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Preface 

It was our great honor and pleasure to host the SIRM Conference after 2003 and 2011 for the third 
time in Darmstadt. Rotordynamics covers a huge variety of different applications and challenges 
which are all in the scope of this conference. The conference was opened with a keynote lecture 
given by Rainer Nordmann, one of the three founders of SIRM “Schwingungen in rotierenden 
Maschinen”. In total 53 papers passed our strict review process and were presented. This 
impressively shows that rotordynamics is relevant as ever. These contributions cover a very wide 
spectrum of session topics: fluid bearings and seals; air foil bearings; magnetic bearings; rotor blade 
interaction; rotor fluid interactions; unbalance and balancing; vibrations in turbomachines; vibration 
control; instability; electrical machines; monitoring, identification and diagnosis; advanced numerical 
tools and nonlinearities as well as general rotordynamics.  

The international character of the conference has been significantly enhanced by the Scientific Board 
since the 14th SIRM resulting on one hand in an expanded Scientific Committee which meanwhile 
consists of 31 members from 13 different European countries and on the other hand in the new 
name “European Conference on Rotordynamics”. This new international profile has also been 
emphasized by participants of the 15th SIRM coming from 17 different countries out of three 
continents. 

We experienced a vital discussion and dialogue between industry and academia at the conference 
where roughly one third of the papers were presented by industry and two thirds by academia being 
an excellent basis to follow a bidirectional transfer what we call xchange at Technical University of 
Darmstadt. At this point we also want to give our special thanks to the eleven industry sponsors for 
their great support of the conference.  

On behalf of the Darmstadt Local Committee I welcome you to read the papers of the 15th SIRM 
giving you further insight into the topics and presentations. 

Darmstadt, Germany, May 2023 

Stephan Rinderknecht 
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1 Paper ID-002 

SIRM 2023 – 15th International Conference on Dynamics of Rotating Machines, 
Darmstadt, Germany, 22nd – 24th February 2023 

Rotor dynamic excitation due to non-axisymmetric static load 

Angel Martinez Aja 1
1 Head of Mechanical Technology, Structural Analysis Fellow, Industria de Turbopropulsores S.A.U. (ITP 
Aero), 48170, Zamudio (Bizkaia), Spain, angel.martinez@itpaero.com 

Abstract 
This paper defines methodology to perform modal and frequency response analysis of a structural system 

composed of static parts and different rotors (i.e. whole engine model), in a stationary system, subjected to rotor 
non-axisymmetric static load. 

One example of non-axisymmetric static load is a non-axisymmetric inlet pressure on an engine fan in a cross-
wind environment (see Figure 1). Although this load is static from a stationary observer point of view, each fan 
blade, due to its rotation, is being excited by an alternating pressure that is promoting a dynamic excitation. This 
type of loading is designated as 0EO (zero engine order) in a stationary frame. Another example of non-
axisymmetric static load is the gravity load: weight load of a rotor blade is, again, an alternating load due to blade 
rotation. 

1 Introduction 
RotRed methodology [1] has been applied to perform rotor model reduction from a rotor cyclic symmetry 3D 

model. This methodology incorporates all rotating effects of a rotor model (gyroscopic effect, stress stiffening and 
spin softening) in stationary system, that allows incorporation of other rotors at different speeds and static parts in 
the same whole engine model. RotRed methodology presents a clear step forward to model and reduce flexible 
rotors with regard to commercial software [3][4][5][6] as shown in Ref. [1]. 

Normally, excitation type, considered in whole engine model, is out of balance on each rotor that corresponds 
to a 1EO excitation type. In this paper, it is shown how RotRed reduced rotor model matrices can be used to 
perform 0EO modal and frequency response analysis, in a stationary system, of a complete whole engine model 
subjected to a non-axisymmetric static load type (see Figure 1). In a stationary system Campbell diagram, 0EO 
excitation line corresponds to horizontal line axis. Thus, whole engine models that have backward modes crossing 
abscissa line will have resonances that can be excited by 0EO excitation type (see Figure 2). 

With current software capabilities [3][4][5][6], this type of 0EO excitation can be considered only in rotating

system, as a rotating load, but, with the known restriction of applicability to a single rotor model with axi-
symmetric boundary conditions. Relevant effects in the solution like non-axisymmetric stiffness support (statics) 
or dynamics of other rotors, can not be represented up to now. 

In conclusion, this methodology can be used to obtain dynamic response (displacements and stresses) of a 
whole engine model when subjected to non-axisymmetric static load (i.e. non axisymmetric inlet pressure in fans), 
taking into account dynamic amplification factor if resonances are within running range or if maximum speed is 
approaching first resonance. 

Backward mode crossing with abscissa axis, in a stationary system Campbell diagram, is present in different 
examples in bibliography: rotating disk [7], three-bladed wind turbine [8], rotor-bearing system [9] and flexible 
bladed rotor (fan) [10]. 

A very relevant example of a backward mode crossing abscissa line was experimentally observed in ARES test 
rig at Imperial College (London), excited by a non-axisymmetric static load (gravity), in the same context of this 
paper, and was reported in [11] by Valentina Ruffini. 

0EO excitation nomenclature has been used also as the excitation type that excites zero nodal diameter modes, 
like in the series of papers by Rzadkowski & Maurin [12] about coupling of disk stages in bladed-disk-shaft 
assemblies. 0EO excitation, within the context of this paper, refers to a load of zero frequency (non axi-symmetric 
static load) and corresponds to a straight line excitation that is coincident to abscissa axis (see Figure 2). 

15th SIRM – European Conference on Rotordynamics, 
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Figure 1: Non-axisymmetric static inlet pressure in a fan rotor model.

2 Single rotor 0EO modal analysis. 
Equation used for an asynchronous undamped modal analysis [1], within RotRed methodology, in a stationary

system, for a rotor model rotating at speed Ω is: 

[−𝑤2𝑴𝒍𝒊𝒏 + 𝑖𝑤 ∙ Ω𝒃𝒔𝒕𝒂 + (𝑲𝒍𝒊𝒏 + Ω2𝒌𝒔𝒕𝒂)]{𝛿} = {0}  (1)

Being: 
𝑴𝒍𝒊𝒏 linear mass matrix
𝑲𝒍𝒊𝒏 linear stiffness matrix
𝒃𝒔𝒕𝒂 fixed system gyroscopic matrix for unit rotation speed
𝒌𝒔𝒕𝒂 fixed system speed dependent stiffness for unit rotation speed
𝑤 excitation frequency
Ω rotation speed

Considering fan rotor model of  Figure 1, the following Campbell diagram can be constructed with eigenvalues 
obtained from equation (1), considering different rotation speeds: 

Figure 2: Fan rotor model Campbell diagram in stationary system.

As load, to be considered, is stationary in time, its excitation frequency is zero (𝑤 = 0) with regard to a 
stationary system. Considering this condition, equation (1) is simplified to the following expression: 

[𝑲𝒍𝒊𝒏 + Ω2𝒌𝒔𝒕𝒂]{𝛿} = {0} (2)

Note that condition 𝑤 = 0 or 0EO excitation corresponds to abscissa axis of Campbell diagram in Figure 2. 
Above equation (2) represents another eigenvalue analysis considering now Ω as “frequency” variable. Eigenvalue 
results from (2) will be those rotation speeds that correspond to the crosses of Campbell diagram modal curves 
with abscissa axis. In Figure 2, it can be observed graphically that first eigenvalue will be close to 60 Hz.  

0EO
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Equation [2] can be replaced by: 

[𝑲𝒍𝒊𝒏 − Ω2𝑴𝒇𝟎]{𝛿} = {0} (3) 

Being  𝑴𝒇𝟎 = −𝒌𝒔𝒕𝒂 a pseudo mass matrix of rotor.
With MSC Nastran [2], equation (3) can be solved using solution 107, inputting pseudo mass matrix with 

M2PP case control card and linear stiffness matrix with K2GG card. These matrices have been output previously 
with RotRed tool in a punch file with DMIG format. Note that all rotor mass definition needs to be removed from 
model (i.e. no M2GG card) because “frequency” variable has changed to rotation speed Ω. 

SOL 107 
CEND 
echo=none 
spc=1 
MPC=1 
DISP=ALL 
CMETHOD=100 
K2GG=KLIN 
$ n=0; 0EO 
$ M2GG=MLIN (NO mass matrix) 
M2PP=(-1.,0.)*KSTA 

Figure 3: Case control deck for 0EO modal analysis.

MSC Nastran solution 107 gives two eigenvalues below 300 Hz at 60.38 Hz and 234.19 Hz with mode shapes 
shown in Figure 4. 

Figure 4: Modal shapes for 60.38 Hz (left: blade 1st flap mode) and 234.19 Hz (right: blade 1st torsion mode).

First mode is an harmonic 1 blade flap mode and second mode is an harmonic 1 blade torsion mode. Main 
characteristic of these modes is that they do not have whirling motion. In fact, as 𝑲𝒍𝒊𝒏 and 𝒌𝒔𝒕𝒂 matrices are real,
then, eigenvalues and eigenvectors results from equation (3) are also real. 

3 Single rotor 0EO frequency response analysis. 
Best suited damping definition for 0EO excitation is via equivalent viscous damping. Equivalent viscous 

damping matrix [2] is defined, in the rotating frame, as: 

𝑩𝒗𝒅 =
𝐺

𝑤𝑒

𝑲𝒍𝒊𝒏 =
𝐺

2𝜋𝑓𝑒

𝑲𝒍𝒊𝒏

Being:  𝐺 equivalent structural damping 
𝑤𝑒  main frequency [rad/s], or 𝑓𝑒 in [Hz]

Considering equivalent viscous damping terms in stationary system, equation (1) becomes, in its forced 
version: 

[−𝑤2𝑴𝒍𝒊𝒏 + 𝑖𝑤(Ω𝒃𝒔𝒕𝒂 + 𝑩𝒗𝒅) + (𝑲𝒍𝒊𝒏 + Ω𝑩𝒗𝒅
𝒄 + Ω2𝒌𝒔𝒕𝒂)]{𝛿} = {𝐹} (5) 

Being:   𝑩𝒗𝒅
𝒄 circulation of equivalent viscous damping matrix (see reference [3]) 

(4) 
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Considering again 0EO excitation with condition 𝑤 = 0, equation (5) becomes: 

[𝑲𝒍𝒊𝒏 + Ω𝑩𝒗𝒅
𝒄 + Ω2𝒌𝒔𝒕𝒂]{𝛿} = {𝐹} (6) 

Note here that displacement results {𝛿}, again, are going to be real, in stationary system, because all matrices 
of equation (6) are also real. These real displacements {𝛿} can be converted to rotating system to obtain physical 
displacements of rotor points, that are now pulsating at frequency Ω, as expected:  

{𝛿}𝒓𝒐𝒕 = 𝑻{𝛿} (7)

Being 𝑻 transformation matrix from stationary to rotating system [3] that is dependent on rotation speed Ω.

Noting also that “frequency” variable is Ω, equation (6) can be transformed to allow an easy identification of 
stiffness, damping and pseudo-mass matrices terms: 

[𝑲𝒍𝒊𝒏 + 𝑖Ω ∙ (−𝑖)𝑩𝒗𝒅
𝒄 − Ω2(−𝒌𝒔𝒕𝒂)]{𝛿} = {𝐹} (8) 

Solution to this equation can be performed with MSC Nastran [2] using SOL 108 with the following cards in 
case control deck to input rotor matrices, previously generated by RotRed tool: 

K2GG=KLIN      $ linear stifness matrix 

$ n=0; 0EO 

$ M2GG=MLIN (NO MASS MATRIX!) 

B2PP=(0.,-1.)*BVDC $ damping matrix 

M2PP=(-1.,0.)*KSTA $ pseudo-mass matrix 

Figure 5: Case control deck cards for 0EO frequency response analysis.

Consider now, in the proposed example, an applied harmonic 1 static loading over fan rotor model as defined 
in Figure 6. This load of 10 KN is distributed over blade tip front nodes in Y direction of stationary system. 
Equivalent viscous damping has been defined with structural damping 𝐺 = 0.05 at frequency 𝑤𝑒 = 2𝜋60. This
will result in 5% of structural damping just at 60 Hz.  

A central node is defined, with number 1012, connecting loaded peripheral nodes with a RBE3 element. This 
central node represents the average displacement of these peripheral nodes. Radial displacement of central node 
1012, as function of rotation speed, can be obtained through frequency response analysis (SOL108) directly in 
stationary system (see Figure 6), and using (7), it can be converted to rotating system: 

Stationary system:  𝛿𝑟𝑎𝑑,𝑠𝑡𝑎 = √𝛿𝑦,𝑠𝑡𝑎
2 + 𝛿𝑧,𝑠𝑡𝑎

2 = 𝐴 (9) 

Rotating system: 𝛿𝑟𝑎𝑑,𝑟𝑜𝑡 = 𝐴 cos(Ω𝑡 + 𝜑) (10) 

Figure 6: Frequency response of a static load over fan rotor model.

As expected, at low frequencies, node 1012 displacement is equal to the static response but has an amplification 
factor when rotation speed approaches first resonance at 60.38 Hz. 

Figure 7 shows a contour plot of displacement magnitude of all nodes in fan rotor reduced model for speeds 
Ω = 0 𝐻𝑧 and at resonance Ω = 60 𝐻𝑧. It can be observed that node with maximum displacement turns 90 degrees 
comparing deformed plot at Ω = 0 𝐻𝑧 (point A with 2.24 mm) and at Ω = 60 𝐻𝑧 (point B with 27.38 mm).

𝐴
,
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Figure 7: Nodal displacements at Ω = 0 𝐻𝑧 (left) and at resonance of 60 Hz (right). 

4 0EO excitation in a whole engine model with multiple rotors and static 
parts.

In this section, dynamic equations, particularized to 0EO excitation, are going to be developed for static parts, 
reference rotors and non-reference rotors that belongs to a complex system like a whole engine model. 

Recalling again dynamic analysis equation (6) for forced vibrations with viscous damping of a rotor with speed 
Ω and for a 0EO excitation: 

[𝑲𝒍𝒊𝒏 + Ω𝑩𝒗𝒅
𝒄 + Ω2𝒌𝒔𝒕𝒂]{𝛿} = {𝐹} (11) 

For a static part, where Ω = 0, only its linear stiffness matrix 𝑲𝒍𝒊𝒏 needs to be considered in modal or frequency
response analysis when excitation is 0EO, as this static part is subjected only to static load. In this particular case 
of 0EO excitation, when standard frequency parameter 𝑤 has been changed to rotation speed Ω, frequency 
response standard solution of a commercial software can be used turning off mass content of static parts. 

Now, the definition of multiple rotors is outlined. One of these rotors must be labelled as reference rotor and 
must be the one that is receiving the static load input. Suppose a non-reference rotor, rotating at speed Ω′, that can 
be related to reference rotor speed Ω by piece-wise linear segments as shown in Figure 8: 

Figure 8: Piece-wise linear speed relationship of other rotors wrt reference rotor speed.

On each segment, non-reference rotor speeds can be approximated by a linear relationship: Ω′ = 𝑝Ω + 𝑞,
where 𝑝 and 𝑞 are constant values. 

For a non-reference rotor with speed Ω′, dynamic equation for 0EO (11) becomes:

[𝑲𝒍𝒊𝒏 + (𝑝Ω + 𝑞)𝑩𝒗𝒅
𝒄 +(𝑝Ω + 𝑞)2𝒌𝒔𝒕𝒂]{𝛿} = {𝐹} (12) 

Note again that all matrices and coefficients in equation (12) are real, so displacement results will be also real. 
Reordering terms in (12):  

[(𝑲𝒍𝒊𝒏 + 𝑞𝑩𝒗𝒅
𝒄 + 𝑞2𝒌𝒔𝒕𝒂) + 𝑖Ω(−𝑖)(𝑝𝑩𝒗𝒅

𝒄 + 2𝑝𝑞𝒌𝒔𝒕𝒂) − Ω2(−𝑝2𝒌𝒔𝒕𝒂)]{𝛿} = {𝐹} (13) 

Ω′ 

Ω 

Ω2 

Ω𝟑
1 2 3 

1 

A
B
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Equation (13) can be compared with classical formula: 

[𝑲 + 𝑖Ω𝑩 − Ω2𝑴]{𝛿} = {𝐹} (14) 

And then, non-reference rotor matrices are clearly identified as: 
Stiffness:  𝐾 = 𝑲𝒍𝒊𝒏 + 𝑞𝑩𝒗𝒅

𝒄 + 𝑞2𝒌𝒔𝒕𝒂

Damping: 𝐵 = −𝑖(𝑝𝑩𝒗𝒅
𝒄 + 2𝑝𝑞𝒌𝒔𝒕𝒂) (15) 

Mass: 𝑀 = −𝑝2𝒌𝒔𝒕𝒂

Matrices involved in a whole engine model with static parts and different rotors (reference and non-reference 
rotors) within a “segment”, are summarized in Table 1. 

Table 1: Matrices of static part and different rotors in an engine model for 0EO excitation.

pseudo-
matrix 

reference rotor 
(𝑅) 

static 
(𝑆) 

Non-reference rotor 
(𝑅𝑖) 

stiffness 𝑲𝒍𝒊𝒏
𝑅 𝑲𝒍𝒊𝒏

𝑆 𝑲𝒍𝒊𝒏
𝑅𝑖 + 𝑞𝑩𝒗𝒅

𝒄 𝑅𝑖
+ 𝑞2𝒌𝒔𝒕𝒂

𝑅𝑖

damping −𝑖𝑩𝒗𝒅
𝒄 𝑅

−𝑖(𝑝𝑩𝒗𝒅
𝒄 𝑅𝑖

+ 2𝑝𝑞𝒌𝒔𝒕𝒂
𝑅𝑖)

mass −𝒌𝒔𝒕𝒂
𝑅 −𝑝2𝒌𝒔𝒕𝒂

𝑅𝑖

Matrices from Table 1 can be input through X2GG and X2PP case control cards in a MSC Nastran solution 
108 to perform a frequency response analysis where the frequency variable is the speed Ω of reference rotor.  

For undamped modal analysis (SOL 107), all matrices from Table 1 need to be considered except 𝑩𝒗𝒅
𝒄 𝑥

matrices, that are related to equivalent viscous damping. 
Consider an example of a whole engine model with static parts and two rotors: (LP) Low pressure and (HP) 

High pressure. 

Figure 9: Whole engine model schematic view and spool speeds.

Rotor speed relationship of LP (rotor 1) and HP (rotor 2) is defined in the graph of Figure 9, where two linear 
segments can be identified. LP and HP spools are counter-rotating as shown also in model of Figure 9. 

These two linear segment have the following p and q parameters: 

Table 2: p and q parameters definition on each segment.
segment p q 

1 10 0 
2 5/3 250/3 

Ω1 Ω2 
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Using contributions of LP (reference) rotor, HP (non-reference) rotor and static part from Table 1, and 
considering p,q constants for the two segments identified in Figure 9, asynchronous modal analyses have been run 
from N1=0 Hz to N1=70 Hz in steps of 5Hz.  

Frequency results of these asynchronous modal analyses are shown in Figure 10, where bubble size represents 
fan rotor strain energy percentual. Strain energy backward content is shown with bubble filled with white colour, 
whilst forward content is shown with black fill. At it can be observed in Figure 10, there is a backward mode 
crossing abscissa axis approximately at 60 Hz that, after crossing, its strain energy turns to forward content. Modal 
shape of this mode is shown in Figure 11. 

Figure 10: Whole engine model Campbell diagram. Fan rotor relevant modes. 

Figure 11: 1st Modal shape at 60.124 Hz from 0EO modal analysis.

Exact value of N1 speed that corresponds to crossing of this backward mode with abscissa axis can be found 
performing a 0EO undamped modal analysis using matrices from Table 1, except 𝑩𝒗𝒅

𝒄 𝑥 matrices. Resultant first
eigenvalue is found exactly at N1=60.124 Hz. 
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As commented before, in single rotor 0EO modal analysis, this crossing mode is real and has no whirling 
motion content. In this case, mode is more relevant in fan blade, showing a flap mode type motion (see Figure 11). 

Now, 0EO frequency response analysis results are going to be obtained using a non axi-symmetric static 
pressure, as shown in Figure 12, composed on harmonic 0 and 1 components. 

Figure 12: Harmonic 0 (left) and harmonic 1 (right) fan blade static pressure distributions.

Displacements results for N1=0 Hz are shown in Figure 13 (top). Maximum fan blade displacement occurs at 
Bottom Depth Centre (BDC) blade (see point A in Figure 13-top), where static pressure is maximum (maximum 
harmonic 1 pressure with the same sign than harmonic 0). 

Figure 13: Displacements at N1=0 Hz (top) and at first resonance N1=60Hz (bottom).

B 

A 
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0EO frequency response analysis is conducted, considering contributions of LP rotor, HP rotor and static parts, 
per Table 1, of this engine model. Equivalent viscous damping has been introduced with an equivalent structural 
damping coefficient 𝐺 = 0.05 (5%) for a main frequency 𝑓𝑒 = 60 𝐻𝑧. Displacement contour plot at resonance
(N1=60 Hz) is shown in Figure 13 (bottom). 

It can be observed in Figure 13 (bottom), in comparison with Figure 13 (top), that maximum displacement has 
been amplified: from a maximum displacement of 4.19 mm at point A at Bottom Depth Centre (BDC) blade for 
0Hz, to 24.86 mm at point B at 3 o’clock blade for 60 Hz. Maximum displacement, within these blades, occurs at 
blade tip front (points A and B). 

Displacement evolution of blade front tip points A (BDC) and B (3 o’clock) is shown in Figure 14. 

Figure 14: Displacements evolution of Points A and B with N1 speed.

Figure 15: Blade front tip points displacements circumferential distribution at N1=0 and N1=60 Hz. 

An interesting aspect to note is that Point B is dephased 90 physical degrees versus point A (see Figure 13). 
Typical resonance “time dephase” of 90 degrees equals here to 90 physical degrees because resonance frequency 
is the rotation speed of fan. This change in the displacement field with rotation speed can be easily seen if blade 
tip front displacements of points A and B, are plotted against circumferential angle (origin at Top Depth Centre 
TDC), as shown in Figure 15. 

It can be noted that curves in Figure 15 are not perfectly symmetric against BDC (180 deg). This asymmetry 
comes from blade turning angle that results in a global geometry that is not symmetrical against an engine vertical 
meridional plane. 

B Point 

A Point 
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It is important to note that, as a resultant from generic equation (13), solution from frequency response analysis, 

under 0EO excitation, is static or constant for a stationary observer. This means that the displacement of a point 

that belongs to a static part will be static or constant in time for a given speed regime in engine rotors. In the same 

way, the displacement of a point that belongs to a rotor will be the same when it passes through a given 

circumferential position. In other words, all fan blade tip front points will have the same displacement when these 

points pass through a given circumferential position (i.e. 3 o’clock position).  

But, also, a particular rotor point will have different values of displacements when this point passes through 

the different circumferential positions, hence suffering a vibrating motion. Displacement solution for particular 

rotor points can be obtained, as shown, using equation (7). 

When rotor speed reaches a 0EO resonance, although response is static from a stationary observer, it will have 

a dynamic response amplification, and rotor deformed shape will rotate circumferentially 90 degrees, opposite to 

rotation speed sense, with regard to deformed shape at zero speed (see Figure 13). 

5 Conclusions.

RotRed is a methodology to consider all rotating effects (stress stiffening, spin softening and Coriolis effect) 

on dynamics of a rotor in a fixed or stationary system. RotRed represents a clear step forward, with regard to 

current commercial rotordynamics software, in the simulation of dynamics of whole engine models in which 

several rotors are combined with static parts and, specially, when these rotors are flexible.  

In this paper, it has been shown how a static non-axisymmetric pressure or load can generate a dynamic 

excitation in a rotating component when using a stationary system. Harmonic 1 content of this static load can 

promote a dynamic amplification of a backward mode that is crossing abscissa axis in stationary system Campbell 

diagram. This type of loading is named 0EO excitation. 

Also, 0EO excitation has been applied to a rotor of a whole engine model, in stationary system, where different 

rotors and static part are presented. 0EO modal analysis and frequency response analysis have been outlined for 

these complex systems. To maintain solution in the real domain, equivalent viscous damping has been selected as 

the method to introduce damping in the system. 
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Université de Lyon, 36 Avenue Guy de Collongue, F69134 ECULLY cedex, France

Abstract
The main source of excitation at the origin of the vibratory response of gear system is generated by the meshing

process, leading to the variation of the mesh stiffness and deviation between the ideal input/output transmission
law and the real one. In planetary gear, these phenomena are amplified due to the presence of multiple meshes.
Moreover, in operating, the varying relative position between the planets gears and the ring gear is at the origin of
a modulation in the temporal response measured on a fixed point on the ring gear housing. The aim of this work is
to present a novel method to investigate the dynamic behaviour of a planetary gear set. This method is a complete
procedure for a planetary gear system whining noise computation induced by the multi-mesh excitations. This pro-
cedure is divided in three main steps. First, the parametrical internal excitations are simultaneously characterized
by considering all contacts at the multiple gear meshings. Secondly, the coupled equations of motion are projected
onto the modal basis and the stationary dynamic response is computed using an iterative spectral method. Finally,
the modulated response of the planetary gear housing (ring gear) is evaluated. Numerical results are discussed and
compared with experimental observations.

1 Introduction
Over the wide range of geared systems, the planetary gear sets are distinguished by their capacity to provide

high gear ratio in a compact package. Indeed, a single stage planetary gear is composed of a central gear, called the
sun, which meshes with N gears called planets, which mesh with a peripheral gear (with internal teeth) called the
ring gear, while a carrier drives the axis of the planets. Thus, the sun, the ring gear and the carrier are three coaxial
solids. Planetary gear sets are used for example in automatic gearboxes, transmissions for hybrid vehicles, energy
production systems such as wind turbines, home automation applications such as shutters or blinds. However,
contrary to cylindrical gears with fixed and parallel axes, whining noise prediction and control remains a difficult
problem because of the coupling between the multiple gear meshes and the mobility of the planets axes.

It is well know that the gear whining noise is generated by the mesh process [1]. The problem posed is multi-
scale in nature. Indeed, the overall dynamic and vibroacoustic behaviour of geared systems (on the scale of a
meter) depends on the local micro-geometry of the teeth (on the scale of a micron), associated with the transmis-
sion error. Moreover, the problem is parametric in nature, due to the periodic fluctuation of the mesh stiffness,
and non-linear, due to the presence of functional clearance and close contacts between teeth and bearings. These
parametric internal excitations generate dynamic mesh forces which are transmitted to the housing through wheel
bodies, shafts and bearings. In the end, the radiated noise is directly related tot he vibratory state [2, 3, 4].
In the case of planetary gear sets, housing vibratory state prediction is challenging. In many applications, the
carrier rotation modulates the housing vibration response at its rotational frequency [5, 6], as a consequence of the
successive passage of the planets. The iterative spectral method allows the solving of linear parametric equations
of motion, in the carrier reference frame, in the spectral domain, with short computational time [7, 8]. The dynamic
response at meshes is hence fully characterized and the short computational time allows parametric investigation.
However, the computation of the dynamic response of any point on the ring gear requires an additional step. Even
if many works deal with ring gear modulated dynamic response [9] [10], further work is required to include modal
behaviour contribution of the ring gear. Indeed, these existing methods propose a simplified formulation based
on the use of Hanning window functions to simulate the growth/decay of the vibratory amplitude as one planet
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approaches or moves away from the measured point. Though these approach give good correlation with experi-
ments at low frequencies, the coincidence between mesh frequencies and housing modes at higher frequencies is
less discussed. Thus, a novel approach is proposed by taking into account the modulation effects induced by the
relative rotation between the observation point (fixed point located on the ring gear) and the meshes (attached to
the carrier reference frame). Numerical results are analysed and compared with experimental data.

