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Abstract

Active particles and active suspensions are a relatively new field of research. The study of such
complex flows promises to yield interesting new results and possible applications range from
medicine to the neutralisation of pollutants in water or soil. The term active particle refers
in general to any object capable of self-driven motion. Thus, large animals such as the blue
whale (Balaenoptera musculus) or technical devices such as planes are active particles, just like
microscopic organisms capable of self-driven motion, e.g. Escherichia coli.

Active suspensions, i.e. a mixture of active particles and a fluid, are investigated from three
different angles in the present work. The focus is on microscopic particles; the Reynolds num-
ber of the resulting suspension is therefore very small. This in turn allows the assumption of a
Stokes flow, i.e. the convective term of the Navier-Stokes equation can be neglected. Despite
the small Reynolds number, the behaviour of an active suspension under certain conditions is
called active turbulence by some researchers. This designation inspires to apply methods from
turbulence research to an active suspension. The aim is to reveal the nature of the collective
behaviour of an active suspension. In particular, the question is whether the behaviour is more
chaotic or more deterministic, or whether both types of behaviour occur and an intermittent
system is present.

First, a model for active particles is developed that serves as the basis for all subsequent in-
vestigations. It is assumed that the fluid is Newtonian and described by the unsteady Stokes
equation and the rigid particles are governed by the Newton-Euler equation. A special bound-
ary condition at the particle surface is used to accelerate the particle. While one half of the
particle surface is considered as passive, i.e. a no-slip condition is used, the other half is an
active surface, where an active stress accelerates the surrounding fluid. Due to momentum
conservation, the particle will move in the opposite direction of the active stress.

The model is used to derive Lie-symmetries, which are later used to analyse simulation data.
Furthermore, a statistical description of an active suspension is derived based on the Lundgren,
Monin and Novikov (LMN) hierarchy used in turbulence research. Additional symmetries arise
for the resulting Probability Density Function (PDF) hierarchy, which transport important
information about the physical system.

As already mentioned, the symmetries are used to analyse and interpret simulation data. To
generate the data, a solver was developed on the basis of the eXtended Discontious Galerkin
(XDG) methods implemented in the Bounded Support Spectral Solver (BoSSS) framework.
The necessary extensions of the existing solver described in this paper include the implementa-
tion of a particle solver, the active boundary conditions and a collision model for the particles.

The thirdmethod for the analysis of active suspensions, which is examined in the present work,
is a homogenised model. In contrast to the particle-resolved approach, which was realised in
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the BoSSS framework, average values of the physical quantities are investigated. Similar to
the Reynolds-Averaged Navier-Stokes (RANS) equations, unclosed terms arise in the model
equations that describe statistical moments of higher order. These additional terms are mod-
elled on a phenomenological basis, i.e. observations from the particle-resolved model are used
to derive closure conditions.

Simulation results generated with both models are linked to the theoretical results of the sym-
metry analysis. It becomes apparent that the behaviour of an active suspension is determined
in particular by the phenomenon of intermittency, i.e. a constant alternation between deter-
ministic and chaotic behaviour exists.
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Zusammenfassung

Aktive Partikel und aktive Suspensionen sind ein relativ neues Forschungsgebiet. Die Untersu-
chung solcher komplexen Strömungen verspricht interessante neue Ergebnisse, und die mög-
lichen Anwendungen reichen von der Medizin bis zur Neutralisierung von Schadstoffen im
Wasser oder im Erdreich. Der Begriff aktive Partikel bezieht sich im Allgemeinen auf jedes Ob-
jekt, das zu einer selbstständigen Bewegung fähig ist. So sind große Tiere, wie zum Beispiel
der Blauwal (Balaenoptera musculus) oder technische Apparate wie Flugzeuge, aktive Partikel,
ebenso wie Mikroorganismen, die sich selbst antreiben können, z. B. Escherichia coli.

Aktive Suspensionen, d. h. ein Gemisch aus aktiven Partikeln und einer Flüssigkeit, werden
in der vorliegenden Arbeit aus drei verschiedenen Blickwinkeln untersucht. Der Schwerpunkt
liegt dabei auf Suspensionen mit mikroskopisch kleinen Teilchen; die Reynoldszahl der resul-
tierenden Suspension ist daher sehr klein. Dies wiederum erlaubt die Annahme einer Stokes-
Strömung, d. h. der konvektive Term der Navier-Stokes-Gleichung kann vernachlässigt wer-
den. Trotz der kleinen Reynoldszahl wird das Verhalten einer aktiven Suspension unter be-
stimmten Bedingungen von einigen Forschern als aktive Turbulenz bezeichnet. Diese Bezeich-
nung regt dazu an, Methoden aus der Turbulenzforschung auf eine aktive Suspension an-
zuwenden. Ziel ist es, die Natur des kollektiven Verhaltens einer aktiven Suspension aufzu-
decken. Insbesondere geht es um die Frage, ob das Verhalten eher chaotisch oder eher de-
terministisch ist, oder ob beide Verhaltensweisen auftreten und ein intermittierendes System
vorliegt.

Zunächst wird ein Modell für aktive Partikel entwickelt, das als Grundlage für alle weiteren
Untersuchungen dient. Es wird angenommen, dass ein Newtonisches Fluid vorliegt, welches
durch die instationäre Stokes-Gleichung beschrieben wird. Die Partikel, welche als starre Kör-
per angenommen werden, werden mit den Newton-Euler-Gleichungen modelliert. Speziel-
le Randbedingungen an der Partikeloberfläche beschleunigen die Partikel. Während die eine
Hälfte der Partikeloberfläche als passiv betrachtet wird, d. h. es wird die Haftbedingung als
Randbedingung verwendet, ist die andere Hälfte eine aktive Oberfläche, an der eine aktive
Spannung das umgebende Fluid beschleunigt. Aufgrund der Impulserhaltung bewegt sich das
Teilchen in die entgegengesetzte Richtung der aktiven Spannung.

Das Modell wird zur Bestimmung von Lie-Symmetrien verwendet, die später zur Analyse
von Simulationsdaten herangezogen werden. Darüber hinaus wird eine statistische Beschrei-
bung einer aktiven Suspension auf der Grundlage der in der Turbulenzforschung verwende-
ten Lundgren-Monin-Novikov (LMN) Hierarchie abgeleitet. Für die resultierende Hierachie
von Wahrscheinlichkeitsdichtefunktionen ergeben sich zusätzliche Symmetrien, die wichtige
Informationen über das physikalische System enthalten.
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Die Symmetrien werden zur Analyse und Interpretation von Simulationsdaten verwendet. Um
die Daten zu generieren, wurde ein Solver auf der Grundlage der eXtended Discontious Galer-
kin (XDG) Methode entwickelt, welche im Bounded Support Spectral Solver (BoSSS) Frame-
work implementiert ist. Die notwendigen Erweiterungen des bereits vorhandenen Lösers, die
in dieser Arbeit beschrieben werden, umfassen die Implementierung eines Partikellösers, der
aktiven Randbedingungen und eines Kollisionsmodells für die Partikel.

Die dritte Methode zur Analyse von aktiven Suspensionen, die in der vorliegenden Arbeit
untersucht wird, ist ein homogenisiertes Modell. Im Gegensatz zu dem partikelaufgelösten
Ansatz, der im BoSSS Framework realisiert wurde, werden nun Mittelwerte der physikali-
schen Größen untersucht. Ähnlich wie bei den Reynolds-gemittelten Navier-Stokes Gleichun-
gen entstehen in den Modellgleichungen ungeschlossene Terme, die statistische Momente
höherer Ordnung enthalten. Diese zusätzlichen Terme werden auf phänomenologischer Basis
modelliert, d. h. Beobachtungen aus dem teilchenaufgelösten Modell werden zur Ableitung
von Schließungsbedingungen verwendet.

Die mit beiden Modellen erzeugten Simulationsergebnisse werden mit den theoretischen Er-
gebnissen der Symmetrieanalyse verknüpft. Es zeigt sich, dass das Verhalten einer aktiven
Suspension insbesondere durch das Phänomen der Intermittenz bestimmt wird, d. h. es be-
steht ein ständiger Wechsel zwischen deterministischem und chaotischem Verhalten.
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1. Introduction

But then the other machines gained the upper hand. [...] I consider them to be
small pseudo-insects that can combine as needed, in the common interest so to
speak, to form a superordinate system precisely in the form of clouds. This is how
the evolution of mobile automatons took place. (Lem [133] pp. 83-85)

Small, autonomous machines - nano-robots - as described by Stanislaw Lem, are a long known
and popular motif in science fiction literature. Suchmachines with their own propulsionmech-
anisms are, at their core, active particles. Research is still a long way from such advanced and
according to science fiction literature even dangerous machines. However, active particles sur-
round us in our daily lives, in fact we humans are active particles ourselves. In themost general
definition, an active particle is an object capable of self-driven systematic motion [172]. In this
work, swimming and flying active particles are investigated in particular. If such particles are
combined with a fluid, an active suspension is obtained. In Fig. 1.1 a wide range of exemplary
active particles is given. From the largest living animal on earth - the blue whale (Balaenoptera
musculus) - to one of the smallest known organisms, the green algae Micromonas pusilla [6],
many living organisms are capable of self driven motion. This trait is so important that it is
often used to distinguish animals from other life forms, although there are stationary animals,
e.g corals, as well as mobile plants, such as the green algae mentioned above.

On amacroscopic scale, artificial active particles are well known. Cars, trains, ships and planes
transport people and goods every day. The focus of this work is, however, on microscopic
particles similar to Lem’s nano-robots, i.e. the particles are not visible by the naked eye. Such
particles represent a new field of research, where various pioneering ideas and approaches
exist. Possible applications, which are currently only investigated on a laboratory scale, range
from medicine to the purification of polluted water and soil, combating the effects of climate
change and neutralising chemical warfare agents. In medicine, active particles can be used
as carriers for targeted drug delivery. Core idea is to deliver the medical agent, e.g. a cancer
drug, directly to the origin of the disease [101]. Consequently, side effects of the medication
can be alleviated. In addition to developing a reliable actuator capable of operation in vivo,
biocompatibility and toxicity are a particular challenge [87, 176]. Artificial active particles
might also be used to detect and degrade pollutants [115, 161, 192]. For example a TiO2/Au
coating at the surface of an active particle triggers a catalytic reaction, which degrades dye
pollutants, while at the same time driving the particles forward [212].

Any microscopic active particle, whether artificial or biological in nature, has to cope with
the special conditions resulting from its small size. To better understand these conditions one
might define the Reynolds number

Re =
ρFU cLc

µF
, (1.1)
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Fig. 1.1.: Active particle come in all sizes. The diagram shows the relationship between the
length Lc and the Reynolds number Re of different biological and artificial active
particles. (a) Motile strains of Escherichia coli are often used as model organism
for active particles. Photo courtesy of USDA ARS [70]. (b) The green algae M.
pusilla is one of the smallest known biological active swimmers. Reproduced from
Alsante et al. [6]. (c) Silica Janus particles with platinum coating accelerate a micro-
gear. Reproduced from Maggi et al. [144]. (d) Artificial stomatocytes are able to
trap catalytical nano-particles, which are used as motor. Reproduced form Wilson
et al. [207]. (e) Large swimming or flying artificial structures such as planes can be
considered as active particles. Photo by Hope, M. [100]. (f) The largest biological
active particle is the blue whale (B. musculus). Photo courtesy of NOAA [136].

where U c is a characteristic velocity, Lc a characteristic length, ρF is the fluid mass density and
µF the dynamic viscosity of the fluid. Assume a particle with a length Lc = 10−6m swimming
in water (ρF = 103kgm−3, µF = 10−3kgm−1s−1) with a velocity of U c = 10−4ms−1. The re-
sulting Reynolds number Re = 10−4 is small. By considering Fig. 1.1, a more precise definition
of the term microscopic scale can be derived by means of the Reynolds number. The condition
Re ≪ 1 needs to be upheld, thus, all particles presented in the diagram with a characteristic
length a≪ 10−3m are in the microscopic range. Given that Re can be interpreted as the ratio
between the inertial and viscous forces, a small Reynolds number indicates dominating vis-
cous forces. Inertia is defined as the resistance towards a change in motion. Subsequently, in
case of vanishing inertial forces no resistance exists and any velocity change is instantaneous.
In other words, in a system with negligible inertia, time does not matter [171]. This has major
implication for the motion of microscopic active particles. Purcell [171] explains the impact
of the high viscous environment with the example of scallops. These swim by opening their
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shells slowly and closing them again quickly. The difference in speed of the two processes
causes the scallop to move forward, a process which is called reciprocal motion [171]. The
same process at small Reynolds numbers in a Newtonian fluid would have no effect, since
the time in which the opening and closing process takes place does not matter. The scal-
lop would merely oscillate about a stationary point. It should be noted, that a micro-scallop
in a non-Newtonian fluid is quite capable of moving, since such fluids show non-linear and
time-dependent behaviours [18].

Escherichia coli or Bacillus subtilis are often used as model organisms in experiments [59, 62,
191, 211]. They are able to propel themselves in Newtonian fluids at low Reynolds numbers
by using a bundle of flagella, which are able to rotate continuously in one direction [181].
Hence, the propulsion is non-reciprocal and the bacteria can move forward. Archaea use a
simpler structure, which is also capable of continuous rotation, the so-called archaellum [3].
Larger eukaryotic unicellular organisms use, among other mechanisms, a large number of cilia
for locomotion. In contrast to the flagellum, these can only perform planar movements [214].
Due to their flexible structure, however, their motion is also non-reciprocal [171].

Probably the simplest way to artificially produce an active particle is the Janus particle ap-
proach. They were named after the two-faced Roman god Janus, who was supposed to repre-
sent the contradictions of the world. Following the naming, Janus particles have two or more
surface regions with different optical, chemical, electronic or magnetic properties [197]. The
different properties of the surfaces cause a flow of the surrounding fluid. For example, in case
of the aforementioned particle with TiO2/Au coating, where one half of the particle surface is
coated with titanium dioxide and the other half with gold, the reaction which degrades the
dye pollutants is responsible for an electric potential difference, which causes the fluid flow.
Due to momentum conservation the particle will move in the opposing direction [212].

A different group of artificial active particles is driven by an external field, e.g. a magnetic field.
The particles activated by this field follow a similar structure as their biological counterparts,
where, both, the rotational movement of the flagella is mimicked as well as the rowing of the
cilia [41, 117, 216]. Instead of onlymimicking biological structures, bio-hybrid active particles
directly employ the biological mechanism by modifying bacteria or eukaryotes [87]. One
possibility to control bio-hybrid particle is to use the natural behaviour of bacteria to follow
gradients of nutrients or pollutants. Another possibility is to genetically modify the bacteria
to become sensitive to a certain mechanism. For example, Frangipane et al. [77] present
photosensitive E. coli that can be made to reproduce complex two-dimensional structures like
grayscale images.

Depending on their propulsion mechanism, active particles produce characteristic flow fields
in their vicinity. Such fields can be approximated with singularities of different order. An
active particle driven by an external force causes a flow field, which can be approximated by a
Stokeslet, i.e. a force singularity in a viscous incompressible flow. The corresponding solution
of the Stokes equation in three spatial dimension is [18, 25]

uSli (r) =
FSl

8πµF r

(︃
1

r2
eSlj rjri + eSli

)︃
, (1.2)

where uSli is the fluid velocity induced by the Stokeslet, FSl is the magnitude of the point
force, eSli is the orientation of the Stokeslet, ri is the distance vector towards the origin of the

3



(a) (b) (c)

Fig. 1.2.: The flow in the vicinity of active particles can be approximated using singularities.
All three particles in this figure move on the horizontal axis in the right direction. (a)
A particle driven by an external force produces a flow field equivalent to a Stokeslet.
(b) A pusher particle driven by a force exerted by the particle onto the fluid produces
the flow field equivalent to a Stokes dipole. (c) An inversed Stokes dipole is produced
by a puller particle. Illustration based on Bechinger et al. [18]

points force and r the length of the distance vector. The resulting flow field is given as a sketch
in Fig. 1.2a.

In case of self-driven active particles, i.e. the particle exert a force on the fluid, one needs to
distinguish two cases. Either the particle is pushed by its propulsion system, e.g. flagella, see
Fig 1.3a or the particle is pulled, see Fig 1.3b. An approximation for the corresponding flow
fields is a Stokes dipole, which is generated by two nearby opposing point forces [18]. The
solution of the Stokes equation for a Stokes dipole in three dimensions is

uSdi (r) =
FSd

8πµF r3

(︃
3

r2

(︂
eSdj rj

)︂2
− 1

)︃
ri, (1.3)

where uSdi is the fluid velocity induced by the dipole, FSd is the strength of the force dipole
and eSdi its orientation [18]. In case of the pusher particle FSd is positive, whereas in case of
a puller particle the sign is negative. Both velocity fields are sketched in Fig. 1.2b+c.

In two dimensions the velocity of the singularities changes compared to three dimensions.
The induced velocity uSli of the Stokeslet becomes [43]

uSli (r) =
FSl

4πµF
ln
(︁
r−1
)︁(︃ 1

r2
eSlj rjri + eSli

)︃
. (1.4)

Furthermore, the induced velocity of the Stokes dipole is [43]

uSdi (r) =
FSd

4πµF r2

(︃
3

r2

(︂
eSdj rj

)︂2
− 1

)︃
ri, (1.5)

Notably, the order of the rate of decay with increasing distance r is reduced by one compared
to the three dimensional case.

In order for the aforementioned new technologies to be used not only in the laboratory but
also in medicine or industry, it is necessary to describe the collective behaviour of active sus-
pensions. In general, the behaviour of an active suspension depends on its density [16, 149],
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Fig. 1.3.: Two different categories of propulsion exists for self-driven active particles, i.e. par-
ticles with an internal source of force. In both images, vp is the particle velocity and
F ac is the active force induced by the particle on the fluid. (a) A pusher particle, e.g.
E. coli or B. subtilis, uses its a bundle of flagella to push the cell body forward. (b)
The propulsion mechanism of a puller particle is mounted at the front of the particle
and pulls the cell body through the fluid. An example for such a particle would be
the algae Chlamydomonas reinhardtii. Illustration based on Bechinger et al. [18]
and Saintillan [181].

the material law of the fluid phase [18, 155], the geometrical properties of the active particles
[17, 73, 204] and of the enclosure [56, 210]. Due to the visual resemblance to turbulence at
high Reynolds numbers, some authors established the term active turbulence for the chaotic
behaviour of an active suspension for certain particle densities, e.g. Alert et al. [4], Bratanov
et al. [34], Dombrowski et al. [59], and Sokolov and Aranson [191]. While both phenomena
- hydrodynamic turbulence and active turbulence - share similarities, the differences are ap-
parent. Classical hydrodynamic turbulence occurs at high Reynolds numbers and is driven by
inertia. Energy is transferred from large to small scales and only at the smallest scales, viscos-
ity becomes the dominant parameter, leading to the dissipation of energy. Such a process is
described as energy cascade [123, 124]. In case of an active suspension, energy is injected at a
certain scale, defined by the motor of the particles, and dissipated on any scale. Subsequently,
no energy cascade is present [4]. Similarities between both phenomena can be found in the
Probability Density Function (PDF) of the velocity. The PDF show non-Gaussian heavy tails,
resembling the behaviour of the velocity and vorticity PDF in hydrodynamic turbulence [112,
205], a phenomenon which is also visible in the results of the present work.

Expanding the understanding of the collective behaviour and providing techniques to study
active suspensions is the goal of the present work. The aim is to investigate the extent to which
an active suspension behaves deterministically, chaotically in the sense of the aforementioned
active turbulence, or as an intermittent system. The term intermittency describes a constant
change between deterministic and chaotic behaviour and is known, for example, from the field
of classical hydrodynamic turbulence research [135, 206]. Three different approaches, tools
so to speak, are developed to describe an active suspension, which are all based on the same
Janus particle model. Different modelling strategies for active suspensions are presented in
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Sec. 2, including the Janus particle model used throughout this work. Despite the fact that the
term active turbulence itself might be misleading due to the differences towards classical hy-
drodynamic turbulence, it is worthwhile to apply techniques known from turbulence research
to active suspensions. Hence, classical and statistical Lie-symmetries of an active suspension
are investigated in Sec. 3. In order to obtain statistical symmetries a probability theory is pre-
sented employing the joint PDF of the velocity, particle position and particle orientation. The
theoretical results can be subsequently used to analyse simulation data. In Sec. 4 a particle-
resolved solver is presented based on the eXtended Discontious Galerkin (XDG) method, em-
ploying high order ansatz polynomials. Simulations for large systems with this solver would
exceed the available computation power. Hence, we introduce a second solver based on Eu-
lerian volume averaging theory in Sec. 5. Results for both numerical approaches are given in
Sec. 6. To analyse the data obtained by the simulations the classical and statistical symmetries
are used. Subsequently, it will be shown, that it is possible to connect the phenomena visible
in the simulations, such as the formation of particle clusters, to the theoretical foundations.
In the final Sec. 7, the previously obtained results from theory and numerics are summarised
and discussed.
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2. Modelling active suspensions

Several different approaches exist to model complex organisms and apparatuses which are
summarised under the term active particles. For a small number of particles it is possible to
use detailed models. For example, for E. coli bacteria, models can be formulated that resolve
the cell body and the flagellum in detail [104]. However, such detailed models are not useful
for simulations of a suspension with many hundreds, thousands or even millions of particles.
On the one hand, the available computing power is limited, and on the other hand, in the
case of a suspension, one may not be interested in the detailed behaviour of the individual
particles, but in the collective behaviour of the entire suspension. Hence, to examine the
collective behaviour it is useful to simplify the model of the individual particles. The different
structures of an active particle such as the cell body and the flagellum are replaced by a simpler
geometrical structure.

In this section, first, a general introduction into the employed notations is given (Sec. 2.1),
followed by an overview of different models for active particles (Sec. 2.2). While three dif-
ferent approaches to investigate active suspensions are examined in this work, the underlying
model for an active particle is kept the same to ensure comparability. The model is an exten-
sion of the simpler models presented in Sec. 2.2. It is based on the assumptions to model the
particles as rigid Janus particles and the fluid as a Newtonian fluid. A detailed presentation
of the model assumptions and its derivation are presented in Sec. 2.3.

2.1. Notations

This section introduces notation conventions that will be used in the present work. An arbitrary
scalar physical quantity is denoted by uP; bold characters uP are used for tensor quantities.
The superscript P refers to the phase related to the physical quantity, having either the value
F for the fluid phase or S for the solid particle phase. Moreover, subscripts are used to refer
to elements of a tensor uPi...j , where the number of indices i...j indicates the tensor order of
uP. The Einstein summation convention is always applied to such indices. Hence, if an index
appears twice in a term, a summation is implied over the entire set of values of the specific
index.

Variables describing particle properties are grouped into first and second order tensors, im-
plying that they have two subscripts, where the first index refers to the spatial dimension and
the second index to the number of particles. The tensor χip, which describes the position of
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all N particles in the three dimensional space, has the from

χ = [χ1, ..., χp, ..., χN ] =

⎡⎢⎣χ11, ..., χ1p, ..., χ1N

χ21, ..., χ2p, ..., χ2N

χ31, ..., χ3p, ..., χ3N

⎤⎥⎦ . (2.1)

Each column vector defines the position of a single particle. Similarly, quantities such as the
particle orientation eip or the particle velocity vip are grouped together in tensors. In the case
of two spatial dimensions, the tensor order of some of the particle quantities is reduced. In
the three-dimensional space, the orientation of each particle is described by three angles of
orientation, which are grouped together in the second order tensor βip. In the case of two
dimensions, a single orientation angle is sufficient to describe the orientation of a particle,
leading to a first order 1 × N tensor βp. Again, as the subscript p describes the element of a
tensor, the summation convention is applied. If neither a superscriptP referring to the specific
phase nor a subscript referring to the particles is given, the variable in question describes the
entire system of both phases.

Furthermore, it is necessary to consider quantities at multiple points 1xi, ..., kxi, ...,Kxi of the
global domain Ω. Such points are specified by a preceding index. The notation 1u = u (1x)
denotes that the physical variable is evaluated at the point 1xi, while ku = u (kx) means
evaluation at the point kxi. All variables in an equation are evaluated at the same point if no
preceding index is used.

Most physical quantities u depend on multiple independent variables such as one or multiple
points 1xi, ..., kxi, ...,Kxi and the time t. Thus, to describe derivatives with respect to a single
independent variable, the partial differential operator

∂u

∂xi
,

∂u

∂t
(2.2)

is used. To describe the change of a physical quantity of a material element alongside its path
through the domain Ω, the material or total derivative is introduced [194]

du
dt

=
∂u

∂t
+ Ui

∂u

∂xi
, (2.3)

where Ui is the velocity at the point xi. Hence, it describes the local change ∂u/∂t of u and
the convective flux Ui∂u/∂xi.

Generalised functions or distributions are used to describe different domains and interfaces.
The multidimensional Dirac delta distribution δ (x) =

∏︁d
i=1 δ (xi) is a generalised function,

which allows to identify specific points of the domain Ω, such as the particle surface Γ. Its
integral measure returns the value of a test function f (x) at the point x = 0∫︂

Ω
δ (x) f (x)dx = f (0) , (2.4)

where the integration
∫︁
Ω dx =

∫︁
Ω dx1...dxd is executed in the infinite domain Ω with the

dimension d. The test function f is smooth and compactly supported, i.e.

lim
x→∞

f (x) = 0, lim
x→−∞

f (x) = 0. (2.5)
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It should be noted that throughout this work most physical relations are given in a differential
form, hence, the integration

∫︁
Ω dx is not necessarily written down but implied. By shifting

the argument of the Dirac delta distribution by some point 1x it is possible to retrieve the
evaluation of f (x) at a this point 1x∫︂

Ω
δ (x− 1x) f (x)dx = f (1x) . (2.6)

Furthermore, we introduce a shortened notation for the evaluation of f at multiple different
points. Let Γ = {1x, ..., kx, ...,Kx} be a set of K points, then the integration∫︂

Ω
δ (x− Γ) f (x)dx = f (kx) ∀ kx ∈ Γ (2.7)

yields the value of f at all points in Γ.

It is possible to derive the derivative of the Dirac delta distribution using integration by parts,
which in the one-dimensional case reads∫︂

Ω
δ′ (x) f (x)dx = [δ (x) f (x)]∞−∞ −

∫︂
Ω
δ (x) f ′ (x)dx = −f ′ (0) , (2.8)

where the first term on the right hand side vanishes due to (2.5). In the multidimensional
case, one obtains∫︂

Ω
∂d (δ (x)) f (x)dx = −

∫︂
Ω
δ (x) ∂d (f (x))dx = − ∂df (x)|x=0 , (2.9)

where again the test function f (x) vanishes at infinity due to (2.5) and the operator ∂d is
defined as

∂d =
∂

∂x1

∂

∂x2
...

∂

∂xd
. (2.10)

In order to derive the integral of the Dirac delta distribution, it is necessary to introduce the
Heaviside function

H (x) =

{︃
1 x > 0
0 x < 0

(2.11)

The d-dimensional Heaviside function is defined as the product

H (x) =
d∏︂

i=1

H (xi) (2.12)

in analogy to the d-dimensional Dirac function (2.4). Integration by parts of the derivate of
the Heaviside function yields∫︂

Ω
∂dH (x) f (x)dx = −

∫︂
Ω
H (x) ∂df (x)dx

= −f (x → ∞) + f (0) =

∫︂
Ω
δ (x) f (x)dx, (2.13)

where (2.5) was used. Thus, the distributional derivative of the Heaviside function is the Dirac
delta distribution.
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Fig. 2.1.: A selection of models for active particles. (a) Vicsek model: Each particle is repre-
sented by a point and the orientation vector eip. The velocity of the particles is the
product of the orientation vector and a constant speed [200]. (b) Dumbbell model:
Two connected beads form a dumbbell. The action of a flagellum is represented by
the eccentric pair of forces F F and F S . F F is the force exerted by the flagellum onto
the fluid, F S is the reaction forces exerted by the fluid onto the particle [93, 94]. (c)
Generalisation of the dumbbell model using an ellipsoidal particle [84, 85]. (d) Slip
velocity and active stress models: The boundary conditions at the particle surface
are modified by imposing a slip-velocity vac or by applying an active stress fac [27,
116, 143]. (e) Janus particle: This is the model used throughout the present work.
One half of the particle surface is active, i.e. an active stress fac is applied to the
particle surface, whereas the other half is passive, i.e. a no-slip boundary condition
is applied [51, 116, 182]. Illustrations (a)-(e) are based on Saintillan and Shelley
[182]

2.2. Models of active particles

Several different approaches exist to simplify the structure of complex active organisms. In
this section an exemplary selection of models well-known in the literature is presented. Vicsek
et al. [200] introduced a minimalist model where the particles are represented by a single
point, the orientation eip and the velocity vip = veip, see Fig. 2.1a. No fluid is considered in
this model. The speed v, i.e. the absolute value of the velocity, is kept constant. Accordingly
a change of the particle position χip is described by

χip (t+∆t) = χip + veip∆t, (2.14)

where ∆t is a single time-step. In the two-dimensional space, the orientation vector can be
described by an angle βp, i.e. the angle between the orientation vector and the first unit vector
of the reference coordinate system. The orientation angle is obtained from

βp (t+∆t) = ⟨βp⟩r + ˜︁βp, (2.15)

where ⟨βp⟩r is the average orientation angle of all particles within a certain radius r around the
particle p and ˜︁βp is a noise term [200]. Despite its minimal design, the model shows collective
behaviour depending on the density of the suspension and the strength of the noise term ˜︁βp.
This includes unordered states, the formation of local clusters with similar orientation or a
globally ordered suspension occurring in the case of high densities and low noise [200].

The dumbbell model (Fig. 2.1b) is a minimal swimmer model, considering both the fluid
and the particle phase. Each rigid particle consists of two connected beads, resembling a
dumbbell. A propulsion mechanism such as a flagellum is represented by an eccentric pair of
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forces, consisting of the force FF
i acting on the fluid and the force FS

i acting on the second
bead [93]. Inertia is neglected, hence, the force balance on the second bead of the dumbbell
reads

FS
i − ζ

(︁
χ̇i1 − uFi (χ1)

)︁
+ FC

i = 0, (2.16)

where ζ = 3πµFa is the friction coefficient according to Stokes’ law, a is the diameter of one
bead, χ1 is the position of the first bead, uFi (χ1) is the fluid velocity at χ1 and FC

i is the
connection force between the two beads, ensuring the rigidity of the particles [93]. The force
balance for the first bead is equivalent, however, the propulsion force FS

i is only applied to
the second bead. The fluid is described by the Stokes equation

0 = −∂p
F

∂xi
+

1

Re
∂2uFi
∂x2j

, (2.17)

where pF is the fluid pressure and uFi the fluid velocity. By simulating a suspension of dumb-
bell particles, Hernandez-Ortiz et al. [93] found that particles agglomerate at the channel
walls solely due to hydrodynamic interactions, an effect which can be theoretically explained
by a mirror system at a no-slip wall, see Blake [25]. The model sketched in Fig. 2.1c is a
generalisation of the dumbbell model used by Haines et al. [84, 85] to determine the effective
viscosity of an active suspension, where the dumbbell was replaced by an ellipsoidal particle.

Models based on boundary conditions (Fig. 2.1d) do not rely on point forces. Instead, either a
slip velocity vaci or a mechanical active stress faci is prescribed at the particle surface. Thereby,
such a model can be considered as a model for active particles driven by cilia, e.g. eukaryotic
single cell organisms, and is also used as a general model for active particles [182]. Active
particles of the type depicted in Fig. 2.1d are called squirmer andwere first introduced by Blake
[26] and Lighthill [141]. In this model the surface of the squirmer is impermeable, however,
a slip velocity in tangential direction is prescribed. In case of an axisymmetric particle the
tangential active slip velocity is given by

vac (θ) =
∑︂
n≥1

Bnφn(cos (θ)) (2.18)

where Bn are Legendre coefficients given by Lighthill [141] and φn(cos (θ)) depends on the
angular cosine cos (θ). The functions φn are determined by the Legendre polynomials Pn

according to [141, 182]

φn(cos (θ)) =
2

n (n+ 1)
sin (θ)P ′

n(cos (θ)), (2.19)

where θ is the polar angle of the particle, see Fig. 2.2. The resulting particle velocity as given
by Saintillan and Shelley [182] is v = 2B1

3 .

Propulsion mechanisms such as cilia or flagella do not directly generate a velocity, but rather
exert a force on the surrounding fluid. Hence, instead of prescribing an active velocity, a
mechanical stress with the magnitude fac is imposed at the particle surface, see Fig. 2.1d. In
the case of a real active particle the magnitude fac would be time-dependent, because it might
change during the cycle of a flagellum or the stroke of a cilium. However, in the model it is
assumed to be constant, effectively being the average of the stress exerted by the real active
particle during one cycle of the propulsion mechanism [181]. The active stress permits a fluid
slip velocity at the surface, which in return induces a particle velocity. Kanevsky et al. [116]
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define the boundary conditions for a stress-driven particle as follows. The particle exerts a
certain active stress on the surrounding fluid given by faci = facti and

ti = ϵijk
(︁
ϵjlme

p
l nm

)︁
nk =

(︂
epjnj

)︂
ni − epi , (2.20)

where ti is the tangential vector at the surface, ni is the outward pointing normal vector at
the surface and epi is the orientation vector of a specific particle p. Due to the inner product

epi ti = (epini)
2 − (epi e

p
i ) ≤ 0, (2.21)

the tangential vector faces in the backwards direction of the particle, i.e opposing the orien-
tation vector. Hence, the boundary condition for the stress fi at the particle surface defined
by the tangential stress faci is given by

(δij − ninj)
(︂
δjk − t⊥j t

⊥
k

)︂
fk = facti, t⊥i = ϵijke

p
jnk, (2.22)

with the unit tensor δij , see Fig. 2.1d. The vector t⊥i is tangential to the particle surface and
perpendicular to the normal vector ni, the orientation vector epi and the tangential vector ti.
The boundary conditions are defined with respect to the body reference frame, hence, all
velocity components beside ut = uiti vanish at the particle surface, implying

un = uini = 0, u⊥ = uie
⊥
i = 0. (2.23)

The complete set of boundary condition is, thus, formed by the active stress condition (2.22)
and the conditions in (2.23). Furthermore, the particle is considered to be force and torque
free

Fi =

∫︂
Γp

fi ds = 0, Ti =

∫︂
Γp

ϵijkrjfk = 0, (2.24)

which is a necessary condition to close the model. Forces and torques are obtained by a surface
integration of the stress fi, exerted by the fluid on the particle, where Γp is the particle surface,
ri = xi −χp

i , ∀x ∈ Γp is the radial vector and χp
i is the centre of mass of the specific particle

p. For more details see Kanevsky et al. [116].

2.3. Janus particle model

The model used throughout this work is closely related to the squirmer model presented by
Kanevsky et al. [116]. However, for many active particles, only a part of the body is responsible
for propulsion. In the case of E. coli, which is a pusher particle, multiple flagella are situated
at the back of the bacterium, whereas the propulsion mechanism of a puller particle, e.g.
C. reinhardtii, is mounted at the front of the particle body, see Fig. 1.3. Thus, instead of
prescribing the active stress at the entire surface Γp, the particle surface is split into two
halves. One half Γac

p is active and has a prescribed active stress, whereas on the other half a
no-slip boundary condition is used without an additional stress, i.e. it is a passive surface Γpa

p .
Hence, the model resembles a Janus particle as presented in Fig. 2.1e. For a rod-like particle
this idea was examined by Saintillan and Shelley [182]. Building on the two publications
mentioned before [116, 182], a Janus particle model for ellipse-shaped two-dimensional and
ellipsoidal three-dimensional particles is used throughout the present work. The suspension
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Fig. 2.2.: (a) Depiction of a two-dimensional particle: The particle geometry is defined by
the two axes a and b and the orientation vector ei = eipγp, where γp is the particle
indicator function. The normal vector ni and the tangential vector ti at a point of the
particle surface are both functions of the polar angle θ. The surface of the particle
Γp is split by the axis b into a passive part Γpa

p at the front and an active part at the
rear Γac

p . (b) Depiction of a three-dimensional particle: The particle geometry is
defined by the three axes a, b and c and the orientation vector ei = eipγp. The polar
angle θ and the azimuth angle ϕ define the position of the normal vector system
on a surface point consisting of the normal vector ni, the tangential vector ti and
the perpendicular tangential vector t⊥i . Analogous to the two-dimensional case , the
particle surface is split by the axes b and c into a passive part Γpa

p at the front and an
active part at the rear Γac

p . For better readability θ = 0 was chosen in this sketch.

is considered to consists ofN identical Janus particles in a Newtonian fluid. For the geometric
description of the particles, it applies that a two-dimensional particle is defined by its two axes
a and b, see Fig. 2.2a. This leads to the definition of the aspect ratio

ε =
a

b
. (2.25)

A three-dimensional ellipsoid on the other hand contains an additional axis c, see Fig. 2.2b.
However, it is assumed that b = c, hence, the definition of the aspect ratio (2.25) is still valid.
The particles are considered to be rigid and it is required that two particles do not overlap,
giving rise to the relation

Ωp ∩ Ωq = ∅, p ̸= q, (2.26)

where Ωp is the domain occupied by a rigid particle. Accordingly, the union of all N particle
domains is the solid phase domain

ΩS =
N⋃︂
p=1

Ωp, (2.27)

13



which, together with the fluid domain ΩF , forms the global domain Ω. It is required that ΩS

and ΩF do not intersect, leading to

ΩS ∪ ΩF = Ω, ΩS ∩ ΩF = ∅. (2.28)

Thus, at any space-time point (x, t) only a single particle or the fluid is present. Furthermore,
the subset ΩF ∈ Ω is a closed set

ΩF = clΩF , (2.29)

i.e. it contains its own boundary. To distinguish between the two domains a phase indicator
function γP is introduced, reading

γP =

{︄
1 in ΩP

0 in Ω \ ΩP
∀P ∈ {F, S} . (2.30)

Single particles are identified by a particle indicator function

γp =

{︄
1 in Ωp

0 in Ω \ Ωp
. (2.31)

The indicator functions of all particles form a vector γ = [γ1, ..., γp, ..., γN ], i.e. the function γp
is an element of the particle indicator vector γ. The absolute value of γ gives the solid phase
indicator function

γS = |γ| . (2.32)

It should be noted that due to the non-overlapping nature of the particles only one element of
the vector γ can be non-zero at any space-time point (x, t). Hence, all possible vector norms
deliver the same result for γS . Due to the condition that both phases do not intersect, see
(2.28), the fluid phase indicator function is

γF = 1− γS , (2.33)

which is known as saturation condition.

The surface of a particle p is denoted by Γp. The union of all particle surfaces delivers the
interface ΓS between the two phases

ΓS =
N⋃︂
p=1

Γp, Γp ∩ Γq = ∅ ∀p ̸= q, (2.34)

where the condition Γp∩Γq = ∅ is enforced by the non-overlapping condition for the particles
(2.26). The orientation vector of the particles is necessary to define the normal vector system
depicted in Fig. 2.2. The orientation vectors of all particles form a tensor

e = [e1, ..., ep, ..., eN ] =

⎡⎢⎣e11, ..., e1p, ..., e1Ne21, ..., e2p, ..., e2N

e31, ..., e3p, ..., e3N

⎤⎥⎦ . (2.35)

The inner product eipγp (x, t) of this tensor with the particle indicator function delivers the
orientation vector of the particle at the space-time point (x, t), i.e. an individual column vector
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ei = eipγp of the tensor (2.35). At each point of the surface Γp an outward pointing normal
vector ni is defined, see Fig. 2.2. The perpendicular tangential vector t⊥i is defined by the
cross product of the normal vector and the orientation vector

t⊥i = ϵijkejpγpnk, (2.36)

which is the vector perpendicular to the Euclidean plane in the case of two spatial dimensions.
The cross product of the normal vector ni and the perpendicular tangential vector t⊥i yields
the tangential vector ti, meaning

ti = ϵijkt
⊥
j nk = γp (ninjejp − eip) . (2.37)

Due to the definition (2.37), the tangential vector ti always points in the opposite direction
of the particle orientation, i.e. the sign of the scalar product of the orientation vector and the
tangential vector is always negative

tieipγp = (nieipγp)
2 − eipγpeiqγq ≤ 0, (2.38)

a property which is used later to define the active stress at the particle boundary. Note that,
due to the non-overlap condition (2.26), the second term on the right hand side of (2.38) is
non-zero only if γp and γq refer to the same particle, because only one element of the indicator
function vector is non-zero at a specific point xi. The different indices solely ensure the correct
employment of the summation convention.

Due to the nature of a Janus particle, each particle has a passive surface Γpa
p and an active

surface Γac
p (Fig. 2.2), separated by the half axes b and c. Together, Γac

p and Γpa
p form the

entire particle surface and do not overlap

Γp = Γac
p ∪ Γpa

p , Γac
p ∩ Γpa

p = ∅, Γac =

N⋃︂
p=1

Γac
p , Γpa =

N⋃︂
p=1

Γpa
p . (2.39)

Since there is no slip velocity permitted on the passive surface Γpa
p , the local particle velocity

uSi , which is defined in the next section in (2.51), and the fluid velocity uFi must be equal

uFi = uSi ∀x ∈ Γpa. (2.40)

At the active part of the surface Γac this relation only holds in normal direction, because the
surface is considered to be impermeable and a slip velocity is permitted in the tangential
diraction, meaning

uFi ni = uSi ni ∀x ∈ Γac. (2.41)
Following Kanevsky et al. [116], the active stress at Γac is defined by

faci = facti ∀x ∈ Γac, (2.42)

which depending on the sign of fac, opposes the direction of the orientation vector eip (fac pos-
itive) or points in the same direction (fac negative), as follows from the definition of the tan-
gential vector (2.37). The sign of the active stress magnitude fac defines whether the particle
is a pusher or puller particle. In correspondence to the solution for the Stokes dipole, (1.3)
in three dimension and (1.5) in the two-dimensional case, a positive sign leads to a pusher
particle, whereas a negative sign produces a puller particle. Using the fluid density ρF and a
characteristic particle velocity and length, delivers the dimensionless active stress magnitude

Ac =
fac

ρF (U c)2
. (2.43)
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2.3.1. Solid particle phase

AllN particles together form the solid phase of the active suspension. As each particle occupies
an exclusive space of the domain Ω, see (2.26), they are clearly identifiable by their position
χp = χp (t) and orientation angle βp = βp (t), which are both solely functions of the time t.
The positions of all particles form a tensor, as established in (2.1)

χ = [χ1, ..., χp, ..., χN ] =

⎡⎢⎣χ11, ..., χ1p, ..., χ1N

χ21, ..., χ2p, ..., χ2N

χ31, ..., χ3p, ..., χ3N

⎤⎥⎦ .
In three dimensions the orientation angles also form a 3×N tensor

β = [β1, ..., βp, ..., βN ] =

⎡⎢⎣β11, ..., β1p, ..., β1Nβ21, ..., β2p, ..., β2N

β31, ..., β3p, ..., β3N

⎤⎥⎦ , (2.44)

where each element is defined by its cosine and the scalar product of the basis vectors eji , j =
1, 2, 3 of the coordinate space and the orientation vector

cos (βjp) = ejieip, ∀j ∈ {1, 2, 3} . (2.45)

Due to (2.45) both formulations (2.44) and the tensor of orientation vectors (2.35) can be used
equivalent. However, in three dimensions the usage of the orientation vector is advantageous,
whereas in two dimensions the tensor (2.44) is reduced to a 1×N vector βp, because a single
cosine is sufficient to describe the direction of the orientation vector. Thus, the orientation
angle βp delivers a more simple description.

The temporal derivative of the particle position delivers the translational velocity

dχip

dt
= vip. (2.46)

The rotational velocity is obtained by

dβip
dt

= ωip. (2.47)

where in the case of two dimensions the second order tensors are reduced to vectors. Thus,
in the case of a single particle, (2.47) becomes a scalar equation. The temporal derivative of
the orientation vector (2.35) is

γp
deip
dt

= ϵijkωjpγpekqγq, (2.48)

where the indicator function γp was used to select the correct particle. Again, the right hand
side is non-zero only if the indicator functions γp and γq refer to the same particle, because
of the non-overlapping condition (2.26). The different indices p and q ensure the correct
application of the summation convention.

The density ρS is constant for all particles. Thus, the material derivative dρS/dt = 0 vanishes
and the mass balance

∂ρS

∂t
+
∂ρSuSi
∂xi

=
dρS

dt
+ ρS

∂uSi
∂xi

= 0 (2.49)
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is reduced to
∂uSi
∂xi

= 0. (2.50)

The local velocity uSi of any point within the solid phase domain is

uSi (x, t) = γp (x, t) [vip (t) + ϵijkωjp (t) rk (x, t)] , (2.51)

where uSi is a function of space and time in contrast to the translational and rotational veloc-
ities, which only depend on time. Here, we introduce the radial vector

ri (x, t) = xi − χip (t)γp (x, t) (2.52)

to refer to points within the particle domain relative to the position χip of the particles. Form-
ing the material derivative yields the acceleration of the solid phase

duSi
dt

=
∂uSi
∂t

+ uSj
∂uSi
∂xj

= γp

[︃
dvip
dt

+ ϵijk
dωjp

dt
rk

]︃
− (ωjpγp)

2 ri, (2.53)

where the derivatives dvip
dt and dωjp

dt are defined by the Newton-Euler equations

V PD
dvip
dt

=

∫︂
Γp

τFijnjp ds (2.54)

and
ΘS

ij

dωjp

dt
+ ϵijkΘ

S
klωjpωlqγq =

∫︂
Γp

ϵijkrjτ
F
klnlp ds. (2.55)

Note that not only the particle velocities vip and ωip are second order tensors, but also nip.
The column vectors of the latter tensor ni = nipγp are the normal vectors at a specific point at
the surface of a specific particle p. Both, the normal vector ni and the normal vector tensor nip
are derived in Sec. 2.3.3. Furthermore, the definition of ΩF as a closed set, see (2.29), was
used. The fluid stress tensor τFij is only defined on ΩF , which does contain its own boundary,
including the particle surface Γp, allowing the integration as presented in (2.54) and (2.55).
The non-dimensional mass m = V PD of each particle is formed with the density ratio D =
ρS/ρF and the non-dimensional particle volume

V P =

∫︂
Ωp

1dx, (2.56)

which is the volume enclosed by the particle domain Ωp. It is assumed that all N particles
are identical. Hence, while each particle occupies an individual domain Ωp, the volume V P is
identical for all particles.

The non-dimensional moment of inertia ΘS
ij is a second order tensor in three dimensions and

defined by

ΘS
ij = D

∫︂
Ωp

(rkrkδij − rirj)dx. (2.57)

The rotational Newton-Euler equation (2.55) is given in a rotating body reference frame. It
is assumed that the axes of the coordinate frame align with the principle axis of inertia, thus,
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the tensor ΘS
ij is diagonal. Furthermore, because all particles are identical, ΘS

ij is the same for
all particles. In the two-dimensional case, (2.55) is reduced to a vector equation

ΘS dωp

dt
=

∫︂
Γp

ϵ3ijriτ
F
jknkp ds, (2.58)

where ΘS = ΘS
33. Again, because all particles are identical, each particle is described by

the same moment of inertia ΘS . The notation ϵ3ij of the Levi-Civita symbol refers to the
two-dimensional cross-product, where the result is a scalar, which would be the vector per-
pendicular to the R2-plane in three dimensions. The second term on the left hand side of
(2.55) vanishes in (2.58) due to the occurrence of the Levi-Civita symbol with two identical
subscripts ϵi33ΘS

33ω3pω3qγq = 0.

Due to the small size of the considered particles, they have to be assumed to be Brownian
particles. By the latter term a particle is meant where Brownian motion [67, 188] has a sig-
nificant effect, i.e. the particle shows a randommotion based on collisions with fluidmolecules.
However, throughout the present work it is assumed that the effects of the active stress are
significantly larger than the diffusive transport of the Brownian motion. Consider the Péclet
number as defined by Bechinger et al. [18]

Pe =
vac√
DTDR

, (2.59)

where vac is the speed of the particle due to the active motion and DT and DR are the trans-
lational and rotational diffusion coefficient due to Brownian motion. Throughout the present
work it is assumed that the Péclet number is large Pe > 1 and Brownian motion can be ne-
glected. In the reversed case, i.e. the active transport has diminishing effects on the particle
and diffusive transport dominates, stochastic terms would have to be considered in the particle
equations of motion, see Bechinger et al. [18].

2.3.2. Fluid phase

Momentum conservation in any continuum, i.e. also in a fluid, is described by the Cauchy
momentum equation [194]

∂ρFuFi
∂t

+
∂ρFuFi u

F
j

∂xj
=
∂τFij
∂xj

, (2.60)

where uFi is the fluid velocity, ρF themass density of the fluid and τFij the stress tensor. External
forces such as gravity are neglected. The conservation of angular momentum [194]

∂ρF ϵijkxjuk
∂t

+
∂ρF ϵijkxjukul

∂xl
=
∂ϵijkxjτ

F
kl

∂xl
⇒ ϵijkτ

F
kj = 0 (2.61)

delivers the symmetry of the stress tensor τFij = τFji , which has to be further defined by a
material law. Throughout this work we will assume the fluid phase to be Newtonian, hence,
the stress tensor of the fluid phase is defined by

τFij = −pF δij + µF

[︄
∂uFi
∂xj

+
∂uFj
∂xi

]︄
, (2.62)
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where µF is the constant fluid viscosity.

Conservation of mass is described by

∂ρF

∂t
+
∂ρFuFi
∂xi

=
dρF

dt
+ ρF

∂uFi
∂xi

= 0, (2.63)

where
dρF

dt
=
∂ρF

∂t
+ uFi

∂ρF

∂xi
(2.64)

is the material derivative of the mass density ρF . Assuming incompressibility dρF /dt = 0, i.e.
the mass density of the observed fluid element does not change along its path [194], yields
the continuity equation

∂uFi
∂xi

= 0. (2.65)

Using (2.60) and (2.62) together with (2.65) delivers the Navier-Stokes equation for an in-
compressible Newtonian fluid

ρF
duFi
dt

= ρF
(︃
∂ui
∂t

+ uFj
∂uFi
∂xj

)︃
= −∂p

F

∂xi
+ µF

∂2uFi
∂x2j

. (2.66)

Non-dimensionalisation of (2.66) yields

∂uFi
∂t

+ uFj
∂uFi
∂xj

= −∂p
F

∂xi
+

1

Re
∂2uFi
∂x2j

, (2.67)

with the Reynolds number (1.1)

Re =
ρFU cLc

µF
.

If the characteristic length scale Lc and velocity U c of the problem are small or alternatively
the viscosity µF is large, the Reynolds number becomes small. Applying Re ≪ 1 to (2.67)
delivers the Stokes equation (2.17)

0 = −∂p
F

∂xi
+

1

Re
∂2uFi
∂x2j

.

Due to the motion of the particles, the particle surface and, thus, the boundary conditions
at the surface are time-dependent in the present problem. Hence, it might be useful to still
consider the temporal derivative, leading to the unsteady Stokes equation

∂uFi
∂t

= −∂p
F

∂xi
+

1

Re
∂2uFi
∂x2j

. (2.68)

It is implied throughout this work, that, whenever a solution of the Stokes or Navier-Stokes
equation is mentioned, it also solves the continuity equation. At the external surface ΓF =
∂ΩF ∩ ∂Ω of the fluid domain ΩF boundary conditions need to be applied. The boundary
conditions are either of Dirichlet- or Neumann-type, where a boundary with a Dirichlet con-
ditions is notated as ΓD and ΓN refers to a boundary with a Neumann condition. A Dirichlet
boundary is defined by

uFi = uDi ∀x ∈ ΓD (2.69)
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and a Neumann boundary is defined by

−pFni +
1

Re

(︄
∂uFi
∂xj

+
∂uFj
∂xi

)︄
nj = −pNni ∀x ∈ ΓN , (2.70)

where uDi and pN are prescribed functions, see for example Smuda [189]. It should be noted
that in the case of the Neumann condition the pressure is prescribed, i.e. defined by a Dirichlet
condition.

Either the Navier-Stokes equation (2.67) or the unsteady Stokes equation (2.68) together with
the continuity equation (2.65) and the particle equations (2.46), (2.47) (2.54) and (2.55)
form a complete model for an active suspension, where both phases are coupled by the hydro-
dynamic forces and torques occurring as integral terms in the Newton-Euler equations (2.54),
(2.55) and the passive (2.40) and the active (2.41), (2.42) boundary conditions.

2.3.3. Level-Set method

In both, numerical simulations and theoretical considerations, the level-set method is used
to represent the surface of the particles. The level-set method allows to represent a sharp
interface between solid and liquid [163]. This exact approach makes it superior to other
methods, such as the volume of fluid method [96] or the phase-field approach [129].

The particle surface Γp is represented by the zero level set φp = 0 of the function φp =
φp (x;χp (t) ,βp (t)). The particles are considered to be rigid, hence, their shape does not
change and subsequently φp does not depend directly on the time t. Instead it is a function of
the Eulerian spatial coordinate x, the centre of mass χp and the orientation angles βp of the
particles. The two latter variables are solely functions of the time t, thus, φp depends implicitly
on time. A vector is used to represent all functions of all particles

φ = [φ1, ..., φp, ..., φN ] , (2.71)

which are defined by

φp

⎧⎪⎨⎪⎩
< 0 in Ωp

= 0 on Γp

> 0 elsewhere.
(2.72)

The normal vector at the surface of p is defined by the gradient of φp, leading to a second
order tensor, where each column vector is a normal vector related to a specific element of the
vector φp

nip =
∂φp
∂xi

|∇φp|−1 . (2.73)

Here, the normal vector at the surface of the particle p is normalised instead of a normalisation
of the entire tensor nip.

Instead of using the single-particle function φp and the tensor nip, it is advantageous to define
a global function φ by the infimum

φ = inf(Φ), (2.74)
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where
Φ(x, t) = {φ1 (x, t) , φ2 (x, t) , ..., φp (x, t) , ..., φN (x, t)} (2.75)

is the set of all particle distance functions [51]. The normalised gradient of φ is the general
normal vector at the interface

ni =
∂φ

∂xi
|∇φ|−1 , (2.76)

see Fig. 2.2. The normal vector ni and the column vectors of nip are equivalent for a specific
particle p and related by (2.74).

