Because isomorphic parts are in the same orbit,
either vertices of all isomorphic parts or none of them occur because they cannot be
distinguished. At least one of the CFI(G, 0)- and CFI(G, 1)-parts each is not ū-pebbled
because |ū| ≤ k < `+ 1. So one of these is isomorphic to the CFI(G, g)-parts. The graphs
CFI(G, 0) and CFI(G, 1) were added by the interpretation, so we can actually remember
their parity and thus defined the parity of CFI(G, g).

It remains to prove that such a combination of j, h, and ū always exists. By construc-
tion of Korb, they exist when testing all possible |x̄j|-tuples for ū (and not only those of
E-individualized vertices). But, because k < ` + 1, there is always an automorphism ϕ
(ignoring the individualization) mapping ū to the vertices of the CFI(G, 0)- and CFI(G, 1)-
parts (because CFI(G, g) is isomorphic to one of them). Because Ψj has no access to the
individualization, Ψj is satisfied by ū if and only if Ψj is satisfied by ϕ(ū). So indeed
IFPC defines the CFI query for CFI(Korb).

Finally, for the sake of contradiction, suppose that Korb is infinite. So for every k,
there is a j ≥ k such that Gj ∈ Korb and CFI(Gj, 0) ≡kC CFI(Gj, 1) by Lemma 2.15. This
contradicts that IFPC defines the CFI query for CFI(Korb). a
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Claim 2. Kcfi is finite.

Proof. Assume that Kcfi is infinite. So there is an `′ > ` such that G = G`′ ∈ Kcfi. By
definition of Kcfi, there is a g ∈ F2 such that for all h ∈ F2, j ∈ [m], and all |x̄j|-tuples ū
of CFI(CFI`+1(G, g), h))

1. some choice-set during the evaluation of Ψj(ū) on CFI(CFI`+1(G, g), h) is not an
orbit or

2. all choice-sets are not ū-unpebbled-part-distinguishing.
We claim that there exists a P`-formula equivalent to Φ on CFI(CFI`+1(G, g), 0) and
CFI(CFI`+1(G, g), 1). We first translate every WSC-fixed-point operator Ψi(x̄i) for i ∈ [m]
into an equivalent IFPC-formula which uses a fresh relation symbol EP . The relation EP
is intended to be interpreted as an ū-pebbled-part individualization when using ū for
the parameters x̄i. Let i ∈ [m] be arbitrary. Again, the step, choice, witnessing, and
output formulas of Ψi are IFPC-formulas because Ψi is a WSC(IFPC)-formula. We
simulate Ψi by an IFPC-formula using the relation EP . If all choice-sets during the
evaluation for ū are not ū-unpebbled-part-distinguishing, then all choice-sets contain
solely tuples composed of the vertices individualized by EP (otherwise a choice-set would
be ū-unpebbled-part-distinguishing by Lemma 6.13). So if all tuples in a choice-set are
composed of the individualized vertices, we can resolve all choice deterministically using
the lexicographical order on tuples given by EP . Otherwise, some choice-set during the
evaluation will not be an orbit by definition of Kcfi and we immediately evaluate to false
because we make (or will make) a choice out of a non-orbit. If this was never the case,
we check in the end whether all choices were indeed witnessed. Let Ψ̃i(x̄i) be an IFPC-
formula, which implements exactly this approach to simulate Ψi. The formula Ψ̃i(x̄i) can
be constructed to use not more than `(k) many distinct variables such that no variable
is bound twice.

For every number n, every k-variable IFPC-formula not binding variables twice can
be unwound into a Ck-formula equivalent on structures of order up to n (see [98]). So,
for ` = `(k) and n = |CFI(CFI`+1(G, g), 0)|, we can unwind Ψ̃i(x̄i) to a C`-formula Ψ̃n

i (x̄i).
Then the P`-formula

Φi(x̄i) := ∃PEP . Ψ̃n
i (x̄i)

is equivalent to Ψi on CFI(CFI`+1(G, g), 0) and CFI(CFI`+1(G, g), 1). To see this, note
that Ψ̃i evaluates equally for every pebbled-part individualization EP : The individual-
ization EP is only used to resolve choices. If all choice-sets were witnessed as orbits (not
stabilizing EP ), then indeed Ψ̃i evaluates equally for all EP (neither the step, the choice,
the witnessing, nor the output formula use EP ). If a choice-set is not witnessed as orbit,
this is surely also true for all EP .

We replace every WSC-fixed-point operator Ψi by Φi in Φ and continue to unwind the
remaining IFPC-part of Φ yielding a P`-formula equivalent to Φ on CFI(CFI`+1(G, g), 0)
and CFI(CFI`+1(G, g), 1), which by assumption distinguishes the two graphs. This con-
tradicts Lemma 6.15: The ordered graph G has more than ` many vertices (and thus
color classes), so CFI(G, g′) has also more than ` many color classes for every g′ ∈ F2, and
CFI(CFI(G, g′), 0) ≡kC CFI(CFI(G, g′), 1) by Lemma 6.16. So, by Lemma 6.15, Duplicator
has a winning strategy in the P`-game played on the CFI graphs CFI(CFIk+1(G, g), 0) and
CFI(CFIk+1(G, g), 1). Hence, P` does not distinguish the graphs by Lemma 6.14. a
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Finally, we have to consider the case of free numeric variables. Let the numeric variables
in Φ be ν̄. For each numeric variable, there is a closed numeric WSC(IFPC)-term bound-
ing its value. Let these terms be s̄. Because we cannot evaluate the WSC(IFPC)-terms,
we construct upper-bound-defining IFPC-terms t̄ only depending on the size of the in-
put structure. To obtain these, we construct upper-bound-defining terms recursively: For
0, 1, ·, and +, defining the upper bound is obvious. For a counting quantifier #x̄ν̄ ≤ s̄′.Φ,
the upper bound is defined by the IFPC-term (#x̄. x̄ = x̄) · t′1 · . . . · t′|ν|, where t′i is the
upper-bound-defining IFPC-term recursively obtained for s′i for every i ∈ [|ν|]. Note
that we do not recurse on Φ and, in particular, not on a WSC-fixed-point operator. For
G ∈ K, set N(G) := {0, ..., tA1 }×· · ·×{0, ..., tA|ν̄|} to be the possible values for the numeric
variables for A = CFI(CFI`+1(G, g), h) (which only depends on |A|).

To partition K into Korb and Kcfi, we not only consider |x̄j|-tuples ū of vertices of
CFI(CFI`+1(G, g), h) but tuples ūā for ā ∈ N(G). To extend Claim 1 to numeric variables,
we have to test all possible values for the free numeric variables according to the upper-
bound-defining term t̄ and find the unpebbled-part-distinguishing choice-set. To adapt
the proof of Claim 2, we obtain, for every i ∈ [m] and every tuple of values ā ∈ N(G) for
the free numeric variables, a P`-formula Φā

i (x̄i) := ∃PEP . Ψ̃n,ā
i (x̄i) satisfying ū ∈ (Φā

i )A
if and only if ūā ∈ ΨA

i for every A ∈ {CFI(CFI`+1(G, g), h) | h ∈ F2}. In the same way,
free numeric variables of IFPC-formulas are eliminated and we can use these formulas to
construct the P`-formula equivalent to Φ.

Now we can show that we cannot avoid the additional operators to canonize CFI graphs
(which implies defining the CFI query) as shown in Corollary 6.8.

Theorem 6.19. There is a class of base graphs K, such that

(a) WSCI(IFPC) defines a canonization for K,

(b) WSCI(IFPC) does define the CFI query for CFI(K), and

(c) WSCI(WSCI(IFPC)) defines a canonization for CFI(K).

Proof. We consider the class of base graphs CFIω(K). WSCI2(IFPC) defines the CFI query
for CFI(CFIω(K)) by Lemma 6.17. But WSCI(IFPC) does not define the CFI query for
CFI(CFIω(K)) by Lemma 6.18.

Note that our proofs only use IFPC-interpretations in interpretation operators.

Corollary 6.20. IFPC < WSCI(IFPC) < WSCI2(IFPC).

It seems natural that WSCIn(IFPC) < WSCIn+1(IFPC) for every n ∈ N. Possibly,
this hierarchy can be shown by iterating our construction (e.g., CFI((CFIω)n(K)), where
(CFIω)n denotes n many applications of the CFIω-operator).

We have seen that nesting WSC-fixed-point and interpretation operators increases the
expressiveness of IFPC+WSC+I. However, we have not shown that the interpretation
operator is necessary for that or whether WSC-fixed-point operators suffice. We will show
in the next section that the interpretation operator indeed increases the expressiveness.
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6.4 Separating IFPC+WSC from IFPC+WSC+I

In this section we separate IFPC+WSC from IFPC+WSC+I, that is, the interpretation
operator strictly increases expressiveness. To do so, we define a class of structures K
without nontrivial automorphisms. Thus, there are only singleton orbits and the WSC-
fixed-point operator can be expressed by a (non-WSC) fixed-point operator: Either all
choice-sets are singletons or the WSC-fixed-point operator evaluates to false. We show
that isomorphism of K-structures is not definable in IFPC and thus not in IFPC+WSC.
However, there is an IFPC-interpretation reducing K-isomorphism to the one of CFI
graphs (over ordered base graphs) and thus K-isomorphism is IFPC+WSC+I-definable.

We will combine two known constructions. We start with CFI graphs. Then we will
modify the CFI graphs to remove all automorphisms. This will be achieved by gluing
a CFI graph to a so-called multipede [64]. The multipedes are asymmetric structures,
for which IFPC fails to define the orbit partition. To prove that isomorphism of this
gluing is not IFPC-definable, either, we will combine winning strategies of Duplicator
in the bijective k-pebble game of CFI graphs and multipedes. In order to sucessfully
combine the strategies, we will require that the base graphs of the CFI graphs have
large connectivity. For the multipedes, we will show the existence of sets of vertices with
pairwise large distance. The multipede can be removed by an FO-interpretation reducing
the isomorphism problem of the gluing to the CFI query and hence the isomorphism
problem is IFPC+WSC+I-definable.

6.4.1 Multipedes
We now review the multipede structures from [64]. These structures are also based on
the CFI gadgets. Most importantly, these structures are asymmetric, i.e., their only
automorphism is the trivial one.

The base graph of a multipede is a bipartite graph G = (V,W,E,≤), where ≤ is some
total order on V ∪W and every vertex in V has degree 3. We obtain the multipede
structure MP(G) as follows. For every base vertex u ∈ W , there is a vertex pair
F (u) = {u0, u1} called a segment. We also call u ∈ W itself a segment. A single
vertex ui is called a foot. Vertices v ∈ V are called constraint vertices.

For every constraint vertex v ∈ V , a degree-3 CFI gadget with three edge-vertex-pairs
is added. We use the relational CFI gadgets only with edge vertices (cf. Section 2.8.4). Let
NG(v) = {u1, u2, u3} (the order of the ui is given by ≤). The edge vertices are {(v, ui, b)}
for i ∈ [3] and b ∈ F2. Then (v, ui, b) is identified with the foot uji for all j ∈ [3] and
i ∈ F2. That is, unlike for CFI graphs, a foot belongs to more than two gadgets. Because
we use the relation-based CFI gadgets, we do not add further vertices to the feet but a
ternary relation R containing all triples (u1

i1 , u
2
i2 , u

3
i3) with i1 + i2 + i3 = 0. Because all

constraint vertices in V have degree 3, the construction yields ternary structures of the
fixed signature {R,�}. The coloring � is again obtained from ≤ (the feet of a segment
have the color of the segment). We collect properties of multipedes.
De�nition 6.21 (Odd Graph). A bipartite graph G = (V,W,E,≤) is odd if, for every
∅ 6= X ⊆ W , there exists a v ∈ V such that |X ∩NG(v)| is odd.
Lemma 6.22 ([64]). If G is an odd and ordered bipartite graph, then MP(G) is asymmetric.
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De�nition 6.23 (k-Meager). A bipartite graph G = (V,W,E,≤) is called k-meager if
every set X ⊆ W of size |X| ≤ 2k satisfies |{v ∈ V | NG(v) ⊆ X}| ≤ 2|X|.

Intuitively, if G is a k-meager bipartite graph, Ck cannot distinguish between the two feet
of a segment in the structure MP(G). For a set X ⊆ W , we define the feet-induced
subgraph

G[[X]] := G[X ∪ { v ∈ V | NG(v) ⊆ X }]

to be the induced subgraph by the feet in X and all constraint vertices only adjacent
to feet in X. We extend the notation to the multipede: MP(G)[[X]] is the induced
substructure of all feet whose segment is contained in X. For a tuple ū of feet of MP(G),
we define

S(ū) := { u ∈ W | ui ∈ F (u) for some i ≤ |ū| }

to be the set of the segments of the feet in ū.

Lemma 6.24 ([64]). Let G be a k-meager bipartite graph, A = MP(G), and ū, v̄ ∈ Ak. If
there is a local automorphism ϕ ∈ Aut(A[[S(ūv̄)]]) with ϕ(ū) = v̄, then (A, ū) ≡kC (A, v̄).

It was shown [64] that meager bipartite graphs exists. However, we need a more detailed
understanding of these graphs for our construction. In particular, we are interested in
sets of segments which have pairwise large distance.

De�nition 6.25 (k-Scattered). For a bipartite graph G = (V,W,E), a set X ⊆ W is
k-scattered if every distinct u, v ∈ X have distance at least 2k in G.

We require pairwise distance 2k for a k-scattered set X because we are actually only
interested in segments (which alternate with constraint vertices in paths in G).

Lemma 6.26. For every number k ∈ N, there exists an odd and k-meager bipartite graph
G = (V,W,E) for which there is a k-scattered set X ⊆ W of size |X| ≥ k2.

Proof. The multipedes constructed in [64] are sparse graphs generated by a random pro-
cess. Fix an arbitrary k ∈ N. We start with a vertex set U of size n. An event E(n)
is called almost sure if the probability that E occurs tends to 1 when n grows to in-
finity. Pick ε < (2k + 3)91 and add independently with probability p = n−2+ε, for every
3-element subset {u1, u2, u3} ⊆ U , a vertex v to V adjacent to the ui. Then we can almost
surely remove at most n/4 many vertices from U forming subgraphs that are exceedingly
dense (and all constraint vertices in v incident to them) and obtain an odd and k-meager
bipartite graph [64]. We show that in this graph a k-scattered set X of size k2 exists
almost surely.

Claim 1. Almost surely, every vertex u ∈ W has degree at most n1.5k91.

Proof. Let m be the least integer such that m > n(1.5k)91 . The probability that a given
vertex has degree larger than n(1.5k)91 is

(
n2

m

)
· pm. So the probability that some vertex
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has degree larger than n(1.5k)91 is at most the following:

n ·
(
n2

m

)
· pm = n ·

(
n2

m

)
· (n−2+ε)m

≤
(
n2

m

)
· n(−2+(2k+3)91)m+1

≤
(
en2

m

)m
· n(−2+(2k+3)91)m+1

≤
(
en2−(1.5k)91

)m
· n(−2+(2k+3)91)m+1

= em · n(2−(1.5k)91)m · n(−2+(2k+3)91)m+1

= em · n((2k+3)91−(1.5k)91)m+1

= n(lnn)91·m · n((2k+3)91−(1.5k)91)m+1

= n((2k+3)91−(1.5k)91+(lnn)91)m+1

≤ n((2k+3)91−(1.5k)91+(lnn)91)(n(1.5k)91+1)+1 = o(1).

The last step holds because (2k + 3)91 − (1.5k)91 < 0 and thus for sufficiently large n it
holds that ` := (2k+3)91− (1.5k)91 +(lnn)91 < 0 and `(n(1.5k)91 +1)+1 tends to −∞. a
Claim 2. If every vertex u ∈ W has degree at most n(1.5k)91, then for each vertex u ∈ W
at most 3kn 2

3 many vertices u′ ∈ W have distance at most 2k to u.
Proof. By construction, every vertex in V has degree 3. So at most 3n(1.5k)91 vertices have
distance 2 to u. Repeating the argument, at most (3n(1.5k)91)k = 3kn 2

3 vertices in W have
distance 2k to u. a

Almost surely every vertex u ∈ W has degree at most n(1.5k)91 (Claim 1). We show that
in this case a k-scattered set X of size at least k2 exists. Note that we determined the
probability before removing the n

4 “bad” vertices. So we first remove some set of size
at most n

4 from U (which only decreases the degree of the remaining vertices). We now
repeatedly apply Claim 2. If we have a k-scattered set X, then at most |X| · 3kn 2

3 many
vertices have distance at most 2k to a vertex in X. Then pick one of the other vertices,
add it to X, so X is still k-scattered, and repeat. In this way, we find a k-scattered
set X of size |X| ≥ 3

4n · (3
kn

2
3 )91 = 3

43−kn 1
3 . Finally, for sufficiently large n we have that

k2 ≤ 3
43−kn 1

3 .

We want to use a k-scattered set X to ensure that in the bijective k-pebble game placing
a pebble on one foot of a segment in X has no effect on the other segments in X. To
make this argument formal, we need to consider how information of pebbles is spread
through the multipedes. For now, fix an arbitrary bipartite graph G = (V,W,E,≤).
De�nition 6.27 (Closure). Let X ⊆ W . The attractor of X is

attr(X) := X ∪
⋃
u∈V,

|NG(u)\X|≤1

NG(u).

The set X is closed if X = attr(X). The closure cl(X) of X is the inclusion-wise
minimal closed superset of X.
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Lemma 6.28 ([64]). If G is k-meager and X ⊆ W of size at most k, then |cl(X)| ≤ 2|X|.
Let X be closed. A set Y ⊆ X is a component of X if G[[Y ]] is a connected component
of G[[X]]. That is, every constraint vertex contained in G[[X]] is contained in G[[Y ]] or
in G[[X \ Y ]].
Lemma 6.29. Let X ⊆ W . If cl(X) = Y1 ∪Y2 is the disjoint union of two components Y1
and Y2, then X can be partitioned into X1 ∪X2 such that cl(Xi) = Yi for every i ∈ [2].
Proof. Define Xi := Yi ∩ X for every i ∈ [2]. Let i ∈ [2] be arbitrary. We show
that cl(Xi) = Yi. It is clear that cl(Xi) ⊆ Yi. For the other direction, suppose that
u ∈ Yi \ cl(Xi). Then there must be a constraint vertex in G[[Y ]] which has a neighbor
in Y1 and another one in Y2. This contradicts that the Yi are components of cl(X).
Lemma 6.30. Let Y ⊆ W be closed and u ∈ W have distance at least 4 to Y . Then
cl(Y ∪ {u}) = Y ∪ {u} and u forms a singleton component of Y ∪ {u}.

Proof. Suppose for the sake of contradiction, that there exists a v ∈ cl(Y ∪{u})\(Y ∪{u}).
Then there is a constraint vertex w, of which one neighbor is v and the two others are
contained in cl(Y ∪ {u}). If the two other neighbors are contained in cl(Y ), then v is
already contained cl(Y ), which is a contradiction. So one of the two neighbors is u. But
then u has distance 2 to Y , which contradicts our assumption.
Lemma 6.31. Let k ≥ 2, G be 2k-meager, Y ⊆ W be of size at most k, and X ⊆ W be
6k-scattered. Then at most |Y | many vertices of X do not form singleton components in
cl(X ∪ Y ).
Proof. Because X ⊆ W is 6k-scattered, every distinct u, v ∈ X have distance at least 12k
in G. Hence, for every w ∈ Y , there is at most one u ∈ X such that w has distance less
than 6k to u. Let X ′ ⊆ X be the set vertices with distance at most 6k to Y and thus
|X ′| ≤ |Y |. So, |Y ∪ X ′| ≤ 2k and thus |cl(Y ∪ X ′)| ≤ 4k by Lemma 6.28 because G
is 2k-meager. It follows that |cl(Y ∪ X ′) \ Y \ X ′| ≤ 2k. Because every component of
cl(Y ∪X ′) contains a vertex of Y ∪X ′, every vertex cl(Y ∪X ′) has distance at most 4k
to every vertex in Y ∪ X ′. Every vertex w ∈ X \ X ′ has distance at least 6k to Y and
distance at least 12k to X ′. So every vertex w ∈ X \X ′ has distance at least 2k ≥ 4 to
cl(Y ∪ X ′). That is, all vertices in X \ X ′ form singleton components of cl(X ∪ Y ) by
Lemma 6.30.
Lemma 6.32. Let k ≥ 2, G be 2k-meager, X ⊆ W be 6k-scattered, and let Y ⊆ W be of
size at most k. Then X ∪ Y can be partitioned into Z1, . . . , Z` such that |cl(Zi)∩X| ≤ 1
for every i ∈ [`] and cl(Z1), . . . , cl(Z`) are the components of cl(X ∪ Y ).
Proof. We partition X ∪ Y using Lemma 6.29 into Z1, . . . , Z` such that cl(Z1), . . . , cl(Z`)
are precisely the components of cl(X ∪ Y ). Let i ∈ [`] be arbitrary but fixed. We
prove that |cl(Zi) ∩X| ≤ 1. By Lemma 6.31, all apart from |Y | many vertices in X are
contained in a singleton component. If cl(Zi) is such a singleton component, we are done.
Otherwise,

|Zi| ≤ |Zi ∩X|+ |Y | ≤ 2|Y | ≤ 2k
and |cl(Zi)| ≤ 4k by Lemma 6.28 and because G is 2k-meager. Because cl(Zi) is a
component, all vertices in cl(Zi) have pairwise distance at most 8k. So |cl(Zi) ∩X| ≤ 1,
because X is 6k-scattered (and thus X-vertices have distance at least 12k).
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Lemma 6.33 ([64]). Let X ⊆ W , G be k-meager, ϕ ∈ Aut(MP(G)[[X]]), and |X| ≤ k.
Then ϕ extends to an automorphism of MP(G)[[cl(X)]].

Lemma 6.34. Let Y ⊆ W , G be k-meager, ϕ ∈ Aut(MP(G)[[cl(Y )]]), and |Y | < k. Then
for every u ∈ W \ cl(Y ) and every pair of feet v, v′ ∈ F (u) (possibly v = v′), there is an
extension ψ of ϕ to an automorphism of MP(G)[[cl(Y ∪ {u})]] satisfying ψ(v) = v′.

Proof. The condition ψ(v) = v′ defines ψ uniquely on the feet of u, that is, given ϕ, v,
and v′ the map ψ is determined. If v = v′, then the ψ maps the feet of u to itself and
otherwise it exchanges them. Using Lemma 6.33 and noting that |Y ∪{u}| ≤ k, it suffices
to show that ψ is an automorphism of MP(G)[[Y ∪ {u}]]. Because u /∈ cl(Y ), there is no
CFI gadget whose one edge-vertex-pair are the feet of u and the other two are contained
in cl(Y ) (otherwise u would be in the closure). So indeed, ψ is a local automorphism.

Lemma 6.35. Let k ≥ 2, G be 2k-meager, X = {u1, . . . , u`} ⊆ W be 6k-scattered, Y ⊆ W
such that X ∩ cl(Y ) = ∅ and |Y | < k, and ϕ ∈ Aut(MP(G)[[Y ]]). Then for every pair of
tuples ū, ū′ ∈ F (u1)× · · · × F (u`), there is an extension ψ of ϕ to and automorphism of
MP(G)[[X ∪ Y ]] satisfying ψ(ū) = ū′.

Proof. Let ū, ū′ ∈ F (u1) × · · · × F (u`). For every i ∈ [`], there is by Lemma 6.34 an
extension ψi of ϕ to MP(G)[[cl(Y ∪ {ui})]] satisfying ψi(ui) = u′i. By Lemma 6.32, all ui
are in different components of cl(Y ∪ X) because G is 2k-meager and X is 6k-scatted.
So we can extend every ψi on all components of cl(Y ∪ X), on which ψi is not defined
(in particular the ones containing all other uj for j 6= i), by the identity map and obtain
an automorphism of MP(G)[[cl(Y ∪X)]] (two components are never connected by a CFI
gadget). Hence, composing all the extended ψi yields the desired automorphism.

The previous lemma will be extremely useful in the bijective k-pebble game: If the pebbles
are placed on the feet in Y , then we can simultaneously for all feet in X \ cl(Y ) place
arbitrary pebbles and still maintain a local automorphism. Such sets X will allow us to
glue another graph to the multipede at the feet in X. Whatever restrictions on placing
pebbles are imposed by the other graph, we still can maintain local automorphisms in
the multipede.

Lemma 6.36. Let k ≥ 2, G be 2k-meager, X ⊆ W be 6k-scattered, and Y ⊆ W be of size
at most k. Then |cl(Y ) ∩ (X \ Y )| ≤ |Y \X|.

Proof. We partition X ∪ Y using Lemma 6.32 into Z1, . . . , Zj such that the cl(Zi) are the
components of cl(X ∪ Y ) and at most one vertex of X is contained in one Zi. Up to
reordering, assume that for some ` ≤ j the components Z1, . . . , Z` are all components Zi
such that Zi∩Y 6= ∅ and for some m ≤ ` the Z1, . . . , Zm are all Zi such that additionally
cl(Zi) ∩ (X \ Y ) 6= ∅.

Then clearly cl(Y ) ⊆ ⋃
i∈[`] cl(Zi) and ` ≤ |Y |. Because G is 2k-meager, X is

6k-scattered, and |Y | ≤ k, it follows from Lemma 6.32 that |cl(Zi) ∩ X| ≤ 1 for ev-
ery i ∈ [`]. Thus, |cl(Zi) ∩ (X \ Y )| = 1 for every i ∈ [m] and |cl(Zi) ∩ (X \ Y )| = 0
for every m < i ≤ `. It follows that cl(Y ) ∩ (X \ Y ) ⊆ ⋃m

i=1 cl(Zi) ∩ (X \ Y ). Hence,
|cl(Y ) ∩ (X \ Y )| ≤ m. Every vertex in Y ∩X has to be contained in some Zi such that
m < i ≤ ` because, for every i ≤ m, we have |cl(Zi) ∩X| ≤ 1 and so Zi ∩ (Y ∩X) = ∅
since Zi contains a vertex of X \ Y . But for i ≤ `, every Zi contains at least one vertex
of Y . That is, m ≤ |Y \X|.
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6.4.2 Gluing Multipedes to CFI Graphs

We now glue CFI graphs to multipedes. First, we alter the used CFI-construction. Instead
of two edge-vertex-pairs for the same base edge {u, v} (one with origin (u, v) and one
with origin (v, u)), we contract the edges between these two edge-vertex-pairs (which
form a matching) and obtain a single edge-vertex-pair with origin {u, v}. This preserves
all relevant properties of CFI graphs. In particular, there are parity-preserving IFPC-
interpretations mapping a CFI graphs with two edge-vertex-pair per base edge to the
corresponding CFI graphs with only one edge-vertex-pair per base edge and vice versa.
In this section we refer with CFI(H, f) to CFI graphs of this modified construction. Using
only one edge-vertex-pair per base edge removes technical details from the following.

Let G = (V G,WG, EG,≤G) be an ordered bipartite graph, let H = (V H , EH ,≤H)
be an ordered base graph, let f : EH → F2, and let X ⊆ WG have size |X| = |EH |.
We define the ternary structure MP(G) ∪X CFI(H, f) called the gluing of the multipede
MP(G) = (A,RMP(G),�MP(G)) and the CFI graph CFI(H, f) = (B,ECFI(H,f),�CFI(H,f))
at X as follows (see Figure 6.4 for an illustration): The i-th edge-vertex-pair of CFI(H, f)
is the edge-vertex-pair such that its origin {u, v} is the i-th edge in H according to ≤H .
We start with the disjoint union of MP(G) and CFI(H, f) and identify the i-th edge-
vertex-pair of CFI(H, f) with the i-th segment in X (according to ≤G). We finally turn
the edges ECFI(H,f) into a ternary relation by extending every edge (u, v) ∈ ECFI(H,f) to the
triple (u, v, v). In this way, we obtain the {R,�}-structure MP(G)∪X CFI(H, f), where R
is the union of RMP(G) with the triples (u, v, v) defined before and � is the total preorder
obtained from joining �MP(G) and �CFI(H,f) by moving all gadget vertices of CFI(H, f) to
the end.

Lemma 6.37. If MP(G) is asymmetric, then MP(G) ∪X CFI(H, f) is asymmetric.

Proof. Every automorphism of MP(G) ∪X CFI(H, f) is, in particular, an automorphism
of CFI(H, f). Every nontrivial automorphism of CFI(H, f) exchanges the two vertices of
some edge-vertex-pairs because H is totally ordered. Because every edge-vertex-pair is
identified with a segment of MP(G) and MP(G) is asymmetric, MP(G) ∪X CFI(H, f) is
asymmetric, too.

We now show that MP(G)∪XCFI(H, 0) ≡kC MP(G)∪XCFI(H, 1) if G and H satisfy certain
conditions. Let ū be a vertex-tuple of MP(G)∪X CFI(H, f), i.e., ū contains either gadget
vertices of the gadgets in CFI(H, f) or feet of MP(G). We also write S(ū) for the set of
segments of all feet in ū.

1. The segments S(ū) are directly-fixed by ū.

2. The segments cl(S(ū)) \ S(ū) are closure-fixed by ū.

3. A segment u ∈ X is gadget-fixed by ū if the feet of u are identified with some
edge-vertex-pair with origin {v,w} in CFI(H, f) such that there is a gadget vertex
with origin v or w in ū.

4. A segment is fixed by ū if it is directly fixed, closure-fixed, or gadget-fixed by ū.
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multipede MP(G)

gadget vertices
of CFI(H, f)

6.4 Gluing multipedes to CFI graphs. The �gure shows the gluing MP(G) ∪X CFI(H, f) of the
multipede MP(G) and the CFI graph CFI(H, f) at the set of segments X . The mutipede is drawn
in blue, the segments in X are drawn in red, and the gadget vertices of the CFI graph are drawn in
green. Only some segments and CFI gadgets are shown. Two relational CFI gadgets of the multipede
are shown, where di�erent colors are used for each gadget. The edge-vertex-pairs of the CFI graphs
are identi�ed with the vertex-pairs of the segments inX . Formally, every vertex pair of each segment
has a unique color and there is only a single ternary relation.

Lemma 6.38. Let r ≥ k ≥ 2 and ū be a vertex-tuple of MP(G) ∪X CFI(H, f) of length
at most k. If H is r-regular, G is 2k-meager, and X is 6k-scattered, then at most r · |ū|
many segments are fixed by ū. If ū contains i many gadget vertices and ` many segments
in X are directly-fixed by ū, then at most |ū|− i− ` many segments in X are closure-fixed
by ū.

Proof. Assume that ū contains j many feet and imany gadget vertices. So, i+j = |ū| ≤ k.
Then at most ri many segments are gadget-fixed by ū because G is r-regular. From
Lemma 6.28 it follows that |cl(S(ū))| ≤ 2j because G is k-meager. So at most 2j many
segments are directly-fixed or closure-fixed. Then ri + 2j ≤ ri + rj = r(i + j) = r|ū|
because i+ j = |ū| and r ≥ k ≥ 2.

By Lemma 6.36, it holds that |cl(S(ū)) ∩ (X \ S(ū))| ≤ |S(ū) \ X| because G is
k-meager, X is 6k-scattered, and |S(ū)| ≤ k. That is, the number of closure-fixed seg-
ments in X is bounded by the number of directly-fixed segments not in X. The number
of directly-fixed segments not in X is |ū| − i− `.

We now combine winning strategies of Duplicator in the bijective pebble game on multi-
pedes and CFI graphs:

Lemma 6.39. Let r ≥ k ≥ 3, G be 2rk-meager, H be r-regular and at least (k + 2)-
connected, and X be 6rk-scattered. Then MP(G) ∪X CFI(H, 0) ≡kC MP(G) ∪X CFI(H, 1).
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Proof. Let A = MP(G), B = CFI(H, 0), and B′ = CFI(H, 1). We show that Duplicator
has a winning strategy in the bijective k-pebble game played on A ∪X B and A ∪X B′.
For a set of segments Y and a tuple ū, we denote by ūY the restriction of ū to all feet
whose segment is contained in Y , by ūG the restriction of ū to all gadget vertices, and
by ūF the restriction of ū to all feet. Duplicator maintains the following invariant. At
every position (A ∪X B, ū;A ∪X B′, ū′) in the game there exist tuples v̄gf, v̄cf of A ∪X B
and v̄′gf, v̄′cf of A ∪X B′ satisfying the following:

1. Exactly one foot of exactly all the segments gadged-fixed by ū (and so by ū′) is
contained in v̄gf and in v̄′gf.

2. Exactly one foot of exactly all the segments contained in X and closure-fixed by ū
(and so by ū′) is contained in v̄cf and in v̄′cf.

3. There is a ϕ ∈ Aut(A[[S(ūFv̄gfv̄cf)]]) satisfying ϕ(ūFv̄gfv̄cf) = ū′Fv̄
′
gfv̄
′
cf.

4. (B, ūX ūGv̄cf) ≡kC (B′, ū′X ū′Gv̄′cf).

5. For every base vertex u ∈ V H , it holds that (B′, ūGv̄gf)[Vu] ∼= (B, ū′Gv̄′gf)[Vu],
where Vu is the set of all gadget vertices with origin u and all edge vertices with
origin {u, v} for some v ∈ NG(u).

Regarding Property 3, note that S(ūFv̄gfv̄cf) = S(ū′Fv̄′gfv̄′cf) and |ūFv̄gfv̄cf| = |ū′Fv̄′gfv̄′cf| ≤ rk
by Lemma 6.38. Hence, the local automorphism ϕ extends to the closure of S(ūFv̄gf) by
Lemma 6.33 because G is rk-meager. Regarding Property 4, we argue that we have
|ūX ūGv̄cf| = |ū′X ū′Gv̄′cf| ≤ k: By Lemma 6.38, the number of closure-fixed segments in X
is at most |v̄cf| ≤ k − |ūG| − |ūX |. Hence, |ūX ūGv̄cf| = |ūX | + |ūG| + |v̄cf| ≤ k. (Note
that |ūX | = |ū′X |, |ūG| = |ū′G|, etc., because otherwise Duplicator has already lost the
game). Property 5 is needed because |v̄gf| ≤ rk (possibly with equality), which exceeds k.
Thus, Property 5 is not implied by Property 4. Property 5 guarantees that we pick the
vertices v̄gf and v̄′gf consistently.

Intuitively, we want to play two games. Game I is played with rk many pebbles on the
multipede at position (A, ūFv̄gfv̄cf;A, ū′Fv̄′gfv̄′cf). Game II is played with k many pebbles
on the CFI graphs at position (B, ūX ūGv̄cf;B′, ū′X ū′Gv̄′cf). We use the winning strategy
of Duplicator in both games (Lemmas 2.15 and 6.24) to construct a winning strategy
in the bijective k-pebble game played at position (A ∪X B, ū;A ∪X B′, ū′). Intuitively,
we can do so because in Game I we artificially fixed all gadget-fixed segments and in
Game II we artificially fixed all closure-fixed segments in X (and only the segments in X
are identified with edge-vertex-pairs of the CFI graphs).

Now assume that it is Spoiler’s turn. When Spoiler picks up a pair of pebbles (pi, qi)
from the structures, we first update the tuples v̄gf, v̄′gf, v̄cf, and v̄′cf: If a segment is no
longer gadget-fixed or closure-fixed, then we remove the corresponding entries in the
corresponding tuples. Clearly the invariant is maintained. We describe how Duplicator
defines a bijection λ between A ∪X B and A ∪X B′ by defining λ(w) using the following
case distinction:

(a) Assume the vertex w is a foot whose segment is contained in cl(S(ūFv̄gfv̄cf)). The
automorphism ϕ from Property 3 extends to an automorphism of A[[cl(S(ūFv̄gfv̄cf))]]
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by Lemma 6.33. We set λ(w) := ϕ(w). (This is actually Duplicator’s winning
strategy in Game I [64], but the exact strategy is needed later).

