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Beitrige zum Robusten Graphenclustering: Spektralanalyse und

Algorithmen

KurzrassuNG

In dieser Dissertation wird der Entwurf von schnellen und parameterfreien Graphen-
Clustering-Methoden beschrieben, die robuste Clusterzuordnungen bestimmen kénnen. Die
Dissertation bietet eine Spektralanalyse sowie Algorithmen, die die erhaltenen theoretischen
Ergebnisse an die Implementierung robuster Graphen-Clustering-Techniken anpassen.

Ein erster Beitrag dieser Arbeit ist die Definition eines spirlichen Graphenmodells, das mit
den Zielen des Graphenclustering vereinbar ist. Dieses Modell basiert auf einer vorteilhaften
Eigenschaft, die sich aus einer blockdiagonalen Darstellung einer Matrix ergibt, die die Dichte
der Verbindungen innerhalb von Clustern und die Spirlichkeit der Verbindungen zwischen
ihnen fordert. Es wird eine Spektralanalyse des spirlichen Graphenmodells einschliefSlich der
Eigenwertzerlegung der Laplace-Matrix durchgefiihrt. Die Analyse der Laplace-Matrix wird durch
die Definition eines Vektors vereinfacht, der alle relevanten Informationen enthilt, die in der
Laplace-Matrix enthalten sind. Die gewonnenen spektralen Eigenschaften spirlicher Graphen
werden auf der Grundlage von zwei Methoden, die die Bestimmung des Spirlichkeitsniveaus als
Anniherungen an die spektralen Eigenschaften der spirlichen Graphenmodelle formulieren, an
das Clustering angepasst.

Ein zweiter Beitrag dieser Arbeit besteht darin, die Auswirkungen von Ausreiflern auf das
Graphenclustering zu analysieren und Algorithmen vorzuschlagen, die die Robustheit und den
Grad der Spirlichkeit gemeinsam berticksichtigen. Die Grundlage fiir diesen Beitrag ist die
Spezifizierung grundlegender Ausreiflertypen, die in Fillen extremer Spirlichkeit auftreten, und
die mathematische Analyse ihrer Auswirkungen auf diinn besetzte Graphen, um Algorithmen
fur das Graphenclustering zu entwickeln, die gegeniiber den untersuchten AusreifSereftekten
robust sind. Basierend auf den erhaltenen Ergebnissen werden zwei verschiedene robuste und
sparlichkeitsbasierte Methoden zur Konstruktion von Affinititsmatrizen vorgeschlagen. Motiviert
durch die Auswirkungen von Ausreiflern auf Eigenvektoren, werden eine robuste Fiedler-Vektor-
Schitzung und eine robuste spektrale Clustermethode vorgeschlagen. Desweiteren wird ein
Algorithmus zur Erkennung von AusreifSern, der auf dem Vertex-Grad aufbaut, vorgeschlagen
und auf die Ganganalyse angewendet.

Die Ergebnisse dieser Arbeit zeigen, wie wichtig es ist, die Robustheit und den Grad der
Spirlichkeit von Graphen-Clustering-Algorithmen gemeinsam zu beriicksichtigen. Dariiber
hinaus liefert die vereinfachte Laplace-Matrix-Analyse vielversprechende Ergebnisse fir die
Entwicklung von Graphenkonstruktionsmethoden, die durch die Optimierung in einem
Vektorraum, anstelle des normalerweise verwendeten Matrixraums, effizient berechnet werden
konnen.
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Contributions to Robust Graph Clustering:
Spectral Analysis and Algorithms

ABSTRACT

This dissertation details the design of fast, and parameter free, graph clustering methods to robustly
determine set cluster assignments. It provides spectral analysis as well as algorithms that adapt the
obtained theoretical results to the implementation of robust graph clustering techniques.

Sparsity is of importance in graph clustering and a first contribution of the thesis is the definition
of a sparse graph model consistent with the graph clustering objectives. This model is based on an
advantageous property, arising from a block diagonal representation, of a matrix that promotes the
density of connections within clusters and sparsity between them. Spectral analysis of the sparse
graph model including the eigen-decomposition of the Laplacian matrix is conducted. The analysis
of the Laplacian matrix is simplified by defining a vector that carries all the relevant information
that is contained in the Laplacian matrix. The obtained spectral properties of sparse graphs are
adapted to sparsity-aware clustering based on two methods that formulate the determination of
the sparsity level as approximations to spectral properties of the sparse graph models.

A second contribution of this thesis is to analyze the effects of outliers on graph clustering and
to propose algorithms that address robustness and the level of sparsity jointly. The basis for this
contribution is to specify fundamental outlier types that occur in the cases of extreme sparsity and
the mathematical analysis of their effects on sparse graphs to develop graph clustering algorithms
that are robust against the investigated outlier effects. Based on the obtained results, two different
robust and sparsity-aware affinity matrix construction methods are proposed. Motivated by the
outliers’ effects on eigenvectors, a robust Fiedler vector estimation and a robust spectral clustering
methods are proposed. Finally, an outlier detection algorithm that is built upon the vertex degree
is proposed and applied to gait analysis.

The results of this thesis demonstrate the importance of jointly addressing robustness and the
level of sparsity for graph clustering algorithms. Additionally, simplified Laplacian matrix analysis
provides promising results to design graph construction methods that may be computed efficiently
through the optimization in a vector space instead of the usually used matrix space.
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If I had an hour to solve a problem I'd spend 55 minutes
thinking about the problem and five minutes thinking

about solutions.

—Albert Einstein

Introduction

1.1 MOTIVATION

Machine learning is of paramount importance in modern complex intelligent systems. A
fundamental machine learning task is to discriminate between similar and dissimilar data points,
based on a similarity criterion, to create clusters of points. Clustering arises in diverse areas, e.g.
image analysis [LZX20], medical diagnostics [NRG19], bioinformatics [PEC19], information
retrieval [JV19] and data mining [ASI20], and is an active area of fundamental research. Despite
its application diversity, the notion of a c/uster does not have a precise definition and the clustering
problem has been studied from different perspectives. Graph clustering is one of the most popular
techniques for establishing clusters as it is efficient in learning the hidden relationships in a data
set.

In agraph, the vertices of the graph represent the data points while the edges measure association
relationships between them based on non-zero components of an afhinity matrix [XT15]. Similar
to the general idea of clustering, the goal of graph clustering is to obtain clusters that are internally
dense while being sparsely connected, or ideally unconnected, to the remainder of the graph.

Problems potentially arise with graph clustering when, for example, clusters are obscured by
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Figure 1.1: Examplary graph clustering. Left: graph representation of digit samples from the MNIST data base [HS98]. The
red edges represent connections to outliers which are ones that have connections to more than one group of digit samples.
The green, blue and yellow lines represent the within-cluster edges of digits 9, 4 and 3, respectively. Right: cluster assignment
based on the general graph clustering idea that maximizes the number of intra-cluster edges while minimizing the number of
inter-cluster edges.

undesired edges between them, and/or when outliers and noisy data points result in performance
degradation in graph clustering algorithms.

To provide a visual understanding, an examplary corrupted graph model and associated cluster
assignment are shown in Fig. 1.1 for a defined level of sparsity using the well-known handwritten
digit samples from the MNIST data base [HS98]. In the examplary graph model, the red edges
represent connections to outliers while the remaining edges are the informative edges that connect
true samples. The green, blue and yellow lines represent the within-cluster edges of digits 9, 4
and 3, respectively. The red ellipses indicate cluster assignments that are computed based on a
general graph clustering idea, which maximizes the number of intra-cluster edges while minimizing
the number of inter-cluster edges to obtain disjoint clusters. As can be seen, the undesired edges
between characters four and nine obscure the clusters and result in assigning unconnected digit
samples into a small cluster. An important property of these over-connected or under-connected
components is that their occurrence is directly related with the graph construction.

The importance of graph construction is illustrated in Fig. 1.2 where graphs are shown for
handwritten digit samples from the MNIST data base for varying sparsity levels. For example,
the dense graph in Fig. 1.2a contains many undesired edges between different characters which
especially makes the task of separating characters four from nine challenging. Additionally, there
are outliers of character three and nine that are not similar to the majority of data. The increased
sparsity in Fig. 1.2b reduces the number of undesired edges between different characters and
provides a better structure for clustering. However, as is evident in Fig. 1.2¢, further increasing

the sparsity generates many disconnected components and the underlying structure of the true
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Figure 1.2: Example graph constructions for handwritten digit samples from MNIST data base [HS98].

clusters is completely lost. Summarizing, this means that an inefficient graph construction leads to
inaccurate clustering results due to the obscured true clusters or lost informative edges.

In addition to the above challenges, the number of clusters is, in general, unknown in real-
world graph clustering applications. According to this, for a densely connected graph structure,
the undesired edges between different clusters may result in merging connected clusters into a big
cluster and under-estimating the true number of clusters. On the other hand, increasing sparsity
may lead to assigning unconnected components into difterent clusters and, consequently, to over-
estimation of the cluster number.

Graph clustering algorithms are often computationally intensive and, especially when analyzing
larger data sets, computation efficiency of such algorithms is of high importance. Typically, for
graphs that are comprised of N vertices, graph clustering algorithms generally operate on N x N

matrices to construct graph models or to partition them. When the number of vertices in a graph



is increased with an increase in the number of data samples being analyzed, the computational cost
associated with graph clustering algorithms can be significant and a limiting factor in data analysis.

The main problems associated with graph clustering are that the number of clusters is generally
unknown, the level of sparsity to use is not precisely defined, a large number of vertices leads to high
computational complexity, and outliers in the data underpinning the graph are likely to negatively
impact the establishment of the true cluster structure. There is clear research interest in addressing
these issues and fast and parameter-free graph clustering methods that jointly address robustness and

graph construction are detailed in this thesis.

1.2 STATE-OF-THE-ART

Graph clustering has been extensively researched during the last decades, e.g. [KWC19, LHIS,
Sch07]. In particular, robust graph clustering has received significant research attention, see, for
example, [YCL20, AGR19, ZCS19, LNCI8].

Since graph construction plays a crucial role in obtaining accurate clustering results, one popular
approach for integrating robustness into graph construction is to utilize sparse affinity matrices
[AGR19, LNC18, ZZ1.18] whose non-zero components represent the edge weights of the graph.
These methods restructure the affinity matrix based on prior information, e.g., the number of
clusters [LNC18] and the level of sparsity [AGR19, ZCS19, LNCI18, ZZ118] that is significant
for the graph structure.

Block diagonal (BD) structure of the affinity matrix is a commonly desired property in
graph clustering because it represents clusters of feature vectors by non-zero coefhicients that are
concentrated in blocks. Consistent with the general idea of graph clustering (for details, see
Section 1.1 or Section 2.4), this means that a block diagonally structured affinity matrix is a helpful
tool that provides internally dense clusters that are sparsely connected, or ideally unconnected,
to the other clusters. To impose this advantageous structure on the affinity matrix, commonly
used existing block diagonal representation (BDR) methods use regularization with BD priors,
e.g. based on alow-rank property [XTX15, LLY12, LY11], sparsity [FLW21, WZW17], or aknown
number of blocks K [LFL18, XGL17].

Spectral clustering (SC) algorithms that embed the vertices of a graph into a low dimensional
space based on the eigen-decomposition of the Laplacian matrix, are popular alternatives to address
the graph clustering problem. Consequently, suppressing outliers’ effects in the embedding space,
suchasin [YCL20,ZCS19, CNW15, PYT15] has become a further popular research interest in the

literature. However, most of these approaches require prior knowledge, e.g., the label information



of a data set [YCL20, CNW15] or data dependent parameter tuning to determine the descriptive
features [ZCS19].

While all of the above works focus on robustness, none of them consider the relationship
between the graph construction and the outliers’ occurrence.  Additionally, most of the
robust graph clustering methods require prior information whose determination is challenging,
especially in the presence of outliers and heavy-tailed noise that may obscure the underlying
structure. Therefore, the following section states the aim of this work and briefly summarizes our

contributions to robust graph clustering that address the above issues.
1.3 AiMs AND CONTRIBUTIONS

The aim of this doctoral project is to develop fast and parameter-free robust graph clustering
methods. The original contributions of the thesis are with respect to ideal partitioning of sparse

graphs and robustness in graph clustering in the presence of outliers, that are detailed below:
Sparse Graphs for Ideal Partitioning (Chapter 3):

* Motivated by the conformity of BDR to graph clustering objectives, a sparse graph model

providing internally dense and externally unconnected clusters is defined.

* Spectral analysis of the sparse graph model is conducted and a vector representing the blocks
as a piece-wise linear function is defined. In this way, the relevant information that is
contained in the Laplacian matrix, i.., the similarity coefficients and the block sizes, is
transformed into a vector space analysis and spectral analysis of the Laplacian matrix is

simplified.

* The defined sparse graph is adapted to sparsity-aware clustering and graph clustering
methods that naturally determine the appropriate level of sparsity based on the spectral

properties of sparse graph model.
Outliers in Graph Clustering and Robust Solutions (Chapter 4):

* Fundamental outlier types whose occurrence depends on the graph construction are defined
for graph clustering. More precisely, unconnected vertices (Type I outliers), vertices that
generate false positive connections between different clusters (Type II outliers) and the
extreme case that groups of vertices are connected to another one (Group similarity), are

considered.



* To jointly address robustness and sparsity, outliers’ effects on sparse graphs is theoretically
analyzed. In particular, the eigenvalues and the eigenvectors are computed for three
fundamental cases. The developed analysis underpins, via the use of a simplified Laplacian

matrix, the development of fast, robust and sparsity-aware graph clustering algorithms.

* Robust graph clustering methods that mitigate the outliers’ negative impact on the affinity
matrix, the simplified Laplacian matrix analysis, the Fiedler vector and SC, are proposed. All
proposed methods are robust and parameter-free alternatives to solve the graph clustering
problem except for the robust SC method, which requires knowledge of the number of
clusters. In addition to these, an outlier detection algorithm built upon the vertex degree is

proposed and applied to gait analysis.

1.4 DISSERTATION OVERVIEW

The remaining part of the dissertation is organized in four chapters where the main contributions
are detailed in Chapters 3 and 4.

Chapter 2 details the fundamental concepts of graph theory that are relevant for the thesis, and
provides an overview of why sparsity in graph clustering is of importance.

Chapter 3 starts with the theoretical design of a sparse graph model which can provide
ideally separated clusters through the use of BDR. Next, eigenvalues and the eigenvectors of the
sparse graph model are computed and a vector that simplifies the Laplacian matrix analysis by
representing blocks as piece-wise linear function is defined. Spectral analysis of the sparse graph
model is adapted to sparsity-aware clustering by formulating determination of the sparsity level as
approximations to spectral properties of the sparse graph modes.

In Chapter 4, the existence of outliers and robust graph clustering solutions are considered.
To understand how to best integrate robustness, first, fundamental outlier types are defined for
graph clustering. Then, their effects on sparse graphs are mathematically analyzed in terms of
the affinity matrix, overall edge weights, eigen-decomposition and the simplified Laplacian matrix
analysis. Based on the obtained results, robust graph clustering methods providing robustness to
outliers’ effects on the matrix and embedding spaces are proposed. The vertex degree, which is
a significant property to determine outliers in sparse graphs, is used for outlier detection and the
proposed method is applied to gait analysis.

Finally, a summary of the thesis, conclusions and an outlook representing some open problems

and future research directions are detailed in Chapter s.



If I were again beginning my studies, I would follow the

advice of Plato and start with mathematics.

- Galileo Galilei

Fundamentals of Graph Theory

This chapter introduces fundamental concepts of graph-based cluster analysis. First, basic
definitions and similarity measures for graph construction are presented in Section 2.1 and
Section 2.2, respectively. Then, a general introduction to spectral graph theory is provided in
Section 2.3 and the main ideas of graph partitioning and clustering are detailed in Section 2.4.
Building upon these sections, state-of-the-art spectral methods for graph partitioning are revisited

in Section 2..5. Finally, a discussion of sparse graphs is given in Section 2..6.

2.1 BAsic DEFINITIONS

Graph theory is an area of extensive research that comprises numerous concepts and various graph
representations [Newl18, Wes01]. This section presents the relevant theory for weighted undirected
graphs that are used throughout this thesis.

Let X = [X4,Xy,...,Xn] € RN be a data matrix with A1 denoting the dimension of the
feature vectors and N'being the number of feature vectors. We assume that the data matrix X can be
represented as an undirected weighted graph G = {V, E, W }. Here, ¥ denotes the set of vertices

corresponding to the feature vectors, E is the set of edges representing the relationships between
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similarity measure

X ¢ RMXN W e RNxN G={V,E, W}

Figure 2.1: Examplary graph construction process.

these vertices, and W € RV is called the affinity matrix whose 7, nth component consists of
the edge weight between the mth and the zth vertices that are, respectively, associated with the mth
and nth column vectors x,, € R? and x,, € R of X. W € RY*¥ i referred to as the adjacency
matrix A € RY*¥ when all of its entries take on the value one or zero (for a detailed discussion,
see, e.g., Section 6.2 in [Newl8]).

To provide a visual understanding, the process of transforming a data matrix X to a graph G is
illustrated in Figure 2.1 for K = 3 clusters. The column vectors of X, the similarity coefhicients
of W and the vertices of G are highlighted in blue, green and orange, respectively, according to
their cluster membership. Additionally, zero-valued similarity coefficients of W are highlighted in
white. Each non-zero entry of W is represented by an edge between vertices in the resulting graph.
Hence, choosing an appropriate similarity measure, which yields the affinity matrix given the data,

plays a crucial role in obtaining an informative graph.

2.2 SIMILARITY MEASURES FOR AFFINITY MATRIX CONSTRUCTION

Due to its central role in defining the graph structure, the measure of similarity between vertices
is a central area of research in graph theory [New18]. One of the most commonly used similarity

measures is known as cosine sz'mz'lﬂrz'ty, ie.,

-
X, X,

=—"—— m=1,...,Nand n=1,...,N, (2.1)
%2112

Wipn

where w,, , is the similarity coefficient of the affinity matrix W for the mth and 7th data vectors x,,

and x,,, respectively. Alternatively, an affinity matrix can be formed, for example, by using Pearson’s



linear correlation coefficient, as

(Xm - ﬂm)T<Xn - (&n)

T

(2.2)

W =

with associated sample means z , ¢ , and sample standard deviations ,,, 7,,, respectively, for
m,n =1,...,N. A more detailed discussion and additional examples of similarity measures can
be found in [LHNOG].

2.3 SPECTRAL GRAPH THEORY

Spectral graph theory is an extensive research area that studies eigenvalues and eigenvectors
of matrices associated with graphs to understand hidden relationships in those graphs [Spil2,
Chu97]. As an introduction to spectral graph theory, this section presents fundamental concepts

that are briefly explained in the sequel.

2.3.1 THE LAPLACIAN MATRIX

RNXN

To define the Laplacian matrix, the first step is to compute the matrix D € which is a

diagonal weight matrix with weights given by

N
Ay = Z W (2.3)
m=1

on the diagonal and it is equivalent to the diagonal matrix of degrees for an adjacency matrix.
Throughout this thesis, D € RN*N and A, m> respectively, denote the overall edge weight matrix
and the overall edge weight that is attached to the mth vertex.

After computing the overall edge weight matrix D, the unnormalized Laplacian matrix L €

RN*N can be defined as follows:

Apm it m=n
by = : (24)
—w,,, otherwise

where /,, , denotes the 7, nth component of the Laplacian matrix for L = D — W. A visual

summary of the matrices, that have been defined up to now, is provided in Figure 2.2.



@L € RVXN (b)D € RVXN W € RVXN

Figure 2.2: Examplary Laplacian, overall edge weight and affinity matrices.

2.3.2 EIGEN-DECOMPOSITION OF THE LAPLACIAN MATRIX

Let the Laplacian matrix L € RN*Npe nonnegative definite with the eigenvalues of the standard
eigen-problem

LYm - ;leMa (25)

or in a generalized eigenvalue problem form
Ly,, = 1,,Dy,., (2.6)

with associated eigenvalues 0 < 1y < ; < --- < Ay sorted in ascending order. Here, 4,,

denotes the mth eigenvalue and y,, € R is the eigenvector associated with 4,,.

2.3.3 FIEDLER VALUE AND ALGEBRAIC CONNECTIVITY

Let 0 < g < Ay < -+ < Ay be the sorted eigenvalues of the Laplacian matrix L € R
for N > 2. Then, the second smallest eigenvalue of the Laplacian matrix 4;, that is known as
Fiedler value, is the algebraic connectivity 2(G) of graph G, and it is zero-valued if and only if G is
unconnected [Fie89, Fie73].

Since the Fiedler value provides information about the connectedness of graph, it is directly
linked to the graph cut problem which is the separation of graph vertices into disjoint subsets
[DHZ01]. For example, if the Fiedler value is small, a graph partitioning that is performed using
the associated eigenvector (Fiedler vector), results in a cut in which the ratio of edges crossing
the cut to the number of vertices in the cut is similarly small. [KLJ09]. As a natural result of

its applicability to the graph cut problem, the Fiedler vector has been the subject of many graph
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partitioning approaches, e.g. [New13, OS05, DHZ01], whose main principles will be detailed in

the following sections.

2.4 GRAPH PARTITIONING AND CLUSTERING

Clustering is a fundamental research area that has various applications, such as, image analysis
[LZX20, SY20], medical diagnostics [NRG19], bioinformatics [PEC19], information retrieval
[JV19] and data mining [ASI20]. Despite its application diversity, the precise definition of c/uster
does not exist [SPG17]. As a consequence, the clustering problem has been studied from different
perspectives and this section introduces a survey of some important clustering techniques with a
particular focus on graph partitioning algorithms that can be applied to the clustering problem.
Clustering approaches have been categorised in different ways [HXZ20, HK17, SPG17, XT15].
For example, in [HXZ20], clustering approaches are grouped in four categories: partitional,
hierarchical, density-based and model-based. The hierarchical clustering methods form clusters
based on a hierarchy that is built by iteratively dividing the patterns using the top-down or
bottom-up approach [SPG17]. Agglomerative clustering methods are the bottom-up approaches,
e.g. [MDG21, BYLIS], that aggregate the individual points into larger clusters based on the
determined termination conditions. By contrast, the top-down approaches, that are also known as
divisive hierarchical clustering methods, split the data points into smaller clusters based on certain
termination conditions [JZH22]. Unlike hierarchical clustering approaches, partitional clustering
assigns data points to clusters by optimizing some criterion functions where Euclidean distance is
a commonly used criterion [SPG17]. The most commonly used partitional clustering examples
are K-means type methods (e.g., K-means, K-medoids and fuzzy C-means methods), which have
a broad range of extensions, e.g. [BPB21, SY20, SR19]. The key idea of K-means clustering is
dividing the given data set into K clusters such that the average squared Euclidean distance from
the data points to the sample mean of each cluster is minimized. Difterent from K-means type
strategies, density-based approaches attempt to reveal clusters according to the density of regions
in the data [HXZ20]. For instance DBSCAN [EKS96], which is a well-known density-based
clustering method, assigns data points into clusters for which every cluster member has to contain
atleast minimum number of neighbors in the given neighborhood radius. OPTICS [ABK99] and
DENCLUE [HGO07] are the other popular density-based clustering approaches and there are many
state-of-the-art approaches that follow this paradigm, see e.g. [BM21, JJ19]. Lastly, model-based
clustering approaches use a probability that is derived from the assumed statistical model as the

clustering criterion [XT15]. These approaches are mainly based on statistical learning [Ras99] or
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Figure 2.3: Examplary balanced graph partitioning.

neural network learning [Koh90] and there are many recent works about model-based clustering,
e.g. [SM21, TMZ21, TWS19, TMZ18].

Analogous to performing clustering directly on the data points, clustering can be performed
on the corresponding graph where the vertices of the graph represent the data points while
edges measure association relationships between them [XT15]. One of the most popular graph
clustering algorithms is known as minimal spanning tree (MST) [Zha71] and there are numerous
advanced graph clustering techniques, e.g. [KWC19, SZ1.19, WLW18]. A common goal for these
approaches is to obtain disjoint clusters where the number of edges within the clusters is maximized
in contrast to the number of edges in between the clusters. This problem is directly linked to graph

partitioning, which can be considered as graph clustering under certain conditions.

2.4.1 THE GRAPH PARTITIONING PROBLEM

Graph partitioning has been extensively researched in the literature and it has different applications,
such as, social networks, road networks and image processing [BMS16]. Beyond its importance in
graph theory, graph partitioning is directly related to the clustering problem. To understand the
relationship between these concepts, this section explains the main ideas behind graph partitioning
with a brief summary of the state-of-the-art approaches.

The graph partitioning problem is the separation of graph vertices into balanced partitions
while minimizing the number of edges that cross the cut [NHGI19, ARV08]. This problem
is NP-hard [ARV09] and thus, most of the graph partitioning approaches are heuristic, e.g.,
[FJL20, NHGI9]. In addition to existing heuristic graph partitioning approaches, there are
theoretical approximation algorithms for the sparsest cut, edge expansion, balanced separator and
graph conductance problems, such as, [LM14, ARV09, ARV08, LR99].

To provide a better understanding, an examplary graph partitioning is presented in Figure 2.3 for
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a balanced partition in which the number of vertices on the two sides is within a constant factor of
each other. As can be seen, the balanced graph partition produces equally sized clusters that share

the minimum number of edges.

2.4.2 CLUSTERING AS GRAPH PARTITIONING

Since the goal of clustering is to assign similar data points into the same cluster while assigning
dissimilar ones into different clusters based on a given similarity criterion [X'T15], for a graph whose
edge weights measure similarity of data points, this objective can be transferred to maximizing the
number of edges for intra-clusters while minimizing it for inter-clusters. This means that the graph
partitioning problem can be interpreted as a clustering problem.

Even though graph clustering and partitioning solve a very similar problem, clustering
approaches, generally speaking, do not control the size of clusters [SBH16], while most of the graph
partitioning approaches attempt to obtain balanced partitions, e.g. [ARV09, ARV0S, LR99].
Additionally, the number of clusters is generally assumed to be unknown in clustering approaches
and thus, the number of clusters has to be estimated as well. Herein, a commonly used approach
to estimate the number of clusters (or so called communities [Sch07]) is to maximize the quality of
the partition, where modularity and conductance are well-known quality measures that have been
commonly used in graph clustering, e.g. [YH]20, GZZ19]. In the sequel, these metrics are briefly

revisited.

2.4.3 MoDULARITY

Modularity (mod) [New06, GN02], is a metric that evaluates the quality of a partition with respect
to the similarity of feature vectors in an affinity matrix. Analogous to the objectives of graph
partitioning and clustering, a cluster assignment yields a high modularity score if the vertices have
more edges within the assigned cluster while they have fewer edges connected to the other clusters.

The modularity score is calculated by

N
1 d,d,
mod = Z{ ; |:wm,n - z—g] l{fm:fﬂ} (2'7)
N
whered,, = ) w,, , denotes the sum of the weights of edges attached to vertex m, g = % > W
n=1 mn

and the indicator function 1y, —,} is equal to to one if ¢,, = ¢, and is zero otherwise.
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2.4.4 (CONDUCTANCE

Conductance (cond) evaluates the quality of a partition in terms of the fraction of edges that point
outside the community. Therefore, a small-valued conductance score means good partitioning

performance. It is calculated as [YL15]

N
Z wmvnl{[rn?é[rl}

m,n

cond = ~
> Wi
m,n
where w,, , denotes the weight of the edge between the 72th and the zth vertices, and the indicator

function 1, -,y equals one if ¢,, # ¢, and is zero otherwise.

2.5 SPECTRAL METHODS FOR GRAPH CLUSTERING

An alternative to address the graph clustering problem are spectral clustering algorithms which are
mainly built upon eigen-decomposition of Laplacian matrices associated with an affinity matrix.
Due to their efficiency and solid theoretical foundation [NC11], they have been the subject of
intense scientific research for decades, e.g., [[DX14, Lux07, SM00, DH73] with a wide range of
applications, such as in computer vision [LNCI18], bioinformatics [PZ18], and medical diagnosis
[XGZ71]. From a mathematial point of view, after affinity matrix construction, spectral clustering
only requires solving a linear problem [SPG17], and this makes it advantageous in comparison
to graph cut algorithms [JDX14]. Beyond its mathematical advantage, it does not make any
assumptions on the cluster shapes which makes it applicable to more complex scenarios, such as,
intertwined spirals or other arbitrary nonlinear shapes [LH18]. Additionally, spectral clustering
is applicable to large data sets as long as the graph is sparse (for details about sparse graphs, see
Section 2.6).

Spectral clustering has been studied from different aspects [JDX14], for example, constructing
the affinity matrix, forming the Laplacian matrix, computing and selecting the eigenvectors and
the number of clusters. Among these different spectral clustering approaches, a well-known
spectral clustering algorithm, which is commonly used throughout this thesis, is introduced in

the following.
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Algorithm 1: Unnormalized Spectral Clustering

Input: The data matrix X € R**¥ and the number of clusters K

Step 1: Affinity Matrix Construction

Construct the affinity matrix W € RV (For details, see Section 2.2)

Step 2: Eigen-decomposition of the Laplacian Matrix

Compute the unnormalized Laplacian matrix L € RV ¥ forL =D — W

Compute Y = [yo,¥1, - - -, Yx_1] € R¥*X whose column vectors are the

eigenvectors that are associated to the K smallest eigenvalues of L

Step 3: K-means Clustering

Treat each row of Y as a K-dimensional feature vector and perform K-means clustering

Output: A vector € containing the estimated cluster labels

2.5.1 UNNORMALIZED SPECTRAL CLUSTERING

For a given graph G, the main step for spectral clustering is to compute the Laplacian matrix which
has not been uniquely determined in the literature [LH18]. As in Section 2.3.1, an unnormalized
Laplacian matrix, also called unnormalized graph Laplacian, associated with an undirected graph
G is considered. The Laplacian matrix L € R is symmetric and nonnegative definite with
eigenvalues 0 > Ay > A; > -+ > An; that are sorted in ascending order. In the following, the
unnormalized spectral clustering algorithm built upon the unnormalized graph Laplacian L is

introduced.

2.6 SPARSE GRAPHS

In numerical analysis, a matrix is called sparse if it has relatively large number of zero-valued
elements and it is called dense if most of its elements are non-zero. The ration of zero-valued
elements divided by the total number of elements is commonly referred to as the sparsity of
a matrix. From a graph clustering point of view, this means that the sparsity of a graph is
directly linked to the number of edges and it has many advantages in graph clustering approaches
[Sch07]. For example, many graph clustering performance measures aim to find clusters that
are internally dense while being sparsely connected, or ideally unconnected, to the rest of the
graph. Another advantage of these graphs is the computational efficiency in which having fewer

number of edges reduces the number of operations in clustering approaches [SPG17]. Motivated
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by its importance in graph clustering, this section presents state-of-the-art sparse affinity matrix

construction methods and the main ideas of a commonly desired sparse matrix structure.

2.6.1 SPARSE AFFINITY MATRIX CONSTRUCTION METHODS

By virtue of its crucial role in graph clustering, the construction of sparse affinity matrices is a
substantial research area and there are many different modalities, e.g. [LK]J20, LSW16, YLR16,
EV13, CYY09).

One of the most traditional ways of constructing a sparse affinity matrix is known as nearest
neighbor graphs. For a given global parameter, which is denoted by p throughout this thesis, the
idea is to obtain a graph in which every vertex has only edges to its p-nearest neighbors based on
the determined metric space, e.g., the Euclidean distance or cosine distance [EPY97]. Similarly,
e-neighborhood graph construction is built upon the idea that every vertex is connected to other
vertices whose distances are less than the predefined global parameter ¢ based on the determined
metric space [UST09]. For both methods, a smaller valued global parameter results in greater
sparsity. However, using Euclidean or cosine metric spaces makes these approaches sensitive to
outliers and/or data noise. Additionally, when the datais distributed in different ways, determining
the sparsity based on a single parameter may result in performance degradation for these algorithms
[CYY09]. For instance, p-nearest neighbor graph construction may involve inhomogeneous data
points that are far away from the true clusters when the data is distributed in different ways.

A popular robust alternative to sparse affinity matrix construction is known as ¢;-graph
construction in which every data point is constructed by the linear combination of the remaining
data points and a noise term by minimizing the ¢; norm of both reconstruction coefficients and
data noise [WMM10, CYY09]. In contrast to the above traditional affinity matrix construction
methods, the ¢;-graph construction method is robust against outliers and the number of neighbor
selection is adaptive for each data point. As a result, utilizing the ¢; norm for sparse affinity matrix
construction has been widely studied, see, e.g., [KXF16, NWD16]. Even though the ¢;-graph
is a robust, sparse and data-adaptive method, finding a sparse representation of each data point
individually, results in missing higher order relationships. In particular, the /; norm constrained
sparse representation problem tends to select one variable from a group and ignore the others
when there exists a group of highly correlated variables [LSW16]. It has been shown that utilizing
mixed ¢y, £, and nuclear norm regularizations balances sparsity and connectedness in a graph
[YLR16]. Therefore, group sparsity techniques, such as, elastic net, are advantageous alternatives
for achieving the group selection effect [LSW16, YLR16].
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Figure 2.4: Examplary BD affinity matrix and associated graph.

In addition to the above paradigms, sparse graphs have been constructed by imposing a structure
on the affinity matrix, e.g., [LFL18, XGL17, FLX14]. Therefore, the following section provides
a basic understanding of BDR, which is one of the most commonly desired structures in graph

clustering algorithms.

2.6.2 Brock DiacoNaL REPRESENTATION (BDR)

To provide a visual understanding, an examplary BD affinity matrix and associated graph are shown
in Figure 2.4 where the three different colors in W, respectively, indicate the similarity coefficients
associated with the three dense clusters in G. As can be seen, the BD affinity matrix can simply be
separated into different distinct blocks. From a graph clustering perspective, clusters of G, which
are internally dense and unconnected to any other cluster, will provide good partitioning results
with a small-valued conductance and a large-valued modularity.

The generic example also implies that block diagonally structured affinity matrices are desirable
in graph clustering approaches. In particular, if the affinity matrix is BD, i.e., the similarity
coeflicients outside the blocks are all zero-valued, applying spectral clustering may provide perfect
clustering results [LFL18]. Due to this fundamental property, the BD structure of the affinity
matrix plays a crucial role in spectral-type subspace clustering approaches, e.g. [LFL18, XGLI17,
FLX14] that perform spectral clustering on the designed affinity matrix to assign the data points
into clusters. More detailed information about state-of-the-art BDR approaches and their

application to the subspace clustering problem is provided in the following sections.
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A theory is only as good as its assumptions. If the premises
are false, the theory bas no real scientific value. The only
scientific criterion for judging the validity of a scientific
theory is a confrontation with the data of experience.

-Maurice Allais, 1997.

Sparse Graph Models for Ideal Partitioning

After explaining fundamental concepts in graph theory, the goal of this chapter is to present a
proposed sparse graph model and its applications to real-world problems. To this end, first the
theoretical design of the sparse graph model and its spectral analysis are provided in Sections 3.1
and 3.2, respectively. Further, the applicability of designed sparse graphs to sparsity aware
clustering is presented in Sections 3.3. Lastly, two different sparsity-aware clustering methods

building upon the spectral properties of the sparse graph model are introduced in Sections 3.4.

3.1 THEORETICAL DESIGN OF THE SPARSE GRAPH MODEL

This section provides a theoretical understanding of the presented sparse graph model which is
designed to obtain good graph partitioning results. Since a graph model consisting of internally-
dense clusters that are unconnected to each other will provide a good partitioning result (for details,
see Sections 2..4), the sparse graph model is defined using the advantageous properties of BD affinity

matrix as follows.

18



0 w;=06 [0 wy=03 [0 ws3=0.9

1
N1 =10 N 5
2 AP )
20 10
20 6
§ 29 7
No=8 27
G '8
12 17 18
RN
N3=12
3 14 "16
13
() W € RNXN b) G = {V,E,W}

Figure 3.1: Examplary illustration of Definition 3.1.1 (n = [10, 8, IZ]T € RE, N =30,K = 3).

Definition 3.1.1. (Sparse Graph for Ideal Partitioning) Let G = {V,E,W} be a sparse
graph where V denotes the set of vertices, E is the set of edges and W € RN*N be 4 K block zero-
diagonal symmetric affinity matrix with blocks W1, W, ..., W g on its diagonal. Each block W,
i =1,...,Kisassociated to a number N; € Z > 1 of feature vectors and concentrated around
a similarity constant w; € Ry i = 1,.. ., K with negligibly small variations. G is called a sparse
graph for ideal partitioning if and only if the similarity coefficients between different blocks are all

zero-valued in W.

To provide a visual understanding, Definition 3.1.1 is illustrated in Figure 3.1. The colored cells
in Figure 3.2a represent non-zero edge weights that the blocks are concentrated around. Similarly,
colorsin Figure 3.1b represent the cluster associations of vertices. As can be seen, for the BD affinity
matrix as given in Definition 3.1.1, the sparse graph model consists of vertices that are connected to
all other vertices of the same cluster while they are unconnected to the vertices of different clusters.

Definition 3.1.1 shows a special case of a BD affinity matrix for which the blocks are
concentrated around constants. This assumption simplifies the spectral analysis of the sparse graph

model that will be detailed in the following sections.

3.2 SPECTRAL ANALYSIS OF THE SPARSE GRAPH MODEL

This section is dedicated to introduce the spectral properties of the sparse graph model. In the
sequel, the Laplacian matrix, eigenvalues, eigenvectors are computed for the given ideal model.
Then, the analysis of Laplacian matrix is simplified by defining a vector that represents the

Laplacian matrix as a piece-wise linear function.
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Figure 3.2: Examplary illustration of the sparse affinity matrix W and associated matrices Dand L, € RN*N

(n = [10,8,12] " € RK, N=30,K = 3).

3.2.1 LAPLACIAN MATRIX OF THE SPARSE GRAPH MODEL

Let D € RV*N denote the overall edge weight matrix which is a diagonal weight matrix that is

N
computed from sparse affinity matrix W and has edge weights d,, ,, = > w,,, on the diagonal.
m=1

Then, similar to Section 2.3.1, the unnormalized sparse Laplacian matrix is computed as follows:

; (N; — D)w; if m = n and that is associated with L, (3.1)
man — , 3.1

— W,y » otherwise

)

where /,, , denotes the 7, nth component of the sparse Laplacian matrix for L = D —W and L, is
the 7th block of L € RN An examplary plot illustrating, respectively, the sparse afhinity matrix

W, the overall edge weight matrix D and the sparse Laplacian matrix L is given in Figure 3.2.
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Figure 3.3: Examplary illustration of Theorem 1 (n = [10, 8, 12]T cREN=30,K = 3).

3.2.2 EIGENVALUES FOR THE SPARSE GRAPH MODEL

After computing the sparse Laplacian matrix, our next step is to compute its eigenvalues which is

detailed in the following theorem.

Theorem 1. Let W € RN be a sparse affinity matrix in Definition 3.1.1 and let D € RN

RNXN

denote the associated matrix of overall edge weights. Assuming that L € is the associated sparse

Laplacian matrix, its eigenvalues will be of the following form based on Eq. (2.6)"

N N Ng Ng
Nl N U Ne—1 U Ne=1 )’

Ni—1 Ng—1

A :sort(o,...,o,
———
K

whered € RN denotes the vector of target eigenvalues and sort(+) is the sorting operation in ascending

order.

Proof. See Appendix A.1.1.1 O]

An illustration of Theorem 1 is given in Figure 3.3 for a sparse affinity matrix consisting of
K = 3 blocks. By definition, each block is assumed to be concentrated around a constantw, € R,
eg. w=1[0.6,0.3,0.9]". Figure 3.3c confirms the results of Theorem 1 that for each block
{=1,...,3, the smallest eigenvalue is zero and the remaining N; — 1 eigenvalues are 1\%

From Theorem 1, it becomes clear that the eigenvalues contain the block size information. This
valuable knowledge will be later used to learn the structure of W based on the eigenvalues in

Section 3.4.1.

'For the eigenvalues of sparse Laplacian matrix L based on standard eigen-decomposition, see Appendix A.1.2.
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Figure 3.4: Spectral embedding according to the eigenvectors of the Laplacian matrix L, when K = 3.

3.2.3 EIGENVECTORS FOR THE SPARSE GRAPH MODEL

The third step of spectral analysis is to compute the eigenvectors of the sparse Laplacian matrix

whose results are summarized in the following theorem.

Theorem 2. Let L € RN*N be the Laplacian matrix corresponding to a K block zero-diagonal
symmetric affinity matrix W € RN gn which every block k= 1,...,K is associated to
N (N, € Z) > 1 feature vectors and the affinities outside the blocks are zero-valued. Further,
let Y = [yo,y1,- -, Yi_1] € RVK be the matrix of eigenvectors associated with the K smallest
eigenvalues of L. Finally, let e,, the ith row vector of Y, denote the embedding vector that represents
the M-dimensional ith feature vector X, in the reduced K-dimensional space. Assuming that the

eigenvectors are orthonormal, the Euclidean distance between any embedding vector pairs e; and e;

associated to distinct blocks k and [ is equal to ||e; — e;||, = \/1/Ni + 1/ N, fork # Land i # j.
Proof. See Appendix A.1.1.2. ]

Theorem 2 is illustrated in Figure 3.4 for an example consisting of K = 3 blocks where g, € R
denotes the cluster centroid corresponding to block £ = 1, ..., K. As can be seen, the Euclidean
distance between embeddings of distinct blocks is a function of their block sizes.

Different from Theorem 1, Theorem 2 addresses a more general case of Definition 3.1.1 by
removing the assumption that the blocks are concentrated around a similarity constant. Based
on the properties of orthonormality, the embedding results of Theorem 2 show the ideal case of
graph clustering approaches that are built upon the eigenvectors of Laplacian matrix, e.g., SC (for
details, see Section 2..5). An examplary application of this important property will be later provided

for sparsity-aware subspace clustering in Section 3.4.2.
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3.2.4 SIMPLIFYING LAPLACIAN MATRIX ANALYSIS OF THE SPARSE GRAPH MODEL

In the preceeding sections, spectral analysis has been performed for N x N Laplacian matrices,
which may lead to computationally heavy methods for large graphs. In this section, we therefore
re-formulate the problem in N x 1 vector space. In particular, assuming that W is symmetric and

BD?, the analysis is simplified by defining the vector v € RN as follows

where v,, and /,, ,, respectively, denote the 7th and m, nth components of v and L.
After determining vector v, our next step is its computation for a sparse Laplacian matrix which

is detailed in the following theorem.

Theorem 3. Let L € RN be the sparse Laplacian matrix associated with the sparse affinity

matrix in Definition 3.1.1. Then, it follows that the vector v associated with L is a piece-wise linear

[function of the following form

(m — 51)101 lf 61 S m S u
vy = flm) =

(Wl - EK)I,UK if EK S m S uK,

—1 7
where by =1L, u; = Ny, {; =) Np+1landu, =Y N,fori=2,....K
k=1 k=1

Proof. See Appendix A.1.1.3. O

An illustration of Theorem 3 is provided in Figure 3.5 for an example consisting of K = 3
blocks. The changepoints of v define the blocks sizes and the coefficients around which the blocks
are concentrated. Consequently, v provides substantial information about the eigenvalues of L,
which will be used in Section 3.4.1 to design eigenvalue-based affinity matrix estimation methods

that may be computed efficiently through the optimization in a vector space.

*A sparse matrix can be transformed into a BD form using the Reverse Cuthill-McKee (RCM) algorithm [CM69].
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Figure 3.5: Examplary sparse Affinity matrix, sparse Laplacian matrix and corresponding vector v (n = [10, 8, 12]T € RK,
N =30,K = 3).

3.3 ADAPTING SPARSE GRAPHS TO SPARSITY-AWARE CLUSTERING

Up to now, the determination of sparse graphs and their spectral analysis have been explained.
Beyond the theoretical understanding of sparse graphs, this section discusses the applicability of
sparse graphs to real-world clustering problems.

In Section 2.4, it has been explained that graph clustering approaches maximize the number
of intra-cluster edges while minimizing the number of inter-cluster edges. Concordantly, this
objective can be transferred to structuring an affinity matrix in which the similarity coefhcients
corresponding to intra-clusters edges are non-zero valued while that of inter-clusters are zero-
valued. This means that having a sparse affinity matrix, such as, in Definition 3.1.1 will potentially
provide good graph clustering results.

In theory, the sparse affinity matrix in Definition 3.1.1 is an N X N and the spectral properties
of the sparse affinity matrix show that the eigenvalues and the vector v carry all the relevant
information in W, such as, the block sizes and/or the similarity coefficients around which the
blocks are concentrated. In practice, the data may not directly produce an affinity matrix that
follows Definition 3.1.1. However, it is reasonable to use the theory as a target towards which we
regularize the affinity matrix estimator. Therefore, assuming that the eigenvalues in Theorem 1 as
our target, a sparse affinity matrix can be structured by approximating these target eigenvalues.
Additionally, Theorem 2 shows the ideal Euclidean distance between different clusters for a
clustering algorithm that is performed using the eigenvectors associated with K smallest eigenvalues
of a Laplacian matrix, i.e. SC. Practically, this means that an affinity matrix providing the Euclidean

distance between different clusters as in Theorem 2 is potentially a good input to the SC algorithm.
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3.4 SPARSITY-AWARE CLUSTERING BASED ON SPECTRAL PROPERTIES OF THE SPARSE

GRraPH MODEL

Motivated by the adaptiveness of sparse graphs to sparsity-aware clustering, this section introduces
two different sparsity-aware clustering methods that are built upon, respectively, the eigenvalues

of the sparse Laplacian matrix in Theorem 1 and the eigenvectors in Theorem 2.

3.4.1 EIGENVALUE-BASED SPARSITY LEVEL CONTROL FOR CLUSTERING
3.4.1.1 INTRODUCTION

The construction of an informative graph model plays a crucial role to learn the intrinsic
relationships hidden in data and it has numerous applications such as in clustering/classification
[OFK18, ZZ118, EV13], subspace learning [EV13, CYY09] and semi-supervised learning [LSW16,
CYY09, Zhu08]. In cluster analysis, the graph model represents each feature vector as a vertex
and describes the association relationships using an affinity matrix in which BD structure is a
commonly desired feature [LFL18, XGL17, FLX14, EV12, LW12].

Partly motivated by the natural occurrence of block diagonally structured affinity matrices in
cluster analysis, BDR has been the subject of intense scientific research. Sparse representation
is one of the most common ways of constructing a BD affinity matrix [LFL18, XGL17, FLX14,
EV12]. An alternative way of constructing BD affinity matrices are p-nearest neighbor graphs
which are popular due to their computational simplicity [LW12]. However, a major challenge
for all these methods is to determine the level of sparsity, i.e. the number of neighbors or
the regularization parameter. The choice of the sparsity level has been researched by analyzing
the similarity coefficients’ distribution [TMZ21], via supervised learning algorithms [MDD18,
GCC15], geometric interpretations [ARV09] and connectedness [NH11].

To the best of our knowledge, an unsupervised BDR method that uses the eigenvalues of a BD
affinity matrix to deduce the sparsity level has not been proposed in the literature. Therefore, in
[TMZ22], we first analyze the eigenvalues of the Laplacian matrix based on an ideal BD model
(Theorem 1). Then, a key idea is to define a vector that represents the blocks as a piece-wise linear
function (Theorem 3). This enables a graph construction algorithm building upon the piece-
wise linear function that estimates the parameters of the unknown target eigenvalue vector. The
proposed eigenvalues-based block diagonal representation (EBDR) method [TMZ22] is applied to
p-nearest neighbor graph construction. In the following sections, problem formulation, details of

the proposed EBDR method, a performance evaluation in comparison to popular BDR methods
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and a summary are provided.

3.4.1.2 PROBLEM FORMULATION

Given a dataset of feature vectors X € RM*N and the number of blocks X the goal of this work

RNXN

is to efficiently estimate a K block zero-diagonal symmetric affinity matrix W € using the

eigenvalue information from Theorem 1 and Theorem 3.

3.4.1.3 METHODOLOGY

This section proposes a method to represent the data matrix X as a weighted graph G by finding
a K block zero-diagonal affinity matrix W whose non-zero components in the 7th row/column
denote the neighbors of the 7th vertex. In principle, if there exists a K block zero-diagonal afhinity
matrix W as in Theorem 1, the eigenvalues associated with the Laplacian matrix L will be in the

following form

]\[l Nl NK NK
A, =sort| 0,...,0, ey e ey ,
SN -1 N U U Ng— 1 N — 1

K v~ ~\~

Ni—1 Ng—1

(3-3)

where sort(-) denotes sorting operation in ascending order. According to Eq. (3.3), the estimation

of W can be cast as the following eigenvalue-based optimization program

2 =29 = argmin[]2®) — 2073, (3.4)

PmEP

Here, 1 is the estimated vector of eigenvalues which is a function of the estimated number of
neighbors (i.e., =20 ). The estimate is the minimizer of Eq. (2.6), where p,, is the mth candidate
of neighbors from a given vector of candidates p = [p1,p,...,pn,] € Z™r. The associated
affinity, overall edge weight and Laplacian matrices of dimension R are denoted, respectively,
by W), D@») and L), Finally, 29" ¢ RN s the target vector of eigenvalues associated with

L®) whose estimation is detailed in the following step.

3.4.1.3.1 ESTIMATION OF THE TARGET EIGENVALUE VECTOR 25,”*")

Step 1) Initialization : Possible Block Sizes

Suppose that v?n) € RN denotes the vector v associated with W) Further, let NP € y/mn
) = [Tipm) r&”’”), cees TI(\‘IZM)]T € Z be the vector

denote the number of changepoints and let z(¢» ,
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containing corresponding locations in v?») where 7 " = 0 and 7](\]2'721 = N. Then, the

changepoints in v(@n) are detected by minimizing the following penalized least-squares function
[KFE12]

N 4p o )
Z > (@) — pm)y2 4 pNE, (3-5)
- n= T(Pm +1

()

where § is a penalty parameter, v, " and v, n)

are the nth point in the 7th linear segment of
v(?») and the corresponding least-squares linear fit ven), respectively. If the decrease in residual
error is smaller than 8, Eq. (4.21) rejects including additional changepoints while all possible
changepoints are considered for 4 = 0. For a defined maximum number of changepoints
N,

Cmax

€ Z., which is a reasonably small number satisfying K — 1 < N, Bis increased gradually

[max’
as long as the function finds fewer number of changepoints than N,

Ne) = [nf) 0, nf]T

cand — [

Accordingly, a matrix
€ R™X whose rows denote the candidate size vectors is
designed by combmatlon of all possible size vectors with & = ( . 1) In practice, the candidate size

vectors consisting the block sizes that are smaller than a defined minimum number of vertices in

()

cand*

the blocks N, can be removed from N

Step 2) Plane-based Piece-wise Linear Fit v(®r)

Suppose that NN; denotes the size of the sth segment from a candidate vector of

sizes ng:nd [N@ N(p " N(p ]" € RE with cand = 1,...,£&  Further, let
SZ(.‘D’" =[s Z(f)m), l(fm),..., l(f[m)] € RY*2 denote a sample matrix associated with the 7th

linear segment such that Sl(.f m) = Iz, v(p’")] € R*,n =1,..., N;. Then, the goal of this step is to
approximate v() using a piece-wise linear function that is determined by estimating K planes,
ie.

P = (sP7)s0 € B2 (3]7) TSI 4 B0 =0}, i=1 K (56)

where :91(]) ") € R? and BZ(P n) € R denote, respectively, the normal vector and the bias associated
with the estimated 7th plane 751@'"). The estimation can be performed by solving the K individual

ordinary eigenvalue problems as in [YYZ19]

zl(Pm)sl(p — A(Pm)s(pm)7 7 = 1’ . ,K (3.7)

and

B;(pm) = _(Q(Pm))—ryz(ﬁm)7 1= 17 s 7K7 (3'8)



where AZ(-p ") € Ris the smallest eigenvalue associated with the 7th plane, and El(-p ") € R¥2and
(pm)

©e R? are, respectively, the covariance matrix and the mean vector of

Sl(-‘l7 " 3 Then, using the

estimated parameters of the K planes, each segment in the vector v{(») is estimated as follows

(gpr))T [?)(;lm) _|_Bl(]7m) :0, l.:l,...,1<7 n:l,...,]\[l(-pm), (39)

where @l(p ") denotes the nth estimated point in the sth segment. Assuming that for each
ng;”(i € Ngﬁ, cand = 1,. .., £there exists a piece-wise linear function, the size vector is optimized
as follows:
N . n ~ (pm) |2
n= argmin [v®n) — 212 (3.10)
B —n@m_ nm)

where n denotes the estimated block size vector and o) € RY is the estimate of vector v

cand
(Bm)

associated with n” ;.

The proposed EBDR method is summarized for the p-nearest neighbor
graphs in Algorithm 2.

3.4.1.4 EXPERIMENTAL RESULTS

In this section, EBDR is benchmarked against three state-of-the art BDR approaches, i.e. subspace
segmentation with BD prior (BDSSC) [FLX14], BDR using matrix B (BDR-B) [LFL18] and
implicit block diagonal low-rank representation (IBDLR) [XGLI17], and robust kernel low-rank
representation (RKLRR) method [XTX15] that can be reduced to the BD for independent
subspaces and the initial matrix containing all neighbors W*~!. The performance of different
methods is analyzed in terms of their average clustering accuracy p,.. and computation time # using
the following real-world datasets: Fisher’s iris (Fisheriris) [Fis36], radar-based human gait (Gait)
[TMZ20, SAZ19], ovarian cancer (O. Cancer) [CFR04] and person identification (Person Id.)
[TSM18]. The parameters of the competitors are manually tuned to the best possible p,.. by using
500 samples in total. Then, # is summarized for 100 Monte Carlo experiments using the selected
parameters. In all experiments, the initial affinity matrix W7 lis computed using cosine similarity
and SC is performed as partitioning method. EBDR is computed using the following parameters:
Npin = 25, p = [5,10,...,N—1],N, € [K—1,...,20].

3The optimal solution to the plane-based piece-wise linear fit problem can be uniquely determined by K covariance
matrices and means of the corresponding K clusters (X blocks for our case) when the objective function reaches the
optimum. For a detailed information, see Corollary 1-2 in [YYZ19].
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Algorithm 2: p-nearest Neighbor Graph Construction

Input: X € RN p e R, N, , Npin(optional)
forp,, = p1,p2, - -, pn, do

end

Eigenvalue vector 1)

Compute Wen) e RN*Ng ¢, Wow = X)X,
Compute 1?%) € RN using Eq. (2.6)
Target Eigenvalue Vector Estimation l((,p ")
Step 1) Initialization: Possible block sizes

Compute Ngﬂ € R™>X using Eq. (3.5)

Step 2) Plane-based Piece-wise Linear Fit
B _ o) o do
for/=1,...,Kdo
Calculate %) € R and ) € R for S

Findgl(ﬁ) € R?and Bl(pm) € Rvia Eq. (3.7)-(3.8)

forn

end

cand ~
end

Estimate the block size vector n using Eq. (3.10)

Design 297 using Eq. (3.3)

Compute p) = A using Eq. (3.4) and obtain W@
Output: G? = {V, F?» W@}

29

Substitute 31(-%), Bl(p’”) in Eq. (3.9) to find f/fpm) c RV

Form ‘A/(Pm) _ [(\/\]l(Pm))T’ (‘Afgpm))—r’ - (‘/\/(]ng))T]T e RN



Dataset K N n VA ?

Fisheriris [Fis36] 3 I50 50,50,50] 50 50
Gait [SAZ19, TMZ20] 5 8oo  [160,160,160, 160, 160]T 160 165
O. Cancer [CFR04] 2 216 [95,121] 7 100 IIO
Person Id. [TSM18] 4 187 [38, 40, 47, 62]—r 45 45
Table 3.1: Numerical results for real-world datasets (/N = 8).
250 [~ Fisheriris | 10— A" —————
225+ ——Gait | +Flsher1rls
200 O. Cancer]| +galé
1751 Person Id. j =) - ancet
150 ‘_M. Fg 10} Person Id. |4
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Figure 3.6: Numerical results for the parameter N,__ .

In Table 3.1, the EBDR application to p-nearest neighbor graphs is benchmarked using real-
world datasets. The number of neighbors that provided the best p,. is denoted by p*. As can
be seen, p provided similar results to p* in all cases. To analyze the effect of N, on p,. and 7,
the estimated nearest neighbor values and computation time are shown for different N, values
in Figure 3.6a and Figure 3.6b, respectively. The results demonstrate that EBDR approximates
p* values even for a small number of samples. However, large values of N, result in high
computational cost, especially in outlier contaminated datasets, e.g. Gait. Lastly, comparisons
are drawn in terms of p,.. and # for the different methods in Table 3.2 and Table 3.3, respectively.

The clustering accuracy p,.. that has been detailed in Table 3.2 shows the best possible
performances for the competitors when the level of sparsity (i.e. the penalty parameter) has been
optimally selected. In particular, the competitor clustering accuracy results are the best results
according to an oracle selected penalty parameter/s from a grid, while estimating the level of sparsity
is part of the optimization for the proposed method. Therefore, Table 3.2 shows that EBDR

improves the performance of WAL and performs similar to the best results of the competitors
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Dataset WH~-1  BDSSC BDR-B RKLRR IBDLR EBDR

Fisheriris [Fis36] 78.00 96.00 97.33 94.67 94.67 98.00
Gait [SAZ19] 79.63 83.13 86.25 86.75 82.75 80.75
O. Cancer [CFR04] 75.00 81.48 86.57 89.35 77.31 79.17
Person Id. [TSM18] X 95.72 97.33 95.72 95.72 97.33
Table 3.2: .. (%) for real-world datasets. X' denotes the results that produce complex-valued eigenvectors, N, = 8. The
numbers indicate the bestf)acc for the competitors.
Dataset BDSSC BDR—B RKLRR IBDLR EBDR(p) EBDR
Fisheriris [Fis36] 0.174 0.041 0.208 0.573 0.015§ 0.295
Gait [SAZ19] 6.132 4.748 5.394 826.2 0.495 43.29
O. Cancer [CFR04] 2.590 0.099 3.471 1.397 0.041 1.018
Person Id. [TSM18] 0.235 0.489 0.013 0.564 0.019 0.550

Table 3.3: f(seconds) for real-world datasets. Except for EBDR the level of sparsity assumed to be known and it is defined as]A)

for EBDR(p). N,

Cmax

= 8 in all cases.

including an unsupervised sparsity parameter estimation p. In terms of ¢, the proposed method
shows a significantly better performance when the level of sparsity is assumed to be known for the
competitors. Even when including the nearest neighbor number estimation, EBDR is competitive

in terms of speed, which can be further reduced by tuning p, IV, and #;

Cmax ‘min *

3.4.1.5 SUMMARY

The eigenvalues associated with the block affinity matrix are analyzed for the generalized eigen-
decomposition to demonstrate the importance of eigenvalues in block affinity matrix design.
Based on our theoretical findings on the eigenvalues and the vector v, we proposed EBDR,
which estimates the number of neighbors by approximating the target eigenvalues. EBDR was
benchmarked on different real-world datasets and it showed promising performance compared to

four optimally tuned popular approaches in terms of both computation time and the accuracy.
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3.4.2 EIGENVECTOR-BASED SPARSITY LEVEL CONTROL FOR CLUSTERING
3.4.2.1 INTRODUCTION

Determining an embedding so that the data points lie in a union of low-dimensional subspaces
is crucial in many real-world problems such as in clustering [SLL19, LFL18, XGL17, XTX15,
FLX14, EV13], supervised learning [GGK13] and semi-supervised learning [QWZ21, LLZ15].
In particular, subspace clustering has numerous applications e.g. motion segmentation [TV17,
RTV08], face clustering [LFL18, EV13], image segmentation [LKJ20] and community clustering
in social networks [C]S14]. Motivated by its broad range of applications, SC has been the subject
of much research, which can loosely be divided into four main categories, i.e., iterative [R A17],
algebraic [TV17, TV17], statistical [RTV08] and SC-based methods [LFL18, XGL17, XTX15,
FLX14, EV13, LY11]. In recent years, the latter have attracted increasing interest due to their
simplicity and promising performance [LFL18, XGL17].

