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Abstract

Two-component Fermi gases model the behavior of many systems in different fields of physics,
and one of their interesting features is that they condense into superfluids at low temperatures.
Ultracold atoms experiments represent one realization of such Fermi gases, and their great flexi-
bility sparked active research into their phase structure. In the literature, there are studies of the
phase structure using functional methods, mean-field approximations, and other approaches. In
the present work, we aim to perform ab-initio Monte-Carlo simulations of the system to probe
their phase structure for inhomogeneous phases in the presence of spin imbalance. Such simu-
lations generally require a bosonization of the theoretical description of the system that rewrites
the theory in terms of an auxiliary bosonic field. For this auxiliary field, many possible choices
achieve this, and previous studies often use a field that corresponds to a density of fermions.
In the present work, we develop a novel approach to this problem by bosonizing the system in
terms of the so-called pairing field which corresponds to the superfluid order parameter. Even
in the absence of mass- or spin-imbalance, this approach exhibits a sign problem that presents
a problem to many Monte-Carlo methods. To circumvent this sign problem, we base our sim-
ulation on the Complex Langevin method. The central question of this thesis is if a simulation
of a pairing-field-based formalism using the Complex-Langevin method is suitable to study the
phase structure of two-component Fermi gases in the presence of spin imbalance. To this end,
we develop a lattice theory based on the pairing field by discretizing the continuous Hamiltonian
and performing a rigorous derivation of the path integral from there. We pay special attention to
the derivation of lattice derivative operators and rescale the theory to be dimensionless. Beyond
that, we develop an efficient notation for lattice theories that makes their handling arguably
easier than that of continuum theories. With the obtained theory, we derive the Langevin equa-
tion for the system together with the expressions we need to sample observables and develop a
numerical simulation on that basis. We use the simulation to study 0+1-dimensional systems as
a proof-of-concept. Specifically, we calculate density equations of state and two-point functions
for a range of dimensionless couplings and compare them to exact solutions. Additionally, we
compare our obtained results for the two-point functions to general discussions of the analytic
properties of correlation functions to gain additional insight into the qualitative and numerical
behavior of our simulation. We found that our results for both density equations of state and
two-point functions are in excellent agreement with the exact solutions. Going forward, we plan
to study systems in d > 0 spatial dimensions, beginning with simulations of 1 + 1-dimensional
systems. In d = 3 dimensions the pairing field’s correspondence to the superfluid order param-
eter may allow us to efficiently study the spontaneous breaking of the U(1) symmetry of the
system. On that basis, we can probe the phase diagram of the system for inhomogeneous phases
at finite spin imbalance in future studies.





Kurzfassung

Zweikomponentige Fermigasemodellieren das Verhalten vieler Systeme in verschiedenen Feldern
der Physik und einer ihrer interessanten Aspekte ist, dass sie bei tiefen Temperaturen zu Super-
fluiden kondensieren. Experimente mit ultrakalten Atomen stellen eine Realisierung solcher
Fermigase dar. Ihre große Flexibilität hat zu aktiver Forschung auf diesem der Phasenstruktur
solcher Fermigase geführt. In der Literatur existieren Studien dieser Phasenstruktur auf Basis
von funktionalen Methoden, Mean-Field-Näherungen und anderen Ansätzen. In der vorliegen-
den Arbeit beabsichtigen wir ab initio Monte-Carlo Simulationen dieses Systems durchzuführen,
um die Phasenstruktur für inhomogene Phasen bei endlicher Spinpolarisierung zu untersuchen.
Simulationen dieser Art erfordern in aller Regel eine Bosonisierung der theoretischen Beschrei-
bung des Systems, die die Theorie in Form von bosonischen Hilfsfeldern darstellt. Es gibt viele
mögliche Realisierungen für ein solches bosonisches Hilfsfeld und bisherige Studien haben oft ein
Feld verwendet, welches Dichten von Fermionen entspricht. In dieser Arbeit hingegen entwickeln
wir einen neuen Zugang zu diesem Problem, in dem wir das System durch das sogenannte Pairig
Field darstellen, das dem superfluiden Ordnungsparameter entspricht. Selbst ohne Massen- oder
Spinpolarisierung weist dieser Zugang ein Vorzeichenproblem auf, welches ein Problem für viele
Monte-Carlo Methoden darstellt. Um dieses Vorzeichenproblem zu umgehen, basieren wir un-
sere Simulation auf der Complex-Langevin-Methode. Die zentrale Fragestellung dieser Disserta-
tion ist, ob eine Simulation eines solchen Pairing-Field-basierten Formalismus unter Verwendung
der Complex-Langevin-Methode geeignet ist, um die Phasenstruktur zweikomponentiger Fermi-
gase in Anwesenheit von Spinpolarisierung zu untersuchen. Zu diesem Zweck entwickeln wir
eine Gittertheorie, die auf dem Pairing Field basiert, indem wir den kontinuierlichen Hamilton-
operator diskretisieren und von diesem Punkt aus eine rigorose Herleitung des Pfradintegrals
durchführen. Dabei legen wir besonderes Augenmerk auf die Herleitung von Ableitungsopera-
toren auf dem Gitter und reskalieren die Theorie zu dimensionslosen Größen. Darüber hinaus
entwickeln wir eine effiziente Notation für Gittertheorien, die deren Handhabung unter Um-
ständen einfacher macht als die Handhabung von Kontinuumstheorien. Mit der gewonnenen
Theorie leiten wir die Langevingleichung für das System und die Ausdrücke zur Berechnung von
Observablen her und entwickeln eine numerische Simulation auf dieser Basis. Wir nutzen diese
Simulation, um 0 + 1-dimensionale Systeme als Proof of Concept zu studieren. Insbesondere
berechnen wir Dichtezustandsgleichungen und Zweipunktfunktionen für eine Reihe von dimen-
sionslosen Kopplungen und vergleichen diese mit exakten Lösungen. Darüber hinaus vergleichen
wir unsere Ergebnisse für Zweipunkfunktionen mit allgemeinen Diskussionen von analytischen
Eigenschaften von Korrelationsfunktionen, um zusätzliches Verständnis über das qualitative und
numerische Verhalten unserer Simulation zu erlangen. Wir fanden heraus, dass sowohl unsere
Resultate für Dichtezustandsgleichungen, als auch die für Zweipunktfunktionen exzellent mit
exakten Lösungen übereinstimmen. Von hier an planen wir Systeme in d > 0 Raumdimensio-
nen zu studieren, beginnend mit Simulationen von 1 + 1-dimensionalen Systemen. In d = 3
Dimensionen kann die Entsprechung des Pairing Fields zum superfluiden Ordnungsparameter
uns erlauben, auf effiziente Weise die spontane Brechung der U(1) Symmetrie des Systems zu



studieren. Auf dieser Basis können wir in zukünftigen Studien das Phasendiagramm des Systems
auf inhomogene Phasen in Anwesenheit von Spinpolarisierung hin untersuchen.

vi
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1 Introduction

In this work, we aim to study systems of two fermion species which we call “up” and “down”
with a contact interaction in thermal equilibrium in the context of ultracold atoms experiments.
Such a system can model the behavior of many physical systems, not only in the context of
ultracold atoms but also nuclear matter and condensed matter physics. A very interesting feature
of these systems is the fact that they turn into superfluids at sufficiently low temperatures. The
experiments in the field of ultracold atoms, in particular, have gotten to a point at which it is
possible to tune the interaction strength between the two fermion species, select different values
for mass- and spin-polarization and even confine the system to one or two spatial dimensions,
and study the fate of superfluidity under such variations of physical parameters [1–10]. With
this much flexibility in the experiment, there is a great deal of synergy between experiments and
theoretical calculations in the field of ultracold atoms.

Because of the infinite number of states in the Fock space of this system, it is generally not
possible to solve it by means of exact diagonalization. Therefore, we choose to solve the sys-
tem using ab-initio Monte-Carlo methods. Based on the principle of importance sampling, this
approach seems ideally suited for the solution of path integrals, since the majority of the path
integral value stems from field configurations around the classical solution of the system. The
fermionic nature of the system causes the quantum fields in the action to be Grassmann-valued.
This is not ideal for numerical simulations, as computers are far more efficient at handling real or
complex numbers if one is at all able to implement calculations of Grassmann numbers directly.
To eliminate this problem, we employ a Hubbard-Stratonovich transformation to rewrite the the-
ory in terms of an auxiliary bosonic quantum field. Such a Hubbard-Stratonovich transformation
is not unique, and there are many possible choices for such auxiliary fields [11]. A very common
choice is an auxiliary field that corresponds to densities of fermions. Such density formalisms
have been used to calculate density equations of state and density correlations functions in var-
ious spatial dimensions d, see, e.g., Refs. [12, 13]. For the present work, however, we choose
to bosonize the system in terms of the so-called pairing field that, loosely speaking, describes
how two fermions couple to a bosonic pair. Since it directly corresponds to the superfluid order
parameter in our system of interest, it seems to be a natural approach to studying the phase
structure of this system. While the Hubbard-Stratonovich transformation based on the pairing
field is, itself, not new, this represents a novel approach to the phase structure of ultracold gases.
Rewriting the system in terms of the pairing field causes a sign problem even in the absence of
mass- or spin-imbalance. To circumvent this problem, we choose the Complex Langevin (CL) ap-
proach to perform the sampling for our Monte Carlo calculations. Based on this formalism, we
develop a robust software package that performs simulations of the system and present results of
this simulation for 0+1-dimensional systems that serve as a proof-of-concept of the pairing-field
formalism and the CL-based simulation. Furthermore, the details of our novel formalism and the
results of our proof-of-concept calculations are currently being published [14].

We begin this thesis by briefly reviewing essential aspects of ultracold atoms. After that, in
Chapter 2, we move on to the basic concepts of Monte-Carlo integration in general and stochastic
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quantization in particular. Additionally, we review methods of uncertainty estimation in Monte
Carlo calculation. In Chapter 3, we develop our formalism in the continuum before we rigorously
derive it on the lattice to obtain the lattice theory that serves as a basis for our simulation.
Subsequently, in Chapter 4, we derive the Langevin equation for the pairing-field formalism and
determine the expressions we need to sample observables of the theory. We also discuss aspects
of modern software development to choose appropriate tools and programming languages to
implement the simulation. In Chapter 5, we discuss the results of our 0+ 1-dimensional proof-
of-concept calculations and compare them to exact results.

1.1 Ultracold Atoms

Our system of interest can be realized in the class of so-called ultracold atoms experiments. What
makes this particular field so interesting is the fact that the behavior of ultracold atoms can be
tuned to an incredible degree. For example, as we discuss in Sec. 1.1.2, the interaction strength
between the species of a Fermi gas of ultracold atoms can be tuned essentially at will. This
creates a unique interplay between experiment and theory, as experimental groups can recreate
the systems simulated by theorists for arbitrary interactions. In contrast, in most other fields of
physics, theorists can vary the parameters of systems in their calculations but in experiments,
one is limited to the parameters and interactions that are realized in nature.

One way to realize different fermion species in ultracold atoms experiments is to prepare
neutral atoms in different hyperfine states. Clouds of these atoms are then trapped and cooled
to temperatures roughly ranging from 50− 400nK [15–19] at densities typically around 1012 −
1013 atoms/cm3 [15, 19, 20]. At these temperatures, which are only fractions of the Fermi tem-
perature TF , the system enters the quantum degenerate regime, and the dynamics of the system
become dominated by quantum effects. For the aforementioned low densities, the average in-
terparticle spacing n−1/3 is large compared to the effective range r0 of the interaction potential.
As such, the microscopic details of the interaction become irrelevant, and the interaction is fully
characterized by the scattering length as. On the theoretical side, this allows us to simulate these
systems using universal and rather simple Hamiltonians.

1.1.1 BEC-BCS Crossover and the Unitary Limit

Historically, most of the interesting quantum effects of ultracold systems appear in one of two
limits: the Bardeen-Cooper-Schrieffer (BCS) limit or the Bose Einstein Condensation (BEC) limit.
For Fermi gases, these two limits already describe some very interesting physical effects. The
principles of BCS theory have been applied to study the behavior of pairing interactions in atomic
nuclei [21] and neutron stars [22]. Aspects of BCS theory have even been applied to the high-
density regime of QCD, which may be a color superconductor [23].

With ultracold atoms experiments, it has become possible to not only probe the BCS and BEC
limits but also the continuous crossover between them. This has become possible because, in
modern ultracold atoms experiments, it is essentially possible to tune the interaction at will, as we
discuss in the next section. Figure 1.1 shows a sketch of the phase diagram of a two-component
Fermi gas in d = 3 spatial dimensions. For every sufficiently negative value of 1/(kFas), with
the Fermi momentum kF and the scattering length as, the system behaves as a normal Fermi
liquid for sufficiently high temperatures. As the temperature decreases, the system starts to
form compound bosonic pairs of two particles of different species. In the phase diagram, this
“crossover region” lies around the curve T∗. As the temperature decreases further and crosses Tc,
the pairs condense and form a superfluid. For large negative values of 1/(kFas), the dynamics of
the system are described by BCS theory, and for large positive values of 1/(kFas), the dynamics are
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Figure 1.1: Schematic representation of the phase diagram of a two-component Fermi
gas in d = 3 spatial dimensions with data taken from Ref. [24]. The horizontal axis
shows 1/(kFas) with the Fermi momentum kF and the scattering length as. The ver-
tical axis shows the temperature in units of the Fermi energy EF . The dashed orange
line shows the temperature T∗ around which pairs begin to form with decreasing tem-
perature. The blue line shows the temperature Tc at which superfluid condensation
occurs. Along the horizontal axis, the system transitions from the BCS limit at large
negative values of 1/(kFas) into the BEC limit at large positive values of 1/(kFas). At
1/(kFas) = 0, the system crosses the unitary point.

described by BEC theory. In between the two limits, the system exhibits a continuous crossover
from BCS to BEC dynamics. At 1/(kFas) = 0, the system crosses the so-called unitary point with
an interesting property. As the scattering length as diverges, we find

as ≫ n−1/3 ≫ r0 , (1.1)

and the density becomes the only scale left in the system. In this regime, it becomes irrelevant
what specific types of fermions and interactions we study, as we observe universal behavior.
Ultracold gases of neutral atoms show the same behavior as low-density neutron matter [25]
does in this regime. This makes the unitary point particularly interesting for studies of ultracold
atoms. The phase diagrams of two-component Fermi gases for d < 3 share qualitative similarities
with the phase diagram for d = 3, although there are certain differences. For example, there is no
unitary point in d = 2 because pairing appears at arbitrary weak interactions [26–28]. Regardless
of the spatial dimension, however, the properties of the system along the crossover from BCS to
BEC are determined by the details of the pairing of fermions. In the BCS limit, fermions form
weakly localized pairs that are much larger than the average interparticle spacing n−1/3 and have
zero center-of-mass momentum. On the other side of the crossover, in the BEC limit, the fermions
form tightly bound dimers that act like localized composite bosons. As such, describing the
system in terms of “effectively fundamental bosons” seems to be a natural approach to studying
its phase structure.

While the structure of the phase diagram of the system in d > 0 dimensions is the eventual
goal of our studies, the present work is focused on developing a new approach and simulation
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of the problem. Therefore, in this work, we focus on proof-of-concept calculations of systems in
d = 0 dimensions.

1.1.2 Interaction Tuning with Feshbach Resonances

In the field of ultracold atoms, one often deals with dilute and very cold systems to make quan-
tum effects observable. In this regime, the thermal wavelength of particles λth = (2πβ/m)1/2,
with the particle mass m and the inverse temperature β = 1/kBT is significantly greater than
the average interparticle distance n−1/3, which makes the microscopic details of the interaction
potential between the particles irrelevant and allows us to describe the interaction as a contact
interaction between particles of different species with a coupling g. From a scattering perspec-
tive, the interaction between the particles is dominated by the s-wave channel. As such, it can
be described by a single parameter, the s-wave scattering length as. In ultracold atoms exper-
iments, it has actually become possible to tune the scattering length essentially at will using
Feshbach resonances [29]. An extensive review of this phenomenon can be found in Ref. [30]
and a pedagogical discussion of a one-dimensional system in Ref. [31]. As a simple example of
a system that exhibits such Feshbach resonances, we consider an elastic scattering problem with
two possible final states. One of these states is energetically accessible as a final state because
it has the same energy as the incoming state, we call it the open channel. The other state has
a higher energy than the open channel. Thus, it is energetically inaccessible, and we call it the
closed channel. For both channels, we find that, through the interaction, the potential energy of
the system varies with the particle separation distance. In the case of electrically neutral atoms,
these potential curves represent the van der Waals interaction between the atoms. As such, they
are attractive for larger separations, have a repulsive core around zero separation, and, in be-
tween, feature a local minimum. Possible potential curves for our two-channel model are shown
in Fig. 1.2. The energies of the open- and closed channels lie at the thresholds of their respective
potential curves. A Feshbach resonance occurs in this system when the well of the potential curve
of the minimum is deep enough to feature a bound state and when the energy of that bound state
is close to that of the open channel. Despite still being unable to access the closed channel, scat-
tering particles can form virtual bound states in that situation, which varies the scattering length
and leads to a diverging scattering length as the energy separation ΔE between open- and closed
channel approaches zero.

What makes Feshbach resonances tunable is that the energy separation ΔE can be modified in
experiments. In the case of neutral atom experiments, up and down species are usually realized
as two different hyperfine states of atoms. To implement the tunability, the open- and closed
channels in our example feature a different total spin S. In the case of spin-1/2 particles, the
open channel could be a singlet state with S = 0, and the closed channel could be a triplet state
with S = 1. This causes the two channels to experience a different energy shift δE in response
to an external magnetic field, as the energy shift is proportional to the total spin of the state:

δE ∝ μB S ⋅ B , (1.2)

with the Bohr magneton μB, the total spin S and the magnetic flux density B. This allows an
external magnetic field to control the size of the energy separation ΔE between the two channels
and, thus, the scattering length. It is possible to find the following effective relation between the
scattering length and the external magnetic flux density [30]:

as(B) = as,bg (1− ΔB
B− B0

) . (1.3)

The parameter as,bg represents the background scattering length wewould observe in the absence
of the Feshbach resonance, B0 represents the magnetic flux density at which the energy separa-
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Figure 1.2: Sketch of possible potential curves of open- and closed channels over the
particle separation. The closed channel features a deep enough well to create a bound
state that lies close to the energy of the open channel. The energy separation ΔE
between the open channel and the bound state of the closed channel can be varied via
an external magnetic field. When ΔE becomes small, the Feshbach resonance occurs
because scattering particles form a virtual bound state.

tion ΔE between the channels vanishes and ΔB describes the width of the resonance. A sketch of
this relation is shown in Fig. 1.3. In this figure, we observe that the scattering length diverges at
the magnetic flux density B0. This divergence marks the so-called unitary point of 1/(kFas) = 0
that we discussed above. Furthermore, we note that the Feshbach resonance allows the scatter-
ing length to be tuned to values that put the system in the BCS limit of 1/(kFas) → −∞ or the
BEC limit of 1/(kFas) → +∞ and, indeed, in the intermediate regime of the BCS-BEC crossover.

To relate experimental realizations of cold atom gases and their Feshbach resonance con-
trolled interactions to theoretical models, we need to find a connection between the experimen-
tally accessible s-wave scattering length as and the coupling parameter g of a Hamiltonian that
describes a two-species Fermi-gas with attractive contact interactions. We achieve this by deter-
mining the T-matrix for the experimental system, calculating it for the theoretical model, and
matching the two expressions. The T-matrix describes how a scattering event affects the wave
function of a particle. In the ultracold dilute regime of ultracold atoms, the interaction between
particles that leads to the scattering event is effectively given by a contact interaction. As a result,
the T-matrix is dominated by the s-wave channel, i.e., the scattering occurs predominantly with-
out angular momentum between the two particles. This simplification allows us to approximate
the T-matrix of the experimental system as

T(+) (k, k; E = k2

2μ
) ≈ 4π

μ
1

1/as + ik
. (1.4)

The superscript + in T(+) indicates that we are describing the outgoing, scattered wave, and the
argument E = k2/2μ indicates that we are considering on-shell scattering, i.e., elastic scattering
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Figure 1.3: Scattering length over the range of an external magnetic field. The scat-
tering length has a pole at the magnetic flux density B0, where the Feshbach resonance
occurs. This divergence of the scattering length marks the unitary point.

between the two particles with the reduced mass

μ =
m↑m↓

m↑ +m↓
. (1.5)

Now we need to calculate the T-matrix from a theoretical model of the ultracold atom gas.
Below, in Eq. (3.1), we describe the system for an arbitrary number of particles using second
quantization. This Hamiltonian serves as the starting point for the development of our theory.
For our purposes in this section, it is beneficial to directly consider a system of only two particles
for this calculation. Specifically, we describe the system in relative coordinates r, with the particle
of the down species resting at r = 0 and the particle of the up species described by the wave
function ψ(r). The Hamiltonian of this system in position space reads

̂H = −∇2

2μ
+ g δ(3)(r) . (1.6)

We deduce that the scattering results from a δ-potential at the origin of the relative coordinate
space. The T-matrix for this Hamiltonian can be determined by solving the Lippmann-Schwinger
equation

T(+) (k′, k; E) = V(k′, k) +∫ d3p
(2π)3

V(k′,p)
E − p2/2μ+ iε

T(+) (p, k; E) , (1.7)

with themomentum-spacematrix-element of the potential V(k′, k) for the Hamiltonian in Eq. (1.6)
simply being the coupling parameter:

V(k′, k) = g . (1.8)

We can solve this equation by recursively inserting it into itself, resulting in a so-called Born
series. Because this series is a geometric one, we can determine its limit and find

T(+) (k′, k; E) = 1
1/g − I(E)

(1.9)
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with the integral

I(E) = ∫ d3p
(2π)3

1
E − p2/2μ+ iε

= μ
π2 ∫dp

p2

2μE − p2 + iε
.

(1.10)

The term +iε in the denominator of the integrand moves the pole of the integral away from the
real axis, and, in practice, we compute this integral as its Cauchy principal value. This integral
is linearly divergent. Therefore, we introduce a momentum cutoff Λ to regularize this integral.
We find

I(E) = μ
π2 ∫

Λ

0
dp

p2

2μE − p2 + iε

= − μ
π2Λ+ 𝒪(k2/Λ2) ,

(1.11)

with k =
√
2μE. Inserting this result into the T-matrix of the theoretical model in Eq. (1.9) and

matching it to the T-matrix of the experimental system in Eq. (1.7) yields the relation

g = 4π
μ

1
1/as − 4Λ/π

, (1.12)

or, alternatively,

as =
1

4π/(μg) + 4Λ/π
(1.13)

These relations allow us to connect the microscopic coupling g and the experimentally observable
scattering length as. Note that the coupling g depends onΛ as a consequence of our regularization
and renormalization procedure.

1.1.3 Imbalance in Ultracold Atoms Experiments

In our system of interest, we can implement two kinds of imbalance. Mass imbalance refers to
different masses for the two fermion species. In experiments, mass imbalance can be realized by
using different chemical elements or different isotopes of the same chemical element to realize
the two components of the Fermi gas. Common examples include 161Dy with 162Dy, see, e.g.,
Ref. [32], and 53Cr with 6Li, see, e.g., Ref. [33], although this list is by no means meant to be
exhaustive. Another form of imbalance is population imbalance. In that case, the system consists
of a different number of particles for each species. Because the particle species in this context
are often called “up” and “down” regardless of how they are realized in the concrete experiment,
population imbalance is also commonly referred to as spin imbalance. In the experiment, spin
imbalance can be realized by preparing a system with different particle numbers in each species.
If the species are realized as two different hyperfine states of the same atom, this can be achieved
by preparing the states accordingly.

The original formulation of BCS theory requires balanced systems for the formation of Cooper
pairs, and it is not trivial how imbalance can be included in this formalism. If we continue to
assume the BCS pairing mechanism is at work in these systems, there are multiple possible
scenarios [34]. On the one hand, the system could separate into a superfluid part and a normal
fluid part that is fully or partially polarized. On the other hand, superfluidity could break down
altogether.

However, there is also another possible consequence of imbalance. Both mass- and spin-
imbalance create a gap between the Fermi surfaces of both fermion species. In this situation,
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there could be other types of pairing than the BCS pairing mechanism. One possibility is the
pairing of particles with momenta on the opposing sides of their respective Fermi surfaces. This
would lead to a pair with non-vanishing center-of-mass momentum q. Pairing of this kind is
expected to cause the superfluid order parameter Δ(r) ∝ ⟨ψ̂↑(r)ψ̂↓(r)⟩ to lose its translation

invariance and form a non-trivial dependence on r. The operators ψ̂↑ and ψ̂↓, in this case, are
the field operators of the fermion species. Two popular ansätze for such a dependence are the
one by Fulde and Ferrell (FF) [35] with Δ(r) = Δ eiq⋅r and a momentum mode q, and the one by
Larkin and Ochinnikov (LO) [36] with Δ(r) = Δ cos(q ⋅ r) and at least two momentum modes at
±q. Collectively, these two ansätze are commonly referred to as FFLO. Phases of exotic pairing,
such as FFLO, along axes of polarization are likely to become a future subject of study with our
formalism. Therefore, we include polarization in the construction of the formalism, even though
the calculations in the present work are limited to the balanced case.

1.1.4 Reduced Dimensions

For our proof-of-concept calculations, we limit ourselves to the case of d = 0 spatial dimensions
for now but plan to move on to d = 1 in the future. But even though our everyday life takes place
in d = 3 dimensions, that does not mean that experimental results are not available for d < 3
[37]. In traps for ultracold atoms, the trapping potential around its minimum can be described
by a harmonic potential

Vtrap = m
2
(ω2

xx2 + ω2
yy2 + ω2

z z2) . (1.14)

Instinctively, we may think of a homogeneous trap with ωx = ωy = ωz, but that is far from the
only possibility. Traps in cold atoms experiments can be modified in a way that essentially con-
fines the atoms to two or fewer spatial dimensions. Consider an initially homogeneous trap with
ωx = ωy = ωz. As described in, e.g., Ref. [38], we can superimpose this trap with counterpropa-
gating laser beams along the z-direction to modulate the trapping potential along that direction.
These counterpropagating laser beams form a standing wave which creates a periodic structure
of minima in the trapping potential. In the vicinity of each of those minima, we can again de-
scribe the trapping potential as a harmonic potential of the form in Eq. (1.14) with ωz ≫ ωx,ωy.
If the trap frequency ωz in these minima is so large that the first excited state in z-direction is
well above the usual energies of the trapped atoms, i.e., ωz ≫ EF , then the trap is so narrow, that
the motion of the atoms is effectively confined to the xy-plane. Consequently, superimposing the
standing wave of counterpropagating laser beams has divided the three-dimensional trap into a
stack of two-dimensional traps. One can repeat this procedure with a standing wave along the
y-direction of the system to create one-dimensional trap tubes that effectively limit the motion
of the atoms to just the x-direction.

In summary, beyond the experiments’ astonishing capabilities of tuning the interaction and
imbalance parameters of systems, it is even possible to realize systems with less than three spatial
dimensions.



2 Methods

In this chapter, we discuss the numerical methods for the simulation of our physical system of
interest that we employ in this work. We examine how we can use these methods to calculate
observables and how we can estimate their uncertainties. Beyond that, we also briefly touch
upon possible future optimizations of the simulation technique employed in this work.

The central problem we need to solve with our simulation is the calculation of observables
from some description of a physical system. In the operator formalism of Statistical Physics, the
system is described by a Hamiltonian ̂H, and we find observables

⟨ ̂O⟩ = 1
Z
tr ( ̂O e−β( ̂H−μ↓ ̂N↓−μ↑ ̂N↑)) (2.1)

that are calculated from the operator ̂O in a grand-canonical ensemble with inverse tempera-
ture β = 1/T and chemical potentials μ↑ and μ↓. The grand-canonical partition function in the
operator formalism is given by

Z = tr (e−β( ̂H−μ↓ ̂N↓−μ↑ ̂N↑)) . (2.2)

As an alternative to the operator formalism, we can express the same observable in the path-
integral formalism. For most of the present work, the path-integral formalism is the formalism
of choice since it interacts nicely with the Langevin method we discuss below; they both rely on
an action functional for the description of the physical system. In this representation, we have

⟨ ̂O⟩ = 1
Z
∫D(ψ∗,ψ) 𝒪O(ψ∗,ψ) e−S[ψ∗,ψ] , (2.3)

with yet to be defined fermionic fields ψ∗ and ψ and an Euclidean action functional S. In the
path-integral formalism the partition function is given by

Z = ∫D(ψ∗,ψ) e−S[ψ∗,ψ] . (2.4)

The expression 𝒪O(ψ∗,ψ) in Eq. (2.3) relates the configurations of the fields ψ∗ and ψ to the
observable and serves the same purpose as the operator ̂O in Eq. (2.2).

Both calculations in Eq. (2.2) and Eq. (2.3) are similar in principle: we combine an infinite
number of contributions from different states of the system into one observable value. For some
systems, there are analytical solutions for these equations. However, when this is not the case,
approximating these calculations that span an infinite number of states of the system is quite non-
trivial. In general, our system of interest does not have an analytical solution for more than zero
spatial dimensions1, so we need to find a method that can simulate the system in an approximate
numerical fashion. Fortunately, we can find such methods in the class of Monte-Carlo methods.

1A notable exception it the case of 1 + 1-dimensional systems where exact solutions for some observables exist
[37].
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2.1 Monte-Carlo Integration

Monte-Carlomethods get their name from the famousMonte-Carlo district ofMonaco that houses
the legendary Casino de Monte-Carlo. They carry this name because they rely on random num-
bers to achieve their goal. One subclass of Monte-Carlo methods is focused on estimating the
values of integrals using random numbers. This so-called Monte-Carlo integration can help us
to approximate the path integral in calculations of observables such as in Eq. (2.3). For a simple
demonstration of the basic principle, we take a look at the mean-value method for evaluating the
integral

I = ∫
b

a
dx f (x) . (2.5)

The mean value of the function f on the interval from a to b is given by

⟨f ⟩ = 1
b− a

∫
b

a
dx f (x) . (2.6)

which contains the integral I in its definition. Thus, solving the integral I and determining the
mean value of f are equivalent tasks, and we have

I = (b− a)⟨f ⟩ = ⟨(b− a)f ⟩ . (2.7)

We can estimate the mean value using random numbers by choosing a random sample of points
x1, ..., xN , distributed uniformly at random on the interval [a, b]. We then calculate a sample
point of our “observable” fi = (b− a)f (xi) for each of them. With the observable sample {fi}, the
integral can be approximated as

I ≈ 1
N

N
∑
i=1

fi . (2.8)

That is the fundamental idea of Monte-Carlo integration which allows us to simulate our physical
system of interest. This integration approach based on random sampling of a function presents
an advantage when performing higher-dimensional integrals. If we sample the function on a
uniform lattice, the number of sample points scales with the power of the integral dimension and
quickly becomes impractically large. If we choose a coarser lattice to prevent this, we may miss
features of the integrand that contribute significantly to the value of the integral. With Monte-
Carlo integration, on the other hand, our random sampling of the integrand gives us a random
chance to capture fine features that deterministic methods may systematically miss with few
sample points. As such, as long as the value of the integral is not predominantly determined by
a small part of the integration region, Monte-Carlo integration allows us to obtain a reasonable
estimate of the integral value with far less computational effort than deterministic numerical
integration methods.

2.1.1 Importance Sampling

With the advantages of Monte-Carlo integration for higher-dimensional integrals inmind, Monte-
Carlo integration sounds like the perfect tool for solving path integrals, as they are of incredibly
high dimension. There is just one catch: as we stated above, the mean-value method only works
if the value of the integral is not largely determined by only a small part of the integration region.
The value of a path integral is, in fact, almost entirely determined by the tiny fraction of field
configurations that lie close to the classical solution of the system. Therefore, it may seem like
Monte-Carlo integration is not such a good choice for our problem after all. Fortunately, there
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is an extension of the mean-value method that is not only a workaround to this issue but makes
Monte-Carlo integration as a tool a lot more powerful: importance sampling.

The fundamental idea of importance sampling is to sample the integrand at points that are
not uniformly distributed at random on the interval of integration but follow a probability dis-
tribution p(x). That probability distribution is defined to have a maximum in the region that
contributes the most to the value of the integral. To illustrate this idea, we follow the example
presented in Ref. [39] and use importance sampling to estimate the value of the integral

I = ∫
1

0
dx

x−1/2

ex + 1
. (2.9)

Even though this is a simple example, it is already difficult to determine I with deterministic
standard methods of integral evaluation. This is due to the fact that the integrand diverges for
x → 0, and the bulk of the final value of I comes from a very narrow region around x = 0. To
solve this integral by using importance sampling, we modify the mean-value method to sample
the integrand mainly around the divergence at x = 0. This is achieved by using the divergence-
creating numerator x−1/2 of the integrand as a weight function

w(x) = x−1/2 (2.10)

which we can normalize to obtain the probability distribution

p(x) = w(x)
∫1
0
dx w(x)

= 1
2
√
x
. (2.11)

To use the weight function w in the integration, we define a weighted average

⟨g⟩w =
∫1
0
dx w(x)g(x)

∫1
0
dx w(x)

(2.12)

or, using the probability distribution p,

⟨g⟩p = ∫
1

0
dx p(x)g(x) . (2.13)

When we use the fundamental idea of Monte-Carlo integration in Eq. (2.8), we see that we can
also approximate the weighted average ⟨g⟩p by the sum

⟨g⟩p ≈ 1
N

N
∑
i=1

g(xi) , (2.14)

if the random sample points x1, ..., xN follow the probability distribution p. To solve the integral
I, we calculate the weighted average of f/p:

⟨ f
p
⟩
p
= ∫

1

0
dx f (x) = I , (2.15)

which we can approximate by

I ≈ 1
N

N
∑
i=1

f (xi)
p(xi)

, (2.16)
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Figure 2.1: Application of importance sampling to solve the integral in Eq. (2.9). The
solid blue line in the left-hand figure shows the chosen weight probability distribution
p from Eq. (2.11). The orange histogram shows the distribution of N = 1000 random
points {xi} that are chosen according to p. The solid blue line in the right-hand figure
shows the convergence of the integral estimate with the number of used sample points
on the horizontal axis. The estimate converges to the exact result, represented by the
solid black line.

given a random sample of points x1, ..., xN distributed according to p. An importance-sampling-
based solution of the integral I in Eq. (2.9) is shown in Fig. 2.1 for up to N = 1000 random
sample points.

The difficulty of this method is finding random sample points that follow the defined proba-
bility distribution p. For our example, we generate the random numbers we see in Fig. 2.1 with
a transformation method shown in Ref. [39]. We begin by drawing N random numbers {zi},
distributed uniformly at random on the interval [0,1] with the uniform probability density

q(z) = {
1 0 ≤ z ≤ 1 ,
0 otherwise .

(2.17)

We then search for a transformation x(z) that transforms the random sample {zi} following the
probability distribution q(z) into a random sample {xi} following the probability distribution
p(x). To this end, we require

p(x′) dx′ = q(z) dz . (2.18)

We integrate both sides, solve for x(z), and find

∫
x(z)

−∞
dx′ p(x′) = ∫

∞

−∞
dz q(z)

⇒ √x(z) = z
⇒ x(z) = z2 .

(2.19)

For the probability distribution in Eq. (2.11), this is a straightforward process. However, if the
probability distribution is given by the path integral weight e−S, finding a transformation that
turns uniformly random field configurations into field configurations that follow the probability
distribution given by the path integral weights requires us to actually solve the path integral. If
we could do that, we would not need Monte-Carlo integration, to begin with. For these more
complicated situations, there is a range of Markov-chain-based approaches which allow us to
generate the required random samples, one of them being the Langevin approach we discuss
below. With the random field configurations obtained from the Langevin process provides, we
can use the idea of importance sampling to calculate the observables of a simulated system.
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2.2 Stochastic Quantization: The Langevin Method

The Langevin method for solving quantum field theories, or stochastic quantization, is a method
that allows us to calculate quantum mechanical solutions of physical systems. In that regard,
it is a quantization method and equivalent to solving the Schrödinger equation or path integral
of a system, although it is intimately connected to the latter. From the standpoint of Monte-
Carlo integration, the Langevin method performs the importance sampling and provides us with
samples of field configurations that we can use to calculate observables. The Langevinmethod for
solving quantum field theories was originally discovered by Parisi and Wu [40], and an extensive
review of the subject can be found in Ref. [41]. In this review, stochastic quantization is described
as viewing a Euclidean field theory as the equilibrium limit of a statistical system that is coupled
to a thermal reservoir. This comparison eludes to the historical origin of the Langevin equation
that lies in the description of the Brownian motion of particles [42] (translated from French to
English in Ref. [43]). In its original form, the Langevin equation read

m
dv(t)
dt

= −α v(t) + η(t) . (2.20)

It describes the Brownian motion of a particle with mass m and velocity v(t). In this description,
the velocity of the particle is altered by two effects: the friction the particle experiences in its
surrounding environment, described with the parameter α, and a stochastic force vector η(t).
The stochastic noise term models the random collisions a particle may experience in a fluid; a
collision with another particle can momentarily change the velocity of the described particle.

To apply this general idea to quantum field theories, we consider a theory described by a
Euclidean action S[ϕ] that is a functional of some real-valued quantum field ϕ. To formulate a
Langevin equation for this system that models a stochastic process, we need some notion of time
along which we can evolve the system. To this end, we extend the domain of the quantum field
by a new fictitious, non-physical Langevin time tCL:

ϕ(x) → ϕ(x, tCL) , (2.21)

wherein x collectively describes the physical spacetime coordinates of the quantum field and we
use natural units of ℏ = kB = 1, as we do throughout this work. The Langevin equation of
stochastic quantization then reads

𝜕ϕ(x, tCL)
𝜕tCL

= − δS[ϕ]
δϕ(x, tCL)

+ η(x, tCL) . (2.22)

To obtain the correct results, the noise in Eq. (2.22) has to obey the following relations:

⟨η(x, tCL)⟩η = 0 ,
⟨η(x1, tCL,1)η(x2, tCL,2)⟩η = 2 δ(n)(x1 − x2) δ(tCL,1 − tCL,2) ,

(2.23)

with n being the number of spacetime coordinates in x and the average being defined as

⟨•⟩η =
∫Dη (•) exp (−1

4 ∫dnx dtCL η2(x, tCL))
∫Dη exp (−1

4 ∫dnx dtCL η2(x, tCL))
. (2.24)

In Sec. 2.2.3, we discuss a physical motivation for these requirements for the noise and an exact
derivation can be found in the review [41]. The δ(tCL,1 − tCL,2) term in the second correlation
function in Eq. (2.23) is of particular interest. It states that there is no autocorrelation in the
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noise; the value of the noise term at any given Langevin time does not depend on its value at
any other Langevin time. By this property, a Langevin process constitutes a Markov chain.