(b) Assume w is a foot not covered by the previous case. The bijection given by
Duplicator’s winning strategy in Game I defines λ(w) (actually, λ(w) is an arbitrary
foot of the same segment as w).

(c) Finally, assume w is a gadget vertex. We use the bijection given by Duplicator’s
winning strategy in Game II to define λ(w).

Now Spoiler places the pebble pair (pi, qi) on the vertices w and w′ := λ(w). We update
the tuples v̄gf, v̄′gf, v̄cf, and v̄′cf as follows:

(a) Assume w (and thus also w′) is a gadget vertex. Property 4 clearly holds because
we followed Duplicator’s winning strategy in Game II. No new segments in X get
closure-fixed by ūw and ū′w′,respectively, so we just do not change v̄cf and v̄′cf,
respectively, and Property 2 is satisfied. We satisfy Properties 1, 3, and 5 by
picking feet from the new gadget-fixed segments as follows:

• Assume that a segment becomes gadget-fixed by ūw (or ū′w′), which is already
closure-fixed by ū (or ū′, respectively). Then this segment is contained in X.
We pick the same feet as in v̄cf and v̄′cf, respectively, and append them to v̄′gf and
to v̄′gf, respectively. Thus, Property 1 holds. Because the local automorphism
from Property 3 already maps v̄cf to v̄′cf, appending the corresponding entries
to v̄′gf and v̄′gf satisfies Property 3. Because the closure-fixed segments are part
of the pebbled vertices in Game II (Property 4), appending these feet to v̄′gf
and v̄′gf satisfies Property 5.

• Assume that a segment u becomes gadget-fixed by ūw (or ū′w′, respectively),
which is not closure-fixed by ū (or ū′, respectively). For B (and B′, respec-
tively), we pick the unique foot v and v′, respectively, of the segment u adjacent
to the newly pebbled gadget vertex and append them to v̄gf and v̄′gf, respec-
tively. Hence, Property 1 is satisfied. Property 3 is satisfied by Lemma 6.35:
We can pick for non-closure-fixed segments arbitrary feet and still find a local
automorphism mapping them onto each other. For the sake of contradiction,
suppose that Property 5 is not satisfied by appending v and v′. Then there
is a base vertex v ∈ V H such that (B′, ūGv̄gfv)[Vv] 6∼= (B, ū′Gv̄′gfv′)[Vv]. There
must be a pebble placed on a gadget vertex with origin v, i.e., both ūG and ū′G
are nonempty, because otherwise |v̄gf| ≤ k and |ū′gf| ≤ k and thus the two edge
vertices of the segment u form an orbit by Lemma 2.14 since H is (k + 2)-
connected (the lemma also holds in the setting of a single edge-vertex-pair per
base edge). In particular, (B′, ūGv)[Vv] 6∼= (B, ū′Gv′)[Vv]. Note that v and v′

are C3-definable because they are the unique vertices in the segment u adja-
cent to w and w′, respectively. So Spoiler can win Game II by picking up a
pebble pair (which is neither placed on w nor the gadget of v) and placing it
on v. Because k ≥ 3, such a pebble pair actually exists. But that contradicts
Property 4 and hence Property 5 is satisfied.
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(b) Assume w (and thus also w′) is a foot. Thus, no segments get gadget-fixed by ūw
and ū′w′, respectively, which was not already gadget-fixed by ū and ū′, respectively.
So we just do not change v̄gf and v̄′gf and Properties 1 and 5 are satisfied. Possibly
a new segment u ∈ X becomes closure-fixed. By Lemma 6.38, there can at most
be one such segment. We satisfy Properties 2 to 4 as follows:

• Assume that u is already gadget-fixed by ū and ū′, respectively. We append
the vertices v and v′ whose segment is u in v̄gf and v̄′gf, respectively, to v̄cf
and v̄′cf, respectively. So Property 2 holds. Property 3 is satisfied because the
local automorphism ϕ already maps v̄gf to v̄′gf and hence appending v and v′,
respectively, satisfies Property 2. Property 4 is satisfied because of Property 5:
Fixing a single gadget vertex fixes all edge vertices adjacent to the gadget by
Lemma 2.12 (which is C3-definable) and by Property 5 we have chosen v̄gf
and v̄′gf, respectively, consistently with the pebbles on the gadgets. Hence, we
can actually place a pebble pair v and v′ and Property 4 holds.

• Otherwise, u is not gadget-fixed by ū and ū′, respectively. By Lemma 2.14,
the two feet of u form an orbit in (B, ūX ūGv̄cf) and likewise in (B, ū′X ū′Gv̄′cf)
because H is (k + 2)-connected. Hence, every choice of feet in u satisfies
Property 4. We make an arbitrary choice of a foot v of the segment u in B,
which we append to v̄cf. Because u is closure-fixed by ūw, we can extend ϕ
to the segment u. We pick v′ = ϕ(u) and append it to v̄′cf. So Property 3 is
satisfied.

So Duplicator maintains the invariant. We update ū and ū′ to include w and w′, re-
spectively. We show that the pebbles induce a local isomorphism: By Property 4, the
pebbles induce a local isomorphism ūX ūGv̄cf 7→ ū′X ū

′
Gv̄
′
cf on the CFI graphs. This local

isomorphism extends to all gadget-fixed segments by Property 5, that is, ūX ūGv̄cfv̄gf 7→
ū′X ū

′
Gv̄
′
cfv̄
′
gf is a local isomorphism. By Property 3, the map ūFv̄gfv̄cf 7→ ū′Fv̄

′
gfv̄
′
cf is a lo-

cal automorphism on the multipede. Because the maps agree on v̄gfv̄cf, the combined
map ūX ūGv̄cfv̄gfūF 7→ ū′X ū

′
Gv̄
′
cfv̄
′
gfū
′
F is a local isomorphism. So in particular, the map

ūX ūGūF 7→ ū′X ū
′
Gū
′
F is a local isomorphism, but that is just the map ū 7→ ū′. So Dupli-

cator does not lose in this round and by induction wins the bijective k-pebble game.

Theorem 6.40. There is an FO-interpretation Θ and, for every k ∈ N, a pair of ternary
{R,�}-structures (Ak,Bk) such that

(a) � is a total preorder on A and B,

(b) Ak and Bk are asymmetric,

(c) Ak ≡kC Bk,

(d) Ak 6∼= Bk, and

(e) Θ(Ak) and Θ(Bk) are non-isomorphic CFI graphs over the same ordered base graph.

The interpretation Θ is 1-dimensional and equivalence-free.



6.4. Separating IFPC+WSC from IFPC+WSC+I 225

Proof. Let k ≥ 2 and H be a clique of size k + 4 (and thus H is r := (k + 3)-regular,
(k + 2)-connected, and has m := (k+4)(k+3)

2 ≤ r(k + 2) many edges). There exists an
odd and (6r(k + 2))-meager bipartite graph G = (V,W,E), which contains a 6r(k + 2)-
scattered set X ⊆ W of size m ≤ (6r(k + 2))2 by Lemma 6.26. Equip the graphs G
and H with an arbitrary total order.

Set Ak := MP(G)∪X CFI(H, 0) and Bk := MP(G)∪X CFI(H, 1). Clearly, Ak 6∼= Bk and
Ak ≡kC Bk by Lemma 6.39 because H is (k+2)-connected and r-regular, G is (6r(k+2))-
meager and so in particular 2rk-meager, and X is 6r(k+2)-scattered and so in particular
6rk-scattered. By Lemma 6.22, the multipede MP(G) is asymmetric because G is odd.
Thus, Ak and Bk are asymmetric by Lemma 6.37.

It remains to define the interpretation Θ, which maps Ak to CFI(H, 0) and Bk to
CFI(H, 1). Recall that the gluing extends edges of the CFI graphs to triples by repeating
the last entry and multipedes do not contain such triples. So we can easily define the
vertices contained in the “CFI triples”. By taking the induced graph on these vertices and
by shortening the triples back to pairs, one defines the CFI graphs again. This is done
by the following 1-dimensional and equivalence-free FO[{R,�}, {E,�}]-interpretation
Θ = (Φdom(x),ΨE(x, y),Ψ�(x, y)):

Φdom(x) := ∃y. R(x, y, y) ∨R(y, x, x),
ΨE(x, y) := R(x, y, y),
Ψ�(x, y) := x � y.

Clearly, Θ(Ak) = CFI(H, 0) and Θ(Bk) = CFI(H, 1).

We now separate IFPC+WSC from IFPC+WSC+I.

Theorem 6.41. IFPC+WSC < IFPC+WSC+I ≤ Ptime.

Proof. Consider the class of {R,�}-structures K given by Theorem 6.40. To ensure that
the reduct semantics does not add automorphisms when not using � in a formula, we
additionally encode � into R. We add a directed path of length i and another one of
length i + 1 to every vertex in the i-th color class. In this way, we obtain the class of
{R,�}-structures K′, for which also the {R}-reducts are asymmetric. Clearly, there is
a 1-dimensional and equivalence-free FO-interpretation ΘK mapping a K′-structure back
to the corresponding K-structure (remove all vertices of out-degree at most 1 because we
attached to all original vertices two paths).

We argue that IFPC+WSC = IFPC onK′. If a WSC-fixed-point operator mentionsR,
then the structure is asymmetric, i.e., there are only singleton orbits. Hence, choosing
becomes useless and can be simulated by (non-WSC)-fixed-point operators. If a WSC-
fixed-point operator does not mention R, then the {�}-reduct is fully determined by the
number and sizes of the color classes (which must be equal for Ak and Bk for every k ≥ 3
because otherwise C3 distinguishes Ak and Bk). The number of color classes and their
sizes are clearly IFPC-definable.

For every k ∈ N, there are two non-isomorphic structures Ak ≡kC Bk in K′ and
thus IFPC does not define the isomorphism problem of K′. It remains to show that
IFPC+WSC+I defines the isomorphism problem. The CFI-query on ordered base graphs
is definable in IFPC+WSC+I by Theorem 6.4. By Corollary 6.8, there is actually
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a WSCI(IFPC) = WSC(IFPC)-formula ΦCFI defining the CFI query on ordered base
graphs. Let ΘCFI be the FO-interpretation extracting the CFI graphs from K-structures
given by Theorem 6.40. Then the I(WSC(IFPC))-formula

I(ΘCFI ◦ΘK; ΦCFI)

defines the isomorphism problem of K′-structures: ΘCFI reduces by Theorem 6.40 the
isomorphism problem of K to the isomorphism problem of CFI graph over ordered base
graphs, which is defined by ΦCFI. Note that because both ΘCFI and ΘK are 1-dimensional
and equivalence-free FO-interpretations, so is ΘCFI ◦ΘK, too.

Corollary 6.42. IFPC+WSC < Ptime.

Corollary 6.43. WSC(IFPC) < I(WSC(IFPC)).

Note that the prior corollary refines Corollary 6.20, which states that

WSC(IFPC) = WSCI(IFPC) < WSCI2(IFPC) = WSC(I(WSC(IFPC))).

We actually expect that

WSC(IFPC) < I(WSC(IFPC)) < WSC(I(WSC(IFPC)))

because it seems unlikely that I(WSC(IFPC)) defines the CFI query of the base graphs
of Theorem 6.19.

Corollary 6.44. IFPC+WSC is not closed under IFPC-interpretations and not even under
1-dimensional and equivalence-free FO-interpretations.

Proof. Note that the interpretation ΘCFI◦ΘK in the proof of Theorem 6.41 is 1-dimensional
and equivalence-free. The interpretation actually only removes vertices. The claim fol-
lows.

Similary, we can answer the question of Dawar and Richerby [31] whether IFP+SC is
closed under FO-interpretations in the negative:

Corollary 6.45. IFP+SC is not closed under 1-dimensional and equivalence-free FO-
interpretations.

Proof. We consider the same structures: IFP = IFP+SC for the constructed structures
because they only have trivial orbits and it does not make a difference whether we need
to witness choices. Because IFPC does not define isomorphism, surely IFP does neither.
Because IFP+WSC defines the CFI query for ordered base graphs [42], so does IFP+SC.
We conclude that IFP+SC is not closed under FO-interpretations, too.
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6.5 Discussion

We defined the logics IFPC+WSC and IFPC+WSC+I to study the combination of wit-
nessed symmetric choice and interpretations beyond simulating counting. Instead, we pro-
vided graph constructions to prove lower bounds. IFPC+WSC+I canonizes CFI graphs
if it canonizes the base graphs, but operators have to be nested. We proved that this
increase in nesting depth is unavoidable using double CFI graphs obtained by essentially
applying the CFI construction twice. Does iterating our construction further show an
operator nesting hierarchy in IFPC+WSC+I, i.e., WSCIk(IFPC) < WSCIk+1(IFPC) for
every k ∈ N? The main difficulty to extend our proof of Theorem 6.19 to an operator
nesting hierarchy is the interpretation operator: For IFPC we used that I(IFPC) = IFPC,
but for I(WSCIk(IFPC)) this probably does not hold. So one needs to analyze the pos-
sible images of CFI graphs under WSCIk(IFPC)-interpretations and whether our proof
idea can be extended to these images.

We have seen that also in the presence of counting the interpretation operator strictly
increases the expressiveness. So indeed both, witnessed symmetric choice and interpreta-
tions are needed to possibly capture Ptime. This answers the question about the relation
between witnessed symmetric choice and interpretations for IFPC. But it remains open
whether IFPC+WSC+I captures Ptime. Here, iterating our CFI construction is of in-
terest again: If one shows an operator nesting hierarchy using this construction, then one
in particular will separate IFPC+WSC+I from Ptime because our construction does not
change the signature of the structures.
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Chapter 7

Separating Rank Logic
from Polynomial Time

We lastly consider the approach of capturing Ptime by extending fixed-point logic with
algebraic operators. One prominent approach is extending IFPC by a rank operator so
that the logic has access to the rank of definable matrices over finite fields. For a finite
structure A with universe A, an Ak × Ak matrix is defined by a numeric term s(x̄, ȳ)
for |x̄| = |ȳ| = k by setting the entry indexed by (ū, v̄) to the value s(ū, v̄)A, to which s
evaluates in the structure A. For such a matrix, we call the rank operator k-ary.

Multiple variants of rank logic were proposed. In its first version [27], rank logic comes
with a rank operator rkp for each prime p. The rank operator rkp evaluates to the rank of
a definable matrix over Fp. These definable matrices are unordered in the sense that their
rows and columns are indexed by tuples of atoms, on which in general no total order is
definable. The rank of such matrices is not definable in IFPC. This is shown by the CFI
graphs, which essentially are a graph encoding of a class of equation systems over F2 [45].

Using generalizations of the CFI construction from F2 (with two edge vertices per
base edge, i.e., a directed cycle of length 2) to Fp (with a directed cycle of length p for
every base edge), Grädel and Pakusa [45] showed that the rank operators rkp is necessary
to define the CFI query over Fp. In particular, when considering all CFI graphs over
all Fp, no rank logic formula using the rank operators rkp defines the CFI query because
every formula only contains finitely many rkp operators. An alternative version of rank
logic was proposed in [45,68,83,103]. It replaces the rank operators rkp by a uniform rank
operator rk, which specifies the characteristic of the field in terms of the input structure.
In this way, the CFI query over all Fp becomes definable. In this chapter, we consider this
uniform rank operator and show that this more expressive variant of rank logic does not
capture Ptime. To do so, we consider a generalization of CFI graphs over the rings Z2i

for every i and prove that rank logic fails to define their isomorphism problem. We will
exploit a recursive approach over the arity of the rank operators. We will actually show
that rank logic does not even capture CPT.

Related Work. Hella [66] showed that for generalized Lindström quantifiers the expres-
siveness strictly increases with the arity of the quantifiers. A similar result was shown
for rank logic [27, 68, 83]. It that light, it will not be surprising that general k-ary rank
operators will require a much more complex approach than 1-ary rank operators.

In Chapter 6, we considered the multipedes [64], which are asymmetric structures with
non-IFPC-definable orbits and a non-IFPC-definable isomorphism problem. However,
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this isomorphism problem is definable in rank logic [68] similar to the CFI query over F2.
Moreover, rank logic captures Ptime on the class of structures with color class size 2 [118].

An open question [24] is whether rank logic defines the solvability of linear equation
systems over finite rings rather than only over finite fields. As for F2, the isomorphism
problem for CFI graphs over Z2i can be translated to a linear equation system over Z2i .
Hence, we also answer the question for solvability of linear equation systems over finite
rings, where the ring is part of the input and so encoded in a relational structure, in the
negative. The case of linear equation system for a fixed ring remains open.

Recall from Chapter 4 that the CPT-canonization for classes with bounded and
abelian colors requires defining solvability over a certain cyclic class of linear equation
systems over Zpi for prime powers pi called cyclic linear equation systems. Grädel and
Grohe [43] already suggested that defining solvability for this class of equation systems
might be a candidate for separating CPT from rank logic.

Overview of this Chapter. In Section 7.1, we introduce rank logic with the uniform
rank operator rk and also the more restrictive version using the rank operators rkp for
fixed characteristic p. Proving that rank logic fails to capture Ptime is based on pebble-
game-arguments. There is a pebble game we call the rank-pebble game corresponding to
rank logic [29]. However, the invertible-map game [29], which potentially distinguishes
more structures than the rank-pebble game, is more suitable for our arguments. This
game is introduced in Section 7.2. In the game, sequences of invertible matrices that are
simultaneously similar play an important role.

In Section 7.3, we generalize the CFI construction of Section 2.8 from the field F2 to the
rings Z2i . We actually consider vertex and edge colored graphs, which are encoded into
4-ary structures. The goal is to show that the isomorphism problem of these generalized
CFI structures over Z2i is not definable in rank logic. One key observation will be that it
suffices to consider matrices and ranks over F2 because the automorphism groups of CFI
structures over Z2i are 2-groups. This generalizes the result of Grädel and Pakusa [45].
Using the game-based approach, we will show that the characteristic 2 invertible-map
game fails to distinguish all non-isomorphic CFI structures over Z2i .

In Section 7.4, we consider properties of definable matrices over these CFI structures.
A key point for a deeper understanding of these matrices is the following: Two entries in
such a matrix that are indexed by tuples in the same orbit always contain the same value
(so 0 or 1 in the case of F2). In that sense, definable matrices are orbit-respecting. We
will consider base graphs of high connectivity so that the orbits of the CFI structure are
structured as simple as possible. In particular, we establish a criterion for invertibility
of such matrices. Then we focus on the arity 1 case in Section 7.5. We show that the
1-ary characteristic 2 invertible-map game fails to distinguish all CFI structures over F4.
We introduce one key concept of our approach called blurrers and illustrate their usage
in the easier arity 1 case. This case will also serve as base case for recursion on the arity.

Before we can turn to the general arity k case, we need to consider more properties of
orbit-respecting matrices in Section 7.6. This section focuses on the notion of the active
region of matrices, which intuitively is the part of matrix, in which it is locally not equal
to the identity matrix. This notion becomes crucial in the arity k case, which is covered in
Section 7.7. Here, we generalize our notion of blurrers to arity k and prove that the k-ary
characteristic 2 invertible-map game fails to distinguish all CFI structures over Z2i for
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sufficiently large i. The proof will become formally intricate and combines blurrers, the
active region of matrices, and a recursive approach over the arity. Sections 7.5 and 7.7
actually only consider a single round of the invertible-map game. In Section 7.8, we
then show that the k-ary characteristic 2 invertible-map game fails to distinguish all
CFI structures over all Z2i for every k. This separates rank logic from Ptime because
the distinguishing power of the invertible-map game is at least as strong as the one of
rank logic. To further separate rank logic from CPT, we prove that CPT defines the
isomorphism problem of these CFI structures. For this, we use techniques from [103],
which are related to canonizing structures with bounded and abelian color classes in CPT.

We lastly consider the more general linear-algebraic logic in Section 7.9. This logic
subsumes every extension of IFPC by every linear-algebraic operator over finite fields.
Together with results of Dawar, Grädel, and Pakusa [25], who show that the invertible-
map game using all characteristics p 6= 2 fails to distinguish the CFI structures over Z2i ,
linear-algebraic logic also fails to distinguish all CFI structures over all Z2i [28]. Hence,
we finally show that extensions of fixed-point logic with linear-algebraic operators over
finite fields cannot capture Ptime. We end this chapter with a discussion in Section 7.10.

7.1 Rank Logic

In this section we introduce rank logic. We consider the extension of IFPC by the uni-
form rank operator rk (IFPC+R) following the definition in [68]. The logic IFPC+R
has the following additional rule to form numeric terms: Let s(z̄x̄ȳ) be a numeric
IFPC+R-term such that k := |x̄| = |ȳ| and let t be a closed numeric IFPC+R-term.
Then

r(z̄) = rk(x̄, ȳ). (s, t)
is a numeric IFPC+R-term. For convenience, we call k the arity of the rank operator,
although it is actually 2k. We restricted the definition to square matrices, but this does
not limit the expressive power. Let A be a τ -structure and w̄ ∈ A|z̄|. The term s defines
an Ak × Ak matrix M (A,w̄)

s over N via

M (A,w̄)
s (ū, v̄) := sA(w̄ūv̄).

The rank operator is evaluated as follows:

(
rk(x̄, ȳ). (s, t)

)A
(w̄) :=

the rank of (M (A,w̄)
s mod p) over Fp if p = tA is a prime,

0 otherwise.

We also need the more restrictive variant of rank logic with the fixed-characteristic
rank operator rkp for fields Fp: For a set of prime numbers Ω, we define IFPC+RΩ to be
the variant of IFPC+R, in which we have a different rank operator rkp(x̄, ȳ). s for every Fp
with p ∈ Ω instead of the uniform rank operator rk. That is, we have to fix the field in
the formula independently of the structure. The rank operator rkp always evaluates to
the rank of the defined matrix over Fp. This is not the case for the operator rk, where
we can determine the value for p by the term t that may evaluate differently for different
structures.
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7.2 The Invertible-Map Game

This section considers Ehrenfeucht-Fraïssé-like pebble games with algebraic rules. They
extend the bijective pebble game (cf. Section 2.3). The expressiveness of rank logic is
related to the rank-pebble game (called matrix-equivalence game in [29]) in the same way
the expressiveness of IFPC is related to the bijective pebble game via the embedding of
IFPC into infinitary finite variable counting logic [29]. The rank-pebble game extends
the bijective pebble game with ranks. Instead of looking at the rank-pebble game, we
consider the invertible-map game [29]. Its distinguishing power is at least as strong as
the one of the rank-pebble game in the sense that if Duplicator has a winning strategy
in the invertible-map game, then Duplicator has a winning strategy in the rank-pebble
game, too. Hence, to show that rank logic cannot distinguish two structures, it suffices
to show that Duplicator has a winning strategy in the invertible-map game. The game
is defined as follows:

Let k and m be two positive integers such that 2k ≤ m and let Ω be a finite nonempty
set of primes. Similar to the bijective pebble game, a position in the invertible-map
gameMm,k,Ω is a tuple (A, ū;B, v̄) of two τ -structures A and B, ū ∈ A≤m, and v̄ ∈ B≤m
such that |ū| = |v̄|. For each structure, there are m many pebble pairs, where the pebbles
of the i-th pair are labeled with the number i. In position (A, ū;B, v̄), there are pebbles
with the same label placed on ui and vi for all i ∈ [|ū|]. That is, if |ū| < m, some of the
pebbles are not used. There are two players called Spoiler and Duplicator. If |A| 6= |B|,
then Spoiler wins the game. Otherwise a round of the game proceeds as follows:

1. Spoiler chooses a prime p ∈ Ω and picks up 2k many pebbles from A and the
corresponding pebbles (with the same labels) from B.

2. Duplicator picks a partition P of Ak×Ak and another one Q of Bk×Bk such that
|P| = |Q|. Furthermore, Duplicator picks an invertible Ak × Bk matrix S over Fp,
such that the matrix induces a total and bijective map λ : P→ Q defined by

P 7→ Q if and only if χP = S · χQ · S91.

Here χP (respectively χQ) is the characteristic Ak × Ak matrix over Fp of P (re-
spectively the Bk × Bk matrix over Fp of Q) which satisfies that χP (ū′, v̄′) = 1 if
ū′v̄′ ∈ P and χP (ū′, v̄′) = 0 otherwise. To phrase it differently, Duplicator has to
pick a bijection λ : P→ Q and an invertible Ak ×Bk matrix S satisfying

χP = S · χλ(P ) · S91

for all P ∈ P, i.e., the characteristic matrices of P and Q are simultaneously similar.

3. Spoiler chooses a block P ∈ P, a tuple w̄ ∈ P , and a tuple w̄′ ∈ λ(P ). For each
i ∈ [2k], Spoiler places a pebble on wi and the corresponding pebble on w′i.

After a round, Spoiler wins the game if the pebbles do not define a local isomorphism
or if Duplicator was not able to respond with a matrix satisfying the conditions above.
Duplicator wins the game if Spoiler forever fails to win. Spoiler has a winning strategy
in position (A, ū;B, v̄) if Spoiler can win independently of the actions of Duplicator.
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Likewise, Duplicator has a winning strategy if Duplicator can always win the game. In
that case, we write (A, ū) ≡m,k,ΩM (B, v̄). In the following, we use the invertible-map game
instead of the rank-pebble game because it allows us to prove a stronger result and, at
the same time, simplifies proofs.

Lemma 7.1 ([29]). Let K be a class of finite τ -structures and let Q ⊆ K be a boolean query.
If, for all k,m ∈ N with 2k ≤ m and every finite and nonempty set of primes Ω, there
is a pair of structures (A,B) such that A ∈ Q, B /∈ Q, and A ≡m,k,ΩM B, then Q is not
IFPC+RP definable, where P is the set of all primes.

If we fix a finite set of primes Ω in Lemma 7.1, then P is not IFPC+RΩ definable (see [29])
because a P -defining IFPC+RΩ-formula implies a winning strategy of Spoiler in the
Mm,k,Ω game. Lemma 7.1 is proved in [29] for the (m, k,Ω)-rank-pebble game, which
induces the equivalence ≡m,k,ΩR . Then the authors show that ≡m,k,ΩM refines ≡m,k,ΩR . It is
an open problem whether the equivalence ≡m,k,ΩM strictly refines ≡m,k,ΩR .

7.3 CFI Structures over Rings Z2q

We now generalize the CFI graphs over F2 from Section 2.8. The CFI construction
generalizes to other finite fields than F2 and even to abelian groups [95]. We are interested
in cyclic groups Z2q and use the variant of CFI gadgets only consisting of gadget vertices
(cf. Section 2.8.4). Recall that a base graph is a simple, connected, and colored graph.
We only consider ordered base graphs in this section. Let G = (V,E,≤) be a base graph.
We consider the additive group of Z2q . For each base vertex u ∈ V , we define a gadget
consisting of a set of vertices Au and two families of relations. In the following definition,
we need many pairs and tuples, and, for the sake of readability, we simply write uā for
the pair (u, ā).

Au :=
{
uā
∣∣∣ ā ∈ ZNG(u)

2q ,
∑

ā = 0
}
, for all u ∈ V,

Iu,v :=
{

(uā, ub̄) ∈ A2
u

∣∣∣ ā(v) = b̄(v)
}
, for all u ∈ V, v ∈ NG(u),

Cu,v :=
{

(uā, ub̄) ∈ A2
u

∣∣∣ ā(v) + 1 = b̄(v)
}
, for all u ∈ V, v ∈ NG(u).

Consider the sets Au,v,c := {uā ∈ Au | ā(v) = c} for v ∈ NG(u) and c ∈ Z2q . The
relation Iu,v realizes these sets by disjoint cliques, one for each Au,v,c. The relation Cu,v

induces a directed cycle Au,v,c, Au,v,c+1, . . . , Au,v,c+2q−1, Au,v,c on these sets for a fixed v by
adding directed complete bipartite graphs between subsequent cliques. In this way, the
relation Cu,v realizes the group Z2q on the sets Au,v,c. The condition ∑

ā = 0 on the
atoms in Au implies that the automorphism group of the gadget for u is isomorphic to
{ā ∈ Zd2q |

∑
ā = 0}, where d is the degree of u.

Now we connect gadgets. We first extend the order ≤ on the base graph to the
lexicographical order on tuples of base vertices of G and further to sets of such tuples.
Let g : E → Z2q be a function defining the values by which the base edges are twisted.
For every base edge {u, v} ∈ E, we connect the gadgets of the incident base vertices. We
obtain the CFI structure
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A = CFI2q(G, g) :=
(
A,RA

I , R
A
C , R

A
E,0, . . . , R

A
E,2q−1,�A

)
as follows:

A :=
⋃
u∈V

Au,

EA
{u,v},c :=

{
{uā, vb̄}

∣∣∣ uā ∈ Au, vb̄ ∈ Av, ā(v) + b̄(u) = c
}
, c ∈ Z2q ,

RA
E,c :=

⋃
e∈E

Ee,c+g(e), c ∈ Z2q ,

�A :=
{

(uā, vb̄) ∈ A2
∣∣∣ u ≤ v

}
.

The relations Iu,v (and similarly Cu,v) are encoded by the 4-ary relations RI (and RC)
as follows: All pairs ū ∈ A2

u, that is, ū = (uā, ub̄), are partitioned according to the set
of base vertices v such that ū ∈ Iu,v. The partition is given by the equivalence classes
of RI (seen as equivalence on pairs). In this way, the relations Iu,v (respectively Cu,v) are
unions of RI-equivalence classes (respectively RC-equivalence classes). Intuitively, each
pair ū ∈ A2

u is colored by all the set Iu,v (and Cu,v, respectively) containing ū.

RA
I :=

{
(ū, v̄) ∈ A2 × A2

∣∣∣∣ { (u, v) ∈ V 2
∣∣∣ ū ∈ Iu,v } ≤ { (u′, v′) ∈ V 2

∣∣∣ v̄ ∈ Iu′,v′ }},
RA
C :=

{
(ū, v̄) ∈ A2 × A2

∣∣∣∣ { (u, v) ∈ V 2
∣∣∣ ū ∈ Cu,v

}
≤
{

(u′, v′) ∈ V 2
∣∣∣ v̄ ∈ Cu′,v′

}}
.

The former definition, which only uses gadget vertices, could be simplified by using gadget
and edge vertices and even more by only using edge vertices (cf. Section 2.8.4). Using
only edge and gadget vertices creates unnecessary case distinctions (cf. the discussion
in Section 2.8.4). Our argument separating rank logic from CPT requires base graphs of
unbounded degree. So, only using edge vertices would create structures of different arity.
Our construction always yields structures of arity 4, but the number of relations varies
with the group Z2q . Of course, we could use a single relation to encode the relations RE,c.
But in fact, it suffices only to use RE,0 to obtain a structure with the same automorphism
group. Then all RE,c are actually definable in 3-variable counting logic. For convenience,
we include all RE,c in the structure. We transfer the notion of the origin to the generalized
CFI structures.

De�nition 7.2 (Origin). We say that the atom uā ∈ A originates from u or that its origin
is u and write

orig(uā) := u.

We extend this to tuples and define the origin of ū ∈ Aj as

orig(ū) :=
(
orig(u1), . . . , orig(uj)

)
.

We will often view orig(ū) as the set {orig(u1), . . . , orig(uj)} and write u ∈ orig(ū). If M
is a set of tuples of the same origin, we set orig(M) := orig(ū) for some (and thus all)
ū ∈M . For a set W ⊆ V , we define the origin-induced substructure

CFI2q(G, g)[W ] := CFI2q(G, g)[{u | orig(u) ∈ W }]

to be the substructure induced by all atoms whose origin is contained in W .
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It will be always clear from the context whether we refer to the origin-induced substruc-
ture (or just a standard induced substructure). In this case W and the universe of the
CFI structure are disjoint.

For CFI structures it is well-known [20, 25, 45, 95] that CFI2q(G, g) ∼= CFI2q(G, f) if
and only if ∑ g = ∑

f (also cf. Lemma 2.10). That is, there are up to isomorphism 2q
many CFI structures of the base graph G.

Lemma 7.3. The automorphism group Aut(CFI2q(G, g)) of the CFI structure CFI2q(G, g)
is an abelian 2-group.

Proof. Every automorphism of CFI2q(G, g) is origin-respecting, i.e., it maps an atom to
an atom of the same origin because the preorder � on the atoms is obtained from the
total order ≤ on G. It follows that Aut(CFI2q(G, g)) is a subgroup of the direct product
of the automorphism groups of every gadget. Because the automorphism group of each
degree d gadget is the abelian 2-group {ā ∈ Zd2q |

∑
ā = 0} as argued before, so is the

direct product of them and in particular Aut(CFI2q(G, g)).

7.3.1 Isomorphisms of CFI Structures

In this section we consider two classes of isomorphisms between CFI structures. These
isomorphisms will get important later in Section 7.7. Let q ∈ N and G = (V,E,≤)
be a base graph. In the following, we denote, for every f : E → Z2q , by Af the CFI
structure CFIZ2q (G, f). By definition, these structures have the same universe A for
every f : E → Z2q .

De�nition 7.4 (Twisted Base Edge). Two functions f, g : E → Z2q twist a base edge e ∈ E
if f(e) 6= g(e). We also say that e is twisted by f and g. For a set W ⊆ V we say that f
and g do not twist W if no base edge in G[W ] is twisted by f and g.

We omit f and g if they are clear from the context. Let u ∈ V and ā ∈ ZNG(u)
2q satisfy∑

ā = 0. We identify ā with a permutation of atoms with origin u as follows: If ub̄ has
origin u (in some CFI structure over G), then we set ā(ub̄) := uc̄ for the c̄ ∈ ZNG(u)

2q such
that c̄(v) = b̄(v) + ā(v) for all v ∈ NG(u). Because ∑ ā = 0, the tuple ā(ub̄) is indeed an
atom with origin u.

De�nition 7.5 (Path-Isomorphism). Let c ∈ Z2q and s̄ = (u1, . . . , un) be a simple path in G.
For every 1 < i < n, let āi ∈ ZNG(ui)

2q such that āi(ui−1) = c, āi(ui+1) = 9c, and āi(v) = 0
for all other v ∈ NG(ui). The path-isomorphism ~π[c, s̄] is defined by

~π[c, s̄](u) :=
āi(u) if orig(u) = ui and 1 < i < n,

u otherwise.

Lemma 7.6. Let f, g : E → Z2q , let s̄ = (u1, . . . , un) be a simple path in G, and set
e1 := {u1, u2}, and e2 := {un−1, un}. If no base edge apart from e1 and e2 is twisted
by f and g, g(e1) = f(e1) + c, and g(e2) = f(e2) − c, then ~π[c, s̄] is an isomorphism
(Af , p̄)→ (Ag, p̄) for every tuple p̄ ∈ Am satisfying distG(orig(p̄), {u1, . . . , un}) > 1.
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Lemma 7.6 is a generalization of Lemma 2.9. The proof of Lemma 7.6 is an obvious
adaptation of the proof of Lemma 3.11 in [45]. This lemma uses a variant of CFI structures
with gadget vertices and relations, but the arguments are similar. We additionally require
that the tuple p̄ is fixed, but because its distance to the path s̄ is greater than 1, it is
not affected by the path-isomorphism at all, i.e., ~π[c, s̄](p̄) = p̄. Isomorphisms between
CFI structures satisfying ∑ f = ∑

g, in which more than two base edges are twisted,
can be composed of multiple path-isomorphisms. The following special case of such
isomorphisms will play an important role later:

De�nition 7.7 (Star-Isomorphism). Let w ∈ V be of degree d, ` ≤ d, s̄1, . . . , s̄` be simple
paths, s̄i = (ui1, . . . , ui`i), u

i
`i

= w for all i ∈ [`], and the s̄i be disjoint apart from w. We
call the sequence s̄1, . . . , s̄` a star and w the center of the star. For c̄ ∈ Z`2q satisfying∑
c̄ = 0, we define the star-isomorphism π∗[c̄, s̄1, . . . , s̄`] via

π∗[c̄, s̄1, . . . , s̄`](u) :=


c̄′(u) if orig(u) = w,

~π[ci, s̄i](u) if orig(u) 6= w and orig(u) is contained in s̄i,

u otherwise,

where c̄′ ∈ ZNG(w)
2q such that c̄′(ui`i−1) = ci for all i ∈ [`] and c̄′(v) = 0 for all other

v ∈ NG(w).