By introducing the Heaviside function H one obtains a relation between φp and the particle
indicator function γp

γp = H(−φp) =

{︄
1 if φp < 0

0 if φp ≥ 0
. (2.77)

The functions φp and φ and the indicator functions γp, γS and γF are material constants,
hence, their material derivatives vanish

dφp
dt

=
∂φp
∂t

+ Ui
∂φp
∂xi

= 0,
dγp
dt

=
∂γp
∂t

+ Ui
∂γp
∂xi

= δ (φp)
dφp
dt

= 0, (2.78)

where δ (·) indicates the Dirac delta function and Ui is the combined velocity of both phases,
which will be introduced in detail in Sec. 2.3.4. While (2.78) is given for the single-particle
functions φp and γp, analogous statements can be made for the remaining functions φ, γS and
γF .

The function φ and the level-set method allows to rewrite surface integrals, occurring e.g.
in the Newton-Euler equation (2.54) and (2.55), into volume integrals, where the following
derivation is based on Chang et al. [40]. A second function ψ is introduced, tangentially to φ

∂φ

∂xi

∂ψ

∂xi
= 0,

∂ψ

∂xi
̸= 0. (2.79)

Both functions φ and ψ allow the introduction of the new coordinates [40]

x′ = ψ (x, t) , y′ = φ (x, t) , (2.80)

whose transformation to the Cartesian coordinate system is well defined since

det
[︃
∂ (x′, y′)

∂ (x, y)

]︃
= |∇ψ| |∇φ| ̸= 0. (2.81)

Let s be an arc length variable along the interface ΓS . The derivative of the new coordinate
x′ with respect to s along ΓS is

dx′

ds
=

dψ
ds

=
∂ψ

∂xi

∂xi
∂s

= |∇ψ| . (2.82)

Here, the derivative ∂xi/∂s is the unit tangent vector [40]. The vector ∂ψ/∂xi is by definition
(2.79) parallel to the unit tangent vector, hence, the result of (2.82) is the length of the
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gradient of ψ. The surface integral of an arbitrary function fi is, thus, transformed into a
volume integral ∫︂

ΓS

fini ds =
∫︂
φ=0

fini |∇ψ|−1 dx′

=

∫︂
Ω
δ (φ) fi

∂φ

∂xi
(|∇ψ| |∇φ|)−1 dx′ dy′,

=

∫︂
Ω
δ (φ) fi

∂φ

∂xi
dx = −

∫︂
Ω
fi
∂γS

∂xi
dx, (2.83)

where the definition of the normal vector (2.76), the determinant (2.81) and equation (2.82)
are used. Due to the non-overlapping condition (2.26) and the definition of φ in (2.74), the
function φ and the specific element φp of the φ vector are equivalent at a particle p. Thus, the
transformation derived in (2.83) can be applied to surface integrals of the following form∫︂

Γp

finip ds =
∫︂
Ω
δ (φp) fi

∂φp
∂xi

= −
∫︂
Ω
fi
∂γp
∂xi

dx (2.84)

for the individual particles. Thus, it is possible to apply the level-set method to the Newton-
Euler equations. The translational equation (2.54) with transformed integrals is

V PD
dvip
dt

= −
∫︂
τFij

∂γp
∂xj

dx, (2.85)

and the rotational equation (2.55) becomes in three dimensions

ΘS
ij

dωjp

dt
+ ϵijkΘ

S
klωjpωlqγq = −

∫︂
ϵijk (xj − χjqγq) τ

F
kl

∂γp
∂xl

dx. (2.86)

The rotational Newton-Euler equation in the two-dimensional case reads

ΘS dωp

dt
= −

∫︂
ϵ3ij (xi − χiqγq) τ

F
jk

∂γp
∂xk

dx. (2.87)

2.3.4. Single field velocity description

The indicator functions for the solid phase (2.32) and the fluid phase (2.33) can be used to
define a global single-field velocity in two dimensions

Ui = γFuFi + γSuSi = γFuFi + γp (vip + ϵi3kωp (xk − χkqγq)) , (2.88)

where uFi and uSi (Eq. (2.51)) are the local fluid and solid phase velocities. The ansatz has
been introduced by Deußen et al. [51], a publication which will be followed closely in this
section. The following derivation is done for two spatial dimensions, hence, the rotational
velocity ωp and the orientation angle βp are vector variables. In case of three dimensions it is
necessary to extend the rotational velocity to a vector for a single particle and a second order
tensor ωip for the combined particle phase. Due to the non-overlap condition (2.26) of the
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particles, both γp and γq in (2.88) refer to the same particle despite different indices, which
are necessary to fulfil Einstein’s summation convention. The material derivative of (2.88) is

dUi

dt
= γF

duFi
dt

+ uFi
dγF

dt
+ γS

duSi
dt

+ uSi
dγS

dt

= γF
duFi
dt

+ γp

(︃
dvip
dt

+ ϵi3j
dωp

dt
(xj − χjqγq)

)︃
− (γpωp)

2 (xi − χiqγq) , (2.89)

where (2.78) was used to eliminate the derivatives of the indicator functions dγF /dt and
dγS/dt. The goal of the following considerations is to express each term in (2.89) in terms
of the single field velocity Ui. The material derivatives duFi /dt, dvip/dt and dωp/dt can
be expressed via the Navier Stokes equation (2.67) or unsteady Stokes equation (2.68) and
Newton-Euler equations (2.54), (2.55) respectively. However, in (2.89) the rotational velocity
ωp occurs directly, which cannot expressed by any of the aforementioned equations. Consider
1xi to be an arbitrary point within a particle p, then the velocity of the same particle at the
centre of mass is

1vi
S = lim

2x→χ·1γ
2Ui =

∫︂
δ (2x− χ · 1γ) 2Ui d 2x, (2.90)

i.e. the translational velocity of the particle. Subsequently, the rotational velocity 1ωp of the
particle at 1xi is

1ωp = 1γp
ϵ3ijri

|r|2
(︁
1Uj − 1v

S
i

)︁
= 1γp

ϵ3ij
(︁
1xi − χiq 1γq

)︁
|1x− χ · 1γ|

2

(︁
1Uj − 1vi

S
)︁

= 1γp
ϵ3ij

(︁
1xi − χiq 1γq

)︁
|1x− χ · 1γ|

2

(︃
1Uj −

∫︂
δ (2x− χ · 1γ) 2Uj d 2x

)︃
. (2.91)

The single field velocity Ui is defined for the entire domain Ω, thus, the boundary conditions
defined at the particle surface for the fluid domain ΩF are positioned inside Ω and take the
form of continuity and jump conditions. The passive particle boundary is a no-slip wall (2.40)
hence, the single field velocity Ui is continuous at the interface

1Ui = lim
2x→1x

2Ui ∀ 1x ∈ Γpa. (2.92)

Similarly for the condition of an impermeable active surface (2.41) one obtains

1Ui 1ni = lim
2x→1x

2Ui 2ni ∀ 1x ∈ Γac. (2.93)

While the velocity in normal direction is continuous, a slip velocity exists in tangential direc-
tion, permitted by the active stress. The active stress acts as a source of momentum for the
fluid phase, subsequently, we define the active source term by using the level-set approach
outlined in Sec. 2.3.3. The non-dimensional active force Ac

i exerted by the particle on the
fluid is obtained by a surface integration

Ac
i = Aceipγp =

∫︂
Γac

Acti ds =
∫︂
δ (x− Γac)Acti dx, (2.94)
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where Ac is the magnitude of the active force, defined by

Ac =
2aAc

ε

∫︂ π

π
2

sin (θ)
√︂
ε2 sin2 (θ) + cos2 (θ)dθ (2.95)

in two dimensions. Here, the elliptical integral is carried out with respect to the polar angle θ
(Fig. 2.2) within the interval [π/2, π], which includes the entire active surface of the particle.
By adding (2.94) as a source to the integral form of the Navier-Stokes equation one obtains∫︂

ΩF

duFi
dt

−
∂τFij
∂xj

− δ (x− Γac)Actiγp dx = 0. (2.96)

For a valid choice for the source term, Γac is defined on all points at the active interface within
the fluid domain, where the fact was used that ΩF is a closed set, see (2.29). Eq. (2.96)
together with the Newtonian stress tensor (2.62) and the Reynolds number (1.1) yields the
differential form

duFi
dt

=
∂τFij
∂xj

+ δ (x− Γac)Acti = −∂p
F

∂xi
+

1

Re
∂2uFi
∂x2j

+Ai, (2.97)

which will be call active Navier-Stokes equation with the active source term

Ai = δ (x− Γac)Acti. (2.98)

Again by neglecting the convective term, one obtains the active unsteady Stokes equation

∂uFi
∂t

= −∂p
F

∂xi
+

1

Re
∂2uFi
∂x2j

+Ai, (2.99)

which, in the steady case, becomes

0 = −∂p
F

∂xi
+

1

Re
∂2uFi
∂x2j

+Ai, (2.100)

Using the active Navier-Stokes equation (2.97) and the Newton-Euler equations (2.54) and
(2.55) to express the temporal derivatives in (2.89) delivers the momentum balance for the
entire suspension

d 1Ui

dt
= 1γ

F

(︃
∂ 1τij

∂ 1xj
1xj + δ (1x− Γac)Ac (ninjejp − eip) γp

)︃
− 1γp

[︃
1

V PD

∫︂
2τij

∂ 2γp

∂ 2xj
d 2x

+ ϵi3k
(1xk − χkr 1γr)

ΘS

∫︂
ϵ3ij

(︁
2xi − χiq 2γq

)︁
2τjk

∂ 2γp

∂xj
2xk d 2x (2.101)

+

(︄
1γp

ϵ3jk
(︁
1xj − χjq 1γq

)︁
|1x− χ · 1γ|

2

(︃
1Uk −

∫︂
δ (2x− χ · 1γ) 2Uk d 2x

)︃)︄2

(1xi − χir 1γr)

⎤⎦ ,
which contains the single-field velocity Ui and the particle position tensor χip as unknown
variables. Additionally, the orientation βp enters (2.101) via Γac and eip. The equation is
closed by the equations for the evolution of the particle position (2.46) and orientation (2.47).
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To obtain a relation for the conservation of mass the divergence of the single field velocity is
formed, leading to

∂Ui

∂xi
=
∂γFuFi
∂xi

+
∂γpuip
∂xi

= γF
∂uFi
∂xi

+ γp
∂uip
∂xi

+ uFi
∂γF

∂xi
+ uip

∂γp
∂xi

= γF
∂uFi
∂xi

+ γp
∂uip
∂xi

+ uFi

N∑︂
p=1

δ (φp)
∂φp
∂xi

− uipδ (φp)
∂φp
∂xi

= γF
∂uFi
∂xi

+ γp
∂uip
∂xi

+ JUiniK δ (φ) = 0, (2.102)

where the continuity equations for the fluid phase (2.65) and the solid phase (2.50) and the
impermeability of the particle surface

uFi ni = uSi ni ⇒ JUiniK = 0 (2.103)

are used. The brackets JuK = uF − uS indicate a jump of the enclosed variable u.
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3. Lie symmetry analysis in the physical and
sample space

In this section the theoretical foundation for the examination of the classical and statistical
symmetries in the context of an active suspension is established. Sophus Lie first applied the
concept of a symmetry transformation to differential equations, which is employed here to
generate insights about the behaviour of an active suspension [137, 138, 139]. Basic defi-
nitions and transformation rules for a symmetry transformation are introduced in Sec. 3.1,
including the introduction of invariant solutions in Sec. 3.1.2.

The physical behaviour of an active suspension is described by the balance equations intro-
duced in the previous section. The equations describing the fluid are examined based on their
symmetries in Sec. 3.2. The fluid is either described by the Navier-Stokes equation (2.67) or
the Stokes equation, where one might choose the steady (2.17) or unsteady (2.68) version.
To describe the motion of the rigid particles, the Newton-Euler equations (2.54) and (2.55)
are sufficient. The symmetries of the full system are subsequently discussed in Sec. 3.3.

The aforementioned equations describe the Euclidean physical space, i.e. the outcome of an
individual experiment. The sample space on the other hand contains all outcomes of an en-
semble of experiments in the form of probabilities. A description of an active suspension in
the sample space based on PDFs is established in Sec. 3.4. The symmetries of the resulting
hierarchy of transport equations are presented in Sec. 3.5. The set comprises new statistical
symmetries, which are not present in the physical description of the suspension, see Sec. 3.6.
Nevertheless, they describe important patterns of behaviour, visible in the physical space. Both
statistical and classical symmetries are later used to analyse data obtained by simulations, see
Sec. 6.

3.1. Lie-Symmetries

A symmetry is, generally speaking, an operation to map a certain object onto itself. The nature
of this object is not specified, most commonly the term is applied to geometric objects. For
example the rotation of a cylinder around its centreline is a symmetry transformation because
the result is a cylinder with the exact same properties. An equivalent concept can be applied
to mathematical expressions, especially but not exclusively to differential equations. Let

Fk (x,y,y1,y2, ..., ,yN ) = 0, k = 1, 2, ...,K (3.1)
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be as system of K differential equations with the independent variables x, the dependent
variables y and the derivatives yn up to N th order

y1 =

[︃
∂y1
∂x1

,
∂y1
∂x2

, ...,
∂yi
∂xj

, ...

]︃
,

y2 =

[︃
∂2y1
∂x21

,
∂y1

∂x1∂x2
, ...,

∂2yi
∂xj∂xk

, ...

]︃
(3.2)

....

A transformation
Tα : x∗i = Φi (x,y, α) , y∗i = Ψi (x,y, α) (3.3)

is called a symmetry acting on [x,y] if the resulting system of equations

Fk (x
∗,y∗,y∗

1,y
∗
2, ..., ,y

∗
N ) = 0 ⇔ Fk (x,y,y1,y2, ..., ,yN ) = 0 (3.4)

has the same form as (3.1), i.e. (3.1) is form invariant under the transformation (3.3). A group
G is a set of elements α, β, γ, ... together with a binary operation (∗) [28]. The construct G
needs to satisfy a number of conditions in order to be called a group [28, 89]:

• the result of the operation (∗) applied to two elements of the group is another element
of the group α ∗ β = γ,

• the operation (∗) is associative, i.e. α ∗ (β ∗ γ) = (α ∗ β) ∗ γ,

• the group G contains a unique identity element I which maps any element of G onto
itself α ∗ I = I ∗ α = α,

• the group G contains for any element α a unique inverse element α−1 such that
α ∗ α−1 = α−1 ∗ α = I.

Let the variables [x,y] of Fk lie within a regionD ⊂ Rn. The set of transformations (3.3) with
the parameter α ∈ S ⊂ R and the operation (∗) form a one-parameter Lie group if [28, 106,
159]

• the set S and the operation (∗) form a group G,

• the transformations (3.3) map [x,y] ∈ D onto [x∗,y∗], where the transformed variables
also lie within D,

• the parameter α ∈ S is continuos, i.e. S is an interval on R,

• the successive application of the transformations

Tα : x∗i = Φi (x,y, α) , y∗i = Ψi (x,y, α) ,

Tβ : x∗∗i = Φi (x
∗,y∗, β) , y∗∗i = Ψi (x

∗,y∗, β)

yields Tγ : x∗∗i = Φi (x,y, γ = α ∗ β) , y∗∗i = Ψi (x,y, γ = α ∗ β),

• γ = α ∗ β is an analytical function of α ∈ S and β ∈ S,

• Φi and Ψi are infinitely differentiable with respect to [x,y] in a region D and analytical
functions of the group parameter α.
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Without loss of generality α = 0 corresponds to the identity element. A Taylor expansion of
(3.3) with respect to the group parameter α yields

x∗i = Φi (x,y, α = 0) + α
∂Φi (x,y, α)

∂α

⃓⃓⃓⃓
α=0

+O
(︁
α2
)︁
, (3.5)

y∗i = Ψi (x,y, α = 0) + α
∂Ψi (x,y, α)

∂α

⃓⃓⃓⃓
α=0

+O
(︁
α2
)︁
. (3.6)

Due to the identity element α = 0, one obtains the identity transformations [159]

Φi (x,y, α = 0) = xi and Ψi (x,y, α = 0) = yi. (3.7)

Furthermore, the infinitesimals

ξi (x,y) =
∂Φi (x,y, α)

∂α

⃓⃓⃓⃓
α=0

, ηi (x,y) =
∂Ψi (x,y, α)

∂α

⃓⃓⃓⃓
α=0

(3.8)

are introduced. Following Lie’s first theorem, the infinitesimals uniquely define the global
form (3.3) of the symmetry transformation [159]. Eqs. (3.5) and (3.6) can be reformulated

x∗i = xi + αξi +O
(︁
α2
)︁
, y∗i = yi + αηi +O

(︁
α2
)︁
. (3.9)

Eq. (3.8) together with the definition of the transformation (3.3) leads to [159]

∂x∗i
∂α

⃓⃓⃓⃓
α=0

= ξi (x
∗,y∗) ,

∂y∗i
∂α

⃓⃓⃓⃓
α=0

= ηi (x
∗,y∗) . (3.10)

In a geometrical interpretation, the vector formed by the infinitesimals [ξi, ηi] is tangential to
the differentiable curve defined by Φi and Ψi in a C∞ manifold. Any tangential vector field
can be expressed by the directional derivative [106]

X = ξi (x,y)
∂

∂xi
+ ηi (x,y)

∂

∂yi
, (3.11)

called infinitesimal generator or Lie operator. The system Fk is, hence, invariant under the
transformation (3.3) if the directional derivative of Fk vanishes [106]

XFk|Fk=0 = 0. (3.12)

A proof for the equivalence of (3.4) and (3.12) can be found in Appendix A.1. The operator
(3.11) only considers the independent and dependent variables, however, the action of the
transformation on the derivatives of the dependent variables is yet unknown. In the next
section the transformation of the derivatives is introduced and the definition of the operator
is extended to account for said derivatives.

3.1.1. Prolonged operator

The total differential operator is defined as [28]

D

Dxi
=

∂

∂xi
+ yj,xi

∂

∂yj
+ yj,xi,xk

∂

∂yj,xk

+ ... . (3.13)
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Here, the notation

yj,xi =
∂yj
∂xi

, yj,xi,xk
=

∂2yj
∂xi∂xk

, ... (3.14)

for the derivatives is introduced, i.e. the derivatives are treated as variables similar to yi. Such
an extension of the space of independent and dependent variables [x,y] to also include the
derivatives [x,y,y1, ...,yN ] up to a finite order N , is called jet space [28]. Analogously to
(3.13), the transformed total operator is defined as

D

Dx∗i
=

∂

∂x∗i
+ y∗j,xi

∂

∂y∗j
+ y∗j,xi,xk

∂

∂y∗j,xk

+ ... . (3.15)

Both operators are connected by the chain rule

D

Dxi
= Jji

D

Dx∗j
(3.16)

where Jji = DΦj/Dxi is the Jacobian matrix of Φi. Applying (3.16) to the transformed
variable y∗i = Ψi delivers the transformed first order derivative

y∗i,xj
= Ψi,xj = J−1

kj

DΨi

Dxk
. (3.17)

Higher order derivatives are obtained by applying (3.17) recursively [28],

y∗i,xk1
,...,xkN

= Ψi,xk1
,...,xkN

= J−1
ji

DΨi,xk1
,...,xkN−1

DxkN
. (3.18)

Instead of the application of a matrix it is favourable to directly transform the derivatives anal-
ogously to the independent and dependent variables, see (3.5) and (3.6). The infinitesimals
of the derivatives of y are

y∗i,xj
= Ψi,xj (x,y,y1, α = 0) + α

∂Ψi,xj (x,y,y1, α)

∂α

⃓⃓⃓⃓
α=0

+O
(︁
α2
)︁

= yi,xj + αηi,j +O
(︁
α2
)︁
, (3.19)

y∗i,xj ,xk
= Ψi,xj ,xk

(x,y,y1,y2, α = 0) + α
∂Ψi,xj ,xk

(x,y,y1,y2, α)

∂α

⃓⃓⃓⃓
α=0

+O
(︁
α2
)︁

= yi,xj ,xk
+ αηi,j,k +O

(︁
α2
)︁

(3.20)
....

Any infinitesimal ηi,k1,k2,...,kN related to the N th order derivative yi,xk1
,xk2

,...,xkN
can be calcu-

lated by

ηi,k1,k2,...,kN =
Dηi,xk1

,xk2
,...,xkN−1

DxkN
− yi,xk1

,xk2
,...,xj

Dξj
DxkN

, (3.21)

which is derived in the appendix (App. A.1.2). The new infinitesimals can be used to construct
a prolonged operator

XN = ξi
∂

xi
+ ηi

∂

∂yi
+ ηi,xj

∂

∂yi,xj

+ ...+ ηi,k1,k2,...,kN
∂

∂yi,xk1
,xk2

,...,xkN

, (3.22)
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which again describes the tangent space at any point [x,y,y1, ...,yN ]. A Lie-transformation
group G exists if the system F (x,y,y1,y2, ..., ,yN ) = 0 is invariant under the action of the
prolonged operator XN , see for reference Def. 1.4 in Ibragimov [106]. Hence, to obtain the
infinitesimals it is necessary to solve

XN Fk|Fk=0 = 0, k = 1, 2, ...,K, (3.23)

in analogy to (3.12), which in practice is often delegated to a computer algebra system. It is
important to note that all variables in the jet space, including the derivatives y1,y2, ..., ,yN ,
need to be treated as independent variables when applying the prolonged operator [159].
Once (3.23) is solved, the resulting infinitesimals ξi and ηi can be used to determine the
global form of the symmetry transformation by applying (3.10). In conclusion, (3.23) can be
viewed as a determining equation allowing one to obtain the symmetries of the differential
equation system Fk.

In the following example the process of obtaining a symmetry transformation is reversed. A
known transformation is chosen and it is shown that it fulfils (3.23). Applying the rotational
operator ∇× to the unsteady Stokes equation (2.68) delivers the vorticity equation. In two
dimensions this is a scalar equation

F
(︂
x, t, ωF , ωF

t , ω
F
xj ,xj

)︂
= ωF

t − 1

Re
ωF
xj ,xj

= 0, (3.24)

which is equivalent to the heat equation. The occurring variables are the vorticity ωF and its
derivatives ωF

t and ωF
xi,xj

according to the previously introduced notation. The scaling

TSc4 : t∗ = e2cSc4t, x∗i = ecSc4xi, ωF∗ = e−cSc4ωF (3.25)

is a symmetry of (3.24), see Ibragimov [106]. Here, cSc4 is the group parameter. The infinites-
imals are calculated by

ξt =
∂t∗

∂cSc4

⃓⃓⃓⃓
cSc4=0

= 2t, ξxi =
∂x∗i
∂cSc4

⃓⃓⃓⃓
cSc4=0

= xi, ηω =
∂ωF∗

∂cSc4

⃓⃓⃓⃓
cSc4=0

= −ωF . (3.26)

The infinitesimals of the derivatives are obtained using (3.21) and read

ηω,t = −3ωF
t , ηω,xi,xi = −3ωF

xi,xi
, (3.27)

leading to the prolonged operator

X = 2t
∂

∂t
+ xi

∂

∂xi
− ωF ∂

∂ωF
− 3ωF

t

∂

∂ωF
t

− 3ωF
xi,xi

∂

∂ωF
xi,xi

. (3.28)

Using (3.12) together with (3.28) and (3.24) yields

XF
(︂
x, t, ωF , ωF

t , ω
F
xj ,xj

)︂⃓⃓⃓
F=0

= 3

[︃
−ωF

t +
1

Re
ωF
xi,xi

]︃
(︂
ωF
t − 1

Reω
F
xi,xi

)︂
=0

= 0, (3.29)

hence, the transformation (3.25) is indeed a symmetry of the vorticity equation (3.24).
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3.1.2. Invariant solutions

The symmetries obtained from (3.23) can be used to construct similarity or invariant solutions
Yk = yk (x). An expression Yk is an invariant solution if the auxiliary functionHk = Yk−yk (x)
is invariant under the action of the prolonged operator XN and if Yk solves Fk [28]. Thus,
the equation

XNHk|Hk=0 = 0. (3.30)

yields possible invariant solutions of the system of differential equations Fk. Invariant solu-
tions obtained from the symmetries presented in the following sections are used to analyse
data obtained from simulations as presented in Sec. 6.

3.2. Symmetries of the Navier-Stokes equation and the Stokes
equation

The symmetries of the Navier-Stokes equations were first derived by Bytev [37]. The transfor-
mation group in the form given by Bytev [37] and Klingenberg et al. [119] for the single-phase
problem are

Tt : t∗ = t+ ct, x∗i = xi, uF∗
i = uFi , pF∗ = pF , (3.31a)

TRot : t∗ = t, x∗i = Qijxj , uF∗
i = Qiju

F
i , pF∗ = pF , (3.31b)

TG : t∗ = t, x∗i = xi + fG,i (t) , uF∗
i = uFi + f ′G,i (t) , pF∗ = pF − xif

′′
G,i (t) , (3.31c)

Tp : t∗ = t, x∗i = xi, uF∗
i = uFi , pF∗ = pF + fp(t), (3.31d)

TSc1 : t∗ = te2cSc1 , x∗i = xie
cSc1 , uF∗

i = uFi e
−cSc1 , pF∗ = pF e−2cSc1 , (3.31e)

where the ci denote group parameters and the fi are free time-dependent functions. Each
symmetry transformation is related to certain physical properties of the Navier-Stokes equa-
tion. The transformation Tt describes the invariance of the Navier-Stokes equation under a
time shift. Hence, the outcome of an experiment is independent of the start time t0. The
rotation matrix in the symmetry TRot, which, in the two-dimensional case, reads

Qij =

[︄
cos (ϕ) sin (ϕ)

− sin (ϕ) cos (ϕ)

]︄
, (3.32)

is applied to the reference frame in case of Trot. The entire coordinate system is rotated by the
angle ϕ, where ϕ can be interpreted as group parameter. The generalised Galilean symmetry
TG transforms the spatial coordinate, the velocity and the pressure by applying a free function
fG,i (t), which might be time-dependent. Hence, the entire coordinate system moves with
a velocity f ′G,i (t). As a special case it contains the spatial shift fG,i = cG,i. A second free
function fp (t) is applied to the pressure in Tp. This transformation is related to the fact that
the absolute value of the pressure can be chosen arbitrarily in an incompressible fluid. The
last transformation TSc1 is a scaling of the entire experiment. This is often exploited in order to
simplify wind-tunnel experiments, because it makes possible a downsizing of the model under
investigation. Furthermore, this scaling symmetry is equivalent to the principle of free choice
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of the system of units as well as the transformation of results between different systems. The
Lie operators related to the symmetry transformations (3.31) are [107]

Xt =
∂

∂t
, (3.33a)

Xi,Rot = ϵjkixj
∂

∂xk
+ ϵjkiu

F
j

∂

∂uFk
, (3.33b)

XG,i = fG,i (t)
∂

∂xi
+ f ′G,i (t)

∂

∂uFi
− xif

′′
G,i (t)

∂

∂pF
, (3.33c)

Xp = fp (t)
∂

∂pF
, (3.33d)

XSc1 = 2t
∂

∂t
+ xi

∂

∂xi
− uFi

∂

∂uFi
− 2pF

∂

∂pF
. (3.33e)

The simplifications leading to the steady (2.17) and unsteady (2.68) Stokes equation also
affect the symmetries. The partial time derivative is not Galilean invariant, hence, the general
transformation TG is not applicable to the unsteady Stokes equation because an additional
term arises, i.e.

∂uFi
∂t

= −∂p
F

∂xi
+

1

Re
∂2uFi
∂x2j

⇒ ∂uF∗
i

∂t∗
+ f ′G,j (t

∗)
∂uF∗

i

∂x∗j
= −∂p

F∗

∂x∗i
+

1

Re
∂2uF∗

i

∂x∗j∂x
∗
j

, (3.34)

where (3.16) was used to obtain the transformation of the temporal derivative ∂u∗i /∂t =
∂u∗i /∂t

∗ + f ′G,j (t) ∂u
∗
i /∂x

∗
j . In the case of the Navier-Stokes equation this additional term

would vanish due to the convective term. Subsequently, the first derivative of fG,i needs to
vanish, hence, TG is a symmetry of the unsteady Stokes equation, only if fG,i = cG,i is a
constant. Interestingly, one obtains from (3.34), by assuming a steady system ∂u∗i /∂t

∗ = 0
with a single particle moving with the constant velocity f ′G,i = ṽi, the Oseen equation [162]

ṽj
∂uFi
∂xj

= −∂p
F

∂xi
+

1

Re
∂2uFi
∂x2j

, (3.35)

where the asterisk was omitted.

For the unsteady Stokes equation, while the generalised Galilean symmetry reduces to a con-
stant spatial shift, additional symmetries arise due to the linearity of the equation. The full
transformation group is

Tt : t∗ = t+ ct, x∗i = xi, uF∗
i = uFi , pF∗ = pF , (3.36a)

TRot : t∗ = t, x∗i = Qijxj , uF∗
i = Qiju

F
i , pF∗ = pF , (3.36b)

TG : t∗ = t, x∗i = xi + cG,i, uF∗
i = uFi , pF∗ = pF , (3.36c)

Tp : t∗ = t, x∗i = xi, uF∗
i = uFi , pF∗ = pF + fp(t), (3.36d)

TSc2 : t∗ = t, x∗i = xi, uF∗
i = uFi e

cSc2 , pF∗ = pF ecSc2 , (3.36e)
TSc3 : t∗ = te2cSc3 , x∗i = xie

cSc3 , uF∗
i = uFi e

cSc3 , pF∗ = pF , (3.36f)
Tlin : t∗ = t, x∗i = xi, uF∗

i = uFi + fi,u (x, t) , pF∗ = pF + fp (x, t) . (3.36g)

The transformations Tt, TRot, and Tp are the same as for the Navier-Stokes equation. The
Galilean invariance TG is reduced to a constant spatial shift cG,i due to (3.34) and explained
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in the latter. Furthermore, two additional scaling symmetries arise, where a combination of
TSc2 and TSc3 delivers the classical scaling symmetry of the Navier-Stokes equation

XSc1 = −2XSc2 + XSc3, (3.37)

where the operators XSc2 and XSc3 are given below in (3.38). The free functions fi,u (x, t) and
fp (x, t) in the last transformation Tlin are solutions of the unsteady Stokes equation (2.68).
Such symmetries occur in any linear equation and allow to construct solutions by a linear
combination of other solutions, which is known as superposition principle. The Lie operators
corresponding to the transformations (3.36) are

Xt =
∂

∂t
, (3.38a)

Xi,Rot = ϵjkixj
∂

∂xk
+ ϵjkiu

F
j

∂

∂uFk
, (3.38b)

XG,i =
∂

∂xi
, (3.38c)

Xp = fp (t)
∂

∂pF
, (3.38d)

XSc2 = uFi
∂

∂uFi
+ pF

∂

∂pF
, (3.38e)

XSc3 = 2t
∂

∂t
+ xi

∂

∂xi
+ uFi

∂

∂uFi
, (3.38f)

Xlin = fi,u (x, t)
∂

∂uFi
+ fp (x, t)

∂

∂pF
. (3.38g)

The steady Stokes equation contains a set of symmetries similar to the symmetries of the
unsteady Stokes equation (3.36). The time-dependent function of the generalised Galilean
symmetry might depend linearly on time fG,i = cG,it, because the derivative ∂uFi /∂t = 0
needs to vanish for a steady problem. Subsequently, the transformation for TG in the case of
the steady Stokes equation reads

TG : t∗ = t, x∗i = xi + cG,it, U∗
i = Ui + cG,i, pF∗ = pF , (3.39)

while the other symmetries are identical to (3.36).

3.2.1. Symmetries of the vorticity equation

Applying the rotation operator ∇× to the unsteady Stokes equation (2.68) delivers an equa-
tion for the vorticity of the fluid field

∂ωF

∂t
=

1

Re
∂2ωF

∂x2i
, (3.40)

which is a scalar equation for two dimensional Stokes flows. As mentioned in example (3.24)
the vorticity equation is equivalent to the linear heat equation whose symmetries are known,
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see Ibragimov [106]. The symmetries in two dimensions are

Tt : t∗ = t+ ct, x∗i = xi, ωF∗ = ωF , (3.41a)
Tx : t∗ = t, x∗i = xi + cx,i, ωF∗ = ωF , (3.41b)
TRot : t∗ = t, x∗i = Qijxj , ωF∗ = ωF , (3.41c)

TG : t∗ = t, x∗i = xi + 2tcG,i ωF∗ = ωF e−
(︁
xi+cG,it

)︁
cG,i , (3.41d)

TScω : t∗ = t, x∗i = xi, ωF∗ = ωF ecω , (3.41e)
TSc4 : t∗ = te2cSc4 , x∗i = xie

cSc4 , ωF∗ = ωF , (3.41f)

Tµ : t∗ =
t

1− 4cµt
, x∗i =

xi
1− 4cµt

, ωF∗ = ωF (1− 4cµt) e

−cµ

(︂
x21+x22

)︂
4t−16cµt2 , (3.41g)

Tlin : t∗ = t, x∗i = xi ωF∗ = ωF + fω (x, t) . (3.41h)

The spatial coordinates x1, x2 are transformed independently of each other in any symme-
try transformation given by (3.41). The first four symmetries are already known in primitive
variables, i.e. a time shift Tt, a spatial shift Tx, a rotation TRot and a variant of the Galilean
invariance TG. It is especially interesting that the transformation for the spatial coordinate xi
in TG depends linearly on time, whereas the counterpart in the case of the unsteady Stokes
equation is not a function of the time. Both spatial coordinates in TG are transformed inde-
pendently from each other, i.e. the symmetry transformation for an individual component is
equivalent to the one-dimensional transformation given by Ibragimov [106]. The invariant
solution obtained with TG in the one-dimensional case is [106]

ωF
TG

=
C√
t
e−

x2

4t , t > 0, (3.42)

which differs from the fundamental solution of the heat equation only by a constant factor.
TScω is a scaling symmetry for the vorticity and TSc4 a scaling symmetry for the independent
variables. The symmetry transformation Tµ differs from the equivalent transformation in the
one-dimensional case given by Ibragimov [106]. Considering only a single spatial dimension
yields

Tµ : t∗ =
t

1− 4cµt
, x∗i =

xi
1− 4cµt

, ωF∗ = ωF
√︁
1− 4cµt e

−cµx21
1−4µt . (3.43)

The symmetry describes dissipation and decay of the vorticity, which is revealed by the general
invariant solution obtained form Tµ in the one-dimensional case [106]

ωF
Tµ

= t−
1
2 e−

x2

4t f
(︂x
t

)︂
. (3.44)

The symmetry Tµ contains a singularity at t = (4cµ)
−1, which must be taken into account if

invariant solutions are to be generated. The last transformation in (3.41) Tlin is again the gen-
eral linear transformation, revealing the superposition principle, where fω (x, t) is a solution
of (3.40).

3.3. Lie symmetries for an active suspension

The system of equations describing an active suspension consists of the equations for the fluid
and for the solid particle phase. The fluid is either described by the active Navier-Stokes
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equation (2.97) or the active unsteady (2.99) or steady (2.100) Stokes equation. In each of the
aforementioned equations an additional term occurs to account for the source of momentum
due to the active stress at the particle surface. Additionally the continuity equation (2.65)
needs to be upheld. The particle phase is governed by the evolution equations for the particle
position (2.46) and orientation (2.47) and the Newton-Euler equations (2.54) and (2.55),
which describe the translational and rotational particle velocity. The fluid velocity uFi and the
particle velocity uSi always transform in the same way in order not to violate the boundary
conditions at the particle surface (2.40) and (2.41). Hence, the single-field velocity Ui, which
combines the velocities of both phases, see (2.88), is used in the subsequent symmetries. Due
to the occurrence of the radial vector ri = (xi − χipγp) in the definition of the particle velocity
(2.51) and in the rotational Newton-Euler equation (2.55), it is necessary that the spatial
coordinate xi and the particle position χip obey identical transformations.

3.3.1. Navier-Stokes equation

In the case of an active suspension, the set of symmetry transformations of the Navier-Stokes
equation (3.31) is extended to

Tt : t∗ = t+ ct, x∗i = xi, U∗
i = Ui, pF∗ = pF ,

χ∗
ip = χip, β∗p = βp, A∗

i = Ai, (3.45a)
TRot : t∗ = t, x∗i = Qijxj , U∗

i = QijUi, pF∗ = pF ,

χ∗
ip = Qijχjp, β∗p = βp − ϕ, A∗

i = Ai, (3.45b)
TG : t∗ = t, x∗i = xi + fG,i (t) , U∗

i = Ui + f ′G,i (t) , pF∗ = pF − xif
′′
G,i (t) ,

χ∗
ip = χip + fG,i (t) γp, β∗p = βp, A∗

i = Ai, (3.45c)
Tp : t∗ = t, x∗i = xi, U∗

i = Ui, pF∗ = pF + fp(t),

χ∗
ip = χip, β∗p = βp, A∗

i = Ai, (3.45d)
TSc1 : t∗ = te2cSc1 , x∗i = xie

cSc1 , U∗
i = Uie

−cSc1 , pF∗ = pF e−2cSc1 ,

χ∗
ip = χipe

cSc1 , β∗p = βp, A∗
i = Aie

−3cSc1 . (3.45e)

Two additional symmetries exist

Tβ : t∗ = t, x∗i = xi, U∗
i = Ui, pF∗ = pF ,

χ∗
ip = χip, β∗p = βp + cβ, A∗

i = Ai, (3.45f)
TAc : t∗ = t, x∗i = xi, U∗

i = Ui + fUi (t) δ (x− Γac), pF∗ = pF ,

χ∗
ip = χip, β∗p = βp, A∗

i = Ai + fAi (t) δ (x− Γac), (3.45g)

where the free functions fUi and fAi have to fulfil the condition

∂fUi (t)

∂t
+ fUj (t)

∂Ui

∂xj
= fAi (t) ∀x ∈ Γac. (3.46)

Consequently, the transformation TAc provides a way to determine the slip velocity caused by
the active stress by solving (3.46) for a known velocity field Ui and active stress modification
fAi . The additional Lie operators are

Xp,β =
∂

∂βp
, XAc = fUi (t) δ (x− Γac)

∂

∂Ui
+ fAi (t) δ (x− Γac)

∂

∂Ai
(3.47)

36



The new transformation Tβ, which affects only the orientation of the particles, is univer-
sally applicable in a passive suspension with disk-shaped two-dimensional or spherical three-
dimensional particles in an infinite domain. In fact, it might even be time-dependent. In the
case of arbitrarily shaped active particles Tβ is no longer a Lie symmetry, because additional
discrete symmetries are necessary. Hence, the Lie-operator (3.11) is not defined, because it is
derived with a Taylor expansion (3.6). Each particle needs to possess at least one geometrical
symmetry where γp

(︁
β∗p
)︁
= γp (βp). Otherwise, the fluid and particle domains would change,

leading to a change in the single-field velocity Ui. Furthermore, the active stress term must
be invariant Ai

(︁
β∗p
)︁
= Ai (βp), which ensures that the active Navier-Stokes equation (2.97)

is form invariant at each point x ∈ Ω. For elliptical active particles the aforementioned condi-
tions are fulfilled for the transformation β∗ = β ± π, where additionally the sign of the active
stress magnitude is reversed Ac∗ = −Ac. In other words, the orientation of the particles is
reversed and pusher particles are replaced with puller particles and vice versa. Despite the
fact that Tβ is not a Lie-symmetry in the case of an active suspension, invariant solutions for Tβ
in the case of a passive suspension with disk-shaped particles can be used to describe limiting
cases of an active suspension, which is done in Sec. 6.2.3.

The scaling transformation (3.45e) implies additionally the transformation of the particle
quantities ωp, V P and ΘS

ij . Due to the scaling of time and velocity, the particle rotational
velocity becomes ω∗

p = ωpe
−2cSc1 , whereas the translational particle velocity v∗ip = vipe

−cSc1

has the same scaling factor as the single-field velocity Ui. The particle volume is obtained by
the integration

∫︁
Ωp

1dx. Therefore, the resulting scaling is V P∗ = V P edcSc1 , where d is the spa-
tial dimension. Analogously, the scaling for the moment of inertia tensor ΘS∗

ij = ΘS
ije

(2+d)cSc1

is obtained, which reduces to a scalar ΘS∗ = ΘSe(4)cSc1 in two dimensions.

The generalised Galilean symmetry (3.45c) is only valid for suspensions with equal mass den-
sities of the separate phases, i.e. D = 1. Otherwise, the application of (3.45c) to the equation
for the translational particle velocity delivers

DV P d2χip

dt
−DV P f ′′G,i (t) γp = −

∫︂
τFij

∂γp
∂xj

dx− f ′′G,i (t) γpV
P , (3.48)

where the asterisks are omitted for better readability. The additional terms on the right and
left side of the equation vanish either if D = 1 or if the second derivative f ′′G,i (t) = 0 is zero.
For D ̸= 1 the function fG,i in (3.45c) is reduced to the linear function

fG,i (t) = cG,it, f ′G,i (t) = cG,i, (3.49)

where cG,i is a constant. If f ′′G,i (t) ̸= 0 the entire system would be accelerated. Due to dif-
ferent mass densities D ̸= 1 the resulting forces and momentum on the two phases would be
different, hence, the invariance is violated.
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3.3.2. Unsteady Stokes equation

The symmetries for a suspension, where the fluid is governed by the active unsteady Stokes
equation (2.99), are

Tt : t∗ = t+ ct, x∗i = xi, U∗
i = Ui, pF∗ = pF ,

χ∗
ip = χip, β∗p = βp, A∗

i = Ai, (3.50a)
TRot : t∗ = t, x∗i = Qijxj , U∗

i = QijUi, pF∗ = pF ,

χ∗
ip = Qijχjp, β∗p = βp − ϕ, A∗

i = Ai, (3.50b)
TG : t∗ = t, x∗i = xi + cG,i, U∗

i = Ui, pF∗ = pF ,

χ∗
ip = χip + cG,iγp, β∗p = βp, A∗

i = Ai, (3.50c)
Tp : t∗ = t, x∗i = xi, U∗

i = Ui, pF∗ = pF + fp(t),

χ∗
ip = χip, β∗p = βp, A∗

i = Ai, (3.50d)
TSc1 : t∗ = te2cSc1 , x∗i = xie

cSc1 , U∗
i = Uie

−cSc1 , pF∗ = pF e−2cSc1 ,

χ∗
ip = χipe

cSc1 , β∗p = βp, A∗
i = Aie

−3cSc1 . (3.50e)
Tβ : t∗ = t, x∗i = xi, U∗

i = Ui, pF∗ = pF ,

χ∗
ip = χip, β∗p = βp + cβ, A∗

i = Ai, (3.50f)
TAc : t∗ = t, x∗i = xi, U∗

i = Ui + fUi (t) δ
(︁
x− ΓAc

)︁
, pF∗ = pF ,

χ∗
ip = χip, β∗p = βp, A∗

i = Ai + fAi (t) δ
(︁
x− ΓAc

)︁
. (3.50g)

The unsteady Stokes equation for a single-phase flow contains additional symmetries com-
pared to the single-phase Navier-Stokes equation. The additional symmetries in the single-
phase low-Reynolds system (3.36e)-(3.36g) do not occur in the system of equations describing
a low-Reynolds active suspension. This can easily be seen by applying (3.36e)-(3.36g) to the
equation for the particle position (2.46). Considering the fact that the particle position χip

needs to be transformed the same way as the spatial coordinate xi, as explained in Sec. 3.3,
and the transformation for the translational particle velocity is equivalent to the transforma-
tion of the local velocity Ui, dχip/dt = vip is not invariant under the given transformations.
The slip velocity equation (3.46) simplifies to

∂fUi (t)

∂t
= fAi (t) , (3.51)

i.e. due to the assumption of a Stokes flow, the equation (3.51) for the slip velocity is accord-
ingly also linear. Furthermore, while the vorticity and the rotational velocity of the particles
are related by

ϵijk
∂uSk
∂xj

= 2ωS
i , (3.52)

the additional symmetries of the vorticity equation, transforming the vorticity itself, are not
generally applicable to a two-phase system. Due to their time-dependency, (3.41d), (3.41g)
and (3.41h) are broken by (2.47). The time-dependent transformations of the vorticity are
closely related to the particle rotational symmetry Tβ, as the vorticity clearly influences the
orientation of the particles via (3.52) and (2.47). Similar to Tβ, (3.41d), (3.41g) and (3.41h)
are universally applicable in a passive suspension of rotationally symmetric particles, such as
disks in two dimensions and spheres in three dimensions.
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3.3.3. Steady Stokes equation

A steady state in an active suspension is only reached if all particles are uncorrelated. This re-
quires sufficiently large distances between individual particles, i.e. a dilute suspension. Thus,
each particle can be observed separately. The particle motion is steady if the translational
velocity becomes a constant ṽi and the rotational velocity vanishes. The latter requirement is
necessary, because a changing orientation βp would lead to a change in the particle transla-
tional velocity vip due to the active stress. Subsequently, all particle equations except for the
position equation (2.46) deliver trivial identities. The generalised Galilean transformation is
less restricted in case of the steady Stokes equation and the linear form fG,i = cG,it is allowed.
Using fG,i = ṽit to describe a moving reference frame allows to set the origin at the particle
position. Thus,the solution of the particle position equation (2.46) also becomes trivial. In
contrast to the unsteady case, no symmetries are broken because of the triviality of the particle
equations. Hence, the transformation group for the steady state contains all symmetries of the
Stokes equation and the particle rotational transformation

TRot : t∗ = t, x∗i = Qijxj , U∗
i = QijUi, pF∗ = pF ,

χ∗
ip = Qijχjp, β∗p = βp − ϕ, A∗

i = Ai, (3.53a)
TG : t∗ = t, x∗i = xi + cG,it, U∗

i = Ui + cG,i, pF∗ = pF ,

χ∗
ip = χip + cG,itγp, β∗p = βp, A∗

i = Ai, (3.53b)
Tp : t∗ = t, x∗i = xi, U∗

i = Ui, pF∗ = pF + fp (t) ,

χ∗
ip = χip, β∗p = βp, A∗

i = Ai, (3.53c)
TSc2 : t∗ = t, x∗i = xi, U∗

i = Uie
cSc2 , pF∗ = pF ecSc2 ,

χ∗
ip = χip, β∗p = βp, A∗

i = Aie
cSc2 (3.53d)

TSc3 : t∗ = t, x∗i = xie
cSc3 , U∗

i = Uie
cSc3 , pF∗ = pF ,

χ∗
ip = χipe

cSc3 , β∗p = βp, A∗
i = Aie

−cSc2 (3.53e)
Tlin : t∗ = t, x∗i = xi, U∗

i = Ui + fi,U (x) , pF∗ = pF + fp (x) ,

χ∗
ip = χip, β∗p = βp, A∗

i = Ai, (3.53f)
Tβ : t∗ = t, x∗i = xi, U∗

i = Ui, pF∗ = pF ,

χ∗
ip = χip, β∗p = βp + cβ, A∗

i = Ai. (3.53g)

The time shift transformation vanishes due to the steadiness of the problem, however, it is
still applicable per definition of the terminology steady. The scaling symmetry TSc1 can be
obtained by employing (3.37). As a direct consequence of the constant particle velocity, the
active symmetry TAc is no longer a symmetry of the system, since a changing active force results
in a change of velocity. Furthermore, it should be emphasised that the linear symmetry Tlin is
still valid in the steady case of an active suspension, in contrast to the unsteady case discussed
in the previous section.
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3.4. Probability density functions

In the study of hydrodynamic turbulence a statistical approach based on PDFs was introduced.
Lundgren, Monin and Novikov (LMN) derived a statistical framework known as LMN hierarchy
based on first principles [142, 153, 157]. An infinite set of equations of motion for the multi-
point velocity PDF forms the LMN hierarchy. The PDF contains information about all statisti-
cal moments, subsequently, the Reynolds-Averaged Navier-Stokes (RANS) equation and other
statistical models can be directly derived from the LMN hierarchy. Furthermore, it reveals, in
combination with the Lie-symmetry approach, further information about the structure of the
flow. The application of the PDF approach is not restricted to single-phase turbulent flows. It
has been extended to magneto-hydrodynamics [79], to reactive flows and combustion [168]
and to compressible turbulence [170]. In this section a PDF hierarchy for an active suspension
is derived. The results were published in Deußen et al. [51], which forms the basis for this
section.

The starting point for the derivation are the Newton-Euler equations (2.54), (2.55) and the
active Navier-Stokes equation (2.97), describing the solid and fluid phase, respectively. The
separate equations of motion are combined into a single-field velocity description using the
level-set method and the phase indicator function γS and γF , see equation (2.101). This
single-field system is then transferred from the physical space into the sample space by em-
ploying ensemble averages. In the derivation of the PDF hierarchy of equations only two spatial
dimensions are considered. The main difference compared to a three-dimensional system is
the scalar nature of the rotational velocity of the particles.

3.4.1. General properties of a PDF

A PDF describes the statistical behaviour of a system. Instead of observing a single experiment
and describing its outcome with physical equations as for example the Navier-Stokes equation
(2.67), an ensemble of experiments is observed. An ensemble is an infinite number of experi-
ments with the same physical properties, i.e. the same number of active particles in the same
domain with the same fluid viscosity and mass densities. The initial conditions might vary
in each experiment and perturbations exist, hence, the outcome of each experiment is differ-
ent. The PDF is used to describe the statistical behaviour of the entire ensemble and contains
information about all statistical moments and outcomes of each experiment of the ensemble.

A single manifestation of the ensemble, i.e. a single experiment, is described by the fine-
grained PDF ˆ︁f(U) = δ (U− u(x, t)) , (3.54)

where u(x, t) is a physical variable dependent on the space-time point (x, t) and U the cor-
responding independent variable in the sample space. Subsequently, the probability for an
event

E1 ≡ {u < Ua} (3.55)

is obtained with the integral

ˆ︁P1 =

∫︂ Ua

−∞
δ (U− u(x, t))dU (3.56)
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whose result is either zero if Ua < u(x, t) or unity if Ua > u(x, t). Hence, the event is either
impossible or certain as the outcome of the single experiment is deterministic.

The PDF is obtained by forming the ensemble average, indicated by the brackets ⟨·⟩, of (3.54)
[169]

f(U) =
⟨︂ ˆ︁f(U)⟩︂ = ⟨δ (U− u(x, t))⟩ . (3.57)

The probability for the event E1 in the case of the ensemble-PDF is obtained by

P1 =

∫︂ Ua

−∞
⟨δ (U− u(x, t))⟩dU, (3.58)

whose result is a value between zero and unity 0 ≤ P1 ≤ 1, i.e. the outcome is stochastic. The
probability of a second event

E2 ≡
{︂
Ub < u < Ua

}︂
(3.59)

is determined by

P2 =

∫︂ Ua

Ub

⟨δ (U− u(x, t))⟩dU, (3.60)

again resulting in a value between zero and unity. Already implied in the given intervals for
the exemplary calculation of the probabilities, i.e. 0 ≤ P1 ≤ 1, are important properties of any
PDF. The integral over the entire sample space yields unity∫︂ ∞

−∞
f(U)dU = 1, (3.61)

and in the limiting case
lim
U→∞

f(U) = 0, lim
U→−∞

f(U) = 0 (3.62)

the PDF vanishes. Furthermore, the PDF is always non-negative for all values of U

f (U) ≥ 0 ∀U. (3.63)

So far the PDF was only considered at a single point 1xi within Ω. Correlating multiple points
delivers multi-point PDFs. The correlation of the variable U at two points 1xi and 2xi delivers
the two-point PDF

2f(1U, 2U) = ⟨δ (1U− 1u) δ (2U− 2u)⟩ , (3.64)

where the dependency of the physical variables 1u = u (1x, t) and 2u = u (2x, t) on space and
time was omitted for better readability. The preceding subscript of the PDF 2f describes the
number of points correlated. Extending (3.64) leads to the K-point PDF

Kf(1U, ...,KU) =

⟨︄
K∏︂
k=1

δ (kU− ku)

⟩︄
. (3.65)

Applying (3.61) to the multi-point PDF delivers the reduction property∫︂ ∞

−∞
Kf(1U, ...,KU)dKU = K−1f

(︁
1U, ...,K−1U

)︁
, (3.66)
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i.e. each integration with respect to a single sample space variable KU reduces the order of
the PDF by one. The order of the points 1x to Kx is arbitrary, i.e. any point in the domain Ω
can be marked by K. Hence, the integration can be carried out with respect to the sample
space variable related to any point x ∈ Ω.