Figure 1: Example of modulated housing vibratory response of a planetary gear with three planets, computed
using Hanning and Heaviside functions [9]

2 Numerical model
This paper proposes a novel approach to predict the vibroacoustic behaviour of planetary gear sets, from eval-

uation to the internal parametric excitations and their coupling to the housing vibratory state. The focus is set on
how to calculate the modulation effects due to the relative motion between the axis of the planets and the ring gear,
using a finite element approach and a spectral iterative method. This procedure can be divided into three main
steps. First, static transmission error and mesh stiffness fluctuation at each meshes are computing through the solv-
ing of contact equations. Next, the computation of the dynamic response of the drive train is performed through an
iterative spectral method. Finally, the dynamic response of the housing is computing through the relative rotation
between the observation point (fixed point located on the housing) and the meshes (attached to the carrier rotating
reference frame).

2.1 Static transmission error and mesh stiffnesses fluctuation
Assuming infinitely rigid and geometrically perfect gears, their circular involute profile offers a constant instan-

taneous transmission ratio. However, these undeformable and geometrical assumptions are never met. Geometrical
errors or tooth corrections as well as deformation under torque, induce a fluctuation of the instantaneous reduc-
tion ratio around its theoretical value. This fluctuation results in the so-called static transmission error (STE). It
is defined as the deviation between the actual position of the output shaft and its theoretical position [1, 2]. The
calculation of the STE is well mastered. It is based on the resolution of the equations describing the static contact
between the gear teeth (see for example Tavakoli et al. [11] and Rigaud et al. ([12]). For each position θ of the
driving gear, the contact between the teeth are established based on a kinematic analysis which assumes a geo-
metrically perfect and infinitely rigid mechanism, leading to the theoretical contact line on the tooth surfaces. The
resolution of the contact equations leads to the evaluation of STE δ(θ) and load distribution P along the contact
line.
In the case of planetary gears, equations of contact are solved taking account of all the meshes simultaneously
[13]. First, a planet gear is defined as reference. Contact points for the other gears are deduced for each successive
angular position of the reference gear, by taking into account planets mesh phasing condition [14], which depends
on the number of planets and the number of tooth of the sun gear.
With knowledge of contacts lines location between the sun and the planets, the contacts lines between ring and
planets occur is deduced from geometrical construction. For each angular position θ of the driving wheel, a kine-
matic analysis allows the resolution of contact equations of each meshes j = 1 : 2N :

{
HjPj = δj(θ)1− ej
Pj = Fj

(1)

At each contact, the constraints are:

{
−HjPj + δj(θ)1 ≤ ej
Pj ≥ Fj

(2)
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With Hj the compliance matrix of contact j, Pj the vector of the load distribution on the contact line j. δj is
the STE at mesh j, which correspond to a linear displacement of the gear related to the pinion along the line of
action. ej is the vector of the initial gaps between the contact surfaces determined from tooth modifications and
manufacturing errors, Fj is the static load oriented along the line of action, induced by the input torque, and 1 is a
unitary vector used for dimensional consideration.

In the case of a planetary gear train with N planets, the contact equations are solved by taking into account the
2N meshes simultaneously. For each planets, the overall STE ∆ is introduced from the sum of the local sun-planet
δn and planet-ring gear δn′ STE:

∆ = δn + δn′ (3)

Unlike cylindrical gears with fixed axes for which the static force transmitted by the teeth is an initial input
data of the problem, the distribution of the driving torque between the teeth of the planetary gear sets (and thus of
the force transmitted by each gear) is an unknown of the problem. This distribution depends on the flexibility of
the elements in contact, on the initial distances between the teeth induced by the microgeometrical gaps, and on
the phase conditions between the gears: in out of phase systems, the contact can be established between two pairs
of teeth for a gear (sun-planet or planet-ring), whereas it is established between a single pair of teeth for another
gear of the same nature. Thus, complementary constraint are added, acting that the total force is transmitted by the
sun to the three planets and from the three planets to the ring, and all the force received by a planet from the sun
are transmitted to the ring, so:

FT =
N∑

n=1

Fn =
2N∑

n′=N+1

F ′
n, Fn = F ′

n (4)

Furthermore, the instantaneous local mesh stiffness is defined from the derivative of the force transmitted by
the mesh, in relation to the static transmission error, for each angular position θs of the driving gear and for each
meshes:

kj(θs) =
∂Fj

∂δj
(θs) (5)

2.2 Dynamic response of the kinematic chain by a spectral iterative method
The numerical procedure proposed in this paper is based on several main assumptions. The ring gear is assumed

to be axisymmetric. Thus, the modal basis is independent of the angular position of the planets. As a result, one
modal basis is enough for solving equations at each angular position. Futhermore, the equations of motion are
first solved in a reference frame associated with the carrier, which is equivalent to considering that the ring gear is
moving in this reference frame. In practice, the modal basis is computed, considering the carrier fixed. Indeed, the
maximum relative speed of the ring gear to the carrier is about 12 m/s. This represents about 0.2% of the pressure
wave propagation speed of 5200 rpm. Except for very high speed applications, gyroscopic and centrifugal effects
can be neglected. This assumption is verified by the complex modal basis calculation (see equations detailed
Cooley and Parker [15]), here performed for a carrier rotational [0-120] rad/s speed range. The results obtained
show a negligible impact of gyroscopic effects. Less than 1% difference in eigenfrequencies is observed. Mode
shapes are almost identical.
The dynamic model chosen is based on a finite element discretisation of the transmission. The dynamic response
of the kinematic chain (i.e. dynamic transmission errors and teeth dynamic loads) can directly be computed in the
carrier reference frame. Thus, the equations of motion are expressed from the linearised gear force:

MEF ẍ+CEF ẋ+KEFx+
2N∑
j=1

kj(t)RjR
T
j x =

2N∑
j=1

kj(t)RjR
T
j xs(t) (6)
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With MEF and KEF respectively the mass and stiffness matrix from the finite element model and C the
damping matrix taken into account a posteriori with the modal decoupling hypothesis, through an equivalent vis-
cous damping coefficient for each mode. The elastic coupling between gears is introduced via the periodic mesh
stiffnesses kj(t), which results from the limited development of the first-order of tooth dynamic load. This cou-
pling, which acts along the lines of action, involves vectors of geometrical structure Rj . The vector xs corresponds
to the static response generated by the driving and brake torque, assumed constant. RT

j x is the dynamic transmis-
sion error and RT

j xs the static transmission error.

The finite element model of the planetary gear is presented in Figure 2. The housing (with ring gear directly
manufactured on), gears, input and output shafts and the carrier are modelled using 3D elements. The bearings are
modelled using axial and radial spring elements. Inertia are used to model the presence of a motor and a break.
These boundary inertia are connected to the input and output shafts with torsional stiffnesses, modelling the flex-
ible couplings on test bench. Mesh stiffnesses mean values are included in the finite elements model for elastic
coupling of the gears.

Figure 2: Finite elements model of the planetary gear

Time discretization methods lead to prohibitive calculation times. Low frequencies require long time period.
High frequencies require fine time sampling. Hence, parametric equations of motions are solved using the spectral
iterative method. The method is described in details in [7].It is based on the direct computation of the solutions
in the spectral domain [7]. To this end, the matrix equation ?? is rewritten in the mean modal basis with B,
deduced from the eigenvalues problem (KEF +

∑2N
j=1 kj(t)RjR

T
j ) − ω2MEF . By introducing the vector of

modal coordinates z such as x = B z, and thanks to the orthogonality property of the eigenmodes, equations in
the modal basis can be written under the following index form:

z̈k + 2ζkωkżk + ω2
kzk +

2N∑
j=1

gj(t)rjk

L∑
l=1

rjlzl =
2N∑
j=1

kj(t)rjkδ
(s)
j (t) (7)

In this equation, ζk is the equivalent viscous damping ratio of mode k, the term rjk = VT
k Rj is the projected

geometric structure vector in the modal basis and ωk is the kth eigenvalues of the system. One should note that
equations 7 remains coupled.

The first step of the iterative spectral method is based on solving the coupled equations of motion 7 in the
spectral domain, retaining only the stationary part of the forced response of the system. Indeed, the parametric
instabilities are characterised by an exponentially increasing free response. It is assumed that the viscous damping
is sufficient to lie outside these regions of parametric instabilities and that it leads to an exponentially decreasing
free response (asymptotic stability). Thus one can write:
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Zk(ω) +Hk(ω)
2N∑
j=1

Gj(ω)rjk ⊗
L∑

l=1

rjlZl(ω) = Hk(ω)
2N∑
j=1

Kj(ω)⊗ rjkE
(s)
j (ω) (8)

where Zk(ω), Gj(ω), Kj(ω) et E(s)
j (ω) are respectively the Fourier transform of zk(t), gj(t), kj(t) et δ(s)j (t).

The operator ⊗ represents the convolution product andHk(ω) represents the complex frequency response function
of the k mode, i.e.:

Hk(ω) =
1

(ω2
k − ω2 + 2iζkωkω)

(9)

After several judicious transformations, the iterative process can be written as follows:

En+1
i (ω) = Si(ω)−

2N∑
j=1

Tij(ω) ·
[
Gj ⊗ En

j

]
(ω) (10)

with:

E
(1)
i (ω) = Si(ω) (11)

The stopping criterion is based on the relative difference between two iterations which is compared to a very
small real ϵ, i.e. ϵ = 10−6 :

||En+1
i (ω)− En

i (ω)||
||En+1

i (ω)||
< ϵ (12)

With the spectral iterative method, large systems of periodic differential equations can be solved, with minimal
calculation times. Previous studies have demonstrated the validity of this method for multi-meshings systems [4],
like planetary gear sets [16, 8].

2.3 Vibroacoustic response of the planetary gear housing
The dynamic response computation with the spectral iterative method allows to describe the vibratory state of

any point of the finite element model. Even if this approach allows to directly compute the planetary gear chain
dynamic response, one more step is needed to compute the response of any point on the ring gear. The carrier
rotation modulates this response, as well as its rotational frequency [9]. The modulation is considered at posteriori,
by taking into account the effect induced by the relative rotation between the observation point (fixed point located
on the ring gear) and the meshes (attached to the carrier reference frame, as schematized in Figure 3.

The radial dynamic response of the cylindrical ring gear node n is noted ũn(R,ψn, z, t), with R the external
radius of the ring gear, z its axial position and t the time. The angular position of the observation point is noted
ψn and in the carrier reference frame (

−→
X c,

−→
Yc,

−→
Zc) and φn in the housing frame (

−→
X r,

−→
Y r,

−→
Z r). The dynamic

responses are computed by considering the system under load, without any relative movement between the ring
gear and the carrier. In practice, the dynamic response un(r, φn, z, t) of a fixed point on the ring gear (in relative
motion to the carrier) is measured.
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Figure 3: Model for the calculation of the dynamic response of a housing point

By properly choosing the initial position of the carrier at t = 0, one can write:

un(R,φ, z, t) = ũn(R,ψ, z, t) = ũn(R,φn − Ωct, z, t) (13)

Therefore, a point B(R,φB , zB) on the ring gear has a dynamic response out of phase from point A(R,φA <
φB , zA = zB) with a delay of:

tB − tA = −φB − φA

Ωc
(14)

With Ωc the carrier angular rotational speed. Based on this description, we proposed to access the dynamic
response un(R,φn, z, t), a linear temporal interpolation between the responses ũn(R,ψi, z, t) is build. This inter-
polation is based on the main assumptions previously described in this paper, and more particularly one on those
stating on the axisymmetric condition of the ring gear and the invariability of the modal basis whatever the posi-
tion of the planet axis. On the time interval ti ≤ t ≤ ti+1, the following linear time interpolation scheme can be
written:

un(R,φn, z, t) =
ũn(R,φn − Ωcti, z, t)(ti+1 − t) + ũn(R,φn − Ωcti+1, z, t)(t− ti)

(ti+1 − ti)
(15)

From a practical point a view, the iterative spectral method gives access to the answers in discrete nodes
of the ring gear ũi(R,ψ = ψi, z, t), i = 1 à P (54 points considered in our application). Thus, the answer
un(R,φn, z, t)) is evaluated at the node of the model identified by φk = 2kπ/P (k = 0, 1, ..., P −1). By properly
choose time interval and ring gear discretization, and by considering that all the nodes on a peripheral circle of the
ring gear have an identical response to within one phase, the dynamics response of the node identified by the angle
φk = 0 at time t is equal to:

un(R, 0, z, t) = Ωkc

P−1∑
i=0

[
ũi(R,

2π(P − i)

P
, z, t)(ti+1 − t) + ũi(R,

2π(P − 1− i)

P
, z, t)(t− ti)

]
× H(t− ti+1)H(ti − t)

(16)
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with H the Heaviside function.

3 Numerical results
The studied planetary gear set has the sun as its input and the carrier as the output, so that the ring gear remains

fixed. Its main characteristic are given in Table 1.

Table 1: Main characteristics of the studied planetary gear set

Sun Planets Ring
Number of planets N 3

Number of teeth Z 27 40 108
Module mo 1.5

Pressure angle α (°) 20
Helix angle β (°) 0

Transmission ratio ı 5

Based on the gear module, the maximum permissible input torque is 156 Nm, i.e. a breaking torque of
780 Nm. The nominal input operating speed of the planetary gear is 1500 rpm, with a maximum operating
speed of 3500 rpm. A test bench is instrumented to allow the vibratory and acoustical characterization of plan-
etary gear sets, such as instantaneous rotational speed of input and output gearbox shafts, the radial acceleration
of planetary gear housing and the radiated noise. This allows direct comparison with numerical results at each
computational step [17]. In this paper, the focus will be on the radial acceleration of planetary gear housing to
validated the capacity of the proposed method to access housing modulated vibratory response.
In this application, the applied motor torque is equal of 100 Nm and the excitation spectra (STE and mesh stiff-
nesses fluctuations) include the first six harmonics of the mesh frequency. The modal equivalent modal damping
rate is chosen to be uniform across all modes and is equal to 5%. Finally, the ring gear is supposed to be perfectly
cylindrical (and so perfectly axisymmetric). Indeed, the small variation of ring gear thickness observed on the real
system induced negligible deviation in modal basis and dynamic response.
Two test cases will be discussed. First, the dynamic response at low speed (250 rpm) is computed, when the
harmonics of the mesh frequency are lower than the eigenfrequencies of the system. Then, the dynamic response
at high speed (3100 rpm) is computed, when the harmonics of the mesh frequency may coincide with frequencies
for which the ring gear exhibits significant operational dynamic deformation. Hight speed measurement result are
finally discussed to evaluate the relevance of the proposal numerical model. For both results, special attention is
given to modulation shape of the radial acceleration of housing (ring gear) over a complete carrier rotational period
Tc.

3.1 Dynamic response of the ring gear at low speed
The dynamic response of the ring gear is evaluated for a sun rotation speed of 250 rpm. The mesh frequency is

then equal to fm = 90Hz. At low rotational speeds, the first harmonics of the mesh frequency are lower than the
natural frequencies of the system, thus the ring gear responds on its static deformation, i.e. the static contribution
of the modes. This static deformation is calculated by considering unitary forces directed along the lines of action,
as shown on Figure 4(a). This induced a deformation composed of six lobes, that can be express as a function
As describing the amplitude of the static deformation in polar coordinate, as shown in Figure 4(b).Figure 4(c,
d) show temporal response of the radial acceleration of the ring gear dynamic response for a complete carrier
rotation Tc, for purely harmonic excitation at the mesh frequency H108, and its associated spectrum, plotted as
a function of the output frequency order (carrier frequency) around the range of order from 100 to 116. If the
model was perfectly axisymmetric, one would observed a periodic temporal response with a period equal to Tc/3,
corresponding to the periodic passage of the three planets. In our application test case, ones can observed a slightly
different behaviour because the system isn’t perfectly axisymmetric. The spectrum has a moderate amplitude at the
mesh frequency fm. The dominant lines are the sidebands at fm±N , whereN is the number of planets. Ones also
observe that the envelope of the temporal response has six lobes, reflecting the amplitude modulation phenomena.
Detailed analysis of the time response envelope for this operating regime allows a link to be established between

Paper-ID 7117



its amplitude and the static deformation of the ring gear. This result shows a different behaviour from those usually
found in the literature with simplified formulation, when the modulated signal is only considered as a growth/decay
of the vibratory amplitude as one planet approaches or moves away, which would lead for our application case to
a three-lobe signal [9].

(a) (b)

(c) (d)
Figure 4: (a) Static deformation of the ring gear induced by unitary force oriented along the line of action. (b)
Adimensionnal amplitude of the static deformation in polar coordinate. (c) Temporal response of the radial accel-
eration of the ring gear dynamic response for a complete carrier rotation. (d) Amplitude spectra in function of the
mesh frequency order.

3.2 Dynamic response of the ring gear at high speed
For high operating regimes, the higher order harmonics of the mesh frequency are high enough to coincide

with the eigenmodes of the system. The dynamic response of the ring gear is considered for a sun rotation speed
equal to 3100 rpm. The mesh frequency is then equal to 1116Hz.

Figure 5(a) shows the time evolution of the modulated dynamic response of the ring gear and figure 5(d) the
amplitude spectrum, plotted as a function of the carrier frequency order. An amplification of the fifth and sixth har-
monics of the mesh frequency is observed, corresponding to an excitation of the modes around 5580 and 6695Hz.
We propose to analyse the dynamic response extracted around these two harmonics. Figures 5(b, c) show the
corresponding temporal evolutions. Figures 5(e, f) show the amplitude spectra associated, plotted as a function of
the output frequency order (carrier frequency) around the order range from 532 to 548 on one hand, and from 640
to 656 on the other hand. As with the low-speed dynamic response, the amplitude of the harmonics of the mesh
frequency H540 and H648 are lower than that of the sidebands at H108i ± NH1 and H108i ± kH1, with N the
number of planets and k an integer. The shape of the envelope of the temporal dynamic responses is complex and
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depends on the frequency of observation, and so on the modes exited. Futhermore, the number of lobes seems to
be driven by the difference between the two most significant sidebands. For example, we observe six lobes for
the dynamic response around the fifth harmonic (driven by the sidebands H537and H543), while we observe four
lobes for the dynamic response around the sixth harmonic (driven by the sidebandsH645 andH649). Moreover, one
should observed that the periodic temporal response with a period equal to Tc/3 observed at low speed is no longer
representative of the modulated signal. Here again, numerical results show a behaviour far to be representative to
a three lobe temporal evolution of the ring gear radial acceleration.

In order to validate the relevance of the numerical results from the new method proposed in this paper, exper-
imental results for hight rotational speed are analysed. Here, the complexity lies in the quality of the tunning of
the numerical model compared to measurement. Indeed, a frequency shift of the modes, a poorly estimated modal
damping or geometrical simplifications of the numerical model make it difficult to choose the rotational speed
which would give us exactly the same operational deformation shape both in simulation and in measurement. In
the present paper, numerical rotational speed and measurement one are choose to give a qualitative comparison of
the phenomena that drive the modulated vibratory response of a planetary gearbox without trying an quantitative
comparison.

(a) (b) (c)

(d) (e) (f)
Figure 5: (a) Temporal evolution of the overall ring gear dynamic response. (b) Temporal evolution of the ring
gear dynamic response on the order range [532 548]. (c) Temporal evolution of the ring gear dynamic response on
the order range [640 656]. (d) Amplitude spectra of the overall ring gear dynamic response. (e) Amplitude spectra
of the ring gear dynamic response on the order range [532 548]. (f) Amplitude spectra of the ring gear dynamic
response on the order range [640 656].

The quasi-axisymmetric boundary conditions of the ring gear are experimentally well verified. Thus, the exper-
imental results presented below are the algebraic mean value of the levels measured by the different accelerometers.
The global level measured experimentally includes phenomena not considered in the numerical model (friction,
assembly errors, etc.). For the comparison between computation and measurement, the dynamic responses are
extracted around the first four harmonic of the mesh frequency, included sidebands induced by carrier rotation.
As an example, the experimental dynamic response measured at 800 and at 2200rpm is presented in Figure 6(a, b)
retaining only the frequency contributions on the order band H108i±NH1, (i=1, 2, . . . 6), N being the number of
planets. We observe a signal with a complex modulation, with a high number of sidebands at the mesh frequency.
Qualitatively, one observes 6 lobes at 800 and 2200rpm. The zero crossing of the dynamic response is only visible
when the dynamic response is plotted by only retaining an order band around a particular harmonic (see 6(c, d)). It
is also observed in this figure that the dynamic response at 800 rpm, retaining only the frequency contributions on
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the order band H216± 3H1, shows a number of lobes equal to 5, whereas at 2 200, by retaining only the frequency
contributions on the order band H432 ± 3H1, we observe 6 lobes. The experimental observations are qualitatively
consistent with what is observed numerically (see the digital application).

(a) (b)

(c) (d)
Figure 6: (a) Ring gear dynamic response measured at 800 rpm. (b) Ring gear dynamic response measured at
2200 rpm. (c) Ring gear dynamic response measured at 800 rpm, order 2 of the mesh frequency. (d) Ring gear
dynamic response measured at 2200 rpm, order 4 of the mesh frequency

The observation of number of lobes performed here illustrated than conventional simplified analytical for-
mulation to modulate the dynamic response of the ring gear failed to be representative of the complexity of this
phenomena. By integrating modal behaviour in the modulation numerical model, based on non-modulated initial
signal, one can reach a richer dynamic response, where an acoustic transcription of which would be closer to the
real sound of the planetary gearbox.

4 Conclusion
The modulated dynamic response of the ring gear of the planetary gear is evaluated using an original approach

which considers its operational deformation for each operating regime. Analysis of numerical and experimental
results is based one observation of the number of lobes over a complete carrier rotational period. If this analysis
don’t statued on the quantitative capability of the propose model, it shows how taking into account the modal
behaviour of the system during converting a non-modulated signal to a modulated one can reach a more complex
dynamic response, correlated to experimental observation.
The numerical results show that for low sun rotation speeds, the envelope of the dynamic response of the ring gear
is driven by the static deformation of the planetary gear. At higher rotational speeds, when the harmonics of the
mesh frequency are high enough to coincide with the eigenmodes of the system, the envelope of the modulated
dynamic response is driven by the operational deformation of the ring gear. Measurement investigations confirm
that the modulated dynamic response of the ring gear can presented more lobes than the number of planet.
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The used of the spectral iterative method offer low computational time and give the opportunity to extract the
dynamic response at several points to construct a refine modulated response. It also offer the opportunity to
performed parametrical simulation, key of a better understanding of ring gear modulation dynamic responses
effects and improving numerical model.
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Abstract 

Thrust collars are an established machine element in integral gear units to transmit axial forces between wheel 

and pinion shaft(s). 

In this paper it is shown that the design of the thrust collar – especially the clearance – can cause a resonance 

phenomenon, at which the axial and/or yaw motion of the gear wheel is coupled with the lateral motion of a pinion 

shaft. An excitation of this specific motion can for example be induced by an axial run-out of the thrust collars 

contact face. As a result, unwanted lateral vibrations are observed, at first in the mechanical running test of the 

gear unit. 

For the investigations in this paper, a multi-body simulation model is used. In addition to the simulation, a 

phenomenological comparison with results from the mechanical running test is made. 

1   Introduction 
Thrust collars are widely used in integral gear units. They transmit axial forces, which arise due to thrust forces 

of impellers as well as due to helical gearings, from the pinion shaft(s) to the wheel shaft via a thin lubrication 

film. This lubrication film arises due to the rotation of the shafts. In comparison to a design with conventional 

thrust bearings, thrust collars generate less power loss due to significant lower difference speeds in the lubrication 

area.  Thus, they lead to a higher efficiency of the gear box. Figure 1 shows both technical solutions. 

Various authors made investigations on the operating characteristics of thrust collars using different model 

depths, for example SIMON [11], THODEN [12], HESS and LOHRENGEL [7] and SAN ANDRÉS, et. al. [10]. In the 

latter one, which is using a thermal-mechanical approach, also stiffness and damping coefficients were derived. 

CABLE et al. investigated in [1], on the base of the model presented in [10], the influence of shaft misalignment on 

pressure distribution as well as on stiffness and damping coefficients. 

There are also some few investigations on the dynamics of thrust collars in integral gear units from the recent 

years. CHILDS and CRANDALL showed in [2], that the bull gear run-out can lead to subsynchronous vibrations of a 

pinion shaft. For this, they developed an analytical model of a simple rotor and showed, that the thrust collars oil 

film couples the motion of bull gear and pinion shaft. Meshing forces are not considered in this model. 
HEINRICH and LOHRENGEL investigated in [6], experimentally and theoretically, a thrust collar in a parallel 

shaft gear box with focus on improved acoustics. In their mechanical model, also meshing forces are considered. 

Taking into account the dates of publication, this short literature study shows that the dynamic behavior of 

systems with thrust collars is an upcoming topic in the research of turbomachinery/gear boxes.  

Figure 1: a) thrust collar design and b) conventional thrust bearing design 
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This paper deals with a phenomenon, which came up during a mechanical running test of a relatively small 

integral gear unit. As the steady state conditions were reached, it was detected that the motion of pinion shaft had 

noticeable frequency components at 180 Hz and 240 Hz, which is 3x respectively 4x of the input speed of 60 Hz, 

see also figure 2. The rotational frequency of the pinion shaft itself is in the range of 1000 Hz, so the observed 

phenomenon is a kind of subsynchronous vibration. Even if the amplitudes of these frequency components are 

relatively low, they have still a potential for improvement. In the present case, the thrust collar and its 

characteristics played a crucial role for the presence of these vibrations. 

2   Simulation Model 
For a better understanding of the observed phenomenon of subsynchronous vibrations, a simulation model is 

set up. Here, a multi-body simulation tool (Dassault Systèmes/Simpack [3]) is used. In this manner, a general 

investigation of the dynamical behavior of the gear box can be made and forces between different bodies, which 

are often a crucial point, can be easily modelled with different levels of complexity. 

The simulation model is shown in figure 3. It consists mainly of three bodies: one wheel shaft in the centre of 

the gear box and two pinion shafts, which are at the left respectively right side of the wheel shaft. The housing, 

which is shown as transparent in figure 3, is modelled as rigid body with a fixed support. Thus, it has no influence 

on the simulation results. It has the purpose for a better overview here. 

For all shafts, the rigid body motion is not constrained. So, they can move completely free in space. Further 

degrees of freedom arise due to modelling of the pinion shafts as flexible bodies. Here, all modes up to a frequency 

of 1.5 ∙ 240 Hz are considered in the model. This is realized by the use of a substructuring technique implemented 

in SIMPACK. The wheel shaft is modelled as rigid body.  

The shafts are running in fluid film bearings. A connection between wheel shaft and pinion shafts is given due 

to the toothing as well as due to the thrust collars.  The related models for all these forces are described separately 

in the following sections. The system is driven by a torque acting at the front end of the wheel shaft. 

Figure 2: FFT of measured lateral vibrations at one of the pinion shafts with dominant 

components at 180 Hz and 240 Hz (3x and 4x of the wheel shafts rotational speed) 

Figure 3: Simulation model (top view) 
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The numerical investigations made in this paper are for a configuration of a mechanical running test without 

impellers. Instead of the impellers, so called test masses (depictured as spheres in figure 3) with similar inertia 

properties are used. However, there is practically no load in comparison to the application case. Thus, bearings, 

thrust collars and toothing are only lightly loaded. 

2.1 Thrust collar 

The forces in the thrust collar are modelled by solving the REYNOLDS equation of lubrication theory in every 

time step. This is a comfortable way, to also consider a tilting motion of the concerned shafts and to take into 

account possibly present non-linear effects.  

Due to the contact angle of the thrust collar faces, see also figure 4 a), a converging lubrication gap ℎ(𝑥, 𝑦) is 

present, so that a pressure build-up takes place. The characteristics of a thrust collar are similar to a journal bearing. 

They depend mainly on geometry, oil viscosity of the lubricant, load, circumferential speeds and especially on the 

clearance between pinion shaft and wheel shaft, here denoted as ℎ0.