Lemma 7.8. Let f, g : E → Z2q , s̄1, . . . , s̄` be a star in G, s̄i = (ui1, . . . , ui`i) for all i ∈ [`],
and c̄ ∈ Z`2q such that ∑ c̄ = 0. If no base edge apart from the base edges ei = {ui1, ui2}
for every i ∈ [`] is twisted by f and g and g(ei) = f(ei) + ci for all i ∈ [`], then
π∗[c̄, s̄1, . . . , s̄`] is an isomorphism (Af , p̄) → (Ag, p̄) for every tuple p̄ ∈ Am satisfying
distG(orig(p̄), {uij | i ∈ [`], j ∈ [`i]}) > 1.

Proof. Let p̄ ∈ Am satisfy distG(orig(p̄), {uij | i ∈ [`], j ∈ [`i]}) > 1 and let w be the center
of the s̄1, . . . , s̄`. For every i ∈ [`− 1], let s̄′i be the ui1-ui+1

1 -path obtained by stitching s̄i
and s̄i+1 together at w := ui`i (that is, the path s̄i+1 is attached in reversed direction).
Furthermore, for every i ∈ [` − 1], set ϕi := ~π[∑j∈[i] cj, s̄

′
i], and let fi : E → Z2q be the

function defined via fi(ej) = f(ej) + cj for every j ∈ [i], fi(ei+1) = f(ei+1) − ∑j∈[i] cj,
and fi(e) = f(e) otherwise. Applying Lemma 7.6 inductively shows that ϕ1 ◦ · · · ◦ ϕi is
an isomorphism (Af , p̄) → (Afi , p̄): For i = 1, the only twisted base edges are e1 and e2
satisfying f1(e1) = f(e1) + c1 and f1(e2) = f(e2) − c1 and ϕ1 : (Af , p̄) → (Af1 , p̄) is an
isomorphism by Lemma 7.6. For every 2 ≤ i ≤ `−2, exactly the base edges ei+1 and ei+2
are twisted by fi and fi+1. It holds that

fi+1(ei+1) = f(ei+1) + ci+1 = fi(ei+1) +
∑

j∈[i+1]
cj,

fi+1(ei+2) = f(ei+2)−
∑

j∈[i+1]
ci = fi(ei+2)−

∑
j∈[i+1]

ci.

Thus, ϕi+1 is an isomorphism (Afi , p̄)→ (Afi+1 , p̄) by Lemma 7.6 and ϕ1 ◦ · · · ◦ϕi+1 is an
isomorphism (Af , p̄)→ (Afi+1 , p̄) by induction.

Now let ψ = ϕ1 ◦· · ·◦ϕ`. To prove the claim it suffices to show that f`−1 = g and that
ψ = π∗[c̄, s̄1, . . . , s̄`]. The former holds because ∑ c̄ = 0. To show the latter, first consider
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the path s̄1. On atoms with origin in s̄1 different from the center w the action of ψ is
equal to the action of ϕ1. This exactly equals the definition of π∗[c̄, s̄1, . . . , s̄`]. For atoms
with origin in s̄` different from w the argument is similar and the action of ψ is equal to
the action of ϕ`−1. The isomorphism ϕ`−1 twists the base edge {u`1, u`2} by −

∑
j∈[`−1] cj,

which, by assumption, is equal to c` because
∑
c̄ = 0. Now consider atoms with origin

in s̄i different from w for i /∈ {1, `}. Here the action of ψ equals the action of ϕi−1 ◦ ϕi.
The isomorphism ϕi−1 twists the edge {ui1, ui2} by −∑j∈[i−1] cj and ϕi twists the same
base edge by ∑j∈[i] cj. Note that s̄′i contains the base vertices of s̄i+1 in reversed order, so
on all the base vertices with origin different from w the action of ϕi−1 ◦ϕi becomes equal
to the action of the path-isomorphism ~π[ci, s̄i]. Finally, by a similar argument, the action
of ψ on atoms with origin w coincides with the action of c̄′ defined as in Definition 7.7.

7.3.2 Orbits of CFI Structures
In this section we analyze the structure of k-orbits of CFI structures for highly connected
base graphs. Let q, k,m ∈ N and G = (V,E,≤) be a (k +m+ 1)-connected base graph.
We denote again, for every f : E → Z2q , by Af the CFI structure CFIZ2q (G, f) with
universe A. Let p̄ ∈ Am be arbitrary but fixed. We consider the k-orbits of structures
(Af , p̄), i.e., orbits of k-tuples. Recall that Aut((Af , p̄)) is the automorphism group of
(Af , p̄) and that orbk((Af , p̄)) is the set of all k-orbits (cf. Section 2.1).

De�nition 7.9 (Type of a Tuple). The isomorphism type of a structure is the class of
all isomorphic structures. For f : E → Z2q , the type of a tuple ū ∈ Ak in (Af , p̄) is
the pair (orig(ū), T ), where T is the isomorphism type of the origin-induced substructure
(Af [orig(p̄ū)], p̄ū).

We omit the structure (Af , p̄) if it is clear from the context. Including orig(ū) in the
type is needed because the isomorphism type T respects the relative order of the gadgets
in � only. If Af was vertex-colored instead, this would not be a problem. We have to
consider the origin-induced substructure of orig(p̄ū) and not the induced substructure
of p̄ū because only in the origin-induced substructure the relations Iu,v and Cu,v can be
recovered from RI and RC . Here, an edge coloring would resolve this issue.

Lemma 7.10. For every f : E → Z2q and every ū, v̄ ∈ Ak, there is an automorphism
ϕ ∈ Aut((Af , p̄)) such that ϕ(ū) = v̄ if and only if ū and v̄ have the same type.

Proof. A similar argument to the following can be found in Lemma 3.15 in [45]. Let
f : E → Z2q and ū, v̄ ∈ Ak. If ϕ(ū) = v̄ for some automorphism ϕ ∈ Aut((Af , p̄)), then
surely ū and v̄ have the same type.

For the other direction, assume that ū and v̄ have the same type. Then, by definition,
there is an isomorphism ϕ : (Af [orig(p̄ū)], p̄ū) → (Af [orig(p̄v̄)], p̄v̄). Because ū and v̄
have the same type, it follows that orig(p̄ū) = orig(p̄v̄) and in particular that ϕ is an
automorphism of (Af [orig(p̄ū)], p̄). We show that this local automorphism extends to an
automorphism of (Af , p̄).

We extend ϕ by the identity map on all atoms with origin not in orig(p̄ū). Then ϕ is
an isomorphism between (Af , p̄) and another CFI structure, where all twisted base edges
e1, . . . , e` leave orig(ū) and are not incident to orig(p̄) (base edges incident to orig(p̄) cannot
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be twisted because ϕ fixes p̄). Let N be the neighborhood of orig(ū) (and thus of orig(v̄)).
Because G is (k+m+1)-connected, there is an u-v-path not using orig(p̄ū) for all u, v ∈ N
because G−orig(p̄ū) is still connected when removing at most |p̄ū| = k +m < k +m+ 1
many base vertices. Hence, we can use path-isomorphisms to move the twists at every ei
all to e1. But because ϕ was an automorphism of (Af [orig(p̄ū)], p̄), the sum of the twists
is 0. Hence, composing ϕ and the mentioned path-isomorphisms forms an automorphism
ψ ∈ Aut((Af , p̄)). Because the selected paths do not use orig(p̄ū), we still have ψ(p̄ū) = p̄v̄.

Corollary 7.11. For every f : E → Z2q and every P ∈ orbk((Af , p̄)), there is a type such
that P contains exactly the tuples of that type.

De�nition 7.12 (Type of an Orbit). For f : E → Z2q , the type of a k-orbit in (Af , p̄) is the
type of its contained tuples.

Corollary 7.13. For every pair f, g : E → Z2q that does not twist orig(p̄), it holds that

orbk((Af , p̄)) = orbk((Ag, p̄)) and
Aut((Af , p̄)) = Aut((Ag, p̄)).

While the orbit partitions of (Af , p̄) and (Ag, p̄) are equal, it is in general not true that
an orbit P ∈ orbk((Af , p̄)) has the same type in (Af , p̄) and in (Ag, p̄).

Lemma 7.14. Assume the functions f, g : E → Z2q do not twist orig(p̄). Then, for every
k-orbit P ∈ orbk((Af , p̄)), there is a Q ∈ orbk((Ag, p̄)) that has the same type.

Proof. It suffices to consider the case that exactly one base edge e = {u, v} is twisted:
All twists can be moved to a single base edge using isomorphisms because isomorphisms
preserve types and because no base edge contained in orig(p̄) is twisted.

Let P ∈ orbk((Af , p̄)). If {u, v} 6⊆ orig(P ), then P has the same type in (Af , p̄)
and in (Ag, p̄). Otherwise, let {u, v} ⊆ orig(P ) and assume w.l.o.g. that v /∈ orig(p̄) (if
{u, v} ⊆ orig(p̄), then {u, v} 6⊆ orig(P ) because the twisted base edge is not contained
in orig(p̄)). Furthermore, choose a path s̄ = (u, v, . . . ,w), such that w /∈ orig(P ) and
the path, possibly apart from u, is disjoint from orig(p̄). Such a path exists, because
G − (orig(p̄) ∪ orig(P )) is connected (at most m + k < m + k + 1 many base vertices
are removed) and v /∈ orig(p̄) by assumption. So we can pick some base vertex w that
is neither contained in orig(P ) nor in orig(p̄). Now, we move the twist to a base edge
incident to w with the path-isomorphism ϕ := ~π[g(e) − f(e), s̄]. Then P has the same
type in (Af , p̄) as in ϕ((Ag, p̄)) = (ϕ(Ag), p̄) because

Af [orig(p̄) ∪ orig(P )] = ϕ(Ag)[orig(p̄) ∪ orig(P )].

Because isomorphisms preserve types, there is an orbit Q ∈ orbk((Ag, p̄)) with the same
type in (Ag, p̄) as P has in (Af , p̄).

Lemma 7.15. Let f : E → Z2q and P ∈ orbk((Af , p̄)). Then the permutation group Γ on P
induced by Aut((Af , p̄)) is a regular abelian 2-group.
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Proof. We first argue that the automorphism group of a gadget is a regular abelian
2-group. Recall that the atoms of a gadget for the base vertex u ∈ V are defined as
Au = {uā | ā ∈ ZNG(u)

2q ,
∑
a = 0}. So |Au| = (2q)d−1, where d is the degree of u. We saw

in Section 7.3.1 that the automorphism group of a gadget is transitive. We already ar-
gued that the automorphism group is isomorphic to {ā ∈ Zd2q |

∑
ā = 0}. Thus, the

automorphism group is a 2-group and has order (2q)d−1. Hence, it is a regular abelian
2-group.

The claim for k-orbits follows from the case of a gadget: The group Γ is a subgroup
of the direct product of the automorphism groups of the gadgets of orig(P ). That is, Γ
is an abelian 2-group. By definition of a k-orbit, Γ is transitive. For regularity, note
that a gadget is partitioned into singleton orbits once one atom of the gadget is fixed
(cf. Lemma 3.13 in [45]). So if we fix a ū ∈ P , all gadgets in the origin of ū are fixed.
Hence, if an automorphism ϕ maps ū to v̄, then its action on P is fixed, i.e., there is
exactly one permutation in Γ that maps ū to v̄. Hence, |Γ| = |P | and Γ is regular.

7.3.3 Composition of Orbits
Composing k-orbits out of k′-orbits for k′ < k will play a special role later. We further an-
alyze the structure of k-orbits and identify cases in which such a composition in possible.
As in the previous section, let q, k,m ∈ N and G = (V,E,≤) be a (k+m+ 1)-connected
base graph, denote for f : E → Z2q by Af the CFI structure CFIZ2q (G, f) with universe A,
and let p̄ ∈ Am.

Let ū ∈ Ak and orig(ū) (viewed as a set) be partitioned into M and N . We now
introduce notation for splitting ū into its parts belonging toM and N and for recovering ū
from these two parts again.

1. The tuple ūM obtained from ū by deleting all entries whose origin is not in M
(respectively for N), is

ūM := ū|{i∈[k] | orig(ui)∈M}.

2. We define a concatenation operation for a permutation σ of [k] as follows:

ūM ·σ ūN := σ(ūM ūN).

For a suitable σ we have ū = ūM ·σ ūN . In this chapter, we are only interested
in permutations satisfying the former equation. Then σ is almost always fixed by
the context and we use the juxtaposition ūM ūN . We will never refer with ūM ūN to
ordinary concatenation.

3. We define similar operations for orbits: For P ∈ orbk((A, p̄)) we set

P |M :=
{
ūM

∣∣∣ ū ∈ P },
P |M ×σ P |N :=

{
ūM ·σ ūN

∣∣∣ ūM ∈ P |M , ūN ∈ P |N },
and omit σ if clear from the context. This intentionally overloads notation. Because
the tuples in P are indexed by [k], the sets P |M and P |K for M ⊆ orig(P ) ⊆ V and
K ⊆ [k] can always be distinguished.
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We also use this notation if M and N are sets of sets, such that orig(ū) is partitioned
into ⋃M and ⋃N .

De�nition 7.16 (Components of Tuples and Orbits). Assume f : E → Z2q , ū ∈ Ak, and
N ⊆ orig(ū). We call N a component of ū if N is a connected component of G[orig(ū)].
We call ū disconnected if it has more than one component. Likewise, we call a k-orbit
P ∈ orbk((Af , p̄)) is disconnected if P contains some (and thus only) disconnected tuples.
A set N ⊆ orig(P ) is a component of P if N is a connected component of G[orig(P )].

If a k-orbit P is disconnected, then we can split P into multiple k′-orbits for k′ < k as
follows.

Lemma 7.17. Let f : E → Z2q , P ∈ orbk((Af , p̄)), and the components of P be partitioned
into M and N . Then

(a) P = P |M × P |N ,

(b) P |M ∈ orbkM ((Af , p̄)), and

(c) P |N ∈ orbkN ((Af , p̄))

for suitable kM and kN such that kM + kN = k.

Proof. The claim can easily be seen by Corollary 7.11. Because M and N are sets of
components, the type of ū ∈ P is given by the disjoint union of the types of ūM and ūN
(even if orig(p̄) overlaps withM and N because p̄ has to be fixed by every automorphism).

Next, we show how to obtain k′-orbits from k-orbits with k′ < k by fixing an atom.

Lemma 7.18. Let f : E → Z2q , P ∈ orbk((Af , p̄)), K ⊆ [k], and orig(P |K) = {w}. For all
v̄ ∈ A|K| and w ∈ A such that orig(v̄) = {w} and orig(w) = w, the set

Q :=
{
ū|[k]\K

∣∣∣ ū ∈ P, ū|K = v̄
}
satisfies

Q ∈ orbk−|K|((Af , p̄w)) ∪ {∅}.

If v̄ has the same type as ū|K for some (and thus every) ū ∈ P , then Q 6= ∅.

Proof. We assume up to reordering that K = [|K|]. Let v̄ ∈ A|K| such that orig(v̄) = {w}.
Every atom vi forms a singleton orbit in orb1((Af , w)) and in particular in orb1((Af , p̄w))
because vi and w have the same origin w (all atoms with origin w can be distinguished
by their distances to w in the Cu,v relation, cf. Lemma 3.13 in [45]). So it holds that

Aut((Af , p̄v̄)) = Aut((Af , p̄w)).

Assume that Q 6= ∅. Because P is an orbit, if v̄ū, v̄ū′ ∈ P , then there is an automorphism
ϕ ∈ Aut((Af , p̄)) such that ϕ(v̄ū) = v̄ū′. That is, ϕ ∈ Aut((Af , p̄v̄)) = Aut((Af , p̄w)) and
thus Q is a subset of an orbit in orbk−|K|((Af , p̄w)). To show that Q is indeed an orbit,
assume ū ∈ Q and ϕ ∈ Aut((Af , p̄w)) = Aut((Af , p̄v̄)). Because ū ∈ Q, we have v̄ū ∈ P
and ϕ(v̄ū) = v̄ϕ(ū) ∈ P . Hence, we have ϕ(ū) ∈ Q and so Q ∈ orbk−|K|((Af , p̄w)).

Now assume that there is some ū ∈ P such that ū|K has the same type as v̄. That is,
there is an automorphism ϕ ∈ Aut((Af , p̄)) such that ϕ(ū)|K = v̄ (Lemma 7.10). Hence,
ϕ(ū) ∈ P and ϕ(ū)|[k]\K ∈ Q.
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Note that the set Q is independent of w (as long as orig(w) = w) but the type of Q in
(Af , p̄w) depends on w.

Corollary 7.19. Let f : E → Z2q , P ∈ orbk((Af , p̄)), i ∈ [k], orig(P |{i}) = {w}, and let
distG(w, orig(p̄)) > 1. For all v, w ∈ A such that orig(v) = orig(w) = w, it holds that
{ū|[k]\{i} | ū ∈ P, ui = v} ∈ orbk−1((Af , p̄w)).

Proof. We apply Lemma 7.18: Because distG(w, orig(p̄)) > 1, the type of w is the same
as the type of every v with origin w, in particular the same as ui for every ū ∈ P .

7.3.4 Rank Logic on CFI Structures
In this section we refine a result of [45] and show that on CFI structures over Z2q the
uniform rank logic IFPC+R has the same expressiveness as the rank logic IFPC+R{2}
that only has the rank operator over F2.

De�nition 7.20. For a class of base graphs K,

CFI2ω(K) :=
{

CFI2q(G, f)
∣∣∣ q ∈ N, G = (V,E,≤) ∈ K, f : E → Z2q

}
is the class of all CFI structures over K.

Lemma 7.21. Let K be a class of base graphs. For every IFPC+R-formula Φ, there is an
IFPC+R{2}-formula Ψ that is equivalent to Φ on CFI2ω(K).

Proof. Let solvability logic IFPC+S be the extension of IFPC by the uniform solvability
quantifier slv [45]. If s(x̄, ȳ) is a numeric term and t is a closed numeric term, then

slv(x̄, ȳ). (s, t)

is a formula. Similar to the rank operator rk, the numeric term t defines a number p.
If p is prime, then the solvability quantifier is satisfied if the linear system MA

s x = 1
is solvable over Fp. If otherwise p is not prime, then the operator is not satisfied. Let
IFPC+SΩ be the extension of IFPC by solvability quantifiers slvp for each fixed field Fp
with p ∈ Ω. We again omit parameters for readability.

Grädel and Pakusa [45] give a translation of IFPC+RΩ-formulas to IFPC-formulas
equivalent on CFI structures over F2 for every set of primes Ω satisfying 2 /∈ Ω. The
crucial point in their proofs is that the automorphism groups of these CFI structures are
abelian 2-groups and that their k-orbits can be defined and ordered in IFPC, that is, there
is an IFPC-definable total preorder on all k-tuples whose equivalence classes coincide with
the k-orbits. Their construction is not specific to F2 but works generally for Fp whenever
p /∈ Ω and p is the characteristic of the CFI structures. These assumptions are made
explicit in Section 3.2 in [45]. Hence, the arguments also work for CFI structures over Z2q

instead of F2. In [45], the authors use solvability logic as an intermediate step and first
show that, for all sets of primes Ω (even with 2 ∈ Ω), it holds that IFPC+RΩ = IFPC+SΩ
on CFI2ω(K) (Lemma 3.7 in [45]). This reduction works as well for the uniform case and
shows IFPC+R = IFPC+S on CFI2ω(K).

The second step in [45] is a recursive translation of IFPC+RΩ-formulas to IFPC-
formulas if 2 /∈ Ω (Lemmas 3.4 to 3.6 in [45]). For every IFPC-term s, the solvability
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quantifier Ψ = slvp(x̄, ȳ). s over Fp can be simulated in IFPC by computing the rank of
the matrix M := MA

s orbit-wise. This is expressible in IFPC because the automorphism
group is a 2-group and p 6= 2. This process works as follows: There is an IFPC-formula
that, for every prime p and every term s, exploits the orbits of the structure to define a
matrix E such thatMx = 1 is solvable if and only if (M ·E)x = 1 is solvable (Lemma 3.6
in [45]). Now, E is defined such that the columns of M · E are totally ordered and thus
the solution can be obtained in IFPC.

Now, we translate an IFPC+SΩ-formula (respectively term) with 2 ∈ Ω recursively
into an IFPC+S{2}-formula (respectively term). Again consider a solvability quantifier
Ψ = slvp(x̄, ȳ). s. If p = 2, then we recurse on s but do not replace the solvability
quantifier. If otherwise p 6= 2, then we recurse on s and obtain an IFPC+S{2}-term
equivalent to s, define the matrix E with the IFPC-formula from above, and construct a
formula defining whether M ·E = 1 is solvable. Because this check can be done in IFPC
and M is defined by an IFPC+S{2}-term, we obtain an IFPC+S{2}-formula equivalent
to Ψ.

We finally deal with the case of an IFPC+S formula, where the prime is defined by
a numeric term t. Checking an ordered equation system for solvability is IFPC-definable
when the prime is given by a term, too. Let Ψ = slv(x̄, ȳ). (s, t) be a uniform solvability
quantifier. Let Ψ2 be the formula obtained for slv2(x̄, ȳ). s in the former case and Ψ6=2 be
the formula for the case p 6= 2, where we already used t to obtain the prime. Indeed, Ψ6=2
is independent of p because defining the matrix E is independent of p and checking the
linear equation system for consistency is already done using the prime-defining term t.
Then the uniform solvability quantifier Ψ is equivalent to the IFPC+S{2}-formula

(t = 2→ Ψ2) ∧ (t 6= 2→ Ψ6=2).

Obviously, an IFPC+S{2}-formula can be translated back into an IFPC+R{2}-formula.

7.4 Matrices over CFI Structures

In the invertible-map game, Duplicator has to partition the 2k-tuples of CFI structures
and to provide a similarity matrix. For our arguments, we would like Duplicator to play
with the 2k-orbit partitions. To construct the required similarity matrices, we will now
develop a criterion for invertibility of matrices over F2 and we will show that this criterion
is preserved by matrix multiplication.

Let q, k,m ∈ N and G = (V,E,≤) be a (k + m + 1)-connected base graph. The
connectivity is needed to apply the lemmas of Section 7.3.2. Again, we denote for a
function f : E → Z2q by Af the CFI structure CFIZ2q (G, f) with universe A (which is the
same for every f : E → Z2q). Let p̄ ∈ Am be arbitrary but fixed in this section.

De�nition 7.22 (Blurring the Twist). For f, g : E → Z2q not twisting orig(p̄), an Ak × Ak

matrix S over F2 k-blurs the twist between (Af , p̄) and (Ag, p̄) if S is invertible and
χP · S = S · χQ for all P ∈ orb2k((Af , p̄)) and Q ∈ orb2k((Ag, p̄)) that are of the same
type.
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Note that, by Corollary 7.11, two different orbits have different types. Also note that,
by Lemma 7.14, for each P ∈ orb2k((Af , p̄)), there is a Q ∈ orb2k((Ag, p̄)) of the same
type. So there is indeed a type-preserving bijection between the orbits and Duplicator
can use the matrix S in the invertible-map game. Because S is invertible, χP ·S = S ·χQ
is equivalent to χP = S · χQ · S91. Showing the former has the benefit that we do not
need the inverse S91.

Lemma 7.23. Let f, g, h : E → Z2q pairwise not twist orig(p̄) and S, T be Ak×Ak matrices
over F2. If S blurs the twist between (Af , p̄) and (Ag, p̄) and T blurs the twist between
(Ag, p̄) and (Ah, p̄), then S · T blurs the twist between (Af , p̄) and (Ah, p̄).

Proof. Let P ∈ orb2k((Af , p̄)), Q ∈ orb2k((Ag, p̄)), and R ∈ orb2k((Ah, p̄)) be of the same
type. Recall that given P , the orbits Q and R are determined uniquely (Corollary 7.11).
Then χP · S · T = S · χQ · T = S · T · χR.

Now we want to develop combinatorial conditions ensuring that an Ak × Ak matrix S
over F2 is invertible. The k-orbits (for given f, g : E → Z2q) partition S into a block
matrix. Each P ∈ orbk((Af , p̄)) corresponds to a subset of the rows of S and each
Q ∈ orbk((Ag, p̄)) corresponds to a subset of the columns of S. We denote by SP×Q the
corresponding submatrix of S.

De�nition 7.24 (Orbit-Diagonal Matrix). For f, g : E → F2 not twisting orig(p̄), we call
an Ak × Ak matrix S over F2 orbit-diagonal over (Af , p̄) and (Ag, p̄) if, for every
P ∈ orbk((Af , p̄)) and every Q ∈ orbk((Ag, p̄)), it holds that if SP×Q 6= 0, then P has
the same type in (Af , p̄) as Q has in (Ag, p̄).

We have seen that, for every P ∈ orbk((Af , p̄)), there is exactly one Q ∈ orbk((Ag, p̄)) of
the same type. So orbit-diagonal matrices are block-diagonal matrices, where orbits of
the same type form the nonzero blocks. A permutation σ of Ak is applied to an Ak ×Ak
matrix S in the natural way: (σ(S))(ū, v̄) = S(σ(ū), σ(v̄)). Of particular interest are
automorphisms.

De�nition 7.25 (Orbit-Invariant Matrix). For f, g : E → Z2q that do not twist orig(p̄), an
Ak × Ak matrix S over F2 is called orbit-invariant over (Af , p̄) and (Ag, p̄) if, for all
P ∈ orbk((Af , p̄)), Q ∈ orbk((Af , p̄)), and ϕ ∈ Aut((Af , p̄)) = Aut((Ag, p̄)) (cf. Corol-
lary 7.13), the matrix S satisfies ϕ(SP×Q) = SP×Q.

Lemma 7.26. Let f, g, h : E → Z2q not twist orig(p̄) and S, T be Ak×Ak matrices over F2.
If S is orbit-diagonal and orbit-invariant over (Af , p̄) and (Ag, p̄) and T is orbit-diagonal
and orbit-invariant over (Ag, p̄) and (Ah, p̄), then S·T is orbit-diagonal and orbit-invariant
over (Af , p̄) and (Ah, p̄).

Proof. It is clear that S · T is orbit-diagonal over (Af , p̄) and (Ah, p̄). For k-orbits
P ∈ orbk((Af , p̄)), Q ∈ orbk((Ag, p̄)), and R ∈ orbk((Ah, p̄)) of the same type it holds that

(S · T )P×R(ū, w̄) =
∑
v̄∈Q

SP×Q(ū, v̄) · TQ×R(v̄, w̄).
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Let ϕ ∈ Aut((A, p̄)). Then

(ϕ(S · T ))P×R(ū, w̄) = (S · T )P×R(ϕ(ū), ϕ(w̄))
=
∑
v̄∈Q

SP×Q(ϕ(ū), v̄) · TQ×R(v̄, ϕ(w̄))

=
∑
v̄∈Q

SP×Q(ϕ(ū), ϕ(v̄)) · TQ×R(ϕ(v̄), ϕ(w̄))

=
∑
v̄∈Q

SP×Q(ū, v̄) · TQ×R(v̄, w̄)

= (S · T )P×R(ū, w̄).

Applying ϕ to v̄ is valid because ϕ is a permutation of Q and thus only permutes the sum-
mands. Then SP×Q(ϕ(ū), ϕ(v̄)) = SP×Q(ū, v̄) because S is orbit-invariant (and likewise
for T ).

De�nition 7.27 (Odd-Filled Matrix). A matrix over F2 is called odd-filled if every row
contains an odd number of ones.

Lemma 7.28. If two Ak × Ak matrices S and T over F2 are odd-filled, then so is S · T .

Proof. Let R = S · T and denote by rū and tv̄ the rows of R and T indexed by ū ∈ Ak
and v̄ ∈ Ak. Then

rū =
∑
v̄∈Ak

S(ū, v̄) · tv̄.

The number of ones modulo 2 is given by∑
rū =

∑
v̄∈Ak

S(ū, v̄) ·
∑

tv̄.

Now S(ū, v̄) = 1 for an odd number of v̄ ∈ Ak, because S is odd-filled. Hence, ∑ rū is the
sum of an odd number of ∑ tv̄, of which each is odd because T is odd-filled. So ∑ rū = 1
and rū contains an odd number of ones.

Lemma 7.29. Let f, g : E → Z2q not twist orig(p̄) and S be an Ak × Ak matrix over F2.
If S is odd-filled and both orbit-diagonal and orbit-invariant over (Af , p̄) and (Ag, p̄), then
every column of S contains an odd number of ones.

Proof. Consider the block SP×Q for arbitrary P ∈ orbk((Af , p̄)) and Q ∈ orbk((Ag, p̄)) of
the same type. Let P = {ū1, . . . , ūn} and Q = {v̄1, . . . , v̄n}. Then consider automor-
phisms ϕi such that ϕi(ū1) = ūi. Because the induced action of Aut((A, p̄)) on P (and
on Q) is regular (Lemma 7.15), the action of ϕi on P (and so Q) is uniquely determined.
W.l.o.g., we consider the column indexed by v̄1: We have

S(ūi, v̄1) = ϕ91i (S)(ūi, v̄1) = S(ū1, ϕ
91
i (v̄1))

because S is orbit-invariant. So the column indexed by v̄1 contains exactly the entries of
the row indexed by ū1. That is, the number of ones in every column is odd.

Lemma 7.30. Let ā ∈ FN2 for some finite set N and Γ < Sym(N) be a regular and abelian
2-group. If the number of ones in ā is odd, then the set B := {σ(ā) | σ ∈ Γ} is a basis
of FN2 .
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Proof. Assume w.l.o.g. that N = [`] for some ` ∈ N and let W ⊆ FN2 be the linear space
spanned by B. Because Γ is regular, it consists of ` many permutations Γ = {σ1, . . . , σ`}
such that σi(1) = i for all i ∈ [`]. By definition, W is invariant under permutations of Γ.
In coding theory, such a linear space is called an abelian code. It is known that W can
be identified with an ideal of the group algebra F2[Γ] [15], which is the set of formal sums{∑

g∈Γ
bgg

∣∣∣∣∣ bg ∈ F2

}
.

This set is naturally an F2-vector space indexed by Γ. To turn it into an F2-algebra,
multiplication is defined via(∑

g∈Γ
bgg

)
·
(∑
g∈Γ

cgg

)
:=

∑
g,h∈Γ

(bg · ch)(g · h).

A nonempty set I ⊆ F2[Γ] is a (left) ideal of the algebra F2[Γ] if g+ h ∈ I for all g, h ∈ I
and g · h ∈ I for all g ∈ F2[Γ] and h ∈ I, i.e., F2[Γ] · I = I. The abelian code W is
identified with its image under the linear map (b1, . . . , b`) 7→

∑`
i=1 biσi for every b̄ ∈ W .

This image is an ideal of F2[Γ].
Let I ⊆ F2[Γ] be the corresponding ideal of W and let the number of ones of ā ∈ W

be odd. Because Γ is a 2-group, there is a k ∈ N such that σ(2k)
i = 1Γ for all i ∈ [`].

Because Γ is abelian and we consider F2, we have (bσi)(cσj)+(cσj)(bσi) = 2(bσi)(cσj) = 0.
So (bσi + cσj)2 = (bσi)2 + (cσj)2 and (bσi + cσj)(2k) = (bσi)(2k) + (cσj)(2k). It follows that

(∑̀
i=1

aiσi

)(2k)

=
∑̀
i=1

(aiσi)(2k) =
∑̀
i=1

a
(2k)
i 1Γ =

∑̀
i=1

ai1Γ = 1Γ.

The last step holds because the number of ones in ā is odd. So ∑`
i=1 aiσi is a unit with

inverse (∑`
i=1 aiσi)2k−1. First, ∑`

i=1 aiσi ∈ I because ā ∈ W . Second, 1Γ ∈ I because the
inverse of ∑`

i=1 aiσi ∈ I is clearly contained in F2[Γ] and F2[Γ] · I = I. Thus, I = F2[Γ]
and W = FN2 . Finally, B must be a basis of W because |B| = |N |.

Lemma 7.31. Let f, g : E → Z2q not twist orig(p̄) and S be an Ak×Ak matrix over F2. If S
is odd-filled and both orbit-diagonal and orbit-invariant over (Af , p̄) and (Ag, p̄), then S
is invertible.

Proof. It suffices to show that each block on the diagonal of S is invertible because S
is orbit-diagonal. Let P ∈ orbk((Af , p̄)) and Q ∈ orbk((Ag, p̄)) be of the same type.
Because S is odd-filled and orbit-diagonal, SP×Q is also odd-filled. By Lemma 7.15, the
action of Aut((Af , p̄)) on P induces a regular and abelian 2-group Γ. By Corollary 7.13,
the action of Aut((Ag, p̄)) on Q yields the same group Γ. Let n := |P |, P = {ū1, . . . , ūn},
and si be the row of SP×Q indexed by ūi. We want to show that si = ϕi(s1) for a
unique ϕi ∈ Γ. Each ϕ ∈ Γ acts as a permutation on the entries of each si, that is
(ϕ(si))(v̄) = si(ϕ(v̄)). Let Γ = {ϕ1, . . . , ϕn} such that ϕ91i (ū1) = ūi for every i ∈ [n] (this
is possible because Γ is regular). Then

(ϕi(s1))(v̄) = SP×Q(ū1, ϕi(v̄)) = SP×Q(ϕ91i (ū1), v̄)
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c

t1

t2td

orig(p̄)
2q−1

≥ 3

7.1 The base vertex used to blur the twist in the 1-ary case. The base edge {c, t} in the graph G
is twisted by f and g by value 2q−1. The neighborhood of c is NG(c) = {t1, . . . , td} with t = t1. The
origin of the parameters orig(p̄) has distance at least 3 to c.

because S is orbit-invariant. Hence,

(ϕi(s1))(v̄) = SP×Q(ϕ91i (ū1), v̄) = si(v̄),

i.e., ϕi(s1) = si. Finally, {ϕi(s1) | i ∈ [n]} = {s1, . . . , sn} forms a basis of Fn2 by
Lemma 7.30. That is, SP×Q has full rank and is invertible.

7.5 The Arity 1 Case

To separate rank logic from Ptime, we want to show that, for every arity k and every
number of pebbles 2k + m, there are two non-isomorphic CFI structures over Z2q for a
suitable q ∈ N for which Duplicator has a winning strategy in the invertible-map game
M2k+m,k,{2}. This implies IFPC+R{2}-undefinability of the CFI query by Lemma 7.1
and IFPC+R-undefinability by Lemma 7.21. The most challenging part of constructing
winning strategies for Duplicator in the invertible-map game is to provide similarity
matrices. Indeed, our goal is to construct matrices blurring the twist. Once we achieve
this, it suffices to ensure that the pebbled tuples in both structures always have the same
type. This final step is made formal in Section 7.8. Constructing matrices blurring the
twists for an arbitrary arity k turns out to be formally intricate and is in particular
recursive on the arity. In this section, we start with constructing matrices for arity 1,
which serve as a base case for the recursion. We introduce basic techniques that we
generalize to higher arities later in Section 7.7.