Two physical variables at two points at infinite distance are assumed to be statistically inde-
pendent [142]

lim⃓⃓
1x−2x

⃓⃓
→∞

2f (1U, 2U) = 1f (1U) 1f (2U) , (3.67)

which is the separation property of the PDF. Hence, for the K-point PDF one obtains

lim⃓⃓
kx−Kx

⃓⃓
→∞

Kf (1U, ...,KU) = K−1f
(︁
1U, ...,K−1U

)︁
1f (KU) ∀k = {1, ...,K − 1} , (3.68)

where the order of the points is irrelevant and thus any point could be marked by the index
K. Again, the index preceding the PDF refers to the number of points correlated, i.e. 1f (KU)
is a single-point PDF at the Kth point. The separation property is the only occurrence in the
present work of a PDF 1f (KU), i.e. a PDF where the highest index of the sample space variable
K is unequal to the order of the PDF. In the following derivations the separation property is,
however, not used directly. Hence, the order of the PDF is always equal to the highest index
of the sample space variable, which allows to introduce the shorthand notation

Kf
U = Kf(1U, ...,KU). (3.69)

A direct consequence of the reduction property (3.66) is the coincidence property [142]

lim⃓⃓
1x−2x

⃓⃓
→0

2f
U = 1f

Uδ (2U− 1U) , (3.70)

which refers to the fact that the physical variables at a single point are identical and, sub-
sequently, the probabilities and sample space variables need to be identical. Similarly, one
obtains for the K-point PDF

lim⃓⃓
kx−Kx

⃓⃓
→0

Kf
U = K−1f

Uδ (KU− kU) , k ∈ {1, ...,K − 1} . (3.71)

Derivatives of the PDF

In general, the multi-point PDF Kf
U = Kf(1U, ...,KU; 1x, ...,Kx, t) is a function of space and

time. Derivatives with respect to both independent variables are formed with the chain rule.
The temporal derivative of the multi-point PDF is

∂ Kf
U

∂t
= −

⟨︄
K∑︂
k=1

∂ ku

∂t

∂ K
ˆ︁fU

∂ kU

⟩︄
= −

K∑︂
k=1

∂

∂ kU

⟨︃
∂ ku

∂t K
ˆ︁fU⟩︃ . (3.72)
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The gradient of the multi-point PDF with respect to the kth point is

∂ Kf
U

∂ kxi
= −

⟨︄
∂ ku

∂ kxi

∂ K
ˆ︁fU

∂ kU

⟩︄
= − ∂

∂ kU

⟨︃
∂ ku

∂ kxi
K
ˆ︁fU⟩︃

= − ∂

∂ kU

⟨︃∫︂
δ
(︁
K+1x− kx

)︁ ∂ K+1u

∂ K+1xi
K
ˆ︁fU dK+1x

⟩︃
= − ∂

∂ kU

∫︂
δ
(︁
K+1x− kx

)︁ ∂

∂ K+1xi
K+1f

U
K+1UdK+1UdK+1x, (3.73)

which was mentioned in Ulinich and Lyubimov [199] as consistency condition. Here, the Dirac
distribution was used as an expression for the limit

lim
K+1x→kx

K+1u =

∫︂
δ
(︁
K+1x− kx

)︁
K+1udK+1x. (3.74)

3.4.2. Marginal PDF

Three multi-dimensional physical variables are sufficient to describe the entire active suspen-
sion. These variables are the unified single-field velocity Ui, the position of the particles χip

and the orientation angle of the particles βp. While χip is a tensor of second order, the orien-
tation angles of all particles are organised in a vector. Accordingly, three multi-dimensional
sample space variables exist to describe the statistical behaviour of an active suspension. Cor-
responding to the single-field velocity Ui is the sample space variable Vi. The particle variables
translate to Xip and bp for the position and angle, respectively. Marginal PDFs for the individ-
ual variables only describe the probabilities of said variable without referencing the entire set
of sample space variables

1f
V =

⟨︂
1
ˆ︁fV ⟩︂ = ⟨δ (1V − 1U)⟩ , fX =

⟨︂ ˆ︁fX⟩︂ = ⟨δ (X − χ)⟩ ,

f b =
⟨︂ ˆ︁f b⟩︂ = ⟨δ (b− β)⟩ , (3.75)

where 1
ˆ︁fV , ˆ︁fX and ˆ︁f b are the fine-grained PDFs. It will become visible in the transport equa-

tions for the marginal PDFs that they are not sufficient to fully describe the system. Instead,
each equation for the marginal PDFs depends on a joint PDF containing information about all
three variables. The velocity Ui, the particle position χip and the particle orientation angle βp
are, hence, statistical dependent. The multi-point joint PDF is

Kf =

⟨︄
K∏︂
k=1

δ (kV − kU) δ (X − χ) δ (b− β)

⟩︄
, (3.76)

whose equations of motion will be derived based on the equations of the marginal PDFs, see
Sec. 3.4.3.
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Velocity marginal PDF

The single-point velocity marginal PDF 1f
V describes the statistical behaviour of the single-

field velocity Ui at a single point 1xi. The material derivative of 1f
V (1V ; 1x, t) is [142]

d 1f
V

dt
= −

⟨︄
d 1Ui

dt
∂ 1f̂

V

∂ 1Vi

⟩︄
= − ∂

∂ 1Vi

⟨︃
d 1Ui

dt 1f̂
(V )

⟩︃
= − ∂

∂ 1Vi

⟨︃
∂ 1Ui

∂t 1f̂
V

⟩︃
− ∂

∂ 1Vi

⟨︃
1Uj

∂ 1Ui

∂ 1xj
1f̂

V

⟩︃
= − ∂

∂ 1Vi

⟨︃
∂ 1Ui

∂t 1f̂
V

⟩︃
+ 1Vi

⟨︄
∂ 1f̂

V

∂ 1xi

⟩︄

=
∂ 1f

V

∂t
+ 1Vi

∂ 1f
V

∂xi
, (3.77)

where (3.72) and (3.73) where used. The structure of the physical material derivative, con-
sisting of a term describing the local change and a convective term, is preserved in the sample
space.

The equation of motion for 1f
V is obtained by using the single-field velocity momentum bal-

ance (2.101) together with (3.77). The individual terms of (2.101) are multiplied with the
fine-grained velocity PDF 1

ˆ︁fV , furthermore, the ensemble average and the derivative with
respect to the sample space variable 1Vi are taken according to (3.72). In the following para-
graphs each term of (2.101) is transformed into the sample space individually. The stress
tensor 1τ ij = − 1pδij + 1/Re (∂Ui/∂xj + ∂Uj/∂xi) consists of a pressure term and a viscous
term. Using Green’s function, the pressure can be expressed in terms of the velocity

1p =
1

4π

∫︂
1

|2x− 1x|
∂ 2Ui

∂ 2xj

∂ 2Uj

∂ 2xi
d 2x. (3.78)

Subsequently, the pressure term in the sample space becomes

∂

∂ 1Vi

⟨︃
∂ 1p

∂ 1xi
1
ˆ︁fV⟩︃ = − 1

4π

∂

∂ 1Vi

⟨︃
1γ

F ∂

∂ 1xi

∫︂
1

|2x− 1x|
∂ 2Ui

∂ 2xj

∂ 2Uj

∂ 2xi
d 2x 1f̂

V

⟩︃
=

1

4π

∂

∂ 1Vi

∫︂
1g

F ∂

∂ 1xi

1

|2x− 1x|

(︃
2Vi

∂

∂ 2xi

)︃2

2f d 2xd 2V dX db.

(3.79)

Due to the non-locality of the pressure, see (3.78), two points are correlated in (3.79). Fur-
thermore, due to the presence of the indicator function 1γ

F , which is a function of the position
and orientation of the particles, the velocity marginal PDF depends on the two-point joint PDF
2f of all three variables. The function 1g

F = 1g
F (Xp, bp) is the sample space version of the

indicator function ⟨︂
1γ

F ˆ︁fX ˆ︁f b⟩︂ = 1g
F fXf b, (3.80)

which is the reason for the integration with respect to X and b in (3.79). The sample space
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version of the viscous term is

− 1

Re
∂

∂ 1Vi

⟨︃
1γ

F ∂
2
1Ui

∂ 1xj
2 1
ˆ︁fV⟩︃ = − 1

Re
∂

∂ 1Vi

⟨︃∫︂
δ (2x− 1x) 1γ

F ∂
2
2Ui

∂ 2xj
2 2
ˆ︁f d 2xd 2V dX db

⟩︃
= − 1

Re
∂

∂ 1Vi

∫︂
δ (2x− 1x) 1g

F
2Vi

∂2 2f

∂ 2xj
2
d 2xd 2V dX db, (3.81)

which also depends on the two-point joint PDF. Apart from the reference to the sample space
fluid indicator function 1g

F , both terms (3.79) and (3.81) are equivalent to the pressure and
viscous terms given by Lundgren [142] for the single phase velocity PDF.

Four new sample space functions are necessary to describe the active stress. The particle
indicator function γp and the function φp are transformed into the sample space by

⟨︂
1γp

ˆ︁fX ˆ︁f b⟩︂ = 1gpf
Xf b,

⟨︂
1φ
ˆ︁fX ˆ︁f b⟩︂ = 1hf

Xf b (3.82)

and the set of all points at the active and passive surfaces becomes

⟨︂
Γac ˆ︁fX ˆ︁f b⟩︂ = ˆ︁Γacf b,

⟨︂
Γpa ˆ︁f (X) ˆ︁f b⟩︂ = ˆ︁Γpaf b. (3.83)

The orientation vector, necessary to define the direction of the active stress at the boundary
retains its structure and is defined by ˆ︁eip = [cos (bp) sin (bp)]. The active stress term in the
sample space is

− ∂

∂ 1Vi

⟨︂
δ (1x− Γac)Ac (ninjejp − eip) γp 1

ˆ︁fV ⟩︂
=−Ac ∂

∂ 1Vi

⟨︃∫︂
δ (1x− Γac)

(︃
∂ 1φ

∂ 1xi

∂ 1φ

∂ 1xj
ejp − eip

)︃
γp 1

ˆ︁f dX db
⟩︃

=−Ac ∂

∂ 1Vi

∫︂
δ
(︂
1x− ˆ︁Γac

)︂(︃ ∂ 1h

∂ 1xi

∂ 1h

∂ 1xj
ˆ︁ejp − ˆ︁eip)︃ gp 1f dX db (3.84)

and depends only on the single-point joint PDF of all three sample space variables. To de-
fine the normal vector ni in the sample space, it was assumed that |∇φ| = 1 holds at the
entire particle surface. Thus, the normalisation with |∇φ|−1 was omitted in (3.84) for better
readability.

The particle translational velocity term in (2.101) already contains a second point 2xi. Hence,
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the sample space version depends on the three-point joint PDF

− ∂

∂ 1Vi

⟨︃
1

V PD 1γp

∫︂
2τij

∂ 2γp

∂ 2xj
d 2x 1

ˆ︁fV⟩︃
=

∂

∂ 1Vi

⟨︃
1

V PD 1γp

∫︂ (︃
2pδij −

1

Re

(︃
∂ 2Ui

∂ 2xj
+
∂ 2Uj

∂ 2xi

)︃)︃
∂ 2γp

∂ 2xj
d 2x 1

ˆ︁fV⟩︃
=

∂

∂ 1Vi

⟨︃
1

4πV PD 1γp

∫︂
1

|3x− 2x|
∂ 3Uj

∂ 3xk

∂ 3Uk

∂ 3xj

∂ 2γp

∂ 2xi
1
ˆ︁fV d 3xd 2x

⟩︃
− 1

ReV PD

∂

∂ 1Vi

⟨︃
1γp

∫︂
δ (3x− 2x)

(︃
∂ 3Ui

∂ 3xj
+
∂ 3Uj

∂ 3xi

)︃
∂ 2γp

∂ 2xj
1
ˆ︁fV d 3xd 2x

⟩︃
=

1

4πV PD

∂

∂ 1Vi

∫︂
1gp

1

|3x− 2x|
∂ 2gp

∂ 2xi

(︃
3Vj

∂

∂ 3xj

)︃2

3f d 3xd 2xd 3V d 2V dX db

− 1

ReV PD

∂

∂ 1Vi

∫︂
1gpδ (3x− 2x)

∂ 2gp

∂ 2xj

(︃
3Vi

∂ 3f

∂ 3xj
+ 3Vj

∂ 3f

∂ 3xi

)︃
d 3xd 2xd 3V d 2V dX db.

(3.85)

Analogously, one obtains the sample space version of the particle rotational velocity term,
depending on the three-point joint PDF

− ∂

∂ 1Vi

⟨︄
γpϵi3j

(︁
1xj − χjq 1γq

)︁
ΘS

∫︂
ϵ3kl (2xk − χkr 2γr) 2τlm

∂ 2γp

∂ 2xm
d 2x

⟩︄

=
ϵi3jϵ3kl
4πΘS

∂

∂ 1Vi

∫︂
1gp

(︁
1xj −Xjq 1gq

)︁
(2xk −Xkr 2gr)

|3x− 2x|
∂ 2gp

∂ 2xl

(︃
3Vm

∂

∂ 3xm

)︃2

3f×

× d 3xd 2xd 3V d 2V dX db

− ϵi3jϵ3kl
ReΘS

∂

∂ 1Vi

∫︂
1gp
(︁
1xj −Xjq 1gq

)︁
(2xk −Xkr 2gr) δ (3x− 2x)

∂ 2gp

∂ 2xj
×

×
(︃

3Vi
∂ 3f

∂ 3xj
+ 3Vj

∂ 3f

∂ 3xi

)︃
d 3xd 2xd 3V d 2V dX db. (3.86)

The second particle rotational velocity term in (2.101) becomes

∂

∂ 1Vi

⟨︄(︄
1γp

ϵ3jk
(︁
1xj − χjq 1γq

)︁
|1x− χ · 1γ|

2

(︃
1Uk −

∫︂
δ (2x− χ · 1γ) 2Uk d 2x

)︃)︄2

× (1xi − χir 1γr)

⟩︄

=
∂

∂ 1Vi

∫︂ (︄
1gp

ϵ3jk
(︁
1xj −Xjq 1gq

)︁
|1x−X · 1g|

2

(︃
1Vk −

∫︂
δ (2x−X · 1g) 2Vk d 2x

)︃)︄2

×

× (1xi −Xir 1gr)d 2V dX db (3.87)

in the sample space. As it does not contain gradients or references to the fluid pressure it only
depends on the two-point joint PDF.

Combining the different sample space terms (3.79)-(3.87) delivers the transport equation for
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the velocity marginal PDF

d 1f
V

dt
=
∂ 1f

V

∂t
+ 1Vi

∂ 1f
V

∂ 1xi

=
1

4π

∂

∂ 1Vi

∫︂
1g

F ∂

∂ 1xi

1

|2x− 1x|

(︃
2Vi

∂

∂ 2xi

)︃2

2f d 2xd 2V dX db

− 1

Re
∂

∂ 1Vi

∫︂
δ (2x− 1x) 1g

F
2Vi

∂2 2f

∂ 2xj
2
d 2xd 2V dX db

−Ac ∂

∂ 1Vi

∫︂
δ
(︂
1x− ˆ︁Γac

)︂(︃ ∂ 1h

∂ 1xi

∂ 1h

∂ 1xj
ˆ︁ejp − ˆ︁eip)︃ gp 1f dX db

− 1

4πV PD

∂

∂ 1Vi

∫︂
1gp

1

|3x− 2x|
∂ 2gp

∂ 2xi

(︃
3Vj

∂

∂ 3xj

)︃2

3f d 3xd 2xd 3V d 2V dX db

+
1

ReV PD

∂

∂ 1Vi

∫︂
1gpδ (3x− 2x)

∂ 2gp

∂ 2xj

(︃
3Vi

∂ 3f

∂ 3xj
+ 3Vj

∂ 3f

∂ 3xi

)︃
×

× d 3xd 2xd 3V d 2V dX db

− ϵi3jϵ3kl
4πΘS

∂

∂ 1Vi

∫︂
1gp

(︁
1xj −Xjq 1gq

)︁
(2xk −Xkr 2gr)

|3x− 2x|
∂ 2gp

∂ 2xl

(︃
3Vm

∂

∂ 3xm

)︃2

3f×

× d 3xd 2xd 3V d 2V dX db

+
ϵi3jϵ3kl
ReΘS

∂

∂ 1Vi

∫︂
1gp
(︁
1xj −Xjq 1gq

)︁
(2xk −Xkr 2gr) δ (3x− 2x)

∂ 2gp

∂ 2xj
×

×
(︃

3Vi
∂ 3f

∂ 3xj
+ 3Vj

∂ 3f

∂ 3xi

)︃
d 3xd 2xd 3V d 2V dX db

+
∂

∂ 1Vi

∫︂ (︄
1gp

ϵ3jk
(︁
1xj −Xjq 1gq

)︁
|1x−X · 1g|

2

(︃
1Vk −

∫︂
δ (2x−X · 1g) 2Vk d 2x

)︃)︄2

×

× (1xi −Xir 1gr)d 2V dX db.
(3.88)

As expected, the marginal velocity PDF is not solely sufficient to describe the system, it de-
pends on different multi-point joint PDFs, ranging from the single point PDF in the active stress
term to the three point PDFs in the particle translational and rotational velocity terms.

Particle position marginal PDF

The material derivative of the particle position marginal PDF is

dfX

dt
= − ∂

∂Xip

⟨︃
dχip

dt
ˆ︁fX⟩︃ = − ∂

∂Xip

⟨︂
vip ˆ︁fX⟩︂

= − ∂

∂Xip

⟨︃∫︂
δ (1x− χ · 1γ) 1Ui 1γp

ˆ︁fX d 1x

⟩︃
= − ∂

∂Xip

∫︂
δ (1x−X · 1g) 1Vi 1gp 1f d 1xd 1V db (3.89)

Note that the PDF fX is not a function of the Eulerian coordinate xi. Hence, it is necessary to
introduce the integration with respect to 1xi in order to introduce the single point joint PDF.
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Similarly to the velocity marginal PDF, the particle position marginal PDF depends on the joint
PDF of the velocity, particle position and particle orientation. Due to the Lagrangian nature
of the particle position, only the single-point joint PDF appears in (3.89).

Particle orientation marginal PDF

Thematerial derivative of the particle orientationmarginal PDF leads to the following equation
of motion

df b

dt
= − ∂

∂bp

⟨︃
dβp
dt
ˆ︁f b⟩︃ = − ∂

∂bp

⟨︂
ωp
ˆ︁f b⟩︂

= − ∂

∂bp

⟨︄
1γp

ϵ3ij
(︁
1xi − χip 1γp

)︁
|1x− χ · 1γ|

2

(︃
1Uj −

∫︂
δ (2x− χ · 1γ) 2Uj d 2x

)︃ ˆ︁f b⟩︄

= − ∂

∂bp

∫︂
1gp

ϵ3ij
(︁
1xi −Xip 1gp

)︁
|1x−X · 1g|

2

(︁
1Vj − δ (2x−X · 1g) 2Vj

)︁
2f d 2xd 1xd 2V d 1V dX,

(3.90)

where (2.91) is used to express the rotational velocity of the particle in terms of the single-
field velocity. Due to the dependency of the rotational velocity ωp = ϵ3ijriUj/ |r| on the radial
vector ri = 1xi − χip 1γp the two-point joint PDF occurs in (3.90). Nevertheless, the PDF f b
itself does not depend on the Eulerian coordinates of the domain.
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3.4.3. Multi-point joint PDF

The equations of motion for the marginal PDFs (3.88), (3.89) and (3.90) all depend on multi-
point joint PDFs Kf , which are necessary to fully describe the statistical behaviour of an active
suspension. The single-point joint PDF is

1f (1V ,X, b) = ⟨δ (1V − 1U) δ (X − χ) δ (b− β)⟩ . (3.91)

It should be noted that the joint PDF is not the product of the marginal PDFs, i.e.

1f (1V ,X, b) ̸= 1f
V fXf b, (3.92)

but instead the averaged product of the marginal fine-grained PDF

1f (1V ,X, b) =
⟨︂
1
ˆ︁fV ˆ︁fX ˆ︁f b⟩︂ , (3.93)

because the three variables are statistically dependent. The K-point PDF is

Kf (1V , ...,KV ,X, b) =

⟨︄
δ

(︄
K∏︂
k=1

kV − 1U

)︄
δ (X − χ) δ (b− β)

⟩︄
. (3.94)

Subsequently, the material derivative of Kf is obtained with the product rule

dKf

dt
=

⟨︄
K∏︂
k=1

δ (kV − kU)
dδ (X − χ)

dt
δ (b− β)

⟩︄

+

⟨︄
K∏︂
k=1

δ (kV − kU) δ (X − χ)
dδ (b− β)

dt

⟩︄

+

K∑︂
k=1

⟨︄
k−1∏︂
i=1

δ (iV − iU)
dδ (kV − kU)

dt

K∏︂
j=k+1

δ
(︁
jV − jU

)︁
δ (X − χ) δ (b− β)

⟩︄
.

=
∂

∂Xip

⟨︃
dχip

dt K
ˆ︁fV ˆ︁fX ˆ︁f b⟩︃+

∂

∂bp

⟨︃
dβp
dt K

ˆ︁fV ˆ︁fX ˆ︁f b⟩︃+
K∑︂
k=1

∂

∂ kVi

⟨︃
d kUi

dt K
ˆ︁fV ˆ︁fX ˆ︁f b⟩︃

(3.95)

Hence, it is possible to construct the multi-point joint PDF for all three sample space variables
from the marginal PDFs for the individual variables. The hierarchy of equations of motion for
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the K-point PDF is

dKf

dt
=
∂ Kf

∂t
+

K∑︂
k=1

kVi
∂ Kf

∂ kxi
= − ∂

∂Xip
δ (1x−X · 1g) 1Vi 1gp Kf

− ∂

∂bp 1

∫︂
gp
ϵ3ij

(︁
1xi −Xip 1gp

)︁
|1x−X · 1g|

2

(︁
1Vj − δ

(︁
K+1x−X · 1g

)︁
K+1Vj

)︁
K+1f dK+1xdK+1V

+
K∑︂
k=1

1

4π

∂

∂ kVi

∫︂
kg

F ∂

∂ kxi

1⃓⃓
K+1x− kx

⃓⃓ (︃
K+1Vj

∂

∂ K+1xj

)︃2

K+1f dK+1xdK+1V

−
K∑︂
k=1

1

Re
∂

∂ kVi

∫︂
δ
(︁
K+1x− kx

)︁
kg

F
K+1Vi

∂2 K+1f

∂ K+1xj
2
dK+1xdK+1V

−
K∑︂
k=1

Ac ∂

∂ kVi
δ
(︂
kx− ˆ︁Γac

)︂(︃ ∂ kh

∂ kxi

∂ kh

∂ kxj
ˆ︁ejp − ˆ︁eip)︃ kgp Kf

−
K∑︂
k=1

1

4πV PD

∂

∂ kVi

∫︂
kgp

1⃓⃓
K+2x− K+1x

⃓⃓ ∂ K+1gp

∂ K+1xi

(︃
K+2Vj

∂

∂ K+2xj

)︃2

K+2f×

× dK+2xdK+1xdK+2V dK+1V

+

K∑︂
k=1

1

ReV PD

∂

∂ kVi

∫︂
kgpδ

(︁
K+2x− K+1x

)︁ ∂ K+1gp

∂ K+1xj
×

×
(︃

K+2Vi
∂ K+2f

∂ K+2xj
+ K+2Vj

∂ K+2f

∂ K+2xi

)︃
dK+2xdK+1xdK+2V dK+1V

−
K∑︂
k=1

ϵi3jϵ3kl
4πΘS

∂

∂ kVi

∫︂
kgp

(︁
kxj −Xjq kgq

)︁ (︁
K+1xk −Xkr K+1gr

)︁⃓⃓
K+2x− K+1x

⃓⃓ ∂ K+1gp

∂ K+1xl
×

×
(︃

K+2Vm
∂

∂ K+2xm

)︃2

K+2f dK+2xdK+1xdK+2V dK+1V

+
K∑︂
k=1

ϵi3jϵ3kl
ReΘS

∂

∂ kVi

∫︂
kgp
(︁
kxj −Xjq kgq

)︁ (︁
K+1xk −Xkr K+1gr

)︁
δ
(︁
K+2x− K+1x

)︁
×

×
∂ K+1gp

∂ K+1xj

(︃
K+2Vi

∂ K+2f

∂ K+2xj
+ K+2Vj

∂ K+2f

∂ K+2xi

)︃
dK+2xdK+1xdK+2V dK+1V

+

K∑︂
k=1

∂

∂ kVi

∫︂ (︄
kgp

ϵ3jk
(︁
kxj −Xjq kgq

)︁⃓⃓
kx−X · kg

⃓⃓2 (kVk

−
∫︂
δ
(︁
K+1x−X · kg

)︁
K+1Vk dK+1x

)︃)︃2

(kxi −Xir kgr)dK+1V . (3.96)

This equation depends on theK-point PDF and the (K + 1)- and (K + 2)-point PDF, leading to
an infinite hierarchy of equations, similar to the LMN-hierarchy [142, 153, 157]. Thus, similar
to the statistical equations of turbulence research, the equations for an active suspension show
a closure problem. Furthermore, within each term of the equation, the PDF appears only in a
linear form. This is an important property, which will be used to obtain additional statistical
symmetries in Sec. 3.6.
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3.4.4. Continuity conditions

Continuity conditions are necessary to define in analogy to the side conditions of the LMN
hierarchy. The divergence of the single-field velocity is

∂ 1Ui

∂ 1xi
= 1γ

F ∂ 1u
F
i

∂ 1xi
+ 1γ

S ∂ 1u
S
i

∂ 1xi
+
(︁
1u

S
i − 1u

F
i

)︁ ∂ 1γ
S

∂ 1xi

= 1γ
F ∂ 1u

F
i

∂ 1xi
+ 1γ

S ∂ 1u
S
i

∂ 1xi
+
(︁
1u

F
i − 1u

S
i

)︁
δ (φ)

∂ 1φ

∂ 1xi
(3.97)

= 1γ
F ∂ 1u

F
i

∂ 1xi
+ 1γ

S ∂ 1u
S
i

∂ 1xi
+
(︁
1u

F
i − 1u

S
i

)︁
niδ (φ) ,

where in the last step |∇φ| = 1 was assumed. The first two terms in (3.97) refer to the
single-phase continuity equations for the solid phase (2.50) and the fluid phase (2.65), the
last term describes a jump condition of the velocity in normal direction at the particle surface.
Due to the no-slip condition (2.92) at the passive surface and the impermeability (2.93) of
the active surface the jump

(︁
1u

F
i − 1u

S
i

)︁
ni vanishes. Both surface continuity conditions can

be transformed into the sample space. At the passive boundary the no-slip condition (2.92)
turns into∫︂

δ
(︂
1x− ˆ︁Γpa

)︂
1V i 1f d 1x =

∫︂
δ
(︂
1x− ˆ︁Γpa

)︂
δ (2x− 1x) 2V i 2f d 2xd 1xd 2V (3.98)

and the impermeability condition at the active boundary (2.93) is∫︂
δ
(︂
1x− ˆ︁Γac

)︂ ∂ 1h

∂ 1x
1V i d 1x

=

∫︂
δ
(︂
1x− ˆ︁Γac

)︂
δ (2x− 1x)

∂ 2h

∂ 2x
2V i 2f d 2xd 1xd 2V . (3.99)

Due to the vanishing jump in (3.97), the only remaining terms are the two continuity equa-
tions for the fluid and solid phase. Thus, forming the ensemble average delivers the continuity
condition ⟨︃

∂ 1Ui

∂ 1xi

⟩︃
=

∫︂ ⟨︃
∂ 1Ui

∂xi
1
ˆ︁fV⟩︃d 1V =

∂

∂ 1xi

∫︂
1Vi 1f

V d 1V = 0. (3.100)

As a result of this, the multi-point version of the continuity equation is given by a simple
integration with respect to the missing sample space variables

∂

∂ kxi

∫︂
kVi Kf

K∏︂
j=1

d jV dX db = 0 ∀ kx ∈ Ω. (3.101)

Both formulations (3.100) and (3.101) are equivalent because of the reduction property (3.66).
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3.4.5. Entropy of an active suspension

The statistical information about the probability of a certain event is related to the physical
quantity of entropy. The entropy serves as ameasure to compare two different random systems
and is defined as

S = −
∫︂

Kf log (Kf)
K∏︂
k=1

d kV dX db (3.102)

based on Boltzmann’s equation [32]. Temporal derivation delivers

dS

dt
= −

∫︂
dKf

dt
(log (Kf) + 1)

K∏︂
k=1

d kV dX db. (3.103)

Thus, the transport equation (3.96) of the multi-point PDF hierarchy also describes the evo-
lution of the entropy.

Consider two suspensions, one contains active particles and the second one consists of other-
wise identical passive particles, i.e. Ac = 0. The only difference in (3.96) is the existence of
the active stress term in the case of active particles. Thus, the difference between the rate of
change of the entropy of an active and a passive suspension is

dSac

dt
− dSpa

dt
=

∫︂ K∑︂
k=1

Ac ∂

∂ kVi
δ
(︂
kx− ˆ︁Γac

)︂(︃ ∂ kh

∂ kxi

∂ kh

∂ kxj
ˆ︁ejp − ˆ︁eip)︃ kgp Kf×

× (log (Kf) + 1)
K∏︂
k=1

d kV dX db. (3.104)

The main question arising from this expression and in fact one of the main questions in re-
search on active suspensions is the sign of the integral term in (3.104), or, in other words,
whether the active stress causes states which occur unlikely in a passive suspension.

3.5. Classical symmetries of the PDF hierarchy

Classical symmetries, as found in the physical equations, are preserved in the multi-point PDF
hierarchy (3.96) with some modifications. The symmetries are [202]

Tt : t∗ = t+ ct, x∗i = xi, V ∗
i = Vi, X∗

ip = Xip,

b∗p = bp, Kf
∗ = Kf, Ac∗ = Ac, (3.105a)

TRot : x∗i = Qijxj , V ∗
i = QijVi, pF∗ = pF , X∗

ip = QijXjp,

b∗p = bp − ϕ, Kf
∗ = Kf, Ac∗ = Ac, (3.105b)

TG : t∗ = t, x∗i = xi + cG,i, V ∗
i = Vi, X∗

ip = Xip + cG,iγp,

b∗p = bp, Kf
∗ = Kf, Ac∗ = Ac, (3.105c)

TSc1 : t∗ = te2cSc1 , x∗i = xie
cSc1 , V ∗

i = Vie
−cSc1 , X∗

ip = Xipe
cSc1 ,

b∗p = bp, Kf
∗ = Kfe

dKcSc1 , Ac∗ = Ace−3cSc1 , (3.105d)
Tβ : t∗ = t, x∗i = xi, V ∗

i = Vi, X∗
ip = Xip,

b∗p = bp + cb, Kf
∗ = Kf, Ac∗ = Ac. (3.105e)
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The temporal shift transformation (3.105a) and the rotational transformation (3.105b) are
identical to the equivalent symmetry transformation of the Navier-Stokes or Stokes equation.
The only difference is that the physical variables are replaced by their counterparts in the
sample space. The generalised Galilean symmetry can no longer be applied in the form given
in (3.45c). As already stated in Wacławczyk et al. [202], the function fG,i = cG,it to be added
to xi can only depend linearly upon time, because a time-dependent transformation would
require the transformation for the pressure

pF∗ = pF − xif
′′
G,i (t) (3.106)

in the physical space, see (3.31c). The expression (3.106) is unbounded and, thus, not com-
patible with the integral representation (3.78) of the pressure introduced in the PDF-hierarchy
[202]. Furthermore, the velocity sample space variable occurs explicitly in the first term of the
right hand side of (3.96). Therefore, only a constant spatial shift cG,i is possible, see (3.105c);
thus, the Galilean symmetry of (3.96) is identical to the Galilean symmetry (3.50c) of the
suspension, where the fluid is described by the unsteady Stokes equation.

The scaling symmetry (3.105d) was derived by Wacławczyk et al. [202], where it is espe-
cially important for the multi-point PDF to be scaled as well. They wrote the scaling as
Kf

∗ = Kfe
3KcSc1 , however, the exponent depends on the number of spatial dimensions un-

der consideration. Let us assume that the exponent of the scaling exponential function of the
multi-point PDF is unknown and denoted by Ck. From the reduction property one obtains∫︂

1f
V d 1V =

∫︂
1f

V ∗e−C1 d 1V
∗edcSc1 = 1, (3.107)

hence, the scaling exponent of the single-point PDF is C1 = dcSc1, where d is the number of
spatial dimensions. Due to the restriction to two dimensions we have d = 2. For an arbitrary
order of the PDF the relation becomes∫︂

K+1f
V d 1V =

∫︂
K+1f

V ∗e−CK+1 dK+1V
∗edcSc1 = e−CK

Kf
V ∗ = Kf

V , (3.108)

leading to CK = CK+1 − dcSc1. Combined with the previous result (3.107) one obtains
CK = dKcSc1 and CK+1 = d(K + 1)cSc1, which, subsequently, leads to the transformation
(3.105d).

While 1Vi appears directly in (3.96) and cannot be shifted, resulting in the constant spatial
shift in TG, the orientation sample space variable does not occur directly in (3.96). Hence,
the shift in the orientation is preserved from the physical equations, see (3.105e). However,
because bp dictates the behaviour of kg, ˆ︁Γac and ˆ︁eip in (3.96), the same restrictions as in the
physical system apply, i.e. (3.105e) is only applicable in a passive suspension with disk-shaped
particles.

The pressure was expressed in terms of the velocity by Green’s function (3.78), thus, the
pressure related transformation (3.31d) of the Navier-Stokes equation is not applicable to the
PDF hierarchy. For the same reason, the active stress transformation TAc is not a symmetry of
the PDF hierarchy, because the sample space variable K+1Vi occurs quadratic in the pressure
term.
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Fig. 3.1.: The two diagrams visualise the action of the free function ψ on an initial PDF. (a)
The initial PDF ( ) is a normal distribution in this example, the integral of ψ ( )
over the entire domain vanishes. (b) The transformed PDF f∗ = f + ψ. Illustration
based on Wacławczyk et al. [202].

3.6. Statistical symmetries

Additional symmetries occur in the statistical description of the problem, which are not present
in the physical equations. Nevertheless the statistical symmetries carry information about
physical properties of the problem. An infinite number of statistical transformation groups of
the multi-point correlation equation were discovered by Oberlack and Rosteck [158] and Ros-
teck andOberlack [177]. Building on this, Wacławczyk et al. [202] found a symmetry transfor-
mation group for the LMN hierarchy, which will serve as a basis for the following examinations:
the equations of motion for the multi-point PDF are entirely linear, hence, it is possible to add
any solution of the equation hierarchy to the multi-point PDF, similar to the linear symmetry
of the Stokes equation (3.36g). However, the properties of the PDF, especially the reduction
property, restrict the possible solutions to be added. In order to obey the reduction property
either the integral value of the added solution ψ needs to vanish, i.e.

∫︁∞
−∞ ψ (U)dU = 0 or,

both, the multi-point PDF Kf and the added solution needs to be rescaled. Both possibilities
were explored by Wacławczyk et al. [202] and are discussed in the following two sections for
the case of an active suspension.

3.6.1. Shape symmetry

The first statistical symmetry given by Wacławczyk et al. [202] is the shape symmetry. An
exemplary shape symmetry transformation, changing the PDF, is given in Fig. 3.1. Extending
the symmetry to the sample space spanned by the sample space variables for the velocity Vi,
the position Xip and the orientation bp delivers

Ts : Kf
∗ = Kf + ψ (1V ,X1, b1)

K∏︂
k=2

δ (kV − 1V )
N∏︂
p=2

δ (Xp −X1) δ (bp − b1) . (3.109)
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The only known constraint for the free function ψ (1V ,X1, b1) is∫︂
ψ (1V ,X1, b1)d 1V dX1 db1 = 0 (3.110)

to ensure that Kf
∗ complies to the reduction property (3.66). Furthermore, (3.66) requires∫︂

ψ (1V ,X1, b1)d 1V = ψXb (X1, b1) ,

∫︂
ψXb (X1, b1)dX1 = ψb (b1) , (3.111)

where analogous statements result from integration with respect to the other sample space
variables. Subsequently, it can be assumed that the free function ψ (1V ,X1, b1) can be written
as a linear combination

ψ (1V ,X1, b1) = ψV (1V ) + ψX (X1) + ψb (b1) , (3.112)

where the integral on an infinite domain of each of the functions ψV , ψX and ψb vanishes
according to (3.110). The Lie operator corresponding to the transformation (3.109) is

X = ψ (1V ,X1, b1)

K∏︂
k=2

δ (kV − 1V )

N∏︂
p=2

δ (Xp −X1) δ (bp − b1)
∂

∂ Kf
. (3.113)

Forming the marginal PDFs by an integration with respect to the different sample space vari-
ables delivers the transformations

Kf
V ∗ = Kf

V + ψV (1V )

K∏︂
k=2

δ (kV − 1V ) , (3.114a)

fX∗ = fX + ψX (X1)

N∏︂
p=2

δ (Xp −X1) , (3.114b)

f b∗ = f b + ψb (b1)

N∏︂
p=2

δ (bp − b1) . (3.114c)

Especially in the case of the particle position and orientation PDF an interesting property of an
active suspension directly follows from (3.114b) and (3.114c). The functions ψX and ψb only
depend on the respective sample space variable for the first particle, whereas the transformed
PDFs fX∗ and f b∗ describe all particles. The choice of the particle described by the sample
space variables X1 and b1 is arbitrary. Hence, the global PDF and the statistical behaviour of
any particle only depends on the global state of the suspension and not on the individual state
of a single particle.

The function ψ does not depend on space or time. Subsequently, the separation property of
a PDF (3.67) is broken, which, however, was not used in the derivation of the PDF equation
hierarchy. It follows that, especially in the physical interpretation of the symmetry, it can only
be valid in a spatially confined area, since the separation property is a necessary condition of
a PDF.
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Separation of space and time

A linear combination of the operators of the shape symmetry (3.109) and the temporal shift
(3.105a) delivers

X =
∂

∂t
+ ψ (1V ,X1, b1)

K∏︂
k=2

δ (kV − 1V )
N∏︂
p=2

δ (Xp −X1) δ (bp − b1)
∂

∂ Kf
. (3.115)

According to (3.30) the operator needs to be applied to an auxiliary function, which in the
present case is defined as

H (x, t,KV ,X, b;Kf) = Kf − Kf (x, t,KV ,X, b) = 0. (3.116)

Applying the operator (3.115) toH and solving the resulting differential equation XH|H=0 =
0 delivers the invariant solution

Kf = fx (1x, ...,Kx, 1V , ...,KV ,X, b)

+ tψ (1V ,X1, b1)

K∏︂
k=2

δ (kV − 1V )

N∏︂
p=2

δ (Xp −X1) δ (bp − b1) . (3.117)

The free function fx (1x, ...,Kx, 1V , ...,KV ,X, b) has to be a PDF, because an integration of
ψ with respect to all sample space variables delivers zero, see (3.110), and the solution Kf
has to fulfil all properties of a PDF. Hence, the dependency of the PDF on space and time
has been split between the functions fx and tψ. The PDF fx describes the initial state of the
ensemble and the product tψ its development in time. Consider two ensembles, one where
the boundaries of the otherwise identical domain are periodic and one where the boundaries
a solid walls: given an identical initial distribution fx, the shape function ψ then describes the
different developments of the two ensembles.

3.6.2. Intermittency symmetry

As already mentioned, the second possibility to add a solution of the PDF hierarchy to Kf ,
besides adding the shape function ψ, is to rescale both functions accordingly. Hence, the
general version of the intermittency symmetry transformation, compliant with the properties
of a PDF, is

Kf
∗ = cint Kf + (1− cint)Kg, (3.118)

where Kg is a solution of (3.96) and a multi-point PDF and 0 ≤ cint ≤ 1. In the single point
case the general formulation (3.118) and the shape symmetry (3.109) are connected by

ψ = (1− cint) (1f − 1g) . (3.119)

Considering the two PDFs Kf and Kg, fulfilling the reduction property (3.66), it becomes
clear that the integral of ψ necessarily vanishes, see (3.110). Wacławczyk et al. [202] defined
Kg as a product of Dirac functions

Kf
∗ = cint Kf + (1− cint)

K∏︂
k=1

δ (kV − kU) δ (X − χ) δ (b− β) , (3.120)
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i.e. the second PDF Kg is a deterministic or fine-grained PDF describing a specific solution
[1U , ...,KU ,χ,β] of the physical system. Necessarily, it is also a solution of the hierarchy
of PDF equations (3.96). The choice of Kg might reveal interesting behaviour of an active
suspension, because the resulting symmetry transformation allows distinguishing between
chaotic states and deterministic states, which justifies the formulation of the second symmetry
transformation additionally to the shape symmetry. Adopting the terminology of turbulence
research, the expression cint Kf describes the probability of a turbulent, i.e. chaotic, stochas-
tic, behaviour. The term (1− cint)

∏︁K
k=1 δ (kV − kU) δ (X − χ) δ (b− β), on the other hand,

describes laminar, i.e. deterministic, behaviour, because the Dirac functions are equivalent to
the fine-grained PDF (3.54). A system which often switches between chaotic and determin-
istic behaviour is called an intermittent system, which explains the name of the symmetry. A
second definition of intermittency is the sudden outburst of an otherwise rare event as men-
tioned by Li andMeneveau [135] andWilczek and Friedrich [206]. It will be shown in Sec. 6.2
that the intermittency symmetry can be used to describe heavy-tailed probability distributions,
i.e. PDFs where rare events in the tails of the function are more likely than in the case of a
comparable normal distribution, thus, complying to the second definition of intermittency.

The Lie operator of the symmetry transformation is

Xint = (Kf − Kg)
∂

∂ Kf
=

(︄
Kf −

K∏︂
k=1

δ (kV − kU) δ (X − χ) δ (b− β)

)︄
∂

∂ Kf
. (3.121)

Again by integration with respect to the different sample space variables, marginal PDFs are
formed

Kf
V ∗ = cint Kf + (1− cint)

K∏︂
k=1

δ (kV − kU) , (3.122a)

fX∗ = cintf
X + (1− cint)δ (X − χ) , (3.122b)

f b∗ = cintf
b + (1− cint)δ (b− β) . (3.122c)

The first marginal PDF (3.122a) is equivalent to the symmetry transformation given byWacławczyk
et al. [202], where it is related, as mentioned, to the different behaviour of a turbulent and
laminar flow. While inertia driven turbulence is impossible to occur in the given setup of a low-
Reynolds active suspension, some researchers describe the behaviour of an active suspensions
as active turbulence, see Sec. 1. In Sec. 6 the transformation is used to analyse simulation
data and indeed reveals chaotic and deterministic behaviour, i.e intermittency.
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4. Direct numerical simulation

Particle resolved Direct Numerical Simulations (DNS) are carried out within the Bounded
Support Spectral Solver (BoSSS)1 [127]. The BoSSS-framework provides a high-order Dis-
continuous Galerkin (DG) method to solve the fluid equations. The DG method is extended to
account for a two-phase flows, leading to the eXtended Discontious Galerkin (XDG) method,
which is able to represent the particle surface accurately on a sub-cell level, where cells of the
numerical grid, which are cut by the particle surface, are called cut-cells. The combined fluid-
particle solver, called eXtended Navier-Stokes plus Rigid Object (XNSERO) solver, enables the
solution of an active suspension. As part of the BoSSS framework, XNSERO is able to use all
methods implemented by BoSSS for solving the fluid phase. Thus, it employs, as the name
states, the Navier-Stokes equation (2.67) to describe the fluid. However, it is possible to reduce
the computational load by using the unsteady Stokes equation (2.68) as a linearisation of the
problem. Due to the low Reynolds number of a microscopic active suspension, the unsteady
Stokes equation is an appropriate choice and used throughout this section. The boundary
conditions for the fluid phase at the particle surface, especially the active stress, are imple-
mented by modifying the numerical fluxes at the interface. In addition, XNSERO provides a
solver for the particle phase and a collision model for direct interactions between particles.
An earlier implementation of the solver has been used to obtain results in the publication
Deußen et al. [50]. While some methods, i.e. the XDG-method and the physical equations,
have not changed compared to Deußen et al. [50], the implementation of the active boundary
conditions, the numerical side of the collision model and the numerical methods to solve the
particle equations differ significantly.

In this section, the fluid-particle solver is presented, starting with general properties and def-
initions of the DG method in Sec. 4.1. Its extension XDG is introduced in Sec. 4.2, including
an introductory example of the spatial discretisation. The semi-discrete formulation of the
unsteady Stokes equation (2.68) is presented in Sec. 4.3 and the implementation of the active
boundary conditions is given in Sec. 4.3.1. Due to the importance of sub-cell accuracy for the
representation of the particles, an introduction to the algorithm used for integration on cut-
cells is given in Sec. 4.3.2. The discretisation of the Stokes equation is completed in Sec. 4.4
with a presentation of the temporal discretisation. The particle solver is presented in Sec. 4.5,
followed by a discussion of the collision model in Sec. 4.6. The three parts of the solver - the
fluid XDG solver, the particle solver and the collision model - are put together to a combined
solver in Sec. 4.7.

1https://github.com/FDYdarmstadt/BoSSS

59



4.1. Discontinuous Galerkin methods

The DG method unifies properties of the Finite Volume Method (FVM) and the Finite Element
Method (FEM) Similar to FVM it employs a locally conservative discretisation and numerical
fluxes based on the physical problem. By using local ansatz functions, DG provides high-order
methods on arbitrary meshes. Due to the local ansatz functions and the flux formulation,
cells only need to communicate with their direct neighbour, simplifying the implementation
of multi-core, High-Performance Computing (HPC) ready applications. In contrast, high-order
FVM needs larger stencils of several neighbouring cells and FEM defines global mass matrices.
The DG method also provides good handling of hanging nodes, hence, local Adaptive Mesh
Refinement (AMR) can be used straightforwardly. The above advantages are offset by the
disadvantage of an increased number of unknowns or Degrees of Freedom (DoF) [126].

Reed and Hill [173] developed the first DG method to solve the neutron transport equation on
triangular meshes to describe the hexagonal structure of contemporary nuclear reactors. DG
methods to solve fluid flows were developed, firstly for steady first-order partial differential
equations [134] and later for steady three dimensional boundary layer problems [38]. Hyper-
bolic equation in the context of DG were analysed by Chavent and Cockburn [42], Cockburn
and Shu [46], and Jaffre et al. [111]. Diffusive terms were first introduced by Nitsche [156].
The development of Symmetric Interior Penalty (SIP) methods [9, 12, 13, 61] finally enabled
the usage of the DG method in the context of incompressible convective-dissipative fluid flows
[44, 45].

The spatial discretisation of the domain Ω is governed by the following basic definitions, given
by Di Pietro and Ern [58] and Kummer [126]

• the two-dimensional domain Ω ⊂ R2 is polygonal and simply connected,

• the numerical mesh consists of cells Kh = {K1, ...,KJ}, which cover the entire domain
Ω =

⋃︁J
j=1Kj and do not overlap Kj ∩Kk = ∅, ∀j ̸= k,

• Ω = clΩ and Kj = clKj are closed sets, i.e. they contain their own boundary,

• the mesh size is defined as hK = max
Kj∈K

hj , where hj is the diameter of the cell Kj ,

• the set of all edges of the cells ΓK =
⋃︁J

j=1 ∂Kj is split between internal Γint = ΓK \ ∂Ω
and external edges Γext = ΓK ∩ ∂Ω, where the latter receive boundary conditions of
either Dirichlet or Neumann type Γext = ΓD ∪ ΓN ,

• a field of normal vectors nΓK

i at ΓK exists. At the external surface nΓext
i is the outward

pointing normal vector,

• the inner uin and outer values uout of the general physical quantity u at ΓK are

uin (x) = lim
ϵ→0

u
(︁
x− ϵnΓ

)︁
∀x ∈ ΓK , (4.1)

uout (x) = lim
ϵ→0

u
(︁
x+ ϵnΓ

)︁
∀x ∈ Γint, (4.2)
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• the jump operator at ΓK is

JuK (x) = lim
ϵ→0

uin (x)− uout (x) ∀x ∈ Γint, (4.3)

JuK (x) = lim
ϵ→0

uin (x) ∀x ∈ Γext, (4.4)

• the average operator at ΓK is

{u} (x) = lim
ϵ→0

1

2

(︂
uin (x) + uout (x)

)︂
∀x ∈ Γint, (4.5)

{u} (x) = lim
ϵ→0

uin (x) ∀x ∈ Γext. (4.6)

Within each cell a polynomial function space is constructed, which forms the broken polyno-
mial space of the entire mesh with the degree k [126]

Pk (Kh) =
{︁
f ∈ L2 (Ω) ; ∀Kj ∈ Kh : f|K is polynomial and deg (f|K) ≤ k

}︁
. (4.7)

The local approximation ˆ︁uj in the cell Kj of a general physical field variable u is obtained by
the summation

ˆ︁uj (x, t) = Nk∑︂
l=1

ũj,l (t) fj,l (x) , (4.8)

where ũj,l (t) are called unknowns or DoFs and (fj,l)l=1,...,Nk ∈ P ({Kj}) is the local polynomial

basis [189]. The summation
∑︁Nk

l=1 within each cell is carried out for all ansatz functions fj,l
with the maximum degree of Nk. The ansatz function are modal and fulfil the orthogonality
condition [189] ∫︂

Kj

fj,mfj,n dx = δmn, (4.9)

where δmn is the Kronecker delta.

Due to the presence of two phases, the fluid phase and the particle solid phase, the standard
DG method is not sufficient to model the problem. Hence, in order to proceed further, a
representation of the phase interface is introduced in the next section, enabling the modelling
of multi-phase flows in general and fluid-solid suspension in particular.

4.2. Extend Discontinuous Galerkin methods

A representation for interfaces is necessary to model the particles in an active suspension. The
aforementioned level-set method is used to represent such interfaces, see Sec. 2.3.3, leading
to the XDG method [126]. The position of the interface with respect to the background mesh
is arbitrary, i.e. the interface does not follow the edges of the numerical mesh. Hence, some
cells of the mesh are cut by the interface, such cells are referred to as cut-cells. In general the
amount of DoFs is doubled in the cut-cells, as a solution is necessary for the physical variables of
both phases. In the present work, however, the solid particle phase is described by the Newton-
Euler equations (2.54) and (2.55), hence, no field variables are required. Subsequently, the
solution simplifies, because the cells occupied by the particles can be considered void. The
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shape of the cut-cells is arbitrary and they might become infinitely small or ill-shaped. In
such cases, obtaining a solution becomes difficult due to high condition numbers. BoSSS
averts this problem by employing a cell agglomeration method, i.e. small cut-cells are added
towards larger neighbours, see Kummer [126]. An algorithm capable of handling cut-cells,
provided by Saye [183], is employed to carry out the integration on the cut-cell mesh, see
Sec. 4.3.2.

In a general two-phase setting the domain is split between the part occupied by the phase A
and the part occupied by the second phase B

Ω = ΩA (t) ∪ ΩB (t) , ΩA (t) ∩ ΩB (t) = ∅, Γ (t) = ∂ΩA (t) ∩ ∂ΩB (t) (4.10)

where the interface Γ (t) separates the two phases, which do not overlap. As only two dimen-
sions are considered Ω ⊂ R2 the interface Γ (t) is a one-dimensional manifold [126]. It is
represented by the zero level set of the function φ given in (2.74). In a general multi-phase
setup the level-set evolution is governed by the transport equation (2.78)

∂φ

∂t
+
∂φUi

∂xi
= 0.

In case of rigid particles, however, the interface motion is purely governed by the particle
position and orientation, hence, the particle function φp = φp (χp, βp) is prescribed and the
global function φ is obtained by (2.74). The normal vector at the interface can be determined
by (2.76)

ni =
∂φ

∂xi
|∇φ|−1 .

Due to the representation of the level set by a broken polynomial space, see (4.7) it might not
be smooth. However, smoothness of φ is necessary for a well-defined interface Γ (t) [127].
Hence, BoSSS employs a continuity projection for the level set, where an introduction is given
in Sec. 4.4.

Each cell contains two time-dependent sub-domains

Kj,A = Kj ∩ ΩA (t) and Kj,B = Kj ∩ ΩB (t) , (4.11)

if it is cut by the interface. Otherwise, the cell Kj is fully occupied by one phase, e.g. Kj,A =
Kj ∧ Kj,B = ∅. Hence, the time dependent cut-cell mesh KX

h (t) contains up to twice as
many entries as the background mesh Kh [127]

KX
h (t) = {K1,A (t) ,K1,B (t) , ...,KJ,A (t) ,KJ,B (t)} . (4.12)

Applying the DG polynomial space (4.7) to the cut-cell mesh delivers the XDG polynomial
space [127]

PX
k (Kh, t) :=Pk

(︁
KX
h (t)

)︁
=
{︁
f ∈ L2 (Ω) ; ∀Kj,P ∈ KX

h : f|Kj,P
is polynomial and deg

(︁
f|Kj,P

)︁
≤ k

}︁
. (4.13)

Subsequently, the XDG local approximation ˆ︁uj of a physical property u is

ˆ︁uj (x, t) = Nk∑︂
l=1

[︂
ũAj,l (t) fj,l (x) γ

A (x, t) + ũBj,l (t) fj,l (t) γ
B (x, t)

]︂
, (4.14)
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where the number of DoFs ũPj,l is doubled compared to the single phase approximation, given
by (4.8). The local ansatz functions fAj,l (x) = fj,l (x) γ

A and fBj,l (x) = fj,l (x) γ
B ensure a

sub-cell accurate representation of the interface as visualised in Fig. 4.1 for a second order
polynomial in the phase A. The indicator functions γA, γB are defined in the same way as
the general phase indicator function γP, see (2.30). In case of the present fluid-particle solver

B
A

Γ

fj,l fAj,l

B
A

Γ

(a) (b)

Fig. 4.1.: (a) A cut-cell contains the interface Γ and two sub-domains occupied by the phase
A and B respectively. The depicted two dimensional ansatz function for the entire
cell on the left hand side is multiplied with the indicator function γA of the phase
A, leading to the sub-cell accurate representation (b) of the ansatz function for the
sub-domain occupied by A.

phaseB is the particle phase, which is not solved based on the XDG method, i.e. is considered
void by the fluid solver. Hence, the cell-local approximation of the fluid phase A = F in the
context of the XNSERO solver is

ˆ︁uj (x, t) = Nk∑︂
l=1

ũFj,l (t) fj,l (x) γ
F (x, t) . (4.15)

Apart from the phase indicator function γF , the approximation (4.15) is equivalent to the DG
approximation (4.8), due to the second phase being void. Solely the computational domain
changes from Ω to ΩF as indicated by the function γF .

