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In recent years, deep neural networks for strategy games have made significant

progress. AlphaZero-like frameworks which combine Monte-Carlo tree search

with reinforcement learning have been successfully applied to numerous games

with perfect information. However, they have not been developed for domains

where uncertainty and unknowns abound, and are therefore often considered

unsuitable due to imperfect observations. Here, we challenge this view and argue

that they are a viable alternative for games with imperfect information—a domain

currently dominated by heuristic approaches or methods explicitly designed for

hidden information, such as oracle-based techniques. To this end, we introduce a

novel algorithm based solely on reinforcement learning, called AlphaZe∗∗, which

is an AlphaZero-based framework for games with imperfect information. We

examine its learning convergence on the games Stratego and DarkHex and show

that it is a surprisingly strong baseline, while using a model-based approach: it

achieves similar win rates against other Stratego bots like Pipeline Policy Space

Response Oracle (P2SRO), while not winning in direct comparison against P2SRO

or reaching the much stronger numbers of DeepNash. Compared to heuristics

and oracle-based approaches, AlphaZe∗∗ can easily deal with rule changes, e.g.,

when more information than usual is given, and drastically outperforms other

approaches in this respect.

KEYWORDS

imperfect information games, deep neural networks, reinforcement learning, AlphaZero,

Monte-Carlo tree search, perfect information Monte-Carlo

1. Introduction

Neural networks combined with Monte-Carlo Tree Search (MCTS) have become

standard in many games with perfect information such as chess and Go, but have been less

successfully applied to games with imperfect information (Brown et al., 2020). AlphaZero

and its predecessor AlphaGo mark a breakthrough in this area by showing that it is possible

to learn a game with perfect information from zero to human level (or even beyond) by

combining reinforcement learning (RL) with MCTS (Silver, 2017).

However, it is not possible to apply this type of method directly to games with imperfect

information, since the planning is based on a perfectly observable environment. In recent

years, projects like AlphaStar (Vinyals et al., 2019), OpenAI Five (Berner et al., 2019), and

Pluribus (Brown and Sandholm, 2019) demonstrated that games with imperfect information

can be learned and played with great computational effort and in a short time up to the
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human level and beyond. One challenge of many current state-of-

the-art methods is dealing with the unknown. For some, it is not

clear if they converge to a Nash equilibrium or if they just aim to

develop strong strategies.

To provide a flexible but strong foundation, we introduce

the AlphaZero-like framework AlphaZe∗∗1 for imperfect

information games, which allows us to easily adapt frameworks

for perfect information games such as AlphaZero (Silver, 2018)

and CrazyAra (Czech et al., 2020), building bridges between

current successes in the field of perfect information games and

the unpredictability of hidden information. To achieve this, we

stay true to the model-based nature of AlphaZero and focus on

the planning algorithm. We replace MCTS in AlphaZero with our

own adaptation of Perfect Information Monte-Carlo (Levy, 1989)

(PIMC) because, among other reasons, its memory consumption

scales better with the action and state spaces than similar methods

such as Counterfactual Regret Minimization (Long et al., 2010)

and it remains similar to MCTS, making it easier to adapt further

methods. We call our adaptation Policy Combining PIMC (PC-

PIMC), merging the results of multiple searches into one policy.

We also make use of a technique we call TrueSight Learning (TSL)

which improves learning performance in early stages of zero-

knowledge training. Brown et al. (2020) claim that methods such as

AlphaZero are not sound in imperfect information environments

because the value of an action may depend on the probability that it

will be chosen. In chess, for example, a good move is good whether

it is played or not, but in games like poker, where players can bluff,

this is not the case. We tackle this problem by encoding the hidden

information in the input representation within the process.

Following a model-based approach is a sensible idea for

situations with imperfect information. Indeed, one may consider

using a model-free approach such as DQN (Mnih et al., 2015) or

DeepNash (Perolat et al., 2022). However, they arguably require

more samples than model-based approaches. In turn, they are

rather expensive and likely to underperform on large problems.

This is where model-based approaches can show one of their

biggest advantages: sample efficiency. For instance, Fujita and

Ishii (2007) demonstrate this “model efficiency” for POMDPs:

adding a model reduces the number of samples required to

deal with imperfect information. AlphaZe∗∗, however, builds

upon AlphaZero (and in turn MDPs and not POMDPs) to be

more efficient, turning imperfect state information into perfect

information via sampling. This makes AlphaZe∗∗ especially strong

when agents have the option to gather more and more information

while acting in the environment—the game becomes more and

more a perfect information game. The above describes a handful

of real-world situations where you don’t have all the information

you need to make an important decision, but you can use actions to

explore and gain information that you can then use to make better

decisions.

In order to evaluate AlphaZe∗∗, we looked at certain games that

are considered imperfect information games with deterministic

actions and that have the possibility of gaining information during

the game. We used the well-known board game Stratego and its

1 The ∗∗ indicate that AlphaZe∗∗ is a version of AlphaZero for imperfect

information games.

smaller variant Barrage Stratego.2 To this end, we introduce an

open-source environment for both games, based on and compatible

with the OpenSpiel collection (Lanctot et al., 2019). Furthermore,

we tested AlphaZe∗∗ on Hex and its imperfect version DarkHex,

for which we used slightly adapted versions of the already existing

OpenSpiel versions. The empirical results show that AlphaZe∗∗

is indeed able to learn both imperfect information games from

zero knowledge and beats most of the existing agents for Barrage

Stratego. This clearly shows the benefit of our arguable simple

approach: advantaged of and developments for AlphaZero carry

over from perfect to imperfect information games. For instance, as

our experimental results demonstrate, AlphaZe∗∗ easily adapts to

changes to the environment such as removing actions.

To summarize, in contrast to common belief, AlphaZero can

easily be lifted to imperfect information games, e.g., via sampling,

resulting in a strong baseline, AlphaZe∗∗, beating four state-of-

the-art baselines specialized for the imperfect information game

Barrage Stratego, loosing only to P2SRO, but dealing much better

with, e.g., changes to the environment. In short, AlphaZe∗∗ works

surprisingly well.

We proceed as follows: First, we review related work and give

a short introduction into ML for board games. Then we explain

how we use our new approaches in a reinforcement learning

environment. We describe the application and give a detailed

analysis of the empirical results. Finally, we discuss the results and

give a conclusion and an outlook on possible future work.

2. Related work

2.1. AlphaZero and Monte-Carlo tree
search

In 2017, DeepMind introduced AlphaZero (Silver, 2017, 2018),

a system that teaches itself games from scratch and can beat

current grandmasters or world champions in games like chess,

shogi, and Go. AlphaZero, showed great success in games with

perfect information, demonstrating a large improvement over the

dominant strategy of minimax search for so-called two-person

zero-sum games (2p0s), which are defined as games with the

following two conditions: |N| = 2 and u1(z) = −u2(z), meaning

that if one player gets a reward, their opponent has to loose

the same amount. In such games, each specific information state

is given a specific value that attempts to estimate the reward

of that position from the player’s perspective. Three years later,

CrazyAra (Czech et al., 2020) was introduced, an open-source

engine for training neural networks for a variety of chess variants

inspired by AlphaZero. It offers several network architectures,

including the mobile RISEv2 that we used in this work. Currently,

it is the strongest agent in the chess variant Crazyhouse.

A key element of these successes is the combination of

reinforcement learning with Monte-Carlo Tree Search (MCTS;

Kocsis and Szepesvári, 2006). At each time step or move, MCTS

simulates a number of move trajectories from the current game

state s. Action selection is based on the Upper Confidence Bounds

2 Stratego is a trademark of Jumbo Games, and is used in this publication

for informational purposes only.
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for Trees (Rosin, 2011) scheme to balance exploitation and

exploration, using the current weights of fθ . The difference between

MCTS and Minimax Search lies in the way these algorithms build

their search trees. While Alpha-Beta Pruning, an optimized version

of Minimax Search, uses exhaustive search with a limited depth,

MCTS simulates sampling with a much higher depth or until a

final state is reached, not using an exhaustive search, which gives a

better approximation of the outcome, i.e., the reward for our agents.

Looking at recent results in the Top Chess Engine Championships,

which can be seen as the World Computer Chess Championships,

LCZero, an open source engine similar to AlphaZero, has been able

to reach or win the finals very reliably in recent years.

2.2. Sampling imperfect information sets
for MCTS

MCTS, as mentioned previously, is a technique which has been

quite successfully applied on many games with a focus on two-

player zero-sum perfect information games, leading to considerable

advances in this field as demonstrated on games like Go, shogi,

or chess. In recent years, some adaptations were developed to

use the benefits of MCTS on games and problems with imperfect

information.