Let q ≥ 2, m ∈ N, G = (V,E,≤) be an (m + 3)-connected base graph, c ∈ V be a
base vertex of degree d, and {c, t} ∈ E. Let f, g : E → Z2q such that {c, t} is the only
twisted base edge and g({c, t}) = f({c, t}) + 2q−1 (cf. Figure 7.1). The number m is the
number of pebbles remaining on the structure when Spoiler picks up the 2 = 2k many
pebbles before Duplicator needs to provide the similarity matrix (we consider arity k = 1
in this section). From another perspective, m corresponds to the number of free variables
of a rank operator. Set Af := CFI2q(G, f) and Ag := CFI2q(G, g), both with universe A.
Let p̄ ∈ Am such that distG(c, orig(p̄)) ≥ 3, in particular, g and f do not twist orig(p̄).
The tuple p̄ is the tuple of atoms on which the pebbles remain. It suffices to consider
only a single tuple p̄ for both structures because we will ensure that the pebbled tuples
always have the same type in both structures. Whenever the pebbled tuples have the
same type but are not equal, we can consider an isomorphic structure in which we moved
the twist to a base edge far apart from the pebbled tuples. Then the tuples are equal
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and we ensured that the distance between orig(p̄) and the twisted base edge is sufficiently
large (details in Section 7.8).

For u ∈ V , let Au be the set of atoms originating from u, i.e., the atoms of the gadget
for u. The key idea is to “distribute” the twist among multiple base edges, such that
it cannot be detected by Spoiler. For this, we introduce blurrers, the key ingredient to
define the desired similarity matrix.

De�nition 7.32 (1-ary Blurrer). Let Ξ ⊆ Zd2q . For b ∈ Z2q and j ∈ [d] we define

#j,b(Ξ) :=
∣∣∣{ ā ∈ Ξ

∣∣∣ aj = b
}∣∣∣ mod 2.

The set Ξ is called a (q, d)-blurrer if it satisfies

1. ∑ ā = 0 for all a ∈ Ξ,

2. #1,2q−1(Ξ) = 1,

3. #j,0(Ξ) = 1 for all 1 < j ≤ d, and

4. #j,b(Ξ) = 0 for all other pairs of b ∈ Z2q and j ∈ [d].

From now on, we use the letter ξ for elements of a blurrer Ξ. Note that Ξ consists solely
of tuples satisfying ∑ ξ = 0, i.e., we can later turn every ξ ∈ Ξ into an automorphism.
But intuitively, when looking at a single index and summing over all ξ ∈ Ξ, there seems
to be a twist at index 1 and no twist at all other indices.

Lemma 7.33. The size |Ξ| of every (q, d)-blurrer is odd. For every d ≥ 3, there is a
(q, d)-blurrer.

Proof. By Conditions 2 and 4 of the blurrer, it holds that

|Ξ| =
∑
b∈Z2q

#1,b(Ξ) = #1,2q−1(Ξ) +
∑

b∈Z2q\{2q−1}
#1,b(Ξ) = 1 mod 2.

For d ≥ 3, set Ξ := 2q−2 · {(3, 0, 1, 0, . . . , 0), (3, 1, 0, 0, . . . , 0), (2, 1, 1, 0, . . . , 0)}.

Set Pj := orbj((Af , p̄)) and Qj := orbj((Ag, p̄)) for every j ∈ [2]. For P ∈ P2 we set
Pi := P |i for every i ∈ [2] and likewise for Q ∈ Q2. By Corollary 7.11, Pi satisfies Pi = Au

if u = orig(Pi) and distG(u, orig(p̄)) > 1. Moreover, every P ∈ P1 is also contained in Q1
and has the same type in (Af , p̄) as in (Ag, p̄).

Let Ξ be a (q, d)-blurrer (note that c is of degree d ≥ 3 because G is (m+3)-connected)
and NG(c) = {t1, . . . , td} such that t1 = t (cf. Figure 7.1). Then we can view ξ ∈ Ξ also
as a tuple ξ ∈ ZNG(c)

2q . Thus, ξ acts on atoms u originating from c and we denote this
action by ξ(u) (cf. Section 7.3.1 for a definition of the action). Note that every ξ ∈ Ξ
extends to an automorphism of (Af , p̄) (and so of (Ag, p̄)): By Corollary 7.11, the gadget
of c consists of a single orbit because distG(c, p̄) ≥ 3, i.e., Ac ∈ P1. We define an A × A
matrix S over F2, which is orbit-diagonal over (Af , p̄) and (Ag, p̄). We set SP := SP×P
and define

SP (u, v) :=


1 if orig(P ) 6= c and u = v,

1 if orig(P ) = c and ξ(u) = v for some ξ ∈ Ξ,
0 otherwise.
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Ac,t,0
Ac,t,1
Ac,t,2
Ac,t,3

Ac Af

At,c,0
At,c,1
At,c,2
At,c,3

At

Ac,t,0
Ac,t,1
Ac,t,2
Ac,t,3

Ac Ag

At,c,0
At,c,1
At,c,2
At,c,3

At

7.2 The twist between CFI structures. This �gure shows the twist between Af and Ag . The �gure
considers Z4 and assumes that f({c, t}) = 0 and g({c, t}) = 2. The twisted connection for the base
edge {c, t} is shown. On the le�, there are the two gadgets for the base vertices c and t in Af and on
the right there are the same gadgets in Ag . Every vertex represents a clique corresponding to the set
Ac,t,c and every base edge a complete bipartite graph (cf. Section 7.3). The relation RE,0 is drawn in
blue and RE,2 in red and dashed style. Restricted to the connection between {c, t}, we have in Af
that RE,0 = E{c,t},0 and RE,2 = E{c,t},2. In Ag , we have that RE,0 = E{c,t},2 and RE,2 = E{c,t},0.

Of particular interest is the unique 1-orbit Pc with origin c. We have already seen that
Pc = Ac ∈ P1, because distG(c, orig(p̄)) ≥ 3 by assumption. For all other orbits P ∈ P1,
it is easy to see that SP = 1.

Lemma 7.34. The matrix S is orbit-invariant over (Af , p̄) and (Ag, p̄).

Proof. Let P ∈ P1, ϕ ∈ Aut((Af , p̄)), u ∈ P , and v ∈ Q = P ∈ Q1. If P 6= Pc, then
clearly ϕ(SP ) = ϕ(1) = 1 = SP . Otherwise, P = Pc. Because the automorphism group
of Af is abelian (Lemma 7.3) and every ξ ∈ Ξ extends to an automorphism, it holds that
ξ(ϕ(u)) = ϕ(ξ(u)). So SPc(ϕ(u), ϕ(v)) = 1 if and only if ξ(ϕ(u)) = ϕ(ξ(u)) = ϕ(v) for
some ξ ∈ Ξ if and only if ξ(u) = v for some ξ ∈ Ξ, i.e, SPc(u, v) = 1.

Lemma 7.35. The matrix S is odd-filled.

Proof. Let P ∈ P1. For P 6= Pc, the number of ones in a row of SP = 1 is one and
thus odd. In SPc , the number of ones in a row is |Ξ| because ξ(u) 6= ξ′(u) if ξ 6= ξ′

(Lemma 7.15) and if u ∈ Pc, then ξ(u) ∈ Pc for every ξ ∈ Ξ. From Lemma 7.33 it follows
that |Ξ| is odd.

Corollary 7.36. The matrix S is invertible.

Proof. Apply Lemmas 7.31, 7.34, and 7.35.

We want to define a bijection λ : P2 → Q2 such that λ maps an orbit to another orbit
of the same type. By Corollary 7.13, we know that P2 = Q2 and, by Lemma 7.14, that
a type-preserving bijection exists. Let P ∈ P2 with origin (u, v). If {c, t} 6= {u, v}, we
set λ(P ) := P . Otherwise if (t, c) = (u, v), then P has a different type in (Af , p̄) than in
(Ag, p̄): Every atom in P1 is related to every atom in P2 via some RE,c. By Corollary 7.11,
we have that P = E{c,t},a for some a ∈ Z2q (recall our assumption distG(c, p̄) ≥ 3 and
thus a determines the type of P ). We set λ(P ) := E{c,t},a+2q−1 , which then has the same
type in (Ag, p̄) because of the twist (cf. Figure 7.2). The case of (c, t) is analogous.
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Lemma 7.37. χP · S = S · χλ(P ) for every P ∈ P2.

Proof. Let P ∈ P2 and orig(P ) = (u, v) and set Q := λ(P ). Clearly, P ⊆ P1 × P2. We
also have P1 = Q1 and P2 = Q2 (as seen earlier by Corollary 7.11). Then the P1 × P2
block is the only nonzero block of χP . Because S is orbit-diagonal, χP · S has only one
nonzero block, namely the P1 ×Q2 block, which satisfies

(χP · S)P1×Q2 = χPP1×P2 · SP2×Q2 .

Likewise, (S · χQ)P1×Q2 = SP1×Q1 · χ
Q
Q1×Q2 . Recall that we have set SP2 = SP2×Q2 . We

identify χP with χPP1×P2 and likewise for χQ. So we are left to show that χP ·SP2 = SQ1 ·χQ.

(a) Case c /∈ {u, v}: Then Q = λ(P ) = P and χP · SP2 = χP · 1 = 1 · χQ = SQ1 · χQ.

(b) Case u = v = c: Then Q = λ(P ) = P . As already seen, P1 = P2 = Q1 = Q2 = Pc.
So if u ∈ Q2, then ξ91(u) ∈ Q2 for every ξ ∈ Ξ. We obtain

(χP · SP2)(u, v) =
∑
w∈P2

χP (u,w) · SPc(w, v)

=
∑
ξ∈Ξ

χP (u, ξ91(v))

=
∑
ξ∈Ξ

χP (ξ(u), v).

The last step uses that ξ extends to an automorphism and thus we have that
χP (u, ξ91(v)) = ξ(χP )(u, ξ91(v)) = χP (ξ(u), v). The reverse direction is similar:∑

ξ∈Ξ
χP (ξ(u), v)

=
∑
ξ∈Ξ

χQ(ξ(u), v)

=
∑
w∈Q1

SQ1(u,w) · χQ(w, v)

= (SQ1 · χQ)(u, v).

(c) Case v = c and {u, c} ∈ E (the case u = c and {c, v} ∈ E is analogous): Again
P2 = Pc. We have

(χP · SP2)(u, v) =
∑
w∈Pc

χP (u,w) · SPc(w, v)

=
∑
ξ∈Ξ

χP (u, ξ91(v))

=
1 if |{ξ ∈ Ξ | (u, ξ91(v)) ∈ P}| is odd,

0 otherwise.

Let P = E{u,c},a for some a ∈ Z2q (cf. the definition of λ) and (u, v) ∈ E{u,c},b for
some b ∈ Z2q . Then, by definition of E{u,c},b, it holds that u(c) + v(u) = b. Let
i ∈ [d] such that u = ti (recall that NG(c) = {t1, . . . , td} and t1 = t). For every
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ξ ∈ Ξ, it holds that (u, ξ91(v)) ∈ P = E(u,c),a if and only if u(c) + ξ91(v)(u) = a if
and only if ξ(i) = b− a because

u(c) + ξ91(v)(u) = u(c) + v(u)− ξ(i) = b− ξ(i).

We see that ∣∣∣{ ξ ∈ Ξ
∣∣∣ (u, ξ91(v)) ∈ P

}∣∣∣ = #i,b−a(Ξ).

Set c := 2q−1 if i = 1 (and so u = t) and c := 0 otherwise. Using the properties of
a blurrer, we see that #i,b−a(Ξ) = 1 holds if and only if b− a = c. It follows that

(χP · SP2)(u, v) =
1 if b− a = c,

0 otherwise.

• If i 6= 1 (so u 6= t′), then c = 0 and (χP · SP2)(u, v) = 1 if and only if b = a,
but that holds if and only if (u, v) ∈ P . So

χP · SP2 = χP = 1 · χQ = SQ1 · χQ

because Q = λ(P ) = P .
• If i = 1 (so u = t), then (χP · SP2)(u, v) = 1 if and only if b − a = 2q−1, i.e.,
a+ 2q−1 = b. But that holds by definition of λ if and only if

(u, v) ∈ Q = λ(P ) = E(u,c),a+2q−1

and so

χP · SP2 = 1 · χQ = SQ1 · χQ.

(d) Case v = c and {u, c} /∈ E (the case u = c and {c, v} /∈ E is analogous): By the
assumption that distG(c, orig(p̄)) ≥ 3, the type of (u, v) and (u, v′) for u ∈ Au and
v, v′ ∈ Ac is equal. So (u, v) ∈ P if and only if (u, v′) ∈ P by Corollary 7.11. In
particular, (u, v) ∈ P if and only if (u, ξ91(v)) ∈ P for every ξ ∈ Ξ. Set

D :=
{
ξ ∈ Ξ

∣∣∣ (u, ξ91(v)) ∈ P
}
.

Then we have

(χP · SP2)(u, v) =
1 if |D| is odd,

0 otherwise
= χP (u, v).

The last step holds because if (u, v) ∈ P , then D = Ξ and |D| = |Ξ| is odd
(Lemma 7.33), and if (u, v) 6∈ P , then D = ∅ and |D| = 0. As seen before,

χP · SP2 = χP = χQ = SQ2 · χQ

because Q = λ(P ) = P .
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Corollary 7.38. The matrix S 1-blurs the twist between (Af , p̄) and (Ag, p̄).

We summarize the results of this section:

Lemma 7.39. For all q ≥ 2,m ∈ N,

• every (m+ 3)-connected base graph G = (V,E,≤),

• all functions f, g : E → Z2q which twist only a single base edge {c, t} such that
f({c, t}) = g({c, t}) + 2q−1,

• and every m-tuple p̄ ∈ Am of Af := CFI2q(G, f) and Ag := CFI2q(G, f),

there is an odd-filled matrix S, both orbit-diagonal and orbit-invariant over (Af , p̄) and
(Ag, p̄), that 1-blurs the twist between (Af , p̄) and (Ag, p̄) and satisfies SP,Q = 1 for all
k-orbits P ∈ orb1((Af , p̄)) and Q ∈ orb1((Ag, p̄)) which are of the same type and have
origin orig(P ) = orig(Q) 6= c.

Constructing matrices blurring the twist for higher arities is more difficult: First, we have
to generalize our notion of a blurrer to arity k. Second, we are faced with disconnected
orbits, which do not pose a problem in the 1-ary case, but complicate matters in the
general case. To deal with these orbits, we need to establish more technical lemmas for
matrices over CFI structures.

7.6 The Active Region of a Matrix

In this section, we consider the part of a matrix S where S “has a nontrivial effect”.
Intuitively, this means that S is locally not the identity matrix. We will call the set of
origins of all atoms, of which the tuples in these parts are composed, the active region.
We now formalize this idea.

As in Section 7.4, let q, k,m ∈ N and G = (V,E,≤) be a (k +m+ 1)-connected base
graph. Again, we denote, for every f : E → Z2q , the CFI structure CFIZ2q (G, f) by Af

and the universe of these CFI structures by A. Let p̄ ∈ Am be arbitrary but fixed in
this section. For a set N ⊆ V , we denote by CN(P ) the N-components of an orbit P ,
that is, the set of components C of P that satisfy C ⊆ N (recall Definition 7.16 of a
component of an orbit).

De�nition 7.40 (Active Region). Let f, g : E → Z2q not twist orig(p̄), S be an Ak × Ak
matrix over F2, and Pk = orbk((Af , p̄)) and Qk = orbk((Ag, p̄)). For P ∈ Pk and Q ∈ Qk

of the same type, the matrix S is active (with respect to (Af , p̄) and (Ag, p̄)) on a
component C of P (and so of Q) if there are ū ∈ P and v̄ ∈ Q such that ūC 6= v̄C and
S(ū, v̄) = 1. We write Af,g,p̄(S, P ) = Af,g,p̄(S,Q) for the set of components of P on which S
is active, and Nf,g,p̄(S, P ) = Nf,g,p̄(S,Q) for the remaining components. The active
region Af,g,p̄(S) ⊆ V of S is the inclusion-wise smallest set satisfying the following:
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(A1) C ⊆ Af,g,p̄(S) for every C ∈ Af,g,p̄(S, P ) and every P ∈ Pk.

(A2) For all P, P ′ ∈ Pk and Q,Q′ ∈ Qk such that

CAf,g,p̄(S)(P ) = CAf,g,p̄(S)(P ′) = CAf,g,p̄(S)(Q) = CAf,g,p̄(S)(Q′) =: A,

both P and Q (respectively P ′ and Q′) have the same type and thus Nf,g,p̄(S, P ) =
Nf,g,p̄(S,Q) =: N (respectively Nf,g,p̄(S, P ′) = Nf,g,p̄(S,Q′) =: N′), and for all ū ∈ P ,
ū′ ∈ P ′, v̄ ∈ Q, and v̄′ ∈ Q′, we have if ūA = ū′A, v̄A = v̄′A, ūN = v̄N, and ū′N′ = v̄′N′ ,
then S(ū, v̄) = S(ū′, v̄′).

The active region is well-defined: Clearly, V itself satisfies Conditions A1 and A2. If two
setsX ⊆ V and Y ⊆ V satisfy the two conditions, then alsoX∩Y . Note that CAf,g,p̄(S)(P )
and Nf,g,p̄(S, P ) are not necessarily disjoint, but Nf,g,p̄(S, P ) contains all components of P
not contained in CAf,g,p̄(S)(P ). Condition A2 can equivalently be stated only considering
the components apart from the ones in CAf,g,p̄(S)(P ) instead of the set of components
Nf,g,p̄(S, P ).

Although Condition A2 is rather technical, it ensures that the “non-identity-part” of S
only depends on the active region: The entry S(ū, v̄) only depends on the components
of ū and v̄ on which S is active, as long as the entries for the other components are
equal (otherwise S(ū, v̄) = 0 anyway by Condition A1). That is S(ū, v̄) only depends on
whether ūNf,g,p̄(S,P ) = v̄Nf,g,p̄(S,P ) but not on, for example, the type of ūNf,g,p̄(S,P ). We first
consider the matrix blurring the twist defined in Section 7.5:

Lemma 7.41. The matrix S given in the setting of Lemma 7.39 satisfies Af,g,p̄(S) = {c}.

Proof. Let P ∈ orb1((Af , p̄)) and Q ∈ orb1((Ag, p̄)) be of the same type with origin
u = orig(P ) = orig(Q) 6= c. Then SP×Q = 1 by Lemma 7.39, i.e., S is clearly not active
on {u}. The matrix S has to be active on {c} because otherwise S = 1 and the structures
would be isomorphic. This proves Condition A1. In the 1-ary case, a 1-orbit can only
have one component, so Condition A2 of the active region is trivially satisfied.

We now continue in the general case. The rest of this section establishes rather technical
lemmas needed in Section 7.7. It is easy to see that if P and Q have the same type, whose
origins contain no base vertex of Af,g,p̄(S), then SP×Q = 1. In the region of a twist, S
has to be active:

Lemma 7.42. Let f, g : E → Z2q not twist orig(p̄), S be an Ak × Ak matrix over F2, and
P ∈ orbk((Af , p̄)) and Q ∈ orbk((Ag, p̄)) have the same type. If the block SP×Q is nonzero
and C is a component of P (and thus of Q) such that P |C 6= Q|C, then C ∈ Af,g,p̄(S, P ).

Proof. Let ū ∈ P and v̄ ∈ Q such that S(ū, v̄) = 1. Such an entry must exist because
SP×Q is nonzero. If ūC = v̄C , then P |C = Q|C by Lemma 7.17 and Corollary 7.11, which
contradicts our assumption. So ūC 6= v̄C and C ∈ Af,g,p̄(S, P ).

The next lemma shows that, as long as f and g agree on the base edges in orig(p̄), the
values that f and g assign to base edges e are actual irrelevant and only the difference
f(e)− g(e) matters.
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Lemma 7.43. Let f, g : E → Z2q not twist orig(p̄) and S be an Ak × Ak matrix over F2.
Furthermore, let f ′, g′ : E → Z2q such that f ′(e) = f(e) and g′(e) = g(e) for every
e ∈ E with e ∩ orig(p̄) 6= ∅ and f ′(e) − f(e) = g′(e) − g(e) for every other e ∈ E.
Then Af,g,p̄(S) = Af ′,g′,p̄(S) and if S is orbit-diagonal (respectively orbit-invariant) over
(Af , p̄) and (Ag, p̄), then S is orbit-diagonal (respectively orbit-invariant) over (Af ′ , p̄)
and (Ag′ , p̄).

Proof. Note that if P ∈ orbk((Af , p̄)) has the same type in (Af , p̄) as Q ∈ orbk((Ag, p̄))
has in (Ag, p̄), then P ∈ orbk((Af ′ , p̄)) and Q ∈ orbk((Ag′ , p̄)) (Corollary 7.13) and P
has the same type in (Af ′ , p̄) as Q has in (Ag′ , p̄). So we only change the type of the
orbits, but not the correspondence between orbits of the same type. That is, if S is orbit-
diagonal (respectively orbit-invariant) over (Af , p̄) and (Ag, p̄), then S is orbit-diagonal
(respectively orbit-invariant) over (Af ′ , p̄) and (Ag′ , p̄). Furthermore, S is active on the
same components with respect to (Af , p̄) and (Ag, p̄) as S is with respect to (Af ′ , p̄) and
(Ag′ , p̄). This implies that Af,g,p̄(S) = Af ′,g′,p̄(S).

We now show that the active region of products S · T is bounded by the active regions
of S and T . For two k-tuples ū, v̄ ∈ Ak we use the Kronecker delta δū,v̄, which is 1 if and
only if ū = v̄ and 0 otherwise.

Lemma 7.44. Let f, g, h : E → Z2q pairwise not twist orig(p̄) and S, T be Ak×Ak matrices
over F2. If S is orbit-diagonal over (Af , p̄) and (Ag, p̄) and T is orbit-diagonal over (Ag, p̄)
and (Ah, p̄), then Af,h,p̄(S · T ) ⊆ Af,g,p̄(S) ∪ Ag,h,p̄(T ).

Proof. In this proof we omit the superscripts f , g, h, and p̄ for readability: For S we
always refer to f and g, for T to g and h, and for S · T to f and h. We show that
A(S) ∪ A(T ) satisfies Conditions A1 and A2. Because the active region is the inclusion-
wise minimal set satisfying the two conditions, it then follows that A(S ·T ) ⊆ A(S)∪A(T ).
Let Pk = orbk((Af , p̄)), Qk = orbk((Ag, p̄)), and Rk = orbk((Ah, p̄)).

We show Condition A1 by contraposition. Let P ∈ Pk and C be a connected compo-
nent of G[orig(P )]. We show that

A(S · T, P ) ⊆ A(S, P ) ∪ A(T, P ).

Let C 6∈ A(S, P ) ∪ A(T, P ), Q ∈ Qk and R ∈ Rk be of the same type as P , ū ∈ P , and
w̄ ∈ R. Because S and T are orbit-diagonal,

(S · T )(ū, w̄) =
∑
v̄∈Q

S(ū, v̄) · T (v̄, w̄).

If S(ū, v̄) = 1 (i.e., S(ū, v̄) 6= 0), then ūC = v̄C because C /∈ A(S, P ). Similarly, v̄C = w̄C
if T (v̄, w̄) = 1. This implies ūC = w̄C if (S ·T )(ū, w̄) = 1 (so there is at least one nonzero
summand). Hence, C 6∈ A(S · T, P ).

To show Condition A2, let P, P ′ ∈ Pk and R,R′ ∈ Rk be arbitrary k-orbits, such that

A := CA(S)∪A(T )(P ) = CA(S)∪A(T )(P ′) = CA(S)∪A(T )(R) = CA(S)∪A(T )(R′),

the orbits P and R have the same type, and P ′ and R′ have the same type. Let N be
the set of remaining components of P (and so of R) apart from A. Similarly, let N′ be
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the set of remaining components of P ′ (and so of R′) apart from A . Let ū ∈ P , ū′ ∈ P ′,
w̄ ∈ R, and w̄′ ∈ R′ such that ūA = ū′A, w̄A = w̄′A, ūN = w̄N, and ū′N′ = w̄′N′ . We have to
show that (S · T )(ū, w̄) = (S · T )(ū′, w̄′).

By assumption, ūA ∈ P |A, ū′A ∈ P ′|A, and ūA = ū′A. So P |A = P ′|A by Corollary 7.11
because they have the same type and contain the same tuple. Let Q ∈ Qk be of the
same type as P and Q′ ∈ Qk be of the same type as P ′. Then Q|A = Q′|A and A
and N (respectively N′) are sets of components of Q (respectively Q′). We first assume
that the blocks SP×Q and TQ×R are nonzero. We apply Lemma 7.17: Q = Q|A × Q|N,
Q′ = Q′|A ×Q′|N′ , and likewise for P and P ′.

(S · T )(ū, w̄) =
∑
v̄∈Q

S(ū, v̄) · T (v̄, w̄)

=
∑

v̄A∈Q|A

∑
v̄N∈Q|N

S(ūAūN, v̄Av̄N) · T (v̄Av̄N, w̄Aw̄N). (?)

From Lemma 7.42 it follows that P |N = Q|N = R|N (recall that the blocks SP×Q and
TQ×R were assumed to be nonzero), in particular, ūN, w̄N ∈ Q|N. We use again that the
N-components are not in the active region of S and T . We continue the equation (?):

(?) =
∑

v̄A∈Q|A

∑
v̄N∈Q|N

δūN,v̄N · S(ūAūN, v̄AūN) · δv̄N,w̄N · T (v̄Aw̄N, w̄Aw̄N)

=
∑

v̄A∈Q|A

δūN,w̄N · S(ūAūN, v̄AūN) · T (v̄Aw̄N, w̄Aw̄N)

=
∑

v̄A∈Q′|A

δū′N′ ,w̄′N′ · S(ūAū
′
N′ , v̄Aū

′
N′) · T (v̄Aw̄

′
N′ , w̄Aw̄

′
N′)

=
∑

v̄′A∈Q′|A

∑
v̄′N′∈Q′|N′

δū′N′ ,v̄′N′ · S(ūAū
′
N′ , v̄

′
Aū
′
N′) · δv̄′N′ ,w̄′N′ · T (v̄′Aw̄′N′ , w̄Aw̄

′
N′).

Here, we used the identity Q|A = Q′|A and the inclusion A(S · T, P ) ⊆ A(S, P )∪A(T, P ),
where the latter was already shown for Condition A1. So ūN can be exchanged with ū′N′
and w̄N with w̄′N′ , respectively. In the next step we use that ūA = ū′A and w̄A = w̄′A (by
assumption) and again that S and T are not active on the N′-components.

(?) =
∑

v̄′A∈Q′|A

∑
v̄′N∈Q′|N′

S(ū′Aū′N′ , v̄′Av̄′N′) · T (v̄′Av̄′N′ , w̄′Aw̄′N′)

=
∑
v̄′∈Q′

S(ū′, v̄′) · T (v̄′, w̄′)

= (S · T )(ū′, w̄′).

If SP×Q or TQ×R is zero, then SP ′×Q′ or TQ′×R′ is zero because S(ū, v̄) = S(ū′, v̄′) = 0 and
likewise for T . The claim follows because (S · T )P×Q = 0 and (S · T )P ′×Q′ = 0.

We now consider products S ·T in the case that the active regions of S and T are disjoint.
Intuitively, our goal is to prove that then S · T is given by S on the active region of S
and by T on the active region of T .

Lemma 7.45. Let f, g, h : E → Z2q pairwise not twist orig(p̄) and S, T be Ak × Ak ma-
trices over F2. Let S be orbit-diagonal over (Af , p̄) and (Ag, p̄), T be orbit-diagonal
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over (Ag, p̄) and (Ah, p̄), both be odd-filled, Af,g,p̄(S) ∩ Ag,h,p̄(T ) = ∅, P ∈ orbk((Af , p̄)),
Q ∈ orbk((Ag, p̄)), and R ∈ orbk((Ah, p̄)) be of the same type, and the components
of P (and thus the components of Q and R) be partitioned into set M and N such
that CAf,g,p̄(S)(P ) ⊆M and CAg,h,p̄(T )(Q) ⊆ N .
(a) For every ū ∈ P and w̄ ∈ R, it holds that

(S · T )(ū, w̄) = S(ūM ūN , w̄M ūN) · T (w̄M ūN , w̄M w̄N).

(b) If S is orbit-invariant over (Af , p̄) and (Ag, p̄), then for every ū ∈ P and w̄ ∈ R, it
holds that ∑

ū′M∈P |M

(S · T )(ū′M ūN , w̄M w̄N) = T (w̄M ūN , w̄M w̄N).

Proof. We first show Part (a). Let ū ∈ P and w̄ ∈ R.

(S · T )(ū, w̄) =
∑
v̄∈Q

S(ūM ūN , v̄M v̄N) · T (v̄M v̄N , w̄M w̄N)

=
∑
v̄∈Q

δūN ,v̄N · S(ūM ūN , v̄M ūN) · δv̄M ,w̄M · T (w̄M v̄N , w̄M w̄N). (?)

The last step uses that components of ūN and w̄N consist only of vertices not contained
in A(S) and likewise for v̄M and w̄M .

(?) =
∑
v̄∈Q,

v̄=w̄M ūN

S(ūM ūN , w̄M ūN) · T (w̄M ūN , w̄M w̄N)

= S(ūM ūN , w̄M ūN) · T (w̄M ūN , w̄M w̄N).

For the last step, we have to argue that w̄M ūN ∈ Q. From Lemma 7.17 it follows that
P = P |M × P |N , Q = Q|M ×Q|N , and R = R|M × R|N . Because S is not active on the
components in N and T is not active on the components inM , it follows from Lemma 7.42
that P |N = Q|N and that Q|M = R|M (the corresponding blocks of S and T are nonzero
because S and T are odd-filled). Hence, w̄M ūN ∈ Q because w̄M ∈ R|M and ūN ∈ P |N .

We now show Part (b). We apply Part (a):∑
ū′M∈P |M

(S · T )(ū′M ūN , w̄M w̄N)

=
∑

ū′M∈P |M

S(ū′M ūN , w̄M ūN) · T (w̄M ūN , w̄M w̄N)

= T (w̄M ūN , w̄M w̄N) ·
∑

ū′M∈P |M

S(ū′M ūN , w̄M ūN).

It suffices to show that the value of the sum is 1. We rewrite the sum using P = P |M×P |N
(Lemma 7.17):∑

ū′M∈P |M

S(ū′M ūN , w̄M ūN) =
∑

ū′M ū
′
N∈P

S(ū′M ū′N , w̄M ūN)−
∑

ū′M ū
′
N∈P,

ū′N 6=ūN

S(ū′M ū′N , w̄M ūN).

In the right sum it always holds that S(ū′M ū′N , w̄M ūN) = 0 because ū′N 6= ūN and N
is not in the active region of S. So the right sum is zero. Finally, the left summation∑
ū′M ū

′
N∈P S(ū′M ū′N , w̄M ūN) runs over a column of S because S is orbit-diagonal. Since S

is orbit-invariant and odd-filled, this summation is 1 by Lemma 7.29.
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Finally, we show the result of Lemma 7.45(b) for a product of three matrices S1 · S2 · S3.

Lemma 7.46. Let gi : E → Z2q pairwise not twist orig(p̄) for every i ∈ [4]. Let Si be
an Ak × Ak matrix over F2 that is odd-filled and both orbit-diagonal and orbit-invariant
over (Agi , p̄) and (Agi+1 , p̄) for every i ∈ [3]. If the active regions Agi,gi+1,p̄(Si) are pairwise
disjoint, then for all k-orbits Pi ∈ orbk((Agi , p̄)) of the same type for all i ∈ [4], every par-
tition of the components of the Pi into M1, M2, and M3 such that CAgi,gi+1,p̄(Si)(Pi) ⊆Mi

for every i ∈ [3], and every ū ∈ P1 and w̄ ∈ P4 it holds that∑
ū′M2
∈P1|M2

(S1 · S2 · S3)(ūM1ū
′
M2ūM3 , w̄M1w̄M2w̄M3) = (S1 · S3)(ūM1w̄M2ūM3 , w̄M1w̄M2w̄M3).

Proof. By Lemma 7.26, the matrix (S1 · S2) is orbit-diagonal and orbit-invariant over
(Ag1 , p̄) and (Ag3 , p̄) and the matrix (S2 · S3) is orbit-diagonal and orbit-invariant over
(Ag2 , p̄) and (Ag4 , p̄). Both matrices are odd-filled by Lemma 7.28. We now apply
Lemma 7.45(a) for the partition of the components of P into M1 ∪M3 and M2:∑

ū′M2∈P1|M2

(S1 · S2 · S3)(ūM1ū
′
M2ūM3 , w̄M1w̄M2w̄M3)

=
∑

ū′M2∈P1|M2

S1(ūM1ū
′
M2ūM3 , w̄M1ū

′
M2ūM3) · (S2 · S3)(w̄M1ū

′
M2ūM3 , w̄M1w̄M2w̄M3)

=
∑

ū′M2∈P1|M2

S1(ūM1w̄M2ūM3 , w̄M1w̄M2ūM3) · (S2 · S3)(w̄M1ū
′
M2ūM3 , w̄M1w̄M2w̄M3). (?)

The last step uses that M2 consists only of components not contained in Ag1,g2,p̄(S1). We
continue the equation by moving S1 out of the sum and applying Lemma 7.45(b) for the
partition of the components of P into M1 ∪M3 and M2:

(?) = S1(ūM1w̄M2ūM3 , w̄M1w̄M2ūM3) ·
∑

ū′M2
∈P |M2

(S2 · S3)(w̄M1ū
′
M2ūM3 , w̄M1w̄M2w̄M3)

= S1(ūM1w̄M2ūM3 , w̄M1w̄M2ūM3) · S3(w̄M1w̄M2ūM3 , w̄M1w̄M2w̄M3)
= (S1 · S3)(ūM1w̄M2ūM3 , w̄M1w̄M2w̄M3).

The last step follows from applying Lemma 7.43 and, using the partition of the compo-
nents into M1 and M2 ∪M3, from Lemma 7.45(a).

7.7 The Arity k Case

We now construct a similarity matrix for the k-ary invertible-map game. Constructing
this matrix and verifying its suitability will be quite technical and intricate. We first
discuss the difficulties we have to overcome and why the approach for arity 1 cannot
simply be generalized to arity k easily. In the following, we provide high-level intuition
for constructing the similarity matrix for arity k. This prepares us for the lengthy formal
definition of this matrix, which follows subsequently.
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7.7.1 Overview of the Construction

Orbits of the Same Type. Let Af and Ag be two CFI structures such that a single base
edge {t, t′} of the base graph G is twisted by f and g. Let p̄ be a tuple of parameters,
whose origin has sufficiently large distance to the twisted base edge. We have seen in
Section 7.5 that every 1-orbit has the same type in (Af , p̄) as it has in (Ag, p̄). For
a k-orbit P , this is not the case whenever {t, t′} ⊆ orig(P ). Ultimately, our goal is
to construct an orbit-invariant, orbit-diagonal, and odd-filled similarity matrix S that
k-blurs the twist. Because the blocks on the diagonal of S arise from orbits of the
same type and because the characteristic matrices of orbits of the same type have to be
simultaneously similar, we first want to define a bijection orbk′((Af , p̄)) → orbk′((Ag, p̄))
for every k′ ≤ 2k that preserves the orbit types. For this, we want to construct a function
τ : A≤2k → A≤2k that preserves the type of tuples. Then τ preserves orbit types, too.
To do so, we pick a base vertex c satisfying distG(t, c) > 2k and a path (c, . . . , t′, t).
We consider the path-isomorphism ϕτ that twists the base edge {t, t′} and the base edge
incident to c in the chosen path. That is, between ϕτ (Af ) and Ag a base edge incident to c
is twisted but the base edge {t, t′} is not. For the moment assume that we only consider
connected tuples and thus only connected orbits. Let τ be the function that applies the
path-isomorphism ϕτ to every tuple ū with {t, t′} ⊆ orig(ū) and is the identity function on
all others. Let ū ⊆ A≤2k be such a tuple with {t, t′} ⊆ orig(ū). Because distG(t, c) > 2k
and because we consider connected tuples, we have that c /∈ orig(ū). Hence, we have
Ag[orig(ū)] = ϕτ (Af )[orig(ū)] and ū has the same type in (Af , p̄) as τ(ū) has in (Ag, p̄).
Consequently, for all k′ ≤ 2k and P ∈ orbk′((Af , p̄)) it holds that τ(P ) ∈ orbk′((Ag, p̄))
and τ(P ) has the same type in (Ag, p̄) as P has in (Af , p̄).