The following example for a discretisation in an XDG setup builds on Hesthaven andWarburton
[95] and Smuda [189]. Consider the one-dimensional conservation law

F (x, t; u) =
∂u

∂t
+
∂f (u)

∂x
= 0 ∀x ∈ Ω = [L,R] (4.16)

where f (u) is the flux of u and Ω is a one-dimensional domain with the boundaries L and R.
The initial distribution of u in Ω is u (x, 0) = u0 and the boundary conditions are of Dirichlet
type

u (x = L, t) = uD, u (x = R, t) = uD. (4.17)
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To find an approximation ˆ︁u for the general physical quantity u, the ansatz (4.15) is used.
Hence, the global approximation ˆ︁u is obtained by the summation

ˆ︁u (x, t) = J∑︂
j

ˆ︁uj (x, t) = J∑︂
j

Nk∑︂
l=1

ũFj,l (t) fj,l (x) γ
F (x, t) , (4.18)

where ˆ︁uj is the cell-local approximation of u in the jth cell, the first summation symbol on the
right hand side refers to the different cells and the second one to the ansatz functions of the
polynomial basis. Using the ansatz (4.15) together with (4.16) delivers the cell-local residual

Rj =
∂ˆ︁uj
∂t

+
∂f (ˆ︁uj)
∂x

(4.19)

which is in general non-zero. To obtain a numerical solution it is necessary for the weighted
residual to vanish [184] ∫︂

Ω
Rjgj,l dx = 0 ∀l = 1, ..., Nk, (4.20)

where gj,l is a weight function. Core feature of any Galerkin method is to use the ansatz
functions fj,l as weight functions, see for example Schäfer [184], leading to∫︂

Ω
Rjfj,l dx = 0 ∀l = 1, ..., Nk, (4.21)

i.e. the residual is required to be orthogonal towards the ansatz functions. Written out, the
equation is ∫︂

Kj

∂ˆ︁uj
∂t

fj,l dx+

∫︂
Kj

∂f (ˆ︁uj)
∂x

fj,l dx = 0 ∀l = 1, ..., Nk. (4.22)

This formulation is the semi-discrete form, because, while it is discretised in space, the deriva-
tive with respect to time is still continuos. Integration by parts delivers the cell local weak
formulation of F∫︂

Kj

∂ˆ︁uj
∂t

fj,l dx−
∫︂
Kj

f (ˆ︁uj) ∂fj,l
∂x

dx+

∫︂
∂Kj

n · f (ˆ︁uj) fj,l ds = 0 ∀l = 1, ..., Nk. (4.23)

The normal vector n = ±1 in one dimension is a scalar, nevertheless the dot product notation
was used to account for a generalisation to higher dimensions. At the edges ∂Kj of the cell
Kj , the value of the flux n ·f (ˆ︁uj) is not uniquely defined, because by definition discontinuities
are allowed at the cell boundaries. Subsequently, the numerical fluxes

ˆ︁f (︂ˆ︁uinj ,ˆ︁uoutj , n
)︂
≈ n · f (ˆ︁uj) (4.24)

are introduced to obtain a unique definition of the surface integral in (4.23) [189]. Using
(4.23) and (4.24) together with (4.15) delivers∫︂

Kj

∂ũj,n
∂t

fj,nfj,m dx−
∫︂
Kj

f (ũj,nfj,n)
∂fj,m
∂x

dx+

∫︂
∂Kj

ˆ︁f (︂ˆ︁uinj ,ˆ︁uoutj , n
)︂
fj,m ds = 0. (4.25)
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It is apparent, that this equation can be written in a matrix form, where (Mj)mn = fj,mfj,n is
called cell local mass matrix. Its global version is a diagonal matrix

M =

⎡⎢⎢⎢⎣
M1 0 . . . 0
0 M2 . . . 0
... . . .

. . . ...
0 0 . . . MJ

⎤⎥⎥⎥⎦ . (4.26)

The two following terms of (4.25) form the cell local operator vector(︂
Op

j

)︂
m

= −
∫︂
Kj

f (ũj,nfj,n)
∂fj,m
∂x

dx+

∫︂
∂Kj

ˆ︁f (︂ˆ︁uinj ,ˆ︁uoutj , n
)︂
fj,m ds, (4.27)

leading to the global system of equations

Mmn
∂ũn
∂t

+Op
m = zm, (4.28)

where the vector zm contains additional forcing terms and boundary conditions. Solving this
system for the solution vector ũn =

[︁
ũ1,1, ũ1,2, ..., ũj,n, ..., ũJ,Nk

]︁
delivers an approximation for

u in the entire domain Ω. In the next section the mass matrix Mmn, the operator vector Op
m

and the right hand side vector zm for the unsteady Stokes equation with an active boundary
condition at the particle surface are presented.

4.3. Discrete variational formulation of the Stokes equation

The condition of a low Reynolds number Re ≪ 1 allows to substantially simplify the Navier-
Stokes equation (2.67) to the unsteady Stokes equation (2.68), see Sec. 2.3.2. As the non-
linear convection term is neglected, it is no longer necessary to find an appropriate linearisa-
tion of the equations. This is advantageous in terms of computational resources and leads to
a significant speed up of the simulation runtime. Hence, only the discretisation of the linear
Stokes equation is presented here. The discrete form of the full Navier-Stokes equation in
an XDG environment can be found, for example, in Kummer [126]. In order to satisfy the
Ladyženskaja-Babuška-Brezzi (LBB) condition [11, 35] the polynomial order of the pressure
field is reduced by one compared to the velocity field. A discussion of the stability of the LBB
condition can be found in Kummer [126]. The resulting discretisation reads: find

uF =
(︁
uF , pF

)︁
∈ PX

k (Kh, t)× PX
k−1 (Kh, t) =: Vk. (4.29)

such that [125, 126, 127, 189]∫︂
ΩF

∂uFi
∂t

vi dx+ b
(︁
v, pF

)︁
− a

(︁
uF ,v

)︁
− aac

(︁
uF ,v

)︁
− b

(︁
q,uF

)︁
= s (v) + r (q) ∀ (v, q) ∈ Vk, (4.30)

where Vk is the function space of the ansatz and test functions and the function vi is a
vector, whereas q is a scalar. Clearly, a temporal discretisation is necessary for the integral∫︁
ΩF

∂uF
i

∂t vi dx, which is introduced in Sec. 4.4. Due to the rigidity of the particles, only the
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fluid domain ΩF is considered for the integration. Furthermore, following the definition of the
Janus particle surface (2.39), the interface Γ is split into two parts, where Γpa is the passive
surface and Γac is the active surface. The bilinear forms b

(︁
v, pF

)︁
and b

(︁
q,uF

)︁
describe the

pressure gradient and the velocity divergence, whereas the bilinear form a
(︁
uF ,v

)︁
represents

viscous terms in the bulk, at Dirichlet boundaries and the passive surface Γpa of the particles
[126]. The second viscous bilinear form aac

(︁
uF ,v

)︁
represents the action of the active bound-

ary condition at the active particle surface Γac. On the right hand side of (4.30) the term
s (v) represents boundary conditions for the Stokes equation and r (q) boundary conditions
for the continuity equation. In case of the discrete Navier-Stokes equation additional terms
occur on both sides of (4.30), one trilinear form to describe convection on the left hand side
and one term to describe boundary conditions for the convective terms on the right hand side,
see Krause and Kummer [125] and Kummer [126].

To define the bilinear forms in (4.30) it is necessary to introduce the piecewise defined bro-
ken gradient ∂ui/∂xj |h and the broken divergence ∂ui/∂xi|h, where ui is at least one time
continuously differentiable, i.e. ui ∈ C1 (Ω\Γ\∂Ω) [126]. The pressure gradient bilinear form
is [126]

b
(︁
pF ,v

)︁
= −

∫︂
ΩF

pF
∂vi
∂xi

⃓⃓⃓⃓
h

dx−
∫︂
Γint∪ΓD∪Γ(t)

JviKni
{︁
pF
}︁
ds. (4.31)

Analogously, the velocity divergence is

b
(︁
q,uF

)︁
= −

∫︂
ΩF

q
∂ui
∂xi

⃓⃓⃓⃓
h

dx−
∫︂
Γint∪ΓD∪Γ(t)

JuiKni {q}ds, (4.32)

i.e. the pressure pF was replaced by the scalar test function q and the test function v was
replaced by the velocity uF compared to (4.31). The jump JuiK in the normal direction at
the particle surface in (4.32) is defined by JuiKni =

(︁
uFi − uSi

)︁
ni where uSi is the product

of the translational and rotational part of the particle velocity, see (2.51). Hence, the fluid
solver depends on the results of the particle. However, the particle solver also depends on the
results of the fluid solver, thus, leading to the necessity to implement an iterative scheme for
the coupled solver, see Sec. 4.7. The active stress only occurs in tangential direction and has
no effect on the bilinear forms of the pressure and divergence.

The viscous term is formed with a SIP method, which imposes coercivity and positive defi-
niteness of the viscous form a

(︁
uF ,v

)︁
[9, 10, 126]. The penalty parameter is defined as

η := max
{︂
µF,in, µF,out

}︂
max

{︂
η̃in, η̃out

}︂
on Γint (4.33)

η := µF,inη̃in on ∂Ω ∪ Γ (t) , (4.34)

where

η̃ = η0k
2 |∂Kj,P|
|Kj,P|

(4.35)

is the local penalty factor, constant within each cut-cellKj,P [189]. A discussion of the safety
factor η0 = 4.0 and the geometrical property |∂Kj,P|/|Kj,P| can be found in Kummer [126].
The viscosity is assumed to be constant within the entire fluid domain ΩF , hence, the maxi-
mum functionmax

{︁
µF,in, µF,out

}︁
= µF returns the fluid viscosity. Once the penalty parameter
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is obtained, the viscous bilinear form can be written as [126]

a
(︁
uF ,v

)︁
=−

∫︂
ΩF

µF
(︃
∂ui
∂xj

⃓⃓⃓⃓
h

∂vi
∂xj

⃓⃓⃓⃓
h

+
∂uj
∂xi

⃓⃓⃓⃓
h

∂vi
∂xj

⃓⃓⃓⃓
h

)︃
+

∫︂
Γint∪Γpa(t)

µF
{︃
∂ui
∂xj

⃓⃓⃓⃓
h

+
∂uj
∂xi

⃓⃓⃓⃓
h

}︃
nj JviK

+

(︃{︃
µF
(︃
∂vi
∂xj

⃓⃓⃓⃓
h

+
∂vj
∂xi

⃓⃓⃓⃓
h

)︃}︃
nΓj

)︃
JuiKds

−
∫︂
Γint∪Γpa(t)

η
q
uFi

y
JviK , (4.36)

which covers the domain ΩF and the boundaries Γpa and Γint but not the active surface Γac,
whose bilinear viscous form is introduced in Sec. 4.3.1.

Due to the properties of the Frobenius product, i.e.

∂uj
∂xi

⃓⃓⃓⃓
h

∂vi
∂xj

⃓⃓⃓⃓
h

=
∂vj
∂xi

⃓⃓⃓⃓
h

∂ui
∂xj

⃓⃓⃓⃓
h

, (4.37)

the viscous bilinear form (4.36) is symmetric. The symmetry property comes with a disad-
vantage, because the velocity components in (4.36) are coupled. According to Kummer [126]
no ansatz for the viscous form exists, which preserves the symmetry and is decoupled at the
same time.

The source terms of the Stokes equations s (v) exclusively stem from Dirichlet boundary con-
ditions at the external boundary ∂Ω [126]

s (v) = −
∫︂
ΓD

uDi

(︃
∂vi
∂xj

⃓⃓⃓⃓
h

nj +
∂vj
∂xi

⃓⃓⃓⃓
h

nj − ηvi

)︃
, (4.38)

because volume forces such as gravity and surface tension are neglected. The reason for the
negligence of the latter one is the rigidity of the particles. The source term due to the Dirichlet
boundary in case of the continuity equation is [126]

r (q) =

∫︂
ΓD

quDi ni ds. (4.39)

4.3.1. Active boundary conditions

The bilinear forms b
(︁
pF ,v

)︁
, b
(︁
q,uF

)︁
and a

(︁
uF ,v

)︁
contain integral terms describing the

phase interface, which in case of an active suspension is the union of the active and passive
boundary of the particles. So far, only passive surfaces have been considered and no active
stress was introduced. The active stress only acts in the tangential direction of the particle
surface. In the normal direction the surface is still an impermeable wall, the same as for the
passive surface. Hence, it is necessary to distinguish between the two directions and formu-
late the boundary conditions separately. The bilinear pressure form does not depend on the
velocity, thus, it remains unchanged. The bilinear velocity divergence only considers the nor-
mal component of the velocity JuiKni =

q
uFi − uSi

y
ni ∀x ∈ Γ (t). Accordingly, it does not

change at the active surface compared to the passive one. In conclusion, only the viscous form
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(4.36) is affected by the change of the boundary condition towards an active boundary. The
viscous form at the active boundary is

aac
(︁
uF ,v

)︁
=

∫︂
Γac

µFnj

(︃
∂uj
∂xk

⃓⃓⃓⃓
h

+
∂uk
∂xj

⃓⃓⃓⃓
h

)︃
njvini

+ µFnj

(︃
∂vj
∂xk

⃓⃓⃓⃓
h

+
∂vk
∂xj

⃓⃓⃓⃓
h

)︃
nk JuiKni ds

−
∫︂
Γac

ηni
q
uFi

y
JvjnjKds

+

∫︂
Γac

Pjkf
ac
k Pjivi ds. (4.40)

The first two integrals are responsible for the impermeability of the wall in the normal direction
(2.41) and the third integral accounts for the active stress in tangential direction (2.42). The
tensor Pij in (4.40) is defined as

Pij = δij − ninj . (4.41)

It should be noted, that the implementation of the active boundary condition is similar to the
implementation of the generalised Navier boundary condition given by Smuda [189], due to
the identical separation into a normal and tangential component with an additional stress in
the tangential direction.

Furthermore, it is important for the implementation, that the level set does not carry any
information about the location of the passive and active surfaces of the particles. Hence, to
distinguish between the two different boundaries, additional information are necessary. The
condition for the active surface is

nieipγp < 0, (4.42)

where the definition of the normal vector (2.76) is used. Note that this relation depends on
the definition of the function φ. In the present work it is negative within the particle domain,
hence, ni points from the particle towards the fluid. However, it is entirely possible to reverse
the sign of φ, which subsequently requires a reversed sign in (4.42).

4.3.2. Numerical integration on cut-cells

In order to obtain a solution on cut-cells and retain the sub-cell accurate representation of the
surface, high order integration methods for integrals of the types∫︂

Kj,P(t)
f dx and

∫︂
Γ(t)

g ds (4.43)

are necessary. BoSSS supports two different methods for cut-cell integration. Hierarchical
Moment Fitting (HMF) is a method proposed by Müller et al. [154], capable of handling
different cell types. The second method was proposed by Saye [183] and is generally faster
than HMF, however, it is restricted to hyperrectangular cells. During the present work, the
cells are restricted to a two-dimensional quadratic shape, hence, the Saye-method is solely
used. In the following paragraphs the idea of the method will be briefly outlined based on
Saye [183].
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As before, we restrict the spatial dimension to d = 2, however, Saye [183] derived the method
for general d-dimensional hyperrectangles. Thus, the two-dimensional rectangular cell is de-
fined by

Kj =
(︁
xL1 , x

U
1

)︁
×
(︁
xL2 , x

U
2

)︁
⊂ R2, (4.44)

where the notation introduced by Saye [183] for the upper and lower bound of the cell is
followed, see Fig. 4.2. Core idea is to reduce multi-dimensional integrals such as the volume
integral

∫︁
Kj,P(t) f dx to one-dimensional integrals, which can be approximated by Gaussian

quadrature rules with the order q, leading to an order of accuracy of 2q [183]. The approxi-
mation is obtained by the summation∫︂

Kj,P(t)
f dx ≈

∑︂
i

wif (xi) ,

∫︂
Γ(t)

g ds ≈
∑︂
i

wig (xi) , (4.45)

with strictly positive weights wi, wi and the quadrature nodes xi, xi. Given the order q of the
Gauss quadrature, O

(︁
q2
)︁
quadrature nodes are required for the volume integral and O (q)

nodes are required for the surface integral.

Let ek with k ∈ {1, 2} be a coordinate direction where |∂kφ| = |∂φ/∂xk| > 0 on Kj . Then
a height function h = h (xi) = h (x̃) with i ∈ {1, 2} \ k exists, describing the local interface
I ∩Kj as

φ : R2 → R, φ (x̃, h (x̃)) = 0. (4.46)

Based on the sign of ∂kφ, which is constant by assumption, one can determine whether a
certain region, say the region where φ < 0, is below or above the graph xk = h (x̃), see
Fig. 4.2. To find a suitable direction, the gradient ∂kφ (xc) at the cell centre xci is tested for its
maximum component

k = argmaxi=1..2

⃓⃓⃓⃓
∂φ (xc)

∂xi

⃓⃓⃓⃓
. (4.47)

A direction ek is suitable if two conditions are met. To ensure the existence of the height
function |∂kφ| > 0 must be true. Furthermore, the quotient |∇φ| / |∂kφ| < C must be smaller
then a predefined constant C, where Saye [183] gives C ≈ 4. The conditions ensure good
results for the Gaussian quadrature used to evaluate the integrals. If one of these two condi-
tions cannot be met by any direction, a subdivision algorithm is applied. In Fig. 4.3 a circular
level set is depicted, fully enclosed by a single cell. The cell is now divided into halves until
the interface is sufficiently flat within a single subdivision. Once a suitable height function is
found, including possible subdivisions, the new functions φU and φL are defined (Fig. 4.2)

φU , φL : R → R, φU (x̃) = φ
(︁
x̃⊕ xUek

)︁
, φL (x̃) = φ

(︁
x̃⊕ xLek

)︁
, (4.48)

which are used to introduce a new dimensional reduced integration domain. In case that the
sub-domain in question, say the region where φ < 0, is below the height function xk = h (x̃)
Saye [183] defines

V U =
{︁
φU (x̃) < 0 ∪ φU (x̃) > 0

}︁
, V L =

{︁
φL (x̃) < 0

}︁
, (4.49)

see Fig. 4.2. In the opposing case, i.e. the region is above the height function the new domains
are reversed

V U =
{︁
φU (x̃) < 0

}︁
, V L =

{︁
φL (x̃) < 0 ∪ φL (x̃) > 0

}︁
. (4.50)
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xU

xL

ekek

φ < 0

φ > 0

φ > 0

φ < 0

x̃x̃

xU

xL

xk = h (x̃) xk = h (x̃)

φL < 0 φL < 0 φL > 0

φU < 0φU > 0 φU < 0 (b)(a)

Fig. 4.2.: A region φ < 0 lies either below (a) or above (b) the height function h (x̃), which is
equivalent to the zero level set of φ. The horizontal axis represents the Rd−1 space
and the vertical axis the direction of the height function ek. Illustration based on
Saye [183].

In both definitions (4.49) and (4.50) the zero level set of φ was excluded to ensure that the
function f is smooth on any connected domain. The dimensional reduced volume integral is∫︂

Kj,P(t)
f dx =

∫︂
Ṽ

∫︂
I(x)

f (x̃⊕ yek)dy dx̃, (4.51)

where Ṽ = V U ∩ V L and

I (x) =

⎧⎨⎩
{︁
y ∈

{︁
xUk , x

L
k

}︁
: sφ (x⊕ yek) > 0

}︁
if s = ±1{︁

y ∈
{︁
xUk , x

L
k

}︁
: φ (x⊕ yek) ̸= 0

}︁
if s = 0

, (4.52)

where s = sgn (φ) with sgn (0) = 0 is a sign parameter. The surface integral is treated similar∫︂
Γ(t)∩Kj

g ds =
∫︂
Ṽ
g
|∇φ|
|∂kφ|

⃓⃓⃓⃓
x̃+h(x̃)ek

dx̃. (4.53)

Gaussian quadrature is used to obtain a solution for the integrals
∫︁
I(x) f (x̃⊕ yek)dy in (4.51)

and
∫︁
Ṽ g |∇φ|/|∂kφ||x̃+h(x̃)ek

dx̃ in (4.53), which requires a root finding algorithm to obtain
the height function. In case of the volume integral an additional integration step

∫︁
Ṽ dx̃ is

necessary to obtain the final result. An in depth explanation of the method and algorithm
can be found in the aforementioned publication Saye [183]. The implementation into the
BoSSS-framework is described by Beck [19].
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(b)(a)

Fig. 4.3.: (a) The circular level set is positioned in a single numerical cell. (b) Throughmultiple
subdivisions of a single cell a favourable level set within each sub-domain is obtained.
Illustration based on Saye [183].

4.4. Temporal discretisation of the fluid equations

An implicit second-order Backward Differentiation Formula (BDF2) is used to approximate the
temporal derivative in the semi-discrete unsteady Stokes equation (2.68). The entire time-
span of the simulation is divided intoM time-steps of the constant size ∆t. A single time-step
is denoted by tm with m = {1, 2, ...,M}. The discretisation of the temporal derivative of the
unsteady Stokes equation (2.68) with BDF2 delivers [86, 125]

uF,m+1
i =

4

3
uF∗,m
i − 1

3
uF∗,m−1
i +

2

3
∆tfm+1

i ∀x ∈ ΩF
(︁
tm+1

)︁
, (4.54)

where fm+1
i is the right hand side of the Stokes equation

fm+1
i =

∂pF,m+1

∂xi
− 1

ReF
∂2uF,m+1

∂x2j
. (4.55)

Additionally the continuity equation (2.65) needs to be fulfilled in every time-step

∂uF,m+1
i

∂xi
= 0 ∀x ∈ ΩF

(︁
tm+1

)︁
. (4.56)

The spatial discretisation of the right hand side fm+1
i of the unsteady Stokes equation and the

continuity equation can be found in the previous Sec. 4.3.

The fluid domain ΩF (t) itself is time dependent due to the motion of the phase interface
Γ (t). Hence, the current solution uF,m+1

i , ∀x ∈ ΩF
(︁
tm+1

)︁
and the solution of the fluid field

at previous time-steps uF,mi ∀x ∈ ΩF (tm) and uF,m−1
i ∀x ∈ ΩF

(︁
tm−1

)︁
are defined on different

domains. It is assumed that the displacement of the interface is small within a single time-
step, i.e. smaller than the cell diameter hΓ at the interface. Thus, the solutions uF∗,m

i and
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uF∗,m−1
i used in (4.54) are approximated by

uF∗,m
i = uF,mi ∀x ∈ ΩF

(︁
tm+1

)︁
∩ ΩF (tm) (4.57a)

and

uF∗,m−1
i = uF,m−1

i ∀x ∈ ΩF
(︁
tm+1

)︁
∩ ΩF

(︁
tm−1

)︁
. (4.57b)

The solution in themissing parts of the domainΩF
(︁
tm+1

)︁
\ΩF (tm) andΩF

(︁
tm+1

)︁
\ΩF

(︁
tm−1

)︁
are obtained by a polynomial extrapolation [125].

Level-Set evolution

Due to the assumption of rigid particles, the level-set evolution is simplified compared to a
non-rigid surface. Instead of applying the level-set equation (2.78)

∂φ

∂t
+
∂φUi

∂xi
= 0

we use that the single-particle function φp = φp (χp, βp) is solely a function of the position of
the centre of mass χip and the orientation βp of the particles. Thus, by using the results of the
particle solver, see Sec. 4.5, one can project the new level-set field φm+1

p in every time-step for
every particle. Following (2.74) and (2.75) the new field is obtained by

φm+1 = inf(Φm+1), Φm+1 =
{︁
φm+1
1 , φm+1

2 , ..., φm+1
p , ..., φm+1

N

}︁
. (4.58)

The exact shape of φm+1
p is given by analytical expressions, which might be only piecewise

defined to enable complex particle shapes. In the context of this work elliptical particles are
used, leading to the following definition of φp during the time-step m+ 1

φm+1
p =

(︂(︂
χp,m+1
1 − x1

)︂
cos
(︁
βp,m+1

)︁
+
(︂
χp,m+1
2 − x2

)︂
sin
(︁
βp,m+1

)︁)︂2
a2

+
ε2
(︂(︂
χp,m+1
1 − x1

)︂
sin
(︁
βp,m+1

)︁
−
(︂
χp,m+1
2 − x2

)︂
cos
(︁
βp,m+1

)︁)︂2
a2

− 1, (4.59)

where we used the notation χp
i and βp to refer to the properties of a specific particle p. Note

that in (4.59) φm+1
p is not a signed distance function, i.e the gradient of φm+1

p has to be
normalised in order to return the normal vector, see (2.76). It is entirely possible to reverse
the sign of the expression (4.59), which would result in a positive sign of the function φp
within the particle domain Ωp. Necessarily, the inf (·) operation in (4.58) needs to change
accordingly to a sup (·) operation.

The particle level-set function φm+1
p is continuous and differentiable. While the combined

level-set function φm+1 is still continuous it is no longer globally differentiable due to the
use of inf(Φm+1) in the definition (4.58), which introduces kinks. While φm+1

p is of second
polynomial order in case of an elliptical particle and, thus, can be approximated by second
order ansatz functions, this is no longer the case for the combined level set. Subsequently,
φm+1 might contain jumps at the cell boundaries ΓK , which is a generally undesirable property
in the context of the description of an interface.
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Smuda and Kummer [190] developed a method to enforce continuity of the level set in a
DG-context. A general discontinuous level-set function is φDG ∈ Pk (Kh). The goal of the con-
tinuity projection is to find the optimalL2-projection of φDG onto the level-set field φC0 ∈ Pk+1

such that φC0 ∈ C0 is continuous [190]. This conditions can be reformulated as constraints of
a quadratic optimisation problem

min
⃦⃦
φC0 − φDG

⃦⃦2
2
on Kh, (4.60a)

such that φC0
j,in
⃓⃓
ΓK,int = φC0

j,out
⃓⃓
ΓK,int ∀ΓK,int. (4.60b)

The solution for the optimization problem can be found by solving the equivalent system of
equations

J
(︂ ˜︁φ)︂ =

1

2
˜︁φiδij ˜︁φj − ˜︁φibi + bibi → min (4.61a)

such that Aij
˜︁φj = 0. (4.61b)

Here, the vector product φDG∗ = biφi is the projection of φDG onto Pk∗ and the vector ˜︁φi is the
desired solution, defined by φC0 = ˜︁φφi, where φi ∈ Pk+1 (Kh). A single row of the constraint
matrix Aij is defined by

k+1∑︂
n=0

˜︁φj,n,inφj,n,in (x)− k+1∑︂
n=0

˜︁φj,n,outφj,n,out (x) = 0, x ∈ ΓK,int, (4.62)

for a sufficient amount of points xi on the internal surface Γint [190]. An in depth discussion
of the construction and solution of the optimisation problem can be found in Smuda [189]
and Smuda and Kummer [190].

4.5. Particle solver

In contrast to the fluid, which is described by the unsteady Stokes equation (2.68) and is solved
using the XDG method, the particle equations can be solved with a much simpler method.
The translational and rotational motion of the particle is described by the two-dimensional
Newton-Euler equation (2.54) and (2.58)

V PD
dvip
dt

=

∫︂
Γp

τFijnjp ds = Fip

ΘS dωp

dt
=

∫︂
Γp

ϵ3ij (xi − χiqγq) τ
F
jknkp ds = Tp.

The integral terms, which are the hydrodynamic forces Fip and torque Tp acting on the par-
ticles, are obtained from fluid variables. Thus, it is only necessary to discretise the temporal
derivative. Discretisation is carried out using an implicit Adams method

vm+1
ip = vmip +

∆t

12V PD

(︂
5Fm+1

ip + 8Fm
ip − Fm−1

ip

)︂
, (4.63a)

ωm+1
p = ωm

p +
∆t

12ΘS

(︁
5Tm+1

p + 8Tm
p − Tm−1

p

)︁
, (4.63b)
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which is a method of third order [86]. The forces Fm+1
ip and torque Tm+1

p are obtained by a nu-
merical integration over the particle surfaces, using the Saye-method described in Sec. 4.3.2.
It should be noted that the surface integration is the computationally most expensive function
in the particle solver. Due to the implicit character of the Adams method, both, current and
previous results for the hydrodynamics are necessary to obtain the particle quantities. Hence,
it is necessary to solve the fluid equations before solving the particle equations. The depen-
dency of the particle solver on the results of the fluid solver leads to the implementation of an
iterative solver scheme, see Sec. 4.7.

In a second step, the new position and orientation of the particles is determined, again by
employing the third order implicit Adams method

χm+1
ip = χm

ip +
∆t

12

(︂
5vm+1

ip + 8vmip − vm−1
ip

)︂
, (4.64a)

βm+1
p = βmp +

∆t

12

(︁
5ωm+1

p + 8ωm
p − ωm−1

p

)︁
. (4.64b)

4.5.1. Particles at periodic boundaries

Periodic boundary conditions require a special treatment for the particle phase. Consider a
rectangular computational domain Ω in two dimensions. Eight virtual domains exists, one for
each domain edge ΩEi and one for each vertex ΩVi , see Fig. 4.4. Within each virtual domain

ΩΩE4

ΩV3

ΩV4 ΩV1ΩE1

ΩE2

ΩV2ΩE3

Fig. 4.4.: Each rectangular periodic domainΩ is extended by four virtual domains at the edges
ΩE1 −ΩE4 and by four virtual domains at the vertices ΩV1 −ΩV1 . Any particle exists
in the original domain Ω and in every virtual domain ΩVi , ΩEi . Once a particle in
Ω approaches a periodic boundary, its counterparts in the virtual domains automat-
ically appear at the correct opposing boundary as depicted by the dashed particles.

any particle of the original domain exists at the same position relative to the origin of the
virtual domain as in the original domain. The particles within a virtual domain automatically
appear at the correct opposing boundary once a particle in the original domain Ω reaches
a periodic boundary. Subsequently, it is not necessary to track additional data, because the
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position of the virtual particle can be easily calculated from the position of the original par-
ticle, the origin of Ω and the origin of the virtual domain. In the context of calculating the
hydrodynamic forces and torques, a sum needs to be formed to obtain the correct results for
particles present at the periodic boundary.

4.6. Collisions

Given an infinite resolution of the numerical mesh, i.e. hK → 0, and an infinite temporal res-
olution ∆t → 0, no collisions will occur in an incompressible Newtonian fluid. Instead, the
fluid pressure between two approaching particles will increase until it pushes the two parti-
cles away from each other. However, if the gap between two approaching particles becomes
to small, the unsteady Stokes equation (2.68) is no longer an appropriate model to predict
the behaviour of the fluid within the gap. Molecular forces between the particle surfaces,
surface roughness, breakdown of lubrication and entanglement of the cilia and flagella might
dominate the solution. Furthermore, the continuity assumption no longer holds for very small
gaps between the particles, i.e. the Stokes equation becomes invalid.

Besides the physical restriction, a numerical restriction to the minimal distance between two
particles exists. As long as the surfaces of two particles are in different cells of the numerical
grid, the Saye-algorithm [183] as described in Sec. 4.3.2, is able to distinguish between the
separate interfaces. As soon as both particles occupy space in the same cell Kj this is no
longer possible, leading to errors in the calculation of the solution for the fluid phase and in
the calculation of the hydrodynamic forces and torques acting on the particles. Subsequently,
the numerical limit on the minimal distance between two particles is hΓ, where hΓ ≤ hK is
the diameter of the cell at the particle surface.

A collision algorithm is, hence, necessary to

• account for the different physical behaviour of two close particles due to molecular in-
teraction forces, surface roughness, breakdown of lubrication and entanglement of the
cilia and flagella,

• prevent that the surfaces of two particles are within the same cell for numerical reasons.

To fulfil this conditions, the collision algorithm needs to contain a physical model for the
interaction between two close particles (Sec. 4.6.1) and it is necessary to track the minimal
distance between each particle (Sec. 4.6.2). The implementation presented here is highly
modular, i.e. one can freely replace the physical model without changing the minimal distance
algorithm and vice versa.

4.6.1. Physical collision model

A collision is an interaction between two or more bodies that occurs within a very short period
of time compared to a characteristic time interval of the system at hand. The fundamental
assumption of the present collisionmodel is conservation of momentum. While each individual
particle may have a different momentum before and after the collision, the total momentum
of all particles involved remains the same. The surface of the particles is considered smooth,
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p
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χp
i

χq
i

ap
aq

p

qχp
i

χq
i

F̃ i

F̃ i

(b)(a)

Fig. 4.5.: (a) The geometrical setup for a collision between two particles is defined by the n-t
coordinate system. The base vector for the n-axis is the collision normal vector nCi .
(b) A collision between two particles p and q with smooth surfaces is characterised
by the exchange of momentum F̃ i in the direction of the collision normal vector ni.
Illustration based on Gross et al. [82].

hence, momentum ˜︁Fi is only exchanged in the direction of the collision normal vector nCi with
the magnitude ˜︁F = ˜︁Fin

C
i , see Fig 4.5.

Another key assumption is that collisions involving multiple particles can be broken down into
individual binary collisions. Thus, it is assumed that a many-body collision is in fact simply
the rapid succession of multiple binary collisions. As a consequence, the physical model only
has to be able to describe the collision between two particles.

To describe the behaviour of a two-particle collision, Gross et al. [82] is followed closely in
the current section. A collision consists of two phases. During the compression phase, the
particles are pressed into each other and possibly deformed. Quantities describing this phase
are indicated by a +. The inter-particle forces reach their maximum at t = t∗. Hence, the
magnitude of the momentum exchanged in the normal direction during this phase can be
expressed as ˜︁F+ =

∫︂ t∗

t+
F (t)dt, (4.65)

where the first contact occurs at t = t+ and F (t) is the force between the two particles.
After the maximum of the inter-particle forces is reached at t∗ the restitution phase follows,
in which the particles separate from each other and, depending on their elasticity properties,
regain their original shape. Quantities describing the second phase are indicated by −. The
momentum exchange during the restitution phase is

˜︁F− =

∫︂ t−

t∗
F (t)dt, (4.66)

where the particles loose direct contact at t = t−. Subsequently, the complete momentum
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exchange during the collision of two particles is

˜︁F =

∫︂ t−

t+
F (t)dt = ˜︁F+ + ˜︁F−. (4.67)

Only in the case of ideal elastic behaviour ˜︁F+ and ˜︁F− are equal. Under real conditions, it is
expected that during the collision kinetic energy is converted into thermal energy and ˜︁F− is
smaller than ˜︁F+. This is expressed by the means of the coefficient of restitution k

˜︁F− = k ˜︁F+, 0 ≤ k ≤ 1. (4.68)

The coefficient k represents dissipation of energy due to the interaction forces between the
particles and deformation, elasticity and plasticity of the individual particles.

The next assumption is that the area of contact between the two particles is small compared
to the particle surface. Hence, it can be considered as a single point of contact xCi . The normal
velocity of the particle p at this point is

un,p = nCi u
p
i = nCi γp

(︁
vip + ϵi3jωp

(︁
xCj − χjqγq

)︁)︁
(4.69)

and the tangential velocity is ut,p = upi ϵi3jn
C
j . The change of linear momentum between two

arbitrary states t1 and t2 during the collision is described by

˜︁F 12 = V PD
(︁
un,p,1 − un,p,2

)︁
, (4.70)

where un,p,1 is the normal velocity at xCi of the particle p at the time t1. Using (4.67), (4.68)
together with (4.70) delivers the collision hypothesis

k =
un,p,− − un,q,−

un,q,+ − un,p,+
(4.71)

for a collision between two particles p and q.

During the collision, momentum is only exchanged in normal direction, i.e. the surface is
assumed to be smooth. Conservation of linear and angular momentum for the first particle p
delivers

˜︁F = V PD
(︁
un,p,+ − un,p,−

)︁
(4.72)

apF̃ = −ΘS
(︁
ωp,+ − ωp,−)︁ (4.73)

with the eccentricity ap =
(︁
xCi − χipγp

)︁
ϵi3jn

C
j (Fig. 4.5). For the second particle q one obtains

˜︁F = −V PD
(︁
un,q,+ − un,q,−

)︁
(4.74)

aqF̃ = ΘS
(︁
ωq,+ − ωq,−)︁ (4.75)

With (4.71) and (4.72)-(4.75) five equations exists for the five unknowns ˜︁F , un,p,−, un,q,−,
ωp,− and ωq,−, leading to

˜︁F = (1 + k)
un,p,+ − un,q,+ + apωp,+ − aqωq,+

2
V PD

+ (ap)2+(aq)2

ΘS

. (4.76)
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The respective velocities after the collision follow from (4.72)-(4.76)

un,p,− = un,p,+ +
˜︁F

V PD
, ωp,− = ωp,+ + ap

˜︁F
ΘS

, (4.77a)

un,q,− = un,q,+ −
˜︁F

V PD
, ωq,− = ωq,+ − aq

˜︁F
ΘS

(4.77b)

The velocity of the centre of mass of the particles is obtained by adding the normal velocity
after the collision and the undisturbed tangential velocity

vpi = un,p,−nCi + ut,p,+ϵi3jn
C
j . (4.78)

It should be noted, that this model is purely based on the kinetics of a rigid body. Molecular
effects, such as van der Waals forces are only taken into account indirectly via the coefficient
of restitution. Furthermore, entanglement of flagella or cilia is not directly taken into account.
All such additional effects need to be taken care of by k. Nevertheless, due to the mentioned
modularity of the system it is easily possible to change the physical model without needing to
change the entire algorithm.

4.6.2. Numerical implementation

The calculations of the physical model described in the previous section can be carried out
explicit, i.e. they are comparably cheap in terms of computation power. The tracking of the
distance between all particles is a much more demanding task. For this reason, the track-
ing algorithm is divided into two parts. In a first step, particles, which are already close to
each other, are selected. In a second step the exact distance between those particles is calcu-
lated, which is used to decide whether the particle will collide in the current time-step of the
simulation.

Pre-selection algorithm

Core of the pre-selection algorithm is the R-tree R, proposed by Guttman [83]. The latter
publication forms the basis for the current section. The particles are grouped into a self-
balancing tree, where each node N i

j of the tree is related to a Minimal Bounding Rectangle
(MBR)M i

j . This tree consists of the following elements

• the root node N0, corresponding to the MBR M0, where all lower-level MBRs are en-
closed inM0,

• the branch nodes, which enclose a subset of MBRs,

• the leave nodes of the tree, which contain the MBRs of the physical particles.

The root node and the branch nodes contain a number of c child-nodes. The number of child-
nodes allowed per parent node is capped by a maximum C, where in the example in Fig. 4.6
C = 2. Hence, in the example the root node N0, which is associated with the MBR M0,
contains two child-nodes N1

1 , N1
2 and their corresponding MBRs M1

1 , M1
2 . The superscript

refers to the level of the tree, where 0 indicates the root level. The subscript on the other
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Fig. 4.6.: The lowest level MBRM3
p of the R-tree R contains a particle p, described by a set of

points P ∈ Ω and the same particle at the new position and with the new orientation
in the next time-step, described by a second set P ′ ∈ Ω. The superscript refers to
the level of the tree, where 0 indicates the root level and 3 is the lowest level in this
example. The subscript is a counting variable, in case of the lowest level particle
MBR it is always equivalent ot the particle ID in the array P . On the right side
an exemplary R-tree is constructed for seven particles. Each node contains m = 2
MBRs and beside the child-node of M2

4 every node is fully filled. Due to the low
number of MBRs per node M2

4 and M3
4 are equivalent. Collisions are detected by

finding overlaps between the MBRs, hence, only the particles belonging to M3
1 and

M3
5 might collide.

hands is a simple counting variable. The child nodes of N1
1 and N1

2 again contain up to C = 2
child-nodes and so forth. Note that a parent node is not required to contain c = C child-nodes.
In the example, the branch nodeM2

4 only contains a single child-nodeM3
4 .

The leaves of the tree, which are at the third level in the given example, contain the physical
particles. Due to the self-balancing property of the R-tree, a parent node, which contains a
leave node, necessarily only contains leaves. Each particle p is geometrical described by the
set of points P ∈ Ω. The set P ′ ∈ Ω describes the geometry of the particle at the next time-
step, where the new position and orientation are predicted with the current particle velocities.
The union ˆ︁P = P ∪ P ′ of the two sets P and P ′, is enclosed by a single MBR, see Fig. 4.6.
Subsequently, a collision can only occur if two of the single-particle MBRs intersect. Particle
MBRs between different branches of the tree can only intersect with each other if the higher-
level branch node MBRs intersect. Hence, it is, in the most cases, not necessary to check for
intersection between all nodes of the tree, leading to a decrease in computational cost.

In the following paragraphs the implementation of the R-tree in BoSSS is presented. The
initialisation routine of the R-tree, see Alg. 1 requires two additional recursive sub-algorithms:

• the insertion algorithm, which inserts a single-particle MBR Mp to the tree, see Alg. 2
and Fig. 4.7,
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• the split algorithm, which splits a node if the number of child-nodes c exceeds a prede-
fined maximum C, see Alg. 3 and Fig. 4.8.

The initialisation starts with the creation of the root node N0. MBRs Mp are calculated for
each particle. The single-particle MBRs are subsequently inserted to the tree by employing the
method InsertMBR (Alg. 2). Periodic boundaries of the computational domain Ω require an
additional step in the initialising routine. The twins pvd of a particle p in the virtual domains
ΩVi and ΩEi automatically appear in the domain Ω if p oversteps a periodic boundary, see
Sec. 4.5.1. Thus, the initialisation algorithm (Alg. 2) checks for each particle pvd in a virtual
domain, whether it has overstepped a periodic boundary and lies within the original domain
Ω. If this is the case the MBR corresponding to the particle pvd is added to the R-tree.

Algorithm 1 Pseudocode implementation of the construction of the particle R-tree.
procedure InitialiseTree(P,∆t) ▷ P is an array, which contains all particles.

Initialise root node N0

for p=0; p<P.length; p++ do
Mp=CalculateParticleMBR(P [p] , ∆t) ▷ see (4.84)
InsertMBR

(︁
Mk

p , N
0
)︁

▷ See Alg. 2
for all pvd, vd ∈ {1, 2, ..., 8} do ▷ pvd is the twin of p in a virtual domain to realise

periodic boundaries.
if IsInsidePeriodicDomain

(︁
pvd
)︁
then ▷ pvd is partly within the domain Ω.

Mpvd=CalculateParticleMBR(P [p] , ∆t) ▷ see (4.84)
InsertMBR

(︁
Mpvd , N

0
)︁

▷ See Alg. 2
end if

end for
end for

end procedure

The insertion algorithm (Alg. 2, Fig. 4.7) distinguishes two cases. If the node N i, in which
the particle MBRMp shall be inserted, contains leaves of the tree, the MBRMp corresponding
to the particle p is added as an additional leaf. Subsequently, the node-level MBR M i needs
to be recalculated. The new MBR M i contains Mp and the old MBR ˆ︂M i, related to the node
N i. Thus, the new MBRM i is defined by

Mp ⊂M i ∨ ˆ︂M i ⊂M i ∨
⃓⃓
M i
⃓⃓
→ min, (4.79)

where the expression
⃓⃓
M i
⃓⃓
→ min ensures that the area enclosed byM i is minimal and, thus,

the rectangleM i is actually a MBR.

In the second caseN i is a branch node of the tree. Hence, c ≤ C child-nodesN i+1
j exist, which

again contain child-nodes N i+2
k . Thus, Mp needs to be inserted into one of the child-nodes

N i+1
j of N i. To prevent unnecessary calls to the collision algorithm, we require that the MBRs

of the branch nodes should intersect as little as possible. Hence, in Alg. 2 we search for the
child-node N i+1

j of N i where the minimal bounding rectangleM test
j minimizes

min
k ̸=j,k∈{1,...,c}

⃓⃓
M test

j ∩M i+1
k

⃓⃓
, ∀j ∈ {1, ..., c} (4.80)
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Fig. 4.7.: (a) The MBR M i+1
6 shall be inserted into one of the two MBRs M i

1 or M i
2, which

contain already the lower-level MBRs M i+1
1 −M i+1

5 . (b) The insertion is tested for
both upper-level MBRs. By requiring a minimal intersection between all MBRs, see
(4.80), the MBRM i

1 is chosen for insertion, leading to the result visible in (c).

where

Mp ⊂M test
j ∨ M i+1

j ⊂M test
j ∨

⃓⃓
M test

j

⃓⃓
→ min, j ∈ {1, ..., c} , (4.81)

i.e.M test
j is the union of one of the child-node MBRsM i+1

j and ofMp. In Fig. 4.7 the condition
of minimal intersection (4.80) is visualised. Here, two MBRs M i

1 and M i
2 need to be tested.

If M i+1
6 is added to M i

1, the resulting upper level MBRs M i
1 and M i

2 do not intersect. In the
case of the insertion of M i+1

6 into M i
2 the resulting MBRs M i

1 and M i
2 would clearly inter-

sect. Thus, M i+1
6 is inserted into M i

1 as visualised in Fig. 4.7c, which requires the method
InsertMBR

(︂
Mp, N

i+1
j

)︂
to be called again.

Algorithm 2 Pseudocode implementation of the recursive insertion of a new MBR or node.
procedure InsertMBR(Mp, N

i)
if IsLeaf

(︁
N i+1

1

)︁
then ▷ N i contains only leave nodes.

Add Mp to N i, Update M i

if c > C then ▷ c is the number of child-nodes of N i

Split
(︁
N i
)︁

end if
else ▷ N i has c ≤ C child-nodes

Find child-node N i+1
j of N i such that⃓⃓⃓

M test
j ∩M i+1

k

⃓⃓⃓
→ min ∀j, k ∈ {1, ..., c} , k ̸= j

InsertMBR
(︂
Mp, N

i+1
j

)︂
▷ Recursive call

Update M i+1
j

if c > C then
Split

(︁
N i
)︁

end if
end if

end procedure

81



M i+1
1 M i+1

2

M i+1
3

M i+1
4

M i+1
5

(a) dmax

M i
1

M i+1
1 M i+1

2

M i+1
3

M i+1
4

M i+1
5

(b) dmax

I

II

III

IV

V

M i+1
1 M i+1

2

M i+1
3

M i+1
4

M i+1
5

(c)

M i
1

M i
2

Fig. 4.8.: (a) TheMBRM i
1 contains c = 5 children, however, it is assumed that the maximum is

C = 4. Thus, the node needs to be split. The edge ofM i
1 in the horizontal direction is

the longest, indicated by dmax. (b) The children are sorted by their left upper corner
in the direction of the vector dmaxe1, as indicated by the Roman numbers I−V . The
new parent MBRs M i

1 and M i
2 are initialised by the two MBRs at the left and right

end of the sequence I − V ,. i.e M i+1
3 initialises M i

1 and M i+1
2 initialises M i

2. The
remaining MBRs M i+1

1 , M i+1
4 and M i+1

5 are added to the new parents under the
condition of minimal intersection, leading to the result presented in (c).

If the node N i
j is overflown, i.e. its MBR encloses c children and c > C, it is necessary to

split a node. The split algorithm (Alg. 3, Fig. 4.8) is based on the longest edge dmax of the
MBR M i

j corresponding to the node N i
j to be split. Hence, either the horizontal e1 or the

vertical direction e2 are chosen in two dimensions, where e1 and e2 are the unit vectors of
the coordinate frame. Each child-node N i+1

k of N i
j is sorted according to the dmax-coordinate

of the left upper point of the MBR M i+1
k , see Fig. 4.8b. The sorted sequence of MBRs is

indicated by Roman numbers and the subscript of the constituting MBRs is changedM i+1
l , l ∈

{I, II, III, ..., c}. In the example given in Fig. 4.8, the nodes are sorted into the sequence I−V .
In the next step, the node N i

j , which will be split, is temporarily removed and reinitialised by
the first child-node in the sorted sequence of child-nodes. Furthermore, a new node N i

j+1 is
initialised with the last child-node of the sorted sequence. In the case of the example given
in Fig. 4.8, the child-node M i+1

3 is the first node in the sequence I − V and reinitialises the
node N i

1 corresponding to the MBRM i
1. The node N i+1

2 corresponding toM i+1
2 on the other

hand is the last node in the sequence I − V and, thus, initialises the new parent MBR M i
2.

The remaining child-nodes N i+1
l , l ∈ {II, ..., c− I} are added to either of the two nodes N i

j ,
N i

j+1 under the condition of minimal intersection

min
{︁⃓⃓(︁

M i+1
l ∪M i

j

)︁
∩M i

j+1

⃓⃓
,
⃓⃓(︁
M i+1

l ∪M i
j+1

)︁
∩M i

j

⃓⃓}︁
. (4.82)

Hence, in the example given in Fig. 4.8, the two MBRsM i+1
1 andM i+1

4 are added toM i
1 and

the remaining MBR M i+1
5 is added to M i

2. It should be noted that the strategy for splitting a
node differs from the original R-tree. Guttman [83] proposed a split algorithm, which requires
that the area enclosed by the MBRs is minimal, whereas the present implementation requires
that the intersections between MBRs are minimal. In most cases, however, both strategies will
lead to the same result. For example, the strategy proposed by Guttman [83] would lead to
the same results for the MBRsM i+1

1 andM i+1
2 in Fig. 4.8.

To obtain the parent node of N i
j and N i

j+1, two cases need to be considered. If N i
j was the
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Algorithm 3 Pseudocode implementation of the splitting of a node.
procedure Split(N i

j)
Find longest edge dmax of M i

j

Sort child-nodes N i+1
k , k ∈ {1, ..., c} into N i+1

l , l ∈ {I, II, III, ..., c} ▷ Sequence
indicated by Roman numbers

Remove child-nodes N i+1
l , l > I from N i

j

Initialise N i
j+1, add N i+1

c to N i
j+1

for all N i+1
l , l ∈ {II, ..., c− I} do ▷ Insert child-nodes with minimal intersection

if
⃓⃓⃓(︂
M i+1

l ∪M i
j

)︂
∩M i

j+1

⃓⃓⃓
<
⃓⃓⃓(︂
M i+1

l ∪M i
j+1

)︂
∩M i

j

⃓⃓⃓
then

Add N i+1
l to N i

j

else
Add N i+1

l to N i
j+1

end if
end for
if N i

j is root node i=0 then
Initialise new root N0, add N i

j , N
i
j+1 to N0 ▷ Increase tree depth

else
Add N i

j+1 to parent N i−1

if
(︁
Number of child-nodes in N i−1

)︁
> C then

Split
(︁
N i−1

)︁
▷ Recursive call

end if
end if

end procedure

old root node i = 0 of the tree, a new root node is created as a parent to the split nodes N i
j

and N i
j+1, see Alg. 3. If N i

j and N i
j+1 are branch nodes both are added to the parent N i−1.

However, the Split
(︁
N i−1

)︁
algorithm might be called again to account for an overflown parent

node N i−1.

The calculation of the particle MBRs requires the knowledge about the most extreme point on
the particle surface in the directions of the unit vectors e1, −e1, e2 and −e2. Such a point
pi is called support point and is also necessary for the calculation of the minimal distance
between two particles. The derivation to obtain the support point can be found in Sec. 4.6.2,
see Eq. (4.87). For now we assume that the four necessary support points on the combined
set ˆ︁P = P ∪ P ′ of the particle p and its projection to the next time-step are

p+1
i

(︁
e1
)︁
, p−1

i

(︁
−e1

)︁
, p+2

i

(︁
e2
)︁
and p−2

i

(︁
−e2

)︁
. (4.83)

Thus, one obtains the four vertices of the particle MBR

V 1 =
[︁
p−1
1 , p+2

2

]︁
, V 2 =

[︁
p+1
1 , p+2

2

]︁
, V 3 =

[︁
p+1
1 , p−2

2

]︁
and V 4 =

[︁
p−1
1 , p−2

2

]︁
. (4.84)

The position and orientation of the particles change within each time-step. Hence, it is neces-
sary to update the R-tree constantly. Beside the necessity of updating the particle MBRs the
tree itself needs to be restructured to provide an efficient search. However, the reinitialisation
of the tree is a costly procedure. Assuming that the displacement of a particle during a single
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time-step is small, it is not necessary to reinitialise the tree at each time step. Hence, the MBRs
are updated within each time-step, following (4.84), and the the tree itself is reinitialised ev-
ery n time-steps using Alg. 1. No general value of n can be given, however, it has been proven
useful to choose a value between ten and one hundred time-steps.

A potential collision is identified by determining overlapping particle MBRs. The search algo-
rithm is presented in Alg. 4. Starting with the root node N0 each level of the tree is checked
for an overlap with the particle MBRMp, leading to a list of particles, which potentially collide
with each other.

Algorithm 4 Pseudocode implementation of the search in a R-tree.
procedure SearchForOverlap(particleMBR Mp, particleID p, currentNode
N i)

List<int> overlappingParticles=new List<int>
for all Child-nodes N i+1

j in N i do
ifMp ∩M i ̸= ∅ then ▷ Intersections betweenMp and MBRM i of N i

if IsLeaf(N i+1
j ) && j ̸= p then ▷ N i+1

j is a leaf and contains a different
particle with the ID j

overlappingParticles.Add(j)
else

overlappingParticles.AddRange(SearchForOverlap(Mp, p, N i+1
j ))

end if
end if

end for
return overlappingParticles

end procedure

Distance algorithm

The pre-selection algorithm returns all currently close particles. To determine whether or not
this particle collide and to calculate the effects of such an collision it is necessary to determine
the minimal distance between the particles. To ensure fast determination of the distance
the Gilbert-Johnson-Keerthi (GJK) algorithm [80] is employed. The algorithm computes the
distance between convex objects and returns the minimal distance and the closest point on
the other object of the two participating objects p and q. An object in case of the present
setup might be either a particle or the domain wall. An overview of the algorithm is given in
the pseudocode implementation Alg. 5 and a visualisation of a single iteration of GJK can be
found in Fig. 4.9.

Instead of comparing every point xP ∈ P, xQ ∈ Q in the sets P, Q, corresponding with the
objects p, q, to find the minimal distance, the problem is reduced to computing the minimal
distance between a simplex and the origin. A simplex is a polytope with n+1 vertices, where
the order n ≤ d of the simplex is restricted by the spatial dimension d of the problem. Thus,
in two dimension, GJK generates simplices of maximal second order, i.e. a triangle, in each
iteration.
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ˆ︁Sn+1 ˆ︁Sn+1

vn+1

Sn+1

pn+1

(a) (b) (c) (d)

Fig. 4.9.: The image series shows a visualisation of a single step of the GJK-algorithm. In the
first panel (a), pni = sCi (v

n) is the most extreme point on the set C in the direction of
vni , where sCi is the support mapping of C. The point pni is added to the simplex Sn

in (b), resulting in the intermediate simplex ˆ︁Sn+1 = Sn ∪pn. The minimal distance
between ˆ︁Sn+1 and the origin is the lower vertex, i.e. pni itself. In (c) the new vector
vn+1
i = −pni is drawn which is used in the next iteration (d) to determine the new
support point pn+1

i = sCi
(︁
vn+1

)︁
. The simplex Sn+1 only contains the vertex pni of

the intermediate simplex ˆ︁Sn+1.