Perfect Information Monte-Carlo (PIMC) is an approach

based on the successes of MCTS in perfect information games,

trying to adapt it to imperfect information games by reducing

an imperfect information game to samples of perfect information

games. This process is called determinization. These samples

are then analyzed by classic MCTS. Despite some criticism and

theoretical disadvantages and problems, which we will also discuss

in Section 4.3, it shows some success in a wide variety of domains.

Such a game where PIMC is still state of the art is Bridge. In this

work, we will use PIMC as the primary sampling method due to its

simplicity.

Another method that tackles the problem of uncertainty is

Information Set MCTS (ISMCTS; Cowling et al., 2012), which

constructs a game tree with each node representing an information

set instead of a specific board position. Edges correspond to actions

between information sets from the point of view of the player who

plays them if we treat all moves as fully observable. This makes

the computation less budget-heavy and improves the decision-

making process compared to other methods like determinization.

Adaptations of ICMCTS, such Many-Tree ISMCTS (Cowling et al.,

2015) and Semi ISMCTS (Bitan and Kraus, 2017) advance the idea

of ISMCTS. In particular, Semi ISMCTS, which tries to combine the

advantages of PIMC and ISMCTS, could be interesting for future

work. However, due to their complexity and their distance from the

classical MCTS, they contradict our idea of a simple adaptation.

2.3. Pipeline policy-space response oracle
and DeepNash

Stratego is often cited as an example of imperfect games.

Here players have no information about their opponents at the

beginning, but can gather it over the course of the game and

thus converge more and more to an almost-perfect information

game—but more about Stratego in Section 6.1. Currently, there

are two clearly identifiable methods that tackle Stratego and

propose solutions. These are Pipeline Policy-Space Response

Oracles (P2SRO; McAleer et al., 2020) and DeepNash (Perolat

et al., 2022). P2SRO is based on the Policy-Space Oracle Response

(PSRO) algorithm from Lanctot et al. (2017). It is an algorithm

based on the idea of oracles, abstract entities calculating policies

for a specific player given the joint policy, and it relies on the idea

of empirical game-theoretic analysis. It tries to find an optimal

policy through constructing a higher level meta-game by simulating

outcomes for all possible matchups of all existing player policies.

After that, it trains a new policy for each player via an oracle

against a distribution over the existing policies, which is typically

represented by an approximate Nash equilibrium obtained by a

so-called Meta-Solver. A Meta-Solver is a method that gets the

current payoff tensor and calculates a meta-strategy used by the

oracle method to expand the policies of each player. P2SRO is an

iterating process, adding more and more updated policies to each

player, while using the most current policies and drawing actions

from them in its decision-making process. In summary, P2SRO is

a game-theoretically inspired model-free RL approach which aims

to find an optimal policy by iteratively creating policies with an

oracle-based approach. DeepNash is also a model-free RL approach

based on game-theoretic ideas. In their work, Perolat et al. (2022)

introduce a new technique called Regularized Nash Dynamics (R-

NaD) which they use to control the learning behavior of DeepNash.

As the name suggests, R-NaD uses regularization for learning and

is based on reward transformation and dynamic systems. Other

than P2SRO, DeepNash makes use of a deep neural network with

four heads: one to estimate the value function and the other three

to encode the policy distribution. Both P2SRO and DeepNash are

guaranteed to find approximate Nash Equilibria and as such are

able to exploit non-optimal strategies effectively. DeepNash as well

as AlphaZero rely on self play to train their agents. It was evaluated

not only against other bots but also against human Stratego players.

The primary difference between our work and P2SRO as

well as DeepNash is that both approaches are model-free, which

in this case means that they do not attempt to explicitly

model its opponent’s private game-state or the all-knowing

observer’s game-state. Also, neither approach relies on classical

tree search, as algorithms such as MCTS are not considered

scalable enough.

3. Background on RL and imperfect
information games

3.1. Reinforcement learning and Markov
decision processes

In reinforcement learning, we often follow the extensive form

description of games and base our notation on Markov decision

processes. These can be described as follows: Here N is the set

of agents and H is the set of all possible trajectories in the game.

W is the set of all perfect world states, while S describes the set

of all imperfect information states, also called information sets.

It is defined as the game state where two or more histories are
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indistinguishable for the player, meaning I(h) = I(h′) and A(h) =

A(h′), where I(h) defines the information state andA(h) the action

space after history h. Z is the set of all final states, i.e., all possible

completed games with their progressions and as such Z ⊆ S. A

describes the action space, where A(h) is defined as all possible

actions after history h. A utility function u is defined as u :Z→ R,

that assigns a reward to each player for a final state. I :H → N

is called the identification function and specifies the player for

a given history. A perfect information state or world state w is

defined as a state in which the entire environment is observable.

The transition function τ :S × A → S determines the new state

s′ after a given move. The observations are updated after each

transition.

A typical goal in reinforcement learning is to learn a value

function v, which can be used in a planning algorithm or directly

to compute the next best move. The model is described in actor-

critical methods as

fθ (s) = (p, v) (1)

with v predicting the expected outcome as well as p giving a

probability distribution over all legal moves of a given information

state s. The value v is learned by adjusting the weights θ after

each step.

3.2. Imperfect information games

Informally, a game with imperfect information is one in

which players have no shared knowledge and in which parts of

the observation or environment, such as payoffs or outcomes

of moves, are unobservable and knowledge varies across players.

These games are often described as game theoretic problems and

solved accordingly. This means to goal can often be described as

finding a Nash equilibrium.

A Nash equilibrium describes a joint policy π∗ = (π∗1 , . . . ,π
∗
N)

such that for any agent i ∈ N no better policy can be found

in regard to the opponent’s strategies, as such no agent has an

incentive to change their strategy or action, i.e., for each player i

the policy π∗i is the best response to π∗−i, with π∗−i as a joint policy

of all agents in N \{i}. Nash Equilibria can formally be described

as:

V i
π∗i ,π

∗
−i
(s) ≥ V i

πi ,π
∗
−i
(s), for any πi (2)

In imperfect information games, game trees are often defined

using so-called information sets. An information set is defined as

the state where two or more histories are indistinguishable for

the player, meaning τ (h) = τ (h′) and A(h) = A(h′) hold.

Thus, it is not possible for the player to decide what the current

state s is. In imperfect information games, no player has access

to this perfect world state, but only to their own private as well

as the public observations of it. The observations are combined

into a player-specific observable state and are identical to an

information set.

Some well-known approaches in this field are Counterfactual

Regret Minimization (Zinkevich et al., 2007; Burch et al., 2012;

Brown et al., 2019) and Fictitious Play (Heinrich et al., 2015;

Heinrich and Silver, 2016).

4. Introducing policy combining
perfect information Monte-Carlo and
TrueSight learning

MCTS has been primarily developed and tested on games with

perfect information such as the Chinese board game Go (Gelly

et al., 2012) and is in its core a policy-optimization algorithm

for finite MDPs. The combination of RL and search in the form

of MCTS has not yet been successfully applied to games with

imperfect information because it has theoretical weaknesses and

assumptions that do not necessarily hold in partially observable

environments (Brown et al., 2020) as an example they often lack the

Markov property which is the key idea behind MDPs. To illustrate

this, in chess you only need the current position to find the optimal

move. The history of moves is not relevant to the decision. In poker,

the history of past moves does play a role in finding a good move,

i.e., how have the other players bet last turn. We find, however, that

despite the claims of Brown et al. (2020) that MCTS should better

not be used for partially observable environments, our adapted

MCTS algorithm surprisingly performs on a respectable playing

strength when combined with an AlphaZero-like framework.

The key idea of our work is to adapt the search algorithm.

MCTS is not able to deal with uncertainties as they occur in

imperfect games since it needs to know the current state of a

game to work. In imperfect games we cannot always distinguish

between similar states which are then grouped in information sets.

However, some adaptations have been developed to take advantage

of MCTS in imperfect information games, i.e., methods such as

Perfect Information Monte-Carlo (PIMC; Levy, 1989), which is

often called determinization, or Information Set MCTS (Cowling

et al., 2012). We propose to replace MCTS within AlphaZero

with a Perfect Information Monte-Carlo based method that adapts

MCTS to imperfect information games by reducing an information

state to samples of perfect information states. PIMC showed great

success in card games like Bridge (Ginsberg, 2001), as well as other

games such as Phantom Go (Borsboom et al., 2007). PIMC has

some known weaknesses, particularly in convergence and decision-

making, but has the advantage of being simple, fast, robust, and

scalable; making it a good compromise for games with imperfect

information and large state spaces. Using PIMC allows the use

of further adaptations of MCTS, while its complexity is much

lower than the solution of a game in terms of game theory. These

advantages help us to bridge the gap between known methods for

games with perfect information and their application to games with

imperfect information.