Generalized Blurrers. Next we transfer the concept of a blurrer to the k-ary case. Def-
inition 7.32 of a (q, d)-blurrer requires that there seems to be a twist at index 1 but none
at the other indices when considering only one of the d entries of the blurrer elements.
Although, all tuples ξ in a blurrer satisfy ∑ ξ = 0. We require the same property in the
k-ary case, but now not only consider a single index at a time but sets of k many indices.
We will generalize (q, d)-blurrers to (k, q, a, d)-blurrers, where k is the arity, q specifies
the ring Z2q , the length of the tuples in the blurrer is d, and a ∈ Z2q is the value of the
twist (which was fixed to 2q−1 before). Showing the existence of such blurrers will be
more difficult, in particular, we will have to consider, for a given k, the ring Z2q for a
sufficiently large q = q(k).

In the 1-ary case, we identified a tuple ξ ∈ Ξ with a local automorphism of the gadget
of a base vertex c. We now describe the approach in the k-ary case. Assume we are
given a generalized (k, q, a, d)-blurrer Ξ for arity k for some suitable q, a ∈ Z2q , and d.
We now require that the base graph G is regular of degree d. Recall that in Section 7.5
we blurred the twist between the base edges incident to c, of which one was the twisted
base edge: We used multiple local automorphisms (one for each ξ ∈ Ξ) to distribute the
twist among these base edges. When considering connected 2k-tuples, we want to ensure
that the origin of every 2k-tuple contains at most one of the base edges between which
we blur the twist. So it is not possible to blur the twist between the incident base edges
of a single base vertex. Instead, we will choose base vertices t1, . . . , td and t′1, . . . , t

′
d, such

that t = t1, t′ = t′1, and such that, for every i ∈ [d], there is a simple path s̄i of length
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at most 2k starting at c and ending with (t′i, ti). These paths are chosen to form a star,
i.e., the paths s̄i are disjoint apart from c (see Figure 7.3 and compare to Figure 7.1).
Here it will be important to choose s̄1 to be the path we used to define the tuple-type-
preserving map τ in the previous paragraph. We will ensure that such paths exist by
requiring that the girth of G is large enough. We will blur the twist between the base
edges {ti, t′i}. In the 1-ary case, an element in a blurrer corresponded to an automorphism
of the gadget of c, or equivalently to a star-isomorphism, where the paths of the star have
length 1. In the k-ary case we will identify a tuple ξ ∈ Ξ with the star-isomorphism
ϕξ := π∗[ξ, s̄1, . . . , s̄d]. Again to preserve the type of tuples, we will only apply ξ to
tuples ū satisfying {ti, t′i} 6⊆ orig(ū) for all i ∈ [d]. That is, on such a ū, the action of ξ
could also be defined by an automorphism. This turns ξ into a “star-automorphism”.
Using a star in combination with the large girth ensures that the tips of the star, the
base edges {ti, t′i}, are sufficiently far apart. If we only had to deal with connected tuples,
this approach would be sufficient to construct a similarity matrix (and in particular, we
could even use easier blurrers). However, disconnected tuples complicate matters.

Disconnected Tuples and Orbits. We have to consider disconnected tuples and orbits.
While for connected tuples the approach just described is local (we only considered the
2k-neighborhood of c), there are disconnected tuples containing atoms scattered in the
structure. However, these atoms belong to different components of the tuple (cf. Defini-
tion 7.16). Lemma 7.17 tells us that the components of disconnected orbits are indepen-
dent whenever the connectivity of G is sufficiently large. In a first step, we will salvage
the previous approach by applying the path- and the star-isomorphism to components
of tuples and not to entire tuples. That is, if a component C contains the twisted base
edge {t, t′} = {t1, t′1}, then we apply the type-preserving map τ to this component. If
{ti, t′i} 6⊆ C for all i ∈ [d], i.e, C contains none of the base edges between which we blur
the twist, we apply the star-automorphisms ξ to this component. (Note that ξ is the
identity map unless C intersects nontrivially with at least one path s̄i.)

This approach fails when for a 2k-orbit P the two k-orbits P1 := P |{1,...,k} and
P2 := P |{k+1,...,2k} contain the center c of the star and some of the base edges {ti, t′i}
in their origin. Because the base edges {ti, t′i} are contained in the origin, we need the
blurrer properties to show that we blur the twist. This is only possible if for two k-tuples
ū ∈ P1 and v̄ ∈ P2 it only depends on up to k indices of a tuple ξ ∈ Ξ whether ξ(ū)v̄ is
in the same orbit as ūv̄. But because the center c is in the origin, this actually depends
on all d entries of ξ and the blurrer properties do not apply. This is why we will have
to distinguish two kinds of k-orbits. We call a k-orbit P blurrable if c /∈ orig(P ). For
non-blurrable orbits, we need another technique that we describe in the following.

Recursive Blurring. Now consider a 2k-orbit P , such that both P1 := P |{1,...,k} and
P2 := P |{k+1,...,2k} are non-blurrable k-orbits. Let us quickly recall the 1-ary case and
assume for the moment that P is a 2-orbit. It was possible to blur the twist in Lemma 7.37
because we summed over the tuples ξ(ū)v̄ for all ξ ∈ Ξ. Assume that the origin of P is
the twisted edge {c, t} and that the origin of P2 is c. Then, for every v ∈ P , it held that
ξ(v) 6= ξ′(v) for every ξ 6= ξ′ in the blurrer. But for P1 only one index of the blurrer was
relevant. That is, for all u ∈ P1, v ∈ P2, and ξ, ξ′ ∈ Ξ such that ξ(1) = ξ′(1), we had that
ξ(u) = ξ′(u) and that ξ(u)v is in the same orbit as ξ′(u)v. So we were able to apply the
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properties of a blurrer, i.e., when summing over ξ(u)v for all ξ ∈ Ξ and if only one index
matters, then the twist vanishes. The 2-orbits for which both P1 and P2 have origin {c}
did not cover the twisted base edge and so did not pose a problem in the 1-ary case.

Now consider the k-ary case again. Here of course there are orbits P such that both P1
and P2 are non-blurrable and they contain the twisted base edge and the center c in their
origins. Let ū ∈ P1 and v̄ ∈ P2. Both ū and v̄ contain an atom with origin c and the
blurrer properties do not apply because the orbit of ξ(ū)v̄ is different for every ξ ∈ Ξ
(fixing one atom of origin c separates the gadget of c into singleton orbits). That is, when
summing over all ξ ∈ Ξ, we map every ūv̄ to the tuple ξ(ū)v̄, whose type in (ϕξ(Ag), p̄) is
the same as the type of ūv̄ in (Af , p̄). But in (Ag, p̄) the tuple ξ(ū)v̄ has a different type.
Between (Ag, p̄) and (ϕξ(Ag), p̄) the base edges {ti, t′i} are additionally twisted and the
values of the twists depend on ξ. This, in some sense, introduces other twists, but only
for said 2k-orbits P , where both P1 and P2 are non-blurrable.

The idea to solve is problem is to fix an arbitrary atom pc with origin c and consider
(k − 1)-orbits of (A, p̄pc), which is justified by Corollary 7.19. This can be done because
all non-blurrable orbits contain c in its origin. For every ξ ∈ Ξ, we will recursively obtain
a matrix Sξ that (k− 1)-blurs the twist between (Af , p̄pc) and (ϕ91ξ (Ag), p̄pc). We use the
inverse ϕ91ξ of the star-isomorphism ϕξ because we want to revert the twists introduced
by ϕξ. Here the need arises to blur a twist of value a 6= 2q−1. Combining the blurrer Ξ
with the matrices Sξ to a matrix S that k-blurs the twist will become formally tedious.
In particular, we will need to ensure that the Sξ act “independently” on the {ti, t′i}, which
we discuss next.

Active Region and Blurrers. The matrix S is defined for blocks of k-orbits. Blocks for
blurrable k-orbits will be defined using the blurrer Ξ, blocks for non-blurrable k-orbits
will be defined using Ξ and the matrices Sξ. With this approach we will show that S is
a similarity matrix for all orbits P , for which either P1 and P2 are both blurrable or P1
and P2 are both non-blurrable. In the former case, we will use the blurrer property, in
the latter case, we will use induction. The case that P1 is blurrable and P2 is not or
vice versa remains. We have to show that χP · S = S · χQ (for Q = τ(P ), which has the
same type as P ). Assume that P1 is blurrable and P2 is not. For S · χQ solely the block
SP1×Q1 of S is relevant. This block is defined using the blurrer Ξ because P1 is blurrable.
Similarly, for χP · S solely the block SP2×Q2 is relevant. This block is defined using the
blurrer Ξ and the matrices Sξ because P2 is non-blurrable.

To use the blurrer properties also for P2, we will define matrices Sξ, which blur multiple
twists at the base edges {ti, t′i}, as Sξ := Sξ,1 · . . . ·Sξ,d, where each Sξ,i only blurs a single
twist at the base edge {ti, t′i}. We will ensure that the active region of Sξ,i is bounded by
the r(k)-neighborhood of ti for some suitable r(k). We then enlarge the star such that
the paths s̄i have length greater than max{2k, r(k)}. Now, the active regions of the Sξ,i
are disjoint and we can use Lemma 7.46 to show that indeed all except k many of the Sξ,i
cancel. So finally, we can use the blurrer properties to show that S is a similarity matrix
for orbits P for which P1 is blurrable and P2 is not. We now start with generalizing
blurrers and then show the existence of the required similarity matrix.
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7.7.2 Blurrers

When dealing with arity k, the properties of a blurrer must be generalized from a single
index to sets of indices of size at most k. Let q, d ∈ N and Ξ ⊆ Zd2q . For K ⊆ [d] and
b̄ ∈ Z|K|2q we count the tuples contained in Ξ whose restriction to K equals b̄. We define

#K,b̄(Ξ) :=
∣∣∣{ c̄ ∈ Ξ

∣∣∣ c̄|K = b̄
}∣∣∣ mod 2.

De�nition 7.47 (k-ary Blurrer). Let d ≥ k, Ξ ⊆ Zd2q , and a ∈ Z2q . The set Ξ ⊆ Zd2q is
called a (k, q, a, d)-blurrer if it satisfies the following for all K ⊆ [d] with |K| = k:

(B1) ∑ ξ = 0 for all ξ ∈ Ξ.

(B2) If 1 ∈ K, then #K,(a,0,...,0)(Ξ) = 1.

(B3) If 1 /∈ K, then #K,0̄(Ξ) = 1.

(B4) #K,b̄(Ξ) = 0 for all other pairs of K and b̄.

The crucial property of a blurrer is the following:

Lemma 7.48. Let Ξ be a (k, q, a, d)-blurrer, K ⊆ [d] such that |K| = k, and define
ξtwst := (a, 0, . . . , 0) ∈ Zd2q . Every function f : Ξ|K → F2 satisfies∑

ξ∈Ξ
f(ξ|K) = f(ξtwst|K).

In particular, there is a ξtw ∈ Ξ such that ξtw|K = ξtwst|K.

Proof. By Conditions B2 and B3, we have ξtwst|K ∈ Ξ|K . Because f takes k-tuples as
input, it cannot distinguish whether it is applied to ξ|K or to ξtwst|K . Conditions B2, B3,
and B4 ensure that when summing over all ξ ∈ Ξ, all summands f(ξ|K) apart from
f(ξtwst|K) cancel (by Condition B4 and B2 if 1 ∈ K or by Condition B3 if 1 /∈ K). The
existence of a tuple ξtw ∈ Ξ as required follows from Conditions B2 and B3.

Note that while ξ only contains tuples satisfying ∑ ξ = 0, we have that ∑ ξtwst = a.

Lemma 7.49. Let Ξ be a (k, q, a, d)-blurrer. Then |Ξ| is odd.

Proof. Let K ⊆ [d] with |K| = k. We partition Ξ = M ∪N into

M :=
{
ξ ∈ Ξ

∣∣∣ ξ|K = ξtwst|K
}
,

N :=
{
ξ ∈ Ξ

∣∣∣ ξ|K 6= ξtwst|K
}
,

where ξtwst := (a, 0, . . . , 0) is the tuple from Lemma 7.48. The size of |M | is odd by
Condition B2 if 1 ∈ K and otherwise by Condition B3. By Condition B4, the size |N | is
even. If it was odd, then some b̄ would violate Condition B4.

We now construct blurrers.
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Lemma 7.50. If there is a (k, q, a, d)-blurrer Ξ, then

1. there is a (k, q, a, d′)-blurrer for every d′ ≥ d,

2. Ξ is a (k′, q, a, d)-blurrer for every k′ ≤ k, and

3. there is a (k, q, c · a, d)-blurrer for every c ∈ Z2q .

Proof. To prove the first statement, we just fill up the tuples of Ξ with zeros to be of
length d′. To prove the second statement, let K ′ ⊆ K ⊆ [d] such that |K| = k and let
b̄′ ∈ Z|K

′|
2q . Then

#K′,b̄′(Ξ) =
∑
b̄∈Zk2q ,
b̄|K′=b̄′

#K,b̄(Ξ).

Assume 1 ∈ K ′ and b̄′ = (a, 0, . . . , 0). Then for b̄ = (a, 0, . . . , 0) ∈ Zk2q we have b̄|K′ = b̄′

and #K,b̄(Ξ) = 1 by Condition B2. For all other b̄, we have #K,b̄(Ξ) = 0 by Condition B4.
So the sum is 1. The case that 1 /∈ K ′ and b̄ = 0̄ is similar using Condition B3. In the
remaining case all summands are 0 by blurrer Condition B4.

To prove the last statement, let c ∈ Z2q and set Ξ′ := {c · ξ | ξ ∈ Ξ}. If ∑ ξ = 0, then
clearly ∑ c · ξ = 0. We verify blurrer Condition B2, the others are similar. Let K ⊆ [d]
of size k and b̄ = (a, 0, . . . , 0) ∈ Zk2q . From Conditions B2 and B3 it follows that

#K,c·b̄(Ξ′) = #K,b̄(Ξ) +
∑

b̄′∈Zk2q ,
b̄′ 6=b̄,
c·b̄′=c·b̄

#K,b̄′(Ξ) = 1 +
∑

b̄′∈Zk2q ,
b̄′ 6=b̄,
c·b̄′=c·b̄

0 = 1.

Lemma 7.51. Let m,n ∈ N. If 0 < m < 2n, then
(

2n
m

)
is even. If m ≤ 2n− 1, then

(
2n−1
m

)
is odd.

Proof. Let k ∈ N and consider
(
k
m

)
. We write k and m in base 2 representation

m =
j∑
i=0

mi2i, k =
j∑
i=0

ki2i

for some suitable j and mi, ki ∈ {0, 1} for all i ∈ {0, . . . , j}. We apply Lucas’s Theo-
rem [21]: (

k

m

)
mod 2 =

j∏
i=0

(
ki
mi

)
mod 2,

where
(

0
1

)
= 0 and

(
0
0

)
=
(

1
0

)
=
(

1
1

)
= 1. That is,

(
k
m

)
mod 2 = 0 if and only if there is

an i ∈ {0, . . . , j} such that ki = 0 and mi = 1.

(a) Let k = 2n and 0 < m < k. Then there is an i < n such that mi = 1 . Because
k = 2n, ki = 0 and so

(
k
m

)
is even.

(b) Let k = 2n − 1 and m ≤ k. For every i < n, we have ki = 1. For every i such that
mi = 1, it holds that i < n. That is,

(
k
m

)
is odd.
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Lemma 7.52. For every i ∈ N, there is a (2i−1 − 1, i, 2i−1, 2i − 1)-blurrer.

Proof. We set k := 2i−1 − 1, d := 2i − 1, and define Ξ as follows:

Ξ1 :=
 (2i−1, a2, . . . , a2i−1)

∣∣∣∣∣∣
2i−1∑
j=2

aj = 2i−1, aj ∈ {0, 1} for every j
,

Ξ2 :=
 (2i−1 + 1, a2, . . . , a2i−1)

∣∣∣∣∣∣
2i−1∑
j=2

aj = 2i−1 − 1, aj ∈ {0, 1} for every j
,

Ξ := Ξ1 ∪ Ξ2.

To verify that Ξ is indeed a (k, i, 2i−1, d)-blurrer, let K ⊆ [d] be of size k and b̄ ∈ Zk2i . Set
K := [d] \K.

• Let 1 ∈ K and b̄ = (2i−1, 0, . . . , 0). Every ξ ∈ Ξ with ξ|K = b̄ is contained in Ξ1.
Because every ξ ∈ Ξ1 contains 2i−1 many 1-entries, ξ is of length d = 2i − 1, and
because b̄ contains k− 1 = 2i−1 − 2 many 0-entries, every ξ ∈ Ξ1 such that ξ|K = b̄
satisfies ξ|K = (1, . . . , 1). So there can be at most one such ξ ∈ Ξ1. It exists by
construction of Ξ1. Hence, #K,b̄(Ξ) = 1.

• Let 1 ∈ K and b̄ = (2i−1, b2, . . . , b2i−1), let bj ∈ {0, 1} for all j, and let not all bj
equal zero. Again, every ξ ∈ Ξ such that ξ|K = b̄ is contained in Ξ1. Because∑

b̄ ∈
{

2i−1 + 1, . . . , 2i−1 + k − 1
}

=
{

2i−1 + 1, . . . , 2i − 2
}

it holds that
m := −

∑
b̄ =

∑
ξ|K ∈

{
2, . . . , 2i−1 − 1

}
for every ξ ∈ Ξ1. By construction, {ξ ∈ Ξ1 | ξ|K = b̄}|[2i−1]\K is the set of all
0/1-tuples of length 2i−1 that contain exactlymmany ones. There are exactly

(
2i−1

m

)
such 0/1-tuples of length 2i−1. For all possible values of m, the number

(
2i−1

m

)
is

even by Lemma 7.51. We conclude that #K,b̄(Ξ) = 0.

• Let 1 ∈ K and b̄ = (2i−1 + 1, b2, . . . , b2i−1). Now, every ξ ∈ Ξ with ξ|K = b̄ is
contained in Ξ2. Then

m := −
∑

b̄ =
∑

ξ|K ∈
{

1, . . . , 2i−1 − 1
}

for every ξ ∈ Ξ2 because∑
b̄ ∈

{
2i−1 + 1, . . . , 2i−1 + 1 + (k − 1)

}
=
{

2i−1 + 1, . . . , 2i − 1
}
.

Again, there are
(

2i−1

m

)
many 0/1-tuples extending b̄ to a tuple ξ ∈ Ξ, which is an

even number by Lemma 7.51 and thus #K,b̄(Ξ) = 0.

• Let 1 ∈ K and b̄ not be covered by two cases before. Then there is no ξ satisfying
ξ|K = b̄ and so #K,b̄(Ξ) = 0.
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• Now the case that 1 /∈ K remains. If there is no ξ ∈ Ξ satisfying ξ|K = b̄, then
clearly #K,b̄(Ξ) = 0. So assume that there is such a ξ ∈ Ξ.

– Let us first consider Ξ1. Let ξ ∈ Ξ1. Then

0 =
∑

ξ =
∑

b̄+
∑

ξ|K =
∑

b̄+ 2i−1 +
∑

ξ|K\{1}.

The tuple ξ|K\{1} is a 0/1-tuple of length d− k − 1 = 2i−1 − 1. So

∑
ξ|K\{1} ∈

{
0, . . . , 2i−1 − 1

}
.

That is, if ∑ b̄ = 0, we obtain a contradiction because there is no ξ ∈ Ξ1
satisfying ξ|K = b̄ and #K,b̄(Ξ1) = 0. Otherwise, all ξ ∈ Ξ1 satisfying ξ|K = b̄

extend b̄ by a 0/1-tuple of length 2i−1 − 1 containing

m := −
∑

b̄− 2i−1 ∈
{

0, . . . , 2i−1 − 1
}

many ones. There are
(

2i−1−1
m

)
many 0/1-tuples of length d− k− 1 = 2i−1− 1

that contain exactly m ones, which is an odd number by Lemma 7.51. Hence,
#N,b̄(Ξ1) = 1.

– Now consider Ξ2. For every ξ ∈ Ξ2 such that ξ|K = b̄, it similarly holds that

0 =
∑

b̄+ 2i−1 + 1 +
∑

ξ|K\{1}

and thus ∑ ξ|K\{1} ∈ {0, . . . , 2i−1}. Every ξ ∈ Ξ1 satisfying ξ|K = b̄ extends b̄
by a 0/1-tuple of length 2i−1 − 1 containing

m := −
∑

b̄− 2i−1 − 1 ∈
{

0, . . . , 2i−1 − 1
}

many ones. The number m is again odd by Lemma 7.51. Hence, #N,b̄(Ξ2) = 1.

Together, if b̄ = 0, then #K,b̄(Ξ) = #K,b̄(Ξ1) + #K,b̄(Ξ2) = 0 + 1 = 1. Otherwise,
#K,b̄(Ξ1) + #K,b̄(Ξ2) = 1 + 1 which is 0 modulo 2.

Computer experiments suggest that, for a given 2i−2 ≤ k ≤ 2i−1 − 1, our choice of q = i
is minimal to construct a (k, q, 2i−1, d)-blurrer and that d = 2i − 1 could be improved in
the case that k 6= 2i−1 − 1, but that d is minimal in the case that k = 2i−1 − 1.

We now lift a (k, q, a, d)-blurrer from the ring Z2q to the ring Z2q+` . Here we have
two choices, both of which we need later: The first is via the embedding of Z2q into Z2q+`

whereas the second will not change the value a.

Lemma 7.53. Let q, ` ∈ N and ι : Z2q → Z2q+` be the embedding of Z2q in Z2q+` defined by
a 7→ 2`a. If Ξ is a (k, q, a, d)-blurrer, then ι(Ξ) is a (k, q + `, ι(a), d)-blurrer.

Proof. The proof is straightforward from the definition.
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Lemma 7.54. For all i, ` ∈ N, there is a (2i−1 − 1, i+ `, 2i−1, 2i − 1)-blurrer.

Proof. Let Ξ be the (2i−1 − 1, i, 2i−1, 2i − 1)-blurrer given by Lemma 7.52 and assume
c = 2`+1−1 ∈ Z2i+` . Let h be the following function that maps Ξ to Ξ′ := {h(ξ) | ξ ∈ Ξ}:

ξ 7→
(
− c ·

d∑
j=2

ξj, c · ξ2, . . . , c · ξd
)
.

The operations are all in Z2i+` . By definition ∑ ξ′ = 0 for every ξ′ ∈ Ξ′. Let K ⊆ [d] be
of size k and b̄ ∈ Zk2i+` . Note that c is a unit because c is odd.

• Let 1 /∈ K. Because c is a unit, multiplication with c is a bijection and thus we
have #K,b̄(Ξ′) = #K,c91·b̄(Ξ), which is 1 if and only if c91 · b̄ = b̄ = 0̄.

• Let 1 ∈ K. We argue that also the action of h on the first position is a bijection.
Because ∑ ξ = 0 for all ξ ∈ Ξ, the map ξ1 7→

∑d
j=2 ξj is a bijection and so is the

action of h because c is a unit. So we have #K,b̄(Ξ′) = #K,ā(Ξ) for some ā ∈ Zk2i .
It holds that −ca1 = −(2`+1 − 1)a1 = a1 − 2`+1a1 (over Z2i+`). So a1 = 2i−1

if and only if −ca1 = 2i−1 − 2`+12i−1 = 2i−1 − 2`+i = 2i−1 − 0 = 2i−1. Hence,
b̄ = (2i, 0, . . . , 0) if and only if ā = (2i, 0, . . . , 0), which is the case if and only if
#K,b̄(Ξ′) = 1.

7.7.3 Similarity Matrix for One Round
We now construct a similarity matrix k-blurring the twist. To be able to define this
matrix, we need bounds on the degree, the girth, and the connectivity of the base graph
as well as certain guarantees for the placement of the pebbles. Therefore, we define
the following functions that will give us the needed bounds for the given arity k and a
number of parameters m. In the following definitions, let i ∈ N be the unique number
that satisfies 2i−1 − 1 < k ≤ 2i − 1 for the given value of k.

r(k) :=
1 if k = 1,

max{4 · r(k − 1) + 2, 2k + 2} otherwise,

θ(k) :=
1 if k = 1,
i+ θ(k − 1) otherwise,

d(k,m) :=
3 +m if k = 1,

max{2i+1 +m− 1, d(k − 1,m+ 1)} otherwise,
q(k) := 1 + θ(k).

Lemma 7.55. For all k,m ∈ N,

• every regular and (2k + m + 1)-connected base graph G = (V,E,≤) of degree
d ≥ d(k,m) and girth at least 2r(k + 1),

• every base edge {t, t′} ∈ E,
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c

t′1

t1

t′2 t2t′dtd

s̄1

s̄2s̄d

θ
distG(c, t1)
= r(k)+2

7.3 The star used to blur the twist in the k-ary case. The star s̄1, . . . , s̄d in the base graph G.
Each path s̄i is contained in its own tree rooted at c (depicted in blue) because G has girth greater
than 4r(k). The base edge {t1, t′1} is twisted by f and g by the value θ.

• every q ≥ q(k),

• every θ = a · 2θ(k) ∈ Z2q (for an arbitrary a ∈ Z2q),

• all f, g : E → Z2q such that g({t′, t}) = f({t′, t}) + θ and f(e) = g(e) for all
e ∈ E \ {{t, t′}}, and

• every m-tuple p̄ ∈ Am of Af := CFI2q(G, f) and Ag := CFI2q(G, g), both with
universe A, for which distG(t, orig(p̄)) > r(k + 1),

there is an odd-filled Ak × Ak matrix S, both orbit-diagonal and orbit-invariant over
(Af , p̄) and (Ag, p̄), that k-blurs the twist between (Af , p̄) and (Ag, p̄) and those active
region satisfies Af,g,p̄(S) ⊆ N

r(k+1)
G (t).

Proof. The proof is by induction on k and spans the rest of this section. We already proved
the case k = 1 in Lemmas 7.39 and 7.41 for q ≥ 2 and θ = 2q−1 using a (1, q, 2q−1, d)
blurrer. This can easily be adapted for the case that θ = a · 2θ(1) = 2a for some a ∈ Z2q .
We start with a (1, q, 2, 3)-blurrer given by Lemma 7.54 and turn it into a (1, q, 2a, d)-
blurrer using Lemma 7.50. Then the proof proceeds exactly as before.

So assume k > 1. Let m ∈ N, G = (V,E,≤) be a regular and (2k+m+ 1)-connected
base graph of degree d ≥ d(k,m) and girth at least 2r(k + 1), and {t, t′} ∈ E. The
bound on the connectivity of G is needed in the following to apply the results from
Sections 7.3.2, 7.4, and 7.6 and we will not further mention this when applying them.
Let q ≥ q(k). As before, we denote, for every f : E → Z2q , by Af the CFI structure
CFI2q(G, f) with universe A (which is equal for all such f). Let f, g : E → Z2q such that
f(e) = g(e) for all e ∈ E \ {{t, t′}} and g({t, t′}) = f({t, t′}) + θ, where θ = a · 2θ(k) for
some a ∈ Z2q . Furthermore, let p̄ ∈ Am with distG(t, orig(p̄)) > r(k + 1) be arbitrary but
fixed. In particular, the functions f and g do not twist orig(p̄).

Let c be a base vertex with distG(c, t′) = r(k)+1 and distG(c, t) = r(k)+2. Choose base
vertices t = t1, . . . , td and t′ = t′1, . . . , t

′
d such that there are simple paths s̄i = (c, . . . , t′i, ti)

of length r(k) + 2 > 2k + 1 for all i ∈ [d] forming a star. Such paths exist because the
girth of G is at least 2r(k + 1) > 2r(k) + 4 and the degree is d (cf. Figure 7.3).
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Claim 1. We have distG(t′i, orig(p̄)) ≥ 2r(k) for every i ∈ [d] and distG(t′i, t′j) = 2r(k) + 2
for every i 6= j.

Proof. By choice of c, distG(c, t′i) = r(k) + 1. Let i, j ∈ [d] such that i 6= j. The
t′i-t′j-path obtained by joining s̄i and s̄j (after removing ti and tj, respectively) has length
2 · (r(k) + 1) by construction. If this path was not a shortest path, then we would obtain
a cycle of length less than 4 · (r(k) + 1). This contradicts that G has girth at least
2r(k + 1) ≥ 4 · (r(k) + 1). It follows that

distG(t′i, t′j) = distG(t′i, c) + distG(c, t′j) = 2r(k) + 2.

Let v ∈ orig(p̄). Then distG(v, t′1) ≤ distG(v, t′i) + distG(t′i, t′1). By assumption, we have
distG(v, t′1) ≥ r(k + 1) = 4r(k) + 2 and by the former argument distG(t′i, t′1) = 2r(k) + 2.
It follows that

distG(v, t′i) ≥ distG(v, t′1)− distG(t′1, t′i) = 4r(k) + 2− 2r(k)− 2 ≥ 2r(k). a

We call a set C ⊆ V a 2k-component if |C| ≤ 2k and G[C] is connected. Every
2k-component is a component of some 2k-orbit (cf. Definition 7.16). Because k is fixed
in this proof, we just call them components in the following.

De�nition 7.56. We call a component C

• an i-tip component if {ti, t′i} ⊆ C and i ∈ [d],

• a star component if C intersects the star s̄1, . . . , s̄d nontrivially and ti /∈ C for all
i ∈ [d],

• an i-star component if C is a star component, C intersects the path s̄i nontrivially,
and for every other j 6= i, C intersects the path s̄j trivially,

• a star center component if C is a star component but not an i-star component
for every i ∈ [d],

• and otherwise a sky component.

Claim 2. Let C and C ′ be components such that C ′ ⊆ C.

1. If C is an i-star component, then C ′ is an i-star component or a sky component

2. If C is a star component, then C ′ is a star component or a sky component.

3. If C is an i-tip component, then C ′ is an i-tip component, an i-star component, or
a sky component.

4. If C is a star component, then C is an i-star component for some i if and only if
c /∈ C.
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Proof. To show Assertion 1, let C be an i-star component. By definition, C only has a
nontrivial intersection with s̄i and ti /∈ C. So every C ′ ⊆ C either has a trivial intersection
with every s̄j, i.e., C ′ is a sky component, or a nontrivial intersection only with s̄i and
ti /∈ C ′ ⊆ C, i.e., C ′ is an i-star component. The Assertion 2 where C is a star component
is similar.

For Assertion 3, let C be an i-tip component. Because distG(t′i, t′j) = 2r(k)+2 > 4k+4
(Claim 1), distG(t′i, c) = r(k) + 1 > 2k, |C| ≤ 2k, and because G[C] is connected, C has a
trivial intersection with every s̄j for all j 6= i. Let C ′ ⊆ C. Now C ′ is an i-tip component
if {ti, t′i} ⊆ C ′, an i-star component if otherwise C ′ intersects nontrivially with s̄i, or
otherwise a sky component.

Finally, to prove Assertion 4, let C be a star component. If C is also an i-star
component, then c /∈ C because otherwise C intersects nontrivially with all s̄j. For
the reverse direction, let c /∈ C and C have a nontrivial intersection with s̄i. Because
distG(t′i, t′j) = 2r(k) + 2 > 4k + 4, the component C has size |C| ≤ 2k, its induced sub-
graph G[C] is connected, and because c /∈ C, the component C cannot have a nontrivial
intersection with another s̄j. Hence, C is an i-star component. a

To blur the twist, we want to distribute it among the base edges {ti, t′i} (for all i ∈ [d])
similar to the 1-ary case. Here we blurred the twist between all base edges adjacent to c.
In the 1-ary case, 1-tuples always had the same type in (Af , p̄) and in (Ag, p̄). However,
for k-tuples, this is no longer the case. We now want to construct a function that maps
a tuple ū to a tuple v̄ such that v̄ has the same type in (Ag, p̄) as ū has in (Af , p̄). To do
so, we use a path-isomorphism on the path s̄1. We generalize this to not only “repair”
the types for a twist at the base edge {t1, t′1} but to consider multiple twists at all base
edges {ti, t′i}.

Let ā ∈ Zd2q . We define a function τā : A≤2k → A≤2k that preserves the size of tuples.
Set ϕā,iτ := ~π[ai, s̄i] (cf. Definition 7.5). The function τā applies ϕā,iτ to tuples, but only
to those components containing some of the base edges {ti, t′i}. These are precisely the
i-tip components:

τā(ū) := (v1, . . . , v|ū|),where ū = (u1, . . . , u|ū|) and

vj :=
ϕā,iτ (uj) if orig(uj) ∈ C and C is an i-tip component of ū,
uj otherwise.

Given a function h : E → Z2q , we write h + ā for the function h′ : E → Z2q such that
h′({ti, t′i}) = h({ti, t′i}) + ai for all i ∈ [d], and h′(e) = h(e) otherwise.

Claim 3. Assume ā ∈ Zd2q , h : E → Z2q , and k′ ≤ 2k. If P ∈ orbk′((Ah, p̄)), then
τā(P ) ∈ orbk′((Ah+ā, p̄)) and τā(P ) has the same type in (Ah+ā, p̄) as P has in (Ah, p̄).

Proof. Let P ∈ orbk′((Ah, p̄)). It suffices to consider the case that P has a single com-
ponent C because τā is defined component-wise and, by Lemma 7.17, the type of a
disconnected orbit is given by the types of the restrictions to the components. If C does
not contain ti and t′i for some i ∈ [d], then τā is the identity function (cf. the blue tuple
in Figure 7.4). Because P does not cover the twisted base edge, it has the same type in
(Ah, p̄) and in (Ah+ā, p̄).
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Ah

Ah+ā

Ahi

length greater 2k

path isomorphism ϕā,iτ

type-preserving function τā

ti t′i c

ti t′i c

ti t′i c

τā τā

ϕā,iτ ϕā,iτ

7.4 Preserving the types of 2k-orbits. The �gure shows the path ti and the three struc-
tures Ah, Ah+ā, and Ahi . A big circle depicts a gadget for the given base vertex. An edge twisted
by h and h + ā is depicted by a twisted connection in Ah+ā. Respectively, an edge twisted by h
and hi is depicted by a twisted connection in Ahi . The �gure shows a red and a blue connected
tuple of Ah of length at most 2k. A vertex represents some entry in the tuple. The image of the
tuples under the path isomorphism ϕā,iτ is shown in Ahi and the image under the type-preserving
function τā is shown in Ah+ā. The function τā applies ϕā,iτ only to tuples whose origin contains the
base edge {ti, t′i}.

