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Abstract: Separating carbon dioxide (CO2) from gaseous streams released into the atmosphere
is becoming critical due to its greenhouse effect. Membrane technology is one of the promising
technologies for CO2 capture. SAPO-34 filler was incorporated in polymeric media to synthesize
mixed matrix membrane (MMM) and enhance the CO2 separation performance of this process.
Despite relatively extensive experimental studies, there are limited studies that cover the modeling
aspects of CO2 capture by MMMs. This research applies a special type of machine learning modeling
scenario, namely, cascade neural networks (CNN), to simulate as well as compare the CO2/CH4

selectivity of a wide range of MMMs containing SAPO-34 zeolite. A combination of trial-and-error
analysis and statistical accuracy monitoring has been applied to fine-tune the CNN topology. It
was found that the CNN with a 4-11-1 topology has the highest accuracy for the modeling of the
considered task. The designed CNN model is able to precisely predict the CO2/CH4 selectivity
of seven different MMMs in a broad range of filler concentrations, pressures, and temperatures.
The model predicts 118 actual measurements of CO2/CH4 selectivity with an outstanding accuracy
(i.e., AARD = 2.92%, MSE = 1.55, R = 0.9964).

Keywords: CO2/CH4 gas mixture; membrane separation; selectivity; intelligent modeling

1. Introduction

Developing carbon capture and sequestration technologies, deploying renewable
sources of energy, and tightening the regulations are the key strategies to achieve the
Paris Agreement targets [1,2]. To this end, among different renewable energies such as
solar, wind, biogas, and biomass, biogas has already demonstrated an appealing potential
to be replaced with fossil fuels [3]. On the other hand, to meet the pipeline safety and
maintenance criteria, biogas requires upgrading by separating the bio-methane from the
involved contaminants, such as carbon dioxide [4]. Accordingly, separating the CO2/CH4
is not only necessary for climate change mitigation, but also favorable for synthesizing the
value-added chemicals [5]. To date, several different technologies including electrochemical
reduction [6], membrane [7], cryogenic [8], adsorption [9], and absorption [10] have been
investigated for gas capture and sequestration. Selectivity is one of the key factors of the
membrane-based separation processes [11].

Among these strategies, absorption and cryogenic ones are the most mature, while
absorption represents some serious environmental problems and cryogenics consume a
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high amount of energy [12,13]. In addition, membrane technology which is efficient and
environmentally friendly appears as the most interesting for gas capture and separation [14].
On these grounds, in recent decades, numerous studies have been devoted to developing
different types of membranes or improving their performance [14]. Some of the recent
interesting ones can be found in [14,15].

Routinely, polymeric membranes are known for their high modular specific area, and
ease of processing [16,17], while the low separation performance because of the Robeson
upper bound is the major drawback of these types of membranes [18,19]. Furthermore,
low permeability and selectivity are the other limitations of polymeric membranes for
large-scale sequestration [20]. To cover these impediments, mixed matrix membranes
(MMMs) emerged to improve the polymer’s separation performances by incorporating
the textural characters of carbon molecular sieves or zeolites in the conventional polymer
matrixes [19]. It is worth mentioning that adding the inorganic fillers to the polymeric
matrix and developing highly efficient membranes involves some hardness, including weak
contact and/or poor distribution of the fillers in the considered polymer matrix [14,19].
Furthermore, fabricating MMMs is influenced by the loading of filler, particle size, polymer
properties, and also filler pore size [14,21].

Accordingly, zeolites based on their particular characteristics, i.e., crystallinity, unifor-
mity, and ion exchange potential, have provided an excellent capacity for different areas of
gas capture and sequestration [22,23]. Among various introduced zeolites, SAPO-34 zeolite
is considered a unique one concerning its interesting specifications including pore diameter,
medium acidity, selectivity, high stability, and kinetic diameter for separating CH4 and
CO2 in related applications such as biogas upgrading and natural gas sweetening [24,25].
Many researchers experimentally investigated the CO2/CH4 selectivity of the MMMs
containing SAPO-34 as a function of pressure, temperature, filler dosage, and polymer type
(see the next section). The review article written by Rimaz et al. presents several interesting
illustrations of the SAPO-34 zeolite which help readers understand the chemistry of this
zeolite [26]. Routinely, selectivity experimental measurement is costly, time-consuming,
and is affected by human-caused errors.