Asdiscussed in Section 2.6.1, the first step of SC-based methods is to compute an affinity matrix.
Block diagonally structured affinity matrices constitute an informative prior, that is frequently
used (e.g., [TMZ22, LFL18, XGL17, FLX14]). A popular strategy to construct a BD models
is to represent the data as a linear combination of feature vectors while regularizing the affinity
matrix coefficients, e.g. with an /4, ¢, or nuclear norm [LFL18, XGL17, FLX14]. Recent methods
apply mixed norms, such as, the elastic net, which have the advantage of providing a tradeoft
between sparsity and connectedness [XGL17, YLR16]. A major challenge for all these approaches
is to determine the appropriate level of sparsity which plays a crucial role in SC performance.
Different methods building upon supervised learning algorithms [MDD18, GCCI15], similarity
coeflicients’ distribution [TMZ21], geometric interpretations [ARV09], connectedness [NHI11]
and eigenvalues [TMZ22] have been proposed; however, no optimal approach exists, especially in
the presence of outliers.

In [TMO23], we have proposed a Sparsity-Aware Block Diagonal Representation (SABDR)
method to robustly estimate the appropriate level of sparsity for subspace clustering. The
proposed SABDR approach leverages upon the geometrical analysis of the low-dimensional
structure in SC. In particular, the derived Euclidean distances between the embeddings of different
clusters are utilized to construct the BD affinity matrix. Further, we propose a computationally
efficient density-based clustering (Con-DBSCAN) algorithm, to obtain a robust estimate of
the between-clusters distances that are associated with an available affinity matrix. Unlike the

original DBSCAN [EKS96], by leveraging upon Theorem 2 that decribes the geometry of the
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(a) Corrupted separation (b) Robust spectral analysis using DBSCAN

Figure 3.7: Robustness in spectral analysis.

embeddings, Con-DBSCAN determines the neighborhood search radius around given points
based on their connectedness, therewith leveraging the derived geometric information. This,
in contrast to DBSCAN, enables Con-DBSCAN to efficiently expand clusters with multiple
embedding vectors in a single iteration. The proposed modification leads to a considerable speed-
up without any performance loss. Building upon our theoretic analysis in Section 3.2, we develop
aregularization parameter [LFL18] selection by re-formulating the sparsity level selection problem

as an approximation of the target between-clusters distances.

3.4.2.2 MoTIvATION : DBSCAN FOR ROBUST SPECTRAL ANALYSIS

If the affinity matrix of the data is BD, SC may provide excellent results. Furthermore, according
to Theorem 2, a BD affinity matrix will lead to densely connected clusters in the embedding space.
Hence, a density-based clustering approach, such as, DBSCAN [EKS96], is a natural approach
to achieve a BD structure. However, in real-world scenarios the data includes outliers and heavy-
tailed noise which may obscure the distance between embeddings of difterent clusters. Therefore,
beyond its computational efficiency that has made DBSCAN very popular, we build upon its
intrinsic outlier detection ability to increase robustness for spectral analysis. Figure 3.7 illustrates
this with an example of K = 3 clusters that are hidden in a matrix of corrupted eigenvectors
Y = [¥o, 71, ¥2). Even though an appropriate level of sparsity provides densely connected clusters,
the outliers obscure the distance between different clusters as it is shown in Figure 3.7a. By contrast,
as illustrated in Figure 3.7b, DBSCAN identifies the outliers and robustly estimates the between-

clusters distance information.
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3.4.2.3 PROBLEM FORMULATION

Given a dataset of feature vectors X € RM*N | the aim of the method that is described in the
following is to robustly and efficiently find a K'block zero-diagonal symmetric affinity matrix W €

RN*N ¢4 cluster X using the spectral information of BD affinity matrices.

3.4.2.4 METHODOLOGY

This section details the proposed SABDR method which estimates a BD affinity matrix in three

steps that are detailed in the following sections.

Step 1) Affinity Matrix Construction

Among numerous affinity matrix design methods such as [LFL18, XGL17, XTXI15, FLXI14,
EV13], this method adapts the BDR method in [LFLI8], in which the proposed K-block
regularizer promotes a nonnegative symmetric matrix to be K-BD so that the spectral analysis
described in Section 3.2 is directly applicable.

Let W) and LW ¢ RN*N, respectively, be the affinity and Laplacian matrix that are
computed by using as a regularization parameter pair p,, = [p.1, pom 2] T from a matrix of candidate
regularization parameter pairs P = [py, p,, ..., Pn,] € R?>*Me. Assuming that for every p,, there
exists a matrix of eigenvectors* Y ) e RN*K the following sections present the selection of an

appropriate p,, based on robust spectral analysis of Y ") with the proposed Con-DBSCAN.

Step 2) Block Size Estimation using Con-DBSCAN

Step 2.1) Parameter Definition: ¢

If follows from Theorem 2 that there exists a specific level of sparsity that allows for an embedding,
such that the distance between embeddings of the same cluster is minimal while the distance
between embeddings of different clusters is maximal. Thisimportant resultimplies that there exists
a minimum neighborhood search radius ¢ that will provide these highly dense clusters.

To provide a visual understanding, the geometric definition of a minimum search radius is
shown in Figure 3.8. Considering a pair of clusters, the two clusters are assumed to have a
maximum Ny, and a minimum N, number of samples based on the information that the
maximum block size results in the minimum distance from the origin and vice-versa. Clearly, N«
can achieve its greatest value for N, = N — Npin. Then, using Theorem 2, the minimum ball

can be simply calculated for the large cluster as ¢ = \/ 1/(N — Npin) + 1/Npin — \/ 1/ Npin-

*If the obtained set is not orthonormal, the Gram-Schmidt algorithm [CK10] can be used.
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Figure 3.8: Examplary illustration of ¢ definition.

Step 2.2) Parameter Definition: Ny,

As the parameter ¢ is a function of the minimum number of points Ny, this section discusses
finding Npni,. To begin, DBSCAN assigns a sample to be an outlier if its e-neighborhood does not
contain at least Ny, neighbors which means that a large value of N, results in assigning many
samples as outlier. On the other hand, a large value of N, increases the neighborhood search
radius which may result in assigning many samples into a big cluster and the remaining samples
as outliers. Therefore, N, must be a reasonably small number which can be easily defined if K
is known. In particular, the parameter can be gradually increased as long as the clustering results

provide K clusters.

Step 2.3) Con-DBSCAN Algorithm

For a matrix E) = (YT = [efm), egm), o ,eg\?)] € R®*N containing embedding vectors
associated with p,,, the goal of this section is to assign embedding vectors into mutually
exclusive clusters using the proposed Con-DBSCAN. As in the original DBSCAN [EKS96],
the method starts with e-neighborhood computation of an unlabelled embedding vector
egm) ceE™ n=1,...,Nas

N = (el € BE el — e < o} (1)

n

Here, N is the e-neighborhood set of €™ and e(™ is the rth embedding result with

r=1,...,Nand » # n. Similar to [EKS96], Con-DBSCAN assigns e\ into a cluster ¢

if its ./\/'n(”‘) includes more neighbors than N,,,. However, there is an important difference in
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how the neighbors are included. While DBSCAN [EKS96] must compute the ¢-neighborhood
for every neighbor and iteratively expand cluster ¢ with embedding vectors, using Theorem 2,
Con-DBSCAN expands the cluster ) ina single iteration, which leads to a considerable speed-
up without any loss of performance compared to the original DBSCAN. More specifically,
Con-DBSCAN exploits the derived geometric information by comparing the connectedness of a

candidate neighbor to that of the least connected embedding in ) which are, respectively, defined

by

Rt = D Wi - (3.12)
n€cm)
and
Kr(n"fz = mm{fc Z w,” }, (3.13)
rec(m)

W)

where " o denotes the connectedness of a candidate neighbor embedding ecand c N,
is the 7, rth similarity coefﬁc1ent in W (" is the connectedness associated with the nth
embedding vector el”), and 7cmm is the minimum connectedness in cluster ¢”). Based on the
embeddingidea that connected vertices are ernbedded closely [BNOI] the rnethod expands clusters

d € N(’” such that, 7

e-neighborhood computation on the unlabelled neighbors and repeats the connectedness-based

using all highly connected neighbors vl d > Kmm Then, it iterates the

can can

expansion until no new neighbors that can be assigned to ) are found.

3) Sparsity Level Estimation
Let {N(lm) , ]%m), ce ]A\](Km)} € Z be the block sizes associated with p,, that have been estimated
in Section 3.4.2.4. Now, using Theorem 2, the components of the target between-clusters matrix

. A (m) .
estimate A}~ are determined by

~ () \/—Jr—, if 777
Ay, = - (3.14)

0, otherwise

A (m) . A () . .
where A7, "is the 7, jth component of A1~ that represents the target Euclidean distance between

cluster =1,...,Kandj = 1,..., K. Similarly, the components of the between-clusters matrix
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estimate A" are computed by

.+ (m 2™ — ™|, if i
A0 _ ) I =g, i 2 | (3.15)
iy
0, otherwise

A (m) . A (m) . . . , .
where Al(.;) is the 7, jth component of A" denoting the Euclidean distance between 7th and jth
estimated cluster centroids [cl(m) and ‘&J(m) € RX, respectively. Since for every p,, there exists a

. A lm) . N . . .
distance matrix A", the appropriate regularization parameter pair controlling the sparsity level

can be estimated as follows:

)

R Al A
p =argmin||A; " — A" ||f (3.16)

meP

The proposed SABDR for subspace clustering is summarized in Algorithm 3.

3.4.2.5 EXPERIMENTAL RESULTS

In this section, the subspace clustering performance of SABDR [TMO23] is benchmarked against
five state-of-the art affinity matrix construction methods, i.c., sparse subspace clustering (SSC)
[EV13], elastic net subspace clustering (EnSC) [YLR16], BDSSC [FLX14], BDR-B [LFL18],
IBDLR [XGLI17] and RKLRR [XTXIS] using the real-world data sets of face, object and

handwritten digit images. The application details are as follows.

1. ORL [SH94]: Asin [XGL17], 400 face images of 4o different subjects are resized to 32 x 32
and X of size 1024 x 400 is computed.

2. JAFFE [LAK98]: Similarly, 213 images of 10 subjects are resized to 64 x 64 pixels and X of
size 4096 X 213 is obtained.

3. COIL20 [NNM95]: X of size 1024 x 400, whose column vectors contain 32 X 32 down-

sampled images, is generated by selecting 20 images randomly for every object.

4. USPS [Hul94]: X with M = 256 and N = 500 is generated by randomly selecting 50

handwritten digit images of size 16 X 16 as feature vectors for every digit.

As in [LFLI18], performance analysis of every application is conducted for an increasing value

of K, eg, K ={2,3,5,8,10} using 100 randomly selected subject combinations. To reduce the
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Algorithm 3: SABDR -based Subspace Clustering

Input: X € RN P € R**Ne N, . (See, Sec. 3.4.2.4), K (optional)
for p,, = p1, P2, .- -, Pn, do

Step 1) Affinity Matrix Construction:

Obrtain the affinity matrix W) ¢ RVXN e.g. using [LFL18].
Compute Y (") ¢ RVXK using Eq. (2.6).

Step 2) Block Size Estimation using Con-DBSCAN:

Calculate ¢ as described in Section 3.4.2.4.

while there exists an unlabelled embedding vector do

Select the first unlabelled embedding e(” and
compute the e-neighborhood N via Eq. (3.11).

Initialize the cluster label ().

if the number of € neighbors > Ny, then

‘ Expand cluster ¢ using Eq. (3.12) and Eq. (3.13).
else

‘Assign el as outlier.
end

end
Step 3) Sparsity Level Estimation:
Calculate A(Tm) and A(m) using Eq. (3.14) and Eq. (3.15).

Update the estimate based on Eq (3.16).
end

Obtain associated Y® and perform K-means.

Output: A vector of estimated cluster labels ¢

Subspace Performances on ORL Data Set

Min-Max Average Clustering Accuracy for Different Regularization Parameters

K SSC EnSC BDSSC RKLRR IBDLR BDR-B SABDR
2 52.6-87.4 539-60.4 513-66.6 54.7-641 X 55.0-97.0 953
3 36.7-88.1 36.7-623 368-594 367-575 367-689 367-928 885
5 22.0-843 22.0-67.2 233-481 22.0-527 22.0-644 22.0-848 86.6
8 13.8-83.0 13.8-71.5 159-40 13.8-69.7 13.8-73.8 13.8-82.1 80.2

10 11.0-81.4 11.0-70.5 13.2-353 11.0-698 11.0-731 11.0-80.6 78.9

Table 3.4: Face clustering performance of different BDR methods on ORL data set. ‘X’ denotes the failed results.
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Subspace Performances on JAFFE Data Set

Min-Max Average Clustering Accuracy

K SSC EnSC BDSSC RKLRR IBDLR BDR-B SABDR
2 51.4-99.2 S52.0-587 50.7-68.6 52.0-61.8 51.4-63.6 521-995 97.5
3 35.0-97.7 350-68.9 353-711 351-539 351-63.7 351-97.8 95.0
5 21.4-97.2 21.4-853 22.4-87.4 21.4-703 21.4-842 21.4-974  96.6
8 135-93.4 13.5-82.8 151-931 13.5-859 135-87.7 13.5-925 89.2

10 10.8-85.0 10.8-789 12.7-854 10.8-84.0 10.8-854 10.8-859 76.5

Table 3.5: Face clustering performance of different BDR methods on JAFFE data set. ‘x’ denotes the failed results.

Subspace Performances on COIL20 Data Set

Min-Max Average Clustering Accuracy for Different Regularization Parameters

K SSC EnSC BDSSC RKLRR IBDLR BDR-B SABDR
2 52.2-938 524-628 511-71.8 525-60.9 52.2-688 527-96.6 952
3 35.0-883 350-650 354-678 350-52.7 350-674 354-91.2 833
5 21.0-855 21.0-748 223-695 21.0-537 21.0-70.6 221-884 832
8 131-79.9 131-76.7 153-722 131-66.2 131-70.6 14.3-81.3 73.3

10 105-763 105-735 12.8-70.2 105-657 105-679 11.6-76.8 70.3

Table 3.6: Object clustering performances of different BDR methods on COIL20 data set.

cost, the feature spaces are, respectively, reduced to 10, 8, 10 and 13 using Principal Component
Analysis (PCA), since using a larger feature space did not provide significant improvements.
For the competing methods, the regularization parameters are manually tuned on a grid of so
values. Finally, SC [Lux07] is performed and the performance is summarized for the average
clustering accuracy p,... The performance of SABDR is analyzed for the default parameter choice
Npin = N/(2K), except for K = 8 and K = 10 for the USPS data set in Table 3.7, where
the parameter was increased until it computes K distinct clusters (see Sec. 3.4.2.4). A MATLAB
implementation of SABDR is available at:
https://github.com/A-Tastan/SABDR

Tables. 3.4-3.7 summarize the obtained results on face, object and handwritten digit clustering,
respectively. As can be seen, SABDR in nearly all cases reaches a performance close to, or in some
cases even better than that of optimally tuned competitors. This demonstrates its excellent sparsity

level estimation performance.
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Subspace Performances on USPS Data Set

Min-Max Average Clustering Accuracy for Different Regularization Parameters

K SSC EnSC BDSSC RKLRR IBDLR BDR-B SABDR
2 50.8-81.9 50.8-54.0 50.7-944 51.0-61.8 508-752 509-89.8 820
3 34.0-745 34.0-51.8 34.2-87.0 34.0-59.7 34.0-69.0 347-787 771
5 20.4-627 20.4-562 226-791 20.4-578 204-644 213-62.5 80.3
8 12.8-57.8 12.8-54.4 19.4-70.8 12.8-591 12.8-60.3 13.1-56.3 45.6
10 10.2-55.8 10.2-55.0 18.8-66.4 10.2-56.6 10.2-54.4 10.2-61.2 17.4

Table 3.7: Handwritten-digit clustering performances of different BDR methods on USPS data set.

3.4.2.6 SUMMARY

Based on the derived theoretical information in Section 3.2, we have proposed SABDR [TMO23]
which controls the level of sparsity by robustly estimating the regularization parameter/s. To
use the available BD structure in the objective function, we proposed an efficient density-
based clustering method Con-DBSCAN. SABDR is benchmarked against popular affinity matrix

construction methods and it reached similar or higher performance compared to its optimally

tuned competitors.
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A theory is more impressive the greater the simplicity of
its premises, the more different are the kinds of things it
relates, and the more extended its range of applicability.

— Albert Einstein.

Outliers in Graph Clustering and Robust

Solutions

In the previous chapter, a sparse graph model and its applicability to sparsity-aware clustering has
been discussed. Beyond the challenges that are involved in determining the appropriate level of
sparsity, real-world data often includes outliers and heavy tailed noise. Therefore, this chapter
starts with determining fundamental outlier types for graph-based clustering in Section 4.1. To
design robust graph-based clustering algorithms, Section 4.2 analyzes the effect of fundamental
outlier types on sparse graphs. Then, the natural occurrence of outliers based on the level of
sparsity has been detailed in Section 4.3. Finally, proposed robust graph-based clustering methods

are presented in Section 4.4.

4.1 DETERMINING FUNDAMENTAL OUTLIER TYPES FOR GRAPH-BASED CLUSTERING

From Section 3.2.2, it follows that the non-zero eigenvalues of the sparse Laplacian matrix contain
the block size information. However, in practice, such a sparse Laplacian matrix is not readily

available. Especially for outlier-corrupted Laplacian matrices, the blocks might be obscured, which
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Figure 4.1: lllustration of Type | outliers. The colored cells in the corrupted BD affinity matrix W represent non-zero edge
weights in graph G.

results, e.g., in a performance degradation of an eigenvalue-based block size estimate. To quantify
this more precisely, and subsequently derive robust graph-based clustering methods, we define

fundamental outlier types in the following.

4.1.1  TyYPEI OUTLIERS

Motivated by [EV13], we begin by defining the first fundamental type of outliers as follows.

Definition 4.1.1. (Type I Outliers, [TMZ23, TMZ22]) The feature vectors corresponding to the
vertices that do not share edges with any of the samples are called Type I outliers.

Based on this first definition, the similarity coeflicient vectors that are associated to Type I
outliers, ideally, are zero vectors. More practically speaking, and motivated by real data examples,
the data-points whose similarity coefficients have negligibly small values may also be called Type I
outliers.

Definition 4.1.1 is illustrated in Figure 4.1 using the well-known handwritten digit samples from
the MNIST data base [HS98]. In the examplary corrupted graph G, the unconnected vertices are
the Type I outliers while the vertices of digits 9, 4 and 3 are connected with within-cluster edges

that are highlighted in green, blue and yellow lines, respectively.
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Figure 4.2: lllustration of Type Il outliers. The red colored cells in VV correspond to edges of Type Il outliers.

4.1.2 TypE Il OUTLIERS

The second fundamental outlier type is called Type II outliers that is quantified in the following.

Definition 4.1.2. (Type II Outliers, [TMZ23, TMZ22]) The feature vectors corresponding to the

vertices that share edges with more than one group of feature vectors are called Type II outliers.

Definition 4.1.2 is illustrated in Figure 4.2, which shows that the connectedness of Type II
outliers to multiple groups of feature vectors obscures the true clusters and poses a challenge to

graph-based clustering methods.

4.1.3 GROUP SIMILARITY

Group similarity is an extreme case of Type II outliers which is detailed the following definition.

Definition 4.1.3. (Group Similarity) If an entire group of vertices shares edges with another group

of vertices this is called group similarity.

4.2 OUTLIER EFFECTS ON SPARSE GRAPHS

To incorporate robustness into graph-based clustering, our next step is to understand the effects of
the above introduced fundamental outlier types on sparse graphs. Therefore, the following sections

analyze their effects from four different perspectives.
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Figure 4.3: lllustration of outliers’ effect on the affinity matrix.

4.2.1  OUTLIER EFFECTS ON AFFINITY MATRIX

Since the components of the affinity matrix are directly linked to the edge weights in the associated
graph model, it is important to analyze the effect of outliers on the afhinity matrix.

To provide a visual understanding of outliers’ effects, an examplary Type I and Type II outlier
corrupted graph model, the associated affinity matrix and the empirical distribution of similarity
coefficients are shown in Figure 4.3. Herein, Type I outliers are shown for a practical scenario such
that they have only a few edges and can be considered as an unconnected component compared
to highly connected true samples and Type II outliers. The figure shows that the undesired
edges associated with Type II outliers represent undesired similarity coefficients between different
blocks for a sparse BD affinity matrix. If we analyze the empirical distribution of these similarity
coefficients, it follows that the Type II outliers result in undesired similarity coefficient subspaces.
An important property of these undesired similarity coefficients is that, if similarity coefficients
within the blocks are valued larger than undesired similarity coeflicients between difterent blocks,
the graph structure can be recovered by removing these undesired coefficients. In Section 4.4.1.1,
we developed an unsupervised robust clustering algorithm to shrink these undesired similarity

coefficients to zero.

4.2.2 OUTLIER EFFECTS ON OVERALL EDGE WEIGHTS

This section introduces and discusses outliers’ effects on the overall edge weights and how the
overall edge weights can be used as an outlyingness measure to suppress both Type I and Type II
outliers. According to Definition 4.1.1 a Type I outlier is a relatively unconnected (or ideally,

even totally unconnected) vertex that has noticeably small-valued (or ideally zero-valued) overall
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Figure 4.4: Examplary outlyigness measure of Person Id. [TSM18] data set based on the overall edge weights.

edge weight in comparison to the non-outlying samples of the clusters. This means that, for a
graph model including a considerable number of edges within the clusters, clearly, Type I outliers’
overall edge weights will deviate from the typical ones. In contrast to this comparably simple
characterization of Type I outlyingness, Type II outlyingness determination based on overall edge
weight depends on cluster sizes and the parameters of available graph, e.g. the edge weights and the
affinity matrix. For example, for a graph model of not extremely imbalanced cluster sizes, the overall
edge weight of a Type II outlier is smaller-valued than that of the typical data points when the
Type II outlier is connected to multiple groups of vertices with small-valued edge weights. Thus,
while both outlier types behave differently, it is important to note for a connected graph model
of comparable cluster sizes both types of outliers have a common characteristic: thezr overall edge
weights deviate from that of the typical vertices.

To provide a visual understanding, examplary outlier assignments are shown for sparse graph
models of the Person Id. [TSM18] and Gait [SAZ19] real-world data sets in Figure 4.4 and
Figure 4.5, respectively. In both graphs, the red crosses depict the outliers that include the 15% of
vertices whose overall edge weights deviate maximally from the median of overall edge weights (the
median represents the typical overall edge weights). As can be seen, the outlier assignment based
on overall edge weight captures both vertices between difterent clusters (Type II outliers) and the
vertices that are far from every cluster (Type I outliers). In Section 4.4.2.1, we present a robust
Fiedler vector estimation algorithm suppressing outliers’ negative impact based on the overall edge

weight.
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Figure 4.5: Examplary outlyigness measure of Gait [SAZ19] data set based on the overall edge weights.

4.2.3 OUTLIER EFFECTS ON EIGENVALUES
4.2.3.1  TYPEI OUTLIERS’ EFFECT ON EIGENVALUES

To understand Type I outliers’ effects on the eigenvalues, it is important to remember the
relationship between the number of connected components of a K BD affinity matrix W € RV
and the spectrum of the associated graph Laplacian matrix L € R¥*¥, In [Lux07], it has been
shown that the multiplicity of the zero-valued eigenvalues of L equals the number of connected
components K. Clearly, considering Type I outliers as isolated blocks of size one, the addition of
N number of Type I outliers leads to /N7 additional zero-valued eigenvalues.

The effect of Type I outliers on eigenvalues is visualized in Figure 4.6. As can be seen, a Type I

outlier results in an additional zero-valued eigenvalue which is highlighted in dark red color.

4.2.3.2 TYPE Il OUTLIERS’ EFFECT ON EIGENVALUES

In contrast to Type I outlier effects that were studied in Section 4.2.3.1, understanding the effect
of Type Il outliers on eigenvalues requires further analysis. Therefore, this section analyzes Type II
outliers’ effect on the eigenvalues of the Laplacian matrix for the generalized eigen-decomposition
in Eq. (2.6)."

"For analysis based on the standard eigen-decomposition in Eq. (2.5), see Appendix A.2.2.
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Theorem 4. Let W € RNHDXN4) define 4 symmetric affinity matrix, that is equal to W, except

for an additional Type II outlier that shares similarity coefficients with K blocks where wy g > 0
denotes the similarity coefficient between the outlier oy and the Kth block. Then, for the associated
corvupted Laplacian matrix L € RNTVXNW with eigenvalues A € RN, it holds that

Nyw + wir

( ~
N; — 1 elements of 4 are equal to ,

1
Now, + wii o

N, — 1 elements of 1 are equal to ,

2

Ngwg + wi, x

Ny — 1 elements of 2 are equal to ,

dg

 the smallest element of Ais equal to zero,

and the remaining K eigenvalues are the roots of
K K O
- T~ Nwy d; ~
H(wHJ — ldj) - Z ~j—Z]~J~ — dH = O,
7=1 =1 wHJ o ld]
- K -
where dH = Z ]\]j‘LNUHJ and d] = (]\[] - l)w] + LY}HJ'-
=

Proof. See Appendix A.2.1.1. ]

Theorem 4 is illustrated in Figure 4.7. The figure confirms the results of Theorem 4 that Type II

outliers result in an increase in the eigenvalues.
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4.2.3.3 GROUP SIMILARITY EFFECT ON EIGENVALUES

The Laplacian matrix of Definition 4.1.3 can be considered as a single connected component which
means that the number of zero-valued eigenvalues equals to one [Lux07]. In contrast to this simple
interpretation, the remaining eigenvalues can be formulated as a function of intra-blocks and inter-
blocks similarity coeflicients where inter-blocks similarity coefficients are generally smaller-valued
than that of intra-blocks in real-world scenarios. To provide a mathematical understanding of this,

the following theorem quantifies the effect of group similarity on the target eigenvalues.

Theorem 5. Let W € RNxN define an affinity matrix, that is equal to W, except that block i has
similarity with the remaining K — 1 blocks with w,; = w;; > 0 denoting the value around which

the similarity coefficients between blocks i and j are concentrated forj =1, ..., K and i # j. Then,
the eigenvalues A eRY of L € RNN aye as follows:

K
=L
i
d;
]\]j 'wj + ]\]l.[vl.J

N; — 1 elements of 1 are equal to

N;—1 elements of 1 are equal to

)

J

- N, Niiv,
Ni — 1 elements of A are equal to KLUK;LU’K,
K

\ the smallest element of A is equal to zero,
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and the remaining K — 1 eigenvalues in A are the roots of
K K ~ ~
. A.Niib, N
[Ty —aap( =3 =485 _
s Njiv;; — d ’
=1 =1 Ny 7
J# Viad
~ ~ K
whered; = (N; — 1)w;+ N, d; = (N; — 1w;+) N, .
J=1
J#i
Proof. See Appendix A.2.1.2.

]

The illustration of Theorem s is given in Figs 4.8 and 4.9, respectively, for7 = land 7 = K.

As can be seen, the number of zero-valued eigenvalues equals to one while the remaining N — 1

eigenvalues are valued as it has been explained in Theorem s.
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4.2.4 OUTLIER EFFECTS ON EIGENVECTORS

Motivated by the advantages of spectral methods in graph clustering (see, Section 2..5), this sections
analyzes the effect of outliers and group similarity for SC [NJWO01] which is one of the most
popular graph clustering method building upon the eigenvectors associated with the K smallest

eigenvalues of the Laplacian matrix.

4.2.4.1  TYPEI OUTLIERS’ EFFECT ON EIGENVECTORS

According to [Lux07], the eigenspace of zero-valued eigenvalues is spanned by indicator vectors
of connected components in L. Since Type I outliers can be considered as isolated blocks of size
one, it follows that the eigenspace of /N7 additional zero-valued eigenvalues associated with Type I

outliers is spanned by the indicator vectors of the N; outliers.

4.2.4.2 TYPE Il OUTLIERS’ EFFECT ON EIGENVECTORS

In contrast to simple location understanding of Type I outliers, Type II outliers” possible location

necessitates further analysis that is conducted in the sequel.

Preposition 4.2.1. Let W € RN be 4 K block zero-diagonal symmetric affinity matrix as in
Definition 3.1.1. Further, let W € RINFDx(V+1) define a symmetric affinity matrix, which is equal
to W, except for an additional Type 11 outlier oy that is connected to the vertices associated with ith and
Jjth blocks. Finally, let Y = [yo, ..., yk1] € RVKand Y = [yo, ..., i 1] € RAFVXK e ghe
matrix of orthonormal eigenvectors associated with the K smallest eigenvalues of L and i, respectively.
Then, for e, and &, respectively, the mth row vector of Y and Y, denoting the embedding vectors
that represents the M-dimensional mth feature vector in the reduced K-dimensional space, the
embedding vector associated to Type II outlier €y is centered between mappings of blocks i and j if
the distance between every pair of embedding vectors correspond to true samples are preserved, i.e.
e —e€ulla = ||€, — €,ll2for m # and n # 1L

Proof. See Appendix A.2.1.3. O

Preposition 4.2.1 is illustrated for the eigenvectors of the corrupted Laplacian matrix L in
Figure 4.10. As can be seen, a Type IT outlier is located between the embeddings of blocks 7 and ;.

In the sequel, a further analysis is conducted for Type II outlier similarity to K blocks.
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Figure 4.10: Spectral embedding according to the eigenvectors of the corrupted Laplacian matrix I: when K = 3,7 = land
j=2

Preposition 4.2.2. Let W e RWH)x(V+1) define a symmetric affinity matrix, which is equal to
W € RY¥Nin Definition 3.1.1, except for an additional Type II outlier oy correlated with K blocks.
Further, let Y = [yo, ..., yx_1] € RMK and Y = (Yo, - - s V1] € ROFVXK be the matrix of
orthonormal eigenvectors associated with the K smallest eigenvalues of L and L, respectively. Then,
for e, and €, respectively, the mth row vector of Y and 3?, denoting the embedding vectors that
represents the M-dimensional mth feature vector in the reduced K-dimensional space, the embedding
vector associated to Type II outlier €y converges to the origin, i.e. ||€q|l, — 0, if and only if the

embedding vectors associated to true samples in Theorem z are preserved.

Proof. See Appendix A.2.1.4. ]

Prepositions 4.2.1 and 4.2.2 explain an ideal case for the location of Type II outliers in the
reduced K dimensional space. In real-world scenarios, the distance between the true samples may
not be preserved due to similarity coefficients between Type I outliers and true samples. However,
if the clusters are internally dense and sparsely connected to the rest of the graph, the embedding
operation may provide approximate results to the Prepositions 4.2.1 and 4.2.2. In more details, the
embedding idea that minimizes the distance between similar objects while maximizing it for that
of dissimilar ones results in easily separable clusters as in Theorem 2. In such cases, Type II outliers

are more likely to be located as in Prepositions 4.2.1 and 4.2.2.

4.2.4.3 GROUP SIMILARITY EFFECT ON EIGENVECTORS

The analysis of the effect of outliers on eigenvectors is extended for group similarity in the following

preposition.
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Figure 4.11: Examplary plot of Type | outliers’ effect on vector v (n = [107 8,12, 1]—r eEREHN+1=31,K=23).

Preposition 4.2.3. Let W define an affinity matrix, which is equal to W as in Definition 3.1.1,
except that we impose a constant w, > 0 around which the similarity coefficients between blocks i and
j are concentrated. Further, let L € RNN and T € RNN denote the Laplacian matrices associated
with W € RNN 1nd W € RVN, respectively. The eigenvectors associated with the K smallest
eigenvalues of L and I~J, respectively, be the column vectors of the matrices Y € RN*K 4ndY € RNXK
where K denotes the number of clusters. Finally, lete,, € RX and &,, € RX, the mth row vector of
Y 4nd Y, respectively, denote the embedding vectors that represent the M-dimensional mth feature
vector in the reduced K-dimensional space. Assuming that the column vectors of Y and Y are valued
in a range {Ymin, Ymax }> the squared Euclidean distance between any embedding vector pair e,, and

e, associated with different blocks is greater than that of €, and &, i.c. ||e,, — €,||5 > ||&,, — &,|]>-

Proof. See Appendix A.2.1.5. O

4.2.5 OUTLIER EFFECTS ON SIMPLIFIED LAPLACIAN MATRIX ANALYSIS
4.2.5.1  TYPEI OUTLIERS’ EFFECT ON SIMPLIFIED LAPLACIAN MATRIX ANALYSIS

For a Type I outlier-corrupted affinity matrix W € ROFDX(NH) that is identical to W except for
asingle TypeI outlier oy, the overall edge weight associated with oy is zero-valued, i.e. gll = 0. Based
on Theorem 3 and Eq. (3.2), it is straight-forward to show that the component in the associated
corrupted vector v € RN that is associated with the Type I outlier is zero valued, i.e., 71 = 0.
The vector v € RN associated with a Type I outlier corrupted Laplacian matrix
L € ROHDX(NHD) j¢ shown in Figure 4.11. As can be seen, the component that is associated with

the Type I outlier is zero valued in v, i.e., oy = 0.
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Figure 4.12: Examplary illustration of Theorem 6 (n = [17 10, 8, 12]—r eRKFI N4+ 1=31L,K=3, my = 1).

4.2.5.2 TYPE Il OUTLIERS’ EFFECT ON SIMPLIFIED LAPLACIAN MATRIX ANALYSIS

Type IT outliers’ effect on v is as follows.

Theorem 6. Let W € ROHVXN dofine 4 Type 11 outlier-corrupted BD affinity matrix that is
identical to W € RNN except for a single Type 11 outlier that has non-zero similarity coefficients
with all blocks. Assuming that the similarity coefficients associated with the outlier oy and the blocks
7 €{1,...,K} are concentrated around oy J» the components, whose indexes are valued between the
outlier index and the largest index of the jth block, such that my < m < uy, increase by wy j in the
corrupted vector v € RNYY Further, the component associated with the Type I outlier is given by

;

0 if 0<mpp<4¥
(mu — by)wi g if /1 <my<¥,
aH = . ’
k-1 )
> Njonj+ (mn — lr)wng  if lg < mp < N+1
=1
\

where U i denotes the lowest index of the jth block.
Proof. See Appendix A.2.1.6. OJ

Theorem 6 is illustrated in Figures 4.12 and 4.13, respectively, for two different locations of
Type Il outlier, i.e. my = ¢, — 1and my = 1. As the figures imply, Type II outliers result in

deviations on the vector v.
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Figure 4.14: Examplary illustration of Theorem 7 (n = [107 8, IZ}T eRE N=30,K=3,i=1).

4.2.5.3 GROUP SIMILARITY EFFECT ON SIMPLIFIED LAPLACIAN MATRIX ANALYSIS

The effect of group similarity on v is as follows.

Theorem 7. Let W € RN*N define a corrupted affinity matrix that is identical to W €
RN*N except that block i has non-zero similarity coefficients with the remaining K — 1 blocks with
w;; = w;; > 0 denoting the similarity coefficients around which blocks i and j are concentrated.
These similarities result in an increase by Njw;; in the components associated with the blocks

j=1i+1,...,Kofv € RN while the omponentsof j < i remain the same. Further, the components

i—1
associated with block i remain the same for i = 1 and increase by ) Nuw;;for2 <i< K
7=1
Proof. See Appendix A.2.1.7. [

The illustration of Theorem 7 is given in Figures 4.14 and 4.15, respectively, for7 = land7 = K.

Consistent with Theorem 7, group similarity leads to an increase in the target vector v.
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Figure 4.15: Examplary illustration of Theorem 7 (n = [107 8, IZ}T eRE N=30,K=3,i=K).

In the following, the worst case of group similarity, i.c., similarity of all blocks is analyzed. Note
that, in this case, eigenvalues can not even be formulated as a function of similarity coefficients
due to the impossibility of simplifying determinants of full matrices via Gaussian elimination.

However, recovering the structure of W based on v is possible based on the following result.

Corollary 7.1. Let W e RN define a corrupted affinity matrix that is identical to W € RNV
except that each blocki = 1, . . ., K has non-zero similarity coefficients with the remaining K—1 blocks
with w;; = w;; > 0 denoting the similarity cocfficients around which blocks i and j are concentrated

forj=1,...,Kandi # j. Thisleads to a piece-wise linear function given by

(

(m - El)wl if fl § m S u1
(1 — b1+ Vo + (m — o) w, it 6o <m<u
U = <
K—1
S (s — b+ Ve + (m — b)wie if bx < m < ug
\ /=1

i—1 7
where by =L uy = N, b; =) Ny +landu; =Y Nyfori=2,...,K
k=1 k=1
Proof. See Appendix A.2.1.8. O

The worst case of group similarity is illustrated in Figure 4.16 for a K = 3 BD Laplacian matrix
in which every similarity coefficient is non-zero valued. Consistent with the theoretical results of
Corollary 7.1, undesired similarity coefficient between different blocks result in shifts starting from

the second linear segment.
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4.3 SPARSITY AND OUTLIER OCCURRENCE

With the results of Sections 4.1 and 4.2 in place, we are ready to understand the relationship
between the level of sparsity and the previously defined outlier types to highlight the importance
of jointly addressing robustness and sparsity. In a generic example, Figure 4.17 shows that a
dense graph (top) contains high amounts of group similarity while increasing sparsity reduces the
number of Type II outliers (middle). Finally, further increasing sparsity generates Type I outliers
until at some point the underlying true cluster structure is completely lost. This means that an
inaccurate determination of the sparsity level leads to the above discussed outlier effects for non-
robust graph clustering approaches. In the following sections, we therefore introduce the variety
of proposed robust graph clustering approaches which address robustness from three different

perspectives.

4.4 RoBUST GRAPH-BASED CLUSTERING METHODS

After analysing the effect of outliers and group similarity, our goal is to suppress their effects on
the graph structure. As the affinity matrix directly refers to the graph structure, we first present
the proposed robust and sparsity-aware affinity matrix construction methods. Motivated by the
negative impact of outliers and group similarity on the eigenvectors, the proposed eigenvectors
estimation methods are explained subsequently. Finally, the proposed outlier detection algorithm

building upon vertex degree is introduced.
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4.4.1  ROBUST AND SPARSITY-AWARE AFFINITY MATRIX CONSTRUCTION METHODS

This section presents three different proposed robust sparsity-aware affinity matrix methods which
are, respectively, built upon the outliers and group similarity effect analysis on affinity matrices,

vector v and eigenvectors that have been detailed in Section 4.2.

4.4.1.1 SPARSITY-AWARE RoBUST COMMUNITY DETECTION

4.4.1.1.1 INTRODUCTION

Inferring a graph model from empirical observations is a fundamental data science task, and
a large number of graph construction algorithms have been proposed, e.g. [LSW16, EV13,
CYY09, WYGO08]. In network modelling, graphs are used to represent the interactions between
components of a system [FSCO04], and in cluster analysis, the similarity between features can
be expressed by a weighted graph [TMZ20, WYGO08]. Graph models play a crucial role, for
example, in subspace learning [EV13, LLY12], manifold learning [BN01, RS00] and semi-
supervised learning [Zhu08]. In particular, the inference of a graph model forms the basis of graph
partitioning [KIN11, SM0O0] and community detection algorithms, which has been a very active
area of research in recent years [BYS17, BEL14, SCB14, MH11, PRE11].

Community detection refers to finding densely connected groups of vertices, which helps to
deduce the underlying structure and relationships that are inherent to the data. A rather important
and typical situation is when the data is corrupted by heavy-tailed noise and outliers [SM21,
TMZ21,1LP19, MMY19, ZKO18, OT14]. This may lead to a performance degradation for popular
graph-based community detection methods, using modularity optimization e.g. [MHI1, BGLOS,
New06, New04], which is the most widely used objective function for partitioning [CNMO04].
Further approaches include flow-based algorithms [BEL14], modularity total variation-based
approaches [PRE11] and methods that are built upon local densities of the communities [BYS17].
A reason for the performance loss is that these methods apply optimization directly on a graph that
is possibly corrupted with undesired edges that may be caused by outliers and noise. Therefore, in
real-world settings with large and densely connected graphs, including graphs with a considerable
amount of outliers, classical community detection methods may not be capable of recovering a
graph that well-represents the underlying structure of the clean data because they give too much
influence to atypical vertices. For example, methods that use pair-wise Euclidean distances, such as
K-nearest neighbor and &-ball, are particularly sensitive to noise and outliers [CYY09].

Graph-construction algorithms that use sparse representation may provide a performance gain
compared to Euclidean distance-based methods [LSW16, THW16, CYY09, WYGO08] and sparsity-
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based characterization of locality relations can be valuable for cluster analysis [TMZ20, CLY13,
BNO1]. However, the performance of these clustering methods is sensitive to the level of sparsity
which is essential in graphs. Sparsity in graphs has been extensively researched, e.g. in terms of the
geometry of graphs and there are several approaches [ARV08, LR 99] for sparsity approximation.
Nevertheless, sparse methods are also affected by outliers, and determining the suitable level of
sparsity becomes especially challenging. Furthermore, finding such a sparse embedding is often
NP hard [ARV09].

A popular approach to promote sparsity is the LASSO regularization, which brings a relaxation
for increasing sparsity on a graph without necessitating dimension reduction [FHT08]. However,
the performance of the graphical LASSO critically depends on the selection of the penalty
parameter that controls the sparsity of the graph. It is well-known that the selection of the penalty
parameter is a challenging problem in both semi-supervised [LLO20], and unsupervised settings
[MB10, HTF09] and often supervised approaches [OP09, FHT08] or neighborhood selection
[MBO06], are used. An interesting approach to sparsity control using the penalty parameter for
graphical LASSO was made in [T'WS15] by utilizing knowledge of the number of connected
components of the graph. The approach controls the sparsity based on the a priori knowledge of
the number of clusters, which may be difficult to estimate in the presence of outliers. To the best of
our knowledge, robust sparsity control for graphical LASSO has not been applied to community
detection.

To address the above challenges, this section describes a new method for Sparsity-aware Robust
Community Detection (SPARCODE). The method that we presented in [TMZ21] begins with
a densely connected graph and produces a preliminary sparsity-improved graph, obtained via an
{;-penalized precision matrix estimation. We also proposed a method to optimize the penalty to
provide a mapping of the feature vectors from different communities in such a way that they are
embedded as far as possible on the real line. Then, undesired and negligible edges are removed from
the sparsity improved graph model and the graph construction is performed in a robust manner by
detecting the outliers based on connectivity of vertices in the improved sparse graph model. Finally,
fast spectral partitioning is performed on the outlier-free vertices of the robust sparse graph model.

The number of communities is estimated using modularity optimization on partitions.

4.4.1.1.2  SIMILARITY MEASURES FOR GRAPHS
The well-known similarity measures has been detailed in Section 2.2. However, in real-world

problems with large and noisy data sets, directly inferring clusters from Eq. (2.1) or (2.2) may be
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inefficient, or even infeasible. For such settings, sparse graphs provide a more suitable approach
to unveil the underlying data structure. It has been shown that ¢; graphs, in which the edge
weights of each vertex are constructed from the remaining vertices and the noise using the ¢,
norm (see Section 2.6.1), can provide a linear sparse representation of the data with respect to an
overcomplete dictionary of basis elements [CYY09]. If the solution is sufficiently sparse [Don06],
the problem can be generalized over all atoms in X, using the data matrix itself as dictionary [EV13],
ie.,

~

A =argmin||Al; sz. X =XA, diag(A) =0, (4.1)

where A € R/ denotes the estimated coefficient matrix and diag(A) € R¥ is the vector of

diagonal elements of coefficient matrix A.

4.4.1.1.3 PROBLEM STATEMENT

Given a data set X € RM*N | the aim of this work is to find a label vector cx € R that partitions
X into K independent and mutually exclusive communities. The true community number K is
assumed to be unknown. Further, we assume that X € R**" may be subject to heavy-tailed noise
and outliers which obscure the data structure. Computational efficiency is also of practical interest.
Summarizing, the overall aim is to develop a fast and robust clustering algorithm based on computing

a sparse graph model.

4.4.1.1.4 SPARSITY-AWARE RoBUST ComMUNITY DETECTION (SPARCODE)

The main ideas of the proposed method are briefly summarized to provide a general understanding
before going into the details. A high-level flow diagram to illustrate the key steps is provided in
Figure 4.18. The community detection problem is addressed as spectral partitioning of sparse
graphs. The proposed algorithm, which we call Sparsity-aware Robust Community Detection
(SPARCODE), starts with a densely connected weighted graph. Assuming that edges within the
communities are more densely connected than the remaining edges, the first step is to increase
the sparsity of a given graph by pushing towards zero the similarity coefficients that belong to
undesired and negligible edges. The sparsity improved graph model is obtained via an ¢;-penalized
precision matrix estimation. The penalty parameter is optimized to provide a mapping of the
feature vectors from different communities in such a way that they are embedded as far as possible
on the real line. In particular, we split the Fiedler vector and optimize according to what we call the
polarization score. Then, undesired and negligible edges are removed from the sparsity improved

graph model by applying a threshold, and the graph construction is performed in a robust
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manner. The outliers, which are represented as red points in Figure 4.18, are detected based on
the connectivity of vertices in the improved sparse graph model. Finally, fast spectral partitioning
is performed on the outlier-free vertices of the robust sparse graph model by mapping each vertex
onto a line and applying a balanced partition. The number of communities is estimated using
modularity optimization on the partitions. The steps are detailed in the following sections, a

pseudocode summary is given in Algorithm 4.

Compute Sparsity Improved Graph Model

Graphical models over undirected graphs are a popular method to exhibit conditional
independence structures in multivariate distributions [FHT08, YLO7]. Undirected Gaussian
graphical models are of particular interest within this PhD project, because in this case,
revealing the conditional independence structure is equivalent to the recovery of the
support of the precision matrix @. The Gaussian graphical model is, therefore, defined as
G = {V,E,®} with a vertex set "= {1,..., N} corresponding to random variables, an edge
set E= {(m,n) € Vlm # n,0,,, # 0} and a precision matrix . Thus, if the 7, nth entry of
© equals zero, the two corresponding variables are conditionally independent. A very popular
approach to estimate a sparse precision matrix is the graphical LASSO [FHT08], which maximizes

a penalized Gaussian likelihood

6 = argmax{logl®| — tr(S©) — £[©].}. (42

Ocs’, |

where tr denotes trace, S € RY*Vis the sample covariance matrix of W and pis a sparsity inducing
penalty parameter. According to Eq. (4.2), Ois nonnegative definite.

The graphical LASSO attempts to find the precision matrix @ based on the penalized Gaussian
likelihood function. However, it has been shown that the graphical LASSO solution may not
satisfy O c S% . [MHI2]. Additionally, recent researches on the graph error model showed that
for a graph with a constant number of communities, the expected values of the eigenvalues depend
on the probability of edge existence within and between different communities [MVO20]. In the
SPARCODE algorithm the sign of the coefhicients is not relevant for reconstructing edges in the
sparsity improved graph model because the sign of the coefficients in the similarity matrix does
not effect edge existence probability. Therefore, a sparsely connected graph G = {V, E, W is
obtained by using the (element-wise) absolute value of the estimated inverse covariance matrix ©

as affinity matrix, ie. W = |©].
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While graphical LASSO provides an efficient way to compute a solution to Eq. (4.2), the
resulting graph structure critically depends on the value of p. A key contribution of this work
is to provide a simple but effective clustering-oriented strategy to optimize p. The intuition behind
the SPARCODE approach is to determine a value for p so that a sparse graph is obtained that can
be easily partitioned by SC techniques. SC techniques map the vertices of a graph onto the real
line. They minimize the sum of the squared Euclidean distances between the endpoints of the
edges while maintaining the average Euclidean distance between random pairs of mapping points
[ARV0S].

According to [ARV08], maintaining an average unit Euclidean distance between random pairs
of these mapping points may lead to an excellent partition by cutting the line at a random
point. Achieving such a mapping is NP hard, though there are several approximations in
literature that achieve the sparsest cut [AHK10, ARV09, LR99]. SPARCODE relies on spectral
partitioning methods, which use a relaxation to map graph vertices onto the real line, providing
connected points stay as close together as possible using squared Euclidean distance [BNO1].
Let p, € {p, . ,---P,.,f denote the 7th candidate penalty parameter in Eq. (4.2). Then, the
embedding result y, € RY of the ith candidate penalty parameter p; can be approximated by

minimizing the following objective function as in [BN01],

T
2 . yl' Dl‘yi = 1
Wna(p,) St (4.3)
’ y/ D=0,

. !
y; = argmmi Z Hym —yn‘
yi m,n
where D; € RV jsa diagonal weight matrix of W(,ol) for a given p, with weights d,,,, =
>, Wna(p,) on the diagonal. The vector estimate y; = (Ji,.. ., yn) " is known as the Fiedler
vector and it shows the algebraic connectivity of a graph [Fie75]. The graph can be partitioned
into two subsets by splitting the Fiedler vector, such that y,, € y;; fory, < 0and}y, € y.»
otherwise. Here, y; ; denotes the jth subset of y, withj = 1,2and m = 1,..., N[ST07].
Based on the Fiedler vector, we propose to measure the polarization score for each candidate P;

by evaluating
Pi(p;) = med(y;1) — med(y;2), (4.4)

where med(y;;) denotes the median of the jth subset for j = 1,2. The median is used as a

robust location estimate [MMY19, ZKO18] for each subset y, ;. Given a set of candidate penalty
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Figure 4.19: The empirical distribution of similarity coefficients for growing penalty parameter values.

parameters p, € {p Poa > We estimate p by maximizing the polarization score as

min’ * " "

= argmax Pe(p), (4-5)
PP Prmax

where p denotes the estimated penalty parameter that provides maximum polarization in the
given space. The ideas underlying maximizing polarization score are visualized in Figure 4.19.
Starting from a densely connected graph model including undesired edges between different
communities, the empirical distribution of similarity coefficients is shown for growing values of
penalty parameters where similarity coefficients associated with undesired and target edges are
highlighted with red and green rectangular boxes, respectively. As can be seen, when the sparsity
is further increased, the distinction of undesired and target edges becomes challenging. This is
because now edges from both modes are shrunken to zero. Thus, in SPARCODE the penalty
parameter is estimated as the value which provides maximum polarization in coefficient space.

To reduce computational complexity, we first evaluate Eq. (4.5) on a coarse grid and then use
cubic spline interpolation between p and its neighboring samples to find the final value p. By
means of Eq. (4.5), we propose a problem-dependent tuning of the level of sparsity in Eq. (4.2).
This provides us with an initial robust sparse graph model that we will improve in the following

step.

Compute a Robust Sparse Graph Model

By maximizing the polarization score via Eq. (4.5), we estimated a graph model
G = {7, E,W(ﬁ)}, for which the edges between different communities are large, while
the edges within the community are small. However, the true graph structure may still be hidden

due to noise and outliers. It is intuitively clear that sparse outlying entries and noise have fewer
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Figure 4.20: The thresholding operation of SPARCODE.

non-zero coefficients in the affinity matrix compared to typical data points, and the value of these
coefficients is negligibly small for noise [EV13]. SPARCODE builds upon this graph property to
detect outliers and noisy feature vectors by analyzing the connectivity of graph vertices.

Let WO (3) = [VAVI(I) (%), ... ,vi/](\? (p)] € RN*N be the set of column-wise sorted similarity
vectors whose nth element denotes the sorted nth similarity vector of the estimated affinity
matrix W(ﬁ) in ascending order. Then, we obtain the aggregated set of similarity coefficients

u = {u,u,...,uxn} € R¥bycomputing
L?)sz)n(,&), m=1,...,N, (4.6)

where ,, denotes the mth element of uand @), (5) is the element of W) (5) that belongs to the
mth row and nth column. From Eq. (4.6), a two-mode Gaussian mixture distribution of the zth

similarity coefficient #,, can be written as

2
Fonl¥) = 2,803 1, %) (4.7)
=1
where ¥ = {#;,%;} denotes the parameter set of the model for / = 1,2 and g(u,,; 1, Z;) is the
univariate Gaussian probability density function with mean ¢, and variance %, and y, is the mixing
coefficient of the /th subset.

As illustrated in Figure 4.20, the two-mode Gaussian mixture model for the coefficient vector
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u may be used to separate the outliers from the typical data points based on their aggregated edge-
weights. The left mode will represent the outliers, while the right mode corresponds to typical
data points. The parameters &, 2; and y, in Eq. (4.7) are estimated using an EM algorithm.
After a K-means initialization step, the EM algorithm maximizes the log-likelihood function of
the coefhicient vector u with respect to the parameters of interest in coupled equations using
alternating expectation and maximization steps. In expectation step the probability estimate that
u,, belongs to the /th subset, with m = 1,2,..., Nand/ = 1, 2, can be calculated as
o A5

¢m7[ = ) 9 (4.8)

2 L e n
Z%zz gl @2, )

where @;1 , denotes the probability estimate of #,, that belongs to the /th subset at the #th iteration,
Af— - t_17 Af— . . . . . .

‘uﬁ 1 Y, and ;(j ! are the estimated mean, variance, and mixing coeflicient of the /th subset in
iteration £ — 1, respectively. In the maximization step, the parameters are updated using the current

values of @m ,as

N ~t

z @m,/um
~(t) _ m=l1
K = N

~t

2—31 Pon

A NG S(O\T
ﬁ:(t) B mZ:l @m,l(”m — i )t — ) (4.9)

[ N y
mZ:Jl Pon.d

N

> @;,z
~(2) m=1
Xl N

Then, the threshold can be simply evaluated as the interconnection point of the two distributions,
ie.

T = argmin|d,, 5, — 01 (4.10)

Um
This thresholding operation is visualized in Figure 4.20, where we show the estimated Gaussian
mixture model and the empirical distribution of the aggregated similarity coefficients. The effect

of applying the threshold defined in Eq. (4.10), is to remove the edges that are associated to the
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left mode of the mixture from the estimated graph model G = {¥, E, W (5)}. As a result, the
feature vectors in data matrix X that have fewer nonzero coefficients with negligibly small values
will be isolated in the graph as can be seen from the right graph model in Figure 4.20. Thus, by
giving them zero degree, outliers and noisy feature vectors are detected and removed, resulting in
a cleaned data matrix X € R¥ and a graph G = {7, E, W(p)} with ¥ denoting the estimated
clean vertices, and £ and W(ﬁ) representing the corresponding edges and similarity matrix
whose w,, ,th element denotes the weight of the edge between mth and nth feature vector of X,

respectively.

A Fast Spectral Partition based on the Robust and Sparse Graph

Assuming that G = {V; E, W ()} is cleaned from outliers and that it is sufficiently sparse, the
graph can be partitioned into K communities based on the Fiedler vector with a fast partitioning
method. In practice, however, K is unknown and must be estimated. We therefore present an
approach to estimate the range Ky, < K < K, using typical degrees in the graph.

Letd € Z™N denote a degree vector whose mth element corresponds to the degree of the mth
feature vector in X € RM*N. Further, let p € RY be the empirical probabilities of occurrence
of these degrees in 9. Finally, let h € RY/2-1 denote the vector of degrees, whose probability is
greater than the median of probabilities, i.e. med(p). Now, the minimum and maximum number
of communities { K i, Kmax } € Z4 can be estimated as

N N N
Kmin ~ and Kmax N o,
hmax + 1 bmin + 1

(4.11)

where by, = min{h}, by, = max{h}, b, + 1 and by, + 1 represent the
minimum and maximum number of vertices in each community, respectively. The intuition
underlying Eq. (4.11) is to define a range for a candidate number of communities from the
typical connectedness of the graph. Now, for a set of estimated candidate communities
Kcand € {kminy . ,kmax}, the graph can be partitioned using the ascending order sorted Fiedler
vector ) € RNof G = {V, E, W ()} as follows.

First, for each mapping result jlgjl), with m = 1,...,N, in the Fiedler vector, the standard
deviation of the set containing its two immediate neighbors is computed. The set of immediate
neighbors for mapping resules 3, m € {2,..., N—1}, s Vg;)_l, 39, j/,(;)Jrl} For the special cases

of m = land m = N, the sets are defined as {j/fj), j/g), jlgj)} and {5/@_2, 5’?\5])—1’ y

b © }, respectively.
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The standard deviations are collected in a vector defined by

_ T
0'5,(;) = (0'}1(;), Ce ’(75’;)) . (4.12)

Then, to split the graph into an initial balanced partitioning, where each community has the same

number of members, we compute the number g,nq of mapping results that we ignore in the initial

partitioning as
qcand = mOd(M kcand) . (4 I 3)
The vector yf;l € R7wd of initially ignored mapping results is composed of the mapping results

()

that are associated to the largest gnq entries of the vector o). The complementary vector Viem

is defined by the remaining N — geand entries. Then, the initial partition can be computed by

splitting the Sfr(él)n into kcand equally sized communities. Finally, the initially ignored g ;nd number

l(g?] can be assigned by minimizing the distance to the center of initially defined

communities on the real line. Now, the estimated label vector of a given candidate number of

of mapping results y

community €z € RY is available for all feature vectors of X where ¢, denotes the nth feature
vector label.

As the goal of SPARCODE is creating a graph that only includes edges within the communities,
the number of communities K can be estimated by comparing the candidate models in terms of
a suitable clustering quality metric. Modularity is a metric that evaluates the quality of partition
with respect to the similarity of feature vectors in an affinity matrix. It gives a high modularity
score if a vertex has more edges within the assigned community. The estimator for X, therefore,

maximizes the quality of different partitions of the robust graph model, i.c.