So assume {ti, t′i} ⊆ C. This is the case for exactly one i ∈ [d] by Claim 2. Let hi
be the function equal to h for all base edges apart from hi({ti, t′i}) := h({ti, t′i}) + ai
and hi({c, ci}) := h({c, ci}) − ai, where ci is the neighbor of c used in the path s̄i. By
Claim 1, the parameters p̄ have distance 2r(k) to t′i. In particular, the parameters p̄ are
not contained in s̄i. So ϕā,iτ is an isomorphism between (Ah, p̄) and (Ahi , p̄) by Lemma 7.6.
Because P is a k′-orbit and k′ ≤ 2k, neither c nor its neighbors (in particular not ci) are
contained in C, because 2k < distG(c, t′i) = r(k) + 1. So τā(P ) = ϕā,iτ (P ) has the same
type in (Ahi , p̄) as P has in (Ah, p̄). Between (Ah+ā, p̄) and (Ahi , p̄) all base edges {t`, t′`}
for ` 6= i and the base edge {c, ci} are potentially twisted. Because c /∈ C and {t`, t′`} 6⊆ C
for every ` 6= i, we have (Ahi , p̄)[C] = (Ah+ā, p̄)[C] (cf. the red tuple in Figure 7.4). Hence,
the type of ϕā,iτ (P ) in (Ahi , p̄) is equal to the type of τā(P ) in (Ah+ā, p̄). a

We now construct a blurrer for our setting. Let i ∈ N such that 2i−1 − 1 < k ≤ 2i − 1.
1. By Lemma 7.54, there is a (2i − 1, q − θ(k − 1), 2i, 2i+1 − 1)-blurrer (note that
q − θ(k − 1) ≥ q(k)− θ(k − 1) = i+ 1).

2. We use Lemma 7.53 to turn it into a (2i − 1, q, 2i+θ(k−1), 2i+1 − 1)-blurrer by em-
bedding Z2q−θ(k−1) into Z2q .

3. We use Lemma 7.50 to get a (k, q, 2i+θ(k−1), 2i+1 − 1)-blurrer because k ≤ 2i − 1,

4. then a (k, q, 2i+θ(k−1), d)-blurrer because d ≥ d(k,m) ≥ 2i+1 − 1, and finally

5. a (k, q, a · 2i+θ(k−1), d)-blurrer Ξ.
By this construction, for every ξ ∈ Ξ and every j ∈ [d], there is some b ∈ Z2q such that
ξ(j) = b ·2θ(k−1) because we embedded Z2q−θ(k−1) in Z2q . Let ξtwst = (a ·2i+θ(k−1), 0, . . . , 0)
be the tuple given for Ξ by Lemma 7.48. Then g = f + ξtwst. We set τ := τξtwst .
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Corollary 7.57. If k′ ≤ 2k and P ∈ orbk′((Af , p̄)), then τ(P ) ∈ orbk′((Ag, p̄)) and τ(P )
has the same type in (Ag, p̄) as P has in (Af , p̄).

Proof. The assertion follows from Claim 3. a

We have seen that with the function τ we can “repair” the types of the orbits, but τ
introduces inconsistencies between tuples along the path s̄1. This can already be seen
for k = 2: Consider a 2-tuple (u, v) with origin (t1, t′1) and the 2-tuple (v, w) with origin
(t′1, u), where u is the next base vertex in the path s̄1. Then τ((u, v)) = (u, v′) for some
v′ 6= v but τ((v, w)) = (v, w). So clearly the composed 4-tuple (u, v, v, w) has a different
type than (u, v′, v, w). For these inconsistencies, we use the blurrer Ξ as follows.

We now define another function which according to a ξ ∈ Ξ “distributes” the twists
among the base edges {ti, t′i} using a star isomorphism. We associate with each ξ ∈ Ξ a
function ψξ : A≤k → A≤k that preserves tuple sizes: Set ϕξ := π∗[ξ, s̄1, . . . , s̄d] (cf. Defini-
tion 7.7). Then define ψξ : A≤k → A≤k as follows: Let ū ∈ A≤k. We set

ψξ(ū) := (v1, . . . , v|ū|),where ū = (u1, . . . , u|ū|) and

vi :=
ϕξ(ui) if orig(ui) ∈ C and C is a star component of ū,
ui otherwise.

That is, we apply ϕξ to all components of ū that do not contain the tips of the star
s̄1, . . . , s̄d. On the sky components ϕξ is the identity function anyway. From now on, we
will identify ξ with ψξ and write ξ(ū).

Claim 4. Let ū ∈ A` and the components of ū be partitioned into D and D′. Then
τā(ū) = τā(ūD)τā(ūD′) and ξ(ū) = ξ(ūD)ξ(ūD′) for all ā ∈ Zd2q and ξ ∈ Ξ.

Proof. The claim is immediate because τā and ψξ are defined component-wise. a

Claim 5. For all ā ∈ Zd2q and ξ ∈ Ξ, the functions τā, ψξ, and every automorphism
ϕ ∈ Aut((Af , p̄)) = Aut((Ag, p̄)) commute.

Proof. The functions τā and ψξ are defined component-wise by isomorphisms. We saw in
Section 7.3.1 that isomorphisms between CFI structures are composed of automorphisms
of each gadget. Because the automorphism group of a gadget is abelian (Lemma 7.15),
the said functions commute. a

De�nition 7.58 (Orbit-Automorphism). A function ζ : A≤2k → A≤2k is called an orbit-
automorphism if, for every P ∈ orbk′((Af , p̄)) = orbk′((Ag, p̄)) with k′ ≤ 2k, there
is an automorphism ϕP ∈ Aut((Af , p̄)) = Aut((Ag, p̄)) such that ζ(ū) = ϕP (ū) for all
ū ∈ P .

That is, an orbit-automorphism is a function whose action on a single orbit is the action
of an automorphism. For different orbits, the corresponding automorphisms may be
different. This matches the definition of an orbit-invariant matrix (cf. Definition 7.25),
which is invariant under all orbit-automorphisms.
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Claim 6. Every ξ ∈ Ξ is an orbit-automorphism.

Proof. By Lemma 7.17, it suffices to show the claim for connected orbits P ∈ orbk′((Af , p̄))
with k′ ≤ 2k. If the origin of P is not a star component, then ξ is the identity function
on P and so clearly an orbit-automorphism. Otherwise, the origin C := orig(P ) is a star
component. Then ti /∈ C for all i ∈ [d]. We show that there are paths s̄′i = (t′i, ti, . . . , t1, t′1)
that are completely disjoint from orig(p̄) and possibly apart from t′i, t

′
1 disjoint from C.

Set C ′ := C \ {t′i | i ∈ [d]}. Consider the graph G− (C ′ ∪ orig(p̄)). We removed at most
|orig(p̄)|+k′ ≤ 2k+mmany base vertices. BecauseG is (2k+m+1)-connected, the claimed
paths exist in G− (C ′ ∪ orig(p̄)). We then use path-isomorphisms ϕi := ~π[ξ(i), s̄′i] for all
i ∈ [d] \ {1} to move the twist introduced by ψξ at the base edge {ti, t′i} to the base edge
{t1, t′1}. We set ψ := ψξ ◦ ϕ2 ◦ · · · ◦ ϕd. Now, we have that (Af , p̄) ∼= ψ((Af , p̄)) = (Af , p̄)
by Lemmas 7.6 and 7.8. Let ū ∈ P . The isomorphisms ϕi are the identity on atoms in
orig(P ) because ϕi is the identity on t′i and t′1 (cf. Definition 7.5) and, for every i ∈ [d],
other base vertices in orig(P ) are not contained in s̄′i . That is, P = ψ(P ) = ψξ(P ) = ξ(P )
and ξ is an orbit-automorphism. a

We show that ξ and τξ together preserve types. That is, for ūv̄ of length at most 2k,
the tuple τξ(ξ(ū))τξ(ξ(v̄)) has the same type as the tuple τξ(ūv̄). This is not true when
applying only τξ to ū and v̄ because their origins may overlap.

Claim 7. Let h : E → Z2q , k′ ≤ 2k, P ∈ orbk′((Ah, p̄)), and ξ ∈ Ξ. For all ūv̄ ∈ Ak′, we
have ūv̄ ∈ P if and only if τξ(ξ(ū))τξ(ξ(v̄)) ∈ τξ(P ).

Proof. Set P1 := P |{1,...,|ū|} and P2 := P |{|ū|+1,...,k′}. Let Ci
1, . . . , C

i
`i

be the components
of Pi for every i ∈ [2]. Because τξ and ξ are defined component-wise, it suffices by
Lemma 7.17 to assume that P has a single component C. We need to verify that ūv̄ ∈ P
if and only if τξ(ξ(ū))τξ(ξ(v̄)) ∈ τξ(P ). The component C is the union of the Ci

j. We
make the following case distinction:

(a) Assume C is an n-tip component. For every i ∈ [2], let DT
i be the set of the n-tip

components in Ci
j, let DS

i be the set of the n-star components in Ci
j, and let DR

i be
the set of sky components in Ci

j. This yields a partition of all Ci
j by Claim 2.

Then we have, by the definitions of τξ and ξ, that ξ is the identity function on DT
i , τξ

is the identity on DS
i , and both are the identity on DR

i . That is,

τξ
(
ξ(ū))τξ(ξ(v̄)

)
= τξ

(
ξ(ūDT1 ūDS1 ūDR1 )

)
τξ
(
ξ(v̄DT2 v̄DS2 v̄DR2 )

)
= τξ(ūDT1 )ξ(ūDS1 )τξ(ūDR1 )τξ(v̄DT2 )ξ(v̄DS2 )τξ(v̄DR2 ). (?)

When working on the whole component C, τξ applies ϕξ,nτ to atoms in components
of DS

1 and DS
2 because C is an n-tip component. We see that ϕξ|DSi = ϕξ,nτ |DSi

because DS
i is an n-star-component and so does not contain c (cf. Definitions 7.5

and 7.7 and the definitions of ϕξ and ϕξ,nτ ). It follows that

(?) = τξ(ūDT1 ūDS1 ūDR1 v̄DT2 v̄DS2 v̄DR2 ) = τξ(ūv̄).

So ūv̄ ∈ P if and only if τξ(ξ(ū))τξ(ξ(v̄)) = τξ(ūv̄) ∈ τξ(P ).
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(b) Otherwise, C is not a tip component. We distinguish two more cases:

• If C is a star component, let DS
i be the set of star components Ci

j and DR
i

be the set of sky components Ci
j for all i ∈ [2]. There are no tip components

among the Ci
j by Claim 2. So again, we partitioned all components Ci

j. Now τξ
is the identity function on all DS

i and DR
i and ξ is the identity on all DR

i . So we
have ūv̄ ∈ P if and only if τξ(ξ(ū))τξ(ξ(v̄)) = ξ(ū)ξ(v̄) = ξ(ūv̄) ∈ τξ(P ) = P
by Claim 6.

• Otherwise, C is a sky component and both τξ and ξ are the identity function
on C and all Ci

j and the claim follows immediately. a

Using the blurrer Ξ, we will be able to blur the twist in many cases, but not in all.
The problem is the following: If we only look at k many of the {ti, t′i} base edges, then
the blurrer properties will ensure that we cannot see the twist, i.e., “summing” over all
elements in the blurrer maps a 2k-orbit of (Af , p̄) to a 2k-orbit of the same type in (Ag, p̄)
similar to the 1-ary case. Let us briefly recall the arguments to prove Lemma 7.37, which
shows that summing over blurrer elements indeed yields a matrix blurring the twist for
arity 1. There are two cases: First, for a tuple (u, v) with origin (c, c) the action of
every ξ ∈ Ξ was the action of an automorphism, so (ξ(u), v) and (u, ξ91(v)) were in the
same orbit. Second, for a tuple (u, v) with origin (c, t1) only one index (namely the first
for t1) was relevant: ξ(u)v and ξ′(u)v are in the same orbit if ξ(1) = ξ′(1). So whenever
ξ(1) = ξ′(1), the terms for ξ(u)v and ξ′(u)v canceled in the summation. The blurrer
properties ensured that only one term for ξ(u)v of the same type in (Ag, p̄) as uv in
(Af , p̄) remained.

For arity k the two cases (automorphism or blurrer properties) can be mixed. Consider
k = 2 and a 4-tuple ū with origin (c, t′1, c, t1). Then, for every ξ, ξ′ ∈ Ξ, both ξ(u1u2)u3u4
and ξ′(u1u2)u3u4 are in the same orbit if and only if ξ = ξ′ (because fixing one atom
with origin c splits the gadget of c into singleton orbits). That is, we cannot argue
only with the blurrer properties. In general, however, the two tuples ξ(u1u2)u3u4 and
u1u2ξ

91(u3u4) are not in the same orbit because no automorphism that maps u1u2 to
ξ(u1u2) is the identity on u4 but ξ91(u3u4) is the identity on u4. So we also cannot argue
only with automorphisms. The techniques of the 1-ary case can only be applied if c is
not in the origin of at least one of u1u2 and u3u4.

In general, let P ∈ orb2k((Af , p̄)) and ū ∈ P . Then in χP the first k positions of ū will
serve as row index and the remaining k positions as column index. The problem with
the blurrer only occurs if both the first and second half of ū contain c in its origin. So
we make a case distinction on whether a k-orbit contains c in its origin.
De�nition 7.59 (Blurrable Orbit). An orbit P ∈ orbk((Af , p̄)) is blurrable if c /∈ orig(P ).
In order to blur the twist for non-blurrable orbits, we use a recursive approach. Because∑
ξ = 0, Ag−ξ is isomorphic to Ag for every ξ ∈ Ξ. Let pc be an arbitrary atom with

origin c. Our goal now is to blur the twist between (Af , p̄pc) and (Ag−ξ, p̄pc). This will
exactly undo the action of a ξ ∈ Ξ, when we consider an orbit that fixes an atom with
origin c. We exploit the high girth of G to blur the twists at each {ti, t′i} independently.
Before we start to blur twists between (Af , p̄pc) and (Ag−ξ, p̄pc), we first have to show
that τξ and ξ are compatible with orbits when fixing the additional atom pc. The following
two claims are in some sense refinements of Claims 3 and 7.
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Claim 8. For all ā ∈ Z2q and k′ ≤ 2k, every orbit P ∈ orbk′((Af+ā, p̄pc)) satisfying
orig(P ) ∩N1

G(c) = ∅ is contained in orbk′((Af+ā, p̄)).

Proof. Let P ∈ orbk′((Af+ā, p̄pc)) such that orig(P ) ∩N1
G(c) = ∅ (recall that N `

G(c) is the
`-neighborhood of c). By Lemma 7.10, it suffices to show that two tuples ū, v̄ ∈ Ak′ , such
that orig(ū) = orig(v̄) is disjoint from N1

G(c), have the same type in (Af+ā, p̄) if and only if
they have the same type in (Af+ā, p̄pc). Because orig(P )∩N1

G(c) = ∅, the components of
ūp̄pc are the components of ūp̄ and pc. Hence, if ū and v̄ have the same type in (Af+ā, p̄),
then they also have the same type in (Af+ā, p̄pc). The other inclusion is trivial. a

Claim 9. Let ā ∈ Zd2q , h : E → Z2q , and k′ ≤ 2k. Assume P ∈ orbk′((Ah, p̄pc)).
Then τā(P ) ∈ orbk′((Ah+ā, p̄pc)) and τā(P ) has the same type in (Ah+ā, p̄pc) as P has
in (Ah, p̄pc).

Proof. Let P ∈ orbk′((Ah, p̄pc)), R be the set of components C of P with C ∩N1
G(c) 6= ∅,

and D be the set of all remaining components of P . Then P = P |R×P |D by Claim 7.17.
Similarly, τā(P ) = τā(P )|R × τā(P )|D. Every component C in R does not, for every
i ∈ [d], contain the base edge {ti, t′i} because |C| ≤ k′ but every path s̄i has length
r(k)+2 > 2k+1 ≥ k′+1. That is, τā is the identity on P |R and so P |R = τā(P )|R and P |R
has the same type in (Ah+ā, p̄pc) as it has in (Ah, p̄pc). By Claim 8, the orbit τā(P )|D is an
orbit of (Ah, p̄) and has, by Claim 3, the same type in (Ah, p̄) as τā(P )|D has in (Ah+ā, p̄).
It follows that P has the same type in (Ah, p̄pc) as τā(P ) has in (Ah+ā, p̄pc). a

Claim 10. Assume that Q ∈ orbk′((Ag−ξ, p̄pc)) for some ξ ∈ Ξ and k′ ≤ 2k − 2. Then
τξ(Q) ∈ orbk′((Ag, p̄pc)) and τξ(Q) has the same type as Q. Let C be the connected com-
ponent of G[orig(Q) ∪ {c}] containing c, let R be the set of components of Q contained
in C, let D be the set of all other components of Q, and let w̄v̄ ∈ Ak′. Then w̄v̄ ∈ Q if
and only if w̄Rξ(τξ(w̄D))v̄Rξ(τξ(v̄D)) ∈ τξ(Q).

Proof. We split Q in Q = Q|R ×Q|D by Lemma 7.17. Because k′ ≤ 2k − 2, components
in R cannot be tip components. Hence, τξ(Q) = Q|R×τξ(Q|D). By Claim 8, Q|D is also an
orbit of (Ag−ξ, p̄) because its origin has distance greater than 1 to orig(pc). Then τξ(Q|D)
has the same type in (Ag, p̄) and is also an orbit of (Ag, p̄pc) of the same type by Claim 3.
It follows that τξ(Q) has the same type as Q. Let w̄v̄ ∈ Ak′ . Using the splitting above,
from Claim 7 it follows that w̄Dv̄D ∈ Q|D if and only if ξ(τξ(w̄D))ξ(τξ(v̄D)) ∈ τξ(Q|D).
The claim follows because Q = Q|R ×Q|D. a

Now we construct matrices (k − 1)-blurring the twist between (Af , p̄p) and (Ag−ξ, p̄pc).
For all ξ ∈ Ξ and j ∈ [d+ 1], we define gξ,j : E → Z2q to be the following function:

gξ,j(e) :=
f({ti, t′i}) if e = {ti, t′i} for some i ≥ j,

(g − ξ)(e) otherwise.

Note that f(e) = g(e) = gξ,j(e) for all e different from the base edges {ti, t′i}, gξ,1 = f ,
gξ,d+1 = g − ξ, and the only possibly twisted base edge by gξ,j and gξ,j+1 is {tj, t′j} for
every j ∈ [d]. Define Nj := N

r(k)
G (tj) for every j ∈ [d].
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Claim 11. For every ξ ∈ Ξ and every j ∈ [d], there is an odd-filled Ak−1 × Ak−1 ma-
trix Sξ,j, both orbit-diagonal and orbit-invariant over (Agξ,j , p̄pc) and (Agξ,j+1 , p̄pc), which
(k − 1)-blurs the twist between (Agξ,j , p̄pc) and (Agξ,j+1 , p̄pc), and whose active region sat-
isfies Agξ,j ,gξ,j+1,p̄pc(Sξ,j) ⊆ Nj. In particular, Sξ,j = 1 if ξ(j) = 0.

Proof. Let ξ ∈ Ξ and j ∈ [d]. If ξ(j) = 0, then gξ,j = gξ,j+1 and Sξ,j := 1 trivially
satisfies the claim. Otherwise, the matrix Sξ,j is obtained from the induction hypothesis:
The number of parameters increased by one, but we consider tuples of length k − 1. We
continue to consider Z2q .

• Clearly, q ≥ q(k) ≥ q(k − 1), the degree of G is d ≥ d(k,m) ≥ d(k − 1,m+ 1), and
the girth of G is at least 4r(k) + 2 > 2r(k).

• We have 2k + m + 1 ≥ 2(k − 1) + (m + 1) + 1 and so G satisfies the connectivity
condition.

• By construction, we have that gξ,j(e) = gξ,j+1(e) for every j ∈ [d] and every
e ∈ E \ {{tj, t′j}}.

• We consider the value of the twist: Let j ∈ [d]. Then ξ(j) = b · 2θ(k−1) for some
b ∈ Z2q (as shown when constructing the blurrer Ξ before Corollary 7.57). If j 6= 1,
then it holds that

gξ,j+1({tj, t′j}) = gξ,j({tj, t′j})− b · 2θ(k−1).

If otherwise j = 1, then we have

gξ,2({t1, t′1}) = g({t1, t′1})− ξ(1) = gξ,1({t1, t′1})− ξ(1) + θ

because gξ,1 = f and g({t1, t′1}) = f({t1, t′1}) + θ. By assumption, we have that
θ = a · 2θ(k) = a · 2i+θ(k−1) for some a ∈ Z2q . Clearly,

−ξ(1) + θ = −b · 2θ(k−1) + a · 2i+θ(k−1) = (a · 2i − b) · 2θ(k−1).

So, in all cases, each edge {tj, t′j} is twisted by a value c · 2θ(k−1) for some c ∈ Z2q .

• Assume i ∈ [d]. We have distG(t′i, orig(p̄)) ≥ 2r(k) by Claim 1. Thus, we have
distG(ti, orig(p̄)) > r(k). We have distG(t′i, orig(pc)) = distG(t′i, c) = r(k) + 1 by
construction. Hence, we have distG(ti, orig(p̄pc)) > r(k). a

We now define, for every ξ ∈ Ξ, the Ak−1 × Ak−1 matrix Sξ as follows:

Sξ := Sξ,1 · . . . · Sξ,d,

where Sξ,j is the matrix given by Claim 11 for ξ and j.

Claim 12. For every ξ ∈ Ξ, the matrix Sξ is odd-filled and both orbit-diagonal and orbit-
invariant over (Af , p̄pc) and (Ag−ξ, p̄pc). Moreover, it (k − 1)-blurs the twist between
(Af , p̄pc) and (Ag−ξ, p̄pc), and satisfies Af,g−ξ,p̄pc(Sξ) ⊆ ⋃di=1Ni.
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c

t′1

t1

t′2 t2t′dtd

θ−ξ(1)

9ξ(2)9ξ(d)

r(k)+2

r(k)
Sξ,1

Sξ,2Sξ,d

7.5 The active region of the k-ary similarity matrix. The active region of Sξ,i is contained
in Ni = N

r(k)
G (ti) for every i (drawn in blue). Because the blurrer only acts nontrivially on tuples

contained in N r(k)
G (c) and the type-preserving function acts only nontrivially on tuples contained

in N r(k)+2+k
G (c), the active region of Sξ is contained in N2r(k)+2

G (c) (drawn in light blue). Distances
in the star are drawn in red. The values of the twist at the base edges {ti, t′i} are drawn below or
right of them.

Proof. For every j ∈ [d], the matrix Sξ,j is odd-filled and both orbit-diagonal and orbit-
invariant over (Agξ,j , p̄pc) and (Agξ,j+1 , p̄pc), it (k − 1)-blurs the twist between (Agξ,j , p̄pc)
and (Agξ,j+1 , p̄pc), and it satisfies Agξ,j ,gξ,j+1,p̄pc(Sξ,j) ⊆ Nj by Claim 11. Because f = gξ,1

and g − ξ = gξ,d+1, the matrix Sξ = Sξ,1 · . . . · Sξ,d is orbit-diagonal and orbit-invariant
over (Af , p̄pc) and (Ag−ξ, p̄pc) by Lemmas 7.45 and 7.26. By Lemma 7.28, the matrix Sξ
is odd-filled. It (k− 1)-blurs the twist between (Af , p̄pc) and (Ag−ξ, p̄pc) by Lemma 7.23.
Finally, it follows from Lemma 7.44 that

Af,g−ξ,p̄pc(Sξ) ⊆
d⋃
i=1

Agξ,j ,gξ,j+1,p̄pc(Sξ,j) ⊆
d⋃
i=1

Ni. a

Claim 13. For every pair of distinct i, j ∈ [d], it holds that Ni ∩Nj = ∅.

Proof. Let i 6= j. Assume that there is an u ∈ Ni ∩ Nj. Then there is a path from ti
to tj of length at most 2r(k). By construction distG(ti, c) = distG(tj, c) = r(k) + 2
and so c /∈ Ni and c /∈ Nj. But that means that there is a cycle of length at most
distG(ti, c) + distG(tj, c) + distG(ti, x) + distG(tj, x) ≤ 4r(k) + 4 contradicting that G has
girth at least 2r(k + 1) ≥ 8r(k) + 4 (cf. Figure 7.5). a

Claim 14. For every ξ ∈ Ξ, every P ∈ orbk−1((Af , p̄pc)), every Q ∈ orbk−1((Ag−ξ, p̄pc)) of
the same type in (Ag−ξ, p̄pc) as P in (Af , p̄pc), all ū ∈ P , v̄ ∈ Q, and ϕ ∈ Aut((Af , p̄)),
the matrix Sξ satisfies Sξ(ū, v̄) = Sξ(ϕ(ū), ϕ(v̄)).

Proof. Let ξ ∈ Ξ. By Claim 12, the matrix Sξ is orbit-invariant over (Af , p̄pc) and
(Ag−ξ, p̄pc) and thus satisfies the claim for all ϕ ∈ Aut((Af , p̄pc)). But now we also
want to consider automorphisms not stabilizing pc. So let P ∈ orbk−1((Af , p̄pc)), let
Q ∈ orbk−1((Ag−ξ, p̄pc)) be of the same type in (Ag−ξ, p̄pc) as P in (Af , p̄pc), ū ∈ P ,
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v̄ ∈ Q, and ϕ ∈ Aut((Af , p̄)). Let R be the set of components of ū (and thus of v̄)
containing a base vertex of N1

G(c) (so in particular c itself). Let D be the set of remaining
components. Because ūDv̄D and ϕ(ūDv̄D) are in the same orbit in (Af+ā, p̄), they are
also in the same orbit in (Af+ā, p̄pc) by Claim 8. Hence, there is a ψ ∈ Aut((Af+ā, p̄pc))
satisfying ϕ(ūDv̄D) = ψ(ūDv̄D). We now use the fact that Sξ is orbit-invariant over
(Af , p̄pc) and (Ag−ξ, p̄pc):

Sξ(ū, v̄) = Sξ(ūRūD, v̄Rv̄D)
= Sξ

(
ūRψ(ūD), v̄Rψ(v̄D)

)
= Sξ

(
ūRϕ(ūD), v̄Rϕ(v̄D)

)
. (?)

For every C ∈ R, it holds that C 6⊆ Af,g−ξ,p̄pc(Sξ) ⊆ ⋃di=1Ni because N1
G(c)∩⋃di=1 Ni = ∅,

which follows from Ni = N
r(k)
G (ti) and distG(c, ti) = r(k) + 2. So we can apply Condi-

tion A2 of the active region because ūR = v̄R if and only if ϕ(ūR) = ϕ(v̄R):

(?) = Sξ
(
ϕ(ūDc)ūDR , ϕ(v̄Dc)v̄DR

)
= Sξ

(
ϕ(v̄), ϕ(v̄)

)
. a

Claim 15. Let k′ ≤ k − 1, ξ ∈ Ξ, P ′ ∈ orbk′((Af , p̄pc)), K ⊆ [d], D be the set of all
components C of P ′ satisfying C ⊆ Ni for some i ∈ K, and R be the set of remaining
components. Let Q′ = τ(P ′) ∈ orbk′((Ag, p̄pc)), ū ∈ P ′, and v̄ ∈ Q′. Then

∑
w̄D∈P ′|D

Sξ(w̄DūR, v̄Dv̄R) =
( ∏
i∈[d]\K

Sξ,i
)

(v̄DūR, v̄Dv̄R)

and Af,f+ā,p̄pc(∏i∈[d]\K S
ξ,i) ⊆ ⋃

i∈[d]\K Ni for the tuple ā ∈ Zd2q whose entries satisfy
ai = (g − ξ)({ti, t′i})− f({ti, t′i}) if i /∈ K and ai = 0 otherwise for every i ∈ [d].

Proof. Recall that Sξ = Sξ,1 · . . . · Sξ,d and that Agξ,j ,gξ,j+1,p̄pc(Sξ,j) ⊆ Nj for every j ∈ [d]
by Claim 11. The first part of the claim follows from repeated application of Lemma 7.46
using that the sets Nj are disjoint (Claim 13). The second part follows from repeated
application of Lemmas 7.43 and 7.44. a

We introduce more notation. Let ū ∈ Ak
′ such that c ∈ orig(ū). Then ū9c ∈ Ak

′−1 is
the tuple obtained from ū by deleting the first entry with origin c. This first entry is
denoted by ūc. Similarly to our convention for ūC for a component C in Section 7.3.2,
we write ūcū9c not for concatenation but for inserting ūc at the correct position such that
ūcū

9c = ū. Now we are ready to define the Ak × Ak matrix S. For j ∈ {k, 2k} we set
Pj := orbj((Af , p̄)). We define the P × τ(P ) block of S for every P ∈ Pk.

SP×τ(P )(ū, v̄) :=



∑
ξ∈Ξ,

τ(ξ(ū))=v̄

1 if P is blurrable,

∑
ξ∈Ξ,

τξ(ξ(ūc))=v̄c

Sξ
(
ξ(ū9c), τ 91ξ (v̄9c)

)
if P is non-blurrable.

All other blocks are zero. We first check that we used the matrices Sξ only for row and
column indices of the same type:
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Claim 16. Let P ∈ Pk be non-blurrable, ū ∈ P , and v̄ ∈ τ(P ). If ū has the same type in
(Af , p̄) as v̄ has in (Ag, p̄), then for every ξ ∈ Ξ such that τξ(ξ(ūc)) = v̄c, the tuple ξ(ū9c)
has the same type in (Af , p̄pc) as τ 91ξ (v̄9c) has in (Ag−ξ, p̄pc).

Proof. Let ξ ∈ Ξ such that τξ(ξ(ūc)) = v̄c. Let R be the star component of orig(P ) con-
taining c and let D be the set of remaining components of orig(P ). Then P = P |R × P |D
by Lemma 7.17. In particular, τ(P ) = P |R × τ(P |D) because τ is the identity on star
components. The orbit τ(P |D) has the same type in (Ag, p̄) as P |D has in (Af , p̄) (Corol-
lary 7.57) and τξ(τ(P |D)) has thus the same type in (Ag−ξ, p̄) as P |D has in (Af , p̄)
(Claim 3). Because c ∈ R (P is non-blurrable), all components in D have distance at
least 2 to c. Thus, P |D is also an orbit of (Af , p̄pc) (Claim 8) and has the same type in
(Af , p̄pc) as τξ(τ(P |D)) has in (Ag−ξ, p̄pc). Because ξ is an orbit-automorphism (Claim 6),
ξ(P |D) = P |D. It follows that ξ(ūD) ∈ P |D and τξ(v̄D) ∈ τξ(τ(P |D)) have the same type.

It suffices to show that ξ(ūR) has the same type in (Af , p̄pc) as τξ(v̄R) has in (Ag−ξ, p̄pc).
Because R contains star components, τξ is the identity on R and so v̄R ∈ P |R. Further,
ξ(ūR) ∈ P |R because ξ is an orbit-automorphism. That is, there is an automorphism
ψ ∈ Aut((Af , p̄)) such that ψ(ξ(ūR)) = v̄R. Because by assumption τξ(ξ(ūc)) = ξ(ūc) = v̄c
(τξ is the identity on atoms with origin c), ψ is the identity on atoms with origin c and thus
ψ ∈ Aut((Af , p̄pc)). That is, ξ(ūR) and v̄R are in the same orbit of (Af , p̄pc). Because R
contains star components, it does not contain any base edge twisted by f and g − ξ and
thus ξ(ūR) and v̄R have the same type in (Af , p̄pc) and in (Ag−ξ, p̄pc). a

Claim 17. The matrix S is orbit-diagonal over (Af , p̄) and (Ag, p̄).

Proof. By definition, the only nonzero blocks of S are the P × τ(P ) blocks. By Corol-
lary 7.57, P and τ(P ) have the same type for every P ∈ Pk. a

Claim 18. The matrix S is orbit-invariant over (Af , p̄) and (Ag, p̄).

Proof. Let ϕ ∈ Aut((Af , p̄)) = Aut((Ag, p̄)), P ∈ Pk, ū ∈ P , and v̄ ∈ Q := τ(P ). We
make a case distinction: Assume that P is blurrable. The functions τ , ξ, and ϕ commute
(Claim 5) and thus τ(ξ(ϕ(ū))) = ϕ(τ(ξ(ū))) for every ξ ∈ Ξ. Because ϕ is a bijection,
ϕ(τ(ξ(ū))) = ϕ(v̄) if and only if τ(ξ(ū)) = v̄. So

S
(
ϕ(ū), ϕ(v̄)

)
=

∑
ξ∈Ξ,

τ(ξ(ϕ(ū)))=ϕ(v̄)

1 =
∑
ξ∈Ξ,

ϕ(τ(ξ(ū)))=ϕ(v̄)

1 =
∑
ξ∈Ξ,

τ(ξ(ū))=v̄

1 = S(ū, v̄).

Otherwise, assume that P is non-blurrable. Then, for every ξ ∈ Ξ, the following holds
because τξ, ξ, and ϕ commute by Claim 5 and because Sξ is invariant under ϕ by Claim 14:

Sξ
(
ξ(ϕ(ū9c)), τ 91ξ (ϕ(v̄9c))

)
= Sξ

(
ϕ(ξ(ū9c)), ϕ(τ 91ξ (v̄9c))

)
= Sξ

(
ξ(ū9c), τ 91ξ (v̄9c)

)
.

Because τξ, ξ, and ϕ commute and because ϕ is a bijection, we have τξ(ξ(ϕ(ūc))) = ϕ(v̄c)
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if and only if τξ(ξ(ūc)) = v̄c. Hence,

S
(
ϕ(ū), ϕ(v̄)

)
=

∑
ξ∈Ξ,

τξ(ξ(ϕ(ūc)))=ϕ(v̄c)

Sξ
(
ξ(ϕ(ū9c)), τ 91ξ (ϕ(v̄9c))

)

=
∑
ξ∈Ξ,

τξ(ξ(ūc))=v̄c

Sξ
(
ξ(ū9c), τ 91ξ (v̄9c)

)

= S(ū, v̄). a

Claim 19. The matrix S is odd-filled.

Proof. Let P ∈ Pk and ū ∈ P . Then τ(ū) ∈ τ(P ) and because every ξ ∈ Ξ is an orbit-
automorphism (Claim 6), we have ξ(ū) ∈ P and τ(ξ(ū)) ∈ τ(P ) for every ξ ∈ Ξ. Assume
first that P is blurrable. Now, we sum the entries in the row indexed by ū (in F2):∑

v̄∈τ(P )
S(ū, v̄) =

∑
v̄∈τ(P )

∑
ξ∈Ξ,

τ(ξ(ū))=v̄

1 =
∑
ξ∈Ξ,

τ(ξ(ū))∈τ(P )

1 = |Ξ| mod 2.

The last step holds because τ(ξ(ū)) ∈ τ(P ) for every ξ ∈ Ξ. Finally, |Ξ| is odd by
Lemma 7.49 and so the number of ones in the row indexed by ū is odd, too.

Assume otherwise that P is non-blurrable and setQ := τ(P ), which is of the same type
as P (Corollary 7.57). For every ξ ∈ Ξ, we set Qξ := {v̄9c | v̄ ∈ Q, τξ(ξ(ūc)) = v̄c}. Then
Qξ ∈ orbk−1((Ag, p̄pc)) = orbk−1((Ag−ξ, p̄pc)) by Corollaries 7.19 and 7.13 (the center c
has distance greater than 1 to orig(p̄)).∑

v̄∈Q
S(ū, v̄) =

∑
v̄∈Q

∑
ξ∈Ξ,

τξ(ξ(ūc))=v̄c

Sξ
(
ξ(ū9c), τ 91ξ (v̄9c)

)

=
∑
ξ∈Ξ

∑
v̄∈Q,

τξ(ξ(ūc))=v̄c

Sξ
(
ξ(ū9c), τ 91ξ (v̄9c)

)

=
∑
ξ∈Ξ

∑
v̄∈Qξ

Sξ
(
ξ(ū9c), τ 91ξ (v̄)

)
=
∑
ξ∈Ξ

∑
v̄∈τ91

ξ
(Qξ)

Sξ
(
ξ(ū9c), v̄

)
. (?)