On the other hand, machine learning (ML) approaches have received significant in-
terest for the intelligent simulating of a wide range of problems [27–29]. To this end, fault
detection [30], pattern recognition [31], data mining [32], and model deriving [33] are some
of the main covered domains by ML. Lately, several different ML topologies, including
artificial neural networks (ANN) [34], support vector machines [35], adaptive neuro-fuzzy
inference systems (ANFIS) [36], and genetic programming [37] have been employed in
membrane technology. In this way, Zhao et al. evaluated membrane-fouling criteria in a
membrane bioreactor for the estimation of interfacial interactions using ANN [38]. They
reported the robust potential of the radial basis function for the prediction of interfacial
interactions. Additionally, Tyagi et al. coupled artificial neural networks with genetic
algorithms to optimize and model neodymium ion separation by a liquid membrane [39].
Furthermore, Rezakazemi et al. employed different ML approaches including ANFIS, PSO,
and GA to estimate the selectivity of hydrogen in mixed matrix membranes [36]. Addition-
ally, the maps for process evaluation for membrane-based CO2 separation technology were
also developed by Gasós et al. using artificial neural networks [40].

In the current study, a robust intelligent model has been proposed to estimate the
selectivity of mixed matrix membranes containing SAPO-34 zeolite for the separation of
CO2 and CH4. The suggested model is novel, precise, and could anticipate the effect of dif-
ferent variables on the carbon dioxide and methane separation performance of MMMs. The
proposed model also provides a grounding for synthesizing an MMM with the maximum
carbon dioxide and methane separation efficiency.
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2. Materials and Methods
2.1. Data Collection

As already discussed, SAPO-34 zeolite is one of the favorable zeolites in fabricated
MMMs, which has been extensively investigated in the literature by several research
groups [41–52]. On these grounds, an extensive experimental database of MMMs with dif-
ferent percentages of SAPO-34 zeolite was gathered from the literature [41–52] to ensemble
a CNN-based paradigm for estimating the CO2/CH4 selectivity at different pressures and
temperatures. Several substrates, including polyurethane, polysulfone, polytherysulfone,
polyetherimide, Pebax 1657, Pebax 1074, and Matrimid 5218 have been checked in the
literature [41–52]. As Table 1 shows, the database covers the filler dosage of 0–50 wt%, a
temperature range of 298–348 K, and a pressure range of 0.1–3.0 MPa. In these ranges of
experiments, the CO2/CH4 selectivity of MMMs varies from 1.38–66.99.

Table 1. Summary of the reported CO2/CH4 selectivity of MMMs in the literature [41–52].

Variable Observations Minimum Maximum Mean St. Deviation

Filler dosage
(wt%) 118 0 50 12.11 11.11

Temperature (K) 118 298 348 305.03 10.51

Pressure (MPa) 118 0.10 3.0 0.93 0.67

CO2/CH4
selectivity 118 1.38 66.99 26.69 14.62

It must be mentioned that, although it is possible to simulate the effect of all influ-
ential variables on the CO2/CH4 selectivity using the CNN model, the following matters
convinced us to only consider the effect of SAPO-34 dose, polymer type, temperature, and
pressure on the selectivity.

1. The model is better to develop based on its easy and always available variables
2. Some of the potentially influential variables, including the MMM synthesis method

and selectivity measurement procedure, are not reported in some of the original
articles. Therefore, we have not considered them as independent variables.

3. It is better to ignore those variables that have a minor impact on the selectivity.

2.2. Dependency of CO2/CH4 Selectivity on Involved Variables

The previous section clearly defined both dependent and independent variables
involved in methane and carbon dioxide separation by polymer/SAPO-34 membranes.
Presently, Pearson’s method is applied to reveal the relationship between each pair of
dependent and independent variables. This method uses Equation (1) to identify the most
possible pattern between a pair of variables (i.e., x and y) and extract their relationship [53].