In the investigations here it is assumed, that the viscosity of the oil is constant in the lubrication gap. As a 

consequence, the REYNOLDS equation is not coupled with the thermal energy transport equation and can be solved 

stand-alone. Furthermore, it is assumed that always a sufficient oil flow at the entry of the lubrication gap is 

present. In the gear box, this is ensured by a spray bar. Figure 4 b) shows an exemplary pressure distribution as a 

solution of the REYNOLDS equation. 

2.2 Gear mesh 

For all gear meshing forces a linear spring-dashpot model is used. The values for stiffness and damping 

coefficients are calculated a priori. The stiffness coefficient, usually denoted as 𝑐𝛾, is calculated on base of ISO

6336, [8]. For the damping coefficient the model from GERBER is used, [4]. 

2.3 Bearings 

The gear box contains six radial bearings, which are all fluid film bearings. The bearings of the wheel shaft are 

fixed geometry bearings, while the bearings for the pinion shafts are tilting pad journal bearings, what is typical 

for these kind of gear boxes. Furthermore, one thrust bearing supports the wheel shaft in the axial direction. 

For all these bearings a linear approach using stiffness and damping matrices, respectively scalar values for the 

thrust bearing, is applied. For the calculation of the related coefficients the software COMBROS R/A is used, 

[5,9].  

3   Simulation Results 

3.1 Systematic investigation of the system behavior 

For a better understanding of the system dynamics, a calculation of the transmission behavior is performed. 

Due to the observance of frequency components, which are related to the rotational frequency of the wheel shaft, 

this body is used to apply an excitation 𝑝(𝑡). For this purpose, the axial motion of the driven end of the wheel shaft 

Figure 4: a) schematic sketch of the lubrication zone and b) exemplary pressure distribution 
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is defined by a chirp signal, which excites the frequency range between 0 Hz and 500 Hz. As response signal 𝑥(𝑡), 

the radial displacement of pinion shaft 2 near the motor side bearing is used (in figure 3, this is in the vicinity of 

the dashed line at the bottom left corner). Performing FFTs for both signals and setting them in relation yields a 

dimensionless transfer function 𝐻(Ω) = 𝑋(Ω)/𝑃(Ω).  

Because of manufacturing tolerances, the thrust collar clearance ℎ0 fluctuates in a certain range, what

influences the dynamical behavior of the system significantly. Figure 5 shows the magnitude of 𝐻(Ω) for different 

clearances ℎ0,𝑖. Following circumstance is to observe: For ℎ0,1, thus a relatively low thrust collar clearance, a

resonance phenomenon in the region around 220 Hz is present. And the larger the thrust collar clearance is, the 

lower is the related resonance frequency. In addition, the maximum of |𝐻(Ω)| is lower. The reason for these effects 

is the change of the lubrication films stiffness and damping characteristic in dependence of the clearance. 

The simulation shows that the lateral motion the pinion shaft is coupled with the axial motion of the wheel 

shaft. The reason for this is, that the force acting on the thrust collar of the pinion shaft has a lever arm around the 

shaft’s centre of mass. This leads to a tilting motion of the pinion shaft, what is registered by the displacement 

sensors. Even if the “amplification” is below the value of 1: If an excitation is present, it can lead to the vibration 

phenomenon shown in figure 2.  

The resonance in the vicinity of 300 Hz, whose frequency is practically not changing in dependence of the 

thrust collar clearance, belongs to a bend-critical speed and was not excited during the mechanical running test. 

3.2 Exemplary result for a gear wheel with a manufacturing defect at the thrust collars face 

In chapter 3.1. it is shown that an axial motion of the gear wheel can lead to a lateral motion of the pinion shaft. 

In the gear box, a similar excitation is present, when the thrust collars face at the gear wheel has an axial run-out 

or more precisely: a flatness imperfection. Such imperfections can arise in the manufacturing process and can have 

specific orders. 

As an exemplary calculation a gear wheel with different flatness imperfections from first to fourth order, each 

with a magnitude of 15µm (pk-pk) at one side of the gear wheel only, is simulated. Figure 6 shows as an example 

a flatness imperfection of third order. For the simulations, a clearance of ℎ0,1 (see also figure 5) is used. 
An evaluation of the simulations results is made by analysing the system’s response when a steady-state 

condition is reached. Like in section 3.1, the deflection of pinion shaft 2 near the motor side bearing is used for 

the analysis. The simulations yield, that the system is responding only with the related frequency of the excited 

order (60 Hz at 1st order, 120 Hz at 2nd order, etc.). In other words: The system behaves linear regarding this point. 

Figure 5: transmission behavior between axial motion of the wheel shaft and radial motion 

of pinion shaft 2 in dependence of the thrust collar clearance 
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Table 1 is listing the response amplitudes. As expected from figure 5, the response amplitudes at 180 Hz and 

240 Hz are the two largest ones. 

Table 1: Simulation results with different orders of flatness imperfection 

Order of flatness imperfection Response at pinion shaft 2 @ related frequency 

1st 0.1 µm (pk-pk) @   60 Hz 

2nd 0.4 µm (pk-pk) @ 120 Hz 

3rd 3.1 µm (pk-pk) @ 180 Hz 

4th 5.2 µm (pk-pk) @ 240 Hz 

This shows that a flatness imperfection of the gear wheel’s thrust collar face can excite lateral vibrations of a 

pinion shaft. However, in these simulations an imperfection was admitted only to one side of the gear wheel. If 

both sides have an imperfection, the response amplitude can be higher or lower, according to the particular 

magnitudes and the relative phases of the imperfections. And looking at a manufactured gear wheel, flatness 

imperfections of all orders will be present, more or less in magnitude. The system will response accordingly to 

that excitation, see also figure 2. 

4   Conclusion 

This paper shows with the use of a multi-body simulation model a coupled vibration phenomenon between 

wheel and pinion shaft in an integral gear unit. The crucial role hereby plays the thrust collar and its design 

parameters – especially the clearance – which can lead to a resonance phenomenon. An axial run-out of the thrust 

collars face can then act as excitation. The resulting subsynchronous vibration can for example be lowered by a 

rework of the wheel shaft’s thrust collar face. This leads to two positive effects: The manufacturing defect – and 

therewith the excitation – is brought to a lower level. Furthermore, the thrust collar clearance is increased, leading 

to an improved dynamical behavior.  

However, there are under circumstances more mechanism of excitation, e.g. due to pitch errors of the toothing. 

This can be a topic for investigations in the future. 
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Abstract 

The paper describes a coupled torsional-bending vibration model of a ship's propulsion shaft system with a 
residual shaft bow. The developed model presents an extension of the Jeffcott rotor model. In order to test the 
numerical model and determine the coupled torsional-bending vibrations, several cases were analyzed. First, a 
reference case corresponding to a fully axisymmetric ship propulsion system is set up. Then a shaft bow was 
introduced, and the influence of the constant radial force in the vertical direction at the position of the stern bearing 
was analyzed. Such conditions exist when a ship navigates on a calm sea under a partial or fully loaded hull. 
Finally, the case of sailing on a rough sea is analyzed when the propeller racing occurs due to the stern lifting out 
of the sea. Based on the results of numerical analysis, it was found that the proposed model well describes the 
coupling of torsional and bending vibrations of the propulsion shaft system with residual shaft bow. The aim of 
the research is to prepare input data for estimating the fatigue life of the propulsion shafting system of ships sailing 
at slow steaming speed for low carbon shipping. 

1   Introduction 

The ship's propulsion system suffers various complex loads during operation. The shaft line is usually loaded 
externally due to combination of radial forces that represent reactions in the bearings and the torque variations 
caused by the torsional vibration applicable for continuous operation, basically due to engine firing pulses [1, 2].  

A proper consideration of the single and coupled vibration modes of the propeller shaft, including torsional, 
longitudinal, and transverse vibrations is important to ensure safe ship propulsion and navigation at sea, [3, 4]. 

The weather conditions under which the ship sails can also have a impact on the shaft line loadings since the 
rough sea can cause periodical emerging and immersion from the sea, causing a propeller racing phenomenon, [5, 
6]. 

Due to mentioned loads the torsional and transverse vibrations of a shaft line are expected, having the influence 
on fatigue [7-9] as well as fractural [10,11] behavior of shaft line system. 

Additionally, due to always present shaft unbalance and bow [12,13], the conditions for appearance of coupled 
torsional – transverse vibrations, are met.  

This paper presents a contribution in terms of explaining the coupling between torsional and bending vibrations 
of the shaft line with a residual shaft bow when the ship is navigating on calm and rough seas. 

2   Mathematical and numerical model for coupled torsional–bending vibration analysis of the ship's 
propulsion shaft with a residual shaft bow 

In this paper mathematical model based on the modified model of the Jeffcott rotor is used, Figure 1. The 
propulsion shaft, subjected to both torsional as well as bending vibrations is modelled as rigid disc characterized 
with inertial parameters such as mass m and mass moment of inertia J. Propulsion shaft is also subjected to cross 
– section eccentricity due to unbalance e. The equations of motion for the disc due to planar motion are

𝑥 = 𝑥(𝑡),   𝑦 = 𝑦(𝑡),   𝜑 = 𝜑(𝑡) = 𝜃(𝑡) + 𝜔𝑡 (1) 
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In the previous equation, the total rotational angle φ of disc is a sum of rotational angle due to shaft rotation 
with constant rotational speed ω and torsional vibrations angle . The unknown displacement vector, as function 
of time t, consists of two translational displacements and one rotational angular displacement: 

{𝑢(𝑡)} = { 𝑥(𝑡), 𝑦(𝑡), 𝜃(𝑡)}  (2) 

a) b) 

Figure 1: Shaft with a residual shaft bow. 

Coordinates of geometrical center of the disc O2 are defined with expressions 
𝑥 = 𝑥 + 𝑟 cos(𝜔𝑡 + 𝜃(𝑡) − 𝛽) 
𝑦 = 𝑦 + 𝑟 sin(𝜔𝑡 + 𝜃(𝑡) − 𝛽) 

(3) 

where r0 is the initial bow,  is the initial angle between initial bow and mass eccentricity,  is torsional angle 
and x1 and y1 are coordinates of coordinate system which rotates with rotors angular speed  and which define 
distance from geometrical disc center O2 and it's initial position O1. 

Coordinates of mass center of the disc C are defined with 
𝑥 = 𝑥 + 𝑒 cos 𝜔𝑡 + 𝜃(𝑡)  
𝑦 = 𝑦 + 𝑒 sin 𝜔𝑡 + 𝜃(𝑡)  

(4) 

The displacement of the geometrical center O2, during its whirling motion, is defined with the expression: 

𝛿 = 𝑥 + 𝑦  (5) 

The disc is assumed to be a rigid body; thus, the strain energy of the rotor system comes from the elastic 
deformation of the rotor and its mass is neglected. Radial stiffness is defined from the expression: 

𝐹 = 𝑘 𝛿 + 𝛼𝛿  (6) 
where kr is the equivalent radial linear stiffness coefficient,  is the equivalent nonlinear stiffness coefficient 

[13] and 1 is displacement of geometrical center O2 from its initial position O1 which is defined with expressions

𝑘 = 𝐸𝐼
𝜋

2𝑙

𝛼 = 𝐸𝐴
3𝜋

16𝑙

𝛿 = 𝑥 + 𝑦  

(7) 

where E is modulus of elasticity of rotor material, I is second moment of rotor's cross section, A is the area of 
rotor cross section and l is the rotor's length. 

Torsional stiffness is defined with expression 
𝑀𝑟𝑜𝑡 = 𝑘𝜃𝜃 (8) 

where k is the equivalent rotational stiffness coefficient. 
Given that rotor torsion is also taken into account, 3 degrees of freedom (x,y,) are needed to define motion of 

the disc mass as it is shown in the Figure 1. Kinetic energy of the disc is defined with the expression 
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(9) 

while the dissipated energy of the rotor system caused by viscous structural damping is expressed as 

𝐷 =
1

2
𝑐 �̇� +

1

2
𝑐 �̇� +

1

2
𝑐 �̇�  

(10) 

where cx, cy and c denotes the viscous damping of the flexible massless rotor. 
The strain energy of the rotor system can be defined as 

𝑉 = 𝐹 𝑑𝛿 + 𝑀 𝑑𝜃 =
1

2
𝑘 𝛿 +

1

4
𝛼𝛿 +

1

2
𝑘 𝜃  

(11) 

With the use of Lagrange equations of the second kind, the vibrational equation of the dynamic model with 
three degrees of freedom can be obtained as follows 

𝑚�̈� + 𝑐 �̇� + 𝑘∗ 𝑥 + 𝐹∗∗

= 𝑒𝑚𝜔 𝑐𝑜𝑠 𝜔𝑡 + 𝜃(𝑡) + 2𝑒𝑚𝜔𝑐𝑜𝑠 𝜔𝑡 + 𝜃(𝑡) �̇� + 𝑒𝑚𝑐𝑜𝑠 𝜔𝑡 + 𝜃(𝑡) �̇�

+ 𝑒𝑚𝑠𝑖𝑛 𝜔𝑡 + 𝜃(𝑡) �̈� + 𝐹∗

𝑚�̈� + 𝑐 �̇� + 𝑘∗ 𝑦 + 𝐹∗∗

= 𝑒𝑚𝜔 𝑠𝑖𝑛 𝜔𝑡 + 𝜃(𝑡) + 2𝑒𝑚𝜔 𝑠𝑖𝑛 𝜔𝑡 + 𝜃(𝑡) �̇� + 𝑒𝑚 𝑠𝑖𝑛 𝜔𝑡 + 𝜃(𝑡)  �̇�

− 𝑒𝑚 𝑐𝑜𝑠 𝜔𝑡 + 𝜃(𝑡)  �̈� + 𝐹∗

(𝐽 + 𝑚𝑒 )�̈� + 𝑐 �̇� + 𝑘 𝜃 + 𝑀∗∗ = 𝑚𝑒�̈�𝑠𝑖𝑛(𝜔𝑡) − 𝑚𝑒�̈�𝑐𝑜𝑠(𝜔𝑡) + 𝑀∗

(12) 

where 𝐹∗∗, 𝐹∗∗ and 𝑀∗∗is defined as 
𝐹∗∗ = 𝛼𝑥 + 𝛼𝑟 𝑠𝑖𝑛 2 𝜔𝑡 + 𝜃(𝑡) − 2𝛽 𝑦 − 𝛼𝑟 𝑐𝑜𝑠(𝜔𝑡 + 𝜃(𝑡) − 𝛽)𝑥

− 𝛼𝑟 𝑐𝑜𝑠(𝜔𝑡 + 𝜃(𝑡) − 𝛽)𝑦 − 𝛼𝑥 2𝑟 𝑐𝑜𝑠(𝜔𝑡 + 𝜃(𝑡) − 𝛽)
− 2𝛼𝑟 𝑥𝑦𝑠𝑖𝑛(𝜔𝑡 + 𝜃(𝑡) − 𝛽) + 𝛼𝑥𝑦

𝐹∗∗ = 𝛼𝑦 + 𝛼𝑟 𝑠𝑖𝑛 2 𝜔𝑡 + 𝜃(𝑡) − 2𝛽 𝑥 − 𝛼𝑟 𝑠𝑖𝑛(𝜔𝑡 + 𝜃(𝑡) − 𝛽)𝑥

− 𝛼𝑟 𝑠𝑖𝑛(𝜔𝑡 + 𝜃(𝑡) − 𝛽)𝑦 − 𝛼𝑦 2𝑟 𝑠𝑖𝑛(𝜔𝑡 + 𝜃(𝑡) − 𝛽)
− 2𝛼𝑟 𝑥𝑦𝑐𝑜𝑠(𝜔𝑡 + 𝜃(𝑡) − 𝛽) + 𝛼𝑦𝑥

(13) 

𝑀𝜃
∗∗ = 2𝛼𝑟0

2𝑐𝑜𝑠2 2 𝜔𝑡 + 𝜃(𝑡) − 2𝛽 𝑥𝑦 − 𝛼𝑟0𝑐𝑜𝑠(𝜔𝑡 + 𝜃(𝑡) − 𝛽)𝑦3 + 𝛼𝑟0
2𝑠𝑖𝑛 2 𝜔𝑡 + 𝜃(𝑡) − 2𝛽 𝑦2

− 𝛼𝑟0𝑐𝑜𝑠(𝜔𝑡 + 𝜃(𝑡) − 𝛽)𝑦𝑥2 + 𝑘𝑧𝑟0𝑠𝑖𝑛(𝜔𝑡 + 𝜃(𝑡) − 𝛽)𝑥 − 𝑘𝑧𝑟0𝑐𝑜𝑠(𝜔𝑡 + 𝜃(𝑡) − 𝛽)𝑦

+ 𝛼𝑟0
3𝑠𝑖𝑛(𝜔𝑡 + 𝜃(𝑡) − 𝛽)𝑥 − 𝛼𝑟0

2𝑠𝑖𝑛 2 𝜔𝑡 + 𝜃(𝑡) − 2𝛽 𝑥2 + 𝛼𝑟0𝑠𝑖𝑛(𝜔𝑡 + 𝜃(𝑡) − 𝛽)𝑥3

+ 𝛼𝑟0𝑠𝑖𝑛(𝜔𝑡 + 𝜃(𝑡) − 𝛽)𝑥𝑦2 − 𝛼𝑟0
3𝑐𝑜𝑠3(𝜔𝑡 + 𝜃(𝑡) − 𝛽)𝑦

The total equivalent linear stiffness of the rotor system is 
𝑘∗ = 𝑘 + 𝛼𝑟 + 2𝛼𝑟 𝑐𝑜𝑠 (𝜔𝑡 + 𝜃(𝑡) − 𝛽) 
𝑘∗ = 𝑘 + 𝛼𝑟 + 2𝛼𝑟 𝑠𝑖𝑛 (𝜔𝑡 + 𝜃(𝑡) − 𝛽) 

(14) 

Moreover, the initial bow and geometrical nonlinearity can lead to additional loads [13], which can be 
expressed as 

𝐹∗ = 𝑘 𝑟 𝑐𝑜𝑠(𝜔𝑡 + 𝜃(𝑡) − 𝛽) + 𝛼𝑟 𝑐𝑜𝑠(𝜔𝑡 + 𝜃(𝑡) − 𝛽) 
𝐹∗ = 𝑘 𝑟 𝑠𝑖𝑛(𝜔𝑡 + 𝜃(𝑡) − 𝛽) + 𝛼𝑟 𝑠𝑖𝑛(𝜔𝑡 + 𝜃(𝑡) − 𝛽) 

𝑀∗ = 𝛼𝑟 𝑐𝑜𝑠(𝜔𝑡 + 𝜃(𝑡) − 𝛽)𝑠𝑖𝑛 (𝜔𝑡 + 𝜃(𝑡) − 𝛽) 

(15) 

System of differential equations of motion, defined by Equation (12), is translated to ODE equation and solved 
by Runge Kutta 4th order [14]. 

2.1 External forces and torsional torque 

External loadings on the shaft line can be simply defined as a combination of radial forces that represent 
reactions in the bearings and the torque caused by the propulsion torque load. Two cases are considered in the 
paper. The first case represents the shaft line response to loads when the ship is and the other one represents the 
shaft line response to loads when the ship is navigating on rough seas. 

In the first case, different hull structure deflections and their impact on propulsion shaft line are assumed 
regarding different ship service load conditions, Figure 2. It is assumed that ship hull structure has constant 
deflections when navigating at the same service load condition. Therefore, three subcases are considered, Fx = 0; 
0; 0, Fy = 0; 300; 600 N and Mθ = Mθ0 sin(ωst), where Fx  and Fy are external radial forces, Mθ is external torque 
on propulsion shaft and ωs  = 2π/T (fs=1/T) is shaft rotational frequency. 
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Figure 2: Hull structure deflections and their impact on propulsion shaft line, [15] 

In the second case it is assumed that rough sea causes a propeller racing, Figure 3. This phenomenon happens 
when a ship pitches and heaves heavily. Due to these motions, the stern lifts out of the sea periodically exposing 
part of the propeller and causing instant increase of propeller speed as well as instant drop of propeller load, Figure 
4. It is assumed that wave period T which causes propeller racing is equal to 6 s. To simulate rough sea beside the
parameters used for calm sea the following conditions are additionally set: Fx = 0, Fyr = Fyr0 (0.5 + 0.5sin(ωrt)) and
Mθr = Mθr0 (0.6 + 0.4 sin(ωrt)), where ωr  = 2π/T (fr=1/T) is wave rotational frequency and Mθr0 is torque amplitude
due to static propeller torque drop caused by propeller racing. Table 1 presents Torque and transverse force loads
used in numerical analysis.

Table 1: Torque and transverse force loads used in numerical analysis 

Case No. fs, Hz Fy , N Mθ0, Nm fr, Hz Fyr0 , N Mθr0, Nm 

1 1.67 0 0.06 0 0 0 
2 1.67 300 0.06 0 0 0 
3 1.67 600 0.06 0 0 0 
4 1.67 0 0.06 0.167 600 1 

Figure 3: Propeller racing [6] 

Figure 4: The emergence of the stern at the rough sea [2]. 

3   Numerical simulation 

To investigate the coupling effect between torsional and bending vibration, propulsion shaft with following 
parameters was used: shaft density ρ = 7800 kg/m3, Poisson’s ratio ν = 0.3, Young’s modulus, E = 206 GPa, shear 
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modulus, G = 77 GPa, shaft length, L = 2.665 m, shaft diameter, D = 0.086 m, rotational speed n = 100 rpm, 
stiffness of system kx = ky = 2.847×106 N/m, kθ = 1.7×105 N·m/rad, damping of system, cx = cy = 60 N·s/m and cθ 
= 0.08 N·m·s/rad. 

Equation (6) was solved by using of Newmark's time stepping method. Time step in each simulation case was 
1×10-3 s whereas the initial conditions of displacements x0, y0, θ0 were set to zero. 

The first three cases of simulation, according to Table 1, correspond to the conditions of navigation on calm 
seas while the fourth simulation corresponds to the conditions of navigation on rough seas. The total simulation 
time was equal to 30 s. Results are presented as displacements in time domain, frequency domain as well as in the 
form of Short time Fourier transform – STFT spectrograms. Figure 5 presents the response of the propulsion shaft 
displacements in horizontal, vertical direction and torsional angles for case 1 in time and frequency domain. 
Likewise, Figures 6 and 7 show the frequency responses of shaft displacements in horizontal, vertical direction 
and torsional angles for cases 2, 3 and 4. In order to gain a more detailed insight into what happens to the vibrations 
of the shaft line when navigating rough seas, the spectrograms for case 4 are additionally presented in Fig. 8. 

a) b) 

c) d) 

e) f) 
Figure 5: Response of the propulsion shaft displacements in horizontal, vertical and torsional angles for case 1, 
a) x(t), b) frequency spectrum of x(t), c) y(t), d) frequency spectrum of y(t), e) θ(t), f) Frequency spectrum of θ(t)

Paper-ID 70 32



Paper ID-70 

a) b) 

c) d) 

e)       f) 
Figure 6: Response of the propulsion shaft displacements in horizontal, vertical and torsional angles for case 2, 
a) FFT of x(t), b) FFT of x(t) 0-50 Hz, c) FFT of y(t), d) FFT of y(t) 0-50 Hz, e) FFT of θ(t), f) FFT of θ(t) 0-50

Hz 

Figure 6e shows the frequency responses of the torsional angles of shaft in frequency range 0-500 Hz for case 
2. It is important to note that 1 natural torsional frequency has a value of ft = 391.99 Hz, i.e. the frequency
components that are visible on the zoom display (Figure 6f) do not actually have anything to do with the torsional
free vibrations of the propulsion shaft.
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a) b) 

c) d) 

e)       f) 
Figure 7: Response of the propulsion shaft displacements in horizontal, vertical and torsional angles for cases 3 
and 4, a) c3 FFT of x(t), b) c4 FFT of x(t), c) c3 FFT of y(t), d) c4 FFT of y(t), e) c3 FFT of θ(t), f) c4 FFT of θ(t) 

As the first natural bending frequency of the shaft is at fb = 24.4 Hz, the frequency components, visible in 
Figures 6f, 7e, 7f and 8c, actually represent the modulated frequencies fb ± fs = 22.8; 26.1 Hz and thus prove the 
coupling between the bending and torsional vibrations of the propulsion shaft. 
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a) 

b) 

c) 

Figure 8: Response of the propulsion shaft displacements in horizontal, vertical and torsional angles for case 4, 
a) STFT of x(t), b) STFT of y(t), c) STFT of θ(t)

7   Conclusion 

A coupled torsional-bending vibration model of ship's propulsion shaft with a residual shaft bow is considered 
in this paper. This model is based on the modified Jeffcott rotor model. Four cases are considered. First three cases, 
when the ship is navigating on calm seas and fourth, when navigating on rough seas. Coupling between bending 
and torsional vibration was observed in each of analyzed cases. It is manifested by the appearance of modulated 
frequency components (fb±fs) in the torsional domain even though modulation occurs around a bending natural 
frequency. 

Coupling is minimal in the first case when the lateral force is equal to zero but it increases with increasing 
amplitude of the lateral force. In the STFT spectrogram of the 4th case the wave beating in vertical direction at 
0.167 Hz is more intense than speed frequency harmonic at 1.667 Hz. 
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Abstract
Acoustic tonalities which exceed legal regulations may lead to restricted wind turbine operations and thus

reduce yield. They arise for example from gear mesh vibration of planetary gearboxes, which are used in many
wind turbine drive train designs. Passive or active vibration control measures at the drive train can be applied to
reduce acoustic tonalities. The key to success of such mitigation measures is to understand which vibration modes
of the drive train need to be reduced in order to achieve acoustic reductions. This paper proposes two experimental
approaches to identify acoustic-relevant drive train vibration modes. The approaches are described in detail and
their characteristic advantages and efforts are discussed.

1 Introduction
To reduce CO2 emissions there is a trend in many countries towards renewable energy production. In 2021

approximately 40% of the energy in germany was produced from renewable energy sources. Wind energy was
the most important renewable energy source with a market share of almost 50%. Although there are plans for the
construction of further offshore wind parks in the North Sea, currently the onshore wind energy production capacity
in germany is much bigger than offshore. Building onshore wind turbines is in general less cost-intensive than
offshore-turbines. However in most countries onshore turbines must be build relatively close to residential areas,
due to space constraints. Acoustic emissions produced by wind turbines are one of the most important disturbing
factors for residents living nearby. For this reason wind turbine manufacturers are constantly developing towards
more quiet designs. For the acoustic compliance of a wind turbine on one hand the overall sound power level must
not exceed the maximum allowed level defined in the respective national legislation. On the other hand so called
tonalities must not exceed a threshold which is also legally regulated. Tonality is defined as one or multiple distinct
harmonic tones being audible in the acoustic spectrum of the wind turbine. Tonality problems (tone amplitudes
above legally allowed limit) can have severe economic impacts, because wind farm operators can be forced by
public authorities to operate their wind turbines in a noise-reduced operation mode which significantly reduces the
energy yield.
Multi-stage planetary gearboxes are used to adapt torque and speed between blades and generator in many drive
train designs. The gear mesh excitation is one of the most important vibration source which leads to acoustic
tonalities. It is likely that challenges with respect to tonalities will increase in the coming years due to the following
reasons:

1. Wind turbine sizes are ever-growing. Blades and tower are the acoustic main radiators. Acoustic emissions
are expected to increase with the size of these central components.

2. There is a trend towards higher energy (torque) densities in the drive trains. Higher torque densities will most
probably lead to an increase in gear mesh vibration excitation.

3. Due to limited space it will be necessary to build wind farms closer to residential areas. Acoustic emissions
will thus be more relevant.

4. Improvements in the aeroacoustic-design of the turbine blades reduce the masking background noise.

In order to reduce acoustic tonalities of wind turbines it is necessary to first understand the drive train dynamics.
The gear mesh excitation is the vibration source which excites drive train vibrations. Finally blades and tower are
excited and radiate acoustically. In order to develop countermeasures it is thus important to understand which drive
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train vibration mode is causing the acoustic emission of tones. This paper proposes methods of how to approach
this problem experimentally. Advantages and drawbacks of the methods are discussed.