To illustrate the calculation of observables with stochastic quantization, we consider the cal-
culation of an observable O in the path integral formalism. We have

O = ⟨𝒪O(ϕ)⟩ =
∫Dϕ 𝒪O(ϕ) e−S[ϕ]

∫Dϕ e−S[ϕ] , (2.25)

with an appropriate expression 𝒪O(ϕ) of the field ϕ that leads to the desired observable. In this
expression, we can identify a probability density functional

P[ϕ] = e−S[ϕ]

∫Dϕ e−S[ϕ] , (2.26)

which allows us to rewrite Eq. (2.25) as

O = ∫Dϕ P[ϕ] 𝒪O(ϕ) , (2.27)

in analogy to Eq. (2.13) from Sec. 2.1.1 on importance sampling.
With Langevin processes ϕ(x, tCL) for tCL ∈ [0, tCL,max] that are the solutions of the Langevin

equation, we have to make use of the dependence on the Langevin time to calculate observables.
To this end, we define the Langevin time average

⟨F(ϕ)⟩CL = 1
tCL,max

∫
tCL,max

0
dtCL F(ϕ(x, tCL)) (2.28)

over an expression F that depends on a Langevin process ϕ(x, tCL). We find that in the limit
tCL,max → ∞, the Langevin time average becomes equal to the path integral weighted by the
probability distribution P[ϕ] in Eq. (2.27):

lim
tCL,max→∞

⟨F(ϕ)⟩
CL

= ∫Dϕ P[ϕ] F(ϕ) . (2.29)

A proof of this relation can be found in the reviews [41, 44]. This allows us to calculate an
observable O by solving the Langevin equation up to a sufficiently large Langevin time tCL,max:

O ≈ ⟨𝒪O(ϕ)⟩CL , (2.30)

using the Langevin process ϕ(x, tCL) we obtain from the solution of the Langevin equation.
As such, solving the Langevin equation has provided us with a sample of field configurations
ϕ(x, tCL), one field configuration ϕ(x) for every point in Langevin time tCL, that follows the prob-
ability distribution P[ϕ] without the need of solving the path integral explicitly.

2.2.1 Discretizing the Langevin Equation

In general, it is not possible to solve the Langevin equation for continuous time because this
requires an analytic treatment of a stochastic differential equation. In practice, we, therefore,
discretize the Langevin equation and calculate the Langevin process as a sequence of field config-
urations at discrete points in Langevin time. To this end, we introduce a Langevin time spacing
δtCL and consider the discrete Langevin time steps

t(i)CL = i ⋅ δtCL , (2.31)
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for i ∈ {0, ...,NCL} with
t(NCL)
CL = NCL ⋅ δtCL = tCL,max . (2.32)

We discretize the Langevin equation by using the Euler method. The first step in this method
is to integrate the continuous Langevin equation (2.22) over one of the discrete Langevin time
steps from t(i)CL to t(i+1)

CL = t(i)CL + δtCL:

∫
t(i+1)
CL

t(i)CL

dtCL
𝜕ϕ(x, tCL)

𝜕tCL
= −∫

t(i+1)
CL

t(i)CL

dtCL
δS

δϕ(x, tCL)
+∫

t(i+1)
CL

t(i)CL

dtCL η(tCL) . (2.33)

The next step is to expand each term around δtCL = 0. In the Euler method, we essentially ap-
proximate the integrals by assuming the value of the integrand to be constant over the integration
region and multiplying it with its length δtCL. We find

ϕ(x, t(i+1)
CL ) − ϕ(x, t(i)CL) = − δS

δϕ(x, t(i)CL)
δtCL +∫

t(i+1)
CL

t(i)CL

dtCL η(tCL) . (2.34)

One may notice that we have not applied the approximation of the integral to the noise term.
That is because the noise function η(tCL) features a δ-correlation in Langevin, see Eq. (2.23),
and a rigorous mathematical treatment of a noise function with a δ-correlation is non-trivial. A
well-defined treatment requires us to use a so-called Wiener process

W(tCL) = ∫
t′CL

0
dtCL η(t′CL) , (2.35)

which is an integral over the δ-correlated noise function η(tCL) and features the correlations

⟨W(tCL)⟩ = 0 ,
⟨W(tCL,1)W(tCL,2)⟩ = min(tCL,1, tCL,2) .

(2.36)

With the Wiener process W(tCL), we have

∫
t(i+1)
CL

t(i)CL

dtCL η(tCL) = W(t(i+1)
CL ) −W(t(i)CL) (2.37)

and using stochastic calculus and the correlations in Eq. (2.36), see also Ref. [41], we find

W(t(i+1)
CL ) −W(t(i)CL) = √2δtCL η̃(t

(i)
CL) . (2.38)

For each point in Langevin time t(i)CL, the number η̃(t(i)CL) is a random number that is drawn from a
normal distribution with a standard deviation of one, also known as a standard normal distribu-
tion. This is fortunate for numerical applications, as such numbers can very easily be generated
by pseudo-random number generators on computers.

Inserting the integrated noise term into Eq. (2.34), we obtain the discretized Langevin equa-
tion

ϕ(x, t(i+1)
CL ) = ϕ(x, t(i)CL) −

δS
δϕ(x, t(i)CL)

δtCL +√2δtCL ̃η(t(i)CL) . (2.39)

Note that we also reordered the equation to find all terms evaluated at Langevin time step t(i)CL on
the right-hand side. In this form, the Markov property of the Langevin process is clearly visible;
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the field configuration at the next step ϕ(x, t(i+1)
CL ) depends only on the field configuration at the

current step ϕ(x, t(i)CL). We also emphasize that we have only discretized the Langevin time, not
the spacetime coordinates x, and the drift term still features a functional derivative. In practice,
we generally also discretize the spacetime domain of the field, and the single Langevin equation
becomes a set of Langevin equations, one for each point in spacetime. The functional derivative
in the drift term then takes the form of a partial derivative with respect to the value of the field
at the given point in spacetime.

2.2.2 Zero-Dimensional Example

To illustrate the principles of stochastic quantization, we study a simple zero-dimensional ex-
ample which is also presented in Ref. [44]. For this example, we consider a system with the
action

S(ϕ) = μ
2
ϕ2 + λ

4!
ϕ4 (2.40)

and a real-valued quantum “field” ϕ. Because a zero-dimensional quantum field is just a single
number, the action is a function of ϕ rather than a functional, and we perform no space and no
time integral in the action. Beyond that, because the imaginary time represents the temperature
in statistical calculations, we cannot define a temperature for this system. Path integrals in zero
dimensions are just ordinary integrals over a single integration variable, as we can see in the
partition function:

Z = ∫dϕ e−S(ϕ) . (2.41)

To solve this system using stochastic quantization, we first extend the domain of the quantum
field to include the Langevin time:

ϕ → ϕ(tCL) , (2.42)

and formally define the Langevin process as the sequence

(ϕ(i) = ϕ(t(i)CL) ∣ i = 0, ...,NCL) . (2.43)

To determine the Langevin equation, we calculate the drift

𝜕S
𝜕ϕ

= μϕ+ λ
3!
ϕ3 (2.44)

and replace the field values with the Langevin-time-dependent version:

𝜕S
𝜕ϕ

→ 𝜕S
𝜕ϕ

∣
ϕ(i)

= μϕ(i) + λ
3!

(ϕ(i))3 . (2.45)

Inserting the drift in the discretized Langevin equation (2.39), we find

ϕ(i+1) = ϕ(i) −(μϕ(i) + λ
3!

(ϕ(i))3) δtCL +√2δtCL ̃η(t(i)CL) . (2.46)

This equation can now be used to obtain the Langevin process (ϕ(i)).
Figure 2.2 shows the action S(ϕ), as well as the probability distribution e−S(ϕ)/Z of the path

integral together with a histogram of the Langevin process ϕ(i) for tCL,max = 10000 and δtCL =
0.1. The plots are shown for two sets of model parameters. In the case of (μ, λ) = (1.0,0.4)
the action features a single minimum at ϕ = 0 and in the case of (μ, λ) = (−1.0,0.4) the action
features two minima at ϕ ≈ ±3.87. For the system with a single minimum in its action, the
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Figure 2.2: Stochastic quantization applied to the example described by the action in
Eq. (2.40). The left-hand column shows a system with parameters (μ, λ) = (1.0,0.4)
and the right-hand column shows a system with (μ, λ) = (−1.0,0.4). The plots in
the upper row show the action of the system, and the plots in the lower row show
normalized histograms of the Langevin processes (ϕ(i)) in blue together with the exact
probability densities in orange.

Langevin method works as expected. The system with two minima in its action, on the other
hand, allows us to study some problematic behavior, whichwe need to be aware of in practice. We
can see that the histograms of the Langevin processes indeed follow the probability distribution
of the path integral. Thus, loosely speaking, stochastic quantization does what it is supposed to
do.

Next, we calculate some observables for our example systems. We begin with the mean value
of the field ⟨ϕ⟩CL. We are using a discrete Langevin time, so the integral in the Langevin average
⟨•⟩CL is given by a discrete sum:

⟨ϕ⟩CL = 1
δtCLNCL

NCL

∑
i=0

δtCL ϕ(i) = 1
NCL

NCL

∑
i=0

ϕ(i) = ⟨ϕ(i)⟩i . (2.47)

Hence, all we need to do here is to average the value of the field ϕ at all Langevin time steps.
Note that from the symmetry of the action, we know that the exact result for the mean value of
the field has to be zero for all sets of parameters. Another observable that is only slightly more
complicated is the mean-squared field value ⟨ϕ2⟩CL. It can be used as a measure of the width of
the probability distribution e−S(ϕ)/Z, and we can compute it as

⟨ϕ2⟩CL = 1
NCL

NCL

∑
i=0

(ϕ(i))2 . (2.48)

The exact numerical values for this observable are ⟨ϕ2⟩ ≈ 0.82 for (μ, λ) = 1.0,0.4 and ⟨ϕ2⟩ ≈
13.67 for (μ, λ) = −1.0,0.4. In Fig. 2.3, we can see the Langevin process itself, as well as the con-



18 | Chapter 2. Methods

Figure 2.3: Stochastic quantization applied to the example described by the action in
Eq. (2.40). The left-hand column shows a system with parameters (μ, λ) = (1.0,0.4)
and the right-hand column shows a system with (μ, λ) = (−1.0,0.4). The first row
shows the Langevin processes in blue, with the dashed orange lines indicating the
minima of the action for the respective parameters. The second row shows the con-
vergence of the mean value observable with the dashed orange line representing the
exact value. The third row shows the convergence of the mean squared value observ-
able, with the dashed orange line representing the exact value. The shaded blue areas
in the second and third rows represent an uncertainty estimate for the observable. We
discuss the uncertainty estimate in more detail in Sec. 2.2.4.

vergence of the observables ⟨ϕ⟩ and ⟨ϕ2⟩. To obtain the convergence graphs of the observables,
we calculate the Langevin time averages partially; for a given Langevin time tCL, with

n = ⌊ tCL
tCL,max

⌋ (2.49)

and the floor function ⌊•⌋, we have

⟨ϕ⟩CL(tCL) =
1
n

n
∑
i=0

ϕ(i) . (2.50)

In the Langevin processes in Fig. 2.3, we see that for the system in the left column with a single
minimum in the action, the Langevin process essentially performs a random walk around that
minimum. For the system in the right column of the figure, the Langevin process shows two
distinct types of behavior. While ϕ(i) is close to one of the minima of the action, it performs the
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same kind of random walk around it as the system in the left column. At some points in Langevin
time, however, the random noise manages to push the system into the other minimum, where it
then starts to perform a random walk around it again. We can observe this behavior clearly in
the figure.

In the second row of Fig. 2.3, we can see the convergence of the observable ⟨ϕ⟩. As noted
above, the Langevin method only gives us the exact value for an observable in the limit tCL,max →
∞. As such, all observables for finite values of tCL,max are merely estimates of the exact value
of the observable and converge to it with increasing values of tCL,max. The shaded bands behind
the curve represent estimates of the uncertainty of the observable estimates. In Sec. 2.2.4, we
discuss how we can obtain such uncertainty estimates, but for now, we focus on the convergence
of the observable estimate itself. For the system depicted in the left-hand column of the figure, we
can see the expected behavior: after the Langevin process has accumulated a few sample field
values, we can estimate the observable somewhere around the exact value, and as we follow
the Langevin process further, the estimate for the observable converges to the exact result. For
the system depicted in the right-hand column of the figure, the story is a bit different. Until
around tCL ≈ 2000, the estimate of the observable seems to converge to a wrong value around
where one of the minima of the action of the system lies. When studying the Langevin process
in the first row of the figure, we can see what is happening: the Langevin process is stuck in the
left minimum of the action because the noise is never strong enough to push it over the central
barrier into the other minimum of the action. Because of this, the Langevin method “does not
see” that the other minimum even exists, and the estimate confidently converges to the wrong
value. That “confidence” is also expressed in the uncertainty band for that part of the graph. In
Sec. 2.2.4, we discuss the mathematical origin of this problematic behavior in more detail and
how we can detect and avoid it in practice. In the third row of Fig. 2.3, we see a convergence of
the observable ⟨ϕ2⟩, and for this observable, both systems behave as expected. This may come as
a surprise, as for the system in the right-hand column of the figure, it is very difficult to determine
the mean value of the field ⟨ϕ⟩, so it may seem paradoxical that the mean squared value ⟨ϕ2⟩ can
be determined without problems. In fact, we can only estimate ⟨ϕ2⟩ because the two minima of
the action of that system are symmetric around ϕ = 0; whether the system is stuck in the left or
the right minimum looks the same when we square the field values.

With this zero-dimensional example understood, we should now be equipped to discuss more
intricate aspects of stochastic quantization.

2.2.3 Physical Motivation of the Langevin Method

With an understanding of the Langevin method for zero-dimensional “field” theories, we now
study a relation that provides us with a physical intuition of how and why the method works.
We also motivate the role of the magnitude of the noise in the Langevin equation. We begin our
considerations with the continuous Langevin equation (2.22) but without the noise term:

𝜕ϕ(x, tCL)
𝜕tCL

= − δS[ϕ]
δϕ(x, tCL)

. (2.51)

Specifically, we are interested in what field configurations the solutions of this modified Langevin
equation converge to. The process is converged when ϕ(x, tCL) no longer changes with Langevin
time, i.e.,

𝜕ϕ(x, tCL)
𝜕tCL

= 0 . (2.52)
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Comparing this with Eq. (2.51), we see that this modified Langevin equation has a fixed point
at field configurations with vanishing drift:

δS[ϕ]
δϕ(x, tCL)

= 0 . (2.53)

By Hamilton’s principle, such field configurations are classical solutions of the system. This
connection can nicely be demonstrated in discretized Langevin time with a zero-dimensional
field theory with a real-valued quantum “field” ϕ and action function(al) S(ϕ). For this system,
the discretized Langevin equation without noise reads

ϕ(i+1) = ϕ(i) − 𝜕S
𝜕ϕ

∣
ϕ(i)

δtCL . (2.54)

We now define an adaptive, non-constant step in Langevin time

δtCL(tCL) = ( 𝜕2S
𝜕ϕ2 ∣

ϕ(i)

)
−1

. (2.55)

and rename

ϕ(i) → xi ,
𝜕S
𝜕ϕ

→ f .
(2.56)

The modified Langevin equation then reads

xi+i = xi −
f
f ′ ∣

xi

. (2.57)

This is precisely the iteration prescription of Newton’s method for finding a zero of the function
f , which in our case means finding a classical solution of the system. In this sense, in the absence
of the noise term, the Langevin equation explicitly pushes a system into its classical solution.

If the Langevin equation with noise gives us the quantum solution of a system and the
Langevin equation without noise gives us the classical solution of a system, then the noise must
represent the quantummechanical aspects of nature. Just as the path integral can be understood
as a generalization of Hamilton’s principle that leads to quantum solutions, the Langevin equa-
tion with noise is a generalization of the search for a stationary point of the action that leads to
quantum solutions.2 From this point of view, it also makes sense why we need a specific mag-
nitude of noise for the Langevin method to produce the correct quantum results; the magnitude
of the noise represents the “amount of quantumness” in our system. In the example in the right-
hand column of Fig. 2.3, the magnitude of noise determines how likely the Langevin process is
to “tunnel” through the barrier between the two minima of the action. In this sense, we need
to fix the magnitude of the noise to the value that reproduces the “amount of quantumness”
we observe in nature. This rationale can serve us as a phenomenological motivation, while the
rigorous derivation of the noise correlation functions can be found in the review [41].

2There is a certain beauty in the fact that, in the Langevin method, the true randomness of quantum mechanics
is included explicitly in the form of random numbers in its calculations.
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2.2.4 Uncertainty Estimation Monte-Carlo Processes

When we use the Langevin equation of a system to calculate an observable O, we obtain a sample
{𝒪(i)

O } of N observable sample points, which are calculated at each step in Langevin time. We
know that we can obtain an estimate for the value of the observable by calculating the arithmetic
mean

⟨O⟩ = 1
N

(
N
∑
i=1

𝒪(i)
O ) . (2.58)

To determine how precise this estimate is, we also need to calculate the standard deviation of
the sample

σO = √ 1
N − 1

N
∑
i=1

(𝒪(i)
O − ⟨O⟩)

2
. (2.59)

This specific expression for the standard deviation accounts for the fact that we also use the data
to estimate the mean. For a given Langevin process, the standard deviation of the observable
sample converges to a constant value with increasing sample size. It is a measure of the width of
the distribution of the sample and depends on the numerical magnitude of noise in the Langevin
equation. We can use the standard deviation of the observable sample to calculate the standard
deviation of the mean

ΔO = σO√
N

. (2.60)

This quantity gives us the desired precision of our estimate of the mean ⟨O⟩. We can see that
with increasing sample size, the uncertainty of the estimate of the mean decreases by a factor
of

√
N. The uncertainty bands in our zero-dimensional example in Fig. 2.3 are given by such

standard deviations of the mean. However, the uncertainty bands in the figure are manually
scaled up by a factor of ten. With this basic method, we massively underestimate the uncertainty
of our estimates for observables. The cause of this is autocorrelation in the data, i.e., the fact
that subsequent sample points are not independent. The presence of autocorrelation is quite
expected in Markov chains. Because any given sample point is generated using only the previous
sample point and random numbers, it takes the state of the Markov chain a few steps to become
independent of a previous state. We clearly see this behavior in the estimation of the mean value
⟨ϕ⟩ in the right-hand column of Fig. 2.3. Up until a Langevin time of tCL ≈ 2000, the system
is stuck in the left minimum of the action. Until the noise is strong enough to push the system
over the central barrier, subsequent samples remain close to the left minimum of the action, and
we observe strong autocorrelation. For uncertainty estimation, Eq. (2.60), in fact, only holds if
the sample points are uncorrelated. Therefore, estimating the standard deviation of estimates of
observables with this method is generally not valid. The correct estimate is given by [45]

ΔO = √1+ τa
N

σO , (2.61)

which is the result for uncorrelated samples scaled up by a factor of √1+ τa with the integrated
autocorrelation time τa. This quantity is given by

τa =
∑NCL

i=1 (⟨𝒪
(j)
O 𝒪(j+i)

O ⟩j − ⟨O⟩2)
⟨O2⟩ − ⟨O⟩2

(2.62)

and tells us how long the correlation of sample points persists within a Markov chain. In this
form, it is measured in the number of sample points rather than Langevin time. The integrated
autocorrelation time can be calculated directly, but this process can often be tricky. In the present
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Figure 2.4: Evolution of the estimates for the observable ⟨ϕ⟩ for the zero-dimensional
system from Sec. 2.2.2 with parameters (μ, λ) = (−1.0,0.4). The graph is divided into
sections I, II, and III. In sections I and II, the evolution of the estimate is dominated
by the left and right minimum of the action, respectively. In section III, the evolution
is balanced between the two minima. The dashed orange line represents the exact
value of ⟨ϕ⟩ = 0, and the shaded area represents the unbiased standard deviation of
the mean for the observable, manually scaled up by a factor of ten.

work, we choose an arguably more elegant method to obtain a correct, unbiased uncertainty es-
timate for estimated observables: Jackknife resampling. To motivate this method, we again
consider the estimation of the uncertainty of ⟨ϕ⟩ in our zero-dimensional example with the pa-
rameters (μ, λ) = (−1.0,0.4). Figure 2.4 shows the estimate for the observable with increasing
simulation time tCL, as we have already seen in Fig. 2.3. The uncertainty bands are again given
by the biased standard deviation of the mean in Eq. (2.59) and are manually scaled up by a
factor of ten. In Fig. 2.4, we have separated the graph into three sections. In sections I and
II, the convergence of the observable is predominantly determined by one of the minima of the
action, and the sample demonstrates strong autocorrelation in these sections. In section III, the
system moves frequently between the two minima, and the convergence of the estimate of the
observable is balanced between them. The autocorrelation in section III is considerably smaller
than in sections I and II. We can indeed identify this just by looking at the convergence graph
together with the uncertainty estimate band. At the beginning of section III, the uncertainty band
defines a range in which we likely find the true value of the observable. Throughout section III,
the estimate of the observable value never strays too far from that initial uncertainty region. In
sections I and II, on the other hand, the estimate moves far outside the uncertainty range we find
at the beginning of each of the sections. That indicates that the initial uncertainty estimates in
these sections are too small because autocorrelation is present, and we need greater uncertainty
estimates that account for said autocorrelation. This rationale of considering different subsec-
tions of the sample can be formalized into the Jackknife resampling method. In this work, we
considered the blocked version of the method, reviewed in Ref. [46]. The Jackknife method is a
resampling method, meaning it works by estimating statistical parameters on altered versions of
the sample. For the blocked Jackknife method, we divide the sample into Nb blocks, each con-
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Figure 2.5: Evolution of the estimates for the observable ⟨ϕ⟩ for the zero-dimensional
system from Sec. 2.2.2 with parameters (μ, λ) = (−1.0,0.4). The upper plot shows
the estimate of the observable with an error band which is obtained through the Jack-
knife method with Nb = 10 blocks. The lower plot shows the evolution of uncertainty
estimates of both the biased estimator in Eq. (2.60) and the Jackknife.

taining Lb sample points. If the total number of sample points in all blocks NbLb is less than the
total size of the sample NCL, we discard sample points at the beginning of the Langevin process
until NCL is an integer multiple of Lb. The reason we discard sample points at the beginning of
the process is that, depending on the system, the Langevin process can require a few samples
to equilibrate. If that is the case, the first samples of the Langevin process contain little to no
physical information. To estimate the uncertainty of the estimate for an observable O, for each
block b ∈ {1, ...,Nb} we calculate the mean of all sample points that are not inside that block:

jb = 1
Lb

( ∑
1≤i<(b−1)Lb

𝒪(i)
O + ∑

bLb<i≤NCL

𝒪(i)
O ) . (2.63)

With these mean values, the Jackknife method estimates the unbiased standard deviation of the
mean of the sample {𝒪(i)

O } as

ΔO ≈ 1
√Nb

std{jb} . (2.64)

Figure 2.5 again shows the evolution of the estimate of the mean value ⟨ϕ⟩ for our zero-
dimensional example with parameters (μ, λ) = (−1.0,0.4). This time, however, the uncertainty
band of the graph is given by the Jackknife estimate with Nb = 10 rather than the biased estimate
with Eq. (2.60). The lower subplot of the figure shows the evolution of both estimates in compar-
ison. With the Jackknife estimate, we immediately see that the estimated uncertainty is generally
considerably greater than the biased estimate. This makes sense because, as discussed above, the
data features considerable autocorrelation. As the process approaches the time tCL ≈ 2000, with
the system stuck in the left minimum of the action for the most part, the uncertainty estimate
from the Jackknife method decreases, just as we have seen with the biased estimate. This is to be
expected because, up to that point, the process has not “seen” much of the right half of the action



24 | Chapter 2. Methods

and has no reason for a large uncertainty. It is not until tCL ≈ 2000 that we see the unbiased
nature of the Jackknife method in action. Once the system moves into the other minimum, the
estimate of the mean value moves considerably outside the uncertainty band it has at that point,
see Fig. 2.4. The Jackknife picks up on that and the uncertainty estimate increases as a result,
something we do not observe with the biased estimator. As soon as the Langevin process is no
longer clearly dominated by only one of the minima of the action, the uncertainty estimate of
the Jackknife stabilizes and proceeds to decay, demonstrating the expected 1/√NCL behavior.
For this example, we chose a number of blocks of Nb = 10. Generally, we want this number to
be as low as possible, as the computational effort increases with increasing number of blocks.
Making it too small, on the other hand, causes the estimate of the uncertainty to fluctuate more.
In practice, we need to find a compromise that is acceptable in both steadiness of the estimate
and computational effort and generally depends on the problem at hand.

In this example, we have seen that the Jackknife method offers us a computationally inex-
pensive way to obtain an unbiased estimate of the uncertainty of observables. There is, however,
even more, it can do for us. Because it provides us with an unbiased estimate of the standard
deviation of the mean of a sample, and because Eq. (2.61) holds, we can even use the Jackknife
to obtain an estimate of the integrated autocorrelation time τa. For a sample of N observable
values {𝒪(i)

O } we find

τa ≈ N (
ΔOjn

σO
)

2

− 1 (2.65)

with the Jackknife estimate of the standard deviation of themean ΔOjn and the standard deviation
of the sample σO, as given by Eq. (2.59). In this form, τa measures the number of steps rather
than Langevin time. As discussed above, the integrated autocorrelation time measures how
many steps the Markov chain needs to produce uncorrelated sample points again. As such, we
can use this quantity to tune the parameters of the Langevin process such that it features as little
autocorrelation as possible. After all, if new sample points present barely any new information,
why should we bother calculating them? Concretely, we can use the integrated autocorrelation
time to tune the Langevin time spacing δtCL. As we see in the discretized Langevin equation
(2.39), the amount of noise per step scales with √δtCL. Through this behavior, the process
becomes more likely to feature larger changes per step with larger values of δtCL. Of course,
when doing this, we still need to ensure that δtCL remains sufficiently small. This requirement
of the Euler method we used to discretize the Langevin equation still has to be met.

In this work, we use the presented Jackknife method for estimating uncertainties, but for the
sake of completeness, we also mention that other variants of the Jackknife exist, see Ref. [46].
Beyond the Jackknife method, there are also other resampling methods, such as binning [45]
and the bootstrap method [47].

Systematic Uncertainties

The uncertainties we discussed in this section have their origin in the random nature of Monte
Carlo methods. Therefore we call them statistical uncertainties. However, they are not the only
source of uncertainty in our simulation. When we take a look at the estimate of ⟨ϕ2⟩ in Fig. 2.3
again, we notice that, even though the statistical uncertainty of the estimate decreases at the
end of the simulation, the estimate seems to converge to a value that is visibly different from
the exact value. This discrepancy is caused by the presence of systematic uncertainties in the
simulation. Systematic uncertainties are introduced whenever we make approximations to solve
the system. For quantum field theories that involve space and time, one such approximation is the
introduction of a spacetime lattice of finite size and finite spacings, as we do below in our pairing-
field formalism. Even our simple zero-dimensional example already features two such sources
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Figure 2.6: Correction of the systematic uncertainty introduced by finite values of δtCL
for the system in Sec. 2.2.2 with (μ, λ) = (1.0,0.4). The dashed orange line represents
the exact value of ⟨ϕ2⟩. The blue crosses mark simulation runs with uncertainties ob-
tained from the Jackknife method. The green line shows a model fit to the simulation
results, and the dashed green line represents the fit result at δtCL = 0. It features a
0.4% deviation from the exact result.

of systematic uncertainty: the total amount of Langevin time in the simulation tCL,max and the
Langevin time spacing δtCL. Whenwe discretized the Langevin equation above, we used the Euler
method that is only exact in the limit δtCL → 0. Beyond that, we stated that the Langevin method
only produces exact results for observables in the limit tCL,max → ∞. Fortunately, we can remove
systematic uncertainties from our results, albeit at the cost of increased computational effort. For
the total amount of Langevin time tCL,max, we have instinctively already done that in our example.
We can simply run the simulation with more Langevin time to get closer to the limit tCL,max →
∞. This has the added benefit of also decreasing the statistical uncertainty as it scales with
1/√tCL,max ∝ 1/√NCL. Decreasing the systematic uncertainty related to the finite Langevin time
spacing δtCL is a bit less straightforward. We could just choose very small values for δtCL but that
would make the simulation far more computationally costly at constant tCL,max. Moreover, as we
have seen in the zero-dimensional example with two minima in its action, smaller values δtCL can
lead to more autocorrelation in the Langevin process and potentially slow down the convergence
of estimates of observables. So, instead of just decreasing δtCL, we run the simulation multiple
times with different values for δtCL. Figure 2.6 shows this approach for the estimate of ⟨ϕ2⟩ in our
zero dimensional example with (μ, λ) = (1.0,0.4). We see that the simulation results approach
the exact value with decreasing δtCL, so we extrapolate the simulation results to δtCL = 0 by
fitting a model to the data points. In the figure, we chose the exponential model

f (δtCL) = c1 ⋅ ec2⋅δtCL + c3 (2.66)

and obtained the extrapolated results as f (δtCL = 0). The extrapolated result is shown in the
figure and only features a 0.4% deviation from the exact result. We could increase this deviation
further by using more accurate simulations for the fit, but this example already illustrates the
basic idea nicely.
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2.2.5 The Sign Problem and Complex Langevin

So far, we have been focused on Monte-Carlo methods around some kind of probability distribu-
tion, such as the normalized weight e−S/Z in the path integral. This normalized weight, however,
can only be interpreted as a probability distribution as long as it is real-valued and non-negative.
In fundamental descriptions of physical systems, we generally expect the action to be real-valued,
leading to the normalized weight e−S/Z being non-negative for all field configurations. However,
there are transformations we can apply to our system that lead to an equivalent description of
the system but cause the transformed action to take complex values. This leads to negative or
even complex normalized weights e−S/Z. This situation is called the sign problem, or phase prob-
lem in the case of complex path integral weights. It presents an obstacle for many Monte-Carlo
methods that rely on the ability to interpret the path integral weights as probability distribu-
tions. Fortunately, the Langevin method is not affected by this obstacle, since it does not require
non-negative or even real-valued path-integral weights. In fact, the path integral weights do not
appear at all in the Langevin method; we merely compute a drift term as the variation of the ac-
tion and follow where it leads us. As such, where the method is applicable, the sign problem does
not prevent stochastic quantization. When we apply stochastic quantization in situations with
complex actions, the method is called Complex Langevin (CL). Together with other approaches
to the sign problem, it has recently been reviewed in Ref. [44]. Complex Langevin requires us to
consider some details that do not enter the real-valued case, so we explore the method using a
simple example based on the zero-dimensional field theory in Sec. 2.2.2.

Again, we consider a zero-dimensional quantum field theory described by the action

S(ϕ) = μ
2
ϕ2 + λ

4!
ϕ4 , (2.67)

with the real-valued, zero-dimensional quantum “field” ϕ ∈ ℝ and real-valued parameters μ and
λ. The partition function for this system is given by

Z = ∫
∞

−∞
dϕ e−S(ϕ) . (2.68)

Perhaps the most obvious way to turn this action into a complex quantity would be to use a
complex value for one of the parameters μ and λ, but instead, we choose another approach that
is motivated by a transformation we perform below on our physical system of interest. In the
actual study of our system of interest, the quantum field represents fermions and, as such, is
Grassmann-valued rather than real-valued. This makes it impossible to solve the path integral
with a ϕ4 term in the action directly as a Gaussian integral. To circumvent this problem, in
Sec. 3.1.1, we perform a so-called Hubbard-Stratonovich transformation which removes the ϕ4

term from the action and, instead, describes its effect in the form of a bosonic auxiliary field; we
bosonize the theory. Due to the Grassmann-valued nature of fermionic fields, the auxiliary field
we introduce below is generally complex-valued rather than real-valued. With this motivation,
we perform the zero-dimensional equivalent of this Hubbard-Stratonovich transformation on our
example system to obtain a complex action and solve the system using Complex Langevin. We
begin by inserting a suitably chosen factor of one into the partition function:

Z = ∫dϕ e−S(ϕ) 𝒩∫dσ e− λ
4!σ2

⏟⏟⏟⏟⏟⏟⏟
=1

= 𝒩∫dϕ dσ e−S∗
PB(ϕ,σ) .

(2.69)
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In this expression and for the remainder of this example we suppress the integral bounds, as
all integrals range from −∞ to ∞. The variable σ in this factor of one represents our newly
introduced auxiliary field and the newly introduced action

S∗
PB(ϕ,σ) =

μ
2
ϕ2 + λ

4!
ϕ4 + λ

4!
σ2 (2.70)

is called the pre-partially bosonized action, following the actual transformation in Sec. 3.1.1. Note
that the Gaussian integral over σ is only defined for positive values of λ. As such, this particular
Hubbard-Stratonovich transformation limits our studies to systems with λ > 0. The new action
S∗
PB now depends on the original field ϕ and the auxiliary field σ, but so far we are no closer to

removing the ϕ4 term. To achieve this, we need to shift the integration over σ:

σ → σ+ iϕ2 . (2.71)

This shift does not change the value of the integral since we have introduced the field σ in a
Gaussian integral and, loosely speaking, the value of a Gaussian integral does not depend on the
location of the peak of the bell curve. With this shift, the partition function reads

Z = 𝒩∫dϕ dσ e−SPB(ϕ,σ) , (2.72)

with the partially-bosonized action

SPB(ϕ,σ) =
μ
2
ϕ2 + i

λ
12

σϕ2
⏟⏟⏟⏟⏟⏟⏟

SFC(ϕ,σ)

+ λ
4!
σ2

⏟
SPA(σ)

, (2.73)

again named in analogy to the actual study in Sec. 3.1.1. We also define the two parts SFC, which
we call the fermionic contribution because it contains all terms depending on the original field,
and SPA, which we call the purely-auxiliary part because it only depends on the auxiliary field σ.
With these two parts, the partition function factorizes to:

Z = 𝒩∫dσ e−SPA(σ) ∫dϕ e−SFC(ϕ,σ)

= 𝒩
√
π∫dσ (μ

2
+ i

λ
12

σ)
−1/2

e−SPA(σ)

= 𝒩∫dσ e−SB(σ) ,

(2.74)

wherein we have solved the integral over ϕ and redefined the normalization constant 𝒩 to
absorb the factor

√
π. The bosonized action SB in the above expression depends purely on σ and

is given by

SB(σ) =
λ
4!
σ2 + 1

2
log(μ

2
+ i

λ
12

σ) . (2.75)

This action depends on the real-valued field σ and the real-valued parameters μ and λ but clearly
takes complex values, so it will allow us to study the Complex Langevin method.

To formulate the Langevin equation for this system, we first need to determine the drift term.
It is given by the variation of the action with respect to the field of the theory, or, in the zero-
dimensional case, the derivative of the action with respect to the field of the theory:

𝜕SB
𝜕σ

= λ
12

σ+ iλ
12μ+ i2λσ

. (2.76)
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This drift is clearly complex. Considering we obtained it from performing a derivative of a com-
plex quantity, this is not surprising, but it has an interesting consequence. Because we add this
drift term to the field in every iteration of the Langevin equation, the field itself has to become
a complex quantity. Even though the system is described by a real-valued field σ, when using
Complex Langevin to solve the theory, we need to artificially promote the field to complex values
to accommodate the complex drift. We call this artificially complexified field the CL field. This
holds for all real-valued fields of a theory. If we use Complex Langevin to solve a theory with a
complex-valued quantum field ϕ, the theory really depends on the two real-valued fields Re(ϕ)
and Im(ϕ) that we would both promote to complex values.

That being said, with the drift term calculated, we need to determine the noise term of the
Langevin equation. In the case of Complex Langevin, we have an additional degree of freedom
in that regard: we can choose to apply the noise on the real part of the CL field, the imaginary
part of the CL field, or on both parts:

√2NRδtCL ̃ηR(tCL) +√2NIδtCL ̃ηI(tCL) (2.77)

We still need to respect the fluctuation-dissipation theorem that ensures we add the right amount
of noise to produce the correct quantum results. This constraint leads to the requirement

NR − NI = 1 . (2.78)

Other than that, we are free to choose how we distribute the noise between real- and imaginary
parts. Because the field σ of the theory is real-valued and only becomes complex in the Complex
Langevin solution of the theory, we expect the dynamics of the system to mainly be encoded in
the real part of the CL field. As such, purely real noise seems like the most efficient way to solve
the theory, as it has the most effect on the part of the CL field that encodes the dynamics of the
system. More details about the choice of the noise term in the complex case can be found in
Refs. [44, 48]. For this example, we chose purely real noise and find the Langevin equations

σ(i+1)
R = σ(i)

R − Re( λ
12

σ(i) + iλ
12μ+ i2λσ(i)) δtCL +√2δtCL ̃η(tCL) and

σ(i+1)
I = σ(i)

I − Im( λ
12

σ(i) + iλ
12μ+ i2λσ(i)) δtCL ,

(2.79)

with σ(i)
R = Re(σ(i)) and σ(i)

I = Im(σ(i)). These Langevin equations allow us to solve the system,
but we also need to figure out how to calculate observables, now that our description of the theory
no longer contains the original field ϕ. In this example, we want to calculate the observable
⟨ϕ⟩, which we somehow need to relate to the auxiliary field σ. A general way to do this is to
introduce source terms into the original action and propagate them through the entire Hubbard-
Stratonovich transformation into the bosonized action of the system. There, they can be used to
obtain the expression of the auxiliary field that corresponds to the original field. In Sec. 3.1.2, we
do this for our system of fermions to obtain relations between the pairing field and the fermion
fields, but in this simple example, we can use a trick instead. In the path-integral expression for
the observable ⟨ϕ2⟩, we can replace the term ϕ2 by a derivative with respect to a parameter of
the theory and pull the derivative out of the path integral:

⟨ϕ2⟩ = 1
Z
∫dϕ ϕ2 e−S(ϕ)

= 1
Z
∫dϕ (−2𝜕μ) e−S(ϕ)

= 1
Z
(−2𝜕μ)∫dϕ e−S(ϕ) .