K= argmax {mod; }, (4.14)
f(cand:f(minv--vf(max

where mod; . denotes the modularity score of candidate number of communities K,nq that can

be computed using Eq. 2.7.
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Algorithm 4: SPARCODE

Input: An affinity matrix W € RNXN
Step 1: Robust Sparse Graph Model
Step 1.1: Sparsity Improvement

Initialization:
forﬁfo) :ﬁ[(fi)n, P9 do

Estimate W(,o 0) ) via Eq. (4.2)

Map each vertice onto a line using Eq. (4.3)
Get the Fiedler vector yf‘”
split '
Calculate the polarization score Py (ﬁl(-o)) via Eq. (4.4)

Stack Py (/ofo ) into p{¥) e RO

into two subsets for a splitting value s = 0

end

Penalty Parameter Selection:

Find ﬁl(_o) which maximizes Eq. (4.5) for an initial set
Regenerate a penalty parameter setp, = p . ..., p _  over equally spaced N, samples
Apply the same framework as in the initialization step
Obtainp, € RN forp. =p . .....p

Apply cubic spline interpolation to obtain p

Step 1.2: Robustness and Outlier Detection

Create W©) (p) € RN gver a set of sorted similarity
vectors from W(ﬁ)

Getu € R via Eq. (4.6)

Estimate 0, ; for each coefficient where s =1,2,... . N
and/=1,2

Calculate T'using Eq. (4.10)

Cut undesired edges in G using T

Reject outliers whose degree equals zero, 0 = 0

Form W(ﬁ) RY*N over estimated outlier-free vectors
Step 2: Fast Spectral Partition

Estimate Kcand € {Kmm, .. Kmax} using Eq. (4.11)

for K.,py = Kmm, .. K[mlx do

Create y € RN using Eq. (4.3)

Compute 5 and geang via Eq. (4.12) and Eq. (4.13)
Define y ylgn € Rand and yg;)n E R[\F?md

Apply an initial partition on yrem € RN ana

Assign Sfl(gi € Rend

Form € € RY for f(cmd
Get modj.  via Eq.(2.7) and stackinto q € RN«

end
Estimate K using Eq. (4.14)
Output: A vector € for K
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4.4.1.1.5 EXPERIMENTAL EVALUATION
In this section, the community detection performance of SPARCODE is benchmarked against
state-of-the-art community detection algorithms. We consider a variety of clustering and graph
partitioning data sets to demonstrate the applicability of SPARCODE in both of these community
detection settings. We select as competitors the following community detection algorithms:
Newman’s Greedy Algorithm (NGA) [New04], Le Martelot (Martelot) [MHI11], Newman’s
eigenvector method (NE) [New06], singular value decomposition-based community detection
(SVD) [SD11], the Louvain method (Louvain) [BGLO08], the Bayesian approach (BC) [HW08],
Bayesian nonnegative matrix factorization (BNMF) [PRE11], the Combo method [SCB14], the
Infomap method (MAP) [BEL14] and the density peak-based overlapping community detection
method (DenPeak) [BYS17]. The SVD method is applicable only on bipartite graphs, for details see
[SD11]. Bayesian cluster enumeration (BCE) [TMZ18], dip-means and kernel dip-means (K. dip-
means) [KL12], x-means [PM00], Gaussian k-means (g-means) [HC04] and DBSCAN [EKS96]
are used as cluster-based competing approaches. The performance measures are evaluated both on
synthetic and real-world data sets.

All SPARCODE implementations use the same default parameters as follows: ﬁr(r?i)n =0.1,
PO =0.99, N = N, = 5. AMATLAB code for SPARCODE is available at:
https://github.com/A-Tastan/SPARCODE

Performance Measures
The empirical probability of detection pge, the conductance cond, the modularity score mod and
the computation time # are used as performance measures. The empirical probability of detection

is estimated as
1 &
= _E 1o, )
Pder N, — {k=K} (4.15)

where Ny denotes the total number of performed experiments, K is the estimated number of

communities and 1 (k=K i the indicator function that is defined as

1, fKk=K

Lik—ry = (4.16)

0, otherwise

The conductance and modularity score of the estimated community number can be calculated
using Eqgs. (2.4.4) and (2.7), respectively. The modularity score of SPARCODE is computed based

on the affinity matrix of the sparsity improved robust graph model.
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Figure 4.21: Graphical models of Scenario 1.
Method K mod cond t
NGA [New04] 4 0.595 0.069 404.389
Martelot [MH11] 4 0.576 0.120 0.046
NE [New06] I o o 0.023
Louvain [BGLO0S$] 5 0.597 0.116 0.023
BC [HWO08] 7 0.525 0.313 1.910
BNMF [PRE11] 5 0.597 0.116 3.855
Combo [SCB14] 5 0.597 0.116 0.910
MAP [BEL14] 4 0.540 0.048 0.092
DenPeak [BYS17] 5 0.597 0.116 0.023
SPARCODE 7 0.643 0.201 0.768

Table 4.1: Performance of 10 graph-based approaches on Scenario 1 where K = 7.

Synthetic Graph Model 1: Correlated Communities Study with K = 7

An undirected weighted graph model is considered. It is a variant of the stochastic block model
(SBM) with constant densities within and between communities, respectively, where the vertices
belonging to the same community are more densely connected. The SBM of Scenario 1, i.c.
SBMi(N, «, Q), is defined for N = 300 vertices, a probability vector & € RK specifying the
distribution of the vertices in the K = 7 communities, and a symmetric connectivity matrix
Q € R®®whose g, jth element denotes the probability of an edge between ith and jth community
block. In the designed undirected weighted graph model, the first six communities inhibit
correlation between communities in addition to correlations within the community. In contrast,
the seventh community only has correlations within the community. Moreover, the density of
the seventh community is assumed to be higher compared to that of the other six. For illustration
purposes, the graph for the designed affinity matrix is shown on the left side of Figure 4.21, all

parameters to generate the data set are given in Appendix B.1.1.
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Initial graph model Estimated graph model

Figure 4.22: Graphical models of Scenario 1.

Tab. 4.1 summarizes the community detection performance results for Scenario 1 in terms
of the estimated community number, the modularity score, the conductance score and the
computation time. The considered setting is challenging for most algorithms, with the exception
of BC, all benchmark community detection algorithms underestimate the number of clusters
due to the correlations between communities. SPARCODE correctly finds the number of
communities and outperforms BC in terms of the computation time, the modularity and
conductance scores. As shown on the right side of Figure 4.21, the estimated sparsity improved

robust graph model clearly partitions the network into seven communities.

Synthetic Graph Model 2: Robustness Study with K = 3

An undirected weighted graph consisting of three communities in the presence of outliers is
created by again using the community block density-based variant of the SBM for Scenario 2,
SBM,(N, &, Q). The communities are correlated with each other in addition to exhibiting strong
correlations within. The outliers correlate equally with all communities with negligibly small
correlation coefficients. The graph for the designed affinity matrix of Scenario 2 is shown on the
left side of Figure 4.22, all parameters to generate the data set are given in Appendix B.1.2. While
the NE, NGA, BC and BNMF community detection algorithms overestimate the community
number because of outliers, the remaining competitor community detection methods estimate
the community number correctly. However, for the competing methods, the outliers cause a
noticeable drop in modularity with a poor performance in terms of conductance except for MAP
method. Although the MAP method shows the best performance with respect to conductance,
it has a poor performance in terms of modularity. By contrast, the SPARCODE algorithm,
overcomes these problems by detecting these outliers in the graph model and providing robustness

by minimizing the effect of outliers on the quality of the partition. The estimated graph model in
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Method K mod cond t

NGA [New04] 115 0.219 0.632 775.639
Martelot [MH11] 3 0.326 0.297 0.054
NE [New06] 4 0.288 0.429 0.036
Louvain [BGLO0S$] 3 0.326 0.297 0.041
BC [HWO08] 10 0.323 0.301 6.879
BNMF [PRE1]] 4 0.325 0.300 3.946
Combo [SCB14] 3 0.325 0.297 0.88
MAP [BEL14] 3 0.208 0.089 0.162
DenPeak [BYS17] 3 0.236 0.336 0.025
SPARCODE 3 0.496 0.151 0.753

Table 4.2: Performance of 10 graph-based approaches on Scenario 2 where K = 3.
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Figure 4.23: Computation time for a growing number of vertices for Scenario 2. The results are reported in seconds. The upper
figure zooms into the region concerning networks up to a size of 1000 vertices.

Figure 4.22 shows that, based on the robust sparse graph model, a separation of the communities

is possible and outliers can easily be distinguished from other data points.

Computation Time

The computation time is reported as function of the number of vertices in the network. All
experiments are performed based on Scenario 2 that was explained in the previous section.
All implementations are in MATLAB using the default parameters given by the authors,
except for the Combo and the MAP algorithms, for which we use the available C and Phyton

implementations, respectively. For the proposed SPARCODE algorithm, we compare two

73



6000

SPARCODEg¢_;

SPARCODEg¢_»
L SPARCODE

5000 —#— SPARCODEp

N
ol
S
(=)

Computation time(t)
) W
S S
S S
=) S

IR ! ‘ ‘
0 2000 4000 6000 8000 10000

Number of vertices

Figure 4.24: Performance of different partitioning methods in terms of computational complexity. The results are reported in
seconds.

possible implementations: The method referred to as SPARCODE estimates the Fiedler vector
by using the MATLAB function eig for a complete eigen-decomposition and a faster version
SPARCODEy estimates the Fiedler vector from a subset of eigenvectors using the eigs function
for the two smallest eigenvalues. The results are summarized in Figure 4.23. For sample sizes
up to 1000 vertices, SPARCODE is comparable to Combo (see Figure 4.23a), though for large
networks, the computation time of SPARCODE grows quicker (see Figure 4.23b). SPARCODEf
is faster than Martelot for large networks whereas the computation time for Martelot is smaller
for small sample sizes.

The SPARCODE method would allow for different options to do the partitioning. We
therefore also compare the computation time of the proposed partitioning approach to that of
the well-known SC method [NJW01] in the original form using K-means SPARCODEg¢_; and a
simple plug-in robustification version that use K-medoids SPARCODEg¢_,. Allimplementations
use a subset of eigenvectors, except for SPARCODE, which uses a complete eigen-decomposition.
As can be seen, SPARCODE, SPARCODEg._; and SPARCODEg-_, have a similar execution
time, although SPARCODE uses a complete eigen-decomposition. Finally, SPARCODEy

provides a significant improvement in terms of the computation time.
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K for Different Community Detection Methods

NGA Martelot NE  Louvain BC BNMFCombo MAP DenPeak SPARCODE

o.1 3 3 3 3 3 3 3 3 3
0.2 3 3 3 3 3 3 I 3 3
0.3 I 3 4 3 3 3 3 1 3 3
0.4 1 3 4 3 3 2 3 I 3 3
0.5 I 3 4 3 2 I 3 I 3 2
0.6 I 2 20 4 2 I 3 I 2 2
0.7 I 2 22 4 2 I 3 1 2 2

Table 4.3: Performance of graph-based approaches on LFR data sets for (BW =1land K = 3.
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Figure 4.25: Modularity and conductance for a growing values of {for LFR networks.

Synthetic Graph Model: Lancichinetti-Fortunato-Radicchi Networks (LFR)
Lancichinetti-Fortunato—-Radicchi networks [LFR08] are adapted for undirected weighted
graphical models using the following parameters in addition to the default setting: number of
vertices N = 300, average degree 0 = 100, maximum degree Omax = 100, mixing parameter
for weights = 0.1,.. ., 0.7, exponent for the weight distribution 8 = 1,1.5, 2. Asitisindicated
in [LFR08], for the mixing parameters beyond { = 0.5 the communities are not defined in the
strong sense such that each vertex has more neighbors in its own community than in the others.
Therefore, the target networks can be determined such that £ < 0.5.

An example of the community detection results, for 8 = 1, is summarized in Tab. 4.3.

Changing the values of £, did not lead to a considerable performance difference and thus,
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the results are not reported in detail in terms of 8. The community detection performances
are summarized using modularity and conductance metrics in Figure 4.25. As can be seen,
SPARCODE estimates the community number in the target region with a considerably high
modularity and low conductance. The results also show that even though Martelot, Louvain,
Combo and DenPeak algorithms estimate the community number correctly after { = 0.5 bound,
they show noticeably poor performance both in terms of modularity and conductance, which

indicates that vertices may assigned to the wrong communities.

Real-World Benchmark Graph Models

The performance is benchmarked on the following seven real-world networks:

Zachary’s Karate Club (Karate): The network is a social bipartite network that consists of

friendship between 34 members of a karate club [Zac77].

Dolphins: The network is a social network that consists of social interactions of 62 dolphins

with K = 2 communities based on the reaction after a dolphin left from the group [LSB03].

American College Football (Football): The network represents 115 US college teams and the
games that they played [GNO02]. The ground truth for the community number is 12.

Political Blogs (P. Blogs): The network consists of blogs about US politics with 1490 vertices

and K = 2 communities as "liberal” and “conservative” [AGO5].

Jazz Musicians (Jazz): The network consists the collaboration of jazz musicians which can

be divided into K = 4 communities based on cities where bands are recorded [GDO5].

Carpinteria Salt Marsh (C.S.M.): The network is a type of food web which can be divided
into K = 2 based on species as parasites and free-living or K = 4 subwebs based on links,

e.g. parasites-parasites, predator-parasites [LDKO06].

Caenorbabditis Elegans (C. Elegans): The biological network examines the neuronal layout

of C. Elegans for 279 neurons that can be partitioned into K = 3 communities [CHCO6].

The cosine similarity, defined in Eq. (2.1), is used to obtain the affinity matrix W for all
networks except for the political blogs network, which is examined with Pearson’s linear correlation
coefficients as defined in Eq. (2.2) because none of the algorithms estimated the community

number correctly with the cosine similarity.
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Network K NGA Martelot NE SVD Louvain BC BNMF Combo MAP DenPeak SPARCODE

Karate K 2 2 3 2 2 3 2 2 2 2 2
[Zac77] mod 2 0292 0.292 0.244 0.262 0.292 0.276 0.292 0.292 0.292 0.164 0.237
cond 0.201 0.20I  0.404 0.237 0.20I 0.24I 0.20I 0.20I 0.201 0.247 0.179

. K 2 3 6 2 4 2 3 4 2 4 2

Dolphins

[LSB03] mod 2 0364 0.415 0.373 0.364 0.421 0.364 0.371 0.421 0.364 0.342 0.382
cond 0.054 0.242 0.408 0.054 0.305 0.054 0.126 0.306 0.054 0.263 0.113

Football K 7 4 8 | 7 5 5 7 7 = 8
[GN02] mod 12 0422 0.406 o0.371 - 0.427  0.429 0.424 0.427 0.427 0.351 0.499
cond 0.405 0.316 0.476 - 0.409 0.370 0.373 0.407 0.406 0.539 0.373

P, Blogs K - 541 1 1 505 7 503 4 16 499 2
[AGO3] mod 2 - 0.478 o o 0.531 0.261 0.521 0.531 0.469 o 0.395
cond - -0.05§ o o 0.112 0.418 0.117 0.117 - o 0.087

0.02

K 20 21 7 - 21 10 22 3 3 21 4
J[gIZ)OS] mod 4 0.268 0.376 0.316 - 0.379 0.346 0.376 0.379 0.261 0.266 0.322
cond 0.094 0.278 0.462 - 0.271 0.296 0.264 0.275 0.088 0.297 0.404

CSM. K 10 12 8 1 13 10 14 5 6 11 2
[LDKO06] mod 2,4 0.199 0.261 0.218 O 0.269 0.237 0.242 0.269 0.226 0.228 0.272
cond 0.019 0.342 0.593 O 0.287 0.075 0.064 0.287 0.036 0.031 0.163

C. Elegans K 81 3 ro ’ } 5 3 3 ! * 3
[CHCO06] mod 3 o0.I170 0.236 o0.178 - 0.246 0.180 0.227 0.246 o 0.034 0.246
cond 0.716 0.265 0.651 - 0.355 0.273 0.284 0.355 o 0.076 0.341
Per 0.333 0.286 o 0.5 0.286 0.143 0.286 0.286 0.286 0.286 0.857
Average Results mod 0.286 0.352 0.243 0.156 0.366 0.299 0.351 0.367 0.291 0.198 0.336
cond 0.248 0.227 0.428 0.073 0.277 0.247 0.204 0.278 0.109 0.207 0.237

Table 4.4: Performance of graph-based approaches on well-known networks. The results whose computation takes more than

»n

12 hours and nontarget networks for SVD method are denoted as "-".

The community detection results are summarized in Tab. 4.4. The results include the estimated
community number, the modularity and the conductance scores for all cases for which the
computation time was lower than 12 hours. The community detection results of the SVD
approach are given for bipartite networks, only. As can be seen, the SPAR CODE algorithm shows
the best overall performance, and estimates the community number correctly for all networks,
except for the Football network. In particular, it provides reasonably good modularity and
conductance scores as being the fourth algorithm that provides maximum modularity with a

minimum conductance.

Real-World Radar-Based Gait Analysis Data Sets

The performance is benchmarked on the following two radar data sets:

Gait Data Set: As detailed in [SAZ19], the experimental data was collected in an office

environment at Technische Universitit Darmstadt using a 24 GHz radar system. The
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Figure 4.26: Scatter plot for three important features of Gait data belonging to five object communities.
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Figure 4.27: Graphical models of Gait data set.

data can be grouped into K = 5 different object communities, which are normal walk
(‘Normal’), limping with one leg (‘Limping one’), limping with two legs (‘Limping two’),
walking with a cane (‘Cane’) and walking with a cane out of synchronization (‘Cane out
of sync.”). The data contains 16 measurements per subject (8 towards, 8 away from the
radar) and ten subjects. The duration of each measurement is equal to six seconds. In
total, 8oo measurements for five different gait communities of ten subjects were used
in our experiments. As an illustration, a scatter plot of three important features of the
radar-based human gait data is shown in Figure 4.26. It can be seen that the outlying
observations corresponding to the ‘Cane’ community overlap with the true observations
of ‘Normal’. Moreover, the outliers of ‘Limping two’ have a considerable sample size and
strong correlations with ‘Normal’, which makes it a challenging scenario for any community

detection algorithm.
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Figure 4.29: Graphical models of Person Id. data set.

In order to represent the underlying structure, for SPARCODE, the similarity measures
that are defined in Eq. (4.1) and Eq. (2.2) are used, respectively, and the resulting graph
is shown in Figure 4.27a. Clearly, the separation into communities from such a graph is
extremely difficult. In contrast, the sparsity improved graph model shown in Figure 4.27b

better reveals separated communities.

Person Id. Data Set: As detailed in [TSM18], the experimental data has been collected in
an office environment at Technische Universitit Darmstadt using the same radar system
as explained for the previous data set. The data can be grouped into K = 4 object
communities, each representing a different person. The data set includes the measurements
of four test subjects that are walking slowly and without swinging their arms, towards and
away from the radar. The duration of recordings is equal to six seconds and the number

of measurements is equal to 13 for each person. In total, 187 stride pairs that are obtained
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from 52 observations of the four subjects are used in community detection.

The scatter plot of the Person Id. data set containing K = 4 different persons is shown
in Figure 4.28. Even though, judging based on visual impression, the examination of the
Person Id. data set seems easier in comparison to human gait data, it still has communities

that correlate with each other which makes the detection of the community number very

difficult.

Just like for the previous radar data set, SPARCODE uses the similarity measures that
are defined in Eq. (4.1) and Eq. (2.2), respectively. The initial and the sparsity improved
robust graph models of the Person Id. data set are shown in Figure 4.29a and Figure 4.29b,
respectively. As can be seen, the estimated sparsity improved graph model is separable into
four communities by eliminating the outliers that are of zero degree. Therefore, a simple
graph partitioning method is sufficient to partition such a robust sparse graph model into

the correct number of communities.

Real-World Cluster Analysis Benchmark Data Sets:
In this section, we benchmark the performance of SPARCODE on eight well-known data sets

from the UCI Machine Learning Repository. These are:

Fisher’s Iris Data Set (Fisheriris): The data set includes 150 observations from three species
of the Iris flower [Fis36].

lonosphere Data Set: The data set includes 351 radar returns from the ionosphere in order

to define quality for further analysis [SWH89]. The subspace number is equal to two.

Parkinson Acoustic Data Set (Parkinson A.): The data set consists of replicated acoustic

features of Parkinson’s disease with 240 instances from two communities which are

“healthy” and ”patient” [NPCI16].

Diabetic Retinopathy Debrecen Data Set (D. Retinopathy): The data set includes image-

based features of diabetic retinopathy with 1151 observations from two object communities
[AH14].

Connectionist Bench Data Set (Sonar): The data set includes 208 observations of K = 2
communities based on sonar returns collected from a metal cylinder and a cylindrically

shaped rock positioned on a sandy ocean floor [GS88].
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K for Different Community Detection Methods

Data Set

NGA Martelot NE SVD Louvain BC BNMFCombo MAP DenPeak SPARCODE K
Gait [SAZ19] - 3 1 3 5 5 3 5 17 5 5
Person Id. [TSM18] 9 11 1 8 8 8 5 6 3 4 4
Fisheriris [Fis36] 1 2 2 2 2 2 2 1 3 3 3
Tonosphere [SWH89] 109 106 I I 101 10 99 6 2 124 2 2
Parkinson A. [NPC16] 1 1 55 1 1 2 1 1 1 2 2
D. Retinopathy [AH14] - 2 2 1 2 2 2 2 1 2 2 2
Sonar [GS88] 1 2 28 1 3 2 2 2 1 2 2 2
QSAR Bioconcentration [GCV16] - 3 1 3 7 3 3 2 80 3 3
Cardiotocography [ABG00] - 2 206 2 15 3 2 1 1 3 3,10
Divorce Predictors [YAT19] 3 3 1 1 3 7 1 2 1 1 2 2

Table 4.5: Performance of graph-based approaches on clustering data sets. The results whose computation takes more than 12

hours and nontarget networks for SVD method are denoted as

QSAR Bioconcentration Classes Data Set (QSAR Bioconcentration): The data set consists of
the bioconcentration factor of 779 chemicals to determine mechanism of bioconcentration

[GCV16]. The data set can be partitioned into three communities.

Cardiotocography Data Set: The Cardiotocography data set consists of 2126 observations
of fetal cardiotocograms which can be partitioned into three communities in terms of fetal

state or ten communities based on morphologic pattern [ABGO0].

Divorce Predictors Data Set: The data set consists of 170 observations from two object

communities using divorce predictors scale [YAI19].

Comparisons with Graph-based Approaches

The graphs for all clustering data sets are designed using Pearson’s linear correlation coefficients
as in Eq. (2.2), except for the Ionosphere and Cardiotocography data sets, where the graphs are
designed as the same procedure with Gait and Person Id. data sets.

The estimated community numbers, for all community detection algorithms whose
computation time is less than 12 hours, are summarized in Tab. 4.5. Again, the SVD is
only applicable for bipartite networks. SPARCODE correctly estimates the number of clusters for
all data sets and outperforms all its competitors. None of the competitor community detection
algorithms is able to correctly estimate the community number of the Person Id. data set correctly.
These overestimate it in most cases, which can be explained by the considerable number of
outliers.

In addition to the accuracy in terms of the estimated number of communities, the results

are also evaluated with respect to partitioning quality and computation time. To report the
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Figure 4.30: Empirical probability of detection and average normalized performance rank of each algorithm in terms of
modularity, conductance and computation time.

modularity, the conductance and computation time in the same scale as the probability of
detection, the performances of all algorithms are ranked and then averaged over all real data sets.
The performance measures of the SVD approach are evaluated on the bipartite graphs, only. All
results are summarized in Figure 4.30. As can be seen from the figure, SPARCODE achieves the
best performance reaching a probability of detection pgee = 0.94 while the strongest competitor
(BNMTF) follows with pge, = 0.41.

Based on quality of partition, SPARCODE achieves the best performance with averaged
modularity and conductance rank score of 0.68; Martelot, MAP and BNMF follow closely
with 0.67, 0.67 and 0.66, respectively. Although SVD shows the best performance in terms of
conductance, it has the worst performance with a considerable difference in terms of its modularity.
NE, DenPeak and Louvain methods are the best algorithms with respect to computation time
while SPARCODE is the seventh-fastest approach with 0.96 averaged execution time performance
rank.

To summarize the performance of graph-based community detection approaches on real data
sets, the detailed performance measures that are reported in Figure 4.30 are further aggregated
by equally weighting all performance measures. The overall performance of the 11 competing
methods is summarized in Figure 4.31. As can be seen, SPARCODE achieves the highest overall
performance score of 0.82 whereas, Martelot is the best competitor with a score of 0.66. Combo,

MAP and Louvain follow with an overall performance score of 0.65, 0.64 and 0.62, respectively.
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Performance Rank

Figure 4.31: Performance of different algorithms based on equal weights on performance metrics.

K for Different Community Detection Methods

Data Set

BCE dip-means K.dip-means x-means g-means DBSCAN SPARCODE K
Gait [SAZ19] 7 4 3 176 9 6 S s
Person Id. [TSM18] 4 4 3 22 10 3 4 4
Fisheriris [Fis36] 3 2 2 31 3 2 3 3
Tonosphere [SWH89] 2 31 1 32 2 2 2 2
Parkinson A. [NPC16] 1 1 1 47 I 1 2 2
D. Retinopathy [AH14] 1 2 2 199 16 1 2 2
Sonar [GS88] 1 I 1 29 1 1 2 2
QSAR Bioconcentration [GCV16] 5 4 6 174 55 1 3 3
Cardiotocography [ABG00] 8 4 4 435 51 2 3 3,10
Divorce Predictors [YAI19] 1 2 2 21 3 1 2 2

Table 4.6: Performance of cluster-based approaches on clustering data sets. The results whose computation take more than 12
hours and nontarget networks for SVD method denoted as "-".

Comparisons with Cluster-based Approaches
In this section, the SPARCODE algorithm is compared with six well-known clustering methods
that estimate the number of communities K. The community detection results of different
approaches are summarized in Tab. 4.6. As can be seen, none of the competitor algorithms
performs well in the highly contaminated Gait data set. However, generally speaking, cluster-based
approaches show better performance compared to competitor graph-based approaches on Person
Id., Fisheriris and ionosphere data sets, except for x-means, which generally largely overestimates
the number of communities.

The overall community detection performance of all algorithms is summarized in Figure 4.32.

The SPARCODE method clearly outperforms existing cluster-based community detection
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Figure 4.32: Performance of different algorithms based on rank in terms of probability of detection.

approaches in terms of probability of detection and outperforms the best competitors (BCE and

dip-means), which have a performance score of 0.3, by a large margin.

4.4.1.1.6 CONCLUSION

We proposed SPARCODE, a community detection method that uses spectral partitioning based
on estimating a robust and sparse graph. The level of sparseness is controlled by maximizing
the modularity of the graph. SPARCODE includes a graph construction-based outlier detection
method to increase robustness. Overall, when compared to both cluster-based and graph-based
community detection algorithms on real and synthetic data sets, SPARCODE achieves the
highest community detection performance providing a high quality of partition at a reasonable
computation time compared to existing graph-based approaches. Judging from its applicability in
alarge variety of problems, compatibility with different graph-based methods and success in highly
contaminated data sets, SPARCODE is a promising new algorithm for performing community

detection in a robust manner.
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4.4.1.2 FAST AND ROBUST SPARSITY-AWARE BLOCK DIAGONAL REPRESENTATION

4.4.1.2.1 INTRODUCTION

A block diagonally structured affinity matrix represents clusters of feature vectors by non-
zero coefficients that are concentrated in blocks. Such a structure is an informative model
to describe hidden relationships and it has numerous applications, e.g., denoising [KY19,
DBE16], recognition [ZXS17], semi-supervised learning [QWZ21, LLZ15], subspace learning and
clustering/classification [XWW21, LWS§20, DPC19, WHGIS, LMZ12].

Commonly used existing BDR methods impose structure on the affinity matrix using
regularization with BD priors, e.g. based on a low-rank property [XTX15, LLY12, LY11, LLY10],
sparsity [FLW21, WZW17, EV13] or a known number of blocks K [TMZ22, LFL18, XGL17,
FLX14]. For example [FLX14], which is one of the current benchmark BDR methods, controls
the number of connected components in the affinity matrix by imposing a rank constraint on
the Laplacian matrix. An alternative popular approach [LFL18], proposes a K-block regularizer
that is defined by the sum of the K smallest eigenvalues of the Laplacian matrix to compute a
BD affinity matrix. A major challenge of these methods is the need to determine appropriate BD
priors which play a crucial role in achieving accurate BDR results. Due to its key role in BDR
methods, the determination of sparsity/low-rankness level has been intensively researched from
different viewpoints, e.g. similarity coefficients’ distribution [TMZ21], connectedness [NH11],
geometric analysis [ARV09] and supervised learning [MDD18, GCCI5]. Recently, in [TMZ22],
an alternative unsupervised approach based on eigenvalues has been proposed to deduce the
sparsity level in a BD matrix. The eigenvalue analysis is, however, is restricted to the setting of
independent blocks.

A further significant challenge when working with real-world data is that heavy-tailed noise and
outliers [ZKO18, RLLOS], might obscure the eigenvalue structure in corrupted data sets which
results in a performance degradation for BDR approaches that rely on estimating eigenvalues
to determine connectedness. To illustrate the necessity for robustness, we can recall the graph
partitioning application that is shown in Figure 4.33 for a defined level of sparsity using the
well-known handwritten digit samples from the MNIST data base [HS98]. In the examplary
graph model, the red edges represent connections to outliers while the remaining edges are the
informative edges, where green, blue and yellow lines represent the within-cluster edges of digits 9,
4 and 3, respectively. The red ellipses indicate cluster assignments that are computed based on the
general graph partitioning principle in which the number of edges that cross the cut is minimized

[ARV08]. As can be seen, unconnected outlying digit samples (Type I outliers) are assigned into a
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Figure 4.33: Examplary graph partitioning digit samples from MNIST data base [HS98].

small cluster while a different type of outliers (Type Il outliers) that create false positive connections
between multiple clusters cause a merging of characters four and nine into one large cluster.

In [TMZ23], we have proposed the Fast and Robust Sparsity-Aware Block Diagonal
Representation (FRS-BDR) method for robustly estimating an underlying BD structure, given
an outlier-corrupted affinity matrix. FRS-BDR method is built upon the definition of a vector
v that has been given in Section 3.2.4 to represent the BD affinity matrix as a piece-wise linear
function. Compared to existing popular BDR approaches, such as, [LFL18, XGL17, FLX14], the
optimization is efficiently performed in vector space instead of matrix space. Additionally and in
contrast to EBDR (for details, see Section 3.4.1) the method is robust against outliers. Our main

contributions are summarized as follows:

1. A comprehensive robustness analysis that quantifies the effects of outliers. In particular,
our theoretical analysis shows how the vector v and the eigenvalues, which carry substantial

information about the BD structure, are influenced by outliers.

2. Our analysis enabled the development of a BDR algorithm that is (i) robust against
outliers, since it builds upon our robustness analysis and (ii) computationally efficient by
re-formulating the problem as a piece-wise linear function optimization problem instead
of a matrix-optimization problem. We show that our proposed method even provides

mathematically interpretable results in challenging settings where deriving eigenvalue
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information is no longer possible (i.e., in the extreme case when all blocks are connected

because of corruption by outliers).

In the following section, problem statement and main ideas of the proposed FRS-BDR
method are explained. FRS-BDR algorithm is detailed in Section 4.4.1.2.3. Then, a summary
of computational analysis of FRS-BDR is introduced in Section 4.4.1.2.4 and experimental
evaluations demonstrating the performance of FRS-BDR in comparison to popular BDR

approaches are shown in Section 4.4.1.2.5. Finally, conclusions are drawn in Section 4.4.1.2.6.

4.4.1.2.2 PROBLEM STATEMENT AND MAIN IDEAS

Problem Statement

Let a given data set of feature vectors X € RM*N be represented as a weighted graph
G={V,E;W}ie, W =X"Xand||x,,|| =1, m =1,...,N. Further, let D and L. € R
denote, respectively, the overall edge weight and the Laplacian matrices associated with W. Then,
the goal of this work is to robustly estimate a K block zero-diagonal symmetric affinity matrix
W € R™¥ using the available information about the vector v and an eigen-decomposition.
The number of blocks K is assumed to be unknown and X may be subject to heavy-tailed noise
and outliers which results in undesired outliers effects, such as, group similarity. Computational
efficiency is also of fundamental interest. Thus, in brief; the overall aim is to develop a fast and

sparsity aware BDR method that is robust against outliers and group similarity.

Main Ideas and Outline of FRS-BDR Method

This section summarizes the main ideas of our proposed FRS-BDR method. The full details are
of each step are given in Section 4.4.1.2.3 and a comprehensive visual summary is provided in
Appendix B.2.1.

To provide a general understanding, a high-level flow diagram illustrating the key steps of FRS-
BDR is provided in Figure 4.34. As shown in the figure, the method consists of two general steps,
i.e., computing vector v (Step 1) and estimating vector v (Step 2). The computation step starts
with a given Type I outlier-corrupted and non-sparse Laplacian matrix L (Step 1.0: Initialization in
Figure 4.34). According to the explicit Definition 4.1.1 of Type I outliers, the method first removes
the similarity coefficients associated to Type I outliers, which are represented in red color, from L
(Step 1.1: Type I Outlier Removal in Figure 4.34). Then, the next step is to structure the resulting
matrix L in a BD form L based on a similarity-based BD ordering that we present in the sequel

(Step 1.2: Similarity-based Block Diagonal Ordering in Figure 4.34). The last part of Step 1 is, to
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Figure 4.34: High-level flow diagram illustrating the key steps of FRS-BDR using a generic example with K = 3 clusters.

obtain vector v in form of K discrete linear segments by computing an ordered sparse Laplacian
matrix I, (Step 1.3: Sparsity for Excessive Group Similarity in Figure 4.34). Then, the estimation
step starts with a changepoint detection that we propose to compute the possible block sizes (Step
2.1: Compute Candidate Block Sizes in Figure 4.34). For each possible block size vector, i.e.,
n, = [8,10,12]" € ZX in this illustrating example, the method computes a target vector v(”) and
corresponding estimate v as a function of the target similarity coefficients (Step 2.2.1: Estimate
Target Similarity Coefficients in Figure 4.34). Further, for every undesired similarity coefficient
around which the blocks are concentrated, the shifted vectors (see Corollary 7.1) are computed
separately and the undesired similarity coefficients are estimated (Step 2.2.2: Estimate Undesired

RN

Similarity Coefficients in Figure 4.34). Finally, the estimate v € is computed for the block

size vector which provides the best fit to the computed vector V.

4.4.1.2.3 FRS-BDR ALGORITHM

Step 1 : Enbancing BD Structure

The key requirement for computing vector v based on Eq. (3.2) is recovering an approximately
BD structured Laplacian matrix. Assuming that W (and the associated L) are symmetric and
sparse matrices, they can be ordered in a BD form [CM69] based on which vector v can be
directly computed. However, in general, similarity measures may not produce sparse affinity

matrices. We therefore discuss the most challenging scenario, i.e., that W is subject to Type I
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Figure 4.35: Examplary plot of the sBDO algorithm.

outliers and all blocks exhibit similarity. Considering the Type I outliers’ effect on the target vector
Vv (see, Section 4.2.5), the proposed vector v computation starts with Type I outlier detection
(Section 4.4.1.2.3). Then, a new BD ordering based on the similarity coefficients is proposed
to generate a BD ordered Laplacian matrix (Section 4.4.1.2.3). Lastly, a sparse Laplacian matrix

design is detailed for the case of excessive group similarity (Section 4.4.1.2.3).

Step 1.1 : Type I Outlier Removal

Type I outliers are detected according to
X, € Oy it Yw,, =0 for n=1,...,N and m # n, (4.17)

where O; € RM*N denotes the matrix of Type I outliers, x,, € RM is the mth feature vector for

m =1,...,N,w,,is the m, nth similarity coefficient corresponding to x,, (due to the symmetry

of W, w,, , = w, ).

Step 1.2 : Similarity-based BD Ordering (sBDO)

Let X € RM*WN-N) W D and L € RN-NDXN-M) be the resulting matrices after Step 1.1. The
vector of the BD order, i.e., b ¢ ZTNI is determined based on the following steps.

Step 1.2.1: Initialization: The BD order vector b(" is comprised of the vertex index of maximum
overall edge weight (i.c., dmax).

Step 1.2.2: Adding the most similar neighbor to b®: Let b®) = [@1, - éx_l}T € 77, with

s =2,...,N — N, denote the BD order vector at the sth stage. Assuming that the neighbors set is
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Algorithm 5: sBDO

Input: W, D € RW—Ni)x(N—Ni)
Initialization:

Find the vertex of maximum overall edge weight dmax
fors=2,...,(N—Nj)do
Adding the most similar neighbor to b
if at least one neighbor exists then
‘ Estimate b, using Eq. (4.18) and stack into bl

else
Find the vertex with maximum overall edge weight

among unselected vertices and stack 4, into b(m)

end

end

Output: Estimated order vector b¢) € ZT_NI)

non-empty?, the most similar neighbor to b at the sth stage is determined by

s—1
b, = argmax{zwm ;}n}, (4.18)
mGZ:\_LNI n=1

where m € ZTNI denotes a neighbor vertex.

An example of the sBDO algorithm is illustrated in Figure 4.3 5 and technically summarized in
Algorithm 5. As can be seen from Figure4.3 5, starting from vertex five, whose overall edge weight
is largest valued, the method selects the neighbors based on their edge weights that represent the
similarity to previously selected vertices. After selecting all neighbors, the method jumps to the
vertex that has the maximum overall edge weight among the remaining vertices and determines

the ordering of the associated neighbors.

Step 1.3: Increase Sparsity for Excessive Group Similarity

Let W, D and L, € RW-M)X(N=N) be the matrices resulting from Step 1.2. A sparsity improved

R (N-N1) X (N-Ni

Laplacian matrix L € ) is designed’ by increasing sparsity as long as, at least, the two

smallest eigenvalues are close to zero*.

*If it is empty the method simply stacks the vertex index of maximum overall edge weight into b0,
3For the examplary sparse Laplacian matrix design algorithms, see Appendix B.2.4.
*For the definition of close to zero, see Appendix B.2.2.
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Step 2: Estimating Vector v
After computing I, the vector V. € RV is obtained using Eq. (3.2)°. Then, this step models V
as a K-piece linear function of similarity coeficients around which the blocks are assumed to be

concentrated (for details, see Corollary 7.1.), i.e.,

i—1
vizvi—}_lZZ\Z]"@ivj? Z‘ZI,...,K, (419)
j=1
i
where
v, =[0,w;,...,(IN; — l)wz«]T c RN (4.20)

denotes the 7th linear segment of the target vector v;, w; is the similarity coefficient around which
the block 7 is concentrated and w;; is the undesired similarity coefficient between blocks 7 and

N;

J around which they are concentrated, 1 € R™ is the column vector of ones, N; and NN; are,

respectively, the size of block 7 and ;.

Step 2.1: Computing Candidate Block Sizes
Let N, € Z denote the number of changepoints, let 7 = [71, 7, . . ., TN[]T € Z{\f be the vector
containing corresponding locations in V, and let 7y = 0 and 7,41 = IN. Then, to estimate the

model for vector V based on Eq. (4.19), our first step is to detect the the changepoints in V as in
[KFE12]

N+1 7

S>> (G0 —a) N (4.21)

=1 m=7;,_1+1

where ¥ denotes the penalty parameter®, 7, and v,, are, respectively, the mth point in the 7th

linear segment of V and the corresponding least-squares linear fit. Then, for a candidate number of

blocks from a given vector, i.e., Kand € [Kumin, - - - ,Knm]T € Z]J\:K, the associated block-size matrix,
ie.,
K T KCQH
N Keand) — [0, n,,...,n/ € Zix 4 (4.22)

(N=N1) X (N-Ni) by following Steps 1.1 and 1.2 if, at least,

5The vector v can alternatively be computed using . € R
the two smallest eigenvalues of L are close to zero.
“To determine y, its value is increased gradually as long as the function finds a lower number of changepoints

than a predefined maximum number of changepoints N, € Z. which is a reasonably small number satisfying
K-1<N,,.
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Figure 4.36: Examplary plot of candidate block sizes.

is formed. The rows in Eq. (4.22),ie,n, = [N,,,N,,,..., N, ]T € Zf“"d, r=1,...,{denote

) K and

the candidate size vectors that are designed by combination of all possible size vectors with { =
(k1)
Kcand_l '

The computation of candidate block sizes illustrated in Figure 4.36 for a candidate block

number K¢ = 3. After estimating the changepoints using Eq. (4.21), a possible block size

matrix, i.e. NKana) € ZiXK“’“d, with { = 15 is computed for all possible block size combinations.

Step 2.2: Estimating Matrix of Similarity Coefficients
Step 2.2.1: Estimate Target Similarity Coefficients
Suppose that N,, denotes the size of 7th linear segment from a candidate size vector n,, as defined

in Eq. (4.22). Further, let v € RN denote the target vector v associated with n, defined by

Uy,

(. <m<u,

) _
o =3 s , (4:23)
n=m 1= 1, e 7Kcand

where the mth and m, nth components of v(”) and T, are denoted, respectively, by o) and 7, ,,
l,=1u,=N,,{, = 2_:11 N,, +1landu, = 22:1 N, fori=2,..., K.

7In practice, the candidate size vectors including the block sizes that are smaller than a predefined minimum
number of vertices in the blocks N, can be removed from N Kend)
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After computing v using Eq. (4.23), with Theorem 3, we model it as a K-piece linear
function of the target similarity coefficients. The model parameters are estimated in the
FRS-BDR algorithm by applying the algorithm from [YYZ19] that determines a plane-based
piece-wise linear fit. In more details, for every linear segment 7 = 1,...,Knq associated
with K ,n4, the method first estimates the parameters of the linear fit. Then, it estimates the
target similarity coeflicients w;, ..., wg__, based on the slope of piece-wise linear fit estimate. A
step-by-step detailed description of the plane-based piece-wise linear fit algorithm has been given

in Section 3.4.1.3.1.

Step 2.2.2: Estimate Undesired Similarity Coefficients

In this step, the shifted vectors of v are computed as follows

’ cee(7 1= 27 s 7Kcand7
w0 oy, TR (a9
j=1...,i—1

where
uy tr;

:
VO =D T =Y Tl (4.25)
n:&j n:&j

denotes the vector of increase associated with the undesired group similarity between block 7 and
7> and VS(? is the associated shifted target vector. Then, combining the results from Eq. (4.19),
Eq. (4.23) and Eq. (4.24), the undesired similarity coefficients between different blocks can be

estimated as
oy medF0 =) =2 Ko

wz’,’ = ) (42’6)
/ N, j=1,...,i—1

where med(-) denotes the median operator, N, is defined in Eq. (4.22), and ﬁ),(;) is the undesired
similarity coefficient estimate between 7 and ;.

To clarify Steps 2.2.1 and 2.2.2, an example with K ,,¢ = K illustrating the computation of
vector V and a matrix Wy, € R¥*X is shown in Fig 4.37. As can be seen, the target similarity
coefficients, which are the diagonal elements of Wy, i.e., diag(Wn) = [w1, wa, . . ., wK]T € RX,
represent an estimate of the slopes of the K4 = K linear segments in V. Further, off-diagonal
elements of Wy, represent undesired similarity coefficients between different blocks and are

calculated by computing the undesired shifts that have been highlighted as shaded areas in Fig 4.37.
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Figure 4.37: Examplary illustration of V and W, with K;ng = K, n = [10, 8, IZ]T € RX,
diag(Wm) = [0.6,0.3,0.9]T € RE, @, , = 0.2, 0,3 = 0.4, amd @0, 3 = 0.1.

Step 2.3: Estimating vector V and Wy,

From the computed estimates WU e REawoKant and v0) € RN the vector v,

sim
is computed by plugging in the associated intermediate estimates for all »=1,...,{ and
Keand = Konins - - -, Kinax into Eq. (4.19) and determining the final estimate as
V= argmax |V -V |, (4.27)

nreNU(cand)

where V&Jl(r) € diag(ws(;zl), ") > ﬁzl(;) holdsfori =1,...,Kunasj =1, .., Kanaand i # j.

;

The proposed FRS-BDR is summarized in Algorithm 6.

4.4.1.2.4 COMPUTATIONAL ANALYSIS OF FRS-BDR

A comprehensive computational analysis is computed in Appendix B.2.3 by determining the
number of fladd, flmlt, fldiv and flam. (For a detailed information, see [Ste01, Ste98]). The
Landau’s big O symbol is used for the cases when the complexity is not specified as above
operations. Our analysis showed that the complexity of FRS-BDR strongly depends on the initial
structure of the affinity matrix and the number of blocks K. In addition to the numeric analysis,

the complexity is analyzed experimentally in the following sections.
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Algorithm 6: FRS-BDR

Input: X € RN K i) Kinax, Ni,..o Ninin(0Ppt.)
Compute W € RVNje W = XX for Vx,, € X, ||x,||=1
Step 1: Computing Vector v

Step 1.1: Type I Outlier Removal

Compute W, D and L € RN-NDX(N=N) iy Eq. (4.17)

Step 1.2: Similarity-based Block Diagonal Ordering

Perform Algorithm s to achieve b e ZS{V_NI)

Obtain W, D and L € ROV-N)x(N—Ni) using b
Step 1.3 (opt.): Sparsity for Excessive Group Similarity
Design I, € RV=NDX(N=N0) for the desired method,
i.e. Algorithm 3 or 4 in Appendix B.2.4

Compute V € RN-N)x1
(or alternatively v € R
Step 2: Estimating Vector v

for K ;nd = Kmmins - - - » Kmax do

Step 2.1: Computing Candidate Block Sizes

Compute NKant) ¢ ZiXK““d using Eqgs. (4.21)-(4.22)
Step 2.2: Estimating W g

forn, =n;,...,nysdo

Step 2.2.1: Estimating Target Similarity Coefficients

corresponds to L using Eq. (3.2)

(N—N1) x1 corresponds to L)

Compute v(") € RN=N) using Eq. (4.23)

for;=1,...,K,,qdo
Calculate El(»r) € R¥2andp
Find :91@ € R?and BZ(-V) eR

Find \71@ € RNiand compute w;

) € R? for Y(r)

7 7

end
Form diag(W)) = [#{”, &%,...,&{ |Te RKw
and v = (97T, (99T, (v )T]Te RN-MD)

Step 2.2.2: Estimating Undesired Similarity Coefficients
for;=2,...,K.nqdo
forj=1,...,7/—1do
Compute Vs(:/) e RIN-N) using Eqs. (4.24)

(r)
Ly

()

Compute w, ; using Eq. (4.26) and stack Wsim

end
end

Estimate v(") using Eq. (4.19)

Update V based on Eq. (4.27)
end
end

Output: V, W, 1
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4.4.1.2.5 EXPERIMENTAL EVALUATION

This section benchmarks the proposed FRS-BDR method in a broad range of real data
experiments including cluster enumeration and handwritten digit, object and face clustering.
Data Sets: The performance is analyzed using the well-known MNIST [HS98] and USPS
[Hul94] data sets for handwritten digit clustering, COIL20 [NNM95] for object clustering and
ORL [SH94], JAFFE [LAK98] and Yale [BHK97] for face clustering. For cluster enumeration,
the methods are benchmarked on the Breast Cancer Wisconsin (Breast Cancer) [WM89],
Chemical Composition of Ceramic (Ceramic) [HZZ16], Vertebral Column [RSBI11],Fisheriris
[Fis36], Gait [SAZ19], O. Cancer [CFR04], Person Id. [TSM18] and Parkinson A. [NPC16] data
sets.

Baselines: For the task of subspace clustering, FRS-BDR is benchmarked against seven state-
of-the-art BDR approaches, i.e. BDSSC [FLX14], BDLRR [FLX14], BDR-B [LFL18], BDR-Z
[LFL18], IBDLR [XGL17], EBDR [TMZ22], LSR [LMZI2], two low-rank representation
methods LRR [LLY12], RKLRR [XTX15], a sparse representation method SSC [EV13] and the
initial affinity matrix that is defined by WAHN-1 = XTX. For cluster enumeration®, the method is
benchmarked against seven popular community detection methods including Louvain [BGLO0S],
Martelot [MHI11], BNMF [PRE11], DenPeak [BYS17], Combo [SCB14], MAP [BELI14] and
SPARCODE [TMZ21].

Parameter Setting: In all experiments, the parameters are optimally tuned for the competitor
approaches, while FRS-BDR is computed with the default parameters that are detailed in
Appendix B.2.5.1.

Evaluation Metrics: The computation time (#) and average clustering accuracy p,. are used for
the subspace clustering performance analysis. In cluster enumeration, the empirical probability

of detection (pge;), modularity (mod) and conductance (cond) are used in addition to 7.

Handwritten Digit Clustering

The eftectiveness of FRS-BDR in handwritten digit clustering is shown based on the following
popular real-world data sets:

MNIST Data Set: The data base includes 60000 training and 10000 test images correspond to
ro digits. For different number of subjects K = {2, 3,5, 8,10}, the data matrix X is generated by
using 100 randomly selected images from the test set for every subject where the images are used as

feature vectors and normalized. Asin [LFL18], X of size 784 x 100K is produced for the images

$For the numerical cluster enumeration results, see Appendix B.2.5.2.8
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Figure 4.38: Numerical results for MNIST data set. The regularization parameters of the competing methods are tuned for
optimal performance in all settings while the proposed method determines the parameters using Algorithms 5 and 6. In the
regularization parameter performance analysis, for all competing methods that use two parameters, the second one is tuned
optimally while varying the first.

of size 28 x 28.

USPS Data Set: 7291 training and 2007 test images of size 16 X 16 are contained in the data set.
The data matrix X is computed by following the same procedure, except for using so randomly
selected images from the test set for every subject. As a result, for the images of size 16 x 16, the
data matrix X of size 256 x SOK corresponding to K = {2,3,5, 8,10} number of subjects, is
obtained.

In contrast to object and face applications that will be detailed in the following steps, the data
matrix X of high dimensional feature vectors is directly used in affinity matrix design. Then, SC
(For the details about SC, see Section 2.5.1.) is applied to the resulting affinity matrices of different
methods.

An example of digit clustering results is shown in Figure 4.38 for the MNIST data base. (A
broad set of analysis including MNIST and USPS data bases is provided in Appendix B.2.5.2.)
Even though the performance of SSC [EV13], BDSSC [FLX14], BDLRR [FLX14][FLX14],
BDR-B [LFL18], BDR-Z [LFL18], IBDLR [XGL17], LSR [LMZI12], LRR [LLY12] and
RKLRR [XTXI15] is reported for an optimal tuning of the parameters, which is not feasible
in practice, the FRS-BDR achieves the highest clustering accuracy results in almost all cases.
Further, the regularization parameter effect analysis in Figure 4.38 showed that BDR-B and
BDR-Z performances are sensitive to the choice of the first regularization parameter, even when
tuning the second one optimally. Based on the computation time analysis, the main drawback
of competitor approaches is that they are sensitive to the dimension of feature space whereas

FRS-BDR is an efficient algorithm for the data sets including high dimensional feature vectors.
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Figure 4.39: Numerical results for COIL20 data set. The regularization parameters of the competing methods are tuned for

optimal performance in all settings while the proposed method determines the parameters using Algorithms 5 and 6. In the

regularization parameter performance analysis, for all competing methods that use two parameters, the second one is tuned
optimally while varying the first.

Object Clustering

This section introduces a set of experiments that are performed on COIL20 [NNM?95] data base
of 20 objects. In COIL20, each object has 72 images where images are taken by rotating the
object on a turntable for five degrees intervals. In our experiments, the processed COIL20 data
set in [CHHI10] containing images of size 32 x 32 pixels is used. Then, the data set X of size
1024 x 400 is generated by selecting 20 images randomly for every object. The feature space is
reduced to 1o based on PCA performance analysis which is provided in Appendix B.2.5.2.3.

As in [LFL18], performance analysis of every application is conducted for an increasing value
of K, ie, K=1{2,3,5,8,10} using 100 randomly selected subject combinations. To obtain the
affinity matrices for the competing methods, the regularization parameters are manually tuned on a
grid of so values. Finally, SC [Lux07] is applied and the results in Figure 4.39, for increasing values
of blocks K, are obtained analogously to [LFL18] (see Appendix B.2.5.2.3 for all further details).
The average clustering accuracy p,. results show that FRS-BDR performs best while EBDR is an
efficient method for small values of K. In terms of #, the main competitors BDR-B and BDR-Z
show poor performance whereas FRS-BDR performs relatively good even for large values of K.

BDR-B and BDR-Z methods show poor performance for small-valued regularization
parameters even though the second regularization parameter is optimally tuned. An important
point is that these approaches reach their best results lately in comparison to experiments on face

clustering data sets that will be explained in the following section.
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Figure 4.40: Numerical results for ORL and JAFFE data sets. The regularization parameters of the competing methods are
tuned for optimal performance in all settings while the proposed method determines the parameters using Algorithms 5 and 6.
In the regularization parameter performance analysis, for all competing methods that use two parameters, the second one is
tuned optimally while varying the first.

Face Clustering

In this section, the subspace clustering performances of different methods are benchmarked in
terms of their p,.. and # by using the following application details:

ORL Data Set: The data set includes 10 images of 40 different subjects that are taken at different
times by varying the lighting, facial expressions and details. As in [XGL17], we resize all images to
32 X 32 to obtain a data matrix X of size 1024 x 400 using normalized features. The feature space
dimension is reduced to nine using PCA in order to reduce the computation time (For the PCA
analysis of ORL data set, see Appendix B.2.5.2.4.).

JAFFE Data Set: 213 images of seven facial expressions from 1o Japanese female models comprise
the JAFFE data set. Asin [XGLI17], the images are resized to 64 X 64 pixels and the data set X
of size 4096 x 213 is computed using resized images as normalized feature vectors before applying
PCA to reduce the dimensionality to 14 features (For the PCA analysis of JAFFE data set, see
Appendix B.2.5.2.5.).

Yale Data Set: 165 grayscale images of 15 different individuals. For every subject, the data set
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Average Clustering Accuracy () for Different BDR Methods

Minimum-Maximum Clustering Accuracy (puccmin — Pacemar) for Different Regularization Parameters
Data Set WL SsC BDSSC LRR BD-LRR LSR BDR-B BDR-Z RKLRR IBDLR EBDR FRS-BDR
Breast Cancer[ WM89], 88.2 $1.0-74.7 50.3-88.2 $4.3-90.3 88.0-90.0 73.5-88.2 62.4-90.0 §2.9-90.2 62.6-91.7 60.3-90.0 85.2 90.1
Ceramic [HZZ16], 98.9 §1.1-98.9 $1.I-100 95.5-98.9 95.5-98.9 54.5-98.9 $1.I-100 $51.1-98.9 SI1.I-95.5 §1.1-98.9 98.9 98.9
Vertebral Column [RSB11], 73.2 50.0-77.7 50.3-74.8 53.972.6 72.6-72.6 62.6-75.8 67.4-76.8 71.9-76.8 67.4-71.3 67.4-76.1 74.8 75.8
Fisheriris [Fis36], 78.0 34.7-82.7 34.0-83.3 38.7-80.7 80.0-98.0 78.0-82.7 34.0-96.7 65.3-96.7 34.0-80.0 34.7-84.0 98.0 96.7
Gait [SAZ19], 77.3 20.3-77.4 20.1-77.5 26.1-83.9 78.9-83.5 55.4-75.9 20.3-84.8 26.4-84.5 20.5-85.5 20.4-81.6 81.1 77.1
O. Cancer [CFR04], 61.7 $1.4-73.6 50.9-71.3 52.3-76.4 54.2-76.4 §1.9-66.2 $3.7-75.9 $1.9-74.1 55.6-88.4 55.6-75.5 77.8 77.3
Person Id. [TSM18], x 33.7-96.8 31.6:95.7 49.7-94.7 71.1-94.7 33.2-64.2 31.6-96.3 59-4-95.7 34.2-94.1 33.7-957 973 96.8
Parkinson A. [NPCI16], 61.3 50.4-58.8 50.0-61.3 50.4-54.2 50.4-61.3 §7.9-61.3 50.4-61.3 50.0-61.3 50.4-61.7 50.4-61.3 56.7 58.2
Average 76.9 42.8-80.1 42.3-81.5 52.6-81.4 73.8-84.4 58.4-76.6 46.4-85.2 53.6-84.8 47.0-83.5 46.7-82.9 83.7 83.9

Table 4.7: Subspace clustering performance of different BDR approaches on well-known clustering data sets. The results are
summarized for the similarity measure W = X TX. ¥ denotes the failed results due to the complex-valued eigenvectors.

contains 11 images that capture different facial expressions. The data matrix X of size 1024 X 165 is
constructed as in the ORL Data Set (For the PCA analysis of Yale data set, see Appendix B.2.5.2.6.).

After determining the number of PCA features, the same procedure as in object clustering is
performed and the performance is reported for a different number of subjects K = {2, 3,5, 8,10}
in Figure 4.40. (For a detailed performance analysis, see Appendix B.2.5.2.)

The average clustering accuracy p,. and computation time ¢ for the ORL and JAFFE data sets
are provided in Figure 4.40. Consistent with the previous experiments, FRS-BDR shows the best
clustering accuracy performance among all approaches in almost all cases. In terms of z, FRS-BDR
shows a reasonably good performance until number of subjects reaches K = 8. A reduction for

large-valued K can be obtained by adjusting N, ... Extensive further numerical experiments are

max

reported in Appendices B.2.5.2.4, B.2.5.2.5 and B.2.5.2.6.

Subspace Clustering on Well-Known Clustering Data Sets
This section investigates the subspace clustering performance of different approaches in terms of
their average clustering accuracy using the following popular clustering data sets: Breast Cancer
[WM89], Ceramic [HZZ16], Vertebral Column [RSB11], Fisheriris [Fis36], Gait [SAZ19], O.
Cancer [CFR04], Person Id. [TSM18] and Parkinson A. [NPC16]. Starting from the initial
affinity matrix that is defined by WAL = XTX the affinity matrices are estimated for different
approaches. For competing methods, the affinity matrix construction methods are optimally
tuned and FRS-BDR is computed with the default parameters. Then, SC as in is applied, as
detailed in Section 2.5.1.

The clustering accuracy performances of different block-diagonal representation approaches
are detailed in terms of their average clustering accuracy in Table 4.7. As can be seen from

Table 4.7, FRS-BDR provides similar performance to the maximum clustering accuracy results
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of its strongest competitors (BDR-B, BDR-Z, BD-LRR) while it outperforms all other BDR
approaches. The method is also computationally efficient in comparison to most of the competitor

methods based on the additional experiments that are given in Appendix B.2.5.2.7.

4.4.1.2.6 CONCLUSION

A robust method to recover a BD affinity matrix in challenging has been presented. The proposed
Fast and Robust Sparsity-Aware Block Diagonal Representation (FRS-BDR) method jointly
estimates cluster memberships and the number of blocks. It builds upon our presented theoretical
results that describe the effect of different fundamental outlier types in cluster analysis, allowing to
reformulate the problem as a robust piece-wise linear fitting problem. Comprehensive experiments
including a variety of real-world applications demonstrate the effectiveness of FRS-BDR compared
to optimally tuned benchmark methods in terms of clustering accuracy, computation time and

cluster enumeration performance.

4.4.2 RoBUST EIGENVECTOR EsTIMATION METHODS

This section incorporate robustness in the embedding space based on the two different embedding

strategies that are detailed in the following.