2 State of the art
Acoustic tonality measurements of wind turbines must be performed and analysed according to the standard

IEC 61400-11 in many countries. The standard defines details for the measurement (microphone position & dis-
tance to the turbine) and the analysis (clustering of 10s averaged data into wind bins, detection & assessment of
tones, assessment of masking background noise). The advantage of the standard is the clear guideline on how
to assure reproducible measurement results. However the deduction of tonality countermeasures is out of scope
of this standard. Furthermore for a detailed understanding of the vibroacoustic problem the measurement result,
mean tonality over 0.5 m/s wind speed steps, is to inaccurate. Neither a correlation to the exact turbine speed nor
the drive train torque is possible. For this reason it must be concluded that IEC 61400-11 is well suited to assess
the severity of the tonality problem. However it is not suitable for problem solving.
The review paper [6] mentions tonal audibilities as one of multiple acoustic emissions of wind turbines. Passive
tuned mass dampers are proposed as countermeasure. However no method on how to design or where to place the
devices is described. Another review paper [8] mentions that a shielding of the nacelle or use of sound-absorbing
materials would be good, without going into further details. Manufacturers are continuously developing towards
quieter design [2], [7]. One standard design to reduce tonalities is to mount the gearbox using elastomer springs
to the nacelle structure. The intention is to isolate the nacelle from the gearbox vibration. A drawback of the
approach is that these elastomer mounts must support the differential torque of the gearbox. These very high loads
can lead to wear of the elastomers and can make a regular replacement necessary.
To date there is no procedure on how to measure and assess the drive train vibration in a standardized way. Further-
more there is no standardized method to identify which drive train vibration modes are driving the acoustic radia-
tion of tonalities. [5] describes the use of an operational transfer path analysis to identify the relevant transfer paths
between gear mesh excitation and acoustic radiators (blades, tower). However [5] uses a multi-body-simulation
model of a wind turbine, it is not directly obvious how to apply the method to a real wind turbine. Furthermore the
knowledge of transfer paths alone is not sufficient, the excitation must also be known and additionally the paper is
only looking at structural transfer paths and not the acoustic transfer paths.
Generally there are the following possibilities to reduce tonalities:

− Passive vibration control (Tuned mass dampers at drive train)
− Semi-active vibration control (Tuned mass dampers with adaptable eigenfrequency at drive train)
− Active vibration control (Closed loop control with vibration sensors and vibration actuators, suppressing gear

mesh vibrations at drive trains)
− Reduction of vibration excitation (Gear tooth corrections)

Tuned mass dampers are the least expensive solution, but also have lowest potential. They work only for a limited
frequency range around their tuning frequency. Active vibration control has higher system complexity but also the
potential to reduce vibrations over a wide frequency range. Tonalities often occur over wider operating speeds and
often it is not a resonant vibration problem, but forced vibrations which excite the acoustic radiators.
The research question of this paper is: Which drive train vibration mode drives the acoustic tonality?
This paper proposes experimental approaches. The reason for this is the fact that vibro acoustic models of whole
wind turbines are normally not available before start of production of new turbine designs. Furthermore very high
effort is related to model validation. For this reason a purely model-based approach seems not reasonable.

3 Problem description and basics
Figure 1 depicts a wind turbine structure with the planetary gearbox as the vibration source in the nacelle. The

gear mesh vibrations are transferred to the tower and the blades, which are acoustic radiators. Finally the acoustic
sound pressure p can be measured using a microphone outside of the wind turbine. The multistage planetary
gearbox is necessary to adapt torque and speed of the main shaft which is connected to the hub such that the
electric generator can be driven. The gearbox has an overall transmission ratio which is defined as

i =
φ̇1

φ̇2
(1)

where φ̇1 and φ̇2 are the speeds of input shaft and output shaft respectively as defined in Figure 1. The gearbox
housing must be mounted to the nacelle structure in order to support the very high differential torque between input

Paper-ID xyPaper-ID 74 38



Figure 1: Right: Wind turbine structure with drive train in nacelle (1), transfer path to the tower (2), transfer path
the blades (3). Acoustic tonalities can be measured with a microphone in the field (4). Left: Coordinate system
definition for the multistage planetary gearbox.

torque T1 and output torque T2

Tdiff = T1 − T2. (2)

The mathematical analysis of the vibration excitation in planetary gearboxes has been investigated by multiple
authors and different models have been proposed. Often these models are used to predict complicated frequency
spectrum structure which is produced by modulations within the gearbox [1], [3], [4]. Without going into detail on
the modulation mechanisms there is a consensus in the literature that the vibration excitation d(t) by a planetary
gearbox is deterministic and can in general be described as a fourier series

d(t) =
a0
2

+

∞∑
k=1

ak cos(kφ(t)) + bk sin(kφ(t)) (3)

where φ(t) = Ωt denotes the instantaneous planet carrier angle, Ω denotes the angular velocity of the planet
carrier. Planetary gearbox vibration consists of frequency components which are integer multiples k of the planet
carrier rotation frequency. While in other industries such as aerospace the so called sideband frequencies are
subject of studies, this is not the case for wind turbines gearboxes. To the knowledge of the authors there are no
strong frequency modulation effects observed within wind turbine gearboxes and the resulting vibration excitation
is dominated by the nominal gear mesh order, where k is equal to the number of teeth at the ring gear ZRing. To
summarize the accelerations at the gearbox housing ai (compare acceleration sensors as depicted in Figure 1) and
the sound pressure p can be described as

ai(t) = Ai(Ω,T1) cos(ZRingΩt) +Bi(Ω,T1) sin(ZRingΩt) (4)

p(t) = C(Ω,T1) cos(ZRingΩt) +D(Ω,T1) sin(ZRingΩt) (5)

where i denotes the number of the acceleration measurement channel and Ai(Ω,T1), Bi(Ω,T1), C(Ω,T1), D(Ω,T1)
denote the speed and load dependent amplitudes. To summarize both structural vibrations as well as the acoustics
are dominated by the gear mesh order which is basically a harmonic excitation with load and speed dependent
amplitude and phase. Due to the vibroacoustic transfer function between gear mesh excitation and the microphone
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the amplitude coefficients Ai(Ω,T1) and Bi(Ω,T1) on the structure are different from the acoustic amplitude coef-
ficients C(Ω,T1) and D(Ω,T1). The basic research question is how the acoustic response is linked to the structural
vibrations and thus to understand the transfer function between structural and acoustic amplitudes and phases. In
the following section different methods to identify this correlation are described.

4 Proposal of approaches
4.1 Method A: State of the art - Identify acceleration channels with highest vibration amplitudes

The first method is a very simple one and consists of the following steps:

1. Collect acceleration and microphone data during normal operation of the wind turbine as well as the turbine
speed.

2. For turbine speed ranges where acoustic tonalities occur analyze all acceleration channels and identify those
with the highest acceleration amplitudes.

3. It is assumed that the acceleration channels (consisting of acceleration sensor position and sensing direction)
with the highest acceleration amplitudes have the highest correlation with the acoustics.

This approach is often used in the wind industry, however to the experience of the authors it is too simple. Due
to complex structural dynamics it is easily possible that high acceleration components or directions at the gearbox
have a comparably low contribution to the overall acoustics. Furthermore by just looking at individual acceleration
channels it is impossible to understand the gearbox operational deflection shapes. Additionally, isolation effects
(e.g. due to materials like elastomers) are not taken into account appropriately.

4.2 Method B: New proposed - Compare curve shape of structural and acoustic order cuts from opera-
tional measurements

The second approach is proposed by the authors and consists of the following steps:

1. Collect acceleration and microphone data during normal operation of the wind turbine as well as the turbine
speed.

2. Calculate the acoustic order cut which corresponds to the gear mesh order. For this it is normally necessary to
average over a large number of data points per turbine speed interval.

3. Calculate the acceleration order cuts of the gearbox which correspond to the gear mesh order. For this it is
normally necessary to average over a large number of data points per turbine speed interval.

4. Plot both acoustic and structural order cuts in one figure. If there is a similarity in the curve observable between
the acoustic and one of the structural order cuts, it is assumed that the particular degree of freedom or sensor
channel is driving the acoustic problem. Even more insights are gained by combining multiple acceleration
channels in order to analyze the correlation between particular operational deflection shape (components) and
the acoustic.

This approach is more elaborated as the previously described method. In particular because the operational de-
flection shapes in which the gearbox is vibrating can be taken into account. Furthermore a correlation between
structural and acoustic order cut curve shapes is performed. Using the sensor positions as depicted in Figure 1 one
can calculate the gearbox accelerations.

4.3 Method C: New proposed - Experimental measurement of vibroacoustic transfer functions
A third approach is also proposed by the authors and uses multiple active vibration actuators as shakers at

the drive train to excite isolated drive train modes and measures the acoustic response outside the turbine using a
synchronized microphone. The method consists of the following steps:

1. Put the wind turbine into very slow rotation (idling).
2. Install vibration actuators at the gearbox such that drive train vibration modes can be excited.
3. Sequentially excite drive train modes which are controllable with a white noise or sine sweep excitation in the

relevant frequency range.
4. Measure both the structural excitation (acceleration) at the gearbox housing as well as the acoustic response

at the external microphone simultaneously with one synchronized measurement system.
5. Calculate the vibroacoustic transfer functions between excitation and acoustics using for example the H1

estimator.
6. In the next step measure the operational acceleration and calculate structural order cuts, based on normal

operation vibration data from the turbine.
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7. Multiply the individual acceleration order cuts with their respective vibroacoustic transfer functions to estimate
the contribution to the acoustic response. Acceleration channels or their combinations with highest estimated
acoustic response are assumed to drive the acoustic problem.

Compared with the two other described methods it has the highest efforts because vibration actuators must be
dimensioned and electrically and mechanically installed at the gearbox housing. As a wind turbine gearbox for
an up to date turbine design has a mass of multiple ten tons, a very high force actuator system is required to
realize enough excitation such that an acoustic response is measurable. Furthermore a synchronized measurement
of acoustic and acceleration is necessary to get good quality transfer function estimations. Compared to the other
methods this method is the most systematic one and allows more detailed insights into the transfer path properties.

5 Conclusion
Tonality is an important aspect with respect to both the acceptance of wind turbines near residential areas

as well as compliance to legal regulation. In order to implement mitigation measures such as passive or active
vibration control, it is crucial to understand the link between the gear mesh excitation, the drive train vibration
mode(s) and the acoustic response. After describing the state of the art and the problem definition, the paper
proposes and discusses three methods, how the relation between structural vibrations and the acoustic response
could be analyzed. The following table summarizes the properties of the proposed methods:

Method A Method B Method C
Effort Lowest Higher Highest

Analysis tools required

Order cut extraction for
individual sensor channels,
Identify channels with highest
amplitudes

Combination of acceleration sensor
channels, Order cut extraction,
visual comparison of acoustic and
structural order cut curves

Combination of acceleration sensor
channels, Order cut extraction,
calculation of transfer functions

Measurement setup Acceleration sensors at drive
train, external microphone

Acceleration sensors at drive train,
external microphone

Acceleration sensors at drive train,
external microphone, vibration actuators

Turbine operation Normal operation Normal operation Normal operation + Idling
Expected insight into
vibroacoustic transfer
function

None Indirect Direct

The new proposed methods B and C are assumed to give better results if the main drive train components are
vibrating as a rigid body. If internal flexibility of main drive train components cannot be neglected in the frequency
range of interest, then more sophisticated methods must be developed.
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Abstract 

This document shows the challenge of speed-controlled pumps and the associated possible increased casing 

vibrations. Furthermore, it is shown that increased vibrations must not only come from the pump, but also the 

directly adjacent environment, e.g. foundation, make a decisive contribution to the measured vibration speeds. 

During commissioning, increased housing vibrations at sewage pumps occurred at certain speeds and/or flow 

rates, which had to be reduced. To analyze the causes of the increased vibrations, a wide variety of measurements 

were carried out on site and then evaluated. For example, bump tests were carried out to determine the natural 

frequencies. In addition, housing vibrations and shaft measurements were carried out during operation in order to 

determine possible excitation mechanisms. Since the measurement evaluations did not provide a clear picture, a 

finite element model of the pump with the adjacent components, pipeline and concrete block below the pump, was 

also created and a wide variety of dynamic analyzes were carried out. 

The two optimizations on the pump side already reduced the housing vibrations to an acceptable level. 

However, since no changes could be made to the cast concrete block, the housing vibrations could not be reduced 

to a low level. An alternative control program had to be developed and implemented to bypass the resonance area 

of the overall structure. 

1 Introduction 

The sewage pump is also known as a dirty water pump and enables the pumping of coarsely polluted water, 

which often contains solid components of various organic, inorganic or mineral origins. Sewage pumps are 

preferably built as a single stage and are generally not self-priming. 

6 variable speed pump sets (pump + coupling + motor) were supplied to pump wastewater from a storage 

tunnel to the local sewage treatment plant. The pumps have an operating speed range from n = 150 rpm to 326 

rpm, with flow rates between Q = 1.95 m³/s to 3.8 m³/s. The motor drive is located at a different level on a separate 

platform. The connection between pump and motor is managed via a flexible coupling. The rotor is support by two 

roller bearings. At the top, drive end side, an axial, radial bearing is positioned and next to the impeller, non-drive 

end side, a double row radial bearing is installed. The pump and the general arrangement can be seen in Figure 1 

and Figure 2. 

Figure 1: Sewage pump and general arrangement 
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Inlet flow 
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Figure 2: Sewage pump 

During commissioning, increased housing vibrations occurred at certain speeds and/or flow rates, which had to 

be reduced. The vibrations exceeded the maximum permissible vibration speeds according to [1]. To analyze the 

causes of the increased vibrations, a wide variety of measurements were carried out on site and then evaluated. For 

example, bump tests were carried out to determine the natural frequencies. In addition, housing vibrations and 

shaft measurements were measured during operation in order to determine possible excitation mechanisms. Since 

the measurement evaluations did not provide a clear picture, a finite element model of the pump with the adjacent 

components, pipeline and concrete block below the pump, was also created in ANSYS [2] and a wide variety of 

dynamic analyzes were carried out. By comparing the measurement and the calculation, it was found that different 

mechanisms were responsible for the increased vibrations on the machine.  

2 Measurements at Site 

During operation of the pumps at site higher housing vibrations at different flows and rotational speeds 

occurred. A typical time history of the housing vibrational velocities over the speed can be seen in Figure 3. The 

sensors have been positioned at the top and bottom of the bearing housing in two perpendicular radial directions. 

The directions parallel to suction line and perpendicular to suction line can be explained with Figure 1. The used 

measurement equipment was: 

Software: Famos Analyser: imc CS-7008-N  Sensors: Prueftechnik Vib 6.172 

Figure 3: Typical time history of the housing vibrational velocities 

To find out the source of the higher vibrations several measurements and evaluations have been conducted: 

1. Bump tests at different assembly stages of the aggregate

2. Housing and shaft vibrations
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2.1 Bump Test Measurements and Their Recalculation 

To investigate if resonances are the source of these higher 

vibrations, bump tests on 3 pumps on site have been performed. To 

get a clear picture of the dynamic behavior of the complete system 

several sensors have to be placed on the structure (pump and plinth) 

at the same time, see Figure 4. The response has been measured 

with amplitude and phase angle at the same time for all sensors.  

Furthermore, with these bump tests a calibrated finite-element-

model can be derived. All important components are included in 

the FE-model. Volume elements were used for the modeling 

stationary components. Rotating components are modeled with 

beam elements. Additional masses (e.g. impeller) were modelled 

with mass point elements. For the radial bearings 2-D bearing spring 

elements were used. 

Figure 4: Positions of the sensors 

In such complex pumps there are many uncertainties. The pumps 

have many connections between the different system components. 

Usually it is difficult to model such connections. If the different parts 

are rigidly connected the FE Modelling can be performed on this 

assumption. However, if the connecting parts are flexible and 

movements are possible in the connecting areas stiffness and 

damping elements have to be introduced which are difficult to 

identify and to model. This is particularly the case if the connections 

have nonlinear character. The fixation of the entire aggregate is 

simulated at the concrete floor, see green block. Here all translational 

directions of all areas, except the top area where the plinth is poured 

on, are fixed. The connection between bearing housing and hub plate 

was simulated with linear springs with a stiffness of the associated 

M36 (length=140mm) connecting bolts. The remaining stationary 

components have surface contact. There, the preload force is 

sufficient to ensure that there is no relative movement of the 

components. 

Figure 5: Finite-element-model for recalculation of 

bump test with plinth + suction ring + pump volute 

The bump tests have also been conducted at several assembly stages of the aggregate. The first bump test was 

conducted only with plinth + suction ring + pump volute, see Figure 5. The corresponding bode plot parallel and 

perpendicular to suction line are shown in Figure 6 and Figure 7. The natural frequencies of plinth + suction ring + 

pump volute were measured with f = 47 / 48 Hz (perpendicular / in direction of suction line) on site. These natural 

frequencies have been recalculated with f = 46.14 / 47.44 Hz (perpendicular / in direction of suction line) which is 

a good correlation between measurement and recalculation. 

Figure 6: Measured FFT parallel to suction line with plinth + suction ring + pump volute 
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Figure 7: Measured FFT perpendicular to suction line with plinth + suction ring + pump volute 

Afterwards bump tests of the complete assembled aggregate has 

been performed, see Figure 8. This assembly state corresponded to 

the completely installed unit, which was ready for operation. 

Compared to the previous impact test, the complete rotor has now 

been installed and coupled to the motor shaft. Furthermore, all 

missing stationary components, such as hub plate or bearing 

housings were installed. This assembly state also means that the 

pump was filled with water, which was taken into account in the 

calculation by increasing the density. The connected discharge 

pipeline, which leads about 90m vertically upwards and was 

screwed directly to the discharge flange, was taken into account 

with the help of an additional mass points. The finite element model 

contains about 400,000 elements with almost 1 million nodes. With 

this fine meshing, the complex structure and its stiffness, damping 

and mass behavior could be mapped well. 

Figure 8: Complete assembled aggregate 

The corresponding bode plots parallel and perpendicular to suction line are shown in Figure 9 and Figure 10. 

Figure 9: Measured FFT parallel to suction line of complete aggregate 
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Figure 10: Measured FFT perpendicular to suction line of complete aggregate 

The measurements and their recalculation showed the following results: 

 The connection between plinth and pump is stiff which is evaluated by the measured phase angle.

 The results showed a rotor natural frequency at f = 25 – 26 Hz. The combined plinth – pump

aggregate natural frequencies decreases to f = 37 – 40 Hz due to the higher mass of the complete

aggregate compared to the previous bump test. The recalculation and measurement shows a difference

in natural frequencies of ∆f ≈ 5%.

 The discharge pipework has an influence on the natural frequencies of the complete system and with

that on the vibration velocities. This is evaluated by comparison of the bump tests with and without

connected discharge pipework. In the finite-element-model this pipework has been modeled with

additional mass points at discharge piping system.

 All calculated natural frequencies shows an inverse pendulum of the combined plinth – pump

aggregate with the highest deflection at the top of the pump aggregate which is as expected. A

calculation variant analysis with a stiff plinth shows an increase in pendulum natural frequency of the

pump of f = 55 Hz and higher. Thus the plinth is not a rigid fixation for the pump.

Additional evaluations of the bump tests in form of Frequency Response Functions (FRFs) were created. The 

FRF's were recalculated with harmonic response analyses using the finite element model adapted to the measured 

natural frequencies, see Figure 11. The figure shows the measured FRF for the two directions at the DE Bearing in 

continuous lines. The corresponding calculated FRFs are presented in dashed and dotted lines.  

Figure 11: Measured and Calculated Frequency Response Functions (FRF) 
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In the following Figure 12 the measured and calculated deflection at the resonance of f = 25Hz are shown. The 

correlation between bump test measurement and recalculation is in terms of resonance frequencies, mode shapes 

and deflections quite good for a rotational speed n = 0rpm. 

Figure 12: Measured and calculated deflections 

2.2 Housing Vibration Measurements and Their Recalculation 

2.2.1 Housing Vibration Measurement 

Measured housing vibrations are the vibration response x(t) of excitations F(t) of a vibrational system. 

This can be expressed by the equation of motion which includes mass M, damping D, gyroscopic G and 

stiffness C effects.  

𝑀�̈�(𝑡) + (𝐷(Ω) + 𝐺(Ω))�̇�(𝑡) + C(Ω)x(t) = F(t) (1) 

The pump is operated with a variable speed drive (VFD). In Table 1 an overview of possible excitations 

frequency components is given. From this table can be seen that a wide frequency range from 2.5Hz – 43.07Hz 

can excite the pump. 

Table 1: Operating speed range 

Rot. Speed [rpm] 1*n [Hz] 4*n [Hz] 8*n [Hz] 

150 2.50 10.00 20.00 

323 5.38 21.53 43.07 

A typical time history of the housing vibrations is shown in Figure 3. The housing vibrations were recorded in 

two perpendicular directions at the bottom and top of the bearing housing. Order related waterfall plots and color 

maps of time related frequency spectra, see exemplarily Figure 13, have shown that: 

 The 1*n frequency component (unbalance excitation) is on a low level

 The 2*n frequency component (shaft misalignment) is also on a low level.

 The dominating frequency components are 4*n and 8*n.

 The higher the rotational speed the higher the 4*n and 8*n frequency component.
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Figure 13: Order related waterfall plot and color map of time related frequency spectra of a housing vibration 

Based on these evaluations resonance like vibrations could be detected at frequencies of about 19.5Hz, 35 Hz 

and 37Hz during operation. These frequencies are excited by 4*n and 8*n. Shaft vibration measurements next to 

the DE and NDE-Bearing were also conducted. The evaluation of the shaft measurement showed that the orbital 

shape, see Figure 14, is mainly determined by the 4*n excitation (blade pass). All other frequency components are 

on a low level. Furthermore, it was found that the vibrations at the lower, NDE bearing were much higher than at 

the DE bearing. 

 

Figure 14: 4*n shaft orbit at DE and NDE-Bearing 

2.2.2 Recalculation 

In chapter 2.1 it is shown that a FE-Model was derived to recalculate the natural frequencies as well as the 

mode shapes of the complete aggregate including pipework and support structure (plinth) during standstill. But for 

the case „pump in operation “the model has to be extended: 

 Gyroscopic effects have now been included in the FE-Model.

 Due to the static (Fav) and dynamic (∆Fr = Fr max – Fr min) impeller fluid forces mainly the NDE-

Bearings are loaded. As in the impeller itself the NDE-Bearing force has also a static force and a

dynamic force part, see Figure 15. The dynamic component of the radial thrust is determined by 4*n

(number of impeller blades). The static and dynamic hydraulic forces have been calculated with the

aid of CFD.

Figure 15: Hydraulic forces for different flows calculated with CFD 
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 The static NDE-Bearing force determines the static equilibrium position and the corresponding NDE-

stiffness values. These stiffness values, expressed in the 4x4 NDE-Stiffness matrix, have now to be

included in the FE-Model. The translational and bending stiffness values for different static bearing

forces are shown in Figure 16 and are calculated with [3].

Figure 16: Linear and bending stiffness of the NDE-Bearing 

With this extended FE-Model the natural frequencies have been analyzed. The calculated natural frequencies 

are listed in Table 2 and shown in form of a Campbell-Diagram in Figure 17. The results show that the increased 

vibration velocities on the housing can be linked to resonances. From this table can be seen that there are 4 natural 

frequencies related to rotor. These natural frequencies increase a little bit with increased rotational speed since 

with that also the static hydraulic radial thrust increases with rotational speed, see Figure 15. The natural frequency 

no. 5 and 6 remain the same for different rotational speeds and belong therefore to stationary parts such as plinth.  

Table 2: Calculated natural frequencies 

No. 
Frequency [Hz] 

150rpm 200rpm 250rpm 295rpm 323rpm 

1 8.05 10.25 11.72 12.11 12.25 

2 18.54 18.93 19.14 19.17 19.18 

3 21.76 22.04 22.33 22.54 22.71 

4 25.66 26.63 27.38 27.82 28.09 

5 35.05 35.06 35.08 35.08 35.08 

6 36.05 36.10 36.16 36.22 36.27 

Figure 17: Campbell-Diagram 
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3 Optimizations based on the Recalculation of Measurements 

In chapter 2 it is shown that the derived FE-Model the dynamic behavior of the complete aggregate can be 

recalculated. Based on the equation of motion, various optimization options are now possible to reduce the 

vibrational velocities. On the one hand, these are the reduction of the exciting forces F(t) and, on the other hand, a 

dynamic change in the vibration system M, D(Ω), G(Ω), C(Ω). Experience has shown that it is meaningful to 

reduce increased vibrations not only with one optimization, but also to optimize several components at the same 

time. Due to design reason installation of additional mass was not possible, as well as a change in the damping and 

gyroscopic effect. So it was decided to: 

 Develop a new hydraulic design to decrease the excitation at blade passing frequency

 Install a single row type of NDE-Bearing to reduce the bearing clearance, to reduce the minimum

required preload on the bearing and increase in bearing stiffness.

The new hydraulic design has been recalculated with CFD. The resulting radial forces Fr for this new design 

are shown in Figure 18. By comparison of these new hydraulic radial forces with the original ones, see Figure 15, 

can be seen that the static part Fav remains the same. However, the dynamic part ∆Fr is reduced by approximately 

30% which directly influences the 4*n and 8*n vibrational component.  

Figure 18: New hydraulic radial forces for different flows 

The calculated natural frequencies with the optimized NDE-Bearing for the most interesting rotational speed at 

n = 295rpm are listed in Table 3. 

Table 3: Calculated natural frequencies with optimized NDE-Bearing 

No Frequency [Hz] 

1 11.09 

2 21.64 

3 27.05 

4 28.60 

5 35.41 

6 36.27 

By comparison of Table 2 and Table 3 can be seen that the second natural frequency increased from f = 

19.17Hz to f = 21.64Hz. This is not a huge improvement but it is a little larger separation margin to 4*n excitation 

(= 19.66Hz). Additionally, this new bearing has a smaller gap clearance and with that the rotor can rotate only on a 

smaller orbit which directly influences the vibrational velocity. The natural frequencies of the complete aggregate 

remain the same at frequencies of f ≈ 35Hz and 36Hz. This variant analysis confirms that these two natural 

frequencies are determined by stationary parts such as plinth.  

After installation of the new impeller design and the NDE-Bearing at site the vibrational velocities during 

operation have been measured. The reduced vibrational velocities are shown in Figure 19. By comparison of these 

new vibrational velocities with the original ones, see Figure 3, it can be seen that the there is a decrease of about 

45% in the height for the 8*n excitation (= 274rpm). These new vibrational velocities are now in an acceptable 

range. Higher vibrations still occur around the rotational speed of n = 297rpm, which are still not acceptable. In 

this speed range a reduction of about 17% could be achieved with the previously described optimizations. The 

calculation with the optimized bearings predicted an increase in the originally measured resonance at approx. 

290rpm (= 19.3Hz) to approx. 325rpm (= 21.46Hz). During the many on-site investigations, it could not be 
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determined whether there were other components with a resonance at around 290rpm. Therefore, it was agreed 

with the customer to develop an alternative control program. This alternative control program excludes the 

operation of the pump in the area of this rotational speed. 

Figure 19: Vibrational velocities at site after optimization 

4 Conclusion 

This document shows how a finite element model can be adapted to measurements in order to then carry out 

optimization analyses. These analyses showed that two causes of the higher vibrational velocities were found 

within the pump and one with the system. The concrete block below the pump was not dimensioned to be 

sufficiently stiff, so that it caused the entire structure to resonate in the operating speed range. Pump-side 

optimization measures were defined based on the modal results using finite element analyses. A new impeller 

design was developed, which produces lower hydraulic excitations with the large flow rate range. Furthermore, a 

more suitable roller bearing for the prevailing radial bearing loads was installed. 