PCx,y = ∑m
k=1 (xk − x)(yk − y)/

(√
∑m

k=1(xk − x)2
√

∑m
k=1(yk − y)2

)
(1)

Here PCx,y shows the Pearson’s coefficients between independent (x) and dependent
(y) variables. In addition, m stands for the number of available records, and k is an index
determining the upper and lower bounds of the summation operator. The relationship
type/strength is coded using a coefficient that varies between −1 and +1 [54]. The minimum
and maximum coefficients show the strongest indirect and direct relationships, respectively.
The physical meaning of other coefficients can also be inferred by their closeness to either
the maximum or minimum bounds.

Figure 1 presents the Pearson’s coefficients for the relationship of CO2/CH4 selectivity
to the SAPO-34 dosage in MMMs, polymer type, temperature, and pressure. The selectivity
directly relates to the first two independent variables, while it indirectly relates to the two
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last variables. In addition, the selectivity dependency of the SAPO-34 dosage in MMMs
and pressure are the strongest direct and indirect relationships, respectively.
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volved features.

It is better to note that the level of data scattering is a critical factor that often mis-
leads the relevancy tests to provide inaccurate results. The literature clearly states that the
Pearson’s predictions are sometimes the opposite of those approved by scientific facts [53].
Although Pearson’s method claimed that selectivity has almost no relationship with pres-
sure and temperature, all experts in the field of membrane-based separation know that
these are important variables and have a substantial impact on the operation.

It should also be mentioned that, since the polymer type is a qualitative variable,
numerical indicators are applied to quantitatively present it. Indeed, polyurethane, poly-
sulfone, polytherysulfone, polyetherimide, Pebax 1657, Pebax 1074, and Matrimid 5218 are
coded by 1, 2, . . . , and 7, respectively.

2.3. Cascade Neural Networks (CNN)

ANN is a non-linear topology that was first developed according to the pattern of
human brain processing for data analysis [55]. Accordingly, the flexibility, robustness,
and accuracy of this strategy quickly nominated it in a broad range of applications from
biomedicine to sustainable development [56,57]. It is possible to design a powerful ANN
model to extract a logical pattern among the considered determinative factors, with related
dependent ones, despite any degree of complexity [58]. To this end, providing an acceptable
experimental dataset is a primary step in developing a black box for the prediction of
targets [59]. In this way, the architecture of ANNs is obtained with signal analysis among
the input and output factors. It is worth noting that the successful development of the ANN
approach demands order specifications in different layers related to neuron interactions.
Accordingly, various types of ANN topologies have been introduced such as multi-layer
perceptron, cascade, radial basis function, and general regression [55]. Among these
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paradigms, the cascade neural network (CNN) is considered the most popular tool to
simulate different phenomena [60,61]. The CNN approach directly connects the input
layer to all the next hidden/output layers [60]. Accordingly, in the current study, the CNN
topology has been employed which includes three key layers such as input, hidden, and
output. Here, the input layer is associated with independent factors (variables) that have
already affirmed the most significant traces of the process, which, after some data analyses,
are sent to the hidden layer. In this layer, the major data processing and mathematical
treatment are applied; thereafter, the outcomes are introduced to the output layer for
final analysis. The applied mathematical processing related to neurons is specified by
Equation (2) as follows [62]:

NON =
M

∑
r=1

wrxr + b (2)

This equation states that the net output of a neuron (NON) can be calculated from
the entry signal (i.e., [x1, x1, . . . , xM] T), weight vector (ωr), and a bias (b). Additionally,
a transfer function (f ) is supplied to receive the NON and calculate the outlet signal, i.e.,
f(NON). Although there are various types of transfer functions [57], the current study uses
the hyperbolic tangent sigmoid (Equation (3)) and logarithmic sigmoid (Equation (4)) in
hidden and output layers, respectively [63].

f (NON) =
exp(NON)− exp(−NON)

exp(NON) + exp(−NON)
(3)

f (NON) =
1

1 + exp(−NON)
(4)

It should be mentioned that to properly benefit from the normalization process to
enhance the training rate as well as improve its quality, the logarithm sigmoid has been
incorporated into the output layer. Indeed, all variables in our study have been normalized
[0 1] before starting the model development phase.