4.4.2.1 RoBUST REGULARIZED LocCALITY PRESERVING INDEXING FOR FIEDLER VECTOR

EsTiMAaTION

4.4.2.1.1 INTRODUCTION

As discussed in Section 2.3.3, the Fiedler vector of a connected graph is the eigenvector associated
with the second smallest eigenvalue, the so called Fiedler value, of the graph Laplacian matrix.
The Fiedler vector and the Fiedler value provide important information for estimating [BM13,
ASDI2, Fie73] and controlling [TD20, LB14, YFGI10] the algebraic connectivity of a graph,
finding densely connected groups of vertices that are hidden in the graph structure [Sch07,
ST96], and representing the implicit relationships between variables in a low-dimensional space
[DS20, Hen07]. More generally, eigenvector decomposition is used in a variety of applications
to achieve tasks, such as dimension reduction [CHZ07, CHHO05, HCL04, HN04, DDF90],
recognition [ZZ1.18, LT09, YTLO06], clustering/classification [HRG18, OFK18, CCl4, XGOS,
GKROS5, NJWO01] and localization [SVBO01]. Due to its central role in graph analysis, the
computation of the Fiedler vector has been a fundamental research area for decades [DS20,
CHZ07, CHHO05, HCL04, HN04, DDF90].
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A popular method to embed data points into a low-dimensional space is Laplacian eigenmaps
(LE) [BNO01] method for which the embedding is performed based on the eigen-decomposition
of Laplacian matrix. It can therefore also be used for Fiedler vector computation. The LE
method performs a nonlinear dimensionality reduction while preserving the local neighborhood
information in a certain sense, and it explicitly reveals the manifold structure [BNO1]. An
alternative approach is that of locality preserving indexing (LPI) [HCLO04], which transforms
the nonlinear dimensionality reduction in the Laplace Beltrami operator into a linear system
of equations. LPI requires a complete singular value decomposition (SVD), resulting in a
considerable computational complexity which is why computationally more attractive alternative
approaches have been proposed in [HRG18, CHZ07]. However, the performance of [CHZ07]
strongly depends on the penalty parameter selection. Further, in real-world scenarios, outliers and
heavy-tailed noise may obscure the graph structure that represents the clean data. Consequently,
the computed Fiedler vectors are corrupted, and embeddings based on these vectors no longer
provide useful information about the majority of the data set, as they are dominated by outliers.
Therefore, robust Fiedler vector estimation methods are needed. One popular strategy is to
mitigate the effects of outliers in the representation space via a restructuring of the affinity matrix
based on a prior information, e.g., the number of clusters [LNC18, FLX14] and the level of sparsity
[ZCS19, AGR19, LNC18, ZZ1.18, FLX14] that plays a crucial role in the structure of eigenvectors.
However, a major challenge is to determine this prior information, especially in the presence of
outliers and heavy-tailed noise that may obscure the underlying structure. Alternatively, outliers
can be suppressed in the projection space, such as in [TMZ21, YCL20, ZCS19, CNW15, PYTI15].
However, most of these approaches, again, require prior knowledge, e.g., the label information
of a data set [YCL20, CNWI15] or data dependent parameter tuning to determine the descriptive
features [ZCS19]. Moreover, the robust projection operation in [PYT15], uses the ¢; norm that
creates a different eigenbasis and requires prior information about the data, i.e. representative
samples. The robust locality preserving feature mapping (RLPFM) approach in [TMZ21]
preserves the £, norm and builds upon M-estimation to suppress the outliers. However, it performs
M-estimation of the eigenvectors by iteratively reweighting the residuals of LE-based prediction
which results in a large computation cost.

To address these issues, we proposed a new Robust Regularized Locality Preserving Indexing
(RRLPI) method for Fiedler vector estimation in [TMZ22]. Our key idea was to provide
robustness in the embedding space by transforming the Fiedler vector estimation problem into

a linear system of equations that reveals the hidden group structure in a given graph without
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Figure 4.41: Examplary image segmentation result comparing the popular LE [BNO1] and the proposed RRLPI methods for
Fiedler vector estimation.

assuming any prior knowledge. Motivated by the importance of the sparsity level in the Fiedler
vector structure, we began by distinguishing fundamental outlier types and investigated how their
occurence depends on the determined sparsity level. This analysis of the effects of outliers on the
eigen-decomposition enabled us to understand how to best integrate robustness into the Fiedler
vector computation. Based on our analysis, we showed that the overall edge weight attached to a
vertex is a valuable information to identify an outlier. Therefore, an error model was formulated
based on the typical overall edge weight of a graph. Unlike other embedding approaches whose
performance strongly depends on correctly setting parameters with the help of prior knowledge,
e.g., [YCL20, ZCS19, CNW15, CHZ07], our penalty parameter determination was formulated
as part of the optimization (similar to [TMZ21]) based on A-separated sets [ARV09] which are
defined based on geometric analysis of well-spread (3 representations. However, in contrast to
RLPFM [TMZ21], the proposed RRLPI robustly estimates the Fiedler vector based on the typical
overall edge weight of the graph, which incorporates the weighting operation into a single step and
makes the proposed method computationally efficient in comparison to [TMZ21] that has been
discussed in Section 4.4.2.2.

An image segmentation application illustrating the need for robust Fiedler vector estimation is
provided in Figure 4.41. Starting from an original image including birds and background (sky),
the aim clearly is to assign birds and the background into different segments. To this end, the
image is represented as graph and the Fiedler vectors are computed using RRLPI (top) and LE
(bottom). The resulting Fiedler vectors are then clustered into two groups. As can be seen, the LE
based Fiedler vector computation results in assigning outlying entries of the Fiedler vector as one

small cluster while merging birds and background in a second big cluster. By contrast, the robustly
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estimated Fiedler vector using the proposed RRLPI method provides the correct structure in the
Fiedler vector estimate to enable the desired segmentation into birds and background. Robustness
is obtained by assigning weights to all data-points based on the typical overall edge weight in the
associated graph. Consistent with the ideas of M-estimation in robust statistics [ZKO18, ZKC12],
a large degree of outlyingness of a data-point corresponds to a small weight.

This section is organized as follows. First, the basic concepts and Fiedler vector estimation using
LPI are briefly discussed. Further, the ideas underlying the proposed algorithm and the problem
formulation are given. Then, the proposed RRLPI method is detailed. After introducing the
theoretical analysis, penalty parameter selection, computational complexity analysis and possible
applications, conclusions are drawn. An implementation of RRLPI is available at:

https://github.com/A-Tastan/RRLPI

4.4.2.1.2 LPIForR COMPUTING THE FIEDLER VECTOR
Suppose that a data set X = [xq,...,x,] € R”*” with m denoting the data dimension and
n being the number of data-points, can be represented as a graph G = {V, E, W}, where V

denotes the vertices, E represents the edges, and W € RAXN

is the symmetric afhinity matrix
that is computed using a similarity measure, e.g. cosine similarity as defined in Eq. (2.1).
Let L € R denote the nonnegative definite Laplacian matrix with associated eigenvalues
0 <1y <A <--- <Ay sorted in ascending order as defined in Section 2.3.2. Then, it
follows that the Fiedler vector y € R” is the eigenvector associated with the second smallest
eigenvalue 4, of the eigen-problem Eq. (2.5) or in a generalized eigenvalue problem form Eq. (2.6).
Here, the Laplacian matrix L is defined analogously to the Laplace Beltrami operator on the
manifoldby L = D — W, where D € RN*N is a diagonal weight matrix with overall edge weights
Aoy =Y, Wy, on the diagonal and y,, € RV is the eigenvector associated with 4,,.

The LPI method determines linear approximations to the eigenfunctions of the Laplace
Beltrami operator [HCL04, HNO04] by representing the Fiedler vector as the response of a linear
regression with input variables X, i.e., yr = XT‘B . Hence, the LPI finds a transformation vector

Br € R that is the eigenvector associated with the second smallest eigenvalue of the generalized

eigen-problem

XLX '8, =21,XDX'8,, m=0,... N—1 (4.28)

or, equivalently, it is associated with the second largest eigenvalue of the generalized eigen-problem

XWX'8, =2,XDX'8,, (4-29)
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which has the same eigenvalue 4,, as in Eq. (2.6) for 4, with » = N — (m + 1). In the following

theorem, the link between the well-known Fiedler vector computation and LPI [HCL04] is shown.

Theorem 8. Let y be the Fiedler vector associated with the second largest eigenvalue Ar such that
F = N — 2 of the eigen-problem
Wy = 1Dy (4.30)

If X Br = yp then Br is the cigenvector of the eigen-problem in Eq. (4.29) with the same eigenvalue
A Stch that m = 1.

Proof. Replacing X' B by the Fiedler vector y on the left side of Eq. (4.29) yields
XWX =XWy; = XDy = 1 XDyr = 21 XDX s s.t. F=N—2

and shows that for F = n = N — 2, Bris the eigenvector of the eigen-problem of Eq. (4.29) which

concludes the proof. O

Therefore, building upon [CHZ07], the projective functions of LPI can be determined in two
consecutive steps for Fiedler vector estimation. First, the Fiedler vector y associated with the
second smallest eigenvalue of Eq. (2.6) must be computed. Then, for the Fiedler vector y, the
LPI method estimates a transformation vector B¢ € RM that satisfies y = XTﬁ by solving the

following least squares problem
) N
B, = argmin Z(ﬂ;xm — Ymp) (4.31)
ﬂ m=1

where y,, ris the mth embedding point in yrand B,.is the estimated transformation vector.

4.4.2.1.3 MOTIVATION AND PROBLEM STATEMENT

The previous section discussed the applicability of LPI for Fiedler vector computation. In
particular, LPI may discover the hidden nonlinear structure by finding linear approximations to
the nonlinear LE (for details, see [HCL04] and [HN04]). However, when using the least-squares
objective function, outliers and heavy-tailed noise may have a large impact on the estimation of the
transformation vector 8. This leads to errors in the computed Fiedler vector and, consequently,
an information loss about the representation of the underlying graph structure using such a

corrupted Fiedler vector computation. This section analyzes the effects of outliers and noise on
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the eigen-decomposition of the Laplacian matrix. The analysis provides the theoretical basis and

an understanding of the ideas underlying the proposed robust Fiedler vector estimation approach.

Outlier Effects on the Fiedler Vector

The effect of outliers on the eigen-decomposition has been analyzed in terms of two fundamental
types of outliers and group similarity in Section 4.2. This section extends our theory by analysing
outliers’ effect on the Fiedler vector.

Based on the Type I outlier effect analysis in Section 4.2.4.2, if the affinity matrix has distinct
blocks and the Type I outliers are disconnected, the Fiedler vector can be easily determined after
removing these outliers. However, in real-world scenarios the true blocks are generally not distinct
and/or outliers do have a few non-zero similarities which result in non-zero eigenvalues [CC15,
ZP04]. Since the number of blocks K and the number of outliers /Nj are unknown, directly using
eigenvalues for outlier detection may be impossible in practice.

The following preposition provides a numerical understanding of Type I outliers’ effect on the

Fiedler vector.

Preposition 4.4.1. For a definite nonnegative K block zero-diagonal symmetric affinity matrix
W € RN and the associated Laplacian L € RN*N, [et the eigenvectors have a norm such that
¥ ll5 = 1 bolds, where'y,, denotes the eigenvector associated with the mth eigenvalue of L. Further,
let Y be the Fiedler vector associated with the eigenvalue that corresponds to an additive Type I
outlier and let y,, r denote the embedding result of a Type I outlier in yr. Then, it follows that the
Euclidean distance between embeddings of different blocks decreases to zero when the absolute value

of the embedding result of the outlier increases to one, i.e. when |y, r| — 1.
Proof. See Appendix A.3.0.1. [

Motivated by the eigenvectors’ crucial role in cluster analysis, the results of Preposition 4.4.1
can be extended to multiple eigenvectors. If a distance-based clustering approach, such as SC is
applied on the eigenvectors that are the indicator vectors of Ny outliers, all non-outlying points are
mapped to the same cluster as a result of Preposition 4.4.1, as |y, 7| — 1. This explains why SC
breaks down in the presence of Type I outliers. Only if the number of outliers is known or can
be deduced from the data set (e.g. because they perfectly match Definition 4.1.1), ignoring the
indicator vectors of outliers can overcome this problem. However, in practice, Definition 4.1.1
may only hold approximately, and data points may vary in the degree of their outlyingness, making

abinary detection challenging or inappropriate. In the following sections, we will therefore present
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Figure 4.42: Fiedler vector computation for an ideal K = 2 blocks affinity matrix.

arobust M-estimation-based approach to suppress the impact of outliers, when such simple outlier
detection and removal strategies do not apply.

Next, it is important to analyze the effect of Type II outliers on the eigenvectors to understand
their particular effect on the Fiedler vector. Hence, the following preposition examines the extreme

case of Type II outliers from a general perspective in terms of their effects on the eigenvectors.

Preposition 4.4.2. For a K block zero-diagonal symmetric nonnegative affinity matrix
W € RN et w; € {wy, w,, ..., wx} denote a constant around which the correlation coefficients
of the ith block are assumed to be concentrated with negligibly small variations. Further, let w, denote
a constant around which the correlations between blocks are concentrated. Let W define an affinity
matrix, which is equal to W, except that we impose w, > 0, such that the vertices associated with ith
and. jth block become connected. Then, it follows that the connections between vertices corresponding to

different blocks result in embedding all data-points onto the same location on the eigenvector y that

is associated with the smallest eigenvalue 10 of the Laplacian matrix L € RVN corresponding to
W.
Proof. See Appendix A.3.0.2. O

Even though Preposition 4.4.2 shows the loss of group structure in the eigenvector associated
with the smallest eigenvalue, in real applications, this eigenvector might be the Fiedler vector when
the data includes Type I outliers with negligibly small similarity coefficients.

To illustrate the different outlier effects, examples of computed Fiedler vectors are shown for
ideal and corrupted affinity matrices in Figure 4.42 and Figure 4.43, respectively. In the ideal case,
the vertices of different clusters do not have edges between each other while vertices of the same

cluster are connected with strong edges. If such an ideally clustered graph is embedded on the
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Figure 4.43: Fiedler vector computation for a corrupted K = 2 blocks affinity matrix. The corruptions of the affinity
matrix by Type | and Type Il outliers are highlighted by coloring the corresponding affected elements in light red and dark red,
respectively. In the Fiedler vector, outliers are positioned as shown in the right illustration.

real line using the Fiedler vector, the vertices of the same cluster are concentrated while they are
far away from the vertices of a different cluster, see Figure 4.42. Therefore, the embedding results
of different clusters are easily separable, which is crucial for subsequent graph partitioning. On
the other hand, the corrupted graph in Figure 4.43 includes two typical outlier effects. Based on
the theoretical analysis, Type I outliers are embedded far from the clusters while Type II outliers
that correlate with more than one cluster are embedded between different clusters making their
separation difficult. In such scenarios, the outliers result in a performance degradation because

of the computed Fiedler vector that would lead to losing the group structure information of the

graph.

Outlyingness Measure: Overall Edge Weights

The overall edge weight is an informative measure for the determination of outliers which has been
shown in Section 4.2.2 based on the real data examples. However, since the number of outliers
is unknown in real-world scenarios a binary outlier detection based on overall edge weights may
result in an information loss. Therefore, in the method that we proposed in [TMZ22], robustness
is introduced by suppressing outliers’ negative impact on the Fiedler vector rather than detecting
and eliminating them. In this way, we allow for some uncertainty in our decision, giving moderate

but non-zero weight to the points that we are not sure about.
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Problem Statement

Given a data set of data-points X = [xy, . .., xn] € R?*¥ the aim of this work is to estimate the
Fiedler vector y € R¥ such that it embeds each data-point on a real line, providing robustness at
a reasonable computation cost. In the following section, the main ideas of the proposed robust
Fiedler vector estimator are explained including an unsupervised penalty parameter selection

procedure, an analysis of the computational cost, and possible applications of practical interest.

4.4.2.1.4 RoBUST FIEDLER VECTOR EsTiIMATION

Let data matrix X be subject to heavy tailed noise and outliers that obscure the underlying group
structure in the graph G = {V, E, W} that represents X. In Section 4.2.2, it was shown that
the overall edge weight attached to a vertex is a valuable characteristic of an outlier because it
significantly differs from the typical overall edge weight. Thus, the overall edge weight of attached
to vertex 7 is modeled as

dy = dyp + €. (4.32)

Here, d,, = Zi\’ Wy, and ¢,,, respectively, denote the overall edge weight and the error term
for the mth vertex, d.y, is the typical overall edge weight of the graph G. In practice, a robust
estimator, such as the median is used, i.e. thyp = med(d) for a vector of overall edge weights
d = [d,...,dy|. For Fiedler vector estimation, an error vector ¢ € RY is constructed using
the error terms associated with each overall edge weight in d. Then, the transformation vector ¢
associated with y ris computed using penalized ridge regression M-estimation [ROK12] by solving

the following zero gradient equation

T

-3 H(E) () - (439

where ¥ denotes the penalty parameter, o, is a robust scale estimate of £ and ¥ is a bounded and

continuous odd function called the score-function. A popular M-estimator is defined by Huber’s

function
£, o for || < cyup
V(7> =" ” : (4-34)
T¢

CHub sign(;—’:), for |;—’Z} > CHub

where ¢ppu,, commonly set to a default value of ¢y, = 1.345 for 95% asymptotic relative efficiency
(ARE), is the tuning parameter that trades off robustness against outliers and ARE under a

Gaussian distribution model for ¢ (see [ZKO18] for a detailed discussion). A frequently used
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robust scale estimate is the normalized median absolute deviation [ZKO18] that is defined by
7, = madn(g) = 1.4826 - med|e — med(¢)]. (4-35)

The motivation for adopting M-estimation for Fiedler vector estimation is that a bounded score
function, such as Huber’s, ensures that vertices with atypical edge weights are down-weighted in
Eq.(4.33). RRLPI, therefore, softly suppresses the negative impact of outliers on the Fiedler vector
estimate based on Huber’s function. This becomes intuitively clear when considering Huber’s

weight function w,, = @ <%’”E> :

Em
W\ ) =
0'5

that gives constant weight up to ¢y, and then increasingly down-weights outliers by smoothly

17 for < CHuw

Em
T¢

(4.36)

Em Em
CHub/ 7|, for g| = CHub;

descending towards zero. Under some conditions, e.g. when outliers are extremely large valued, a
different weighting function instead of Huber’s may be used to completely down-weight extreme

outliers. For example, in robust statistics, Tukey’s weight function

2
Em (1 - ( % /CTuk>2) ) for ’%:l < CTuk
w(—) = , (4.37)

0, for ’;—'Zl > CTuk

is a popular choice, which gives zero-weight to extreme outliers. However, such a function leads
to non-convex optimization problems, which is why, in many cases, Huber’s weights are preferred
(see [ZKO18] and [HR09] for a detailed discussion).

To provide an intuitive understanding, an examplary plot is provided in Figure 4.44 that
compares RRLPI with LE. Consistent with the outlier effect analysis that has been detailed in
Section 4.4.2.1.3, the data-points which are mapped far away from any other cluster in the Fiedler
vector y pare Type I outliers while the embeddings between different clusters are outliers of Type II.
As can be seen, these outlying embeddings result in a performance degradation for clustering
algorithms that are based upon a non-robust computation of yr. An important property of these
outliers is that their occurrence depends on the determined level of sparsity. In more details, a
non-sparse graph model results in over-connected vertices (Type II) whereas increasing sparsity
redundantly results in less-connected or disconnected vertices (Type I). A robust sparsity level

determination is therefore essential. Since the number of outliers is unknown, an outlier detection
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Figure 4.44: Examplary plot of the Fiedler vector computation based on LE and RRLPI methods. The weighting operation in
RRLPI on Type | and Type Il outliers results in two clusters of concentrated mappings that include the outliers. In this way,

the true structure of the non-outlying data becomes visible, even in the presence of outliers. By contrast, for LE, the outliers
deteriorate the underlying two-cluster structure. Further, the weights provide a robust measure of outlyingness, which may be
used to detect and analyze outliers, which is of high interest in some applications.

based on the available graph structure may result in misdetection or losing information. Therefore,
instead of outlier detection, RRLPI down-weights the deviating embedding points based on their
overall edge weights to achieve a robust Fiedler vector estimate in which the embeddings associated

with the same cluster are concentrated while being separated from embeddings of different clusters.

Theoretical Analysis

The RLPI [CHZ07] method represents the Fiedler vector yas the response of a linear regression
with input variables X, ie. yr = XTﬂ r. Then, it determines the transformation vector B that
minimizes a penalized residual sum of squares problem S (8}%, — ym.r)> + 7|Bl> In
RRLPI, this approach is generalized by defining 8 as the solution to Eq. (4.33) whose matrix

form leads to

B, = (XQX" +y21) ' XQyr, (4.38)

where Q € RV s diagonal matrix of weights defined by Eq. (4.36).

As discussed before, the LPI method uses a linearization of the embedding operation for the
Fiedler vector computation. To understand the relationship between LPI and RRLPI, we first
clarify the relation between RLPI and RRLPI.

Theorem 9. RRLPI is a robustly weighted RLPI [CHZ07], and for Q = 1, it gives identical
solutions to RLPI based Fiedler vector computation.

Proof. See Appendix A.4.0.1. ]
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From Theorem o, it follows that for ¥ > 0 and/or Q # I, the estimated tranformation vector
B 1. is not the eigenvector of the eigen-problem in Eq. (4.29) which means that it is not associated
with the Fiedler value. However, the following theorem shows in which cases 8 gives exactly the

eigenvector of the eigen-problem in Eq. (4.29).

Theorem 10. Suppose y is the Fiedler vector associated with the second largest eigenvalue of the
eigen-problem in Eq. (4.29). Further, let Q@ € RN and ¥ € RM™*M be two weighting matrices
such that UTYU = Land V'QV = L Ifyrisin the space spanned by row vectors of the weighted
data matrix X*, for X* = XQ, the corresponding transformation vector‘é estimated with RRLPI
is the eigenvector of the eigen-problem in Eq. (4.29) as y decreases to zero.

Proof. See Appendix A.4.0.2. O

Based on Theorem 10, the estimated transformation vector ‘é - is the solution of Eq. (4.29) for
y — 0,and U'YU = I, V'QV = 1. To understand the relationship between RRLPI and
LPI, the results of this theorem are extended for all transformation vectors Bm € Lé(w ey Ié | for
the case that the data space m is greater than the number of data-points # and the data-points are

linearly independent, i.e. rank(X) = N.

Corollary ro.1. Ifthe data-points are linearly independent, i.e. rank(X) = N, all transformation
vectors are solutions of Eq. (4.29) fory — 0, and U'™YU = L V'QV = 1 which means that
RRLPI is identical to LPL.

Proof. See Appendix A.4.0.3. [

A-Separated Sets for Penalty Parameter Selection

The geometric structure of well-spread £3-representations shows that the two sets s and t are well
separated if every pair of pointss,, € sand#, € t are mappedatleast A = ¢(1/ log_z/ ’N) apartin
(5 distance [ARV09]. Inspired by well-spread £3-representations, we propose a penalty parameter
selection algorithm by projecting graph vertices onto the real line using RRLPI-based Fiedler vector
estimation, such that every pair of two sets s, € sandz, € tisatleast A = p(1/ log_z/ > N) apart
in (3 distance for the estimated penalty paramater.

Let . € ybe the 7th candidate penalty parameter in Eq. (4.38) from a given vector of candidate
penalty parametersy = [y_. ..., 7. ] € R Further, suppose that for each candidate penalty
parameter y , there exists an associated Fiedler vector estimate y}f ) that projects the graph vertices
onto the real line. The geometric structure of well-spread ¢5-representations allows for designing

the sets s and t by projecting the points on a random line such that, for a suitable constant «, the
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Figure 4.45: Example of A-separated sets s and t

points that are located on the left and right hand sides of x are the initial candidates for the sets s
and t, respectively [ARV09].

It has been shown (see, e.g. [ST07]) that it is possible to split a candidate Fiedler vector }71(: g
into the two subsets s7) and t) for x = 0. Another possible option for « is the median of
embeddings such that x = med(y v\ ’)) From the definition of the A-separated sets, the projection
subsets s7+) and t ) associated with v, take values between zero and one. Therefore, after selecting
the members of the two sets s7) € R and t) € R™¢ associated with 7, the final design of the

sets s7+) and £72) is performed using the rescaled estimated Fiedler vector §) as

5 )
S(}/r) = {yn}:F '.yn},/F > K} (4 39)
RS ]

() .

Here, ynyjc) denotes the zth element of the estimated Fiedler vector y ) and Yr is the nth element

of the rescaled estimated Fiedler vector yl(p ~. If the rescaled Fiedler vector Y1(F ) is not sufficiently

()

sparse, it contains pairs of points )_/EZ’ € sand y, 7 € t whose squared Euclidean distance is

less than A. Thus, for a set of pairs of projections )’m,) € sand y(y » € t, a vector of discarded
o)
projections p((iﬁ”c) € RN« is designed as
) _ () <A
pdlSC - .ym F’.ynF . ||)’ ynF (440)

as long as the two sets s) and t) have a reasonable number N, of projections. The proposed
strategy to estimate penalty parameter y is, therefore, to minimize the number of discarded points
ie.,

y= argmin (N7}, (4.41)

dlSC
7r:ymin7"'7}/max
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where dﬁ’ C) denotes the number of discarded projections for candidate penalty parameter y , and y
is the estimated penalty parameter. In practice, there might not exist A-separated sets s) and t )
for any candidate penalty parameter such thaty_ € {y_. ,...,y . }. For example, the sets might
not be A-separated, although Ngs C) has reached its maximum value. Additionally, the initial sets
may not satisty Ny < Npyin of Nt < Npin. In such cases, the penalty parameter can alternatively
be estimated by maximizing the squared Euclidean distance between the closely valued projections
from the two sets ) and t),
)

N _ ()
y = argmax { H.ymin,F - yrr):ax,FH%}7 (442’)
}/r:}/min”"’}/max

)

min,F

€s andj/ga’)){ ¢ € t are the minimum and the maximum valued projections from the

where y
sets s7) and £, respectively.

In terms of robustness, approaches based on A-separated sets in Eq. (4.41) are advantageous
compared to directly using Eq. (4.42). In particular, Eq. (4.42) may maximize the distance between
Type I outliers and true samples while the necessity of a reasonable number Ny, of projections in
different sets makes the A-separated sets robust against Type I outliers. Moreover, the Fiedler vector
estimate ny*) may contain Type IT outliers which are embedded between true samples of sets ()
and ). In such cases, usage of Eq. (4.42) may result in losing a good penalty parameter due to the
Type IT outliers that obscure the real distance between sets s) and £, In contrast, A-separated
sets discard these Type II outliers up to a certain point and provide a robust measure of separation
between the sets.

The main steps of the proposed Fiedler vector estimation are summarized in Algorithm 7.
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Algorithm 7: Robust Fiedler vector estimation

Input: A data matrix X € R**¥ and an associated affinity matrix W € RN Noin
fOl‘}/V :7min7”"}/maxdo

Initialization:

Evaluate the Fiedler vector y» € R” via Eq. (2.6)
Compute 8r € RM fory, = X' B¢

RRLPI

Update the error vector £ € RY using Eq. (4.32)
Compute 7, via Eq. (4.35)

Calculate the weights @, = »(2), Q = diag()

Solve Eq. (4.38) and estimate ,é;yr)

Estimate the Fiedler vector for y(F ) = XTB; 4
A-separated sets

Generate sets s7) and t) via Eq. (4.39)

Calculate ||yfrfnfp - j/g;iFH% s.t. j/g{ip €s andj/g;ijp € tand collect in a vector z € R™

while Ny > N, and N; > Npi, do
)

Create Pyisc € Rl\éiysc using Eq. (4.40)

Update Ngs’c)

if sO) and t0) are A-separated then

| break

end

end

Collect fo:;c) into a vector h € R

end

if at least one pair of A-separated sets exist then
| Estimate 7 using Eq. (4.41)

else

| Estimate 7 using Eq. (4.42)

end

. . . -
Estimate transformation vector 8, in Eq. (4.38) for

Estimate the Fiedler vector for y}” = XTA(Z)

Output: A robust estimate of the Fiedler vector y(F”
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Computational Complexity

As computational complexity is essential for the scalability of graph embedding techniques, the
computational complexity of the proposed approach is analyzed in terms of its main operations.
The computational complexity of operations is detailed using the term flam [Ste98], which is
a compound operation that includes one addition and one multiplication. For the cases when
the complexity is not specified as flam, the Landau’s big O symbol is used. The computational
complexity of the proposed approach is given as follows:

Graph Construction: The pairwise cosine similarity which takes %NZM + 2NM as in [CHZ07]
can be used for contructing graph G.

Initialization: For large eigen-problems, e.g. MATLAB® uses a Krylov Schur decomposition
[Ste02]. The algorithm includes two main phases that are known as expansion and contraction.
When N is larger than N ,,, where Np,, denotes the number of Lanczos basis vectors (preferably
chosen as Ni., > 2Ny, for N, eigenvectors), the computational complexity of the algorithm can

mainly be attributed to expansion and contraction phases. The expansion phase requires between
N(NT,, — NZ,) flamand 2N(N?,, — NZ,) flam. The contraction phase requires NNp.on e
[SteO1].

Robust Regularized Locality Preserving Indexing (RRLPI): The proposed projection

ig flam

algorithm requires an estimate of scale that uses repetitive medians. The complexity of repetitive
medians is O(N) [RB90]. Further, for a densely connected matrix, the complexity is mainly
attributed to the Cholesky decomposition which is of complexity O(NN?) or, more specifically,
¢I\? flam [Ste98]. This complexity can be reduced to O(N) using [Cou08] if the matrix is rank
deficient. If the matrix is sparse, the computation cost of decomposition can be reduced to
t(2NNg, + 3N + SM) flam using a least squares algorithm such as [PS82] where N, denotes
the average number of nonzero features and ¢ is the number of iterations.

A-Separated Sets: To split the projection into two sets as s and t, the vector y must be sorted
which is of complexity O(NlogN) and there are computationally efficient alternatives such as
[Han20] for which the complexity is reduced to O(N \/@ . To compute A-separated sets, a
maximum of /N projections can be subtracted which means that this operation maximally takes N
flam.

Summing up the terms with respect to flam yields minimally

1
H2NNy, + 3N + SM) + ENZM + N(2M + Nf,, — N2, + NpanNeg + 1)

eig
flam. Hence, the complexity is of order O(N?). Based on the information that both O(N)
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and O(NlogN) are considerably smaller than O(NN?), the minimum computational cost can be
summarized as O(N?) for each candidate penalty parameter. Overall, the algorithm is, at least, of

complexity O(IN, N?) for a number N, of candidate penalty parameters.

Example Applications

Eigenvector decomposition has a large variety of applications, such as, dimension reduction
[CHZ07, CHHO0S, HCLO04, HNO04, DDF90], recognition [ZZL18, LT09, YTL06] and
localization [SVBO1]. Considering images as high-dimensional data sets, it is not surprising
that eigen-decomposition is a fundamental research area also in image segmentation, e.g.
[CHHOS, HCL04, HN04, DDF90]. A frequently encountered problem is that the image is
subject to noise, which may result in embedding noisy pixels far from the neighboring group of
pixels in the embedding space and, consequently, losing the underlying structure. This problem
may also occur in cluster enumeration approaches that attempt to find densely connected groups
of embeddings in the projection space, which necessitates the application of a robust embedding
technique. In the following, the example of robust graph-based cluster enumeration is discussed.
Cluster Enumeration: Assume that for each candidate number of clusters
Keand € {Kumins - - -, Kinax } there is a clustering algorithm, e.g. [XG08, NJW01], that partitions
¥7) into Kung number of clusters and provides an estimated label vector € . After estimating
label vectors for each candidate number of clusters K_,,4, the cluster number X can be estimated

by comparing quality of partitions using modularity as [CNMO04]

K = argmax {mod;
Kminu---7Kmax

b (4-43)

and

where modj ) denotes the modularity score for a candidate number of clusters K ,nq that is

computed using Eq. (2.7).

4.4.2.1.5 EXPERIMENTAL EVALUATION

This section contains the numerical experimental evaluation of the proposed RRLPI method on a
broad range of simulated and real-world data sets with applications to robust cluster enumeration
and image segmentation. In the following, a detailed information about experimental setting
is provided. A MATLAB implementation of RRLPI is available at: https://github.com/
A-Tastan/RRLPI

Benchmark Methods: The effects of Type I and Type I outliers on the Fiedler vector computation
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are studied for the LE [BNO1], LPI [HCLO04], RLPI [CHZ07], RLPFM [TMZ21] and RRLPI
embedding-based approaches by designing synthetic data Monte Carlo experiments. Then, in
addition to the above mentioned embedding approaches, the proposed RRLPI is benchmarked
against three state-of-the-art graph-based cluster enumeration approaches, i.e., Martelot [MHI11],
Combo [SCB14] and SPARCODE [TMZ21] and two state-of-the art spectral partitioning
approaches, i.e., fast large-scale spectral clustering via explicit feature mapping (FastEFM)
[HRGI18] and LSC [CC14] in terms of image segmentation capabilities.

Parameter Settings: Some of the competitors are parameter free approaches, i.e. LE [BNO1], LPI
[HCL04], Martelot [MH11], Combo [SCB14], SPARCODE [TMZ21] and LSC [CC14]. For
the FastEFM approach [HRGI18], the Gaussian scale parameter is the mean distance among all
data points as the authors suggested. In terms of accuracy, the authors suggested to increase the
desired dimension of explicit features. Therefore, the desired dimension is D = 500 as suggested
by the authors. Further, to analyze the performance of proposed penalty parameter selection and
to provide fair comparisons, the RLPI [CHZ07] and RLPFM [TMZ21] approaches are all run
using the proposed penalty parameter selection algorithm. The remaining parameters of RLP]I,
RLPFM and RRLPT are defined using the default setting: y_. = 1078, Yioax = 1000, Kipip = 1,
Kinax = 10 and Ny = 25

Kmax :
Affinity Matrix Construction: To analyze the robustness of RRLPI, cosine similarity is used as

the affinity matrix construction method in all experiments, unless otherwise specified.

Performance Measures: The average partition accuracy p,.. is measured by evaluating

NEg

) 1 al
Pacc = N_]\[E Z Z ]1{2”:4‘,1}’ (444)

m=1 n=1

where
1, ifc, =c¢,
L=y = ; (4.45)
0, otherwise
N is the number of observations, /N is the total number of experiments, and ¢, and ¢, are the
estimated and ground truth labels for the 7th observation, respectively.
The empirical probability of detection pye, as defined in Eq. (4.15), is used to assess cluster
enumeration performance.
The contour matching score Fi.. for boundaries and the Jaccard index / are used for the

numerical performance analysis in the case of image segmentation [CLP13]. The F.. quantifies
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Figure 4.46: Examplary plot of the first three features of the uncorrupted synthetic data set.

whether a boundary has a match on the ground truth boundary as follows

Fo.—2L2 R (4.46)
score R—’-P’ 4.4

where P and R denote precision and recall values, respectively. The Jaccard index evaluates

similari etween estimated and ground truth segmentations according to
larity bet timated and ground truth segmentat ding t

Ly P
seg7 seg - TP—'—FP—'—FN’

Ja (4-47)
where iseg and I, denote estimated and ground truth segmentations for image I and TP, FP, and

EN are true positives, false positives and false negatives, respectively.

Outlier Effects and Robustness

To visualize outlier effects on the eigen-decomposition, a synthetic data set is generated for K = 3
easily separable clusters, see Figure 4.46. The A-dimensional data-points of each cluster ¢;, with
i =1,...,K and M = 6 are generated as X,,; = g, + 9,1, where X, ; is the mth data-point
associated with the 7th cluster, g, is the 7th cluster centroid, &, is the th scaling constant, and r is a
vector of independently and identically distributed random variables from a uniform distribution
on the interval [—0.5,0.5]. All details and parameter values to generate the data are provided in
Appendix B.3.1.

Representative examples of the computed eigenvectors are shown for LE and for the proposed
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Figure 4.47: Computed eigenvectors for the uncorrupted data set.

Figure 4.48: Examplary plot of the first three features of the synthetic data set after corruption with Type | and Type Il outliers
(red crosses). See Section 4.4.2.1.3, for a discussion.

RRLPI in Figure 4.47. In the absence of outliers, both algorithms provide embeddings where
the embedding points that are associated with the same cluster are concentrated, and the different
clusters are separated. To study robustness, the data set is contaminated with two outlier types, i.e.,
outliers that do not correlate with any cluster (Type I) and outliers correlate with more than one
cluster (Type II); see Sec. 4.4.2.1.3 for a definition and a discussion. An example showing the first
three features of the contaminated data set is shown in Figure 4.48, where both Type I and Type I
outliers are highlighted as red crosses.

The Type I and Type II outliers are, respectively, generated as XV = x,,, + 3,1 and

Feature 3

Feature 2
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Figure 4.50: Average partition accuracy as a function of 1901 and N, for each outlier type

xI = gy + 3, v where X n = 1,11 denotes the type of the outlier, 3,,,2 = I, 1L is a scaling
constant associated with the outlier type and gy is a vector associated with the location of Type I
outliers. A detailed explanation including all parameter values, is provided in the Appendix B.3.1.
Examples of the eigenvector computations based on the corrupted data set are shown for LE and
RRLPI in Figure 4.49, respectively. As can be seen, for the LE method, Type I outliers in the data
produce outliers in the embedding results that obscure the underlying structure of K = 3 clusters.
In contrast, the proposed RRLPI provides an embedding that is less influenced by the outliers.
Figure 4.50 reports the average partition accuracy as a function of the constant J,, associated
with Type I outliers and the number of outliers N,y for each outlier type, respectively. The value
of 4, is kept constant to generate points that lie between clusters two and three. The robust
methods show best performance while the performance of LE quickly decreases in the presence of

outliers.
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Figure 4.51: Computation time performance analysis. The results are reported in seconds.

Computation Time

The computation time (#) is reported as a function of increasing number of data points in the
synthetic data set of K = 3 clusters. The experiments are performed based on three different
scenarios. First, computation time is analyzed for an uncorrupted data set that has been explained
in the previous section. Then, the data set is contaminated with two outlier types (Type I and
IT) where 10% of the data set are outliers for every type. The graphical models of these two data
sets are generated based on the cosine similarity measure. Finally, to analyze the effect of sparsity,
a sparse graph model of an uncorrupted data set is computed by using nearest neighbor graphs
where the number of neighbors is set according to the cluster sizes. In all experiments, the penalty
parameter is set to one and ¢ is averaged over roo Monte Carlo runs.

The performance of RRLPI is benchmarked against its main competitors RLPI and RLPFM
in Figure 4.51. Even though robustness results in an increased computation cost, the single-step
weighting procedure of RRLPI is considerably more efficient than the iterative weighting in
RLPEM. The LPI method [HCLO04] is excluded in the computation time analysis due to its
different operational procedure. However, our own run-time analysis confirmed the theoretical
analysis that RRLPI has quadratic complexity with respect to 7. This means that the proposed
method is computationally more efficient than LPI which has cubic complexity in unsupervised

settings as it has been stated in [CHZO07].

Cluster Enumeration

In this section, the cluster enumeration performance of different approaches is benchmarked in
terms of their empirical probability of detection using the following data sets: Gait [SAZ19], Breast
Cancer [WM89], Fisheriris [Fis36], Person Id. [TSM18], Sonar [GS88], Ionosphere [SWH89],
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X for Different Cluster Enumeration Methods

Data Set Martelot Combo SPARCODE RLPFM  LE LPI RLPI RRLPI K Similarity
Gait [SAZ19], 4 6 5 4 4 4 4 5 5 enet
Breast Cancer [WM89], 1 2 2 2 4 2 2 2 2 cos
Fisheriris [Fis36], 2 3 2 3 5 3 3 3 3 enet
Person Id. [TSM18], 6 7 4 5 10 4 4 4 4 enet
Sonar [GS88], 2 2 2 2 6 2 2 2 2 cos
Tonosphere [SWH89], 3 3 4 2 7 3 2 2 2 cos
D. Retinopathy [AH14], 2 2 2 2 2 2 2 2 2 cos
Gesture Phase S. [WPM14], 2 3 3 5 10 2 6 5 5 cos

Table 4.8: Performance of different cluster enumeration approaches on well-known clustering data sets. The results
summarized for similarity measures cosine (cos) and elastic net (enet) using a penalty parameter of pen = 0.5.
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Figure 4.52: Numerical results for cluster enumeration based on RRLPI.

D. Retinopathy [AH14] and Gesture Phase Segmentation (Gesture Phase S.) [WPM14].

If none of the cluster enumeration approaches estimates the cluster number correctly with the
default cosine similarity, the elastic net similarity measure as in [ZKO18], is used with ten candidate
penalty parameters p on an equidistant grid ranging from 0.1 to one. Results are reported for

p = 0.5, which gave the best average overall detection performance for all methods. Tukey’s
distance function [ZKO18] where the threshold defined as Ty, = 3 is used as an initialization
for K-medoids partitioning in the proposed algorithm. For a detailed discussion about different
similarity measures and partitioning results, see Appendix B.3.3. The estimated cluster numbers
are reported for the different cluster enumeration approaches in Tab. 4.8. As can be seen from the

table, the gait and gesture phase data sets include a considerable number of outliers that result in

123



I FastEFM LsC RLPFM LE LPI RLPI RRLPI Tseg

Figure 4.53: Image segmentation results for the original images.

misdetection of the cluster number for almost all competitors. The proposed method is the only
one that consistently estimates the correct cluster numbers for all data sets.

The empirical probability of detection with respect to different penalty parameters is detailed
in Figure 4.s52a. Then, the performance is summarized in Figure 4.52b by averaging the results
over all penalty parameters. The results for cluster enumeration demonstrate that the proposed
RRLPI shows the best probability of detection performance for all candidate penalty parameters
with an average score of 79 %, whereas the best competitors (RLPFM and RLPI) have scores of
73 % and 63 %), respectively.

Image Segmentation
ADE20K [ZZP17], is a large-scale dataset that includes high quality pixel-level annotations of
25210 images (20210, 2000, and 3000 for the training, validation, and test sets, respectively.).
In our experiments, 1o images from the ADE20K data set containing different objects, where
each object has a different color, have been selected for color-based image segmentation. The
selected and corresponding annotated images are denoted as I and I, respectively. The images
are down-sampled, where the dimension of data set X is A4 = 3 and N = 15000 using RGB color
codes associated to down-sampled image pixels as features. To analyze robustness, the images are
corrupted by adding multiplicative noise using the equation I = I+ £ x I, where I denotes the
corrupted image and £is uniformly distributed random noise with zero mean and variance o).
The down-sampled images are segmented for a pre-defined number of segments K using the
default setting which performs K-means partitioning for the data sets that have more than N =

3000 samples. In Figure 4.53, examples of the original image I and associated segmented images
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Figure 4.54: Example segmentations for LE and RRLPI methods. The embeddings that are mapped far away from the group of
pixels are pointed out using arrows.
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Figure 4.55: Image segmentation results for the corrupted images. (J(f) = 1073)

using the computed Fiedler vectors for seven different embedding approaches are shown along with

the ground truth segmented image ..

and/or noisy pixels. The effect of outliers is that a small number of pixels are mapped far away from

The uncorrupted images I may also contain outlying pixels

the group of pixels and, thus, the remaining group of pixels assigned to a single large segment based
on the distance-based partitioning methods.

A typical example of a segmentation result illustrating the outlier effects is provided in
Figure 4.54. As can be seen, the described outlier effect is observed even for the embeddings of the
uncorrupted (original) image when using LE. To exemplify the robust Fiedler vector estimation,
the segmentation result of RRLPI is also shown. The segmentation result demonstrates that the
proposed robust Fiedler vector estimation suppress outlier effects on the eigen-decomposition and
provides segmentation results that are more consistent with the annotated image I, Further,
in Figure 4.55, examples of segmented images are presented for the corrupted images where
% =1073. The results show that the outlier effect on eigen-decomposition causes a breakdown

of the FastEFM, LSC, and LE approaches. For further examples and detailed numerical results, see
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Figure 4.56: Numerical results for the image segmentation.

Appendix B.3.4.

The experiments are evaluated quantitatively using Ficores J and Pace> and the results are
summarized in Figure 4.56. All performance measures are evaluated by comparing each estimated
segmented image Leg with the annotated image /.,
even for the original images. Although LSC shows a reasonably good performance for the original

The LE and FastEFM show poor performance,

images, its performance reduces drastically in the outlier-corrupted case in terms of Fieoreand /. The
LPI, RLPFM and RRLPI are the top three methods in all performance measures and RLPI follows
them with a reasonably good performance, which indicates that the proposed penalty parameter

selection algorithm is a promising approach, even when using non-robust methods.

4.4.2.1.6 CONCLUSION

Based on the derived theoretical results in Section 4.2, we proposed RRLPI, a method to robustly
estimate the Fiedler vector that down-weights embeddings, for which the overall edge weight
deviates from the typical overall edge weight of a given graph. The objective function to estimate
the Fiedler vector is penalized using the proposed unsupervised penalty parameter selection
algorithm that builds upon A-separated sets. The performance of RRLPI is benchmarked for
different applications on a variety of real-world data sets. The numerical results for cluster analysis
and image segmentation showed that the RRLPI is a promising approach for Fiedler vector

estimation in situations where robustly determining the group structure in a data set is essential.
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4.4.2.2 RoBUST SPECTRAL CLUSTERING: A LOCALITY PRESERVING FEATURE MAPPING

BASED ON M-ESTIMATION

4.4.2.2.1 INTRODUCTION

Dimension reduction and feature extraction are fundamental in many clustering algorithms that
have been intensively researched for decades [HRG18, CHZ07, CHHOS, BNO1]. As discussed
in Section 2.5, SC is a simple and effective tool that relies on the eigenfunctions of the Laplace-
Beltrami operator on a manifold to discover the intrinsic structure hidden in the data. It has various
applications such as in face recognition and image segmentation [WQD14].

A popular way of estimating eigenvectors of a Laplacian is the method of LE [BNO1], which
is a manifold learning technique motivated by the correspondence between the graph Laplacian
and the Laplace-Beltrami operator on a manifold. The term LE refers to a nonlinear method that
embeds high-dimensional feature vectors into a low-dimensional vector space while preserving
certain local properties. LPI is motivated by determining the optimal linear approximations to
the eigenfunctions of the Laplace Beltrami operator in an attempt at discovering the inherent
nonlinear structure. The computational complexity of LPI can mainly be attributed to computing
acomplete SVD and it has been reduced in [HR G18, CHZ07], making such approaches attractive
in practice. However, in real-world scenarios the data may be corrupted by outliers and noise
[ZKO18], leading to a performance degradation. Existing robust algorithms for SC have been
proposed to minimize the effect of outliers in representation space, e.g. [LNCI8] or in the
projection operation [PYT15]. The robust projection operation as in [PYT15], uses the ¢;
norm that creates a different eigenbasis and it requires prior information about the data, such as,
representative samples. To the best of our knowledge, an unsupervised robust projection algorithm
that uses the £, norm as in the eigen-decomposition of the original SC has not been proposed in
the literature.

To integrate robustness in SC, in [TMZ21], we proposed a robust locality preserving feature
mapping (RLPFM) and an unsupervised penalty parameter selection algorithm using the geometric
structure of well-spread embeddings. Building upon regularized locality preserving indexing
(RLPI), which is a computationally eflicient extension of the LPI framework that regularizes the
eigenvectors, we developed a robust M-estimation approach to feature embedding to mitigate the
effect of outliers on the determination of the group structure. The penalty parameter, which is a
key factor for the performance of RLPFM, was selected, such that the estimated Fiedler vector is
A-separated with minimum information loss.

The following sections are organized as follows. Section 4.4.2.2.2 briefly revisits LPI while
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Section 4.4.2.2.3 contains the motivation and problem formulation. Then, the developed robust
SC method is detailed in Section 4.4.2.2.4. The performance of the proposed method in
comparison to popular embedding and SC approaches is demonstrated in Section 4.4.2.2.5 and,

finally, conclusions are drawn in Section 4.4.2.2.6.

4.4.2.2.2 LPIFOR SPECTRAL CLUSTERING
Suppose that a data matrix X =[xy, X,, . .., Xn] € RN with M denoting the dimension and
N the number of feature vectors, can be represented as a graph G = {V, E, W}, where V" denotes
the vertices, £ represents the edges, and W € RN*N is the nonnegative definite affinity matrix
that is computed from a similarity measure, e.g. cosine similarity as defined in Eq. (2.1). SC
[NJWO1] maps the original A1 dimensional feature vectors onto a smaller K dimensional vector
space by finding the eigenvectors associated with the K smallest eigenvalues of the eigen-problem
in Eq. (2.6).

According to the Theorem 8, for an eigenvector y € R with y = X8, the LPI method finds
a transformation vector 8 € R that is the eigenvector associated with the smallest eigenvalue
of the generalized eigen-problem in Eq. (4.29). This fundamental property of LPI, gives identical
solutions to SC if the data matrix X is a full rank square matrix. Thus, building upon [CHZ07],
the LPI basis functions can be determined in two consecutive steps for SC. First, the K eigenvectors
Y1, ..., Yk associated with the K smallest eigenvalues 4; < --- < Ak in Eq. (2.6) is computed.
Then, for each eigenvector y, € RY, where7 = 1, ..., K, LPI estimates a transformation vector

B: € RM that satisfies y,; = XT‘B,» by solving the following least squares problem

N
B, = argmin (B X, — yu)’, (4.48)

where y,,; is the mth mapping point in the 7th eigenvector y; and B, is the estimated th

transformation vector.

4.4.2.2.3 MOTIVATION AND PROBLEM FORMULATION

Motivation

To motivate the use of robust methods, this section provides an illustrative discussion of possible
outlier effects on SC. Figure 4.57a shows an example, where the data that consists of N = 30
feature vectors can be separated into K = 3 disjoint clusters by the popular LE method [BNO01],
which analyzes the eigenvectors corresponding to the three smallest eigenvalues. The ellipsoids

around the yellow, blue, and green feature vectors highlight the discovered clusters. Figure 4.57b
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Figure 4.57: The eigenvectors associated with K = 3 smallest eigenvalues for a data matrix.

uses the same dataset, except that six blue and green points have been replaced by outliers that
are marked as red crosses. In the context of clustering, outliers are, generally speaking, defined as
data points that do not follow the cluster structure that is inherent to the large majority of the
data. Consistent with the definitions in Section 4.1, we can distinguish two different types of
outliers: On the one hand, an outlier may be a point that does not have any similarity with any
of the clusters (Typel Outlier). On the other hand, an outlier may also be defined as a point that
has considerable similarity with multiple clusters (Type II Outlier). In both cases, as illustrated
in Figure 4.57b, the outliers obscure the cluster structure inherent to the eigenvectors. In this
example, the popular LE method is not able to correctly split the data into the yellow, blue and
green clusters. Instead, it opens up a cluster for the outliers that are not associated with any of
the clusters, and it fuses the yellow and blue data points into a single cluster. Robust SC methods
should be designed to be less sensitive to outliers. M-estimation is a widely used robust alternative
to least-squares estimation when the data is subject to heavy-tailed noise and outliers [ZKO18].
Building upon the concepts of robust statistics [ZKO18], we propose an M-estimation approach,
that down-weights outlying data points in the objective function, as will be detailed in the next

section.

Problem Formulation

RM*N the goal of this method is to embed each feature

Given a dataset of feature vectors X €
vector into a K dimensional space where K denotes the specified number of clusters. Robustness

implies that the method is not heavily affected by a few outliers in the data set.
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4.4.2.2.4 ROBUST SPECTRAL CLUSTERING
This section is dedicated to robust SC that use penalized M-estimation for RLPFM. In the sequel,
M-estimation for Locality Preserving Feature Mapping and a computational complexity analysis

are provided.

M-estimation for Locality Preserving Feature Mapping
Assume that the dataset X is corrupted by outliers and noise. The mappings in dimension-reduced

space can then be written as

VYmi — ﬂ;rxm + Em,is (4-49)

where y,,; € R denotes the mapping point for the mth feature vector x,, and 7th transformation
vector B;, and ¢,,; € R represents noise and additive outliers. For an embedding operation from
the M dimensional space to the K dimensional space, the error vector & € RN*1 i constructed by

using embedding errors of all feature vectors as

K

Em — Z Emyiy s (4-50)

where ¢; € £ denotes the embedding error of the mth feature vector. Similar to RRLPI [TMZ22]
(for details, see Section 4.4.2.1), RLPFM softly suppresses the negative impact of outliers on
the eigenvectors estimate based on Huber’s function and performs A-separated sets for penalty
parameter determination. However, there is an important difference in how the outliers are
down-weighted. While RRLPI [TMZ22] compute the error vector ¢ € RN*! based on the
overall edge weights and incorporates the weighting operation into a single step for Fiedler vector
estimation, RLPFM performs M-estimation of the multiple eigenvectors by iteratively reweighting
the residuals.

After computing the error vector using Eq. (4.50), the RLPFM method adapts the remaining
steps in Section 4.4.2.1.4 to multiple eigenvectors. Therefore, a summary of the RLPFM method

including all steps is given in Algorithm 8.

Computational Complexity

The computational cost of operations is measured in flam [Ste98], and if the computational
complexity is not specified using flam, the well-known Landau notation is used. The RLPFM
requires N(N?,, — K?) to 2N(N?,, — K*) flam for the expansion and NNi,,K flam for the

contraction phases for the initialization of eigenvectors, where Ni,, is the number of Lanczos basis

an
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Algorithm 8: Robust Spectral Clustering

Input: A data X and affinity matrix W, K, Nyin
Eigenvector Estimation using RLPFM

fOl‘}fr = 7min’ e ’7/max do
Initialization:
Evaluate the eigenvectors yi, . . ., yx as in Eq. (2.6)
Getﬂl, N ,ﬂKfor YK = XTﬂK
RLPFM

Compute the error vector ¢ € RY using Eq. (4.50)
Compute 7, via Eq. (4.35)
Calculate w,, = (%), Q = diag(w), via Eq. (4.36)

Solve Eq. (4.38) and estlmateﬂ(yr yee ,1@5{”)

Estimate Y1( ), . ,y§< ) for E( = XTléE(r)

A-separated sets
Generate sets s7) and t) via Eq. (4.39)
while N; > Npin and M > Npin do

Create pgisc € R dlsc using Eq. (4.40) and update N( v

disc
if s) and t ) are A- -separated then
| break

end
end

Collect Ngs’c) into a vector h € RV

end
Minimize the ]\7(7” and estimate y using Eq. (4.41)
Estlmateﬁl, e ’181{ for y

Estimate y§ ), e ,yg) where yﬁg) = XTBZ)
Partitioning
Get Ck by applying the K-means on yl(y), cey yg)

Output: An estimated label vector €k for K clusters
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Dataset SC LPI RLPI FastEFM LSC RLPFM

Fisheriris [Fis36] 66.0 98.0 98.0 96.6 92.9 98.0
Breast Cancer [WM89] 62.9 88.2 87.4 72.1 85.4 87.0
Ionosphere [SWHS89] 64.4 51.9 71.2 68.4 71.5 70.4
Parkinson A. [NPC16] 50.4 53.2 60.4 61.0 52.1 60.0
Sonar [GS88] 54.3 55.3 56.3 54.6 S1.1 60.6

Table 4.9: K-means partitioning performance for real-world datasets. The average probability of detection shown in %.

vectors and K is the number of eigenvectors. The weighting operation of M-estimation requires
repetitive medians that is of complexity O(NN). For a sparse matrix, the least squares algorithm,
such as in [PS82] requires #(2NNg, + 3N + 5M) where ¢ is the number of iterations and N, is
the average number of nonzero features. However, if the matrix is dense, Cholesky decomposition
requires O(N®) and in particular tN® flam [Ste98]. Lastly, the A-seperated sets step requires
O(NlogN) time for sorting and a maximum of NN flam for discarding for each candidate 7. In
summary, for a sparse matrix the RLPFM step requires from

N,t(2NNg, + 3N + SM) + N(N;

Lan

— K 4+ NpwK + N,)
to

N,t(2NNg, + 3N + SM) + N(2N;

Lan

— 2K* + NL.K + N,)

flam in addition to O(N,N), O(N, NlogN) for repetitive medians and sorting where N, is the

number of candidate penalty parameters.

4.4.2.2.5 EXPERIMENTAL RESULTS

In this section, the proposed RLPEM is compared with five state-of-the-art methods including
embedding approaches LPI [CHHO05] and RLPI [CHZ07] and SC approaches [BNO1], FastEFM
[HRG18], large scale spectral clustering with landmark-based sparse representation (LSC) [CC14].
The numerical experiments are performed with real-world databases Fisheriris [Fis36], Breast

Cancer [WM89], Ionosphere [SWH89], Parkinson A. [NPC16], and Sonar [GS88] from the UCI

N
10
where different values of Ny, do not have a huge impact as long as Ny, is a reasonably small value.

machine learning repository. The parameter N, for A-separated sets is defined as Ny, =
To analyze performance numerically, average clustering accuracy p,.. is calculated by averaging
clustering results for Nz = 100 repetitions and RLPI is performed with the proposed penalty

parameter selection method to provide a fair comparison.
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Figure 4.58: Examples of estimated feature spaces for corrupted and non-corrupted versions of the Fisheriris data set.

The clustering accuracy results are summarized for six different methods on five real-world
datasets using K-means partitioning in Tab. 4.9. As can be seen, the SC method shows poor
performance in terms of average clustering accuracy of 59.6% whereas almost all other clustering
approaches have an average accuracy greater than 70%. The proposed RLPFM method
outperforms all its competitors with 75.2% and RLPI follows it by a narrow margin reaching
74.7% which indicates that the proposed penalty parameter selection algorithm is a promising
approach that can be used in other regularized feature mapping algorithms. We also implemented
a simple plug-in robustification that replaces K-means by K-medoids, however, it did not improve

the partitioning results, and is therefore not reported in detail.

Robustness

To evaluate robustness against outliers, we contaminated the Fisheriris dataset as follows. The
outliers were generated as X,, = X,, + &I, where r denotes a vector of uniformly distributed
random numbers in the interval U(0,1), &, is a constant, x,, and X, are the original and
corrupted mth feature vector for a randomly selected 7z, respectively. The examples of estimated
eigenvectors for K = 3 clusters are shown in Figure 4.58 for the original and corrupted cases.

For the corrupted case, the examples shown for J, = 5 and the number of outliers in per cluster
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Figure 4.59: p,. for increasing 3. and Ny, values.

Ny = 15. The results of SC shows that, even the original Fisheriris dataset results in an outlier in
the SC mappings that causes the method to break down. Figure 4.58 shows that both the RLPI
and the proposed RLPFM produce similar and accurate mapping results for the original data. For
corrupted data, RLPFM and RLPI approximately preserve the cluster structure, and RLPFM
reduces the effect of outliers by mapping them closer to the cluster centers.

The clustering accuracy is detailed according to different §, and N, values in Figure 4.59. Even
though most of the algorithms have a clustering accuracy of more than 90% in the beginning, the
performance of the competitors drops significantly after 4, = 3. The proposed method is also
more robust for an increasing number of outliers while its main competitor RLPI follows it by

approximately margin of 10%.

4.4.2.2.6 CONCLUSION

We proposed an unsupervised RLPFM including a penalty parameter selection approach for SC in
[TMZ21]. The eigenvectors of the Laplacian matrix were reweighted and penalized by optimizing
the penalty parameter, such that, the corresponding Fiedler vector is A-separated with minimum
information loss. The method was benchmarked on different real-world datasets and it showed
promising performance compared to five popular competitors, especially in terms of robustness

against outliers and noise.
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4.4.3 OUTLIER DETECTION BASED ON VERTEX DEGREE AND APPLICATION TO GAIT

ANALYSIS
4.4.3.1 INTRODUCTION

As walking is the most practiced physical activity, it is not surprising that gait analysis has been the
subject of intense scientific research. Doppler radar provides an efficient and privacy preserving
way of analyzing human gait signatures that is independent of eftects of clothing [LG02], or
lighting condition [Ote05]. Doppler radar is widely used for the detection of falls and activity
[AZAl6, SHR14, WSR14], the identification of a person [Ote05], and for distinguishing human
gait signatures from animal ones [ZPW07]. In addition to safety and security applications, the
examination gait provides an ability to define gait abnormalities which plays a crucial role in
medical diagnosis [HGM14]. Previous works on classification of gait abnormalities, e.g. [SAZ19,
PWA15, WBH15] mainly focused on supervised learning algorithms. Obtaining labelled data
requires a detailed examination of the available data which is inefficient, or even infeasible in real-
world settings with large data sets containing considerable amounts of outliers. Similarity graphs
are a powerful tool for unsupervised clustering [LSW16, CYY09] as they allow for representing
clusters as communities. Yet, in graph model-based clustering, outlying entries have a negative
impact on the connectivity of a graph, which severely affects clustering performance and makes
community detection [TMZ21, §§519, TMZ18] challenging.