The two optimizations on the pump side already reduced the housing vibrations to an acceptable level, except 

for one rotational speed. However, since no changes could be made to the cast concrete block, the housing 

vibrations could not be reduced to a low level in the complete operating speed range. Variant analyzes with the 

plinth showed a clear dependence of the natural frequencies at 8*n on the rigidity of this substructure. An 

alternative control program had to be developed and implemented to bypass the resonance area of the overall 

structure. This shows that the surrounding structure can have a major impact on the overall vibration behavior of 

the pump, especially in the case of speed-controlled pumps. Therefore, a holistic view of the pump and the 

environment will become increasingly important in the future. 
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Abstract 
This paper implements sensitivity and optimization analysis in an 8-DOF rotor-bearing system, consisting of 

two identical semi-floating ring bearings integrated with ring-shaped wire mesh dampers (WMDs), and a rotor 
carrying a disc mass at both ends, representing the compressor and turbine wheels. While the realistic geometric 
characteristics of the rigid rotor are fixed, the variation of WMD design variables and of operating conditions 
(oil temperature and unbalance phase) compose a Design of Experiment (DoE) process. The unique source of 
nonlinearity in the system is the bearing impedance forces, which are a combination of nonlinear oil film forces 
and of nonlinear WMD forces due to the varying stiffness and damping of the WMD throughout its operation 
(deformation). The considered WMD key design variables are the radial thickness, the relative density, the radial 
interference and the wire diameter, and they are methodically preselected, in order to cover a wide range of 
encountered WMD designs. The results show significant alternation in the synchronous and sub-synchronous 
dynamic response of the rotor and of the bearing rings, in the rotating speed range up to approximately 170 
kRPM; this leads to a narrow acceptable design range. Furthermore, after conducting various statistical tests to 
the collected response data, significant correlation was presented between the maximum relative eccentricity 
ratio and three of the WMD design variables. 

1   Introduction 
In order to tackle the problem of sub synchronous vibrations in high-speed turbomachinery systems, the 

installation of bearings of specific design is of utmost importance. The role of the bearings is to suppress the 
vibrations of the rotor during its operation and more specifically, in high-speed systems, to avoid self-excited 
vibrations which normally lead to high response amplitudes. Hence, the need to create a bearing system with 
proper stiffness and damping properties, as well as sufficient life span, has been raised. In order to address the 
aforementioned need in high-speed rotating systems, foil bearings (FB) where developed in 1950s, and later, in 
1970s, WMD Bearings [7] (see Figure 1 and 2) where presented as a potential solution among others, e.g. 
full/semi-floating-ring bearings. WMDs present high structural damping, resulting from the micro-slip that takes 
place at metal wire junctions [2], ideal for reducing synchronous and sub-synchronous instability caused by high 
cross-coupling stiffness [9]. Since 1980s, WMDs were implemented in series with roller bearings, and were 
considered as a potential solution for replacing squeeze film dampers (SFD) in aircraft engines [4]. Zarzour M. J. 
(1999) [17] showed that WMD’s equivalent viscous damping can match that of oil-lubricated SFDs in various 
operating conditions, such as balanced or unbalanced rotor, high temperature and, surprisingly, in oil-lubricated 
environment, indicating that WMDs do not only provide damping through dry friction, but also through material 
hysteresis. Al-Khateeb (2002) [3] carried out thorough research on the applicability of WMDs, denoting the 
ability to overcome SFDs drawbacks concerning their performance under high temperatures and limitation of 
small displacements, with the implementation of inexpensive and readily available WMDs. 

On the contrary to the previous research, which mainly studied the stiffness and damping properties of the 
WMD component in varying operating conditions, the present work focuses on the design of two identical 
WMD components supporting the oil bearings of a turbocharger rotor, to establish a stable operation 
(bifurcation-free) in a specific rotating speed range. 

15th SIRM – European Conference on Rotordynamics, 
Darmstadt, Germany, 22nd – 24th February 2023 
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2   Analytical model of the rotor on semi-floating ring bearings with WMD 
The physical model of the oil lubricated semi floating WMD bearing is constructed by three different parts; 

following the outer surface towards the center, these three parts include the bearing housing (rigid shell), the 
WMD component, and the rigid ring (semi-floating ring), as shown in Figure 1.  

(a) (b) 

Figure 1: a) typical WMD configuration for automotive turbocharger applications, b) schematic representation 
of the physical model of the WMD semi-floating ring bearing. 

In Fig. 1b, the journal center ( ),j j jO x y defines an eccentricity
je with respect to the bearing center ( )0,0O , 

while the ring center ( ),r r rO x y defines an eccentricity
re with respect to ( )0,0O . The effective journal 

eccentricity e  which establishes the hydrodynamic lubrication is then defined in Eq. (1) together with its rate of 
change during the whirling motion of the journal and the ring. The journal may execute general plane motion 
with 

re c , while the semi-floating ring can execute only transfer motion. Attitude angle rate of change  is 
defined in Eq. (2). 

( ) ( )( ) ( )( ) ( )( )( )
1/22 2

, /

/ , /

j r j r j r j r j r j r

r r

e x x y y e x x x x y y y y e

e c e c 

= − + − = − − + − −

= =

(1) 

( )( ) ( )( )
2

j r j r j r j rx x y y y y x x

e


− − − − −
= (2) 

For a random position of the journal and the ring, the oil film pressure distribution can be obtained by the 
short-bearing approximation [1,12]. This assumption is valid in such applications as the ( )/ 2bL R ratio is less 
than 0.5. Simple geometry for the ring is assumed in this work, meaning that no grooves or oil inlet holes are 
considered. The oil pressure distribution is then defined in Eq. (3) [12,15] where pressure values in the cavitated 
area are assumed zero. The resulting oil film forces applied from the ring to the journal and vice-versa are then 
defined in Eq. (4) [12] in the colinear and normal direction of eccentricity e . The oil film thickness h is 
approximated as ( ) ( ) ( ) ( ) ( )cos sinr j r j rh c x x y y  = − − − − . The dynamic viscosity  of the lubricant is
assumed constant in the entire lubricated area, and in this work two values are considered in the continue, one for 
hot and one for cold oil conditions. 
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Considering the model of the wire mesh damper (WMD), copper or stainless-steel wires are meticulously 
knitted together producing uniform layers of wire or metal mesh (MM) (see Figure 2a), consisting of numerous 
microelements (see Figure 2b). Then, the designer defines the appropriate amount of the layers that will be 
compressed together and, therefore, the WMD’s relative density, thickness, inner and outer radius and width are 
determined. Each set of characteristics of a WMD defines its final stiffness and damping properties. 

(a) (b) (c) (d) 
Figure 2: a) knitted layer of MM, b) equivalent of MM component, c) equivalent model of a microelement, and 

d) equivalent stiffness of a microelement [8,10]

The MM component consists of N identical microelements which are distributed to
HN layers of

AN

microelements in each layer, see Fig. 2b. Each microelement, see Fig. 2c, contains its own equivalent stiffness, 
see Fig. 2d. 

The equivalent stiffness coefficient and the equivalent viscous damping coefficient of the entire MM 
component can be calculated in Eq. (6), where /A H =  is the ratio of the sectional area to thickness, and the 
term 2 22 /m cd nR   is defined by the raw material characteristics. The /L UK is the loading and unloading stiffness 
coefficients of one microelement and W is the energy dissipation in period of loading and unloading. The 
WMD force is then given in Eq. (7), see Fig. 3c, and 3d. 

1/3

( / ) /2 2

2 m

MM L U L U

c

K K
d nR






 
=  

 
,  2

0mW C u = (6) 

( / )
W

x MM L U r m rF K x C x= + ,  ( / )
W

y MM L U r m rF K y C y= + (7) 

The rotor-bearing system model consists of a rigid shaft supported on two WMD semi-floating ring bearings, 
see Fig. 3 and 1b. The position of the rotor and of the rings at any given time instant can be described by a 2nd-
order 8 8  system of ordinary differential equations (ODEs), four of which derive from the displacement of the 
journals #1 and #2 along the x  and y  direction, see Eqs. (8-11), and the remaining four derive from the 
displacement of the rings #1 and #2 along the same directions, see Eq. (12). The definition of all parameters 
included in Eqs. (7-11) is presented in Table 1. The unbalance force acting at each unbalance plane is defined in 
Eq. (13) for rotating motion with constant acceleration  . The rotor in this model is considered rigid for the 
reason that at the specific geometric and physical properties of the system the low flexibility would have a minor 
influence in the response of the system. Normally, models of automotive turbochargers operating at higher 
speeds (e.g. 300kRPM) include flexible rotor models; at such cases, the rotor response and the respective speeds 
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where self excited oscillations are triggered, have some influence, still minor though. Including a flexible rotor 
would render another natural mode in the system, and the time integration would be even slower at some range 
of rotating speed, depended also from the WMD design. In this work, it is preferable to sacrifice some accuracy 
in the dynamic response in order to gain higher computational efficiency. 

(a) (b) 

(c) (d) 
Figure 3: representation of a) rotor bearing layout with key design properties, and b) of rigid ring with 

loading. typical quality of the WMD c) static load, and d) stiffness, for different relative density. 

The nonlinear nature of the WMD resulting forces is depicted in Figs 3c and 3d. In Fig. 3a, the displacement 
of the rigid ring inside the WMD takes place after a static radial load is applied. Different relative density of 
the wire mesh is considered. The static load acts as pull or push load for the wire mesh. Push load brings the 
knitted layers closer, while the pull load makes the knitted layers sparser in the radial direction. In Fig. 3c, one 
may notice the characteristic jump in the static load when this is changed from pull to push load and vice 
versa. The change in the slope of load-displacement curves in Fig. 3c is depicted in Fig. 3b where the WMD 
radial stiffness is evaluated for a wide range of displacement. The variation of radial stiffness is another 
source of nonlinearity in WMD forces together with the jump phenomenon in Fig. 3c and the relatively 
similar progress of damping coefficient, not depicted in Fig. 3. 

( )1 2 1
,1 1 2 ,1 ,2 ,1 ,2 ,2

2 2

G G B B U U

j y y y y j

L L L
y F F F F F F y

ML L

+
= + + + + + − (8) 

( )1 2 1
,1 ,1 ,2 ,1 ,2 ,2

2 2

B B U U

j x x x x j

L L L
x F F F F x

ML L

+
= + + + − (9) 

( ) ( )1 2
,2 ,1 1 ,2 2 ,1 1 ,2 2 ,1 ,2 ,1

B B U U P

j y y y y j j j

T T

L L J
y F L F L F u F u x x y

J J
 

+ 
= − − + + + − + (10) 

( ) ( )1 2
,2 ,1 1 ,2 2 ,1 1 ,2 2 ,1 ,2 ,1

B B U U P

j x x x x j j j

T T

L L J
x F L F L F u F u y y x

J J
 

+ 
= − − − − − − + (11) 

1 ,1 ,1 ,1 1
W B

r y ym y F F m g= − − ,   1 ,1 ,1 ,1
W B

r x xm x F F= − ,    2 ,2 ,2 ,2 2
W B

r y ym y F F m g= − − ,  2 ,2 ,2 ,2
W B

r x xm x F F= −        (12) 
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Table 1: definition of parameters in equations of motion 
M : rotor mass 

,
G

i jF : gravity force, ( ), 1 2/j iMgL L L= − +

PJ : rotor mass polar moment of inertia BF : bearing force, see Eq. (5) 

TJ : rotor diametral mass moment of inertia UF : unbalance force, see Eq. (13) 

im : mass of the ring i WF : WMD force, see Eq. (7) 

( ) ( )( ) ( ) ( )( )2 2 2 2 2 2cos 0.5 sin 0.5 , sin 0.5 cos 0.5U U

x yF U t t F U t t     =  + =  − (13) 

The equations of motion are converted into state space equations and time integration is applied for the 
evaluation of time response. The Ordinary Differential Equations - ODE set is a nonlinear set of equations due to 
the bearing forces and the WMD forces. The ODE set is stiff in specific operating conditions and the MATLAB 
solvers ode15s and ode23s [16] are preferred in this case. 

3 Design of experiment (DoE) and statistical analysis 
The design of experiment (DoE) is a process of choosing specific design variables and operating conditions 

of a system in a preselected range of interest. The number of the design variables and their individual values 
define the total number of configurations included in the DoE. 

The DoE of the present work, examines various WMD designs with the purpose of defining the design range 
which renders an acceptable rotor operation in the entire rotating speed range, in four different operating 
conditions. To determine the acceptance or not of a WMD design, the maximum relative eccentricity ratio at 
both journals must be less than 0.7, meaning 1 0.7  and 2 0.7  , see Eq. (1). The four selected WMD design 
variables and their respective values are defined in Table 2. 

Table 2: WMD design variables and their individual values 
WMD Design Variable 1st Value 2nd Value 3rd Value 4th Value 
Radial thickness [ ]H mm  6 9 12 −

Relative density [ ]mm  20 30 35 −

Radial interference int [ ]erfR mm 0.15 0.3 0.45 0.6

Wire diameter [ ]d mm  0.15 0.2 0.3 −

In order to provide a more suitable design range of the WMD, four Cases are integrated, corresponding to the 
four different operating conditions of the system (see Table 3). Two temperature conditions (hot and cold), and 
two unbalance configurations (single and pair) are considered. 

Table 3: operating conditions 
Operational Variable Case A Case B Case C Case D 
Oil temperature [ ]oT C  90 150 90 150

Initial unbalance phase 0 [ ]o 0 0 180 180

Indicatively, as shown in Fig. 4 and Fig. 5, two multidimensional diagrams depicting the maximum relative 
eccentricity ratio and the loading stiffness are presented. The scope of further extracting information on the 
design of the WMD component, requires a series of statistical tests. Including the sensitivity analysis and the 
calculation of the coefficient of importance, additional insight is gained upon the impact that each design 
variable has to the dynamic response of the system. 
The objective of the sensitivity analysis is to quantify the influence that each selected variable has on the desired 
set of responses [11,13]. First, linear regression is conducted on the matrix of responses, utilizing the matrix of 
variables, in which a standardization is performed, as shown in Eq. (14); stV is the standardized matrix of
variables, V(i,j)V is the specific value of the variable, 

mean  is the mean value, and   is the standard deviation. 

mean



−
=

V(i, j)
st

V
V (14) 

First, the linear regression is conducted as shown in Eq. (15), where 1,2i =  stands for the desired responses, 
1,2, ,108k = is the total number of configurations, 4m = is the total number of design variables, r,iR is the 
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individual desired response matrix, iq  is the individual regression coefficient matrix, and ie is the error matrix, 
which in the present work is considered equal to zero. 

1 11 12 1 0 1

2 21 22 2 1 2

1 2

1
1

1

m

m

k k k km m k

r v v v q e

r v v v q e

r v v v q e

       
       
       = +
       
       
       

r,i i istR q eV

(15) 

( )
1−

= T T
i st st st r,iq V V V R

Figure 4: maximum relative eccentricity vs WMD’s 
design variables of bearing #1 for DoE case A 

Figure 5: WMD’s loading stiffness vs its design 
variables 

Secondly, a standard Principal Component Analysis [11] is conducted on the approximate regression coefficient 
matrix Q , consisting of all the individual regression coefficients matrices iq , after neglecting the 0q value, in
Eq. (16). 

  m n= 1 2 nQ q q q (16) 

Additionally, the global sensitivity coefficients, accumulated in matrix G , are obtained through the 
calculation of the Euclidean norm of each row vector ˆ

i
q , of the approximate regression coefficient matrix Q , in

Eq. (17). 

1ˆ ˆ ˆ , 1,2, ,
T

m j m =  =
 

G
1 2 j

q q q (17) 

Finally, the calculation of the coefficient of importance (CoI) denotes the influence of single variable, among 
all design variables, on a single response, and ranges between 0 (negligible dependency) and 100  (complete 
dependency) [14]. In order to compute the CoI, the ,j sCoI element considering a single design variable 

sx and the 

associated response ,r jy  has to be computed in Eq. (18), where 1, 2j =  is the desired response, 1,2,3,4s =  is the 
design variable, and 4m =  is the total number of design variables. 

( )

( )

2

, 1 ,2
2

, 1 ,

ˆ ˆ, , , ,

, , , ,

r j s m r j

j

r j s m r j

y x x x y
R

y x x x y

−
=

−
, 

( )

( )

2

, , 1 1 1 ,2
, 2

, 1 ,

ˆ ˆ, , , , ,

, , , ,

r j s s s m r j

j s

r j s m r j

y x x x x y
R

y x x x y

− + −
=

−

2 2
, ,j s j j sCoI R R= −

(18) 

The final matrix containing all the CoI is obtained in Eq. (19). 

Paper-ID 44 

 

57



Paper ID-44 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

s

s

j j j s

CoI CoI CoI

CoI CoI CoI

CoI CoI CoI

 
 
 =
 
 
  

CoI (19) 

4   Results 
A typical quality of time response of the system with random WMD design properties is presented in Fig. 11. 

The relative eccentricity exceeds the acceptable value and this design is rejected as this will render excessive rub 
between journal and ring. 

(a) (b) (c) 
Figure 11: typical rejected dynamic design. a) time response, b) relative eccentricity, c) frequency content, 

during run up of the turbocharger. 

The WMD configuration with the most favorable dynamic response, regarding the maximum relative 
eccentricity ratio for both journals is presented in Figure 12. 

(a) (b) 
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(c) (d) 

(e) (f) 
Figure 12: left and right column represent bearing #1 and #2, respectively. (a) and (b) Journal & ring transient 

response, (c) and (d) relative eccentricity vs Rotational speed, (e) and (f) waterfall diagram and contour plot 
(top-right corner) of journal’s horizontal displacement jx . 

The results of the sensitivity analysis for each case of operating condition, as well as for all the cases 
simultaneously (global) are shown in Figure 13. Important clarification is that the absolute sensitivity percentage 
sum of the four variables, equals 100% . The CoI values of the four design variables for each case of operating 
conditions for both bearings, and the global CoI values for both bearings, are presented in Figure 14. 

Further analysis into the four cases, signified the importance of maintaining relatively low oil temperature, as 
well as the need to contain the difference between the initial unbalance phases of the compressor and the turbine 
close to zero. In the results obtained with configurations of different initial unbalance phase, the first instability 
maintained low oscillating amplitudes and was adequately suppressed; a second more violent instability leading 
to high amplitude oscillations occurred due to oil whip. Hence, the respective WMD designs where proved 
unsuitable. 

The statistical analysis implemented on the results of time response highlighted the effect that each WMD 
design variable had upon the system’s maximum relative eccentricity ratio. Relative density, radial interference, 
and wire diameter, are design variables with greater than 25% global sensitivity. Relative density is a design 
variable of most influence, while radial thickness is the one of least influence, representing only 3% of the global 
sensitivity. 

Additional data on the WMD design are required for a wider range of WMD variables and for different rotor 
and bearing geometric characteristics, in order to define reliably the appropriate design range for each rotor 
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support, and the influence of each design variable on the system’s overall performance. Supplementary research 
on WMDs design in accordance with other bearing types, such as roller and gas foil bearings belong to future 
work of the authors. 

(a) (b) (c) 

(e) (f) 
Figure 13: measurement of the sensitivity of maximum relative eccentricity ratio for each WMD design 

variable. (a) Case A, (b) Case B, (c) Case C, (d) Case D, (e) Global sensitivity. 

(a) (b) (c) 
Figure 14: representation of the individual and global coefficient of importance for each WMD design 

variable. (a) All cases for bearing #1, (b) all cases for bearing #2, (c) global coefficient of importance for both 
bearings. 

5   Conclusions 
The present work implements statistical analysis and design optimization on the dynamics of automotive 

turbocharger rotors on WMD bearings. Different WMD designs and different operational conditions are applied 
to the system which executes a virtual run-up up to high ending speed. Each configuration was studied on its 
influence upon the system’s overall performance and simultaneously, the system’s sensitivity on each WMD 
design variable considering the maximum relative eccentricity ratio, was evaluated. 

Total of 432 configurations (1 DoE process, 4 cases of operating conditions, with 108 configurations each), 
depicted considerable variance of dynamic responses, the majority of which, showed a low-speed instability 
resulting in a violent transition of the rotor to high amplitude oscillations, while only a few design sets resulted 
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in acceptable amplitude levels. Nearly all cases exhibited significant reduction of the self-excited vibration 
amplitude, noting the ability of WMDs to add damping in the system. 

Acknowledgments 
The authors would like to acknowledge Dr. Panagiotis Koutsovasilis, BorgWarner Turbosystems GmbH, 

Germany, for the several discussions during the preparation of this work. 

References 
[1] Adiletta G., Guido A., Rossi C. (1996): Chaotic motions of a rigid rotor in short journal bearings.

Nonlinear Dynamics, 10(3), pp. 251-269.
[2] Agrawal G. (1997): Foil Air/Gas Bearing Technology - An Overview. International Gas Turbine &

Aeroengine Congress & Exhibition Orlando, Florida, ASME.
[3] Al-Khateeb E. M. (2002): Design, Modeling and Experimental Investigation of Wire Mesh Vibration

Dampers. Doctor of Philosophy, Texas A&M University.
[4] Ao H., Jiang H., Wei W., Ulanov A. (2005): Study on the Damping Characteristics of MR Damper in

Flexible Supporting of Turbo-Pump Rotor for Engine.
[5] Blok H., Van Rossum J. (1953): The Foil Bearing-A New Departure in Hydrodynamic Lubrication.

ASLE J. Lubr. Eng, 9, pp. 346-330.
[6] Chasalevris A. (2016): An Investigation on the Dynamics of High-Speed Systems Using Nonlinear

Analytical Floating Ring Bearing Models. International Journal of Rotating Machinery, 2016, pp. 1-22.
[7] Childs D. (1978): The Space Shuttle Main Engine High-Pressure Fuel Turbopump Rotordynamic

Instability Problem. Journal of Engineering for Power, 100(1), pp. 48-57.
[8] Feng K., Liu W., Zhang Z., Zhang T. (2016): Theoretical model of flexure pivot tilting pad gas bearings

with metal mesh dampers in parallel. Tribology International, 94, pp. 26-38.
[9] Feng K., Liu Y., Zhao X., Liu W. (2016): Experimental Evaluation of the Structure Characterization of a

Novel Hybrid Bump-Metal Mesh Foil Bearing. Journal of Tribology, 138(2).
[10] Feng K., Zhao X., Zhang Z., Zhang T. (2016): Numerical and Compact Model of Metal Mesh Foil

Bearings. Tribology Transactions, 59(3), pp. 480-490.
[11] Golub G., Van Loan C. (2013): Matrix Computations 4th Edition, The Johns Hopkins University Press,

Maryland.
[12] Ishida Y., Yamamoto T. (2012): Linear and Nonlinear Rotordynamics: A Modern Treatment with

Applications. Wiley-VCH Verlag & Co. KGaA, Germany.
[13] Koutsovasilis P., Driot N. (2015): Turbocharger rotors with oil-film bearings: sensitivity and

optimization analysis in virtual prototyping. 11th International Conference on Vibrations in Rotating

Machines, Magdeburg, Germany.
[14] Koutsovasilis P., Driot N., Lu D., Schweizer B. (2014): Quantification of sub-synchronous vibrations for

turbocharger rotors with full-floating ring bearings. Archive of Applied Mechanics, 85(4), pp. 481-502.
[15] Muszynska A. (1988): Alford and the destabilizing forces that lead to fluid whirl/whip, 19(3), pp. 29-31.
[16] Shampine L., Reichelt M. (1997): The MATLAB ODE Suite. SIAM Journal on Scientific Computing,

18(1), pp. 1-22.
[17] Zarzour M. (1999): Experimental Evaluation of a Metal Mesh Bearing Damper. International Gas

Turnine & Aeroengine Congress & Exhibition, Indianapolis, Indiana, Transactions of the ASME.

Paper-ID 44 61



Paper ID-xyz 

SIRM 2023 – 15th International Conference on Dynamics of Rotating Machines, 
Darmstadt, Germany, 22nd – 24th February 2023 

Advancements in the rotor dynamic optimization of heavy duty gas 

turbines – handling complexity in the industrial practice 
Eric Knopf 1, Mateusz Golebiowski 2, David Stacy 3, Daryl Collins 4 
1 Chief Consulting Engineer, GE Vernova, 5400, Baden, Switzerland, eric.knopf@ge.com 
2 Manager Power Train Dynamics , GE Vernova, 5400, Baden, Switzerland, mateusz.golebiowski@ge.com 
3 Principal Engineer, GE Vernova, 29615, Greenville SC, US, david.stacy@ge.com 
4 Senior Engineer, GE Vernova, 29615, Greenville SC, US, daryl.collins@ge.com 

Abstract 
Modern Gas Turbine require a detailed and precise rotor dynamic design. As the engine size, power output and 

shaft length increase, the requirements related to vibration magnitude and dynamic behaviour are getting more and 
more challenging. A key pre-requisite to have an excellent prediction of the operational behaviour of the shaft 
train (especially in early design stages), is a) to have good numerical model which includes all relevant interfaces 
and substructures and b) to know the most sensitive parameters and components that determine and influence the 
overall dynamic behaviour of the complete shaft train. 

This paper presents an overview of various approaches with the objective to identify the most significant 
parameters and subcomponents of the powertrain, which have the highest impact on damping and eigenfrequencies 
of the powertrain using DOE statistical methods. The effort is based on a detailed mixed 3D/1D numerical model 
including all significant interfaces and subcomponents. The modelling approach goes beyond today’s typical 
industrial practices. The rotating part is based on standard 1-D models for rotors, blades and journal bearings. The 
stationary substructures, e.g. Gas Turbine and Generator stator and support, the concrete foundation and the soil 
and piles underneath the foundation, have been modelled using a 3D FE approach. Special attention has been paid 
regarding accurate and detailed representation of the interfaces, like foundation bolting, bearing connection, etc.. 

The 3D models have been reduced and attached to the rotating part using substructuring methods. This allows 
a very economic throughput time without losing accuracy. To minimize the number of calculation cases and to 
extract the dominating parameters (direct and interactions), statistical DOE methods have been applied 
extensively. The results of this study enable a robust rotor dynamic design of the shaft trains already in early 
development stages. The results enable as well to separate between important design parameters, i.e. need to be 
specified with tight tolerances and unimportant contributors, that allow a loose tolerance, which at the end reduces 
cost and risk. 

1   Introduction 
The rotor dynamic behaviour of large turbomachinery can be described by the shaftline geometrical and 

material properties, by the excitation forces 
and by interactions. This paper focusses on the 
methodological description of the 
interactions, especially between rotating and 
stationary parts and their implementation and 
usage in the industrial practice. The second 
focus of this paper is on the experience the 
authors gained by using DOE techniques to 
understand the impact of subcomponents on 
the overall system behaviour and to optimise 
them.  
Historically, the turbomachinery rotors have 
been modelled as 1D beam elements and even Figure 1: Schematic rotor supported on oilfilm bearings and 

pedestals 
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in the times of very advanced 3D FE codes and automated meshing, this is still state of the art in a lot of 
applications. 

With the increasing power output, interactions of the rotor with the supporting structures became more and 
more important to describe the overall 
vibrations behaviour. A very simple, 
but tremendously important interaction 
diagram is shown in figure 2 [1]. The 
diagram shows the expected 
eigenfrequencies of the coupled rotor 
casing system, based on individual 
rotor and casing eigenfrequencies and 
mass ratios. The diagram enables a 
quick estimation of system 
eigenfrequencies, if only component 
eigenfrequencies are available, e.g. in 
early design stages. As an example, 
assuming a (modal) mass ratio of 2 and 
an eigenfrequency ratio fcasing/frotor= 1.2 
(modal damping of 1% applied), the 
coupled system will split up into “new 
eigenfrequencies at 0.79 and 1.52 x the 
original rotor eigenfrequency (see also 
Figure 3). 