(2.80)
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Figure 2.7: Evolution of the estimates of the observable ⟨ϕ2⟩ using Complex Langevin.
The values of the parameters of the system in this example are (μ, λ) = (1.0,0.4) and
the Langevin equation is solved up to a final Langevin time of tCL,max = 10000 with
a spacing of δtCL = 0.05. The two subplots show the real- and imaginary parts of the
estimate, and the dashed orange lines represent the exact values of the observable.
The uncertainty bands are obtained using the Jackknife method.

The remaining path integral is the partition function of the system expressed in terms of the orig-
inal action, and we can replace it with the partition function expressed in terms of the bosonized
action. Then we can perform the derivative again and obtain the expression depending on σ that
corresponds to ϕ2 in the original description of the theory:

[Continuation of Eq. (2.80)]

= 1
Z

𝒩∫dσ (−2𝜕μ) e−SB(σ)

= 1
Z

𝒩∫dσ ( 6
6μ+ iλσ

) e−SB(σ) .

(2.81)

Thus, we can compute the observable ⟨ϕ2⟩ as

⟨ϕ2⟩ = ⟨ 6
6μ+ iλσ

⟩
CL

. (2.82)

Figure 2.7 shows the evolution of the estimate for the observable ⟨ϕ2⟩ using Complex Langevin
in both real- and imaginary part for a system with (μ, λ) = (1.0,0.4) to a final Langevin time
tCL,max = 10000 with a spacing δtCL = 0.05. As expected, the imaginary part of the estimate
converges to zero. The real part converges to the exact value even faster than in the real Langevin
example in Fig. 2.3. This is likely due to the fact that the auxiliary field σ appears linearly in the
observable expression, and, as such, we do not have to square the random process. Either way,
for the observable ⟨ϕ2⟩, the representation of the system in terms of σ is numerically favorable
to the representation in terms of ϕ. The convergence in this example is so good, in fact, that we
can now clearly see the systematic deviation of the estimate, discussed in Sec. 2.2.4, caused by
the finite spacing δtCL.
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2.3 Future Optimizations

Beyond the scope of the present work, there are some optimizations we can apply to the Langevin
method and the study of our system of interest in particular. We briefly touch upon some of them
in this section.

2.3.1 Adaptive Langevin Step

One future optimization is to make the Langevin time step δtCL adaptive. That means, rather
than leaving it at the same value throughout the entire simulation, we adapt its value from
step to step based on the current state of the process. This has a few advantages. As we have
seen in the above sections, low values of δtCL make the simulation more accurate but also more
expensive. High values of δtCL make the simulation less accurate but cheaper, and they also
reduce the autocorrelation in the process. So far, we have to weigh the arguments to settle on
a value for δtCL that is neither too high nor too low. As it turns out, however, for this particular
cake, we can have it and eat it as well. With an adaptive step, we can choose low values of δtCL
where the path integral weight e−S changes considerably. This allows us to resolve fine details of
the dynamics of the system that are important for obtaining accurate results. In regions where
the weight e−S varies less, we can choose larger values for δtCL to sample those regions more
efficiently. In fact, we have already used an adaptive stepsize in Sec. 2.2.3. In that section,
we introduced the adaptive step to map the Langevin equation to Newton’s method for finding
zeros, but it ultimately serves the same purpose as it does in Newton’s method: Where it can,
Newton’s method takes larger steps to converge more quickly, and it takes finer steps where they
are needed to improve the accuracy of the result.

Beyond that, Ref. [49] discusses certain instabilities which can occur in the Langevin method
with complex actions and can be avoided completely by adaptive steps. To employ the analogy to
Newton’s method again as a motivation, without its adaptive step, it could potentially overshoot
and miss the zero it is trying to find.

2.3.2 Stochastic Trace Evaluation

In the simulation of our system of interest we develop below, we need to calculate expressions
of the form

tr (ℳ′ℳ−1) , (2.83)

with a matrix ℳ′ and an inverse matrix ℳ−1 for the drift term. The matrix ℳ in this expression
depends on the Langevin time. As such, we have to calculate the inverse ofℳ at every simulation
step. This operation is very costly, and in this section, we want to explore an alternative method
that approximates the expression in Eq. (2.83) stochastically, sparing us the computational ef-
fort of inverting the matrix ℳ. This alternative method consists of two parts: stochastically
approximating traces of matrices and using gradient solvers to avoid inverting matrices.

A method of stochastically approximating traces is described in Ref. [50]. For a matrix M ∈
ℂd×d, we generate d vectors

{ χ(i) ∣ i = 1, ..., d} , (2.84)

with χ(i) ∈ ℂd and each entry of χ(i) drawn from a complex normal distribution with a mean
of zero and a standard deviation of 1/d. Due to the chosen standard deviation of the random
distribution, all χ(i) approximately have a norm of one:

χ(i)†χ(i) ≈ 1 . (2.85)
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Furthermore, because all entries are chosen at random, two different vectors have approximately
no overlap:

χ(i)†χ(j) i≠j
≈ 0 . (2.86)

These two properties combined imply that the set {χ(i)} approximately form an orthonormal
basis of the vector space ℂd:

δij ≈ χ(i)†χ(j)

⇒ 𝟙 ≈
d

∑
i=1

χ(i)†χ(i) .
(2.87)

As such, we can use the χ-basis to calculate the trace of M:

trM ≈
d

∑
i=1

χ(i)†M χ(i) . (2.88)

So far, this is a complete stochastic calculation of the trace rather than an approximation. What
allows us to save computational effort is the fact that we do not need to calculate all terms of the
sum in Eq. (2.88). Because all entries of each of the vectors χ(i) are non-zero with a probability
of one, every term of the sum in Eq. (2.88) contains contributions by all entries of the matrix
M. As a result, each of the terms in the sum is a precise approximation of the trace, and adding
them merely increases the estimate’s accuracy. For d′ ∈ ℕ with d′ < d, we find the estimate

trM ≈ d
d′

d′

∑
i=1

χ(i)†M χ(i) , (2.89)

with the scaling factor in front of the sum accounting for the omitted terms. This approximation
can be improved, by explicitly orthonormalizing the χ-basis using the Gram-Schmidt procedure.
This improvement allows the trace estimate to converge faster, at the additional cost of the or-
thonormalization. Whether this decreases the total computational effort depends on the specific
problem at hand. For our expression in Eq. (2.83), we find the estimate

tr (ℳ′ℳ−1) = d
d′

d′

∑
i=1

χ(i)†ℳ′ℳ−1χ(i) . (2.90)

The second part of estimating the expression in Eq. (2.83) is given by Conjugate Gradient
(CG) methods [50, 51]. This is the part that actually allows us to not invert the matrix ℳ at
every simulation step. CG methods focus on solving systems of linear equations

Mx = b , (2.91)

with M ∈ ℂd×d and x,b ∈ ℂd. If the matrix M is not self-adjoint, as is the case in our simulation,
we require Biconjugate Gradient (BiCG) method that is a generalization of the CG method. For
the problem in Eq. (2.91), the matrix M and the vector b are inputs of the BiCG algorithm, and
the result is given by a vector x satisfying Eq. (2.91):

M BiCG(M,b) = b

⇒ BiCG(M,b) = M−1b .
(2.92)

For the estimate in Eq. (2.90), this allows us to replace the explicit inversion of ℳ:

tr (ℳ′ℳ−1) = d
d′

d′

∑
i=1

χ(i)†ℳ′ BiCG (ℳ, χ(i)) . (2.93)
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In the above equation, we need to perform the BiCG algorithm for every term in the sum, but
because the stochastic estimate of the trace only requires d′ < d terms, this calculation can be
cheaper than directly inverting the matrix. In our simulation, the size of the matrixℳ scales with
the power of the spatial dimension. Therefore, this approximationmay reduce the computational
effort significantly in future studies beyond 0+ 1-dimensional systems.



3 Pairing-Field Formulation of the
System

In this chapter, we will derive a path integral formulation of a grand-canonical partition function
Z(β, μ↑, μ↓) for our system of two fermion species with a contact interaction. Moreover, we shall
see that it is indeed possible to formulate this path integral purely in terms of auxiliary bosonic
degrees of freedom that constitute what we call the pairing field.

We begin with a Hamiltonian formulation of our Fermi gas with the two-component species
we call “↑” (up) and “↓” (down). Even though we borrow their designations from the theory
of spin-1/2 particles, our species do not necessarily have to be two spin projections. In fact, in
real-world experiments with ultracold atoms, the species are usually realized as two different
hyperfine states of atoms of a given element (e.g. Refs. [2, 52, 53] for 6Li, 40K and 167Er, re-
spectively) or even states of atoms of two different chemical elements or isotopes thereof (e.g.
Refs. [32, 33] for 162Dy with 161Dy and 53Cr with 6Li). Regarding this possible realization of the
system, we allow our two species to have different masses m↑ and m↓, respectively. We also as-
sign two potentially different chemical potentials μ↑ and μ↓ to our species to allow for population
imbalance or “spin” imbalance, again borrowing from the jargon of spin-1/2 particles. However,
the chemical potentials do not enter the Hamiltonian description of the system and will appear
when we transition to a grand-canonical description of the system, as will the inverse tempera-
ture β = 1/T. The Hamiltonian for this system in second quantization is given by

̂H = ∫ddr (− ∑
σ∈{↑,↓}

ψ̂†
σ(r)

∇2

2mσ
ψ̂σ(r) − g ̂ψ†

↑(r)ψ̂↑(r)ψ̂
†
↓(r)ψ̂↓(r)) (3.1)

with d spatial dimensions, a non-relativistic kinetic energy term, and an attractive contact interac-
tion with the coupling parameter g ≥ 0. The field operators obey the fermionic anti-commutation
relations

{ψ̂σ,ri , ψ̂
†
σ′,rj

} = δσσ′δ(d)(ri − rj) , {ψ̂σ,ri ,
̂ψσ′,rj

} = 0 and {ψ̂†
σ,ri , ̂ψ†

σ′,rj
} = 0 (3.2)

with
{ ̂A, ̂B} = ̂AB̂+ ̂BÂ . (3.3)

This work is by no means the first to study this Hamiltonian. A variety of approaches can be
found in Ref. [20].

We begin by deriving the desired path integral representation of this system in the continuum
to avoid the added complications of a lattice at first. We will see that the continuum limit masks
some of the finer details and inner workings of the description, which makes the derivation
easier in some parts because certain questions simply do not arise in the continuum and harder
in others where the continuum masks details that need to be very well understood for correct
derivations.
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After studying the system in the continuum, we derive a description of our system on a space-
time lattice. This description serves as the foundation of the simulation that allows us to obtain
numerical results for the behavior of this system. Rather than discretizing the expressions we
have obtained in the continuum, we begin anew with the Hamiltonian description of the sys-
tem. This will ultimately alert us to subtle details in the realm of lattice theories that make a
discretization of a continuum action non-trivial and, in fact, incorrect if done naively without
paying attention to these details.

3.1 Pairing-Field Formulation in the Continuum

The first step in finding a pairing field formulation of the system is to find a path integral repre-
sentation of the (grand-canonical) partition function

Z(β, μ↑, μ↓) = tr e−β( ̂H−μ↑ ̂N↑−μ↓ ̂N↓) (3.4)

with our system Hamiltonian ̂H from Eq. (3.1) and the particle number operators

̂Nσ = ∫ddr ψ̂†
σ,r ̂ψσ,r (3.5)

for σ ∈ {↑, ↓} as well as the inverse temperature β = 1/T and the chemical potentials μσ. We
then find the path integral representation

Z(β, μ↑, μ↓) = ∫D(ψ∗,ψ) e−SF[ψ∗,ψ] (3.6)

with the Grassmann-valued fields ψ∗
↑,ψ↑,ψ∗

↓,ψ↓ and

ψ∗ = (ψ∗
↑,ψ∗

↓) , ψ = (ψ↑,ψ↓) (3.7)

and the fermionic Euclidean action functional

SF[ψ∗,ψ] = ∫
β

0
dτ∫ddr [ψ∗(τ, r)(𝜕τ −

∇2

2mσ
− μσ)ψ(τ, r) − g (ψ∗

↑ψ↑ψ∗
↓ψ↓)(τ, r)] . (3.8)

Heuristically, one can obtain this action from the Hamiltonian by replacing the field operators
with Grassmann-valued fields with a time dimension and adding a temporal derivative and inte-
gration. These rules follow from the general scheme of path integral derivations found in books
like Ref. [54] and, indeed, in the Sec. 3.3 we shall see that a rigorous derivation of the path
integral for the partition function leads to this continuum action.

3.1.1 Hubbard Stratonovich Transfomation

The fields ψ∗ and ψ in the path integral of the partition function in Eq. (3.6) are fermionic
fields and thus Grassmann-valued rather than real- or complex-valued like bosonic fields. This
presents a problem for the numerical treatment of the system since computers are, by design,
more suitable to efficiently work with real or complex numbers. To overcome this, we refor-
mulate our partition function in terms of a path integral over auxiliary bosonic fields that are
complex-valued. This will allow us to calculate all the same observables by manipulating com-
plex fields rather than Grassmann-valued fields and fully leverage the advantage of computers
in numerics. Such a transformation from a fermionic representation of a system to a bosonic
representation of the same system is known as a Hubbard-Stratonovich transformation [54, 55].
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There are many kinds of Hubbard-Stratonovich transormation. As discussed in Ref. [11], some
Hubbard-Stratonovich transformations lead to continuous auxiliary fields, some to discrete aux-
iliary fields, that can be both bounded or compact and unbounded. The Hubbard-Stratonovich
transformation we perform leads to a continuous unbounded auxiliary field that, in its final
form, we call the pairing field. We begin the Hubbard-Stratonovich transformation by inserting
a suitable factor of one into our partition function, namely

1 = ∫D(ϕ∗,ϕ) e−g∫β
0
dτ∫ddr ϕ∗(τ,r)ϕ(τ,r). (3.9)

The fields ϕ∗ and ϕ map [0, β) × ℝd → ℂ and are considered to be independent. Inserting this
factor into Eq. (3.6) we obtain

Z(β, μ↑, μ↓) = ∫D(ψ∗,ψ) e−SF[ψ∗,ψ]

= ∫D(ψ∗,ψ,ϕ∗,ϕ) e−SF[ψ∗,ψ]−g∫β
0
dτ∫ddr ϕ∗(τ,r)ϕ(τ,r)

= ∫D(ψ∗,ψ,ϕ∗,ϕ) e−S∗
PB[ψ∗,ψ,ϕ∗,ϕ]

(3.10)

with the pre-partially-bosonized action

S∗
PB[ψ∗,ψ,ϕ∗,ϕ] = ∫

β

0
dτ∫ddr[ψ∗(τ, r)(𝜕τ −

∇2

2mσ
− μσ)ψ(τ, r)

− g (ψ∗
↑ψ↑ψ∗

↓ψ↓)(τ, r) + g (ϕ∗ϕ)(τ, r)] .
(3.11)

The way this new path integration will help us bosonize the action is by the fact that the path
integral in the factor of one in Eq. (3.9) is a Gaussian integral. This means we can perform a shift
of the integration variables without changing the value of the integral. This fact can be derived
rigorously but becomes intuitively evident by considering a one-dimensional Gaussian integral;
no matter where the center of the bell curve is, the area under it remains the same, i.e.

∫
∞

−∞
dx e−x2 = ∫

∞

−∞
dx e−(x−a)2 =

√
π . (3.12)

In the context of our action in Eq. (3.11), we can perform a shift on the auxiliary fields ϕ∗ and
ϕ, such that the shift creates a term that cancels the interaction term. At this point, the fermionic
component of the path integral, i.e. the integration over ψ∗ and ψ is a Gaussian integral and can
be carried out. We perform the shift

ϕ → ϕ+ ψ↑ψ↓ and ϕ∗ → ϕ∗ + ψ∗
↓ψ∗

↑ , (3.13)

which creates the countering four-fermion term and Yukawa coupling terms. The latter replace
the contact interaction:

g ϕ∗ϕ → g (ϕ∗ + ψ∗
↓ψ∗

↑) (ϕ+ ψ↑ψ↓)

= g ϕ∗ϕ+ g (ϕ∗ψ↑ψ↓ + ϕψ∗
↓ψ∗

↑) + gψ∗
↓ψ∗

↑ψ↑ψ↓

= g ϕ∗ϕ+ g (ϕ∗ψ↑ψ↓ − ϕψ∗
↑ψ∗

↓) + gψ∗
↑ψ↑ψ∗

↓ψ↓ .

(3.14)
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The path integral with shifted auxiliary fields yields the partially-bosonized action

SPB[ψ∗,ψ,ϕ∗,ϕ] = ∫
β

0
dτ∫ddr[ψ∗(τ, r)(𝜕τ −

∇2

2mσ
− μσ)ψ(τ, r)

+ g (ϕ∗ψ↑ψ↓ − ϕψ∗
↑ψ∗

↓)(τ, r) + g (ϕ∗ϕ)(τ, r)]
(3.15)

that is now quadratic in its fermionic degrees of freedom. To perform the fermionic path integral,
we split the partially-bosonized action into a fermionic contribution

SFC[ψ∗
NG,ψNG] = ∫

β

0
dτ∫ddr (ψ†

NG MFS ψNG) (τ, r) (3.16)

with spinors ψ∗
NG,ψNG and a fermion matrix MFS (to be defined below), as well as a purely-

auxiliary part

SPA[ϕ∗,ϕ] = ∫
β

0
dτ∫ddr g(ϕ∗ϕ)(τ, r) . (3.17)

This allows us to factor out the fermionic part in the partition function

Z(β, μ↑, μ↓) = ∫D(ϕ∗,ϕ) ∫D(ψ∗
NG,ψNG) e−SFC

⏟⏟⏟⏟⏟⏟⏟⏟⏟
ZFC

e−SPA (3.18)

and solve the Grassman-valued Gaussian integral ZFC, as

ZFC = Det (MFS δ(τ− τ′) δ(3)(r − r′))
≡ DetM ,

(3.19)

with the capitalized Det indicating that the determinant also includes the matrix structure in
spacetime coordinates and not merely the matrix structure of MFS in the 2× 2 “field space”. To
determine the matrix MFS, we need to write the fermionic contribution to the action in terms of
Nambu-Gorkov spinors

ψ∗
NG = (ψ∗

↑ , ψ↓)
⊺

and ψNG = (ψ↑ , ψ∗
↓)

⊺
. (3.20)

This particular arrangement of starred and unstarred fields of up- and down-species is necessary
to write a bilinear expression ψ†

NGMFSψNG that can reproduce the Yukawa terms in the partially-
bosonized action in Eq. (3.15). Rewriting the fermionic contribution to the action in terms of
these Nambu-Gorkov spinors we find

SFC[ψ∗
NG,ψNG,ϕ∗,ϕ] = ∫

β

0
dτ∫ddr

⎛⎜⎜⎜⎜⎜
⎝

ψ†
NG (

𝜕τ − ∇2

2m↑
− μ↑ −gϕ

−gϕ∗ 𝜕τ + ∇2

2m↓
+ μ↓

)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

MFS

ψNG

⎞⎟⎟⎟⎟⎟
⎠

(τ, r) ,

(3.21)
giving us the fermion matrix

M = (
𝜕τ − ∇2

2m↑
− μ↑ −gϕ

−gϕ∗ 𝜕τ + ∇2

2m↓
+ μ↓

)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

MFS

δ(τ− τ′) δ(3)(r − r′) . (3.22)
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Note that in the lower-right entry of the “field space” matrix MFS, where we find the free prop-
agation of the down-species, the spatial derivative and chemical potential enter with a different
sign than they do in the up-species. This is a consequence of the mixing of fields in the Nambu-
Gorkov representation; writing out the terms of this matrix representation has the fields of the
up-species in the propagator term in the right order, i.e. ψ∗

↑(...)ψ↑, while in the down-species
they are reversed, i.e. ψ↓(...)ψ∗

↓. This transforms the operators in the middle in a non-trivial way,
as detailed in App. A.

With the fermion matrix determined from the fermionic contribution to the action, we can
define the fully bosonized action SB with

Z(β, μ↑, μ↓) = ∫D(ϕ∗,ϕ) e−SB[ϕ∗,ϕ] (3.23)

and

SB[ϕ∗,ϕ] = ∫
β

0
dτ∫ddr g(ϕ∗,ϕ)(τ, r) − logDetM . (3.24)

Now all dynamics of the system are encoded in an action that depends purely on the bosonic
pairing field and lends itself to numerical treatment.

Looking back at the partially bosonized action in Eq. (3.15), we can interpret how the bosoniza-
tion encodes the interaction in the system. Rather than a term of four fermion fields, we find
two Yukawa terms in wich two fermion fields of different species couple to the pairing field. As
such, the pairing field mediates the interaction between pairs of fermions.

3.1.2 Correlation Functions of the Pairing Field

We want to examine how expectation values of the pairing field relate to expectation values of
the fundamental fields ψσ for σ ∈ {↑, ↓} to get a better understanding of what the pairing field
is. To achieve this, we define a generating functional from the fermionic representation of the
partition function by including source fields J∗ and J for pairs of the fermionic fields1

Z[J∗, J, β, μ↑, μ↓) = ∫D(ψ∗,ψ) e−SF[ψ∗,ψ,J∗,J] (3.25)

with

SF[ψ∗,ψ, J∗, J] = ∫
β

0
dτ∫ddr[ψ∗(τ, r)(𝜕τ −

∇2

2mσ
− μσ)ψ(τ, r) − g (ψ∗

↑ψ↑ψ∗
↓ψ↓)(τ, r)

− g (J∗ψ∗
↓ψ∗

↑ + Jψ↑ψ↓ + J∗J) (τ, r)].
(3.26)

We now perform the same Hubbard-Stratonovich transformation we have performed on the
fermionic action in the previous section to obtain a bosonized theory but also transform the
source fields. This will result in a bosonic generating functional that still describes the same
physical system. We then can perform functional derivatives with respect to the source fields of
the purely fermionic and purely bosonic generating functionals and compare them to identify re-
lations between the expectation values of the fundamental fermionic fields and the pairing field.
We begin with the Hubbard-Stratonovich transformation by inserting a suitable factor of one.

1The specific sources we choose will lead us to the desired relation, however, when deriving such a relation it can
be beneficial to start at the end of the Hubbard-Stratonovich transformation and work backward.
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We use the factor found in Eq. (3.9), the same factor we use above to introduce the auxiliary
field:

Z[J∗, J, β, μ↑, μ↓) = ∫D(ψ∗,ψ) e−SF[ψ∗,ψ,J∗,J]

= ∫D(ψ∗,ψ,ϕ∗,ϕ) e−SF[ψ∗,ψ,J∗,J] e− ∫
τ,r

g(ϕ∗ϕ)(τ,r)

≡ ∫D(ψ∗,ψ,ϕ∗,ϕ) e−S∗
PB[ψ∗,ψ,ϕ∗,ϕ,J∗,J] ,

(3.27)

defining the pre-partially bosonized action

S∗
PB[ψ∗,ψ,ϕ∗,ϕ, J∗, J] = ∫

β

0
dτ∫ddr[ψ∗(τ, r)(𝜕τ −

∇2

2mσ
− μσ)ψ(τ, r)

− g (ψ∗
↑ψ↑ψ∗

↓ψ↓)(τ, r) + g(ϕ∗ϕ)(τ, r)

− g (J∗ψ∗
↓ψ∗

↑ + Jψ↑ψ↓ + J∗J) (τ, r)].

(3.28)

Before we perform the shift of the auxiliary fields that eliminates the four-fermion interaction,
we need to take one more intermediate step. With the source fields present, we perform yet
another shift that couples the auxiliary fields to the source fields. This ensures that we also
cancel the source terms of the fermion fields when performing the shift that cancels the four-
fermion interaction. This shift assumes the simple form

ϕ∗ → ϕ∗ + J and ϕ → ϕ+ J∗ (3.29)

and results in the altered pre-partially-bosonized action

S∗∗
PB[ψ∗,ψ,ϕ∗,ϕ, J∗, J] = ∫

β

0
dτ∫ddr[ψ∗(τ, r)(𝜕τ −

∇2

2mσ
− μσ)ψ(τ, r)

− g (ψ∗
↑ψ↑ψ∗

↓ψ↓)(τ, r)
+ g ((ϕ∗ + J)(ϕ+ J∗)) (τ, r)

− g (J∗ψ∗
↓ψ∗

↑ + Jψ↑ψ↓ + J∗J) (τ, r)]

= ∫
β

0
dτ∫ddr[ψ∗(τ, r)(𝜕τ −

∇2

2mσ
− μσ)ψ(τ, r)

− g (ψ∗
↑ψ↑ψ∗

↓ψ↓)(τ, r)

+ g (J∗ (ϕ∗ − ψ∗
↓ψ∗

↑) + J (ϕ− ψ↑ψ↓)) (τ, r)].

(3.30)

From here we can perform the shift we used in the previous section to remove the four-fermion
interaction

ϕ∗ → ϕ∗ + ψ∗
↓ψ∗

↑ and ϕ → ϕ+ ψ↑ψ↓ , (3.31)
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leaving us with the partially-bosonized action

SPB[ψ∗,ψ,ϕ∗,ϕ, J∗, J] = ∫
β

0
dτ∫ddr[ψ∗(τ, r)(𝜕τ −

∇2

2mσ
− μσ)ψ(τ, r)

− g (ψ∗
↑ψ↑ψ∗

↓ψ↓)(τ, r)

+ g (J∗ϕ∗ + Jϕ) (τ, r)].

(3.32)

In this form, we can integrate out the fermion fields in the generating functional resulting in the
bosonized action

SB[ϕ∗,ϕ, J∗, J] = ∫
β

0
dτ∫ddr g (ϕ∗ϕ+ J∗ϕ∗ + Jϕ)(τ, r) − logDetM (3.33)

with the fermion matrix M we defined in Eq. (3.22).
With this at hand, we can finally calculate expectation values and correlation functions of

the pairing field. We find

⟨ϕ(τ, r)⟩ = 1
Z
∫D(ϕ∗,ϕ) ϕ(τ, r) e−SB[ϕ∗,ϕ] (3.34)

= 1
Z
∫D(ϕ∗,ϕ) (−1

g
δ

δJ(τ, r)
) e−SB[ϕ∗,ϕ,J∗,J]∣

J∗=J=0

(3.35)

= (−1
g

δ
δJ(τ, r)

) Z[J∗, J]
Z

∣
J∗=J=0

(3.36)

= 1
Z
∫D(ψ∗,ψ) (−1

g
δ

δJ(τ, r)
) e−SF[ψ∗,ψ,J∗,J]∣

J∗=J=0

(3.37)

= 1
Z
∫D(ψ∗,ψ) (−ψ↑(τ, r)ψ↓(τ, r)) e−SF[ψ∗,ψ] (3.38)

= ⟨ψ↓(τ, r)ψ↑(τ, r)⟩ , (3.39)

which justifies the name pairing field. For correlation functions, we proceed in a similar manner.
For example we have

⟨ϕ∗(τ1, r1)ϕ(τ2, r2)⟩ (3.40)

= 1
Z
∫D(ϕ∗,ϕ) ϕ∗(τ1, r1)ϕ(τ2, r2) e−SB[ϕ∗,ϕ] (3.41)

= 1
Z
∫D(ϕ∗,ϕ) (−1

g
δ

δJ∗(τ1, r1)
)(−1

g
δ

δJ(τ2, r2)
) e−SB[ϕ∗,ϕ,J∗,J]∣

J∗=J=0

(3.42)

= 1
Z
∫D(ψ∗,ψ) (−1

g
δ

δJ∗(τ1, r1)
)(−1

g
δ

δJ(τ2, r2)
) e−SF[ψ∗,ψ,J∗,J]∣

J∗=J=0

(3.43)

= 1
Z
∫D(ψ∗,ψ) (−ψ∗

↓(τ1, r1)ψ∗
↑(τ1, r1)) (−ψ↑(τ2, r2)ψ↓(τ2, r2)) e−SF[ψ∗,ψ] (3.44)

= ⟨ψ∗
↓(τ1, r1)ψ∗

↑(τ1, r1)ψ↑(τ2, r2)ψ↓(τ2, r2)⟩ . (3.45)

Following this technique, we can find expressions for all pairing-related observables in terms of
the pairing field ϕ.
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3.2 Mean-Field Study of the System

In this section, we perform a mean-field study of our system. That means we study its behavior
in the approximation that the pairing field is constant, i.e.

ϕ(τ, r) ≡ ϕ̄ and ϕ∗(τ, r) ≡ ϕ̄∗ . (3.46)

To this end, we derive an analytic expression for the partition functionwith non-constant fermionic
fields in momentum space, perform the bosonization and extract physical results from the result-
ing expression. For simplicity, we shall also limit this mean-field study to the mass-balanced case
of

m↑ = m↓ = m , (3.47)

although we shall treat m↑ and m↓ as independent quantities until it is necessary to leverage the
mass balance. We do this to obtain more general expressions as long as it is possible.

Fourier-Transforming the Action

Webegin by Fourier-transforming the partially-bosonized action in Eq. (3.15) by using themomentum-
frequency space fields

ψ̃σ(ωn,p) = ∫
β

0
dτ∫ddr ψσ(τ, r)eiωnτeipr (3.48)

with the fermionic Matsubara frequencies

ωn = (2n+ 1)π
β

for n ∈ ℤ. (3.49)

This definition together with the identities

∫
β

0
dτ e−i(ωn−ωn′)τ = β δn,n′ (3.50)

and

∫ddr e−i(p−p′)r = (2π)d δ(d)(p − p′) (3.51)

implies the Fourier representation of the position-space fields

ψσ(τ, r) =
1
β
∑
n

∫ ddp
(2π)d

ψ̃σ(ωn,p) e−iωnτe−ipr. (3.52)

For the Fourier transform of the free propagation in the action, we begin by replacing the fields
as per Eq. (3.52):

∫
β

0
dτ∫ddr ψ∗

σ(τ, r)(𝜕τ −
∇2

2mσ
− μσ)ψσ(τ, r)

= ∫
β

0
dτ∫ddr

1
β
∑
n

1
β
∑
n′

∫ ddp
(2π)d

∫ ddp′

(2π)d

ψ̃∗
σ(ωn,p)eiωnτeipr (𝜕τ −

∇2

2mσ
− μσ) ψ̃σ(ωn′ ,p′)e−iωn′τe−ip′r

(3.53)
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At this point, we can replace the operators by scalars and apply the δ-identities in Eq. (3.50) and
Eq. (3.51):

[Continuation of Eq. (3.53)]

= ∫
β

0
dτ∫ddr

1
β
∑
n

1
β
∑
n′

∫ ddp
(2π)d

∫ ddp′

(2π)d

ψ̃∗
σ(ωn,p)eiωnτeipr (−iωn′ +

p′2

2mσ
− μσ) ψ̃σ(ωn′ ,p′)e−iωn′τe−ip′r

= ∫
β

0
dτ∫ddr

1
β
∑
n

1
β
∑
n′

∫ ddp
(2π)d

∫ ddp′

(2π)d
e−i(ωn′−ωn)τe−i(p′−p)r

ψ̃∗
σ(ωn,p)(−iωn′ +

p′2

2mσ
− μσ) ̃ψσ(ωn′ ,p′)

= 1
β
∑
n

1
β
∑
n′

∫ ddp
(2π)d

∫ ddp′

(2π)d
βδn,n′(2π)dδ(d)(p − p′)

ψ̃∗
σ(ωn,p)(−iωn′ +

p′2

2mσ
− μσ) ̃ψσ(ωn′ ,p′)

= 1
β
∑
n

∫ ddp
(2π)d

ψ̃∗
σ(ωn,p)(−iωn +

p2

2mσ
− μσ) ψ̃σ(ωn,p).

(3.54)

The Yukawa-terms are less straight forward because of their pairing of starred and unstarred
fields. We need to “massage” the expressions a little to find δ-functions, leading to a slightly
different result. To this end, we first consider the simpler expression

∫
β

0
dτ∫ddr ψ↑(τ, r)ψ↓(τ, r)

= ∫
β

0
dτ∫ddr

1
β
∑
n

1
β
∑
n′

∫ ddp
(2π)d

∫ ddp′

(2π)d

ψ̃↑(ωn,p)e−iωnτe−iprψ̃↓(ωn′ ,p′)e−iωn′τe−ip′r

= ∫
β

0
dτ∫ddr

1
β
∑
n

1
β
∑
n′

∫ ddp
(2π)d

∫ ddp′

(2π)d
e−i(ωn−(−ωn′))τe−i(p−(−p′))r

ψ̃↑(ωn,p) ̃ψ↓(ωn′ ,p′).

(3.55)

Here, we can perform the r integral to obtain a δ(d)(p + p′), effectively flipping the momentum
argument of the ↓-field:

[Continuation of Eq. (3.55)]

= ∫
β

0
dτ

1
β
∑
n

1
β
∑
n′

∫ ddp
(2π)d

∫ ddp′

(2π)d
e−i(ωn−(−ωn′))τ(2π)dδ(d)(p − (−p′))

ψ̃↑(ωn,p)ψ̃↓(ωn′ ,p′)

= ∫
β

0
dτ

1
β
∑
n

1
β
∑
n′

∫ ddp
(2π)d

e−i(ωn−(−ωn′))τψ̃↑(ωn,p)ψ̃↓(ωn′ , −p).

(3.56)

For the Matsubara frequencies, we can reverse the summation for the down-species by replacing

n′ → −n′ (3.57)
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and use the relation
ω−n′ = −ωn′−1 . (3.58)

We also shift the summation index n′ by one to make the expression more legible before per-
forming the τ integral to extract the frequency Kronecker-δ:

[Continuation of Eq. (3.56)]

= ∫
β

0
dτ

1
β
∑
n

1
β
∑
n′

∫ ddp
(2π)d

e−i(ωn−(−ω−n′))τψ̃↑(ωn,p)ψ̃↓(ω−n′ , −p)

= ∫
β

0
dτ

1
β
∑
n

1
β
∑
n′

∫ ddp
(2π)d

e−i(ωn−ωn′−1)τψ̃↑(ωn,p)ψ̃↓(−ωn′−1, −p)

= ∫
β

0
dτ

1
β
∑
n

1
β
∑
n′

∫ ddp
(2π)d

e−i(ωn−ωn′)τψ̃↑(ωn,p)ψ̃↓(−ωn′ , −p)

= 1
β
∑
n

1
β
∑
n′

∫ ddp
(2π)d

βδn,n′ ψ̃↑(ωn,p)ψ̃↓(−ωn′ , −p)

= 1
β
∑
n

∫ ddp
(2π)d

ψ̃↑(ωn,p) ̃ψ↓(−ωn, −p) .

(3.59)

Thus, Fourier-transforming products of two starred or unstarred fields flips the sign of the argu-
ment of one of them in the momentum-space representation. With that out of the way, we can
write the momentum-space representation of the partially-bosonized action as follows:

SPB[ψ̃∗
↑, ̃ψ↑, ̃ψ∗

↓, ψ̃↓] = gβV ̄ϕ∗ ̄ϕ⏟
SPA

+SFC[ψ̃∗
↑, ψ̃↑, ψ̃∗

↓, ̃ψ↓] , (3.60)

again divided into a purely-auxiliary part SPA and a fermionic contribution given by

SFC[ψ̃∗
↑, ψ̃↑, ̃ψ∗

↓, ψ̃↓] =
1
β
∑
n

∫ ddp
(2π)d

[ψ̃∗
σ (−iωn +

p2

2mσ
− μσ) ψ̃σ

+ g ̄ϕ∗ψ̃↑(ωn,p)ψ̃↓(−ωn, −p)

− g ̄ϕψ̃∗
↑(ωn,p)ψ̃∗

↓(−ωn, −p) ] .

(3.61)

Obtaining an Expression for the Partition Function

To integrate out the fermions, we rewrite SFC in terms of Nambu-Gorkov spinors

ψ̃† = ( ψ̃∗
↑(ωn,p) ̃ψ↓(−ωn, −p) ) and ̃ψ = (

̃ψ↑(ωn,p)
ψ̃∗

↓(−ωn, −p)
) , (3.62)

resulting in the expression

SFC[ ̃ψ†, ψ̃] = 1
β
∑
n

∫ ddp
(2π)d

ψ̃† ⎛⎜
⎝

−iωn +
p2

2m↑
− μ↑ −g ̄ϕ

−g ̄ϕ∗ −iωn −
p2

2m↓
+ μ↓

⎞⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

MFS

ψ̃ (3.63)

with the fermion matrix

M(ωn,p, μ↑, μ↓) = MFS(ωn,p, μ↑, μ↓) βδn′,n″ (2π)dδ(d)(p′ − p″). (3.64)
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This fermion matrix is understood to have a matrix structure not only in the 2×2 “field space” of
MFS but also in the frequency and momentum space. The matrix structure of M beyond the field
space is denoted by the Kronecker-δ and δ-function in Eq. (3.64), indicating that M is diagonal
in these spaces. They are to be understood as a label of this matrix structure rather than concrete
mathematical terms since neither n′,n″ nor p′,p″ are actually defined in the expression for SFC
in Eq. (3.63).

Performing the path integral over the fermion fields in the partition function, we obtain the
expression

log ̄Z( ̄ϕ∗, ϕ̄, β, μ↑, μ↓) = log e−SPA + logDetM(μ↑, μ↓)
= log e−SPA + Tr logM(μ↑, μ↓)

(3.65)

with the capitalized Det and Tr denoting determinants and traces not only over the 2× 2 “field
space” but also over frequency and momentum space. The bar above the partition function ̄Z
indicates that this is not yet the real partition function. The real partition function is obtained
by determining the constants ̄ϕ and ̄ϕ∗. Moreover, note that the expression depends on β, even
though M does not. This is a direct consequence of the determinant or trace also acting in
frequency space.