2.4. Accuracy Measurement

This study relies on several accuracy criteria to measure the deviation between actual
and predicted carbon dioxide to methane selectivity (CMS) of MMMs. The correlation of
determination (R), absolute average relative deviation percent (AARD%), mean squared
errors (MSE), relative deviation percent (RD%), and residual error (RE) are defined by
Equations (5)–(9) and are used in the current study [64]:

R =

√
1 −

{
∑m

k=1

(
CMSact − CMSpred

)2
k/∑m

k=1

(
CMSact − CMSact

)2

k

}
(5)

AARD% = (100/m) × ∑m
k=1

(∣∣∣CMSact − CMSpred
∣∣∣/CMSact

)
k

(6)

MSE = (1/m) × ∑m
k=1

(
CMSact − CMSpred

)2

k
(7)

RD% = 100 ×
(

CMSact − CMSpred
)

/CMSact (8)

RE =
(

CMSact − CMSpred
)

(9)

where m indicates the number of CMS samples. Furthermore, the act and pred superscripts
are the actual and predicted values of the CMS.
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It should be mentioned that the authors wrote several distinct codes in the Matlab
environment and used each of them for a specific purpose: for (1) conducting the relevancy
test, (2) constructing and testing the CNN model, (3) performing statistical analysis, and
(4) creating graphs.

3. Results and Discussion

This section explains the process followed to determine the best topology of the CNN
and evaluate its prediction accuracy.

3.1. Tuning the CNN Topology

Although it is possible to create the cascade neural network with arbitrary numbers
of neuronic layers, this study estimates the CO2/CH4 selectivity of MMMs using a single
hidden layer CNN. All the designed CNNs include an input layer, one hidden layer, and an
output layer. Independent variables constitute the input layer and, therefore, it is fixed. In
addition, the number of output neurons is dictated by the number of dependent variables
(i.e., one). Therefore, it is only necessary to determine the best number of hidden neurons
to fine-tune the CNN topology.

The numbers of the hidden neurons of CNNs are changed from one to twelve during
a trial-and-error process. In addition, ten models are developed per each number of hidden
neurons. In summary, this study develops 120 CNNs and compares their accuracy to find
the highest accurate one. Figure 2 reports the results of the ranking analysis performed on
the 120 developed CNNs. It can be seen that the eighth developed CNN model with eleven
hidden neurons has the best performance and achieves the first-rank position. Therefore,
the CNN model with eleven hidden neurons, a tangent sigmoid in the hidden layer, and
a logarithm sigmoid in the output layer is selected as the final model to estimate the
CO2/CH4 selectivity of MMMs.
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Table 2 introduces the numerical values of the AARD%, MSE, and R indices related to
the CNN performance to estimate 118 CO2/CH4 selectivity samples of polymer/SAPO-34
membranes. The training, testing, and all datasets have been estimated with excellent
AARDs of 2.31%, 6.36%, and 2.93%, respectively. The structure-tuned CNN has also
predicted these three datasets with the MSE of 0.51, 7.32, and 1.55, respectively. The
closeness of the observed R values to the one in the training and testing steps, and their
combination, is another indication of the outstanding ability of the proposed CNN for
simulating the considered separation task.
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Table 2. Information on the obtained AARD%, MSE, and R by the best CNN model.

Dataset AARD% MSE R

Training step 2.31 0.51 0.9988

Testing step 6.36 7.32 0.9860

All the data 2.93 1.55 0.9964

The key information related to the designed CNN has been presented in Figure 3. The
feedforward connection between input/hidden and hidden/output layers, as well as the
cascade connection between input/output layers, are observable in this figure. Moreover,
four inputs are SAPO-34 dosage, polymer type, pressure, and temperature, while the
CO2/CH4 selectivity of MMMs is the only output. This figure also shows two neuronic
layers (i.e., hidden and output) with 11 and 1 neurons, respectively. The tangent and
logarithm sigmoid transfer functions can be easily seen in the hidden and output layers.
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3.2. CNN Performance Evaluation

The cross-plot showing the predicted CO2/CH4 selectivity by the CNN versus actual
values for the training, testing, and all datasets are depicted in Figure 4. This figure proves
that the designed CNN has successfully mapped the estimated selectivity samples on their
corresponding actual data in both training and testing steps. The R values related to the
estimation of the training and testing groups are 0.9988 and 0.9860, respectively. These
values state that the major parts of the predicted–actual symbols are located around the
diagonal lines.