With the evolution of the gas 
turbines, powerful methods and tools 
have been developed and applied to 
encounter for the complex dynamics of 
the support structure. Today’s casing 
models are very sophisticated and 
based on 3D finite element models. 
Typically, they are generated by the 
individual component owners or even 
by third party (e.g. concrete foundation 
models). The casing submodels 
themselves consist of many (and for 
the rotordynamic analysis 
unnecessary) details and a huge 

number of DoFs. The model size itself still makes a direct use of full-sized 3D models in rotor dynamics very time 
consuming and not efficient. The submodels need to be reduced in size, while retaining the relevant dynamic 
characteristics. GE is using Component Mode Synthesis [2], [3], [4] approaches as well as a state space based 
modal approaches [5]. The basis for both of these approaches is always a 3D component/ system model. The main 
goal of these efforts is to describe the operational behaviour as precise as possible, from early design stages to 
field feedback, while still keeping computational time comparably low.  

Figure 3: Harmonic response of the coupled system (vertical lines show 
original rotor and casing eigenfrequencies; fcasing/frotor =1.2; 
mcasing/mrotor=2 

Figure 2: Generalized Rotor-Casing Interaction Diagram 
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Now, the dynamic behaviour of the gas turbine 
alone is not sufficient to describe the behaviour of the 
overall shaft train as a system.  
The following chapter describes an approach where 
all flexible substructures, including foundation and 
soil properties, have been integrated in the model. 
This was done with the intention to identify the most 
dominating parameter, which drive the dynamic 
behaviour of the rotor system. Once the important 
parameters are known, this knowledge can be used to 
optimise the dynamic behaviour, especially in early 
design stages. On the other hand, the information of 
the non-significant parameters offers opportunities 
for less strict tolerances or wider specification bands. 

For this study, the following substructures have been integrated, based on 3d FE models 
- Shaftline, consisting of gas turbine, intermediate shaft and generator rotors
- Gas Turbine Casing
- Generator Casing
- Concrete Pedestals and foundation
- Soil and foundation pillars

The gas turbine and generator rotors have been modelled following the standard 1D beam approach including 
gyroscopic effects and shear deformation. The hydrodynamic bearings are modelled via speed dependent stiffness 
and damping coefficients. The spring and damper elements are representing the interface of the rotor to the 
stationary structure. The concrete foundation has been modelled following the material properties derived from 
civil engineering. The soil and pile subsystem can differ from site to site. The soil and pile stiffness and damping 
properties have been developed from GE specifications and following the elastic half-space approach [6].  

2   Reduction Techniques – Craig-Bampton and State Space Representation 
In order to make efficient use of DOE strategies, the “big” FE models need to be reduced. Secondly, sub-

structuring methods like CMS offer a very efficient way to connect submodels at interface DOFs b from different 
origins or even different FE software. Keep in mind, that the gas turbine models, the generator models and the 
foundation models are typically generated by different departments across the organization.  
Craig Bampton and states space representation are both based on a modal representation of the substructures.  

Figure 4: 3D FE model of a GT casing including the 
support structure, showing first bending mode of the casing 

Figure 5: System Model consisting of the various subcomponents 
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2.1 Craig-Bampton Reduction 
Starting with the equation of Motion the degrees of freedom are re-arranged to interior DoFs qi and boundary 

DoFs qb. The boundary DoFs are representing the interfaces to the adjacent substructure (e.g. rotor)  

(1) 

The boundary DoFs qb. are kept physical, whereas the interior DoFs qi are transformed to modal DoFs using 
modal transformation:  

(2) 

1… i are the elastic eigenmodes of the substructure,  b are static constraint modes [6]. 
The reduction is achieved as only the first n eigenvectors 1… n (with n <<i) are used in TCB, red. This leads to to 
the equation of motion with reduced mass and stiffness matrices Mred and Kred:  

(3) 
The reduction of the DOFs is achieved in TCB,red by truncation of high frequency modes, as they do not 

contribute significantly to the vibrations in the interesting speed range.  

2.2 State Space Representation 
The state space representation follows a similar approach. Re-writing the equation of motion in state space 

representation:  

(4) 

Applying a modal transformation and normalization leads to 

(5) 

 And finally to the modal representation of the substructure 

  (6) 
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The vector q is representing the physical DoFs, the vector p is representing modal displacements. The reduction 
is again achieved by truncating the modal matrix  ne main advantage of the state space representation is, that 
modal coordinates are used internally, while external displacements and forces are kept physical. 

Both methods are mathematically equivalent, and both are extensively used in rotordynamic assessment of 
GE´s gas turbines.   

3   Design of Experiment (DOE) Framework 

With an increasing demand of a shorter design cycle and competition in performance, cost, footprint and safety, 
the probabilistic approach is gaining an important role in the power train design process. The main challenge arises 
with the size of the design space (see Figure 5) and complexity of its mapping onto multiple objective functions 
and criteria which are defined for different machines. 

In the context of rotordynamics, a number of authors have extended the deterministic rotor model to account 
for uncertainties in physical and geometrical parameters.  Various methods were used, such as Polynomial Chaos 
Expansion technique [8] and Karhunen-Loève (KL) decomposition [9].  Another approach, as shown in [10], used 
a Latin Hypercube sampling method followed by Kriging modeling to approximate the response of a 8 staged 
compressor rotor.  Becker [11] also showed a stochastic rotordynamic simulation in a gas turbine, with the aid of 
an optimizer, to understand the robustness of a rotor design using the Monte-Carlo simulation and Surface 
Response Methods.  
The use of statistical methods to explore (screening Design of Experiment) and understand (Response Surface 
Methods) the design space of the rotating equipment leads to a quicker definition of a turbo-generator’s 
arrangement. Further statistical analyses are carried out to quantify the robustness of the chosen design against 
future modifications as well as parameters’ uncertainties. 
Several statistical methods are being deployed to deliver these answers. In the following sections of this article the 
basic outline of the used techniques, main assumptions regarding the design space, evaluation and optimization 
criteria are given. 

3.1 Screening analysis 
In many applications, the number of factors that potentially affect the rotordynamic characteristic of the system 

is too great to study all factors in detail. The usual goal of a screening design is to identify the most important 
ones. After screening experiments, optimization 
experiments are performed that provide more detail 
on the relationships among the most important factors 
and the response variables. 

The most commonly used type of screening DoE 
is a full factorial or fractional factorial design. A 
factorial design (Figure 6) is type of designed 
experiment that allows studying of the effects that 
several factors can have on a response. When 
conducting an experiment, varying the levels of all 
factors at the same time instead of one at a time 
enables exploring the interactions between the factors. 

A fractional design is a design in which 
experimenters conduct only a selected subset or 
"fraction" of the runs in the full factorial design. 

Figure 6: Full factorial design: levels distribution, 
runs/trial table (+/- denotes high/low settings of the 
individual factors) 

Paper-ID 75 66



6 Paper ID-xyz 

3.2 Response Surface Methods (RSM) 
A response surface design is a set of advanced DOE techniques that help better understand and optimize 

system’s response [12],[13]. Response surface design methodology is often used to refine models after the 
important factors have been determined using screening designs or factorial designs; especially if a curvature in 
the response surface is expected. 

The difference between a response surface equation and the equation for a factorial design is the addition of 
the squared (or quadratic) terms that enables modeling of curvature in the response, making them useful for: 

• Understanding or mapping a region of a response surface. Response surface equations model
how changes in variables affect a response of interest.
• Finding the levels of variables that optimize a response.
• Selecting the operating conditions to meet desired rotordynamic criteria.

There are two main types of response surface designs: 

• Central Composite designs
Central Composite designs can fit a full quadratic model. They are often used when the design plan
calls for sequential experimentation because these designs can include information from a correctly
planned factorial experiment.

• Box-Behnken designs
Box-Behnken designs (Figure 7) usually 

have fewer design points than central 
composite designs, thus, they are less 
expensive to run with the same number of 
factors. They can efficiently estimate the first- 
and second-order coefficients; however, they 
can't include runs from a factorial experiment. 
Box-Behnken designs always have 3 levels per 
factor, unlike central composite designs which 
can have up to 5. Unlike central composite 
designs, Box-Behnken designs never include 
runs where all factors are at their extreme 
setting, such as all of the low settings. 

Both RSM methods have their advantages 
and disadvantages. Box Behnken is typically 
chosen by the authors because for engineering 
practice, the GT shaft arrangement it is very 
unlikely to be at the vertices of the design 
space, and this method gives a better 
approximation in the more practical range. 

3.3. Why are we doing all this? 
The requirements towards vibrations are extremely stringent and challenging to any OEM. The inherent 

complexity of the rotordynamic simulation of the future GT engines becomes difficult when the increasing 
pressure of design cycle time and cost reduction challenges the classic approach to the design iterations. The ability 
of providing quick answers with reduced effort becomes critical in the preliminary design phases of the power 
train development in the today industrial practice [12]. A good prediction of the field vibrational behaviour is 
absolutely necessary to reduce the risk of late design changes or field problems and to ensure a robust dynamic 
behaviour, insensitive to operational parameters. The focus of the rotordynamic investigations lie on the prediction 
of vibration amplitudes (plus stresses, moments etc.) a) at rated speed and b) at prediction of criticals speed 
amplitudes and damping during runup. The identification of the most significant parameters gives the opportunity 
to define target values to the individual component owners. In addition, the vibrational behaviour needs to be 
insensitive to external structures, like concrete foundation or soil and pile properties.  

For all these cases, the rotor stator interaction can be significant and impacts the resulting vibration amplitudes 
at rated speed, means under off-resonance conditions, as well as critical speed amplitudes during runup and 
shutdown.  

Figure 7: Box-Behnken Factor Level Distribution 
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4   Case study 
In the following chapter, a case study and selected results and findings are presented. The intention of this 

study was to identify relevant and non-significant system parameters, for both runup (critical speeds) and steady 
state operation. The system is as shown Figure 5.  
Figure 8 shows the factors, which have been considered in the DOE study.  

Figure 9 shows the DoE screening results (Pareto charts). The figures clearly highlight the main significant and 
insignificant parameters for critical speeds. It shows that structural damping is a main contributor to critical speed 
damping, besides oilfilm damping (not investigated here) of course. The pareto charts also show the importance 
of interactions (marked as factor combinations). Another significant factor is the interface stiffness with respect to 
critical speed frequency. 

Following figure gives another illustration of main effects and interactions between factors from the DoE 
screening result. The plots show a coded range of each parameter, and how the mean response changes as the 
parameter goes from low to high level. Because the experiment design is based on a 2-level fractional factorial, 
the mean response is assumed to be linear with the design space. 

Figure 8: System models with according DOE Factors (Variations) 

Figure 9: Pareto Chart of Screening Results (Critical Speed), see also Figure 8 for DOE Factors 
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The response surface model (Figure 10) gives an overview of the whole design space rather than limiting the 
focus to the tuning of a single component. This gives a great advantage in the GT design process where the 
rotordynamic characteristics can be driven by the interaction between practically all interfacing subsystems. 
Figure 11 shows a practical application of the metamodel developed for this case. It enables defining the targets 

for each subsystem 
component that are required 
to obtain a desired 
characteristic of the GT 
rotor mode. In addition to 
this, it gives the opportunity 
to quickly tune the model to 
field test results, e.g. in 
order to detect any 
deviations from the nominal 
parameters.  

5 Conclusions 
The intention of this paper was to highlight the importance of rotor-structure interaction on the dynamic 

behaviour of heavy – duty gas turbine power trains. It showed that the system to consider might be larger, than 
“just” the gas turbine or generator casings. Powerful reduction techniques are available and often integrated in 
commercial software packages. This enables the integration of the complex substructure dynamics into 
rotordynamic assessment, while keeping the throughput time on an acceptable level. DOE techniques offer a great 
opportunity to explore the available design space especially in early design stages. DOE studies give the necessary 
information on which system parameters it needs to be focussed and which ones are less important for the overall 
performance.  
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Abstract 
A method to quickly assess the stator support structure dynamic stiffness using the FE simulated frequency 

response functions (FRF) data is introduced. Using this method, the dynamic support stiffness of a newly designed 

power turbine (PT) with a slim spoke frame stator is estimated on the requirement of API standard [11]. The 

derived support dynamic stiffness is directly applied to the unbalance response analysis of the PT rotor 

incorporating the bearing characteristics. The unbalance response of the rotor with support dynamic stiffness shows 

that the effect of the flexible support and the critical speeds induced by support structure resonance are well 

captured. A full rotor/stator FE model with CMS based superelement modal reduction is developed to cross 

validate the model of the rotor with FRF representation of support structure. The comparison of the unbalance 

response shows that the rotor with FRF representation of stator structure and the full FE model with superelement 

are very well cross validated.  The superelement based on CMS are used on both rotor and stator FE models to 

enable high-fidelity FE analysis and fast computation. Finally, the rotordynamic analysis of the rotor / stator model 

shows that with the slim spoke frame, the PT still meets all the API requirements.  

NOMENCLATURE 
uu normalized displacement unit 

fr normalized frequency or speed unit 

ff normalized force unit 

umb  normalized unbalance unit 

MCS    maximum continuous speed 

CMS    component mode synthesis 

X displacement 

H(ω) transfer function matrix 

ζ   damping ratio     

h   element of the transfer function matrix 

F          force 

Ksd       dynamic stiffness matrix 

Kb         bearing stiffness coefficient 

Cb         bearing damping coefficient 

API   American Petroleum Institute 

FE    finite element     

FRF   frequency response functions 

DOF  degree of freedom  

1. INTRODUCTION
Lighter casing and stator are favourable features for a gas turbine product design improving cost

competitiveness and manufacturability. It is particularly important for turbomachinery in the oil & gas industry. A 

lighter structure with smaller struts also offers opportunity to reduce loses and provide higher overall turbine 

efficiency. However, a light and very flexible stator leads to challenging rotor dynamics due to rotor and flexible 

support interaction. The operational margin to the critical speeds and the stability maybe compromised by the 

flexible support of the stator structure [1]. The stator bearing support structures are conveniently and often 

modelled with constant stiffness and damping coefficients over the entire speed range [2, 3]. Particularly the 

support stiffness is based on experimental or analytical static deflections and force. 

Nicolas and Whalen et al. [4] used experimental forced response function (FRF) data to represent the bearing 

support structure. The supports are modelled as two single degree of freedoms (SDOFs) systems. The resulting 

dynamic compliance [5] incorporated with bearing coefficients was developed for expressions of equivalent 
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stiffness and damping coefficients. The advantage of using FRF data to represent the support structure is that the 

resulting dynamic stiffness as a function of excitation frequencies not only includes the support stiffness and 

damping, it also implicitly includes the support mass.   Vazquez and Barrett et al. [6] used polynomial transfer 

functions from the FRF compliance to model the flexible bearing support. The transfer function approach enable 

modelling multi-degree-of-freedom (MDOF) support structure can be used for both unbalance response and 

stability analysis [7,8,9]. Krüger, Liberatore and Knopf [8] presented the comparison of rotordynamic analysis 

between MDOF and SDOF modelling of the support structure. The comparison showed that the MDOF model 

much better represents the complex dynamic behaviour of the support structure. 

DE Santiago and Abraham [7] compared the response results between a rotor model with FRF representation 

of support structure and a full FE model and only showed an approximate match in trend. There were significant 

differences in structure resonance induced critical speed peaks and amplitudes at those peaks. 

Apart from using FRFs data to represent the support structure, there are very few reported works that use the 

component mode synthesis (CMS) technique and finite element (FE) analysis of the full model of support structure 

and rotor. Reference [10] provides one example of the large industrial engine model. The method showed high 

fidelity and fast computation.   

Until recently the turbomachinery industry preferred using the FRFs data and transfer function method to 

model the flexible support structure [8, 9,16] rather than use full FE model of rotor and support structure. This 

may be because the full FE model would add more complexity to the modelling and hence the modelling and 

solving time would be greater. Most of the applications mentioned above use experimental FRFs data. However, 

the FRFs data from the modal test have some limitation. From the authors experience for the high speed (up to 

15krpm) machine, the hammer test may not be accurate enough. On the other hand, for the bearing house bore 

diameter less than 200mm, it is difficult to put a shaker at the suitable position. Also, for the new design of machine 

a similar stator may not be available for the modal test. Therefore, the FE simulation of the FRFs data is a good 

resource for estimation of the dynamic stiffness of the stator.  

This paper introduces a quick method to assess the support structure dynamic stiffness using the FE simulated 

FRFs data. The derived support dynamic stiffness is directly applied to the unbalance response of the power turbine 

(PT) rotor incorporating the bearing stiffness and damping coefficients. 

A full rotor/stator FE model with CMS based superelement modal reduction is developed to cross validate the 

model of the rotor with FRF representation of support structure. The superelement based on the CMS approach is 

used on both rotor and the stator FE models to enable the high-fidelity FE analysis and fast computation. The 

methods used are deployed in the Simcenter 3D Rotor Dynamic package [18]. 

2. THE SPOKE FRAME STATOR
2.1 FRFs of the stator 

A slim spoke frame stator for the power turbine (PT) of a newly designed industrial gas turbine was proposed 

for the aero performance and optimisation of cost and manufacturability. The API standard [11] recommends the 

dynamic stiffness of the bearing support should be 3.5 times greater than the bearing stiffness in the range from 

0% to 150 % of MCS. Otherwise, the structure characteristics shall be incorporated as an adequate dynamic system 

model with calculated frequency dependent structure stiffness and damping values derived from modal or other 

testing. 

The dynamic stiffness of the stator can be derived from experimental FRFs data [4,14]. However, in the design 

stage the spoke frame stator is not available. The dynamic stiffness of the stator bearing support is assessed by the 

FE simulated FRFs in this paper. 

For the stator structure, when the excitation force applies on the front and rear bearing supports, the response 

at the bearing support can be solved at the limited local DOF. The frequency responses to the excitation force are 

expressed as: 

{

𝑋𝑥1
𝑋𝑦1
𝑋𝑥2
𝑋𝑦2}

=

[

 

ℎ𝑥1𝑥1
ℎ𝑦1𝑥1
ℎ𝑥2𝑥1
ℎ𝑦2𝑥1

ℎ𝑥1𝑦1
ℎ𝑦1𝑦1
ℎ𝑥2𝑦1
ℎ𝑦2𝑦1

ℎ𝑥1𝑥2
ℎ𝑦1𝑥2
ℎ𝑥2𝑥2
ℎ𝑦2𝑥2

ℎ𝑥1𝑦2
ℎ𝑦1𝑦2
ℎ𝑥2𝑦2
ℎ𝑦2𝑦2]

  

{

𝐹𝑥1
𝐹𝑦1
𝐹𝑥2
𝐹𝑦2}

       or        𝑿 =  𝑯(𝜔)𝑭      (1) 

While the H(ω) is the transfer function matrix (TFM). The TFM is a complex matrix as the functions of 

frequency. 

Re-write Eq. (1) as  

𝐅 =  𝐇(ω)−1 𝐗 =  𝐊sd 𝐗                                   (2)

Ksd is the dynamic stiffness matrix of the bearing support of the stator and 𝐊sd  =  𝐇(ω)
−1. The real part of

the dynamic stiffness represents the stiffness and the inertia terms, the imaginary part stands for the damping of 

the bearing supports. The TFM can be derived from the measured FRFs data from the modal test. For example, 

applying a sweeping frequency force in x direction on the front bearing support, the first column of H(ω) can be 

achieved from measuring the FRFs data in x, y directions and front, rear support respectively.  
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ℎ𝑖𝑚𝑖𝑛  =
𝑋𝑖𝑚𝑖𝑛

𝐹𝑖𝑛
 , (𝑖 =  𝑥, 𝑦 , 𝑗 =  𝑥, 𝑦  𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑠,𝑚 = 1,2, 𝑛 =  1,2 𝑠𝑢𝑝𝑝𝑜𝑟𝑡𝑠) (3) 

FRFs in one direction at one support due to a force of same direction at same support is the principal FRF, 

e.g., Xx1x1. The FRFs in one direction due to a force in the other direction at same support are the cross coupling

FRFs, e.g., Xy1x1. The FRFs at one support due to a force applied at the other support are designated cross talk FRF

e.g., Xx2x1. The FRF modal test is simulated by FE analysis and performed by the harmonic analysis for the static

parts [19]. The PT stator consists of the spoke frame, exhaust and bearing house. The stator is made of steel and

cast iron. The 3D stator FE model comprises 4 node tetrahedral 3D elements.  In the stator model, the two central

nodes of bearing diameters are connected to the nodes on the bearing house bore diameter (ID) surface with RBE2

connection 1D elements. The RBE2 connection element is a rigid connection between nodes to transfer DOFs.

Therefore, the displacement of the two central nodes represents the resultant displacements of the two bearing

supports respectively.  The full FE model of the stator has a huge number of DOF and direct FRFs simulation is

very time consuming. The superelement (SE) reduction based on CMS approach [12] is used for the 3D stator FE

model to save solving time. The SE reduction condenses the FE model to its mass, stiffness and damping matrices

at specified retained nodes. Since the force applied and the response solution needed are only at the two bearing

supports, the two central nodes of bearing diameters are configured as the retaining nodes. Shown in Figure 1(a)

is the FE model of the spoke frame stator and a variable frequency force in horizontal (x) direction applied at the

front support. Figure 1(b) is the schematic SE model and the retaining nodes.

Figure 1: Stator 3D FE model and schematic SE model with load 

For the FRF simulation, a unit force with a sweeping frequency 1 fr to 12 fr is applied on the front central 

node in x and y directions respectively. The FRFs correspond to the first two columns of TRM in Eq. (2).   A modal 

damping 𝜁 of 2% is applied in the stator SE model to simulate the equivalent viscous damping. Shown in Figure 

2 are the amplitudes of principal (a) and cross coupling, cross talk FRFs (b) 

Figure 2: Amplitudes of the principal (a) and of cross couple and the cross talk (b) FRFs 

It is seen from Figure 2 that the cross coupling and cross talk FRFs are an order less than the principal FRFs. 

It is noted that there are structure resonances at circa 6.9 fr, 7.8 fr and 9.8 fr identified by the FRFs in x and y 

directions.  

In industrial practice [4,13], only the principal FRFs are kept for the TFM. The dynamic stiffness matrix 

becomes de-coupled and each bearing support can be simplified to two SDOFs. For each support, the complex 

dynamic stiffness can be written as:  

𝐾𝑠𝑑𝑥𝑥  =
𝐹𝑥

𝑋𝑥𝑥
= 𝐾𝑠𝑥 −𝑚𝑠𝜔

2 + 𝑖𝜔𝐶𝑠𝑥 ;

𝐾𝑠𝑑𝑦𝑦  =
𝐹𝑦

𝑋𝑦𝑦
= 𝐾𝑠𝑦 −𝑚𝑠𝜔

2 + 𝑖𝜔𝐶𝑠𝑦    (4) 

While Ksd is the dynamic stiffness, Ks, Cs and ms are the support stiffness, damping and mass. 
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The real part of the dynamic stiffness is the direct dynamic stiffness. The imaginary part is referred as 

quadrature stiffness, which represent the support damping. Shown in Figure 3 are the complex principal FRFs at 

front bearing support (a) and rear bearing support (b) which are directly used to calculate the front support dynamic 

stiffness.   

Figure 3: The principal FRFs at front (a) and rear (b) bearing supports 

2.2 Tilting pad bearings 

The PT rotor is supported by a front (PT side) bearing and a rear (drive side) bearing. The two bearings 

comprise of 5 tilting pad journal modules and load between the bottom 2 pads. For the rotordynamic analysis in 

this paper, the bearing stiffness and damping coefficients versus the rotating speed are analysed by hydrodynamic 

bearing software COMBROS [17]. For the tilting pad bearings, the cross-coupling stiffness and damping 

coefficients are very small comparing to the principal stiffness and damping coefficients. This property of tilting 

pad bearing improves the bearing stability. 

2.3 Dynamic stiffness of bearing support 

The dynamic stiffnesses of the front and rear bearing support are calculated by Eq. (4). Shown in Figure 4 (a) 

are the calculated direct stiffness (real part). The 3.5 times of the bearing principal stiffness coefficients as the 

functions of the rotational speed are also shown in Figure 4 (a) for comparison. Shown in Figure 4 (b) are the 

quadrature stiffness (imaginary part) or the support damping versus the excitation frequency.  

It is noted from Figure 4 (a) that since the dynamic stiffness includes the mass of the support structure, they 

can be positive or negative. At the resonance frequency, the direct dynamic stiffness crosses the zero. According 

to the API standard [11], “For machines whose dynamic structural stiffness values are less than or equal to three 

and a half times the bearing stiffness values in the range from 0% to 150% of MCS, the structure characteristics 

shall be incorporated as an adequate dynamic system model, calculated frequency dependent structure stiffness 

and damping values (impedances)”. It is seen from Figure 4 (a), that for the front bearing frequency range of 0 -

12 fr and for the rear bearing 5-12 fr, the direct dynamic support stiffness in the horizontal (x) and vertical 

directions (y) are not in compliance with API standard. That is, these 3.5 times bearing stiffness values exceed the 

dynamic stiffness of the stator. Therefore, it is concluded that for the new designed PT, the stator should be included 

in the rotodynamic analysis via dynamic structural stiffness to be in compliance with the API standard. 

𝐾𝑒𝑞𝑖𝑖 =
𝐾𝑑𝑠𝑖𝑖𝐾𝑏𝑖𝑖(𝐾𝑑𝑠𝑖𝑖+𝐾𝑏𝑖𝑖)+𝜔

2(𝐾𝑏𝑖𝑖𝐶𝑠𝑖𝑖
2+𝐾𝑑𝑠𝑖𝑖𝐶𝑏𝑖𝑖

2)

(𝐾𝑑𝑠𝑖𝑖+𝐾𝑏𝑖𝑖)
2+𝜔2(𝐶𝑠𝑖𝑖+𝐶𝑏𝑖𝑖)

2   (5) 

Figure 4: The dynamic direct stiffnesses(a) and quadrature stiffness (b) of the front and rear bearing support 

The dynamic stiffness not only includes the support stiffness and damping but also includes the support mass. In 

Eq. (4) the Ks, Cs and ms do not need to be identified to be used in the rotordynamic analysis. The direct and 

quadrature dynamic stiffness can be directly used in the rotordynamic analysis to represent the support structure. 

The equivalent stiffness and damping [4], which incorporate support dynamic stiffness and bearing stiffness and 

damping coefficients can be derived by  
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𝐶𝑒𝑞𝑖𝑖 =
𝐾𝑏𝑖𝑖

2𝐶𝑠𝑖𝑖+𝐾𝑠𝑖𝑖
2𝐶𝑏𝑖𝑖+𝜔

2𝐶𝑠𝑖𝑖𝐶𝑏𝑖𝑖(𝐶𝑠𝑖𝑖+𝐶𝑏𝑖𝑖)

(𝐾𝑑𝑠𝑖𝑖+𝐾𝑏𝑖𝑖)
2+𝜔2(𝐶𝑠𝑖𝑖+𝐶𝑏𝑖𝑖)

2  (6) 

While         𝐾𝑑𝑠𝑖𝑖 = 𝐾𝑠𝑖𝑖 −𝑚𝑠𝜔
2     (ii=xx, yy) 

The resulting equivalent stiffness and damping coefficients are directly used in the following unbalance 

response analysis to include the support structure effect.     

3. 2D axisymmetric Fourier multi-harmonic rotor and rotating
superelement

The PT rotor consists of two bladed turbine discs connected to the shaft with multi-bolt curvic coupling. The 

PT1 and PT2 disc are made of nickel based alloy and connected with a steel shaft. The rotor is modelled with 2D 

axisymmetric Fourier multi-harmonic [15] elements. A Fourier expansion of the displacement field in the 

circumferential direction is performed. It can be written as 

𝑋𝑟(𝑟, 𝜃, 𝑧) = ∑𝑋𝑛𝑟(𝑟, 𝑧)

∞

𝑛=0

𝑐𝑜𝑠(𝑛𝜃) +∑𝑋−𝑛𝑟(𝑟, 𝑧)

∞

𝑛=1

𝑠𝑖𝑛(𝑛𝜃) 

𝑋𝜃(𝑟, 𝜃, 𝑧) = ∑𝑋𝑛𝜃(𝑟, 𝑧)

∞

𝑛=1

𝑠𝑖𝑛(𝑛𝜃) +∑𝑋−𝑛𝜃(𝑟, 𝑧)

∞

𝑛=0

𝑐𝑜𝑠(𝑛𝜃)  (7) 

𝑋𝑧(𝑟, 𝜃, 𝑧) = ∑𝑋𝑛𝑧(𝑟, 𝑧)

∞

𝑛=0

𝑐𝑜𝑠(𝑛𝜃) +∑𝑋−𝑛𝑧(𝑟, 𝑧)

∞

𝑛=1

𝑠𝑖𝑛(𝑛𝜃) 

In Eq. (7), n is the wave number of Fourier harmonics. Harmonic 0 allows the description of axial and torsional 

behaviors and Harmonic 1 is related to bending (lateral analyses). In this case only the harmonics 0 and 1 are used. 