The next step is to perform the trace over the fermion matrix. To achieve this, we first nest
the field-space trace trFS into the frequency-momentum trace trn,p:

Tr log (MFS βδn′,n″ (2π)dδ(d)(p′ − p″)) = trn,p trFS log (MFS βδn′,n″ (2π)dδ(d)(p′ − p″)) . (3.66)

If we were to write the logarithm as a power series, in every term the Kronecker-δ and δ-function
would act as identities due to the trace over frequency and momentum, so we can pull them out
of the field-space trace, rewriting this expression as

Tr logM = trn,p ((trFS logMFS) βδn′,n″ (2π)dδ(d)(p′ − p″)) . (3.67)

Within the frequency-momentum trace, we express the diagonality of the fermion matrix by
replacing

δn′,n″ → 1 and δ(d)(p′ − p″) → δ(d)(0) (3.68)

resulting in the expression

Tr logM = 1
β
∑
n

∫ ddp
(2π)d

(trFS logMFS) β(2π)dδ(d)(0). (3.69)

We can identify the physical meaning of the δ(d)(0) by employing the Fourier representation of
the delta function

(2π)dδ(d)(p′ − p″) = ∫ddr ei(p′−p″)r

⇒ (2π)dδ(d)(0) = ∫ddr = V
(3.70)

and identifying it with the spatial volume V. This is a rather “loose” handling of the δ-distribution,
however, within the scope of this work, namely Sec. 3.3, we will explore this theory on the lattice
where the matrix nature of the fermion matrix beyond the field space is trivially included and
we can confirm our findings by the means of standard determinants and traces of linear algebra.
The continuum limit of the expressions we find on the lattice confirms the results we find by
employing this interpretation of δd(0).
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With the Kronecker δ and the δ function out of the way, we obtain the expression

Tr logM = βV
1
β
∑
n

∫ ddp
(2π)d

trFS logMFS , (3.71)

in which we can take the field-space trace over logMFS by taking the logarithm of the field-space
determinant, i.e.

trFS logMFS = log detMFS. (3.72)

To simplify the following steps, we express the per-species chemical potentials in terms of the
average chemical potential

μ =
μ↑ + μ↓

2
(3.73)

and the chemical potential imbalance

h =
μ↑ − μ↓

2
(3.74)

resulting in
μ↑ = μ+ h and μ↓ = μ− h. (3.75)

Beyond that we define

ε = p2

2m
and Δ2 = g2 ̄ϕ∗ ̄ϕ, (3.76)

assuming mass balance for the remainder of the mean-field study. Using these shorthands, we
calculate the determinant of the field-space fermion matrix as

detMFS = ∣ −iωn − h+ (ε− μ) −gϕ̄
−g ̄ϕ∗ −iωn − h− (ε− μ) ∣

= (−iωn − h+ (ε− μ)) (−iωn − h− (ε− μ)) − Δ2

= (−iωn − h)2 − (ε− μ)2 − Δ2

= (−iωn − h)2 −√(ε− μ)2 + Δ2
2

= (−iωn − h+√(ε− μ)2 + Δ2)(−iωn − h−√(ε− μ)2 + Δ2)

= ∏
σ=±1

(−iωn − h+ σ√(ε− μ)2 + Δ2)

= ∏
σ=±1

(−iωn + Aσ)

(3.77)

defining the new shorthand

Aσ = −h+ σ√(ε− μ)2 + Δ2. (3.78)

This product expression for the determinant plays nicely with the logarithm since the logarithm
of a product is just a sum of logarithms. We find

Tr logM = βV
1
β
∑
n

∫ ddp
(2π)d

∑
σ=±1

log (−iωn + Aσ) . (3.79)

To perform the Matsubara sum, we employ a trick. We perform a derivative of Tr logM with
respect to h, which gives us a simpler Matsubara sum that we can solve and after that, we
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integrate the expression with respect to h to obtain the solution of the original Matsubara sum
plus a constant. For the derivative we find

𝜕Tr logM
𝜕h

= βV
1
β
∑
n

∫ ddp
(2π)d

∑
σ=±1

1
iωn − Aσ

(3.80)

with the Matsubara sum
s = 1

β
∑
n

1
iωn − Aσ

. (3.81)

To solve this, we employ a standard technique that is described, e.g., in Ref. [54]: we express
the sum in terms of a complex integral and make use of the residue theorem. For this, we define
the two meromorphic auxiliary functions

u(z) = β
eβz + 1

(3.82)

and

v(z) = 1/β
iz − Aσ

. (3.83)

The function v encodes the original terms in the Matsubara sum s, since

s = ∑
n

v(ωn) (3.84)

and u provides the connection to complex integrals since it has simple poles at the fermionic
Matsubara frequencies ωn. Because the poles of u are simple, i.e. of order one, we find the
residue by making use of L’ Hôpital’s rule:

res
z=iωn

u(z)v(−iz) = lim
z→iωn

(z − iωn)u(z)v(−iz)

= lim
z→iωn

z − iωn
(eβz + 1) (z − Aσ)

= −1
β

1
iωn − Aσ

.

(3.85)

If we express the Matsubara sum s as of sum of these residues, we can use the residue theorem
to express it in terms of a complex integral

s = −∑
n

res
z=iωn

u(z)v(−iz) = i
2π

∮
γ1

dz u(z)v(−iz) (3.86)

with the integration contour γ1 running counter-clockwise and enclosing all poles of u on the
imaginary axis before connecting at z = ±i∞.2 We can deform the integration contour to the
new contour γ2 without changing the value of the integral as long as we do not cross the pole
of v(−iz) at z = Aσ on the real axis. We chose γ2, such that it forms a circle of infinite radius
with an inset small circle around the pole of v(−iz). Both contours γ1 and γ2 are shown in
Fig. 3.1. With the contour γ2, the contribution of the outer circle to the integral vanishes, since
the integrand decays sufficiently fast, the connection between the inner and outer circle is made
of two identical pieces in opposite directions that cancel each other and the integral over the

2More formally, the value of the integral can be understood as the limit of a sequence of integrals with tubular
contours successively containing more of the poles of u.
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Re

Im
z

γ1

Re

Im
z

γ2

Figure 3.1: Contours γ1 (left) and γ2 (right) of the integrals in Eq. (3.87). The poles
of the integrand u(z)v(−iz) are shown as crosses in the complex plane with the poles
on the imaginary axis corresponding to the fermionic Matsubara frequencies and the
single pole on the real axis being caused by v(−iz). The contour γ1 can be deformed
into γ2 without crossing one of the poles.

inner circle can again be expressed in terms of the residue of the enclosed pole with a change in
sign resulting from the opposite direction of the inner circle:

s = i
2π

∮
γ1

dz u(z)v(−iz)

= i
2π

∮
γ2

dz u(z)v(−iz)

= res
z=Aσ

u(z)v(−iz)

= lim
z→Aσ

(z − Aσ)
1

eβz + 1
1

z − Aσ

= 1
eβAσ + 1

.

(3.87)

With this expression for the Matsubara sum, the derivative in Eq. (3.63) reads

𝜕Tr logM
𝜕h

= βV ∫ ddp
(2π)d

∑
σ=±1

1
eβAσ + 1

(3.88)

and we can integrate it over h to re-obtain Tr logM:

Tr logM = βV ∫ ddp
(2π)d

∑
σ=±1

∫dh
1

eβAσ + 1

= βV ∫ ddp
(2π)d

∑
σ=±1

1
β
(log (1+ eβAσ) + h+ C(β, μ)/2) .

(3.89)

The expression C(β, μ)/2 is the integration constant of the indefinite integral over h. This ex-
pression is constant only with respect to h but in general depends on β and μ. Beyond this point,
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we shall limit the discussion to the balanced case of h = 0.

[Continuation of Eq. (3.89)]

= V ∫ ddp
(2π)d

(C(β, μ) + ∑
σ=±1

log (1+ eσβ√(ε−μ)2+Δ2))

= V ∫ ddp
(2π)d

(C(β, μ) + log(2+ 2 cosh(β√(ε− μ)2 + Δ2)))

= V ∫ ddp
(2π)d

(C(β, μ) + log(1
2
+ 1

2
cosh(β√(ε− μ)2 + Δ2))) ,

(3.90)

where we dropped a constant in the last step. With this expression for Tr logM we arrive at the
partition function

log ̄Z( ̄ϕ∗, ̄ϕ, β, μ) = − gβV ̄ϕ∗ ̄ϕ

+ V ∫ ddp
(2π)d

(C(β, μ) + log(1
2
+ 1

2
cosh(β√(ε− μ)2 + Δ2))) ,

(3.91)

which coincides with the expression obtained in Ref. [56]. In Sec. 5.1.2 we shall use these results
to calculate the density of the system in mean-field approximation.

3.3 Pairing-Field Formulation on the Lattice

In this section, we derive a lattice theory for our system of two interacting fermion species,
but rather than discretizing the path integral formulation we derived for the continuum, we
begin by defining a lattice and discretizing the Hamiltonian of the system and rigorously derive
a fermionic path integral representation from there. As we shall see, this results in a different
expression than we would get from naively discretizing the continuous action and ensures that
the correct continuum limit is obtained. We then conduct the bosonization of the system by
introducing a discrete pairing field. This formalism is also described in Ref. [14].

3.3.1 Defining the Lattice

Webegin the discretization of our theory by replacing the continuous domain of the single particle
wave functions ψSP,σ of the two fermion species with a discrete one. In the continuum this
domain is given by ℝd and on the lattice we replace it with a d-dimensional, periodic (hyper-)
cubic lattice of edge length L and a lattice site spacing ax, such that

L = Nxax (3.92)

with Nx lattice sites in each spatial direction. The total number of lattice sites in this lattice is
given by Nd

x .
For being able to denote fermionic states in terms of occupation numbers, as well as the use

of the matrix notation defined in Sec. 3.3.7, we require that the lattice sites have a defined order.
For this order, it is not actually important how we arrange the lattice sites in a sequence, it is
just important that their order is defined. To denote the order we choose, as well as for practical
applications within the numerical implementation of this calculation, we define an index function
α that takes coordinates of a given lattice site as arguments and returns the place that the given
lattice site takes in the ordering of the lattice. That means, when representing field configuration
on the lattice as a single column vector, the index function α defines which entry of the vector
belongs to which point in spacetime.
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Since at a later point of the derivation, we will have to add a time dimension to our lattice,
we shall define this dimension now and include it in the definition of the index function α. We
define our lattice to have a time dimension with edge length β and a lattice site spacing aτ, such
that

β = Nτaτ (3.93)

for Nτ lattice sites in the temporal direction. The total number of lattice sites in this spacetime
lattice is given by

N = NτNd
x (3.94)

and for the special case of Nτ = 1, we re-obtain a purely spatial lattice in which all lattice sites
share the same value for the time coordinate.

Given these definitions, we define an index function α to have the signature

α ∶ [0, β) × [0, L)d → {1, ...,N} . (3.95)

Such an index function takes a tuple of spacetime coordinates (τ, x1, x2, ..., xd) and bijectively
maps it to a tensor index. Note that we choose to start these index numbers at one rather than
zero. This is done to be consistent with tensor notation in mathematics and can potentially clash
with the indexing conventions of a programming language used to implement these calculations,
constituting a risk for off-by-one errors. This is discussed in more detail in Sec. 4.3. It is also useful
to define a discrete variant of the index function that takes a tuple of integers as a multi-index
rather than a tuple of continuous spacetime coordinates to identify a given lattice site. For this
multi-index we define the coordinate indices iτ ∈ {1, ...,Nτ} and ixd ∈ {1, ...,Nx} such that they
correspond to the spacetime coordinates

τ(iτ) = (iτ − 1)aτ (3.96)

and
xd(ixd) = (ixd − 1)ax . (3.97)

This allows us to define the discrete index function

̄α ∶ {1, ...,Nτ} × {1, ...,Nx}d → {1, ...,N} (3.98)

with
ᾱ(iτ, ix1 , ..., ixd) = α(τ(iτ), x1(ix1), ..., xd(ixd)) . (3.99)

Beyond that, we also define the inverses of the continuous and discrete index functions that
allow us to obtain the spacetime coordinates or multi-index from a given position within the
lattice ordering. For the (continuous) index function α, we define

τ(α) ∶ {1, ...,N} → [0, β) ,

x(α)
1 ∶ {1, ...,N} → [0, L) ,

...

x(α)
d ∶ {1, ...,N} → [0, L) ,

(3.100)

and for the discrete index function ᾱ, we define

i(α)
τ ∶ {1, ...,N} → {1, ...,Nτ} ,

i(α)
x1 ∶ {1, ...,N} → {1, ...,Nx} ,

...

i(α)
xd ∶ {1, ...,N} → {1, ...,Nx} .

(3.101)
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For the present work, we make the following concrete choice for the index function α:

α(τ, x1, x2, ..., xd) = (⌊ τ
aτ

⌋modNτ) ⋅ Nd
x +

d
∑
i=1

(⌊ xi
ax

⌋modNx)Nd−i
x + 1 (3.102)

with ⌊•⌋ denoting the floor function and mod denoting modulo division.

3.3.2 Field Operators and Hamiltonian on the Lattice

Now that we have a notion of discrete spacetime, we can discretize the Hamiltonian by introduc-
ing discrete field operators. We start by replacing the continuous domain of our single-particle
wave functions ψSP,σ for σ ∈ {↑, ↓} with the set of spatial sites in our lattice

ψSP,σ ∶ ℝd → ℂ ⟶ ψSP,σ ∶ {0, ax, ...,Nxax}d → ℂ , (3.103)

such that for each spatial lattice site r we find

ψSP,σ,r = ψSP,σ(r) (3.104)

at the time τ = 0. Since these single-particle wave functions constitute bases of Hilbert spaces,
we also move from the Hilbert spaces of continuous wave functions ℋσ,cont to the Hilbert spaces
of discrete wave functions ℋσ. In analogy to the completeness relation of the Hilbert spaces of
continuous wave functions,

𝟙ℋσ,cont
= ∫ddr |r⟩⟨r| , (3.105)

we define a completeness relation for the Hilbert spaces of discrete wave functions:

𝟙ℋσ
= ∑

r

adx |r⟩⟨r| , (3.106)

in which the sum ∑
r
represents the sum over all spatial lattice sites. This completeness relation

implies the state normalization
⟨r|r′⟩ = δ(d)

r,r′ (3.107)

with

δ(d)
r,r′ =

1
adx

d
∏
i=1

δri,r′
i
. (3.108)

For the single-particle wave functions we choose the normalization

∑
r

adx ψ∗
SP,σ,rψSP,σ,r = 1 , (3.109)

which, together with the completeness relation, implies the projections

⟨r∣ψSP,σ⟩ = ψSP,σ,r and ⟨ψSP,σ∣r⟩ = ψ∗
SP,σ,r (3.110)

and the normalization
⟨ψSP,σ∣ψSP,σ⟩ = 1 . (3.111)

So far we have discretized our one particle Hilbert spaces ℋσ. In order to be able to describe
a system of particles, we need to define discrete field operators that act in a Fock space ℱ of our
system. This Fock space is given by

ℱ =
Nd
x

⨁
N↑=0

Nd
x

⨁
N↓=0

(ℋN↑
↑ ⊗ℋN↓

↓ ) (3.112)
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and its elements can be denoted in occupation number representation. For a state |α⟩ ∈ ℱ, we
have the representation

|α⟩ = ∣N↑;n↑,r1 , ..., n↑,rNdx
⟩ ∣N↓;n↓,r1 , ..., n↓,rNdx

⟩ (3.113)

forN↑ particles of the up-species andN↓ particles of the down-species. These occupation numbers
act as a discrete density field:

Nσ = ∑
r

adx nσ,r , (3.114)

which means we find adx nσ,r particles of species σ at the lattice site r. The order of the occupation
numbers nσ,ri in the state is given by the previously defined index function α, i.e.

(ri)j = x(α)
j (i) . (3.115)

Before we can introduce the field operators, we need to define the sign exponent that will allow
us to capture the sign changes occurring in fermionic states when two particles are interchanged.
It is given by

sσ,i =
i−1
∑
j=1

adx nσ,rj . (3.116)

Note that sσ,i ∈ ℕ0 and thus (−1)sσ,i ∈ {−1,1}. With this at hand, we can define the creation
operators

ψ̂†
↑,ri ∣N↑; ..., n↑,ri , ...⟩ ∣N↓; ...⟩ = (−1)s↑,i√n↑,ri + a−d

x ∣N↑; ..., n↑,ri + a−d
x , ...⟩ ∣N↓; ...⟩ ,

ψ̂†
↓,ri

∣N↑; ...⟩ ∣N↓; ..., n↓,ri , ...⟩ = (−1)s↓,i√n↓,ri + a−d
x ∣N↑; ...⟩ ∣N↓; ..., n↓,ri + a−d

x , ...⟩
(3.117)

and the annihilation operators

̂ψ↑,ri ∣N↑; ..., n↑,ri , ...⟩ ∣N↓; ...⟩ = (−1)s↑,i√n↑,ri ∣N↑; ..., n↑,ri − a−d
x , ...⟩ ∣N↓; ...⟩ ,

̂ψ↓,ri ∣N↑; ...⟩ ∣N↓; ..., n↓,ri , ...⟩ = (−1)s↓,i√n↓,ri ∣N↑; ...⟩ ∣N↓; ..., n↓,ri − a−d
x , ...⟩ .

(3.118)

With these operators, we can define particle number operators ̂Nσ and local density operators
n̂σ,ri with

̂Nσ = ∑
ri

adx ̂nσ,ri = ∑
ri

adx ψ̂
†
σ,riψ̂σ,ri (3.119)

and we can use the creation operators to represent the Fock states directly:

∣Nσ;nσ,r1 , ..., nσ,rNdx
⟩ = (ψ̂†

σ,r1)
adx nσ,r1 ⋯(ψ̂†

σ,rNdx
)
adx nσ,r

Ndx |0⟩ . (3.120)

In this representation of the Fock states, we see why it is important to define an order of the
lattice sites; interchanging two of the creation operators in the fermionic states introduces a
sign change and thus only a defined order of the creation operators can define states with a
defined sign. Before we continue to the discrete Hamiltonian, we would like to state the (anti-)
commutation relations of the field operators:

{ψ̂σ,ri , ψ̂
†
σ′,rj

} = δσσ′δ(d)
ri,rj and {ψ̂σ,ri , ψ̂σ′,rj} = {ψ̂†

σ,ri , ψ̂
†
σ′,rj

} = 0 , (3.121)

as well as
[n̂σ,ri , ψ̂σ,rj]

i≠j
= 0

i≠j
= [ ̂nσ,ri , ψ̂

†
σ,rj] (3.122)

with [ ̂A, B̂] = ̂AB̂− ̂B ̂A.
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Discrete Hamiltonian

To write down a discrete representation of the Hamiltonian, we need to define a derivative
operator ̂D∆ that replaces the spatial derivative∇2 in the continuous Hamiltonian. To do this, we
derive a matrix representation of ̂D∆ and relate it to well-known finite-difference approximations
of derivatives.

For two functions f , g ∶ ℝd → ℂ with f = ∆g and

⟨r|f ⟩ = f (r) ,
⟨r|g⟩ = g(r) ,

(3.123)

we require

⟨ri|f ⟩ = ⟨ri| D̂∆ |g⟩
= ∑

rj

adx ⟨ri| ̂D∆ ∣rj⟩⏟⏟⏟⏟⏟
D′

∆,ij

⟨rj∣g⟩ , (3.124)

which leads to matrices D′
∆ representing the Laplace operator in the continuum limit Nx → ∞

with Nxax = L = const. We write the matrix with a prime here to distinguish it from the space
and time version of the spatial derivative which we shall define below. As a concrete example
for Nx = 5 and d = 1, when choosing a symmetric finite difference sampling with three points
at and around the site of evaluation, i.e.

𝜕2g
𝜕x2

∣
x

≈ g(x − ax) − 2g(x) + g(x + ax)
a2x

, (3.125)

the derivative matrix reads

D′
∆ = 1

a3x

⎛⎜⎜⎜⎜⎜⎜
⎝

−2 1 1
1 −2 1

1 −2 1
1 −2 1

1 1 −2

⎞⎟⎟⎟⎟⎟⎟
⎠

. (3.126)

The non-zero entries in the upper right-hand and lower left-hand corner of the matrix are a result
of the periodic boundary conditions we have chosen for space on our lattice; it is g(x+L) = g(x).
Note that we actually do have a choice in howwe approximate the spatial derivative in our theory.
As it turns out in the derivation of the path integral representation of the partition function below,
this is not the case for the temporal derivative in the action of the system.

Using the matrix elements D′
∆,ij, we can write a second-quantization representation of ̂D∆:

̂D∆ = ∑
ri

adx ∑
rj

adx D′
∆,ij ψ̂

†
σ,riψ̂σ,rj . (3.127)

With this last puzzle piece, we can write the discrete Hamiltonian of the system

̂H = ∑
ri

adx ∑
rj

adx ∑
σ∈{↑,↓}

(ψ̂†
σ,ri

D′
∆

2mσ

̂ψσ,rj)− g∑
ri

adx ψ̂
†
↑,riψ̂↑,riψ̂

†
↓,ri

ψ̂↓,ri , (3.128)

which is the discrete-space counterpart to the continuous Hamiltonian in Eq. (3.1).
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3.3.3 Discrete Coherent States

With the system represented by the discrete Hamiltonian, we can work towards a path integral
representation of the partition function of the system with discrete fields on the lattice. We
take the canonical approach to this, which is to define a Fock space basis of coherent states and
use it to transform the trace representation of the partition function into a path integral. For
our system, we just need to ensure that our coherent basis of the Fock space is simultaneously
coherent for both particle species.

We begin by defining the Grassmann-valued fields ψσ,r and ψ∗
σ,r for σ ∈ {↑, ↓} with

{ψσ,ri ,ψ
∗
σ′,rj

} = {ψσ,ri ,ψσ′,rj} = {ψ∗
σ,ri ,ψ

∗
σ′,rj

} = 0 (3.129)

and

{ψσ,ri , ψ̂σ′,rj} = {ψσ,ri , ψ̂
†
σ′,rj

} = {ψ∗
σ,ri , ψ̂σ′,rj

} = {ψ∗
σ,ri , ψ̂

†
σ′,rj

} = 0. (3.130)

We also define their behavior under Hermitian conjugation as

( ̂̃ψψ̃)
†
= (ψ̃∗ ̂ψ̃

†
) (3.131)

for every ̂ψ̃ ∈ {ψ̂σ,r, ̂ψ†
σ,r} and every ̃ψ ∈ {ψσ,r,ψ∗

σ,r} for arbitrary σ and r.

In the subspace of a single species σ, we can define a coherent state |ψσ⟩ as

|ψσ⟩ = exp(−∑
ri

adx ψσ,ri
̂ψ†
σ,ri)|0⟩ . (3.132)



3.3. Pairing-Field Formulation on the Lattice | 53

Such a state is indeed an eigenstate of the annihilation operator:

ψ̂σ,ri exp(−∑
rj

adx ψσ,rjψ̂
†
σ,rj)|0⟩

= ψ̂σ,ri ∏
rj

exp (−adx ψσ,rjψ̂
†
σ,rj) |0⟩

= ψ̂σ,ri ∏
rj

(1− adx ψσ,rj
̂ψ†
σ,rj) |0⟩

= (∏
rj≠ri

(1− adx ψσ,rjψ̂
†
σ,rj)) ψ̂σ,ri (1− adx ψσ,riψ̂

†
σ,ri) |0⟩

= (∏
rj

(1− adx ψσ,rjψ̂
†
σ,rj)) ψ̂σ,ri |0⟩⏟

=0

+(∏
rj≠ri

(1− adx ψσ,rjψ̂
†
σ,rj))ψσ,ri |0⟩

= (∏
rj≠ri

(1− adx ψσ,rjψ̂
†
σ,rj))ψσ,ri |0⟩

= (∏
rj≠ri

(1− adx ψσ,rjψ̂
†
σ,rj))⎛⎜

⎝
ψσ,ri − adx ψσ,riψσ,ri⏟

=0

̂ψσ,ri
⎞⎟
⎠

|0⟩

= (∏
rj≠ri

(1− adx ψσ,rjψ̂
†
σ,rj))ψσ,ri (1− adx ψσ,riψ̂

†
σ,ri) |0⟩

= ψσ,ri ∏
rj

(1− adx ψσ,rj
̂ψ†
σ,rj) |0⟩

= ψσ,ri exp(−∑
rj

adx ψσ,rjψ̂
†
σ,rj)|0⟩ ,

(3.133)

wherein we used that

ψ̂σ,ri (1− adx ψσ,rjψ̂
†
σ,rj) = {

(1− adx ψσ,rj
̂ψ†
σ,rj) ψ̂σ,ri (i ≠ j)

ψσ,ri + (1− adx ψσ,riψ̂
†
σ,ri) ψ̂σ,ri (i = j)

. (3.134)

Since we have
ψ̂σ′,ri (1− adx ψσ,rj

̂ψ†
σ,rj)

σ≠σ′

= (1− adx ψσ,rj
̂ψ†
σ,rj) ̂ψσ′,ri (3.135)

single annihilation operators commute with operator exponentials of different species:

[ψ̂σ′,ri , exp(−∑
rj

adx ψσ,rjψ̂
†
σ,rj)]

σ≠σ′

= 0 (3.136)

and, consequently, even operator exponentials of different species as a whole commute:

[exp(−∑
rj

adx ψσ′,rj
̂ψ†
σ′,rj

), exp(−∑
rj

adx ψσ,rjψ̂
†
σ,rj)]

σ≠σ′

= 0 . (3.137)

This allows us to use a product of one of these exponential factors for each species acting on the
vacuum |0⟩ to create a simultaneous coherent state of both fermion species and define

∣ψ↑,ψ↓⟩ = exp(−∑
rj

adx ψ↑,rjψ̂
†
↑,rj) exp(−∑

rj

adx ψ↓,rjψ̂
†
↓,rj

)|0⟩ (3.138)
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with the corresponding bra

⟨ψ↑,ψ↓∣ = ⟨0| exp(+∑
rj

adx ψ∗
↓,rjψ̂↓,rj) exp(+∑

rj

adx ψ∗
↑,rjψ̂↑,rj) . (3.139)

These coherent states satisfy the desired eigenvalue relations

ψ̂σ,ri ∣ψ↑,ψ↓⟩ = ψσ,ri ∣ψ↑,ψ↓⟩ and ⟨ψ↑,ψ↓∣ ψ̂
†
σ,ri = ⟨ψ↑,ψ↓∣ψ∗

σ,ri , (3.140)

as well as the conjugate relations

̂ψ†
σ,ri ∣ψ↑,ψ↓⟩ = −𝜕ψσ,ri

∣ψ↑,ψ↓⟩ and ⟨ψ↑,ψ↓∣ ̂ψσ,ri = 𝜕ψ∗
σ,ri

⟨ψ↑,ψ↓∣ . (3.141)

Furthermore, they exhibit an orthogonality relation

⟨ψ↑,ψ↓∣ψ↑,ψ↓⟩ = exp(∑
rj

adx ψ∗
↑,rjψ↑,rj) exp(∑

rj

adx ψ∗
↓,rjψ↓,rj) (3.142)

which implies they form an overcomplete basis of the Fock space:

𝟙ℱ = ∫d(ψ∗,ψ) exp(−∑
ri

adx ψ∗
↑,riψ↑,ri) exp(−∑

ri

adx ψ∗
↓,riψ↓,ri)∣ψ↑,ψ↓⟩ ⟨ψ↑,ψ↓∣ (3.143)

with
d(ψ∗,ψ) = ∏

r

dψ∗
↑,rdψ↑,rdψ∗

↓,rdψ↓,r . (3.144)

The final feature we need to implement in our coherent states to use them to derive a path
integral is a time dependency of the fields. To this end, we give our coherent states a time index

∣ψ↑,ψ↓⟩ → ∣ψ↑,ψ↓; i⟩ , (3.145)

such that coherent states with a different time index formally are coherent states with different
field configurations. We shall refer to the eigenvalues of these states as ψσ,τi,rj . Coherent states
with a time index have the overlap3

⟨ψ↑,ψ↓; i∣ψ↑,ψ↓; j⟩ = exp(∑
rk

adx ψ∗
↑,τi,rkψ↑,τj,rk) exp(∑

rk

adx ψ∗
↓,τi,rkψ↓,τj,rk) (3.146)

and for integrals, we denote the time index of the fields in the differential as

d(ψ∗,ψ; i) = ∏
r

dψ∗
↑,τi,rdψ↑,τi,rdψ

∗
↓,τi,rdψ↓,τi,r . (3.147)

With these “Heisenberg picture” coherent states, we are now ready to derive path integrals for
our theory.

3This can be shown by using Eq. (3.139) to write the bra and then using the eigenvalue relation of coherent
states on the annihilation operator and the ket.
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3.3.4 Discrete Fermionic Path Integral

To obtain a path integral formulation of the partition function, we begin with the trace represen-
tation of the partition function

𝒵(β, μ↑, μ↓) = tr e−β ̂H′
(3.148)

with
̂H′ = ̂H − μ↑ ̂N↑ − μ↓ ̂N↓ (3.149)

and explicitly perform the trace over our coherent basis. To keep the “visual noise” to a minimum
in this calculation, we define

eεσ,i = e− ∑
r
adx ψ∗

σ,τi,rψσ,τi,r (3.150)

and
eε

+
i,j = ⟨ψ↑,ψ↓; i∣ψ↑,ψ↓; j⟩ . (3.151)

We find

𝒵(β, μ↑, μ↓) = tr e−β ̂H′ = ∑
n

⟨n| e−β ̂H′ |n⟩

= ∑
n

∫d(ψ∗,ψ;1) eε↑,1eε↓,1 ⟨n∣ψ↑,ψ↓;1⟩ ⟨ψ↑,ψ↓;1∣ e−β ̂H′ |n⟩

= ∑
n

∫d(ψ∗,ψ;1) eε↑,1eε↓,1 ⟨−ψ↑, −ψ↓;1∣ e−β ̂H′ |n⟩ ⟨n∣ψ↑,ψ↓;1⟩

= ∫d(ψ∗,ψ;1) eε↑,1eε↓,1 ⟨−ψ↑, −ψ↓;1∣ e−β ̂H′ ∣ψ↑,ψ↓;1⟩ .

(3.152)

We cannot evaluate the matrix elements of e−β ̂H′
in the coherent basis directly because, even

though ̂H′ itself is in normal order, its operator exponential is not. To surmount the problem we
divide the imaginary time interval [0, β) in Nτ steps of length aτ, such that

β = Nτaτ (3.153)

and rewrite

e−β ̂H′ =
Nτ

∏
i=1

e−aτ ̂H′ . (3.154)

Each of these imaginary time slices is then normal ordered up to a correction of order 𝒪(a2τ) since

e−aτ ̂H′ = 1− aτ ̂H′ + 𝒪(a2τ) . (3.155)

This means that in our lattice calculations, we can approximate systems for arbitrary values of
β by choosing sufficiently small values for aτ. For convenience, we also define our fields outside
the time interval [0, β) through

⟨−ψ↑, −ψ↓;1∣ =∶ ⟨ψ↑,ψ↓;Nτ + 1∣ , (3.156)

which implies the anti-periodic boundary conditions

ψσ,τNτ+1,r = −ψσ,τ1,r and ψ∗
σ,τNτ+1,r = −ψ∗

σ,τ1,r (3.157)

for the fermions of our theory. With this discretization of the imaginary time interval, we can
calculate the transfer-matrix element

⟨ψ↑,ψ↓; i∣ e−aτ ̂H′ ∣ψ↑,ψ↓; j⟩ = e−aτH′(i,j)eε
+
i,j + 𝒪(a2τ) (3.158)
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where the Hamiltonian function is given by

H′(i, j) = ⟨ψ↑,ψ↓; i∣ ̂H′ ∣ψ↑,ψ↓; j⟩ . (3.159)

The concrete expression for this Hamiltonian function can trivially be obtained by utilizing the
normal ordering of the Hamiltonian operator; each creation operator can be replaced by its
corresponding starred field at time index i and each annihilation operator can be replaced by
its corresponding, non-starred field at time index j. Replacing the e−β ̂H′

operator in our path
integral with the time-sliced version and inserting the identities of coherent states in Eq. (3.143)
in between the slices we obtain

𝒵(β, μ↑, μ↓) = ∫(
Nτ

∏
i=1

d(ψ∗,ψ; i)) eε↑,1eε↓,1

⋅ ⟨ψ↑,ψ↓;Nτ + 1∣ eε↑,Nτeε↓,Nτe−aτ ̂H′ ∣ψ↑,ψ↓;Nτ⟩

⋅ ... ⋅ ⟨ψ↑,ψ↓;2∣ eε↑,2eε↓,2e−aτ ̂H′ ∣ψ↑,ψ↓;1⟩

= ∫ (
Nτ

∏
i=1

d(ψ∗,ψ; i))
⏟⏟⏟⏟⏟⏟⏟

=∶𝒟(ψ∗,ψ)

Nτ

∏
i=1

eε↑,ieε↓,ieε
+
i+1,ie−aτH′(i+1,i)

= ∫𝒟(ψ∗,ψ) e+ ∑Nτ
i=1(ε↑,i+ε↓,i+ε+

i+1,i−aτH′(i+1,i))

= ∫𝒟(ψ∗,ψ) e−𝒮F[ψ∗,ψ] .

(3.160)

Here we have introduced the fermionic action

𝒮F[ψ∗,ψ] =
Nτ

∑
i=1

(−ε↑,i − ε↓,i − ε+
i+1,i + aτH′(i+ 1, i)) . (3.161)

While we now formally have a (lattice) path integral representation with a Euclidean action, its
expression will obviously need a bit of “massaging” before we can make any sense of it. So far,
all of the terms formally are discrete versions of spatial integrals, except for the Hamiltonian, so
we define a discrete Hamiltonian density

H′(i, j) =∶ ∑
r

adx h′(i, j) (3.162)

to be able to factor out the spatial integrations. Doing this and putting the overcompleteness
factors ε and the overlaps ε+ back in, we obtain

𝒮F[ψ∗,ψ] =
Nτ

∑
i=1

aτ ∑
r

adx(
ψ∗

↑,τi,rψ↑,τi,r

aτ
+

ψ∗
↓,τi,rψ↓,τi,r

aτ

−
ψ∗

↑,τi+1,rψ↑,τi,r

aτ
−

ψ∗
↓,τi+1,rψ↓,τi,r

aτ

+ h′(i+ 1, i)) .

(3.163)

In this expression, we can identify discrete derivatives of the fermion fields

𝒮[ψ∗,ψ] =
Nτ

∑
i=1

aτ ∑
r

adx(
ψ∗

↑,τi,r − ψ∗
↑,τi+1,r

aτ
ψ↑,τi,r+

ψ∗
↓,τi,r − ψ∗

↓,τi+1,r

aτ
ψ↓,τi,r+h′(i+1, i)) . (3.164)
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Performing a “summation by parts”, as described in App. B, we canmove the discrete-time deriva-
tive to the un-starred fields:

𝒮F[ψ∗,ψ] =
Nτ

∑
i=1

aτ ∑
r

adx(ψ∗
↑,τi,r

ψ↑,τi,r − ψ↑,τi−1,r

aτ
+ψ∗

↓,τi,r
ψ↓,τi,r − ψ↓,τi−1,r

aτ
+h′(i+1, i)) . (3.165)

In this expression, we recognize the discrete form of the expected continuous fermionic action
from Eq. (3.8)

SF[ψ∗,ψ] = ∫
β

0
dτ∫ddr (ψ∗

↑𝜕τψ↑ + ψ∗
↓𝜕τψ↓ + h′)

= ∫
β

0
dτ∫ddr (ψ∗

↑ (𝜕τ − μ↑)ψ↑ + ψ∗
↓ (𝜕τ − μ↓)ψ↓ + h) ,

(3.166)

with spatial derivatives and interaction absorbed into a Hamiltonian density h. However, through
the rigorous derivation, we have been given a concrete prescription for the discretization of the
time derivative by the construction of the path integral.

We analyze the action further by inserting the expression for the Hamiltonian density

∑
rj

adx h′(i+ 1, i) =

−∑
rj

adx ∑
rk

adx ∑
σ

ψ∗
σ,τi+1,rj

D′
∆,jk

2mσ
ψσ,τi,rk

+ g∑
rj

adx ψ∗
↑,τi+1,rjψ

∗
↓,τi+1,rjψ↑,τi,rjψ↓,τi,rj

−∑
rj

adx ∑
σ

μσψ∗
σ,τi+1,rjψσ,τi,rj

(3.167)

into the action in Eq. (3.165) and obtain

𝒮F[ψ∗,ψ] =
Nτ

∑
i=1

aτ ∑
rj

adx [∑
σ

ψ∗
σ,τi+1,rj

ψσ,τi+1,rj − (1+ aτμσ)ψσ,τi,rj
aτ

−∑
rk

adx ∑
σ

ψ∗
σ,τi+1,rj

D′
∆,jk

2mσ
ψσ,τi,rk

+ g ψ∗
↑,τi+1,rjψ

∗
↓,τi+1,rjψ↑,τi,rjψ↓,τi,rj],

(3.168)

wherein we suitably combined the −μ ̂N terms with the temporal derivatives. While this expres-
sion technically has everything we need for a simulation, working with this plain form is quite
tedious. Thus, in the following, we introduce some techniques that make the handling of this
discrete theory easier.

3.3.5 Restoration of the Silver-Blaze Symmetry

When looking at the action of our system in the continuum, we notice that the temporal derivative
of the fermionic field and their chemical potentials group together in a way that is reminiscent
of a covariant derivative; we find terms like

ψ∗(τ)(𝜕τ − μ)ψ(τ) , (3.169)
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ignoring species and space for now. The chemical potential seems to enter the action in the
form of a constant temporal gauge field and, indeed, in the continuum we find a simultaneous
transformation of the chemical potential and the fermion field that leaves the action invariant,
namely transforming

μ → μ+ iα while ψ(τ) → eiατψ(τ) . (3.170)

We can verify this invariance:

ψ∗(τ)e−iατ(𝜕τ − μ− iα)eiατψ(τ) = ψ∗(τ)e−iατeiατ(iα+ 𝜕τ − μ− iα)ψ(τ)
= ψ∗(τ)(𝜕τ − μ)ψ(τ) .

(3.171)

This property is called the Silver-Blaze symmetry; see, e.g., Refs. [57–62] for detailed discussions.
In our discretized theory, however, this symmetry is broken. If we look at the derivative operator

dτ(μ) ψ(τ) =
ψ(τ) − ψ(τ− aτ)

aτ
− μψ(τ− aτ) =

ψ(τ) − (1+ μaτ)ψ(τ− aτ)
aτ

(3.172)

which describes the temporal derivative in the discrete action in Eq. (3.168) and perform a
Silver-Blaze transformation on a derivative with this operator, we find

ψ∗(τ)e−iατ dτ(μ+ iα) eiατψ(τ)

= ψ∗(τ)e−iατ (eiατψ(τ) − eiα(τ−aτ)ψ(τ− aτ)
aτ

− (μ+ iα)eiα(τ−aτ)ψ(τ− aτ))

= ψ∗(τ)(ψ(τ) − e−iαaτψ(τ− aτ)
aτ

− (μ+ iα)e−iαaτψ(τ))

≠ ψ∗(τ) dτ(μ) ψ(τ) .

