
DEMO: Secure Bootstrapping of Smart Speakers
Using Acoustic Communication

Markus Scheck
Florentin Putz

mscheck@seemoo.tu-darmstadt.de
fputz@seemoo.tu-darmstadt.de

Technical University of Darmstadt
Darmstadt, Germany

Frank Hessel
Hermann Leinweber

fhessel@seemoo.tu-darmstadt.de
hleinweber@seemoo.tu-darmstadt.de
Technical University of Darmstadt

Darmstadt, Germany

Jonatan Crystall
Matthias Hollick

jcrystall@seemoo.tu-darmstadt.de
mhollick@seemoo.tu-darmstadt.de
Technical University of Darmstadt

Darmstadt, Germany

ABSTRACT
Smart speakers are highly privacy-sensitive devices: They are lo-
cated in our homes and provide an Internet-enabled microphone,
making them a prime target for attackers. The pairing between a
client device and the speaker must be protected to prohibit adver-
saries from accessing the device. Most commercial protocols are
vulnerable to nearby adversaries as they do not probe for human
presence at the speaker or proximity between both devices. In ad-
dition to security, the protocol must provide a user-friendly way
for initial bootstrapping of the speaker. We design an open pairing
protocol for the establishment of a shared secret between both de-
vices using acoustic messaging to guarantee proximity, and release
our implementation for the smart speaker as well as Android and
Linux clients as open-source software on GitHub.

CCS CONCEPTS
• Security and privacy → Authentication; • Computer systems
organization → Embedded systems; • Networks → Network
protocol design.

KEYWORDS
Internet of Things, Secure Device Pairing, Device Association, Key
Establishment, Key Exchange, Setup, Data over Sound, Authentica-
tion

1 INTRODUCTION
Smart speakers are network controlled devices that can play music
from any device connected to the user’s home network. They also
feature voice-controlled virtual assistants backed by an Internet
connection and home automation functionality. From a security
standpoint, the bootstrapping process of newly bought smart speak-
ers is of particular concern, as this process is responsible for securely
setting the speaker up and connecting it to the user’s home network.
The bootstrapping process establishes the cryptographic keys that
protect the secure control channel to the user’s client devices (e.g.,
smartphones or PCs), which makes it a lucrative target for attackers
who aim to take control of the smart speaker, monitor the built-in
microphones, or gain access to the user’s domestic WiFi network.

This demo has been presented at the 16th ACM Conference on Security and Privacy in
Wireless and Mobile Networks (WiSec 2023) in Guildford, Surrey, United Kingdom on
2023-05-29. The WiSec 2023 proceedings contain the list of all presented demos.

This work is licensed under a Creative Commons Attribution 4.0
International License.

Figure 1: The user can securely setup a smart speaker. The
pairing process involves an acoustic out-of-band channel to
protect the integrity of the main channel.

As part of the general trend towards the Internet of Things,
a wide variety of smart speakers is commercially available from
manufacturers such as Google1 or Amazon2. The bootstrapping
process of these speakers without pre-shared information, however,
is susceptible to remote attackers which try to wirelessly connect
to the smart speaker from outside the user’s living room. These
devices fail to limit new connections to the vicinity of the speaker.

Few vendors, like Sonos3, employ proprietary acoustic commu-
nication to limit the effective pairing range. We expand on this
idea and build an open bootstrapping protocol for smart speak-
ers, which improves the security compared to the state of the art
by verifying user presence. The user interaction must be carefully
designed to avoid rushing behavior where users may skip over
security-relevant dialogues [5]. We aim for providing acoustic pair-
ing technology to the community by releasing the source code of
our Android and speaker application on GitHub4. As smart speakers
and smartphones are already equipped with sound transceivers, our
implementation is compatible with existing consumer hardware
and removes the need for specialized pairing hardware.

2 DESIGN
This section discusses the design of the proposed protocol which
establishes a shared secret between client (e.g. a Linux PC or an
Android smartphone) and speaker, and provides the speaker with
WiFi credentials. After protocol completion, the speaker connects
to the user’s domestic WiFi network and can communicate with

1https://store.google.com/us/product/google_nest_mini
2https://press.aboutamazon.com/2015/6/amazon-echo-now-available-to-all-customers
3https://www.sonos.com
4https://github.com/seemoo-lab/wisec23-speaker-bootstrapping

https://orcid.org/0009-0006-3098-3177
https://orcid.org/0000-0003-3122-7315
https://orcid.org/0000-0001-8158-3030
https://orcid.org/0009-0006-2734-5078
https://orcid.org/0009-0002-7842-341X
https://orcid.org/0000-0002-9163-5989
https://dl.acm.org/citation.cfm?id=3558482
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://store.google.com/us/product/google_nest_mini
https://press.aboutamazon.com/2015/6/amazon-echo-now-available-to-all-customers
https://www.sonos.com
https://github.com/seemoo-lab/wisec23-speaker-bootstrapping

Scheck et al.

the client over this network in an encrypted manner. We imple-
ment authentication through acoustic communication and by using
carefully-designed user involvement that inhibits rushing user be-
havior, i.e., select-and-confirm interaction [8].