Shown in Figure 5 (a) is the 2D axisymmetric Fourier multi-harmonic PT rotor model. It is created with 

different boundary conditions (e.g bearings, lumped masses and unbalance masses). The PT1 and PT2 blades are 

modeled as lumped masses at the axis nodes of the PT discs. The half mass of the flexible coupling which connects 

the driven machine is also modeled as lumped mass at an axial location. The tilting pad bearings are modeled using 

1D connection elements.  The connection elements are modeled by the bearing characteristics (e.g. the stiffness 

and damping coefficients). The PT1and PT2 discs are connected by a curvic coupling and same between PT2 disc 

and the shaft. The Fourier nodes on each side of curvic coupling are connected by the 1D coupling element (FOU3 

and CLINK) [18] at axis of rotor. This configuration enables the load on the curvic coupling output to be provided 

in the mechnical design. This is paticularly important when verifying the strength of curvic coupling under some 

special case e.g. resonance under high unbalance induced by blade off.  

Figure 5:  PT rotor FE model (a) and the temperature distribution (b) 

The high temperature of PT rotor will affect the rotordynamic performance. The estimated temperature 

distribution is mapped onto the rotor model and the temperature dependent material properties is input in the FE 

analysis. Thus the temperature effect on the rotordynamics are considered. Shown in Figure 5 (b) is the estimated 

temperature distribution on the PT rotor. 

The rotating superelement (SE) model of the PT rotor is created for saving computation time with very little 

loss of accuracy. The CMS based SE for the rotating part condenses a rotor to its mass, stiffness, damping, and 

gyroscopic matrices at specified retained nodes. For the PT rotor SE model, the retaining nodes are associated with 

the bearings, lumped mass, and at curvic coupling for output the bending moment.  The undamped critical speed 

analysis for the SE and full 2D FE model (NSE) of the PT rotor are carried out respectively. Shown in Table 1 are 

the first six undamped critical speeds from SE and NSE respectively.  
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Table 1: Comparisons of critical speeds between the NSE and SE 

Mode Property NSE (fr) SE (fr) Diff (%) 

1 conical(BW) 1.7853 1.7854 0.006 

2 conical (FW) 2.0222 2.0223 0.005 

3 bounce(BW) 3.3377 3.3376 -0.003

4 bounce (FW) 3.5036 3.5036 0 

5 1st bending (BW) 7.2348 7.2339 -0.012

6 1st bending (FW) 13.266 13.273 0.05 

 BW-backward mode  FW- forward mode 

It is seen from Table 1 that the SE results of the undamped critical speeds are almost identical to the NSE 

results. The maximum difference is only 0.05%, which is negligible. This comparison validates the accuracy of 

the SE model. 

The unbalance response analyses are carried out for the SE and NSE model respectively. Both analyses have 

141 frequency steps. Calculating in the same computer the computational times are 235 minutes and less than 2 

minutes respectively for the NSE and SE model. The comparisons evidently show that the SE model greatly saves 

the solving time but without loss of accuracy.   

The bearing coefficients and the equivalent stiffness and damping coefficients from Eq. (5) and (6) are used in 

the unbalance response analyses. The unbalance of 17 umb and 3.06 umb are applied at the middle of PT1 disc 

and the coupling flange on the drive end of PT respectively, at which the retaining nodes for the lumped masses 

are located. The unbalance values are just over the 2 times of the API standard [11] allowable residual unbalance. 

To sufficiently excite the mode of natural frequencies the unbalance is applied in-phase (static) and 180º out-of-

phase (couple) respectively. Shown in Figure 6 are the unbalance responses at front and rear bearings under static 

(a) and couple (b) unbalance cases respectively using the equivalent stiffness and damping coefficients from the

FRFs (KeqFRFs). For the comparison, the unbalance response with rigid bearing support and bearing stiffness and

damping coefficients only (Kbrg) are also shown in figure 6. The unbalance response is peak to peak on the major

axis of the orbit.

Figure 6: Static unbalance (a) and couple unbalance (b) response comparison between KeqFRFs and Kbrg 

Shown in Table 2 are the identified unbalance response peaks corresponding to the critical speeds for the cases 

of KeqFRFs and Kbrg.  

Table 2: Identified critical speeds for the cases of KeqFRFs and Kbrg by unbalance response 

KeqFRFs Kbrg 

critical 

speed (fr) 

amplitude 

(uu) 

bearing 

location 

critical 

speed (fr) 

amplitude 

(uu) 

bearing 

location 

unbalance 

case 
mode property 

2.95 12.9 rear 3.25 18.6 rear couple conical (FW) 

3.10 21.6 rear 3.75 17.4 rear static bounce (FW) 

6.45 15.3 front 7.30 12.2 front static bending (BW) 

7.60 11.0 front - - - static structure 

10.10 18.7 front - - - static structure 

13.35 69.0 front 13.3 119 front static bending (FW) 

It is seen that with rigid bearing support there are amplitude peaks at 3.25 fr, 3.75 fr, 7.3 fr and 13.3 fr 

corresponding to the critical speeds of rigid body forward conical and bouncing mode, backward bending and 

forward bend mode respectively. On the other hand, with FRF representation of equivalent stiffness (KeqFRFs), 

the amplitude peaks appear at 2.95 fr, 3.1 fr, 6.45 fr, 7.6 fr, 10.1 fr and 13.35 fr. Within these critical speeds the 
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2.95 fr, 3.1 fr, 6.45 fr and 13.35 fr correspond to the same modes as observed from plots of the rigid bearing 

support. But the first 3 critical speeds are significantly less than those of the rigid bearing support because of the 

effect of the flexible stator. It is noted that the stator damping effect leads to much lower amplitude peak of the 

forward first bending critical speed (13.3) for the KeqFRFs than that for Kbrg. The critical speeds of 7.6 fr and 

10.1 fr correspond to the stator structure resonances. Therefore, using the FRF structure equivalent stiffness can 

identify the critical speeds accounting for the effects of stator structure stiffness, damping and also the structure 

resonances. This evidently shows that with the equivalent stiffness and damping coefficients, the effects of the 

support structure are captured. 

4. Full FE model of the rotor in the stator
A full rotor/stator FE model was developed to perform the rotor/stator rotordynamic design in terms of critical

speeds, amplitude and stability according to the API standard requirement. Also, the unbalance response of the full 

FE model is compared with those of FRFs represented support structure to cross validate between the two methods. 

Shown in Figure 7 is schematic plot of the PT rotor in the 3D stator (a) and the retaining nodes of the SE model of 

the rotor and stator (b).  

Figure 7: 2D PT rotor in the 3D stator(a) and the schematic retaining nodes of the SE model(b) 

The rotor connects the stator at the front and rear bearing locations with the bearing elements. The bearing 

stiffness and damping coefficients as the function of the rotational speed are used to model the tilting pad bearings. 

The SE models for the 2D axisymmetric rotor and the 3D spoke frame stator created in previous sections are 

imported into the assembly to replace the full FE model of the rotor and stator. Again, the modal damping ζ of 2% 

is applied in the stator SE but no damping is assumed in the rotor SE. The SE model enables fast analysis and 

obtaining accurate results.  

4.1 Unbalance response 

The unbalance responses of the full FE model are performed. The results are used to check the critical speeds 

and amplitudes against the criteria of the API standard. Also, the results are compared with the results from FRFs 

representation of the bearing support. Since the vibration probes are usually mounted on the bearing housing to 

monitor shaft displacement, the relative responses are used for the rotordynamic validation. 

The unbalances applied are the same as the ones used in section 3, in accordance with the API standard. Shown 

in Figure 8 are the unbalance response relative amplitudes in major axis for peak-to-peak (uu) at the front and rear 

bearings for the 2 cases of static (a) and couple (b) unbalance. Also shown is the maximum and minimum operating 

speed range. The unbalance response results from FRFs representation of bearing support are compared and 

superimposed in the plot.  

Figure 8: Relative amplitude response to static (a) and couple (b) unbalance 
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It is noted from Figure 8 that the unbalance response with the FRFs representing the bearing support comply 

very well with that from the full FE model in terms of the predicted critical speeds, structural resonances and 

amplitude.  More specifically the structural resonances at 7.65 fr and 10.1 fr are accurately predicted by the 

response from the FRFs representing the bearing support. This comparison shows as quite different from the results 

of Ref [7], which also compared the response results between rotor model with FRF representation of the support 

structure and the full FE model.  Ref [7] showed approximate match in trend between FRF representation and full 

FE model of rotor and structure. However, the transfer function approach in [7] did not show all of the peaks 

predicted by the full rotor-structure FEA model. There were significant differences in structure resonance induced 

critical speed peaks and amplitudes at those peaks. 

The comparison of the unbalance response results shows that the rotor with FRF representation of the support 

structure and the full FE model with CMS model reduction can be very well cross validated. The FRFs 

representation of a support structure is a quick and accurate approach to assess the dynamic stiffness of the stator 

support structure.  In summary, results of Figure 6 and Figure 8, FRF structure dynamic stiffness is equivalent to 

full FE model of rotor-stator in terms of representing support structure in the unbalance response analysis. The 

advantage of using FRF structure dynamic stiffness is that it enables quick assessment the dynamic properties of 

the support structure and can be used in traditional rotordynamic software. The drawback is that comparing to the 

full FE model, using FRF structure dynamic stiffness neglects the cross coupling and cross talk term of TFM. This 

may lead to less accuracy in stability analysis. 

According to API standard, the corrected static and couple unbalance response for front and rear bearings are 

shown respectively in Figure 9. The 75% of the minimum design running clearance limit is also shown in the plot. 

In this case the diametral clearance of the bearings is taken as minimum design running clearance.  

Figure 9: The corrected amplitudes are well within the limit of 75% running clearance in speed range 0 to trip 

speed (110% full speed).  

From the unbalance response shown in Figure 8 and the corrected unbalance response for front and rear 

bearings in Figure 9, it is seen that PT rotor with the slim spoke frame meets the API requirements in terms of 

separation margin to the critical speeds and the criteria for the limit of corrected response amplitude. 

4.2 Damped modal analysis and stability 

The eigenvalue analysis of the full FE model with SE is applied for the stability analysis. Shown in Figure 10 

are the Campbell plot and log dec of each natural frequencies plot respectively.  

Figure 10: Campbell diagram (a) and log dec (b) for each mode of damped natural frequencies 

In Figure 10 (a), the intersections between the curve of eigen frequencies and 1x excitation line correspond 

to the critical speeds and the resonances of stator. Also, it can be seen from the Campbell diagram that there are a 

lot of stator frequencies in which the curves are flat. Shown Table 3 are the result of critical speeds and ζ, the strain 

energy distribution. From the strain energy distribution, the mode property can be identified. It is noted that for 

Figure 10 75% minimum clearance and corrected 

response 
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the stator mode or rotor-stator mixed mode ζ are close to 2% since modal damping ζ of 2% is applied in the stator 

SE. 

Table 3: Damped critical speeds and properties  

Mode 

critical 

speeds 

(fr) 

ζ  % 
strain energy distribution 

mode property 
bearings % rotor % stator % 

1 1.84 29.45 76.5 10.2 13.2 conical (BW) 

2 2.43 24.20 62.2 14.1 23.7 conical (FW) 

3 2.91 10.50 57.3 17.1 25.6 bounce (BW) 

4 3.38 11.50 43.5 19.8 36.7 bounce (FW) 

5 5.42 9.20 17.1 0.6 82.3 stator mixed 

6 5.43 4.60 8.5 0.3 91.1 stator mixed 

7 6.45 2.28 5.6 57.5 36.8 bending (BW) 

8 6.98 2.07 0.4 0.4 99.1 stator 

9 7.49 4.28 12.5 8.6 78.9 stator mixed 

10 7.91 2.03 0 0.2 99.7 Stator 

11 9.99 4.75 17.2 12.4 70.3 stator mixed 

12 10.34 6.90 27.4 7.1 65.5 stator mixed 

13 12.29 2.00 0 0 100 stator 

14 12.78 2.07 0.6 1.5 97.8 stator 

15 13.66 2.31 2.6 6.7 90.7 bending (FW) 

16 13.85 2.03 0.1 0 99.9 stator 

It is shown in Figure 10 (b) that in the speed rang 0 to MCS of 8.06 fr, all log decs exceed 0.1, which is the 

requirement of API standard for the stability. Therefore, the rotor with the slim spoke fame stator system is stable. 

5. CONCLUSION
A method to quickly assess the stator support structure dynamic stiffness using the FE simulated frequency

response functions (FRF) data is introduced. Using this method, the dynamic support stiffness of a newly designed 

slim spoke frame stator of a PT is estimated against the requirement of API standard [11].  

The derived support dynamic stiffness is directly applied to the unbalance response analysis of the PT rotor 

incorporating the bearing characteristics. The results are compared with the unbalance responses with the rigid 

supported bearing and the full FE model of rotor/stator respectively. The comparison shows that the effect of the 

flexible support and the critical speeds induced by support structure resonance are well captured. It is evidently 

demonstrated that the dynamic stiffness assessment for the slim spoke frame stator using the FE simulated FRFs 

data is a quick and accurate approach.  

A full rotor/stator FE model is developed using superelement reduction for the rotating and static parts. The 

full FE model enables the capture of all the dynamics of the rotor-bearing-stator system. The superelement based 

on the CMS approach used on both rotor and stator FE model enable the high-fidelity FE analysis and fast 

computation. The analysis shows that with the slim spoke frame stator the newly designed PT satisfies all the API 

standard requirements in terms of critical speeds, amplitude and stability.  
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Abstract 
Parametric excitation can occur on a rotor-bearing system with subharmonic or fractional frequency vibration 

response if the stiffness has a sudden change over a fraction of its orbit. This can be explained from the Jeffcott 
rotor model, simplified into the standard Mathieu Equation. This paper focus on the exactly half-speed 
subharmonic vibration phenomenon. A corresponding real case of fluid film bearing damage is then presented on 
a steam turbine generator. Vibration reached over full scale of 508 microns (20 mil pp) at generator drive end 
bearing and therefore tripped the machine.  The major vibration component that tripped the unit was exactly half-
speed subharmonic frequency at a level of over 500 microns. The root-cause was found to be due to bearing 
damage. Why the half-speed subharmonic vibration occurred at such a high level that tripped the machine is fully 
explained in this paper. Other vibration plots including orbit, spectrum, and shaft centreline are also presented for 
vibration diagnostics. Rubs occurred but were not believed to be the root-cause of half-speed subharmonic 
vibration. 

Keywords 
Parametric excitation, Half-speed subharmonic vibration, Fractional frequency vibration, Vibration 

diagnostics, Shaft centreline, Orbit, Rub 
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1   Introduction 
Sub-synchronous vibration can sometimes be difficult in finding its root-cause. Amplitude of sub-synchronous 

vibration that occurs due to an instability issue can often go beyond the danger level to trip the machine.   
Sub-synchronous vibration at a frequency of around one-half of the rotational speed or typically below is 

sometimes called half-frequency whirl [1] due to fluid-induced instability in bearings or seals. Muszynska [2] 
demonstrated whirl frequency of around but just below ½X through both analytical and experimental approaches. 
Many analytical and experimental results such as those by Crandall [3] and Childs [4] in addition to reference [1] 
do not support the notion of exact ½X whirl due to fluid-induced instability. It is believed that the exact ½X 
vibration is caused by parametric excitation due to non-linear or step-changing stiffness within the shaft orbit. 
Ehrich [5] published his observation of ½X vibration in an aircraft gas turbine engine and called it as subharmonic 
vibration to distinguish it from general sub-synchronous vibrations. Bently in [6] demonstrated his experimental 
results of this fractional frequency and named “normal-tight” and “normal-loose” conditions. Childs in [7] 
published some analytical work to explain Bently’s work. Muszynska [8] presented partial rub experimental results 
with shaft orbit shape “8” containing the ½X component. Yu [9] presented three cases of ½X vibration.  

This paper first demonstrates theoretically how subharmonic ½X is possible from a simple Jeffcott rotor model. 
Then a real case of ½X subharmonic vibration on a steam turbine generator is presented. Vibration plots including 
orbit, spectrum, and shaft centreline are illustrated for vibration diagnostics to help diagnose the malfunction.  

2   Theory 
The Jeffcott rotor model as shown in Figure 1 is employed to drive parametric excitation solution of ½X 

subharmonic vibration. Flexible bearing supports, represented by an asymmetric spring and dashpot array, are 
combined with a lumped mass. To simplify the solution, only one directional motion (in the horizontal direction) 
is described in terms of displacement x. 

Figure 1: Jeffcort Rotor on flexible bearing supports 

The rotor with lumped mass M and rigid shaft is supported by flexible bearings with stiffness K(Ωt) and 
damping D.  is the rotor speed, and t is time. The movement of the disk centre O' is described by displacement 
in horizontal and vertical displacements x and y in the fixed reference frame Oxy.  Mass unbalance is expressed by 
m with radius r and phase lag  relative to the top dead center.  

Let us only consider the motion in the y-direction. The equation of motion of the Jeffcott rotor model in the y-
direction as shown in Figure 1 can be given by 

x
O

y

O'

mφ

Ω

D/2 D/2K(Ωt)/2 K(Ωt)/2

M M
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2
2

2 ( ) cos( )+ +  =   −
d y dy

M D K t y mr t
dtdt

(1) 

In some circumstance, stiffness changes within each vibration cycle. It could be decreased (normal-loose) or 
increased (normal-tight) for part of synchronous 1X vibration cycle. To reflect this change of stiffness, as shown 
in Figure 2, K(t) can be modelled by the following periodic step-function: 
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, for 2 1 2
, for 2 2

K k t k
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K K k t k

  

  

 −    −
 = 

+  −   
  (2) 

where K0 is original stiffness, ΔK is the change of stiffness, α is the range corresponding to the change of ΔK, and 
k can be any positive integer.  Equation (2) can be expressed as Fourier series in the following: 
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Figure 2: Time-dependent stiffness varying within each synchronous 1X vibration cycle 

Thus time-dependent stiffness K(t) can be given by 
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A dimensionless time variable  is introduced as follows: 

1 1
2 4

t =  +   (5) 

Since the homogenous solution of Eq. (A1) is of interest only to examine instability issues, the unbalance force 
term is neglected. To examine possible ½X parametric excitation due to time-dependent stiffness, case 1n =  in 
Equation (4) is considered. Inserting Equation (4) with 1n =  and Equation (5) into Equation (1) yields 
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To obtain approximate solution of instability region and frequency, the damping term in Equation (6) is 
neglected. Thus, Eq. (A6) is simplified into the standard Mathieu Equation [10] as follows: 

( )
2

2 2 cos2 0d x
x

d
  


+ + = (9) 

The principal instability region is approximately determined by 
1 −  (10) 

and the unstable solution is dominantly composed of  cos  and  sin terms. As indicated in Equation (5), this is 
exactly the ½X vibration. 

Assume that  is small. Thus sin
2 2
 
 . From Equation (10), unstable speed region due to step-changing

stiffness is determined by 
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where 

0
n

K

M
 =

is obviously the original natural frequency of the rotor-bearing system. Equations (11) and (12) can be regarded as 
normal-tight and normal loose cases, respectively. 

3   Real Case 
This is a cross-compound steam turbine generator unit with HP turbine (3600 rpm) and LP turbine (1800 rpm), 

as shown in Figure 3. Its rated power output is 775 MW. High vibration excursion occurred on the generator of 
the HP section. It consists of HP and IP rotors along with the hydrogen-cooled generator. 

Figure 3: cross-compound steam turbine generator 

HP Turbine 

(3600 rpm)
LP Turbine 

(1800 rpm)
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The radial vibration probes are mounted at 45° left (Y-probe) and 45° right (X-probe) relative to the top dead 
center (TDC). There is also a dual-probe setup at each bearing at 30 degrees right, which takes both shaft relative 
and seismic data to generate shaft absolute readings. They are numbered in order from turbine to generator. The 
Keyphasor® probe is located at about 90 degrees right relative to the TDC when looking from the turbine to the 
generator.  

After a scheduled outage, startup vibration data was monitored and obtained by using Bently Nevada ADRE® 
Sxp software and 408 DSPi Data Acquisition System. 

3.1 ½X vibration excursion 
When the HP generator was brought up to a constant warmup speed of 1800 rpm (half speed of rated 3600 

rpm), vibration reached over 508 µm pp (20 mil pp) at the generator drive end bearing (Brg#5 as shown in Figure 
4) and therefore tripped the unit.

Figure 4: HP generator machine train diagram 

Figure 5 is a vibration trend plot containing direct (broad-band frequency), 1X, ½X, and 2X components 
measured from Brg#5 X-probe. During initial 5 minutes at 1800 rpm, vibration was very low and stable. Then the 
1X synchronous vibration started to change with amplitude being up and down. After 2 hours and 20 minutes, the 
½X suddenly appeared with amplitude up to 518 µm pp, causing the unit to trip. 

Figure 5:  Direct, 1X, ½X, and 2X vibration trend plot at 1800 rpm with ½X up to 518 µm pp 

Figure 6 shows orbit plots at 1800 rpm from low to high vibration amplitude in red color. The first 5 orbits 
were mainly due to the 1X vibration. Then the ½ X vibration occurred and tripped the unit. The last orbit in green 
color was at 1780 rpm during shutdown after the trip. Since the full scale was set at 508 um pp (20 mil pp) in 
ADRE configuration, amplitude over that level was truncated. It had not been expected that vibration amplitude 
would exceed this level. 

Figure 6: Orbit plots at Brg#5 during vibration excursion at 1800 rpm followed by trip at 1780 rpm 

Brg#5X

Speed Direct 509 µm pp 1793 rpm

1X 182 µm pp 155°

½X 518 µm pp 299°

2X 110 µm pp 213°

Out of full scale 
508 µm pp
(20 mil pp)
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Figure 7 shows full-spectrum waterfall plot during the run. When the 1X vibration was dominating, vibration 
amplitude was low. Then the abnormal ½ X vibration occurred, accompanied by its multiples 1X, 3

2 X, 2X, etc.

Figure 7: Waterfall plot at Brg#5 during the run 

3.2 Diagnostics of the ½X vibration excursion 
The root-cause of the abnormal ½ X vibration needed to be found out before the unit could safely start again. 

Whether it was exactly ½ X or close to ½ X would make a big difference in malfunction diagnostics. Figure 8 
shows the orbit/timebase plot at Brg#5 at 1780 rpm. Though X directional amplitude was beyond the 508 µm pp 
(20 mil pp) full scale, Keyphasor dots were available on the plot plus Y directional amplitude was not affected. 
These Keyphasor dots were clearly locked at the same location in the orbit and timebase. Therefore, the sub-
synchronous vibration was exactly ½ X subharmonics, not close to 0.5X.   

Figure 8 Evidence of exactly ½ X subharmonics from Keyphasor dots 

As to whether it was a normal-tight or normal loose case as shown in Equation (11) or (12), the natural 
frequency of the generator rotor-bearing system would need to be examined. Figure 9 presents Bode plots measured 
by 4 proximity probes on the generator DE and NDE bearings. The first critical speed was 991 rpm as shown in 
Figure 9, which can be interpreted as the natural frequency of the generator rotor-bearing system n .

The ½X subharmonics occurred at 1631 to 1800 rpm during shutdown. Therefore, this situation fits the normal-
loose condition described in Equation (11), i.e., 

0
2 991 1 2 991 rpm






 −    

K

K

where 0,  and 1631 1800 rpm   = −K . The value of the left term is obviously around 1631 rpm. Certainly there 
is no need to evaluate the exact values of α and ΔK. 
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X
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Out of scale

Keyphasor dots locked

Brg#5

Paper-ID 9 86



7 Paper ID-9 

Figure 9: Bode plots measured by 4 proximity probes at generator bearings during coastdown 

As to the root- cause of the normal-loose condition, shaft centerline plots were examined to see journal positions 
relative to the bearing walls. It was surprised to observe that shaft centerline position at Brg#5 moved well beyond 
its bearing clearance wall, based on the startup reference point taken during the startup. During the outage, the as-
left bearing diametral clearance in the vertical direction was measured as 0.610 mm (24 mils). However, the current 
position appeared that the bearing clearance had significantly increased by approximately 1 mm (40 mils). 
Therefore, bearing damage was strongly suspected.  Normally bearing wipe-up can be easily detected via bearing 
metal temperature spiking. At that time, unfortunately bearing metal temperature reading was invalid, and therefore 
only vibration data could be used to diagnose any possible malfunctions.    

Figure 10: Shaft centerline plots from Brg#3 to Brg#6 

One thing regarding changing 1X vibration prior to the onset of ½ X subharmonic vibration remained 
unexplainable in the very beginning. Later further in-depth data review pinpointed a possibility of rub events. 
Figure 11 shows 1X trend and polar plots measured by Brg#5 X probe. The 1X vector increased against shaft 
rotation, behaving as the Newkirk effect. The other evidence of rub was the high 1X amplitude of over 254 µm pp 
(10 mil pp) measured by Brg#5 X probe from 750 rpm to 250 rpm during shutdown, as shown in Figure 9, 
indicative of strong shaft bow resulted from rubs. 

991 rpm as resonance or critical speed during coast-down 

Brg#5X Brg#5Y

Brg#6X Brg#6Y

½X

1X 

Direct

Abnormal shaft 
centerline plot at Brg#5
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Figure 11: 1X vibration excursions prior to the onset of ½ X subharmonic measured by Brg#5 X probe 

3.3 Inspection and findings 
An inspection was requested to open the machine near Brg#5 area. The bearing was found to be indeed wiped 

at the left bottom, as shown in Figure 12, with additional 1.067 mm (42 mils) clearance due to wear beyond as-left 
clearance of 0.610 mm (24 mils) in the vertical direction, matching the diagnosis. Obviously, the wear was due to 
the journal rubbing against the babbitt surface.  

Figure 12: Bearing damages found during an inspection 

It was found that a fine strainer was mistakenly left in place, causing oil reduction and starvation, and finally 
wiping up the bearing. This was believed to be the root-cause. The bearing was shipped offsite to be re-spun. 

It appeared that rubs had occurred on inner and outer oil deflectors at Brg #5 as well as that at the adjacent Brg 
#4 generator side. All these three oil deflectors were shipped offsite for teeth replacement. 

It also seemed that Brg#5 hydrogen seal casing oil deflector had been rubbed, which was then replaced with 
new one. 

The clearance and alignment condition were found to be acceptable at the adjacent Brg #4 turbine side oil 
deflector. 

Brg#5X Brg#5X

Looking from turbine to generator

Babbitt wear at 
the left bottom

Fracture due to heat

Babbitt material 
transferred to
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3.4 Resolution and final vibration results 
The bearing was repaired by refurbishing its babbitt and re-installed correctly. Several damaged oil deflectors 

were replaced with new ones. The bearing lube oil system was ensured to function normally.  
The unit was then restarted successfully with acceptable vibration level without any abnormal vibration 

behavior. Figure 13 shows a normal full-spectrum waterfall plot measured by Brg#5 X and Y probes. Note that a 
seemingly ½ X in a very low level was not due to its own HP rotor vibration. It was the 1X LP (1800 cpm at rated 
speed) vibration transmitted from the same foundation. 

Figure 13: Normall full-spectrum waterfall plot at Brg#5 

The corresponding shaft centerline plot also became normal. The journal position was moving within the 
normal range, as shown in Figure 14. 