(3.173)

Thus, the introduction of discrete time has indeed destroyed this symmetry. As Ref. [63] states,
this is a problem, because it leads to divergences in the continuum limit that scale quadratically
with 1/aτ and, thus, limit the accuracy of our calculations in the regime of small chemical poten-
tials. To remedy this, we can use a modified version of the discrete-time derivative that preserves
the Silver-Blaze symmetry. We can obtain such a derivative by replacing the term (1 + μaτ) in
the rightmost expression in Eq. (3.172) with eμaτ . Since (1+μaτ) constitutes the first two orders
of a power series expansion of eμaτ ,

eμaτ − (1+ μaτ) = 𝒪 (a2τ) , (3.174)

this replacement removes the aforementioned quadratic divergences in the continuum limit. The
Silver-Blaze conserving discrete temporal derivative is given by the operator

d(SB)
τ (μ) ψ(τ) = ψ(τ) − eμaτψ(τ− aτ)

aτ
. (3.175)

Indeed, we can verify that

ψ∗(τ)e−iατ d(SB)
τ (μ+ iα) eiατψ(τ)

= ψ∗(τ)e−iατ (eiατψ(τ) − e(μ+iα)aτeiα(τ−aτ)ψ(τ− aτ)
aτ

)

= ψ∗(τ)(ψ(τ) − eμaτe+iαaτe−iαaτψ(τ− aτ)
aτ

)

= ψ∗(τ)(ψ(τ) − eμaτψ(τ− aτ)
aτ

)

= ψ∗(τ) d(SB)
τ (μ) ψ(τ) .

(3.176)
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With this correction incorporated into the action in Eq. (3.168), the Silver-Blaze-respecting
discrete action reads

𝒮F[ψ∗,ψ] =
Nτ

∑
i=1

aτ ∑
rj

adx [∑
σ

ψ∗
σ,τi+1,rj

ψσ,τi+1,rj − eμaτψσ,τi,rj
aτ

−∑
rk

adx ∑
σ

ψ∗
σ,τi+1,rj

D′
∆,jk

2mσ
ψσ,τi,rk

+ g ψ∗
↑,τi+1,rjψ

∗
↓,τi+1,rjψ↑,τi,rjψ↓,τi,rj] .

(3.177)

3.3.6 Dimensionless Formulation

The first step towards improved readability is given by the rescaling of the theory in terms of di-
mensionless fields and constants. Beyond the “visual” advantages, it also prevents the numerical
stability from depending on the choice of the unit system, since the numerical values of dimen-
sionless fields and constants do not change between unit systems. At first, we note that with our
conventions of ℏ = kB = 1, actions have a dimension of 1, i.e. they are already dimensionless.
As for our lattice constants, we assign the dimensions of time T and length L:

[aτ] = T and [ax] = L (3.178)

and we define our masses to be dimensionless

[m↑] = [m↓] = 1 . (3.179)

Looking at the spacetime integrals over the time derivative terms in the action, we can conclude
the dimensions of the fields in our theory:

[ψσ] = L−d/2 . (3.180)

With our definition [m] = 1, kinetic terms like

∑ adx ψ∗ ψ
a2x

, (3.181)

which appear in a Hamiltonian, dictate that the dimension of energy E is given by

E = L−2 (3.182)

and since we know from the Boltzmann factor e−βH that the inverse temperature β = 1/T carries
dimension [β] = E−1, we can conclude that time and length are connected in the following way:

L2 = T = E−1 . (3.183)

Using this relation between time and space, we can define a dimensionless factor r describing
the scale between the temporal and spatial lattice spacings:

a2x ⋅ r = aτ . (3.184)

Looking at the dispersion relation of the system in the case of m = 1, a value of r = 1/2 adjusts
the momentum cutoff to be at the momentum that corresponds to the energy cutoff. Therefore,
we use a value of r = 1/2 for all calculations in this work. For the coupling constant, we find

[g] = LdT−1 (3.185)
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and the entries of the Laplace matrix have dimension

[D′
∆,jk] = T−1L−d = L−2L−d . (3.186)

We can now multiply the fields and constants with appropriate powers of the lattice spacings aτ
and ax and obtain the dimensionless fields

ψ̃σ = ad/2
x ψσ (3.187)

as well as the dimensionless constants and matrix entries

̃g = aτa−d
x g , ̃D′

∆,jk = ra2xadxD′
∆,jk and μ̃σ = aτμσ . (3.188)

In the case of the coupling g and the chemical potentials μσ, it is also beneficial to relate the
dimensionless constants ̃g and μ̃σ to the commonly used dimensionless variants λ = β1−d/2g and
βμσ, as they appear in, e.g., Ref. [12]. We find

̃g = rd/2Nd/2−1
τ λ and ̃μσ = βμσ

Nτ
. (3.189)

Inserting the dimensionless constants and fields into our dimensionful, discretized, Silver-Blaze-
respecting action in Eq. (3.177), we find the dimensionless action

𝒮F[ψ∗,ψ] =
Nτ

∑
i=1

∑
rj

[∑
σ

ψ̃∗
σ,τi+1,rj (ψ̃σ,τi+1,rj − eμ̃σψ̃σ,τi,rj)

−∑
rk

∑
σ

ψ̃∗
σ,τi+1,rj

̃D′
∆,jk

2mσ
ψ̃σ,τi,rk

+ ̃g (ψ̃∗
↑,τi+1,rjψ̃

∗
↓,τi+1,rjψ̃↑,τi,rjψ̃↓,τi,rj)] ,

(3.190)

which is now free of all lattice spacings and all remaining quantities are dimensionless. As we use
the dimensionless formulation of the theory for the remainder of this work, we omit the tildes
from now on for the sake of readability.

3.3.7 Matrix Notation

Another technique that makes the handling of the lattice theory significantly easier and more
efficient is the notation of fields in vectors and operators in matrices. We define the field config-
uration vectors as column vectors containing the field values at each lattice site:

ψσ = ⎛⎜⎜
⎝

ψσ,(τ,r)1
⋮

ψσ,(τ,r)NτNdx

⎞⎟⎟
⎠

. (3.191)

The order of the lattice sites in the field configuration vectors is again given by the index function
α, as for (τ, r)i it is

i = α(τ, r) (3.192)

or inversely

τ = τ(α)(i) and r = ⎛⎜⎜
⎝

x(α)
1 (i)
⋮

x(α)
d (i)

⎞⎟⎟
⎠

. (3.193)
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We define our field configuration vector to connect starred and un-starred fields under Hermitian
adjungation:

(ψ†
σ)i = ψ∗

σ,(τ,r)i
= (ψ∗

σ)i . (3.194)

An advantage of this notation is that the scalar product of two such field configuration vectors
constitutes the spacetime integral over two fields:

ψ†
σψσ =

Nτ

∑
i=1

∑
rj

ψ∗
σ,τi,rjψσ,τi,rj . (3.195)

In the interaction term in the action in Eq. (3.190) we have to bring four field configurations
together in a product, which we cannot do by means of a scalar product. For this situation, we
use the Hadamard- or element-wise product ∘. The Hadamard-product of two vectors is itself a
vector with its entries being the products of the entries of the factor vectors:

(ψ(a)
σ ∘ ψ(b)

σ )i = (ψ(a)
σ )i ⋅ (ψ

(b)
σ )i . (3.196)

This way we can write a generic four-fermion term as

(ψ∗
↑ ∘ ψ∗

↓)⊺(ψ↑ ∘ ψ↓) =
Nτ

∑
i=1

∑
rj

ψ∗
↑,τi,rjψ

∗
↓,τi,rjψ↑,τi,rjψ↓,τi,rj . (3.197)

One may notice that we would never see the above term in a physical action because the
construction of the path integral causes starred and un-starred fields within a product to be
evaluated at neighboring points in time, rather than the same point. This is where our next
important concept comes in: coordinate shift matrices. For each coordinate xk for k = 0, ..., d,
with x0 = τ for convenience, we can define a coordinate advancer matrix A(xk)

± and a coordinate
retarder matrix R(xk)

± . They are defined to move the field configurations in a vector one step
forward (advance) or backward (retard) in the given coordinate direction. The plus or minus
denotes, whether they do so respecting periodic (+) or anti-periodic (-) boundary conditions in
the given direction.

The coordinate retarder matrices are defined as

R(xk)
±,ij ∶=

⎧
{{
⎨
{{
⎩

1 i(α)
xk (i) = i(α)

xk (j) + 1

±1 i(α)
xk = 1 ∧ i(α)

xk (j) = {
Nτ k = 0
Nx k = 1, ..., d

0 otherwise

(3.198)

and, rather than formulating an explicit definition, we can obtain the coordinate advancer ma-
trices by exploiting a relation between coordinate advancer matrices and coordinate retarder
matrices. By design, it must be

(R(xd)
± )

−1
= A(xd)

± = (R(xd)
± )

⊺
, (3.199)

since shifting a field configuration one step forward and one step back along a given direction
has to result in the original field configuration. The same argument also demonstrates that
coordinate shift matrices commute pair-wise. The orthogonality of the coordinate shift matrices
can be proven using “summation by parts” (see App. B). For example, in the temporal direction,
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for generic fields ξ∗ and ξ that respect the same boundary conditions as A(τ)
± , we find:

ξ†A(τ)
± ξ =

Nτ

∑
i=1

∑
rj

ξ∗
τi,rjA

(τ)
± ξτi,rj

=
Nτ

∑
i=1

∑
rj

ξ∗
τi,rjξτi+1,rj

= ∑
rj

(
Nτ−1

∑
i=1

ξ∗
τi,rjξτi+1,rj + ξ∗

τNτ,rjξτNτ+1,rj)

= ∑
rj

(
Nτ

∑
i=2

ξ∗
τi−1,rjξτi,rj + ξ∗

τNτ,rjξτNτ+1,rj)

= ∑
rj

(
Nτ

∑
i=2

ξ∗
τi−1,rjξτi,rj + ξ∗

τ0,rjξτ1,rj)

=
Nτ

∑
i=1

∑
rj

ξ∗
τi−1,rjξτi,rj

= (R(τ)
± ξ∗)

⊺
ξ

= ξ† (R(τ)
± )

⊺
ξ

(3.200)

An example of a complete set of coordinate retarder and coordinate advancer matrices for a
lattice with Nτ = Nx = 3 and d = 2 is given in Fig. 3.2.

Of particular importance for the present work are the coordinate shift matrices in the tem-
poral direction. Therefore, we define

R ∶= R(τ)
− (3.201)

as the retarder matrix and
A ∶= A(τ)

− (3.202)

as the advancer matrix. We restrict ourselves to the shift matrices that respect anti-periodic
boundary conditions in time since this represents the behavior of the fermionic fields of our
theory.

In this handling of our theory, the coordinate shift matrices allow us to easily define derivative
operators. We can use coordinate shift matrices to translate a given derivative approximation
prescription into a matrix representation of the derivative operator. For example, in spatial di-
rections, we choose to approximate the second derivative as

𝜕2g
𝜕x2

∣
x

≈ g(x − ax) − 2g(x) + g(x + ax)
a2x

. (3.203)

With that, for each coordinate direction k, we can directly translate the approximation prescrip-
tion into the derivative matrix

D∆k
= R(xk)

+ − 2 ⋅ 𝟙 + A(xk)
+ (3.204)

with the identity 𝟙 and free of any ax spacings, since we have absorbed them in the rescaling of
our fields in Sec. 3.3.6. The matrix representation of the full Laplace operator then reads

D∆ =
d

∑
k=1

D∆k
= −2d ⋅ 𝟙 +

d
∑
k=1

(R(xk)
+ + A(xk)

+ ) . (3.205)
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Figure 3.2: Examples for coordinate shift matrices for a lattice with Nτ = Nx = 3 and
d = 2, resulting in 27 × 27-matrices. Red squares denote an entry of +1, and blue
squares an entry of −1. The shift matrices in the temporal direction are calculated for
anti-periodic boundary conditions, which results in negative entries. The grids separate
regions of constant coordinates. For example, if we multiply a matrix with a field
configuration vector, all entries within a grid cell only affect field values at which the
coordinate of the column is constant.

For temporal derivatives, we can proceed in an analog manner. In the derivation of the path
integral, there naturally emerges a “backward” approximation of the temporal derivative:

𝜕g
𝜕τ

∣
τ
≈ g(τ) − g(τ− aτ)

aτ
. (3.206)

This prescription can be represented by the matrix

D(bw,natural)
τ = 𝟙 − R , (3.207)

again without the temporal lattice spacing aτ, as it has been absorbed by the rescaling of our
theory in Sec. 3.3.6. In Sec. 3.3.5, we discussed that we need to adjust this derivative to include
the chemical potential in an exponential term in order to preserve the Silver-Blaze symmetry of
the continuum theory. This corresponds to the derivative approximation prescription

𝜕g
𝜕τ

∣
τ
− μg(τ) ≈ g(τ) − eμaτg(τ− aτ)

aτ
. (3.208)

This prescription leads to the derivative matrix

D(bw)
τ (μ) = 𝟙 − eμR , (3.209)

the dimensionless chemical potential μ and, again, without temporal lattice spacing aτ. A corre-
sponding “forward” derivative would take the form

D(fw)
τ (μ) = eμA− 𝟙 . (3.210)
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This representation of the derivative matrices in terms of coordinate shift matrices has a big
practical advantage in the implementation of the calculation in code; we only need to define a
single function to generate coordinate retarder matrices. All advancer matrices can be obtained
from their respective retarder matrices through inversion or transposition and all derivative ma-
trices can be constructed from simple expressions of coordinate shift matrices. This way, all
complicated “juggling” of lattice indices and ordering is contained in a single, small, and easy-
to-test function, which makes the generation of derivative matrices far less prone to errors in
code.

Using the vector representation of field configurations and derivative matrices, we rewrite
the dimensionless action in Eq. (3.190) in the compact form

𝒮F[ψ∗,ψ] = ∑
σ

(ψ†
σD(bw)

τ (μσ)ψσ − ψ†
σ
RD∆
2mσ

ψσ)+ g(ψ∗
↑ ∘ ψ∗

↓)⊺R(ψ↑ ∘ ψ↓) . (3.211)

In this form, the connection to the continuous action in Eq. (3.8) is very apparent. The two
expressions almost read the same, except we have derivative matrices instead of derivative op-
erators and some coordinate shift matrices that are not present in the continuum theory. What
makes the expression for the discretized action arguably even more compact than the expres-
sion for the continuum action is the fact that we no longer need to write the spacetime integrals.
Through the definition of the field configuration vectors, they are encoded in the matrix products
of this representation.

3.3.8 Bosonization of the Discrete Theory: The Discrete Pairing Field

With the preparations out of the way, we can now start bosonizing our theory with the action in
Eq. (3.211). In principle, we aim to perform a Hubbard-Stratonovich transformation similar to
the one we performed in the continuum in Sec. 3.1. However, on the lattice, there are some subtle
difficulties we need to deal with. Analogously to the Hubbard-Stratonovich transformation in
the continuum, we define a factor of one:

1 = ∫𝒟(ϕ∗,ϕ) e−ϕ†ℳϕϕ (3.212)

with auxiliary complex field configuration vectors ϕ∗ and ϕ and a yet to be defined matrix ℳϕ.
In this expression, we define the path integral differential proportional to the field configuration
entry differentials:

𝒟(ϕ∗,ϕ) ∝
N
∏
i=1

dϕ∗
i dϕi (3.213)

with the lattice size N = NτNd
x and a proportionality such that Eq. (3.212) holds. When we insert

this factor of one into the fermionic action in the path integral

𝒵(β, μ↑, μ↓) = ∫𝒟(ψ∗,ψ) e−𝒮F[ψ∗,ψ] (3.214)

and reorganize the terms in the form

𝒵(β, μ↑, μ↓) = ∫𝒟(ψ∗,ψ,ϕ∗,ϕ) e−𝒮∗
PB[ψ∗,ψ,ϕ∗,ϕ] , (3.215)

we find a general pre-partially bosonized action

𝒮∗
PB[ψ∗,ψ,ϕ∗,ϕ] = 𝒮kin[ψ∗,ψ] + g(ψ∗

↑ ∘ ψ∗
↓)R(ψ↑ ∘ ψ↓) + ϕ†ℳϕϕ (3.216)
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with the kinetic terms in 𝒮kin. The Hubbard-Stratonovich transformation is now completed by
performing a shift of the integration variables ϕ∗ and ϕ:

ϕ∗ → ϕ∗ + ϕ∗
S and ϕ → ϕ + ϕS , (3.217)

leading to the general partially-bosonized action

𝒮PB[ψ∗,ψ,ϕ∗,ϕ] = 𝒮kin[ψ∗,ψ] + g(ψ∗
↑ ∘ ψ∗

↓)⊺R(ψ↑ ∘ ψ↓)

+ ϕ†ℳϕϕ+ ϕ†
Sℳϕϕ+ ϕ†ℳϕϕS + ϕ†

SℳϕϕS .
(3.218)

The Hubbard-Stratonovich transformation has served its intended purpose if this shift creates a
term that counters the four fermion interaction term, i.e.,

ϕ†
SℳϕϕS = −g(ψ∗

↑ ∘ ψ∗
↓)⊺R(ψ↑ ∘ ψ↓) . (3.219)

So far, this is no different from the procedure in the continuum. Therefore, one might think that
we can simply use the discretized version of the Hubbard-Stratonovich transformation we used
in the continuum with the shifts4 and ℳϕ matrix chosen as follows:

ϕ∗
S = −(ψ∗

↑ ∘ ψ∗
↓) , ϕS = (ψ↑ ∘ ψ↓) and ℳϕ = g𝟙 . (3.220)

That choice, however, does not succeed in removing the four-fermion interaction term, as

ϕ†
SℳϕϕS = −g(ψ∗

↑ ∘ ψ∗
↓)⊺(ψ↑ ∘ ψ↓)

≠ −g(ψ∗
↑ ∘ ψ∗

↓)⊺R(ψ↑ ∘ ψ↓) .
(3.221)

This choice of transformation parameters fails to account for the shift in field times we find on
the lattice. We might think we can include this shift in our Hubbard-Stratonovich transformation
by choosing

ϕ∗
S = −(ψ∗

↑ ∘ ψ∗
↓) , ϕS = (ψ↑ ∘ ψ↓) and ℳϕ = gR , (3.222)

leading to

ϕ†
SℳϕϕS = −g(ψ∗

↑ ∘ ψ∗
↓)⊺R(ψ↑ ∘ ψ↓) , (3.223)

and while it seems this choice leads to the desired result, it has an even bigger problem; the
definition of the unity factor that we use to start the Hubbard-Stratonovich in Eq. (3.212) requires
the matrix ℳϕ to be positive-definite in order to be well-defined and that is not the case for the
retarder matrix R. The solution to this predicament is to shift the auxiliary fields ϕ∗ and ϕ to
pairs of fermionic field configuration vectors at different times:

ϕ∗
S = −A(ψ∗

↑ ∘ ψ∗
↓) , ϕS = (ψ↑ ∘ ψ↓) and ℳϕ = g𝟙 . (3.224)

The matrix ℳϕ = g𝟙 is positive-definite, and we can cancel the four-fermion interaction term:

ϕ†
SℳϕϕS = (−A(ψ∗

↑ ∘ ψ∗
↓))

⊺
g𝟙(ψ↑ ∘ ψ↓)

= −g(ψ∗
↑ ∘ ψ∗

↓)A⊺(ψ↑ ∘ ψ↓)
= −g(ψ∗

↑ ∘ ψ∗
↓)⊺R(ψ↑ ∘ ψ↓) .

(3.225)

4The minus sign in the shift term ϕ∗
S is present because, compared to the shift term of the continuum Hubbard-

Stratonovich transformation, the order of the fermion field in the expression (ψ∗
↑ ∘ψ∗

↓) is reversed. This creates a sign
because of the anti-commutation relation of the Grassmann-valued fermion fields.



66 | Chapter 3. Pairing-Field Formulation of the System

The resulting partially-bosonized action reads

𝒮PB[ψ∗,ψ,ϕ∗,ϕ] = ∑
σ

(ψ†
σD(bw)

τ (μσ)ψσ − ψ†
σ
RD∆
2mσ

ψσ)

+ gϕ†ϕ+ g (ϕ†(ψ↑ ∘ ψ↓) − (ψ∗
↑ ∘ ψ∗

↓)⊺Rϕ) .
(3.226)

At first glance, this Hubbard-Stratonovich transformation seems different from the onewe use
in the continuum. However, the time advancement of the shift of ϕ∗ vanishes in the continuum
limit, as aτ → 0. In fact, seeing the starred fermionic fields (ψ∗

↑ ∘ψ∗
↓) evaluated at a point in time

advanced with respect to the unstarred fields seems like an expected and natural result given
our observations on time shifting in the derivation of the path integral.

To integrate out the fermions, analogously to the continuum, we define Nambu-Gorkov
spinors

ψ∗
NG = ( ψ∗

↑
ψ↓

) and ψNG = ( ψ↑
ψ∗

↓
) , (3.227)

which are 2NτNd
x -element spinors that each contain two NτNd

x -element field configuration vec-
tors. This allows us to write

𝒵(β, μ↑, μ↓) = ∫𝒟(ϕ∗ϕ) ∫𝒟(ψ∗,ψ) e−𝒮FC[ψ∗,ψ,ϕ∗,ϕ]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝒵FC

e−𝒮PA[ϕ∗,ϕ] (3.228)

with the purely auxiliary part
𝒮PA[ϕ∗,ϕ] = gϕ†ϕ (3.229)

and the fermionic contribution

𝒮FC[ψ∗,ψ,ϕ∗,ϕ] = ψ†
NG ℳ ψNG , (3.230)

where ℳ is the fermion matrix. We find

𝒵FC = detℳ, (3.231)

which allows us to write
𝒵(β, μ↑, μ↓) = ∫𝒟(ϕ∗,ϕ) e−𝒮B[ϕ∗,ϕ] (3.232)

with the fully bosonized action

𝒮B[ϕ∗,ϕ] = gϕ†ϕ− log detℳ. (3.233)

The only thing left to do is to determine the entries of the fermion matrix ℳ. We begin with the
ansatz

ℳ = ( ℳA ℳB
ℳC ℳD

) . (3.234)

which results in the fermionic contribution

𝒮FC[ψ∗,ψ,ϕ∗,ϕ] = ψ†
↑ℳAψ↑ + ψ†

↑ℳBψ∗
↓ + ψ⊺

↓ℳCψ↑ + ψ⊺
↓ℳDψ∗

↓ . (3.235)

To determine the matrices ℳA, ℳB, ℳC, and ℳD, we compare this expression to the partially-
bosonized action in Eq. (3.226), group all terms according to their combinations of fermionic
field configuration vectors and rearrange them to match the order of field configuration vectors
in Eq. (3.235).
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For the matrix ℳA, the field configuration vectors are already in the right order and we find

ℳA = D(bw)
τ (μ↑) −

RD∆
2m↑

. (3.236)

For the matrix ℳB, we find

−g(ψ∗
↑ ∘ ψ∗

↓)⊺Rϕ = −g ψ†
↑ diag(Rϕ)ψ∗

↓

⇒ ℳB = −g diag(Rϕ) .
(3.237)

In this expression, all we had to do to obtain the desired form is to write the retarded pairing
field configuration as a diagonal matrix between the fermionic field configuration vectors rather
than using the Hadamard product to combine three vectors into a scalar. The equivalence of
these two expressions can easily be verified by writing all Hadamard- and matrix products in
both expressions as sums:

−g(ψ∗
↑ ∘ ψ∗

↓)⊺Rϕ = −g
N
∑
i=1

ψ∗
↑,τi,riψ

∗
↓,τi,riϕτi−1,ri

= −g
N
∑
i=1

ψ∗
↑,τi,riϕτi−1,riψ

∗
↓,τi,ri

= −g ψ†
↑ diag(Rϕ)ψ∗

↓ .

(3.238)

For the matrix entry ℳC, we have

g(ψ↑ ∘ ψ↓)⊺ϕ∗ = −g (ψ↓ ∘ ψ↑)
⊺
ϕ∗

= −g ψ⊺
↓ diag(ϕ∗)ψ↑

⇒ ℳC = −g diag(ϕ∗) .

(3.239)

To obtain this block entry of ℳ, we rewrote the expression to contain the pairing field config-
uration as a diagonal matrix, just like we did for ℳB. Before that, we switched the fermionic
fields in the Hadamard product, which creates a sign due to them being anti-commutative. This
can, again, easily be verified by rewriting the Hadamard product in terms of sums.

For the final block entry ℳD of ℳ, we have

ψ†
↓D

(bw)
τ (μ↓)ψ↓ − ψ†

↓
RD∆R
2m↓

ψ↓ = (ψ†
↓D

(bw)
τ (μ↓)ψ↓)

⊺
−(ψ†

↓
RD∆
2m↓

ψ↓)
⊺

= ψ⊺
↓ (D

(bw)
τ (μ↓))

⊺
ψ∗

↓ − ψ⊺
↓
D⊺

∆A
2m↓

ψ∗
↓ .

(3.240)

To find the transposes of the derivative matrices, we represent them using coordinate shift matri-
ces and exploit their properties. The transposition of the backward time derivative matrix leads
to

(D(bw)
τ (μ↓))

⊺
= (𝟙 − eμ↓R)⊺

= 𝟙 − eμ↓A
= −(eμ↓A− 𝟙)

= −D(fw)
τ (μ↓) .

(3.241)
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The Laplace operator matrix is invariant under this operation, due to our choice of a symmetric
approximation of the derivative:

D⊺
∆ = −2d ⋅ 𝟙⊺ +

d
∑
k=1

(R(xd)
+ + A(xd)

+ )
⊺

= −2d ⋅ 𝟙 +
d

∑
k=1

(R(xd)
+ + A(xd)

+ )

= D∆ .

(3.242)

With the transposed derivative matrices, we find

ℳD = D(fw)
τ (μ↓) +

AD∆
2m↓

. (3.243)

Before we write down the fully bosonized action with the, now determined, fermion matrix,
let us take a moment to appreciate how simple it was to determine the entries of the fermion
matrix from the partially-bosonized action using our matrix notation. In the continuum, deter-
mining the lower right-hand entry of the fermion matrix ℳ required the lengthy and tedious
calculation in App. A, containing multiple Fourier transformations. On the lattice, without the
matrix notation, it would have required us to perform “summations by part” described in App. B,
for all coordinate directions, but with the matrix notation, all it took were a few transpositions
and the use of general properties of the coordinate shift matrices.

The fully bosonized action with the determined entries of the fermion matrix reads

𝒮B[ϕ∗,ϕ] = gϕ†ϕ− log det(
D(bw)
τ (μ↑) −

RD∆
2m↑

−g diag(Rϕ)
−g diag(ϕ∗) D(fw)

τ (μ↓) +
AD∆
2m↓

) . (3.244)

Our system is now fully bosonized and we can move on to the simulation of the system and the
calculations of observables.



4 Implementing a Numerical
Simulation of the System

With the fully bosonized and discretized formulation of our theory at hand, we can move on to
implementing a simulation of our system.

4.1 The Langevin Equation

To avoid the sign problem of the pairing-field formalism, we choose the Complex-Langevin (CL)
quantization scheme to calculate observables of a system described by the bosonized action 𝒮B.
Like in the real Langevin approach, we obtain a quantum solution of the system by solving the
Langevin equation. To formulate this equation, we first need to determine the degrees of freedom
in our calculations and the drift- and noise terms of the Langevin equation.

4.1.1 Complexified Degrees of Freedom

The CL approach allows us to circumvent the sign problem in the simulation of this system, but
it requires us to complexify our real degrees of freedom. The degrees of freedom in our lattice
theory are the two complex fields ϕ∗ and ϕ or, alternatively, the two real fields Reϕ and Imϕ.
The latter two real fields are the ones we promote to complex fields in order to use CL. To this
end, we define the two complex CL fields ϕ1 and ϕ2 with

ϕ = ϕ1 + iϕ2 and ϕ∗ = ϕ1 − iϕ2 . (4.1)

By this definition, they essentially play the roles of the real- and imaginary part of the complex
fields ϕ∗ and ϕ. However, since they are, themselves, complex fields, we choose to name them
“one” and “two” to avoid possible confusion. In fact, for systems with a mild sign problem, such
as the one we study here, we expect the CL fields ϕ1 and ϕ2 to be dominated by their real parts.

4.1.2 Drift and Noise Terms

In principle, we find a scalar Langevin equation for every single entry of the CL fields ϕ1 and
ϕ2. For clarity, we can group them together in two vector equations for the evolution ϕ1 and ϕ2,
respectively. To calculate the drift in such vector equations, we define a derivative with respect
to a field configuration vector by grouping together the derivatives with respect to each entry of
the vector:

( 𝜕𝒮B

𝜕ϕ1|2
)

i

= 𝜕𝒮B

𝜕(ϕ1|2)i
, (4.2)

for a field configuration vector ϕ1|2.
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Drift Terms

The bosonized action is given by

𝒮B = g ϕ†ϕ⏟
𝒮PA

− log detℳ⏟⏟⏟⏟⏟
𝒮FC

(4.3)

and we can calculate the drift contributions for the pure-auxiliary contribution to the action 𝒮PA
and the fermionic contribution to the action 𝒮FC in the above equation separately. We begin by
substituting the fields ϕ∗ and ϕ in 𝒮PA for our CL fields:

𝒮PA = g (ϕ1 − iϕ2)⊺(ϕ1 + iϕ2)
= g (ϕ⊺

1ϕ1 + ϕ⊺
2ϕ2) .

(4.4)

This way, we can easily obtain the purely auxiliary contribution to the drift

KPA = 𝜕𝒮PA

𝜕ϕ1|2
= 2g ϕ1|2 , (4.5)

for ϕ1 and ϕ2, respectively.
For the fermionic contributions to the drift, we need to calculate the derivatives of

𝒮FC = − log det(
D(bw)
τ (μ↑) −

RD∆
2m↑

−g diag (R(ϕ1 + iϕ2))
−g diag(ϕ1 − iϕ2) D(fw)

τ (μ↓) +
AD∆
2m↓

) . (4.6)

We find

KFC = 𝜕𝒮FC

𝜕ϕ1|2

= − 𝜕
𝜕ϕ1|2

log detℳ

= − tr( 𝜕
𝜕ϕ1|2

logℳ)

= − tr(( 𝜕
𝜕ϕ1|2

ℳ)ℳ−1) ,

(4.7)

wherein we use
tr logℳ = log detℳ, (4.8)

as well as the derivative chain rule for matrix logarithms. Since the derivative of the fermion
matrix with respect to a single field value is, itself, a matrix, the vector derivative of the fermion
matrix is a tensor of third order:

( 𝜕
𝜕ϕ1|2

ℳ)
ijk

= ( 𝜕
𝜕(ϕ1|2)i

ℳ)
jk

. (4.9)

What this means is that we have to calculate the trace of a fermion matrix derivative multiplied
by the inverse fermion matrix for every lattice site:

(KFC)i = − tr(( 𝜕
𝜕(ϕ1|2)i

ℳ)ℳ−1) . (4.10)
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The derivative tensor is given by

𝜕
𝜕(ϕ1)i

ℳ = ( 0 −g diag(R ei)
−g diag(ei) 0 ) (4.11)

for ϕ1 and
𝜕

𝜕(ϕ2)i
ℳ = ( 0 −ig diag(R ei)

ig diag(ei) 0 ) (4.12)

for ϕ2. Note that these matrices are of dimension 2NτNd
x × 2NτNd

x but, both, only contain two
non-zero entries. As such, they are predestined to be treated as sparse matrices in a simula-
tion of the system. Moreover, they are constant and do not change between time steps of the
simulation. As such, for a given set of simulation parameters, we only need to compute them
once. The inverse fermion matrix ℳ−1 depends on the field configurations at the current point
in Langevin time and, thus, needs to be recomputed for every step in Langevin time. We can ease
the computational effort of this matrix inversion by exploiting the block nature of the fermion
matrix. The fermion matrix at Langevin time step i is given by

ℳ(i) = ( ℳA ℳ(i)
B

ℳ(i)
C ℳD

) , (4.13)

with the four matrix entries ℳA, ℳ
(i)
B , ℳ(i)

C and ℳD. The entries ℳA and ℳD are constant and
given by

ℳA = D(bw)
τ (μ↑) −

RD∆
2m↑

(4.14)

and
ℳD = D(fw)

τ (μ↓) +
AD∆
2m↓

. (4.15)

They may be viewed as the inverse propagators of the fermion fields. The off-diagonal matrix
entries ℳ(i)

B and ℳ(i)
C are the blocks that contain the pairing field configuration at the current

step in Langevin time. They are given by

ℳ(i)
B = −g diag (R (ϕ(i)

1 + iϕ(i)
2 )) (4.16)

and
ℳ(i)

C = −g diag (ϕ(i)
1 − iϕ(i)

2 ) . (4.17)

The inverse fermion matrix in this notation can be written as

(ℳ(i))−1 = ( ℳ−1
A +ℳ−1

A ℳ(i)
B F(i)ℳ(i)

C ℳ−1
A −ℳ−1

A ℳ(i)
B F(i)

−F(i)ℳ(i)
C ℳ−1

A F(i) ) , (4.18)

in which F(i) is the inverse of the Shur complement of block ℳA in ℳ(i):

F(i) = (ℳD −ℳ(i)
C ℳ−1

A ℳ(i)
B )

−1
. (4.19)

Regarding existence, such a block inversion is possible if the inversesℳ−1
A and F(i) exist. ForℳA,

this can be shown using the representation in coordinate shift matrices, and the inverse matrix
ℳ−1

A can be pre-computed at the beginning of the simulation and reused for every Langevin time
step. For F(i), it is conceivable that an unfavorable round of noise makes it impossible to compute
F(i) for the problematic step in Langevin time. In that case, the inversion of the fermion matrix
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can be performed directly without exploiting its block nature. However, this scenario is highly
unlikely.

Performing this block matrix inversion leads to a significant reduction in computational effort
for every step in Langevin time because, rather than inverting the fermion matrix ℳ(i) with
dimension 2NτNd

x directly at every step, we invert (ℳD −ℳ(i)
C ℳ−1

A ℳ(i)
B ) with dimension NτNd

x .
In the block inversion of ℳ(i) we need to perform multiple matrix multiplications of the blocks.
However, the blocks ℳ(i)

B and ℳ(i)
C are diagonal, which makes matrix multiplications involving

them very cheap.

Noise Terms

For the noise term of the Langevin equation, we are free to distribute the noise between the real-
and imaginary parts of ϕ1 and ϕ2 within the constraints of the fluctuation-dissipation theorem.
However, since we expect the sign problem in the system to be mild, the dynamics of the system
are mostly carried by the real parts of ϕ1 and ϕ2. As such, purely real noise seems like a good
choice to efficiently evolve the CL fields into equilibrium. This rationale is formally studied in
Ref. [48], which argues that one should use as little imaginary noise as possible, ideally zero,
to reduce the uncertainty of calculated observables. With these considerations, we choose the
purely real noise terms

N1|2(tCL) = √2δtCL η1|2(tCL) (4.20)

with noise η1|2(tCL) from a standard normal distribution:

⟨η1|2(tCL)⟩ = 0 and ⟨η21|2(tCL)⟩ = 1 . (4.21)

Inserting the drift and noise terms into the Langevin equation (2.39), we find

ϕ(i+1)
1|2 = ϕ(i)

1|2 − [2g ϕ(i)
1|2 − tr(( 𝜕

𝜕ϕ1|2
ℳ)(ℳ(i))−1)] δtCL +√2δtCL η1|2(tCL) , (4.22)

for ϕ1 and ϕ2, respectively. Because it is constant, the derivative of the fermion matrix is inde-
pendent of the Langevin time step i. On the other hand, the fermion matrix at Langevin time
step i is assembled using the CL field configurations at that Langevin time step:

ℳ(i) = (
D(bw)
τ (μ↑) −

RD∆
2m↑

−g diag (R (ϕ(i)
1 + iϕ(i)

2 ))
−g diag (ϕ(i)

1 − iϕ(i)
2 ) D(fw)

τ (μ↓) +
AD∆
2m↓

) . (4.23)

4.2 Langevin Observables

To calculate observables from the Langevin process, we need to relate observable operators to an
expression that depends on the fields of the path integral representation of the partition function
of the theory. That means, in an expression like

⟨ ̂O⟩ = 1
𝒵

tr (Ô e−β( ̂H−μ↑ ̂N↑−μ↓ ̂N↓))

= 1
𝒵

∫𝒟(ϕ∗,ϕ) 𝒪O(ϕ∗,ϕ) e−𝒮B

(4.24)

with a given observable operator ̂O, we need to find the expression 𝒪O(ϕ∗,ϕ). This expectation
value is approximated by the Langevin process through

1
𝒵

∫𝒟(ϕ∗,ϕ) 𝒪O(ϕ∗,ϕ) e−𝒮B ≈ ⟨𝒪O⟩CL (4.25)
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with the Langevin expectation value

⟨𝒪O⟩CL = 1
NCL

NCL

∑
i=0

𝒪(i)
O . (4.26)

In the sum over all steps of the Markov chain, 𝒪(i)
O is equivalent to 𝒪O(ϕ∗,ϕ) with the fields ϕ∗

and ϕ expressed in terms of the CL fields ϕ1 and ϕ2 at Langevin time step i.

4.2.1 Density

For the particle number Nσ of fermion species σ we find

Nσ = 1
𝒵

tr( ̂Nσ e
−β( ̂H−∑σ μσ

̂Nσ)) (4.27)

in the operator formalism. To find the operator expression𝒪Nσ
(ϕ∗,ϕ) in the path-integral formal-

ism, we make use of a Standard Technique in statistical physics and express the particle number
in terms of a derivative with respect to the corresponding chemical potential:

Nσ = 1
𝒵

tr( ̂Nσ e
−β( ̂H−∑σ μσ ̂Nσ))

= 1
𝒵

tr(1
β
𝜕μσ e

−β( ̂H−∑σ μσ ̂Nσ))

= 1
𝒵

1
β
𝜕μσ tr(e

−β( ̂H−∑σ μσ ̂Nσ))

= 1
𝒵

1
β
𝜕μσ𝒵 .