4.1. Policy combining perfect information
Monte-Carlo

Unlike the original PIMC (Levy, 1989; Ginsberg, 2001), which

sums up the value estimation of all n samples using a scoring

function for each possible move,

argmaxa∈A

n
∑

i=1

score(wi, a) (3)
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FIGURE 1

[Best viewed in color] The main principle underlying AlphaZe** is to compute a strategy for an (imperfect) information state instead of a perfect

information state. From left to right: PC-PIMC first samples possible world states and then combines the resulting strategies. TrueSight Learning (not

shown here) gets access to the true world state and does not sample or combine strategies at the end.

we first compute the complete policy for each sample and use

the policy instead of the value estimation. Therefore, we call it

policy-combining. Values are often not normalized; moreover, they

do not represent a distribution. It can happen that samples in which

the agent is in a better position are considered more important

than situations in which the agent is in a worse position, since the

values are rather high in comparison. By using the policy, on the

other hand, each sample is given comparatively equal weight in

the combination of samples. So in difference to Equation (3), we

combine the policies of our n samples πw1 , . . . ,πwn and calculate

the mean value for each possible move in our distribution,

πs =

n
∑

i=1

πwi

n
(4)

resulting in a new policy πs. We motivate our policy

combination using common ensemble techniques such as bagging.

Here, we obtain higher quality results by combining the partial

results of each expert.

The combined policy πs can then be used to decide on the best

move to play.We call this adaptation Policy Combining PIMC (PC-

PIMC). It is illustrated in Figure 1 and Algorithm 1. For smaller

games, it is possible to analyze an information set by applying

MCTS or some other tree search algorithm to every possible state

in the set. However, this does not scale well and is not feasible for

larger games.

The main question is how to select states from an information

set in a way that is better than randomly selecting states from

that set. The goal of sampling should be to prefer states that are

more probable. We use the information gained while playing the

game to update the probabilities over all possible states. In Stratego,

when attacking a piece you get knowledge about its type, e.g., when

attacking a bomb you gain the information that the enemy piece

is a bomb. If you try to place a stone on an already occupied

field in DarkHex, you get the information that your opponent has

already placed a stone there. Together with the model of the game,

we can draw conclusions about other pieces and thus optimize

our sampling based on these gained information. If we get to the

point where we have collected all information about the opponent

and thus have perfect information, then our sampling would only

1 Function PC-PIMC( s, n) :

2 for k← 1 to n do

3 wk ← sample a perfect information state

from s

4 foreach wi ∈ w1, ...,wn do

5 πwi ← MCTS(wi)

6 πs ←
∑n

i=1 πwi/n

7 return bestMove ← argmaxa∈A(πs)

Algorithm 1. PC-PIMC with n samples.

contain this correct state. It is also possible to use expert knowledge,

e.g., from a human expert, to optimize sampling, or to model the

behavior of the opponent to get better predictions, but we omit this

for now to give this paper a more concise structure.

4.2. TrueSight learning

Another adaptation is TrueSight Learning (TSL), a method

based on PIMC and MCTS inspired by a popular human learning

strategy: When people learn a new card game like Skat or poker,

they often start playing with their cards face up or open to everyone,

i.e., each player shows their cards face up in front of all other

players. This removes the hidden information of the game and

allows players to learn the basic strategies more quickly to better

understand the game before playing it properly with their hands

(cards) face down. This can of course be considered a form of

cheating and is only used to learn a game. The basic idea is

displayed in Algorithm 2.

TSL learns the game by removing the hidden information from

the training process. This is similar to the PIMC approach, where

the hidden information is also removed by sampling. The difference

between the twomethods is that TSL learns the game using only the

correct, perfectly informed state, while PIMC queries probable or

random states of the game that do not have to contain the correct
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1 Function MCTS(state) :

2 create root node root from state

3 t← root

4 while computational budget left do

5 l← SE L E C TAN DEX P A N D( t)

6 r← SI M U L A T E( l)

7 t← BA C K P R O P A G A T E( t, r)

8 return Create policy π from tree t

9

10 Function TSL( s) :

11 w← GetCorrectWorldState( s)

12 π ← MCTS(w)

13 return bestMove ← argmaxa∈A(π)

Algorithm 2. TrueSight learning.

state. The intent is to use TSL for the first epochs of training and

continue the training with PIMC or PC-PIMC afterwards.

This approach aims to accelerate the initial learning process

without reducing the final playing strength by giving the agent a

better understanding of the game at the beginning of training. For

some very difficult environments, where classical RL may not be

able to learn from partial observations at all, starting with fully

observable environments could help to overcome local optima

and make a difference. In our experiments we used sampling-

based methods like PIMC in all evaluation steps even when

trained with TSL. This means TSL was only used while generating

data. TSL, in principle, allows one to reuse the search results

from the previous search rather than starting from scratch again.

Note, however, that it is not always possible to convert partially

observable environments to fully observable or to access the world

state; in such cases TSL is not applicable.

4.3. Properties of TSL and PC-PIMC

The main concept of PIMC is to perform independent searches

over different instances over multiple sampled perfect information

world instances wn of the information set. We presume that

by increasing n, we get a more accurate representation of our

information set. As n approaches ∞, our estimate of the game

prediction approaches the information set s. However, in our

evaluation, we chose a small n because there is a trade-off between

MCTS simulations and the number of independent searches given

a fixed computational budget.

However, since the introduction of PIMC, it has come under

criticism. For example, the work of Frank and Basin (1998)

found two different types of errors, regardless of the number of

hypothetical worlds examined. First is the problem of “strategy

fusion,” in which PIMC search incorrectly assumes that it can

find a combined strategy that works in every world state, when in

fact there are situations or information sets that must be handled

differently from others. Strategy fusion imposes the constraint on a

policy that it must behave the sameway in all possible worlds, which

is not necessarily the case in games with imperfect information.

Second, there is the issue of “non-locality” that arises from the

fact that in a perfect information game, the value of a game tree

node depends only on its subtree, and therefore the value of a node

is determined solely by a search that starts with its children. In a

game with imperfect information, the value of a node may depend

on other regions of the game tree that are not included in its subtree.

This is mainly due to the ability of players to steer the game toward

regions of the tree that they know are advantageous to them, using

private information that they possess, but their opponent does not.

Long et al. (2010) examined the implications of both problems in

detail and explored the conditions under which PIMC succeeds

despite its theoretical shortcomings. Additionally, Long et al. (2010)

gave a third potential issue but did not cover it in detail, which is

the potential exploitability of PIMC search, i.e., “the performance

of PIMC search could be substantially worse against a player that

attempts to exploit its mistakes.”

A key difference from the original formulation of PIMC is that

we use the policies instead of the value estimation. This tackles the

problem of overestimating the value predictions (Wisser, 2015).

However, PC-PIMC can still lead to the problem of switching

between different types of strategies between moves. We call

this new problem “strategy hopping” and it is mainly caused by

resampling between different moves and not reusing the old search

tree or samples. This remains a challenge that should be addressed

in future work.

In TSL, we avoid this problem by following a strategy based

on the true state of information. Nevertheless, TSL should not be

applied to the entire training process, since an agent usually does

not have access to the world state. Sampling the correct world state

from an information set leads to a perfect information game with

proven guarantees of convergence to an optimal strategy, i.e., a

Nash equilibrium. Monte Carlo Tree Search based on the UCT

algorithm can converge to an optimal strategy for games with

perfect information, but not for games with imperfect information.

Thus, while we can theoretically compute optimal strategies for

each sample selected from the information set when using PIMC,

we cannot guarantee an optimal strategy for the entire information

set. Therefore, we cannot prove that the combination of PC-PIMC

and RL converges to a Nash equilibrium, but even without such

guarantees it produces strong strategies. One idea to achieve such

guarantees is to replace PC-PIMC and TSL with MCCFR (Burch

et al., 2012) or a special version of Information Set MCTS (Cowling

et al., 2012). But even while these methods are guaranteed to

converge to a Nash equilibrium, this comes with the trade-off in the

form of more computation time and memory (Ponsen et al., 2011;

Whitehouse, 2014).