Popular outlier detection methods proposed in the literature use distance or angle as a metric
for outlyingness, e.g. [KSZ08, RL0S, BS03]. Such methods are not well-suited for radar-based
human gait data because outliers show a grouping effect and outliers of one cluster may overlap
with typical data points of another cluster. As an illustration, a scatter plot of three important
features of radar-based human gait data is shown in Figure 4.60. As it can be seen in the figure,
the clusters corresponding to the ’Cane’ and "Limping two’ clusters are grouped into two clusters
due to outliers, and outliers of ’Cane’ cluster overlap with the true samples of the normal walk
cluster. Moreover, the outliers of "Limping two’ have a considerable sample size. The example
shows that detection of outliers is challenging. Therefore, in such scenarios, an outlier detection
procedure requires a different perspective on outlyingness beyond conventional outlier detection
metrics such as distance or angle.

In [TMZ20], our main contribution was to propose a new graph-based clustering algorithm and
to apply it to label human gait signatures in a robust and unsupervised manner. To this end, we first

extracted a set of features and represented them as a weighted graph. Then, we identified outliers by
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Figure 4.60: Scatter plot for three important features of radar-based human gait data belonging to five object communities.

robustly learning the typical degree of a vertex based on a dictionary that was formed from feature
vectors that lie close to robustly estimated cluster centroids. This required estimating the number
of clusters, which was done based on evaluating the modularity index after rejecting some vertices
with very atypical degrees in a preprocessing step. The method outperformed existing robust and
SC methods on a real-world data set (24 GHz radar system, 8oo observations from five gait clusters
of ten subjects).

The following sections are organized as follows. Section 4.4.3.2 comprises the problem
formulation. The proposed cluster enumeration and the outlier detection methods are detailed
in Section 4.4.3.3. Section 4.4.3.4 demonstrates the clustering performance for human gait radar
data in comparison to four competing clustering algorithms. Finally, conclusions are drawn in

Section 4.4.3.5.

4.4.3.2 PROBLEM FORMULATION

Given a data set consisting of M-dimensional feature vectors X € R**N, the aim of this method
is to find a label vector cx € RY that partitions X into K independent and mutually exclusive
clusters. The true number of clusters K is unknown and K € {Kip, - - - ; Kmax }» where Ky, and
Knax are, respectively, the prespecified minimum and maximum cluster number of clusters. Let
G = {V,E, W}, again, define a weighted graph, with /" denoting the vertices, E represents the
edgesand W € RN being the affinity matrix. As discussed earlier in Section 2.5, SC [CYY09]
is a popular unsupervised learning technique that allows for decomposing a data set into clusters
based on the spectrum of the affinity matrix. However, as illustrated in Figure 4.60, radar-based
human gait signatures include a considerable amount of outliers that may show a grouping effect,

and outliers of one cluster may overlap with the data points of any other cluster. Hence, outliers
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Figure 4.61: Normalized histogram of degrees for graph of radar-based gait signatures.

obscure the underlying data structure and cause a performance degradation in SC algorithms. In
the following section, we therefore propose a graph-based SC approach that is robust against such

outliers.

4.4.3.3 PROPOSED ALGORITHM

The main ideas of our algorithm are summarized as follows: we use sparse subspace representation
to identify some of the outliers based on their atypical number of nonzero coefficients. Then, we
estimate the number of clusters using modularity of graph partitioning (as defined in Eq. (2.7)).
Next, robustly estimated centroids are used to identify a subset of feature vectors that are associated
to the clusters with high confidence. Based on these, we build a dictionary and obtain sparse
coeflicient vectors. Repeating this procedure with many subsets allows for robustly learning the
typical degree of a vertex. After learning the number of clusters and the typical degree, outliers can
be rejected and a SC algorithm can be used to assign labels to the feature vectors. These steps are

detailed in the following sections. A summary of the proposed method is given in Algorithm 9.

4.4.3.3.1  CLUSTER ENUMERATION

The algorithm is based on constructing a pairwise similarity graph which transforms the clustering
into a graph partition problem [CYY09, WYGO08]. Extensive data analysis on human gait Doppler
radar data showed that outliers obscure the graph construction and severly influence the number
estimated connections of the vertices. Figure 4.61 shows the normalized histograms for the
degrees of a graph that is constructed on micro-Doppler radar data set of 8oo observations with

five different gait clusters of ten subjects (for details, see Sec. 4.4.3.4). Figure 4.61a illustrates
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the empirical distribution of the degrees of the graph when dictionary learning is realized over
all feature vectors in the data matrix X. As can be seen in the figure, it is difficult to identify a
typical degree over all vertices of the graph even though this data set contains an equal number
of observations for each cluster, which implies a typical degree of 160. Clearly, the outliers,
which have a low degree shift the largest mode to the left, create an additional mode at around
so. Figure 4.61b shows the empirical distribution of the degrees of the graph when the dictionary
learning is applied /N, times over a selected subset of N; = 40 samples that have been identified
as typical for each cluster. Now, the empirical degree distribution is strongly focused around the
true value, i.e., the graph structure has been correctly identified. However, the identification of
these typical samples for each cluster requires a prior knowledge about the number of clusters.
Considering the above observations, the estimation of the number of clusters is performed based
on robustly estimated typical degrees for a full dictionary matrix by using the data matrix X as a
dictionary matrix. More precisely, we design an improved graph model using initially estimated
feature vectors from X that have typical degrees. The estimation of initial typical degrees is

comprehensively explained in the following step.

Preprocessing

Based on the intuition that sparse outlying entries and noise have fewer non-zero correlation
coefficients in coefficient vector & [EV13], the outcome of this preprocessing step is a matrix X(©
which consists of the initially estimated outlier-free columns of X. To find these vectors, the
empirical distribution of the number of nonzero coefficients for each coeflicient vector # must
be determined. Assume that A©) = @1, 2, ... an] € RN is the estimated initial coefficient
matrix over all coefficient vectors of X € RM*¥ where &,, represents mth coefficient vector of
X. The initial coefficient matrix A () can be obtained solving the sparse subspace representation

problem [EV13] if the solution is sparse enough [Don06]
A = argmin [|A©||;s.2. X = XA©® | diag(AY) = 0, (4.51)

where diag(A (")) € R¥ is the vector of diagonal elements of A(”). The initial degrees vector
2 ¢ RV is formed by stacking the number of nonzero elements for each 2. Based on 20 we
analyze the empirical distribution of the degrees. In particular, the normalized median absolute

deviation of the degrees vector can be computed as [ZKO18]

madn(2¥) = 1.4826 - med[0®) — med ()], (4.52)
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where med(2(?)) represents the median of the initial degrees vector (). Then, the initially
estimated outlying samples are detected via the 20 rejection rule as the feature vectors that differ in
their degree by more than two times the robustly estimated standard deviation. The preprocessed

matrix X(©) is designed using the remaining N number of feature vectors from X.

Graph Construction

Let GO = {710 E©® W1 denote the weighted graph representation for the initially estimated

0) ¢ RNOXKO

outlier-free matrix X(©. The weight matrix W can be formed based on the

estimated set of coefficient vectors from A (), using Pearson’s linear correlation coefficients, as
~(0) o \T (400 _ »

w)), = — (4.53)
T

with associated sample means z , ¢ , and sample standard deviations ,,, 7,,, respectively, for
mon=1,... N,

Graph Partition and Modularity

Assuming that for each candidate number of clusters K;ng € {Kimins - - - , Kmax } there is a graph
partitioning algorithm, such as [Hes04], that partitions X© into K.,.q clusters and provides
the estimated label vector €,, the cluster number K can be estimated by comparing quality of
partitions as in Eq. (4.43). Herein, the only difference is averaging modularity score of candidate

cluster number over N, runs of a graph partitioning algorithm, where /N, is a reasonably large value.

Graph Construction-based Outlier Detection
Let M € RMxK

M= [y, gl ;€ R (4-54)

where ‘Eci represents the robustly estimated centroid vector for the 7th cluster based on a K-medoids
partitioning of X € RM*N The dictionary matrix H € RM*Nest is formed by picking columns

from X, such that,

M
H = [Xi1, 0 X1y o0 X gy oo Xy )y Xin € RY, (4-55)

where X; , represents the feature vector from the zth cluster that has the zth Euclidean distance

to the cluster centroid estimate g,, N is a reasonably small value of the number of typical feature
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vectors for each cluster where Nieye < Nand Nie,e = N,K. Considering N test sample vectors
from data matrix X, the coefficient matrix A € RM«*Me can be obtained solving the sparse
representation problem

&Y = argmin |||, s.z. x¥), = Ha® (4.56)

test

. . t .
) represents the estimated coefficient vector, Xt(ezt € RMisa randomly selected sample test

(

wherea
vector from data matrix X for the sth dictionary learning iteration, and H is designed dictionary
matrix. To recover the degree information of each sample test vector in data matrix X, the
dictionary learning that is defined in Eq. (4.56) must be performed r = {1, ..., N,} times, where
N, is a reasonably large number. The full degree vector can be obtained by stacking each degree
vector 900 € RM= into degree vector vec(D) € RNeN: for each dictionary learning iteration
routine. The following step is to analyze the empirical distribution of all degrees. A 2o outlier
rejection can be computed based on madn(vec(D)).

The proposed framework for the unsupervised graph-based robust clustering is summarized in

Algorithm 9.

4.4.3.4 EXPERIMENTAL RESULTS

Experimental Radar Data

The experimental data, as in [SAZ19], has been collected in an office environment at Technische
Universitit Darmstadt using a 24 GHz radar system. The recordings include 16 observations for
ten subjects and five different object clusters that consist of normal walk (NW), limping with one
leg (L1), limping with two legs (L2), walking with a cane (CW) and walking with a cane out of
synchronization (CW,). The data was recorded when the subject was walking towards and away
from the radar. The observation number for each direction is equal to eight and the duration of
data measurement is six seconds. In total, 8oo observations for five different gait clusters of ten

subjects have been used in our experiments.

Feature Extraction

The human gait features include physical features as defined in [SAZ19], and additional features
that are extracted from the spectrogram and its envelope. In total, 89 gait features are used for
clustering of gait signatures.

Physical Features [SAZ19]: The physical features of five gait classes were obtained by using the
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Algorithm 9: Unsupervised Graph-based Clustering

RMNjie |[x,]l =Lform=1,....N

Input: A normalized dataset X €
Step 1: Cluster Enumeration
Step 1.1: Preprocessing
Create A(©) = @1, a5, ... ay] using Eq. (4.51)
Obtain 9(® & RN for a set of 2 vectors
Compute madn(2®) of 0 via Eq. (4.52)
Reject initially estimated outliers based on 2¢ rule
Reconstruct A©) for initially estimated outlier-free samples as A ¢ RNOxNO
Step 1.2: Graph Construction
Construct graph for WO g RNONO g Eq.(4.53)
Step 1.3: Graph Partition and Modularity
forr=1,...,N,do

for Kind = Knin,s - - - s Kinax dO

Apply a graph partitioning such as [Hes04]
Evaluate modg_, of partition via Eq. (2.7)

end
end
Compute average of modularity scores for each K ;ng
Obtain K as in Eq. (4.43)
Step 2: Outlier Detection
Get set of g for K clusters by using K-medoids
Get matrix M € RM*K i, Eq. (4.54)
Form H € RM*Ne via Eq. (4.55)
forr=1,...,N,do

Estimate 2 € RN of each test vector X\ via Eq. (4.56)

Create A = [&Y),&g), . 7&5\2&} € RN X Nees

Obrtain 9 € RN for a set of @ vectors and stack in vec(D) € RNt
end
Obtain full degree vector vec(D) € RNV
Compute madn(vec(D))
forn=1,...,N© do

Reject outliers based on the 25 rejection rule

Stack estimated outlier-free vectors into matrix X € RM*V
end
Step 3: Spectral Clustering
Obtain W € RVN yia Eq. (4.51), Eq. (4.53)
Apply the SC algorithm as in [NJWO01] replacing the K-means by K-medoids
Output: A vector &; for K
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Figure 4.62: Example of (a), (c) spectrograms and (b), (d) corresponding micro-Doppler envelopes for two object clusters.

sum-of-harmonics model and the spectrogram of human gait signatures. The physical features
include the fundamental frequency £, micro-Doppler frequency f,p, the maximum Doppler
frequency shift /2 and the gait harmonic frequency ratio 2.

Additional Features: As in sparse representation of images, the features are taken as samples
from the spectrogram and its envelope. In the context of human gait signatures, features must be
carefully designed based on data analysis.

Considering different Doppler radar representations, see examples shown in Figure 4.62, our
aim is to find descriptive features of object clusters. The maximum Doppler frequency shift and
its neighbouring samples, obtained from the spectrogram, provides a representative feature for
the L2 cluster. Moreover, samples from the maximum peak of the spectrogram envelope are used
to distinguish the L2 cluster. To demonstrate rhythm of strides, samples from consecutive peaks
are extracted which are represented with arrows in Figure 4.62b and 4.62d. Furthermore, the

duration of time samples between peaks which are higher than 80% of the average of peaks that
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Cluster Enumeration of Radar-based Human Gait Signatures

~

Method K K
Gaussian EM [TMZ18] 9 S
¢ Distribution-based EM [TMZ21] 10 5
Louvain [BGL08] 4 5
First Neighbor Relations [SSS19] 8 5
Proposed Unsupervised Graph-based Robust Clustering 5 5

Table 4.10: Cluster enumeration results of different parameter-free clustering algorithms for five object clusters.

is shown with a red dotted line in Figure 4.62b and Figure 4.62d, is taken to capture stride time
and rhythm characteristics simultaneously. Stride time and rhythm are distinctive features for the
CW,os and the L1 clusters, respectively. Finally, the Doppler shift samples between maximum
and minimum points of an envelope are extracted to show peaks without micro-Doppler effect.
All time-frequency representations are examined in a window that includes the samples from 0.3

to 5.7s.

Human Gait Data Clustering and Labelling
In this section, clustering results of five different parameter-free clustering algorithms are shown
which provide a proof-of-concept that graph-based robust clustering is a useful tool for radar based
gait analysis. The cluster enumeration results of the proposed unsupervised graph-based robust
clustering algorithm are compared with state-of-the-art parameter-free clustering methods that
include both statistical and graph-based approaches. In particular, we compare to the Gaussian
expectation maximization (EM) [TMZ18], ¢ distribution-based EM algorithm [TMZ21], graph
modularity scoring with gain [BGLO08] and first neighbor relations [SSS19]. The proposed outlier
detection approach is compared with three different outlier detection methods that use angle
[KSZ08], distance [BS03] and correlations between the variables [RB18]. In order to compare the
success of partitioning the data set, the unsupervised clustering results of the proposed method
are compared with four different clustering algorithms for which the number of clusters K was
correctly provided.

For the EM algorithms, the dimension of the data is reduced to 1o by using PCA because the
performance was poor on the original 89 dimensional data set. The estimated number of clusters
for five different parameter-free cluster enumeration methods are summarized in Tab. 4.10. As can

be seen, the three competitor cluster enumeration methods take outliers as groups and overestimate
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Gaussian EM [TMZ18]

True / Predicted NW L1 L2 CW CWoos
NW 93.8 2.3 - 3.9 -
L1 - 99.4 - 0.6 -
L2 1.2 1.8 58.7 38.3 -
CcwW 21.5 15.3 - 63.2 -
CWoos 1.9 0.6 - - 97.5
¢ Distribution-based EM [TMZ21]
True / Predicted NwW L1 L2 CwW CW s
NW 91.6 - 0.6 6.6 1.2
L1 - 95.6 - 4.3 o.1
L2 1.2 - 58.7 38.9 1.2
CwW 21.3 - 0.6 78.1 -
CWoos - - - 8.7 91.3
Louvain [BGLO08]
True / Predicted NW L1 L2 CW CWoos
NW 79.1 0.6 - 6.6 13.7
L1 3.1 91.9 - 1.9 3.1
L2 - 0.6 79 6.6 13.8
CwW 20.6 3.1 - 75 1.3
Cwoos 1.2 - - 1.3 97-5
{,-Graph [CYY09]
True / Predicted NwW L1 L2 CcwW CWoos
NW 89.5 - 4.6 5:9 -
L1 0.8 95.3 1.4 2.3 0.2
L2 6.1 0.8 91 1.9 0.2
CwW 17.9 2.6 4.5 71.0 4.0
Cwoos - - - 4'6 95-4
{1-Graph [CYY09] with Outlier Detection [RB18]
True / Predicted NwW L1 L2 CW CWoos
NW 41.8 9.1 9.1 6.4 33.6
L1 11.3 46.4 7.6 5.1 29.6
L2 11.8 8.4 42.4 6.2 31.2
Cw 7.8 9.3 8.2 41.7 33
CWoos 9.7 9-4 8 30.6 42.3
Proposed Unsupervised Graph-based Robust Clustering
True / Predicted NW L1 L2 CW CWoos
NW 96.7 - 1.3 2 -
L1 - 98.3 1.6 o.1 -
L2 3.7 0.3 94.8 0.2 1.0
CwW 12.2 - 3.1 81.2 3.5
CWoos - - - 6.6 93.4

Table 4.11: Confusion matrices of different gait clustering algorithms for five object clusters. Numbers are shown in % and best
performance results are indicated in bold font.

the true cluster number. On the other hand, Louvain assumes overlapping outliers with another
true cluster as a big community and underestimates the number of clusters.
The proposed outlier detection method has been implemented with the following parameters.

The matrix of centroids M is created for estimated K = 5 object clusters that include N = 800
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observations. N, = 40 samples for each centroid are used to form dictionary matrix H. In total,
the dictionary matrix H includes 200 observations for K=5 object clusters. The remaining
data matrix X is used for creating the test sample matrix X, with equal number of observations
by random selection. The extraction of the degrees has been performed N; = 300 times, so as
to achieve degrees of all test vectors in data matrix X. For the ¢;-Graph clustering, the estimated
outlier-free data set X is equal and randomly separated as dictionary matrix H and the test matrix
X oor. Tukey’s distance function [ZKO18] where the threshold is defined as 77y, = 4.68 for
95 percent asympotic relative efficiency (ARE) is used for initialization with K-medoids in the
proposed algorithm.

The average correct clustering results of four competitor clustering methods for a given number
of clusters K = 5 and the clustering result of the proposed method for the estimated number
of clusters K = S are shown in Tab. 4.11. All results presented in this section were obtained
using 300 runs. We can see that clustering with the ¢ distribution-based EM algorithm shows
better performance than the conventional Gaussian EM one although both clustering algorithms
are not able to cope with the two group behaviour of L2. The results show that the application
of Louvain solves this problem. However, the average correct clustering result of Louvain based
clustering indicates that there is not a noticeable difference in average clustering rate compared to
the z-distribution based EM algorithm in average clustering rate of human gait micro Doppler radar
data. Furthermore, the application of ¢;-Graph solves the two group behaviour of L2 and gives
reasonably good clustering results. Nevertheless, as it can be seen in the table, the correct clustering
rate for CW is limited to 71% and also there is a trade-oft between NW and CW. Combining
classical outlier detection methods [RB18, KSZ08, BS03] with the £;-Graph method decreased the
clustering performance because outliers could not be correctly identified. Results for combining
[RB18] with the ¢;-Graph method are reported in Tab. 4.11.

Considering the results of the proposed method, the outlier detection algorithm increases the
correct clustering rate of ¢;-graph by approximately 7%, 3%, 4% and 10% for NW, L1, L2 and CW
clusters, respectively, while the correct clustering rate of the CW, cluster drops by 2%. This can
be explained by the trade-off between correct clustering rates of the CW,, and other groups. The
CW s cluster has a completely different group behavior and it results in less nonzero coefficients
compared to the other groups. Thus, the clipping based on the overall group behavior causes a
small drop in this cluster. On average, the proposed outlier detection approach increases the overall
correct clustering rate of ;-Graph by 4.5%. Overall, the proposed method clusters the gait data in

an unsupervised manner and achieves a correct clustering rate of 92.8%. In comparison to state-
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of-the-art parameter-free clustering algorithms, it estimates the cluster number correctly as K = S

and provides robustness with a meaningful partition of the data.

4.4.3.5 CONCLUSIONS

In [TMZ20], we proposed an unsupervised graph-based robust clustering algorithm to cluster
highly contaminated radar data efficiently. The method shows applicability of sparse regression
and graph models on clustering of human gait signatures, providing robustness to noise and
sparse outlying entries. The clustering results of human gait signatures showed that the proposed
method outperforms existing parameter-free clustering approaches both in the sense of cluster
enumeration and partition. Overall, the unsupervised graph-based robust clustering approach

shows promising performance on clustering of micro-Doppler radar-based human gait signatures.
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Learn from yesterday, live for today and hope for

tomorrow. The important thin g 15 not to stop questioning.

—Albert Einstein

Conclusion and Outlook

5.1 SUMMARY AND CONCLUSION

This dissertation contributes to robust graph clustering by developing fast, robust and parameter-
free graph clustering methods. Considering the effect of outliers on sparse graph construction,
the main goal has been designing graph clustering algorithms that jointly address robustness and
sparsity.

Since there does not exist a single definition of an optimal graph model for clustering, the first
part of the thesis comprised the definition of a sparse graph model and its applicability to sparsity-
aware graph clustering. In particular, firstly, the sparse graph model including edges for only
intra-cluster associations has been defined by using the advantageous nature of block diagonally
structured affinity matrices. Then, motivated by the various applications of eigenvalues and the
eigenvectors, a spectral analysis has been conducted based on the eigen-decomposition of the
Laplacian matrix associated with the sparse graph. To reduce the computational cost of Laplacian
matrix analysis, a vector representing the blocks as a piece-wise linear function of similarity
coefficients has been defined. The adaptiveness of obtained spectral properties to sparsity-aware

clustering has been shown by formulating graph construction problems as an approximations to
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spectral properties of sparse graphs. To demonstrate this argument, two different sparsity-aware
BDR methods built upon, respectively, the eigenvalues and the eigenvectors associated with sparse
graph have been proposed.

To understand how to best incorporate robustness in sparsity-aware graph clustering,
fundamental outlier types have been defined and their effects on spectral properties of sparse graphs
have been analyzed. In particular, outliers’ effects on sparse graphs have been extensively studied in
terms of the affinity matrix, overall edge weights, eigenvalues, eigenvectors and, finally, in terms of a
proposed simplified Laplacian matrix analysis. Based on the obtained results regarding the outliers’
effect on affinity matrix, the SPAR CODE method that shrinks the undesired similarity coefhicients
associated with outliers to zero has been proposed. Next, FRS-BDR approach building upon
outliers’ effects on the eigenvalues and the simplified Laplacian matrix analysis have been presented.
Difterent from these affinity matrix construction solutions, RRLPI and RLPFM algorithms that
are robust against outliers’ effects on the eigenvectors have been introduced. Lastly, motivated by
the outliers’ effects on the overall edge weights, an outlier detection method using node degree as
an outlyingness measure has been proposed and applied to gait analysis.

Real-world applicability of proposed robust graph-clustering methods has been shown for
different aspects. For example, the obtained promising results on person identification based
on gait signatures, face and handwritten digit recognition has demonstrated the applicability of
robust-graph clustering in biometrics. Medical diagnosis is another important application of
robust graph clustering which has been detailed for varying experiments on, i.e., Gait, Parkinson A.,
Diabetic Retinopathy, Cardiotocography data sets. In addition to these well-established data bases,
the efficiency of robust graph clustering in image segmentation encourages further applications,

e.g., autonomous vehicles, analysing satellite images, medical imaging.

5.2 FUTURE RESEARCH DIRECTIONS

This section presents some possible extensions of the theoretical analysis and proposed robust
raph clustering algorithms that have been detailed in Chapters 3 and 4.

graph clustering algorithms that have been detailed in Chapters 3 and 4

5.2.1 ASSUMPTIONS ON SPARSE GRAPH MODEL

In Section 3.1, we have assumed that each block is concentrated around a similarity constant. Then,
this assumption has been relaxed in Section 3.2.3 based on the eigenvectors of the BD nonnegative

definite Laplacian matrix whose similarity coeflicients in blocks are random variables. Even though
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this relaxation makes the sparse graph model more realistic, achieving this strictly BD structure may
be challenging in real-world scenarios.

SBM is a random graph model that is widely used for clustering [Abb17]. In simple words,
every vertex is associated with a cluster and there are undirected edges between vertices based on
probeabilities that are function of vertices” group memberships [KN11]. Based on this, the sparse
graph model that has been defined in Section 3.1, can be considered as a weighted SBM in which
the vertices of the same cluster are connected by an edge with probability one while that of different
clusters are unconnected with zero probability. This also means that approximations to the sparse
graph model can be made in a statistical sense and the assumptions on sparse graph can be relaxed
by giving a further degree of freedom [AWF92].

5.2.2 FUNDAMENTAL OUTLIER TYPES IN RANDOM GRAPHS

The earliest theoretical models of a network have been studied in the 1950s and 1960 by Paul
Erd8s and Alfred Rényi and they generalized to models of web graphs, social networks, biological
networks [ZR15, New03]. Motivated by this, the analysis of fundamental outlier types in random
graphs is an interesting research direction to design robust graph clustering algorithms that are
well-suited to the modelling of real-world networks.

Again referring to SBM [Abbl7], which is one of the most commonly used random graph
models for clustering, the fundamental outlier types can be determined based on the probability
of sharing an edge for the vertices of same cluster. More precisely, the degree of a vertex is an
informative measure of outlyingness when the probability of edge existence for the vertices of
the same cluster become comparable, or ideally constant such as in the so-called planted partition
model. Therefore, the determination of fundamental outlier types can be adapted to random

graphs by systematically analyzing and understanding the underlying edge existence probabilities.

5.2.3 RoBUST GRAPH-BASED CLUSTERING FOR LARGE GRAPHS

In real-world scenarios, graphs consist of large numbers of vertices, thing e.g. of the Facebook
social network. As it has been highlighted in Section 3.2.4 for large graphs with considerable
number of vertices, analysing N X N matrices is challenging or even unapplicable. In particular,
the eigen-decomposition of Laplacian matrix requires noticeable computation time which makes
spectral methods unapplicable, especially, for the densely connected large graph structures. In
such cases, alternative solutions, such as, transforming the analysis into a vector space as in

Section 3.2.4 become crucial. However, the vector v definition in Section 3.2.4 considers densely
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connected clusters which may not always apply to real-world graphs. Additionally, BD ordering
and approximating vector v for many different candidate block sizes asin Sections 3.4.1 and 4.4.1.2
may result in a large computation time for large graphs. Therefore, the adaptation of simplified
Laplacian matrix analysis to large graphs is still an open problem and extracting informative

subgraphs, such as in [KKV15] is an alternative way for analysing large networks.

5.2.4 TIME-SERIES ANALYSIS APPLICATIONS BASED ON VISIBILITY GRAPHS

An alternative way of analyzing time series is visibility graphs which maps time series into a
network according to the visibility criterion that has been detailed in [LLB08]. In recent years,
the analysis of time series based on visibility graphs has attracted great interest, e.g., [KM22,
SGY15] and, in particular, horizontal visibility graphs are popular tools due to their geometrically
simpler and analytically solvable fashion in comparison to the former algorithm in [LLB08]. In
horizontal visibility graphs, every vertex represents a datum in the time series and the vertices
are connected if their corresponding data heights are larger than all of the data heights that are
located between them. According to this simple procedure, a time series can be transformed into
an undirected graph and graph clustering can be performed, for example, to capture periodic
(or cyclic) time sequences. In terms of periodicity, the size of clusters may provide information
about the outlyingness. For instance, when a noisy peak occurs in time series it might obscure
the neighboring data heights and lead to a deterioration in the visibility graph structure and thus,
graph clustering may produce inbalanced clusters. Therefore, analysing visibility graphs in noisy
scenarios and developing robust graph clustering methods that are applicable to visibility graphs is

of interest for future work.



Proofs and Additional Theoretical

Information

Appendix A is organized as follows. In Section A.1, the theorems by reference to spectral analysis
of sparse graph model are proved based on the generalized and standard eigen-decompositions,
respectively. Similarly, the theorems regarding the outlier effects on sparse graphs are proved in
Section A.2. The outliers” effects on the Fiedler vector is the subject of Section A.3. Lastly,
the theorems that analyzes the RRLPI method are detailed in Section A.3 and the auxiliary

information that is used for theoretical analysis is given in Section A.s.
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A.1 SPECTRAL ANALYSIS OF THE SPARSE GRAPH MODEL

A.1.1 GENERALIZED EIGEN-DECOMPOSITION BASED ANALYSIS
A.1.1.1 PROOF OF THEOREM 1

Let W € RN be 3 zero-diagonal K block affinity matrix with corresponding Laplacian L €
RNXN :

,ie.,
0wy ... wy ... [~ 41 -wp ... -wy 7]
w1 0 ... w1 ... -w1 dl . 4
wi wy ... 0 L ~wy -wy ... di
0 wg ... wg dy -wg ... -wg
Lwg 0 .. wg v mwg odp . -wg
. wg wg ... 0 | v WK WK ... dp |

where d; = (N; — Dw;,i = 1,...,Kand L=D — W. To compute the eigenvalues
in Eq. (2.6), det(L —AD) = 0 is considered which can equivalently be written using the

determinant properties of block matrices (for details, see Section 2 in [Sil00]), as follows
K
det(L — 2D) = [ [ der(L; - 2“D,) =0,
i=1

where L; € RN D, € RN>Ni gnd l("), i =1,...,K,denote L, D and A associated with the

zth block, respectively. Further, L, — l(i)Dl~, {=1,..., K can alternatively be written as

GoTW e W 4w, 0 .. 0 N
—w; ¢ ... —w; 0 b 0 \/HT,
S :[ : s :|—|— : W=7

—w; —Ww; ... ¢ L 0 0 ...q—i—w/ Vwi
o VT
L—20D; H \u//

with¢, = (N; — Vw; — 20) (N; — 1)w;. For an invertible matrix H € RN such that HT =
(¢ + w;) 1, the matrix determinant lemma (for details, see Lemma 1.1 in [DZ07]) computes the
determinant as det(H + uv') = (1 + v H'u)det(H) where u € RY and v € RN are two

column vectors. Thus, it holds that

¢+ w;

dex(Ls = 29D) = (14 (- (4 1) ) o+ )™
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where1l € Z™ denotes a column vector of ones. Substituting 1"1 = N in det(L, — l(")Di) =0
leads to

(1 - N ) (Nyw; — 29 (N; = D)™ =0
Naw; — 29 (N; = 1),
10 (n — , _
Nao; = AN, = 1)y

N;—1

( B l(l’) (N; — l)w,‘) (]\[lwl — 2@ (N; — l)wl') =0

For w; > 0 and N; > 1, the eigenvalues are given by

M‘

2 =0 and 20 =

, i=1,....K.

A.1.1.2 PRrROOF OF THEOREM 2

Based on the information that the K smallest eigenvalues of the Laplacian matrix associated
with the BD affinity matrix are zero-valued [Lux07], the associated orthonormal set

of eigenvectors yields for the both eigen-decompositions in Egs. (2.5) and (2.6), ie,

N N> Nk
yo=[+VI/Ny,...,=/1/Ny, 0 ..., 0 ,...., 0 ,..., 0 ]'
yi=[ 0 ,..., 0 ,£J1/No,....,+\/1/N5,..., O ..., 0 ]

Yeei=] 0 ..., 0 , 0 ..., 0 ,...,£1/Ng ..., +£/1/N]"

where y;, € R is the eigenvector associated with the kth zero-valued eigenvalue. The Euclidean

distance between any embedding vector pairs e; and e; associated to distinct blocks £ and /is equal

t [le; — el = \/1/Ni + 1/N, for k # land 7 # . 0
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A.1.1.3 PROOF OF THEOREM 3

By definition, the vector v is computed by summing up the rows of the upper triangular part of
L,ie,
vV = [O,wl,...,dl,O,wz,...,dz,...,O,wk,...,dk],

whered; = (N; —1)w;,i = 1,..., K. Since each block includes N; € {N;, N>, ..., Nx} number

of nodes the vectors containing lower and upper limits can be defined as follows
K—1 K
= {1,M+1,...,ZM+1], u= {Nl,M—i—Nza---,ZNz}-
=1

Substituting each 7 with m = 1, ..., N'in the function f{m) yields the vector:
VvV = [0,1{)1,...,(]\[1 —l)wl,...,O,LUK,...,(NK—I)ZUK],
which concludes the proof that two vectors are identical. [

A.1.2 STANDARD EIGEN-DECOMPOSITION BASED ANALYSIS

Theorem. 1.5.Let W € RN be 4 sparse affinity matrix in Definition 3.1.1 and D € RN js
the associated matrix of overall edge weights. Assuming that L € RN*N denotes the associated sparse

Laplacian matrix, its eigenvalues will be of the following form based on Egq. (2.5)

2- :sort(0,...,0,]\[1w1,...,N1w1,...,NKwK,...,NKwK>,
——

K Ni—1 Nig—1

where A € RN denotes the vector of target eigenvalues and sort(+) is sorting operation in ascending

order.

Let W € RYN pe 3 zero-diagonal K block affinity matrix with corresponding Laplacian
L € R™¥ asin Section A.1.1.1. To compute the eigenvalues in Eq. (2.5), det(L — AI) = 0 is
considered which can equivalently be written using the determinant properties of block matrices

(for details, see Section 2 in [Sil00]), as follows

K
det(L — 21) = [ ] det(L; — 291) = o,
=1
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B =54 B d=21 [ d3=99

H-w;=—-0.6 —w;=—0.3 O0—w3=-0.9
12
T
i
[ 10
4 ls Ny =10< HH
22 29 %3 > 8
% 0, 10
% 13
& 510 59 6
: Na=8
28
»
12 18 4
17
An=0and \,, =6 & W,
S 2 An =0 and X, =24 & W,
14 e Am = 0and A\, = 10.8 <> W3
T

13 N3=12 0

5 10 15 20 25 30
0<m<N-1

@ G={V,E,W} ) L € RN @A eRN

Figure A.1: Examplary illustration of Theorem 1.5. (n = [10, 8, 12]T c RE, N =30,K = 3).

where L, € RN>Ni and l(“), i = 1,...,K, denote L and 1 associated with the 7th block,

respectively. Further, L, — l(i)I, 7 =1,...,K can alternatively be written as

G —Wi .. —w; dw;, 0 .. 0 w;
;

: = NN
—w; —w; ... G 0 0 .otwd NN - |,
%,—/ N v VT
L—201 H M

with¢, = (N; — Dw,; — 2% For an invertible matrix H € RY*N: such that Hf = (¢; + w;) 7',
the matrix determinant lemma (for details, see Lemma 1.1 in [DZ07]) computes the determinant
asdet(H+uv') = (1 + v H'u)det(H) where u € R and v € R™ are two column vectors.
Thus, it holds that

det(L; — 29D,) = (1+ (—\/m)T( Vi 1)) ( + w) ™.

¢ _|_ w;
Substituting1"1 = N; in det(L; — 29T) = 0 leads to

(1 Nw; ) (Now, — l(z‘))N,» —0

N, 20
_® AN
() =20 =0

2 (N, = 2 =0

For w; > 0 and N; > 1, the eigenvalues are given by

W =0 wd 20 =N, (=LK
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A.2 OuTLIER EFFECTS ON SPARSE GRAPH MODEL

A.2.1 GENERALIZED EIGEN-DECOMPOSITION BASED ANALYSIS

A.2.1.1 PROOF OF THEOREM 4

Let L € RWADXM+)  denote  the Laplacian matrix associated ~with
a  block  zero-diagonal  symmetric  affinity = matrix for K  blocks  with
an additional Type II  outlier that 1is correlated with all blocks, ie,

dn  —wmy —wmy ... —wnn —wnp —wmn2 .. —Wn2 ... —WILK —WLK ... —WILK
—wny  di —wr .. —wp

—wny —w di ... —wy

—q,y —wi —wp ... dp
—wi1,2 dy  —wy ... —w>

—wi,2 —wy  dy ... —w»

=
I

—wi1,2 —wy —wy ... da

— I,k dx  —wg ... —wg
—wi,K —wx dg ... —wg

_*ﬁ;II,K f;uK 7;01( dx |
where dy; = ZJKZI Njwy; and glj = (Z\Q — l)ui] + LZ)H:j such thatj = 1,...,K. To compute
the eigenvalues of the Laplacian matrix L, det(L — AD) = 0 is considered. To simplify this

determinant, (for details, see Lemma 1.1 in [DZ07]) can be generalized as follows *

det(H + UV") = det(H)det(I+ V'H'U) ,

where H € ROHDXWNHD) denotes an invertible matrix, I is the identity matrix and U,V €
ROHDX(N+D) Then, for det(L — D) = det(H 4+ UV ) = 0, it follows that

"For a detailed information, see Section A.s.1.
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where 2y =

3 ZjlilM&)IIJ
N — Dy o+ o) fr =

~ e B
A Zj:l ]\]]‘LUHJ' and Zj

Nuy + iy -
LK. Using the determinant

properties of block matrices (for details, see Section 2 in [Sil00]), it holds that

1 *N@H,lzl_l *Nzﬁ)n,zzz_l *NK[UII,KZEI
—ﬁ/ll,lzﬁl —lelzl_l—H 0 0
0 = | —@mazy 0 —Nawnzy '+1 .. 0 det(H).
—17/11,1@51 0 —NKwKzEI—O—l

To simplify the determinant of the first matrix, it transformed into a

lower diagonal matrix by applying the following Gaussian elimination steps

Nyion iz, !
———L R, + R — R
—Nwiz; ~ +1

-
Nown 22,

———R3+ R, =R
—NszZz_1+1 > ! !

Ngwi g2z
&RKH_,_RI_)RI
—NKLUKZK +1

where Rg denotes Kth row. Then, the simplified determinant of the first matrix yields

K
O:cII(H(—Mw,-z +1>>zHZ1 zlzv. zﬁ’(

=1

where
K
NKWU 2 ZH
=(1-—
a=(1-3 (Cher
For 21 = Z]K:I ]\]jﬁ)ll,j j'zszl ]\G[UHJ- and Zj ]\[jwj + ZI)HJ'
A(N; — 1w, + wn;) such that j = 1,...,K the determinant yields



(ﬁ N +1)>z (ﬁz> . 2’3 Niivg; y2,
o I I — Nkwkzk +1

Jj=1
1 T d 10 = Ny,
0= H(wILi — Ad;) HQ\G“’J + ldj)Nj—l — Ady + ZNka}H,k - Z —_—=
=1 Jj=1 =1 =1 Wi — ld[
K K —
- I\ N— Nyw
0 = [(@n; = Ad) [ [y + iony = 2d)™ | = dddu + Z (NWH i )
= = wiy — Ady,
=1 j=1 i
K K ~
3 37 - N, 2d
0 =[G, — 2s) [T (Njwy + oy — 2yt — Tty — 5 Demice
=1 =1 b=1 wIL/e - ld/e
T T 5 Nyivy 4d
0 =2 | [ oy — Ady) [ [ (Njuwy + iy — 2d)V | — dy — Z et
= = wiy — Ady,
=l 7=1 k=1 ;
Now, the N + 1 — K number of eigenvalues can be written as
Nyw; + wi

Nj — 1 elements of 1 are equal to — 5
1

z Nowy + w
N, — 1 elements of 4 are equal to M,

2

~ N ~
Nk — 1 elements of 4 are equal to 1@01214‘11/11,1{,

K

| the smallest element of 4 is equal to zero,

and the remaining K eigenvalues are the roots of

K K .
- T~ Nwy d; ~
H(wnz,' — Ad;) ( - Z — dH) =0,
=1 /=1 wII,j — /‘ldj

where dn = ZNij andd ( l)w + wII]
J=
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A21.2

PrROOF OF THEOREM §

Let L € RN denote the Laplacian matrix associated with K block zero diagonal affinity matrix

in which 7th block has similarity with remaining K — 1 number of blocks. For simplicity, let 7 = 1,

—w . —w —iW12 e —wip .. —WLEK .
—w d .. —w —W1 —i0 . —LK e
—w —w dy *37)1.2 —W1p .. —W1K ..
—iy2 —w  da )
—w1 2 —w, —wy d —w
. L= : : :
L€ —W12 —iny —wy —wy ... da
—WyK . —w) K 0_{1( .
—w1,K —i,K —wg  dg
L —w —wy K —wg —wg ...
~ X ~ »
where di = (N — Dw; + Zj‘zz]\G“’IJ and d;

2,...,K.  To estimate the eigenvalues of the Laplacian

_5.11

—wg ...

—wy 7]

—wy x

—wy x

—wg
—wg

dg

(N = Duwy + Nwyy,j
matrix L, det(L — AD)

0 is considered which can equivalently be written in matrix form as follows

dy—2dy

—w;

—w;

dy=Ady ...

—w —w1

—i12

—12
—w1

—w K

— 1K

—wy, K

—wr =i —wi —1K —w1 K

—wr i —w12 —i1,K —w1,K
o di—=2dy —iv2 —1,2 —1,K —,K

—w1y dy—Ady —wa —wy

—wy —wy da—ddy ... —wa

—w1y  —wy —wy ... dy—2d;

—w Kk dx—ddg —wg —wg

—y, K —wg dg—2dg ... —wg

—iy,x —wg —wg ... dg—dg

To simplify this determinant, the matrix determinant lemma (for details, see Lemma 1.1 in
[DZ07]) can be generalized as follows*

det(H+UV") = det(H)det(I + V' HU)

where H € ROHDXWHD) denotes an invertible matrix, I is the identity matrix and U,V €
ROHDX N Then, for det(L — AD) = det(H + UVT) = 0, it follows that

*For a detailed information, see Section A.s.1.
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X 5 ~
where 21 = lel + ijzj\]jwly'

),((Nl - 1)w1 + ZJKZZMZI}LJ) and Zj
Nuw; + Ny — A((

2,...,K.  Using determinant
properties of block matrices (for details, see Section 2 in [Sil00]), it holds that

—1 ~ —1
7N1 wlzl Jrl szwl,zzz

—Nsiny3z; " ... —Ngiby ey
—Nlﬁjlyzzlil —Nzwzz;l—i-l 0 0
0 = det(H) —Nidn 32, ! 0 —Nawszy '+1 ... 0

—N1 171171(21_1 0 —NKwKZI;l—‘rl

To simplify the determinant of the second matrix, it transformed into a lower diagonal matrix by
applying the following Gaussian elimination steps

Noion 22!
ZWLZfIZ R2 + Rl — Rl
—Nowrz, +1
N3L~(}1,3Z3_1

R3+ Ry — R
—N3LU3Z3_1+1 > ! !

|
Ngwy k2

Ry +Ri — R
—NKwKZIEI—f—l K ! !

where Ry denotes the Kth row. Then, the simplified determinant yields

a

0 0 0
—N1@1722f1 —Nzwzz;1+l 0 0
—Nyiv 32, ! 0 —N3wszy 141 ... 0
0= det(H) 1W1,3%; 3w3zy +
—Nlif}lﬁkzl_l 0 —NKwKZI;I—‘rl
where ¢; is equal to
K

Niivy 2, Nyivy 2t
-1 W14 1W1,/%1
aq=—Nuwz +1-— g J

—~  —Nuwgz; +1

Forz; = Niw + Y1, Nivy; — A((Ny — Dy + Y-, Ny ;) and 2 = Nyaw, + Ny ; — A((

N;—
Dw; + Ny ;) withj = 2,.. ., K, the determinant det(L — AD) = 0 yields
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K K

0 —Hz{VH —Njw;z; "+ 1)g

=2

0 =z, HzN H —Nuw; + z;)c
j=2

_—— | |zN |K| -N, it — N EK: NN i3,
= wi+z)z | —Nw+z— ) ———1——
e A — Nz, + 1

j=2 k=2
K ~2
NiNwy,
0= zN —Nw;+2z)| — Nyw; + 21 — _
H jl—! TV j)( 151 1 ;z/e—N/ewk
5 ~~ \N1—1 K N 1 K B ~~
0 =(Nuw, + ZNiwu —d) " TT (N + Ny = 245) - T] (N — 2de)
i=2 =2 k=2
K K
~ - NiNyw
R .
=2 = Niwn, — Ad,

K K -
0= (le1+ZNwll—ld1>Nl H(z\gwﬁz\awlz,—iaj)]v"IH(Nla)l,,e—Adk)

=2 k=2

& NN,
- ldl - N;wu — ~—7~~
P Nywy; — Ad,

K N1 K o \N-1 K .
0 =(Nuw + > Ny — ) [T (Nwy+ Moy = 2) " [] (Moo — 2k

=2 =2 k=2

. ;1211 . EK: igizj\[zwu

= Nww; — Ad;
) N1 K K
0 l(lel—l—z;Nwll ldl> H(Nw]—i—lelz, ) g]\flwlk—ldk)
7 j= —
~ K d;Nyiv
) P
= Ny, — Ad;

163



Based on this, N 41 — K number of eigenvalues are

( K
=L
ki
d;

Njw; + Nitwy,j

N; — 1 elements of 1 are equal to

N; — 1 elements of 1 are equal to ,

J

- N, Niiv,
Nk — 1 elements of A are equal to KZUK;w’K,
K

the smallest element of 4 is equal to zero,
\

and the remaining K — 1 eigenvalues in A are the roots of

K K ~ ~
. d.Niv. : s
||]\[iibi'_ld' _§ f+l{~_dl. =0,
(P ’)< Niiv;; — Ad )

i 1
) R K
where d; = (N; — 1)w;+N;w; j, d; = (N; — )w;+)_ Nyw; ;. -
=
”

A.2.1.3 PROOF OF PREPOSITION 4.2.1

Let L € RWHXW+D) denote the Laplacian matrix associated with a block zero-diagonal
symmetric affinity matrix of K blocks with an additional Type II outlier that is correlated with
blocks 7 and j. For simplicity, 7 = 1andj = 2. Further, lety, € RN denote the eigenvector
associated with zero-valued eigenvalues. Since Type II outlier do not affect the remaining K — 2

blocks, the eigenvectors associated with zero valued eigenvalues of these blocks can be written as

follows:
Ny o N, N3 Ng
—_— —_—
y [0, 0 0,0,0,0 0, — - ! 0,0 01"
y() W - b PR | bl b b PR | b b b b b b b) M)
o VN, VN, VN;
N o N> N3 Nk
—_——
. T 1 1
Yooswy,=[0,0,...,0,0,0,0,...,0,0,0,.. |

L0, e L, ——
VN /Ng VNx

where yo.,w, denotes the eigenvector associated with the zero-valued eigenvalue of block W/, for

k = 1,...,K. Further, the eigenvector associated with zero-valued eigenvalue of the large block

164



can be written as

N+ Ny +1 N; Nk

.
y = - - ! 0,0 0 0,0 0

Yoewy, \/]\]1+N2+17\/]\]1+N2+1/.\/]\]1+N2+17 ) sty sy ) Yoy

Up to now, the eigenvectors associated with K — 1 number of eigenvalues are shown.

Now, the next step is to examine the eigenvector associated with non-zero eigenvalue

which can be written for the preserved distances between embeddings as follows:

Ny N>
o11 N T
_ N, N, 0 N N 0 0
Y1 = ANTINT L AT N2V A Al AT N L AN A AT AT L AT IR .
! Ni(N; + Ny) Ni(N; + Ny) No(Ny + N) No(Ny + Ny)

Based on this, the embedding vector associated with the Type II outlier yields

K—2
’ ° 1

& =10,....0,——t— o,
VN + N, +1

which concludes the proof that €y; is centered between embeddings of blocks 7 and 7 if the distance

between every pair of embedding vectors correspond to true samples are preserved. O]

A.2.1.4 PROOF OF PREPOSITION 4.2.2

Suppose that the distances between embeddings of true samples are preserved. Then, the squared
Euclidean distances from the origin can be written for orthonormal set of eigenvectors associated

with K smallest eigenvalues as follows:
Ni|&|]* + [|eu]]* + Naof|&]| + - - - 4+ Nillex||* = K

If the embedding vectors in Theorem 2 are substituted in this equation, clearly, the embedding

vector of Type II outlier is a vector of zeros. O]
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A.2.1.5 PROOF OF PREPOSITION 4.2.3

Assuming that the column vectors of the matrices Y and Y take values in a range {¥min; Ymax }>
without loss of generality, the matrices can be rewritten by defining the scaled eigenvectors of

Ly,, = A,y as

5(0)  s(a) sOo)  sOn1)

s0) sbu)| & _ [0 50w
s(30)  5(0) s(o) s(=hna) |
s(y30)  $(0) s(Gho) (=)

where 5(y,,,) and 5(3,,,) denote the scaled nth embedding result in the mth eigenvector

associated with Laplacian matrices L and L, respectively. The scaling function is given
_ Yn,m min(ymn) . .

by s(Vum) = Ymin + m(}/max Ymin) Where min(y,,) and max(y,,) denoting the

minimum and the maximum valued embedding points in the eigenvector y,,, respectively. To

cluster the row vectors of the matrix Y, the squared Euclidean distances within the blocks and

between different blocks are evaluated as

ler — esl5 =[les —e4])5 =0
ler — s =(s(0) — s(30))” + (s(1) — 5(0))°

2

=2 (ymax _ymin) y

where |le,, — €,]|5 denotes the squared Euclidean distance between the
mth and the nth feature vector with |e, — e,/ = le. — e,|l3 and
ler — el = ller — esl|3 = llex — es]|3 = [le2 — elf3.

Then, the distances within the blocks and between different blocks are evaluated for

LY, = A as

& — &3 =[|és — &5 =0
€1 — &3 =(s(0) — 5(5’1,0))2 + (s(Gna1) — 5(—5’1,1))2
2
:()/max _ymin) .

The next step is to examine the matrices Y and Y for the scaled eigenvectors of Ly, = 1,,Dy
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as

s(0) 5O (o)

_ |50 sbu) | g [0m0)
s(30)  5(0) sOno) s(sa

s(30)  s(0) (o)
As the eigenvectors of Ly,, = 1,,Dy,, are equivalent to Ly,, = 1,,y,, for the Laplacian
matrix L, the distances associated with Y are also equal. Further, based on the knowledge that

—wy 42w,

T = Y5, the scaled embedding points yield s(711) = Ymin and s(J3.1) = Ymax.> Thus, the

distances are computed for Y as

& — &5 =[|&; — &l|5 =0
181 — &3 = (sGro) — 5G10))” + (sGra) — s(=551))’
2
:()/max _)’min) .

This concludes the proof that the distance between the row vectors of the Y associated with

different blocks is greater than that of Y. O

A.2.1.6 PRrROOF OF THEOREM 6

To analyze different positions of Type II outlier, the outlier is shifted along

the diagonal of the corrupted Laplacian matrix L S RWADXNHD) a6 follows

du  —wny =g .. —Wng —@m2 —Wne e —@H2 . —WILK —WILK - —WIK
—wy  di —w ... —w

—wgy —wp di ... —w

—wgy —wp W .. dy

—n,2 : : : d —wy ... —wy ...

—wi1,2 —wy  dy .. —wy .

=

(mn=1) =

—wn,2 —wy —wy .. d

—i, K dy  —wg ... —wg
— I, K v —wgodg .. —wg

L —im,x e WK WK ... di

3For a detailed discussion, see Appendix C.1 in [TMZ22].
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dy —wp ... —wp —Wm
—w dy e —wp o —g
—w —w .. di —ig
—n, —wn,g .. —wng du o —®np —np ... —np ... —@OMK —WILK ... —WILK
—wy dy  —wy ... —wa
i; —y —wa dy ... —w
(mH:[z—l) -
—n,, —wy —wy .. dy
— i,k dg  —wg .. —wg
—wi,K . —wg dx ... —wg
L — w1,k ee  —wg  —wg ... dg
dy —w; ... —wp —wy1,1
—wy d ... —w —ii,1
—w  —w ... d —,1
B o—wr e —wy . —m2
—wy dy ... —wr ... —m,2
L(mu:NJrl) = . K
—w2 —w2 ... dz —wir,2
dx  —wg ... —wg —WK
—wg dg ... —wx —WnK
—wg  —wg ... dx —Wnx
L —om,1 —wmy ... —wm) —@m2 —@m2 ... —@m2 ... —WILK —@L,K ... —wnx  don

Then, for each position of the outlier 0 < 7y < N+ 1, my € Z7, the vector V is computed as

Vimg=1) =0, wiy, Wiy + wy, ...,y + (Ny — Dwy, . .. ik, @ + wg, - - - ik + (Ng — 1)wg]
meR HERM FxERNK

Vimg=t—1) =[0, w1, ..., (Ny — Dwy, Nyioyy, - . ., Wy g, Wi g + wk, - - . Wik + (Ng — 1)wg]
——r

viERM meR vrERNK
K
{,(MIIZN"’D :[0, Wiy ...y (]\]1 — l)wh e ,0, WKy .-y (NK — 1)LU](, E ]\Gwllﬂ
—1
\71€RN1 O}(ERNK J
meR
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As it can be seen, the components of the corrupted vector v € RN*!, whose indexes are valued

between the outlier index and the largest index of the jth block, i.e., m < m < #;, increase by

wr,;. Further, the component associated with the outlier is given by

(

0 if 0< my < 61

(7’}’111 — gl)ibll,l if 61 < mpg < gz

1311 - )
k-1 )
> Njvy,;+ (my — l)wngx if lg <myp < N+1
\ /=1

where £; denotes the lowest index of the jth block forj =1, ..., K. O

A.2.1.7 PROOF OF THEOREM 7

To analyze different positions of block 7 that has similarity with the remaining K — 1 blocks,

the block 7 is shifted along the diagonal of corrupted Laplacian matrix L € RVxN

as follows
dy —w) ... —w —[1')1,2 —z’i/lyz —1:4‘)1,2 —&'1171( —511,1( _1;)1,1(_
—wy di .. —w —Wp —W1p ... —01) .. —WLK —WLK ... —WLK
—w;  —wp ... d; —wy 2 711112 e —W12 .. 7’.4'/1,1( 71’1}1,1( . 712)1’1(
—wp —w ... —ip dy  —w2 ... —wy ..
—wy —w ... —iwp —w2 dy ... —wa
Ll:1 = -
—w1y —wip ... —Wy —wy —wy ... da
—Wy K —W1K ... —W1K dy  —wx ... —wg
—W, K —WL,K .. —WLK —wx  dg .. —wg
L —inx —i1x ... —WiK —wx —wg ... dg
di —w; ... —w 712’171{ 711)1,1( 711)1,1<
—w d] —wr . —11117/( —1’4‘}11,( —ﬂl]yl(
—w  —w d; . =K —WLK ... —WLK
N dy —wy .. —wy . —WyK —WyK .. —WK
B —wy dy ... —wy ... —pg —WK ... —W2K
Lz:K =
—wy —wy .. dy .. —Wpg —ipg .. —ipK
—wy, K _E)LK —[4')1,1( —[4'1211( —ﬁ)gf]( —ﬂ)z’K dg —wK ... —WK
K —BLK . g —Bng —aK . —dak .. —wx  dg —wk
_7&)111( 712)1,1( 7[!/171( 712'211( 712)271( 711)2’1( e WK —WK ... dg ]
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Then, for each position of the block 7 such that 7 = 1, .. ., K, the vector v € R¥ is computed as

{’(izl) :[07 Wiy -y (1\]1 - 1)w17 cee 7MZDI,K7 wg + Mibl,Ka teey (NK - I)u}K + Nlibl,K]

1ERM VK ERNK
K—1 K—1 K—1
Vimt) =[0, w1, ..., (Ny = Dy, ..., > Niivgj,wg + »_ N, .., (Ng — Duwg+ Y Nyt
GIeRN j=1 =1 J=1
vxkERNK

Herein, the components associated with the blocks ; > 7 are increase by N;w; ; while the
components associated with block ; < 7 will remain the same on the contrary. Further, if
2 < 7 < K the components associated with the block 7 increase by Zj;i Nw, ; and remain the
same otherwise.

In more details, starting from the 7 + 1th block undesired similarity blocks are located only on
the lower triangular side. Therefore, summing the upper triangular part of the Laplacian matrix
results in an increase by /N;w;; in these blocks. Additionally, for the 7/th block 7 — 1 number of

undesired similarity blocks are located on the lower triangular side which results in an increase by
i—1

ZT Njiw;,. O
]:

A.2.1.8 Proor oF COROLLARY 7.1

Let L € RY*Ny corrupted Laplacian matrix, that is identical to L € RN*N except that each

block 7 =1,..., K has non-zero similarity coefficients with the remaining K — 1 blocks, i.e.,

di —w .. —w —Wp —Wp ... —WD ... —WLK —WLK ... —WK]
—w  di .. —w —wp —Wp .. —W12 . —W,K —WL,K ... —0LK

—uw1 —w1 dl 71’4’)172 71’4‘)1,2 71’4’11@ 71’4’117[( 71.4'/11[( 71’4’)1_’[(

771’)1,2 71’4’11,2 711/112 dz —w2 ... —w 7&/21]( 711’)27[( 711)21](

777)1,2 71’4’11,2 711/112 —w dz —w 7&/21]( 717)27[( 711)21](

—iy —W1p ... —p —wy —wy ... dy .. —ix —WK .. —W2K
—@ g —BAK .. —ig —irg —iK . —iK o Ak —WK .. —wK

—@g —BAK .. —ng —irg —irK . —iK o —wK Ak .. —wK

L ik~ o ik ik —irk e —ink . —wk —wg .. g

Here w; ; denotes the non-zero value around which the similarity coefficients between blocks 7and /

are concentrated. In contrast to L, these non-zero coefhicients of L lead to undesired edges between

170



vertices associated with different blocks. Then, the vector v associated with L reads

K—1 K—1 K—1
{’ = [07 Wy, ooy (Nl - l)wh s ey ZM'[Uz',Ka wg + ZM‘@AK? ce ey (NK - l)wK + ZM’LDz',K] )
i=1 =1

i=1

{,1 ERNI

Vi ERNK
which concludes the proof that the vector v is piece-wise linear function in the following form

;

(Wl — Kl)wl if 61 S m S u1
(%1 — 61 + 1)11/'172 + (Wl — éz)wz if 62 S m S /%)
Uy =
K—1
S (u; — b+ Vi + (m — b)wie if bg < m < ug
\ /=1
i—1 7
where /; = Luy = Ny, l; = > N+ landu, =) Nyfori=2,... K. O
k=1 k=1

A.2.2 STANDARD EIGEN-DECOMPOSITION BASED ANALYSIS
A.2.2.1 TypreIl OuTLIERS’ EFFECT ON EIGENVALUES

This section analyzes Type II outliers’ effect on eigenvalues based on the standard eigen-

decomposition in Eq. (2.5).