To obtain the simplex, the Minkowski-difference of the two particles is introduced. The
Minkowski-difference C is defined as the difference between each vector of one set P with
each vector of the other set Q

C = P −Q =
{︁
xC = xP − xQ

⃓⃓
xP ∈ P,xQ ∈ Q

}︁
. (4.85)

Hence, the minimal distance vector riPQ is the vector xiC ∈ C closest to the origin. Thus, the
problem at hand is to find

ri
p,q =

{︁
xi

C
⃓⃓
min

⃓⃓
xC
⃓⃓

∀xC ∈ C
}︁
. (4.86)

It is, however, not necessary to calculate the entire Minkowski-difference. Instead, the support
mapping of the particles is used. It returns the most extreme point pi on the surface of the
object C in the direction of a vector vi. A point pi is called support point of a convex set C if

pi = sCi (v) (4.87a)

with
vipi = max

{︁
vixi

C |xC ∈ C
}︁
, (4.87b)

where sCi (v) is called support mapping of the set C, see Fig. 4.10a. Furthermore, it is known
[80] that the support mapping of a Minkowski-difference can be obtained with the support
mappings of the constituting sets P and Q by

sCi (v) = sPi (v)− sQi (−v) . (4.88)

For geometric primitives, e.g. spheres and ellipses, an algebraic support function exists, which
allows to reach machine precision for the distance vector within a finite number of iterations.
The support mapping for a disk with the centre of mass χi is [21]

sdiski (v) =

⎧⎨⎩χi +
avi
2 |v|

if |v| ̸= 0

0 otherwise,
(4.89)

85



Algorithm 5 Pseudo-code implementation of the GJK-algorithm [80] to determine the mini-
mal distance between two convex particles.

procedure GJK(P, Q) ▷ Input: Two sets P, Q defining the geometry of two particles
Initialize the Simplex 0S with an arbitrary point 0v = xC ∈ C = P−Q
Calculate 0pi = sCi

(︁
0v
)︁
= sPi

(︁
0v
)︁
− sQi

(︁
− 0v

)︁
▷ See (4.88)

while − nvi
nvi ≤ npi

nvi do ▷ See (4.97)
n+1 ˆ︁S = nS ∪ npi ▷ See (4.93)
Calculate the min. distance n+1vi between

n+1 ˆ︁S and the origin▷
See (4.94)

Reduce order of
n+1 ˆ︁S ▷ See (4.96)

Calculate n+1pi = sCi
(︁
n+1v

)︁
= sPi

(︁
n+1v

)︁
− sQi

(︁
− n+1v

)︁
▷ See (4.88)

end while
Output: Minimal distance rp,qi = n+1vi

end procedure

where a is the diameter of the disk and vi is the direction vector to be tested. The support
mapping of objects derived from a disk with an affine transformation

Ti (x) = Bijxj + ci (4.90)

can be obtained with [21]
sTi = Ti

(︁
sdisk

(︁
BTv

)︁)︁
. (4.91)

For particles with an arbitrary shape, i.e. with a non-existing explicit formulation of the support
mapping, a binary search is employed to find the current support point pi. Consider the three
points

{︁
x, xleft, xright}︁ ∈ P, where P is again the set of points describing the surface of the

particle p. The points xlefti and xrighti are the left and right neighbour of xi at the surface Γ.
The support point pi in the direction of vi is found if the two conditions

xivi > xlefti vi (4.92a)

and
xivi > x

right
i vi (4.92b)

are fulfilled, leading to pi = xi. Otherwise the search is continued on the left or right part
of the surface, depending on which of the two scalar products xlefti vi, xrighti vi has the larger
result. Since the support mapping only has a unique solution if the particle is convex, GJK is
limited to convex particles. Nevertheless, by dividing a concave particle into multiple convex
sub-particles, the algorithm may also be employed to arbitrary shapes.

From now on a preceding superscript n indicates the current iteration of the GJK algorithm.
After finishing the calculation of the support point, the resulting point npi = sCi (nv) is added
to the simplex of the previous iteration nS

n+1 ˆ︁S = nS ∪ np, (4.93)

which is the intermediate simplex of the n + 1 iteration of the distance algorithm. As stated
earlier, the order of the simplex is restricted by the dimension of the problem, i.e. in two di-
mensions

n+1 ˆ︁S contains maximal three points. The restriction is enforced by removing points
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Fig. 4.10.: (a) The graphic visualises the support mapping. pi = si (v) is the most extreme
point of the object in the direction of vi. (b) A second order simplex is a triangle.
Seven Voronoi-regions [72] are related to the simplex, the face region F , three
edge regions Ek and three vertex regions V k where k ∈ {a, b, c}.

from the simplex at a later state in the algorithm, see (4.96). In the first iteration the simplex
0S = xC ∈ C is initialised with a single arbitrary point of the set C.

The distance between the simplex
n+1 ˆ︁S =

{︁
pa,pb,pc

}︁
and the origin is obtained by employing

Voronoi-regions [72]. The different regions R =
{︁
F,Ea, Eb, Ec, V a, V b, V c

}︁
are visualised in

Fig. 4.10b for a simplex of second order. To determine the relative position of the simplex
towards the origin, each region is tested whether it contains the origin. After the correct region
is obtained the distance between the origin and the related sub-simplex can be calculated. A
vertex region, say V a associated with the point pa ∈

n+1 ˆ︁S contains the originO = (0, 0) if the
following conditions are fulfilled

pai p
a
i − pai p

b
i ≤ 0, (4.94a)

pai p
a
i − pai p

c
i ≤ 0. (4.94b)

To test whether the origin is contained in one of the edge regions, e.g the region Ec belonging
to the edge between pai and pbi , the following conditions have to be fulfilled

pai p
a
i − pai p

b
i ≥ 0, (4.94c)

pbip
b
i − pai p

b
i ≥ 0, (4.94d)

pbiϵijkϵjlm

(︂
pbl − pcl

)︂(︂
pbm − pbm

)︂(︂
pbk − pak

)︂
≥ 0. (4.94e)

If the origin is neither in one of the edge regions nor in one of the vertex regions it must be in
the face region of the 2nd-order simplex. Thus, the particle would overlap. In case of higher
order simplices in higher dimensions there might be multiple face regions and additionally
volume regions, which have to be checked individually. An example for a 3rd-order simplex
is given by Ericson [72].
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After the correct region is obtained, the distance between the related sub-simplex R′ ⊂
n+1 ˆ︁S

and the origin can easily be calculated. If the origin lies within a vertex region, the vertex
itself is the new vector n+1vi = −pki , k ∈ {a, b, c}, see Fig. 4.9. In case of an edge region
the distance vector must be perpendicular to the edge. Let eki , k ∈ {a, b, c} be the unit vector
parallel to the edge related to the Voronoi-region Ek. Thus, in two dimensions one obtains
the distance vector with

n+1vi = ±ϵij3ekj k ∈ {a, b, c} , (4.95)

where the sign of the right hand side depends on the relative position of the origin towards
the edge.

The simplex
n+1 ˆ︁S is now reduced to the sub-simplex

n+1S = R′ ⊂
n+1 ˆ︁S. (4.96)

Thus, the order of the simplex is reduced after one iteration to two in case of an edge region
or one in case of a vertex region. Accordingly, this reduction enforces the restriction of the
order of the simplex to n ≤ d. The distance vector n+1vi between the sub-simplex R′ and the
origin is used in the next iteration to calculated the following support point n+1pi. However,
once the condition

− n+1vi
n+1vi ≤ n+1pi

n+1vi (4.97)

is fulfilled, the algorithm ends and returns the minimal distance vector rp,qi = n+1vi [80].

Collision algorithm

The complete collision algorithm is presented in pseudocode in Alg. 6. It is initialised with
all particles determined by the pre-selection algorithm to be close to each other. Based on the
minimal distance between those particles it is determined whether the particles will collide
pairwise in the current time-step ∆t. A safe time-step ∆tsafe is computed, where no collision
between any particle occurs

∆tsafe = inf
{︂
∆tp,q| p, q = 1, 2.. ˆ︁N, p ̸= q

}︂
, ∆tp,q = α

|rp,q|
∆vn,p,q

, (4.98)

where ˆ︁N ≤ N are all particles selected by the pre-selection algorithm. Within each cycle
of the while-loop while ∆tacc < ∆t do in Alg. 6 the safe time-step is accumulated ∆tacc =
∆tacc + ∆tsafe. If at some point in the collision routine the accumulated time-step is larger
than the time-step of the simulation ∆tacc ≥ ∆t, no collision is triggered and the simulation
will proceed with the next time-step. The velocity ∆vn,p,q in (4.98) is the difference of the
normal velocities of two particles

∆vn,p,q = vqi n
C
i − vpi n

C
i , (4.99)

where the normal vector nCi is approximated with the normalised distance vector

nCi ≈
rp,qi

|rp,q|
. (4.100)

The numerical parameter α in (4.98) is used for scaling. Due to the approximation (4.100),
∆tsafe might be too large, leading to overlapping particles. Overlapping particles need to be
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Algorithm 6 Pseudocode implementation of the complete collision algorithm.
procedure CalculateCollision(Particles P , R-tree R, Time-step ∆t)

∆tacc = 0, ∆tsafe = ∞
while ∆tacc < ∆t do⃓⃓

rmin⃓⃓ = ∞
while

⃓⃓
rmin⃓⃓ > λ do

for all particle p ∈ P do
Update particle state: χip (t

m +∆tacc) , βp (t
m +∆tacc)

Mp=CalculateParticleMBR(p, ∆t) ▷ see (4.84)
Q=R.SearchForOverlap

(︁
Mp, p, N

0
)︁
▷ See Alg. 4, N0 is root node of R

for all q ∈ Q do
rp,q=GJK(P,Q) ▷ P,Q are sets related to the particles p, q, see Alg. 6
if |rp,q| <

⃓⃓
rmin⃓⃓ then

rmin
i = rp,qi

end if
∆tp,q = α|rp,q|/∆vn,p,q
if ∆tp,q < ∆tsafe then

∆tsafe = ∆tp,q

end if
end for

end for
∆tacc = ∆tacc +∆tsafe

end while
for each particle pair p, q, sorted by ∆tp,q, starting with the smallest ∆tp,q. do

if un,q − un,p > 0 then
Calculate post-collision velocities based on (4.77a)-(4.78)

end if
end for

end while
end procedure

reset to a non-overlapping state, leading to additional iterations of the collision algorithm.
Hence, a smaller α might reduce the number of iterations resulting from particle overlaps.
Overlapping effects result only from the rotational velocity of the particles and different local
radii ri = xi − χipγp. Hence, for spherical particles with a constant radius α can be chosen
close to unity. For elongated, rod-like particles a smaller value for α < 0.5 has to be used.
Dense suspension might cause high rotational velocities due to the high number of collisions.
Thus, in a dense suspension the value of α might be chosen as small as 0.01.

The safe time-step is subsequently used to determine new positions and orientations for the
particlesXip (t

m +∆tacc) , βp (t
m +∆tacc), where tm is the current time of the simulation. No

new hydrodynamic forces and torque are calculated, as the collision forces are expected to
dominate the solution. Following each update of the position and orientation the minimal
distance and the safe time-step has to be calculated again. Only if the euclidean norm of the
minimal distance vector ⃓⃓⃓

rmin
⃓⃓⃓
= inf

{︂
|rp,q| p, q = 1, 2.. ˆ︁N, p ̸= q

}︂
(4.101)
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Fig. 4.11.: (a) The collision model is tested by a simple setup. Similar to Newton’s cradle,
three particles are placed in a quadratic 10 × 10 domain, where the cell diameter
is h = 0.1. (b) The left particle is displaced and moves towards the other two
particles. The colour scale indicates the absolute value of the fluid velocity and
vectors are used to represent the velocity field. (c) After the collision only the right
particle is moving with the same velocity as the left particle before the collision.

is smaller than a certain threshold λ = hΓ the physical collision is calculated.

If one or more particle pairs p, q have been determined with a smaller minimum distance than
the threshold |rp,q| ≤ λ a collision takes place. The particle pairs in question are sorted, start-
ing from the pair with the smallest ∆tp,q to the largest. Therefore, effects of early collisions
on subsequent collisions can be considered. Due to this hierarchy of collisions the velocities
of a particle, which participates in a collision, might have changed. Hence, it is necessary to
check for every binary collision whether the velocity difference in normal direction between
the two particles is positive un,q − un,p > 0. Otherwise, the particles are already moving away
from each other. The post-collision velocities of each binary collision are determined using
(4.77a)-(4.78). As long as the accumulated time-step∆tacc is still smaller than the simulation
time-step ∆t the collision algorithm will be restarted. Hence, even previously undetected col-
lisions which are only possible due to velocity changes in previous collisions are considered
and executed.

It should be noted, that the given collision algorithm is highly modular. Thus, the different ele-
ments of the entire procedure, the pre-selection algorithm, the GJK algorithm for the distance
calculation and the collision model can be changed without interfering with the remaining
elements.

4.6.3. Tests for the collision model

The collision model should provide reliable results in accordance to known experiments. In
this section simple numerical experiments are presented to show the correctness of the solu-
tion. The setup of the first experiment is similar to Newton’s cradle, see Fig. 4.11a. Three
particles are placed in a 10 × 10 domain, where the cell diameter is h = 0.1. The domain
boundaries are defined by a pressure-outlet condition, i.e. a Neumann condition as defined in
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Fig. 4.12.: The image shows the initial setup of the single circular particle moving in the neg-
ative vertical direction towards a solid wall. The numerical grid is refined at the
particle surface using four refinement levels.

(2.70). The two right particles do not move initially. The left particle is placed with a small
distance towards the other two particles and initialised with a velocity of v0,left = [1, 0]. All
particles are passive disk-shaped particle with a diameter of a = 1. It is expected, that after
a series of two collisions between the particles the velocities of the two left particle vanish
and the right particle moves with the initial velocity of the left particle, because the coefficient
of restitution k = 1 is chosen to be unity. Two simulations are carried out. In the first one
the fluid is entirely neglected, only the particle solver and the collision model is active. The
velocity of the right particle after the collision is vright ≈ [1, 0] with an error of 10−15 towards
the expected value. Two binary collisions are necessary to shift the momentum from the left
particle to the right particle. Both collisions take place within the same time-step, proofing
the applicability of the collision algorithm presented in the previous section.

In a second simulation the fluid phase is added. The values of the fluid properties density and
viscosity are set to unity. Due to the existence of the fluid it is expected that the combined
momentum of all particles is decreased due to dissipation of energy. The resulting flow fields
for the situation before and after the collision are shown in Fig. 4.11b and Fig. 4.11c. The
velocity of the right particle at t5 = 0.4, the time-step right after the collision, is v5,right =
[0.991, 1.535 · 10−5], whereas the velocity of the left particle immediately before the collision
is v4,left = [0.993, 4.511 · 10−5]. Here, the vertical velocity, which ideally would be zero, can be
used as a measure for the error, which is mainly introduced by the fluid solver. In the situation
depicted in Fig. 4.11c at t23 = 2.2 the right particle has lost almost no additional momentum
and the velocity is v23,right = [0.991,−2.23 · 10−5].

Further numerical experiments are carried out. A circular passive particle with a = 0.1 is
placed in a 5 × 1 domain with a grid size of hK = 1/6, see Fig. 4.12. Four levels of adaptive
mesh refinement are applied, where the cell diameter is halved for every level. No external
force such as gravity are applied. The particle is initialised with a velocity of v0 = [0,−2]. A
collision is expected to take place at the impenetrable wall at the lower boundary with Dirichlet
boundary condition uwall = 0. The left, right and upper boundaries are Neumann boundaries,
defined by (2.70). The numerical restriction on the distance between two particles does not
play any role in this setup, because only one particle is observed. Thus, it is possible to choose
the minimal distance threshold for the collision model more freely and we employ λ = 3·10−3.
Following Davis et al. [48] and Gondret et al. [81] the relevant parameter for the behaviour
of the particle after the collision is the Stokes number

St =
1

9

ρSU cLc

µF
=

1ρF

9ρS
Re =

DRe
9

. (4.102)
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Fig. 4.13.: The diagram shows the dependency of the effective coefficient of restitution keff on
the Stokes number St. Numerical results obtained with XNSERO are compared to
experimental [81] and theoretical results [114].

In a series of experiments the density ratioD is varied while Re is kept constant. The effective
coefficient of restitution keff = v−2 /v

0
2 is measured. Note that it is calculated with the initial

velocity of the particle and not the velocity right before the collision. Hence, all effects occur-
ring during the approach of the particle are captured by the effective coefficient of restitution.
If the particle reached a vertical velocity of v2 < vcrit = 10−4 without colliding with the wall,
it is assumed that keff = 0. In order to fit the results to the experimental results of a particle
colliding with a wall [81] a dry coefficient of restitution of k = 0.8 is employed. The term dry
refers to an experiment where the density ratioD is large, e.g. the particle is falling in air and
no fluid is present. In Fig. 4.13 we compare the present results with the results of Gondret
et al. [81] for Teflon particles. As a result of the experimental study a critical Stokes number
Stc of 10 is calculated. The coefficient of restitution for experiments with a smaller Stokes
number is always zero. A similar behaviour is observed in the numerical results, where the
critical Stokes number is Stc ≈ 10 and the first value with keff > 0 is obtained for St = 11. In
the initial area of a bouncing particle St < 30 the numerical and experimental results align.
However, in a medium interval around St = 100 the numerical results for the effective coef-
ficient of restitution tend to be larger than the experimental results. For even larger Stokes
numbers, the values converge again and finally reach the dry coefficient of restitution k = 0.8.

An analytical model for keff was developed by Barnocky and Davis [15] and Joseph et al.
[114]. Core assumption is the breakdown of lubrication between the colliding particles at a
length-scale xc in the order of the roughness of the surface. Joseph et al. [114] calculated a
relation for the effective coefficient of restitution based on the inital position x0, the length
scale xc and the initial Stokes number St

keff = k +
1 + k

St
ln
xc
x0
. (4.103)

In Fig. 4.13 the results of the present numerical study are comparedwith the results of (4.103).
The parameter xc is used to fit the results. The deviation between the numerical and theo-
retical results is minimized with xc = 4.24 · 10−3, which is in the same order of magnitude
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as the peak roughness of the particles used by Gondret et al. [81] and of the same order of
magnitude as the numerical threshold λ. Hence, the initially purely numerical parameter λ
can indeed be used to model the direct interactions of the particles.

4.7. XNSERO-solver scheme

The XNSERO solver contains the XDG fluid solver, the particle solver and the collision proce-
dure presented in the previous sections. A pseudocode implementation of the entire solver
can be found in Alg. 7. Due to the coupling of both phases through the hydrodynamic
forces and torques in (4.63a) and (4.63b) and the boundary conditions, as implemented in
Sec. 4.3 and Sec. 4.3.1, the system is only given implicitly. Let SF be the solver for the fluid
properties uF,m+1 =

{︂
uF,m+1
1 , uF,m+1

2 , pF,m+1
}︂

and SS the solver for the particle velocities
uS,m+1 =

{︁
vm+1
11 , vm+1

21 , ωm+1
1 , ..., vm+1

1N vm+1
2N , ωm+1

N

}︁
. Due to the aforementioned coupling,

the dependencies are

uF,m+1 = SF
(︁
uF,m+1, uF,m, uF,m−1, uS,m+1

)︁
(4.104)

uS,m+1 = SS
(︁
uF,m+1, uS,m

)︁
. (4.105)

The fluid solver depends on the current fluid and particle solution, i.e. additionally to the
implicit formulation of the BDF2-method, the solver depends also implicitly on the particle
state. In (4.105) only the particle state uS,m appears as an explicit dependency. Nevertheless,
due to the occurrence of uF,m+1 in (4.105), the particle solver depends also on the current
state of both the fluid and the particles. Hence, it is necessary to introduce an iteration scheme
to solve for uF,m+1 and uS,m+1

k+1uF,m+1 = SF
(︂
kuF,m+1, uF,m, uF,m−1, kuS,m+1

)︂
(4.106)

k+1uS,m+1 = SS
(︂
k+1uF,m+1, uS,m

)︂
, (4.107)

where the preceding index k refers to the iteration step. The new fluid properties k+1uF,m+1

can be used for the particle solver, because both solvers are called sequentially, i.e. the call to
the particle solver comes after the call to the fluid solver.

4.7.1. Relaxation

Inertia plays a minor role in the present system and any change in the system triggers an
immediate reaction. Hence, it is expected that the iteration scheme as presented in (4.106)
and (4.107) is unstable. To increase the numerical stability a relaxation method is used. A
straightforward implementation delivers the under relaxation method

k+1um+1 = σ k+1ũm+1 + (1− σ) kum+1, 0 < σ ≤ 1. (4.108)

The final result of the current iteration step k+1um+1 is a linear combination of the preliminary
result k+1ũm+1 obtained directly from the solver (4.106) and (4.107) and the result of the
previous iteration step kum+1. Both terms are linked by the constant relaxation coefficient σ.
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Algorithm 7 Pseudocode implementation of a single time-step of the XNSERO-solver.
procedure RunSolverOneStep(m, tm, ∆t) ▷ Solve for uF,m+1, uS,m+1

Increase time-step counter m→ m+ 1, tm+1 = tm +∆t
if (m+ 1)%10 == 0 then ▷ Re-initialise R-tree every 10 time-steps

InitializeTree(P , ∆t) ▷ Initialise R-tree
else UpdateTree(P , ∆t ▷ Update MBRs
end if
ParticleMPICheck(P , GridData, MPISize, m+ 1) ▷ Consistency check of the particle

properties on different processes
procedure Timestepping.Solve((tm+1, ∆t))

ϕm+1=UpdateLevelSet() ▷ level-set update, see Sec. 4.4
Perform cell agglomeration ▷ see Kummer [126] and Kummer et al. [127]
0Mm+1=ComputeMassMatrix() ▷ see (4.26)
0uF,m+1=Extrapolate(uF,m, ϕm+1)) ▷ see (4.57)
while |R| ≥ ϵ do ▷ convergence criterion ϵ

Increase iteration counter k → k + 1
k+1Opm+1,k+1bm+1=ComputeOperatorMatrixAndRHS(kuF,m+1)

▷ see (4.27), (4.28)
k+1uF,m+1 = SU

(︁
kuF,m+1, uF,m, uF,m−1, kuS,m+1

)︁
▷ Call to the fluid solver

k+1
F̃
m+1=CalculateHydrodynamics

(︁
k+1uF,m+1

)︁
k+1Fm+1=AitkenRelaxation

(︂
k+1

F̃m+1,
k
F̃m+1, k−1Fm+1

)︂
▷ see (4.111)

k+1uS,m+1=UpdateVelocity
(︁
k+1Fm+1

)︁
▷ see (4.63a) and (4.63a)

R=ComputeResidual
(︁
k+1uF,m+1, kuF,m+1

)︁
end while

end procedure
CalculateCollision(P , ∆t) ▷ see Alg. 6
CalculateParticlePositonAndAngle(P , ∆t) ▷ see (4.64a) and (4.64b)

end procedure

Depending on the system in question it might be necessary to choose a small σ to obtain a
stable iteration scheme, leading to a slow convergence rate.

It is possible to speed up convergence significantly by introducing a variable relaxation coeffi-
cient. A method based on Aitken’s ∆2-process is employed to calculate the coefficient [108].
The present implementation of the relaxation process is based on Küttler and Wall [128]. The
hydrodynamic forces and torques acting on the particles are used to determine the variable
coefficient σ, because all other particle properties, i.e. the velocities, position and orientation,
follow directly and explicitly from the hydrodynamics. The forces and torques acting on all
particles are written in a single vector F = [F11, F21, T1, ..., F1N , F2N , TN ]. The relaxation
coefficient is calculated from results of two previous iteration steps of the XNSERO solver
[128]

k+1σ = − kσ
kRi

(︁
k+1Ri − kRi

)︁⃓⃓
k+1R− kR

⃓⃓2 , (4.109)
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Fig. 4.14.: Comparison between the number of iterations necessary to reach the convergence
limit |R| < ϵ = 10−7. An iteration with an Aitken relaxation process and an initial
coefficient 1σm = 1.0 needs five iterations, an iteration with a static σ = 0.75 re-
quires 30 iterations and the iteration with σ = 0.50 does not reach the convergence
limit within 50 iterations.

where the residuals kRi and k+1Ri are defined as

kRi =
k
F̃i − k−1Fi,

k+1Ri =
k+1

F̃i − k−1Fi. (4.110)

The resulting relaxation scheme is

k+1Fi =
k+1σ

k+1
F̃i +

(︂
1− k+1σ

)︂
kFi. (4.111)

Two previous values of Fi are necessary to calculate the relaxation coefficient. Hence, in the
first iteration a constant pre-defined coefficient is used 1σ = const. In the second step it is
already possible to apply (4.109) as the iteration is initialised with the results of the previous
time-step 0Fm+1

i = Fm
i . In Fig. 4.14 static underrelaxation-methods with σ = 0.5 and σ = 0.75

are compared to the Aitken relaxationmethod. The test setup is a 18×18-domain with periodic
boundaries and 216 active particles. The particle length is a = 1 and their aspect ratio ε = 2.5.
Results of the same setup are presented in Sec. 6.2. The convergence limit is ϵ = 10−7 and
the maximal number of iterations is 50. Clearly the number of iterations necessary to reach
convergence is reduced substantially by the Aitken-relaxation. For σ = 0.5 no convergence is
reached within the limit of 50 iterations. It should be noted, that relaxation methods might
increase the number of iterations necessary in some cases compared to σ = 1.0. However, in
many cases no solution can be found in case of the non-relaxated method, as the multi-body
system is very sensitive against small perturbations.

4.7.2. Multi-core computing

The solver is HPC-ready, i.e. able to compute the solution on multiple processing cores. Mes-
sage passing interface (MPI) is used as a standard for inter-process communications. The
mesh of the fluid solver is split evenly over all processes. Due to the local ansatz functions
of the XDG method inter-process communication is only necessary for the cells at the process
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Fig. 4.15.: The diagram shows the comparison of the runtime trun of the most costly algorithms
of the XNSERO solver and the overall runtime for the first five time-steps of four
different simulations. The numerical backround grid has 38, 416 square numerical
cells and 48, 128, 208, 480 particles are placed within the domain respectively. The
simulations are discussed in detal in Sec. 6.2.

boundaries. Consider a grid distributed on two processes p1 and p2. Information is shared
between both processes about the cells located at the process boundaries. The cells of p2,
which are shared with p1 are called external cells of p1 and vice versa. To obtain the necessary
numerical fluxes at the cell boundaries, the external cells are treated as source of information
the same way as if they were part of the sub-mesh on p1.

While the fluid solver is completely parallel, this does not fully apply to the particle solver.
The integration over the particle surface to obtain hydrodynamic forces and torques acting on
the particles is carried out on the sub-meshes of the processes, i.e. in parallel. The relaxation
(4.111) and the solution for (4.63a), (4.63b), (4.64a) and (4.64b) are obtained on a single
process and afterwards shared with the other processes to minimise inter-process commu-
nication. As all mentioned relations are given explicit for each iteration the computational
demand is low compared to the potential communication costs, which justifies the sequential
approach.

4.7.3. Runtime test

The runtime of the XNSERO solver is mainly governed by the linear fluid solver SF and the
integration routines. In Fig. 4.15 the runtime for different simulations for five time-steps
is compared. All simulations are carried out in a domain with solid wall boundaries and
38, 416 square cells. The number of particles is varied. Each simulation is discussed in detail,
including a figure of the initial conditions, in Sec. 6.2. The polynomial order of the fluid
velocity is k = 2, the polynomial order of the pressure field is k = 1, subsequently, the number
of DoFs is 576, 240. The DoFs are distributed over eight processes, hence, each process need
to solve a system of approximately 72, 030 DoFs. The exact number of DoFs per process might
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change based on the load balancing, which is done by a BoSSS method, see Kummer et al.
[127]. Each simulation is carried out on a machine with an Intel® Core© i7-9700K CPU and
32GB installed physical memory (RAM). In Fig. 4.15 the most costly procedures are compared,
based on their runtime on the first process.

The number of DoFs in the fluid phase changes with the number of particles considered. For
a dilute suspension N → 0 one obtains the limiting case of 576, 240 DoFs, however, with
increasing density, the number of DoFs declines. Hence, the computational costs for the linear
fluid solver, where the PARallel DIrect Solver (PARDISO) is used for all simulations [2, 29, 30],
decrease with increasing particle density. A plateau is reached for high density suspension,
because, while the number of DoFs in the fluid phase is decreased further, the costs for the
communication between processes does not decrease with the same rate. At the same time,
the amount of cut-cells increases, hence, it is necessary to formulate quadrature rules for an
increased number of complex-shaped cells, see Sec. 4.3.2. Subsequently, the load caused by
the formulation and execution of the quadrature rules increases with increasing number of
particles. Both procedures, the linear solver and the quadrature, account for approximately
2/3 of the overall runtime. The remaining 1/3 is mostly consumed by the computation of the
mass- and operator matrix, i.e. other methods to solve for the fluid properties. The particle
solver, including the tracking of the distance of the particles by the R-tree and GJK-algorithm
account for less then one percent of the runtime in the given example.
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5. Homogenised two-phase model

The particle-resolved model presented in the previous section requires enormous amounts of
computation power for large systems, see Sec. 4.7.3. In order to simulate systems with a large
number of particles, i.e. N > 1000, it is therefore necessary to further simplify the model by
using a coarse-grained representation. Coarse-grained models are widely used in the fields of
chemistry and physics. Core idea of a coarse-grained model is to represented several smaller
entities, e.g. atoms or molecules, by a larger imaginary entity, which groups the individual
atoms together, see for example Kmiecik et al. [122]. In a similar way, the individual ele-
ments of the active suspension, a specific number of particles and the fluid, can be combined
into a new pseudo-material that has the same statistical properties as the individual compo-
nents. The idea is similar to the transition from the molecular representation of a fluid to
a continuum. The properties of the suspension, such as the velocity of the particles and the
fluid, are averaged over a representative volume element, a technique known as Eulerian spa-
tial averaging [63, 102, 109, 174]. A similar approach has been chosen by Wolgemuth [208]
to model an active suspension, whose phenomenological approach leads to similar equations
of motion. However, the model is restricted to particle volume fractions below 20% and does
not consider important interactions forces such as the Saffman lift force [180]. Other studies,
e.g. Dunkel et al. [65, 66], restrict themselves to an incompressible suspension, i.e. changes
in the particle density are not considered.

Eulerian spatial averaging has been applied to a wide variety of systems, e.g debris flows
and avalanches [33, 167], partially molten material [20, 150] and bubble induced turbulence
[64, 179]. To the authors knowledge, besides our own publication Deußen et al. [55] no
direct application of the Eulerian spatial averaging theory to active suspensions based on first
principles exists. By considering the mean value, it is possible to observe very large numbers of
particles. However, information about the behaviour of the suspension on small scales is lost,
making it necessary to model corresponding fluctuation terms. This problem is thus related
to the modelling of the Reynolds stress terms in turbulence research. The derivation of the
spatially averaged model equation and the closure relations were presented first in Deußen
et al. [55], which is, thus, closely followed in the present section.

5.1. Spatial averaging

Let the representative averaging volume element V be a subset of Ω

V ⊂ Ω. (5.1)

The volume element V needs to be significantly smaller than the domain Ω and at the same
time larger than the the particle volume V P , where V P is defined as the area enclosed by the
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particle domain Ωp, see (2.56). Both phases are present in V . The number of particles in V
is N ′, where we assume that 1 ≪ N ′ ≪ N is fulfilled. Hence, by applying the condition of
non-overlapping particles (2.26) and phases (2.33), the averaging volume is defined by

V = V F ∪ V S = V F ∪
N ′⋃︂
p=1

Ωp, (5.2)

where V F is the subdomain of V occupied by the fluid. In Fig. 5.1 V is visualised in two

x
x∗

Ω

e2

e1

ζ

V

Fig. 5.1.: A visualisation of the averaging volume in two dimensions. The representative aver-
aging volume element V is a subset ofΩ. In this section the local Eulerian coordinate
is denoted by x∗ = x + ζ, where x is the centre of V and ζ is the position vector
within V . Reproduced from Deußen et al. [55], with the permission of AIP Publish-
ing

dimensions. While it is depicted as rectangular in the figure, the choice of the shape of V is
arbitrary. The Eulerian coordinate of the averaged model is x which is the centre of V . The
local coordinate x∗ = x+ ζ consist of the position vector x and the relative position ζ within
the averaging volume V [174]. In general the boundary ∂V might cut through particles.
Subsequently, it might be necessary to consider stresses within the rigid particles. However, it
is assumed that the number N ′ of particles within V is large and one can neglect the particles
cut by ∂V . Consequently, all particles are completely immersed within V . Each particle and
each phase occupies a certain fraction of V . The resulting volume fractions are defined as

αp =
V P

V
, αS =

N ′∑︂
p=1

αp =
V S

V
, αF =

V F

V
= 1− αS , (5.3)

where the saturation condition (2.33) was used to relate αF and αS .

Two different averages are necessary to derive the model. Volume integration of the arbitrary
non-dimensional physical quantity uP over the representative volume element V delivers⟨︂

uP
⟩︂
(x, t) =

1

V

∫︂
V
uP (x∗, t) γP (x∗, t)dx∗, (5.4)
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where the indicator function γP is defined in (2.30). In the most simple case uP = 1, one
obtains the previously introduced volume fractions

1

V

∫︂
V
γP dx∗ = αP. (5.5)

The particles are rigid, hence, one can assume that the property up is constant within the
particle volume V P . Subsequently the volume average delivers for the solid phase⟨︁

uS
⟩︁
(x, t) =

upΩp

V
, (5.6)

where the summation convention is applied. The second necessary average is called the true
physical average, which only considers the volume occupied by the phase P

uP (x, t) =
1

V P

∫︂
V
uP (x∗, t) γP (x∗, t)dx∗. (5.7)

Both averaged quantities are related via the volume fraction of P⟨︁
uP
⟩︁

uP
=
V P

V
= αP. (5.8)

As mentioned, in the context of the Eulerian spatial averaging theory a new pseudo-material
is considered, which consists of the particles and the fluid [63]. Thus, transport equations
for each property of the new material are derived using the volume average (5.4). The aver-
aged quantities describe the continuous material similar to the replacement of the individual
molecular velocity by the continuous velocity and pressure in a fluid continuum. Nevertheless,
the true physical average (5.7) is the desired result of the examination. Subsequently, (5.8)
is used to replace the volume average in the newly derived equations.

5.1.1. Reynolds decomposition

Similar to the Reynolds decomposition in turbulence research, Reis and Wang [174] intro-
duced the decomposition

uP = uP + ũP, (5.9)

i.e. the physical quantity uP can be described as a sum of its true average and the fluctuations
ũP. Again, in analogy to the derivation of the RANS equation in turbulence research, one
obtains

u1,Pu2,P = u1,P u2,P + u1,P ũ2,P + ũ1,P u2,P + ũ1,Pũ2,P = u1,P u2,P + ũ1,Pũ2,P (5.10)

for a product of two physical quantities u1,P and u2,P. In order to obtain this result, some
basic calculation rules for averaged variables must be followed [174]. First, the average of the
fluctuations vanishes

ũP = 0 (5.11)

and the average of the average returns

uP = uP. (5.12)
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Subsequently, one obtains
u1,Pu2,P = u1,P u2,P. (5.13)

The first term on the right hand side of (5.10) is the product of two averages and as such part
of the desired results. The second term ũ1,Pũ2,P introduces new correlation quantities. The
closure problem at hand is related to the infinite hierarchy of the PDF-equations, see Sec. 3.4.
Similar to the closure problem in turbulence, models are required, because the information
about the fluctuations are lost during the averaging process.

5.1.2. Volume averaged derivatives

It is necessary to express averages of derivatives as derivatives of averages for the derivation of
the transport equations for the quantities of the new pseudo-material. Hence, in the present
section relations are derived to change the sequence of averaging and derivation. By using the
transport equation for the phase indicator function γP (2.78), one obtains for the temporal
derivative

∂γP

∂t
= ∓δ (φ)ui

∂φ

∂x∗i
= ∓δ (φ)uΓi ni = ∓δ (φ)uSi ni, (5.14)

where ni is the normal vector at the surface, see (2.76). Throughout this section it is assumed
that the condition |∇φ| = 1 holds. The sign of the right hand side is negative for the fluid
phase P = F and positive for the solid phase P = S. Due to the rigidity of the particles, the
surface velocity uΓi = uSi equals the particle velocity. The averaging volume is static, i.e. it
does not change over time. Subsequently, it is possible to switch a temporal derivative and a
spatial integration. Leibniz product rule yields⟨︃

∂uP

∂t

⟩︃
=

1

V

∫︂
V

∂uP

∂t
γP dx∗ =

1

V

∂

∂t

∫︂
V
uPγP dx∗ − 1

V

∫︂
V
uP
∂γP

∂t
dx∗. (5.15)

Rewriting the integrals as volume averages and using (5.14) and the definition of the phase
interface (2.34) delivers⟨︃

∂uP

∂t

⟩︃
=
∂
⟨︁
uP
⟩︁

∂t
± 1

V

∫︂
V
δ (φ) uPuSi

∂φ

∂x∗i
dx∗ =

∂
⟨︁
uP
⟩︁

∂t
± 1

V

N ′∑︂
p=1

∫︂
Γp

uPuSi ni ds, (5.16)

where the sign of the integral term is positive for a fluid property uF and negative for a solid
phase property uS . The additional integral term in (5.16) represents the transport of uP at
the phase interface [63].

Similarly, one obtains for the averaged gradient⟨︃
∂uP

∂x∗i

⟩︃
=

1

V

∂

∂xi

∫︂
V
uPγP dx∗ − 1

V

∫︂
V
uP
∂γP

∂x∗i
dx∗

=
∂
⟨︁
uP
⟩︁

∂xi
∓ 1

V

∫︂
V
δ (φ) uP

∂φ

∂x∗i
dx∗ =

∂
⟨︁
uP
⟩︁

∂xi
∓ 1

V

N ′∑︂
p=1

∫︂
Γp

uPni ds, (5.17)

where ∂x∗j/∂xj = 1 and
∂γP

∂x∗i
= ±δ (φ) ∂φ

∂x∗i
= ±δ (φ)ni (5.18)
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are used. The sign of the additional surface integral in (5.17) is negative for the fluid phase
P = F and positive for the solid phase P = S.

5.2. Averaged transport equations

A general transport equation for the arbitrary physical quantity uP and the flux ΨP
i of the

same variable is
∂uP

∂t
+
∂uPuPi
∂x∗i

=
∂ΨP

i

∂x∗i
+ΠP

i , (5.19)

where ΠP
i is a source of the quantity uP. The variable uP is of arbitrary tensorial order. The

tensorial order of the flux and the source term is, accordingly, increased by one. Forming the
volume average (5.4) of the general transport equation (5.19) yields⟨︃

∂uP

∂t

⟩︃
+

⟨︄
∂uPuPi
∂x∗i

⟩︄
=

⟨︄
∂ΨP

i

∂x∗i

⟩︄
+
⟨︂
ΠP

i

⟩︂
. (5.20)

The averaged derivatives
⟨︁
∂uP/∂t

⟩︁
and

⟨︁
∂uP/∂x∗i

⟩︁
can be transformed into derivatives of

averages ∂
⟨︁
uP
⟩︁
/∂t and ∂

⟨︁
uP
⟩︁
/∂xi by applying (5.16) and (5.17). The resulting transport

equation for the volume average of uP is

∂
⟨︁
uP
⟩︁

∂t
± 1

V

N ′∑︂
p=1

∫︂
Γp

uPuSi nidS +
∂
⟨︂
uPuPi

⟩︂
∂xi

∓ 1

V

N ′∑︂
p=1

∫︂
Γp

uPuPi ni ds

=
∂
⟨︂
ΨP

i

⟩︂
∂xi

∓ 1

V

N ′∑︂
p=1

∫︂
Γp

ΨP
i ni ds+

⟨︂
ΠP

i

⟩︂
. (5.21)

The velocity of both phases in normal direction at the interface is equal due to the imperme-
ability condition (2.41) at the entire particle surface Γp. Subsequently, both surface integrals
at the left hand side of (5.21) vanish due to opposing signs. As before, the upper sign of the
combined plus-minus refers to the fluid phase and the lower sign to the solid phase.

In the next step, the true physical averaged is introduced. Using (5.8) and the decomposition
(5.9) yields

∂αPuP

∂t
+
∂αPuP uPi

∂xi
=
∂αPΨP

i

∂xi
−
∂αPũPũPi

∂xi
+ αPΠP

i ∓ 1

V

N ′∑︂
p=1

∫︂
Γp

ΨP
i ni ds, (5.22)

which is the transport equation of the true physical average of uP. In the following sections
(5.22) is used to obtain averaged balance equations for the fluid mass, the solid mass, fluid
and solid linear and rotational momentum and the particle orientation. With the exception
of the mass balance equations, all equations will require models for the Reynolds-stress type
term ∂αPũPũPi /∂xi and for the interaction term V −1

∑︁N ′

p=1

∫︁
Γp

ΨP
i ni ds.
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5.2.1. Averaged mass balance

The transport equations are derived in a dimensionless form. The mass densities of the fluid
phase ρF and solid phase ρS are non-dimensionalised by using the fluid density itself. Hence,
the dimensionless fluid density is unity and the dimensionless solid density is the density ratio
D = ρS/ρF . As a result, one obtains from (5.22) together with (5.5) the fluid phase mass
balance

∂αF

∂t
+
∂αFuFi
∂xi

= 0, (5.23)

where the general variables in (5.22) are set to uF = 1, ΨF
i = 0 and ΠF

i = 0.

In case of the solid phase, the mass balance is formed with uS = D, ΨS
i = 0 and ΠS

i = 0. The
mass densities are considered to be constant in Ω. Hence, the true average of the mass density
ratio is

D = D. (5.24)

Using aforementioned values together with (5.22) delivers the solid phase mass balance

∂αS

∂t
+
∂αSuSi
∂xi

= 0. (5.25)

The true physical average of the solid phase velocity uSi equals the average of the translational
velocity vSi of the particles

uSi =
1

V S

∫︂
V
vipγp dx∗ +

1

V S

∫︂
V
ϵijkωjp (xk − χkqγq) γp dx∗ =

vipΩp

V S
= vSi . (5.26)

The rotational velocity is constant within each particle, leading to a vanishing contribution to
the average∫︂

V
ϵijkωjp (xk − χkqγq) γp dx∗ = ϵijkωjp

∫︂
V
(xk − χkqγq) γp dx∗ = 0. (5.27)

Therefore, as expected, the rotational velocity of the particles does not contribute to the con-
vection of the particle mass. Accordingly, the mass balance (5.25) together with (5.27) yields

∂αS

∂t
+
∂αSvSi
∂xi

= 0. (5.28)

The saturation condition (2.33) has to be followed, hence, the sum of the volume fractions
returns unity

αS + αF = 1, (5.29)

delivering an additional equation. This relation is necessary to retrieve an equal number of
unknowns and equations, due to the occurrence of the fluid pressure in themomentum balance
equations.
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5.2.2. Averaged linear momentum balance

The local linear momentum balance of the fluid phase can be either described by the Navier-
Stokes equation (2.67) or the unsteady Stokes equation (2.68). In case of the particle resolved
model the unsteady Stokes equation was used, mainly to reduce the computational load of the
solver. In case of the spatially averaged model the linearisation might no longer be possible,
because an additional length scale is introduced by the representative volume element V . The
volume averaged Navier-Stokes equation is obtained from (5.22) with uFi = uFi , ΨF

ij = τFij
and ΠF

i = 0.

∂αFuFi
∂t

+
∂αFuFi u

F
j

∂xj
+
∂αF ũFi ũ

F
j

∂xj
−
∂αF τFij
∂xj

+
1

V

N ′∑︂
p=1

∫︂
Γp

τFijnj ds = 0. (5.30)

It is, alternatively, possible to obtain the volume averaged momentum balance by averaging
the Navier-Stokes equation directly. The averaged fluid stress tensor τFij depends on a material
law. Throughout the present work a Newtonian fluid is assumed; the average of the respective
material law is formed in Sec. 5.3.5.

Two unclosed terms enter (5.30). The term ∂αF ũFi ũ
F
j /∂xj resembles the Reynolds stress term

in the RANS equation and has to be modelled. The surface integral V −1
∑︁N ′

p=1

∫︁
Γp
τFijnj ds

represents interaction forces between the fluid and the solid phase and will be represented
by a linear combination of known forces, see Sec. 5.3.2 [109]. Contrary to the approach used
to derive the PDF equations, where the active Navier-Stokes equation (2.97) was employed,
the active stress does not directly appear in (5.30). Because of the volume averaging process,
the active stress enters the equation as a force. Hence, the active force is merged into the
interaction force term, i.e. the surface integral. Alternatively, it is entirely possible to add
the active stress as a production term, which would need to be introduced to the momentum
balance of the solid phase accordingly.

The linear momentum of the solid phase is uSi = DuSi . Due to the rigidity of the particles and
the assumption, that all particles cut by the surface ∂V can be neglected, the flux ΨS = 0
vanishes. The only source of momentum in the system is the active stress, however, it is
introduced into the model via the interaction force term. Thus, no source occurs ΠS

i = 0. At
the surface of the particles the jump condition

JτijnjK = 0, ∀x∗ ∈ Γp (5.31)

is applied, leading to ∫︂
Γp

τSijnj ds =
∫︂
Γp

τFijnj ds. (5.32)

Using (5.22) together with (5.27) and (5.32) delivers the averaged solid phase linear momen-
tum balance equation

D

[︄
∂αSvSi
∂t

+
∂αSvSi v

S
j

∂xj
+
∂αS ṽSi ṽ

S
j

∂xj

]︄
− 1

V

N ′∑︂
p=1

∫︂
Γp

τFijnjdS = 0. (5.33)
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The unclosed integral term −V −1
∑︁N ′

p=1

∫︁
Γp
τFijnjdS is equal to the surface integral term in

(5.30) with reversed sign. Again, an additional Reynolds stress type term ∂αS ṽSi ṽ
S
j /∂xj en-

ters the equation, which has to be modelled. As for the fluid phase, (5.33) can be obtained
from the local physical equations, i.e. the translational Newton-Euler equation (2.54). While
the local quantity of the translational velocity vip = vip (t) only depends on the time t, the
averaging process introduced a spatial dependency via the phase indicator function γP in
(5.4). Subsequently, the averaged equation for the linear momentum contain a convective
term, which is not the case in the local linear momentum balance.

5.2.3. Averaged angular momentum balance

The local angular momentum of the fluid phase with respect to the centre of V is uFi =
ϵijkζju

F
k . The flux is ΨF

ij = ϵijkζjτkl. Using (5.20) delivers the averaged angular momen-
tum balance ⟨︃

ϵijkζj
∂uFk
∂t

⟩︃
+

⟨︃
ϵijkζj

∂uFk u
F
l

∂x∗l

⟩︃
−
⟨︃
ϵijkζj

∂τFkl
∂x∗l

⟩︃
+
⟨︁
ϵijkτ

F
jk

⟩︁
= 0. (5.34)

The first three terms in (5.34) represent the angular momentum of the linear momentum. Us-
ing Navier-Stokes equation (2.67) these terms vanish and one obtains with (5.8) the symmetry
of the fluid stress tensor

τFij = τFji , (5.35)

which is a property of a Newtonian fluid and preserved during the averaging process.

The angular momentum of the solid phase with respect to the coordinate origin is Dϵijkx∗juSk .
The averaged angular momentum is

Dϵijkx
∗
ju

S
k = Dϵijk

⎡⎣x∗jvSk + ϵijk

N ′∑︂
p=1

χipvSk +ΘijωS
j

⎤⎦ , (5.36)

where the first two terms on the right hand side are contributions of the angular momentum
of the linear momentum. Subsequently, their contributions to the balance equation for the
angular momentum vanish similar to the fluid phase angular momentum. The last termΘS

ijω
S
j

describes the average angular momentum of the particles with respect to their centre of mass.
In general, both, the moment of inertia tensor ΘS

ij and the rotational velocity ωS
j are functions

of the time t . Changing the reference frame to a body-fixed frame delivers a constant ΘS
ij .

Furthermore, it is assumed that the axes of the body reference frame align with the primary
axes of the particle, leading to a diagonal moment of inertia tensor ΘS

ij . However, due to the
rotating nature of the body reference frame the temporal derivative changes. Let ea,P with
a = 1, 2, 3 be the body reference frame and the principle axes of inertia. In this case the
moment of inertia tensor contains only diagonal elements. Due to the rotation the temporal
derivative of the unit vector system ea,P is

dea,Pi

dt
= ϵijkωje

a,P
k ∀a ∈ {1, 2, 3} . (5.37)
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Using (5.37), the general averaged transport equation (5.22), the decomposition (5.9) and
the definition (2.52) of the particle radial vector ri one obtains the transport equation for the
averaged particle angular momentum

ΘS
ij

∂αSωS
j

∂t
+ΘS

ij

∂αSωS
j v

S
k

∂xk
+ΘS

ij

∂αSω̃S
j ṽ

S
k

∂xk
+ ϵijkα

SΘS
klω

S
j ω

S
l + ϵijkα

SΘS
klω̃

S
j ω̃

S
l

− 1

V

N ′∑︂
p=1

∫︂
Γp

ϵijkrjτ
F
klnl ds = 0, (5.38)

where the fourth and fifth terms on the right hand side arise due to the temporal change
of the body reference frame (5.37), similar to the local three rotational Newton-Euler equa-
tion (2.55). The moment of inertia tensor ΘS

ij is constant, hence, it is no longer necessary
to include it in the averaging process. Both terms ϵijkαSΘS

klω
S
j ω

S
l + ϵijkα

SΘS
klω̃

S
j ω̃

S
l van-

ish in case of a two-dimensional problem, reducing the amount of modelling necessary. The
integral term V −1

∑︁N
p=1

∫︁
Γp
ϵijkrjτ

F
klnldS represents hydrodynamic torques acting on the par-

ticles. Similar to the hydrodynamic forces in case of the linear momentum balance, it will be
modelled as a linear combination of well-known torques. Additionally, the fluctuation terms
ΘS

ij∂α
Sω̃S

j ṽ
S
k /∂xk and ϵijkαSΘS

klω̃
S
j ω̃

S
l need to be modelled as they are unclosed.

5.2.4. Particle orientation balance

Although the orientation of the particles is not a conservation variable, it has a great influence
on the behaviour of an active suspension. For several of the interaction forces and torques,
which will be used to model the surface integrals in the momentum equations, the orientation
vector defines the direction of the forces respectively the torque. As we will see, the behaviour
of the averaged orientation differs significantly from the orientation of the individual particles.
The volume averaged model is derived for three dimensions, hence, the orientation vector eip
is used as the transport variable. Its local temporal derivative is (2.48)

deip
dt

= ϵijkωjpeiqγq.

Subsequently, (5.22) is used together with uS = eSi , ΨS
i = 0 and ΠS

i = ϵijkωjpeiqγq, leading to

∂αSeSi
∂t

+
∂αSeSi v

S
j

∂xj
+
∂αS ẽSi ṽ

S
j

∂xj
− ϵijkα

SωS
j e

S
k − ϵijkα

Sω̃S
j ẽ

S
k = 0. (5.39)

The length of the particle orientation vector ei = eipγp is always unity. However, the averaged
orientation vector, which transport and change is described by (5.39), has a variable length.
As such, it measures not only the orientation, but also the orderliness of the particles. In
the case that all particles are orientated parallel and in the same direction, the length eS =⃓⃓⃓
eSi

⃓⃓⃓
becomes unity. In the opposing case, when all particles are pairwise opposite orientated

eS = 0 approaches zero. While the term ϵijkα
SωS

j e
S
k is a source term for the element eSi of

the averaged orientation vector, it does not change the length of the vector. Hence, the two
unclosed fluctuation terms ∂αS ẽSi ṽ

S
j /∂xj and ϵijkα

Sω̃S
j ẽ

S
k in (5.39) are responsible for the

length change and need to be modelled.
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5.2.5. Relation between the PDF equations and the volume averaged equations

The PDF equations derived in Sec. 3.4 contain all information about the averaged equations
derived in the present section, hence, they provide an alternate way to derive the averaged
equations. The average or expectation value of a general variable u can be defined by using
the PDF fU

⟨u⟩ =
∫︂

UfU dU, (5.40)

i.e. by an integration with respect to the sample space variable U. As an example, the averaged
fluid linear momentum equation (5.30) is derived. The velocity marginal PDF equation is
given for the single-field velocityUi. Considering only the velocity in the bulk of the fluid phase
by multiplying (3.88) with the sample space indicator function 1g

F delivers the following
reduced equation∫︂

∂ 1g
F

1f

∂t
+
∂ 1g

F
1Vi 1f

∂xi
dX db

=
1

4π

∂

∂ 1Vi

∫︂
1g

F ∂

∂ 1xi

1

|2x− 1x|

(︃
2Vi

∂

∂ 2xi

)︃2

2f d 2xd 2V dX db

− 1

Re
∂

∂ 1Vi

∫︂
δ (2x− 1x) 1g

F
2Vi

∂2 2f

∂ 2xj
2
d 2xd 2V dX db, (5.41)

which, apart from the indicator function 1g
F , is equivalent to the equation for the single point

PDF given by Lundgren [142]. Applying (5.40) to (5.41) and integrating by parts delivers

∂

∂t

∫︂
1g

F
1Vi 1f d 1V dX db+

∂

∂xj

∫︂
1g

F
1Vi 1Vj 1f d 1V dX db

= − 1

4π

∫︂
1g

F ∂

∂ 1xi

1

|2x− 1x|

(︃
2Vi

∂

∂ 2xi

)︃2

1f (2V )d 2xd 2V dX db

+
1

Re

∫︂
1g

F
1Vi

∂2 1f

∂ 2xj
2
d 1V dX db, (5.42)

where 1f (2V ) is the single-point PDF at 2x. The equation (5.42) can be rewritten as

∂
⟨︁
γFuFi

⟩︁
∂t

+
∂
⟨︂
γFuFi u

F
j

⟩︂
∂xj

= −
⟨︃
γF

∂pF

∂xi

⟩︃
+

⟨︄
γF

Re
∂2uFi
∂u2j

⟩︄
=

⟨︃
γF

∂τij
∂xj

,

⟩︃
. (5.43)

The averaged occurring in (5.40) and (5.43) are ensemble averages in contrast to the volume
averages in (5.30). It is possible to transform the averages by using the ergodic hypothesis
[31]. A statistically stationary random process is called ergodic, i.e. the PDF of the respective
process does not depend on a time-shift ∆t

fU (t) = fU (t+∆t) . (5.44)

In case of such a process both the time average and the ensemble average are equivalent.

lim
T→∞

1

T

∫︂ T

0
u (x, t)dt =

∫︂
UfU dU. (5.45)
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Transferring this idea to a volume average delivers

lim
V→∞

1

V

∫︂
V
u (x, t)dx =

∫︂
UfU dU, (5.46)

which requires an infinite averaging volume V → ∞. In a real system the domain and sub-
sequently the averaging volume are finite. To ensure that still a large number of possible
realisations of the ensemble occur in the averaging volume, it is required that the number
of particle within the averaging volume is large. This requires V P /V ≪ 1, leading to the
approximation

1

V

∫︂
V
u (x, t)dx ≈

∫︂
UfU dU. (5.47)

Using this approximation (5.47) together with (5.16), (5.17) and (5.43) delivers

∂
⟨︁
uFi
⟩︁

∂t
+
∂
⟨︂
uFi u

F
j

⟩︂
∂xj

=
∂ ⟨τij⟩
∂xj

− 1

V

N ′∑︂
p=1

∫︂
Γp

τijnj ds, (5.48)

where the averaging operator ⟨·⟩ now again refers to the volume average (5.4). Introducing the
decomposition (5.9) and the true physical volume average (5.7) delivers the volume averaged
linear momentum balance for the fluid as given in (5.30).