5. Combining PC-PIMC with an
AlphaZero-like learning architecture

Two inspirations for our work that have similar ideas to ours

are called Recursive Belief-based Learning (Brown et al., 2020)

and Partially ObservableMonte-Carlo Planning (Silver and Veness,

2010). Recursive Belief-based Learning, which was also inspired

by AlphaZero, transforms an imperfect game into an environment

with perfect information by adding complexity in the form of belief

states. Brown et al. (2020) use each player’s private information
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Parameters: number of samples per epoch T, number

of epochs E

1 Initialize θ with Xavier initialization or

latest θ

2 repeat E times

3 t← 0

4 while t ≤ T do

5 st ← random starting position

6 h← {}

7 while st /∈Z do

8 πt ← execute PC-PIMC( st) with current

neural net θ

9 st+1 ← τ (st , argmax
πt )

10 store (st ,πt) in h

11 t← t + 1

12 z← u(st)

13 foreach (st ,πt) ∈ h do

14 if player’s turn then

15 rt ← z

16 else

17 rt ←−z

18 add (st ,πt , rt) to stored data

19 build training dataset M out of sampled data

triplets

20 θnew ← Update θ using SGD with ℓ on M

21 evaluate θnew

22 if θnew better than θ then

23 replace θ with θnew

Algorithm 3. AlphaZe∗∗’s trainings process.

to form so-called public belief states. The approach has beaten

professional poker players in poker and has been shown to converge

to approximate Nash equilibria in 2p0s games. One problem is that

the search space remains large, and the algorithm has scalability

problems, especially for games with little general knowledge and

great strategic depth, such as Stratego. Themain difference between

our approach and Partially Observable Monte-Carlo Planning is

that the latter builds its search tree in a brute force manner by

running the search over possible “particles,” i.e., possible instances

of the state. We only consider a small set of instances, which

leads to better scalability for very large information sets. Moreover,

our method relies on fairly large neural network approximations

instead of rollout samples within the tree search, which is the case

for Partially Observable Monte-Carlo Planning.

AlphaZero is a well-known model-based reinforcement

learning approach, becoming a phenomenon in the world of AI.

Its main advantage derives from its ability to make predictions

about how a situation is likely to unfold using MCTS, i.e., it

learns to predict which actions are better than others and uses this

information to think ahead while staying scalable. As mentioned

previously, one characteristic of AlphaZero is that it can only

be used on perfect information games like chess or Go. This is

mainly based in the search used within AlphaZero. The idea of this

work is to introduce an easy way to adapt AlphaZero, so that we

can also use it in imperfect information games, by replacing the

MCTS algorithm within AlphaZero with the PC-PIMC approach

introduced earlier. The remaining elements of AlphaZero, such as

the policy and value network as described in Equation 1 stay the

same and are used within the tree search as they would be used

in MCTS. This, of course, does not solve all problems AlphaZero

has with imperfect information games. It even generates new ones

such as the strategy fusion problem described in Section 4.3, but it

is also a first step in making AlphaZero interesting for imperfect

information games. In this section, we introduce AlphaZe∗∗,

a new algorithm that combines AlphaZero with PC-PIMC.

To our knowledge, this is the first model-based reinforcement

learning approach for games with imperfect information based

on AlphaZero. AlphaZe∗∗ is intended as a baseline to show that

AlphaZero-like approaches can also be interesting for imperfect

games. The goal is not to create an approach specialized for

imperfect information games; instead we try to stay as close as

possible to the actual AlphaZero. Accordingly, the training process

of AlphaZe∗∗ remains as close as possible to that of AlphaZero

and is described in Algorithm 3. Learning by self-play is essentially

a policy iteration algorithm. Each iteration uses a fixed amount of

samples, while each sample consists of a state st , the policy played

in this state πt and the reward rt . To generate these triplets, we

take our current model and play games against our self, using

PC-PIMC, PIMC, or TSL. After each game we use the terminal

reward z or in other words the reward of st while st ∈ Z for each

action played in the game. After generating a sufficient amount

of data, we update our current model, using the loss function

(Equation 5) and stochastic gradient descent. The only difference

is replacing MCTS with (PC-)PIMC. This is the simplest possible

change to AlphaZero to extend it to imperfect information games.

This simplicity is one main advantage of AlphaZe∗∗, and allows us

to reuse the core concepts of one of the most successful and best

known algorithms for perfect information games.

AlphaZe∗∗3 uses the CrazyAra engine of Czech et al. (2020) as

a basic framework and trains a model fθ based on the following loss

function

ℓ = α [z − v]2 − π
⊤ log p+ c · ‖θ‖22 , (5)

which calculates a combined loss for both network outputs,

where [z − v]2 is the mean square error between the correct

value, i.e., the outcome of the game, z and the predicted value v.

π
⊤ log p is the cross entropy of the correct policy vector π and

our predicted one p. At the end we add a regularization constant

c for our L2 weight regularization. The loss function is identical to

that of AlphaZero. In addition, we also use an α value of 0.5 and a

regularization term c of 10−4 as suggested in the work of Silver et al.

(2016). The weights are fitted using stochastic gradient descent,

θt+1 = SGD(θt ,αt , ℓt) (6)

and training is based on data generated by self-play. While

playing, the agent takes the current imperfect information state

as an input and if it is not a terminal state, it uses PC-PIMC, as

described in Figure 1 to sample possible states from the current

3 The code of AlphaZe∗∗ is part of the CrazyAra framework (https://github.

com/QueensGambit/CrazyAra).
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input and runs MCTS combined with the neural network, like

described in the work of Silver et al. (2016). The resulting policies

are combined to form a new policy, that is used to select an action

to play in the current state.

There are various factors which allow scaling our approach to

different circumstances, such as time limits or different board sizes.

These factors include linear ones such as the amount of residual

blocks of the neural network that limit the expressiveness of our

model, the number of MCTS simulations during a single search

that define the quality of the search, the number of sampled world

states which define our approximation of the true information set.

Additionally, there are quadratic factors such as the board size that

influence the inference speed of our neural network.

6. Learning Stratego and DarkHex

In this work, we decided to use the board games (Barrage)

Stratego and DarkHex as environments. Both games are well-

known 2p0s games with imperfect information. We chose Stratego

because of its undeniable complexity, far exceeding that of Go

or chess, and as a challenge to ourselves. Two recent works have

also used Stratego as an environment; the Pipeline Policy Space

Response Oracle (P2SRO) approach (McAleer et al., 2020) and

DeepNash (Perolat et al., 2022), which was developed in parallel

with our work. Both works highlight the challenge and impact

of learning Stratego, and also show that most Stratego agents

currently in use are based on heuristics. As a second environment,

we chose DarkHex, an imperfect version of the board game Hex.

While AlphaZero has been successfully applied to Hex, there

are no AlphaZero approaches for DarkHex. DarkHex also has a

different kind of imperfection than Stratego: while in the latter

the opponent’s pieces are visible even if it is not clear what type

each piece is, in DarkHex you do not see the opponent’s actions at

all. One advantage of DarkHex over Stratego is that it is easier to

control the complexity of the game by scaling the board; also the

overall complexity is less than that of Stratego. We did not choose

poker, even though it is an excellent example of imperfection and

playing around information, because we tried to stay close to games

where AlphaZero has shown its strength, i.e., 2p0s, turn-based

board games.

6.1. Stratego

In Stratego both players can observe information while playing,

i.e., common knowledge and player specific information. We

assume perfect recall, i.e., when players recover information, they

never forget it. Each player has 40 pieces with different ranks or

types. At the beginning of the game, each player places their own

pieces, while they remain hidden from the opponent. However, in

this work, we do not consider the setup phase of pieces, and rather

sample random starting positions generated from human Stratego

games.4 This data however was not used in the training process,

only to set up the board.

4 https://www.gravon.de/strados2/files/

TABLE 1 Notation scheme for each piece within StraDos2 and FENfS.

Piece Blue Red For visualization

Bomb B N B

Spy C O S

Scout D P 2

Miner E Q 3

Sergeant F R 4

Lieutenant G S 5

Captain H T 6

Major I U 7

Colonel J V 8

General K W 9

Marshal L X 10

Flag M Y F

Empty field A

Lake _ Dark blue

A position is displayed as a string of 100 characters, representing each field, starting with

the square a1, then a2 and so on. The notation scheme also specifies a symbol used in

visualizations like Figure 2.

The player who has their flag piece captured loses the

game. The game is played on a 10×10 board with two

2×2 lakes as obstacles which are not passable. Stratego has

a game-tree complexity of 10535, an average game length

of 381 moves and a branching factor of ∼21.739 (Arts,

2010). The board for the Barrage Stratego subvariant is

identical, only the amount of pieces is reduced to eight

per player.