The relative deviation percent (i.e., Equation (8)) associated with estimating each
experimental measurement of the actual CO2/CH4 selectivity of MMMs is shown in
Figure 5. This figure shows that only four training and six testing CO2/CH4 selectivity
samples have been estimated with an RD% higher than 5% or lower than −5%. It can be
claimed that the proposed CNN model estimates 110 out of 118 actual CO2/CH4 selectivity
samples with an excellent RD% in the range of −5% to 5%.

The residual error between experimental and calculated CO2/CH4 selectivity samples
(i.e., Equation (9)) for the training and testing phases, as well as all the datasets, has been
illustrated in Figure 6. This figure shows that the CNN estimates almost all the experimental
selectivity samples with the RE ranges from −3 to +3. Few CO2/CH4 selectivity samples
are estimated with a RE outside this narrow range.
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Figure 5. The observed RD% for estimating the CO2/CH4 selectivity of MMMs.
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3.3. Validation by Experimental Measurements

Figure 7 shows the experimental and CNN predictions for the training and testing
sample of the CO2/CH4 selectivity of MMMs. Although the experimental CO2/CH4 selec-
tivity measurements cover a relatively broad range (1.38–66.99) in different compositions
of MMMs and operating conditions, the proposed CNN is able to precisely simulate the
considered process. This figure also explains that 100 CO2/CH4 selectivity samples have
been used in the training step and the remaining 18 samples are used in the testing step. It
was previously reported that the proposed CNN estimates the training and testing datasets
with excellent AARDs of 2.31% and 6.36%, respectively.

3.4. Investigating the Effect of Involved Features on the Selectivity

Figure 8 introduces experimental records and CNN predictions for the CO2/CH4
selectivity of polyurethane membrane and polyurethane-SAPO-34 MMM versus pressure at
298 K. This figure justifies the acceptable agreement between actual and predicted selectivity
samples. This figure also shows that the CO2/CH4 selectivity of both membranes increases
with increasing pressure and filler dose. Although Pearson’s method correctly anticipated
the filler effect on the selectivity, it provided a wrong result for the selectivity–pressure
relationship. As mentioned before, this wrong prediction of the relevancy test is often
related to the high level of scattering in the experimental data.

It is better to note that the relevancy test also anticipated a weak relationship between
selectivity and pressure, but this analysis approves that the pressure is able to change
selectivity sharply.

The pressure effect on the CO2/CH4 selectivity of Pebax 1074-based MMMs containing
20% SAPO-34 at two temperature levels (298 and 308 K) is depicted in Figure 9. The increas-
ing effect of pressure and decreasing effect of temperature on the CO2/CH4 selectivity can
be concluded from this figure. The relevancy test also confirmed an indirect relationship
between selectivity and temperature.
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It is better to note that Pearson’s method also claimed that a weak relationship exists
between selectivity and temperature, but this analysis approves that the temperature impact
on the selectivity is strong.

4. Conclusions

This study aimed to estimate the CO2/CH4 selectivity of those mixed matrix mem-
branes composed of polymeric substrates and with SAPO-34 zeolite as the filler. The
cascade neural network was chosen to extract the relationship between the CO2/CH4 selec-
tivity of the considered MMMs and the involved independent variables (i.e., filler dosage in
polymeric matrices, polymer type, temperature, and pressure). Pearson’s method proved
that an acceptable degree of relevancy existed between the selectivity and the influential
variables. This method identified that the SAPO-34 dosage in the composite membrane has
the strongest direct effect on the CO2/CH4 selectivity of the considered MMMs. The CNN
topology has been fine-tuned using trial-and-error and statistical analyses. The CNN with
11 hidden nodes estimate 118 actual selectivity samples with the AARD = 2.92%, MSE = 1.55,
and R = 0.9964, is identified as the most accurate model for the considered task. Moreover,
several graphical analyses, including cross-plot, residual error, relative deviation percent,
and predicted versus actual graphs have further justified the outstanding performance of
the proposed CNN for estimating the CO2/CH4 selectivity of the MMMs. Such a reliable
model helps monitor the effect of MMM composition (polymer type and filler dosage) and
operating conditions (pressure and temperature) on the potential CO2/CH4 selectivity.
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