In the first line of the equation, ξ(ū9c) has the same type in (Af , p̄pc) as τ 91ξ (v̄9c) has
in (Ag−ξ, p̄pc) for every ξ ∈ Ξ such that τξ(ξ(ūc)) = v̄c (Claim 16). One sees that we
always sum over the same column indices of Sξ (for a fixed ξ) and we only manipulate
the way in which we express the sum. Hence, in the last line, ξ(ū9c) has the same
type in (Af , p̄pc) as v̄ has in (Ag−ξ, p̄pc). By Claim 9, τ 91ξ (Qξ) ∈ orbk−1((Ag−ξ, p̄pc)), so∑
v̄∈τ91

ξ
(Qξ) S

ξ(ξ(ū9c), v̄) = 1 because we sum over all entries in one row of a block on the
diagonal of Sξ and Sξ is odd-filled (Claim 12). It follows that

(?) =
∑
ξ∈Ξ

1 = |Ξ| mod 2 = 1.

For the last step we used again that |Ξ| is odd by Lemma 7.49. a
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Now it follows from Lemma 7.31 that S is invertible.

Claim 20. Af,g,p̄(S) ⊆ N
r(k+1)
G (t).

Proof. We show that N r(k+1)
G (t) satisfies the conditions of the active region. This implies

that Af,g,p̄(S) ⊆ N
r(k+1)
G (t). To show Condition A1 of the active region, we have to show

that C ⊆ N
r(k+1)
G (t) for every component C ∈ Af,g,p̄(S, P ) for every P ∈ Pk. Let P ∈ Pk

be blurrable and C be a component of P . By definition of ξ and τ , the matrix S is only
active on C if C is a star or a tip component. But this means that C ⊆ N

r(k)+2+k
G (c)

because C is connected, of size at most k, and contains a base vertex u of some s̄i (which
have length r(k)+2, cf. Figure 7.5). Because distG(c, t) = r(k)+2, every base vertex with
distance at most r(k)+2+k to c has distance at most 2r(k)+4+k ≤ 4r(k)+2 = r(k+1)
to t (one immediately sees that r(k) ≥ k ≥ 2). Thus,

C ⊆ N
r(k)+2+k
G (c) ⊆ N

r(k+1)
G (t).

Let otherwise P ∈ Pk be non-blurrable and C be a component of P . Then S is possibly
active on C if C ⊆ N

r(k)+2+k
G (t) (as seen in the blurrable case) or

C ⊆ Af,g−ξ,p̄pc(Sξ) ⊆
⋃
i∈d
Ni

for some ξ ∈ Ξ (Claim 12). Recall that Ni = N
r(k)
G (ti) and that distG(ti, c) = r(k) + 2 by

construction. If follows that⋃
i∈d
Ni ⊆ N

2r(k)+2
G (c) ⊆ N

r(k+1)
G (t)

because every base vertex with distance r(k) to some base vertex ti has distance at most
3r(k) + 4 ≤ 4r(k) + 2 to t (we again use that r(k) ≥ 2 for k ≥ 2). To prove Condition A2
of the active region, we see that ξ, τ , and τξ are defined component-wise (for every ξ ∈ Ξ)
and that Af,g−ξ,p̄pc(Sξ) ⊆ ⋃i∈dNi. a

Now, we want to show that S actually k-blurs the twist. For a 2k-orbit P ∈ P2k, we set

P1 := P |{1,...,k} ∈ Pk,

P2 := P |{k+1,...,2k} ∈ Pk

to be the unique k-orbits such that P ⊆ P1×P2 (and similar for Q ∈ Q2k). Our aim is to
prove that χP ·S = S ·χQ for every P ∈ P2k and Q := τ(P ). Because S is orbit-diagonal
and χPP1×P2 and χQQ1×Q2 are the only nonzero blocks of χP and χQ, it suffices to show that

χPP1×P2SP2×Q2 = SP1×Q1χ
Q
Q1×Q2 .

We begin with blurrable orbits and define the set of indices i ∈ [d] of the blurrer Ξ which
are relevant for a blurrable orbit.

De�nition 7.60 (Occupied Indices). The set of occupied indices Occ(P ) of a blurrable
orbit P ∈ Pk is the set of indices i ∈ [d], such that there is a component C of P that
satisfies C ⊆ Ni or C is an i-star component.
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Note that the definition also covers i-tip components because every i-tip component is
contained in Ni. Also note that |Occ(P )| ≤ k because P is a k-orbit. The following lemma
states that if one of P1 and P2 is blurrable, say P1, then it does not matter whether we
apply ξ or ξ′ to P2 as long as ξ and ξ′ agree on Occ(P1).
Claim 21. Assume P ∈ P2k, ξ, ξ′ ∈ Ξ, and ū, v̄ ∈ Ak. If P1 ∈ Pk is blurrable and
ξ|Occ(P1) = ξ′|Occ(P1), then ūξ(v̄) ∈ P if and only if ūξ′(v̄) ∈ P . Likewise, if P2 is blurrable
and ξ|Occ(P2) = ξ′|Occ(P2), then ξ(ū)v̄ ∈ P if and only if ξ′(ū)v̄ ∈ P . The same holds for
Q := τ(P ).
Proof. Consider the case that P1 is blurrable. Assume that ūξ(v̄) ∈ P . Let Ci

1, . . . , C
i
`i

be the components of Pi for every i ∈ [2]. Because τ and ξ are defined component-wise,
it suffices by Lemma 7.17 to assume that P is a k′-orbit of (Af , p̄) for some k′ ≤ k and
has a single component C. The component C is the union of all Ci

j. First consider
the case that C is a star component. Because P1 is blurrable, we can partition all
components C1

j by Claim 2 into D1
1, . . . , D

1
d and D1

R such that D1
i contains all i-star

components for all i ∈ [d] and D1
R the remaining sky components. Set ξ′′ := ξ′ − ξ.

Then ξ′′|Occ(P1) = 0, ξ′′(ξ(v̄)) = ξ′(v̄), and ξ′′ is the identity function on the components
in all D1

i because every D1
i only contains i-star components and is nonempty only if

i ∈ Occ(P1). Additionally, ξ′′ is the identity on the sky componentsD1
R. Hence ϕξ′′(ū) = ū

by Definition 7.7. Because C is a star component, we have that

ξ′′
(
ūξ(v̄)

)
= ϕξ′′

(
ūξ(v̄)

)
= ϕξ′′(ū)ϕξ′′

(
ξ(v̄)

)
= ūξ′′

(
ξ(v̄)

)
= ūξ′(v̄).

Because ξ′′ is an orbit-automorphism by Claim 6, it holds that ūξ(v̄) ∈ P if and only if
ξ′′(ūξ(v̄)) = ūξ′(v̄) ∈ P . If otherwise C is not a star component, then none of the Ci

j is a
star component, ξ and ξ′ are the identity function on v̄, and the claim follows immediately.
The cases for P2 and Q are analogous. a
Claim 22. For every P ∈ P2k, ξ ∈ Ξ such that ξ|Occ(P ) = ξtwst|Occ(P ), and ū, v̄ ∈ Ak it
holds that ūv̄ ∈ P if and only if τ(ξ(ū))τ(ξ(v̄)) ∈ τ(P ).
Proof. Let P ∈ P2k, ξ ∈ Ξ such that ξ|Occ(P ) = ξtwst|Occ(P ), and ū, v̄ ∈ Ak. Using Claim 7
we obtain ūv̄ ∈ P if and only if τξ(ξ(ū))τξ(ξ(v̄)) ∈ τξ(P ). Because ξ|Occ(P ) = ξtwst|Occ(P ),
the action of τξ and τ is equal on the i-tip components of P for i ∈ Occ(P ). Thus,
τξ(P ) = τ(P ). Similarly, τξ(ξ(ū)) = τ(ξ(ū)) and τξ(ξ(v̄)) = τ(ξ(v̄)). a

For every blurrable orbit P ∈ Pk, it holds that |Occ(P )| ≤ k and so we can use the
blurrer properties as follows:
Claim 23. Let P ∈ P2k and Q = τ(P ). If P1 (and so Q1) and P2 (and so Q2) are
blurrable, then χP · S = S · χQ.
Proof. With the definition of S on blurrable orbits we obtain for ū ∈ P1 and v̄ ∈ Q2 that

(χP · S)(ū, v̄) =
∑
w̄∈P2

χP (ū, w̄) · SP2×Q2(w̄, v̄)

=
∑
w̄∈P2

χP (ū, w̄) ·
∑
ξ∈Ξ,

τ(ξ(w̄))=v̄

1

=
∑
ξ∈Ξ

χP
(
ū, ξ91(τ 91(v̄))

)
. (?)
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Now, for every ξ ∈ Ξ, the entry χP (ū, ξ91(τ 91(v̄))) depends only on ξ|Occ(P1) by Claim 21,
i.e., ξ 7→ χP (ū, ξ91(τ 91(v̄))) is actually a function Ξ|Occ(P1) → F2. Because P1 is a blurrable
k-orbit, it holds that |Occ(P1)| ≤ k. Then, by Lemma 7.48, it follows that for some ξtw ∈ Ξ
with ξtw|Occ(P1) = ξtwst|Occ(P1) we have that

(?) = χP
(
ū, ξtw

91(τ 91(v̄))
)

= χQ
(
τ(ξtw(ū)), v̄

)
=
∑
ξ∈Ξ

χQ
(
τ(ξ(ū)), v̄

)
=

∑
w̄∈Q1

SP1×Q1(ū, w̄) · χQ(w̄, v̄)

= (S · χQ)(ū, v̄),

where the transition from P to Q is by Claim 22. The last step is the inverse reasoning
as for P using Claim 21. a

Next, we want to consider the case that P1 is blurrable and P2 is not (or vice versa, which
is symmetric). We would like to use Claim 22 as in the case that both P1 and P2 are
blurrable. But this is not sufficient because SP2×τ(P2) is defined using the matrices Sξ.
We show that the matrices Sξ cancel in this case. Intuitively, the idea is to use that the
active regions of the Sξ,i are disjoint (Claim 13). As a consequence the matrices Sξ,i for
all i /∈ Occ(P1) cancel. For the remaining Sξ,i we use the blurrer properties to show that
they vanish.

Claim 24. Assume P ∈ P2k and Q = τ(P ). If P1 is blurrable and P2 is not, then
χP · S = S · χQ.

Proof. Let ū ∈ P1 and v̄ ∈ Q2. By the definition of S we have

(χP · S)(ū, v̄) =
∑
w̄∈P2

χP (ū, w̄) · SP2×Q2(w̄, v̄)

=
∑
w̄∈P2

χP (ū, w̄) ·
∑
ξ∈Ξ,

ξ(w̄c)=τ91ξ (v̄c)

Sξ
(
ξ(w̄9c), τ 91ξ (v̄9c)

)

=
∑
ξ∈Ξ

∑
w̄∈P2,

ξ(w̄c)=τ91ξ (v̄c)

χP (ū, w̄) · Sξ
(
ξ(w̄9c), τ 91ξ (v̄9c)

)
. (?)

For every ξ ∈ Ξ, we set P ′ξ,2 := {w̄9c | w̄ ∈ P2, w̄c = ξ(v̄c)} (note that τ 91ξ (v̄c) = v̄c
because orig(v̄c) = c). Here w̄ξ91(τ 91ξ (v̄c)) denotes the tuple w̄′ such that w̄′9c = w̄ and
w̄′c = ξ91(τ 91ξ (v̄c)). It holds that P ′ξ,2 ∈ orbk−1((Af , p̄pc)) by Corollary 7.19. Then

(?) =
∑
ξ∈Ξ

∑
w̄∈P ′

ξ,2

χP
(
ū, w̄ξ91(τ 91ξ (v̄c))

)
· Sξ

(
ξ(w̄), τ 91ξ (v̄9c)

)
.

Let K ⊆ [d] be the maximal set of indices such that there is no component C of P1
satisfying C ⊆ Ni. Hence, Occ(P1) ⊆ [d] \ K. We partition the components of P2 as
follows:
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• Let D be the set of components C of P2 that are also components of P and satisfy
C ⊆ Ni for some i ∈ K.

• Let E be the set of C of P2 that are not contained in D and satisfy C ⊆ Ni for
some i ∈ [d].

• Let R be the set of all remaining components of P2.

We split w̄ = w̄Dw̄Ew̄R into the components belonging to D, E, and R. We split
v̄ = v̄Dv̄E v̄Rv̄c likewise, where, for simplicity, we set v̄D := v̄9cD and similar for v̄E and v̄R.
From Lemma 7.17 it follows that P ′ξ,2 = P ′ξ,2|D × P ′ξ,2|E∪R and P = P |D × P |R′ , where R′
are the components of P not contained in D. By the definition of K and D, we have
that P |D = P ′ξ,2|D because the components in D are components of P , are disjoint with
orig(P1), and do not contain c (c /∈ Ni for all i ∈ [d]). We obtain that

(?)
=
∑
ξ∈Ξ

∑
w̄D∈P ′ξ,2|D

∑
w̄Ew̄R∈P ′ξ,2|E∪R

χP
(
ū, w̄Dw̄Ew̄Rξ

91(τ 91ξ (v̄c))
)
· Sξ

(
ξ(w̄Dw̄Ew̄R), τ 91ξ (v̄Dv̄E v̄R)

)
=
∑
ξ∈Ξ

∑
w̄Ew̄R∈P ′ξ,2|E∪R

χP |R′
(
ū, w̄Ew̄Rξ

91(τ 91ξ (v̄c))
)
·

∑
w̄D∈P ′ξ,2|D

Sξ
(
ξ(w̄Dw̄Ew̄R), τ 91ξ (v̄Dv̄E v̄R)

)
.

By Claim 4, the functions ξ and τξ can be applied component-wise. For every ξ, the
matrix Sξ is not active on the components in R (by definition of R and Claim 12). Thus,
ξ(w̄R) = τ 91ξ (v̄R) unless Sξ(ξ(w̄Dw̄Ew̄R), τ 91ξ (v̄Dv̄E v̄R)) = 0. We again use Lemma 7.17 to
split P ′ξ,2|E∪R = P ′ξ,2|E ×P ′ξ,2|R. Such a split of P is not possible because the components
of P ′ξ,2 in E and R might not be components of P . Here, for every ξ ∈ Ξ, we have
ξ91(τ 91ξ (v̄R))ξ91(τ 91ξ (v̄c)) = ξ91(τ 91ξ (v̄Rv̄c)) because if C ∪ {c} is a component, then C ∪ {c}
is a star component and C is a union of star and sky components. Thus,

(?)
=
∑
ξ∈Ξ

∑
w̄E∈P ′ξ,2|E

χP |R′
(
ū, w̄Eξ

91(τ 91ξ (v̄Rv̄c))
)
·

∑
w̄D∈P ′ξ,2|D

Sξ
(
ξ(w̄Dw̄E)τ 91ξ (v̄R), τ 91ξ (v̄Dv̄E v̄R)

)
.

We know that P ′ξ,2|D ∈ orbk′((Af , p̄pc)) for some k′ ≤ k − 1 by Lemma 7.17. Because ξ
is an orbit-automorphism for every ξ ∈ Ξ (Claim 6) and D contains no star center
components, every ξ ∈ Ξ permutes P ′ξ,2|D. Hence, we can sum over ξ(w̄D) ∈ P ′ξ,2|D
instead over w̄D ∈ P ′ξ,2|D. Then we can apply Claim 15:

(?) =
∑
ξ∈Ξ

∑
w̄E∈P ′ξ,2|E

χP |R′
(
ū, w̄Eξ

91(τ 91ξ (v̄Rv̄c))
)
·

( ∏
i∈[d]\K

Sξ,i
)(
τ 91ξ (v̄D)ξ(w̄E)τ 91ξ (v̄R), τ 91ξ (v̄Dv̄E v̄R)

)
.

We show that this term only depends on ξ|[d]\K as follows: Let ξ, ξ′ ∈ Ξ such that
ξ|[d]\K = ξ′|[d]\K .
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(a) Consider the right term (∏i∈[d]\K S
ξ,i)(·, ·) in the equation. First, Sξ,i = Sξ

′,i for
every i ∈ [d] \ K by construction of the matrices Sξ,i because ξ(i) = ξ′(i). Be-
cause R does not contain tip components, it holds that τξ(v̄R) = v̄R. Second, all
components in E are contained in some Ni for i ∈ [d] \K by definition of E. That
is, ξ(w̄E) = ξ′(w̄E) and τξ(v̄E) = τξ′(v̄E). Third, the active region of ∏i∈[d]\K S

ξ,i is
bounded by ⋃i∈[d]\K Ni by Claim 15. Because components in D ∪ R are not con-
tained in ⋃i∈[d]\K Ni by definition of D and R, we can exploit Condition A2 of the
active region and apply τξ to v̄D and v̄R on both sides (because τξ is a bijection),
that is, ( ∏

i∈[d]\K
Sξ,i

)(
τ 91ξ (v̄D)ξ(w̄E)τ 91ξ (v̄R), τ 91ξ (v̄Dv̄E v̄R)

)

=
( ∏
i∈[d]\K

Sξ,i
)(
v̄Dξ(w̄E)v̄R, v̄Dτ 91ξ (v̄E)v̄R

)

=
( ∏
i∈[d]\K

Sξ,i
)(
v̄Dξ

′(w̄E)v̄R, v̄Dτ 91ξ′ (v̄E)v̄R
)

=
( ∏
i∈[d]\K

Sξ
′,i

)(
τ 91ξ′ (v̄D)ξ′(w̄E)τ 91ξ′ (v̄R), τ 91ξ′ (v̄Dv̄E v̄R)

)
.

(b) Now consider the left term χP |R′ (·, ·). First, note that R does not contain tip
components and thus τ 91ξ (v̄Rv̄c) = v̄Rv̄c. Second, ūw̄Eξ91(v̄Rv̄c) ∈ P |R′ if and only
if ūw̄Eξ′91(v̄Rv̄c) ∈ P |R′ by Claim 21: By repeating entries, one sees that Claim 21
also holds for k′-orbits with k′ ≤ 2k and a partition of [k′] into two parts each of
size at most k. Hence,

χP |R′
(
ū, w̄Eξ

91(τ 91ξ (v̄Rv̄c))
)

= χP |R′
(
ū, w̄Eξ

′91(τ 91ξ′ (v̄Rv̄c))
)
.

Hence, the Equation (?) is of the form ∑
ξ∈Ξ h(ξ|[d]\K) for some function h : Ξ|[d]\K → F2.

Because P1 contains k-tuples, it holds that |K| ≥ d − k and hence that |[d] \ K| ≤ k.
That is, we can apply Lemma 7.48 and obtain for some ξtw ∈ Ξ, which satisfies that
ξtw|[d]\K = ξtwst|[d]\K , the following:

(?) =
∑

w̄E∈P ′ξtw,2
|E

χP |R′
(
ū, w̄Eξtw

91(τ 91ξtw(v̄Rv̄c))
)
·

( ∏
i∈[d]\K

Sξtw,i

)(
τ 91ξtw(v̄D)ξtw(w̄E)τ 91ξtw(v̄R), τ 91ξtw(v̄Dv̄E v̄R)

)
.

Now, the matrices Sξtw,i in the equation blur a twist of value 0 for every i ∈ [d] \ K:
The matrix Sξtw,i blurs a twist of value (g − ξtw − f)({ti, t′i}) = (ξtwst − ξtw)(i), which
is 0 for every i ∈ [d] \ K because ξtw|[d]\K = ξtwst|[d]\K . That is, Sξtw,i = 1 by definition
(cf. Claim 11) and ξtw(w̄E) = τ 91ξtw(v̄E) unless the product is zero. Hence,

(?) = χP |R′
(
ū, ξtw

91(τ 91ξtw(v̄E v̄Rv̄c))
)
.
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On the components of E, the functions τ and τξtw coincide because ξtw|[d]\K = ξtwst|[d]\K .
On R, both are the identity. Hence, τ 91ξtw(v̄E v̄Rv̄c) = τ 91(v̄E v̄Rv̄c) and

(?) = χP |R′
(
ū, ξtw

91(τ 91(v̄E v̄Rv̄c))
)
.

We show that ūξtw
91(τ 91(v̄E v̄Rv̄c)) ∈ P |R′ if and only if ūξtw

91(τ 91(v̄Dv̄E v̄Rv̄c)) ∈ P . This
holds because D is a set of components of P , v̄D ∈ Q|D, and τ 91(v̄D) ∈ P |D if and only if
v̄D ∈ Q|D by Claim 22 and τ 91(v̄D) ∈ P |D if and only if ξtw

91(τ 91(v̄D)) ∈ P |D by Claim 6.
It follows that

(?) = χP
(
ū, ξtw

91(τ 91(v̄Dv̄E v̄Rv̄c))
)

= χP
(
ū, ξtw

91(τ 91(v̄))
)
.

We finish the proof similar to Claim 23 because P1 (and thus Q1) is blurrable:

(?) = χQ
(
τ(ξtw(ū)), v̄

)
=
∑
ξ∈Ξ

χQ
(
τ(ξ(ū)), v̄

)
=

∑
w̄∈Q1

SP1×Q1(ū, w̄) · χQ(w̄, v̄)

= (S · χQ)(ū, v̄). a

The case when P2 is blurrable and P1 is not is analogous. Finally, to solve the problem
in the case where both P1 and P2 are non-blurrable, we exploit the induction hypothesis
for the matrices Sξ (Claim 12). This argument becomes elaborate for two reasons. First,
we need to argue that the types of occurring orbits are the same. Second, we need to
treat the components containing c differently (Claim 10) because in the recursive step
we have pc as an additional parameter and thus cannot apply the orbit-automorphisms
ξ ∈ Ξ freely (because they are not the identity function on pc). These components can be
treated specially because they are not contained in the active region of the matrices Sξ.

Claim 25. Let P ∈ P2k and Q = τ(P ). If P1 and P2 are non-blurrable, then χP ·S = S ·χQ.

Proof. Let ū ∈ P1 and v̄ ∈ Q2. We expand the definition of S:

(χP · S)(ū, v̄) =
∑
w̄∈P2

χP (ū, w̄) · SP2×Q2(w̄, v̄)

=
∑
w̄∈P2

χP (ū, w̄) ·
∑
ξ∈Ξ,

ξ(w̄c)=τ91ξ (v̄c)

Sξ
(
ξ(w̄9c), τ 91ξ (v̄9c)

)

=
∑
ξ∈Ξ

∑
w̄∈P2,

w̄c=ξ91(τ91ξ (v̄c))

χP (ū, w̄) · Sξ
(
ξ(w̄9c), τ 91ξ (v̄9c)

)
. (?)

We define, for every ξ ∈ Ξ,

Pξ :=
{
ū′9cw̄′9c

∣∣∣ ū′ ∈ P1, w̄
′ ∈ P2, ū

′w̄′ ∈ P, ū′c = ūc, w̄
′
c = ξ91(τ 91ξ (v̄c))

}
,

Pξ,2 :=
{
w̄′9c

∣∣∣ w̄′ ∈ P2, w̄
′
c = ξ91(τ 91ξ (v̄c))

}
.
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By Lemma 7.18, we have that Pξ ∈ orb2k−2((Af , p̄pc)) ∪ {∅} and, by Corollary 7.19, that
Pξ,2 ∈ orbk−1((Af , p̄pc)). It depends on ξ ∈ Ξ whether the set Pξ is empty. We continue
the equation:

(?) =
∑
ξ∈Ξ

∑
w̄∈Pξ,2

χPξ(ū9c, w̄) · Sξ
(
ξ(w̄), τ 91ξ (v̄9c)

)
.

We use that Sξ is invariant under automorphism of (Af , p̄) (Claim 14) and that ξ is an
orbit-automorphism (Claim 6) for every ξ ∈ Ξ.

(?) =
∑
ξ∈Ξ

∑
w̄∈Pξ,2

χPξ(ū9c, w̄) · Sξ
(
w̄, ξ91(τ 91ξ (v̄9c))

)
=
∑
ξ∈Ξ

(χPξ · Sξ)
(
ū9c, ξ91(τ 91ξ (v̄9c))

)
=
∑
ξ∈Ξ

(Sξ · χQξ)
(
ū9c, ξ91(τ 91ξ (v̄9c))

)
=
∑
ξ∈Ξ

∑
w̄∈Qξ,1

Sξ(ū9c, w̄) · χQξ
(
w̄, ξ91(τ 91ξ (v̄9c))

)
,

where Qξ ∈ orb2k−2((Ag−ξ, p̄pc)) has the same type in (Ag−ξ, p̄pc) as Pξ has in (Af , p̄pc)
and Qξ,1 := Qξ|[k−1] for every ξ ∈ Ξ (or Qξ = Qξ,1 = ∅ if Pξ = ∅). The step from Pξ to Qξ

is possible because Sξ blurs the twist between (Af , p̄pc) and (Ag−ξ, p̄pc) for every ξ ∈ Ξ
(Claim 12).

We analyze the structures of these orbits. Let R be the star center component of P
and so of Q. Note that R may be split into multiple components for P1, P2, Pξ, and
the others. We apply Lemma 7.17 to split P = P |R × P |D, Pξ = Pξ|R × Pξ|D, and
Qξ = Qξ|R ×Qξ|D for every ξ ∈ Ξ, where D is the set of components of P apart from R.
The components inD have distance greater than 1 to c because c ∈ R. Hence, P |D = Pξ|D
and

P = P |R × Pξ|D

for every ξ ∈ Ξ. Because Pξ|R has the same type in (Af , p̄pc) as Qξ|R has in (Ag−ξ, p̄pc) and
their origins do not contain any of the base vertices t′i, it even follows that Pξ|R = Qξ|R
for every ξ ∈ Ξ because (Af , p̄pc)[R] = (Ag−ξ, p̄pc)[R]. So

Qξ = Pξ|R ×Qξ|D

for every ξ ∈ Ξ. For readability, we set ūD := ū9cD and ūR := ū9cR . Then ū9c = ūRūD. We
do the same for v̄9c = v̄Rv̄D and w̄ = w̄Rw̄D. So we obtain in the next step that

(?) =
∑
ξ∈Ξ

∑
w̄Rw̄D∈Qξ,1

Sξ(ūRūD, w̄Rw̄D) · χQξ
(
w̄Rw̄D, ξ

91(τ 91ξ (v̄Rv̄D))
)
.

We set
QD := τξ(Qξ|D)

for some ξ ∈ Ξ. Claim 10 states that QD is an orbit of (Ag, p̄pc) and has the same type
in (Ag, p̄pc) as Qξ|D has in (Ag−ξ, p̄pc). As seen before, this is the same type as Pξ|D has
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in (Af , p̄pc). Because, as already seen, Pξ|D = P |D for every ξ ∈ Ξ, the type of QD is
independent of ξ andQD is well-defined. SoQD is also an orbit of (Ag, p̄) and ξ(QD) = QD

for every ξ ∈ Ξ because ξ is an orbit-automorphism (Claim 6). Thus, QD = ξ(τξ(Qξ|D))
for every ξ ∈ Ξ. We set for every ξ ∈ Ξ

Q′ξ := Qξ|R ×QD = Pξ|R ×QD.

By Claim 10, for every ξ ∈ Ξ it holds that

χQξ
(
w̄Rw̄D, ξ

91(τ 91ξ (v̄Rv̄D))
)

= χQ
′
ξ

(
w̄Rξ(τξ

(
w̄D)

)
, ξ91

(
τ 91ξ (v̄R)

)
ξ
(
τξ(ξ91(τ 91ξ (v̄D)))

))
= χQ

′
ξ

(
w̄Rξ(τξ(w̄D)), ξ91(τ 91ξ (v̄R))v̄D

)
.

We used that ξ and τξ commute (Claim 5) and that they can be applied component-wise
(Claim 4). With Q′ξ,1 := Q′ξ|[k−1] for every ξ ∈ Ξ, we obtain that

(?) =
∑
ξ∈Ξ

∑
w̄Rw̄D∈Qξ,1

Sξ
(
ūRūD, w̄Rw̄D

)
· χQ

′
ξ

(
w̄Rξ(τξ(w̄D)), ξ91(τ 91ξ (v̄R))v̄D

)
=
∑
ξ∈Ξ

∑
w̄Rw̄D∈Q′ξ,1

Sξ
(
ūRūD, w̄Rξ

91(τ 91ξ (w̄D))
)
· χQ

′
ξ

(
w̄Rw̄D, ξ

91(τ 91ξ (v̄R))v̄D
)
.

We claim that

Q = P |R ×QD.

First, P |R ×QD ∈ orb2k((Ag, p̄)) by Lemma 7.17. Both parts are orbits and their origins
are not connected. Second, because QD has the same type in (Ag, p̄pc) as Pξ|D = P |D
in (Af , p̄pc), QD has also the same type in (Ag, p̄) as Pξ|D = P |D in (Af , p̄). Because
the components in R do not contain a twisted base edge, P |R = Q|R and so indeed
Q = P |R × QD. Because Q′ξ|R = Pξ|R and by the definition of Pξ|R, it holds that
w̄Rw̄Dξ

91(τ 91ξ (v̄R)) ∈ Q′ξ if and only if w̄cw̄Rw̄D, ξ
91(τ 91ξ (v̄cv̄R)) ∈ Q. We continue as

follows:

(?) =
∑
ξ∈Ξ

∑
w̄Rw̄D∈Q′ξ,1

Sξ
(
ūRūD, w̄Rξ

91(τ 91ξ (w̄D))
)
· χQ

(
ūcw̄Rw̄D, ξ

91(τ 91ξ (v̄cv̄R))v̄D
)

=
∑
ξ∈Ξ

∑
w̄cw̄Rw̄D∈Q1,

w̄c=ūc

Sξ
(
ūRūD, w̄Rξ

91(τ 91ξ (w̄D))
)
· χQ

(
w̄cw̄Rw̄D, ξ

91(τ 91ξ (v̄cv̄R))v̄D
)
.

For every ξ ∈ Ξ, it holds that ξ91(τ 91ξ (Q|R)) = Q|R because τξ is the identity function on
R-base vertices (R is a star center component) and because ξ is an orbit-automorphism
(Claim 6). So by Lemma 7.17, ξ91(τ 91ξ (w̄R))w̄D ∈ Q if and only if w̄Rw̄D ∈ Q for every
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ξ ∈ Ξ. We substitute w̄Rw̄D 7→ ξ91(τ 91ξ (w̄R))w̄D (this is a bijection).

(?)

=
∑
ξ∈Ξ

∑
w̄cw̄Rw̄D∈Q1,
ξ91(τ91ξ (w̄c))=ūc

Sξ
(
ūRūD, ξ

91
(
τ 91ξ (w̄R)

)
ξ91
(
τ 91ξ (w̄D)

))
·

χQ
(
ξ91
(
τ 91ξ (w̄cw̄R)

)
w̄D, ξ

91
(
τ 91ξ (v̄cv̄R)

)
v̄D

)
=
∑
ξ∈Ξ

∑
w̄cw̄Rw̄D∈Q1,
ξ91(τ91ξ (w̄c))=ūc

Sξ
(
ūRūD, ξ

91(τ 91ξ (w̄Rw̄D))
)
· χQ

(
ξ91(τ 91ξ (w̄cw̄R))w̄D, ξ91(τ 91ξ (v̄cv̄R))v̄D

)

=
∑
ξ∈Ξ

∑
w̄cw̄Rw̄D∈Q1,
ξ91(τ91ξ (w̄c))=ūc

Sξ
(
ūRūD, ξ

91(τ 91ξ (w̄Rw̄D))
)
· χQ

(
w̄cw̄Rw̄D, v̄cv̄Rv̄D

)
.

In the last step we again used that τξ is the identity on the R-component and that ξ is
an orbit-automorphism. We finish the proof with the reverse steps as to how we started
it.

(?) =
∑
ξ∈Ξ

∑
w̄∈Q1,

ξ91(τ91ξ (w̄c))=ūc

Sξ
(
ū9c, ξ91(τ 91ξ (w̄9c))

)
· χQ

(
w̄, v̄

)

=
∑
w̄∈Q1

∑
ξ∈Ξ,

ξ(ūc)=τ91ξ (w̄c)

Sξ
(
ū9c, ξ91(τ 91ξ (w̄9c))

)
· χQ

(
w̄, v̄

)

=
∑
w̄∈Q1

S(ū, w̄) · χQ(w̄, v̄)

= (S · χQ)(ū, v̄). a

Claims 23, 24, and 25 show that S indeed k-blurs the twist between (Af , p̄) and (Ag, p̄).
This finishes the proof of Lemma 7.55.

We checked our construction in the proof for k ≤ 2 on the computer. For larger k, it was
computationally not tractable.

7.8 Separating Rank Logic from CPT

In this section we finally separate rank logic from CPT. To apply Lemma 7.55, we need
to construct a suitable class of base graphs.

Lemma 7.61. For every n ∈ N, there is a regular graph that has degree at least n, girth
at least n, and is n-connected.

Proof. A (d, g)-cage is a d-regular graph with girth g of minimum order. For every odd
g ≥ 7, every (d, g)-cage is dd2e-connected [11]. So it suffices to show that, for every n,
there is a d ≥ 2n and an odd g ≥ n such that there is a (d, g)-cage. For all d ≥ 2 and
g ≥ 3, there is a d-regular graph of girth g [107] and so in particular a (d, g)-cage.
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Lemma 7.62. Let G = (V,E) be a d-regular graph of girth at least 2(`+ 2) + 1 for some
` ∈ N. Then, for every set V ′ ⊆ V of size |V ′| < d, there is a base vertex u ∈ V such
that distG(V ′, u) > `.

Proof. Because G is d-regular and has girth at least 2(` + 2) + 1, for every v ∈ V , the
induced subgraph G[N i

G(v)] is a tree in which the root v has d many subtrees, which are
all complete (d− 1)-ary trees of height i− 1. Thus, we have |N i

G(v)| = 1 + d
∑i−1
j=0(d− 1)j

for every v ∈ V . Let v ∈ V ′. Then
∣∣∣N `+2

G (v) \
⋃

w∈V ′
N `
G(w)

∣∣∣ ≥ 1 + d
`+1∑
j=0

(d− 1)j − |V ′| ·
(

1 + d
`−1∑
j=0

(d− 1)j
)

≥ d
`+1∑
j=0

(d− 1)j − (d− 1)− d
∑̀
j=0

(d− 1)j

≥ d(d− 1)`+1 − (d− 1) > 0.

Hence, there is at least one u ∈ V satisfying the claim.

Theorem 7.63. There is a class of base graphs K, such that, for all k,m ∈ N, there
are G = (V,E,≤) ∈ K and q ∈ N such that CFI2q(G, f) ≡2k+m,k,{2}

M CFI2q(G, g) for all
f, g : E → Z2q satisfying ∑ g = ∑

f + 2q−1.

Proof. Let K be the class of graphs given by Lemma 7.61 for every n ∈ N equipped with
some total order. Let k,m ∈ N and G ∈ K such that it has degree d ≥ d(k,m) > m,
girth at least 2(2r(k+ 1) + 2) + 1, and G is at least (2k+m+ 1)-connected. Let q = q(k),
e = {u, v} ∈ E, and g, f : E → Z2q such that ∑ g = ∑

f+2q−1. Up to isomorphism of the
CFI structures, we can assume that e is the only base edge twisted by f and g and that
g(e) = f(e) + 2q−1. Let Af = CFI2q(G, f) and Ag = CFI2q(G, g) both with universe A.
We show that Duplicator has a winning strategy in the invertible-map gameM2k+m,k,{2}

played on Af and Ag.
We consider the case wheremmany pebble pairs are placed on the structures. Starting

with fewer pebbles makes the proof more elaborate without providing any additional
insights. Let ū ∈ A2k+m and v̄ ∈ A2k+m such that the type of ū in Af is the same as of v̄
in Ag and e 6⊆ orig(ū), i.e., there exists a local isomorphism mapping ū to v̄. Assume we
play on (Af , ū) and (Ag, v̄). Let P ∈ orb2k+m((Af , ū)) contain ū and Q ∈ orb2k+m((Ag, v̄))
contain v̄. Because ū and v̄ have the same type, P and Q have the same type. Because
e 6⊆ orig(ū), we have that Af [orig(P )] = Ag[orig(Q)] and thus P = Q. That is, there is an
automorphism ϕ ∈ Aut(Ag) such that ϕ(v̄) = ū (Corollary 7.11). Up to isomorphism, we
can continue the game on (Af , ū) and ϕ((Ag, v̄)) = (Ag, ū). Spoiler picks up 2k pebbles on
each graph leaving us with the structures (Af , w̄) and (Ag, w̄) for some w̄ ∈ Am, where w̄
has the same type in Af and in Ag.