(4.28)

In the resulting expression, we can then replace the partition function with its path-integral
representation and apply the derivative to the action of the system. Before doing that, however,
we need to remind ourselves that we rescaled the theory to use dimensionless fields and the
dimensionless chemical potential ̃μσ = aτμσ. The derivatives with respect to the dimensionful
and dimensionless chemical potentials are related via

𝜕μσ = aτ𝜕μ̃σ = β
Nτ

𝜕μ̃σ . (4.29)

Using this relation and omitting tildes again, we find:

[Continuation of Eq. (4.28)]

= 1
𝒵

1
Nτ

𝜕μσ ∫𝒟(ϕ∗,ϕ) e−𝒮B

= 1
𝒵

∫𝒟(ϕ∗,ϕ) 1
Nτ

𝜕μσ e
−𝒮B

= 1
𝒵

∫𝒟(ϕ∗,ϕ) (− 1
Nτ

𝜕μσ𝒮B) e−𝒮B .

(4.30)
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Thus, we have

𝒪Nσ
(ϕ∗,ϕ) = − 1

Nτ
𝜕μσ𝒮B

= 1
Nτ

𝜕μσ log detℳ

= 1
Nτ

𝜕μσ tr logℳ

= 1
Nτ

tr (𝜕μσ logℳ)

= 1
Nτ

tr ((𝜕μσℳ)ℳ−1) .

(4.31)

For evaluating this expression, we need to determine the μσ derivatives of the fermion matrix.
Since the chemical potentials only appear in the temporal derivatives of the upper left-hand and
lower right-hand blocks of the fermion matrix, we only need to compute the derivatives of the
respective temporal derivative matrices. For the up-species in the upper left-hand block, we find

𝜕μ↑
D(bw)
τ (μ↑) = 𝜕μ↑

(𝟙 − eμ↑R)

= −𝜕μ↑
eμ↑R

= −eμ↑R .

(4.32)

For the down-species in the lower right-hand block, we find

𝜕μ↓
D(fw)
τ (μ↓) = 𝜕μ↓

(eμ↓A− 𝟙)

= 𝜕μ↓
eμ↓A

= eμ↓A .

(4.33)

This yields the overall μσ derivatives of the fermion matrix

𝜕μ↑
ℳ = ( −eμ↑R 𝟘

𝟘 𝟘 ) (4.34)

and

𝜕μ↓
ℳ = ( 𝟘 𝟘

𝟘 eμ↓A ) , (4.35)

with quadratic zero blocks 𝟘 of dimension NτNd
x . For the final CL observable expression, we need

to use the fermion matrix with the pairing field at the current Langevin time step represented by
the CL fields:

𝒪(i)
Nσ

= 1
Nτ

tr((𝜕μσℳ)(ℳ(i))
−1

) . (4.36)

This allows us to calculate the particle number of species σ for a Langevin process:

Nσ = ⟨𝒪Nσ
⟩
CL

. (4.37)

To turn this particle number into a density, we need to divide it by the volume of the system.
However, since we rescaled all parameters of our theory to be dimensionless, we cannot compute
dimensionful observables, such as the density, directly. That also makes intuitive sense, as we
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never specify the length of our box L. Therefore, we define a dimensionless density bymultiplying
the density with the thermal wavelength volume λdth using the thermal wavelength

λth = (2πβ)1/2 , (4.38)

that is made species-independent by using a mass of one. Using this rescaling, the dimensionless
density reads

nσλdth = Nσ
λdth
V

, (4.39)

which is the particle number rescaled by a dimensionless ratio λdth/V. We can express this ratio
in terms of the lattice size and spacing parameters:

λdth
V

= (2πNτaτ)d/2

(Nxax)d
= (2πNτaτ

N2
x a2x

)
d/2

= (2πr Nτ
N2
x
)

d/2

, (4.40)

resulting in the dimensionless density

nσλdth = Nσ (2πr
Nτ
N2
x
)

d/2

= ⟨(2πr Nτ
N2
x
)

d/2

𝒪Nσ
⟩

CL

. (4.41)

Of course, bosonizing the theory by introducing an auxiliary field that represents the pairing of
the fermions rather than the particle density is not the best approach for calculating the latter.
This is why the calculation of this observable is rather tedious, both in its derivation and in actual
numerical studies.

4.2.2 Pair-Correlation Functions

Calculating pair-correlation functions in the pairing field formalism is a lot more straightforward
than calculating densities; it is what the pairing field formalism was designed for. In Sec. 3.1.2,
we have already seen that we can easily express pair-correlation functions in terms of correlation
functions of the pairing field. For example, we found

G(τ1, r1, τ2, r2) = ⟨ψ∗
↓(τ1, r1)ψ∗

↑(τ1, r1)ψ↑(τ2, r2)ψ↓(τ2, r2)⟩
= ⟨ϕ∗(τ1, r1)ϕ(τ2, r2)⟩ .

(4.42)

The associated operator expression 𝒪G(ϕ∗,ϕ) used in the CL study can be directly read off from
the definition of the observable itself. The continuous pairing fields we used for this derivation
were still dimensionful. Therefore, to relate this expression to the discrete fields we employ in
the simulation, we need to include the rescaling factors defined in Sec. 3.3.6. We find

𝒪G(ϕ∗,ϕ) = a−d
x ϕ∗(τ1, r1)ϕ(τ2, r2) . (4.43)

4.3 Choice of Tools

In a project concerned with the development of a novel lattice formulation, whether is it calcu-
lating observables or processing and visualizing results, we work with code just as much as we
work with the mathematical expressions of the theory, if not more. Therefore, we would like to
make sure that we select our tools and workflows with care and in a way that is best suited for
the particular problem at hand. Beyond that, we would also like to make use of the achieve-
ments in the field of modern Software Development to achieve the best results we can. In recent
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decades, the field of software development has emerged from the world of programming, and
while programming itself is part of software development, it also encompasses design, structur-
ing, documenting, testing, and maintaining code. Software development as a field has reached a
level of maturity and establishment that allowed standard texts like, e.g. Ref. [64], on the subject
to be written. We aim to use the techniques of software development to make our simulation
more stable, more verifiable, easier to adapt, and easier to maintain than software that is focused
solely on a source code that produces the desired results. However, while we can largely use the
techniques of modern software development in an unmodified form, we need to keep in mind
that this field usually deals with a scenario that is different from ours; in the world of software
development, developers of a piece of software are generally a separate group from its users,
whereas, in the case of scientific simulations of active research topics, the people running the
simulation and interpreting the results are usually the same people implementing changes based
on their observations. In our case, developers and users are the same people. That is something
we need to keep in mind when adapting the techniques of software development to our efforts.

For our simulation, we divided the “code” 1 into two major parts. One part consists of auxil-
iary scripts that, for example, generate sets of input parameters over a given parameter span, as
well as the processing and visualization of simulation results. The other part is the simulation
core that does the numerical “heavy lifting”. The scripts of the first part are loosely connected
and usually only take seconds to run while the simulation core is a fully realized software library
that performs simulations that can easily take days or weeks.

Because of the short execution time of the pieces of software in the auxiliary part of the code,
it does not really matter how performant the chosen libraries and programming languages are.
It is far more important to choose fully-fledged solutions that allow the developer to do as much
standard work as possible in predefined functions and quickly achieve desired results with com-
pact and easy-to-read code. For this part, the time of the developer is a far greater consideration
than the time of the computer. For this particular project, all scripts are implemented in the
Python programming language [65] using the matpotlib [66] for visualization and NumPy [67],
pandas [68] and SciPy [69] for data management and manipulation. Most of this work is done
interactively using the Jupyter Lab [70] environment based on notebooks with discrete code ex-
ecution units called cells. This cell-based approach is particularly useful when using the library
SymPy [71], which turns our notebook environment into a powerful computer algebra system
for symbolic calculations and derivations.

To choose a programming language for the simulation core, we evaluate candidates under
consideration utilizing a range of aspects and criteria. The programming languages under consid-
eration for the simulation code are C/C++, Fortran, Julia [72], and Python. In order to determine
the language we will use to implement the simulation core, we compare them regarding their
performance, the availability of software development tooling, the availability of mathematical
and scientific functions within the core languages and their library ecosystems, their interoper-
ability with the auxiliary part of the simulation, the suitability of their implemented paradigms
with regard to the nature of our problem and finally their syntax and ease of use for the develop-
er/user. Before we begin this analysis, however, we shall briefly review keynotes and the history
of each of the candidates.

1In academic physics, it is common to refer to a collection of software that achieves a given goal as a “code”. The
author would like to advise against this practice since it perpetuates the notion that merely the code of a software
package is enough. This is not the case, because without proper documentation and an extensive set of automated
tests, “codes” are tedious to understand, adapt and maintain and only reach a fraction of their potential.
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4.3.1 Candidate Languages for the Simulation Core

The C programming language was created in the 1970s and is a compiled general-purpose high-
level language that was meant to provide human-readable access to the capabilities of the hard-
ware. In 1985, C++2 was released as an extension of C that added features like support for
object orientation and an extended standard library. C is (almost) a subset of C++, which means
that in general C code can be compiled by a C++compiler but not the other way around. Often
that leads to libraries not utilizing the language features that are exclusive to C++, in order to
be usable by both C and C++code. Due to this intimate relationship between C and C++, they
are often listed together under the name C/C++. The standard libraries of C do not contain any
functions for scientific computing. Such capabilities are provided by third-party libraries and for
the present discussion we shall focus on the popular GNU Scientific Library (GSL) [73].

Fortran is another popular choice among scientists. It was created in the 1950s and is a
compiled high-level language for scientific applications. While it is not recorded what the name
Fortran exactly means, it is likely a contraction of some variations of the words formula and
translating. Due to its expressed purpose of scientific programming, it has some inbuilt capabil-
ities for the work with tensors up to the multiplication of matrices. Additional capabilities are
provided through libraries that implement standards such as Basic Linear Algebra Subprograms
(BLAS) [74] and the less rudimentary Linear Algebra Package (LAPACK) [75]. For LAPACK, we
use the netlib implementation [75], and for BLAS the openBLAS implementation [76], both of
which are, themselves, written in Fortran.

The Julia language is the youngest entry on this list, being first released in 2012. It is a just-in-
time compiled high-level language that is described as a general-purpose language by the authors
but has a strong focus on numerical computation and scientific applications. Most essential tools
for scientific programming are available in the standard library and its flexible type system and
clean purpose-built syntax allow the developer/user to quickly implement calculations.

The Python language was first released in 1991 and is a high-level general-purpose scripting
language that is usually interpreted rather than compiled. It aims to have a clean and readable
syntax which, among other things, is enshrined in the PEP 20 document [77], containing the
so-called Zen of Python. Python’s design along these guiding principles allows developers to
solve complex problems in little time with little code. Python has an extensive standard library
but numerical and scientific functions are provided through third-party libraries, such as the
above-mentioned NumPy and SciPy.

4.3.2 Performance

The simulation core needs to solve the discretized Langevin equation for potentially very large
lattices and a large number of timesteps. This is a process that can easily take weeks on a com-
puter. For that reason, we aim to implement the simulation core in a language that has high
performance. To compare the performance of our candidates, we use the micro benchmarks
[78] from the Julia website. These micro benchmarks determine the execution times (how long
it took the machine to execute the code) of small, specific tasks for multiple languages to com-
pare the performance for this specific workload. These micro benchmarks are relatively small
and only feature a single type of workload each. Nevertheless, they can give us a general feeling
for the performance of a language. The results for relevant micro benchmarks for our candi-
date languages are given in Fig. 4.1 and Mathematica is included as a reference, because it is
a common tool for physicists, even though it is not being considered for the implementation of

2In C syntax, “++” denotes the increment operator. Therefore, the name C++is to be understood as an “increment”
of C: C++= C + 1. This eludes to C++’s original nature as an extension of C and occasionally, in spoken language,
some people pronounce C++as “C increment”.
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Figure 4.1: Comparison of the execution times of micro benchmarks implemented
in different programming languages from the collection [78]. The execution times
are normalized to the execution times of the C implementation and depicted on a
logarithmic scale. The colors represent the specific micro benchmark that was timed.

the simulation core. Depicted are the execution times normalized to the execution times of the
C implementation on a logarithmic scale.

Arguably, the most relevant micro benchmark for our project is “matrix_multiply”, since a
lot of the numerical work in our simulation is multiplying matrices. In “matrix_multiply” two
random ℝ1000×1000 matrices are generated and their product is calculated. That being said, when
we look at the execution times of “matrix_multiply” in Fig. 4.1, we notice something peculiar: all
languages, compiled or interpreted, have roughly the same performance. Why is that the case?
Above we noted that, of all the candidate languages, Fortran is the oldest and that the rudimen-
tary BLAS and LAPACK standards of the era are usually implemented in Fortran. Because of this,
when the other languages and their mathematical libraries were created, efficient implementa-
tions of basic operations in linear algebra already existed in the form of Fortran BLAS and LA-
PACK libraries. 3. Therefore, most of today’s non-Fortran libraries still call Fortran-implemented
libraries in the background to perform their basic linear algebra tasks. In fact, all of the exam-
ples in Fig. 4.1 do just that and call an implementation of the BLAS function dgemm to multiply
matrices. Under this aspect, it is not surprising that the execution times of “matrix_multiply” are
almost identical for all given languages.

Another important micro benchmark for our simulation is “matrix_statistics”. In this mi-
cro benchmark random matrices are generated, raised to the fourth power and the mean and
standard deviation of sets of traces of the matrix powers are calculated. This micro benchmark
describes a more general handling of matrices and is a suitable benchmark for the workload that
our simulation generates. Looking at the execution time results in Fig. 4.1, we notice that all com-
piled languages still perform similarly but interpreted languages are notably slower by around

3Among scientists, there sometimes exists the notion that the use of Fortran is necessary to create themost efficient
numerical libraries. This is not the case, as any compiled language can in principle generate the same efficient machine
code as compiled Fortran. It just so happens that efficient Fortran implementations for many problems already exist,
making it unviable for developers to implement their functions in another language rather than just using the existing
Fortran implementations.
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one order of magnitude. Even though they use efficient libraries to perform most operations on
the matrices, their handling in between these basic operations costs interpreted languages a lot
of time.

The “userfunc_mandelbrot” micro benchmark takes a section of the complex plane and, for
a grid of points within the section, determines whether the points lie within or outside of the
Mandelbrot set and it also estimates how quickly the Mandelbrot sequence diverges if it does
not remain bounded for a given point. It does so by calculating the Mandelbrot sequence in the
body of a loop which also contains a possibly-branching conditional (if) statement to determine
if the sequence is unbounded. This is an interesting example that simulates workloads that im-
plement custom algorithms rather than relying on built-in functions of library calls. For compiled
languages, this is not really a problem, since, for them, there is no difference whether an algo-
rithm within a library calculates a loop or if the program does it itself. For interpreted languages,
on the other hand, manually programming loops rather than using calls to compiled libraries is
usually associated with a heavy performance penalty. Indeed, the results in Fig. 4.1 show that
the compiled languages have roughly the same performance while the interpreted languages
Python and Mathematica are significantly slower. In the case of Python, the execution time is
nearly two orders of magnitude larger than that of an equivalent C program. This is a general
phenomenon in interpreted languages; seemingly equivalent blocks of code can have starkly dif-
ferent execution times. To achieve the best possible performance, it is, therefore, necessary to
use the highest-performing idioms when writing code. This is a bit of a caveat with interpreted
languages in general and Python in particular. When starting to use the language, the learning
curve is very “shallow” and one can quickly write code that produces the desired results. Later
on, however, when one aims to write efficient code, a good amount of knowledge of the inner
workings of the language is required to select efficient idioms.

The last micro benchmark we consider for our simulation is “print_to_file”. As the name
suggests, this micro benchmark prints some data into a file. Specifically, it chooses the virtual
/dev/null file of a Linux-based system. Therefore, no actual storage media are involved in the
process and the execution time is largely determined by the program-under-test itself. Printing
results to file is not the most performance-critical part of our simulation, but it does happen
a fair bit, so it is worth considering it in the comparison. Again, looking at the results of the
benchmarks, the interpreted languages are generally slower than the compiled ones, although
their results are still acceptable for our purposes. All things considered, Python’s performance
is actually really good for an interpreted language; a testament to the decades of optimization
by the Python developers. The notable exception in this benchmark is Fortran, which actually
performsworse than Python. Since Fortran’s performance in this test is still absolutely acceptable,
we do not want to spend much time pondering possible causes of this unexpected result, but, as
an interesting side note, at the time of Fortran’s creation, the modern notion of a computer file
did not necessarily exist.

From the point of view of performance, C, Fortran, and Julia seem to be near-equally good
choices and superior to Python.

4.3.3 Availability of Software Development Tooling

Since we not only want to create a code that efficiently serves its purpose but want to create a
piece of software that is stable, verifiable, maintainable, and easy to understand and adapt, there
are certain tools we require to work with a given language. Those tools are a debugger, some
system of code documentation, a framework for unit testing, and a sensible system for package
management.

A debugger is a tool that allows the developer to automatically halt the program at a certain
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point or under certain conditions and monitor the variables at that state or even execute lines
of code to probe the source of a bug. Debuggers are a staple of software development and
debugging interfaces exist in nearly every integrated development environment (IDE).

Code documentation systems are tools that generate a human-readable, searchable, inter-
active form of documentation of the software. They do this by analyzing the source code and
parsing special documentation comments placed in the code by the developer. In a research
environment where projects are handed off to other people or shared for collaboration, proper
documentation is essential to quickly get new researchers started with the project.

An absolutely mission-critical piece of tooling is the unit testing framework. In unit testing,
we create automated tests that check if a given small section of the code, the unit, behaves as
intended. To this end the developer writes a unit test that is, itself, a small program, utilizing the
unit testing framework. This unit test then calls the unit-under-test and compares its output and
behavior to a recorded set of expected outputs and behaviors. These predefined test cases test
common scenarios of the unit but also edge cases that are usually more likely to result in errors.
It is hard to overstate how useful unit testing is for the development of scientific simulations
and we would like to demonstrate that fact using an example. Suppose we have implemented
the simulation outlined in this chapter and can calculate observables. Now suppose we want
to implement an optimization, e.g. in the generation of lattice operators, to produce larger
simulation runs for a publication. What if that optimization effort leads to a bug in the code? The
best-case scenario is that this bug immediately results in an error that prevents the simulation
from running. This way, we know that the bug exists and we can find and fix it. It is also
possible, however, that the bug manifests itself without causing a runtime error. For example,
it is conceivable that a bug causes deviations of calculated observable values in certain regimes.
How would we go about finding the cause of this deviation, if we even notice it at all? This
scenario can be prevented by unit testing. When we properly apply the practice, we have a set
of unit tests that verify that all lattice-operator-generating functions produce correct results. If
we then implement an optimization that introduces a bug, we will immediately see that the unit
tests fail and we can resolve the bug. Again, it is hard to overstate how useful unit testing is for
scientific simulations.

The last piece of tooling we put special focus on is package management. A package man-
ager is a tool that can download external libraries at a specified version and automatically also
download their dependencies and make them available within the project without the need for
the developer to perform manual configurations. We use these tools to avoid spending time on
something that is not part of the actual simulation.

There are also tools for more advanced tasks we did not list, like, e.g., a profiler. We omit this
particular tool because fine-tuning the optimization of the code is a task best left to a time when
the code is more mature and does not constantly change. Indeed, for simulations of systems
under active research, such a time may never come. Should one encounter reusable pieces of
code within the simulation that do, in fact, converge to a constant state, it might be appropriate
to extract them into a library. One can then perform optimization in the library and even reuse
it in different projects.

For our candidate languages, we generally find that modern tooling is available from third
parties for the older languages and built-in for the more modern languages. On the debugging
side, C and Fortran can be debugged with, e.g., the GNU Debugger, Python has a built-in debugger
called pdb and the Julia community is currently working on a debugger called Debugger.jl. For
documentation, in C and Fortran, we can use Doxygen. For documenting Python, the de-facto
standard is Sphinx, developed by the Python community, and Julia offers the Documenter.jl tool.
So far, all tools for all candidate languages operate very similarly, however, when it comes to unit
testing we start to see differences. Python and Julia both offer built-in unit testing capabilities,
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whereas C and Fortran rely on third-party tools. There is a variety of tools available for each of
both languages, which makes it difficult to select one and may require new developers to switch
to another framework if they are not used to the one that is used in the project. When it comes
to package management, we see the most drastic differences. Python offers the pip tool for
installing packages and the same can be accomplished in Julia using Pkg.jl. Both of these tools
can install packages for the system-wide environment of the language or within project-specific
virtual environments that allow for an isolated and reproducible state of library installations. C
and Fortran have no official package managers and none of the community efforts have managed
to establish themselves as de-facto standards. The most common way to install libraries for C and
Fortran (under UNIX-like operating systems) is to install system packages that provide library
headers and shared runtime libraries to the system. One then needs to provide paths to the
libraries to the compiler, as well as configure certain environment variables. This process can
lead to conflicts, because other applications may require the system package manager to install
the same dependencies at different versions or make modifications to the environment variables.
In fact, this package management scheme is so tedious and fragile that it is not uncommon to
create a virtual machine, usually some sort of container using Podman [79] or Docker [80], just
for the purpose of having an isolated, reproducible environment to compile the code in.

Regarding tooling, the modern choices, Python and Julia, are certainly superior to C and
Fortran.

4.3.4 Interoperability with Auxiliary Scripts

Another relevant aspect for the choice of a programming language is its ability to operate with
and be operated by external scripts. Our auxiliary scripts for starting the simulation and eval-
uating results are written in Python, so we would like the simulation core to have a sensible
interface to that. For C, the Python community has created libraries such as the C Foreign Func-
tion Interface (CFFI) [81] that allow us to call functions of C libraries from within Python and
perform the necessary conversions of data flowing from Python to C and back. For Fortran, this
process is not only possible as well but also easier, since Python’s NumPy library contains a utility
called F2PY that can build Fortran modules and expose them to the Python code in the form of
a virtual module. We can then call the functions of this module in the same way we would call
Python functions, with the caveat that we need to define our arrays with a memory ordering that
is compatible with that of Fortran. If we write the simulation core in Python, it is trivially given
that we can call it from the auxiliary Python scripts. Finally, when implementing the simulation
core in Julia, we can use the PyJulia library for Python to use the Julia module in pretty much
the same way we would use ordinary Python modules.

In this comparison, while interoperability between Python and all of the candidate languages
is possible, C and Fortran fall short of Python and Julia because they require us tomanually define
or adjust the way our variables are stored in memory. These additional steps are not difficult to
implement but lead to more “cluttered” code that is more difficult to read and understand and
contains more potential points of failure.

4.3.5 Suitability of Paradigms and Language Design

When it comes to the design of a language and the paradigms it employs, there are some choices
we deem more suitable for writing the simulation core. Regarding memory management, we
generally would like to avoid having to do it manually. This is the case in C/C++and to a lesser
extent also in Fortran. There are multiple problems with the need for manual memory man-
agement, first and foremost: it is simply not necessary. We do not care how and where the
computer stores our variables in memory, we just want the result to be efficient and modern
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languages can do that for us. Moreover, being forced to perform manual memory management
can lead to an array of memory-related errors. One of them is the so-called memory leak. It
occurs when the developer allocates some memory for a variable but never frees or deallocates
that memory again. If this happens in a section of the code that is executed over and over again,
the memory leak will slowly fill the available memory. This causes the application’s performance
to drop over time. The memory footprint of the application first becomes too large for the cache
storage of the processor, forcing it to be moved in and out of RAM, next it fills the RAM until it
becomes so big that it has to be swapped into and out of the mass storage system. Eventually, if
the application does not terminate before this point is reached, the memory leak causes either
the application or even the entire system to halt. For simulations that can run for weeks, this
is not an unrealistic scenario. Another kind of error related to manual memory management is
the access of memory that does not belong to a variable. Suppose the developer makes a mis-
take in the handling of a matrix pointer that causes the program to attempt to read the matrix
from a section of memory that does not belong to the variable. In this situation, one of the two
following things can happen. The first scenario is that the memory which the program tries to
access is outside of the memory space that the operating system has allocated to the program.
This will result in a so-called segmentation fault and cause the program to halt. The second, and
arguably more dangerous, scenario is that the requested section of memory is, in fact, allocated
to the program but contains other variables, program code, uninitialized quasi-random values, or
a mixture thereof. In this case, rather than reading the values of the matrix, the program would
read completely unpredictable and seemingly random values. The dangerous trait of such errors
is that they can go unnoticed and cause nonsensical results of the program. Additionally, beyond
being a possible source of errors, manual memory management requires us to dedicate code to
it, which “clutters” and “dilutes” the calculations we are implementing. This makes the code
harder to read and understand. With all that being said, unless there is a specific need for it, it
is generally preferable to use a language that does not require the developer to perform manual
memory management.

Regarding the type system of the candidates, since we are writing the simulation core as a
library, we would like to be able to define the types of function arguments and return values. This
causes improper use of the library functions to result in type errors. Beyond that, it represents
a part of the documentation of the functions that is contained in the code itself and, therefore,
does not have to be actively maintained by the developer. Defining these types is possible in all of
the candidate languages except for Python, since Python employs the concept of duck typing. In
duck typing, arguments are of the correct type if the function can perform all operations on them
that it wants to perform on them; if it walks like a duck and it quacks like a duck, then it must
be a duck. This, however, means that errors resulting from an argument of a wrong type being
passed to a function always occur at runtime and at some point within the body of the function.
Consequently, it is more difficult to find and remove type errors at the time of programming in
languages that practice duck typing. Newer versions of Python offer a feature called type hinting
that allows the developer to specify types of arguments and return values for the use with static
code analysis tools. However, these type hints are not binding and, therefore, require discipline
on the part of the developer to be effective. When it comes to the choice between static typing
and dynamic typing, since we are writing a library, we would prefer static type checking, i.e. a
system that checks for type errors at compile time rather than runtime. This would increase the
reliability of the program because then there could be no library-internal type errors at runtime.
However, a dynamic type-checking system, when used in combination with proper unit testing
(again, which it absolutely should be), is essentially just as good, because all library-internal type
errors that can occur, will occur during the tests. This way we can still discover and fix them
before we use the simulation for real calculations. C and Fortran use static type checking while
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Julia does not and, due to its just-in-time compiled nature, usually can not check for type errors
before runtime.

Another design choice that programming languages make that may seem trivial and inconse-
quential is whether the language starts array indices at zero or at one. We would like to argue,
however, that that choice is not inconsequential at all in the context of scientific programming.
This is due to the convention for the notation of tensors in mathematics. Suppose we have a
matrix

A = ⎛⎜
⎝

1 2 3
4 5 6
7 8 9

⎞⎟
⎠

(4.44)

and a vector

v = ⎛⎜
⎝

1
2
3

⎞⎟
⎠

. (4.45)

When we reference the upper left-hand entry of the matrix or the uppermost entry of the vector
we write A11 and v1 in mathematical notation. In a programming language that starts array
indices at zero, however, we would have to refer to these entries with statements like A[0][0]
and v[0]. The solution to this problem seems simple; we just subtract one whenever we want
to index an array that represents a tensor. While this solution is certainly correct, in practice
indexing arrays that represent tensors is something that we do so often, that errors created from
this indexing mismatch are actually very common. Errors that are caused by a discrepancy of
one are in fact so common that they have their own name in the jargon of programmers [82]:
off-by-one errors. Off-by-one errors are usually not hard to detect and usually not hard to fix,
however, it is still preferable to use a language that minimizes their occurrence; a language that
is specifically built for the purpose of scientific calculations. That is true for both Fortran and
Julia and, indeed, they start indexing arrays at one. C and Python are general-purpose languages
with no special focus on scientific applications and both of them start indexing arrays at zero.
In addition to minimizing off-by-one errors, when using a language that starts indexing arrays
at one, the code more closely matches the mathematical expressions we derive on paper. That
makes the code easier to read and understand.

Lastly, we briefly touch upon the candidate languages’ support of object-oriented program-
ming. C, Fortran, and Julia do not include explicit support of classes, although C++does. This
is not really a problem since abstracting mathematical calculations into code usually does not
involve the notion of one of the operands owning a function and the attributes of objects can
still be grouped together in custom data structures in all of the candidate languages that do not
support classes. Therefore, it does not really matter to us in the scientific context, whether a
language supports classes or not.

From the standpoint of language design, Fortran and Julia seem good choices for our simu-
lation, because they allow us to define the types of function arguments and return values and
are built for scientific applications. Of these two, Julia does not require the developer to per-
form manual memory management and, therefore, seems to be the best choice out of our four
candidates with regard to language design.

4.3.6 Syntax and Ease of Use

The final aspect under which we compare our four candidate languages is their syntax and ease
of use. To this end, we implement a little example program in all four languages and compare
their source codes. As an example, we compute the expression

D− CA−1B (4.46)
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using the four matrices

A =⎛⎜
⎝

1 0 1
−1 1 0
0 −1 1

⎞⎟
⎠

, B =⎛⎜
⎝

3 0 0
0 2 0
0 0 1

⎞⎟
⎠

,

C =⎛⎜
⎝

−1 0 0
0 3 0
0 0 1

⎞⎟
⎠

, D =⎛⎜
⎝

−1 1 0
0 −1 1
−1 0 −1

⎞⎟
⎠

.

(4.47)

This is reminiscent of the inverse of the matrix F(i) that we use above in the block-inversion of
the fermion matrix in Eq. (4.18). This example requires us to perform matrix subtraction, mul-
tiplication, and inversion and should give us a good idea of how it would feel to implement the
simulation core in each of the languages. In the following, we will go through the implementa-
tion for each of the four languages. Below that we will then compare them to one another.

We begin by implementing the example calculation in C using the GNU Scientific Library
(GSL) for matrix handling and linear algebra operations. The resulting source code is shown in
Listing 4.1.

Listing 4.1: Example calculation implemented in C using the GNU Scientific Library
(GSL) for matrix operations and linear algebra.

1 #include <stdio.h>
2 #include <gsl/gsl_blas.h>
3 #include <gsl/gsl_matrix.h>
4 #include <gsl/gsl_linalg.h>
5

6 void print_matrix(gsl_matrix *m) {
7 for (int row = 0; row < m−>size1; row++) {
8 for (int col = 0; col < m−>size2; col++) {
9 printf("%g\t", gsl_matrix_get(m, row, col));

10 }
11 printf("\n");
12 }
13 }
14

15 gsl_matrix *inv(gsl_matrix *matrix) {
16 // allocate memory for result matrix and auxiliary variables
17 int sign = 0;
18 gsl_matrix *matrix_inv = gsl_matrix_alloc(matrix−>size1, matrix−>size2);
19 gsl_permutation *P = gsl_permutation_alloc(matrix−>size1);
20 gsl_matrix_memcpy(matrix_inv, matrix);
21

22 // perform LU decomposition of copied input data
23 gsl_linalg_LU_decomp(matrix_inv, P, &sign);
24

25 // calculate inverse matrix based on LU decomposition
26 gsl_linalg_LU_invx(matrix_inv, P);
27

28 // deallocate heap memory of auxiliary variable
29 gsl_permutation_free(P);
30

31 return matrix_inv;
32 }
33

34 int main(void)
35 {
36 // define matrices A, B, C and D
37
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38 int size = 3;
39

40 double A_data[] = {
41 1, 0, 1,
42 −1, 1, 0,
43 0, −1, 1
44 };
45 gsl_matrix_view A = gsl_matrix_view_array(A_data, size, size);
46

47 double B_data[] = {
48 3, 0, 0,
49 0, 2, 0,
50 0, 0, 1
51 };
52 gsl_matrix_view B = gsl_matrix_view_array(B_data, size, size);
53

54 double C_data[] = {
55 −1, 0, 0,
56 0, 3, 0,
57 0, 0, 1
58 };
59 gsl_matrix_view C = gsl_matrix_view_array(C_data, size, size);
60

61 double D_data[] = {
62 −1, 1, 0,
63 0, −1, 1,
64 −1, 0, −1
65 };
66 gsl_matrix_view D = gsl_matrix_view_array(D_data, size, size);
67

68 // allocate memory for intermediate and final result
69 gsl_matrix *intermediate_result = gsl_matrix_calloc(size, size);
70 gsl_matrix *result = gsl_matrix_calloc(size, size);
71

72 // invert A in function
73 gsl_matrix *A_inv = inv(&A.matrix);
74

75 // calculate C A^(−1) B and store it in result
76 gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, &C.matrix, A_inv, 0.0,
77 intermediate_result);
78 gsl_blas_dgemm(CblasNoTrans, CblasNoTrans, 1.0, intermediate_result,
79 &B.matrix, 0.0, result);
80

81 // calculate D − result and store it in result
82 gsl_matrix_sub(result, &D.matrix);
83 gsl_matrix_scale(result, −1);
84

85 print_matrix(result);
86

87 // deallocate heap memory of auxiliary variables
88 gsl_matrix_free(intermediate_result);
89 gsl_matrix_free(A_inv);
90 gsl_matrix_free(result);
91

92 return 0;
93 }

The program begins execution at the beginning of the main function in line 34 and we start by
entering the example matrices A, B, C and D. The GSL’s documentation suggests doing that by
generating matrix views from raw arrays, so we enter the matrix entries in flat arrays and call the
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appropriate GSL functions. We begin to prepare the actual calculation in line 69 by allocating
memory for the and result, as well as an intermediate result.

In line 73, we make a function call to invert the matrix A. However, GSL does not offer us a
function that directly inverts a matrix. Instead, we have to implement such a function ourselves
in the form of the inv function, starting in line 15. The way we invert matrices using GSL is to
perform an LU decomposition of the matrix and call an auxiliary function to compute the inverse
matrix based on the decomposition. This is exactly what we do in the inv function. In the first
few lines, we allocate memory for the resulting inverse matrix and auxiliary variables and then
perform the LU decomposition in line 23. To this end, we copied the contents of the input matrix
into the variable for the result and passed it as an input to gsl_linalg_LU_decomp. We do
this because gsl_linalg_LU_decomp stores its results by overwriting the contents of its input
parameter and we do not want it to overwrite the input parameter of the inv function. Beyond
that, gsl_linalg_LU_decomp gives us a permutation we need to store in order to construct
results from the decomposition. This permutation is one of the auxiliary variables we needed to
allocate at the beginning of the inv function. With the decomposition performed, we then call
gsl_linalg_LU_invx to create the desired inverse matrix in the return variable. Before we can
return this result, however, we need to make sure that we free all memory that we allocated for
auxiliary variables in the heap, since otherwise our inv function would cause a memory leak. We
do this by freeing the memory we allocated for the permutation of the decomposition in line 26.

With matrix A inverted, we can continue the calculation by determining the product CA−1B.
For performing matrix multiplications, GSL offers us an interface to a BLAS implementation,
which means, for calculating the product of two matrices we need the function gsl_blas_dgemm
that performs the dgemm BLAS operation. The d in dgemm stands for “double”, since we perform
the operation on matrices that have floating-point numbers with double precision as entries, ge
stands for “general”, because we do not restrict ourselves to a specific kind of matrices, like,
e.g., triangular matrices, for which the operation can be further optimized, and mm stands for
“matrix-matrix”, since we perform an operation that involves two matrices. The dgemm operation
computes the expression

PC = α op(PA) op(PB) + βPC (4.48)

of its parameter matrices PA, PB and PC and its scalar parameters α and β with op(PA) being
either PA, P

⊺
A or P†

A. In line 76, we calculate the product CA−1 and store the result in the variable
intermediate_result. We need neither of the matrices C and A−1 to be transposed, so we pass
the option CblasNoTrans for both operand matrices. Since we want the result to contain only
thematrix product and none of what currently is in the intermediate_result, we set α = 1 and
β = 0. If we did not set β to zero, we would have to take care, that the intermediate_result
itself is initialized to contain only zeros. When passing the parameter matrices C and A−1, we
need to reference the two matrices differently, namely, we reference C through &C.matrix and
A−1 simply through A_inv. We shall get back to that below. In line 78, we perform another
matrix multiplication to store the result of CA−1B in intermediate_result.

After calculating the product CA−1B, we need to subtract it fromD. To achieve this, we employ
GSL’s gsl_matrix_sub function in line 82. The keen-eyed reader may have noticed, that it is
also possible to include this subtraction in the second call of the dgemm BLAS routine since we
can see in Eq. (4.48) that this routine includes a matrix subtraction if we set β = −1. However,
this requires the use of a second intermediate matrix and makes the code even harder to read
than it already is. Since the gsl_matrix_sub function stores its result in its first parameter, we
need to calculate the difference CA−1B − D and scale it by a factor of −1 to obtain the desired
result. This is done in the subsequent line.

With the desired expression calculated, we present the result by printing it to the standard
output, i.e. in the console. To do this, in line 85, we call the function print_matrix that we
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implement in lines 6ff. Unfortunately, GSL does not include a function that prints a matrix to the
console in a sensible way. Therefore, we have to implement one ourselves.

Before the program ends by returning from the main function, in lines 88f we free the mem-
ory that we have allocated for auxiliary variables and the result variable in the main function.
This is not necessary, since directly after that the program terminates anyway, however, C devel-
opers should have a habit of always freeing memory that has previously been allocated. In fact,
before we move on to the next example, we shall discuss some more of the memory handling
in the C implementation of our example calculation. Firstly, in line 20, we fill the variable hold-
ing the result with the entries of the input parameter matrix. We achieve this by invoking the
gsl_matrix_memcpy function. This is the “most correct” way of doing it since it is the safest; the
gsl_matrix struct contains information about the size of the matrix and the library function can
use it to clone the matrix without causing memory errors. It is, however, also possible to invoke
the built-in C function memcpy to copy the raw contents of the matrix directly by accessing the
data field in the matrix variables. Such a practice is commonplace in C, but a bit problematic,
since it requires the user to correctly specify the limits of the memory copy operation. This is
done by taking the number of elements of the matrix and the size of the data type of the entries
into account, in order to clone the matrix completely and without overwriting memory outside
of the data of the target matrix. A developer that is not familiar with GSL might resort to this
practice, rather than using gsl_matrix_memcpy, and introduce an error-prone piece of code to
the project. Secondly, as discussed above, we need to manually free memory that we previously
manually allocated for variables, in order to not cause memory leaks. In a world where auto-
matic memory management techniques such as garbage collection and borrow checking exist,
there is simply no point in taking the risk of manual memory management. Finally, we want
to address the syntax that we used in line 76 to reference the parameter matrices to the call of
dgemm. Because we enter the input matrices of our example in the form of matrix views, rather
than referencing C, we need to reference the included gsl_matrix struct C.matrix. However,
the gsl_matrix struct is usually used in the heap, and, thus, functions operating on matrices
usually accept pointers to matrix structs as parameters. Our matrix view is stored in the stack
rather than the heap and the C variable holds the entire struct instead of a pointer to the struct
and, therefore, we need to extract the memory address of C.matrix by prefixing it with an am-
persand. The same does not hold for A_inv, since this matrix is allocated in the heap and the
variable already holds a pointer. This results in an awkward mixture of syntax that does not
make the already cryptic call of dgemm any easier to understand.