Theorem. 4.8, Let W € ROHIXNH) dofine 4 symmetric affinity matrix, that is equal to W,
except for an additional Type 11 outlier that shares similarity coefficients with K blocks where wy x >
0 denotes the similarity coefficient between the outlier oy and the Kth block. Then, for the associated
corrupted Laplacian matrix T, € ROXONW) wivh eigenvalues A € RN it holds that

( Nj —1 elements of ) are equal to  Njw; + wiry

N, —1 elements of 1 are equal to Now, + wir 2

Nx —1 elements of 2 are equal to  Ngwg + wi x

L the smallest element of A is equal to zero

and the remaining K eigenvalues are the roots of

- . X Ny,
=1 =1 Wi, — A



Proof. Let L € RMFDXOHD) denote the Laplacian matrix that is associated with a K block zero-

diagonal symmetric affinity matrix with an additional Type II outlier that is correlated with all

blocks, i.e.,

dy  —iong —mg —wp, —Wi2 —@n,2 —wi,2 — Wi,k —W1,K — I,k
—wny A —wy —wy

—wny —w —w

—ny —w —wy dy
—in,2 dy  —w —wy
—ibr,2 —wy da —w;

=
I

—ibn2 —wy —w da

— i,k dx  —wg —wk

— i,k —wx dg —wk

L —u,x —wg  —wk dg |

where dy; = Z]K:l Nwy; and Zij = (IN; — 1)w; + wy,;. To compute the eigenvalues of the

Laplacian matrix L, det(L — AI) = 0 is considered which can equivalently be written in matrix

form as follows

dn—2 —wny —im, —ip) —wn2 —wn2 —in2 —wi K —W1,K — i, K
—any di—4 —w —w

—wm,y —w di—2 —w;

—wn, —w —w di—2
—m,2 dr—2 —w —wy

—n,2 —wy dy— —wy
i, —wy  —w dy—2

—im,x dgk—2  —wk —wg
—ii,K —wg  dg—2 —wi

—ivn,x —wg  —wk dg—2

To simplify the above determinant, the matrix determinant lemma (for details, see Lemma 1.1 in
[DZ07]) can be generalized as follows*

det(H +UV") = det(H)det(I + V'H'U)

where H € RWHXHD denotes an invertible matrix, I is the identity matrix and U,V €
ROHDXNHY) Then, for det(L — AI) = det(H + UVT) = 0, it follows that

*For a detailed information about the generalization of the matrix determinant lemma, see Section A.s.1.
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K ~ ~ . . .
where zp = ijl Ny and z; = Nuw; + wyjforj = 1,...,K. . Using the determinant

properties of block matrices (for details, see Section 2 in [Sil00]), it holds that

1 —Nydong 1 (z1—2) " —Naivnp(z2—2) ! ... — Nk (zx—1) ™!
—17111’1(211—2)71 —lel(zl—l)71+1 0 0
0= 717)11’2(z117).)71 0 7N214/2(Z27).)71+1 0 det(H)
_@II,K(ZII_1)71 0 —NKwK(ZK—j.)71+1

To simplify the determinant of the first matrix, it transformed into a lower diagonal matrix by
applying the following Gaussian elimination steps
Niou (@2 — )~ R+ Ry — Ry
—Nwy(z1 — A)1+1
Noivn2(z2 — 1)71
—Nowy(zy — A)~ +

1R3 + R — R

Ny x(zx — i)fl
_NKwK(ZK — l)_l +1

Rxt1+ R — Ry

where Rg denotes the Kth row. Then, the simplified determinant can be written as

K K
0 =ar(zn — ) [ [(=Nawi(z: = D)7 + 1) [ [ = DY
=1 j=1
where
K ~ V-1~ 3y—1
. MwH,i(zi - 2) wH,z(ZH - l)
ar = 1— H = .
pin —Nw,(z; — )1 +1
For z;y = Zszl Nuwyjand z; = Nuw; + w; such thatj = 1,..., K the determinant yields
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Wd, =58 Wd,=2.2 @d;=104 @dy=10.8 12
B, = —04H B2 = —0.10 3= —0.5

B-w=-06 O-w=-03 O-w3=-09
, m]; Ni=1 10
12474719 N,lo{ 8
<6
Ny =8 { 4  An o W
! é3 )\,,176/1<—>W1
2528 72880 ) = 25 0 W,
S g;azza §2 44 An =113 & Wy
o Ny=12 bt
510 15 20 25 30
0<m<N
@ G={V,E,W} (b) L € RAFDx(V+1) (@1 € RNH!
Figure A.2: Examplary illustration of Theorem 4.5. (n = [1, 10, 8, 12]T e REHI N4+ 1=31,K=23)
K - 5 K K
2o x Ny ;(z; — ) ', qy
OZ(ZH*A)I ZH*A* : = ZH* Nw */1 +1 Zp — k
Zl —Nuw;(z; — )71 +1 H 4 H
= J =1
K K ~) K K
3 ]\[jwnzf 1—1
0= Z(Nzwnz)*lfz - = H(wnk*)u)H(Nzwersz*)L)
i=1 =1 Wiy — A) o I=1
R K i N ) K K .
0: —/‘l+ Mle— = H(sz/—/‘l)H(Nkwk‘FwH/e—/‘l) &
=1 Wi, — 2’ 7=1 k=1
K .3 K K
]\[zwn,z)L ~ 3 -
0= _2_Z~ = H(wIIJ—).)H(Nkwk—FwHk—l) =1
= W — A = k=1

j=1 k=1

Now, N + 1 — K number of eigenvalues can be computed as
4
N; —1 elements of 4 are equal to 21 = Njw; + @y

N, —1 elements of A are equal to 2, = Now, + wpi»

Nk —1 elements of 1 are equal to  zx = Nxwg + i x

the smallest element of 1 is equal to zero
\

and the remaining K number of eigenvalues are the roots of
K K -
Ny,

OZH(&JHJ—/TI) —Z~

=1 j=1 Wi — A
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A.2.2.2 GROUP SIMILARITY EFFECT ON EIGENVALUES

This section analyzes group similarity effect on eigenvalues based on the standard eigen-

decomposition in Eq. (2.5).

Theorem. §.S. Let W € RVN define an affinity matrix, that is equal to W, except that block i
has similarity with the remaining K — 1 blocks with w; ;= w; ;> 0 denoting the value around which
the similarity coefficients between blocks i and j are concentrated forj =1, ..., K and i # j. Then,
the eigenvalues 21 ERN of L € RN gpe 45 follows:

( K
N; —1 elements of 4 are equal to  Nyw; + Z Nuw;

=
J#
N; —1 elements of 4 are equal to  Nw; + Nw;;

Nk —1 elements of 4 are equal to  Nxwg + N;w;

\ the smallest element of 1 is equal to zero

and the remaining K — 1 eigenvalues in A are the roots of
K K -
~ N,
[Ty -0 35 -1 -0
I Ny =4
where ) € A.

Proof. Let L € RN denote the Laplacian matrix associated with K block zero diagonal affinity
matrix in which zth block has similarity with the remaining K —1 number of blocks. For simplicity,

leti =1,ie.,



-4

—w
—wy

—w12

=
[

—iy K

L —i

—@ny

g ..

—wy ... —wp =@ ..

dy . —w =i

—wy ... di —wp ..
—iy dy —way ...

—wiy —wy dy ...

—wy —wy —wy ..

—i0y K

—i0y K

—w1,K

—w ..

w2 ..

—w ...

—w

i
—ing

—WLK e

—wK —wWK ...

— K]

—iy, K

—w, K

where d; = (N} — 1w, + Zszz Nw, and;ij = (N; = Dw; + Ny j,j = 1,. .., K. To estimate

the eigenvalues of the Laplacian matrix L, det(L — ZI) = 0 is considered which can equivalently

be written in matrix form as follows

—1,2

—wy 2
—wy 2

g

—w1 K

—ib1, Kk

=1 —w ...
—wy Zilfi

—wy —w )
—w —w12
S d—d —na

—wi da—A —wy ...

—w1y —wy dy—A ...
—wyy —wy —wy ..

—wy x

—wyK

—i1, K

—ny

—iny .

—ny

—w)
—wy

—wy K
—ib1, K
—wy K
dg—2 —wg ...
—wg dg—2A ...
—wg  —wg ...

—w1,K
—iv1, K

—w) K

—wy
—wg

dg—2

To simplify, the matrix determinant lemma (for details, see Lemma 1.1 in [DZ07]) can be

generalized as follows®

det(H 4+ UV") = det(H)det(I + V' HIU)

where H € RWHDXWN+1) denotes an invertible matrix, I is the identity matrix and U,V €
ROHDXNHY) Then, for det(L — AI) = det(H + UVT) = 0, it follows that

SFor a detailed information about the generalization of the matrix determinant lemma, see Section A.5.1.
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where z; = Njw; + Zjliz Njw, jand z; = Nyw; + Nyw jforj = 2,. .., K. Using the determinant
properties of block matrices (for details, see Section 2 in [Sil00]), it holds that

7N1w1(z171)_1+1 7N2L~0172(z271)_1 7N3ZZ)113(Z375,)_1 7NKZZ)1,K(Z1(75,)_1
—N1@1,2(21—2)71 —Nzwz(zz—2)71+l 0 0

0 = det(H) | ~Mansl@—2)"" 0 —Nsws(z3—2) 711 ... 0
7N1ﬁ)171((z171)_1 0 7NKwK(szi)_1+l

To simplify the determinant of the second matrix, it transformed into a lower diagonal matrix by

applying the following Gaussian elimination steps

Naioy oz — 1) 7!
—Nyw; (22 — j)_l +
Niiv3(z3 — 4) 7!
—Naws(z3 — A) L +

le + R — Ry

1R3 + Ry — Ry

NKZI)L[((zK — j.)fl

_NKWK(ZK — i)_l +1

R+ R — Ry

where Ry denotes the Kth row. Then, the simplified determinant yields

(5] _ 0 ~ 0 0
—N1172172(z1—%)71 —Nzwz(z2—2)71+l 0 ~ 0
O — det(H) —N11Z/173(z1—).)71 0 —N3w3(zg—l)71+1
—]\[11’2)1,[(‘(21—1)_1 0 —NKwK(z;(—j.)_l—H
where ¢; equals to
. 5L Ny (20— ) Nudoy (21 — 1)
CIZ—Mwl(Zl—/l)_ +1—Z ’ — .
P —Naw;(z; — )7 +1

Forz; = Nyw; + Z]KZZ Nuw, jand ; = Nw; + Nywyjsuch thatj = 2,..., K, the determinant
det(L — ATI) = 0 yields
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Wdi=11.8 MWdy=4.1 Md;=13.9

H—w ,=—020-w 3=—04
O-w =—06 O-wy=-03 O—wz=-0.9
16
14
Ny =10 1
2130
l,‘f 23 10 *
%6 29 224 ’5 )
2 s .
25 g 10 1}, No =8 < HHHAAAHAHH A _ :
222 80 7 6 . Ao W
- % 4 A =44 & Wy
e . An =124 & Wy
16 Na=12 2 A = 14.8 ¢+ W3
0
5 10 15 20 25 30
0<m<N-1
G UV E W T NXN 3
@ G={V,E,W} (b) L € RN @1 e RN

Figure A.3: Examplary illustration of Theorem 5.5.(n = [10,8,12] T € R, N =30,K = 3,7 = 1).

K K

0= [t =" [ [(=Nuwi(s =27 +1)
i=1 =2
0 =a(z — )M H(_M'wz‘(zz‘ N 4 (g — YY)

X Ny (z — )" Ny s s
0=(e1— )| — Niwy 42— 2= 3 B TA) ) o 3N (e — )Y [ (~News + 22— 2
(= >< o + 21 ;—M‘w,'(z,'—l)”%—l (a >g</ ) kH( wn+ 2 — 1)

K - = - K K
- Ny (z; — )" Ny, _— ~
0= < —Nuw +z21— 21— Z ]\;uf(z - )j)—1 1+11 ) H(ZJ _ Z)Nz 1H(7Nkwk +z—A)

=2 j=1 k=2
K K ~2 K K K
- N Nw; . _ -\ Ni—1 ~ -\ N—1 ~ -
0= Z(ng,ll) — - Z ~7jlf~ (lel + E:N;Cwl_/e — l) H (N;wg + Nywyy — l) H(leLP -2)
— —2 lelj - l b= _ _
i= Jj= y =2 =2 =2
K ~ K K
- Ny, 5 o\ Ni—1 5 N\ N1 y -
0=1 —1— Z % (lel + ZNjle — 2) H (N/Cw;e + Ny — l) H(leu —-2)
=2 Mwl.i - 2' =2 b= _
i= ’ Jj= =2 =2
Based on this, the N 4 1 — K number of eigenvalues are
( K
N; —1 elements of 4 are equal to Njw; + Z Nw,
=2

N, —1 elements of 1 are equal to Now, + Ny »

Ng —1 elements of 4 are equal to  Nyxwg + Ny g

the smallest element of 1 is equal to zero
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and additionally K’ — 1 number of eigenvalues are roots of the following equation

- Niivr :
=2 = N — A

A.3 OUTLIER EFFECTS ON THE FIEDLER VECTOR

A.3.0.1 PROOF OF PREPOSITION 4.4.1

For simplicity, let W € RM*N and the corresponding Laplacian L € RM*N consist of K = 2
blocks. To compute the eigenvectors associated with the two smallest (zero-valued) eigenvalues,
the y,, € {yo,¥1}, wherey,, is the eigenvector associated with the mth eigenvalue 4, of L, we
consider the eigen-decompositions Ly,, = 4,,¥,, and Ly,, = 1,,Dy,, whose corresponding

eigenvectors are equivalent and can be written as 6

1,0 11
J1,0 D11
D30 )31
J3,0 )31

where ¥, , denotes the zth embedding results in the y,,. Adding a single outlier to the affinity
matrix W leads to the corrupted affinity matrix, weight matrix and Laplacian matrix denoted as
W e RAHD X (N+1) D € RN+ and T, € RAHD X (N+1) respectively. Since a Type I outlier
can be considered as a single-element block, the eigenvectors associated with the three smallest
(zero-valued) eigenvalues, ie. ¥,, € {¥o,...,¥2}, where ¥, is the eigenvector associated with

the mth eigenvalue 1,, for L, are equivalent for both eigen-decompositions

o] (][]
V1,0 i1 2
73,0 )31 )32
73,0 V31 )32
_.5'01,0_ _.5’0171_ _5’0172_

®For a detailed discussion about the eigen-decomposition of L, see [Lux07].
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Here, ¥, ,, denotes the #nth embedding result in the mth eigenvector and y,, ,, is the embedding
result of the outlier in the #th eigenvector of the corrupted Laplacian matrix L. According to
the information that eigenvectors are indicator vectors of connected components [Lux07], for a
Fiedler vector that is associated with the eigenvalue corresponding to Type I outlier |3, r| — 1,
the remaining embedding results associated with different blocks become small-valued to satisfy
|¥£]l3 = 1. As a result, the Euclidean distance between embeddings of different blocks decreases

to zero. O]

A.3.0.2 PROOF OF PREPOSITION 4.4.2

RN*N of distinct blocks are identical

The eigenvectors associated with the Laplacian matrix L €
for both eigen-decompositions Ly,, = 1, ¥, and Ly,, = 21, Dy,. Then, the matrix

Y = [yo,.--,yYx1] € RVK e, forK =2

0 i
0
Y — JL1
7”0 O
y0 0
The next step is to design the matrix Y = Yo, - - - Yi—1] € RY*K using the eigenvectors of the

corrupted Laplacian matrix L € RN*N hased on, respectively, the standard eigen-decomposition

Ly,, = 4,,y» and the generalized one Ly,, = 1,,Dy,, as’

5’170 5’171 5’1,0 5’1,1
v ):’1,0 %71,1 v ?1,0 ):'1,1
Ji0 —1 D10 V31
Y0~ V1,0 V3l

By looking at the first column of Y associated with the smallest eigenvalue Ay, it is evident that

all feature vectors are embedded onto the same location y, ; for the eigen-decompositions Ly, =

AmYm and Ly,, = 4,,Dy,,. O

7For a detailed information about the eigenvectors of L, see Appendix C.1 and C.2 in [TMZ22].
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A.4 THEORETICAL ANALYSIS OF RRLPI

A.4.0.1 PROOF OF THEOREM 9

The objective function of RLP], for the transformation vector B,,,, is given by

LX, Y B,) = 1y — X Bull* + 718>
Introducing the weight matrix Q € RN*N Jeads to:

LK J:B,) =0y — X Bull* + 7118l
=tr[Qy,y, — 20y,(X B8,)" + QX "B,(X"8,,) "] + ytx(8,8,,)
=u(Qyy,, — 20,8, X + QX 8,8, X] + yu(B,8,,)
=tr[Qy,.y,, — 20y, X + 8,4, (XQX + y1)]

Setting the derivative of the right hand side with respect to 8,, to zero, yields
—2XQy,, + 28,(XQX" + 1) = 0.
Thus,

B, = (XQX' +,I)'XQy,,.

For a Fiedler vector estimate y,, = yp, substituting Q = Iin Eq. (4.38) shows that RLPI is a
special case of RRLPI and substituting Q = I'and y — 0 leads to LPL 0
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A.4.0.2 PROOF OF THEOREM 10

Suppose that rank(X) = rx, the SVD of X is
X =UzV',

where 2 = diag(%;,...,24), U € RM*x WV € RV% and UTU = VTV = I This can be

generalized using the weighted singular value decomposition [Gal96], i.c.,
X*=UzV'Q.

where Q € RM*N s a square positive definite symmetric weight matrix such that ViQv =1

Let V* be a weighted matrix whose columns are weighted orthonormal eigenvectors of V, i.e.,
V* = QV. Then, the orthogonality term can be equivalently written as V'V* = 1. The Fiedler
vector y ris in the space spanned by the column vectors of V*, because y ris spanned by row vectors
of the weighted data matrix X*. Accordingly, the Fiedler vector y can be represented as a unique
linear combination of the linearly independent column vectors of V*. For a set of combination
coefficients b € R"%,

V*b =yr
QVb =y,
V'QVb =V'y,

b=V'y.

Substitutingb = VTyrinto V*b = yp, yields V*V Ty =y To continue, using the pseudo

inverse of the data matrix X' and the weighted data matrix (X*)' which can be written as ®
X =vs'u’
and

(X)) =vZUu'y,

$For a detailed discussion about the inverse of the weighted data matrix (X*)T, see Section A.s.2.
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it follows that
B, = (XQXT + 1) ' XQyr = (X*X | 4 721) ' X'yr.
Fory — 0

B, =(X*X" + 1) Xy, = (X)) (X)) Xy, = US'V VE'U YUV Qy;
U 'V'V(V) ly, = Uz 'V'y.

Further, inserting the equation for Brinto yr = XTB - leads to
yr=X'B,=VEUTUS 'V y, =y
This shows that Ié - is the eigenvector of eigen-problem in Eq. (4.29) for y — 0. ]

A.4.0.3 PrRoOF OF COROLLARY 10.1

Based on Theorem 10, it holds that for rank(X) = N all eigenvectors yo, . . ., yn—1 associated
with Ao < A; < ... An_; arein the space spanned by the row vectors of X and the transformation

vector for the mth eigenvector is

~ (RRLPI

A —usvTy,,

where y — 0, U'™WU =1and V'QV = I If all feature vectors are linearly independent, each
transformation vector is unique and is equal to the transformation functions of LPI, i.e.,

A (LPI

£ ) _ Uz W'y, :‘BgnRRLPI)‘
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A.s AUXILIARY INFORMATION

A.s.1  THE GENERALIZED MATRIX DETERMINANT LEMMA

Let M € R*Y*2N be 2 block matrix that can be shown as

H U
V' I
where I € RM*¥ s the identity matrix and H, U, V € R¥*¥, Using the determinant properties

of block matrices with non-commuting blocks (for details, see Section 2 in [Sil00]), for =V T =

I(—V7) the determinant of M can be written as follows
det(M) = det(HI — U(~V ")) = det(H+UV").

Now, the next step is to simplify the determinant det(H 4+ UV ") by computing a block diagonal

matrix using Gaussian elimination. First, the entry under H is eliminated as follows

I of| H Ul |H U
VTHY Il |-VT I| |0 VIHU+I

Then, the entry above I is eliminated as

H U||l -HIU| | H 0
VT 1|lo 1 | |-VT VIHU+I

Combining these two operations leads to

I o| H U|l|l -HUl [H 0
vab I [=VT I|lo I o VTHIU+I

Consequently, the determinant yields

I 0 H U||lI —-HU H 0
det = det
V'H 1| |-VT 1] |0 I 0 VIHU+I

det(H+ UV") = det(H)det(I + V'H'U)

)
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A.s.2 MOORE-PENROSE INVERSE OF WEIGHTED DATA MATRIX

Let X € RN O € RV*Nand ¥ € RM*M denote a data matrix, and positive definite weight
matrices, respectively. If there exist matrices Q and ¥ that satisfy UYU=IandV'QV =1
such that X* = UZV T Q, the weighted Moore-Penrose inverse (X*)' can be written as

(X"t =vzu'y
if it satisfies four conditions that are examined as
. X*(X*)TX* 2 xx
X*(XM)IX*=UzV'QVEZ'U'YUSV'Q = Uz 'sV'Q = UZV'Q = X*

s (XXX = (X

(X)X (X)) = VZIU'YUSV QVZIUTY = V222 'U'Y = VZIUTY = (X*)f
o (PXH(XHNT £ wXH (XAt

X (XHH"=(yuzv'avs'u'y)! = (Yuu'y) = (UH)'U )T = (UH)'U! = ¥X* (X))
- (Q(XH)TXHT L (X)X

QXHX)T = (@VvZIU'YUzvV Q)" = (QVV'Q) = (V)'VHT = (VI)'Vv = o(X*)X*

Thus, for weight matrices Q and ¥, which satisfy U'YU =1and V'QV = Isuch that X* =
UXV " Q, there exists a Moore-Penrose inverse of the weighted data matrix (X*)T.



Additional Information for Robust Graph
Clustering Methods

This chapter provides methodological and experimental details, respectively, for the SPARCODE,
FRS-BDR and RRLPI methods.

B.1 AppiTioNAL INFORMATION FOR SPARCODE

B.1.1  SCENARIO 1

The SBM;(N2,B) is defined using following parameters: N = 300 number of vertices, K = 7

communities, a probability vector 2 = [ o TK] , and a symmetric connectivity matrix B €
R**% whose &, th element denotes the probability of an edge between ¢;th and ¢;th community

188



block. For this simulation, B is chosen as

1110010
1101100
1010000

B=10101000
0100100
1000010

00000 0 1]

The affinity matrix W € R”*”, whose entries vary between zero and one, is symmetric, zero-
diagonal and nonnegative. The community blocks are labelled as ¢, ..., ¢, and the density
parameters (¢ and ¢) of similarity coeficients for within community and between community
connections are summarized in Tab. B.1. The number of vertices for each block is denoted as
N.. The similarity coeflicients are generated as w = [9[”[]. (iua,g + ra'cl.’[j) st w € bwj where is a

random real number distributed as U[0, 1).

c %) &) ¢4 s C6 7 N,
0.8 0.00 o. - - 0.2 -
q K S 35 5 i
o 0.19 0.0045 0.1 - - 0.05 -
o u 0.005 0.7 - 0.35 0.19 - - 40
o 0.0045 0.1 - 0.1 0.15 - B
0.35 - 0.9 - - - j
o “ 55
T 0.1 - 0.09 - - - B
- ) - 8 - R -
4 H“ 0.35 0.85 -
g - 0.1 - 0.14 - - -
- 0.19 - - 0.79 - -
s “ 37
o - 0.15 - - 0.15 - j
. - - B - 8 i
‘e H“ 0.25 0.85 46
g 0.05§ - - - - 0.14 -
“ - - - - - - 0.95
c
/ g - - - - - - 0.04 35

Table B.1: Similarity coefficients for seven object communities for Scenario 1. The density parameters of similarity coefficients
associated with 195”5] = 0 are denotes as -
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B.1.2 ScCENARIO 2

The SBM,(N,2,B) considers N = 300 number of vertices, K = 3 number of communities, a

probability vector & = [%, ey ]%} ,and a symmetric connectivity matrix B € R¥*X where
1101
1 111
B —
0111
1111
The communities are labelled as ¢, ..., ¢3, and the outliers as 0. The density parameters of

similarity coefficients for intra-community, outer-community blocks and outliers are summarized

in Tab. B.2. Both the number of vertices of communities and outliers are denoted as IN,. The

similarity coefficients are generated with the same principle in the Appendix B.1.1.

s () 3 (¢ M
O. 0.0 - .
. U 7 I 0.005
T 0.29  0.29 - 0.025
. .8 . .
o [u 0.01 (o] 0.27 0.005§ 102
T 0.29  0.19 0.1 0.025
- 0.2 . .
; )% 7 0.7  0.005 90
o - 0.1 0.24  0.025
o u 0.005 0.005 0.005 0.005 »
T 0.025 0.025 0.025 0.02§

Table B.2: Similarity coefficients for three object communities and outliers for Scenario 2. The density parameters of similarity

coefficients associated with bf”q = 0 denotes as -
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B.2

B.2.a

X

VisualL SumMmMaRrY oF FRS-BDR

X
12345678 9101112131415161718192021 222324252627 2829303132

| d
O—un
[ERTP

(a) Initialization

X
o1 2345678

LERNXN

N 4
0 —w,
O -3

X

0 ds
—ws
-2

9 1001 111213141516 17 1819 20 21 22 23 24 25 26 27 28 29 30

I, € RIN=N)x(N=N)

B d
O—w
O—1,2

(b) Step 1.1: Type | Outlier Removal

H d
O —w,
O 13

O ds
C—ws
-2
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(c) Step 1.2: Similarity-based Block Diagonal Ordering (sBDO)
; 20
10 9 19
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193



7 8 9 1011121314151617 1810 20 21 22 23 21 2526 272820 30

L € RW=N1)x(N—Ni)

(K) Ury ., L, <m < uy, (K)
n € Z; l“. n, =ny = [8,10,12)Te z9 | vng:";nlm,n st L K ".l ng € Zy
20—
. 181 = o) e v .
° m 1 °
16| Q) c v
14 m 2
. 124 v,(ﬁ) € v:(f)
=g 107
S
6 L
4 L
2 L
O ,,,,,,,,,,,,,,,,,,,,,,,,,,,

VB0 Y E DA D
1<m<IN

v(r) c RN—M

l piece-wise linear fitting

5
(r)
(r)

—

Um’ €V

Um” €V

Um € V3

1
(r)
2

(r)

Q » © QQ\")\%W\Q}({/\%Q
1<m<N

v() ¢ RN-M

(f) Step 2.2.1: Estimate Target Similarity Coefficients diag(W g )

194



1
2:)
i
2%
I, € RIN=N1)x(N—N1)
Ur- .
V0, =90 49 dor W=[ = % Tia
N =T,
20
() ()
18 s € Vsy)
16+
14+
12+
E£107
RS 8 L
6 L
41
2 L
O ,,,,,,,,,,,,,,,,,,,,,,,,,,,

NI NN NN S AN
1§m§N—NI

V) € RV

l

20,

181+ 50 e vl

167

14+

12} ) = med (¥, —v5)

SR
-
-

OB C 90 E ey P
1<m<IN - N

v£§>1 and {fér) € RN

(g) Step 2.2.2: Estimate Undesired Similarity Coefficients ( = 2,7 = 1)
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(h) Step 2.2.2: Estimate Undesired Similarity Coefficients ( = 3,7 = 1)
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B.2.2 SpraRSE LAPLACIAN MATRIX ANALYSIS

In Step 1.3, a sparse Laplacian matrix has been determined in which second smallest eigenvalue
A1 closes to zero. Considering eigenvalues of Laplacian matrix, that is associated with target
block zero-diagonal symmetric affinity matrix, 4, is definitely zero-valued. However, in real-
world applications the distinct blocks may include negligibly small valued undesired similarity
coefficients between different blocks. These coefficients result in an increase of A; and affect
definition of close to zero”. Therefore, this section provides set of experiments for determining a
sparse Laplacian matrix.

In Theorem s it has been shown that multiple group similarity results in additional increase in
the vector of eigenvalues. Therefore, for simplicity, W € RVN defining a K = 2 block affinity

matrix and associated Laplacian matrix L € RV

are considered in the experiments. In W e
RN each block W, 7 = 1,2 is associated to a number N; € Z, > 1 of feature vectors and
concentrated around a similarity constant w; € R, ,7 = 1,2 with negligibly small variations.
Further, w; ; denotes a constant around which the similarity coefficients between blocks 7 and 7 are

concentrated, i.e.

_ - o [ 4 —w .. —w —ino a1 |
0 w ... w wp .. w12 - v 7
w0 .. w @ip T —wi di —wi —wi —wi2
W o wy w ... 0 1;/1,2 1711,2 al’ld ]: . —w; —wp ... dy —1711,2 —@172
11)172 1'{}172 0 w w2 712)172 711)172 d —wr ... —wp
w2 wyy wy 0 wy ~ ~ 5
—w1 —wip —wy da —w
Ltz - Wy wy wy ... 0 ] E : R
| —w1,2 —wp —wr —wy ... dy |

where d; = (N1 — Dwy + Nowy 5, d, = (N> — )wy + Ny p and w; > @y5,7 =1, 2. According

to the generalized eigen-decomposition, the second smallest eigenvalue 4; of L is

_ 211]\7117)1,2 + ;izNzﬁfl,z

bR -
did,

Based on this, for wy , — land w; > w;»,7 = 1, 2, 4 reaches its maximum value

. N+ N,
lﬂ‘L\X_Ni+N2_1

which tends to 1 for Ny + N, >> 1. Even though the maximum value of 1, is explicit, its minimum

value depends on different variables N, w; and w,; fori = 1,2,7 = 1,2 and # j. Therefore, 4,
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Figure B.2: 1; for increasing values of « associated with generalized eigen-decomposition

is analyzed as a function of « for different block size values in Fig. B.2. Here, « denotes the ratio
between smallest target similarity coefficient wy, and that of undesired w;; fori = 1,2,7 = 1,2
and 7 # j. As can be seen, the second smallest eigenvalue 1; decreases to zero for w; >> w , and
wy > wi .

In contrast to generalized eigen-decomposition, the second smallest eigenvalue 4 of L associated
to the standard eigen-decomposition does not affected by target similarity coefficients, i.e. 1; =
w2 (N; + N,).

AsN; > 1,7 =1,2, 4 can be reduced to zero for considerably small-valued undesired similarity
coefficients. Therefore, A, is analyzed as a function of w , for different block size values in Fig. B.3.
The figure implies that the value of undesired similarity coeflicients is directly linked to closeness

to zero. Therefore, the closeness to zero can be determined according to total sample size and
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Figure B.3: 1; for increasing values of 171172 associated with standard eigen-decomposition

desired value of undesired similarity. To summarize, the eigenvalues based on generalized eigen-
decomposition are less sensitive to block sizes which makes definition of close easier. As a result,
based on the assumption that target similarity coefficients considerably larger valued than that of
undesired coefficients, a selected 4, value smaller than 0.05 might be sufficient to obtain sparse
Laplacian matrices. In the proposed default setting, a Laplacian matrix is assumed to be sparse if

its second smallest eigenvalue is valued by 0 < 1; < 1073,

B.2.3 ComruraTiOoNAL COMPLEXITY ANALYSIS

Due to its essential role in graph analysis, the computational complexity of the proposed FRS-BDR
method is analyzed in terms of its main operations. The computational analysis is detailed using
the following terms [Ste01], [Ste98]:

fladd : an operation that consists of a floating-point addition

flmlt  : an operation that consists of a floating-point multiplication

fldiv  : an operation that consists of a floating-point division

flam  : a compound operation that consists of one addition and one multiplication

Additionally, the Landau’s big O symbol is used when the complexity is not specified as above
terms. In the sequel, the computational complexity of the proposed approach is detailed for the

fundamental steps.
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B.2.3.0.1 INITIAL GRAPH CONSTRUCTION
As in [CHZ07], the pairwise cosine similarity which takes %NZM -+ 2NM flam can be used for

constructing an initial graph G.

B.2.3.0.2 STEP 1: ENHANCING BD STRUCTURE

Step 1.1 (optional): Type I Outlier Removal

Since removing unconnected vertices associated with Type I outliers results in negligibly smaller
cost in comparison to remaining estimation steps, the complexity of Type I outlier removal is

ignored in the complexity analysis.

Step 1.2: sSBDO Algorithm
In this step, the complexity of sSBDO algorithm is detailed for two main operations as follows.

To determine the starting nodes, the overall edge weights must be sorted which is of complexity
O(NlogN) and there are computationally efficient alternatives such as [Han20] for which the
complexity is reduced to O(N- \/@V).

The second main operation is adding the most similar node to the vector of previously estimated
nodes. For a vector of previously estimated nodes bl e Z'7" at the sth stage, the method sums

up the similarity coeflicients that takes s — 2 additions for every neighbor. For N number of

neigh
neighbors, it follows that

S —2NY,

s=2

fladd. Even though the complexity is directly linked to number of neighbors, it can be explicitly

calculated if every node is connected to remaining N — 1 number of nodes, i.c.

N

Y =2)(N=s+1)

s=2

fladd. In addition to similarity computation, the method sorts vector of neighbor similarities

. . . . L 9 9
to find the most similar node. This sorting operation results in minimum O(Nfleigh longl eigh)

complexity at every stages = 2,. .., IN.
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Step 1.3 (optional): Increase Sparsity for Excessive Group Similarity

This step evaluates computational complexity of sparse Laplacian matrix design for the two
examplary algorithms which have been provided in Section B.2.4.

Sparse Laplacian Matrix Design based on Adaptive Thresholding: As eigen-decomposition
and sorting operations are computationally demanding in comparison to thresholding operation,
the complexity is detailed in terms of these two main processes. The proposed sparse Laplacian
matrix design computes eigenvalues for each iteration in which e.g. MATLAB uses a Krylov Schur
decomposition [Ste02]. The decomposition is built upon two main phases that are known as
expansion and contraction. The computational cost of decomposition mainly depends on these
phases when N is larger than Np,,, where Ni,, denotes the number of Lanczos basis vectors
(preferably chosen as Nr., > 2N, for NN, eigenvectors). In more details, the expansion
— N%,) flam and 2N(NE,, — N2,) flam while the contraction
phase requires NNp ., Neig flam [Ste01]. To find the second smallest eigenvalues, the computed

phase requires between N(N?,.
eigenvalues must be sorted which is of complexity O(N4/logN) in [Han20]. When Ni,, — N,
the cost of eigen-decomposition dominates the sorting operation. Thus, sparse Laplacian matrix
design using adaptive thresholding with respect to flam yields minimally

2
- ]\[eig

Nieer(N(NF

Lan

) + NNLanMig) 9

where N denotes the number of performed iterations to achieve a sparse Laplacian matrix.
Sparse Laplacian Matrix Design based on p-Nearest Neighbor Graph: In contrast to
adaptive thresholding-based graph construction, computing a p-nearest neighbor graph results in
considerable cost. In addition to eigen-decomposition and sorting operations, the algorithm finds
p-nearest neighbors which is of complexity N?logN flam [CHZ07] in each iteration. Therefore,
the overall computational cost of sparse Laplacian matrix design using p-nearest graph is written
in terms of flam as follows

]\[piter (N(Nian - ]\[sig> + NNLan]\[eig + NZlOgN)
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B.2.3.0.3 STEP 2: ESTIMATING VECTOR V

Step 2.1: Computing Candidate Block Sizes

The estimation of candidate block size matrix can mainly be attributed to changepoint detection
which is a widely researched topic in the literature and there are variety of different alternatives for
changepoint detection, e.g. binary segmentation (BS) or optimal partitioning (OP) approaches.
In [KFEI12], the computational cost of BS and OP are indicated as O(NlogN) and O(N?),
respectively. Then, a computationally efficient the pruned exact linear time (PELT) method has
been provided. The complexity of the PELT method is O(N) (under certain conditions) which
can be reach O(N?) in the worst-case [KFE12].

Step 2.2: Estimating Matrix of Similarity Coefficients

Step 2.2.1: Estimating Target Similarity Coefficients

Since the eigen-decomposition of 2 X 2 matrix does not require a considerable time, the
computational complexity of plane-based piece wise linear fitting algorithm in [YYZ19] mainly
depends on covariance matrix and the mean vector estimation.

First, let consider the covariance matrix computation. For two random vectors, the
covariance function includes /N executions where each execution includes two addition and one
multiplication. Therefore, it can be said that calculation of covariance for two random vectors
requires 2/Nfladd 4+ Nflmlt + 1fldiv. As vector V fitting generates covariance matrix of dimension
2 X 2, our covariance matrix computation necessitates 6Ntladd + 3/Nflmlt + 3fldiv.

After computing covariance matrix, the mean operator including N—1additions and a division
is executed two times for two vectors. Thus, mean vector computation mainly requires 2(N — 1)
fladd 4-2 fldiv and total piece-wise linear fitting complexity results in 8N — 2 fladd +3/N flmlt +5
fldiv.

Step 2.2.2: Estimating Undesired Similarity Coefficients

The undesired similarity coefficients” estimation consists of two consecutive steps. For every
candidate size vector n, = [N,,, N,,, ... ,N,Kmd] € Zl_%‘“d the proposed method first computes
shifted vector whose complexity principally depends on vector of increase computation. To
compute a vector of increase associated with group similarity between block 7 and 7, the method
executes [V,, times where each execution includes /V,, — 1 addition. This means that the vector of
increase associated with group similarity between block 7and j results in N, (N, —1) fladd. Further,

the algorithm finds median of computed vector which is of dimension N,, X 1. To compute
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the median, the vector can be sorted in O(N,,+/logN,,) complexity using [Han20]. When size
of the jth block N, is sufficiently large valued, the vector of increase computation dominates
median operation. Therefore, computing an undesired similarity coefficient corresponds to group
similarity between block 7 and ; takes minimally N,,(N,; — 1) fladd and that can be written for

i=2,...,Kyqandj=1,...,7 — 1asfollows

Keand -1

> 3N, ) fladd.

=2 j=1

To summarize, estimating the similarity coefficients matrix W) and the vector v € RN

sim

associated with a candidate block size vector n, € Z; Keand requires minimally

Keind(8N — 2 fladd + 3N flmlt + 5 fldiv)

Keand -1

+Y Y NN, — 1) fladd.

=2 j=1
To compute all possible W31m € REand*Kand and if\(r) € RY correspond to
N( cand) = [1’11, nz,..., Z] S Zé—?Kcand for Kcand = Kmin7 cee 7Kmax: the PrOPOSCd method

requires

;(Kmd(szv— 2 fladd + 3N flmlt + 5 fldiv)

Keand -1

+Y Y NN, - 1) fladd)

=2 j=1

When the number of candidate block size vectors increases, the complexity of these numerous
operations is significantly larger than changepoint detection using PELT method. Thus, its

computational cost can be ignored in vector v estimation.
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B.2.4 ADDITIONAL ALGORITHMS

Algorithm ro: Sparse Laplacian Matrix Design using Adaptive Thresholding

Input: a non-sparse affinity matrix W € RW=N)X(N=N) ‘initial threshold Ti; (optional,
default is 7;,; = 0.5), increasement constant 7, (optional, defaultis 73, = 107%)
Set T = T
while 7" < 1do
Compute afhinity matrix W which is equal to W except that the similarity
coefficients smaller than T'in
W are zero, ie. ngﬁ <Te WD, wﬁ,{’; =O0wherem=1,... N— N,
n=1,...,N—Nandm#n )
Based on obtained W7, compute D™ and LD of dimension RO —N)x(N=Ni)
Compute "= [lén, ZET), e REVTENFI] € RV in ascending order
if lET) = 0 (For detailed analysis, see Section B.2.2.) and VlEﬂT) S 2(
m=1,...,N— N;—1then
W =W D =DDand], = LD
break;
elscif i\ # 0and Vi’ € 37 3" > 0form =1,...,N— Ny — 1 then
Walt = W(T)) jjalt = D(T) and .]:alt = L(T)
T+ T+ Tine
else
T+ T+ T
end if

D30 S 0 for

end
if W does not exist then
if W, exists then

W = Walt
else
error : Please start with a smaller threshold
end if
end if

Output: Estimated sparse matrices W, D and L,
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Algorithm 11: Sparse Laplacian Matrix Design using p-nearest Graph

Input: a non-sparse affinity matrix W € RO=N)X(N=N) ‘initial number of neighbors

value py,; (optional, default is py,; = N — 2), decreasement constant pge. (optional,
default is pgec = 1), minimum number of nodes in per block N, (optional,
default is Ny, ~ % S/

Set p = pini

while p > N, do )

Construct affinity matrix w® using p nearest neighbors as in [CHZ07]

Based on obtained W(P), compute D® and L® of dimension RN—N)x (N-Ni)

Compute Y= [if;”), ifp), . ,i(l\i;)_NI_l] e RN-M

if 2?) = 0 (For detailed analysis, see Section B.2.2.) and ‘v’ig) € i@), 2(,5) > 0 for
m=1,...,N— N;—1then

W - W05 — DY and i — £

break;
elseififp) # OandVi(nf) € j.(p),i(nf) >0form=1,...,N— N;— 1then

Wi = W, Dy = D? and Ly, = L®

PP~ Pdec
else

P P~ Pdec
end if

end
if W does not exist then
if W, exists then

W = Walt
else
error : Please start with a greater p;;
end if
end if

Output: Estimated sparse matrices W, D and I,
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B.2.s EXPERIMENTAL SETTING AND ADDITIONAL EXPERIMENTAL RESULTS
B.2.5.1 EXPERIMENTAL SETTING

FRS-BDR for Unknown Number of Blocks
Eigen-decomposition function: the generalized eigen-decomposition
Minimum number of blocks (Ki,): 2

Maximum number of blocks (K., ): 2 X K

N

Kmax

Minimum number of nodes in the blocks (N, )

Maximum number of changepoints (I, ): 2 X (Kpax —1)

Sparse Laplacian matrix design algorithm: p-nearest graph (For details, see Algorithm 11.)
FRS-BDR for Known Number of Blocks

Eigen-decomposition function : the generalized eigen-decomposition

N

Minimum number of nodes in the blocks (Nmin) : 75

Maximum number of changepoints N, : 2 X (K —1)

Sparse Laplacian matrix design algorithm : p-nearest graph (For details, see Algorithm 11.)
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B.2.5.2 ADDITIONAL EXPERIMENTAL RESULTS
B.2.5.2.1  MNIST DATA SET
Average Clustering Accuracy (pqc.) for Different Block Diagonal Representation Methods
Minimum-Maximum Clustering Accuracy (Pacemin — Pacemax) for Different Regularization Parameters

MNIST WH-L SSC BDSSC LRR BDLRR LSR BDR-B BDR-Z RKLRR IBDLR  EBDR FRS-BDR
Data Set
zsubjects 87.1 50.5-82.6 50.5-90.3 50.4-53.2 51.1-89.9 51.5-86.8 50.9-91.8 51.0-89.8 50.5-91.6 §0.5-92.2 8s.5 89.7
3 subjects 72.0 33.9-37.5 33.8-76.1 34.1-37.1 34.3-72.5 34.9-71.8 34.4-67.6 34.4-67.7 33.9-70.0 33.9-79.0 68.6 79.6
5 subjects 60.9 20.6-25.1 20.4-63.7  20.8-24.2  21.1-62.5 20.6-60.8 23.0-48.6  20.5-54.4  20.6-59.2  20.6-65.4 52.3 67.5
8 subjects 53.4 13.1-18.0 12.9-56.0 13.4-16.9 13.7-52.4 13.8-53.7 13.9-37.6 13.3-46.0 13.1-50.1 13.1-57.7 42.3 59.3
10 subjects SI.2 10.7-16.9 10.4-52.7 10.9-14.5 11.2-50.8 11.6-50.1 10.9-33.5 10.8-45.4 10.6-44.1 10.5-53.4 38.9 57.6
Average 64.9 25.8-36.0  25.6-67.8  25.9-29.2  26.3-65.6  26.5-64.6  26.6-55.8  26.0-60.7  25.7-63.0  25.7-69.5 57.5 70.7

Table B.3: Subspace clustering performance of different block diagonal representation approaches on MNIST data set. The
results are summarized for the similarity measure W = X T X.

Detailed Computation time (z) for FRS-BDR Method

MNIST Step 1.1 Step 1.2 Step 1.3 Step 2
Data Set

2 subjects 0.007 0.064 0.194 0.004
3 subjects 0.011 0.171 0.602 0.007
5 subjects 0.033 1.106 3.262 0.018
8 subjects 0.096 5.045 15.797 0.018
10 subjects 0.164 10.053 35.965 0.017

Table B.4: Computation time performance of FRS-BDR method on MNIST data set. The results are summarized for the
similarity measure W = X T X.

Computation time (¢) for Different Block Diagonal Representation Methods

WN—I

Computation Time (¢) for Optimally Tuned Regularization Parameters

MNIST SSC BDSSC LRR BDLRR LSR BDR-B BDR-Z RKLRR IBDLR EBDR FRS-BDR
Data Set

2 subjects 0.002 0.971 1.081 3.093 3.224 0.004 0.624 0.959 4774 13.743 0.009 0.075

3 subjects 0.003 0.666 1.681 5.168 5.517 0.007 1.580 2.166 11.782 1.565 0.017 0.189

5 subjects 0.006 1.574 4.315 14.679 14.725 0.016 7.783 7.776 244.397 8.169 0.043 1.157

8 subjects 0.013 3.766 10.936 26.520 29.069 0.040 25.090 24.991 572.827 21.823 0.116 5.159
10 subjects o.018 6.068 16.493 34.692 64.749 0.063 44.883 55.796 748.296 35.881 0.208 10.235§
Average 0.008 2.609 6.901 16.830 23.457 0.026 15.992 18.338 316.415 16.236 0.079 3.363

Table B.5: Computation time performance of different block diagonal representation approaches on MNIST data set. The
results are summarized for the similarity measure W = XTX and sparsity assumed to be known for all sparse representation
methods which means that computation time of FRS-BDR is detailed for Steps 1.1, 1.2 and 2.
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B.2.5.2.2 USPSDaTaA SET

Average Clustering Accuracy (p,.) for Different Block Diagonal Representation Methods

Minimum-Maximum Clustering Accuracy (Paccmin 7pm.mx) for Different Regularization Parameters

USPS Data Wh- SSC BDSSC LRR BDLRR LSR BDR-B BDR-Z RKLRR IBDLR EBDR FRS-BDR
Set

2 subjects 87.6 51.0-69.5 $4.3-90.6 50.9-53.5 52.2-85.9 56.0-88.6 $1.1-93.0 $I.1-93.1 §1.0-92.9 §1.0-93.2 87.0 92.6

3 subjects 70.4 34.4-55.0 36.8-77.4 34.8-38.3 35.5-69.4 38.3-71.9 36.5-85.1 34.7-85.6 34.4-80.7 34.4-86.6 77.2 87.5

5 subjects 61.1 21.2-44.4  24.7-66.9  21.8-25.4  22.1-54.6  23.1-63.9  22.4-74.5 21.2-76.0  21.2-65.0  21.2-76.8 63.3 77.3
Ssubjects 50.7 13.7-35.7 18.1-59.4 14.4-18.1 14.5-46.1 15.3-58.7 13.8-69.2 14.7-68.4 13.7-60.1 13.7-70.7 52.4 65.2

10 subjects 49.4 11.0-41.4 10.6-56.0 11.6-15.0 12.2-39.8 13.8-52.0 12.2-68.6 14.8-68.2 11.0-57.8 11.2-69.8 47.4 59.8
Average 63.9 26.3-49.2  28.9-70.1 26.7-30.1 27.3-59.2  29.3-67.0  27.2-78.1 27.3-78.2  26.3-71.3 26.3-79.4 65.5 76.5

Table B.6: Subspace clustering performance of different block diagonal representation approaches on USPS data set. The
results are summarized for the similarity measure W = X T X.

Detailed Computation time () for FRS-BDR Method

USPS Data  Step 1.1 Step 1.2 Step 1.3 Step 2

Set

2 subjects 0.003 0.015 0.049 0.002
3 subjects 0.004 0.034 0.154 0.003
5 subjects 0.007 0.108 0.401 0.005
8 subjects 0.019 0.464 1.689 0.004
10 subjects 0.032 1.110 3.444 0.119

Table B.7: Computation time performance of FRS-BDR method on USPS data set. The results are summarized for the similarity

measure W = X T X.

Computation time (¢) for Different Block Diagonal Representation Methods

Computation Time (¢) for Optimally Tuned Regularization Parameters

USPS Data wi-t SSC BDSSC LRR BDLRR LSR BDR-B BDR-Z RKLRR IBDLR EBDR FRS-BDR
Set

2 subjects 0.001 0.096 0.108 0.561 0.587 0.001 0.260 0.256 0.561 3.971 0.006 0.020

3 subjects 0.001 0.228 0.252 1.239 1115 0.001 0.607 0.606 2.358 0.952 0.008 0.041

5 subjects 0.001 0.631 0.632 2.639 2.509 0.002 1.757 1.781 5.302 1.962 0.011 0.120

8 subjects 0.003 1.429 2.011 4.106 4.286 0.006 4.837 5.095 11.177 4.579 0.028 0.487
10 subjects 0.003 2.260 2.929 4.257 4.713 0.008 7.127 7.664 14.232 8.551 0.050 1.261
Average 0.002 0.929 1.186 2.561 2.642 0.004 2.918 3.080 6.726 4.003 0.020 0.386

Table B.8: Computation time performance of different block diagonal representation approaches on USPS data set. The results
are summarized for the similarity measure W = X X and sparsity assumed to be known for all sparse representation
methods which means that computation time of FRS-BDR is detailed for Steps 1.1, 1.2 and 2.
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Figure B.4: Numerical results for USPS data set.
B.2.5.2.3 COIL20 DATA SET
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Figure B.5: Average clustering accuracy (f)acc) of FRS-BDR for increasing number of PCA features.
Average Clustering Accuracy (pyc.) for Different Block Diagonal Representation Methods
Minimum-Maximum Clustering Accuracy (Pacemin — Paccmax) for Different Regularization Parameters
COIL20 Wh- SsC BDSSC LRR BDLRR LSR BDR-B BDR-Z RKLRR IBDLR EBDR FRS-BDR
Data Set
2 subjects 68.9 52.5-86.6 54.5-65.9 $3.5-61.0  60.8-63.6 58.0-61.8 54.3-95.9 $3.3-95.6 §2.5-72.9 52.5-69.7 95.8 93.1
3 subjects 42.3 36.0-83.3 39.3-54.9 39.9-41.1 58.2-67.1 44.1-47.3 38.2-89.1 37.8-88.8 36.2-66.0 35.9-72.1 90.1 88.1
5 subjects 26.4 23.0-80.6  26.2-57.6  28.9-29.7  65.1-76.4 34.3-37.0  25.3-83.3 27.1-83.1 23.1-73.6  22.8-75.4 80.9 82.5
8 subjects 17.3 15.6-75.6 18.2-63.3 21.9-22.8 64.0-73.4  25.2-28.0 18.0-75.6  21.9-75.6 15.5-71.3 15.5-74.2 72.4 77.3
10 subjects 14.6 13.1-72.5 15.6-65.3 19.2-20.3 63.7-73.0  20.6-24.9 15.3-74.5 20.0-74.2 13.1-72.0 13.0-73.4 69.1 75.9
Average 33.9 28.1-79.7 30.8-61.4 32.7-35.0 62.4-70.7 36.4-39.8 30.2-83.7 32.0-83.5 28.1-71.2 27.9-73.0 81.7 83.4

Table B.9: Subspace clustering performance of different block diagonal representation approaches on COIL20 data set. The

results are summarized for the similarity measure W = X T X.
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Detailed Computation time (¢) for FRS-BDR Method

COIL20 Step 1.1 Step 1.2 Step1.3 Step 2
Data Set

2 subjects 0.002 0.004 0.014 0.002
3 subjects 0.003 0.007 0.029 0.003
5 subjects 0.006 0.014 0.071 0.007
8 subjects 0.019 0.039 0.192 0.098
10 subjects 0.032 0.064 0.319 0.206

Table B.10: Computation time performance of FRS-BDR method on COIL20 data set. The results are summarized for the
similarity measure W = X T X.

Computation time (¢) for Different Block Diagonal Representation Methods

Computation Time (¢) for Optimally Tuned Regularization Parameters

COIL20 Wh-t SSC BDSSC LRR BDLRR LSR BDR-B BDR-Z RKLRR IBDLR EBDR FRS-BDR
Data Set

2 subjects 3x107* 0.017 0.031 o.012 0.021 3x107* 0.043 0.040 0.001 1.120 0.003 0.007

3 subjects 3x107* 0.041 0.049 0.013 0.017 2x107* 0.098 0.119 0.002 0.275 0.005 0.013

5 subjects 4x107* 0.092 0.104 0.038 0.054 3x107* 0.244 0.249 0.004 3.688 0.005 0.027

8 subjects 0.001 0.190 0.184 0.050 0.080 0.001 0.686 0.702 0.006 1.075 0.008 0.156
10 subjects 0.001 0.250 0.254 0.058 0.108 0.001 0.908 0.878 0.011 1.058 0.041 0.302
Average 4x107* o.118 0.124 0.034 0.056 5 x107* 0.396 0.397 0.005 1.443 0.012 o.101

Table B.11: Computation time performance of different block diagonal representation approaches on COIL20 data set. The
results are summarized for the similarity measure W = X TX and sparsity assumed to be known for all sparse representation
methods which means that computation time of FRS-BDR is detailed for Steps 1.1, 1.2 and 2.

B.2.5.2.4 ORLDATA SET
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Figure B.6: Average clustering accuracy (ﬁm) of FRS-BDR for increasing number of PCA features.



Average Clustering Accuracy (py..) for Different Block Diagonal Representation Methods

Minimum-Maximum Clustering Accuracy (Pacemin — Paccmax) for Different Regularization Parameters

ORL Data WH SSC BDSSC LRR BDLRR LSR BDR-B BDR-Z RKLRR IBDLR EBDR FRS-BDR
Set

2 subjects 56.8 55.0-81.9 55.1-64.0 55.6-57.6 59.1-69.1 57.7-60.5 5§5.0-95.6 $5.3-95.4 §5.0-73.7 X 95.2 93.1

3 subjscts 41.5 38.8-80.8 43.4-50.7 42.0-44.3 58.0-59.7 45.1-46.6 38.9-90.5 40.0-90.5 39.0-62.9 38.8-69.0 90.5 90.1

5 subjects 28.4 26.0-77.1 31.5-41.0  32.0-33.3 §7.0-66.7  36.3-38.9  26.2-80.1 30.8-80.1  26.1-60.6  25.7-70.8 83.0 84.2

8 subjects 21.8 18.6-74.4  25.3-35.8 26.3-27.5 56.7-68.5 26.8-28.5 18.9-79.1 34.6-78.5 18.6-75.4 18.5-75.1 74.1 79.4

10 subjects 18.7 16.3-74.2  22.7-36.1  24.1-25.1  62.7-72.8  24.0-25.3 16.4-78.4  31.2-78.9  16.5-72.5 16.1-72.4 69.9 77.2
Average 33.5 30.9-77.7 35.6-45.5 36.0-37.6 58.7-67.3 38.0-40.0 31.1-84.7 38.4-84.7 31.0-69.0 24.8-71.8 82.5 84.8

Table B.12: Subspace clustering performance of different block diagonal representation approaches on ORL data set. The
results are summarized for the similarity measure W = X T X. %’ denotes the failed results.

Detailed Computation time (#) for FRS-BDR Method

ORL Data  Step 1.1 Step 1.2 Step 1.3 Step 2

Set

2 subjects 0.001 0.002 0.005 0.002
3 subjects 0.001 0.002 0.009 0.002
5 subjects 0.002 0.005 0.018 0.010
8 subjects 0.004 0.010 0.044 0.119
10 subjects 0.007 0.014 0.079 1.810

Table B.13: Computation time performance of FRS-BDR method on ORL data set. The results are summarized for the similarity

measure W = X T X.

Computation time (¢) for Different Block Diagonal Representation Methods

Computation Time (¢) for Optimally Tuned Regularization Parameters

ORL Data WV! SSC BDSSC LRR BDLRR LSR BDR-B BDR-Z  RKLRR  IBDLR EBDR  FRS-BDR
Set

2 subjects 3x107* 0.016 0.023 0.0I1 0.012 4x107° 0.009 0.009 2x107* X 0.003 0.005

3 subjects 3 x107* 0.018 0.025 0.012 0.014 5x107° 0.027 0.026 4x107* 0.133 0.003 0.006

5 subjects 3x107* 0.034 0.047 0.013 0.017 8§x107° 0.053 0.054 0.001 0.171 0.003 o.017

8 subjects 4x107% 0.114 0.078 0.032 0.051 2x107* 0.063 0.065 0.003 2.089 0.011 0.133
10 subjects 5x107* O.ITI o.108 0.036 0.051 3x107* 0.116 0.085 0.004 3.274 0.232 1.831
Average 4x107* 0.058 0.056 0.021 0.029 2x107* 0.054 0.048 0.002 1.417 0.050 0.398

Table B.14: Computation time performance of different block diagonal representation approaches on ORL data set. The results
are summarized for the similarity measure W = XTX and sparsity assumed to be known for all sparse representation
methods which means that computation time of FRS-BDR is detailed for Steps 1.1, 1.2 and 2.
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B.2.5.2.5 JAFFE DATA SET
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Figure B.7: Average clustering accuracy (ﬁm) of FRS-BDR for increasing number of PCA features.

Average Clustering Accuracy (p,.) for Different Block Diagonal Representation Methods

Minimum-Maximum Clustering Accuracy (Pacemin — Paccmax) for Different Regularization Parameters

JAFFE Data Wh-1 SSC BDSSC LRR BDLRR LSR BDR-B BDR-Z RKLRR IBDLR EBDR FRS-BDR
Set

2 subjects 56.1 52.1-93.3 52.8-70.4 52.8-56.1 §7.1-59.0 $3.4-57.1 52.3-99.7 §2.4-99.7 52.4-82.0 §2.0-79.6 94.9 93.4

3 subjects 39.7 36.2-95.2 37.1-59.7 37.8-40.8 49.0-65.3 39.8-45.1 36.1-98.0  36.5-98.0 36.2-76.7 35.9-75.5 92.4 96.9

5 subjects 26.4 23.3-95.3 26.4-76.5 27.9-28.9  60.0-85.0 33.1-37.8 23.2-94.2  28.3-94.2  23.3-69.0  23.1-88.0 90.7 96.4

8 subjects 19.1 15.8-93.6 18.6-91.9  21.8-22.6  80.3-89.6  24.2-38.1 15.8-94.3 34.2-94.3 15.8-87.4 15.7-94.2 82.4 94.4

10 subjects X 13.1-93.0 16.4-93.9 17.4-25.4  85.9-92.0 11.7-55.9 12.2-91.§ 25.8-91.5 13.1-92.0 12.7-94.8 77.9 96.7
Average 35.3 28.1-94.1 30.3-78.5 31.5-34.8 66.5-78.2 32.4-46.8 27.9-95.6  35.4-95.6  28.2-81.4  27.9-86.4 87.7 95.5

Table B.15: Subspace clustering performance of different block diagonal representation approaches on JAFFE data set. The

results are summarized for the similarity measure W = X T X. '’ denotes the failed results.