As our game environment, we use an own implementation of

Stratego based on the OpenSpiel framework (Lanctot et al., 2019).

This has the advantage of being easily reusable for researchers.

Furthermore, the combination with CrazyAra leads to a fast

runtime due to its optimized C++ implementation of AlphaZero-

like systems.

6.1.1. Stratego notation scheme
There is no official notation for Stratego because games are

mostly not recorded in any form. A possible notation scheme

that can be found online is called Stratego Documentation-System

Version 2 (StraDoS2) and is used by a website called Gravon to

notate Stratego online games, shortly described in the work by

de Boer et al. (2008). The StraDos2 scheme is used to notate a

game’s starting position giving every piece a letter, as described in

Table 1 and add the move history onto it. In this form, it is not

possible to describe a position within a game without specifying the

move history. For this reason, a new notation style called FEN-for-

Stratego (FENfS) is introduced, which adds additional information

like the current player, the move number and which pieces were

involved in a fight and are thus common knowledge. The new

scheme combines Strados2 and the well-known Forsyth-Edwards
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FIGURE 2

Valid Barrage Stratego starting position. The notation scheme can be found in Table 1. Pieces with a higher rank capture lower pieces on contact.

Blue fields indicate lakes and are non-passable for both players. Left showing the perspective of the red player, while right shows the observer

perspective of the board. The di�erence is in that red cannot observe the ranks of the blue pieces.

Notation (FEN)5 to display board states and piece configurations

in chess and includes the following three essential parts: Firstly

the piece configuration, secondly the current player and thirdly,

the current move number. In the piece configuration string, each

piece is displayed with the StraDos2 character. If the character of

a piece is a lowercase letter, it is visible to both players; if it is

uppercase, the rank is hidden from the opponent. The observer

FENfS description of a position is not available to the players,

containing private knowledge of the players but can be adapted

by adding “?” and “!” to the view of a player. This makes it

possible to display that a piece has moved, but the rank is still

hidden (“!”), while pieces not touched are displayed by ’?’. The

information is lost if you only have the observer FENfS String.

Our new scheme allows us to specify an in-game position without

needing to specify the move history. The position in Figure 2 can

be described as:

“BKaaaaaaaaaaaaaaaaaaaDaDaaaaaaaaMLCEaaaaaa__aa__aa

aa__aa__aaQaaOaXaPaaaaaaPaaaaaNaaaaaaaaaYWaaaaaaaa r 0"

The same position from the perspective of the red player:

“??aaaaaaaaaaaaaaaaaaa?a?aaaaaaaa????aaaaaa__aa__aa

aa__aa__aaQaaOaXaPaaaaaaPaaaaaNaaaaaaaaaYWaaaaaaaa r 0"

6.2. Hex and DarkHex

Hex and DarkHex are played on a 11×11 board with hexagonal

squares; exemplary positions are shown in Figure 3. The object of

the game is to lay a row of tiles connecting two opposite sides of the

board. Both players have different sides to connect, i.e., player one’s

goal is to connect north and south, while their opponent tries to

connect west and east. In each round, a player can discard one stone

of their own color. As mentioned earlier, the difference between

Hex and DarkHex lies in what the players can observe. While Hex

5 More information on the FEN notation can, e.g., be found at: https://en.

wikipedia.org/wiki/Forsyth-Edwards_Notation.

itself is a perfect information game, in DarkHex a player cannot

observe the opponent’s actions and only receives the information

that the opponent has performed an action. If a player wants to

place a piece on a square that has already been captured, they

receive the information that the square is not available. There are

two ways to proceed in this situation. One ruleset allows the player

to choose another square to place their stone in this scenario. The

second option, which we used in our experiments, has the player

lose their turn if they try to place a stone on a square that is already

blocked. This option is called abrupt DarkHex.

7. Input and output representation of
AlphaZe∗∗

Similarly to AlphaZero or CrazyAra, AlphaZe∗∗ represents the

game state in the form of a stack of so-called levels or planes. Each

layer can be compared to a channel describing one of the input

features in the current state. Each level is encoded as a map the size

of the field, i.e., it contains one value of information for each field.

We distinguish between three types of planes: Probability planes

which have a value between 0 and 1 for each field of our board,

binary maps with a value of 0 or 1 per field, and scalar planes which

share a value between 0 and 1 over all fields. As an example, we can

look at the first 24 planes of the input representation for Stratego

(Table 2). In Stratego there are 12 different types of pieces and two

players. Each of these 24 planes represents a combination of figure

type and player, e.g., all scout figures of the first player. In this

example, we would now have a value of 1 in just these places and

0 in all other places. A good visualization using chess as an example

can be found in the work of Czech et al. (2020).

The difficulty with Stratego is that you only know the types

of your own pieces and a few of your opponent’s pieces. For this

reason, in this work we decided not to represent the opponent’s

pieces by 0’s and 1’s, but instead to use floating point numbers

to represent the probabilities of the piece types. Currently, the
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FIGURE 3

A 5×5 Hex board, showing a terminal position with white as winner in Hex on the (left). On the (right) side a similar position in DarkHex from the

perspective of the black player where two white stones have been found by black. In our work, we use a board size of 11×11.

TABLE 2 Plane representation of an information set s in Stratego and

DarkHex.

Feature Plane Representation

Stratego

Pieces 1–24 Probability plane

Empty fields 25 Binary plane

Blockades (Lakes) 26 Binary plane

Unknown pieces P1 27 Binary plane

Unknown pieces P2 28 Binary plane

Side to move 29 Scalar plane

Repetition count 30 Scalar plane

DarkHex

White pieces 1–3 Binary plane

Empty fields 4 Binary plane

Black Pieces 5–7 Binary plane

Side to move 8 Scalar plane

The features are encoded as planes. Each plane has one value per square of the game board

describing the current game state. Binary Planes, also called tensors, have one bit per value.

Probability planes describe a value between 0 and 1 per square and Scalar planes have a single

value between 0 and 1 set over all values of a plane.

probability of each piece type is calculated as a discrete uniform

distribution. These probability levels are used to find samples from

a set of information in PC-PIMC sampling. The probabilities are

adjusted for knowledge gained after each round, e.g., if we caught

the last scout, we now know there are none left, so the probability

that another piece has the scout type is 0.

The probability planes are a major difference to perfect

information games, where piece types and positions can be

observed perfectly and the use of probabilities is not required.

Furthermore, additional features like the repetition count or the

current player are defined as an input feature. The complete stack of

planes can be found in Table 2. We also add two planes, describing

which pieces are currently still hidden and not common knowledge.

These planes are retained even after the sampling to show which

pieces are sampled and which are publicly observable. This can

help the model learn to play around information, e.g., hide specific

pieces from the opponent, which would not be possible if we used

only PC-PIMC and the piece planes to describe the current state of

private and public information. The values of each plane are scaled

to the range of [0, 1] and the board is always flipped to the view of

the current player.

In Hex and DarkHex there is only one piece type and the

probabilities of fields being occupied are uniformly distributed.

Unlike in Stratego, we do not use probability planes in the input

representation of Hex/DarkHex because the only information we

could use to calculate a probability plane are heuristics or other

forms of human knowledge. Since we do not want to include

expert knowledge, a probability plane is only a uniform distribution

over all hidden fields on which the generation of samples is then

based. The input planes for Hex can be seen in Table 2. We copied

and adapted the representation used by OpenSpiel (Lanctot et al.,

2019) for Hex and DarkHex slightly, adding the current player. As

mentioned earlier, the goal of Hex is to connect two borders of the

board, so each player’s pieces are represented with three planes,

one for each of those borders, including all pieces connected to

the respective border, and a third plane for all played stones not

connected to either side.

The output of AlphaZe∗∗ is described as the expected utility

of a game position, represented by a numeric value in the range

of [−1, 1], often called value, and a distribution over all possible

actions, called policy. The size of the policy vectors differs between

Stratego and Hex. In the latter, we have only the possible moves

for the board height× the board width, i.e., the number of squares

where a stone can be placed. In Stratego we have to count every

possible move for every type of piece on every possible square. In

our experiments, we computed an upper bound on the number

of possible/legal actions with 3,600 actions [4 (directions) × 9

(maximum length of a move) × 100 (possible squares)]. These

3,600 actions serve as a fixed parameter defining the length or our

policy. When evaluating the policy to determine a move, we only

consider legal moves for the current state, i.e., we ignore illegal

moves for the situation.