Moving on to the second of our candidate languages, we implement our example calculation
in Fortran using the a LAPACK library for linear algebra operations. The resulting source code is
shown in Listing 4.2.

Listing 4.2: Example calculation implemented in Fortran using LAPACK for linear al-
gebra operations.

1 module subroutines
2 use, intrinsic :: iso_fortran_env
3

4 contains
5

6 subroutine print_matrix(n, matrix)
7 implicit none
8 integer, intent(in) :: n
9 real(real64), dimension(n, n), intent(in) :: matrix

10 integer :: row, col
11

12 do row = 1,size(matrix, 1)
13 do col = 1,size(matrix, 2)
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14 write ( *, fmt="(f7.2)", advance="no") matrix(row, col)
15 end do
16 write ( *, * )
17 end do
18 end subroutine
19

20 subroutine inv(n, input_matrix, output_matrix)
21 implicit none
22 integer, intent(in):: n
23 real(real64), dimension(n, n), intent(in) :: input_matrix
24 real(real64), dimension(n, n), intent(out) :: output_matrix
25

26 ! define auxiliary variables for inversion
27 integer, dimension(n) :: ipiv
28 real(real64), dimension(n) :: work
29 integer info
30

31 ! store input matrix in output variable before beginning to alter it
32 output_matrix = input_matrix
33

34 ! perform LU decomposition of copied input data
35 call dgetrf(n, n, output_matrix, n, ipiv, info)
36

37 ! use LU decomposition to construct inverse of input matrix in output
38 ! variable
39 call dgetri(n, output_matrix, n, ipiv, work, n, info)
40 end subroutine
41

42 end module subroutines
43

44 program example
45 use subroutines
46 implicit none
47 real(real64), dimension(3, 3) :: A, B, C, D, A_inv, intermediate_result
48 integer n
49 n = size(A, 1)
50

51 ! define matrices A, B, C and D
52 A = reshape((/ &
53 1, −1, 0, &
54 0, 1, −1, &
55 1, 0, 1 &
56 /), shape(A))
57 B = reshape((/ &
58 3, 0, 0, &
59 0, 2, 0, &
60 0, 0, 1 &
61 /), shape(B))
62 C = reshape((/ &
63 −1, 0, 0, &
64 0, 3, 0, &
65 0, 0, 1 &
66 /), shape(C))
67 D = reshape((/ &
68 −1, 0, −1, &
69 1, −1, 0, &
70 0, 1, −1 &
71 /), shape(D))
72

73 ! call subroutine to invert matrix A
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74 call inv(n, A, A_inv)
75

76 ! calculate C A^(−1) B
77 intermediate_result = matmul(C, A_inv)
78 intermediate_result = matmul(intermediate_result, B)
79

80 intermediate_result = D − intermediate_result
81

82 call print_matrix(n, intermediate_result)
83 end program example

Our program begins execution in line 44 and we begin by declaring the variables of our program
in line 47. In lines 52-71 we enter the matrices A, B, C and D of our example calculation. We do
this in a similar manner to our C implementation, by entering the matrix entries in flat arrays
and reshaping them to fit the desired 3× 3 shape. There is, however, a difference in how C and
Fortran store matrices: matrices in Fortran are column-ordered. That means that, in the flat data
array, we need to write all entries of a column before moving on to the next column rather than
writing all entries of a row before moving on to the next row. Because of this memory order,
the matrices we enter in lines 52-71 in the code all appear to be transposed, but the matrices
we store and that we operate on are not. From a technical standpoint, nothing speaks against
column-ordering matrices, but from a readability standpoint, it creates a discrepancy between
the code we write and the calculation we aim to implement.

In line 74 we invert the matrix A. As is the case in the C implementation of our example
calculation, there is no function or subroutine at our disposal that does that directly, therefore,
as we do in the C implementation, we implement our own subroutine to invert a matrix. This
implementation begins in line 20. As we do in C, we perform an LU decomposition of the input
matrix and construct the inverse from the decomposition. We begin by declaring the auxiliary
variables for this process in lines 27ff. Unlike in C, calls to Fortran library subroutines usually do
not require us to pass pointers as arguments which allows us to pass the variables we declared
directly and leads to more consistent code within the subroutine call. Just like we did in C, we
write the contents of the input matrix into the output matrix, because the LU decomposition
overwrites its input with its results and we cannot (and do not want to) overwrite an input in
a subroutine. We perform this copy of data in line 32. Because Fortran is purpose-built for the
manipulation of multi-dimensional arrays, this is actually more straightforward than it is in C. To
actually perform the LU decomposition, we call the LAPACK subroutine dgetrf that stores the
result in the output_matrix variable and also stores a permutation in the ipiv variable, with the
name ipiv being de-facto standardized by the documentation of the dgetrf subroutine [75] and
possibly standing for “index pivot”. The names of LAPACK subroutines can be decoded similarly
to the way we can decode BLAS subroutine names; d in dgetrf stands for “double”, because we
work with matrices that have entries with double-precision floating-point numbers as entries, ge
stands for “general”, because we use the variant of the subroutine that can operate on all types of
matrices and does not implement optimizations for special types of matrices, like, e.g., symmetric
matrices and trf represents the operation we want to perform. It is not documented, what the
three letters in the code actually stand for, but it appears reasonable that they represent some
variation of “triangular factorization”. In the subsequent line, we call the LAPACK subroutine
dgetri with tri, possibly standing for “triangular factorization inverse”. This subroutine stores
its results in place in the output_matrix variable, and since this variable is declared as an output
of the inv subroutine, there is no need for an explicit return statement after that. With matrix
A inverted, we continue in line 77 and calculate the matrix product CA−1. Fortunately, modern
versions of Fortran, starting from Fortran90, have the built-in matmul function to perform matrix
multiplications. This way, we do not have to find the appropriate BLAS subroutine and construct
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the lengthy call. With the subsequent line, we have the product CA−1B calculated. line 78 is
where Fortran’s purpose-built nature really shines. In this line, we use our result for the product
CA−1B to calculate the difference D−CA−1B. Instead of requiring lengthy calls to library functions
or explicit loops, Fortran offers an intuitive syntax for performing simple arithmetic operations on
tensors. Unfortunately, Fortran and LAPACK offer no subroutine to display matrices in a sensible
way, hence we have to implement one in line 6 and call it in line 82.

This concludes the implementations with the two older languages in our line-up. The next
language we look at is Python. For tensor- and linear algebra operations, we use the library
NumPy. A resulting source code for the implementation of our example calculation is shown in
Listing 4.3.

Listing 4.3: Example calculation implemented in Python using NumPy for tensor- and
linear algebra operations.

1 import numpy as np
2

3 if __name__ == '__main__':
4 A = np.array([
5 [1, 0, 1],
6 [−1, 1, 0],
7 [0, −1, 1]
8 ], dtype=np.float64)
9 B = np.diag(np.array([3, 2, 1], dtype=np.float64))

10 C = np.diag(np.array([−1, 3, 1], dtype=np.float64))
11 D = np.array([
12 [−1, 1, 0],
13 [0, −1, 1],
14 [−1, 0, −1]
15 ], dtype=np.float64)
16

17 print(D − C @ np.linalg.inv(A) @ B)

In lines 4-15 we enter the matrices A and D as two-dimensional NumPy arrays. For B and C we
use NumPy’s diag function to create diagonal matrices from the values on the diagonal. The
entire calculation happens in line 17 with the @ operator performing matrix multiplication and
np.linalg.inv inverting the matrix A. Since NumPy’s array type declares how it wants to
be represented in a string by implementing the special __str__ function, we can simply use
Python’s built-in print function to print a matrix or any other NumPy array to the console.

Julia is similarly concise. The source code of the example calculation implemented in Julia
is shown in Listing 4.4.

Listing 4.4: Example calculation implemented in Julia using only the standard library.
1 using LinearAlgebra
2

3 function main()
4 A = Matrix{Float64}([
5 1 0 1;
6 −1 1 0;
7 0 −1 1
8 ])
9 B = diagm(Vector{Float64}([3, 2, 1]))

10 C = diagm(Vector{Float64}([−1, 3, 1]))
11 D = Matrix{Float64}([
12 −1 1 0;
13 0 −1 1;
14 −1 0 −1
15 ])
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16

17 display(D − C * inv(A) * B)
18 end
19

20 main()

In Julia we do not even need a third-party library, since most linear algebra operations are im-
plemented in the LinearAlgebra module that is part of Julia’s standard library. In lines 4-15
we enter the matrices A and D as two-dimensional matrices. For B and C, we use diagm function
from the LinearAlgebra module to create diagonal matrices from the values on the diagonal.
The entire calculation happens in line 17 with the multiplication operator * performing matrix
multiplication when applied between matrices and the inv function from the LinearAlgebra
module. In this line, it really shows that Julia was created for scientific calculations; it is almost
impossible to make this line more concise and easier to read. The result of the calculation is
printed to the console using Julia’s built-in display function that creates formatted, human-
readable output for a whole host of Julia types.

When comparing these four implementations, we make an observation: while all of the four
candidate languages are generally considered high-level languages, Python and Julia feature a
much higher level of abstraction than C and Fortran, resulting in far shorter code and less need to
manually implement auxiliary functions. This allows a developer to implement Python and Julia
programs in significantly less time and makes the code a lot easier to read and understand. In
fact, one may have noticed that the Python and Julia codes of our example calculation feature no
comments whatsoever; they are simply not needed when we can just read the code instead. This
is a useful feature, because, while comments outside of the documentation of functions, modules,
etc. are usually considered good practice in science, in reality, they are merely a workaround for
unreadable code. We also notice that Python and Julia allowed us the direct inversion of ma-
trices without forcing us to explicitly perform an LU decomposition. There can be performance
benefits in decomposing a matrix in its triangular factors and keeping it in that form through-
out calculations, however doing this falls into the category of optimization. In modern software
development, the usual order is “make it work, make it pretty, make it fast”. This ensures that
we only sacrifice readability and maintainability for performance where it is really necessary. As
discussed above, in an often-changing simulation under active research, most parts of the code
may never get to a point where it is appropriate to make that sacrifice. Therefore, it is desirable
for us not to use tools that force that sacrifice onto us. We end the section on the syntax of our
candidate languages with the discussion of boilerplate code. In programming, the term boiler-
plate code or just boilerplate, for short, refers to code that is needed to run the program but is
not part of the business logic of the program. In our case, the business logic is to numerically
solve the Langevin equation for our system. A general example of boilerplate code would be
the preamble of a program, the part in which we import all the necessary libraries, modules,
and functions. Generally, we want our programs to have as little boilerplate code as possible in
order to keep them more readable and not “dilute” the physics within them. As we can see in
the example source codes above, Python, Julia, and, indeed, many modern languages feature
very little boilerplate code and allow us to write concise code. C features more boilerplate code
because it requires us to type out instructions for memory management and because we need
to call library functions with lengthy names and many arguments to perform basic operations.
Fortran can perform some basic operations concisely by employing operators but requires much
boilerplate code in many other parts. Consider, for example, the definition of a subroutine in
lines 20-24 of Listing 4.2. It consists of four lines and, excluding parameter names and whites-
pace, 124 characters. That is quite a lot for such a simple task. Therefore, when considering
boilerplate code, modern languages such as Python and Julia are a more reasonable choice.
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4.3.7 Summary of Comparison and Choice of Language

In this section, we summarize the comparison of the four candidate languages for the simulation
core. The results of the comparison are shown in the following table:

Language Performance Tooling Interoperability Design Ease of Use Maturity
C + - - - - +

Fortran + - - + - +
Julia + + + + + -

Python - + + - + +

A plus “+” in this table means that the language is suitable under the given aspect, while a minus
“-” indicates that the other languages seem better choices under the given aspect. As we can see,
Julia emerges as a clear winner. The only real downside of Julia for our endeavor is its relatively
young age; some parts of the language and its tooling are not yet polished. Nevertheless, we
pick Julia and use it to implement the simulation core.



5 0+1 Dimensional Systems

With the simulation implemented, we can now calculate observables, although, for now, our
focus is on proof-of-concept calculations. That means we are looking for calculations that do not
take too long andwhose results can be compared to analytical solutions. Because of this, we focus
on 0+1 dimensional calculations, i.e., calculations with zero spatial dimensions, d = 0, and one
temporal dimension. At first glance, it seems reasonable that fewer spatial dimensions make it
cheaper to run simulations since the lattice needs fewer spatial sites. However, that assumption
is not necessarily true, because the dynamics of systems vary strongly and non-trivially between
spatial dimensions and, indeed, we often find that systems with fewer spatial dimensions require
a finer discretization of (space-)time to converge to acceptable results. Nevertheless, in the 0+1
dimensional case, we can obtain analytic solutions for observables and compare them against the
results of our simulation, making that setting a suitable choice for proof-of-concept calculations.

5.1 Density Equation of State

The first observable we calculate is the density. That may seem like an odd choice since particle
densities are actually quite tedious to calculate in the pairing field formalism. Yet, we choose
to begin with the calculation of densities for two reasons: densities are simple observable that
are straightforward to interpret, and densities are extensively studied for our type of system,
and we can compare our results to the literature. Density-focused studies of our system at hand
include Ref. [83] in three spatial dimensions, Ref. [12] in one spatial dimension, and Ref. [13]
for density-density correlation functions. Density-focused studies for zero spatial dimensions are
notably absent in this selection because they are available analytically. Nevertheless, building
the machinery for calculating and understanding density equations of state serves us well when
we move on to higher-dimensional theories in which analytical results are no longer available
for comparison and we can rely on literature like the above-mentioned studies for comparison.

5.1.1 Exact Analytical Solution

To obtain analytical results for the density, we go back to the discretizedHamiltonian in Eq. (3.128).
In the case of d = 0, the Hamiltonian simplifies to

̂H = −g ψ̂†
↑

̂ψ↑ψ̂
†
↓ψ̂↓ , (5.1)

because without space, there is no kinetic energy and only one spatial lattice site, removing the
need for a lattice site index on the field operators. In the absence of space, the local density
operators in Eq. (3.119) are (global) particle number operators:

̂Nσ = n̂σ = ̂ψ†
σψ̂σ , (5.2)
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and the occupation number representation of the Fock space states for a single species σ we
define in Eq. (3.120) becomes

|nσ⟩ = (ψ̂†
σ)

nσ |0⟩ , (5.3)

with the property
n̂σ |nσ⟩ = nσ |nσ⟩ . (5.4)

In this simplified setting, it is beneficial to introduce an occupation number representation for
product states of occupation number states of both species:

∣n;n↑,n↓⟩ = δn,n↑+n↓
∣n↑⟩ ⊗ ∣n↓⟩ , (5.5)

introducing the total density n = n↑ +n↓. With these states we can extract the total density n via
the total density operator n̂ = n̂↑ + ̂n↓:

̂n ∣n;n↑,n↓⟩ = n ∣n;n↑,n↓⟩ , (5.6)

as well as the single species densities nσ:

n̂σ ∣n;n↑,n↓⟩ = nσ ∣n;n↑,n↓⟩ . (5.7)

These occupation number states are pairwise orthogonal:

⟨n;n↑,n↓∣n′;n′
↑,n′

↓⟩ = δn,n′δn↑,n′
↑
δn↓,n′

↓
(5.8)

and form an eigenbasis of the Hamiltonian:

̂H |0;0,0⟩ = ̂H |1;0,1⟩ = ̂H |1;1,0⟩ = 0 and ̂H |2;1,1⟩ = −g . (5.9)

Using this basis, we can write the grand-canonical partition function of the system as

Z(β, μ↑, μ↓) = tr e−β( ̂H−μ↑ ̂n↑−μ↓ ̂n↓)

= ∑
n↑=0,1

∑
n↓=0,1

⟨n↑ + n↓;n↑,n↓∣ e−β ̂H ∣n↑ + n↓;n↑,n↓⟩ eβμ↑n↑+βμ↓n↓

= 1+ eβμ↑ + eβμ↓ + eλ+βμ↑+βμ↓

= (1+ eβμ↑)(1+ eβμ↓) + eβμ↑+βμ↓(eλ − 1) ,

(5.10)

with the dimensionless coupling parameter λ = βg. With this explicit expression of the partition
function at hand, it is a straightforward matter to calculate the derivative with respect to μσ to
obtain the particle density for species σ:

nσ = 1
β
𝜕μσ logZ(β, βμ↑, βμ↓)

= 𝜕βμσ logZ(β, βμ↑, βμ↓) .
(5.11)

In the above equation, we rewrote the μσ derivative in terms of a βμσ derivative. This makes it
easier to keep the dimensionless product βμσ together. Performing the derivative results in the
expression

nσ(βμ↑, βμ↓, λ) =
eβμσ + eλ+βμ↑+βμ↓

(1+ eβμ↑)(1+ eβμ↓) + eβμ↑+βμ↓(eλ − 1)
. (5.12)
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Before comparing this expression to numerical results, we shall make some observations. Firstly,
we shall consider the limits βμσ → ∞ and βμσ → −∞, respectively. In the limit βμσ → −∞, with
βμσ′ for σ′ ≠ σ and λ fixed, we find

lim
βμσ→−∞

nσ(βμ↑, βμ↓, λ) = 0 , (5.13)

as expected. In the limit βμσ → +∞, with βμσ′ for σ′ ≠ σ and λ fixed, we find

lim
βμσ→+∞

nσ(βμ↑, βμ↓, λ) = 1 , (5.14)

with one fermion firmly occupying the single lattice site. Secondly, we study the analytical ex-
pression for the particle density in the non-interacting case λ = 0. We find

nσ(βμ↑, βμ↓, λ = 0) = eβμσ + eβμ↑+βμ↓

(1+ eβμ↑)(1+ eβμ↓)

= 1
e−βμσ + 1

= nF(βμσ) ,

(5.15)

with the Fermi distribution
nF(x) =

1
e−x + 1

. (5.16)

That means that in the non-interacting case λ = 0, the two species exist as two non-interacting
ideal Fermi gases that occupy the same system. Lastly, because we plan to study the density of
balanced systems in units of the non-interacting density of balanced systems, comment on the
effect of fermion interaction by studying the ratio

n
n0

(βμ, λ) =
n(βμ↑ = βμ, βμ↓ = βμ, λ)

n(βμ↑ = βμ, βμ↓ = βμ, λ = 0)

= 1+ e−λ−βμ + eβμ + e−λ

e−λ−βμ + eβμ + 2e−λ

(5.17)

with the average chemical potential

βμ =
βμ↑ + βμ↓

2
. (5.18)

In the limits βμ → ±∞ the ratio n/n0 becomes one for arbitrary values of λ:

lim
βμ→±∞

n
n0

(βμ, λ) = 1 . (5.19)

That means the presence of interaction between the two fermion species affects the total density
only in a certain region around βμ = 0.

5.1.2 Mean Field Results

Even though we determined an exact analytical expression for the particle densities above, we
also calculate the particle density in the mean-field approximation introduced in Sec. 3.2. We do
this because mean-field studies are often used when exact results are unavailable. Moreover, this
gives us a chance to study the limitations of this approximation, i.e., where the full description
of our system deviates from a mean-field description.
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We start by determining an expression for the particle density with the logarithm of the
partition function in Eq. (3.91). For our current purposes of the study of a 0 + 1 dimensional
system, the logarithm of the partition function simplifies to

log ̄Z( ̄ϕ∗, ϕ̄, β, μ) = −gβ ̄ϕ∗ ̄ϕ+ log(1
2
+ 1

2
cosh(β√μ2 + g2 ̄ϕ∗ ̄ϕ)) + C(β, μ) . (5.20)

To obtain this expression, rather than simply setting d = 0 in Eq. (3.91), one needs to follow
the derivation in Sec. 3.2 from the top without including space. Before we proceed, we rewrite
the logarithm of the partition function in terms of the dimensionless coupling λ = βg and the
dimensionless average chemical potential βμ. Furthermore, we utilize the U(1) invariance of the
system to reformulate log ̄Z in terms of φ = Re( ̄ϕ) without loss of generality. This yields the
more convenient expression

log ̄Z(φ, β, βμ) = −λφ2 + log(1
2
+ 1

2
cosh√(βμ)2 + λ2φ2) + C(β, βμ) . (5.21)

We can obtain the particle number N, which is equal to the particle density n in the absence of
space, by calculating

n̄(φ) = 𝜕βμ log ̄Z(φ, β, βμ)

=
βμ sinh√(βμ)2 + λ2φ2

√(βμ)2 + λ2φ2 (cosh√(βμ)2 + λ2φ2 + 1)
+ 𝜕βμC(β, βμ) .

(5.22)

Note that this expression only becomes the physical density n when we evaluate n̄(φ) at a mean
pairing field φ that extremizes log ̄Z. For a physical system, we expect a density of n = 0 in the
limit βμ → −∞. This condition allows us to determine the expression 𝜕βμC(β, βμ):

0 != lim
βμ→−∞

̄n(φ)

= lim
βμ→−∞

βμ sinh√(βμ)2 + λ2φ2

√(βμ)2 + λ2φ2 (cosh√(βμ)2 + λ2φ2 + 1)
+ 𝜕βμC(β, βμ)

= ( lim
βμ→−∞

βμ
√(βμ)2 + λ2φ2

)( lim
βμ→−∞

sinh√(βμ)2 + λ2φ2

1+ cosh√(βμ)2 + λ2φ2
)+ 𝜕βμC(β, βμ)

= −1+ 𝜕βμC(β, βμ) .

(5.23)

We find the condition
𝜕βμC(β, βμ) = 1 , (5.24)

which we can satisfy with the choice

𝜕βμC(β, βμ) = βμ+ C′(β) . (5.25)

Generally, the purely β-dependent part C′(β) does not need to be zero. However, it does not
contribute to the density. Therefore, we drop it for the remainder of the derivation. With C(β, βμ)
determined, log ̄Z reads

log ̄Z(φ, β, βμ) = −λφ2 + log(1
2
+ 1

2
cosh√(βμ)2 + λ2φ2) + βμ . (5.26)
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Figure 5.1: Effective potential U(φ) = − log ̄Z over the mean pairing field φ. Both
figures show the effective potential at βμ = 0 and are normalized, such that U(0) = 0.
In the left figure, U features a single extremum at φ = 0, and in the right figure,
U features a local extremum at φ = 0 and two minima at φ ≠ 0. These additional
minima correspond to a non-physical spontaneous symmetry breaking, i.e., in the 0+1
dimensional case, such a spontaneous symmetry breaking violates the Mermin-Wagner
theorem. Its appearance signals a failure of the mean-field approximation.

A remaining step to calculating the density from this φ-dependent logarithm of the partition
function is the undetermined value of the mean pairing field φ. We obtain physical results from
the calculation when log ̄Z is extremal with respect to φ, i.e.,

0 != 𝜕φ log ̄Z(φ, β, βμ)

=
φλ2 sinh√(βμ)2 + λ2φ2

√(βμ)2 + λ2φ2 (1+ cosh√(βμ)2 + λ2φ2)
− 2λφ .

(5.27)

We observe that the above equation is satisfied in the case φ = 0, although log ̄Z can have other
extrema with respect to φ. Our studies show that log ̄Z forms a second extremum when the
coupling exceeds a critical value λc, see Fig. 5.1. Such extrema at φ ≠ 0, however, represent
non-physical results of the mean-field approximation. This is because a non-zero value of φ cor-
responds to the spontaneous breaking of the U(1) phase symmetry of the system. However, the
Mermin-Wagner theorem [84] states that such a spontaneous symmetry breaking is impossible
for our system in spatial dimensions d ≤ 2. Below, we limit our numerical studies to the range
0 < λ ≤ 1, which is well below any value of the aforementioned critical coupling λc we have
encountered in our mean-field study. Therefore, the non-physical extrema of log ̄Z in the regime
λ ≥ λc are of no consequence for our present study. For λ < λc, the mean-field result for logZ
reads

log ̄Z(φ = 0, β, βμ) = logZ(β, βμ) = βμ+ log(1
2
+ 1

2
cosh βμ) , (5.28)

which results in the density

n(β, βμ) = 𝜕βμ logZ(β, βμ)

= 1+ sinh(βμ)
1+ cosh βμ

= 1+ cosh βμ+ sinh βμ
1+ cosh βμ

.
(5.29)
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It is instructive to rewrite the hyperbolic functions in terms of exponential functions. We obtain:

[Continuation of Eq. (5.29)]

= 1+ eβμ

1+ 1
2 (eβμ − e−βμ)

= 1+ eβμ

(e2βμ + 2eβμ + 1) 1
2eβμ

= 1+ eβμ

(eβμ + 1) eβμ+1
2eβμ

= 2eβμ

eβμ + 1

eβμ+1
2eβμ
eβμ+1
2eβμ

= 2
eβμ

eβμ + 1
= 2

1
e−βμ + 1

= 2nF(βμ) .

(5.30)

This means that the density of each of the two fermion species is just the density of a free Fermi
gas. In the mean-field solution, the density does not depend on the interaction between the
species at all if the interaction coupling λ is sufficiently low. That result is expected, since, as
discussed above, the pairing field mediates the interaction between the two fermion species and,
as such, fixing the pairing field to zero eliminates interaction between the fermion species in
the system. However, above the critical coupling λc the densities obtained from the mean-field
study deviate from the density of the free gas. Note that the resulting density differs from the
exact solution in Eq. (5.17). Beyond our present study, this serves as an educational example of
the difficulties of applying mean-field approximations below d = 3, as already suggested by the
Mermin-Wagner theorem.

5.1.3 Numerical Results

Before we discuss the results of our simulation, we clarify certain details concerning its operation.
Our basic unit of performing a simulation is what we call a run of the simulation. In a run, we
pass one set of input parameters to the simulation and it returns one data sample for each of the
specified observables. Within this run, the simulation solves the Langevin equation iteratively for
the given input parameters. At certain points in Langevin time that are determined by the input
parameters, the simulation uses the pairing field configuration at the current point in Langevin
time to calculate an observable sample point 𝒪(i)

O for observable O. When the simulation has
reached its specified maximum Langevin time, it outputs the observable samples {𝒪(i)

O } to a
file. The actual Langevin mean, as seen in Eq. (4.26), is performed in processing scripts in the
auxiliary part of the simulation. The input parameters for a simulation run can be grouped into
three categories:

• Physical Parameters – These parameters describe the physical properties of the system.
Here, we specify the chemical potentials βμ↑ and βμ↓ for each of the fermion species, their
massesm↑ andm↓, and the interaction between the species in the form of the dimensionless
interaction parameter λ = β1−d/2g.

• Lattice Parameters – These parameters determine the spacetime lattice of the simulation.
In this parameter section, we define the temporal lattice extent Nτ, the spatial lattice extent
Nx, and the spatial dimension d. These three parameters determine the total number of
lattice sites N = NτNd

x . In the case of d = 0, the number of lattice sites simplifies to
N = Nτ, Beyond that, we also define the dimensionless ratio of the temporal and spatial
lattice spacings r = aτ/a2x .
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• Langevin Parameters – These parameters specify how the simulation solves the Langevin
equation of the system. The final Langevin time parameter determines up to which max-
imum Langevin time the Langevin equation is solved, and the Langevin time spacing pa-
rameter δtCL determines the spacing in Langevin time between two consecutive pairing
field configurations. Furthermore, we specify an observable decorrelation time. This is a
minimum Langevin time we require to pass between two calculations of sample points of
observables. These parameters allow us to save computational cost by avoiding calculat-
ing sample points that are still correlated to the previous sample points and, thus, do not
provide much new information. In this parameter section, we also specify a seed for the
pseudo-random number generator. This seed allows us to exactly reproduce a single run
by making the Langevin noise deterministic.

Determining Lattice Parameters

In principle it is possible, to just specify the parameters of the simulation latticeNτ andNx directly.
However, the choices we make here have physical implications; for example, the temporal lattice
spacing aτ defines an energy cutoff that determines which energy values can be resolved on the
lattice. Rather than carefully choosing lattice parameters that circumvent such issues, we can
use these physical implications explicitly to define criteria that choose the lattice parameters for
us, based on the physical parameters of the simulation run. In the following, we want to develop
such criteria for the temporal lattice extent Nτ and also for the spatial lattice extent Nx, even
though we do not include space in our current calculations. Each of these criteria depends on a
control parameter that we have to determine empirically for each observable we calculate. We
proceed by determining the values for Nτ and Nx that satisfy each given criterion and then select
the smallest values that satisfy all criteria.

For the temporal lattice extent Nτ, we first address the restoration of the Silver-Blaze sym-
metry, as discussed in Sec. 3.3.5. This restoration makes our temporal derivative deviate from
the form that is dictated by the path integral. This deviation is of order 𝒪(a2τ) and, thus, van-
ishes in the continuum limit but on the lattice, we can limit its effect on the calculation results
by imposing an upper limit δSB on the difference between the derivative factor that respects the
Silver-Blaze symmetry and the derivative factor that is produced by the construction of the path
integral:

eaτμmax − (1+ aτμmax) < δSB . (5.31)

In this criterion, we use the chemical potential

μmax = max
σ

{|μσ|} , (5.32)

for which the difference in Eq. (5.32) is maximal, since the leading order of this difference is
quadratic in aτμmax, and given the chemical potential imbalance is not too large. Because we can
write the chemical potential as

aτμmax = βμmax

Nτ
, (5.33)

we can use the input parameters βμ↑ and βμ↓ to determine a minimum temporal lattice extent
Nτ that satisfies the criterion in Eq. (5.32). For the remainder of this work, we fix the empirical
constant of this criterion to δSB = 0.005, since in most cases the temporal lattice extent is deter-
mined by the interaction strength rather than the deviation introduced by the restoration of the
Silver-Blaze symmetry. We put this criterion in place mainly to prevent unexpected deviations in
results for extreme choices of input parameters.

The second criterion we use to determine the temporal lattice extent is based on the interac-
tion strength of the system. The reciprocal temporal lattice spacing 1/aτ constitutes an energy
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cutoff that limits the energies we can resolve on the lattice. In this spirit, we can define an energy
scale

EI = λ
βd/2−1

adx
, (5.34)

which is determined by the interaction parameter λ and requires that this energy scale is less
than the cutoff energy imposed by aτ:

1
aτ

> CIEI , (5.35)

with the empirical constant CI . Inserting β = Nτaτ into this inequality leads to the criterion

Nτ > (λrd/2CI)
1

1−d/2 , (5.36)

provided d < 2. In the special case of d = 2, the coupling parameter g is dimensionless and does
not provide us with an energy scale we can use for a criterion, and for d > 2, this approach leads
to an upper bound for the temporal lattice extent.

To determine the spatial lattice extent Nx, we require that the length of our box L = Nxax
is sufficiently large compared to the thermal wavelength λth,max = (2πβ/mσ)1/2. To impose the
stricter criterion, we chose the lighter of the two species, i.e., for σ′ ≠ σ, mσ ≤ mσ′ , because
the lighter species has a greater thermal wavelength. We formulate this requirement for the box
length as

Cλλth,max ≤ Nxax , (5.37)

with the empirical parameter Cλ. Rewriting all parameters in terms of lattice parameters leads
to the criterion

Nx ≥ Cλ (
2πr
mσ

Nτ)
1/2

. (5.38)

Note that this criterion is conceptually different from the criterion using the interaction energy.
While the inverse temperature β is a physical property of our system, the box length L = Nxax is
an auxiliary quantity that we extrapolate out of observable results. Also note that this criterion
tells us how the spatial lattice extent scales with the temporal lattice extent: we find Nx ∝ N1/2

τ .

Processing Simulation Runs

When we perform a simulation run, we calculate a sample of observable values, but before we
can visualize and interpret the observable, there are some processing steps we need to apply. The
first thing to do is to calculate the Langevin mean as shown in Eq. (4.26) to obtain the actual
value of the observable calculated by the simulation. Along with the mean, we also estimate the
uncertainty of the result using the Jackknife method in Sec. 2.2.4. We then have an observable
value that depends on all of the simulation parameters since all of the simulation parameters
affect its outcome. Among those are, of course, the physical parameters, such as the chemical
potentials, that we expect to affect the calculated observables, but also technical parameters, such
as the Langevin parameters and the lattice parameters. For the Langevin parameters, we find
that the calculated density values are largely independent of the Langevin time spacing around
a range of values that we pick the spacing from and that increasing the final Langevin time
just causes the simulation to create larger samples, which decreases the statistical uncertainty
of the calculated densities without changing their means beyond the bounds of their statistical
uncertainties.

For the lattice parameters, however, we notice that the calculated densities generally show a
dependence on the temporal lattice extent Nτ. This dependence is particularly strong for βμ >
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Figure 5.2: Illustration of the extrapolation of finite-lattice effects in the density ob-
servable at the point λ = βμ↑ = βμ↓ = 1. The densities are shown in units of the free
density at λ = 0, and the errorbars indicate the standard deviation of the results. The
fit takes the uncertainties of the individual simulation runs into account and results
in the shown extrapolated value. The shaded region around the extrapolated value
represents the standard deviation of the estimate on either side of the solid line.

−1. This dependence is not physical since the temporal lattice is merely an approximation we
introduced to allow us to perform a step in the derivation of the path integral and, as such, the
physical result is obtained in the limit Nτ → ∞. Consequently, this nonphysical dependence is an
example of a finite-lattice artifact. Figure 5.2 shows the dependence of the calculated densities on
the temporal lattice extent for a single point in the physical parameter space at λ = βμ↑ = βμ↓ = 1
andm↑ = m↓ = 1. To remove this nonphysical dependence and formally reach the limit Nτ → ∞,
we fit the calculated densities to a model and use the model fit to determine the density at infinite
temporal lattice extent. To this end, we choose the model

nmodel(Nτ) = c1 − c2N
−c3
τ (5.39)

that allows us to find the density at infinite temporal lattice extent via

lim
Nτ→∞

nmodel(Nτ) = c1 . (5.40)

An example of this fit and the extrapolation Nτ → ∞ can also be seen in Fig. 5.2. The fit uses
the uncertainties of the single simulation runs as well as the intrinsic uncertainty of fitting data
points to a model to determine an appropriate uncertainty for the extrapolated density in the c1
parameter of the fit.

As mentioned above, this finite-lattice effect is most prominent for βμ > −1 and negligible
for smaller chemical potentials βμ < −1. In that regime, we calculate the density at different
reasonably large temporal lattice extents to verify that the dependence is indeed negligible, and
then combine them into a single estimate through the use of a maximum-likelihood estimator,
in our case, a weighted average that takes the uncertainty of each individual simulation run into
account. Suppose we performed N simulation runs for different temporal lattice extents and
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obtained the densities {ni} for i = 1, ...,N with standard deviations {σni}, then the maximum-
likelihood estimate for the density is the weighted average

̄n = (
N
∑
i=1

1
σ2
ni
)

−1 N
∑
i=1

ni
σ2
ni

(5.41)

with the uncertainty

σn̄ = (
N
∑
i=1

1
σ2
ni
)

−1/2

. (5.42)

To understand why the maximum-likelihood estimator is realized by an average that is weighted
with the uncertainties of the values, let us consider a brief example. Suppose we run the simu-
lation five times and obtain the five densities1 and their respective standard deviations:

n 1.12 0.94 1.06 2.26 1.16
σn 0.03 0.09 0.04 0.94 0.07

σn/n 0.027 0.096 0.038 0.416 0.060

One might then think that the density for this set of physical parameters lies around 1.31 ±
0.22 because that are the mean and standard deviation of the mean for this set of densities.
However, if we look closer, all but the fourth density paint a relatively consistent picture. Just
the fourth density is an extreme outlier that is significantly above the other densities. This outlier
also features a much larger uncertainty than the other densities with a relative uncertainty of
41.6%. Hence, loosely speaking, it is far from certain that the density should actually be that
high. Nevertheless, the naive mean does not take that high uncertainty into account, and the
outlier drastically increases the total estimate of the density and its uncertainty. The maximum-
likelihood estimator is more robust; because the outlier features such a large uncertainty, it has
little weight in the sum that determines the estimate for the density. Therefore, the total estimate
is dominated by the four more regular densities, and beyond that, the uncertainty of the total
density estimate is much lower. One could say that the maximum-likelihood estimator mostly
ignores the fourth density because it contains little additional information. With the maximum-
likelihood estimator, we find 1.10 ± 0.02 as the total estimate for the density, which is much
more in line with the less uncertain densities we calculated. As such, the maximum-likelihood
estimator is a suitable tool to combine multiple simulation runs into a total estimate.

Balanced Densities

In this section, we discuss the numerical results obtained from our simulation. We focus on
balanced densities with βμ↑ = βμ↓ = βμ and βh = 0. As a first simple test for our simulation,
we use it to calculate the density equation of state for a non-interacting system with λ = 0.
In the non-interacting case, the analytical solution in Eq. (5.12) and the mean-field solution in
Eq. (5.30) agree on

n(βμ) = 2nF(βμ) . (5.43)

As for our simulation, we need to calculate the expression 𝒪(i)
Nσ

in Eq. (4.36). The only part of

the expression 𝒪(i)
Nσ

that depends on the current Langevin time step is the fermion matrix ℳi. It
is given by

ℳ(i) = (
D(bw)
τ (μ↑) −

RD∆
2m↑

−g diag (R (ϕ(i)
1 + iϕ(i)

2 ))
−g diag (ϕ(i)

1 − iϕ(i)
2 ) D(fw)

τ (μ↓) +
AD∆
2m↓

) . (5.44)

1Recall that in zero-dimensional space densities are identical to particle numbers and dimensionless.
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Figure 5.3: Dimensionless density for a non-interacting system, i.e., λ = 0. No error-
bars are shown because in the non-interacting case, no simulation is performed, and
the obtained results are numerically exact.

We can see that in the non-interacting case, the coupling constant g becomes zero, and ℳ(i)

reduces to

ℳ(i) = (
D(bw)
τ (μ↑) −

RD∆
2m↑

𝟘
𝟘 D(fw)

τ (μ↓) +
AD∆
2m↓

) ; (5.45)

it no longer depends on the pairing-field configuration at all. In fact, the entire expression 𝒪(i)
Nσ

is
independent of the Langevin time in the non-interacting case. As such, we can sidestep the entire
Langevin process and calculate the observable directly rather than simulating the system. The
results of this calculation are shown in Fig. 5.3 and, as expected, they are in perfect agreement
with the analytical results.