5.3. Closure relations

The different transport equation of both phases for the mass (5.23), (5.28), linear momen-
tum (5.30), (5.33), angular momentum (5.38) and the orientation of the solid phase (5.39)
contain different unclosed terms. All terms can be grouped into two different types. The first
type of unclosed terms contains the interaction terms between the two phases, represented
by the surface integrals

1

V

N ′∑︂
p=1

∫︂
Γp

τFijnj ds and
1

V

N ′∑︂
p=1

∫︂
Γp

ϵijkrjτ
F
klnl ds. (5.49)

The second type of unclosed term contains the fluctuations of the physical variables. The
equations (5.30), (5.33), (5.38) and (5.39) contain such terms, which will be modelled by
phenomenological considerations. Additionally, the averaged fluid stress tensor τFij needs to
be defined in this section.

5.3.1. Mixture viscosity and mixture Reynolds number

Up until know, friction, dissipation and viscosity does not explicitly enters the volume averaged
model, it is, however, implied due to the occurrence of the averaged stress tensor τFij . The
rigid particles cause additional resistance against deformation, which leads to an increase of
the Reynolds number compared to a single phase fluid flow [109]. This was first described
by Einstein [68, 69], who introduced a mixture viscosity µM , leading to a mixture Reynolds
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number ReM . For small volume fractions αS ≪ 1 and spherical particles the mixture viscosity
is [69]

µM = µF
(︃
1 +

5

2
αS

)︃
. (5.50)

Ishii and Hibiki [109] extended this relation by using a power law to account for higher particle
densities

µM = µF
(︃
1− αS

αS
max

)︃−µintαS
max

, (5.51)

where αS
max is themaximum volume fraction of the solid phase. In general, αS

max is smaller than
unity, because even at the highest density packing cavities still exist. Spherical particle have
a maximum random packing fraction of αS

max = 0.64 [198], whereas for ellipsoidal particles
this value increases up to 0.74 [39, 60]. The intrinsic viscosity µint in (5.51) accounts for the
shape of the particles. For ellipsoidal particles Pabst et al. [164] gave the following relation

µint =
5

2
+ 0.123 (ε− 1)0.925 , (5.52)

with the aspect ratio ε of the particles. In case of spherical particles the intrinsic viscosity
becomes µint = 5/2, subsequently, the linear expansion of (5.51) delivers (5.50).

The particle Reynolds number is

ReP =
ρFU ca

µF
, (5.53)

where the particle length a is used as the characteristic length scale Lc = a. Using the mixture
viscosity delivers the mixture Reynolds number

ReM =
ρFU ca

µM
=
ρFU ca

µF

(︃
1− αS

αS
max

)︃µintαS
max

, (5.54)

which will be used throughout the following sections.

5.3.2. Interface forces

The integral terms in the transport equations for the linear momentum (5.30) and (5.33)
represent forces at the phase interface. The forces acting on the solid phase are

⟨︁
FS
i

⟩︁
=
FipΩp

V
=
V P

V

N ′∑︂
p=1

∫︂
Γp

τFijnjdS (5.55)

Due to momentum conservation the forces acting on the fluid phase have the same absolute
value but opposing sign ⟨︁

FS
i

⟩︁
= −

⟨︁
FF
i

⟩︁
(5.56)

The interface forces are modelled as a linear combination of well establish forces⟨︁
FS
i

⟩︁
=
⟨︁
FA
i

⟩︁
+
⟨︁
FD
i

⟩︁
+
⟨︁
FB
i

⟩︁
+
⟨︁
F V
i

⟩︁
+
⟨︁
FL
i

⟩︁
+
⟨︁
FP
i

⟩︁
. (5.57)

The active stress at the particle surface causes the averaged active force
⟨︁
FA
i

⟩︁
. The averaged

drag force
⟨︁
FD
i

⟩︁
is caused by the friction between the two phases. The averaged Basset-force
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⟨︁
FB
i

⟩︁
and the virtual mass force

⟨︁
F V
i

⟩︁
have their origin in the relative acceleration of the two

phases. However, due to the low Reynolds number assumed in an active suspension, it will
be shown, that both force contributions can be neglected. The averaged lift force

⟨︁
FL
i

⟩︁
has

three contributions, the Saffman-force
⟨︁
FLS
i

⟩︁
, the Magnus-force

⟨︁
FLM
i

⟩︁
and the circulation

lift force
⟨︁
FLC
i

⟩︁
. The last contribution to (5.57) is the averaged pressure force

⟨︁
FP
i

⟩︁
, caused

by a pressure gradient at the interface.

Active force

The active stress at the surface of the particles is a source of momentum, necessary to drive
the particles forward. According to the definition of the active source term (2.98) the local
active stress exerted on the fluid phase is

Ai = δ (x∗ − Γac)Acti, (5.58)

with the non-dimensional active stress magnitude Ac. Forming the average delivers

V P

V

∫︂
V
δ (x∗ − Γac)Acti dx∗ =

V P

V

N ′∑︂
p=1

∫︂
Γac
p

Acti ds

=− 2aAc

ε

eipΩp

V

∫︂ π

π
2

sin(θ)
√︂
ε2 sin2(θ) + cos2(θ)dθ

=− αSAceSi (5.59)

for a two-dimensional pusher particle, where θ is the polar angle, see Fig. 2.2. In case of
a puller particle, the sign in (5.59) has to be reversed, leading to an particle moving in the
opposite direction. Alternatively, the integration domain of the elliptic integral can be change
to
∫︁ π/2
0 , effectively switching the active and passive part of the particle. Instead of using

the magnitude Ac and the elliptic integral directly, the active force magnitude, see (2.95) is
introduced

Ac =
2aAc

ε

∫︂ π

π
2

sin(θ)
√︂
ε2 sin2(θ) + cos2(θ)dθ.

The averaged active force Ac simply can be prescribed, removing the necessity to distinguish
between cases of different spatial dimensions. The force derived in (5.59) is the force acting
on the fluid, hence, due to momentum conservation the averaged active force on the particle
is ⟨︁

FA
i

⟩︁
= αSAceSi . (5.60)

As stated in Sec. 5.2.4, the averaged orientation eSi is not a unit vector. Thus, the length
of the averaged orientation might vanish eS = 0, leading to an suspension with no effective
averaged active force, despite the existence of active particles. The fluctuation correlations in
the averaged transport equations will be used to model effects of the active stress on smaller
scales, where information are lost in the averaged system.
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Drag force

The averaged drag force
⟨︁
FD
i

⟩︁
accounts for the friction between the two phases. It ensures

that velocity differences are evened out. The drag force on a single particle in an uniform
flow has two contributions, the form drag F form

i and the friction drag F friction
i [132] and it is

proportional to the relative velocity between the two phases

wS
i = uFi − uSi . (5.61)

The form drag is caused by the pressure and the friction drag by viscous forces. Leith [132]
wrote Stokes’ law for a spherical particle in the following form

FD
i =

3πa

ReP
wS
i = F form

i + F friction
i , (5.62)

where FD
i is the drag force acting on a single particle, F form

i = 1/3FD
i and F friction

i = 2/3FD
i .

The form drag is proportional to the cross sectional area A⊥ of the particle perpendicular to
the relative velocity vector wS

i . The friction drag on the other hand is associated with the
longitudinal cross sectional area A∥ parallel to wi. For an non-spherical particle, the deviation
of the spherical form is measured by the sphericity

Φ∥ =
a2v
a2s

=
π

1
3

(︁
6V P

)︁ 2
3

Γp
, (5.63)

where av is the diameter of a volume equivalent sphere with respect to the particle and as
is the diameter of a surface equivalent sphere. Furthermore, the cross sectional sphericity is
defined as

Φ⊥ =
a2v
a2⊥
, (5.64)

where a⊥ is the diameter of the disk with the same surface area as A⊥ of the particle. While
av and as are constants depending on the geometry of the particle, a⊥ is a function of the
relative velocity wi and the orientation of the particle. Using the sphericity (5.63) and the
cross sectional sphericity (5.64) together with Stokes’ law for a spherical particle (5.62), one
obtains for a non-spherical particle [132]

FD
i =

πa

ReP

(︄
1√
Φ⊥

+
2√︁
Φ∥

)︄
wS
i . (5.65)

Hölzer and Sommerfeld [98] derived a more complex relation for the drag on a non-spherical
particle, however, for low Reynolds number their relation also reduces to (5.65).

So far, only a passive particle with a uniform no-slip boundary condition in an infinite domain
has been considered. Both, the active boundary of the Janus particle and the possible no-slip
boundary condition at the outer surface of the domain Ω might influence the effective drag
on the particle. Considering an ideal slip-sphere, Happel and Brenner [90] gave a correction
factor of 2/3 compared to a no-slip sphere, i.e. the friction drag F friction

i vanishes due to the
slip boundary, however, the form drag F form

i is increased by a factor of two. The active surface
of a Janus particle is not an ideal slip boundary. Hence, the relation between the no-slip drag
F

no-slip
i and the slip drag force F slip

i is not clear. However, a numerical study [57] suggests, that
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F Janus
i = 0.5

(︂
F

no-slip
i + F

slip
i

)︂
. Subsequently, the correction factor for an active Janus particle

with two equally sized surfaces Γac and Γpa is

cDAc =
5

6
. (5.66)

Domain boundaries might have two separate effects. On the one hand, they might influence
the general behaviour of a particle independent of its position. On the other hand, the drag
on a particle close to a solid wall is generally increased. However, numerical studies [92] for
a particle in a duct showed that if the size of the particle is much smaller than the height of
the duct a

εH ≪ H, the influence of the relative position towards the wall is negligible. The
general increase of the drag force due to the solid walls of a duct according to Hensley and
Papavassiliou [92] is

cDH = 1 + 2.33ε
2
5
a

εH
, (5.67)

which again is close to unity for small ratios a/εH. With cDcorr = cDAcc
D
H one obtains the drag

force on a Janus particle

FD
i =

πacDcorr
ReP

(︄
1√
Φ⊥

+
2√︁
Φ∥

)︄
wS
i . (5.68)

So far, the particle Reynolds number ReP was used, because only a single particle was consid-
ered. In the next step, the drag force is extended to an active suspension, hence, the mixture
Reynolds number ReM is used. Averaging (5.68) delivers

⟨︁
FD
i

⟩︁
=
αSπacDcorr

ReM

(︄
1

√
Φ⊥

+
2√︁
Φ∥

)︄
wS
i , (5.69)

where all correlations of fluctuations where neglected and the average of the relative velocity
is defined as

αSwS
i = αS

(︂
uFi − vSi

)︂
. (5.70)

Note that, due to the fact that the cross sectional sphericity is a function of the orientation and
the relative velocity, it is also an averaged variable. Specifically, in (5.69) the average of the
square root

√
Φ⊥ is formed. The sphericity Φ∥ on the other hand is constant and no average

has to be taken.

The circulation lift force FLC
i will be defined as a function of the drag coefficient CD. Hence,

by considering a three dimensional particle with the longitudinal cross sectional area πa2/4ε
one obtains

CD =
8εcDcorr

a
⃓⃓⃓
wS
⃓⃓⃓
ReM

(︄
1

√
Φ⊥

+
2√︁
Φ∥

)︄
, (5.71)

which leads to ⟨︁
FD
i

⟩︁
=
αSπa2

8ε
CD

⃓⃓⃓
wS
⃓⃓⃓
wS
i . (5.72)
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Basset-force and virtual mass force

The Basset-force arises due to viscous effects of the relative acceleration of the two phases,
whereas the virtual mass force accounts for inertia effects of the relative acceleration [109]. As
mentioned, both contribution to the interface forces can be neglected due to the low Reynolds
number condition, which will be shown in the following assessment. According to Ishii and
Hibiki [109] the Basset-force on a spherical particle is

FB
i = 3a2

√︃
πD

ReP

∫︂
t

dwS
i

dt′
dt′√
t− t′

, (5.73)

where the relative acceleration between the two phases is

dwS
i

dt
=
∂wS

i

∂t
+
∂wS

i u
S
j

∂x∗j
. (5.74)

Comparing FB
i to the drag force on a spherical particle delivers the proportionality coefficient

FB
i

FD
i

∝
√︁

ReP a2 = O
(︁
10−7.5

)︁
, (5.75)

where ReP = 10−3 and a micrometer sized particle a = 10−6 was assumed.

The virtual mass force is [109, 110, 218]

F V
i =

αp

2

1 + 2αS

1− αS

dwS
i

dt
. (5.76)

Again, by considering the drag for a spherical particle, one obtains the coefficient

F V
i

FD
i

∝ ReP a2 = O
(︁
10−15

)︁
(5.77)

with the above values for ReP and a. Subsequently, the Basset-force and the virtual mass force
are negligable for small particles and small Reynolds numbers.

Lift force

The lift force acting on a single particle comes from three contributions. A fluid velocity
gradient causes a lift force at the particle, called Saffman-force FLS

i . If the particle itself has
a rotational velocity the Magnus-force FLM

i is induced. The third component of the lift force
is caused by the circulation of the fluid FLC

i , similar to the lift force acting on an airfoil.

Saffman [180] established a formulation for the lift force due to a fluid velocity gradient acting
on a spherical particle

FLS
i = 1.615

√︃
a

Re
⃓⃓
ωF
⃓⃓− 1

2 ϵijkw
S
j ω

F
k , (5.78)

where we used a non-dimensional formulation given by Ishii and Hibiki [109]. Here, ωF
i is

the rotation of the fluid flow

ωF
i = ϵijk

∂uFj
∂x∗k

. (5.79)
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Results of Hölzer and Sommerfeld [99] indicate, that (5.78) also holds for non-spherical par-
ticles under the condition Re ≪ 1. To obtain the average of (5.78) it is assumed that the fluid
rotation (5.79) is constant within the averaging volume

ωF
i = ϵijk

∂uFj
∂xk

. (5.80)

Thus, no products of the form u1,Pu2,P occur and one obtains for the averaged Saffman-force

⟨︁
FLS
i

⟩︁
= 1.615αS

√︃
a

ReM
⃓⃓⃓
ωF
⃓⃓⃓− 1

2
ϵijkw

S
j ω

F
k , (5.81)

where the mixture Reynolds number is used to account for the suspension.

The relative rotation of the fluid and the particle 1/2ωF
i − ωS

i determines the Magnus-force.
It causes a drift in the perpendicular direction of the relative translational velocity and the
relative rotational velocity. For spherical particles the non-dimensional relation reads [178]

FLM
i =

π

8
a3ϵijk

(︃
1

2
ωF
i − ωS

i

)︃
wS
k . (5.82)

Similar to the Saffman-force, Hölzer and Sommerfeld [99] showed that Rubinow’s theory is in
good agreement with the numerically obtained values for the Magnus-force of an ellipsoidal
particle. Averaging and neglecting any terms arising due to fluctuations delivers

⟨︁
FLM
i

⟩︁
=
αSπa3

8
ϵijk

(︃
1

2
ωF
i − ωS

i

)︃
wS
k , (5.83)

which is the averaged Magnus-force acting on the active particles in the suspension. Note
that the Magnus-force also depends on the fluid density, however, throughout this work it is
assumed that the non-dimensional fluid density is unity. Hence, it does not explicitly appear
in the relations for the Magnus-force (5.82) and (5.83).

A non-spherical, ellipsoidal particle experiences an additional lift force FLC
i , if the orientation

vector ei = eipγp does not align with the vector of the relative velocity wS
i . The resulting

circulation is the main source of the lift on an airfoil. In the theory of airfoils the Kutta-
Joukowski theorem relates the magnitude of FLC

i to the circulation G

FLC = ρFwSG, (5.84)

which is based on invisicid theory and not applicable to an active suspension due to its high-
viscous, low-Reynolds nature. The lift force on a single particle with an angle of incidence ϕI

towards the relative velocity is [151]

FLC
i = sgn

(︁
wS
i eipγp

)︁π
8
a2CLϵijk

(︁
ϵklmw

S
l emqγq

)︁
wS
k , (5.85)

where the angle of incidence ϕI is

cosϕI =
eipγpw

S
i

|eqγq| |wS |
. (5.86)
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It should be noted, that the relative velocity of the two phases is expected to be rather small
due to the low Reynolds number. Hence, as the circulation lift force depends quadratically
on the relative velocity wS

i , compared to the linear dependency of the Magnus- and Saffman-
force, the influence of the circulation lift force is expected to be smaller. The drag coefficient
CD is used to define the lift coefficient CL and subsequently the magnitude of the circulation
lift force. Hoerner [97] derived the relation

CL = CD sin2
(︁
ϕI
)︁
cos
(︁
ϕI
)︁
. (5.87)

To improve the calculation of the lift coefficient a fit based on Hoerner [97] and numerical
data is derived

CL
(︁
ϕI
)︁
= CDa0 sin

(︁
a1ϕ

I
)︁
sin
(︁
a1ϕ

I + a2
)︁
cos
(︁
a1ϕ

I + a3
)︁

(5.88)

with the coefficients a1, a2 and a3. Simulations in BoSSS for a single particle with a diameter
a = 1 and an aspect ratio ε = 2 are used to obtain exemplary values for the coefficients. The
particle is placed in a uniform flow with an inflow a the right and an outflow at the left side
of the domain Ω. Boundary conditions at the upper and lower side are periodic. The resulting
coefficients are

a0 = 0.92, a1 = 0.647, a2 = 0.351π, a3 = 0.177π, (5.89)

which do not depend on the particle Reynolds number ReP .

Especially the signum function in (5.85) is difficult to model, because the result of the average
sgn
(︁
wS
i eipγp

)︁
is unknown. The assumption

CL(ϕ)Isgn
(︁
wS
i eipγp

)︁
≈ ceCL

(︂ˆ︂ϕI
)︂
sgn
(︂
eSi · wS

i

)︂
. (5.90)

is used as an approximation. The additional model parameter ce = ce
(︁
eS
)︁
is a function

of the length of the averaged orientation vector eS . The parameter is meant to introduce a
dependency on the orderliness of the suspension state. Perpendicular orientation vectors of
many particle pairs and an effective orientation of each pair parallel to the relative velocity
leads to a vanishing averaged signum function. Thus, the parameter ce has a minimum in case
of eS =

√
2/2, because the probability for all particles to be perpendicular to each other in

pairs reaches a maximum. However, it is not possible to assume a vanishing circulation lift
force in general, leading to the model constant ce1, accounting for the minimum circulation lift.
In the case eS = 1 all particles move parallel. Hence, the averaged signum function reaches
its maximum value and ce = 1. The opposing case eS = 0 delivers a second maximum, which
is defined by the second model parameter ce2 ≤ 1. This behaviour is mapped by the ansatz

ce =

(︃
ce2 − ce1

2
cos
(︃
2π√
2
eS
)︃
+
ce2 + ce1

2

)︃(︄
1−H

(︄
eS −

√
2

2

)︄)︄

+

(︃
1− ce1

2
cos
(︃

2π

2−
√
2

(︁
eS − 1

)︁)︃
+
ce2 + ce1

2

)︃
H

(︄
eS −

√
2

2

)︄
. (5.91)

Furthermore, it is necessary to define a model for the averaged angle of incidence. The fol-
lowing approximation is used

cos
(︁ˆ︁ϕI
)︁
=

eSi w
S
i⃓⃓⃓

eS
⃓⃓⃓ ⃓⃓⃓
wS
⃓⃓⃓ , (5.92)
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where the circumflex indicates an approximated quantity obtained from averaged quantities
and not amathematical average. Using the two approximations (5.90) and (5.92), one obtains
the averaged circulation lift force

⟨︁
FLC
i

⟩︁
≈ αSsgn

(︂
eS ·wS

)︂ πa2ce
8

CL
(︁ˆ︁ϕI
)︁
ϵijkϵjlmw

S
l e

S
mw

S
k , (5.93)

where any fluctuations were neglected.

Pressure force

A pressure gradient over the surface of a particle causes an additional force. Assuming the
pressure gradient to be constant at the entire surface, delivers for a single particle

FP
i = −V P ∂p

F

∂x∗i
. (5.94)

Averaging (5.94) delivers ⟨︁
FP
i

⟩︁
= −V P ∂α

SpF

∂xi
, (5.95)

where a constant pressure gradient within the averaging volume was assumed.

5.3.3. Interface torques

The torque at the interface

⟨Ti⟩ =
V P

V

N ′∑︂
p=1

∫︂
Γp

ϵijkrjτ
F
klnl ds (5.96)

emerges as a source in the solid phase angular momentum balance (5.38). The torque has
two contributions. For spherical particles or particles with an aspect ratio close to unity the
main contribution is the drag torque TD

i , caused by the friction between the two phases. For
elongated particles the pitching torque TP

i becomes more important, caused by an off-centred
point of attack of the interface forces. Hence, the averaged torque is

⟨Ti⟩ =
⟨︁
TP
i

⟩︁
+
⟨︁
TD
i

⟩︁
. (5.97)

Pitching torque

Depending on the angle of incidence ϕI and the aspect ratio ε of a particle, the centre of
pressure is the point of attack of all interface forces

⟨︁
FS
i

⟩︁
. Rosendahl [175] gave the expression

rCP
(︁
ϕI
)︁
=
⃓⃓(︁
χCP
p − χp

)︁
γp
⃓⃓
=
a

4

(︁
1− e1−ε

)︁ (︁
1− sin3 ϕI

)︁
(5.98)
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for the length of the distance vector rCP
i between the centre of mass χip and the centre of

pressure χCP
ip of a single particle. It is assumed that the direction of rCP

i is defined by the
orientation vector ei = eipγp

rCP
i = sgn

(︁
wS
j ejpγp

)︁
rCP

(︁
ϕI
)︁
eipγp. (5.99)

Similar to the circulation lift force, a signum function and the angle of incidence occurs in
(5.99). Thus, it is necessary to find an approximation for the averaged distance vector rCP

i .
The angle of incidence is again approximated by (5.92) and it is assumed that the averaged
distance vector can be described by

rCP
i = sgn

(︂
wS
j e

S
j

)︂
rCP

(︁ˆ︁ϕI
)︁
eSi . (5.100)

Following Mandø and Rosendahl [145] the cross product

TP
i = ϵijkr

CP
j FS

k . (5.101)

defines the pitching torque. Averaging and neglecting any emerging fluctuation term delivers
the averaged pitching torque ⟨︁

TP
i

⟩︁
= ϵijkr

CP
j

⟨︁
FS
k

⟩︁
. (5.102)

Drag torque

The cause of the drag torque is solely the friction in tangential direction at the interface be-
tween a particle and the surrounding fluid. In case of a single spherical particle the drag
torque is [75, 118]

TD
i =

πa3

ReP

(︃
1

2
ωF
i − ωS

i

)︃
. (5.103)

There is no form component of the drag torque as it is in the case of the drag force. Sub-
sequently, by using the sphericity Φ∥ one obtains the drag torque for a non-spherical passive
particle

TD
i =

πa3

ReP Φ
3
2

∥

(︃
1

2
ωF
i − ωS

i

)︃
. (5.104)

An additional correction factor is necessary to account for the active boundary condition and
the slip velocity caused by it. For an ideal slip-particle the entire drag torque vanishes. While
the active boundary is not an ideal slip boundary condition due to the active stress, the latter
is symmetric. Hence, it does not contribute to the net torque on the particle and the correction
factor is cDT

corr = 0.5, leading to

TD
i =

πa3cDT
corr

ReP Φ
3
2

∥

(︃
1

2
ωF
i − ωS

i

)︃
. (5.105)

Averaging yields ⟨︁
TD
i

⟩︁
=
αSπa3cDT

corr

ReM Φ
3
2

∥

(︃
1

2
ωF
i − ωS

i

)︃
, (5.106)

where the mixture Reynolds number accounts for the suspension. The averaged drag torque
(5.106) is proportional to the difference of the rotation 1

2ω
F
i − ωS

i and aims to reduce said
difference.
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5.3.4. Fluctuation correlation tensors

The averaged balance equations for the linear momentum (5.30), (5.33), for the angular
momentum (5.38) and the particle orientation (5.39) contain tensors of fluctuation correla-
tions. These terms transport information about smaller scales influencing the macroscopic
behaviour of the suspension. The information about small scales is lost during the averaging
process, hence, it is necessary to describe the fluctuation correlations by model relations. The
most simple model would be to neglect any fluctuation correlation. However, important and
characteristic behaviour of an active suspension can not be mapped by such a model. For
example, the averaged active force only acts on the suspension if eS ̸= 0. Nevertheless, the
active stress of the particles in such a suspension still acts as a source for the linear momentum,
which has to be introduced by a model for the fluctuation tensors. The tensors ũPi ũ

P
j are of

an equivalent type as the Reynolds stress tensor in the RANS equation describing turbulent
flows. Following the line of thought employed in turbulence research, a Boussinesq ansatz is
formulated in analogy to the fluid stress tensor τFij

ũPi ũ
P
j =

2

3
Kδij − µS

(︄
∂uPi
∂xj

+
∂uPj
∂xi

)︄
, (5.107)

which is employed as a model for the fluctuation correlations in all of the transport equations
mentioned before. Here, K = 0.5 ũPi ũ

P
i is a generalised turbulent kinetic energy, analogously

to turbulence research. The diffusion coefficient µS is introduced in analogy to the turbulent
eddy viscosity.

Translational velocity correlation

The correlation tensor
∂αS ṽSi ṽ

S
j

∂xj
(5.108)

occurs in the averaged solid phase linear momentum balance (5.33). It is assumed that it
describes interactions between individual particles. The diffusive part of the Boussinesq ansatz
(5.107) describes collision effects, which in a low-Reynolds flow have a negligible effect on
the particle distribution but a large effect on the momentum equilibrium due to friction. It is
assumed that the mixture viscosity accounts for the momentum diffusion µS = 1

ReM , i.e. the
lubrication of the particle surface does not break.

The turbulent kinetic energy 0.5 ṽSi ṽ
S
i is a measure for the energy stored in the fluctuations of

the flow field. It is assumed that the main source of such fluctuations is the active stress at the
particle surface. The flow in the vicinity of each particles resembles the flow field of a force
dipole (1.3), decaying with 1/r2 in three dimensions, where r is the length of the distance
vector ri = 2x

∗
i − 1x

∗
i . The dipole is situated at 1x

∗
i and induces a velocity at 2x

∗
i . Using the

magnitude of the active force Ac as strength of the dipole in (1.3) and introducing the angle
κ, defined by cos (κ) = 1eip 1γpri, delivers [217]

2u
ac
i =

AcaReM

8πr (r2 + cK)

(︁
3 cos2 (κ)− 1

)︁
ri, (5.109)
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where 2u
ac
i is the velocity induced due to the active stress at the point 2x

∗
i . In (5.109) a model

parameter cK is used to flatten the velocity gradient in the closest proximity to the particle sur-
face in order to resemble experimental results of the flow field around an active particle [62].
This modification is especially necessary within a distance of half a particle length around the
surface. Hence, cK = (a/2)2 is chosen. A second particle at 2x

∗
i is accelerated by the action of

the force dipole (5.109). By moving the second particle closer to the first particle at 1x
∗
i the

work per volume

Kac = −D

2

(︃
AcReMa

8π (r2 + cK)

)︃2 (︁
3 cos2 (κ)− 1

)︁2 (5.110)

is done. In order to find the average of Kac, it is assumed that the average of r is

r =

(︃
V

N ′

)︃ 1
3

=

(︃
V P

αS

)︃ 1
3

. (5.111)

Furthermore, to obtain the average(︂
3 (cos (κ))2 − 1

)︂2
= 9cos4 (κ)− 6cos2 (κ) + 1 =

11

8
(5.112)

an equal distribution of all particles within the averaging volume is assumed, leading to the
averaged kinetic energy

Kac = − 11D(︁
r2 + cK

)︁2 (︃AcReMa

32π

)︃2

. (5.113)

Similarly, if a particle is positioned close to a solid wall, wall and particle will interact through
the fluid. The so called mirror system of a force dipole at a solid wall consists of a superposition
of a force dipole, a force quadrupole and a source quadrupole [22, 25]. Subsequently, one
obtains the averaged work done by moving a particle closer to the wall

KW = − D

2 (h2 + cK)2

(︃
3AcaReM

64π

)︃2 (︁
1− 3 cos2

(︁
κW
)︁)︁2

, (5.114)

by using Berke et al. [22] as a basis. The cosine cos
(︁
κW
)︁
= nWi e

S
i is defined by the averaged

orientation vector eSi and the normal vector nWi of the wall and h is the distance of the particle
towards the wall.

The sum ofKac andKW isK = Kac+KW leading to the following Boussinesq ansatz for the
translational velocity correlation tensor

DαS ṽSi ṽ
S
j =

2

3
αSKδij −

DαS

ReM

(︄
∂vSi
∂xj

+
∂vSj
∂xi

)︄
. (5.115)
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Rotational-translational velocity correlations

The expression

ΘS
ij

∂αSω̃S
j ṽ

S
k

∂xk
+ ϵijkα

SΘS
klω̃

S
j ω̃

S
l (5.116)

occurs in (5.38). The following model is derived under the assumption, that the first term
represents interactions between particles based on the active stress and transfer of rotational
kinetic energy into translational kinetic energy due to collisions and vice versa. The latter
assumption was made due to the occurrence of both the translational and the rotational par-
ticle velocity in the first term. The second term on the other hand only contains fluctuations
of the rotational velocity, connected by the Levi-Civita symbol. Hence, it is assumed that it
represents transfer of rotational kinetic energy between particles during collisions. Because
of the Levi-Civita symbol only the antisymmetric part of the tensor ΘS

klω̃
S
j ω̃

S
l is necessary to

model.

Similar to the translational correlations the Boussinesq ansatz is used to model the term
ΘS

ij∂α
Sω̃S

j ṽ
S
k /∂xk. It should include interactions due to the active stress and transfer of en-

ergy between the translational and the rotational velocities. Hence, it is proposed based on
the Boussinesq ansatz

ΘS
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)︄
, (5.117)

whereW =W ac +WW represents the interactions between other particles due to the active
stress and interactions with a solid wall. The second term in the Boussinesq approximation
introduces collision effects by applying the mixture Reynolds number to model diffusion. Both
contributions of the parameter W are modelled in analogy to Kac and KW . Following Zöttl
and Stark [217] the magnitude of the rotational velocity induced by the particle q to another
particle p at a certain distance r is

ωac =
AcaReM

8π
(︂
r3 + (cK)

3
2

)︂ cos (κ) sin (κ)
[︃
3− ε2 − 1

ε2 + 1

(︂
6 cos (κ)2 + 1

)︂]︃
, (5.118)

which is directed perpendicular to the eq-r-plane. Subsequently, we obtain for the averaged
rotational kinetic energy

W ac =
ΘS

er(︂
r3 + (cK)

3
2

)︂2 (︃AcaReM

32π

)︃2(︃
3− 4

ε2 − 1

ε2 + 1

)︃2

. (5.119)

Here, themoment of inertiaΘS
er is the component of the tensorΘS

ij related to the perpendicular
direction of the eq-r-plane. However, due to the averaging process, the information about the
parameters of this plane are lost. The moment if inertia is, thus, modelled by taking the
average of the elements of the known tensor of inertia ΘS

ij , leading to the averaged moment of
inertia ΘS

er. The rotational energy obtained by moving a particle closer to the wall is derived
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from the induced rotational velocity due to the mirror system as given by Berke et al. [22] and
the distance from the wall h, leading to

WW =
ΘS

er

2
(︂
h3 + (cK)

3
2

)︂2 (︃3AcaReM

64π

)︃2

× (5.120)

× cos
(︁
κW
)︁2 sin (︁κW )︁2 [︃1 + ε2 − 1

2 (ε2 + 1)
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)︁2)︂]︃2

.

As mentioned in the introduction of this section, the second term of (5.116) is meant to rep-
resent further collision effects. It should be noted, that due to the Levi-Civita symbol and the
antisymmetric nature of the tensor the term will only have an effect in fully three dimensional
systems. We propose the ansatz
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∂ũSm
∂xn

ΘS
klω̃

S
l =

1

2
ϵjmn

(︄
∂ũSmΘS

klω̃
S
l

∂xn
− ũSj
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In the second last step of (5.121) a modified version of the Boussinesq approximation was
used

ũPi ũ
P
j = µS

(︄
∂uPi
∂xj

−
∂uPj
∂xi

)︄
, µS =

1

ReM
(5.122)

which will be called antisymmetric Boussinesq approximation.

Orientation-velocity correlations

In the transport equation for the averaged particle orientation additional fluctuation terms

∂αS ẽSi ṽ
S
j

∂xj
− ϵijkα

Sω̃j ẽk (5.123)

occur. The first term is a correlation between the fluctuations of the orientation vector and
the fluctuations of the translational velocity. Accordingly, it is straightforward to assume, that
it represents the influence of the translational velocity on the orientation due to collisions and
the active stress. In the second term the rotational velocity occurs, hence, it represents the
interactions between the rotational velocity and the orientation during collisions.

122



In analogy to the velocity correlations the Boussinesq approximation is used to model the
translational velocity-orientation correlation

ẽSi ṽ
S
j =

2

3
αSKEδij −

1

ReM

(︄
∂eSi
∂xj

+
∂eSj
∂xi

)︄
. (5.124)

The first term accounts for interactions due to the active stress and the second term represent
collisions between particles. It is a viscous term modelled with the mixture Reynolds number
ReM , i.e. in this model collisions enforce realignment of particles. The diagonal part KE is
modelled by introducing the quantity

eipu
ac
i =

AcaReM

8πr (r2 + cK)

(︂
3 (cos (κ))2 − 1

)︂
rieip, (5.125)

representing the influence of the active fluid velocity, i.e. the velocity induced by a force dipole
(5.109), on the orientation. It vanishes during the averaging process in the domain far away
from the wall, because

(︂
3 (cos (κ))2 − 1

)︂
rieip = 0, where it is necessary to neglect fluctuations

and to assume an equal distribution of the particles within the averaging volume. In the near
wall region the averaged orientation-velocity correlation becomes
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, (5.126)

which completes the Boussinesq approximation (5.124).

The rotational velocity-orientation correlation in (5.123) is modelled by the antisymmetric
Boussineq ansatz, introduced in the previous section Sec. 5.3.4. Because of the occurrence of
the Levi-Civita symbol in (5.123) only the non-diagonal, antisymmetric elements of the tensor
are relevant, leading to

ω̃j ẽk =
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2
εjmn
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1

ReM

)︃(︄
∂eSk
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− ∂eSm
∂xk

)︄
. (5.127)

Similar to (5.121) the antisymmetric correlation (5.127) only occurs in fully three dimensional
systems.

Fluid velocity correlation

The transport equation for the averaged fluid velocity contains the correlation of the fluctua-
tions of the fluid velocity αF ũFi ũ

F
j . It is the well-known Reynolds-stress term from turbulence

research, which occurs in the RANS equation due to the ensemble average and in large eddy
simulations due to the spatial filtering. Hence, it can be modelled in analogy to turbulent eddy
viscosity models by a Boussinesq ansatz

αF ũFi ũ
F
j =

2

3
αFKδij − αFµt

(︄
∂uFi
∂xj

+
∂uFj
∂xi

)︄
. (5.128)

The diagonal termK of the ansatz is modelled by−Kac in analogy to the particle translational
velocity. The assumption behind this ansatz is, that fluctuations in a low-Reynolds active
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suspension mainly originate from the active stress at the fluid-particle interface. The eddy
viscosity in turbulence research µt represents energy dissipation on small scales. However,
due to the condition of a low-Reynolds flow Re ≪ 1 and in general small scales, it can be
assumed that µt ≪ µF . Subsequently, it is possible to neglect the eddy viscosity for a model
of an low-Reynolds suspension.

5.3.5. Fluid stress tensor

Beside the Reynolds stress tensor discussed in the previous section, the averaged fluid velocity
equation also contains the averaged stress tensor τFij . Throughout the entire work a Newtonian
fluid is assumed, hence, the local stress tensor is

τFij = −pF δij +
1

Re

[︄
∂uFi
∂x∗j

+
∂uFj
∂x∗i

]︄
, (5.129)

where the derivatives are taken with respect to the local spatial coordinate x∗i . The first step
is to replace the fluid Reynolds number Re by the mixture Reynolds number ReM to account
for the increased resistance against deformation due to the rigid particles. The average of of
the stress tensor is

τFij = −pF +
1

ReM
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− 1
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, (5.130)

where it is assumed that αS is constant within the averaging volume V . Thus, the mixture
Reynolds number ReM is not averaged. The integral terms result from the average of the
gradient of the velocity, see (5.17). The particles are rigid, hence, the contribution of the
integral terms vanish. Subsequently, one obtains for the divergence of the averaged stress
tensor

∂αF τFij
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F pF
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∂
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[︄
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. (5.131)

5.3.6. Closed system

In the previous sections closure relations for the entire system of averaged transport equations
are derived. The system consists of fifteen equations for fifteen unknown variables in three
dimensions. The averaged variables are the volume fractions of both phases αF , αS , the
fluid pressure pF , the fluid velocity uFi , the solid translational velocity vSi , the solid rotational
velocity ωF

i and the solid orientation vector eSi . All equations necessary to solve for the given
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variables are, including the saturation condition (2.33),
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5.4. Implementation

Results in this work, see Sec. 6.3, are obtained for steady planar flows. Thus, the model
is implemented using MATLAB’s (Version 9.2.0.556344, R2017a) built-in one-dimensional
partial differential equations solver pdepe.m. It employs a finite difference method (FDM)
[187] for the spatial discretisation. Another built-in method ode15s.m provides the numerical
integration in time, based on numerical differentiation formulas up to fifth order [185, 186].
This implementation can be used to obtain stationary results for planar flows, leading to the
results given in Sec. 6.3. The MATLAB-scripts related to the publication Deußen et al. [55]
are publicly available via TUdatalib [54]. The scripts in [54] form the basis for the scripts
used in the present work, which are also publicly available, including the results presented in
Sec. 6.3, via TUdatalib [52].

In order to make the numerical procedure more robust and to comply with the limits

0 ≤ αS ≤ αS
max, 0 ≤ eS ≤ 1 (5.133)

additionally auxiliary functions are introduced. Especially for iterative procedures it is nec-
essary to provide additional limitations to prevent overestimations. Furthermore, due to the
dependency of the mixture Reynolds number ReM on the particle volume fraction αS , the
inverse Reynolds number 1/ReM might become very large. This singularity is a numerically
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unfavourable behaviour, because it leads to non-converging solutions. Lets assume that the
particle volume fraction αS is a function of an auxiliary variable gα

αS =
αS
max

1 + exp (−gα)
. (5.134)

This equation represents a logistic function, which image αS is restricted to the interval(︁
0, αS

max
)︁
. Introducing (5.134) into the transport equation for the mass of the solid phase

(5.28) delivers
∂gα

∂t
+ vSi

∂gα

∂xi
+ (exp (gα) + 1)

∂vSi
∂xi

= 0. (5.135)

Solving the new transport equation for gα instead of the unmodified mass balance delivers a
numerically stable procedure to determine the solution of the system (5.132).

Analogously, a logistic function is introduced for the length eS of the orientation vector eSi

eS =
1

1 + exp (−ge)
, (5.136)

restricting eS to the interval (0, 1). However, no equation is knownwhich directly describes the
behaviour of eS . Forming the dot product of eSi and the transport equation for the orientation
(5.39) delivers such an equation
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The solution of (5.137) is then used to rescale the solution provided by (5.39) for the individual
components of the orientation vector.
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6. Results

Results for the particle-resolved model and for the homogenised model are presented in this
section. Starting with a single-particle setup solved with BoSSS, basic properties of active
particles are investigated and discussed (Sec. 6.1). With the help of the single particle sim-
ulation, it can be shown how individual particles interact with a solid wall and how pusher
and puller particles differ in this respect. Furthermore, the correctness of the approximation
of the active particle by a Stokes dipole is shown by using a line-out plot. In the course of
the section, the complexity of the system is continuously increased. In the next step, a system
with two particles in a domain with periodic boundaries is examined (Sec. 6.2.1). Special
attention is paid to the mutual attraction or repulsion of the particles, which is predicted by
the velocity equation of the Stokes dipole and was already used in the modelling process of
the homogenised model, see Sec. 5.3.4.

Based on these simple systems, suspensions with multiple particles can be analysed. For this
purpose, nine particles are first investigated in a channel domain in Sec. 6.2.2. The differences
between pusher and puller particles will be discussed again, where the focus is on the stability
of the trajectory followed. This investigation will lead to the conclusion that pusher particles
have a significantly more unstable behaviour than puller particles. Since the main focus of this
work is on the examination of chaotic systems, the following numerical experiments will only
be carried out with pusher particles. Real suspensions with many particles are investigated
in the last section on particle-resolved systems (Sec. 6.2.3). A large number of particles are
introduced into a domain closed with walls, whereby the number of particles and, thus, the
particle density is varied between different experiments. Due to the high number of parti-
cles, it is possible to determine statistical values such as the PDF. Therefore, the theoretical
findings from Sec. 3 can be used to directly link the occurring phenomena with the physical
and statistical equations. Limitations in the available computing power force a switch to the
homogenised model presented in Sec. 5 for even larger systems. Results for various planar
flows are examined in Sec. 6.3. It is found that in the presence of velocity gradients of the
background flow, additional forces occur that amplify known effects such as wall attraction.
Furthermore, it can be observed that different aggregate states of the solid phase occur, a
finding that also results from the analysis of the statistical Lie symmetries.

6.1. Single particle simulation

In this simple setup a single active particle is placed in the centre of a closed domain Ω. As
the name implies, all outer boundaries ∂Ω of the domain are impermeable, no-slip walls. The
particle is of elliptical shape; its length is a = 1 and the aspect ratio is ε = 2.5. The dimen-
sionless active stress at the active boundary Γac is Ac = 10. This particle is used throughout
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Fig. 6.1.: The flow field in the vicinity of a particle changes during the acceleration phase. The
vectors indicate the fluid flow and the colour scale the absolute value of the fluid
velocity. A slow moving particle accelerates (a) by pushing fluid in the opposing
direction. (b) Due to the movement of the particle, the fluid in front of the particle
also starts to move together with the particle. This slows down the acceleration. (c)
The particle has reached its cruising speed. The flow field now resembles the flow
field of a force dipole, see Fig. 1.2.

multiple numerical experiments, which are presented in the current and following sections.
Hence, it will be referred to as standard particle. The domain is a square with the edge length
aΩ = 19.6, subdivided into 38, 416 square numerical cells, where the cell diameter is h = 0.1.
Again, this domain is used throughout multiple numerical experiments and will be referred
to as standard domain. The polynomial order for the velocity is set to two, subsequently, the
polynomial order for the pressure is one. This leads to a maximum number of 576, 240 DoFs
for the fluid solver. This number is, however, reduced by the presence of the particles, because
cells fully occupied by the particles are considered void.

In Fig. 6.1 the acceleration phase of a single pusher particle is shown, where the colour scale
refers to the speed of the fluid, i.e. the absolute value of the velocity, and the vectors indicate
the velocity field. This combination of colour and vectors is used throughout all figures in this
section. The particle is orientated in the right direction, hence, the active surface is located
at the left half of the particle surface. At the beginning of the simulation the particle velocity
is zero, hence, the fluid is solely accelerated in the left direction by the active stress. Once
the particle starts moving, fluid material is accelerated in the right direction together with the
particle due to the no-slip boundary condition at the passive half of the surface (Fig 6.1a+b).
The flow field of the particle resembles that of a two-dimensional Stokes dipole (Fig 1.2) once
the particle has reached its terminal velocity (Fig 6.1c). A line-out plot of the fluid velocity
during the terminal phase is shown in Fig. 6.2. The plots are taken at the right and left side
of the particle as well as at the upper and lower side, which will be referred to by compass
directions. The characteristic behaviour of a Stokes dipole, which decays with 1/r in two
dimensions, is especially visible in the Northern and Southern direction. In a large area, both
plots decay with an exponent m = 1 similar to the Stokes dipole. The behaviour is only
different close to the particle surface r/a → 0 and close to the domain wall r/a → 10. The
latter one is caused by the no-slip and impermeable wall, which causes the velocity to decay
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Fig. 6.2.: The velocity of the fluid is plotted into four directions starting at the surface of a
single particle. The direction of the plots are given using compass directions.

faster. Close to the particle surface, the approximation of a Stokes dipole is no longer valid,
which is known throughout the literature, see for example Bechinger et al. [18]. A stagnation
point is visible at the Northern and Southern direction, directly at the particle surface, which
is indicated by a decrease in the velocity in Fig. 6.2. It is caused by the connection between the
active and the passive surface, where the active surface accelerates the fluid in one direction
and the passive no-slip boundary condition accelerates the fluid in the opposing direction,
which is the direction of the particle velocity.

The Western plot shows a singularity at r/a ≈ 0.1, which is caused by the active boundary
condition. At the Northern and Southern surface of the particle the fluid is accelerated in the
Western direction alongside the particle surface. Due to the curvature of the surface, the two
flows at the Northern and Southern side have an opposing direction at thewesternmost point of
the particle, leading to a stagnation point. On both sides, the Western and the Eastern one, the
decay of the velocity is overall smaller and subsequently increased in the wall region compared
to the Northern and Southern side. Note that the particle was initialised at the centre of the
domain and has since then moved in the Eastern direction. Hence, the distance to the wall for
the Eastern line-out plot is shorter than the Western one. Furthermore, the particle has started
to slowly rotate, causing the velocity difference in the Northern and Southern direction in the
proximity of the particle.

The cause of the rotation of the particle, i.e. its unstable orientation, is a small perturbation,
e.g. a numerical error. Pusher particles in general are sensitive towards even very small per-
turbations, a fact which will be examined further in Sec. 6.2.2. The instability is reinforced
by the interactions between the particle and the domain wall. Active particles aligning and
being attracted to solid walls is a well known behaviour, see for example Volpe et al. [201]
and Zöttl and Stark [217]. In the exemplary image strip Fig. 6.3 the three main phases of
the interactions between a active pusher particle and a wall are visible. As described by Volpe
et al. [201] the three phases are approach (Fig. 6.3a-e), contact (Fig. 6.3f) and detachment
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Fig. 6.3.: A single particle approaches a solid wall at the right side of each image. (a) The
particle is tilted and moves in the upper right direction. (a)-(e) Due to the wall the
fluid flow towards the particle at the side facing the wall is cut off. Hence, due to the
remaining flow on the other particle side, the particle moves towards the wall. (f)
The particle has aligned towards the wall, moving even closer will lead to a collision
between particle and wall. (g)-(h) A collision has taken place and the particle slowly
leaves the wall.

(Fig. 6.3g+h). During the process, the particle orientation first aligns parallel to the wall.
During the detachment, the particle rotates further and detaches from the wall, i.e. one could
say that the particle is reflected at the wall, in analogy to the behaviour of waves. The ac-
tive stress causes the particle not only to move in the direction of its orientation, but also in
the normal direction of the wall, where hydrodynamic interactions between wall and particle
cause the particle to be attracted towards the wall. Subsequently, even after the detachment
of the particle from the wall, the particle will, over time, realign and again approach the wall
starting the process depicted in Fig. 6.3 anew. The attraction towards the wall can be ex-
plained by a so called mirror system. The idea is to replace the wall by flow singularities
similar to the Stokes dipole, which represents the particle. In order to fulfil the no-slip bound-
ary condition, it is necessary to introduce a Stokes dipole, a force quadrupole and a source
quadrupole as a mirror system [25]. Berke et al. [22] derives the velocity induced on the
particle in the wall-normal direction, which has been used in the present work to determine
the translational velocity correlations of the homogenised model, see (5.114). If the angle κW
between the particle orientation vector and the wall normal vector is κW > arccos

(︁
1/
√
3
)︁
,

the particle is attracted towards the wall, otherwise it is repulsed [22]. Hence, a particle mov-
ing in an already tilted manner towards the wall, as given in Fig. 6.3, will, most likely, move
constantly alongside the wall, repeating the three phases approach, contact and detachment
if no additional perturbations exist [18].

A puller particle can be obtained by reversing the orientation vector and changing the sign
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Fig. 6.4.: The fluid flow around a puller particle (see Fig. 1.2), which swims into the right
direction, is reversed compared to flow in the vicinity of a pusher particle (Fig. 6.1).
(a) Fluid is moved primarily in the left direction during the acceleration phase of the
pusher particle. (b) The particle approaches the domainwall at the right boundary of
the image. Note, that the flow field closely resembles the ideal flow field of a Stokes
dipole, however, the fluid flow on the Eastern side of the particle is suppressed due
to the wall. (c) The particle approaches the wall in the horizontal direction. The
small angle visible in (b) vanished.

of the active stress. The resulting flow field (Fig. 6.4) is reversed compared to the pusher
particle, i.e. fluid is accelerated towards the particle in the Western and Eastern direction and
accelerated away from the particle in the Northern and Southern direction. During the ac-
celeration phase (Fig.6.4a) the particle velocity is small, hence, the flow field differs from the
ideal Stokes dipole. Once the acceleration is finished (Fig.6.4b), the flow field more closely
resembles the singularity. While perturbations still lead to changes in the orientation of the
particle (Fig.6.4b), the interaction with the vertical wall at the right side of the image causes
the particle to realign with the horizontal axis. The parallel alignment of the particle orien-
tation vector and the wall normal vector holds even after the particle has reached the wall
(Fig.6.4c), i.e. the particle is trapped at the wall. The alignment towards the normal vector of
the wall is again a well observed property of puller particles, see for example Bechinger et al.
[18] and Lauga and Powers [130].

6.2. Multi particle simulations

While the behaviour of a single particle is certainly interesting, the main focus of this work is
the behaviour of a suspension, i.e. a multi-particle system and the emergence of chaotic and
deterministic states. The increased sample-size enables the usage of statistical quantities and,
subsequently, the possibility to apply the results of the probability theory and Lie-symmetry
analysis to the numerical results. First, in Sec. 6.2.1 interactions between two particles are
investigated. From this, fundamental properties of active particles can be derived, which then
explain the behaviour of larger systems. The differences between pusher and puller particles
are further examined in a series of numerical experiments in a periodic channel. The length
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Fig. 6.5.: Initially, two particles are placed close to the centre of the periodic domain. The
diameter of the numerical cells is h = 0.1 and the particles are standard particles.
(a) Two parallel particles with a horizontal distance of two. (b) Two parallel but
opposing particles with a horizontal and vertical distance of two. (c) Two opposing
particles with a horizontal distance of two.

of the averaged orientation vector (Sec. 5.2.4) is used to indicate chaotic and deterministic
behaviour. In a third series of numerical experiments the complexity of the system is further
increased. While the channel experiments only contain nine particles, now suspensions with
up to 480 particles are examined. The domain is fully closed, hence, it is possible to observe

• wall agglomeration effects,

• bulk agglomeration effects,

• orientational alignment.

The particle volume fraction of the suspensions is varied by changing the number of parti-
cles within the domain, while keeping the size of the domain constant. The effects are first
described qualitatively by analysing snapshots of the simulations at certain time-steps. In a
second step, the analysis is carried out quantitatively by using different statistical measures.

6.2.1. Two particle interactions

In this section, numerical experiments with two standard particles in a periodic 10×10 domain
with h = 0.1 are discussed. In the first experiment two pusher particles are initially placed
close to the centre of the domain, see Fig 6.5a. The distance for each particle from the centre is
unity, i.e. one particle length. Subsequently, the centres ofmass for both particles are separated
by a distance of r = 2. Both particles are initially orientated in the vertical direction. The
active part of the surface is facing downwards and the orientation vector is facing upwards.
The results for this experiment are presented in Fig. 6.6. Relatively quickly, the particles begin
to move towards each other and deviate from their original trajectories. The orientation vector
of each particle points more strongly in the direction of the other particle (Fig. 6.6b). As soon
as the particles are close, they again begin to move in an approximately parallel direction,
while still attracting each other (Fig. 6.6c). This behaviour is well-known in the literature, see
for example Bechinger et al. [18] and Berke et al. [22]. It is a property which can be directly
deduced from the velocity field around a Stokes dipole (1.5). In the case of the two particles
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Fig. 6.6.: Two particles are placed in a periodic domain. (a) Initially, the particles are placed
parallel towards each other with a horizontal distance of two particle lengths be-
tween the centre of mass. (b) The particles reorientate towards another at t = 4.3.
(c) At t = 12.3 the particles are positioned closely and start to realign in a parallel
direction.

in the experiment, the distance vector ri between the particles and the orientation vectors
are approximately perpendicular to each other due to the initial arrangement. It follows from
(1.5) that each particle induces a velocity in the opposite direction of ri. Hence, both particles
are attracted towards each other. This circumstance was used, for example, in this work to
model the velocity correlations in the homogenised model, see (5.113).

In the next experiment, both particles are placed in an opposing direction on parallel trajecto-
ries. The vertical and horizontal distance between the centre of mass is equal to two particle
lengths, see Fig. 6.5b. In the first time-steps of the simulation, both particles move undisturbed
from their opponent on their initial path (Fig. 6.7a). The particle p is orientated upwards, i.e.
the active stress accelerates the surrounding fluid in the downward direction. The right par-
ticle q on the other hand, moves downwards, hence, the active stress acts upwards. Once the
particles reach a similar vertical position, they start to reorientate towards another (Fig.6.7b),
similar to the previous experiment. However, because of the opposing movement, the attrac-
tion due to the active stress is not strong enough to cause direct contact between the two
particles. Instead, it induces a moment and, subsequently, a rotational velocity, which causes
the particles to leave their initial path. Once a particle has left the near field of its opponent,
it will follow the new trajectory undisturbed. The rotational velocity, induced by the moment,
will decline over time. Nevertheless, the particle trajectory is not a straight line. However,
the problem is symmetric, hence, both particle will always have an approximately parallel ori-
entation. For example, at t = 12.4 (Fig. 6.7c) the orientation angle towards the horizontal
axis of the lower particle q is βq = 1.17π and the orientation angle of the upper particle p is
βp = 0.16π. The deviation from an actual parallel alignment of the particles is therefore only
0.01π.