8. Deep neural network architecture of
AlphaZe∗∗

As for the neural network architecture, we use RISEv2-mobile

as introduced in Czech et al. (2020). The model architecture is a

shared convolutional value policy network. The convolutional stem

consists of 13 inverted residual blocks as introduced in MobileNet

v2 (Sandler et al., 2018). Each block consists of group depthwise
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TABLE 3 RISEv2 mobile (13×256) adapted for Stratego and introduced in Czech et al. (2020).

Layer name Output size RISEv2 mobile 40-Layer

conv0

batchnorm0

relu0

256× 10× 10 conv 3× 3, 256

res_conv0_x

res_batchnorm0_x

res_relu0_x

res_conv1_x

res_batchnorm1_x

res_relu1_x

res_conv2_x

res_batchnorm2_x

shortcut + output

256× 10× 10









(SE-Block, r = 2)








×13
conv 1× 1, 128+ 64 x

dconv 3× 3, 128+ 64 x

conv 1× 1, 256

Value head Policy head 1 3, 600 Value head Policy head

convolutions, batch-normalization and Squeeze Excitation Layers

(SE; Hu et al., 2018). The SE Layers use a ratio r of two and are

applied to the last five residual blocks. The number of channels

for the 3×3 convolutional layer of the first block start with 128

channels and is increased by 64 for each residual block reaching

896 channels in the last block as recommended in the Pyramid-

Architecture (Han et al., 2017). Finally, the convolutional stem is

followed by a value and policy head which is adapted to the usage of

our Stratego policy representation. For detailed information, please

refer to Table 3 and Czech et al. (2020).

9. Results

Before moving on to our empirical evaluation and results, let us

discuss the experimental setup and training process of AlphaZe∗∗.

9.1. Experimental setup

9.1.1. Hyperparameter settings and configuration
Our hyperparameter setup is very similar to the settings

proposed in Czech et al. (2020). One difference between the

proposed settings and our setup is that we do not add Dirichlet

noise or temperature, which is a scaling factor applied to the

posterior policy to add some randomness over the initial moves

in order to improve the veracity of the training data. In Stratego,

we have sufficient randomness from the randomly chosen starting

positions for both players so that we do not need to add any

additional noise over the policy. In PC-PIMC and TSL, after the

sampling step, we use a common version of MCTS that follows the

PUCT formula as proposed by Silver (2017). For PIMC we use the

value head of our network as scoring function, basically getting the

value of the state after playing an action and follow Equation (3).

We also introduce three new hyperparameters for our

approach; namely the number of samples used for the PC-PIMC

approach, the number of epochs using TSL before switching to PC-

PIMC, and whether the budget within MCTS is shared among all

samples or whether each sample has its own budget. For Barrage

Stratego, we tested sample sizes between 1 and 10 and stuck with a

sample size of 3. For DarkHex, we run experiments with various

sample sizes, while the number of TSL epochs depends on the

experiment. Overall we ran experiments from 5 to 50 iterations.

A split budget can improve fairness and reduce computation time,

but also weakens the agent and reduces the number of tree nodes

(nodes) explored in each sample. A node represents a position that

has been evaluated in the search process and the amounts of nodes

represent the size of the MCTS tree. Unless otherwise specified,

we chose not to split the budget and give each agent 800 nodes

per turn. We also tested setting a fixed time limit when playing in

tournament mode.

In further evaluating the playing strength of our DarkHex

agents, we took advantage of the fact that DarkHex is scalable

over the size of the game field. For the experiments, we used the

following sizes: 3×3, 5×5, 8×8, and 11×11. The size 3×3 is used to

test if our agents converge, 5×5 and 8×8 for studies around playing

strength and to evaluate the effects of the number of samples

per turn, 11×11 to study scalability and the evolution during the

training process. Since DarkHex is smaller in size, we could use

higher amounts of samples per turn.

9.1.2. Training data and process
For training our approaches, we adopted a zero-knowledge

approach, which means that we did not use any data to train our

agents other than self-generated data. A minor exception are the

starting positions for Stratego, which we took from a public dataset,

as mentioned in Section 6.1. However, we decided against using this

data for the training.

To generate our data, we used a technique called self-play.

The training process can be seen in Algorithm 3 and is explained

in Section 5. Depending on the game and experiment, we
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FIGURE 4

[Best viewed in color] TrueSight Learning is able to beat earlier versions of itself more often than PIMC in the early stages of learning in both Stratego

and DarkHex. For the TSL models, the first n epochs (indicated in gray) were played with TSL support before switching to the second training

method. Barrage Stratego uses three samples per turn, DarkHex 12 samples per turn. (A) Barrage Stratego. (B) DarkHex 11×11.

used between 409,600 and 819,200 samples per iteration.6 The

experiments were run on 3 Nvidia Tesla V100 GPUs.

9.1.3. Elo as metric
Davis et al. (2014) showed that in many large imperfect

information games the computation of a Nash equilibrium is

not tractable and measuring the deviation from it is not a good

measurement for the quality of an agent in all cases, e.g., they

showed that a more exploitable agent is able to beat a less

exploitable agent in some situations. Furthermore, they argue

that calculating the exploitability can become a problem in large

games. We instead measured the playing strength and training

development of our agents by competing with existing agents and

use Elo as metric.

Elo is defined by the following equations approximating player

strength based on played games:

R′A = RA + K (SA − EA) (7)

EA =
1

1+ 10(RB−RA)/400
(8)

RA is the current rating of agent A, R′A the new rating, SA
the true score of A in the tournament or in competitions, EA
the expected score of A in the tournament. K is a regularization

constant; set to 1 in our work. We initialized each agent with the

same rating and measured the Elo difference between agents as

an indicator of playing strength. Since all models use the same

initialized starting model, we often use this to compare against.

6 Some of the resulting models, used for our evaluation, can be found at:

https://github.com/QueensGambit/CrazyAra/releases/tag/1.0.2.

9.2. Experimental evaluation

To evaluate if our agents are able to learn the games of Barrage

Stratego and DarkHex, we had round-robin tournaments played

between the model and its predecessors and measured the relative

Elo increase, meaning models with a higher Elo were better at

beating their predecessors. We trained our Barrage Stratego model

40 epochs, i.e., over 32 million training samples, and 25+15 epochs

for the TSL+PC-PIMC model, meaning training the model for 25

epochs with TSL support and for 15 without.We used three samples

per turn. The training took about 16 days, each epoch about 10 h.

DarkHex was trained on the same architecture with 3 h per epoch

and only 409,600 samples, using a board size of 11×11. We trained

for 10 epochs and 6+4 for the TSL models, with a little more than

four million samples in total. This took around 26 h of computing.

In DarkHex we used 12 samples per turn. Due to the training costs,

the experiments regarding Stratego were performed only once. The

experiments to determine the graphs in DarkHex were performed

three times each with different seeds to investigate the aspect of

robustness and reproducibility. As we can see in Figure 4, the agents

are consistently able to beat older versions of themselves, as well

as beating an agent playing with a random move strategy with

increasing probability, shown in Figure 5A—both indicating that

they are able to learn the concepts of both games.

Our second experiment assesses the playing strength of our

models. In case of Barrage Stratego against existing Barrage

Stratego bots. For this purpose we played head-to-head matches of

100 starting positions, each played twice with alternating colors.We

evaluate the development of our agents in relation to the number of

nodes within the tree planning of AlphaZe∗∗ as well as in relation

to time. We find that AlphaZe∗∗ beats current Barrage Stratego

bots with an average win ratio of 36% when the amount of nodes

per sampled MCTS tree (nodes) is limited to 800 but achieves

an average win ratio of 59.6% (over 70% if we exclude P2SRO)

when playing with 25,000 nodes per turn. As opponents, we used

Asmodeus, Celsius, Celsius1.1, and Vixen which were submitted in

an Australian university programming competition in 2012 and are
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FIGURE 5

[Best viewed in color] After switching methods and a short acclimation phase, introductory training using TSL leads to better results. In turn, the use

of TSL during the TSL phase shows worse results. A comparison of TSL, PC-PIMC, and PIMC in DarkHex on an 11×11 board, also illustrates the

benefit of using TSL. On the left side, TSL+PC-PIMC, PIMC, and Random playing small tournaments against each other during training over 25

epochs. On the right side, we played a round-robin tournament between the agents from Figure 4B after finishing 10 epochs. All agents are using 12

samples per turn. For each comparison 100 games where played between the competitors. (A) Comparing win ratios during training, in DarkHex

5×5. (B) Round-Robin tournament, in DarkHex 11×11.

TABLE 4 AlphaZe∗∗ outperforms Barrage Stratego agents after 50

training iterations.