Detailed Computation time (¢) for FRS-BDR Method

JAFFE Data  Step 1.1 Step 1.2 Step 1.3 Step 2

Set

2 subjects 0.002 0.004 0.0I5 0.002
3 subjects 0.003 0.008 0.034 0.003
5 subjects 0.007 0.016 0.087 0.013
8 subjects 0.022 0.047 0.245§ 0.298
10 subjects 0.043 0.076 0.469 0.777

Table B.16: Computation time performance of FRS-BDR method on JAFFE data set. The results are summarized for the
similarity measure W = X T X.
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Computation time (¢) for Different Block Diagonal Representation Methods

Computation Time (¢) for Optimally Tuned Regularization Parameters

JAFFE Data WH SSC BDSSC LRR BDLRR LSR BDR-B BDR-Z RKLRR IBDLR EBDR FRS-BDR
Set

2 subjects 3x107* 0.022 0.032 0.0I§ 0.018 8§x107° 0.060 0.060 0.006 0.505 0.004 0.008

3 subjects 4x107% 0.053 0.044 0.050 0.056 3x107* 0.106 o.108 0.002 1.794 0.004 0.0I5

5 subjects 4x107* 0.109 0.109 0.066 0.087 4 x107* 0.246 0.247 0.004 0.563 0.005 0.037

8 subjects S x107* 0.215 0.216 0.068 0.129 0.001 0.561 0.555 0.010 0.972 0.036 0.367
10 subjects 6x107* 0.291 0.235 0.063 0.120 0.001 0.625 0.635 0.013 1.044 0.083 0.896
Average 4x107* 0.138 0.127 0.052 0.082 4x107* 0.320 0.321 0.007 0.976 0.026 0.264

Table B.17: Computation time performance of different block diagonal representation approaches on JAFFE data set. The
results are summarized for the similarity measure W = X T X and sparsity assumed to be known for all sparse representation
methods which means that computation time of FRS-BDR is detailed for Steps 1.1, 1.2 and 2.
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Figure B.8: Average clustering accuracy (f)acc) of FRS-BDR for increasing number of PCA features.

Average Clustering Accuracy (puc.) for Different Block Diagonal Representation Methods

Minimum-Maximum Clustering Accuracy (Pacemin — Paccmax) for Different Regularization Parameters

Yale Data  WN! SSC BDSSC LRR BDLRR LSR BDR-B BDR-Z  RKLRR  IBDLR EBDR  FRS-BDR
Set

2 subjects 55.3 54.5-75.6 54.7-58.8 55.5-60.2 57.5-60.9 $4.5-57.3 53.6-84.2 54.5-83.9 54.5-60.4 X 84.1 83.1

3 subjects 41.9 38.4-67.2  43.0-46.7  42.3-43.9 50.9-53.6  42.1-43.8 38.6-68.5 39.0-68.6 38.6-52.4  38.2-55.1 71.6 74.5

5 subjects 29.8 25.5-57.9 30.5-37.4 32.0-33.2  49.2-54.4 31.1-33.2  25.7-62.3 29.9-62.2  25.4-49.9  25.2-52.9 6o.2 61.7
SSubjscts 21.6 18.1-52.6 22.3-29.7 25.7-26.7 47.3-50.7 23.6-25.4 18.3-51.9 28.5-51.5 18.3-48.6 17.9-49.6 53.8 54.8

10 subjects 18.7 15.6-50.0  20.2-30.2  23.4-24.7  46.2-47.9  20.8-22.0 15.8-51.6  24.5-51.6 15.9-46.3 15.4-46.3 49.2 SI.2
Average 33.5 30.4-60.7 34.1-40.6 35.8-37.7 50.2-53.5 34.4-36.3 30.4-63.7 35.3-63.6 30.5-51.5 24.2-51.0 63.8 65.1

Table B.18: Subspace clustering performance of different block diagonal representation approaches on Yale data set. The
results are summarized for the similarity measure W = X T X. '’ denotes the failed results.
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Detailed Computation time (#) for FRS-BDR Method

Yale Data  Step 1.1 Step 1.2 Step 1.3 Step 2
Set

2 subjects 0.001 0.002 0.007 0.002
3 subjects 0.001 0.003 0.013 0.003
5 subjects 0.002 0.006 0.025 0.013
8 subjects 0.005 0.012 0.056 0.046
10 subjects 0.008 0.018 0.099 0.160

Table B.19: Computation time performance of FRS-BDR method on Yale data set. The results are summarized for the similarity

measure W = X T X.

Computation time (¢) for Different Block Diagonal Representation Methods

Computation Time (¢) for Optimally Tuned Regularization Parameters

Yale Data Wh- SSC BDSSC LRR BDLRR LSR BDR-B BDR-Z RKLRR IBDLR EBDR FRS-BDR
Set

2 subjects 3x107* 0.0I1 0.018 0.013 0.011 Sx107° 0.010 0.010 2x1074 X 0.003 0.005

3 subjects 4x107* 0.022 0.023 0.010 0.011 6x107° 0.039 0.049 4x107* 0.059 0.003 0.007

5 subjects 3x107* 0.039 0.040 0.013 0.017 1x107* 0.043 0.038 0.002 0.276 0.005 0.021

8 subjects 4x107* 0.093 0.090 0.031 0.053 3x107* 0.055 0.053 0.003 0.705 0.006 0.063
10 subjects 4x107* 0.138 0.126 0.036 0.062 4x1074 0.061 0.069 0.004 1.077 0.022. 0.186
Average 4x107* 0.061 0.059 0.021 0.031 2x10°* 0.042 0.044 0.002 0.529 0.008 0.056

Table B.20: Computation time performance of different block diagonal representation approaches on Yale data set. The results
are summarized for the similarity measure W = XTX and sparsity assumed to be known for all sparse representation
methods which means that computation time of FRS-BDR is detailed for Steps 1.1, 1.2 and 2.
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Figure B.9: Numerical results for Yale data set.
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B.2.5.2.7 COMPARISONS

wITH PorurarR Brock DIiAGoONAL

APPROACHES BASED ON ADDITIONAL CLUSTERING DATA SETS

REPRESENTATION

Estimated Parameters of FRS-BDR for Different Clustering Data Sets

Detailed Computation Time (¢) EsEtlmatlon

rror

D P T N LT Step Step Step N
ata Set N K K n=|m,n,..., 0 0= [, ,..., ng] 1 s 3 Step2 [[v—v||
Breast Cancer [WM89], 569 2 2 90.128 [212, 357]—r 173, 396]—r 0.038 1.584 4.674 0.021  604.387
Ceramic [HZZ16][HZZ16], 88 2 2 98.864 (44, 44)7 (44, 44)7 0.002  0.0I0  0.031 0.007 24.271
Vertebral Column [RSBI11], 310 2,3 2 75.784 [100,210]" [120,190]" 0.009  0.183 0.543  0.0I1  140.272
Fisheriris [Fis36], 150 3 3 96.667 [50,50,50]" [51,49,50] " 0.003 0.033 0.098  0.018  48.121
Gait [SAZ19], 800 5 s 77.125 [160,160,160,160,160] " [100,128,166,201,205]" o0.087 §.0IT  15.327 1.139  466.761
0. Cancer [CFR04], 216 2 2 77315 [95,121]" (65,151]7 0.012 0075 0208 00Il  131.006
Person Id. [TSM18], 187 4 4 96791 38,40, 47,62 " (34,36,52,65]" 0.027 0.053 0.190 0.108  70.456
Parkinson A. [NPC16], 240 2 2 58208 [120,120]7 [78,162)" 0,006  0.095 0266 0013 111.626

Table B.21: Estimation performance of FRS-BDR on well-known clustering data sets. The results are summarized for the
similarity measure W = X T X.

Average Clustering Accuracy (p..) for Different Block Diagonal Representation Methods

Minimum-Maximum Clustering Accuracy (Paccmin — Pacemax) for Different Regularization Parameters

Data Set WAL SSC BDSSC LRR BDLRR LSR BDR-B BDR-Z RKLRR IBDLR EBDR FRS-BDR
Breast Cancer [WM89], 88.2 §1.0-74.7 50.3-88.2 54.3-90.3 88.0-90.0  73.5-88.2  62.4-90.0 §2.9-90.2  62.6-91.7  60.3-90.0 85.2 90.1
Ceramic [HZZ16], 98.9 $1.1-98.9 $1.1-100 95.5-98.9  95.5-98.9 54.5-98.9 §1.1-100 $1.1-98.9 $1.1-95.5 51.1-98.9 98.9 98.9
Vertebral Column [RSBI11], 73.2 50.0-77.7  50.3-74.8  53.9-72.6  72.6-72.6  62.6-75.8  67.4-76.8  71.9-76.8  67.4-71.3  67.4-76.1 74.8 75.8
Fisheriris [Fis36], 78.0 34.7-82.7  34.0-83.3  38.7-80.7 80.0-98.0 78.0-82.7  34.0-96.7  65.3-96.7  34.0-80.0  34.7-84.0 98.0 96.7
Gait [SAZ19], 773 20.3-77.4  20.1-77.5  26.1-83.9  78.9-83.5 $5.4-75.9  20.3-84.8  26.4-84.5  20.5-85.5  20.4-81.6 81.1 77.1
O. Cancer [CFR04], 61.7 51.473.6  50.9-71.3  52.3-76.4  $4.2-76.4  51.9-66.2  53.7-75.9  $51.9-74.1  55.6-88.4  55.6-75.5 77.8 77.3
Person Id. [TSM18], x 33.7-96.8  31.695.7  49.7-947  71.1-947  33.2-642  31.6-963  59.495.7 342941  33.7-95.7 97.3 96.8
Parkinson A.[NPCI16], 61.3 50.4-58.8  50.0-61.3  50.4-54.2  50.4-61.3 §7.9-61.3  50.4-61.3 50.0-61.3 50.4-61.7  50.4-61.3 56.7 58.2
Average 76.9 42.8-80.1 42.3-81.5 52.6-81.4  73.8-84.4 §8.4-76.6  46.4-85.2 53.6-84.8  47.0-83.5 46.7-82.9 83.7 83.9

Table B.22: Subspace clustering performance of different block diagonal representation approaches on well-known clustering
data sets. The results are summarized for the similarity measure W = X T X. ‘¥’ denotes the failed results due to the
complex-valued eigenvectors.

Computation time (¢) for Different Block Diagonal Representation Methods

Computation Time (#) for Optimally Tuned Regularization Parameters

Data Set WL $SC BDSSC LRR BDLRR LSR BDR-B BDR-Z RKLRR IBDLR EBDR FRS-BDR
Breast Cancer [WM89], 0.003 1.123 2.967 0.456 1.034 0.009 4.510 4.502 2.793 10.782 0.116 1.643
Ceramic [HZZ16], 4 x107* 0.074 0.076 0.074 0.086 3x 1074 0.139 0.137 0.174 0.918 0.007 0.019
Vertebral Column [RSB11], 0.001 0.518 0.490 o.122 0.230 0.002, 0.897 0.902 0.031 2.018 0.038 0.203
Fisheriris [Fis36], 5 x107* 0.161 0.166 0.070 0.066 0.001 0.030 0.025 0.024 9.330 0.012 0.054
Gait [SAZ19], 0.006 6.465 6.642 1.214 2.877 0.018 1.377 1.212 7.392 865.055 0.583 6.237
O. Cancer [CFR04], 0.008 3.036 3.883 8.316 8.387 0.016 0.503 0.506 9.192 17.590 0.026 0.098
Person Id. [TSM18], S x107* 0.234 0.236 0.039 0.125 0.001 0.905 0.485 0.012 0.873 0.017 0.188
Parkinson A. [NPCl16], 0.001 0.350 0.354 0.321 0.399 0.001 0.066 0.065 0.170 2.397 0.025 0.113
Average 0.002 1.495 1.851 1.327 1.651 0.006 1.053 0.979 2.473 113.620 0.103 1.069

Table B.23: Computation time performance of different block diagonal representation approaches on well-known clustering

data sets. The results are summarized for the similarity measure W = X "X and sparsity assumed to be known for all sparse

representation methods which means that computation time of FRS-BDR is detailed for Steps 1.1, 1.2 and 2.
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B.2.5.2.8 ComrarisoNs WITH PoPULAR COMMUNITY DETECTION APPROACHES BASED

ON ADDITIONAL CLUSTERING DATA SETS

K for Different Cluster Enumeration Methods

Data Set Louvain Martelot BNMF DenPeak Combo MAP Sparcode  FRS-BDR K
Breast Cancer [WM89], 2 1 1 3 2 1 2 2 2
Ceramic [HZZ16], 2 2 1 3 2 1 2 2 2
Vertebral Column [RSBI11], 2 2 1 3 2 1 2 2 2,3
Fisheriris [Fis36], 2 2 1 3 2 1 1 3 3
Gait [SAZ19], 3 2 1 2 3 I 2 5 5
O. Cancer [CFR04], 2 2 1 3 2 1 4 2 2
Person Id. [TSM18], 3 3 1 47 2 2 3 4 4
Parkinson A. [NPC16], 1 1 1 3 1 1 2 2 2
Table B.24: Performance of different cluster enumeration approaches on well-known clustering data sets. The results are
summarized for the similarity measure W = X T X.
mod for Different Cluster Enumeration Methods
Data Set Louvain Martelot BNMF DenPeak Combo MAP Sparcode  FRS-BDR
Breast Cancer [WM89], 0.001 0.000 0.000 0.000 0.001 0.000 0.022 0.345
Ceramic [HZZ16], 0.055 0.055 0.000 0.040 0.055 0.000 0.440 0.441
Vertebral Column [RSB11], 0.015 0.015 0.000 0.000 0.015 0.000 0.330 0.418
Fisheriris [Fis36], 0.016 0.016 0.000 0.016 0.016 0.000 0.000 0.472
Gait [SAZ19], 0.017 0.014 0.000 0.000 0.017 0.000 0.375 0.641
O. Cancer [CFR04], 0.006 0.006 0.000 0.005% 0.006 0.000 0.019 0.334
Person Id. [TSM18], 0.128 0.124 0.000 0.051 0.128 0.000 0.515 0.694
Parkinson A. [NPC16], 0.000 0.000 0.000 0.000 0.000 0.000 0.179 0.342
Average 0.030 0.029 0.000 0.014 0.030 0.000 0.235 0.461
Table B.25: Partitioning performance of different cluster enumeration approaches on well-known clustering data sets. The
results summarized for mod using the similarity measure W = X T X.
Conductance (cond) for Different Cluster Enumeration Methods
Data Set Louvain Martelot BNMF DenPeak Combo MAP Sparcode  FRS-BDR
Breast Cancer [HZZ16], 0.448 0.000 0.000 0.007 0.448 0.000 0.079 0.098
Ceramic [HZZ16], 0.445 0.445 0.000 0.449 0.445 0.000 0.058 0.059
Vertebral Column [RSBI11], 0.484 0.484 0.000 0.022 0.484 0.000 0.119 0.079
Fisheriris [Fis36], 0.424 0.429 0.000 0.433 0.424 0.000 0.000 0.183
Gait [SAZ19], 0.615 0.479 0.000 0.003 0.615 0.000 0.121 0.138
O. Cancer [CFR04], 0.451 0.476 0.000 0.487 0.451 0.000 0.047 0.140
Person Id. [TSM18], 0.296 0.294 0.000 0.660 0.296 -0.035 0.095 0.047
Parkinson A. [NPC16], 0.000 0.000 0.000 0.017 0.000 0.000 0.312 0.157
Average 0.395 0.326 0.000 0.260 0.395 -0.004 0.104 0.113

Table B.26: Partitioning performance of different cluster enumeration approaches on well-known clustering data sets. The
results summarized for conductance (cond) using the similarity measure W = X T X.
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Computation Time (¢) for Different Cluster Enumeration Methods

Data Set Louvain Martelot BNMF DenPeak Combo MAP Sparcode  FRS-BDR
Breast Cancer [WM89], 0.270 0.547 22.839 0.080 3.965 2.016 3.644 5.334
Ceramic [HZZ16], 0.008 0.004 0.273 0.009 0.083 0.219 0.103 0.059
Vertebral Column [RSB11], 0.059 0.066 4.154 0.036 1.040 0.719 0.820 0.818
Fisheriris [Fis36], 0.012 0.010 0.752 0.017 0.241 0.375 0.323 0.178
Gait [SAZ19], 0.629 1.654 48.883 0.118 3.706 2.766 5.723 21.321
O. Cancer [CFR04], 0.026 0.023 1.769 0.024 0.546 0.484 0.509 0.337
Person Id. [TSM18], 0.027 0.016 1.363 0.047 0.366 0.344 0.420 0.366
Parkinson A. [NPC16], 0.029 0.032 2.307 0.027 0.003 0.578 0.540 0.425
Average 0.132 0.294 10.293 0.045 1.243 0.938 1.510 3.605

Table B.27: Computation performance of different cluster enumeration approaches on well-known clustering data sets. The
results are summarized for the similarity measure W = X T X and FRS-BDR is detailed for all steps.

B.3 ApDITIONAL INFORMATION FOR RRLPI

B.3.1 EXPERIMENTAL SETTING

Group Information Feature Space Parameters Number of samples
7 3

Cluster-1 (¢;) Ke=[5.50; 4.50; 2.00; 0.75; 2.50; 4.50] 3, =0.50 N, =50for N,,, =0

Cluster-2 (c;) Ke,=[7.50; 1.00; 5.50;5 2.50; 1.00; 1.50] 3, =0.50 N, =50 for Ny, = 0

Cluster-3 (c3) Ke,=[8.50;0.75; 6.005 4.505 1.50; 1.25] 3, = 0.50 N, =50 for Ny =0

Type II Outliers (0,) H2=[7.00; 0.25; 5.00; 2.00; 0.50; 0.75] $, =150 N, € {0,5,10,...,20}

Table B.28: Detailed numerical information for the synthetic data set

* The original mth feature vector X,, ; associated with the 7th cluster ¢;, such that7 =1, .. . | K
and m = 1,...,N, is computed as X,,; = g, + 3,2 where v denotes a vector of
independently and identically distributed random variables from a uniform distribution on
the interval [—0.5,0.5].

* Ifx,,, is replaced with a Type I outlier, the outlier )N{S) is computed as )NCS) = X, + H0
where 3, € {0,1,2,...,10}.

* Ifx,,, is replaced with a Type II outlier, the outlier 5{7(5) is computed as i;f) = + Hw.
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B.3.2 ADDITIONAL RESULTS FOR SYNTHETIC DATA SETS
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Figure B.10: Estimated eigenvectors for the uncorrupted and corrupted data sets.
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Figure B.11: f)acc performance of different partitioning methods for increasing ; associated with Type | outlier

(N =300, Npye = 10,8, = 1.5, 8, =0.5st K=1,...,K)

1
- LE - LE
g LPI g LPI
209 RLPI 209 RLPI
> ——RLPFM > ——RLPFM
g —+—RRLPI 3 —+—RRLPI
= 0.8 = 0.8
E] 3
|53 153
] ]
o 0.7 a 0.7
£ 2
= b=t
£ 0.6 £ 06
3 IS
[aW A
0.5 0.5
0 5 10 15 20 0 5 10 15 20

Number of outliers (Noyt)

(a) K-means partitioning

Number of outliers (Noyt)
(b) K-medoids partitioning

- LE - LE

3 LPL g LPI
209 RLPI 209 RLPI
- ——RLPFM - ——RLPFM
g —+—RRLPI 9 —+—RRLPI
= 0.8 = 0.8

2 3

o o

K] &

- 0.7 o 0.7

S 2

pe] pe

Z 06 206

3 3

A =¥

0.5 0.5
0 5 10 15 20 0 5 10 15 20

Number of outliers (Noy)
(c) K-medoids partitioning with Tukey’s
distance function for the initialization
(cTukey =3)

Number of outliers (Noy)

(d) K-medoids partitioning with Tukey’s
distance function for the initialization
(CTukey = 4.68)

Figure B.12:‘,?7acc performance of different partitioning methods for each of outlier type with increasing N,
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B.3.3 ApDITIONAL RESULTS FOR CLUSTER ENUMERATION
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Figure B.13: Numerical results for cluster enumeration using different partitioning algorithms.
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Performance Analysis for Different Values of Huber’s Tuning Parameter

¢ = 2(99% ARE)

¢ = 1.345 (95% ARE)

¢ = 0.73175 (85% ARE)

Data Set K mod K mod K mod K  Similarity
Gait [SAZ19], 4 0.5331 4 0.5462 4 0.5442 5 enet
Breast Cancer [WM89], 2 0.0004 2 0.0005 2 0.000§ 2 cos
Fisheriris [Fis36], 3 0.4985 3 0.4985 3 0.4985 3 enet
Person Id. [TSM18], 4 0.4015 4 0.4079 4 0.39I11 4  enet
Sonar [GS88], 2 0.0194 2 0.0199 2 0.0203 2 cos
Tonosphere [SWHS89], 2 0.0883 2 0.1196 6 0.0145 2 cos

D. Retinopathy [AH14], 2 0.1088 2 0.1080 2 o.1080 2 cos
Gesture Phase S. [WPM14], 5 0.0040 5 0.0042 5 0.0040 5 cos

Table B.29: Performance for different ¢ values on well-known clustering data sets. The results are summarized for similarity
measures cosine (cos) and elastic net (enet) using a penalty parameter of p = 0.5. The partitioning is determined by K-means.

Performance Analysis for Different Values of Huber’s Tuning Parameter

¢ = 2(99% ARE)

¢ = 1.345 (95% ARE)

¢ = 0.73175 (85% ARE)

Data Set K mod K mod K mod K Similarity
Gait [SAZ19], 4 0.5323 5 0.5480 4 0.5442 5 enet
Breast Cancer [WM89], 2 0.0004 2 0.0005 2 0.0005 2 cos
Fisheriris [Fis36], 3 0.4985 3 0.4985 3 0.4985 3 enet
Person Id. [TSM18], 4 0.4015 4 0.4074 4 0.3945 4 enet
Sonar [GS88], 2 0.0188 2 0.0195 2 0.0203 2 cos
Ionosphere [SWHS89], 2 0.0865 2 0.1196 6 0.0134 2 cos
D. Retinopathy [AH14], 2 0.1088 2 0.1080 2 0.1080 2 cos
Gesture Phase S. [WPM14], 5 0.0040 5 0.0041 5 0.0041 § cos

Table B.30: Performance for different ¢ values on well-known clustering data sets. The results are summarized for similarity

measures cosine (cos) and elastic net (enet) using a penalty parameter of p = 0.5. The partitioning is determined by K-

medoids with Tukey’s distance function for the initialization (crukey = 3).
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K for Different Cluster Enumeration Methods

Data Set Martelot Combo Sparcode RLPFM LE LPI RLPI RRLPI K  Similarity
Gait [SAZ19], 4 6 5 4 4 4 4 5 5 enet
Breast Cancer [WM89], I 2 2 2 4 2 2 2 2 Pearson
Fisheriris [Fis36], 2 3 2 3 5 3 3 3 3 enet
Person Id. [TSM18], 6 7 4 5 10 4 4 4 4 enet
Sonar [GS88], 2 2 2 2 5 2 2 2 2 Pearson
Tonosphere [SWHS89], 3 3 3 3 10 3 2 2 2 Pearson
D. Retinopathy [AH14], 2 2 2 2 2 2 2 2 Pearson
Gesture Phase S. [WPM14], 2 4 3 3 2 4 5 s DPearson

Table B.31: Performance of different cluster enumeration approaches on well-known clustering data sets. The partitioning is
determined by K-medoids with Tukey’s distance function [ZKO18] for the initialization (CTukey = 3).

mody for Different Cluster Enumeration Methods

Data Set Martelot Combo Sparcode RLPFM LE ~ LPI RLPI RRLPI Similarity
Gait [SAZ19], 0.612  0.669 0.459 0.534 0.570 0.551 0.544 0.548 enet
Breast Cancer [WM89], 0.000  0.00T 0.047 0.00I 0.000 0.001 0.001 0.001 Pearson
Fisheriris [Fis36], 0.440  0.502 0.282 0.496 0.451 0.498 0.499 0.499 enet
Person Id. [TSM18], 0706 0727  0.119  0.414 0.406 0.516 0.405 0.407 enet
Sonar [GS88], 0.058  0.058 0.172 0.041 0.036 0.058 0.040 0.045 Pearson
Tonosphere [SWH89], 0.206  0.213 0.340  0.148 0.144 0.114 0.193 o0.194 Pearson
D. Retinopathy [AH14], 0.178 0.178 0485 0.176 o.171 0.178 o.177 0.176 Pearson
Gesture Phase S. [WPM14], 0.137  0.157 0.193 0.024 0.049 0.043 0.020 0.019 Pearson

Table B.32: Modularity performance of different cluster enumeration approaches on well-known clustering data sets. The
partitioning is determined by K-medoids with Tukey’s distance function [ZKO18] for the initialization (CTukey = 3).

K for Different Cluster Enumeration Methods

Data Set Martelot Combo Sparcode RLPFM LE LPI RLPI RRLPI K  Similarity
Gait [SAZ19], 4 6 5 4 4 4 4 5 4 enet
Breast Cancer [WM89], I 2 2 2 4 2 2 2 2 Pearson
Fisheriris [Fis36], 2 3 2 3 5 3 3 3 3 enet
Person Id. [TSM18], 6 7 4 5 10 4 4 4 4 enet
Sonar [GS88], 2 2 2 2 5 2 2 2 2 Pearson
Ionosphere [SWHS89], 3 3 3 3 10 3 2 2 2 Pearson
D. Retinopathy [AH14], 2 2 2 2 2 2 2 2 2 Pearson
Gesture Phase S. [WPM14], 2 4 3 3 2 4 5 s DPearson

Table B.33: Performance of different cluster enumeration approaches on well-known clustering data sets. The partitioning is
determined by K-means.

224



mody for Different Cluster Enumeration Methods

Data Set Martelot Combo Sparcode RLPFMLE ~ LPI  RLPI RRLPISimilarity
Gait [SAZ19], 0.612 0.669 0.459 0.530 0.570 0.55I 0.538 0.530  enet
Breast Cancer [WM89], 0.000 0.00I 0.047 ©0.00I 0.000 0.00I 0.00I 0.001 Pearson
Fisheriris [Fis36], 0.440 0.502 0.282 0.498 0.451 0.498 0.498 0.498  enet
Person Id. [TSM18], 0.706 0.727 0.119 0.410 0.406 0.516 0.405 0.407  enet
Sonar [GS88], 0.058 0.0§8 0.172 0.041 0.037 0.058 0.041 0.047 Pearson
Ionosphere [SWHS89], 0.206 0.213 0.340 0.143 0.144 0.I117 0.193 0.194 Pearson
D. Retinopathy [AH14], 0.178 0.178 0.485 0.050 0.043 0.049 0.049 0.049 Pearson
Gesture Phase S. [WPM14], 0.137 0.157 0.193 0.064 0.063 0.042 0.020 0.019 Pearson

Table B.34: Modularity performance of different cluster enumeration approaches on well-known clustering data sets. The

partitioning is determined by K-means.
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B.3.4 ADDITIONAL RESULTS FOR IMAGE SEGMENTSTION

Ieq Index Cluster Index Annotation I,.; Color Code
" 1 [90 116] [ 1.000 1.000 1.000]
IS
¢ 2 [0 198] [0.612 0.812 0.902]
o 1 [160 150] [0.490 0.278 0.243]
I
- ¢ 2 [6 230] [0.612 0.812 0.902]
o 1 [140 120] [0.902 0.902 0.902]
IS
¢ 2 [6 230] [0.612 0.812 0.902]
: 1 [00] [0.902 0.902 0.902]
I3
2 [143 255] [0.490 0.278 0.243]
1 [6 230] [0.612 0.812 0.902]
asma 1) 2 [1129] [0.910 0.910 0.490]
3 [4 200] [0.129 0.478 0.310]
1 [4 200] [0.129 0.478 0.310]
8 2 [4 250] [0.635 0.800 0.431]
3 [6 230] [0.612 0.812 0.902]
1 [97] [0.173 0.416 0.580]
[ 0 2 [6 230] [0.612 0.812 0.902]
- seg 3 [4 200] [0.129 0.478 0.310]
4 [160 150] [0.839 0.788 0.663]
o 1 [4 250] [0.635 0.800 0.431]
I
¢ 2 [255 0] [0.969 0.929 0.843]
o 1 [140 120] [0.839 0.788 0.663]
IS
¢ 2 [6 230] [0.612 0.812 0.902]
pa———— 1 [4 250] [0.635 0.800 0.431]
- 100 2 [4 200] [0.129 0.478 0.310]
ses 3 [143 255] [0.612 0.812 0.902]
4 [00] [0.490 0.278 0.243]

Table B.35: Reference annotations for the ground truth images.
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Image Index Performance FastEFM LSC RLPFM LE LPI RLPI ~ RRLPI I3
Measure
Ficore 0.297 0.905 0.906 0.294 0.908 0.905 0.867
Iw J 0.421 0.867 0.867 0.421 0.868 0.868 0.854 0.178
Pace 0.841 0.960 0.960 0.841 0.961 0.960 0.957
Ficore 0.390 0.949 0.696 0.297 0.687 0.592 0.635
I® J 0.700 0.986 0.942 0.265 0.940 0.915 0.928 0.332
Pace 0.825 0.993 0.970 0.531 0.969 0.955 0.963
Ficore 0.177 0.911 0.904 0.179 0.904 0.178 0.927
® J 0.400 0.941 0.939 0.400 0.938 0.287 0.942 0.426
Pace 0.800 0.980 0.979 0.800 0.979 0.573 0.980
- Ficore 0.194 0.198 0.395 0.196 0.409 0.395 0.348
™ J 0.284 0.288 0.618 0.284 0.644 0.619 0.555 0.195
Dace 0.568 0.570 0.787 0.568 0.801 0.787 0.748
Ficore 0.758 0.755 0.838 0.860 0.842 0.839 0.838
e ® J 0.683 0.652 0.867 0.867 0.877 0.862 0.863 0.509
VA Dace 0.932 0.924 0.971 0.970 0.973 0.970 0.971
Ficore 0.162 0.159 0.359 0.368 0.361 0.369 0.388
‘ ® J 0.250 0.250 0.635 0.558 0.637 0.633 0.621 0.477
Pace 0.750 0.750 0.769 0.856 0.772 0.764 0.738
F 1 Ficore 0.401 0.207 0.372 0.140 0.381 0.374 0.373
— m J 0.572 0.314 0.576 0.125 0.580 0.589 0.599 0.477
- Pace 0.737 0.631 0.748 0.498 0.755 0.775 0.800
il 7 Ficore 0.310 0.310 0.562 0.318 0.573 0.422 0.500
f" ~ ® J 0.420 0.420 0.747 0.420 0.753 0.642 0.710 0.230
Dace 0.840 0.840 0.912 0.840 0.915 0.845 0.890
Ficore 0.170 0.843 0.755 0.170 0.755 0.766 0.732
A ® J 0.281 0.967 0.952 0.281 0.952 0.954 0.949 0.470
‘ Pace 0.562 0.984 0.976 0.562 0.976 0.977 0.974
Ficore 0.309 0.381 0.401 0.374 0.386 0.402 0.403
109 J 0.392 0.499 0.431 0.414 0.442 0.432 0.429 0.260
Dace 0.645 0.755 0.545 0.763 0.593 0.545 0.538
Ficore 0.317 0.562 0.619 0.320 0.621 0.524 0.601
Average Results J 0.440 0.618 0.757 0.404 0.763 0.680 0.745
Pace 0.750 0.839 0.862 0.723 0.869 0.815 0.856

Table B.36: Detailed performance results for the original images
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Image Index Performance FastEFM LSC RLPFM LE LPI RLPI ~ RRLPI I3
Measure
Ficore 0290  0.300 0904 0294  0.908 0.905 0.900
m J 0.421 0.422 0.865 0.421 0.866 0.866  0.864 0.178
Pace 0.841 0.841 0.960 0.841 0.960 0960  0.959
Ficore 0295  0.721 0497 0297  0.492 0.305 0.393
I® J 0.735 0.958 0.907 0.265 0.905 0.801 0.868 0.332
Dace 0.849 0979 0.951 0.531 0.950 0.890  0.929
Ficore 0179  0.181 0.885 0179  0.887 0172  0.899
I® J 0.400 0.400 0.934 0.400 0.935 0.392 0.939 0.426
Pace 0.800  0.800 0977  0.800 0978 0572 0.979
- Ficore 0.195  0.196 0332 019  0.338 0327  0.294
I® J 0.284 0.284 0.612 0.284 0.627 0.604 0.582 0.195
Pace 0568  0.568 0.781 0568  0.788 0776  0.762
Ficore 0.754  0.849 0.828 0.855  0.833 0.824  0.828
® J 0.678  0.885 0.869 0869 0877 0862  0.866 0.509
Dace 0930 0974 0972 0970 0974 0970 0971
Ficore 0256  0.406 0.289 0253  0.299 0.289 0.303
I® J 0484  0.560 058 0509 0592 0587 0590 0.477
Pace 058  0.858 0.730 0.831 0.730 0.733 0.725
Ficore 0376  0.364 0362 0135  0.370 0372 0374
Im J 0.576 0.396 0.572 0.124 0.579 0.581 0.581 0.477
Dace 0749  0.737  0.743 0497 0757 0764  0.763
Ficore 0316 0310 0.385 0320  0.39% 0346  0.359
I® J 0.420 0.420 0.635 0.421 0.640 0.597 0.605 0.230
Dace 0.840  0.840 0.838 0.840  0.842 0.808 0.815
Ficore 0170  0.170 0.699 0170  0.710 0.708 0.678
™ J 0.281 0.281 0947  0.281 0.949 0.949 0.945 0.470
Pace 0562  0.562 0.973 0562 0974 0974 0972
Ficore 0180 0372 0.383 0375 0373 0380  0.383
109 J 0.203 0.512 0.430 0.416 0.433 0.432 0.426 0.260
Dace 0.670  0.624 0546  0.765 0575 0560  0.536
Ficore 0.301 0387 0556 0307  0.560 0.463 0.541
Average Results J 0.448 0.512 0.736 0.399 0.740 0.667 0.727
Pace 0740  0.778 0.847 0721 0.853 0.801 0.841

Table B.37: Detailed performance results for the corrupted images. (a'(f) = 10_3)
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Figure B.15: Image segmentation results for the original images
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Figure B.16: Image segmentation results for the corrupted images
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ARE

BC

BCE

BD

BDR

BDR-B
BDSSC
BNMF
Breast Cancer
COIL2o0
Con-DBSCAN
CW

CWoos
DBSCAN
EBDR

EM

EnSC
FastEFM

Fisheriris
Gait
IBDLR

List of Acronyms

asymptotic relative efficiency

Bayesian clustering approach

Bayesian cluster enumeration

block diagonal

block diagonal representation

BDR using matrix B

subspace segmentation with BD prior
Bayesian nonnegative matrix factorization
Breast Cancer Wisconsin data set
Columbia object image library
computationally efficient DBSCAN
walking with a cane

walking with a cane out of synchronisation
density-based spatial clustering
eigenvalue-based BDR

expectation maximisation

elastic net subspace clustering

fast large-scale spectral clustering via effective feature
mapping

Fisher’s iris data set

radar-based human gait data set

implicit BD low-rank representation
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JAFFE
L1

L2

LE
LFR
LPI
MAP
MNIST

MST

NE

NGA
NW

O. Cancer
ORL
Parkinson A.
PCA
Person Id.
RKLRR
RLPFM
RLPI
RRLPI
SABDR
SBM

SC

Sonar
SPARCODE
SSC

SVD
USPS

Japanese female facial expression data set
limping with one leg

limping with both legs

Laplacian eigenmaps
Lancichinetti-Fortunato—Radicchi
locality preserving indexing

Infomap community detection method

Modified National Institute of Standards
Technology

minimal spanning tree

Newman’s eigenvector method

Newman’s greedy algorithm

normal walking

ovarian cancer data set

data base of faces

Parkinson’s disease’s acoustic features
principal component analysis

person identification

robust kernel low-rank representation
robust locality preserving feature mapping
regularized locality preserving indexing
robust regularized locality preserving indexing
sparsity-aware BDR

stochastic block model

spectral clustering

connectionist bench data set

sparsity-aware robust community detection
sparse subspace clustering

singular value decomposition

data set of handwritten text digits
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List of Notations & Symbols

The following list comprises the most important notations, operators and symbols. The remaining

ones have been determined upon usage.

NOTATIONS

n lowercase letter denotes a scalar

N uppercase letter denotes a scalar

X bold lowercase letter denotes a column vector
X bold uppercase letter denotes a matrix
X a corrupted matrix

R set of real numbers

R, set of positive real numbers

7, set of positive integers

R**1 set of column vectors of size 7 on R
R7*» set of matrices of size # X 7 on R

1 the indicator function
) probability density function

arg max F(x) returns the x value that maximizes F(x)
arg ;Cnin F(x) returns the x value that minimizes F(x)

X
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OPERATORS

m N QB g » g X

~,

3 =~

matrix inverse

Moore-Penrose inverse

vector of matrix transpose

determinant of a matrix or absolute value of a scalar
determinant of a matrix

median operator

natural logarithm

f; norm

/> norm

a data matrix

the affinity matrix

the adjacency matrix

the diagonal matrix of overall edge weights
the unnormalized Laplacian matrix
graph

set of vertices

set of edges

index operator for the blocks/clusters
index operator for the blocks/clusters
index operator for the blocks/clusters
index operator for the samples

index operator for the samples

index operator for the samples

m, nth similarity coefficient

a constant around which the similarity coefficients

between block 7 and ; are concentrated
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W, 7th block of the BD affinity matrix

A mth eigenvalue of L

Yo eigenvector associated with #th eigenvalue of L

Yr the Fiedler vector

Vam nth embedding resultin y,,

Y, F nth embedding result in the Fiedler vector

Bon transformation vector associated with y,,

Br transformation vector associated with yr

Com label of the mth feature vector

M dimension of feature vectors

N number of feature vectors

N; N associated with the 7th block

Ny number of Type I outliers

Ny number of Type II outliers

Niin minimum number of samples in clusters or blocks

N, number of changepoints

N, . determined maximum number of changepoints

Ny candidate number of clusters or blocks

N number of experiments

K number of clusters or blocks

Kong candidate number of clusters or blocks

Koin minimum number of clusters or blocks

Koo maximum number of clusters or blocks

mod modularity

cond conductance

n column vector of block sizes

n, rth column vector of candidate block sizes

W column vector of similarity coefficients that the blocks
concentrated around

e embedding vector associated with 7th feature vector

235



Pdet
ﬁacc

column vector that represents L as a piece-wise linear
function

column vector containing changepoint locations

the empirical probability of detection

average clustering accuracy

computation time

236



I.1I

I.2

2.2

2.3
2.4

33
3.4

3.5

3.6

List of Figures

Examplary graph clustering. Left: graph representation of digit samples from the
MNIST data base [HS98]. The red edges represent connections to outliers which
are ones that have connections to more than one group of digit samples. The
green, blue and yellow lines represent the within-cluster edges of digits 9, 4 and 3,
respectively. Right: cluster assignment based on the general graph clustering idea
that maximizes the number of intra-cluster edges while minimizing the number
ofinter-clusteredges. . . . . . ... ... .. L o L oL

Example graph constructions for handwritten digit samples from MNIST data
base [HS98].. . . . . . . . e

Examplary graph construction process. . . . . . ... ... L.
Examplary Laplacian, overall edge weight and affinity matrices. . . . . . . . . ..
Examplary balanced graph partitioning. . . . . ... ... ... .00
Examplary BD affinity matrix and associated graph. . . . . . ... .. ... ...

Examplary illustration of the sparse affinity matrix W and associated matrices D
andL € RVN(n =[10,8,12]T e REN=30,K=3). . ...........
Examplary illustration of Theorem 1 (n = [10, 8,12]" € RX, N =30,K = 3). .
Spectral embedding according to the eigenvectors of the Laplacian matrix L when
K =3 e
Examplary sparse Affinity matrix, sparse Laplacian matrix and corresponding
vectorv(n = [10,8,12]" e RE, N=30,K=3). . . ... ...........

Numerical results for the parameter N,

‘max *

237

8

20

21



3.7
3.8

4.3
4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.12

4.13

4.14

4.15

4.16
4.17

Robustness in spectral analysis. . . . . .. ... ... ... ... .. .. ... 33

Examplary illustration of e definition. . . . . . ... ... ... ... ... 35

Mlustration of Type I outliers. The colored cells in the corrupted BD affinity
matrix W represent non-zero edge weights in graph G oo 42

lustration of Type II outliers. The red colored cells in W correspond to edges

of Typelloutliers. . . . . .. .. ... ... .. .. .. .. ... 43
lustration of outliers’ effect on the affinity matrix. . . . . . .. ... ... ... 44
Examplary outlyigness measure of Person Id. [TSM18] data set based on the
overalledgeweights. . . . . . .. ... ... L L L o 45
Examplary outlyigness measure of Gait [SAZ19] data set based on the overall edge
weights. . . . . .. L 46
Examplary plot of Type I outliers effect on  eigenvalues
(m=1[10,8121]T e REFN+1=3LK=3). .. .............. 47
Examplary illustration of Theorem 4 (n = [1,10,8,12]" € REFIU N +1 = 31,
K =3) . e 48
Examplary illustration of Theorem 5 (n = [10, 8, IZ]T € RE. N =30,K =3,
I=1) o e 49
Examplary illustration of Theorem 5 (n = [10, 8, 12]" € RE, N = 30,K = 3,
I=K). e 49
Spectral embedding according to the eigenvectors of the corrupted Laplacian
matrix Lwhen K = 3,7 = 1 and/=2. ... ... Lo 51
Examplary plot of Type L outliers’ effect on vector v (n = [10, 8,12,1]" € RXH,
NAT=3LK=3) oo oo 52
Examplary illustration of Theorem 6 (n = [1,10,8,12]" € REFIU N +1 = 31,
K=3,mr=1). . . . e e 53
Examplary illustration of Theorem 6 (n = [10,1,8,12]" € RAM, N +1 = 31,
K=3myu="0—1). ... . . e 54
Examplary illustration of Theorem 7 (n = [10,8,12]" € RX, N = 30, K = 3,
I=1) o e e 54
Examplary illustration of Theorem 7 (n = [10, 8, IZ]T e RE. N =30,K =3,
I=K). e 55
Examplary illustration of Corollary 7.1 (n = [10,8,12]" € R, N=30,K=3). 56
Example graphs for increasing sparsity (W = XTX). oo 57

238



4.18
4.19

4.20
4.21

4.22

4.23

4.24

4.25
4.26

4.27
4.28

429
4.30

4.31
4.32

4.33
4.34

435
4.36
4.37

The main steps of SPARCODE. . . . . ... ... ... ... .. ... .. 61

The empirical distribution of similarity coefficients for growing penalty

parametervalues. . . . ... ... 64
The thresholding operation of SPARCODE. . . . . .. ... ... ... ..., 65
Graphical models of Scenariox. . . . . ... .o Lo L Lo 71
Graphical models of Scenariox. . . . . ... .o Lo Lo Lo 72

Computation time for a growing number of vertices for Scenario 2. The results
are reported in seconds. The upper figure zooms into the region concerning
networks up to asize of tooo vertices. . . . .. ... 73
Performance of different partitioning methods in terms of computational
complexity. The results are reportedinseconds. . . . . . . ... ... ... ... 74
Modularity and conductance for a growing values of { for LFR networks. . . . . 75

Scatter plot for three important features of Gait data belonging to five object

COMMUNILIES. . . . v v v v v vt e s e e et e e e e e e e e e e e e e 78
Graphical models of Gaitdataset. . . . . ... ... ... ... .. L. 78
Scatter plot for the first three principal components of Person Id. data over four

objectcommunities. . . . . ... Lo 79
Graphical models of PersonId. dataset. . . . . ... ... ... ... ... ... 79

Empirical probability of detection and average normalized performance rank of
each algorithm in terms of modularity, conductance and computation time. . . . 82
Performance of different algorithms based on equal weights on performance metrics. 83

Performance of different algorithms based on rank in terms of probability of

detection. . . . . . .. e 84
Examplary graph partitioning digit samples from MNIST data base [HS98]. . . . 86
High-level flow diagram illustrating the key steps of FRS-BDR using a generic

examplewith K =3 clusters. . . . . ... ... ... ... ... ... ... .. 88
Examplary plot of the sBDO algorithm. . . . . ... ... .. ... ... ... 89
Examplary plot of candidate block sizes. . . . . .. ... ... .. 0L 92
Examplary illustration of V and Wy, with K04 = K, n = [10, 8, 12]T € RX,

diag(Wn) = [0.6,0.3,0.9]T € RE, iy, = 0.2, 0,3 = 0.4,amd w,3 = 0.1. . . 94

239



4.38

4-39

4.40

4.41

4.42
443

4.44

445
4.46

Numerical results for MNIST data set. The regularization parameters of the
competing methods are tuned for optimal performance in all settings while the
proposed method determines the parameters using Algorithms 5 and 6. In the
regularization parameter performance analysis, for all competing methods that
use two parameters, the second one is tuned optimally while varying the first.
Numerical results for COIL20 data set. The regularization parameters of the
competing methods are tuned for optimal performance in all settings while the
proposed method determines the parameters using Algorithms s and 6. In the
regularization parameter performance analysis, for all competing methods that
use two parameters, the second one is tuned optimally while varying the first.
Numerical results for ORL and JAFFE data sets. The regularization parameters
of the competing methods are tuned for optimal performance in all settings while
the proposed method determines the parameters using Algorithms 5 and 6. In the
regularization parameter performance analysis, for all competing methods that
use two parameters, the second one is tuned optimally while varying the first.
Examplary image segmentation result comparing the popular LE [BN01] and the
proposed RRLPI methods for Fiedler vector estimation. . . . . ... ... ...
Fiedler vector computation for an ideal K = 2 blocks affinity matrix. . . . . . . .
Fiedler vector computation for a corrupted K = 2 blocks affinity matrix. The
corruptions of the affinity matrix by Type I and Type II outliers are highlighted
by coloring the corresponding affected elements in light red and dark red,
respectively. In the Fiedler vector, outliers are positioned as shown in the right
illustration. . . . . . . . .. e
Examplary plot of the Fiedler vector computation based on LE and RRLPI
methods. The weighting operation in RRLPI on Type I and Type II outliers
results in two clusters of concentrated mappings that include the outliers. In
this way, the true structure of the non-outlying data becomes visible, even
in the presence of outliers. By contrast, for LE, the outliers deteriorate the
underlying two-cluster structure. Further, the weights provide a robust measure
of outlyingness, which may be used to detect and analyze outliers, which is of high
interest in some applications. . . . . ... ... Lo
Example of A-separatedsetssandt . . . . . ... ... o000

Examplary plot of the first three features of the uncorrupted synthetic data set. . .

240

97

98

99

103



4-47
4.48

4.49
4.50
4.51
4.52
4-53
4.54

455
4.56
4.57
4.58

459
4.60

4.61
4.62

Computed eigenvectors for the uncorrupted dataset. . . . . . . ... ... ... 120
Examplary plot of the first three features of the synthetic data set after corruption

with Type I and Type I outliers (red crosses). See Section 4.4.2.1.3, for a discussion. 120

Computed eigenvectors for the corrupted dataset. . . . . . ... .. ... ... 121
Average partition accuracy as a function of 4, and NN for each outlier type . . . 121
Computation time performance analysis. The results are reported in seconds. . . 122
Numerical results for cluster enumeration based on RRLPL. . . . . . ... ... 123
Image segmentation results for the original images. . . . . . .. ... ... ... 124

Example segmentations for LE and RRLPI methods. The embeddings that are

mapped far away from the group of pixels are pointed out using arrows. . . . . . 125
Image segmentation results for the corrupted images. (@D =103)........ 125
Numerical results for the image segmentation. . . . . ... ... ... .. ... 126
The eigenvectors associated with K = 3 smallest eigenvalues for a data matrix. . . 129

Examples of estimated feature spaces for corrupted and non-corrupted versions
of the Fisheririsdataset. . . . . . . . . . . . ... . . ... ... .. ..., 133
Pacc forincreasing 3, and Noyevalues. . . . . ..o oL oo oL 134
Scatter plot for three important features of radar-based human gait data belonging
to five object communities. . . ... ..o L Lo 136
Normalized histogram of degrees for graph of radar-based gait signatures. . . . . 137
Example of (a), (c) spectrograms and (b), (d) corresponding micro-Doppler

envelopes for two objectclusters. . . . ... L oo 142

Examplary illustration of Theorem 1.S. (n = [10,8,12] " € RX, N =30,K = 3). 155
Examplary illustration of Theorem 4.S. (n = [1,10,8,12]" € REI N+1 = 31,

K =3) . e 175
Examplary illustration of Theorem 5.5.(n = [10,8,12] " € RX, N = 30, K = 3,

I=1) o e 180
Visual summaryof FRS-BDR . . . . . ... ... . oo o 198
Ay for increasing values of 2 associated with generalized eigen-decomposition . . . 200
Ay for increasing values of @, ; associated with standard eigen-decomposition . . . 201
Numerical results for USPSdataset. . . . ... ... ... ... ... ..... 211

Average clustering accuracy (p,..) of FRS-BDR for increasing number of PCA

features. . . . . .. 211

241



B.6  Average clustering accuracy (p,..) of FRS-BDR for increasing number of PCA
features. . . . . ... 212

B.7  Average clustering accuracy (p,.) of FRS-BDR for increasing number of PCA
features. . . . . . .. e 214

B.8  Average clustering accuracy (p,.c) of FRS-BDR for increasing number of PCA

features. . . . . . ... e 215
B.9 Numerical results for Yaledataset. . . . . .. ... ... ... ......... 216
B.1o Estimated eigenvectors for the uncorrupted and corrupted datasets. . . . . . . . 220

B.11 py performance of different partitioning methods for increasing & associated
with Type I outlier (N = 300, Nyye = 10,9, =1.5,93, = 0.5s.t. K=1,...,K) 221
B.12 py performance of different partitioning methods for each of outlier type with
increasing Ny (N = 300, % = 5,9, =1.5,9, =05st. K=1,...,K.) . . .. 221

B.13 Numerical results for cluster enumeration using different partitioning algorithms. 222

B.14 Overall performance rank for different partitioning algorithms. . . . . . . . . .. 223
B.1s5 Image segmentation results for the original images . . . . . ... ... ... .. 229
B.16 Image segmentation results for the corrupted images . . . . . . ... ... ... 230

242



3.1

3.2

3.3

3.4

3.5

3.7

4.1
4.2
4.3
4.4

4.5

List of Tables

Numerical results for real-world datasets (X,

Cmax =
Pacc(%) for real-world datasets. ‘x” denotes the results that produce complex-

valued eigenvectors, N,

Cmax

= 8. The numbers indicate the best p,.. for the
COMPELITOLS. . . . . v v v vt ittt e 31

t(seconds) for real-world datasets. Except for EBDR the level of sparsity assumed
to be known and it is defined as p for EBDR(p). N,

Cmax

= 8inallcases. . ... .. 31
Face clustering performance of different BDR methods on ORL data set. ‘%’
denotes the failed results. . . . . . . ... ... ... ... L. 38
Face clustering performance of different BDR methods on JAFFE data set. ‘%’
denotes the failed results. . . . . . . . . . .. ... .. 39
Object clustering performances of different BDR methods on COIL20 dataset. . 39

Handwritten-digit clustering performances of different BDR methods on USPS

dataset. . . . ... e e 40
Performance of 1o graph-based approaches on Scenario 1 where K =7. . . . . . 71
Performance of 1o graph-based approaches on Scenario 2 where K = 3. . . . . . 73

Performance of graph-based approaches on LFR datasetsfor 4 = land K =3.. 75
Performance of graph-based approaches on well-known networks. The results
whose computation takes more than 12 hours and nontarget networks for SVD

» »

method are denoted as

............................ 77
Performance of graph-based approaches on clustering data sets. The results whose
computation takes more than 12 hours and nontarget networks for SVD method
aredenoted as ”->. . . . L L L L e 81

243



4.6

4.7

4.8

4.9

4.10

4.11

B.6

Performance of cluster-based approaches on clustering data sets. The results
whose computation take more than 12 hours and nontarget networks for SVD
methoddenotedas™”. . . . . . . ...
Subspace clustering performance of different BDR approaches on well-known
clustering data sets. The results are summarized for the similarity measure W =
X TX. X’ denotes the failed results due to the complex-valued eigenvectors.
Performance of different cluster enumeration approaches on well-known
clustering data sets. The results summarized for similarity measures cosine (cos)
and elastic net (enet) using a penalty parameter of pen = 0.5. . . . . ... ...
K-means partitioning performance for real-world datasets. ~ The average
probability of detection shownin %. . . ... ... ... ... oL L.
Cluster enumeration results of different parameter-free clustering algorithms for
fiveobjectclusters. . . . . ... Lo oo

Confusion matrices of different gait clustering algorithms for five object clusters.

Numbers are shown in % and best performance results are indicated in bold font.

Similarity coefficients for seven object communities for Scenario 1. The density
parameters of similarity coefficients associated with &, = 0 are denotes as *-’.
Similarity coefficients for three object communities and outliers for Scenario 2.

The density parameters of similarity coefficients associated with &, = 0 denotes

Subspace clustering performance of different block diagonal representation
approaches on MNIST data set. The results are summarized for the similarity
measure W = XX, . ... ..
Computation time performance of FRS-BDR method on MNIST data set. The
results are summarized for the similarity measure W = XX, . . . .. ... ..
Computation time performance of different block diagonal representation
approaches on MNIST data set. The results are summarized for the similarity
measure W = X 'X and sparsity assumed to be known for all sparse
representation methods which means that computation time of FRS-BDR is
detailed for Steps 1.1, r.2and 2. . . . oL oL Lo
Subspace clustering performance of different block diagonal representation

approaches on USPS data set. The results are summarized for the similarity
measure W = XX, . . . . o,

244

I00



B.8

B.12

B.14

B.16

Computation time performance of FRS-BDR method on USPS data set. The
results are summarized for the similarity measure W = X X. . . . .. ... ..
Computation time performance of different block diagonal representation
approaches on USPS data set. The results are summarized for the similarity
measure W = XX and sparsity assumed to be known for all sparse
representation methods which means that computation time of FRS-BDR is
detailed for Steps 1.1, 1.2and 2. . . . ..o Lo
Subspace clustering performance of different block diagonal representation
approaches on COIL20 data set. The results are summarized for the similarity
measure W = X X, . ...
Computation time performance of FRS-BDR method on COIL20 data set. The
results are summarized for the similarity measure W = XX, . . . .. ... ..
Computation time performance of different block diagonal representation
approaches on COIL20 data set. The results are summarized for the similarity
measure W = X 'X and sparsity assumed to be known for all sparse
representation methods which means that computation time of FRS-BDR is
detailed for Steps 1.1, 1.2and 2. . . . ..o L Lo
Subspace clustering performance of different block diagonal representation
approaches on ORL data set. The results are summarized for the similarity
measure W = X T X. X’ denotes the failed results. . . . . . ... ... .....
Computation time performance of FRS-BDR method on ORL data set. The
results are summarized for the similarity measure W = XX, . . . .. ... ..
Computation time performance of different block diagonal representation
approaches on ORL data set. The results are summarized for the similarity
measure W = X 'X and sparsity assumed to be known for all sparse
representation methods which means that computation time of FRS-BDR is
detailed for Steps 1.1, 1.2and 2. . . . ..o Lo
Subspace clustering performance of different block diagonal representation
approaches on JAFFE data set. The results are summarized for the similarity
measure W = X T X. X’ denotes the failed results. . . . . . ... ... .....
Computation time performance of FRS-BDR method on JAFFE data set. The

results are summarized for the similarity measure W = XX, oo

245



B.18

B.2o

B.21

B.22

Computation time performance of different block diagonal representation
approaches on JAFFE data set. The results are summarized for the similarity
measure W = X'X and sparsity assumed to be known for all sparse
representation methods which means that computation time of FRS-BDR is
detailed for Steps 1.1, r.2and 2. . . . oL oL Lo
Subspace clustering performance of different block diagonal representation
approaches on Yale data set. The results are summarized for the similarity measure
W = XT"X. X’ denotes the failed results. . . . . . . . .. .. .. ... .....
Computation time performance of FRS-BDR method on Yale data set. The
results are summarized for the similarity measure W = XX, .o
Computation time performance of different block diagonal representation
approaches on Yale data set. The results are summarized for the similarity measure
W = X'X and sparsity assumed to be known for all sparse representation
methods which means that computation time of FRS-BDR is detailed for Steps
I, 1.2and 2. . ..o
Estimation performance of FRS-BDR on well-known clustering data sets. The
results are summarized for the similarity measure W = XX, .o
Subspace clustering performance of different block diagonal representation
approaches on well-known clustering data sets. The results are summarized for
the similarity measure W = XTX. X’ denotes the failed results due to the
complex-valued eigenvectors. . . . .. ... L L Lo
Computation time performance of different block diagonal representation
approaches on well-known clustering data sets. The results are summarized for
the similarity measure W = X "X and sparsity assumed to be known for all
sparse representation methods which means that computation time of FRS-BDR
is detailed for Steps 1.1, 1.2and 2. . . . . ..o Lo
Performance of different cluster enumeration approaches on well-known

clustering data sets. The results are summarized for the similarity measure W =

Partitioning performance of different cluster enumeration approaches on well-
known clustering data sets. The results summarized for mod using the similarity

measure W = XX, . . . . .

246



B.26

B.28
B.2g

B.33

B.34

B.35
B.36
B.37

Partitioning performance of different cluster enumeration approaches on well-
known clustering data sets. The results summarized for conductance (cond)
using the similarity measure W = XTX. o
Computation performance of different cluster enumeration approaches on well-
known clustering data sets. The results are summarized for the similarity measure
W = XX and FRS-BDR is detailed for all STEPS. « v v e e e
Detailed numerical information for the syntheticdataset . . . . . .. ... ...
Performance for different ¢ values on well-known clustering data sets. The results
are summarized for similarity measures cosine (cos) and elastic net (enet) using a
penalty parameter of p = 0.5. The partitioning is determined by K-means. . . . .
Performance for different ¢ values on well-known clustering data sets. The results
are summarized for similarity measures cosine (cos) and elastic net (enet) using a
penalty parameter of p = 0.5. The partitioning is determined by K-medoids with
Tukey’s distance function for the initialization (cryey = 3). . . . . . . . .. ..
Performance of different cluster enumeration approaches on well-known
clustering data sets. The partitioning is determined by K-medoids with Tukey’s
distance function [ZKO18] for the initialization (cryey = 3). . . . . . . . . . ..
Modularity performance of different cluster enumeration approaches on well-
known clustering data sets. The partitioning is determined by K-medoids with
Tukey’s distance function [ZKO18] for the initialization (cruey = 3). . . . . . .
Performance of different cluster enumeration approaches on well-known
clustering data sets. The partitioning is determined by K-means. . . . . . . . ..
Modularity performance of different cluster enumeration approaches on well-
known clustering data sets. The partitioning is determined by K-means. . . . . .
Reference annotations for the ground truthimages. . . . . . . .. ... ... ..
Detailed performance results for the original images . . . . . . . ... ... ...

Detailed performance results for the corrupted images. (¢ =1073) . . . . . . .

247

223



References

[Abbl7] E. Abbe, “Community detection and stochastic block models: recent developments,” /.
Mach. Learn. Res., vol. 18, pp. 6446-6531, 2017.

[ABGOO] D. Ayres-de-Campos, ]J. Bernardes, A. Garrido, J. Marques-de-Sa and L. Pereira-Leite,
“SisPorto 2.0: a program for automated analysis of cardiotocograms,” . Maternal-Fetal

Med.,vol. 9, pp. 311-318, 2000.

[ABK99] M. Ankerst, M. M. Breunig, H. -P. Kriegel and J. Sander, “OPTICS: Ordering points
to identify the clustering structure,” ACM Sigmod Rec., vol. 28, p. 49-60, 1999.