In case of two directly opposing particles, see Fig. 6.8, the two pusher particles try to evade
another. The left particle p is orientated towards the right side, whereas its opponent q faces
left. Both particles are initialised on the horizontal axis with a distance from the centre of the
domain of r = 1, i.e. the particles are separated by two particle lengths (Fig. 6.5c). Instead

133



(a)

p

q

(b)

p

q

(c)
p

q

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

⃓⃓
uF
⃓⃓

Fig. 6.7.: Two particles are placed in a periodic domain. (a) Initially, the particles are placed
parallel towards each other with a horizontal and vertical distance of two particle
lengths between the centre of mass. (b) The particles start interacting with another
at t = 4.3. (c) At t = 12.3 the particles have left their initial vertical trajectory. The
new path of both particles is still parallel.

of rotating towards the other particle and thus facing in the direction of the other particle,
which was the case in the experiments investigating parallel particles (Fig. 6.6, Fig. 6.7),
the particle orientation vector starts pointing away from the opposing particle (Fig. 6.8b).
However, as both particles continuously move forward, at some point they are aligned parallel,
while still having opposing directions. Accordingly, the interaction from now on follows a
similar scheme as in the second experiment (Fig. 6.7) and the particles will follow parallel
trajectories in opposing directions. The absolute value of the orientation angle towards the
horizontal axis of both particles is approximately equal to 45°, where the angle of the upper
particle is βp = 0.26π and the orientation angle for the lower particle is βq = 1.28π. The
deviation towards a perfect parallel alignment is again small and takes a value of 0.02π. The
evading behaviour of the particles is again a result of the Stokes dipole nature of an active
pusher particle. The distance vector ri and the orientation vector of each of the particles
are initially parallel, hence, the resulting velocity induced by one particle on the other is
in the positive distance vector direction, see (1.5). Accordingly, both particles try to push
away the opposing particle. The own active stress of the particles acts against this push-
back and combined with the inherent instability of a pusher particle, as investigated in the
single-particle simulations and in the following Sec. 6.2.2, this leads to the evasion visible in
Fig. 6.8b+c. Once the particles are no longer aligned towards the horizontal axis, a moment
and, subsequently, a rotational velocity is induced by the respective opponent.

So far, the initial axes of orientation of both particles have been parallel in all three presented
experiments. The next two-particle experiment will show, that this is not a necessary property
in order to obtain parallel movement after the interaction. In Fig. 6.9 the results are presented.
The left particle p is initially placed with a vertical and horizontal distance of two towards the
right particle q. Furthermore the orientation angle towards the horizontal axis is βp = π/4.
The second particle faces in the downward direction βq = −π/2. The initial setup is preserved
until the two particles are close to each other, see Fig. 6.9. The left particle p induces a
negative rotational velocity on the right particle q, leading to a rotation to the left lower corner.
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Fig. 6.8.: Two particles are placed in a periodic domain. (a) Initially, the particles are placed
opposing towards each other with a horizontal distance of two particle lengths be-
tween the centre of mass. (b) The particles try to evade each other at t = 4.3. (c)
Both particles move on approximatly parallel trajectories in the opposing direction
at t = 12.4.

The induced velocity on the first particle p, however, is minimal, because it is located in the
blind spot of the particle q. By blind spot the area is meant, where the outward pointing and
inward pointing flow of the Stokes dipole come into contact and, subsequently, the induced
velocity vanishes, see Fig. 1.2. Thus, the orientation angle towards the horizontal axis of
the particle p remains βp = π/4 and the orientation angle of the second particle q becomes
βq = 1.21π, see Fig. 6.9c. Additionally, the two particles are relatively close to the boundary
and already interact with another over the periodic boundary, leading to the asymmetrical flow
field visible in Fig. 6.9c. Independently of the initial setup, two particles show a clear tendency
of aligning their trajectories parallel to each other. While this behaviour might be disturbed by
the presence of solid walls or additional particles, it is expected to observe alignment towards
other particles also in multi-particle experiments.

6.2.2. Particles in a channel

The initial setup for all numerical experiments in this section is presented in Fig. 6.10. Nine
particles are placed in the left half of the domain, orientated towards the right side. Depending
on the experiment, the particles might be either pusher or puller particles and have different
geometrical properties. Depicted in Fig. 6.10 are nine standard particles. The upper and lower
domain boundaries are solid walls, whereas the right and left side are periodic boundaries.
The length of the channel is 19.6 and the height is 3.92, i.e. the length of the channel is the same
as the length of the standard domain and the height to length ratio is five. The cell diameter
is again h = 0.1, leading to 2, 952 cells and a maximum of 44, 280 DoFs. Both numbers are
reduced by the number of cells occupied by the particles.

The series starts with an experiment containing nine pusher standard particles as depicted in
Fig. 6.10. The progression of the simulation is shown in Fig. 6.11. During the initial accelera-
tion phase (Fig. 6.11a) the fluid flow opposes the motion of the particles. While the particles
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Fig. 6.9.: Two particles are placed in a periodic domain. (a) Initially, one particle is tilted with
an angle of βp = π/4, whereas the other particle faces downwards βq = −π/2. (b)
The particles keep their orientation at t = 4.3. (c) At t = 12.3 the particles move on
approximately parallel trajectories in opposing directions.

move approximately parallel in the right direction, the fluid is accelerated to the left. The
ordered initial state will eventually break down (Fig. 6.11b+c) and the particles will accumu-
late at the channel walls. Note, that the fluid flow is now reversed, i.e. the particles accelerate
each other indirectly via the fluid. However, due to the unordered, chaotic state of the par-
ticles, regions with vertical or reversed fluid flow might appear, leading to an overall slower
acceleration of the particles compared to the initial parallel motion.

Puller particles on the other hand show a much more stable behaviour. Nine puller standard
particles are placed in the domain as shown in Fig. 6.10. Compared to the pusher particles,
the puller particles are able to better hold the parallel formation, see Fig. 6.12. A direct results
from the parallel orientation is an increased averaged particle velocity compared to the system
with pusher particles.

The differences between pusher and puller particles can be quantified by analysing their av-
eraged orientation and velocity. The averaged quantities are obtained in each time-step by
calculating the mean value of all nine particles, similar to the procedure of obtaining the ho-
mogenised model (Sec. 5). The results for the absolute value of the averaged orientation
vector and velocity are presented in Fig. 6.13. The behaviour, which is visible in the already
discussed snapshots of the simulations, is clearly expressed in the diagrams. The averaged
length of the orientation vector decreases over time for the pusher particles, indicating the
chaotic orientation visible in Fig. 6.11. Maxima, as they appear in the diagram at t = 35, are
the product of random equal orientation. In this case, several particles move simultaneously
and parallel to the upper wall (Fig. 6.11b). Despite such local peaks, eS trends downwards in
case of pusher particle until a steady state of eS ≈ 0.5 is reached. The overall orientation of
the puller particles on the other hand is almost constant, hence, eS ≈ 1. The differences in
the orientation result in a significantly different averaged velocity. Due to the parallel motion
of the puller particles, almost no collisions occur and the particles are able to accelerate much
more efficiently than the pusher particles. Ergo, the acceleration phase lasts longer and the
averaged terminal velocity of the puller particles

⃓⃓⃓
uS,P l

⃓⃓⃓
≈ 0.32 is higher than the terminal
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Fig. 6.10.: The initial particle position in the first time-step. Nine standard particles are placed
in the left half of the domain, which is five times longer than high. Upper and lower
boundary are solid walls, whereas a periodic boundary is used at the left and right
side. All particles are orientated towards the right side of the resulting channel,
leading to an initial motion in the right direction. This setup holds for both, pusher
and puller particle simulations.

velocity of the pusher particles
⃓⃓⃓
uS,Ps

⃓⃓⃓
≈ 0.17 (Fig. 6.13b). In fact, the ratio between the

orientation of the pusher and the puller particle is approximately equal to the ratio of the
velocities. Hence, one concludes a linear relationship between the two quantities orientation
and velocity. Such a linear relationship can easily computed by setting FA

i = FD
i and neglect-

ing all other interaction forces, where FA
i is the active force and FD

i the drag force acting on
the particle. One obtains from (2.94) and (5.68)

FA
i = FD

i ⇒ Aceipγp =
πacDcorr
ReP

(︄
1√
Φ⊥

+
2√︁
Φ∥

)︄
wS
i . (6.1)

Assuming Φ⊥ = const. delivers a linear relationship between the orientation vector ei = eipγp
and the relative velocity wS

i . Note that, in general the cross sectional sphericity Φ⊥ is not a
constant but itself a function of the relative velocity wS

i and the orientation. Nevertheless, in
the given example, it seems to play a minor role for the terminal velocity.

It should be noted that the attraction of the pusher particles towards the wall is not caused by
their elliptical shape. The shape of the particles might reinforce certain behaviour patterns,
however, the attraction itself is solely due to the pusher property. In the next experiment the
standard particles are replaced by disk-shaped pusher particles to show the shape indepen-
dency of the attraction. The volume of the particle is kept constant in order to not change the
particle volume fraction αS . Subsequently, the diameter of the disk is a =

√
0.4. Furthermore,

to account for the decreased particle surface, the dimensionless active stress is increased to
Ac = 11.85. All other parameters are kept constant compared to the previous simulations. A
snapshot of the simulation at t = 93.4 is shown in Fig. 6.14a. Similar to the previous exper-
iment with pusher particles the disk-shaped pusher particles tend to move towards the wall.
Due to the different shape, however, their movement is slower despite the increased active
stress.

Going into the opposing direction, i.e. increasing the aspect ratio of the particles, leads to
similar results. In Fig. 6.14b, a snapshot for a simulation with elongated pusher particles is
shown. The particles have a length of a = 1.414 and an aspect ratio of ε = 5, i.e. the particle
volume fraction αS is kept constant compared to the previous experiments. The active stress is
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Fig. 6.11.: During the progression of the simulation the initial, ordered state is replaced by
a more chaotic state in case of pusher particles. (a) At t = 10 the particle setup
is almost the same as it was at t = 0. (b) After a longer time-span (t = 35) the
particles lost their parallel alignment and orientate themselves towards the wall. (c)
The particles stay at the wall at t = 70. The particle orientation is mostly random,
there is no longer a preferred direction.

decreased to Ac = 7.75 to account for the increased particle surface. The snapshot was taken
at t = 50; the velocity of the particle has significantly increased compared to the previous
simulations. Most importantly, the particle again are attracted towards the wall. The particles
show an tendency to align parallel to the wall, a phenomenonwhich was not visible that clearly
in the simulation of the standard particles in the channel, however, has been deduced from the
single particle behaviour, see Fig. 6.3.

In the channel experiments, it became apparent that pusher particles show an overall more
unstable behaviour than puller particles. While pullers keep themselves on a stable trajectory
in the middle of the channel, pusher particles are attracted towards the wall and do not nec-
essarily keep a parallel alignment. Such a behaviour is well-known in the literature, see for
example Alonso-Matilla et al. [5]. To generate chaotic systems in the following section only
pusher particles are employed.

6.2.3. Many particles in a closed domain

In this section, the behaviour of many standard particles in the standard domain is examined,
where the data base is publicly available via TUdatalib [53]. Themain parameter is the particle

138



(a)

(b)

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

⃓⃓
uF
⃓⃓

Fig. 6.12.: During the progression of the simulation with puller particles the initial, parallel
state is preserved over the entire simulation time. (a) At t = 10 the particle setup
is almost the same as it was at t = 0. Due to the initially strong acceleration of the
particles in the right direction, the fluid velocity vector faces the left side. (b) After
a longer time-span (t = 35) the particles mostly kept their parallel orientation. The
bulk fluid flow almost vanished and will in the following time-steps reverse into the
right direction. (c) The particles stay in the centre of the channel at t = 70. The
preferred direction to the right side is kept and the overall fluid flow follows the
particle motion. Note that one particle has already reached the periodic boundary
and reappears at the left side of the domain.

volume fraction αS , i.e. the density of the suspension. In Fig. 6.16 and Fig. 6.17, multiple
examples of the numerical experiment with different αS are shown. The Reynolds number
for all setups is of the order O

(︁
10−1

)︁
. The initial orientation of all particles is horizontal,

facing either to the right or the left side, see Fig. 6.15. The distance between the horizontal
axes, which contain the particles, is varied to generate suspensions with different volume
fractions αS . The systems examined here were already analysed with respect to their run-
time behaviour in Sec. 4.7.3.

The particles in a dilute suspension αS = 0.04 (Fig. 6.16a) swim almost undisturbed, simi-
lar to a single particle experiment. However, if multiple particles reach a wall, the rotation
mechanism to leave the wall, as described in section 6.1, is prohibited by neighbouring parti-
cles. Subsequently, multiple particles form a stable cluster at the wall, which in the example
Fig. 6.16a is located at the lower boundary. The location of the cluster at the wall is a product
of chance, i.e. there is no mechanism such as gravity enforcing the particles to accumulate at
the lower wall. Increasing the volume fraction to αS = 0.11 (Fig. 6.16b) preserves the clus-
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Fig. 6.13.: The diagrams show results for the averaged length of the orientation vector (a)
and the absolute value of the averaged particle velocity (b) for different channel
experiments. Puller particles are indicated by Pl, pusher particles by Ps.

ters at the lower boundary. Additionally, the particles in the bulk region also form clusters,
leading to some regions of the domain with no particles and other regions with a high particle
density. Compared to the structures emerging at the domain wall, the bulk-clusters are less
densely packed and also less stable. Similar to the attraction of active particles towards the
wall, which was investigated in the previous sections (Sec. 6.1- Sec. 6.2.2), active particles
are attracted towards each other, permitting the formation of clusters. The particle-particle
attraction has been used to find a model for the translational velocity correlation of the ho-
mogenised model, see Sec. 5.3.4. The clustering effect is reinforced by a further increase of
the volume fraction to αS = 0.17 (Fig. 6.17a). Apart from the pure density increase due to
the formation of local clusters, particles show a tendency to align towards the orientation of
their neighbours. This alignment strengthens with a further increase of the volume fraction
to αS = 0.39 (Fig. 6.17b). Because of the high particle density, the structure resembles crys-
talline lattices. Similar to crystals, small voids form in the lattice, which in the case of the
present suspension continue to ensure that the particles can move in a constrained manner.

Mean squared displacement

In this section, the previous qualitative statements are quantified. This requires the introduc-
tion of the mean square displacement (MSD), which is defined as follows

L (∆t) =
⟨︂
|χp (t+∆t)− χp (t)|2

⟩︂
, (6.2)
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Fig. 6.14.: (a) Disk-shaped pusher particles moving in a channel. Their movement is overall
slower comparded to elongated particles, however, they are also attracted towards
the channel walls. (b) Elongated pusher particles with ε = 5 align parallel towards
the wall.

where the average ⟨·⟩ is taken over all particles and the time. For a passive Brownian particle
a simple relation between the MSD and the time interval ∆t exists

L (∆t) = 2dD∆t, (6.3)

where d is the number of spatial dimension and D is the diffusion coefficient [67, 188]. Pro-
cesses described by (6.3) are often referred to as normal diffusion, implying that anomalous
diffusion exists. In fact, normal diffusion is only a special case, a more general formulation of
(6.3) is obtained by adding an exponent κ [152]

L (∆t) = Dκ∆t
κ, (6.4)

where Dκ is the generalized diffusion coefficient and κ = 1 leads to (6.3). In principle, κ
can take any positive value, leading to the three diffusive regimes visualized in Fig. 6.18a.
Subdiffusion 0 < κ < 1 occurs, for example, during molecular transport in cells and is caused
by molecular crowding [14, 203]. The transport due to diffusion is slowed down compared
to normal diffusion. The superdiffusive regime 1 < κ < 2 describes an accelerated diffusive
process, caused for example by an active stress. As we will see in the following results, ballistic
diffusion κ = 2 occurs in the limiting case of a dilute active suspension. Superballistic diffusion
might occur in the transport of waves in photonic lattices, see for example Anderson [7] and
Hufnagel et al. [105], it is not visible in an active suspension.

The theoretical MSD for an active particle is known and given by [18, 78, 103, 147] in two
dimensions

L (∆t) =
(︂
4D + 2 (vp)2∆tR

)︂
∆t+ 2 (vp)2∆t2R

(︂
e
− ∆t

τR − 1
)︂
, (6.5)

where vp is the particle speed and

τR =
πµFa3

kBT
(6.6)
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Fig. 6.15.: Initially, all particle of the multi-particle simulation are placed in rows. Each parti-
cle has the opposing orientation of its neighbour in the same row, i.e. the orientation
angle of the first particle is β1 = 0, subsequently, the orientation angle of the sec-
ond particle is β2 = π. Different particle densities are obtained by changing the
distance between the rows. (a) Setup with 128 particles, αS = 0.11. (b) Setup with
208 particles, αS = 0.17.

is a characteristic time-scale for the rotational diffusion of a spherical particle, see Bechinger
et al. [18]. The time-scale depends on the fluid viscosity µF , the particle diameter a, the
Boltzmann constant kB and the temperature T . For short time scales ∆t≪ τR, (6.5) be-
comes the normal diffusion relation (6.3). For medium times ∆t ≈ τR, the active particles
undergo ballistic diffusion and (6.5) becomes L (∆t) = 4D∆t+ 2 (vp)2∆t2. For large time
scales ∆t≫ τR, (6.5) again is a linear function of ∆t [18].

In Fig. 6.18b the MSDs for five numerical experiments are presented. The time-step size of the
simulations is ∆t = 10−2, which is consequently the minimum value on the horizontal axis
of the diagram. For short and medium time intervals ∆t, a power-law is found in accordance
to (6.4). For larger time intervals the assumption of a power law no longer holds. Crowding
leads to a decrease of the diffusion exponent κ. To obtain the exponent κ, time intervals up
to 1000 time-steps, i.e. ∆t = 10, are taken into account. Clearly, all examined systems lie
within the superdiffusive regime (Fig. 6.18c). Due to the accelerated motion of the particles
compared to passive Brownian particles this result is expected.

In case of a single particle κ ≈ 2, i.e. ballistic diffusion, is reached for medium time intervals
in accordance to (6.5). Particles can still move relatively undisturbed in a dilute suspension,
i.e. αS = 0.04. Hence, the decrease of the exponent κ is small compared to the single particle
simulation, see Fig. 6.18. The results for a single particle and the dilute suspension are in
good agreement with the theoretical MSD for active particles (6.5), where Bechinger et al.
[18] distinguished three different regimes, one for small, one for medium and one for large
time scales. In the short time regime normal diffusion is observed in experiments [215],
however, only if the strength of the propulsion mechanism is small [18]. In the presented
numerical experiments this regime is not visible, because the magnitude of the active stress
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Fig. 6.16.: The particle volume fraction αS is an important parameter for the behaviour of the
suspension. The particles in both images are identical with a = 1 and ε = 2.5. (a)
Some particles accumulate at the walls of the domain in a dilute suspension with
αS = 0.04. Particles in the bulk swim almost undisturbed from other particles. (b)
The volume fraction is increased to αS = 0.11. Distinct accumulations at the wall
are still visible. Additionally, particles form structures within the domain.

is comparably large and the short time regime is, subsequently, expected to be only visible on
time intervals smaller than the time-step of the simulation. In the medium time scale regime,
theory predicts an exponent κ = 2, which is obtained for both, the single particle experiment
and the dilute suspension. Furthermore it is visible in Fig.6.18 that κ decays for larger time
scales ∆t > 10, which agrees with the theoretical examination (6.5). Note, however, that
the normal diffusion regime is not reached, i.e. the exponent is still larger than unity. With
increasing particle volume fraction αS the behaviour of κ changes. It decreases due to the
formation of clusters, which restrict the motility of individual particles, as visible in Fig 6.16b.
Increasing the volume fraction even higher than the given examples would lead to freezing, i.e.
all motion of any individual particle vanishes. In this case only bulk motion, i.e. the collective
motion by all particles in the same direction, is possible.

Minimal distance PDF and alignment PDF

In the previous section the formation of clusters has already been mentioned several times. A
cluster describes a number of particle close to each other. The particles within a cluster have
a tendency to align towards the same direction and move with similar velocities. Clusters can
break up and reassemble again and again. The exact behaviour depends on the parameters
of the simulation, especially the particle volume fraction. In the following paragraph the
formation of clusters is quantified by investigating the minimal distance PDF. All PDFs derived
in this work are obtained by using MATLAB-scripts, which are publicly available via TUdatalib
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Fig. 6.17.: Suspensions with higher particles densities form clearer structures. (a) The volume
fraction is αS = 0.17. Several particle cluster haven been formed. (b) High volume
fractions, in this example αS = 0.39, lead to almost crystalline structures.

[53]. The PDF is calculated by finding the position χp of the closest particle p towards a
probing particle

f r
min

=
⟨︂
δ
(︂
rmin − rmin

)︂⟩︂
, rmin = |χp − χ1| , (6.7)

where χ1 is the position of the probing particle and rmin is the sample space variable. Fur-
thermore, lets define the particle near-field, which is bounded by a circle around χ1 with the
radius a/2 + λ, where λ is the tolerance parameter necessary to numerically distinguish the
surfaces of different particles, see Sec. 4.6. As visible in Fig. 6.19 the behaviour of the PDF
in the near field area and the far field is substantially different, where the densest suspension
αS = 0.39 constitutes a special case as the entire PDF lies within the near field region. The
splitting in the near and far field indicates the application of the shape symmetry (3.109),
relating two different fractions of the PDF towards each other. In the case of the minimal
distance PDF, the shape symmetry is given by

f r
min∗ = f r

min
+ ψ

(︂
rmin

)︂
. (6.8)

On a side note, it might also be possible to use the general formulation of the intermittency
symmetry (3.118), because of the similarity of both symmetry transformation in the general
form, see (3.119). Apart from the reduction property (3.110) nothing is known about the
free function ψ

(︁
rmin)︁. However, it is possible to derive properties from the data presented in

Fig. 6.19. Assume that f rmin describes the PDF in the far field and ψ
(︁
rmin)︁modifies the PDF to

fit to the data in the near field. In the case of the far field PDF f rmin it is possible to derive an
invariant solution from the intermittency symmetry for the particle position (3.122b) and the
constant Galilean symmetry, i.e. a constant spatial shift. This specific symmetries were chosen,
because it is apparent from the simulation snapshots that active suspensions form locally dense
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Fig. 6.18.: (a) The three diffusive regimes, the superballistic 2 < κ, the superdiffusive 1 < κ <
2 and the subdiffusive regime 0 < κ < 1, exist. The three regimes are separated by
the special cases of ballistic diffusion κ = 2 and normal diffusion κ = 1. Illustration
based on Palyulin et al. [165]. (b) The Mean Squared Displacement (MSD) for
numerical experiments with different αS . The script necessary to obtain the data is
publicly available via TUdatalib [53]. (c) Active particles exist in the superdiffusive
regime. The particle volume fraction αS determines the value of κ, where lim

αS→0
κ =

2.

structures, i.e. show intermittent behaviour. Intermittency here refers to the phenomenon of
locally deterministic or ordered behaviour within an overall more chaotic system. Secondly,
the spatial shift was chosen, because it fits the intended result, which is a distance. The
result of the derivation of the invariant solution, which can be found in appendix A.2.1, is an
exponential distribution

f r
min

= CH
(︂
rmin − a′

)︂
e−C

(︁
rmin−a′

)︁
, (6.9)

which contains two parameters a′ and C to fit the solution to the data. In Fig. 6.19 a fitting
for the far field region of the PDF is presented. The parameter C is responsible for the slope in
the logarithmic diagram, i.e. the exponent of the PDF. As expected it increases with increas-
ing αS , because the particles are more densely packed, thus, leading to more deterministic
states. The minimal distance PDF for the suspension with αS = 0.39 does not reach the far
field, nevertheless, it is still possible to fit the exponential distribution (6.9) to the tail of the
PDF. Furthermore, it is straightforward to assume that in the limiting case αS → αS

max the
distribution turns into a Dirac impulse at rmin = a′, turning (6.9) into the intermittency trans-
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Fig. 6.19.: (a) The structure of the minimal distance PDF f rmin changes depending on the par-
ticle volume fraction αS . Furthermore, clear differences between the near and the
far field are visible. (b) Invariant solutions for the far field region are plotted in
orange. The employed coefficients are displayed in the table on the right.

formation (3.122a) with cint = 0. The Dirac distribution can be reached from (6.9) by letting
C become infinitely large. At the other end of the density spectrum αS = 0.04, it is possible to
fit (6.9) to the entire distribution in the near and far field, indicated by the dashed extension
into the near field.

The variance of the exponential distribution (6.9) is defined as 1/C2. Subsequently, with
increasing particle volume fraction the variance decreases significantly, indicating a more and
more deterministic behaviour. For the high density suspension αS = 0.39, it is certain to find
the next particle in the near field region, which is enforced by the high density and missing
empty space. In a suspension of equally distributed particles, the distance towards the next
particle is 0.89, a value which is already within the near field region. The maximum of the PDF
is even closer to the minimal possible value at rmin = 0.6, indicating an additional attraction
of the particles towards each other. For the medium density suspensions αS = 0.11 and
αS = 0.17, the variance is already significantly decreased compared to the dilute suspension.
Again, consider a suspension of equally distributed particles, for the suspension αS = 0.11
this leads to a distance towards the next particle of 1.73 and for the suspension αS = 0.17 to
distance of 1.36. Both values are in the far field region, nevertheless, the maximum of the PDF
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Fig. 6.20.: The alignment PDF f bmin is obtained by calculating the relative angle between a
probing particle and the particle closest towards the probing particle.

for both suspensions rmin
0.11 = 0.82, rmin

0.17 = 0.81 lies within the near field region. Clearly, active
particles have a tendency to attract each other and form regions with high particle densities.

While the parameter C can be interpreted straightforward as the influence of the particle
density on the PDF, the interpretation of a′ is a little more complex. In case of the dilute
suspension αS = 0.04, a′ = 0.6 is the minimal distance two particle can achieve due to the
smaller particle diameter b = 0.4 and the numerical tolerance parameter h = 0.1. The latter is
applied for each particle, hence, the minimal possible distance for each particle pair is b′ = 0.6.
In the diagram 6.19, b′ is the onset for the horizontal axis. The value of a′ increases with
increasing αS and seems to be related to the position of the local maximum of the PDF in the
near field region. While related to the maximum of the PDF, a′ does in general not equal the
position of the maximum. For medium densities the maxima lie in the centre of the near field
region. In case of the highest density suspension the local maximum is closer to b′ = 0.6, thus,
a′ is decreased compared to the previous suspensions. A second PDF is necessary to understand
the behaviour of the minimal distance PDF in the near field. Therefore, the alignment PDF
f b

min is introduced, which describes the probability distribution of the relative angle βp − β1
of the closest particle p towards a probing particle. The data is given in Fig. 6.20. For dilute
suspensions, e.g. αS = 0.04, the probability between zero and π is almost equally distributed.
Maxima exists at bmin = 0 and bmin = π, however, the difference towards the rest of the
distribution is small. Such an PDF indicates a small preference of the particles to align parallel
towards each other, i.e. to obtain a relative angle of bmin = 0 or bmin = π, nevertheless, enough
space is available to allow mostly free rotation of each particle. The free rotation explains the
identical behaviour of the minimal distance PDF of the dilute suspension αS = 0.04 in the
near and far field. Increasing the particle volume fraction leads to a stronger tendency of the
particles for a parallel alignment. The minimum at b = π/2 and the two maxima become
stronger. Parallel aligned particles can be closer towards each other due to the ellipse shape
of the particles. Hence, one can observe a larger and distinctive maximum of the minimal
distance PDF f rmin in the near field region for higher particle densities, which shifts towards
the minimal possible distance b′ = 0.6, see Fig. 6.19.

A constant PDF f bmin
= c (x, t) = 1/π independent of bmin for the orientation angle is an

invariant solution of the orientation symmetry (3.50f), see appendix A.2.2. It is given by the
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blue constant in Fig. 6.20. The Lie operator X = ∂/∂bp is only defined for passive disks, i.e.
the active boundary condition and the ellipse-shape break the symmetry. Thus, the constant
PDF is a solution for passive disk-shaped particles and can only be considered as a limiting
case for an active suspension. Using the shape symmetry

f b
min∗ = f b

min
+ ψ

(︂
bmin

)︂
. (6.10)

one obtains the PDF f bmin∗ as a linear combination of the constant PDF f bmin and the shape
function ψ

(︁
bmin)︁. Hence, the shape function introduces the dependency on the particle shape

and the active stress. For the densest suspension αF = 0.39 the PDF is approximated by the
addition of the free function

ψ
(︁
bmin

)︁
=
exp

(︁
c1
⃓⃓
cos
(︁
bmin

)︁⃓⃓c2 + c3
⃓⃓
π
2 − bmin

⃓⃓)︁
c4

− 1

π

=
exp

(︂
3
⃓⃓
cos
(︁
bmin

)︁⃓⃓1.4
+ 1.439

⃓⃓
π
2 − bmin

⃓⃓)︂
150

− 1

π
(6.11)

to the constant PDF. In Fig. 6.20 the approximate PDF for the highest particle volume fraction
αS = 0.39, obtained with the shape symmetry, is given in orange colour. For even higher
particle densities it is expected that the particles will align more and more towards each other,
which allows the maximum of the minimal distance PDF f xmin to shift closer to the minimal
possible distance b′ = 0.6. It is possible to retrieve the limiting case of only parallel aligned
particles from (6.11) by letting the exponent c2 become infinite and choosing the other con-
stants c1, c3, c4 appropriately in order to not violate the reduction property (3.66). The result
is a deterministic distribution containing two Dirac impulses at 0 and π. Thus, in the limiting
case the intermittency symmetry (3.122c)

f b∗ = cintf
b + (1− cint)δ (b− β) ,

where cint = 0, is retrieved.

Clearly, the behaviour of the minimal distance PDF and the alignment PDF are related, leading
to the introduction of a joint PDF. Simulation data for the joint PDF, formed with the sample
space variable for the minimal distance rmin and the relative angle bmin, is shown in Fig. 6.21
for the two suspensions αS = 0.11 and αS = 0.39. The joint PDF clearly shows the different
behaviour of the particles in the near field 0.6 ≤ rmin ≤ 1.2 depending on the volume fraction
and confirms the previously made observations. In the case of the densest suspension αS =
0.39 the particles most likely are located in the closest proximity of each other. This is only
possible if the relative angle is either zero or π, i.e. the particle move either in the same or in
the opposing direction. The setup is symmetric, i.e. there is no significant difference between
the two maxima in Fig. 6.21b. The more dilute suspension on the other hand, has a much
wider range of possible outcomes. Two distinct maxima exist, one at approximately (0.6, 0)
and on at approximately (1.2, π), see Fig. 6.21a. Thus, two different preferred state exist. The
first maximum is related to to configuration, where two particles are placed right next to each
other in parallel and facing in the same direction. Such a situation is most commonly found at
the domain wall, see Fig. 6.16. The second maxima is related to two particles opposing each
other and being located at the westernmost or easternmost point of the opposing particle,
similar to the situation shown in Fig. 6.8a. Particle states outside of the maxima regions
are relatively likely to happen compared to the denser suspension, which is similarly visible
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Fig. 6.21.: The joint PDF formed with the minimal distance and the alignment of two particles
towards each other reveals the reason for the different behaviour in the near field
region. (a) The joint PDF for αS = 0.11 contains two maxima, however, a wide
range of states are possible. (b) The joint PDF for αS = 0.39 shows two maxima.
All particles align parallel, either in the same direction bmin = 0 or in the opposing
direction bmin = π.

in the marginal minimal distance PDF in Fig. 6.19. The joint PDF for all four suspensions
can be found in App. A.3. In conclusion, higher particle densities lead to more deterministic
probability distributions of the minimal distance and the relative orientation, whereas dilute
suspension show a chaotic behaviour with respect to the two variables mentioned before.

Particle velocity PDF

In the minimal distance and relative angle PDFs no clearly chaotic behaviour could be found
for dense suspensions. In fact, with increasing particle density the behaviour becomes more
andmore deterministic. For the dilute suspension αS = 0.04, on the other hand, the alignment
PDF shows behaviour which could be interpreted as chaotic, because no preferred direction
of alignment exists. The analysis of the particle velocity PDF in the following paragraph will
reveal partially deterministic and partially chaotic behaviour. The velocity PDF in its most
general form

fV = ⟨δ (V −U)⟩ (6.12)

describes the probability of finding a certain velocity at a specific point in space and time in
both phases. In this paragraph, the focus lies on the probability distribution of the particle
velocity, hence, the particle velocity PDF is defined

fV
S
=
⟨︁
δ
(︁
V S − uS

)︁⟩︁
. (6.13)
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Fig. 6.22.: The diagram shows the probability distribution for the speed, i.e. the absolute value
of the velocity, of the particles. Four suspensions and a single-particle experiment
are depicted.

The systems under investigation do not contain any preferred direction, due to the symmet-
ric shape of the physical domain. Hence, the velocity components in both directions of the
R2-space form the database. Furthermore, the speed PDF is defined, i.e. the probability dis-
tribution of the absolute value of the particle velocity

fV = ⟨δ (V− |U |)⟩ . (6.14)

The speed PDF is depicted in Fig. 6.22 for a single active particle and four different active
suspensions. A single particle will reach its terminal velocity after the acceleration phase.
Subsequently, the PDF takes the form of an equal distribution for the lower velocities, de-
scribing the acceleration phase. The most likely state for such a system is the particle moving
with the terminal velocity, hence, one obtains a maximum at the right end of the distribution.
This behaviour changes completely once multiple particles are considered. Due to the inter-
actions between the particles, each particle is constantly accelerated and decelerated. Hence,
the maximum is shifted towards zero with increasing particle density. In dilute suspensions
(αS = 0.04 and αS = 0.11), the maximum speed exceeds that of the single particle. This
increase is caused by the interactions and collisions between particles. While some particles
might slow down, others might be accelerated further by their neighbours. Furthermore, in
the case of the suspension with αS = 0.04 the behaviour of the single particle system is still
visible. The PDF forms a plateau around V = 0.1, reminiscent of the equal distribution of the
single particle for smaller speeds. Increasing the particle volume fraction αS further leads to
a decreasing maximum speed and an increased probability of lower speeds, i.e. a maximum
of the PDF located close to zero.

The PDF for the velocity components shows, as expected, a similar behaviour to the speed-PDF.
The main difference is the maximum for all velocity-PDFs at V = 0, which is not visible in the
speed-PDF. Components of the velocity vector might become zero while the particle is moving
parallel to one of the axes of the coordinate system. Thus, even if the speed of the particle is
non-zero, individual components might vanish, leading to the visible maximum at V = 0. As
mentioned earlier, no preferred direction exists in the fully closed quadratic domain, hence,
the velocity PDF is symmetric. Subsequently, it is sufficient to show the PDF of the absolute
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Fig. 6.23.: (a) The diagram shows the velocity PDF for four different suspensions. (b) An
approximation for the velocity PDF is obtained by using a linear combination of
two functions of the type (6.16).

value of the velocity components, which is done in Fig. 6.23, where the absolute value of the
components is denoted by V . To investigate the velocity PDF, the invariant solution obtained
from the shape symmetry of the velocity PDF is used. This solution is the single-point shape
symmetry itself

f∗V = fV + ψ (V ) . (6.15)

The free function ψ (V ) allows the PDF to be represented as a linear combination of individual
functions. Again, the general intermittency symmetry (3.118) can be used equivalently due
to (3.119). Choosing the ansatz

ψn (V ) = c1e
−c2|V |c3 + ψn+1 (V ) (6.16)

permits to identify heavy and light tailed distribution. A heavy tailed PDF decreases more
slowly compared to a standard normal distribution, i.e. rare events becomemore likely. Such a
slowly decaying distribution indicates chaotic behaviour, because the system can enter a wider
variety of states. As such it is related to the definition of intermittency given in Sec. 3.6.2, i.e.
intermittency describes the sudden outburst of an otherwise rare event [135, 206]. A light
tailed distribution on the other hand decays faster than a comparable normal distribution.
Hence, it is related to more deterministic states. The ansatz function (6.16) can become a
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Tab. 6.1.: All coefficients necessary to define the function depicted in Fig. 6.23b are denoted
in this table.

αS 0.04 0.11 0.17 0.39
ψ1 ψ2 ψ3 ψ1 ψ2 ψ1 ψ2 ψ1 ψ2

c1 13.19 2.85 4.52 14.73 8.33 16.8 9.67 1.43 140
c2 161.12 90.36 0 16.92 66.54 27.16 85.91 272.84 79.00
c3 1.56 2.46 0 1.06 1.94 1.18 1.92 1.53 1.00

normal distribution if c3 = 2, hence, a heavy tailed distribution is obtained for c3 < 2 and a
light tailed one for c3 > 2. Necessarily, the next ansatz function ψn+1 (V ) needs to ensure that
the reduction property (3.66) of the PDF is preserved.

In Fig. 6.23b, two functions ψ1, ψ2 are used to approximate the velocity PDF. A third function
ψ3 = fV is used to preserve the reduction property leading to the PDF

f∗VαS = ψ1 + ψ2. (6.17)

Only in case of the dilute suspension αS = 0.04, an additional free function is necessary,
which reduces to a constant. All coefficients are shown in Tab. 6.1. As already mentioned, to
distinguish between heavy and light tailed distributions, the coefficient c3 is of interest. The
inner PDF, depicted in orange in Fig. 6.23b and described by ψ1, and by ψ1 + ψ3 in case of
the dilute suspension αS = 0.04, is a heavy tailed distribution c3 < 2 for all given examples.
Nevertheless, significant differences are visible between the suspension. The second αS = 0.11
and third suspension αS = 0.17 have a much smaller exponent, i.e. heavier tails, than the
densest suspension αS = 0.39 and the dilute suspension αS = 0.04. Due to the comparably
small exponent c3 both inner PDFs for αS = 0.11 and αS = 0.17 have a wide range of possible
outcomes, thus, indicating chaotic behaviour. The inner PDF is a valid approximation of the
data in the interval 0 ≤ V ≤ 0.12. The maximum value of the inner PDF for both suspensions
is at V = 0, where fV0.11 (V = 0) = 8.33 and fV0.17 (V = 0) = 9.67. The minimum values
within the given interval are fV0.11 (V = 0.12) = 2.81 and fV0.17 (V = 0) = 2.23. Hence, both
suspensions behave similar, despite the visual differences between the suspensions (Fig. 6.16a,
Fig. 6.17a). Clusters are formed, as indicated by the minimal distance PDF. However, the
particle velocity shows a high variance even within such clusters, leading to the constant
break up and re-formation of local structures.

In case of the high density suspension αS = 0.39 on the other hand, the inner PDF is more
similar to a normal distribution with an exponent c3 = 1.53 compared to the suspensions with
medium densities. It is a valid approximation for small velocities 0 ≤ V ≤ 0.05. While it is
still a heavy tailed PDFs, outcomes close to zero fV0.39 (V = 0) = 41.97 are up to 16.79 times
more likely than outcomes closes to 0.05, where fV0.39 (V = 0.05) = 2.5. Hence, the densely
packed particles move much slower and with a smaller variance compared to the suspensions
with medium density, indicating the formation of stable structures.

It is already visible in the speed-PDF that the dilute suspension behaves differently. The inner
PDF is formed by a linear combination of the function ψ1 and the constant ψ3 and shows good
agreement with the data in the interval 0 ≤ V ≤ 0.12. The maximum value at V = 0 is 16.04,
i.e. it is 3.55 times higher than the value of ψ3. Compared to the densest suspension, the
distribution is much closer to an equal distribution, i.e. all events within the area of the inner
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distribution are approximately equally likely. This behaviour is reminiscent of the behaviour
of a single particle, see Fig. 6.22. Clearly, the time-span between particle-particle interactions
is large enough for the particles to constantly accelerate towards the single particle terminal
velocity, which itself is part of the outer PDF. In accordance to the almost equal distribution of
the PDF no cluster is formed in the centre of the domain (Fig. 6.16a). The increase of the PDF
towards zero and the maximum at zero is caused by the emergence of particle formations at
the domain wall, see Fig. 6.16a.

The outer PDF, depicted in blue in Fig. 6.23b and described by ψ2, shows a change in behaviour
for all suspensions. The heavy-tail behaviour of the densest suspension is reinforced, whereas
the other three suspensions get lighter tails. While the terminal velocity of a single particle
can be exceeded in a suspension, due to collisions and indirect particle-particle interactions,
a limit for the maximum velocity exists. This limit has to be understood as a soft limit, i.e.
higher velocities become simply unlikely, jet are not impossible. In order to comply with this
soft maximum limit, the decay of the velocity PDFs of the three more dilute suspension needs
to accelerate compared to the inner PDF, which is achieved by a higher exponent c3. In case
of the densest suspension, the inner PDF already decayed quickly. Hence, in the region of the
outer PDF no additional limitation exists, which would cause an increasing decay of the PDF,
leading to the exponent c3 = 1.0, i.e. a very light tail, indicating intermittent behaviour.

To further the understanding of the interactions of the particles, especially in a dense suspen-
sion, one might investigate a joint PDF. The PDF formed with the sample space variable of the
minimal distance rmin, see (6.7), and the sample space variable vpq of the relative speed of
two particles

vpq = |γpvp − γqvq| (6.18)

is
f rv =

⟨︂
δ
(︂
rmin − rmin

)︂
δ (vpq − vpq)

⟩︂
. (6.19)

Due to the correlation of the minimum distance rmin and the relative velocity vpq in (6.19), it
is possible to derive conclusions about the stability of the structures visible in the snapshots
of the simulations, see Fig. 6.16 and Fig. 6.17. Data from the simulations for the joint PDF is
presented in Fig. 6.24 for two suspension. Results for all investigated systems can be found
in App. A.3. The differences between the two suspensions are immediately noticeable. The
lower density suspension, see Fig. 6.24a, shows two maxima, whereas the high density sus-
pension, see Fig. 6.24b, only shows one maximum. The latter maximum is a direct result of
the geometrical constraints in a dense suspension, which are also visible in the marginal PDF
for the minimal distance, see Fig. 6.19 and the joint PDF for the minimal distance and the
alignment, see Fig. 6.21b. Due to the low relative velocity in the dense suspension, struc-
tures such as clusters are relatively stable and the spatial configuration of the suspension only
changes slowly. Note that a structure formed with several particles might still have a signifi-
cant velocity, only the relative velocity between the particles vanishes. States outside of the
immediate near-field region are very unlikely for the suspension αS = 0.39, while the particles
in the other suspension αS = 0.11 have a wide range of possible states. Thus, any structure
emerging in a lower density suspension is relatively unstable due to the high relative velocities.
The maximum at approximately (1.2, 0) for the suspension presented in Fig. 6.24 is related
to the maximum (1.2, π) in the joint PDF for the minimal distance and the alignment, see
Fig. 6.21a. It is related to the two particle interaction investigated in Fig. 6.8. Two opposing

153



0.6 0.8 1 1.2 1.4 1.6

0.1

0.2

0.3
(a)

rmin

vpq

0 5 10 15 20 25
f rv

0.6 0.8 1 1.2 1.4 1.6

0.1

0.2

0.3
(b)

rmin

0 50 100 150
f rv

Fig. 6.24.: (a) The diagram shows the joint PDF formed with the minimal distance and relative
velocity for the suspension αS = 0.11. (b) Only the maximum in the lower left
corner remains for the densest suspension αS = 0.39.

particles block their paths, thus, leading to a decaying relative velocity. Hence, opposing par-
ticles might have a stabilising effect on clusters formed within the domain. The maximum in
the left lower corner, on the other hand, is mostly caused by particles at the wall. As visible
in Fig. 6.16b, particles directly at the wall align parallel and are orientated towards the wall.
Due to the blocking nature of the wall, the absolute and the relative velocities decay.

The behaviour of the velocity-PDFs is reminiscent of the definition of intermittency. This term
describes both the consistent alternation of deterministic and stochastic behaviour and the
sudden eruption of an otherwise rare event. Both definitions have already been used in the
definition of intermittency symmetry (3.122a). Forming the limiting case of the ansatz func-
tion (6.16) delivers the Dirac function

lim
c1,c2→∞

c1e
−c2|V |c3 = δ (V ) . (6.20)

Subsequently, by forming the limiting case for the inner PDF ψ1 it is possible to retrieve the
single-point version of the intermittency symmetry (3.122a)

f∗V = cintf
V + (1− cint) δ (V − U) . (6.21)

Here, U represents the velocity of an ideal cluster, where all particle share the same velocity.
The parameter c2 increases steadily for the three suspensions αS = 0.11, αS = 0.17 and
αS = 0.39 as visible in Tab. 6.1. Hence, it is expected for c2 to increase further with increasing
particle density, leading to the limiting case (6.20). Accordingly, the parameter c1 can be
directly related to cint, i.e. cint = c1.

A system with a global particle volume fraction αS = αS
max freezes, hence, the velocity van-

ishes once the limiting case is reached. If a cluster of particles locally approaches the maxi-
mum volume fraction, but the overall domain is much larger than the cluster, motion is still
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possible. The velocity U in (6.21) then represents the cluster velocity U = U cluster, which
is identical for all particles within the cluster as no relative motion between the particles is
possible. In other words, one would observe a phase separation, where the cluster is a solid
phase and the surroundings with lower particle density are occupied by a fluid phase of a new
pseudo-material, which contains the particles as molecules. Subsequently, while the name
intermittency symmetry was adopted from turbulence research, in the context of active par-
ticles cluster or phase-separation symmetry would be a more fitting name. Reformulating the
general intermittency symmetry (3.118) for an ideal cluster delivers

Kf
∗ = cint Kf + (1− cint)

K∏︂
k=1

δ
(︂
kV −U cluster

)︂
δ (X − χ)

N∏︂
p=1

δ
(︂
bp − βcluster

)︂
. (6.22)

The two variables cluster velocity U cluster and orientation βcluster are used to describe the deter-
ministic part of the PDF. Due to the separation property, the symmetry transformation (3.120)
is only valid in a finite domain, hence, this formulation of the symmetry transformation returns
the probability (1 − cint) of the formation of an ideal cluster with a uniform cluster velocity
and orientation. In reality small deviations from the cluster velocity and orientations might
exist, which are small enough to not break the cohesion of the cluster. Such a real cluster can
be, for example, represented by a product of normal distributions δϵ (x) = (2πϵ)−0.5 e−x2/(2ϵ),
where the limiting case lim

ϵ→0
δϵ (x) = δ (x) returns the Dirac delta. Hence, the cluster-symmetry

transformation for real clusters reads

Kf
∗ = cint Kf + (1− cint)

K∏︂
k=1

δϵ

(︂
kV −U cluster

)︂ N∏︂
p=1

δ (Xp − χp) δϵ

(︂
bp − βcluster

)︂
(6.23)

where the parameter ϵ, U cluster and βcluster need to be chosen appropriately such that Kf
∗ is

a solution of the PDF hierarchy (3.96). Particle-resolved simulations of a system with visible
phase separation would require an enormous computational power due to the large number
of particles. Hence, to investigate the cluster- or phase-separation symmetry further, the ho-
mogenised model is used.

It should be noted that intermittency and shape symmetry also occur in systems with passive
particles without the presence of active particles. However, for the formation of clusters, es-
pecially in the centre of the domain without direct participation of walls, the activity of the
particles is mandatory. It can therefore be assumed that the parameters c1, c2 and c3 are
functions of the active stress.

6.3. Results for the homogenised model

The homogenised model, as presented in Sec. 5, is used to simulate larger systems of active
suspensions. All data presented in this section is publicly available via TUdatalib [52]. Con-
sider a steady planar flow, i.e. all derivatives in the x1 and x3 direction vanish. Furthermore,
the pressure gradient in the x2 direction is considered to be zero, due to the steady state of
the system, which requires vanishing vertical transport of material. The domain setup is given
in Fig. 6.25. At first, classical planar flows with a constant initial particle distribution are ex-
amined. Difference and similarities between the behaviour of a Poiseuille flow, a Couette flow
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x2

x1

Fig. 6.25.: The setup for all planar channel flows. The upper and lower boundaries are solid
impermeable walls. All gradients in the x1-direction beside a possible constant
pressure gradient vanish, hence, one-dimensional profiles are sufficient to describe
the flow through the channel.

and the combination of both are investigated. A planar Poiseuille flow is driven by a constant
pressure gradient parallel to the walls. A Couette flow is a planar shear flow, achieved by
prescribing a velocity in the tangential direction at the wall. Special attention is given to the
influence of the different interaction forces between the phases. In a second series of numer-
ical experiments, the phase separation symmetry is investigated, which was already derived
from the behaviour of the multi-particle simulation in the previous section.

It is necessary to define boundary conditions for all physical quantities for both phases at the
domain boundary. The upper and lower boundaries are considered to be impermeable, hence,
all velocities in x2-direction vanish at the boundary. Furthermore, a no-slip condition is ap-
plied for the fluid velocity. Particles, however, tend to slide alongside the wall, which can be
deduced from numerical experiments using the BoSSS framework, see Sec. 6.2.2. Hence, a
Neumann condition is used for the averaged solid phase velocity vS1 in the horizontal direction,
i.e. the derivative ∂vS1 /∂x2 = 0 vanishes, permitting a slip velocity tangential to the wall. The
wall is still considered impermeable, hence, the velocity vS2 = 0 vanishes at the wall. In this re-
spect, the results presented here differ from those presented by Deußen et al. [55, 54]. In the
aforementioned publication, a vanishing velocity at the wall was assumed for the horizontal
velocity of the solid phase. However, considering the results from the particle-resolved simu-
lations, see Fig. 6.11, a Neumann condition for the velocity parallel to the wall seems more
reasonable. Further quantities, i.e. the particle rotational velocity ωS

i , the particle orientation
eSi and the solid phase volume fraction αS are also bounded by a Neumann condition.

The first test case is a Poiseuille flow with a constant pressure gradient ∂pF /∂x1 = −104 in
the x1 direction. The magnitude of the active force acting on the particles is varied between
the experiments. The averaged orientation of the particle is enforced to be constant. While
this is clearly an assumption, it is a physical one. In all numerical experiments shear flows
are investigated. It is known that under the presence of a shear flow particles in a suspension
tend to align towards another [47, 213]. Furthermore, the particle resolved simulations in
a channel indicate, that a steady state is reached for the averaged orientation, see Fig. 6.13.
The averaged orientation vector is chosen to be eS = [0.855, 0].

In case of a single-phase Newtonian Poiseuille flow, such an experiment results in a parabolic
velocity profile. The parabolic profile can be used to benchmark the implementation of the
model. While it is not possible to simulate single-phase problems due to the logistic function
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Fig. 6.26.: (a) The fluid velocity profile, (b) the solid phase velocity profile and (c) the volume
fraction αS profile in case of a passive suspension for three classical flows.

bounding the particle volume fraction (5.134), a simulation with αS → 0 is possible. Com-
paring the solution obtained with αS = 3.36 · 10−5 with the analytical solution of a planar
Poiseuille flow uF1 = x2/ (2Re) (−∂pF /∂x2) (H − x2), where H is the height of the channel,
and calculating the L2-norm of the resulting Residual vector yields a relative error of 1.6 ·10−3.

Similarly, passive suspensions, i.e. Ac = 0, also develop a parabolic velocity profile as shown
in Fig. 6.26. As mentioned in Sec. 2.3.1 small passive particles are subject to Brownian mo-
tion, which was not considered in the derivation of the model equations in Sec. 5. However,
due to the volume average, the stochastic effect of the Brownian motion vanishes, because its
probability is normal distributed with an expectation value of zero, see Einstein [67]. In this
experiment and all following experiments the Reynolds number is set to ReP = 10−4. Due to
the low value, passive particles are expected to closely follow the fluid phase. Subsequently,
the relative velocity wS

i between the two phases approaches zero and the interaction forces
vanish, because of their dependency on wS

i . It should be noted that wS
i does not become

exactly zero. However, the resulting deviation of the particle distribution from the initial, con-
stant distribution is small and, subsequently, negligible, see Fig. 6.26c. Besides the solution for
the Poiseuille flow of a passive suspension, Fig. 6.26 also presents results for a Couette and a
Couette-Poiseuille flow. In case of the Couette flow a linear velocity profile is obtained, equiva-
lent to the solution of a single phase fluid flow. The resulting profiles for the Poiseuille-Couette
flow are linear combinations of the two constituting flows. Due to the low Reynolds number,
the convective terms in (5.132) vanish, leading to a linearisation of the system. Furthermore,
the evolution equation for the particle position (2.46) was not used in the derivation of the
homogenised model, because the information about the exact position of the particles is lost.
Thus, the linear symmetry (3.36g) is present in the system, leading to the linear combination
of the results of the Poiseuille and Couette flow in case of the combined Couette-Poiseuille
flow.

In the case of active suspensions, the situation is different. The active force creates a velocity
difference between the phases. This permits the interaction terms to become effective. In
Fig. 6.27, the resulting velocity profiles and particle distributions are shown. As expected, the
active force causes a significant relative velocity wS

i between the two phases of the system.
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Fig. 6.27.: The velocity profiles of a planar active Poiseuille flow deviate strongly from the
classical parabolic profile with increasing active force. (a) On the left panel the
averaged fluid velocity is shown. (b) The averaged solid phase velocity increases
with increasing active force. (c) The velocity difference between the two phases
permits lift forces in the x2 direction, leading to an increase in particle density at
the boundaries and a depletion in the centre of the domain.

With increasing Ac the gap between the two phases widens, as the particle velocity increases,
including the slip velocity at the boundary, whereas the fluid velocity decreases. Subsequently,
due to the dependency of the interaction forces between the phases on wS

i , vertical force
components cause an accumulation of solid material at the domain boundaries. Such an effect
is well-known in the literature, see for example Bechinger et al. [18], Berke et al. [22], and
Ezhilan and Saintillan [74], and was also observed in the particle resolved simulations, see
Sec. 6.2. Similar results were obtained by Deußen et al. [55], where as mentioned the only
difference to the present setup is the permitted slip velocity of the horizontal averaged particle
velocity. Due to the constant particle orientation parallel to the x1 direction, the averaged
active force does not directly contribute to the movement of solid material in the vertical
direction. Rather, the lift forces are responsible for this behaviour. The velocity difference
is relatively small, hence, the circulation lift force FLC

i is still negligible. Furthermore, the
difference 0.5ωF

3 −ωS
3 vanishes due to the drag torque, leading to an negligible Magnus-force.