Agent Amount of nodes per tree P2SRO

800 nodes (%) 25,000 nodes (%)

Asmodeus 58 74 81

Celsius 38 •72 70

Celsius 1.1 34 68 69

Vixen 46 •68 65

P2SRO 4 16 –

Shown are the win ratios (as percentage) of AlphaZe∗∗, respectively. P2SRO against common

Stratego agents. For Stratego, 25 starting positions are played, against each agent, each twice

with alternating colors. Bold values denote ratios where AlphaZe∗∗ resp. P2SRO are better.

Ratios, where AlphaZe∗∗ outperform P2SRO are indicated by •.

open source7. They can play Barrage as well as regular Stratego.

Note that these agents were not used in training as we only used

self-play there. Thus, all strategies played by these agents are new

to AlphaZe∗∗. All of these agents are based on handwritten rules

and/or heuristics, often playing high-risk strategies. Furthermore

we compared our agents against one of the current state-of-the-

art methods, P2SRO. AlphaZe∗∗ is not able to reach the level of

P2SRO, as can be seen in the head-to-head comparison, where it

looses over 80% of its games. The complete results can be seen in

Table 4.

Several subvariants exist for Stratego, such as the OpenStratego

variant without hidden information and the Informant Spy Variant,

where both players gain additional information about the opponent

over time. This leads us to investigate the performance on rule

changes of Stratego. For our evaluation, we examine, among other

things, how the agents react when the target pieces of the game,

7 https://github.com/braathwaate/strategoevaluator

TABLE 5 AlphaZe∗∗ excels in situations when more information is

provided than usual or when some fields are blocked.

Agent Open pieces Blocked fields (%)

Flag (%) Marshall (%)

Asmodeus 62 ⇓ 76 ⇑ 78 ⇑

Celsius 84 ⇑ 78 ⇑ 78 ⇑

Celsius 1.1 86 ⇑ 82 ⇑ 72 ⇑

Vixen 60 ⇓ 72 ⇑ 66 ⇓

It should be noted that neither of these agents have been explicitly optimized or developed

for these (new) subvariants of Stratego. ⇑ / ⇓ denotes ratios where AlphaZe∗∗ is better/worse

compared to the results in normal Barrage Stratego (Table 4).

i.e., the flags, are revealed from the beginning. This scenario can

be transferred to many real-world problems where the goal is clear

but the path and other circumstances are not. The first variant

we introduce is called open pieces. In these variants a specific

piece type, mostly high-value piece types, are openly observable for

both players from the beginning of the game. These open pieces

often change player strategies completely, e.g., if you know where

the enemy flag is, you do not have to search for it. Of course,

since we want to show the robustness to rule changes, we do not

retrain or optimize our models on these variants and use the same

models as in the experiments of Table 4, specifically the 25,000 node

versions of it. The second variant we want to introduce is called

Blocked Fields, in which we have made 10 fields inaccessible for

both players, similar to the lakes in the middle of the board. Note

that while these variants are inspired by variants like OpenStratego,

they are not official Stratego versions andwere developed by us. The

results of these experiments can be seen in Table 5.

Regarding the DarkHex agents, we started by examining their

playing strength. For this, we investigated how the playing strength

evolves over the course of training and how the use of TSL and
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PC-PIMC affects it. As baseline we used an agent with random

move selection. The results can be seen in Figure 5A and show that

TSL+PC-PIMC is loosing to PC-PIMC in a direct comparison in

the beginning, but after 10 epochs (round about 4.1 M samples), it

gains the upper hand. We also see that after training is complete,

TSL agents have a slight advantage.

If we run the same experiments on a 3×3 field, we can see that

all sampling methods from Figure 4B manage to produce agents

that converge and whose strength is comparable to each other. A

difference in playing strength between methods with and without

TSL cannot be observed. Only the time until convergence of the

agents differs slightly in favor of the TSL agents.

For the experiments in Figure 4, we also tried to determine the

playing strength by having the final models compete against each

other. In Barrage Stratego, the TSL+PC PIMC wins against the

PIMC model in 55 out of 100 games. Both models achieve similar

win probability against an agent with random action selection,

i.e., 96% (TSL+PC-PIMC) and 94% (PC-PIMC). For DarkHex, we

played a round-robin tournament with the agents from Figure 4B

and then determined the Elo, where 0 represents the Elo of

the random agent. The results are shown in Figure 5B. In both

experiments, the TSL agents perform slightly better than the agents

without TSL.

Next, we evaluated the difference in playing strength between

PIMC and PC-PIMC. For this, we played 100 games of DarkHex

on an 8x8 board in a direct comparison and repeated this with

different amounts of sampled states within PIMC or PC-PIMC,

called “samples per turn.” In this experiment, we used 3 models,

each trained over 25 epochs (around 10.2 M sample). With one

MCTS tree per turn, both approaches are as expected about equally

strong, since here no combination of policies takes place and the

difference between policy and value does notmatter. The evaluation

over an increasing number of MCTS trees per turn can be seen in

Figure 6. Figure 6A shows us that for small sample sizes it makes

little difference whether we use PIMC or PC-PIMC. Only at 20

samples per turn we can identify a clear difference between the two.

When we increase the sample size, two things can be noticed.

First, the training time and the evaluation time increases, as can be

seen in Figure 6B. This is primarily due to the evaluation within the

search increasing linearly with the number of samples. On an 8×8

board the evaluation of a game takes 3.6 s per sample, i.e., about

10.8 s for a sample size of 3. Increasing the sample size therefore

increases the time needed per turn. Second, the number of samples

affects the playing strength of our agents.

However, the difference in playing strength with increasing

number of samplings also has a strong effect on the time the agent

needs per turn. In reality there are situations where the time an

agent has per decision is limited. This tends to be the practice

especially in competitive situations and unlimited time tends to

be the exception. We have investigated how a time limit per turn

affects the agents’ strength, relative to the number of samples per

turn. The results are shown in Table 6. Here we choose DarkHex

models with 6, 12, and 20 samples per turn, due to the time needed

for them to decide on a move. Our current implementation needs

around 800 ms per move when calculating six samples, 1,700 ms

for 12 samples per turn and about 3,200 ms for 20 samples, if we

select a fixed depth of 800 nodes per tree/sample. Using a time limit

we did not reduce the amounts of samples; instead we reduced the

amount of nodes per sample, i.e., while playing with a time limit of

800 ms, the agents with 20 samples have 20 relatively shallow trees.

If we look at the results which are achieved without a time limit,

we can see a clear increase in the playing strength with an increasing

number of samples. Also, even if it should be clear, increasing the

time per move, i.e., increasing the depth of the samples, means

improving the playing strength. Also we see that many samples at

a low time limit is not useful, so the agent with 20 samples loses

at 1,600 ms against our agent with 12 samples at 1,600 ms. This

suggests that the depth of the trees is as relevant as the number

of trees.

In Stratego the results were slightly different: Here we saw

clearly that agents with smaller number of samples, like 3, perform

better than agents with 6 or 12 samples. Only with larger sample

sizes (20 samples) there is a turnaround in performance. This

problem can be explained by strategy fusion. The result of a

combined policy of three samples deviates less strongly from the

three samples, than a combined policy with six samples. If the

sampled states are too different, AlphaZe∗∗ tries to find a policy

that works in all these situations, which is not always possible. Only

with a large number of samples can the combined policy better

represent the information set and the errors that occur are less

pronounced. However, we do not solve the problem of strategy

fusion by using more samples even with infinite samples. The

problem is that we try to find a policy which works in every state

of our information set (see Section 4.3).

We also test our algorithm on chess and compared it

with CrazyAra’s (Czech et al., 2020) performance when trained

under the same conditions. No difference could be found here.

This is not surprising, since AlphaZe∗∗ behaves identically to

AlphaZero/CrazyAra on perfect information games. We also were

able to train AlphaZe∗∗ on the regular perfect information version

of DarkHex, i.e., Hex, effectively.

For DarkHex, we further tested to what extent we can take an

already-trained Hex model as a starting point, similar to TSL, and

if this cannot even harm our training. Here it has been shown that

the behavior is identical to that of TSL. Both TSL and the use of

a Hex model do not perform well in DarkHex directly. Only by

training further and adapting to DarkHex, these models make the

transfer and are competitive. This is consistent with our findings in

Figure 5A, where TSL agents also perform well only after switching

to another strategy.

10. Discussion

10.1. Using TSL and PC-PIMC

The results in Figures 4, 5 show that TSL-supported methods

are able to learn the game, but fail in the beginning of training

when compared with methods that rely directly on sampling.