2.1 Adversary Model
We assume an adversary who can inject and intercept arbitrary
radio and acoustic communication. This includes setting up own
APs. We assume that the adversary cannot reside in the same room
as the intended user undetected and hence cannot physically access
the speaker. We assume the domestic WiFi to be untrusted.

2.2 Protocol Flow
Both devices initially generate a random 128 Bit UUID used for
their identification. Figure 2 depicts the three protocol stages.

Secret Establishment. Upon initial powerup, the speaker creates a
WPA3-encrypted WiFi AP and repeatedly transmits an acoustic
message in the inaudible near-ultrasonic range containing: (1) a
randomly generated SSID, (2) a randomly generated PSK, and (3) a
hash over the speaker’s UUID and public ECDH key. The adversary
cannot impersonate the speaker during this transmission as they
do not yet know the hash inputs which the client will verify. After
the client connects to the AP, both devices exchange their UUIDs
and public ECDH information. Both devices derive keys for signing
and encrypting further messages from the ECDH master secret.

Mutual Verification.The mutual verification phase is necessary to
detect MitM attacks by verifying human presence near the speaker
and validating that the exchanged secret matches. A verify key
derived from the ECDH master secret is used to pick a word from a
word list on both devices. The speaker vocalizes this word among
two random options while the client presents it among two different
random options (inspired by SafeSlinger [3]). The user is prompted
to select the matching word on both the speaker and client.

Setup Phase. The client prompts the user for WiFi credentials and a
name for the newly-setup speaker. This information is encrypted
and authenticated using the previously derived keys. The speaker
connects to the domestic WiFi network and broadcasts its service
via DNS Service Discovery (DNS-SD) [1].

After initial pairing, subsequent clients can skip the setup phase
and discover the speaker via DNS-SD. The recommended request
mode requires pairing confirmation from an already paired client to
hinder malicious devices in an untrusted domestic network from un-
noticed pairing attempts. Users who trust their networks can switch
to a more convenient request mode that always allows pairing.

3 OPEN SMART SPEAKER PLATFORM
While commercially available smart speakers can provide the neces-
sary hardware for acoustic communication, access to their software
is mostly restricted. To facilitate research, our lab currently devel-
ops an open, modular smart speaker platform, called FreeSpeaker.
The platform’s core module is a Raspberry Pi Compute Module 4.
Specific functionality can be added by stacking “slices”. We imple-
mented our pairing protocol on this prototype for evaluation using
the five slices: power supply, core module, speaker, microphone,

������� ��	�
� ���
�����S� �����C � ��	
C�

�
�
��
 ���� �
� → ����S

�
�
��
 �� ���� ��� ���
��� ���� ���
�� ����

�
�
��
 ���� �
� → ����C

������������S� ����S�
 ��!���� ��!���

�������C� ����C

�������S� ����S

�
�
��
 ���� ����
� �
��

�
��"
 �
�� #��	 ���� ����
� �
��

�
$
� ��	�$�� %���

&�

��	�'
 ��
 %��� #��	 "
��#� �
�
�
$
� %� ��������$ �����	 %����

(���$�)
 �
 ��

 �
$
�
� %����

���% ��

 %����

�
$
� ��	�$�� %���

&�

��� #��*

+ ���� ��
�
���$�

���"��
 �
��,�
��������+��	

 ���� ��
�
���$��

��� ���� ���
�� ����
����
� � ��	
��� ����

�-� �
�"��
 �����"
��

��"
 ��
��
� ��	

����
� � ���� ���
�� ����

��
�

��
�

�
�
�

�
��

	

�
��

�

�
�

�
��

�
�

�
�

�
	

�
�

�
�

��
��

	
�

��
�

��
�

��
�

�
�

+ ��
��
� ��	

�����$$� ��%
� '�

��
�� ���'����$$� �
�
�"
� ����

�����$�)
 ������,

∎ � ��������

∎ � 	�
�

∎ � ����������

���� �������

Figure 2: Pairing protocol for initial setup. pk(key) denotes
the extraction of the public component from a keypair.
MAC(message) denotes a keyed hash. AEAD(message) de-
notes an authenticated encryption. Hash(message) denotes
a hash. All keyed algorithms derive keys from the ECDH
shared secret. A bar denotes a recurring transmission until
the next message occurs.

and a lid with a push button. A scenario involving the speaker with
clearly visible modules and a client device is shown in Figure 1.

DEMO: Secure Bootstrapping of Smart Speakers Using Acoustic Communication

Figure 3: Primary App screen with no paired speakers (left),
and with one paired and one unpaired speaker in the current
WiFi network and a third unreachable paired speaker (right).

4 BOOTSTRAPPING IMPLEMENTATION
The speaker side was implemented in Python and runs on the
FreeSpeaker. We implemented clients for Android smartphones (us-
ing Kotlin) and PCs (using Python and GTK4 on Linux). Figure 3
shows the Android client, which we will demonstrate at the con-
ference. We use libsodium [2] for cryptography. For vocal text
instructions, we pre-generate static parts using the higher quality
Mimic-3 [4] and vocalize dynamic text using picoTTS [6].