There is a base vertex w ∈ V such that distG(orig(w̄),w) > 2r(k+ 1) by Lemma 7.62.
We can assume up to exchanging u and v that e ∩ orig(w̄) ⊆ {u} because e 6⊆ orig(w̄).
Because G is (2k+m+ 1)-connected, there is a path s̄ = (u, v, . . . ,w′,w) such that s̄ and
orig(w̄) are disjoint apart from u. Then we apply the path-isomorphism ψ := ~π[2q−1, s̄]
and w.l.o.g. can continue the game on (Af , w̄) and ψ((Ag, w̄)) = (Ah, w̄), where f and h
only twist the base edge {w,w′}. Now between Af and Ah the twist is moved suffi-
ciently far away from orig(w̄). Duplicator chooses the partitions P := orb2k((Af , w̄)) and
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Q := orb2k((Ah, w̄)) of Ak×Ak and the invertible matrix S that k-blurs the twist between
(Af , w̄) and (Ah, w̄) given by Lemma 7.55. By construction, the conditions of the lemma
are satisfied. The matrix S induces a map P → Q mapping P 7→ Q if and only if P
and Q have the same type in (Af , w̄) and (Ah, w̄), respectively (Definition 7.22). Spoiler
chooses orbits P ∈ P and Q ∈ Q of the same type and ū′ ∈ P and v̄′ ∈ Q. Then ū′ has
the same type in (A, w̄) as v̄′ in (Ah, w̄). So w̄ū′ and w̄v̄′ induce a local isomorphism and
the next round starts. As we can see, we are in the same situation as before, that is w̄ū′
and w̄v̄′ have the same type in Af and Ah, respectively, and we can apply Duplicator’s
strategy again. So Duplicator has a winning strategy in theM2k+m,k,{2}-game.

We now show that CPT distinguishes CFI structures over all Z2q . To do so, we review
an extended result of the canonization of bounded and abelian colors (Theorem 4.88)
from [103]. The canonization result can be strengthened from bounded color class size
to ordered colors. A τ -structure with ordered colors is a tuple (A,�), where A is a
colored relational τ -structure with color classes C1, . . . , Cn and � = {(Γi,≤i) | i ∈ [n]} is
a family of ordered permutation groups such that Γi is a transitive group with domain Ci
for every i ∈ [n]. Note that structures with ordered colors are, without further encoding,
not relational structures because � is a higher-order object. However, we only define,
given a relational τ -structure A, the family � of ordered permutation groups in CPT and
thus can represent � as a hereditarily finite set.

Theorem 7.64 ([103]). Canonization of τ -structures with ordered abelian colors is CPT-
definable.

Theorem 7.65. There is a class of τ -structures K such that IFPC+R < Ptime on K and
CPT = Ptime on K.

Proof. Let K′ be the graph class from Theorem 7.63, and set K := CFI2ω(K′) (recall
Definition 7.20). We want to show that the CFI query for K is not IFPC+R-definable.
This is the task of deciding whether for a given CFI2q(G, f) ∈ K it holds that ∑ f = 0.
By Lemma 7.21, it suffices to show that the CFI query is not IFPC+R{2}-definable. The
claim follows from Lemma 7.1 and Theorem 7.63.

We now argue that CPT captures Ptime on K. By Theorem 7.64, it suffices to
show that K is a class of structures with abelian and ordered colors (cf. Section 7.1).
By Lemma 7.3, the colors are abelian and it remains to define for every color class an
ordered and transitive permutation group in CPT. Every gadget forms a color class. As
seen in Section 7.3, every gadget forms a 1-orbit and has a regular, so in particular tran-
sitive, automorphism group (Lemmas 7.10 and 7.15). Consider a degree d gadget. Then
every automorphism ϕ of the gadget can be identified with a tuple ā ∈ Zd2q satisfying∑
ā = 0 such that ϕ(u) = v if and only if ā(u) = v. Indeed, every such tuple represents

an automorphism. Hence, the automorphism group of the gadget can be represented by
{ā ∈ Zd2q |

∑
ā = 0}, which is a CPT-definable set (the tuples, although of unbounded

length, can be represented by standard set encoding of tuples). This set can be ordered
using the lexicographical order on tuples. Because the base graph is ordered, the au-
tomorphism corresponding to the tuple ā is CPT-definable: The i-th entry defines the
action on the i-th outgoing base edge, which is definable using the relation RI .

Corollary 7.66. IFPC+R < Ptime.



7.9. Linear-Algebraic Logic 289

7.9 Linear-Algebraic Logic

In this section, we review the connection between the invertible-map game and linear-
algebraic logic (LA) [25]. This logic extends infinitary first-order logic by Lindström
quantifiers for every linear-algebraic operator over finite fields and as such captures all
extensions of IFPC by some linear-algebraic operators over finite fields. We do not give a
formal definition of linear-algebraic logic here and refer for details to the work of Dawar,
Grädel, and Pakusa [25,26]. Intuitively, a linear-algebraic operator over a finite prime
field Fp is a function f that maps tuples (M1, . . . ,Mm) of Fp-linear transformations on an
abstract vector space FBp (for some abstract basis B) to some linear-algebraic information
f(M1, . . . ,Mm) ∈ N. To define “linear-algebraic information”, it is required that f is
invariant under Fp-vector space isomorphisms. That is, f(M1, . . . ,Mm) = f(N1, . . . , Nm)
whenever M1, . . . ,Mm and N1, . . . Nm are simultaneously similar. To recall, this means
that there is an Fp-vector space isomorphism S such that, for all i ∈ [m], we have
Mi = S · Ni · S91 or equivalently Mi · S = S · Ni. Here the connection to the invertible-
map game becomes apparent. This is the only requirement for f to be a linear-algebraic
operator, in particular, f is not required to be computable at all. For every linear-
algebraic operator f , we add a family of Lindström quantifiers to the logic. For all
m, t ∈ N, we add the quantifier Qm,tf : If Θ̄ is an m-tuple of LA-interpretations each
defining a linear-transformation, i.e., a binary structure encoding a matrix, then

Qm,tf . Θ̄

is an LA-formula. The formula is satisfied if Θ̄ defines the matrices M1, . . . ,Mm and
f(M1, . . . ,Mm) ≥ t. We denote, for k ∈ N and a set of primes Q, by LAk(Q) the
k-variable fragment of LA that only considers linear-algebraic transformations over finite
fields Fp with p ∈ Q. In particular, all the interpretations in the Lindström quantifiers
are at most k-dimensional.

The equivalence relation induced by the invertible-map game precisely corresponds to
the one induced by linear-algebraic logic [25] (and hence we do not need a fully formal
definition of LA). For two τ -structures A and B, we write A ≡k,QM B if A ≡m,k,QM B for
every 2m ≤ k.
Theorem 7.67 ([25, Theorem 2]). For every k ≥ 2, every set of primes Q, every finite
relational structure A, and every ū, v̄ ∈ Ak, the following are equivalent:

1. (A, ū) ≡k,QM (A, v̄).

2. (A, ū) ≡LAk(Q) (A, v̄).

The theorem easily generalizes to consider two structures A and B and tuples ū ∈ Ak

and v̄ ∈ Bk. Let K be a class of ordered base graphs and recall the following steps to
separate IFPC+R from Ptime:

1. Every IFPC+R-formula is equivalent to some IFPC+R{2}-formula over CFI2ω(K)
by Lemma 7.21.

2. If the invertible-map game Mm,k,{2} does not distinguish all non-isomorphic CFI
structures of CFI2ω(K) for some fixedm and k, then IFPC+R{2} does not distinguish
all non-isomorphic CFI structures of CFI2ω(K) by Lemma 7.1.
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3. The invertible-map game Mm,k,{2} does not distinguish all non-isomorphic CFI
structures by Theorem 7.63 for all k and 2m ≤ k.

To lift this result from rank logic to linear-algebraic logic, we need a similar statement to
Lemma 7.21 for linear-algebraic logic that states that over CFI2ω(K), linear-algebraic logic
reduces to its characteristic 2 fragment, which only considers linear-algebraic operators
over F2. Such a statement was essentially shown by Dawar, Grädel, and Pakusa [25].
Using generalizations of CFI graphs over prime fields over Fp similar to our generalization
to rings Z2i , the authors showed that for every k and every set of primes Q with p /∈ Q,
the logic LAk(Q) does not distinguish all CFI structures over Fp. In particular, the
authors show that LAk(Q)-formulas are equivalent to IFPC-formulas for a class of CFI
structures, whose base graphs satisfy certain conditions. The arguments also translate
to our scenario of CFI structures over rings Z2i as shown in joint work with Dawar and
Grädel [28].
Lemma 7.68 ([28, Lemma 9]). For every k ∈ N, there exists a c ∈ N such that for every
q ≥ 1, every c-connected base graph G = (V,E,≤), and every f, g : E → Z2q , it holds
that CFI2q(G, f) ≡k,P\{2}M CFI2q(G, g).
Again, P denotes the set of all prime numbers. Transferring the results of [25] to the CFI
structures of this chapter has some technical difficulties. This chapter uses a variant only
with gadget vertices for base graphs with high connectivity but [25] uses the relational
variant only using edge vertices on 3-regular base graphs. These graphs are essentially
expander graphs and ensure that the k-orbits of the CFI structures are definable in
`k-variable counting logic for a fixed `. This property is known as homogeneity. Instead
of showing that full linear-algebraic logic reduces to its characteristic 2 fragment on our
CFI structures, the following lemma allows for combining indistinguishability results for
different primes.
Lemma 7.69 ([28, Lemma 10]). Let P,Q be two sets of primes, k, q ∈ N, G = (V,E,≤)
be a (k + 3)-connected base graph, and f, g : E → F2q . If CFI2q(G, f) ≡k+3,P

M CFI2q(G, g)
and CFI2q(G, f) ≡k+3,Q

M CFI2q(G, g), then CFI2q(G, f) ≡k,P∪QM CFI2q(G, g).
Combining Theorem 7.63 with Lemma 7.69 yields the desired result.
Theorem 7.70 ([28, Theorem 7]). For every k ∈ N, there is a base graph G = (V,E,≤),
a q ∈ N, and f, g : E → Z2q with

∑
f = ∑

g+2q−1 such that CFI2q(G, f) ≡k,PM CFI2q(G, g).
This theorem has the following immediate consequences. The first one is that the equiv-
alence induced by the k-ary invertible-map game does not yield an isomorphism test on
finite structures for a fixed k.
Corollary 7.71. There is no fixed k ∈ N such that ≡k,PM coincides with isomorphism on
finite structures.
The second consequence is that no extension of fixed-point logic by linear-algebraic oper-
ators captures Ptime. Every such extension can be embedded in linear-algebraic logic,
which fails to define the isomorphism problem of the CFI structures considered. But this
query is CPT-definable and thus in particular polynomial-time decidable.
Corollary 7.72. No extension of fixed-point logic IFP (or of IFPC) by linear-algebraic
operators over finite fields captures CPT or Ptime.
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7.10 Discussion

We showed that rank logic does not capture CPT and in particular not Ptime on the
class of CFI structures over rings Z2i , even if the base graph is totally ordered. To do
so, we used combinatorial objects called blurrers and a recursive approach over the arity.
The non-locality of k-tuples for k > 1 increased the difficulty of k-ary rank operators
dramatically compared to the arity 1 case. It was suggested by Grädel and Pakusa [45]
that CFI graphs over Z4 could be a separating example for rank logic and Ptime. Our
concepts for blurrers required rings Z2i with i > 2 for higher arities. Actually, our
computer experiments used to check Lemma 7.55 indicate that CFI graphs over Z4 may
be distinguishable in the k-ary invertible-map game for some k > 1. It might also be
possible that the CFI query over Z4 is definable in rank logic using rank operators of
higher arities, but this remains an open question.

There are various definitions of rank logic, which slightly differ in the way the matrices
in the rank operator are defined. In particular, there is an extension, in which rank
operators not only bind universe variables, but also numeric variables [45,83,103]. It is not
clear whether this extension is more expressive or not. However, for a suitable adaptation
of the invertible-map game, which also supports numeric variables to construct matrices,
we strongly believe that our arguments work exactly the same. In fact, we think that
at least in the invertible-map game numeric variables do not increase the expressiveness.
Thus, our arguments directly apply and also cover the versions of rank logic in which
numeric variables can be used to define matrices.

A natural question is how rank logic can be extended such that it can define the CFI
query. We have shown that it is not sufficient to compute ranks over finite fields. Even
more, our construction applies to arbitrary linear-algebraic operators over finite fields.
However, it is not clear how rank logic can be extended to rings Zi. Over rings, there are
several non-equivalent notions of the rank of a matrix. For a discussion see [24, 103]. As
opposed to rank logic, solvability logic can easily be extended to rings and thus should be
able to define the CFI query over all Zi. Notably, such an extension would also capture
Ptime on structures with bounded and abelian colors [103].

Regarding linear-algebraic logic and the invertible-map game, we note that the CFI
structures used to prove Theorem 7.70 are super-exponential in the arity k. In particular,
we get only a weak lower bound on k compared to the size of non-isomorphic structures
that cannot be distinguished. The bound is super-constant but sub-logarithmic. This
should be contrasted with the linear lower bound for the dimension of the Weisfeiler-
Leman algorithm respective the number variable of counting logic needed to distinguish
CFI graphs [20]. It is an interesting question whether the bound for the invertible-map
equivalence can be strengthened.
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Chapter 8

Conclusion

In this thesis, we investigated the frontier in the search for a logic capturing Ptime.
In fact, we examined all current candidates for logics capturing Ptime. The two most
promising ones are Choiceless Polynomial Time (CPT) and rank logic. CPT expresses
all choice-less polynomial-time computations on relational structures. Rank logic extends
fixed-point logic by an operator for ranks over finite fields. A third approach is the ex-
tension of fixed-point logic by witnessed symmetric choice, a restricted choice-mechanism
that allows for choices from definable orbits. We studied the expressive power of both,
CPT and witnessed symmetric choice, and considered the combination of these two dif-
ferent approaches. Moreover, we ruled out rank logic as a candidate for capturing Ptime.

In Chapter 4, we investigated the expressive power of CPT and provided the first
canonization result for structures with bounded color class size and non-abelian color
classes, namely for structures with dihedral colors. We introduced a normal form in
which 2-injective 3-factor subdirect products play a crucial role and characterized these
products for dihedral groups. Using this approach, we showed how more group theory
can be exploited in logics. The normal form may be of more general interest and it is an
interesting open problem whether our method can be extended to other classes of groups.
The question whether CPT canonizes all structures with bounded color class size, and
thereby captures Ptime on these structures, remains open.

The general approach to canonize structures of bounded color class size in CPT is that
there are only polynomially many “small” sets, e.g., orders of the atoms of one color class,
that cannot be distinguished. Hence, all such sets can be considered without violating the
polynomial bound. In Chapter 5, we took an orthogonal point of view and considered
the extension of CPT with witnessed symmetric choice, which allows for choices from
definable orbits. Choosing from orbits ensures isomorphism-invariance of the logic. By
making choices iteratively, one can choose one object out of exponentially many. This is
not possible in CPT and considering all of these objects is not possible, either.

Using witnessed symmetric choice, a definable complete invariant can be turned into
a definable canonization in CPT+WSC. Furthermore, by generalizing the DeepWL com-
putation model to feature witnessed symmetric choice, we proved that a CPT+WSC-
definable isomorphism test implies a CPT+WSC-definable complete invariant and thus
a CPT+WSC-canonization. This is a surprising result and originates from the com-
bination of the – at first sight incompatible – concepts of symmetry-invariant compu-
tation in CPT and the arbitrary choices of witnessed symmetric choice. In particular,
CPT+WSC-captures Ptime for every class of structures for which CPT+WSC defines
the isomorphism problem by the Immerman-Vardi Theorem. Thus, we reduced capturing
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Ptime with CPT+WSC to defining isomorphism in CPT+WSC. For a class of struc-
tures with a known polynomial-time isomorphism testing algorithm, capturing Ptime
with CPT+WSC becomes actually equivalent to defining isomorphism in CPT+WSC.

This raises the intriguing question whether CPT+WSC is strictly more expressive
than CPT. A positive answer to this question would, in particular, separate CPT from
Ptime. We at least constructed a class of base graphs, for which CPT+WSC easily
defines the CFI query, but for which it is not known whether CPT defines it. Notably,
the class of hypercubes is currently investigated as a class of base graphs, for which CPT
might fail to define the CFI query [102]. Hypercubes are graphs of low degree but with
many symmetries. This means that the CFI gadgets are rather small, but because all
CPT-definable sets are closed under automorphisms, definable sets become large quickly.
However, because hypercubes are graphs with a well-understood structure, it should be
possible to distinguish the orbits of hypercubes in CPT. Essentially, this suffices to show
that CPT+WSC defines the CFI query over hypercubes. So does CPT+WSC capture
Ptime if CPT does not? In some sense, this would be surprising because CPT+WSC
needs to define orbits to exploit symmetric choice but, at least algorithmically, computing
the orbit-partition is polynomial-time equivalent to the graph isomorphism problem, for
which the complexity status is unknown.

Because we do not know whether CPT captures Ptime, investigating the power of
witnessed symmetric choice in CPT is difficult. Therefore, we considered inflationary
fixed-point logic with counting (IFPC) as a base logic for studying witnessed symmetric
choice. IFPC has the advantage that most of the known separation results for IFP and
symmetric choice do not apply because they are based on counting. However, under-
standing the power of symmetric choice is not about simulating counting, which can be
achieved much more naturally by counting operators.

In Chapter 6, we considered the extension of IFPC by witnessed symmetric choice
(IFPC+WSC) and the further extension by the interpretation operator (IFPC+WSC+I),
which allows us to evaluate a subformula in the image of an interpretation. This im-
age may have different symmetries, which can be exploited by witnessed symmetric
choice. Using the CFI construction and variations of it, we separated IFPC+WSC from
IFPC+WSC+I (and thus in particular from Ptime). Additionally, we provided a graph
construction based on iteratively applying the CFI construction. We used this construc-
tion to show that two nested WSC-fixed-point and interpretation operators are strictly
more expressive than a single WSC-fixed-point iterator and a single interpretation op-
erator. It is conceivable that the construction can be used to show a general operator
nesting depth hierarchy for IFPC+WSC+I. If this can be done, then IFPC+WSC+I is
separated from Ptime. So we also provide a new approach to separate IFPC+WSC+I
from Ptime and thereby to show that, at least for IFPC, symmetric choice does not
provide a logic capturing Ptime.

But to which extent can these results be transferred to CPT? Can this graph con-
struction be adapted for CPT? As already mentioned, separating CPT from CPT+WSC
implies separating CPT from Ptime. If it turns out that CPT fails to capture Ptime,
can we then separate CPT+WSC from CPT or separate CPT+WSC from Ptime? More
specifically, assume CPT fails to define the CFI query for a class of base graphs, say for
example for hypercubes. Can our results for IFPC be adapted to show that under this
assumption CPT+WSC fails to define the CFI query, too? Or how does CPT+WSC
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relate to the further extension of CPT+WSC with the interpretation operator?
Lastly, we considered the approach to capture Ptime by extending IFPC with op-

erators from linear algebra. We showed in Chapter 7 that rank logic, the extension of
IFPC by the uniform rank operator over finite fields, fails to capture Ptime. We proved
that rank logic does not define the CFI query over the rings Z2i . To do so, we introduced
combinatorial objects called blurrers and combined them with a recursive approach over
the arity of rank operators. With this technique, we could not only show that rank
logic fails to define the CFI query over Z2i , but we also showed that the characteristic 2
invertible-map game fails to distinguish these CFI structures. The invertible-map game
has a potentially much stronger distinguishing power than rank logic and corresponds to
the so-called linear-algebraic logic. This logic extends infinitary first-order logic by all
linear-algebraic operators over finite fields. We were able to show that not only does the
characteristic 2 invertible-map game fail to distinguish CFI structures over Z2i , but also
that the general invertible-map game and thus linear-algebraic logic fail to do so. Because
linear-algebraic logic subsumes every extension of fixed-point logic by linear-algebraic op-
erators over finite fields, we finally showed that using these operators it is impossible to
capture Ptime. This of course poses the question of extensions by operators over rings.
Extensions using quantifiers for the solvability of linear equation systems over finite rings
define the CFI query over Z2i . Currently, there is no known approach suitable for sep-
arating such a logic from Ptime. The CFI construction is inherently limited to abelian
groups, but it seems that a non-abelian construction is needed to separate extensions
with algebraic operators for finite rings from Ptime.

We also addressed the relationship between rank logic and CPT. Because CPT is able
to define the CFI query over Z2i for the class of base graphs used to separate rank logic
from Ptime, we showed that rank logic cannot be as expressive as CPT (see Figure 1.1).
What remains open is the precise relation between these different approaches using linear-
algebra and symmetry-invariant computations on hereditarily finite sets. Is CPT strictly
more expressive than rank logic or are these two logics incomparable? Equivalently,
is there a query definable in rank logic but not in CPT? The already mentioned CFI
query over hypergraphs is a candidate for such a query because rank logic defines the
CFI query (over F2) for all base graphs. Notably, it should be straightforward to prove
that IFPC+WSC+I defines the CFI query over Z2i for ordered base graphs and also
for hypercubes as base graphs. That is, IFPC+WSC+I defines the two queries, the
one separating rank logic from CPT and the one possibly separating CPT from rank
logic. However, our results for iteratively applying the CFI construction indicate that
IFPC+WSC+I fails to define the CFI query for all base graphs. If that turns out to the
case, then rank logic and IFPC+WSC+I are incomparable, too. This leaves us with the
question whether there is candidate for a query separating CPT and IFPC+WSC+I.

If all the mentioned separations can be proved, then all the logics CPT, rank logic, and
IFPC+WSC+I would be ruled out as candidates. What would this mean for the quest
for a logic capturing Ptime? On the one hand, we can consider extensions circumventing
the separating queries, for example, CPT+WSC or even CPT+WSC+I and the extension
of IFPC by linear-algebraic operators for finite rings. On the other hand, we may need to
think of completely new approaches. However, it is not clear at all what such approaches
should be. In any case, the search for a logic capturing Ptime will go on and, hopefully,
lead to interesting research results.
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List of Symbols

The following symbols and notations are used throughout this thesis. Specific symbols
and notations are introduced in the corresponding chapters.

Basics

N set of natural numbers
Z set of integers
i, j, k, `, m, n natural numbers or integers
Fp finite prime field of characteristic p
Zj ring of integers modulo j
[k] the set {1, . . . , k}
N ]M disjoint union of two sets N and M
{{a1, . . . , ak}} multiset containing the elements a1, . . . , ak
1, 0 identity matrix and zero matrix

Tuples

N I I-indexed tuples over N
t̄, s̄ tuples
t̄(i) entry for index i ∈ I
t̄|J restriction of a tuple to J ⊆ I
T |J restriction of a set of tuples T ⊆ N I to J
T |I extension of a set of tuples T ⊆ NJ to I ⊇ J
Nk set of tuples of length k over N
ti i-th entry of t̄ ∈ Nk

N≤k set of tuples of length at most k over N
N∗ set of all tuples of finite length over N
t̄s̄ concatenation of two tuples

Permutation Groups

Γ, ∆ groups
Sym(Ω) symmetric group with domain Ω
σ, τ permutations (if not conflicting with signatures)
ord(σ) order of σ
O orbit
orbΓ(u) Γ-orbit of u ∈ Ω
orb(Γ) set of 1-orbits of Γ
orbk(Γ) set of k-orbits of Γ
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Relational Structures

A, B, H finite relational structures
A, B, H universe of the structures
u, v, w atoms of structures
ū, v̄, w̄ tuples of atoms
τ , σ relational signatures
R, S relation symbols
RA, SA relation symbols interpreted in A
ar(R) arity of a relation R
� relation symbol for a total preorder
K, J classes of structures
A[A′] substructure of A induced by A′ ⊆ A
A[ū] substructure induced by the set of atoms in ū
A � σ reduct of a τ -structure A to σ ⊆ τ
A ∼= B isomorphic structures
ϕ, ψ isomorphisms or automorphisms of structures
Aut(A) automorphism group of A
Aut((A, ū)) automorphism group of A stabilizing ū ∈ A∗
orb(A) set of 1-orbits of A
orbk(A) set of k-orbits of A

Graphs

G, H graphs
V vertex set of a graph
E edge relation of a graph
G− V ′, G− E ′ graph obtained by deleting the vertices V ′ ⊆ V or edges E ′ ⊆ E from G
NG(u) neighbors of the vertex u in the graph G
Nk
G(u) k-neighborhood of u in G

distG(u, v) distance of u and v in G
distG(X, Y ) distance of two vertex sets X and Y in G
G[W ] subgraph of G induced by W ⊆ V

Names of Logics

FO first-order logic
IFP (inflationary) fixed-point logic
IFPC fixed-point logic with counting
Ck k-variable counting logic
Wk k-walk counting logic
CPT Choiceless Polynomial Time
CPT+WSC CPT with witnessed symmetric choice
IFP+WSC IFP with witnessed symmetric choice
IFPC+WSC IFPC with witnessed symmetric choice
IFPC+WSC+I IFPC+WSC with the interpretation operator
IFP+SC IFP with symmetric choice
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IFPC+R rank logic with the uniform rank operator rk
IFPC+RΩ rank logic with the fixed characteristic rank operator rkp for all p ∈ Ω
IFPC+SΩ solvability logic with solvability quantifiers for all Fp with p ∈ Ω
LA linear-algebraic logic

Logical Objects

L some logic
L[τ ] L-formulas and terms for the signature τ
L[τ, σ] L-interpretation from τ -structures to σ-structures
L ≤ L′ L′ is at least as expressive as L
≡L equivalence on finite structures induced by L
≡kC equivalence of Ck
Φ, Ψ formulas
s, t, r terms
x, y, z variables, in particular element variables for IFPC and extensions
ν, µ numeric variables for IFPC and extensions
Φ(x̄) the free variables of Φ are among the variables in x̄
ΦA set of all tuples (to interpret the free variables of Φ) satisfying Φ in A
sA function mapping tuples to the object defined by s in A
Θ, Π, Υ logical interpretations
A#, τ# extension of the structure A or the signature τ with counting
λ bijection in pebble games
HF(A) hereditarily finite sets over the set of atoms A
a, b, c hereditarily finite sets in the context of CPT
a, b, c elements of fields or rings in the context of CFI graphs
TC(a) transitive closure of a hereditarily finite set
HF(A), τHF extension of A or τ with hereditarily finite sets

CFI Graphs and Structures

CFIge(G, f) CFI graph with gadget and edge vertices over G
CFIg(G, f) CFI graph with gadget vertices over G
CFIe(G, f) CFI graph with edge vertices over G
CFIge(K) class of CFI graphs over the class of base graphs K
u, v, w base vertices of the base graph G
e base edge of the base graph G
s̄ path in the base graph G
orig(u) origin of a vertex u of a CFI graph
CFI2q(G, f) (generalized) CFI structure over Z2q

CFI2q(K) class of CFI structure over Z2q and over the base graph class K
CFI2ω(K) class of CFI structure over all Z2q over the base graph class K
CFI2q(G, g)[W ] origin-induced subgraph of a CFI structure by a set of base vertices W
~π[c, s̄] path-isomorphism moving a twist with value c along the path s̄
π∗[c̄, s̄1, . . . , s̄`] star-isomorphism moving twists with values c̄ along the star (s̄1, . . . , s̄`)

In the individual chapters, we may focus on a single variant of the CFI construction and
use CFI(G, f) for CFIge(G, f), CFIg(G, f), or CFIe(G, f).
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Index

action of a group, 66
active region, 249
algebraic sketch, 137
arity

of a rank operator, 229
of a structure, 18
of relations, 18

asymmetric, 213
atom, 18, 136
atomic equation, 92
automorphism, 20

of an HF-set, 123
of an HF-structure, 137
stabilizing, 20

base edge, 30
twisted, 32, 233

base graph, 30
base vertex, 30
bijective k-walk pebble game, 49

distinguishing vertex pairs, 50
bijective pebble game, 23
bipartite graph, 213

k-meager, 213
odd, 213

blurrable orbit, 256, 269
blurrer, 245, 258
boolean query, 20

polynomial time, 20
border color class, 108
building plan, 164

efficient, 167
relation plan, 164
vertex plan, 164

canon, 27
canonical labeling, 66
canonization, 27
canonization preserving reduction, 76

capturing Ptime, 20
CES, 90
CFI gadget, 30
CFI graph, 31

even, 33
odd, 33
with edge vertices, 37
with gadget and edge vertices, 31
with gadget vertices, 36

CFI group, 71
double CFI group, 71

CFI query, 35
CFI structure, 231
choice formula, 190
choice term, 121
Choiceless Polynomial Time, 23

with witnessed symmetric choice, 126
class of structures, 20
clean, 79
closure, 215
coherent configuration, 136

coarsest, 136
refining a structure, 136

color, 137
color adjacency matrix, 43
color class, 18

abelian, 88
cyclic, 88
dihedral, 88
extension color class, 83
group color class, 83
regular, 80

color class join, 202
s-color-class-transitive, 77
colored triangle/path, 136
complete invariant, 129
component, 54, 158, 216, 238

2k-component, 264
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connected, 238
disconnected, 238
distinguished, 178
N -components of an orbit, 249
nontrivial, 54
sky component, 264
star center component, 264
star component, 264
tip-component, 264
twisted, 55

component relation, 138
congruence relation, 26
π-connected, 136
constituent

basic constituent, 79
group constituent, 84

constraint vertex, 213
containment relation, 148
converse equivalence, 28
coset, 65
counting quantifier, 23
counting term, 22
crossing

edge, 158
inter-crossing edge, 164
vertex, 164

cycle-automorphism, 33
cylic constraint, 90

DeepWL+WSC-algorithm, 140
accepting, 144
choice-free, 149
computing a function, 146
deciding a boolean query, 145
failing, 141, 144
pure, 155
rejecting, 144
runtime of, 146
simulating a formula, 149
simulating a term, 149
simulating an, 173

DeepWL+WSC-machine, 140
choice-free, 140
configuration of a, 142
normalized, 158

DeepWL-algorithm, 137

definable isomorphism, 129
definable query, 20
diagonal subgroup, 67
dihedral colors, 88
dihedral group, 67
distance in a graph, 19
distinguishable orbits, 28
distinguishing structures, 21
double-CFI-free, 103

edge vertex, 30
edge-vertex-pair, 31
edge-vertex-pair-order, 195
encoding a set of orderings, 110
encoding automorphisms, 142

for normalized algorithms, 172
L-equivalent, 21

fiber, 136, 137
first-order logic with counting, 23
fixed-point logic with counting, 21
foot, 213
formula, 21

closed, 21

gadget vertex, 30
girth, 19
global

global equation, 94
global hyperequation, 96
global variable, 94

gluing of a multiple and a CFI graph, 218
graph, 19

colored, 19
edge-colored, 28
k-connected, 19
simple, 19
undirected, 19

Gurevich’s algorithm, 131

hereditarily finite expansion, 23
hereditarily finite sets, 23
Hermite normal form, 93

local Hermite normal form, 97
heterogeneous, 77
heterogeneous arity, 77
HF-structure, 136
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normalized, 158
simulating an, 173

homogeneous, 77
hyperterm, 91

constant, 92
value of, 92

Immerman-Vardi Theorem, 22, 27
index of a subgroup, 65
individualization, 130

closed under, 130
ready for, 131

induced
feet-induced subgraph, 214
origin-induced substructure, 232
subgraph, 19
substructure, 18

inflationary fixed-point operator, 22
with WSC, 190

initial coloring, 28
injective quotient structure, 83
input-output-relation, 149
internal run, 145
interpretation, 25

closed under interpretations, 26
CPT-interpretation, 26
equivalence-free, 26
IFPC-interpretation, 25

interpretation operator, 193
intersection function, 136
intersection number, 136
invertible-map game, 230
isomorphism, 20

pebble-respecting, 23
isomorphism type, 235
isomorphism-invariant, 20, 29, 123, 135, 193

join vertex, 202, 204

labeled union, 141
linear-algebraic logic, 287
linear-algebraic operator, 287
local

local component of a TCES, 94
local equation, 94
local hyperequation, 96
local variable, 94

logic, 20

matrix, 18
active, 249
blurring the twist, 240
odd-filled, 242
orbit-diagonal, 241
orbit-invariant, 241

matrix algebra, 43
semisimple, 43

membership relation, 138
minor, 19
move

P-move, 205
regular move, 205

multipede structure, 213

neighbor, 19
k-neighborhood, 19
normal subgroup, 65

occupied indices, 276
odd-dihedral, 104
orbit

k-orbit, 19
of a permutation group, 19
of a relational structure, 20

orbit-automorphism, 267
orbit-map, 82
order

of a group, 65
of a group element, 19
of a structure, 18

orientation, 104
origin, 31, 232
output formula, 121, 190
output machine, 140
output term, 128

Pk-game, 205
p-group, 19
part, 202, 204

pebbled, 204
pebbled-part vertex, 204
pebbled-part-individualization, 204
unpebbled, 204
unpebbled-part-distinguishing, 204
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part vertex, 202, 204
path-isomorphism, 32, 233
permutation group, 19

regular, 19, 66
transitive, 19, 66

plain
vertex, 158
relation, 158
vertex corresponding to, 166

preserving the automorphism groups, 77

quotient color class, 82

rank logic, 229
rank operator

fixed-characteristic, 229
uniform, 229

reasonable assignment, 98
L-reducible, 26
reduct, 18
reduct semantics, 193
refinement, 29

distinguishing graphs, 29
distinguishing vertex pairs, 29
iteration number, 29
stable coloring, 29
Weisfeiler-Leman, 29

reflection, 67
reflection component, 106
relation

diagonal, 136
directed, 136
undirected, 136

relational signature, 18
relational structure, 18

colored, 18
ordered, 18
with bounded colors, 19
with ordered colors, 286

relations, 137
rotate-or-reflect group, 67
rotation, 67

k-scattered, 214
segment, 213

closure-fixed, 218
directly-fixed, 218

gadget-fixed, 218
sentence, 20, 21

query defined by a sentence, 20
setwise stabilizer, 66
solvability logic, 239
stage, 22
standard form

color class in, 88
relations inducing the, 88

star, 234
center of, 234

star-isomorphism, 234
step formula, 190
step term, 121
subdirect product, 66, 80

injective, 66, 80
symbolic subset relation, 137
symmetric group, 19
system of hyperequations, 92

tree-like, 96
weakly global, 96

tape
interaction-tape, 137
work-tape, 137

TCES, 90
compatible, 102
ordered union, 102
weakly global, 95

term, 21
comprehension term, 24
iteration term, 24

topmost variables, 102
total preorder, 18
transitive closure, 23
treewidth, 19
tuple, 17
tuple relation, 148
type

of a tuple, 235
of an orbit, 236

universe, 18

variable, 21
element variable, 21
free, 21



Index 319

numeric variable, 21
variable class, 90
variable tree, 94
vertex, 19, 136
vertex class, 137

k-walk, 28
walk counting logic, 48
k-walk counting logic, 47

identifying a color, 48
k-walk quantifier, 47
walk refinement, 42
k-walk refinement, 41
wall, 54

building a, 54
winning strategy, 23, 50
witnessed symmetric choice, 119, 135, 187
witnessing an orbit, 123
witnessing formula, 190
witnessing machine, 140
witnessing term, 121
WSC-fixed-point operator, 121

directly nested, 149
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