Only after switching from TSL to pure sampling, the method that

relies on TSL achieves comparable results and manages to produce

slightly better results in our tests on DarkHex 5×5 and 11×11 as

well as Barrage Stratego. This suggests that the agents are able to

transfer from the TSL-supported training to the game situation.
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FIGURE 6

[Best viewed in color] The number of samples per turn influences the strength of the agent, but also linearly increases the time required. The size of

the board also has an exponential e�ect on the time required. Win ratio of PC-PIMC vs. PIMC with di�erent amounts of trees evaluated for 8×8

DarkHex. Elapsed time for 100 games in DarkHex, measured for di�erent amounts of samples per turn. (A) Win ratio of PC-PIMC vs. PIMC with

di�erent amounts of trees evaluated for 8×8 DarkHex. (B) Elapsed time for 100 games in DarkHex, measured for di�erent amounts of samples

per turn.

TABLE 6 The number of samples per turn plays an important role in situations where time is limited.

Samples per turn Sampling Algorithm Time per turn

800 ms 1,600 ms 3,200 ms 800 nodes per sample

6 PIMC 32 46 51 30

PC-PIMC 37 43 46 29

TSL+PIMC 42 46 52 43

TSL+PC-PIMC 41 51 54 44

12 PIMC 36 45 67 43

PC-PIMC 35 42 71 41

TSL+PIMC 41 49 71 51

TSL+PC-PIMC 39 – 74 49

20 PIMC 11 33 60 67

PC-PIMC 18 36 62 65

TSL+PIMC 12 41 75 72

TSL+PC-PIMC 18 38 81 78

If there is enough time, a higher number of samples will lead to better results in DarkHex. The table shows the win probabilities of agents with different time per move and samples per turn

against our TSL+PC-PIMC agent with 12 samples per turn and a time limit of 1,600 ms per move. Each agent played 100 games against the benchmark agent in DarkHex with board size 5×5.

The column “800 nodes” describes an agent that has unlimited time to reach 800 nodes per tree for each sample.

However, the difference between TSL methods and pure sampling

methods decreases with training, suggesting that this transfer is

lost during training. Furthermore, our experiments on the smaller

3×3 board seem to show that TSL does not directly improve

game performance when we train both agents to convergence.

Degradation from the use of TSL can occur when agents are not

given time without TSL to adapt, i.e., a period in which TSL-

supported agents can train without TSL. In summary, the use of

TSL can only lead to improvement in cases where games are so

complex that we do not train to the optimum. However, there is

also a risk of achieving the same or worse results. If we already have

a model for perfect games with the same or similar mechanics (in

our case Hex for DarkHex), using this as a starting point can lead

to agents being able to learn a little faster.

The results regarding PC-PIMC and PIMC in Figure 6A suggest

preferring PC-PIMC over PIMC due to its better performance

at higher amount of samples. However, since the difference in

playing strength between PIMC and PC-PIMC is rather small like

in Figure 5B, we see PIMC as a good alternative to PC-PIMC

as a useful sampling method within AlphaZe∗∗. Fundamental

problems of PIMC, as mentioned in Section 4.3, still remain in

PC-PIMC, resulting in AlphaZe∗∗ occasionally playing unreliably

and changing strategies frequently between moves. These problems

increase with the set of possible information states within a game,
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i.e., the set from which we draw samples, but can be reduced by

smarter sampling techniques.

By considering multiple samples to obtain a common policy, in

addition to the problems already mentioned, the trade-off between

diversity and accuracy arises, in our case the trade-off between the

number of samples and the depth of the trees computed in the

samples. This problem is not new, as described by Liu et al. (2019)

and is determined by various parameters. A possible improvement

that we have not considered in this work would be the parallel

calculation of the samples per turn.

10.2. Robustness to rule changes

Our experiments regarding robustness to changes in the

environment, Table 5, indicate that AlphaZe∗∗ is able to handle rule

changes in the form of the subvariants quite well. It increases its

win ratio in 9 out of 12 cases. Exceptions are Asmodeus and Vixen:

these two agents using a version of the shortest path algorithm can

improve with the additional information too, in some subvariants

even more successfully than our approach.

10.3. AlphaZe∗∗ compared to P2SRO and
DeepNash

When matched against a P2SRO8 agent that was trained for

820,000 episodes by McAleer et al. (2020), AlphaZe∗∗ fares worse.

While P2SRO plays reasonable strategies, AlphaZe∗∗ does not

necessarily, as mentioned above. This results in a win rate of 4–

16% against P2SRO, depending on the amount of nodes used

in the planning. Interestingly, the same problem also appears

against the other bots but less severe since the amount of possible

information states is smaller and we play similar or identical

strategies more often.

As discussed, Table 5 examines the strength of play when

both agents start with more information. We have integrated our

new “Blocked Fields” variant for P2SRO, but the other custom

variants appear to be difficult to implement. Here we notice a

great improvement of AlphaZe∗∗ against P2SRO compared to

regular Stratego, with AlphaZe∗∗winning∼40% of the games. This

strengthens our claim that AlphaZe∗∗ appears to be more robust to

rule changes than other AI-approaches.

In summary, P2SRO performs better in Barrage Stratego, but

AlphaZe∗∗ is easier to modify while retaining the benefits of an

explicit search algorithm and is more robust to rule changes or

adaptations to the environment.

In 2022, Deepmind introduced DeepNash (Perolat et al., 2022),

a new approach that can play Stratego at a previously unknown

level. The approach is also capable of learning the game from

scratch by playing itself, without using any human knowledge,

to a level where a Nash equilibrium is achieved for the game.

While the training is similar to our idea, the big difference between

the approaches are the algorithms used. Our approach is based

on a model-based approach with a dedicated search algorithm,

8 https://github.com/JBLanier/pipeline-psro

while DeepNash is based on a game-theoretic, model-free, search-

free algorithm called Regularized Nash Dynamics, which they

introduced in their work.

A direct comparison with DeepNash was not feasible thus far,

partly due to the fact that DeepNash is, at the time of this work, not

open source and a reimplementation seemed very time-consuming

to us. However, it can be assumed that DeepNash will also be

superior to our agent. This can also be assumed looking at their

results against existing Stratego bots, like Asmodeus or Celsius in

Stratego, where they win over 98% of their games. AlphaZe∗∗ is

not as strong in a direct comparison with P2SRO, losing over 80%

of its games against it, or presumably DeepNash, which seems to

be much stronger. We show that our adaption of AlphaZero, i.e.,

a model-based RL approach, can be robust and score similar win

rates as P2SRO against our baselines Celsius, Asmodeus and Vixen,

but cannot reach the current state-of-the-art.

11. Conclusion

In this work, we presented a framework to successfully employ

methods initially developed for perfect information games on

imperfect ones. AlphaZe∗∗ is based on the combination of deep

neural networks with tree search. We replaced the normally

used MCTS with our own Policy Combining Perfect Information

Monte-Carlo as well as our extension called TrueSight Learning.

We demonstrated that our framework is able to learn the

game of Barrage Stratego as well as DarkHex and improve the

quality of moves over the learning process. Most importantly,

we demonstrated that one can use known reinforcement learning

frameworks, like Silver (2017) and Czech et al. (2020), on imperfect

information games while only replacing the tree search. We

show that despite the general concern that techniques originally

developed for perfect information environments are doomed to

failure on imperfect games, they can represent a serious alternative.

AlphaZe∗∗ is a surprisingly strong baseline in stark contrast

to common beliefs. In its core, AlphaZe∗∗ is the combination of

the two known methods, AlphaZero and (PC-)PIMC, staying as

close as possible to AlphaZero. In doing so, we introduce as few

new parameters into the algorithm as possible in order to maintain

AlphaZero’s simplicity and improve its generalizability. That is, it is

the simplest extension of AlphaZero we can imagine. Compared to

heuristics and oracle-based approaches, AlphaZe∗∗ can easily deal

with rule changes, e.g., when more information than usual is given,

and drastically outperforms other approaches in this respect. This

flexibility provides several interesting avenues for the future.

One possible improvement is a more intelligent sampling

method, e.g., using models to predict probabilities based on

beliefs and modeling the opponent, rather than using a uniform

distribution or ignoring the opponent. Another idea is to integrate

the setup phase into the Stratego environment to allow a

neural network to learn the placement of pieces. Furthermore,

other alternatives to PC-PIMC such as Information Set Monte-

Carlo (Cowling et al., 2012, 2015) or combining our PC-PIMC

idea with other adaptations of MCTS should be explored. Further,

there are other games worth investigating. Examples could be

Poker or 2048, which are both imperfect information games with
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non-deterministic elements. Of course, these elements would also

have to be sampled, which would pose completely new challenges.
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