The attraction of the active particles towards the wall as modelled in (5.114) decays with
1/h4. Thus, in the centre of the present channel such effects play a minor role. Subsequently,
the Saffman-force is the only remaining cause of the shift in the distribution of the particles
[55]. Such an behaviour is unknown from passive suspensions, where Saffman-forces play
an overall minor role, i.e. no change in the particle distribution can be observed. Especially
for passive spheres, it was shown that the Saffman-force is negligible [1, 49, 131]. Other
examinations of active particles mainly focus on the active wall attraction [18, 22, 74, 208]
and do not consider the Saffman-force as a relevant parameter.

In the following paragraph, an active Couette flow is analysed. The particles are the same as in
case of the Poiseuille flow and their orientation is again fixed. A constant velocity uFwall = 10−2

is prescribed as a boundary condition for the fluid velocity at the upper wall. The slip velocity
for the solid phase is still permitted at both walls. The resulting velocity profiles and particle
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Fig. 6.28.: The velocity profiles of a planar active Couette flow deviate from the classical linear
profile with increasing active force. (a) On the left panel the averaged fluid velocity
is shown. (b) The averaged solid phase velocity increases with increasing active
force. (c) The velocity difference between the two phases permits lift forces in the
x2 direction, leading to an increase in particle density at the fixed lower boundary
and a depletion at the upper moving boundary.

distributions are presented in Fig. 6.28. For vanishing active forces Ac = 0, the linear velocity
profile of a Newtonian planar Couette flow is retrieved, see Fig. 6.26a+b. With increasing
active force the velocity profiles deviate from this linear profile. The fluid velocity is decreased
in the near wall region of the lower boundary and increased at the upper boundary compared
to a linear profile. The slip velocity of the particle phase becomes more dominant. At the lower
wall, the solid phase velocity profile deviates from a linear profile. The velocity decreases
faster than linear, corresponding with the increase of the particle volume fraction αS . At the
moving upper wall, the particle velocity increases stronger than linear, corresponding with
a decrease of the particle density in the same region. The depletion of the particle phase
at the upper wall shows that interaction forces, namely the Saffman-force, are dominant in
this setup. The active wall attraction is not able to counter the Saffman-force, hence, driving
particle material away from the upper wall towards the lower wall. Similar to the Poiseuille
flow, the active force exerted by the particles is indirectly responsible for the change in the
particle distribution. It creates the velocity difference between the two phases, which permits
the Saffman-force and is not visible in a passive suspension. Similar results have been obtained
for a setup with vanishing slip velocity [55], however, the slip velocity strengthens the effect
of the Saffman-force due to the higher velocity difference.

Combining the two previous classical flows delivers a Couette-Poiseuille flow, i.e. the flow is
driven by the pressure gradient ∂pF /∂x1 = −104 and the prescribed fluid velocity uFwall = 10−2

at the upper boundary. Results are shown in Fig. 6.29. Effects of both constituting flows are
visible. The depletion of solid material in the centre of the domain and the maximum of the
velocity profiles is shifted towards the upper wall compared to the Poiseuille flow. Particles
accumulate at both boundaries, however, the accumulation is stronger at the lower wall due
to the Couette part of the flow. Again, for small active forces (Fig. 6.29a+b) and passive
suspensions (Fig 6.26a+b), the well-known profile of a Newtonian Coeutte-Poiseuille flow is
retrieved. In case of a single phase Newtonian fluid in a low Reynolds setup, the velocity
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Fig. 6.29.: The velocity profiles of a planar active Couette-Poiseuille flow deviate from the
classical profile with increasing active force. (a) On the left panel the averaged fluid
velocity is shown. (b) The averaged solid phase velocity increases with increasing
active force. (c) The velocity difference between the two phases permits lift forces
in the x2 direction, leading to an increase in particle density at the fixed lower
boundary and a smaller increase at the upper moving boundary. The depletion of
material from the bulk flow is off-centred.

profile is a linear combination of the velocities of the Couette and the Poiseuille flow due to
the linearity of the Stokes equation. This linear feature of the single-phase unsteady Stokes
equation becomes visible in the symmetry (3.36g), allowing the addition of any solution of
the Stokes equation to another solution. As remarked in Sec. 3.3.2, this symmetry is not
generally applicable to a suspension. It is the temporal evolution of the particle position, see
(2.46), which breaks the symmetry. All information about the specific location of an individual
particle is lost due to the averaging process. Thus, (2.46) is not used for the derivation of the
homogenised system (5.132) and the symmetry transformation (3.36g) is applicable.

To analyse the differences between the three flows and the situation at the upper and lower
wall, a boundary layer thickness δh is introduced. The length scale δh is defined as the distance
from the wall where αS deviates only by 1% from the mean value of αS . A linear interpola-
tion is used to find the correct value of δh between grid-points. The results are presented in
Fig. 6.30. As expected δh increases with increasing active force Ac, however, the behaviour
differs slightly between the different examined flows. In case of the Poiseuille flow, which is
used as a reference, the increase is linear with a proportionality constant c = 1.29 · 10−5. At
the lower boundary of the Couette flow, the thickness of the boundary layer also increases
linearly with c = 1.48 · 10−5, whereas on the upper, moving wall a deviation from the linear
behaviour is visible. While for smaller values of Ac it increases faster than the Poiseuille refer-
ence, for higher active forces it shows a tendency to align with the curve of the Poiseuille flow.
The boundary layer thickness δh of the Couette-Poiseuille flow seems to behave similar to an
average of the Poiseuille and Couette flows in accordance to the aforementioned superposition
principle. The thickness is overall increased at the lower boundary compared to the aforemen-
tioned flows. However, the slope is decreased compared to the Couette case; the constant is
c = 1.34 · 10−5. At the upper boundary the curve aligns more strongly towards the curve of
the Poiseuille flow for high active stresses, while it deviates similar to the Couette case from
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Fig. 6.30.: The boundary layer thickness δh behaves differently for the upper and lower bound-
ary. (a) In the left panel the situation for the Couette flow is shown and δh at the
lower boundary of the Poiseulle flow is used as reference. (b) In the right panel the
boundary layer of the Couette-Poiseulle flow is depicted.

the linear behaviour at lower Ac.

Until now the starting distribution of the particles was always constant over the entire height of
the domain. Uneven starting distributions might enforce interesting behaviour. In the next ex-
periment, a cubic polynomial is used to initialise the logistic function gαinit = (2.5 (0.5− x2))

3,
which defines the particle volume fraction. The flow is driven by the active force of the par-
ticles and a prescribed velocity at the upper wall uFwall = 10−2, i.e. it is a Couette flow. The
resulting velocities and particle distribution are presented in Fig. 6.31. Two things become
apparent on first sight. The magnitude of the fluid velocity in the x1 direction might become
negative and αS vanishes at the upper moving boundary for larger active forces Ac. The de-
pletion leads to an interesting behaviour of the fluid velocity. In the quasi single-phase region,
where almost only fluid is present, a linear velocity profile for the fluid phase is retrieved. The
flow in this region can be represented by a single-phase Couette flow with two moving walls.
The velocity of the upper wall would equal the prescribed boundary velocity of the present ex-
periment and the velocity of the lower wall equals the fluid velocity of the last point with two
phases present. Depletion is only reached for high active forces, i.e. the described behaviour
is only visible for Ac = 2500 and Ac = 5000. Furthermore, the depletion is not complete, i.e.
there are still particles preset in very small numbers.

The single-phase and two-phase regions are separated by a jump in the particle distribution.
Subsequently, as predicted by the analysis of the shape and intermittency symmetry in com-
bination with the particle resolved simulations, see Sec. 6.2.3 and Eq. (6.21), separation into
different phases is a property of active suspensions. If one considers the suspension to be
a new pseudo-material, where the active particles are the equivalent to the molecules of a
physical material, the single-phase region is occupied by a gaseous phase of this new mate-
rial, leading to the name active gas phase. Fitting this analogy, the remaining particles in the
active gas phase move relatively fast, see Fig. 6.31b. Particle resolved simulations show that
in the case of dilute suspensions no structures are formed in the domain, see Fig. 6.16a. In
combination with the high averaged velocity it can be assumed that the particles move in a
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Fig. 6.31.: Unevenly distributed particle material can lead to interesting phase separation be-
haviour. A cubic polynomial was used as initial particle distribution, leading to a
complete depletion of the particle phase at the upper moving boundary.

Tab. 6.2.: The position of the phase interfaces between the three active phases in the experi-
ment shown in Fig. 6.31 are shown in this tabular.

Ac liquid/solid gas/liquid
500 0.044 -
1000 0.033 -
2500 0.02 0.973
5000 0.013 0.957

chaotic manner. Hence, the particle behaviour in the active gas can be related to the stochastic
term of the phase separation symmetry (6.23) and the fluid behaviour can be related to the
deterministic term in the aforementioned symmetry.

In large parts of the two-phase region, the state of matter of the pseudo-material is liquid, i.e.
it is an active liquid. The active particles are packed much more densely than in the active gas
phase, but velocity gradients on large and small scales are still possible. Not quite as obvious
as in the case of the transition from gaseous to liquid, the suspension near the lower wall
changes to a state resembling a solid. There is no visible jump in the particle distribution.
However, the particle velocity at the lower wall decreases to an almost constant value close
to zero. In analogy to the molecules in a solid, which from a macroscopic point of view
all move at the same speed, we call the material in this region an active solid. It should be
noted, that the change of the particle volume fraction in this region from the initial state is
negligible, i.e the pseudo-material is frozen, which is the main reason for the missing jump
and the clear separation between liquid and solid phase. Hence, in this experiment the active
solid behaves like a glass, i.e. a frozen melt. For the purpose of this examination the position
of the interface will be defined as the point where the local velocity gradient is smaller than
10% of the averaged velocity gradient of the two-phase region. The position of the phase
interfaces is given in Tab. 6.2. The active solid phase is another example for the action of
the phase separation symmetry, given by (6.23) for a realistic cluster. While in other regions
of the domain the gradient of the velocity is large and might change quickly, the velocity in
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Fig. 6.32.: Unevenly distributed particle material can lead to interesting phase separation be-
haviour. A cubic polynomial was used as initial particle distribution, leading to a
complete depletion of the particle phase at the upper moving boundary.

the active solid phase is approximately constant, i.e. related to the cluster velocity introduced
in Sec. 6.2.3. The fluid phase on the other hand behaves much more dynamic, including a
region of backflow for high averaged active forces. Thus, it is related to the stochastic part of
the phase separation symmetry. The observation of phase separation in an active suspension is
well documented, including the terminology active gas, active liquid and the glass-like active
solid, see for example Berthier and Kurchan [23], Buttinoni et al. [36], Henkes et al. [91],
Marchetti et al. [146], and Paoluzzi et al. [166]. To the authors knowledge, the connection,
which is derived with the help of Lie symmetries, between the simulation results showing
clustering and phase separation and the underlying theory is a new idea, developed in the
present work. A further discussion of this connection can be found in the final section of this
thesis, see Sec. 7.5.

A second experiment with a non-constant particle distribution delivers an even clearer picture
of the phase separation. The particle volume fraction is initialised by a parabolic profile for
the logistic function gα = 20 (x2 − 0.5)2 − 3, i.e. most particles are already at the boundaries,
whereas the centre of the domain contains a smaller number of particles. Additionally to the
activity of the particles, the flow is driven by a pressure gradient ∂pF /∂x1 = −104. The results
for the velocities in the x1 direction and the particle distribution are given in Fig. 6.32. In the
centre of the domain, the active gas is present for high active forces. Similar to the linear profile
in case of a Couette flow, the fluid velocity forms a parabolic profile in the region occupied by
the active gas, which is known from single-phase Newtonian flows and passive suspensions,
see Fig. 6.26. Especially for large active forces, the transition between the active liquid and
the active solid also becomes clearly visible in the form of a kink in the particle distribution.
In the active solid region, the particle distribution shows almost no deviation from the initial
distribution and the particle velocity is close to zero, i.e. the suspension is frozen. In the active
liquid region, the particle distribution profile deviates clearly for high active forces from the
initial parabolic profile, which is still intact for suspensions with lower active forces Ac ≤ 1000.
In the present experiment the active gas only develops for the highest active force Ac = 5000,
the interfaces are located at x2 = 0.28 and x2 = 0.72. The kinks in the particle distribution are
located at x2 = 0.08 and x2 = 0.92 forAc = 5000 and at x2 = 0.07 and x2 = 0.93 forAc = 2500.
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It should be noted that this position differs from the position of the interface resulting from
the previously used definition, i.e. the local particle velocity gradient being smaller than 10%
of the averaged velocity gradient. The positions of the interfaces resulting from this definition
are x2 = 0.03 and x2 = 0.97 for Ac = 5000 and x2 = 0.04 and x2 = 0.96 for Ac = 2500. The
position of the kink should, however, be considered as a more reliable definition, because it is
based on a single, deterministic feature of the suspension. From Fig. 6.32 it becomes apparent,
that the phase separation symmetry (6.21) acts differently on the solid and on the fluid phase.
In the subdomain occupied by the active gas, the fluid velocity profile is deterministic, as the
well-known parabolic profile of a Newtonian fluid is retrieved. Due to the low number of
particles present, local fluctuations are expected to be minimal for the fluid velocity. Hence,
the deterministic part of the symmetry is dominant in this region for the fluid velocity. On the
other hand, it is known from the particle resolved simulation of a dilute suspension that the
particle velocity PDF is wider than for a dense suspension, i.e. a more chaotic state is reached,
see Fig. 6.23. In the region occupied by the active liquid and the active solid, the variance of
the particle velocity PDF shrinks, i.e. more deterministic states are reached, as indicated by
the velocity PDF for denser suspensions, see Fig. 6.23. The fluid velocity, however, behaves
more chaotic, including areas with reversed averaged flow. Furthermore, it can be expected
due to the densely packed particles, that the microscopic fluctuations of the fluid velocity are
large.
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7. Discussion

Several differentmethods to examine an active suspension have been derived in this work. One
could consider the different methods as tools in a toolbox, which contents can help gaining
a deeper understanding of active suspensions. The classical symmetries, the PDF approach
and the statistical symmetries developed in Sec. 3 represent the first tool in the toolbox. The
second tool is the particle resolved XNSERO solver presented in Sec. 4. Last but not least we
have the homogenised model, which represent the third tool (Sec. 5). All tools for itself have
been proven valuable to provide insight on the behaviour of active suspensions. However, they
become even more powerful in combination as shown in Sec. 6. The present section serves as
a conclusion, to discuss the achieved results and the interaction of the individual tools.

7.1. The model

First, the underlying model is discussed, which is identical for all the different methods men-
tioned above. To the authors knowledge, most models for active particles consider only the
solid phase, see for example Bechinger et al. [18], Jayaram et al. [113], and Vicsek et al.
[200]. Models, which do consider the fluid, often simplify the motor of the particle and only
apply a point force [84, 85, 93, 94]. In contrast, in the presently used model the particles are
considered as extended objects, which exert an active stress on their surroundings. Thus, it
belongs to the same model family as used for example by Kanevsky et al. [116] and Saintillan
and Shelley [182]. The active stress is motivated by biological structures such as flagella and
cilia [116]. Due to the increased level of detail, the computational costs increase compared
to simpler models. This becomes especially apparent during the usage of the particle resolved
XNSERO solver. Nevertheless, while dry models, i.e. models which do not consider the fluid
phase, show interesting behaviour such as phase separation and the formation of large-scale
cluster [36, 113], the fluid-particle interactions and particle-particle interactions provide an
additional level of information. The presented model employs a sharp interface approach by
representing the particle surface with the level-set method, see Sec. 2.3.3. The sharp interface
representation combined with the sub-cell accuracy of the XDG method is especially useful for
the particle resolved DNS. Disadvantages of the level-set method such as the necessity for high
order implicit solvers for the transport equations of φ vanish due to the explicit formulation of
φ based on the particle geometry.

Probably the biggest assumption of the model is the rigidity of the particles. Artificial active
particles often consists of polymers [18] or of metallic compounds [212]. Thus, the assump-
tion of rigidity is close to reality of artificial particles, because the small forces acting on each
particle are not able to deform such artificial structures. Biological and, by extension, bio-
hybrid active particles, on the other hand, mostly consist of soft tissue and fluid material.
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Nevertheless, microorganisms are able to keep their body shape stable and will recover their
native state after strong deformations [209]. Hence, the rigid model is also valid for many
biological particles. However, species of the genus Amoeba [148] and similar organisms, who
change their shape in order to drive themselves forward, might need a different modelling
approach. Nonetheless, if the body deformations are sufficiently small, for example in the
case of Euglena gracilis, experiments show a flow field similar to a Stokes dipole in the vicinity
of the particles [71], as it is the case with the presented model. In fact, Ergin [71] mentions
the necessity to remove the body features of E. gracilis for micro particle image velocimetry,
because the movement of the organism is not related to the motion of the fluid. Accordingly,
while small scale deformations of the particle body might exist, their effect on the hydrody-
namics is negligible or possibly unrelated to the motion of the fluid, supporting the choice of
a rigid particle model.

Active stress as a model for the particle motor is derived from organisms with cilia [116].
These micro-paddles are much smaller than the actual organism and exert a force on the
surrounding fluid. The model of a mechanical stress distributed over the surface is, thus, a
natural choice. Artificial Janus particles are closely related, because such particles rely on a
slip velocity at the surface, caused by chemical reactions [212], as method of propulsions. A
slip velocity is permitted by the active stress in the present model. However, the chemical re-
action at the surface of artificial Janus particles might create a gradient of a chemical species,
which, additionally to the hydrodynamic interactions, influences the behaviour of the active
suspension [140]. Another method of propulsions is the helical movement, as exerted by the
flagella of Escherichia coli [62] or Euglena gracilis [71]. As shown by the aforementioned au-
thors Drescher et al. [62] and Ergin [71], the far-field approximation of the Stokes dipole
is valid for such active particles. Far field in this context refers to the domain surrounding
the particle with a diameter of only a few particle diameters, i.e. still in a close range of the
particle. It excludes the region in the closest vicinity of the particle surface, which cannot be
approximated by a Stokes dipole, see Fig. 6.2 and Bechinger et al. [18]. Thus, while differ-
ences might exist in the closest vicinity of the particle, the overall hydrodynamic behaviour of
many active particles can be described by a Janus particle model with active stress as method
of propulsion.

To reduce computational cost, especially in the case of the DNS, the Stokes approximation for
the Navier-Stokes equation was introduced, see (2.17) for the steady case and (2.68) for the
unsteady case. The non-linear convective terms of the Navier-Stokes equation are neglected,
which is a reasonable approximation due to the condition of low Reynolds numbers Re ≪ 1.
However, in the case of only two spatial dimensions no non-trivial steady solution exists for
a particle in a uniform flow in an infinite domain, which is known as Stokes paradox [196].
Oseen [162] solved the paradox by introducing an additional term, which accounts for the
inertia in the far field of the fluid flow. In the present work, the resulting Oseen equation
(3.35) was derived from the symmetries of the unsteady Stokes equation, see (3.34). While
no solution for a steady, uniform flow in two dimensions exists, solutions for unsteady [76]
and non-uniform [43] flows are known, including solutions for the Stokes dipole, see (1.5)
[43]. Due to the use of the unsteady Stokes equation (2.68), a finite domain and the general
non-uniformity of the local fluid flow in an active suspension, see for example Fig. 6.17, the
Stokes paradox poses no problem in the present work.

Brownianmotion [67, 188] is neglected entirely in the present model, see Sec. 2.3.1. The term
Brownian motion describes the random motion of a small particle dispersed in a fluid due to
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the collisions of the particle with the molecules of the fluid. The particles in consideration
in the present work are certainly small enough to experience relevant accelerations due to
Brownian motion. It is, however, assumed, that the Péclet number Pe ≡ vac/

√
DTDR as given

by Bechinger et al. [18] is large, i.e. the strength of the active transport, represented by the
velocity vac, is larger than the diffusive transport due to Brownian motion, represented by the
two diffusion coefficients

√
DTDR. Hence, any random term in the model system containing

the Navier-Stokes respective Stokes equation and the Newton-Euler equation is neglected.
For systems with small Péclet number it might be necessary to consider stochastic terms in the
defining equations. Throughout this work, systems with small Péclet numbers are analysed
only with the homogenised model. Here, passive suspension with Pe = 0 are considered,
see Sec. 6.3. However, Brownian motion is described by a normal distribution with vanishing
expectation value, see Einstein [67]. Thus, due to the averaging process, the diffusive effects
of Brownian motion are not depicted in the homogenised model.

7.2. Symmetries

In Sec. 3 Lie-symmetries of the physical and statistical descriptions of the systems were pre-
sented, starting with the symmetries of a single-phase fluid system. The generalised Galilean
symmetry of the Navier-Stokes equation is unavailable for the unsteady Stokes equation and
reduced to a constant spatial shift. The steady Stokes equation, on the other hand, contains
the classical Galilean symmetry, i.e. a function linear in time can be added to the unmodified
Eulerian coordinate xi. Due to the linearity of the Stokes equation, an additional symmetry
appears, which is related to the superposition principle of linear differential equations. Fur-
thermore, the scaling symmetry TSc1 of the Navier-Stokes equation is split into two scaling
symmetries TSc2 and TSc3, where the combination of the latter two results in the first scaling
symmetry TSc1, see (3.37).

Applying the rotation operator∇× to the unsteady Stokes equation delivers a transport equa-
tion for the vorticity. It is equivalent to the heat equation, which symmetries in the one-
dimensional case are given by Ibragimov [106]. In Sec. 3.2.1 the set of symmetries in two
spatial dimensions for the vorticity equation was presented. Interestingly, while derived from
the unsteady Stokes equation, the vorticity equation has a time-dependent Galilean symmetry,
where the spatial shift depends linearly on the time [106]. Furthermore, the transformation
group of the vorticity equation contains a symmetry directly related to the dissipation of the
vorticity, see (3.41g).

Once the solid phase is added to the system and an active suspension is observed, most of the
additional symmetries (3.36) of the unsteady Stokes equation (2.68) are broken by (2.46)
and (2.47). The symmetry breaking affects the two scaling symmetries TSc2, TSc3 which only
appear in the combined form TSc1 and the linearity symmetry Tlin. Furthermore, all addi-
tional symmetries of the vorticity equation are broken due to the evolution equation of the
orientation angle (2.47). They might be, however, applicable to a passive suspension of disk-
shaped particles in two dimensions or spherical particles in the three-dimensional case. As
such they are related to the shifting symmetry of the orientation angle (3.50f), which is also
only present in the isotropic case of non-polar disk-shaped or spherical passive particles. While
not applicable to an active suspension, due to the polarity of an active particle, the orientation
symmetry (3.50f) serves as a limiting case in the investigation of multi-particle suspensions,
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see Sec. 6.2.3. As mentioned earlier in this section in case of the unsteady Stokes equation the
choice of fi,G is restricted and only a constant space shift is allowed. This is not the case if the
full Navier-Stokes equation is employed. In this case the system of equations contains either
the classical Galilean symmetry if D ̸= 1 or the generalised Galilean symmetry if D = 1.

It is necessary to emphasise that although the unsteady Stokes equation itself is linear, the
linear symmetry (3.36g) is broken by (2.46) and (2.47), i.e. it is no longer a symmetry of
the entire system of equations. Nevertheless, as the information about the exact position of
the particles is lost in the homogenised model (see Sec. 5), the system of averaged equations
(5.132) contains the linearity symmetry (3.36g) if the convective terms are neglected. The
Couette-Poiseuille flow (Fig. 6.29) is an example for the application of this symmetry, because
it can be considered as a superposition of a Couette and a Poiseuille flow. Notably, the linearity
symmetry of the vorticity equation is still not part of the transformation group of the averaged
system, because (2.47) has been used directly to derive the transport equation for the averaged
orientation (5.39). On a side note, in case of a passive suspension with circular or spherical
particles the additional symmetries of the vorticity equation might be applicable, a setup,
which is outside the scope of the present work.

7.2.1. Statistical theory

In the next step, a statistical description of an active suspension is derived. Solely based on
the three multi-dimensional sample space variables Vi, Xip and bp, which are related to the
three physical variables velocity Ui, particle position χip and orientation βp, the PDF descrip-
tion of a system contains all statistical information. The derivation is based on first principles,
i.e. the conservation of mass and momentum. It should be noted, while the derivation for
the PDF hierarchy was carried out in two dimensions, the adaption to three dimensions is
straightforward, as only the terms describing the particle rotation need to be adapted. Sim-
ilar to the LMN hierarchy [142, 153, 157] an infinite hierarchy of transport equations for
the multi-point joint PDF for the three aforementioned variables is derived [51]. Comparably
to turbulence research the PDF hierarchy for an active suspension reveals a closure problem,
due to being an infinite hierarchy. While it is not solvable directly, the PDF hierarchy shows
interesting properties. First and foremost, it consists only of linear equations, even though it
contains an equivalent term

∑︁K
k=1 Vi∂ Kf/∂ kxi to the convective term in the physical space.

Furthermore, the PDF transports information about the entire statistic of the system, hence,
containing all statistical moments. Subsequently, it is possible to derive statistical models for
an active suspension directly from the PDF hierarchy, which has been shown in Sec. 5.2.5 for
the homogenised two-phase model. In fact, all statistical models are part of the PDF equa-
tions. In order to derive such a model one needs an appropriate termination condition for
the hierarchy and model equations for terms of a higher order. In case of the homogenised
model, the desired output is the average of the physical quantities, i.e the first moment of the
single-point PDF. Accordingly, all information about higher moments such as covariance or
multi-point correlations is lost. It is necessary to find an appropriate model for the emerging
unclosed terms, which are multi-variable moments of second order.

In combination with the Lie symmetry theory the PDF hierarchy can be used without solving
the equations and without introducing artificial termination conditions for the hierarchy of
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equations. Similar to the Stokes and vorticity equation, all equations in the hierarchy are lin-
ear. Hence, additionally to the classical symmetries of the physical space (Sec. 3.5), it contains
a linear symmetry, which allows to form the sum of arbitrary solutions of the hierarchy. Due to
the specific properties of a PDF, particularly the reduction property (3.66), two variants of the
linear transformation are possible. One was introduced by Wacławczyk et al. [202] as shape
symmetry, the other as intermittency symmetry.

7.3. Particle-resolved simulations

In Sec. 4 a solver for the Janus particle model, implemented as part of the BoSSS framework,
is presented. No additional simplifications were introduced, hence, the XNSERO solver car-
ries out DNS. The solid phase and the fluid phase are solved separately. The two phases are
connected by the interface interactions, i.e. the boundary conditions acting on the fluid phase
at the particle surface and the hydrodynamic forces and torques acting on each particle. All
equations considered separately are linear, because the fluid phase is described by the un-
steady Stokes equation. For a single phase problem a direct linear solver such as PARDISO
might be sufficient to obtain a solution. As revealed by the symmetry analysis, the linear
symmetry does not exists in the system of equations describing an active suspension. Due to
the aforementioned interface interactions, precisely the active and passive boundary condi-
tion and the hydrodynamic forces and torques, an iterative procedure is necessary, which is
presented in Alg. 7. In terms of computational costs, the fluid solver and the formulation and
execution of the quadrature rules dominate the runtime of the solver, see Fig. 4.15. Especially
for high numbers of particles the performance of the Saye-algorithm (Sec. 4.3.2), responsible
for the integration on cut-cells, becomes increasingly important. As the Saye-algorithm relies
on a subdivision routine for the handling of unfavourable surface configurations in cut-cells,
see Fig. 4.3, the number of recursive levels necessary might become large especially for dense
suspensions. Improvements to the algorithm in general and the subdivision routine in partic-
ular are necessary in order to solve larger problems than presented in this work and to extend
the solver to three dimensions.

For the present problem size a direct solver such as PARDISO is the most efficient choice to
obtain a solution for the fluid phase as a sub-routine of the XNSERO solver scheme presented
in Alg. 7. For even larger systems it might be necessary to switch to more complex solvers,
e.g. multigrid solvers, to obtain a solution in a reasonable time span. Consider the presented
standard domain with 576, 240 DoFs. In case of the highest particle volume fraction, i.e. αS =
0.39, this leads to approximately 43, 938 DoFs per process in the fluid phase if eight cores
are used. In case of such a comparably small number of DoFs, PARDISO is still on par with
multigrid solvers, see Kummer et al. [127].

Besides the performance challenges, the model itself poses difficulties to the implementation,
which are necessary to discuss. When considering the flow field of a Stokes dipole, four singu-
larities immediately catch the readers attentions. Two singularities are located at the Northern
and Southern side of the particle surface, where the active and passive boundaries are con-
nected. The other two singularities are located at the westernmost and easternmost points of
the surface, where the up- and downstream of the Northern and Southern side of the particle
meet. Due to the discontinuous nature of the XDG method, such singularities are handled
well by the fluid solver, especially if located directly at a cell boundary. If the singular point is
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located within a numerical cell the ansatz polynomials need to be capable of capturing the sin-
gularity. While this necessarily introduces an error into the problem, this error can be reduced
by either increasing the polynomial order of the ansatz functions or by choosing a sufficiently
small cell size hΓ ≤ hK at the surface of the particles. To achieve small values of hΓ it might
be useful to employ AMR techniques, which are readily available in BoSSS. AMR is most use-
ful in dilute suspensions, where enough particle-free spaces exist where larger grid sizes are
acceptable. For dense suspensions the additional costs of the AMR routines might outweigh
the benefits of a coarser background grid. Hence, for the multi-particle suspensions no AMR
technique was applied (Fig. 6.15), whereas AMR is used to investigate the collision between a
particle and the wall, see Fig. 4.12. If no AMR is applied, an appropriate global mesh size has
to be selected to minimize the error, while keeping the complexity of the problem contained.

The purpose of the collision model is twofold. On the one hand, it is necessary to ensure a
minimal distance between the particles based on the numerical grid of the fluid solver. The
minimal distance is defined by the cell diameter hΓ at the particle surface, because the Saye-
algorithm requires the particles to be at least one cell apart to be able to distinguish between
particles. Hence, with smaller cell diameters particles are allowed to come closer towards
each other. In the hypothetical case of infinite spatial and temporal resolution, i.e hΓ → 0 and
∆t→ 0, no collision model would be necessary. The reason is, that in an ideal incompressible
flow no collision between two objects can occur. The pressure would become large and forces
the two objects to separate. However, physical effects, such as surface roughness, breakdown
of lubrication, weak interaction forces and entanglement of cilia and flagella require a differ-
ent handling of small gaps between particles than the bulk fluid phase. For very small gaps
between particles the assumption of a continuum is no longer valid. However, assuming a
particle size of a = 10−6 and a mean free path of the molecules in the surrounding fluid of
the order of λ ≈ 10−10 delivers a minimum gap size of r = 10−3a where one would expect
the onset of a Knudsen flow with a Knudsen number of Kn = λ/r ≈ 0.1, the Navier-Stokes
(2.67) and Stokes equation (2.68) are no longer valid. Direct interaction forces such as the
van der Waals force are in general short ranged. Thus, interactions based on van der Waals
forces between ideal surfaces also require small gap sizes. However, given non-ideal surfaces
and ciliated particles, such forces might become relevant on much larger scales. It is known,
that cilia can increase adhesion by van der Waals forces, which was studied by analysing the
foot of the golden mussel Limnoperna fortunei [8]. The length of an individual cilium might
vary depending on the organism. Let’s assume a length of LCil = 0.1a for a microorganism
[160]. Hence, already for a gap size of a tenth of the particle length one can expect weak
interaction forces. Furthermore, cilia or flagella of neighbouring particles might entangle,
leading to additional mechanical interactions forces between two particles. Hence, the choice
of hK = 0.1a in the multi-particle simulations (Sec. 6.2) is reasonable.

The particle solver of XNSERO contains a formulation for the Newton-Euler equations (2.54),
(2.55) and the evolution of the position and the orientation of the particle (2.46), (2.47)
which depends only on the previous particle solutions and the current solution of the flow
field. A method of third order is chosen, given by (4.63a)-(4.64b). For the presented results
the simulations were carried out with a polynomial order of k = 2 for the fluid velocity. If
the polynomial order of the XDG ansatz polynomials is increased it might be necessary to
also change the integration method of the particle solver in order to preserve the high-order
characteristics of the entire XNSERO solver.

170



7.4. Homogenised fluid-particle simulations

Due to high computational costs, large systems with thousands of particles are currently not
possible to simulate with the XNSERO solver. Hence, the homogenised model is introduced,
which is based on volume averaged physical quantities of both phases, see Sec. 5. Results are
presented for a planar configuration, leading to one-dimensional profiles. Nevertheless, the
underlying system, including the particle behaviour, is modelled in three spatial dimensions.
The averages of the fluid and particle velocities, the fluid pressure, the particle rotational
velocity, the particle orientation and the volume fraction of the fluid and the particle phase
together describe a new pseudo-material, which occupies the entire domain. The transport
equations for all aforementioned variables need to be solved for all space-time points, i.e. at
any point in the domain both constituting phases are always present.

Instead of using the fluid Reynolds number Re, the mixture Reynolds number ReM is intro-
duced. It is defined by the mixture viscosity µM , which accounts for the increased resistance
towards deformation due to the presence of the particles [110]. The concept of a mixture
viscosity was first introduced by Einstein [68, 69], however, to account for non-spherical par-
ticles a version introduced by Ishii and Zuber [110], Ishii and Hibiki [109], and Pabst et al.
[164] is employed, see (5.51). The mixture viscosity is a function of the aspect ratio ε, the
local solid phase volume fraction αS and the maximum volume fraction αS

max. Depending on
the exact shape of the particles, αS

max takes values between zero and unity. The limiting case
of αS

max = 1 is only reached for ordered rectangular cuboids in three dimensions. Packings of
other particles exhibit gaps that cannot be filled with evenly shaped particles. For example,
the highest possible packing fraction for uniform spheres is αS

max = π/
√
18 ≈ 0.74, which is

known as Kepler conjecture [88]. This value is only reached in an ordered state, the maximum
random packing fraction is αS

max ≈ 0.64 for spherical particles [198]. For ellipsoidal particles
the maximum random packing fraction is increased up to αS

max = 0.74 [39, 60]. The mixture
Reynolds number vanishes in the limiting case, where αS = αS

max. Thus, the viscosity be-
comes infinite and the suspension behaves similarly to a solid object. But even before αS

max is
reached, the suspension begins to freeze, i.e the suspension glassifies. This effect is noticeable
in an active suspension, for example, when the state of an active solid is reached, see Fig. 6.31
and Fig 6.32. In the opposing case, where the solid phase volume fraction vanishes, i.e. a sin-
gle phase flow is obtained, the mixture Reynolds number equals the unmodified fluid Reynolds
number. The influence of the averaged particle orientation was not taken into account when
modelling the mixture viscosity and the mixture Reynolds number. It is known [47], that some
suspensions show shear thinning behaviour, especially if elongated particles are present. Due
to the shear rate, the particles orientate themselves towards each other, assuming a sufficient
particle density. Layers of particles on top of each other can simply slide off, thus decreasing
the mixture viscosity. This would not be the case in a disordered system, as the particles would
block each other. Incorporating the dependency on the orientation would surely increase the
applicability of the entire model. However, in the present work only planar flows between
two infinite planes are considered. Given the results of the DNS for a channel flow with elon-
gated pusher particles (Fig. 6.14) one can assume, that after some time a steady state for the
length of the averaged orientation vector is reached (Fig. 6.13). Hence, for the channel flows
presented in Sec. 6.3 a constant length of the averaged orientation vector is assumed, thus, it
is not necessary to model the mixture viscosity based on the particle orientation.

Due to the averaging process additional unclosed terms occur in the equations for the ho-
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mogenised model. One type of terms describes interface interaction forces, which are mod-
elled as linear combination of known forces. Such a procedure is well established in the deriva-
tion of volume averaged models, see for example Ishii and Hibiki [109]. The other class of
unclosed terms are of the same type as the Reynolds stress tensor in the RANS equations of
turbulence research. In the present work a phenomenological approach to model these terms
is chosen. The Boussinesq ansatz is used (5.107) as a foundation. Phenomena such as the
attraction of active particles towards each other and towards solid walls are then used to de-
scribe the generalised turbulent kinetic energy. The diffusion coefficient is modelled on the
assumption that collisions between particles have a diffusive effect on the distribution of the
linear and rotational momentum. Thus, the mixture Reynolds number is employed to model
collisions and friction within the solid phase. The results obtained with this model are in good
agreement both with the DNS carried out in this work and the literature about similar planar
flows. However, there is no guarantee that such an approach results in a complete model,
which is applicable to a wide range of configurations. A forward-looking approach to define
model equation is presented by Klingenberg and Oberlack [121] in the context of turbulence
research. Based on a full set of Lie-symmetries, i.e. containing both classical symmetries of the
Navier-Stokes equation and statistical symmetries, Klingenberg and Oberlack [121] derive a
more general turbulence model compared to existing models. The resulting modified k − ε
model is capable of improving the results of classical models [121, 120]. Due to the struc-
tural similarities of the classical and the statistical symmetries of an active suspension towards
their counterpart in turbulence research it is expected that this approach is transferable to the
present problem.

7.5. Connecting data and theory

The classical and the statistical symmetries are used to analyse data provided by simulations
carried out with the XNSERO solver and the homogenised model. The focus is particularly
on the statistical symmetries. The shape symmetry is applied to the PDF of the minimal dis-
tance towards the next particle (6.8), the relative orientation (6.11) and the particle velocity
(6.16). The intermittency symmetry is used to derive the exponential distribution of the far-
field section of the minimal distance PDF, see (6.9). It also appears as the limiting case for the
shape symmetry in case of dense suspensions, see for example (6.20). Thus, it is possible to
connect commonly known phenomena of active suspension, such as the formation of cluster
or emerging chaotic states, to the theoretical foundations.

In case of the joint intermittency symmetry the new names cluster or phase separation symme-
try are proposed. The ideal, discrete version of this symmetry is given by (6.22). Considering
that the boundaries between different active phases might not necessarily be sharp, a second
version of the symmetry is given (6.23), which allows a range of values for the velocity and
orientation within the cluster or phase. The usage of the term cluster or phase separation de-
pends on the size of the emerging structures. While clusters in the comparably small systems
analysed with the BoSSS code are restricted to a small space, active phases in the results for
the homogenised model might consist of a large number of particles and occupy significant
percentages of the domain. It is possible to identify three different active phases in analogy
to the aggregate states of normal matter. In this analogy, the particles are molecules of a new
pseudo-material. An active gas is characterised by a particle density close to zero, i.e. the mean
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free path between particles is large, and the fluid behaves similar to a single phase flow with
the same characteristic velocity profiles. The interface towards the active liquid is sharp and
kinks and jumps are visible in the velocity profiles, see Fig. 6.31 and Fig. 6.32. The active solid
phase is characterised by high particle densities and almost constant velocities, especially for
the particle phase. The interface towards the active liquid phase is, however, less sharp than
the interface between the active gas and active liquid phase. Nevertheless, while observing
the Poiseuille flow with non-uniform initial particle distribution, a kink in the profile of the
particle density at the solid-liquid interface becomes visible, see Fig. 6.32. In fact, in the pre-
sented simulations, the active solid behaves similar to a glass in the sense that it represents
a frozen melt. The active liquid phase poses a intermediate state, where fluid and particles
can move relatively freely, which becomes visible in the averaged quantities by comparably
large gradients. The deterministic term of the phase separation symmetry describes both, the
deterministic behaviour of the fluid phase in the active gas and the constant particle velocity
in case of the active solid phase. The behaviour of the other phase, i.e. the solid phase in the
active gas and the fluid phase in the active solid, is then described by the chaotic term of the
phase separation symmetry. Furthermore, the separation into two phases, especially the sharp
interface between the active gas and the active liquid represents an action of the phase separa-
tion symmetry (6.22). The deterministic term is related to the almost constant dilute volume
fraction of the particles in the active gas and the active liquid and the active solid are described
by the stochastic term.

A separation into different phases has also been observed in experiments and other numerical
studies [24, 36, 193, 195]. For example, Buttinoni et al. [36] observed in experiments the
formations of clusters and, with increasing particles density, the formation of separate phases.
They found the main reason for the clustering mechanism to be the self-blocking behaviour
of opposing particles. In the present work such a behaviour was examined with a simulation
of two particles, see Fig. 6.8. In this minimal example, the particles are able to evade and no
blocking occurs. Thus, no stable clusters form in the bulk of a dilute suspension (Fig. 6.16a).
Due to the low number of particles, most interactions between particles only involve two par-
ticles, hence, evasion is possible. By adding more particles to the experiment, the evasion
path might get blocked by the additional particles. The joint PDF of the minimal distance and
the alignment reveals the blocking mechanism in case of denser suspensions. In Fig. 6.21a
a clear maximum for the joint PDF is visible at (1.2, π), i.e. for a state where two particles
are in contact at their westernmost or easternmost points with opposing orientation vectors.
According to Buttinoni et al. [36] the blocking mechanism is the sole reason for the formation
of clusters in the case of their experiments with spherical Janus particles. In the case of ellipse
shaped particles, alignment effects reinforce the formation of clusters, as indicated by the joint
PDF of the minimal distance and alignment for the densest suspension, see Fig. 6.21b. In the
current setup, hydrodynamic interactions play a role in the formation of clusters, in contrast
to a setup with spherical particles Buttinoni et al. [36]. According to the flow field of a Stokes
dipole (1.5) particles with a parallel or opposing orientation attract each other, whereas a
perpendicular relative orientation of two particles causes a repulsion. Due to the most likely
parallel or opposing alignment of the particles (Fig. 6.21), particles are mostly attracted to-
wards another by the hydrodynamic interactions, especially in the case of denser suspensions.
Hence, stronger connections within a cluster are formed. Furthermore, if an additional back-
ground flow is present, e.g. the Poiseuille flow caused by the pressure gradient in the case of
the experiments presented in Fig. 6.27 and Fig. 6.32, interactions forces between the fluid and
the particles have to be taken into account. The difference between the averaged fluid and
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particle velocities causes lift forces, which in return cause phase separations. In the presented
results for the homogenised model, see Sec. 6.3, the Saffman-force was the main cause for
the phase separation in Fig. 6.31 and Fig. 6.32. In conclusion, by using the phase separation
symmetry it is possible to connect a well known phenomenon such as the clustering and phase
separation of an active suspension to the underlying theory.

In the introduction to this work (Sec. 1) the term active turbulence was mentioned. While
the seemingly chaotic behaviour of an active suspension explains the choice of the term, dif-
ferences towards classical hydrodynamic turbulence are readily apparent. In a low-Reynolds
active suspension no energy cascade exists [4], which is one of the defining features of inertia
driven turbulence. Furthermore, clear structures are visible in the results of the simulations,
which in a way contradict the previously made assumption of chaotic or turbulent behaviour.
These structures are so pronounced that the terms active gas, active liquid and active solidwere
introduced. These active aggregate states are not products of chance, but are linked to the
underlying theory via the phase separation symmetry (6.22), (6.23). The PDFs of the velocity
and the minimum distance also show a decreasing variance with increasing particle density for
the investigated systems. However, especially the particle velocity PDF shows a heavy-tailed
behaviour. By this term, a PDF is described, which in the outer areas or tails decreases more
slowly than a comparable Gaussian normal distribution. The heavy-tailed nature of the PDF
makes comparably large velocities more likely and it can be assumed that intermittency occurs.
In this context, intermittency means the sudden outbreak of large velocities in a previously
uniform velocity field [135, 206], i.e. chaotic behaviour in a otherwise deterministic system.
While emergent structures indicate a deterministic system, the presence of a non-Gaussian
particle velocity PDF, where the non-Gaussian behaviour is reinforced by increasing particle
densities, and the resulting assumed intermittent behaviour indicate a chaotic state of the ac-
tive suspension. Both states - chaos and determinism - are present in an active suspension; an
active suspension is, thus, a truly intermittent system.
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A. Appendix

A.1. Lie symmetries

This section of the appendix contains the proofs for two statements made during the definition
of an Lie-symmetry, see Sec. 3.1.

A.1.1. Lie operator

An approximation for the directional derivative of an arbitrary function f (x) is

Xf (x) = lim
h→0

f (x+ hξ)− f (x)

h
= ξi

∂f (x)

∂xi
(A.1)

Resorting delivers
f (x+ hξ) = (1 + hX) f (x) , (A.2)

where h → 0 is implied. Hence, by introducing the finite step size α = Nh and applying the
operator (1 + hX) N -times, one obtains

f (x∗) = f (x+ αξ) =
(︂
1 +

α

N
X
)︂N

f (x) , (A.3)

where we made use of the successive property of the one-parameter group TαTβ = Tα+β.
With N → ∞ (A.3) becomes

f (x∗) = eαXf (x) =

∞∑︂
n=0

(αX)n

n!
f (x) , (A.4)

where Xn = XXn−1. Requiring invariance of f (x) = f (x∗) under the transformation x∗i =
xi + αξi delivers

Xnf (x) = 0, (A.5)

as a solution of (A.4). Subsequently, (A.5) is equivalent to the invariance of the function f (x).
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A.1.2. Infinitesimals of derivatives

Using the chain rule on obtains

DΨi

Dxj
=
Dy∗i
Dx∗k

DΦk

Dxj
= y∗i,xk

DΦk

Dxj
, (A.6)

where D/Dxi is the total differential operator, see (3.13). Let

y∗i,xk1
,xk2

,...,xkN
= Ψi,xk1

,xk2
,...,xkN

= yi,xk1
,xk2

,...,xkN
+ αηi,k1,k2,...,kN +O

(︁
α2
)︁

(A.7)

be the N -th order derivative of the dependent variable y∗i . Subsequently, the above chain rule
delivers

D

DxkN+1

(︂
yi,xk1

,xk2
,...,xkN

+ αηi,k1,k2,...,kN

)︂
=
(︂
yi,xk1

,xk2
,...,xj + αηi,k1,k2,...,j

)︂ D

DxkN+1

(xj + αξj) (A.8)

leading to

Dyi,xk1
,xk2

,...,xkN

DxkN+1

− yi,xk1
,xk2

,...,xkN+1

+α

(︃
yi,xk1

,xk2
,...,xj

Dξj
DxkN+1

+ ηi,k1,k2,...,kN+1
−
Dηi,xk1

,xk2
,...,xkN

DxkN+1

)︃
+O

(︁
α2
)︁
= 0. (A.9)

Subsequently, one obtains the relation

ηi,k1,k2,...,kN+1
=
Dηi,xk1

,xk2
,...,xkN

DxkN+1

− yi,xk1
,xk2

,...,xj

Dξj
DxkN+1

(A.10)

to calculate the infinitesimal ηi,k1,k2,...,kN+1
.

A.2. Invariant solutions

In this section derivations for invariant solutions used in Sec. 6 are given.

A.2.1. Distance PDF

A distance PDF is introduced

f r
min

=
⟨︂
δ
(︂ˆ︁rmin − rmin

)︂⟩︂
, (A.11)

where ˆ︁rmin is the sample space variable corresponding to the physical variable rmin =
⃓⃓
rmin⃓⃓.

The vector rmin is intended to describe the distance from the surface of a probing particle
towards the closest particle next to the probing particle. Lets consider a two-particle problem,
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where the first axis of the reference frame is aligned towards the distance vector rmin
i . Subse-

quently, the distance rmin = χ12−χ11 is defined as the difference between the e1-coordinates
of two points χ1 and χ2. The one-dimensional position PDF, obtained from (3.75), is

fX = ⟨δ (X2 − χ2)⟩ =
∫︂ ⟨︂

δ
(︂
X2 −X1 − rmin

)︂
δ (X1 − χ1)

⟩︂
dX1

=

∫︂ ⟨︂
δ
(︂ˆ︁rmin − rmin

)︂
δ (X1 − χ1)

⟩︂
dX1. (A.12)

Without loss of generality, lets assume that χ1 = 0 is known and deterministic. Hence, fX in
(A.12) equals f rmin . The operator for the constant Galilean symmetry or spatial shift symmetry
is

XGal = c1,G

(︃
∂

∂x1
+

∂

∂X1

)︃
(A.13)

in case of the one dimensional position PDF. The operator for the intermittency symmetry is

Xint = f r
min − δ (X12 −X11)

∂

∂f rmin (A.14)

Applying the combined operator X = XGal + Xint = f r
min towards the auxiliary function

H
(︂
x, t, rmin; f r

min
)︂
= f r

min − f r
min
(︂
x, t, rmin

)︂
(A.15)

delivers the solution

f r
min

=CH (X12 −X11)e
−C(X12−X11) + g (−x1 + x2, t,−x1 +X12) e

Cx1 , C =
1

c1,G
. (A.16)

The first term on the right hand side is an exponential distribution for C > 0, hence, the
function g necessarily needs to vanish. As the intention was to derive the PDF to describe
the position of a particle towards its closest neighbour it is assumed that bmχ1 is the point at
the particle surface, where the distance vector r′i = χ12 − χ′

11 cuts the surface and χ′
11 is the

position of the centre of mass of the probing particle. The second point χ12 is the position of
the centre of mass the closest neighbour. Subsequently, (A.16) becomes

f r
min

= CH
(︂
r
′min
)︂
e
−C

(︂
r
′min

)︂
= CH

(︂
rmin − a′

)︂
e−C

(︁
rmin−a′

)︁
, rmin = r

′min + a′. (A.17)

Here, r′min is the distance between the two centres of mass and a′ accounts for the extensions
of the particle. In case of a disk-shaped particle a′ is equal to the particle length a, whereas it
depends on the orientation of ri towards the probing particle for arbitrarily shaped particles.

A.2.2. Equally distributed orientation PDF

Active particles posses a geometrical symmetry due to the axisymmetry of the flow field of a
Stokes dipole (3.50f). The operator related to this symmetry is (3.47)

Xp,β =
∂

∂βp
.

191



The symmetry is valid for single-particle experiments and dilute suspension due to the appli-
cability of the Stokes dipole as an approximation. In case of the PDF the operator needs to be
transformed into the sample space, leading to

Xp,b =
∂

∂bp
. (A.18)

Subsequently, differential equation necessary to solve in order to obtain the orientation PDF
f b is

Xp,bH
(︂
x, t, b; f b

)︂⃓⃓⃓
H=0

= 0 ⇒ −∂f
b

∂bp
= 0. (A.19)

Hence, the PDF is constant with respect to the sample space variable. Restricting the possible
orientation angles to the interval [0, π] delivers

f b =
1

π
. (A.20)

I would like to emphasise again that this solution is only valid for single particles and thin
suspensions. For more densely packed particles, the assumption of a Stokes dipole is no longer
sufficient and it must be assumed that the flow field takes on more complicated forms.

A.3. Joint PDFs

Joint PDFs are formed by the ensemble average of a product of fine-grained PDF. The joint
PDF for the minimal distance and the relative angle between two particle

f rb =
⟨︂ ˆ︁f rmin ˆ︁f bmin

⟩︂
, (A.21)

as used in 6.2.3, are presented in Fig. A.1 for all examined suspensions. Apart from the densest
suspension αS = 0.39, all PDFs in Fig. A.1 have two distinct maxima at approximately (0.6, 0)
and (1.2, π). Hence, the most likely state for any particle is a parallel alignment. Parallel
particles might either face in the same direction or oppose each other. The configuration
examined in Sec. 6.2.1 with two opposing particles as visualised in Fig. 6.8 is related to the
second maximum. The first maximum is especially related to the structures visible at the
domain walls, see Fig. 6.16. In case of the densest suspension αS = 0.39 both maxima are
located at the left corners of the diagram. The next particle to a probing particle is always
located in the near field, a property which geometrically requires a parallel orientation.

A second joint PDF can be formed by combining the sample space variable of the minimal
distance rmin with the sample space variable vpq for the relative speed

vpq = |γpvp − γqvq| (A.22)

of two particles. The joint minimal distance and relative velocity PDF is, thus,

f rv =
⟨︂ ˆ︁f rmin ˆ︁fvpq⟩︂ . (A.23)

Opposing particles in a configuration similar to Fig. 6.8 block the way of their opponent, thus,
no relative velocity is possible, which explains the maxima at (1.2, 0) in the joint PDFs for
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the three suspensions in Fig. A.2a-c. Additionally, particles with a parallel orientation, which
face into the same direction are most likely to be present at the particle walls for the dilute
suspensions αS = 0.04 and αS = 0.11, hence, resulting in a second maximum at (0.6, 0) due to
the vanishing velocity. The latter maximum vanishes completely for the suspension αS = 0.17,
which does not show any preferred relative velocity for two very close particles. Thus, while
cluster emerge and are distinctive due to the parallel alignment of the particles, such clusters
tend to be unstable if only particles facing in the same direction are present. The densest
suspension is almost frozen, hence, in the closed domain used for the numerical experiment,
high values for relative velocities are unlikely.
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Fig. A.1.: (a) The joint minimal distance and relative angle PDF f rb for the dilute suspension
αS = 0.04. Two maxima exist; one describes two parallel particles facing in the
same direction at (0.6, 0), the other one describes two opposing particles similar to
the configuration shown in Fig. 6.8 at (1.2, π). (b) The joint PDF for the suspension
αS = 0.11. The previously mentioned maxima still exists, additionally a wide range
of particle states is possible. (c) The two maxima become more distinct for the
suspension αS = 0.17 compared to the case of αS = 0.11. Furthermore, a third
maximum is formed at (0.6, π), which was not clearly visible before. (d) In the case
of the densest suspension αS = 0.39 the maximum at (1.2, π) vanishes. All particles
are in the closest proximity towards each other.
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Fig. A.2.: (a) The joint minimal distance and velocity PDF f rv for the dilute suspension αS =
0.04. Two maxima exist; one at (0.6, 0), which is related to the situation, where
two particles are aligned parallel to each other and facing the same direction. The
other one is related to two opposing particles similar to the configuration shown in
Fig. 6.8 at approximately (1.2, 0). In the latter case, both particles block the path
of their opponent, thus, no relative motion is possible. (b) The joint PDF for the
suspension αS = 0.11. The previously mentioned maxima still exists, additionally a
wide range of particle states is possible. (c) The maximum at (0.6, 0) vanishes, i.e.
for particles in the closest proximity no discrete value for the relative velocity exists.
(d)In the case of the densest suspension αS = 0.39 only the maximum in the lower
left corner of the diagram remains. The most likely state for a particle pair is, hence,
that both have a similar velocity.
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