Our simulation’s ability to reproduce the non-interacting density indicates that there are no
fundamental problems in the code or the theory. However, the more interesting proof-of-concept
lies, of course, in the calculation of interacting densities. Figure 5.4 shows the results of such
simulations. To obtain this result, we run the simulation for multiple lattice sizes at each point
(βμ, λ) in the space of physical parameters and combine these runs into a total estimate. For
βμ ≲ −1, we use the maximum-likelihood estimator described above because the finite-lattice
artifacts in this regime are negligible. For βμ ≳ −1, we perform the above-mentioned extrapola-
tion to infinite lattices to remove the finite-lattice effects. The errorbars in the figure represent
the standard deviation of the total estimate, and within these uncertainties, our results are in
excellent agreement with the exact analytical solution. Thus, our simulation is able to accurately
capture the effects of interaction that are completely absent in the mean-field solution.

Beyond our study in 0 + 1 dimensions, Ref. [12] contains an analogous study in 1 + 1 di-
mensions. In contrast to our approach, the authors use a density-based auxiliary field to more
efficiently calculate densities and related observables. Figure 5.5 shows the density equation of
state obtained in said 1+ 1-dimensional study. Both studies show the same qualitative behavior
as in 0+1 dimensions. The effects of the interaction concentrated around βμ = 0 with n/n0 → 1
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Figure 5.4: Density in units of the non-interacting density for interacting system with
λ ∈ {0.25,0.5,0.75,1.0}. The errorbars represent the statistical uncertainty of the
data points in terms of their standard deviation. For data points marked with a cross,
finite-lattice effects are extrapolated out, while those marked with a dot are obtained
using a maximum-likelihood estimator.
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Figure 5.5: Density equation of state for 1 + 1-dimensional systems with data taken
from Ref. [12] for dimensionless couplings λ ∈ {0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0}. As
in the 0 + 1-dimensional case, the presence of interaction mainly affects the density
around βμ = 0.
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Figure 5.6: Complex Langevin sample points of the time averaged pairing field ϕ̃
in d = 0 spatial dimensions shown in the complex plane. The color indicates at
which Langevin time each sample point is calculated. The simulation ends at the final
Langevin time tCL,max. The solid horizontal and vertical lines show the sample mean of
the cloud, which lies at −0.22(03)− i0.20(04) with the standard deviation of the sam-
ple mean obtained through Jackknife resampling and indicated by the shaded area
around the lines. The ellipse shows the principle standard deviations of the sample,
i.e., the square roots of the eigenvalues of the covariance matrix of the sample. The
semi-axes of the ellipse are the principle standard deviations in length and are oriented
along the eigenvectors of the covariance matrix. The simulation is carried out with the
physical parameters λ = βμ = 1 and the lattice size is determined with CI = 150 re-
sulting in a temporal lattice extent of Nτ = 150.

for |βμ| → ∞. Therefore, the underlying physics seem similar, and we can use the results of
Ref. [12] as a benchmark in future 1+ 1-dimensional studies.

To conclude the discussion of the density equation of state, we note that the simulations that
resulted in the results shown in Fig. 5.4 are computationally quite expensive because they run
for multiple days. We need relatively large lattices to obtain accurate results for the density, and
that strongly affects the duration of simulation runs. That is, however, neither unexpected nor
a problem since the pairing-field formalism is designed for pairing-related observables, and the
density equation of state serves merely as a proof-of-concept.

5.2 Correlation Functions

In this section, we study quantities that allow us to investigate pairing. Before we get into
correlation functions of the pairing field at different points in time, however, we study a simple
observable that allows us to verify that our Complex Langevin sampling process is indeedworking
as intended. An observable which provides us with this insight is the expectation value of the
spacetime-averaged pairing field ⟨ϕ⟩τ,r. The expectation value of the pairing field is equal to the
expectation value of two fermion fields or, equivalently, two fermionic annihilation operators

⟨ϕ(τ, r)⟩ = ⟨ψ̂↓(τ, r)ψ̂↑(τ, r)⟩ , (5.46)
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as shown in Sec. 3.1.2. Hence, we expect this expectation value to be zero in the absence of a
term that explicitly breaks the U(1) symmetry. With that being stated, we define the observable
as

ϕ̃ = λd/2
th ⟨ϕ⟩τ,r =

λd/2
th

βNd
xadx

∫
β

0
dτ∫

r

ddr ϕ(τ, r) , (5.47)

with the continuous pairing-fieldϕ(τ, r) in this expression being the same (dimensionful) pairing-
field in Eq. (3.24). To calculate this observable with our dimensionless simulation, we rescale
the actual average with a power of the species-independent thermal wavelength λth, defined in
Eq. (4.38), to obtain an overall dimensionless observable. The expression 𝒪(i)

̃ϕ
for this observable

is given by

𝒪(i)
ϕ̃

= (2πrNτ)d/4 1
N

N
∑
j=1

ϕ(i)
j , (5.48)

with ϕ(i) being the dimensionless un-starred pairing field configuration vector at Langevin time
step i. Apart from the prefactor that scales the observable to satisfy the definition in Eq. (5.47),
obtaining the expression in Eq. (5.48) is trivially simple; we only have to average over all com-
ponents of the field configuration vector we have available within the simulation anyway. A
CL sampling process for this observable is shown in Fig. 5.6. We see that we end up around
the expected result of zero. Furthermore, we see that the sampling process demonstrates no ill
behavior, such as getting stuck or doing large jumps.

As a physically more interesting example of correlation functions, we consider the two-point
function of the pairing field

G(τ, τ′) = ⟨ϕ(τ)ϕ∗(τ′)⟩ . (5.49)

This function allows us to study the properties of fermion pairs, which are expected to form in a
superfluid. Since we limit our discussion to the 0 + 1-dimensional case, the two-point function
does not come with a dependence on spatial coordinates. Beyond that, the correlation function
is already dimensionless, and we do not need to rescale it with the thermal wavelength. This
may result in different prefactors between the analytical and numerical solutions, but we can
avoid this issue by manually normalizing both results.

5.2.1 Exact Analytical Solution

To obtain an exact analytical solution for the two-point function in Eq. (5.49), we employ the
operator formalism. As we noted in Sec. 3.1.2, we can represent the two-point function G in
terms of fermionic fields, as

G(τ, τ′) = ⟨ϕ(τ)ϕ∗(τ′)⟩ = ⟨ψ↑(τ)ψ↓(τ)ψ∗
↓(τ′)ψ∗

↑(τ′)⟩ . (5.50)

To express this expectation value in terms of fermionic operators rather than fields, we need to
define time-dependent fermionic field operators in the imaginary-time Heisenberg picture. We
begin by defining time-dependent field operators in real time:

ψ̂σ,real(t) = e+it( ̂H−μ↑ ̂n↑−μ↓ ̂n↓) ψ̂σ e−it( ̂H−μ↑ ̂n↑−μ↓ ̂n↓) and

ψ̂†
σ,real(t) = e+it( ̂H−μ↑ ̂n↑−μ↓ ̂n↓) ψ̂†

σ e−it( ̂H−μ↑ ̂n↑−μ↓ ̂n↓) ,
(5.51)

with the operators from Sec. 3.3.2 and then perform the Wick rotation t → −iτ to obtain

ψ̂σ(τ) ∶= ̂ψσ,real(t = −iτ) = e+τ( ̂H−μ↑ ̂n↑−μ↓ ̂n↓) ψ̂σ e−τ( ̂H−μ↑ ̂n↑−μ↓ ̂n↓) and

ψ̂†
σ(τ) ∶= ̂ψ†

σ,real(t = −iτ) = e+τ( ̂H−μ↑ ̂n↑−μ↓ ̂n↓) ψ̂†
σ e−τ( ̂H−μ↑ ̂n↑−μ↓ ̂n↓) .

(5.52)
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Furthermore, we need to remember that the path-integral formalism produces time-ordered cor-
relation functions. In the operator formalism, we need to explicitly include time ordering by
means of the time ordering operator2 𝒯:

G(τ, τ′) = ⟨𝒯(ψ̂↑(τ)ψ̂↓(τ)ψ̂
†
↓(τ′)ψ̂†

↑(τ′))⟩

= ⟨θ(τ− τ′) ̂ψ↑(τ)ψ̂↓(τ)ψ̂
†
↓(τ′) ̂ψ†

↑(τ′) + θ(τ′ − τ)ψ̂†
↓(τ′) ̂ψ†

↑(τ′)ψ̂↑(τ)ψ̂↓(τ)⟩ .
(5.53)

We split the analytical calculation of this correlation function into the two cases τ > τ′ and τ < τ′

and begin with the former. The expectation value in the operator formalism is given by

G(τ, τ′) = ⟨ψ̂↑(τ) ̂ψ↓(τ)ψ̂
†
↓(τ′)ψ̂†

↑(τ′)⟩

= 1
𝒵

tr (ψ̂↑(τ) ̂ψ↓(τ)ψ̂
†
↓(τ′)ψ̂†

↑(τ′) e−β( ̂H−μ↑ ̂n↑−μ↓ ̂n↓)) .
(5.54)

In this expression, we perform the trace over the basis of states in occupation number represen-
tation:

[Continuation of Eq. (5.54)]

= 1
𝒵

∑
n↑=0,1

∑
n↓=0,1

⟨n↑ + n↓;n↑,n↓∣ ̂ψ↑(τ)ψ̂↓(τ)ψ̂
†
↓(τ′) ̂ψ†

↑(τ′)

⋅ e−β( ̂H−μ↑ ̂n↑−μ↓ ̂n↓) ∣n↑ + n↓;n↑,n↓⟩

= 1
𝒵

⟨0;0,0| ψ̂↑(τ)ψ̂↓(τ)ψ̂
†
↓(τ′)ψ̂†

↑(τ′) |0;0,0⟩

= 1
𝒵
eτ(g+μ↑+μ↓) ⟨2;1,1|2;1,1⟩ e−τ′(g+μ↑+μ↓)

= 1
𝒵
eβ(g+μ↑+μ↓) τ−τ′

β .

(5.55)

In the case τ < τ′, we proceed analogously. We begin with the definition

G(τ, τ′) = ⟨ψ̂↑(τ) ̂ψ↓(τ)ψ̂
†
↓(τ′)ψ̂†

↑(τ′)⟩

= 1
𝒵

tr (ψ̂↑(τ) ̂ψ↓(τ)ψ̂
†
↓(τ′)ψ̂†

↑(τ′) e−β( ̂H−μ↑ ̂n↑−μ↓ ̂n↓)) ,
(5.56)

and perform the trace in the basis of states in occupation number representation. Because the
order of creation and annihilation is reversed opposed to the case τ > τ′, we find a non-zero

2Strictly speaking, the time-ordering operator is a super operator since it maps operators to operators.
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contribution by a different state:

[Continuation of Eq. (5.56)]

= 1
𝒵

∑
n↑=0,1

∑
n↓=0,1

⟨n↑ + n↓;n↑,n↓∣ ψ̂
†
↓(τ′)ψ̂†

↑(τ′)ψ̂↑(τ)ψ̂↓(τ)

⋅ e−β( ̂H−μ↑ ̂n↑−μ↓ ̂n↓) ∣n↑ + n↓;n↑,n↓⟩

= 1
𝒵

⟨2;1,1| ψ̂†
↓(τ′)ψ̂†

↑(τ′)ψ̂↑(τ) ̂ψ↓(τ) |2;1,1⟩ eβ(g+μ↑+μ↓)

= 1
𝒵
e−τ′(g+μ↑+μ↓) ⟨0;0,0|0;0,0⟩ eτ(g+μ↑+μ↓)eβ(g+μ↑+μ↓)

= 1
𝒵
e−τ′(g+μ↑+μ↓) ⟨0;0,0|0;0,0⟩ eτ(g+μ↑+μ↓)eβ(g+μ↑+μ↓)

= 1
𝒵
e(g+μ↑+μ↓)(τ−τ′)eβ(g+μ↑+μ↓)

= 1
𝒵
eβ(g+μ↑+μ↓)( τ−τ′

β +1) .

(5.57)

In summary, we find the following exact solution for the two-point function

G(τ, τ′) = 1
𝒵

⎧{
⎨{⎩

eβ(g+μ↑+μ↓) τ−τ′
β , τ > τ′ ,

eβ(g+μ↑+μ↓)( τ−τ′
β +1) , τ < τ′ .

(5.58)

We could insert the expression for 𝒵 from Eq. (5.10) into this result but since we manually
normalize it anyway, there is no need.

5.2.2 Numerical Results

For the numerical calculations of correlation functions, we can in principle use criteria like we
defined in Sec. 5.1.3 to determine the lattice parameters based on the physical parameters of
the system. However, we observe that far smaller lattices are sufficient to produce acceptable
results for correlation functions compared to densities. Therefore, we fix the lattice size to Nτ =
26 for our numerical studies of correlation functions, regardless of the interaction λ and the
chemical potentials βμσ. Furthermore, we limit our exploratory study of correlation functions to
the chemical potentials βμ↑ = βμ↓ = 0. In the calculations, we focus on larger final Langevin
times to increase the precision of the results. Concretely, we choose a final Langevin time of
tCL,max = 45000 with a spacing of δtCL = 0.05 for all runs of the study. The temporal lattice of
our simulation has Nτ sites that correspond to the times

(τi = i aτ | i ∈ {0, ...,Nτ − 1}) . (5.59)

That means that we can compute the correlation function in the form of an Nτ ×Nτ-matrix (Gij)
with the entries

Gij = G(τi, τj) . (5.60)

It also means that the maximum numerically accessible values of τ and τ′ in G(τ, τ′) are given by
the temporal extent β of the simulation lattice. Numerically, we are limited to the case τ, τ′ < β
while the exact solution in Eq. (5.58) is valid for all real values. Figure 5.7 shows correlation
function matrices of the type shown in Eq. (5.60) for multiple values of the interaction λ. In the
plot, we manually set the diagonal values of all two-point function matrices to zero to exclude
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Figure 5.7: Two-point functions for multiple interactions λ. The subplots show ma-
trices defined in Eq. (5.60) which show the two-point function over all sites of the
temporal lattice of the simulation. The diagonal entries of all matrices are manually
set to zero to exclude the case of τ = τ′ in the plot. All simulations are performed on
a lattice with Nτ = 26 temporal lattice sites at βμ↑ = βμ↓ = 0. The Langevin equation
is solved up to tCL,max = 45000 with a spacing of δtCL = 0.05.

the equal time case τ = τ′ from the plot. We do this because, as we can see in the exact solution
in Eq. (5.58), the two-point function features a discontinuity at that point. In numerical results,
this discontinuity takes the form of large values on the diagonal. These large values make it
difficult to discern the off-diagonal features of the two-point function if we do not remove them
manually. In Fig. 5.7, we see that for a given fixed lattice size the signal-to-noise ratio of the
two-point function increases with increasing interaction λ. For the case of λ = 1.0 the structure
of the two-point function is barely visible in the statistical noise, and we do not include it in
our analyses below; it would seem larger lattices are required to access this region of weaker
interaction. Furthermore, we see that in all matrices the structure of the two-point function is
more pronounced in the triangle above the diagonal. That means that in the upper triangle that
corresponds to the case τ < τ′ we find a higher signal-to-noise ratio. For this reason, we focus the
remainder of the study on this case. Beyond that, we also see the two-point function increases in
the upper right-hand and lower left-hand corners of the matrices. This behavior is an artifact of
the finite lattice size, and we do not include it in our further analyses, i.e., we limit our analyses
to the region |τ− τ′| ≤ β/2.

To compare the numerical results to the analytical solution in Eq. (5.58), we study the func-
tion G(0, τ). Considering the matrices in Fig. 5.7, this corresponds to taking the first row of data.
In the exact solution, we see that the two-point function G(τ, τ′) has a translation invariance and
only depends on the difference of τ and τ′. By averaging multiple rows of the two-point func-
tion matrices, we could, in principle, use that invariance to obtain a more accurate estimate of
G(0, τ). In Fig. 5.7, we can see that this invariance is realized along the diagonal, and we could
average over multiple rows at constant τ − τ′. The constraint |τ− τ′| ≤ β/2 that is imposed
by finite-lattice artifacts would cause us to average over more values the closer they are to the
diagonal. In any case, for the purpose of a proof-of-concept calculation, we refrain from this
procedure. Figure 5.8 shows the comparison of our numerical results with the exact solution.
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Figure 5.8: Two-point function G(0, τ) for multiple values of λ. The crosses represent
the numerical results, whereas the solid lines show the exact solution from Eq. (5.58).
The plot only contains the times 0 < τ < β/2 to omit finite-lattice artifacts and the
value at the discontinuity point τ = 0. The statistical uncertainties obtained through
Jackknife resampling are not shown because they are smaller than the markers. This
indicates that the present deviations are of systematic nature.

We see that the numerical results clearly reproduce the exponential structure of the exact solu-
tion even without further averaging. Additionally, we find that the agreement of the numerical
results with the exact solution increases with increasing interactions λ.

Beyond the time-domain function G(0, τ), it interesting to consider its Fourier transform
̃G(1/τ). Figure 5.9 shows the magnitude | ̃G(1/τ)|2 and the phase arg ̃G(1/τ) for the time-domain

data in Fig. 5.8. Similarly to the time domain, we find a generally good agreement between the
numerical results and the exact solution, and the agreement increases for increasing values of λ.
This could allow us to analytically extend the data to real times in future studies. With such an
analytical extension, we could access interesting quantities such as the real-time spectral function
of the system.

Additionally, we can use the analytical analyses in Refs. [54, 85] to interpret our results
further. For a 0+ 1-dimensional system, the two-point function can be written as

G(0, τ) = ∑
n≥0

cne−(En−E0)τ , (5.61)

with En being eigenenergies of the Hamiltonian and expansion coefficients cn. The Hamiltonian
for our system in 0+ 1 dimensions in Eq. (5.1) has only one eigenstate above the ground state.
Consequently, the two-point function in this case is given by just one exponential function:

G(0, τ) = c1e−(E1−E0)τ . (5.62)

This is consistent with the exact solution we obtained above in Eq. (5.58). Inversely, we could
argue that since our two-point function is given by one single exponential function, our system
must have only one excited state. In frequency space, that means that the real-time spectral
function has just one δ peak at a non-zero frequency. Furthermore, Eq. (5.62) shows us that
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Figure 5.9: Fourier transform of G(0, τ). The crosses represent the numerical re-
sults, while the solid lines show the Fourier transform of the analytical solution from
Eq. (5.58). The upper plot shows the squared absolute value of the Fourier transform,
and the lower plot shows its complex argument. Only points with 0 < τ < β/2 are
used as input for the Fourier transform to avoid including finite-lattice artifacts and
the value at the discontinuity point τ = 0.

the steepness of the exponential function depends on the difference E1 − E0. For our system,
at βμ = 0, this difference is given by g = λ/β. This is consistent with the exact solution in
Eq. (5.58) and our observation in Fig. 5.8. As we see in Fig. 5.7, shallow correlation functions are
numerically unfavorable because they feature a lower signal-to-noise ratio. However, in grand-
canonical systems, the steepness of the two-point function is not given by the energy difference
E1 − E0 alone. As we can see in our exact solution in Eq. (5.58), even for λ = 0, we obtain non-
vanishing exponents by increasing |βμ|. On the other hand, however, we also find that for every
value of λ, there is a chemical potential βμ ≤ 0 at which the exponent vanishes. That means
for every value of λ there is a critical chemical potential around which we can only simulate the
two-point function at increased computational effort. This critical chemical potential moves to
smaller values as λ increases.

These proof-of-concept calculations for 0+1-dimensional field theories show that the pairing-
field formalism and our simulation of it are capable of producing correlation functions that agree
well with exact solutions. With these results, our simulation should be able to calculate correla-
tion functions, including spatial coordinates in higher dimensions, and allow us to study pairing
and the formation of a superfluid ground state in the phase diagram of ultracold Fermi gases.

5.3 Sign Problem

Our simulation of the system exhibits a sign problem, andwhile the CL approach is unhindered by
it, it may be of interest to study the sign problem quantitatively. The source of the sign problem
in our calculations lies in the pairing-field configurations in the fermion matrix ℳ, found in
Eq. (3.244). Even without spin- or mass imbalance, as soon as we evaluate the determinant
of the fermion matrix for non-uniform pairing-field configurations, we generally end up with
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Figure 5.10: Distribution histograms of the complex path integral weights e−𝒮B in the
Complex Langevin sampling process. Sample points of the weights are recorded at
every step in Langevin time, and the Langevin time spacing is δtCL = 0.05. The process
was calculated up to a final Langevin time of 15000, and the first 5% of sample points
have been discarded as “warm up”. The lattice size for each pair of chemical potential
and interaction parameters is determined by the above-mentioned criteria with CI =
100, resulting in lattices up to Nτ = 100 for λ = 1.0.

complex fermion determinants. This results in complex weights e−𝒮B of the path integral for all
interacting systems. Figure 5.10 shows distributions histograms for the complex argument of
path integral weights e−𝒮B for a selection of chemical potentials βμ and interaction parameters
λ. We generally observe narrow distributions around an argument of zero. That means that
the weights generally lie close to the real axis. As such, the sign problem in our simulation can
be characterized as a weak phase problem. The width of the distributions in Fig. 5.10, and, as
such, the severity of the phase problem, increases with increasing values of λ. This comes as
no surprise since the phase problem originates from the pairing-field configurations entering the
fermion matrix, where they are scaled with the interaction coupling. To study this trend more
quantitatively, we determine the width of the argument distributions by calculating the standard
distributions of the samples {arg e−𝒮B}. We then fit these widths to the model

f (λ) = c1 ⋅ λc2 . (5.63)

The results of these fits can be seen in Fig. 5.11. We choose this specific model because we know
that our calculations are free of a phase problem in the non-interacting case. The model reflects
that behavior as f (λ = 0) = 0.
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Figure 5.11: Sample standard deviation of the samples shown in Fig. 5.10. The dashed
lines show fits of the data points to the model in Eq. (5.63), and the determined fit pa-
rameters are shown in the legend. The width of the argument distributions increases
with increasing interaction parameters λ and the exponent of the growth depends on
the chemical potential βμ.





6 Conclusion and Outlook

In this work, we set out to construct a formalism and simulation that is suited for the study of
the phase diagram of two-component Fermi gases using Monte-Carlo methods in an ab-initio
fashion in the future. To this end, we chose to bosonize the underlying fermionic model with
the aid of a Hubbard-Stratonovich transformation that reformulates the system in terms of the
pairing field. There are plenty of other choices for a Hubbard-Stratonovich transformation but
since the details of the pairing mechanism determine the behavior of the system at low temper-
atures, the pairing field seems like the most natural approach, especially when considering its
correspondence to the superfluid order parameter. To circumvent the sign problem that plagues
many Monte-Carlo methods in this particular problem, we use the Complex Langevin method to
implement a simulation of this system. The main goal of this thesis is to develop the pairing-field
formalism and develop a software package that allows for calculations of density equations of
state and correlation functions. We have indeed achieved this goal and demonstrated the appli-
cation of our novel approach by computing density equations of state and two-point functions of
the pairing field.

Before we summarize our findings, we quickly recapitulate the central aspects of our work.
In Chapter 3, we derived the pairing field formalism for the simulation. At first, we bosonized
the system in the continuum and used the resulting theory to derive relations between the pair-
ing field and the fermionic fields of the original theory. We then used the continuum theory to
perform a mean-field study of the system that we later used as a reference for calculated density
equations of state. In Sec. 3.3, we started to rigorously derive the formalism on the lattice, be-
ginning with the fermionic Hamiltonian. We constructed a basis of coherent states and used it to
derive the path integral of the fermionic lattice theory. At this point, we modified the resulting
discretized temporal derivative to restore the Silver-Blaze symmetry, which is important for the
calculation of densities. To improve the general handling of the theory and, more importantly, its
numerical properties in the simulation, we rescaled all constants and fields to be dimensionless.
With the dimensionless lattice theory, we introduced field configuration vectors and coordinate
shift matrices to represent the action of the theory more compactly. In this compact dimension-
less form of the theory, we performed the lattice equivalent of the pairing field transformation,
taking care to include all subtleties that we discovered in the rigorous discretization of the the-
ory. After that, we finally obtained the bosonized lattice theory that serves as the foundation of
our simulation. In Chapter 4, we used the lattice theory to derive the Langevin equation for the
simulation by determining the drift terms. Furthermore, we determined the expressions we need
to sample observables of the system. Additionally, we discussed aspects of software development
to determine the tools and programming languages we used to create the simulation. In Chap-
ter 5, we finally focused on the simulation of 0+ 1-dimensional systems. As a proof-of-concept,
we first focused on density equations of state. We calculated an exact solution for the density,
which we compared to the results of the simulation for different dimensionless couplings. After
that, we started an exploratory study of two-point correlation functions. Again, we started by
determining the exact solution and compared it to the results of our simulation. In both cases,
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we find excellent agreement, which demonstrates the power of our approach.
Now, let us summarize the main findings of this work. In the derivation of the formalism, we

discovered that the lattice theory is not just an arbitrary discretization of the continuum theory.
The rigorous derivation of the lattice path integral imposes rules for the temporal derivative that
also influence the details of the lattice pairing field transformation. We found a highly concise
notation for the lattice theory that allowed us to leverage matrix properties to speed our deriva-
tions up considerably.1 Beyond that, in the construction of lattice derivative operators, the matrix
notation allows us to offload the complicated and error-prone lattice-ordering aspect completely
into the construction of the coordinate shift matrices. With the coordinate shift matrices at hand,
the process of constructing lattice derivative operators from finite differences is almost trivial.
Furthermore, the use of coordinate shift matrices makes the theory more robust against errors
in derivations, because the most error-prone part can be thoroughly tested in isolation from the
rest of the lattice theory. We were able to create a Complex Langevin simulation that successfully
solves systems in 0 + 1 dimensions in an ab-initio fashion for attractive interactions. Through
careful application of principles of modern software development, the simulation is modular and
robust. It features an extensive set of unit tests that make it easy to modify even integral parts
of the simulation without the risk of breaking existing functionality. In addition, the modularity
of our simulation makes it easy to extend, as new observables can be added completely without
disrupting the existing simulation. Our simulation produces density equations of states that are
in excellent agreement with exact solutions. We emphasize that the mean-field approximation
fully fails at this point. Because of the qualitative similarities between density equations of state
in 0 + 1-dimensional and 1 + 1-dimensional systems, we are confident that our simulation will
produce similarly good results in future studies of 1 + 1-dimensional systems. In addition to
density equations of state, we have demonstrated that our simulation is capable of calculating
correlation functions of the pairing field that will be instrumental in future studies of the phase
structure of two-component Fermi gases. Our simulation results for the two-point function of the
system agree well with the available exact solutions. Additionally, we found that the pairing field
formalism is capable of producing precise results for correlation functions of the pairing field on
smaller lattices than it requires to produce precise results for densities. Therefore, it indeed
seems to be an efficient approach to simulating pairing-related quantities. Using analytic studies
of the properties of correlation functions, we identified ranges of physical parameters that lead
to favorable numerical conditions in the simulation. With this insight gained, the simulation is
ready to tackle correlation functions in higher spatial dimensions.

In conclusion, our novel lattice pairing field formalism is successful in simulating two- com-
ponent Fermi gases in 0 + 1 dimensions and looks like a promising approach to studying the
phase structure of the system in d ≠ 0 dimensions. In particular, it could be an effective way to
access inhomogeneous phases in spin-polarized systems.

The next step for the pairing field formalism is to study systems in 1 + 1 dimensions. For
proof-of-concept calculations of density equations of state, we can use the numerical results in

1We want to share an anecdote to illustrate that fact. The lattice theory presented in this thesis is actually the
third incarnation of the pairing field theory. For the first lattice theory, we naively discretized an action we bosonized
in the continuum, as it is often done in the literature. Getting that theory to the point where we can simulate it took
us over a year. Eventually, we figured out that the naive discretization produced incorrect results. Therefore, we
derived the theory again, this time starting from the Hamiltonian. We had already done a lot of the preparations for
the lattice, therefore, deriving the second incarnation only took us about five months. We discovered that there was
still a problem in the discretized pairing field, so we had to derive the formalism for a third time. However, at that
point, we had discovered how to use coordinate shift matrices to formulate lattice theories. With them, we could
derive the third theory in twenty minutes on two pages of paper! Because their usefulness translates directly to the
implementation of the simulation, even implementing this new formalism in the simulation took no more than an
hour.
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Ref. [12]. We note that further improvements to our software package may be worthwhile to im-
plement. For example, adaptive steps for the Langevin solver, as discussed in Sec. 2.3.1, present
an improvement that can not only increase the performance of our simulation but potentially
also make it more robust against certain classes of numerical problems that may occur. Beyond
d = 0, the lattices of our simulation may become so large that the direct inversion of the fermion
matrix in the calculation of the drift becomes unviable. In that case, we can implement the
scheme discussed in Sec. 2.3.2 to approximate the drift stochastically. Regardless, already in its
present version our novel approach is ready to move towards higher dimensions until in d = 3
dimensions, the correspondence of the pairing field to the superfluid order parameter allows us
to study the spontaneous breaking of the U(1) symmetry.





A Manipulating Field Bilinears

Rewriting the action in Eq. (3.8) in terms of Nambu-Gorkov spinors requires flipping the order
of fermion fields around a central operator in a bilinear expression. To illustrate how this is
achieved, let us consider the expression

A = ∫
β

0
dτ∫d3r ψ∗(τ, r)(𝜕τ −

∇2

2m
− μ)ψ(τ, r) (A.1)

with the Grassmann-valued fields ψ∗ and ψ. Our goal is to reverse the order of the fields and
obtain a new bilinear representation of A of the form

A = ∫
β

0
dτ∫d3r ψ(τ, r) ( ? )ψ∗(τ, r) (A.2)

and the unknown operator in its center. What initially prevents us from just swapping the fields
around is the fact, that we have a differential operator in the center that acts on the right-hand
field. Thus, a reasonable first step is to Fourier transform the fields and replace the differential
operators by scalars so that the fields can be moved around the center:

A = ∫
β

0
dτ∫d3r ψ∗(τ, r)(𝜕τ −

∇2

2m
− μ)ψ(τ, r)

= ∫
β

0
dτ∫d3r

1
β
∑
n

∫ d3p
(2π)3

1
β
∑
n′

∫ d3p′

(2π)3
⋅

eiωnτeipr ψ̃∗(ωn,p)(𝜕τ −
∇2

2m
− μ) ψ̃(ωn′ ,p′) e−iωn′τe−ip′r

= ∫
β

0
dτ∫d3r

1
β
∑
n

∫ d3p
(2π)3

1
β
∑
n′

∫ d3p′

(2π)3
⋅

eiωnτeipr ψ̃∗(ωn,p)(−iωn′ +
p′2

2m
− μ) ̃ψ(ωn′ ,p′) e−iωn′τe−ip′r

(A.3)
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At that point the central expression only contains scalars and we can move the fields past it:

[Continuation of Eq. (A.3)]

= −∫
β

0
dτ∫d3r

1
β
∑
n

∫ d3p
(2π)3

1
β
∑
n′

∫ d3p′

(2π)3
⋅

eiωnτeipr ̃ψ(ωn′ ,p′)(−iωn′ +
p′2

2m
− μ) ψ̃∗(ωn,p) e−iωn′τe−ip′r

= −∫
β

0
dτ∫d3r

1
β
∑
n

∫ d3p
(2π)3

1
β
∑
n′

∫ d3p′

(2π)3
⋅

eiωnτeipre−iωn′τe−ip′r ψ̃(ωn′ ,p′)(−iωn′ +
p′2

2m
− μ) ̃ψ∗(ωn,p) .

(A.4)

The fields have now switched order, so what we would like to do is reverse the Fourier transform
to go back to the position space fields. For this we need to regain the differential operators in the
center operator. This, however, requires us to rewrite the center operator in terms of ω and p,
the arguments of the field that is now on the right-hand side. This can be achieved by using the
time and space integrations together with the exponential functions as deltas via the relations

∫
β

0
dτ e−i(ωn′−ωn)τ = βδn′,n and

∫d3r e−i(p′−p)r = (2π)3δ(3)(p′ − p) .
(A.5)

We continue:

A = −1
β
∑
n

∫ d3p
(2π)3

1
β
∑
n′

∫ d3p′

(2π)3
βδn′,n(2π)3δ(3)(p′ − p) ⋅

̃ψ(ωn′ ,p′)(−iωn′ +
p′2

2m
− μ) ψ̃∗(ωn,p)

= −1
β
∑
n

∫ d3p
(2π)3

1
β
∑
n′

∫ d3p′

(2π)3
βδn′,n(2π)3δ(3)(p′ − p) ⋅

̃ψ(ωn′ ,p′)(−iωn +
p2

2m
− μ) ̃ψ∗(ωn,p) .

(A.6)

At this point, frequency and momentum in the center operator correspond to the arguments of
the right-hand field, so we can go back to position space. To do this we rewrite the deltas as ex-
ponential functions1, absorb the leading sign into the center operator, reconstruct the differential

1You might think that you can move the sign in the exponential functions between eiωnτ and e−iωn′τ to change
the sign of the time derivative in the new center operator. While it is true, that you can move the sign due to the
symmetry of the Kronecker delta, you cannot perform the correct reverse Fourier transform if you do so and, thus,
the sign of the time derivative cannot be changed in the resulting transformed central operator.
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operators and perform the reverse Fourier transform:

A = −∫
β

0
dτ∫d3r

1
β
∑
n

∫ d3p
(2π)3

1
β
∑
n′

∫ d3p′

(2π)3
⋅

e−iωn′τe−ip′rψ̃(ωn′ ,p′)(−iωn +
p2

2m
− μ) eiωnτeipr ̃ψ∗(ωn,p)

= ∫
β

0
dτ∫d3r

1
β
∑
n

∫ d3p
(2π)3

1
β
∑
n′

∫ d3p′

(2π)3
⋅

e−iωn′τe−ip′rψ̃(ωn′ ,p′)(iωn −
p2

2m
+ μ) eiωnτeiprψ̃∗(ωn,p)

= ∫
β

0
dτ∫d3r

1
β
∑
n

∫ d3p
(2π)3

1
β
∑
n′

∫ d3p′

(2π)3
⋅

e−iωn′τe−ip′rψ̃(ωn′ ,p′)(𝜕τ +
∇2

2m
+ μ) eiωnτeiprψ̃∗(ωn,p)

= ∫
β

0
dτ∫d3r ψ(τ, r)(𝜕τ +

∇2

2m
+ μ)ψ∗(τ, r) .

(A.7)

Thus, we obtained the desired representation of the field bilinear Awith the previously unknown
center operator (𝜕τ + ∇2

2m + μ).





B Summation by Parts

Summation by parts is what we call a lattice equivalent to integration by parts in the continuum.
The priciple idea behind this technique is to interpret a sum over lattice sites as an integral and
shift the summation indices in an appropriate manner. This creates boundary terms of field
values outside of the lattice, that we reconcile with the sum by utilizing the boundary conditions
of the field. In this section we want to demonstrate this technique for a temporal derivative of
both bosonic and fermionic fields.

In the bosonic case we consider the bosonic field values {ϕ∗
i } and {ϕi} for i ∈ {1, ...,N} with

the periodic boundary conditions

ϕ∗
N+1 = ϕ∗

1 and ϕN+1 = ϕ1 . (B.1)

These field values represent the field configurations of a 0 + 1-dimensional theory with N tem-
poral lattice sites. A common problem in these theories is essentially the same as the continuum
problem we tackle in App. A: In the derivation of the theory we can find expressions like

N
∑
i=1

(ϕ∗
i − ϕ∗

i+1)ϕi , (B.2)

which is a discretization of

∫dτ (−𝜕τϕ∗)ϕ . (B.3)

However, we would much rather have an expression like

∫dτ ϕ∗ (?)ϕ (B.4)

that has an operator acting on ϕ to the right of ϕ∗. In the continuum we solve this problem
through the means of integration by parts and on the lattice, the “summation by parts” is per-
formed as follows:

N
∑
i=1

(ϕ∗
i − ϕ∗

i+1)ϕi =
N
∑
i=1

ϕ∗
iϕi −

N
∑
i=1

ϕ∗
i+1ϕi

=
N
∑
i=1

ϕ∗
iϕi −

N+1

∑
i=2

ϕ∗
iϕi−1

=
N
∑
i=1

ϕ∗
iϕi −

N
∑
i=2

ϕ∗
iϕi−1 − ϕ∗

N+1ϕN .

(B.5)

In this expression, the rightmost term is similar to the boundary terms in continuous integration
by parts. We can use the boundary conditions of the field in Eq. (B.1) to reabsorb this term in
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the incomplete lattice time summation:

[Continuation of Eq. (B.5)]

=
N
∑
i=1

ϕ∗
iϕi −

N
∑
i=2

ϕ∗
iϕi−1 − ϕ∗

1ϕ0

=
N
∑
i=1

ϕ∗
iϕi −

N
∑
i=1

ϕ∗
iϕi−1

=
N
∑
i=1

ϕ∗
i (ϕi − ϕi−1) .

(B.6)

The resulting expression we found here corresponds to the continuum expression

∫dτ ϕ∗𝜕τϕ , (B.7)

so we succeeded in finding the desired form of the expression.
For the fermionic case we consider the discrete fermionic, i.e. Grassmann-valued fields {ψ∗

i }
and {ψi} for i ∈ {1,… ,N} with the, now anti-periodic, boundary conditions

ψ∗
N+1 = −ψ∗1 and ψN+1 = −ψ1 . (B.8)

Again, we consider the expression

N
∑
i=1

(ψ∗
i − ψ∗

i+1)ψi . (B.9)

In the “summation by parts” of the fermionic expression we begin the same way as for bosonic
fields:

N
∑
i=1

(ψ∗
i − ψ∗

i+1)ψi =
N
∑
i=1

ψ∗
iψi −

N
∑
i=1

ψ∗
i+1ψi

=
N
∑
i=1

ψ∗
iψi −

N+1

∑
i=2

ψ∗
iψi−1

=
N
∑
i=1

ψ∗
iψi −

N
∑
i=2

ψ∗
iψi−1 − ψ∗

N+1ψN ,

(B.10)

and use the fermionic boundary conditions to reabsorb the boundary term in the incomplete
lattice time summation:

[Continuation of Eq. (B.10)]

=
N
∑
i=1

ψ∗
iψi −

N
∑
i=2

ψ∗
iψi−1 − (−ψ∗

1)(−ψ0)

=
N
∑
i=1

ψ∗
iψi −

N
∑
i=1

ψ∗
iψi−1

=
N
∑
i=1

ψ∗
i (ψi − ψi−1) .

(B.11)

Because sums like this always contain products of two fermionic fields, we apply the boundary
conditions twice and the emerging signs cancel. This leaves us with the same behavior as in the
bosonic case.
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