5 SECURITY EVALUATION
We evaluate the security of our protocol under different threats
which we have identified as relevant for smart speakers.

Robustness. We use a second device to transmit white noise. We
increase the magnitude of the white noise until the client is unable
to receive acoustic messages. Failure occurs at around 11 dB SNR
at the client’s microphone. Jamming the protocol requires little
noise. High directionality of the used speakers poses a usability
issue while the effective range of about 1m is a security advantage.

Client impersonation. We assume that the adversary tries to pose
as the client, to steal the pairing transaction. They may do this to
gain control over the speaker or as part of an MitM attack. The
adversary may connect to the setup AP after receiving the acoustic
message. The mutual verification will detect the attack: The user
must select the correct word on the speaker by matching it with
words on their client device. As the user is missing this prompt, the
pairing attempt fails.

Speaker impersonation. An adversary may try to impersonate the
speaker to retrieve the domestic WiFi PSK and subsequently infil-
trate the user’s network. The adversary may transmit their own

acoustic message to divert the client device to their impersonated
speaker. The mutual verification phase detects this attack, as the
user must select the matching word at their client. Since the user is
missing the speaker’s prompt, the pairing will fail. During an MitM
attack, it is unlikely that the adversary can get the user’s speaker
to read out the word matching their pairing attempt as both client
and speaker influence the word selection. Consequently, the client
will reject the pairing as the user will not select the correct word.

Rushing User. We propose evaluating inputs only after the instruc-
tions from the speaker are fully read out. The mutual verification
phase inhibits rushing behavior through a select-and-confirm design
[8] instead of a simple confirmation.

6 CONCLUSION AND FUTUREWORK
Our protocol enhances security compared to current commercial
alternatives as it authenticates both the client and the speaker,
validates proximity between both devices, and checks for human
presence. On the other hand, our protocol adds complexity and
time to the pairing process and may be jammed on the acoustic
channel. Further security evaluation of the protocol is necessary.

Future work could leverage physical layer security to protect
the integrity of messages on the acoustic channel. Combining our
protocol with Acoustic Integrity Codes [7] would further strengthen
authentication as overshadowing attacks may be detected without
user involvement and proximity may be precisely verified.

DEMO
We demonstrate a complete setup (cf. Figure 1) consisting of a WiFi
AP, the FreeSpeaker, and our software on Android and Linux clients.
We present the initial and subsequent pairing processes between
those devices and demonstrate that the derived keys can be used
to securely control music playback from the client devices on the
speaker. Participants are free to try out the pairing themselves.

ACKNOWLEDGMENTS
This work has been funded by the LOEWE initiative (Hesse, Ger-
many) within the emergenCITY center.

REFERENCES
[1] Stuart Cheshire. [n. d.]. DNS Service Discovery. http://www.dns-sd.org/
[2] Libsodium contributors. 2023. Libsodium. https://github.com/jedisct1/libsodium
[3] Michael Farb, Yue-Hsun Lin, Tiffany Hyun-Jin Kim, Jonathan McCune, and Adrian

Perrig. 2013. Safeslinger: easy-to-use and secure public-key exchange. In Proceed-
ings of the 19th annual international conference on Mobile computing & networking.
417–428.

[4] Mycroft AI Inc. 2022. Mimic-3. https://mycroft-ai.gitbook.io/docs/mycroft-
technologies/mimic-tts/mimic-3

[5] Arun Kumar, Nitesh Saxena, Gene Tsudik, and Ersin Uzun. 2009. A comparative
study of secure device pairing methods. Pervasive and Mobile Computing 5, 6
(2009), 734–749. https://doi.org/10.1016/j.pmcj.2009.07.008 PerCom 2009.

[6] picoTTS contributors. 2021. picoTTS. https://github.com/naggety/picotts
[7] Florentin Putz, Flor Álvarez, and Jiska Classen. 2020. Acoustic integrity codes:

Secure device pairing using short-range acoustic communication. In Proceedings of
the 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks.
31–41.

[8] Ersin Uzun, Kristiina Karvonen, and Nadarajah Asokan. 2007. Usability analysis
of secure pairing methods. In International Conference on Financial Cryptography
and Data Security. Springer, 307–324.

http://www.dns-sd.org/
https://github.com/jedisct1/libsodium
https://mycroft-ai.gitbook.io/docs/mycroft-technologies/mimic-tts/mimic-3
https://mycroft-ai.gitbook.io/docs/mycroft-technologies/mimic-tts/mimic-3
https://doi.org/10.1016/j.pmcj.2009.07.008
https://github.com/naggety/picotts

	Abstract
	1 Introduction
	2 Design
	2.1 Adversary Model
	2.2 Protocol Flow

	3 Open Smart Speaker Platform
	4 Bootstrapping Implementation
	5 Security Evaluation
	6 Conclusion and Future Work
	References