[AGOS] L. A. Adamic and N. Glance, “The political blogosphere and the 2004 US election:
divided they blog,” in Proc. 37d Intl. Workshop Link Discovery Res., pp. 36-43, 2005.

[AGR19] M. Abdolali, N. Gillis and M. Rahmati, “Scalable and robust sparse subspace clustering
using randomized clustering and multilayer graphs,” Signal Process., vol. 163, pp. 166-180,

2019.

[AH14] B. Antal and A. Hajdu, “An ensemble-based system for automatic screening of diabetic
retinopathy,” Knowledge Based Syst., vol. 6o, pp. 20-27, 2014.

[AHK10] S. Arora, E. Hazan and S. Kale, “O /logr approximation to sparsest cutin O(n?) time,”
SIAM J. Comput., vol. 39, pp. 1748-1771, 2010.

[ARVO08] S.Arora, S. Raoand U. Vazirani, “Geometry, flows, and graph-partitioning algorithms,”
Commun. ACM, vol. s1, pp. 96-105, 2008.

[ARV09] S. Arora, S. Rao and U. Varizani, “Expander flows, geometric embeddings and graph
partitioning” /. ACM, vol. 56, pp. 1-37, 2009.

248



[ASD12] R. Aragues, G. Shi, D. V. Dimarogonas, C. Sagues and K.H. Johansson, “Distributed
algebraic connectivity estimation for adaptive event-triggered consensus” in Proc. Am.

Control Conf., pp. 32-37, 2012.

[ASI20] M. Ahmed, R. Seraj and S. M. S. Islam, “The k-means algorithm: A comprehensive

survey and performance evaluation,” Electron., vol. 9, p. 1295, 2020.

[AWF92] C.]J. Anderson, S. Wasserman and K. Faust, “Building stochastic blockmodels,” Socza/
Networks, vol. 14, pp. 137-161, 1992.

[AZAl6] M.G. Amin, Y. D.Zhang, F. Ahmad and K. C. Ho, “Radar signal processing for elderly
fall detection: The future for in-home monitoring,” IEEE Signal Process. Mag., vol. 33, pp.

71-80, 2016.

[BEL14] L. Bohlin, D. Edler, A. Lancichinetti, and M. Rosvall, “Community detection and

visualization of networks with the map equation framework,” Measuring Scholarly Impact,
pp- 3-34, 2014.
[BGLO8] V. D. Blondel, ]J. L. Guillaume, R. Lambiotte and E. Lefebvre, “Fast unfolding of

communities in large networks,” /. Stat. Mech: Theory Exp., vol. 10, pp. P10008, 2008.

[BHK97] P. N Belhumeur, J. P. Hespanha and D. J. Kriegman, “Eigenfaces vs. fisherfaces:
Recognition using class specific linear projection,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 19, pp. 711-720, 1997.

[BM13] A.Bertrand and M. Moonen, “Secing the bigger picture: How nodes can learn their place
within a complex ad hoc network topology” IEEE Signal Process. Mag., vol. 30, pp. 71-82,

2013.

[BM21] P. Bhattacharjee and P. Mitra, “A survey of density based clustering algorithms,” Front.
Comput. Sci., vol. 15, pp. 1-27, 2021.

[BMS16] A.Bulug, H. Meyerhenke, I. Safro, P. Sanders and C. Schulz, “Recent advances in graph
partitioning,” Algorithm Eng., pp. 117-158, 2016.

[BNO1] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for embedding
and clustering,” in Proc. Conf. Adv. Neural Inf. Process. Syst., vol. 14, 2001.

249



[BPB21] I -D. Borlea, R. -E. Precup, A. -B. Borlea and D. Iercan, “A unified form of fuzzy C-
means and K-means algorithms and its partitional implementation,” Knowledge-Based Syst.,

vol. 214, p. 106731, 202.1.

[BS03] S. D. Bay and M. Schwabacher, “Mining distance-based outliers in near linear time with
randomization and a simple pruning rule,” in gth ACM SIGKDD Intl. Conf. Knowl.
Discovery and Data Mining, ACM, pp. 29-38, 2003.

[BYL15] A. Bouguettaya, Q. Yu, X. Liu, X. Zhou and A. Song, “Efficient agglomerative
hierarchical clustering,” Expert Syst. Appl., vol. 42, pp. 2785-2797, 2015.

[BYS17] X. Bai, P. Yang and X. Shi, “An overlapping community detection algorithm based on
density peaks,” Neurocomput., vol. 226, pp. 7-15, 2017.

[CC14] D. Cai and X. Chen, “Large scale spectral clustering with landmark-based sparse
representation,” JEEE Trans. Cybern., vol. 45, pp. 1669-1680, 2014.

[CC15] A. Cloninger and W. Czaja, “Eigenvector localization on data-dependent graphs,” in /nz.
Conf. Sampling Theory Appl., pp. 608-612, 2015.

[CFR04] T. P. Conrads, V. A. Fusaro, S. Ross, D. Johann, V. Rajapakse, B. A. Hitt,
S. M. Steinberg, E. C. Kohn, D. A. Fishman, G. Whitely, J. C. Barrett, L. A. Liotta,
E. F. Petricoin and T. D. Veenstra, “High-resolution serum proteomic features for ovarian

cancer detection,” Endocrine-related Cancer, vol. 11, pp. 163-178, 2004.

[CHCO06] B.L.Chen, D.H. Halland D. B. Chklovskii, “Wiring optimization can relate neuronal

structure and function,” in Proc. Natl. Acad. Sci., vol. 103, pp. 4723-4728, 2006.

[CHHOS] D. Cai, X. He and J. Han, “Document clustering using locality preserving indexing”
1EEE Trans. Knowl. Data Eng.,vol. 17, pp. 1624-1637, 2005.

[CHH10] D. Cai, X. He, J. Han and T. S. Huang, “Graph regularized nonnegative matrix
factorization for data representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, pp.

1548-1560, 2010.
[Chu97] F.R. K. Chung, Spectral graph theory, American Mathematical Soc., 1997.

[CHZ07] D. Cai, X. He, W. V. Zhang and ]. Han, “Regularized locality preserving indexing via
spectral regression,” in Proc. 16th ACM Conf. Inf. Knowl. Manage., pp. 741-750, 2007.

250



[CJS14] Y. Chen, A.Jalali, S. Sanghaviand H. Xu, “Clustering partially observed graphs via convex

optimization,” J. Mach. Learn. Res.,vol. 15, pp. 2213-2238, 2014.

[CK10] W. Cheney and D. Kincaid, Linear algebra: Theory and applications, Jones&Bartlett,

201I0.

[CLP13] G. Csurka, D. Larlus, F. Perronnin and F. Meylan, “What is a good evaluation measure

for semantic segmentation?,” BMVC, vol. 27, pp. 1-32, 2013.

[CLY13] H. Cheng, Z. Liu, L. Yang and X. Chen, “Sparse representation and learning in visual

recognition: Theory and applications,” Signal Process., vol. 93, pp. 1408-1425, 2013.

[CM69] E. Cuthill, and J. McKee, “Reducing the bandwidth of sparse symmetric matrices,” in
Proc. 24th Nat. Conf., 1969.

[CNMO04] A. Clauset, M. E. J. Newman and C. Moore, “Finding community structure in very
large networks,” Phys. Rev. E, vol. 70, pp. 066111, 2004.

[CNW15] X. Chang, F. Nie, S. Wang, Y. Yang, X. Zhou and C. Zhang, “Compound rank-
g g g g p
projections for bilinear analysis,”/EEE Trans. Neural Networks Learn. Syst., vol. 27, pp.

1502-1513, 2015.

[Cou08] P. Courrieu, “Fast computation of Moore-Penrose inverse matrices.” Online-Edition:

https://arxiv.org/abs/0804.4809, 2008.

CYY09] B. Cheng, J. Yang, S. Yan, Y. Fu and T. S. Huang, “Learning with ¢!-graph for image
g g g g grap g
analysis,” IEEE Trans. Image Process., vol. 19, pp. 858-866, 2009.

[DBE16] Y. Dar, A. M. Bruckstein, M. Elad and R. Giryes, “Postprocessing of compressed images
via sequential denoising,” IEEE Trans. Image Process., vol. 25, pp. 3044-3058, 2016.

[DDF90] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer and R. Harshman,
“Indexing by latent semantic analysis” /. Am. Soc. Inf. Sci., vol. 41, pp. 391-407, 1990.

[DH73] W. E. Donath and A. J. Hoftman, “Lower bounds for the partitioning of graphs,” /BAM
J- Res. Dev., vol. 17, pp. 420-425, 1973.

[DHZ01] C.H. Q. Ding, X. He, H. Zha, M. Gu and H. D. Simon, “A min-max cut algorithm for
graph partitioning and data clustering,” in Proc. I[EEE Int. Conf. Data Min., pp. 107-114,

2001I.

251



[Don06] D. L. Donoho, “For most large underdetermined systems of linear equations the

minimal ¢'-norm solution is also the sparsest solution,” Commun. Pure Appl. Math., vol.

59, pp- 797-829, 2006.

[DPC19] Y. Ding, S. Pan and Y. Chong, “Robust spatial-spectral block diagonal structure
representation with fuzzy class probability for hyperspectral image classification,” JEEE

Trans. Geosci. Remote Sens., vol. 58, pp. 1747-1762, 2019.

[DS20] A.DePavia and S. Steinerberger, “Spectral Clustering Revisited: Information Hidden in
the Fiedler Vector” 2020. [Online]. Available: https://arxiv.org/abs/2003.09969

[DZ07] J. Ding and A. Zhou, “Eigenvalues of rank-one updated matrices with some
applications”, Appl. Math. Lett., vol 20, pp. 1223-1226, 2007.

[EKS96] M. Ester, H.-P. Kriegel, J. Sander and X. Xiaowei, “A density-based algorithm for
discovering clusters in large spatial databases with noise,” in Proc. znd Int. Conf. Knowl.

Discovery Databases Data Min., pp. 226-231, 1996.

[EPY97] D. Eppstein, M. S. Paterson and F. F. Yao, “On nearest-neighbor graphs,” Discrete
Comput. Geom., vol. 17, pp. 263-282, 1997.

[EV12] E. Elhamifar and R. Vidal, “Block-sparse recovery via convex optimization,” IEEE Trans.
Signal Process., vol. 6o, pp. 4094-4107, 2012.

[EV13] E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm, theory, and
applications,” IEEE Trans. Pattern Anal. Mach. Intell.,vol. 35, pp. 2765-2781, 2013.

[FHTO8] J. Friedman, T. Hastie and R. Tibshirani, “Sparse inverse covariance estimation with

the graphical Lasso” Biostat., vol. 9, pp. 432-441, 2008.
[Fie73] M. Fiedler, “Algebraic connectivity of graphs,” Czech. Math. ., vol. 23, pp. 298-305, 1973.

[Fie75] M. Fiedler, “A property of eigenvectors of nonnegative symmetric matrices and its

application to graph theory,” Czechoslovak Math. J., vol. 25, pp. 619-633, 1975.

[Fie89] M. Fiedler, “Laplacian of graphs and algebraic connectivity,” Banach Cent. Publ., vol. 1,
pp- 57-70, 1989.



[Fis36] R.A.Fisher, “The use of multiple measurements in taxonomic problems,” Ann. Eugenics,

vol. 7, pp. 179-188, 1936.

[FJL20] W. Fan, R. Jin, M. Liu, P. Lu, X. Luo, R. Xu, Q. Yin, W. Yu and J. Zhou, “Application
driven graph partitioning” in Proc. 2020 ACM SIGMOD Int. Conf. Manage. Data, pp.
1765-1779, 2020.

[FLW21] L. Fan, G. Lu, Y. Wang and T. Liu, “Block Diagonal Sparse Subspace Clustering,” in
Proc. 13th Int. Conf. Wireless Commun. Signal Process. (WCSP), pp. 1-6, 2021.

[FLX14] J. Feng, Z. Lin, H. Xu and S. Yan, “Robust subspace segmentation with block-diagonal
g p g g
prior,” in Proc. IEEE Conf. Comp. Vision Pattern Recognit., pp. 3818-3825, 2014.

[FSC04] F. Fages, S. Soliman, and N. Chabrier-Rivier, “Modelling and querying interaction
networks in the biochemical abstract machine BIOCHAM,” J. Biol. Phys. Chem., vol. 4,

Pp- 64-73, 2004.

[Gal96] E.f. Galba, “Weighted singular decomposition and weighted pseudoinversion of
matrices,” Ukrainian Math. J., vol. 48, pp. 1618-1622, 1996.

[GCC15] N. Garcfa-Pedrajas, J. A. R. Del Castillo and G. Cerruela-Garcia, “A proposal for local
k values for k-nearest neighbor rule,” JEEE Trans. Neural Networks Learn. Syst., vol. 28, pp.

470475, 2015.

[GCV16] F. Grisoni, V. Consonni, M. Vighi, S. Villa and R. Todeschini, “Investigating the
mechanisms of bioconcentration through QSAR classification trees,” Environ. Int., vol. 88,

pp- 198-205, 2016.

[GDO05] P. M. Gleiser and L. Danon, “Community structure in Jazz,” Adv. Complex Syst., vol. 6,
pp- 565-573, 2005.

[GGK13] M.].Gangeh, A. Ghodsiand M. S. Kamel, “Kernelized supervised dictionary learning,”
IEEE Trans. Signal Process., vol. 61, pp. 4753-4767, 2013.

[GKRO5] R. Goldenberg, R. Kimmel, E. Rivlin and M. Rudzsky, “Behavior classification by

eigendecomposition of periodic motions,” Pattern Recognit., vol. 38, pp. 1033-1043, 2005.

[GNO02] M. Girvan and M. E. J. Newman, “Community structure in social and biological

networks,” in Proc. Natl. Acad. Sci., vol. 99, pp. 7821-7826, 2002.

253



[GS88] R.P.Gorman and T. J. Sejnowski, “Analysis of hidden units in a layered network trained
to classify sonar targets,” Neural Networks, vol. 1, pp. 75-89, 1988.

[GZZ19] Y. Gao, H. Zhang and Y. Zhang, “Overlapping community detection based on

conductance optimization in large-scale networks,” Physica A., vol. 2.2, pp. 69-79, 2019.

[Han20] Y. Han, “Sorting Real Numbers in O(7+/logrz) Time and Linear Space”, Algorithmica,
vol. 82, pp. 966-978, 2020.

[HCO04] G.Hamerlyand E. Charles, “Learning the Kin K-Means,” in Proc. 16th Int. Conf. Neural
Inf. Process. Syst. (NIPS), pp. 281-288 , 2004.

[HCL04] X. He, D. Cai, H. Liu and W. -Y. Ma, “Locality preserving indexing for document
representation” in Proc. of 2 7th Annu. Intl. ACM SIGIR Conf. Res. Dev. Inf. Retr., pp. 96-

103, 2004.

[Hen07] B. Hendrickson, “Latent semantic analysis and Fiedler retrieval” Linear Algebra Appl.,
vol. 421, pp. 345-355, 2007.

[Hes04] J.P.Hespanha, “An efficient MATLAB algorithm for graph partitioning,” Santa Barbara,
CA, USA: University of California, 2004.

[HG07] A.Hinneburgand H. -H. Gabriel, “Denclue 2.0: Fast clustering based on kernel density
estimation,” in Proc. Int. Symp. Intell. Data Anal., pp. 70-80, 2007.

[HGM14] A. Muro-de-la Herran, B. Garcia-Zapirain and A. Mendez-Zorrilla, “Gait analysis
methods: An overview of wearable and non-wearable systems, highlighting clinical

applications,” Sensors, vol. 14, no. 2, pp. 3362—-3394, 2014.

[HK17] E. Hancer and D. Karaboga, “A comprehensive survey of traditional, merge-split and
evolutionary approaches proposed for determination of cluster number,” Swarm Evol.

Comput. ,vol. 32, pp. 49-67, 2017.

[HNO04] X. He and P. Niyogi, “Locality preserving projections,” Adv. Neural Inf. Process. Syst.,
vol. 16, pp. 153-160, 2004.

[HRO09] P.]. Huber and E. M. Ronchetti, Robust statistics, John Wiley & Sons, 2009.

254



[HRGI18] L. He, N. Ray, Y. Guan and H. Zhang, “Fast large-scale spectral clustering via explicit
teature mapping,” IEEE Trans. Cybern., vol. 49, pp. 1058-1071, 2018.

[HS98] T.Hastie and P. Y. Simard, “Metrics and models for handwritten character recognition,”

Stat. Sci., pp. 54-65, 1998.

[HTF09] T. Hastie, R. Tibshirani and J. Friedman, The elements of statistical learning: data

mining, inference, and prediction, Springer, 2009.

[Hul94] ].] Hull, “A database for handwritten text recognition research,” JEEE Trans. Pattern
Anal. Mach. Intell., vol. 16, pp. 550-554, 1994.

[HW08] J. M. Hofman and C. H. Wiggins, “Bayesian Approach to Network Modularity,” Phys.
Rev. Lett., vol. 100, pp. 258701, 2008.

[HXZ20] E. Hancer, B. Xue and M. Zhang, “A survey on feature selection approaches for
clustering,” Artif. Intell. Rev., vol. 53, pp. 4519-4545, 2020.

[HZZ16] Z. He, M. Zhang and H. Zhang, “Data-driven research on chemical features of
Jingdezhen and Longquan celadon by energy dispersive X-ray fluorescence,” in Ceramics

Int.,vol. 42, pp. §123-5129, 2016.

[JDX14] H. Jia, S. Ding, X. Xu and R. Nie, “The latest research progress on spectral
clustering,” Neural Comput. Appl.,vol. 24, pp. 1477-1486, 2014.

[JJ19] J.Jang and H. Jiang, “DBSCAN++: Towards fast and scalable density clustering,” in Proc.
Int. Conf. Mach. Learn., pp. 3019-3029, 2019.

[JV19] R.JananiandS. Vijayarani, “Text document clustering using spectral clustering algorithm

with particle swarm optimization,” Expert Syst. Appl., vol. 134, pp. 192-200, 2019.

JZH22] H. Ji, Z. Zuo and Q. -L. Han, “A divisive hierarchical clustering approach to

hyperspectral band selection,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1-12, 2022.

[KFE12] R. Killick, P. Fearnhead and I. A. Eckley, “Optimal detection of changepoints with a

linear computational cost,” J. Am. Stat. Assoc., vol. 107, pp. 1590-1598, 2012.

[KKV15] D. Koutra, U. Kang, J. Vreeken and C. Faloutsos, “Summarizing and understanding
large graphs,” Stat. Anal. Data Min. : ASA Data Sci. J., vol. 8, pp. 183-202, 2015.

255



[KL12] A. Kalogeratos and A. Likas, “Dip-means: An incremental clustering method for
estimating the number of clusters,” in Proc. Adv. Neural Inf. Process. Syst., pp. 2393-2401 ,

2012.

[KLJ09] J. A. Kelner, J. R. Lee, R. James, G. N. Price and S. -H. Teng, “Higher eigenvalues of
graphs,” in Proc. 5 oth Annu. IEEE Symp. Found. Comput. Sci., pp. 73 5-744, 2009.

[KM22] T. Koka and M. Muma, “Fast and Sample Accurate R-Peak Detection for Noisy ECG
Using Visibility Graphs,” in 44th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., pp. 121-126,

2022.

[KN11] B. Karrer and M. E. J. Newman, “Stochastic blockmodels and community structure in

networks,” Phys. Rev. E, vol. 83, pp. 016107, 2011.
[Koh90] T. Kohonen, “The self-organizing map,” in Proc. IEEE, vol. 78, pp. 1464-1480, 1990.

[KSZ08] H. P. Kriegel, M. Schubert and A. Zimek, “Angle-based outlier detection in high-
dimensional data,” in Proc. 14th ACM SIGKDD Intl. Conf. Knowl. Discovery and Data
Mining, ACM, pp. 444-452, 2008.

[KWCI19] Z. Kang, L. Wen, W. Chen and Z. Xu, “Low-rank kernel learning for graph-based
clustering,” Knowledge-Based Syst., vol. 163, pp. s10-517, 2019.

[KXF16] E. Kodirov, T. Xiang, Z. Fu and S. Gong, “Person Re-Identification by Unsupervised
¢y Graph Learning,” in Proc. Comput. Vision-ECCV z2016: 14th Eur. Conf., pp. 178-195,

2016.

[KY19] Z. Kong and X. Yang, “Color image and multispectral image denoising using block
diagonal representation,” IEEE Trans. Image Process., vol. 28, pp. 4247-4259, 2019.

[LAK98] M. Lyons, S. Akamatsu, M. Kamachi and ]. Gyoba, “Coding facial expressions with
gabor wavelets,” in Proc. 3rd IEEE Int. Conf. Autom. Face Gesture Recognit., pp. 200-205,

1998.

[LB14] P. Di Lorenzo and S. Barbarossa, “Distributed estimation and control of algebraic

connectivity over random graphs” IEEE Trans. Signal Process., vol. 62, pp. 5615-5628, 2014.

[LDKO06] K.D. Lafterty, A. P. Dobson and A. M. Kuris, “Parasites dominate food web links,” in
Proc. Natl. Acad. Sci., vol. 103, pp. 11211-11216, 2006.

256



[LFL18] C. Lu, J. Feng, Z. Lin, T. Mei and S. Yan, “Subspace clustering by block diagonal
representation,” JEEE Trans. Pattern Anal. Mach. Intell., vol. 41, pp. 487-501, 2018.

[LFRO8] A. Lancichinetti, S. Fortunato and F. Radicchi, “Benchmark graphs for testing
community detection algorithms,” Phys. Rev. E, vol. 78, pp. 1373-1396, 2008.

[LG02] L.Lee, W. E. L. Grimson, “Gait analysis for recognition and classification,” in Proc. of 5th
IEEE Intl. Conf. Autom. Face Gesture Recog., pp. 155-162, 2002.

[LH18] J. Liu and J. Han, Data clustering, Chapman and Hall/CRC, pp. 177-200, 2018.

[LHNO6] E. A. Leicht, P. Holme and M. E. J. Newman, “Vertex similarity in networks,” Phys.
Rev. E, vol. 73, pp. 026120, 2006.

[LKJ20] L. Liu, L. Kuang and Y. Ji, “Multimodal MRI brain tumor image segmentation using
sparse subspace clustering algorithm,” Comput. Math. Methods Med., 2.020.

[LLBO8] L. Lacasa, B. Luque, F. Ballesteros, J. Luque and J. C. Nuno, “From time series to
complex networks: The visibility graph,” Proc. Natl. Acad. Sci., vol. 105, pp. 4972-497s5,

2,008.

[LLO20] Z.Liu, Z. Lai, W. Ou, K. Zhang and R. Zheng, “Structured optimal graph based sparse

feature extraction for semi-supervised learning” Signal Process., vol. 170, pp. 107456, 2020.

[LLY10] G.Liu,Z. Lin and Y. Yu, “Robust subspace segmentation by low-rank representation,”

Ieml., vol. 1, pp. 8, 2010.

[LLY12] G.Liu,Z. Lin, S. Yan, ]J. Sun, Y. Yu and Y. Ma, “Robust recovery of subspace structures
by low-rank representation,” JEEE Trans. Pattern Anal. Mach. Intell.,vol. 35, pp. 171-184,

2012.

[LLZ15] C. -G. Li, Z. Lin, H. Zhang and ]. Guo, “Learning semi-supervised representation
towards a unified optimization framework for semi-supervised learning,” in Proc. IEEE

Conf. Comp. Vision, pp. 2767-2775, 2015.

[LM14] A. Louis and K. Makarychev, “Approximation algorithm for sparsest k-partitioning” in
Proc. 25th Annu. ACM-SIAM Symp. Discrete Algoritms, pp. 1244-1255, 2014.

257



[LMZ12] C.-Y Lu, H. Min, Z. -Q. Zhao, L. Zhu, D. -S. Huang and S. Yan, “Robust and efficient
subspace segmentation via least squares regression,” in Proc. Eur. Conf. Comp. Vision, pp.

347-360, 2012.

[LNC18] Z. Li, F. Nie, X. Chang, L. Nie, H. Zhang and Y. Yang, “Rank-constrained spectral
clustering with flexible embedding,” JEEE Trans. Neural Networks Learn. Syst., vol. 29, pp.
6073-6082, 2018.

[LP19] J. Liu, and D. P. Palomar, “Regularized robust estimation of mean and covariance matrix

for incomplete data” IEEE Signal Process., vol. 165, pp. 278-291, 2019.

[LR99] T. Leighton and S. Rao, “Multicommodity max-flow min-cut theorems and their use in

designing approximation algorithms” /. ACM, vol. 46, pp. 787-832, 1999.

[LSB03] D. Lusseau, K. Schneider, O. J. Boisseau, P. Haase, E. Slooten, and S. M. Dawson,
“The bottlenose dolphin community of doubtful sound features a large proportion of long-

lasting associations,” Bebav. Ecol. Sociobiol., vol. 54, pp. 396-405, 2003.

[LSW16] Q. Liu, Y. Sun, C. Wang, T. Liu and D. Tao, “Elastic net hypergraph learning for image
clustering and semi-supervised classification,” IEEE Trans. Image Process., vol. 26, pp. 452-

463, 2016.

[LT09] J.LuandY.-P. Tan, “Regularized locality preserving projections and its extensions for face

recognition,” IEEE Trans. Syst. Man Cybern. Part B Cybern., vol. 40, pp. 958-963, 2009.

[Lux07] U. Von Luxburg, “A tutorial on spectral clustering,”Staz. Comput., vol. 17, pp. 395-416,

2007.

[LWI12] M. Lucifiska and S. T. Wierzchon, “Spectral clustering based on k-nearest neighbor
p g g
graph,” in Proc. Int. Conf. Comput. Inf. Syst. Ind. Manage., pp. 254-265, 2012.

[LWS20] M. Liu, Y. Wang, J. Sun and Z. Ji, “Structured block diagonal representation for
subspace clustering,” Appl. Intell., vol. so, pp. 2523-2536, 2020.

[LY11] G.LiuandS. Yan, “Latent low-rank representation for subspace segmentation and feature

extraction,” in Proc. Int. Conf. Comp. Vision, pp. 1615-1622, 2011.

258



[LZX20] W. Liang, S. Zhou, J. Xiong, X. Liu, S. Wang, E. Zhu, Z. Cai, X. Xu, “Multi-view
spectral clustering with high-order optimal neighborhood Laplacian matrix,” JEEE Trans.
Knowl. Data Eng., 2020.

[MB06] N. Meinshausen and P. Bithlmann, “High-dimensional graphs and variable selection
with the lasso,” Ann. Stat., vol. 34, pp. 1436-1462, 2006.

[MB10] N. Meinshausen and P. Bithlmann, “Stability selection,” /. R. Stat. Soc. Ser. B 7z, vol. 72,
pp- 417-473, 2010.

[MDD18] S. S. Mullick, S. Datta and S. Das, “Adaptive learning-based k-nearest neighbor

classifiers with resilience to class imbalance,” JEEE Trans. Neural Networks Learn. Syst., vol.
29, pPp- 5713-5725, 2018.

[MDG21] N. Monath, K. A. Dubey, G. Guruganesh, M. Zaheer, A. Ahmed, A. McCallum,
G. Mergen, M. Najork, M. Terzihan, B. Tjanaka, Y. Wang and W. Yuchen, “Scalable

Hierarchical Agglomerative Clustering,” in Proc. 27th ACM SIGKDD Conf. Knowl.
Discovery Data Min., pp. 1245-1255, 2021.

[MHI11] E. L. Martelot and C. Hankin, “Multi-scale community detection using stability as
optimization criterion in a greedy algorithm,” in Proc. Intl. Conf. Knowl. Discovery and Inf.

Retrieval, pp. 208-217, 2011.

[MH12] R. Mazumder and T. Hastie, “The graphical Lasso: New insights and alternatives”
Electron. J. Stat.,vol. 6, pp. 2125, 2012.

[MMY19] R. A. Maronna, R. D. Martin, V. J. Yohai and M. Salibidn-Barrera, Robust statistics:
theory and methods (with R), John Wiley & Sons, 2019.

[MVO20] J.Miettinen, S. A. Vorobyov, E. Ollila, “Modelling graph errors: Towards robust graph
signal processing,” Online-Edition: https://arxiv.org/abs/1903.08398, 2020.

[NC11] M. C. V. Nascimento and A. C. P. L. F. De Carvalho, “Spectral methods for graph

clustering-a survey,” Eur. J. Oper. Res., vol. 211, pp. 221-231, 2011.

[New03] M. E.]. Newman, “Random graphs as models of networks,” Handb. Graphs Networks,
vol. 1, pp. 35-68, 2003.

259



[New04] M. E. J. Newman, “Fast algorithm for detecting community structure in networks,”

Phys. Rev. E, vol. 69, pp. 066133, 2004.

[New06] M. E.]J. Newman, “Modularity and community structure in networks,” in Proc. Natl.

Acad. Sci., vol. 103, pp. 8577-8582, 2006.

[New06] M. E.]. Newman, “Finding community structure in networks using the eigenvectors of

matrices,” Phys. Rev. E, vol. 74, pp. 036104, 2006.

[Newl3] M.E.]. Newman, “Community detection and graph partitioning,” Europhys. Lett., vol.

103, p. 28003, 2013.
[Newl8] M. Newman, Networks, Oxford university press, 2018.

[NH11] B. Nasihatkon and R. Hartley, “Graph connectivity in sparse subspace clustering,” in
Proc. CVPR 2011, pp. 2137-2144, 2011.

[NHGI19] A. Nazi, W. Hang,A. Goldie, S. Ravi and A. Mirhoseini, “Gap:
Generalizable —approximate graph  partitioning framework,”  Online-Edition:

https://arxiv.org/abs/1903.00614, 2019.

[NJWO1] A.Y.Ng, M.I.Jordan andY. Weiss, “On spectral clustering: Analysis and an algorithm,”
Adv. Process. Neural Inf. Syst., vol. 14, pp. 849-856, 2001.

[NNM95] S. A. Nene, S. K. Nayar and H. Murase, “Columbia object image library (coil-20),”
1995.-

[NPC16] L. Naranjo, C. J. Perez, Y. Campos-Roca and J. Martin, “Addressing voice recording
replications for Parkinson’s disease detection,” Expert Syst. Appl., vol. 46, pp. 286-292, 2016.

[NRG19] A.Nguyen, N. Roth, N. H. Ghassemi,]. Hannink, T. Seel, J. Klucken, H. Gassner and
B. M. Eskofier, “Development and clinical validation of inertial sensor-based gait-clustering

methods in Parkinson’s disease,” /. NeuroEng. Rebabil., vol. 16, pp. 1-14, 2019.

[NWDI16] F. Nie, H. Wang, C. Deng, X. Gao, X. Li and H. Huang, “New ¢;-norm relaxations
and optimizations for graph clustering,” in Proc. 30th AAAI Conf. Artif. Intell., 2016.

[OFK18] A.Ortega, P. Frossard, J. Kovacevié, ].M.F. Moura and P. Vandergheynst, “Graph signal
processing: Overview, challenges, and applications,” Proc. IEEE, vol. 106, pp. 808-828,

2018.

260



[OP09] A.B.Owen and P. O. Perry, “Bi-cross-validation of the SVD and the nonnegative matrix
factorization,” Ann. Appl. Stat., vol. 3, pp. 564-594, 2009.

[OS05] P. Orponen and S. E. Schaefter, “Local clustering of large graphs by approximate Fiedler
vectors,”in Proc. Int. Work. Exp. Effic. Algorithms, pp. 524—533, 2005.

[OT14] E. Ollila, and D. E. Tyler, “Regularized A-estimators of scatter matrix” [EEE Trans.
Signal Process., vol. 62, pp. 6059-6070, 201 4.

[Ote05] M. Otero, “Application of a continuous wave radar for human gait recognition,” Signal

Process., Sens. Fusion, and larget Recog. X1V, I ntl. Soctety for Optics and Photonics, vol. 5809,
pp- 538-548, 2005.

[PEC19] B. Phipson, X. P. Er, A. N. Combes, T. A. Forbes, S. E. Howden, L. Zappia, H. -]. Yen,
K. T. Lawlor, L. J. Hale, J. Sun, E. Wolvetang, M. Takasato1, A. Oshlack and M. H. Little,
“Evaluation of variability in human kidney organoids,” Nat. Methods, vol. 16, pp. 79-87,

2019.

[PMO00] D. Pelleg and A. Moore, “X-means: Extending K-means with efficient estimation of the
number of clusters,” in Proc. 17th Int. Conf. Mach. Learn. (ICML), pp. 727-734 , 2000.

[PRE11] I Psorakis, S. Roberts, M. Ebden and B. Sheldon, “Overlapping community detection

using Bayesian non-negative matrix factorization,” Phys. Rev. E, vol. 83, p. 066114, 2011.

[PS82] C. C. Paige and M. A. Saunders, “Algorithm 583 LSQR: Sparse linear equations and least
squares problems,” ACM Transactions on Mathematical Software, vol. 8, pp. 195209,
1982.

[PWAI1S] C.Pradhan, M. Wuehr, F. Akrami, M. Neuhaeusser, S. Huth, T. Brandt, K. Jahn and R.
Schniepp, “Automated classification of neurological disorders of gait using spatio-temporal

gait parameters,” /. Electromyography and Kinesiology, vol. 25, pp. 413-422, 2015.

[PYT15] X. Peng, Z. Yi and H. Tang, “Robust subspace clustering via thresholding ridge
regression,” in Proc. AAAI Conf. Artif. Intell., vol. 29, 2015.

[PZ18] S.Parkand H. Zhao, “Spectral clustering based on learning similarity matrix,” Bioznf., vol.
34, pp. 2069-2076, 2018.

261



[QWZ21] Y. Qin, H. Wu, X. Zhang and G. Feng, “Semi-Supervised Structured Subspace
Learning for Multi-View Clustering,” IEEE Trans. Image Process., vol. 31, pp. 1-14, 2021.

[RA17] M. Rahmani and G. K. Atia, “Innovation pursuit: A new approach to subspace
clustering,” IEEE Trans. Signal Process., vol. 65, pp. 6276-6291, 2017.

[Ras99] C. Rasmussen, “The infinite Gaussian mixture model,” Adv. Neural Inf. Process. Syst.,

vol. 12, 1999.

[RB90] P.]J.Rousseeuw and G. W. Bassett, “The remedian: A robust averaging method for large
data sets”, Journal of the American Statistical Association, vol 85, pp. 97-104, 1990.

[RB18] P.]J. Rousseeuw and V. D. W. Bossche, “Detecting deviating data cells,” Technometrics,
vol. 6o, pp. 135-145, 2018.

[RLOS] P.J.Rousseeuw and A. M. Leroy, Robust regression and outlier detection, John Wiley, vol.
589, 2005.

[ROKI12] S. A. Razavi, E. Ollila, V. Koivunen, “Robust greedy algorithms for compressed
sensing,” Proc. of the 20th European Signal Process. Conf., pp. 969-973, 2012.

[RS00] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear

embedding,” Scz., vol. 290, pp. 2323-2326, 2000.

[RSB11] A.R.Rocha Neto, R. Sousa, G. A. Barreto and J. S. Cardoso, “Diagnostic of pathology
on the vertebral column with embedded reject option,” in Proc. Iberian Conf. Pattern

Recognit. Image Anal., pp. $88-595, 2011.

[RTVO08] S. R. Rao, R. Tron, R. Vidal and Y. Ma, “Motion segmentation via robust subspace
separation in the presence of outlying, incomplete, or corrupted trajectories,” in Proc. IEEE

Conf. Comput. Vision Pattern Recognit., pp. 1-8, 2008.

[SAZ19] A.-K. Seifert, M. Amin and A. M. Zoubir, “Toward unobtrusive in-home gait analysis
based on radar micro-Doppler signatures,” IEEE Trans. Biomed. Eng., vol. 66, pp. 1-11,

2019.

[SBH16] C. Schulz, S. K. Bayer, C. Hess, C. Steiger, M. Teichmann, J. Jacob, F. Bernardes-lima,
R. Hangu and S. Hayrapetyan, “Course notes: Graph partitioning and graph clustering in

theory and practice,” Karlsrube Inst. Technol., 2016.

262



[SCB14] S. Sobolevsky, R. Campari, A. Belyi and C. Ratti, “General optimization technique for
high-quality community detection in complex networks,” Phys. Rev. E, vol. 9o, pp. 012811,

2014.
[Sch07] S. E. Schaeffer, “Graph clustering,” Comput. Sci. Rev., vol. 1, pp. 27-64, 2007.

[SD11] S. Sarkar and A. Dong, “Community detection in graphs using singular value
decomposition,” Phys. Rev. E, vol. 83, pp. 046114, 2011.

[SGY15] M. Stephen, C. Gu and H. Yang, “Visibility graph based time series analysis,” P/oS One,

vol. 10, pp. eo143015, 2015.

[SH94] F.S. Samaria and A. C. Harter, “Parameterisation of a stochastic model for human face

identification,” in Proc. IEEE Int. Workshop Appl. Comput. Vision, pp. 138-142, 1994.

[SHR14] B.Y. Su, K. C. Ho, M. J. Rantz and M. Skubic, “Doppler radar fall activity detection
using the wavelet transform,” IEEE Trans. Biomed. Eng., vol. 62, pp. 865-875, 2014.

[Sil00] J.R. Silvester, “Determinants of block matrices”, Math. Gazz., vol 84, pp. 460-467, 2.000.

[SLL19] J. Sui, Z. Liu, L. Liu, A. Jung, T. Liu, B. Peng and X. Li, “Sparse subspace clustering for
evolving data streams,” in Proc. IEEE Int. Conf. Acoust. Speech Signal Process.(ICASSP), pp.

745577459, 2019.

[SMO0O0] ]J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 22, pp. 888-905, 2000.

[SM21] C. A.Schroth and M. Muma, “Robust M-estimation based bayesian cluster enumeration
for real elliptically symmetric distributions,” JEEE Trans. Signal Process., vol. 69, pp. 3525-

3540, 2021.

[SPG17] A.Saxena, M. Prasad, A. Gupta, N. Bharill, O. P. Patel, A. Tiwari, M. ]. Er, W. Ding and
C. -T. Lin, “A review of clustering techniques and developments,” Nexrocomput., vol. 267,

pp- 664-681, 2017.
[Spil2] D. Spielman, Spectral graph theory, CRC Press Boca Raton, 2012.

[SR19] E. Schubert and P. J. Rousseeuw, “Faster k-medoids clustering: improving the PAM,
CLARA, and CLARANS algorithms,” in Proc. Int. Conf. Similarity Search Appl., pp. 171-
187, 2019.

263



[SSS19] S. Sarfraz, V. Sharma and R. Stiefelhagen, “Efficient parameter-free clustering using first
neighbor relations,” in Proc. of the IEEE Conf. Comp. Vision Pattern Recog., pp. 8934-8943,

2019.

[ST96] D. A. Spielman and S. -Hua Teng, “Spectral partitioning works: Planar graphs and finite
element meshes”, in Proc. 3 7th Conf. Found. Comput. Sci., pp. 96-105, 1996.

[ST07] D. A. Spielman and S. -H. Teng, “Spectral partitioning works: Planar graphs and finite
element meshes,” in Linear Algebra Appl., vol. 421, pp. 284-305, 2007.

[Ste98] G. W. Stewart, Matrix Algorithms: Volume I Basic Decompositions, Society for Industrial
and Applied Mathematics, 1998.

[Ste01] G. W. Stewart, Matrix Algorithms: Volume II Eigensystems, Society for Industrial and
Applied Mathematics, 2001.

[Ste02] G. W. Stewart, “A Krylov—Schur algorithm for large eigenproblems”, SIAM Journal on
Matrix Analysis and Applications, vol. 23, pp. 601-614, 2002.

[SVB01] S. Shahbazpanahi, S. Valaece and M. H. Bastani, “Distributed source localization using
ESPRIT algorithm,” IEEE Trans. Signal Process., vol. 49, pp. 2169-2178, 2001.

[SWH89] V. G.Sigilitto, S. P. Wing, L. V. Hutton and K. B. Baker, “Classification of radar returns
from the ionosphere using neural networks,” Jobns Hopkins APL Tech. Dig., vol. 10, pp.
262-266, 1989.

[SY20] K. P. Sinaga and M. -S. Yang, “Unsupervised K-means clustering algorithm,” JEEE access,
vol. 8, pp- 80716-80727, 2020.

[SZL19] D. Shi, L. Zhu, Y.Li,]. Liand X. Nie, “Robust structured graph clustering,” JEEE Trans.
Neural Networks Learn. Syst., vol. 31, pp. 4424-4436, 2019.

[TD20] E. Tam and D. Dunson, “Fiedler regularization: Learning neural networks with graph

sparsity” 2020. [Online]. Available: https://arxiv.org/abs/2003.00992

[THW16] Q. Tao, X. Huang, S. Wang, X. Xi and L. Li, “Multiple Gaussian graphical estimation
with jointly sparse penalty,” Signal Process., vol. 128, pp. 88-97, 2016.

264



[TMO23] A. Tagtan, M. Muma, E. Ollila and A. M. Zoubir, “Sparsity-aware block diagonal
representation for subspace clustering,” in in Proc. 30th European Signal Process. Conf.

(submitted), 2023.

[TMZ18] F. K. Teklehaymanot, M. Muma and A. M. Zoubir, “Bayesian cluster enumeration
criterion for unsupervised learning,” JEEE Trans. Signal Process., vol. 66, pp. §392-5406,

2018.

[TMZ20] A. Tagtan, M. Muma and A. M. Zoubir, “An unsupervised approach for graph-based

robust clustering of human gait signatures,” in Proc. 2020 IEEE Radar Conf., pp. 1-6, 2020.

[TMZ21] A. Tagtan, M. Muma and A. M. Zoubir, “Sparsity-aware Robust Community

Detection,” Signal Process., vol. 187, pp. 108147, 202.1.

[TMZ21] F. K. Teklehaymanot, M. Muma and A. M. Zoubir, “Robust Bayesian cluster

enumeration based on the t distribution,” Signal Process., vol. 182, p. 107870, 2021.

[TMZ21] A. Tagtan, M. Muma and A. M. Zoubir, “Robust Spectral Clustering: A Locality
Preserving Feature Mapping Based on M-estimation,” in Proc. z 9th European Signal Process.

Conf., pp. 851-855, 2021.

[TMZ22] A. Tagtan, M. Muma and A. M. Zoubir, “Eigenvalue-Based Block Diagonal
Representation and Application to p-Nearest Neighbor Graphs,” in Proc. 30th European
Signal Process. Conf., pp. 1761-1765, 2022.

[TMZ22] A. Tagtan, M. Muma and A. M. Zoubir, “Robust regularized locality preserving

indexing for Fiedler vector estimation,” Signal Process. (accepted), 2022.

[TMZ23] A.Tagtan, M. Muma and A. M. Zoubir, “Fast and robust sparsity-aware block diagonal
representation,” JEEE Trans. Signal Process. (submitted), 2023.

[TSM18] F. K. Teklehaymanot, A. -K. Seifert, M. Muma, M. G. Amin and A. M. Zoubir,
“Bayesian target enumeration and labeling using radar data of human gait,” in Proc. 26th
European Signal Process. Conf. (EUSIPCO), pp. 1342-1346, 2018.

[TV17] M. C. Tsakiris and R. Vidal, “Filtrated algebraic subspace clustering,” SIAM J. Imag. Sci.,
vol. 10, pp. 372-415, 2017.

265



[TV17] M. C. Tsakiris and R. Vidal, “Algebraic clustering of affine subspaces,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 40, pp. 482-489, 2017.

[TWS15] K. M. Tan, D. Witten and A. Shojaie, “The cluster graphical Lasso for improved
estimation of Gaussian graphical models,” Comput. Stat. Data Anal., vol. 8s, pp. 23-36,

2015.

[TWS19] T.Tian,]. Wan, Q. Song and Z. Wei, “Clustering single-cell RNA-seq data with a model-
based deep learning approach,” Nat. Mach. Intell., vol. 1, pp. 191-198, 2019.

[UST09] T.Uno, M. Sugiyama and K. Tsuda, “Efficient construction of neighborhood graphs by

the multiple sorting method,” Online-Edition: https://arxiv.org/abs/0904.3151, 2009.

[WBH15] F. Wahid, R. K. Begg, C. J. Hass, S. Halgamuge and D. C. Ackland, “Classification
of Parkinson’s disease gait using spatial-temporal gait features,” JEEE J. Biomed. Health
Informat., vol. 19, pp. 1794-1802, 2015.

[Wes01] D. B. West, Introduction to graph theory, Prentice hall, 2001.

[WHGI1S5] F. Wu, Y. Hu, J. Gao, Y. Sun and Yin. B, “Ordered subspace clustering with block
diagonal priors,” IEEE Trans. Cybern., vol. 46, pp. 3209-3219, 2015.

[WLW18] Z. Wang, Z. Li, R. Wang, F. Nie and X. Li, “Large graph clustering with simultaneous
spectral embedding and discretization,” JEEE Trans. Pattern Anal. Mach. Intell., vol. 43,

Pp- 4426-4440, 2020.

[WM89] W. H. Wolberg and O. L. Mangasarian, “Multisurface method of pattern separation
applied to breast cytology diagnosis,” in Proc. Natl. Acad. Sci, vol. 87, pp. 9193-9196, 1989.

[WMMI10] ]J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang and S. Yan, “Sparse representation

for computer vision and pattern recognition,” Proc. IEEE, vol. 98, pp. 1031-1044, 2010.

. K. Wagner, S. M. Peres, R. C. B. Madeo, C. A. M. Lima and F. A. Freitas, “Gesture
WPM14| P. K. Wag S.M.P R. C.B. Madeo, C.A.M. L dF. A F “G
unit segmentation using spatial-temporal information and machine learning,”in Proc. 2 7th

Int. Flairs Conf., pp. 101-106, 2014.

[WQD14] X. Wang, B. Qian and I. Davidson, “On constrained spectral clustering and its
applications,” Data Min. Knowl. Discovery, vol. 28, pp. 1-30, 2014.

266



[WSR14] F.Wang, M. Skubic, M. Rantzand P. E. Cuddihy, “Quantitative gait measurement with

pulse-Doppler radar for passive in-home gait assessment,” JEEE Trans. Biomed. Eng., vol.

01, pp. 2434-2443, 2014.

[WYGO08] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry and Y. Ma, “Robust face recognition via
sparse representation,” I[EEE Trans. Pattern Anal. Mach. Intell.,vol. 31, pp. 210-227 , 2008.

[WZW17] J. Wang, K. Zhang, P. Wang, K. Madani and C. Sabourin, “Unsupervised band
selection using block diagonal sparsity for hyperspectral image classification,” JEEE Trans.

Geosci. Remote Sens. Lett., vol. 14, pp. 2062-2066, 2017.

[XGO08] T.XiangandS. Gong, “Spectral clustering with eigenvector selection,” Pattern Recognit.,

vol. 41, pp. 1012-1029, 2008.

[XGL17] X.Xie, X. Guo, G. Liuand J. Wang, “Implicit block diagonal low-rank representation,”
1EEE Trans. Image Process., vol. 27, pp. 477-489, 2017.

[XGZ71] K. Xia, X. Gu and Y. Zhang, “Oriented grouping-constrained spectral clustering for

medical imaging segmentation,” Multimedia Syst., vol. 26, pp. 27-36, 2020.

[XT15] D. Xu and Y. Tian, “A comprehensive survey of clustering algorithms,” Ann. Data Sci.,
vol. 2, pp. 165-193, 2015.

[XTX15] S.Xiao, M. Tan, D. Xuand Z.Y. Dong, “Robust kernel low-rank representation,” JEEE
Trans. Neural Networks Learn. Syst., vol. 27, pp. 2268-2281, 2015.

[XWW21] C.Xing, M. Wang, Z. Wang, C. Duan and Y. Liu, “Diagonalized Low-Rank Learning
for Hyperspectral Image Classification,” IEEE Trans. Geosci. Remote Sens., vol. 6o, pp. 1-12,

2021I.

[YAI19] M. K. Yontem, K. Adem, T. Ilhan and S. Kiligarslan, “Divorce prediction using
correlation based feature selection and artificial neural networks,” /. Nevsehir Hact Bektas

Veli University SBE, vol. 9, pp. 259-273, 2019.

[YCL20] C.Yan, X. Chang, M. Luo, Q. Zheng, X. Zhang, Z. Liand F. Nie, “Self-weighted robust
LDA for multiclass classification with edge classes,” ACM Trans. Intell. Syst. Technol., vol.

12, pp. I-19, 2020.

267



[YFG10] P. Yang, R. A. Freeman, G. J. Gordon, K. M. Lynch, S. S. Srinivasa and R. Sukthankar,
“Decentralized estimation and control of graph connectivity for mobile sensor networks”

Autom., vol. 46, pp. 390-396, 2010.

[YH]J20] S. Yazdanparast, T. C. Havens and M. Jamalabdollahi, “Soft overlapping community
detection in large-scale networks via fast fuzzy modularity maximization,” IEEE Trans.

Fuzzy Syst., vol. 29, pp. 1533-1543, 2020.

[YLO7] M. Yuan and Y. Lin, “Model selection and estimation in the Gaussian graphical model”,

Biometrika, vol. 94, pp. 19-35, 2007.

[YL15] J. J. Yang and ]. Leskovec, “Defining and evaluating network communities based on

groundtruth,” Knowl. Inf. Syst., vol. 42, pp. 181-213, 2015.

[YLR16] C. You, C. -G. Li, D. P. Robinson and R. Vidal, “Oracle based active set algorithm
for scalable elastic net subspace clustering,” in Proc. IEEE Conf. Comput. Vision Pattern
Recognit., pp. 3928-3937, 2016.

[YTL06] W. Yu, X. Teng and C. Liu, “Face recognition using discriminant locality preserving

projections,” in Image Vision Comput., vol. 2.4, pp. 239-248, 2006.

[YYZ19] X. Yang, H. Yang, F. Zhang, L. Zhang, X. Fan, Q. Ye and L. Fu, “Piecewise linear
regression based on plane clustering,” IEEE Access, vol. 7, pp. 29845-29855, 2019.

[Zac77] W. W. Zachary, “An information flow model for conflict and fission in small groups,” /.
Anthropological Res.,vol. 33, pp. 452-473, 1977.

[ZCS19] R. Zhou, X. Chang, L. Shi, Y.-D. Shen, Y. Yang and F. Nie, “Person reidentification via
multi-feature fusion with adaptive graph learning,”/EEE Trans. Neural Networks Learn.

Syst., vol. 31, pp. 1592-1601, 2019.

[Zha71] C. T. Zahn, “Graph-theoretical methods for detecting and describing gestalt clusters,”
IEEE Trans. Comput., vol. 100, pp. 68-86, 1971.

[Zhu08] X. Zhu, “Semi-supervised learning literature survey,” Comput. Sci., vol. 37, pp. 63-67,

2,008.

268



[ZKC12] A. M. Zoubir, V. Koivunen, Y. Chakhchoukh and M. Muma, “Robust estimation in
signal processing: A tutorial-style treatment of fundamental concepts,”in PIEEE Signal

Process. Mag., vol. 29, pp. 61-80, 2012.

[ZKO18] A. M. Zoubir, V. Koivunen, E. Ollila and M. Muma, Robust statistics for signal

processing, Cambridge, 2018.

[ZP04] L.Zelnik-Manor and P. Perona, “Self-tuning spectral clustering,” Adv. Neural Inf. Process.
Syst., vol. 17, 2004.

[ZPWO07] Z.Zhang, P. Pouliquen, A. Waxman and A. G. Andreou, “Acoustic micro-Doppler gait
signatures of humans and animals,” in 415t Annual Conf. Inf. Sci. and Syst., pp. 627-630,

2007.

[ZR15] M. E. Zhukovskii and A. M. Raigorodskii, “Random graphs: models and asymptotic

characteristics,” Russ. Math. Surv., vol. 7o, pp. 33, 2015.

[ZXS17] Z. Zhang, Y. Xu, L. Shao and ]. Yang, “Discriminative block diagonal representation
learning for image recognition,” JEEE Trans. Neural Networks Learn. Syst., vol. 29, pp.

3111-3125, 2017.

[ZZL18] X.Zhu, S. Zhang, Y. Li, J. Zhang, L. Yang and Y. Fang, “Low-rank sparse subspace for
spectral clustering,” JEEE Trans. Knowl. Data Eng., vol. 31, pp. 1532-1543, 2018.

[ZZ1.18] Y. Zhu, C.Zhuand X. Li, “Improved principal component analysis and linear regression

classification for face recognition,” Signal Process., vol. 145, pp. 175-182, 2018.

[ZZP17] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso and A. Torralba, “Scene parsing
through ADE20K dataset,”in Proc. Conf. Comput. Vision Pattern Recognit., pp. 633-641,

2017.



Erkléirungen laut Promotionsordnung

§ 8 ABs. 1 LIT. c PRoMO

Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der schriftlichen

Version tibereinstimmt.

§ 8 ABs. 1 LIT. D PROMO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht
wurde. In diesem Fall sind nihere Angaben iber Zeitpunkt, Hochschule, Dissertationsthema und

Ergebnis dieses Versuchs mitzuteilen.

§ 9 ABs. 1 PRoMO

Ich versichere hiermit, dass die vorliegende Dissertation selbststindig und nur unter Verwendung

der angegebenen Quellen verfasst wurde.

§ 9 ABS. 2 PRoMO

Die Arbeit hat bisher noch nicht zu Priffungszwecken gedient.

Darmstadt, 27.03.2023

Aylin Tagtan



Name:
Date of birth:
Place of birth:

EpucaTtionNn

08/2016-11/2018

09/2012 - 06/2016

09/2008 - 06/2012

WoRK EXPERIENCE

since 04/2019

04/2022 - 05/2022

10/2016 - 04/2018

Curriculum Vitae

Aylin Tagtan
31.03.1994
Ankara, Turkey

Gazi University, Turkey
Electrical and Electronics Engineering
Master of Science (M.Sc.)

Gazi University, Turkey
Electrical and Electronics Engineering
Bachelor of Science (B.Sc.)

Dr. Binnaz - Ridvan Ege Anatolian Highschool, Turkey

Research Associate
Signal Processing Grou
Technische Universitit Darmstadt, Germany

Visiting Ph.D. Student

Department of Information and Communications
Engineering

Aa?to University, Finland

Research Associate
Dell)(artment of Electrical and Electronics Engineering
Bagkent University, Turkey



	Introduction
	Motivation
	State-of-the-Art
	Aims and Contributions
	Dissertation Overview

	Fundamentals of Graph Theory
	Basic Definitions
	Similarity Measures for Affinity Matrix Construction
	Spectral Graph Theory
	The Laplacian Matrix
	Eigen-decomposition of the Laplacian Matrix
	Fiedler Value and Algebraic Connectivity

	Graph Partitioning and Clustering
	The Graph Partitioning Problem
	Clustering as Graph Partitioning
	Modularity
	Conductance

	Spectral Methods for Graph Clustering
	Unnormalized Spectral Clustering

	Sparse Graphs
	Sparse Affinity Matrix Construction Methods
	Block Diagonal Representation (BDR)


	Sparse Graph Models for Ideal Partitioning
	Theoretical Design of the Sparse Graph Model
	Spectral Analysis of the Sparse Graph Model
	Laplacian Matrix of the Sparse Graph Model
	Eigenvalues for the Sparse Graph Model
	Eigenvectors for the Sparse Graph Model
	Simplifying Laplacian Matrix Analysis of the Sparse Graph Model

	Adapting Sparse Graphs to Sparsity-Aware Clustering
	Sparsity-Aware Clustering based on Spectral Properties of the Sparse Graph Model
	Eigenvalue-based Sparsity Level Control for Clustering
	Introduction
	Problem Formulation
	Methodology
	Experimental Results
	Summary

	Eigenvector-based Sparsity Level Control for Clustering
	Introduction
	Motivation : DBSCAN for Robust Spectral Analysis
	Problem Formulation
	Methodology
	Experimental Results
	Summary



	Outliers in Graph Clustering and Robust Solutions
	Determining Fundamental Outlier Types for Graph-based Clustering
	Type I Outliers
	Type II Outliers
	Group Similarity

	Outlier Effects on Sparse Graphs
	Outlier Effects on Affinity Matrix
	Outlier Effects on Overall Edge Weights
	Outlier Effects on Eigenvalues
	Type I Outliers' Effect on Eigenvalues
	Type II Outliers' Effect on Eigenvalues
	Group Similarity Effect on Eigenvalues

	Outlier Effects on Eigenvectors
	Type I Outliers' Effect on Eigenvectors
	Type II Outliers' Effect on Eigenvectors
	Group Similarity Effect on Eigenvectors

	Outlier Effects on Simplified Laplacian Matrix Analysis
	Type I Outliers' Effect on Simplified Laplacian Matrix Analysis
	Type II Outliers' Effect on Simplified Laplacian Matrix Analysis
	Group Similarity Effect on Simplified Laplacian Matrix Analysis


	Sparsity and Outlier Occurrence
	Robust Graph-based Clustering Methods
	Robust and Sparsity-Aware Affinity Matrix Construction Methods
	Sparsity-Aware Robust Community Detection
	Fast and Robust Sparsity-Aware Block Diagonal Representation

	Robust Eigenvector Estimation Methods
	Robust Regularized Locality Preserving Indexing for Fiedler Vector Estimation
	Robust Spectral Clustering: A Locality Preserving Feature Mapping Based on M-estimation

	Outlier Detection based on Vertex Degree and Application to Gait Analysis
	Introduction
	Problem Formulation
	Proposed Algorithm
	Experimental Results
	Conclusions



	Conclusion and Outlook
	Summary and Conclusion
	Future Research Directions
	Assumptions on Sparse Graph Model
	Fundamental Outlier Types in Random Graphs
	Robust Graph-based Clustering for Large Graphs
	Time-Series Analysis Applications based on Visibility Graphs


	Appendix Proofs and Additional Theoretical Information
	Spectral Analysis of the Sparse Graph Model
	Generalized Eigen-decomposition based Analysis
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Standard Eigen-decomposition based Analysis

	Outlier Effects on Sparse Graph Model
	Generalized Eigen-decomposition based Analysis
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Preposition 4.2.1
	Proof of Preposition 4.2.2
	Proof of Preposition 4.2.3
	Proof of Theorem 6
	Proof of Theorem 7
	Proof of Corollary 7.1

	Standard Eigen-decomposition based Analysis
	Type II Outliers' Effect on Eigenvalues
	Group Similarity Effect on Eigenvalues


	Outlier Effects on the Fiedler Vector
	Proof of Preposition 4.4.1
	Proof of Preposition 4.4.2


	Theoretical Analysis of RRLPI
	Proof of Theorem 9
	Proof of Theorem 10
	Proof of Corollary 10.1


	Auxiliary Information
	The Generalized Matrix Determinant Lemma
	Moore-Penrose Inverse of Weighted Data Matrix


	Appendix Additional Information for Robust Graph Clustering Methods
	Additional Information for SPARCODE
	Scenario 1
	Scenario 2

	Additional Information for FRS-BDR
	Visual Summary of FRS-BDR
	Sparse Laplacian Matrix Analysis
	Computational Complexity Analysis
	Additional Algorithms
	Experimental Setting and Additional Experimental Results
	Experimental Setting
	Additional Experimental Results


	Additional Information for RRLPI
	Experimental Setting
	Additional Results for Synthetic Data Sets
	Additional Results for Cluster Enumeration
	Additional Results for Image Segmentstion


	List of Acronyms
	List of Notation & Symbols
	List of Figures
	List of Tables
	References