Figure 14: Normal shaft centerline plot at Brg#5 and adjacent bearings 

4   Discussion and Conclusions 
Parametric excitation analysis on why ½X vibration can occur is presented, which includes unstable speed 

region by using the Jeffcott rotor model. Step-changing nonlinear stiffness function is modelled and expanded into 
Fourier series. The homogeneous equation of the Jeffcott rotor model is then simplified into the well-known 
Mathieu Equation, which yields the solution of instability. 

Two conditions are needed to make this unstable ½X vibration possible. First, stiffness would need a step-
change within a cycle or orbit of synchronous 1X vibration. In the real case presented here, the bearing surface 
damage resulted in the large clearance within the fluid bearing. Thus, the bearing stiffness had a step-change likely 
at the top right of the orbit. In other words, on part of the orbit trajectory at the top right, oil film support could not 
be provided and bearing stiffness had a sudden decrease from K0 to K0 + ΔK, where ΔK < 0.   Secondly, rotor speed 
would have to be approximately at twice the natural frequency of the rotor-bearing system. For the current case, 
when speed Ω is between 1631 to 1800 rpm, close but slightly lower than 2 times the natural frequency of 991 
rpm.  

Rubs occurred in this case, but it was manifested by 1X synchronous vibration excursion. In other words, it 
was not the root-cause of the ½X subharmonic vibration. Had the natural frequency been 815 rpm or below, the 
½X subharmonic vibration would have been resulted from rubs as ΔK could be considered as positive due to rub 
contact leading to a step-increase in stiffness.  

LP vibration transmitted 
through foundation, not ½X HP

Brg#5

Brg#5 Brg#6Brg#4Brg#3
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In addition to correct determination if sub-synchronous vibration is exactly ½ X subharmonics or close to 0.5X 
sub-synchronous vibration, review of shaft centerline plot is very important to help diagnose the root-cause of the 
vibration.  
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Abstract 
This paper presents the results of experimental tests carried out on a 30-kilowatt prototype gas microturbine. 

An unconventional bearing system, which consists of two super-precision ball bearings and a single gas bump-
type foil bearing, was used to support the rotor of this machine. The function of the foil bearing is to support the 
overhung end of the shaft where the rotor disc of the gas microturbine and compressor is located. The 
experimental examination of the microturbine prototype was conducted under laboratory conditions and included 
several start-up tests, a test carried out at constant speed, and rotor rundowns. The vibration level of the casing 
and the temperature of the selected components were monitored during the tests. Based on the obtained 
characteristics, the dynamic state of the machine was evaluated and some modifications to the bearing system 
were proposed. The analysis of the vibrations that occur in the resonance area has shown that an additional foil 
bearing significantly reduces the vibration level, as well as the risk of damage to the machine as it passes through 
critical speeds. The results presented in this paper may be of interest to other researchers and engineers who are 
involved in the development of high-speed turbomachines, especially gas microturbines. 

1   Introduction 
The rotors of modern turbomachines, such as microturbines and turbocompressors, operate at very high 

rotational speeds. This is beneficial in terms of the flow system and allows high efficiency to be achieved, but at 
the same time high speeds can cause dynamic problems and advanced bearing systems must be used. The 
mechanical, thermal, and electrical loads that act on the rotating systems of such machines require very detailed 
analyses, because, at high speeds, some components must operate slightly below the limits of their technical 
capacities. As the speed increases, new dynamic problems may also arise due to the occurrence of critical 
speeds. This applies to long, flexible rotors, including, in particular, rotors with a significant overhang. 
Therefore, a lot of attention is paid to the design of rotating machines, where the high-speed rotor of the 
generator and the disc of the turbine rotor are mounted on the same shaft. In a low-speed machine, such a rotor 
can be driven by a coupling [7] or a gear, but it is typical of micro-power machines that their generator and rotor 
disc share the same shaft [2], [4]. Thanks to this, it is possible to achieve high efficiency and a more compact and 
reliable structure. In the case of vapour microturbines, the use of a single shaft without coupling between the 
turbine and the generator makes it possible to build oil-free turbogenerators [4]. In order to reduce the vibration 
level of turbomachinery, much attention is also paid to high-speed balancing [9]. Accurate balancing of a rotor 
reduces not only the dynamic forces acting on the rotor and bearings but also the impact of the machine on the 
environment [10]. Rotor unbalance can also increase during operation, for example as a result of the deposition 
of debris on rotating parts [23]. 

In machines with overhung rotors, one end of the shaft is not supported by any bearing. When passing 
through resonant speeds, the vibrations of the overhanging part are not limited and dampened by the bearing, 
which can lead to significant shaft bending. In this type of rotors, the gyroscopic effect, which affects the 
massive disc located at the end of the shaft, is also important. For many years now, these problems have been the 

15th SIRM – European Conference on Rotordynamics, 
Darmstadt, Germany, 22nd – 24th February 2023 

Paper-ID 26 91



2 Paper ID-26 

subject of numerous scientific publications. In the paper by Shende [17], an analytical method applied to a 
flexible overhung rotor with a squeeze film damper mounted in the bearing support is presented. In the next 
paper [16], the effect of various combinations of unbalance and disc skew on the amplitude and phase angle 
response was analysed. The authors show that it is impossible to balance the overhung rotor at all speeds by 
single-plane balancing, even if three correction planes are used. It was also noted that a rotor that might appear to 
be well balanced at a particular speed may be considerably unbalanced at other speeds due to the effects of shaft 
deflection and disc skew. A balancing analysis carried out on high-speed overhung rotors is also presented in [8]. 
The proposed method is based on determining the influence coefficient of the rotor overhang, which changes the 
natural frequencies. The authors of this paper noticed that the standard balancing procedure is ineffective for 
such rotors. In the paper published in 2010 [12], a practical computer model and analysis of an overhung rotor, 
taking into account the design changes related to the increase in the output power of a machine, are presented. 
Different design alternatives were considered and finally the bearing diameter was changed to obtain satisfactory 
vibration characteristics. In the next paper [13], the same author numerically examines an overhung rotor with 
hysteretic dynamic behaviour and compares these results with the results of experimental tests. A numerical 
model of an overhung rotor with rolling element bearings is presented in [6]. The authors used a multi-body 
system model of a ball bearing to calculate the dynamic behaviour and resonance characteristics of the rotating 
system. A test rig was also designed and built to validate the theoretical model using experimental data. The 
model was capable of representing the modal characteristics with satisfactory accuracy. 

The dynamic forced response analysis, using a simple two-degree-of-freedom model of an unbalanced 
overhung rotor subjected to intermittent annular rubs, is presented in [22]. It was found that, for sufficiently high 
levels of transient energy in the rotor, there exists the possibility to jump into a stable limit cycle characterised 
by the synchronous response frequency. Nonlinear forced vibration analysis of overhung rotors is also presented 
in [14]. Unbalance forces resulting from eccentricity and disc skew were considered. It is shown that large-
amplitude rotor vibrations led to nonlinearities in curvature and inertia. Static deflection creates second-order 
nonlinearity. Because gravity decreases the hardening effect, the nonlinear system tends to become a linear 
system. Paper [1] presents a numerical analysis of an overhung rotor with snubbing contact. It is shown that 
incorporating the couple of snubbing moments into the equations of motion yields a piecewise and strongly 
nonlinear system. Three cases were analysed to investigate the effect of isotropy and anisotropy of the stiffness 
of the support. The whirl response and the full-spectrum analysis have confirmed the excitation of post-
resonance backward whirl zones of rotational speeds for all these cases. A rotating system consisting of a 
massless viscoelastic shaft supported by rolling bearings with a rigid massive disc mounted on the overhung 
shaft end is considered in [15]. It is shown that the disc can be stabilized and its bifurcating self-excited vibration 
can be effectively reduced and modified by contactless radial magnetic actuators acting as external dampers. 

In the literature, one can find many examples of experimental studies of different types of energy 
microturbines. The authors of these studies mainly focus on energy issues and usually determine power and 
efficiency as a function of rotational speed [3], [5], [19]. Although gas microturbines with an external 
combustion chamber can be supplied with low-quality fuels [4], the number of papers that focus on experimental 
studies of such machines is low in the available literature. One such study is presented in [18] concerning an 80 
kW gas microturbine with an external combustor. An experimental evaluation of the output power of a 100 kW 
gas microturbine with an external heat exchanger is presented in [20]. Much less attention is paid to operational 
and diagnostic issues. Examples of such tests are presented in publications [21], [24], where the vibrations of 
energy microturbines have been studied in relation to various operating parameters. These studies, however, did 
not concern gas microturbines with an external combustion chamber. Therefore, based on the literature review, it 
can be concluded that publications devoted to experimental studies of the dynamic properties of microturbines 
with an external combustion chamber can be sought by other researchers. Such publications allow, for example, 
the verification of computational models and the comparison of microturbines of different designs. 

This paper discusses the results of an experimental study conducted on a prototype gas microturbine with a 
nominal power of 30 kW. This microturbine uses a high-speed overhung rotor supported by an uncommon 
bearing system consisting of rolling bearings and a foil bearing. The research was carried out under laboratory 
conditions, in several stages. Each stage of the research provided new results that allowed the design of the 
rotating system to be improved and higher speeds to be achieved. Much of the attention has been focused on 
accessing the effect of rotational speed on the vibration level of the microturbine and on identifying resonant 
speeds. The following part of the paper discusses in detail the object of the research and the design of the 
rotating system. Then, several stages of the experimental study are discussed and selected measurement results 
are presented. At the end of the paper, the results obtained are summarised and further directions for the research 
and development of the gas microturbine are indicated. 
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2   Characteristics of the gas microturbine 
The research object is the prototype of a gas microturbine that will be used in a cogeneration system with a 

so-called external combustion chamber. The machine in question comprises an air compressor, a gas turbine and 
an electric generator. The compressor is used to increase the pressure of air and force its flow to the flue gas–air 
heat exchanger. The exhaust gases flow there from the boiler. Then, the compressed and heated air flows through 
the turbine that drives the shaft, including the compressor disc and the electric generator. The designed machine 
has a nominal electric power of 30 kW, which is achieved at 100,000 rpm. A picture of the prototype mounted 
on the test rig is shown in Fig. 1.  

Figure 1: Prototype of a 30 kW gas microturbine. 

At the nominal operating point, the temperature of the hot air flowing through the turbine reaches 850°C. In 
the immediate vicinity of the turbine rotor disc, the operating conditions can be very difficult, making it 
impossible for a bearing node to be installed at this location. Therefore, in the first version of a rotating system, 
only two bearings were used to support the rotor in the turbocompressor prototype. They were placed in an area 
where the temperature is much lower—on both sides of the electric generator [25]. In the second version of the 
prototype, a third bearing was used between the gas turbine disc and the compressor disc. Due to very difficult 
operating conditions (high rotational speed and high temperature), it was decided to use a foil bearing in this 
place. A 3D model of a rotating system with three bearings is shown in Fig. 2. The rotor has a total length of 418 
mm and a shaft diameter of 25 mm between the generator and the compressor rotor disc. The outer diameter of 
the rotor disc of the turbine and compressor is 108 mm. The weight of the complete rotor (including the 
generator sleeve, compressor disc and turbine disc) is approximately 3.6 kg. 

Figure 2: Rotating system of the 30 kW gas microturbine (1 – NDE ball bearing, 2 – generator rotor, 3 – DE ball 
bearing, 4 – shaft, 5 – compressor disc, 6 – foil bearing, 7 – turbine disc, NDE – non-drive end, DE – drive end). 
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The bearing systems of such machines must withstand high rotational speeds, low- and high-frequency 
dynamic loads that act on the shaft as well as high thermal loads. In addition, in this case, the bearings must be 
able to withstand certain axial forces, as this is necessary to maintain the correct position of the rotor in the 
casing. Initially, the possibility of using different types of bearings was considered, but due to the harsh 
operating conditions, the number of possible solutions gradually decreased. That is why the scope of research 
also included unconventional bearing systems such as foil bearings [11] and gas bearings lubricated with 
uncommon lubricants [23]. However, the key issue when selecting bearings lies in the rotor design, which 
determines the requirements and operating conditions of each bearing node. That is why high-speed, super-
precision rolling bearings (with a nominal bore diameter of 20 mm at the non-driven end and 25 mm at the 
driven end) were used in the first version of the gas microturbine. Bearings of this type have ceramic rolling 
elements, so that they can operate at very high speeds even under poor lubricating conditions. In order for the 
bearings to be able to withstand the axial loads occurring in the machine, a decision was made to use angular 
bearings in the X arrangement. One of the important reasons for choosing these bearings was the fact that the 
turbocompressor is a prototype that must undergo extensive testing under laboratory conditions before it is put 
into service. Preloaded rolling bearings are characterised by a fairly high stiffness, which can be an advantage for 
a rotor with a significant overhang. On the other hand, the low damping of the rolling bearings will not be 
advantageous because of the possibility of the occurrence of large vibrations when the system passes through 
resonant speeds. Preliminary experimental tests confirmed that very high vibrations of the machine had occurred 
around resonant speeds. Therefore, in the target design, a decision was made to use an additional bearing to 
support the overhung end of the shaft. As mentioned earlier, due to the operating conditions, an in-house 
developed gas foil bearing was chosen in this case. The effect of using such a bearing on the vibration level of 
the microturbine is presented in the following sections of this article. 

3   Results of experimental tests 
Experimental research on the prototype gas microturbine was carried out in a laboratory of the Institute of 

Fluid-Flow Machinery in Gdańsk (IMP PAN). Subsequent stages of the research allowed the characteristics of 
the actual machine to be determined, thus providing the basis for the improvement of the bearing system. Since 
this article focuses on the dynamic characteristics of the microturbine, the following subsections discuss the 
results of vibration measurements. Vibrations were measured on the machine casing using uniaxial 
accelerometers with magnetic feet. Two accelerometers were mounted near each rolling bearing to measure 
vibrations in the horizontal (X) and vertical (Y) directions. The root-mean-square (Vrms) and zero-to-peak (V0-P) 
values of vibration velocity, determined over a frequency range of 1 Hz to 1,600 Hz, were used as a measure of 
vibration level. Apart from vibrations, the rotational speed of the rotor and the temperature of the rolling bearing 
located closer to the driven end of the shaft (marked as DE) were also measured. In addition, thermodynamic 
parameters such as inlet and outlet air temperature and pressure, as well as mass flow rate, were measured during 
the study of the hot air driven microturbine. Before each series of measurements, the microturbine rotor was 
precisely balanced so that the residual unbalance was less than the value permitted by the balancing grade G2.5, 
according to the ISO 1940 standard. 

3.1 Preliminary test of the microturbine with two ball bearings 
Preliminary tests were carried out at room temperature using an electric drive for the rotor. During these 

tests, the electric generator operated as an electric motor, which allowed precise control of the rotational speed. 
In the first configuration of the machine, the rotor was supported by only two ball bearings, located on two sides 
of the generator (Fig. 2). The end of the shaft, on which the rotor disc of the turbine and compressor was located, 
was not supported by any bearing. Such a rotor was characterised by a significant overhang. 

Prior to the experimental tests, simulation calculations were performed to estimate the resonant speeds of the 
rotor. These calculations included both a modal analysis and a forced vibration analysis of the unbalanced rotor 
[24]. Based on numerical analyses, the successive resonant speeds associated with the bending vibrations of the 
shaft with two bearings were estimated to be around 12,000 rpm, 33,000 rpm and 73,000 rpm. 

The experimental tests consisted of gradually increasing the rotational speed of the rotor (in steps of 2,000 
rpm) and monitoring the vibration level of the microturbine casing and the temperature of the rolling bearing. 
During these tests, the vibration level of the microturbine was very low, but only up to a speed of about 11,000 
rpm. When the speed was increased to 12,000 rpm, a significant increase in vibration velocity (Vrms) was 
observed, from about 0.5 mm/s to about 4 mm/s. An increase in speed above 12,000 rpm resulted in a further 
increase in vibration level. At 14,000 rpm, the vibration velocity (Vrms) was approximately 10 mm/s. The results 
of the vibration velocity measurements (Vrms and V0-P) are shown in Fig. 3. These results were obtained for the 
bearing node located closer to the turbine (DE), in the vertical direction. Similar increases in vibration levels 
occurred at other measurement points. 
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Figure 3: Vibration velocities (Vrms and V0-P) measured in the vertical direction near the DE ball bearing versus 
rotational speed. 

Attempts to achieve higher speeds of the rotor with two bearings have been unsuccessful. The vibration level 
was so high that it prevented the safe operation of the machine. Rotor vibrations interfered with the operation of 
the generator and bearings, and the free end of the shaft with the turbine rotor disc rubbed against the casing. 
Therefore, despite several attempts, it was not possible to achieve stable operation of the machine at speeds 
exceeding 15,000 rpm. The results of this study have shown that it is necessary to modify the rotating system. 

3.2 Test of the microturbine at room temperature 
Based on the preliminary study discussed above, the bearing system of the gas microturbine rotor has been 

modified. To additionally support the overhanging part of the shaft, a gas foil bearing was used between the rotor 
disc of the turbine and the compressor. This was an in-house developed foil bearing with a nominal diameter of 
26 mm, which was made of heat-resistant materials that can withstand temperatures above 500°C. In addition, 
the preload of the rolling bearings had been adjusted to the actual axial force acting on the shaft during machine 
operation at different speeds. The microturbine thus prepared was subjected to further tests, which consisted of 
gradually increasing the speed of the rotor to 32,000 rpm. During these tests, an electric generator operating in 
motor mode was again used as the rotor drive, and room-temperature air (collected from the laboratory space) 
flowed through the compressor and turbine. 

The test results in the form of vibration waveforms in the horizontal and vertical directions are shown in Figs. 
4 and 5. When these graphs are compared to the results presented in Subsection 3.1, it can be concluded that the 
modifications made to the bearing system significantly reduced vibration levels. Up to a speed of 15,000 rpm, 
the maximum vibration level (Vrms) in the vertical direction at the DE bearing decreased from about 10 mm/s to 
3 mm/s (Fig. 4). The peak vibration level occurred at 13,050 rpm. Even at higher speeds, the vibration level near 
this bearing in the vertical direction did not exceed 3 mm/s. In the horizontal direction, the highest vibration 
level was about 4 mm/s and occurred at 25,300 rpm. Based on the vibration measurements performed on the 
NDE bearing, it can be concluded that in the horizontal direction, the highest Vrms values occurred at 11,050 rpm 
(approx. 3.5 mm/s) and 25,750 rpm (approx. 9 mm/s). In the vertical direction, the highest vibration levels 
occurred at 12,950 rpm and 28,150 rpm, and over the entire range, the level of these vibrations did not exceed 5 
mm/s. The aforementioned increases in vibration levels had to do with the resonant speeds of the rotor. In the 
remaining speed range, the machine’s vibration was much lower, reaching a maximum level of about 2 mm/s. 
The differences between the vibration levels in the horizontal and vertical directions at the same rotational 
speeds can be explained by the anisotropic properties of the support of the microturbine casing. The casing was 
bolted to the steel frame by two supports (Fig. 2), which did not provide the same support stiffness in the 
horizontal and vertical directions. The microturbine support structure itself also has different stiffness in the 
horizontal and vertical directions, which is reflected in the vibration waveforms measured on the microturbine 
casing. 
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Figure 4: Vibration velocity (Vrms) measured on the microturbine casing close to the rolling bearing (DE) versus 
rotational speed (X – horizontal direction, Y – vertical direction). 

Figure 5: Vibration velocity (Vrms) measured on the microturbine casing close to the rolling bearing (NDE) 
versus rotational speed (X – horizontal direction, Y – vertical direction). 

In order to fully evaluate the dynamic characteristics of the microturbine at selected speeds, vibration 
velocity spectra were determined. Although at lower speeds (up to about 20,000 rpm), no components other than 
that corresponding to the rotational frequency were observed, superharmonic components were present at higher 
speeds. The frequencies of these components corresponded to multiples of the rotational speed (2n, 3n and so 
on). Examples of such frequency distributions are shown in Figs. 6 and 7. Such vibration spectra could indicate, 
for example, misalignment of the bearing supports in which the rolling bearings were embedded. During these 
tests, the temperature of the DE rolling bearing did not exceed 45°C. 

Figure 6: Vibration velocity spectrum recorded on the microturbine casing in the vertical direction close to the 
DE bearing at a speed of 22,980 rpm. 
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Figure 7: Vibration velocity spectrum recorded on the microturbine casing in the vertical direction close to the 
DE bearing at a speed of 25,980 rpm. 

3.3 Test of the microturbine at elevated temperature 
Tests of the prototype gas microturbine with cold air confirmed its proper operation at speeds up to 32,000 

rpm. Unacceptable increases in vibration levels were observed only within the resonant speed range. Using this 
knowledge, it was possible to plan further experimental studies in such a way that the operation of the 
microturbine at these speeds would be as short as possible. Based on a previous study, it was determined that the 
following speed ranges should be avoided: 10,500–13,500 rpm and 24,000–31,000 rpm. A prolonged operation 
of the machine at these speeds could result in accelerated wear or damage to the bearings or even rubbing of the 
rotating system components against the casing. 

The next stage of the experimental study of the microturbine involved testing it under conditions similar to 
real operating conditions. Therefore, the microturbine was connected to the boiler so that the pressurised air 
supplied by the compressor would be heated in a heat exchanger and then used to power the gas turbine. The 
vibration waveforms (Vrms) as a function of rotational speed, obtained during these tests, are presented in Figs. 9 
and 10. During these tests, the maximum rotor speed almost reached 60,000 rpm, but in the graphs shown here, 
the speed has been reduced to 50,000 rpm due to unstable measurement results at the highest speeds. Near the 
DE bearing, the highest vibration level of about 11 mm/s (Vrms) was recorded at 34,713 rpm in the vertical 
direction (Fig. 9). In the horizontal direction, the highest vibration level of about 8 mm/s occurred at 32,043 rpm. 
Near the NDE bearing (Fig. 10), the highest Vrms value was approximately 18 mm/s and occurred in the vertical 
direction at 13,227 rpm. High vibration levels were also observed at 34,052 rpm (about 10 mm/s) in the vertical 
direction and at 46,872 rpm (about 9 mm/s) in the horizontal direction. At other speeds, the vibration level of the 
microturbine casing was significantly lower. Up to a speed of 30,000 rpm, it did not exceed 4 mm/s, and at 
higher speeds, it was higher, but in some speed ranges, it also did not exceed the value given earlier (4 mm/s). 
The different vibration levels in the horizontal and vertical directions were due, among other things, to the 
difference in the stiffness of the microturbine support in the two directions. In the speed range of 12,000 to 
15,000 rpm, the significant increase in the vibration level near the NDE bearing may have been due to the 
modification of the foundation of the test rig with the microturbine. During the earlier laboratory tests, the test 
rig was placed on a concrete floor, while the elevated temperature tests were conducted in a container with a 
floor made of wooden plates. This may have had a significant impact on the stiffness of the support of the entire 
test rig, which manifested itself mainly on the side of the microturbine casing that was not connected by pipes to 
the remaining components of the cogeneration installation. 

During the tests, which lasted several hours in total, the temperature of the DE bearing did not exceed 50°C. 
Considering the fact that the temperature of the air supplied to the turbine was above 600°C, which also caused 
the shaft and casing to heat up, maintaining such a low temperature of the bearing can be considered a very good 
result. Since the temperature of the individual parts of the microturbine, including the shaft, was not accurately 
measured during the study in question, the effect of this parameter on the dynamic characteristics of the rotating 
system was not analysed in detail. Although it was possible to keep the temperature of the rolling bearings low 
throughout the study, the foil bearing, which operated in close proximity to the rotor disc of the microturbine 
supplied with hot air, was exposed to high temperatures. The dynamic properties of the rotating system were also 
significantly affected by the temperature increase of the shaft end on which the microturbine rotor disc was 
mounted. An increase in temperature causes a change in material properties, including a decrease in Young's 
modulus, among others. A thorough analysis of the effect of temperature on the dynamic characteristics of the 
tested microturbine would require a more extensive study in which additional measurement points would have to 
be taken into account. 
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Figure 9: Vibration velocity (Vrms) measured on the microturbine casing close to the DE bearing versus 
rotational speed (X – horizontal direction, Y – vertical direction). 

Figure 10: Vibration velocity (Vrms) measured on the microturbine casing close to the NDE bearing versus 
rotational speed (X – horizontal direction, Y – vertical direction). 

4   Conclusions 
This paper discusses an experimental study of a prototype gas microturbine with a nominal power of 30 kW, 

designed to operate in a cogeneration system. The research focused on vibration measurements and the 
evaluation of the dynamic properties of the machine. Based on the tests performed, the following conclusions 
can be drawn: 
 The results of preliminary research conducted on the microturbine with two bearings showed that to reduce

the vibration level of the rotor in the area around resonant speeds, it was necessary to use an additional
bearing supporting the overhung end of the shaft. Due to the difficult operating conditions, a gas foil bearing
was used.

 Tests carried out on the gas microturbine with a modified bearing system at speeds up to 32,000 rpm have
confirmed that, with the exception of selected speed ranges associated with resonant speeds, the vibration
level of the machine was acceptable during operation. According to the ISO 10816:1 standard, it is
recommended that the vibration level (Vrms) for the long-term operation of such machines should not exceed
2.8 mm/s. During the tests, this condition was met in almost the entire speed range.

 The study carried out on the microturbine supplied with hot air showed that under such operating conditions,
at certain speeds, the vibration level was very high, reaching 18 mm/s. Such high vibrations were related to
the occurrence of a resonant speed of the rotor. Except for the resonant speeds, the vibration levels measured
on the microturbine casing were much lower and acceptable. The tests carried out showed that it was
necessary to improve the rotating system of the microturbine, paying particular attention to the balancing of
the shaft operating in the resonant speed range. At this stage of the research, due to the high vibration level
observed above a speed of 50,000 rpm, it was not yet possible to achieve a nominal speed of 100,000 rpm.

All in all, it can be concluded that the study carried out provided very valuable information on the actual
dynamic properties of the new microturbine. Based on these results, further research and development work will 
be carried out to prepare the developed microturbine for long-term operation at higher speeds. 

Paper-ID 26 98



9 Paper ID-26 

Acknowledgement 
This research was supported by the National Centre for Research and Development in Poland [the research 

grant No. POIR.04.01.04-00-0014/17 entitled “A versatile gas turbine micro CHP system”]. 

References 
[1] AL-Shudeifat, M.A., Friswell, M., Shiryayev, O., Nataraj, C. (2020): On post-resonance backward whirl

in an overhung rotor with snubbing contact. Nonlinear Dynamics, 101, pp. 741–754.
[2] Arroyo, A., McLorn, M., Fabian, M., White, M., Sayma, A. I. (2016): Rotor-dynamics of different shaft

configurations for a 6 kW micro gas turbine for concentrated solar power. Proceedings of the ASME

Turbo Expo 2016, June 13–17, Seoul, South Korea, GT2016-56479.
[3] Badami, M., Ferrero, M., Portoraro, A. (2012): Experimental tests of a small-scale microturbine with a

liquid desiccant cooling system. International Journal of Energy Research, 37(9), pp. 1069–1078.
[4] Barbarelli, S., Berardi, E., Amelio, M., Scornaienchi, N.M. (2019): An externally fired micro combined-

cycle, with largely adjustable steam turbine, in a CHP system, Procedia Manufacturing, 42, pp. 532–537.
[5] Cagnano, A., De Tuglie, E. (2018): On-line identification of simplified dynamic models: Simulations

andexperimental tests on the Capstone C30 microturbine. Electric Power Systems Research, 157, pp.
145–156.

[6] Cakmak, O., Sanliturk, K.Y. (2011): A dynamic model of an overhung rotor with ball bearings. Proc.
ImechE Part K: J. Multi-body Dynamics, 225, pp. 310–321.

[7] Feng, S., Geng, H., Yu, L. (2015): Rotordynamics analysis of a quill-shaft coupling-rotor-bearing system.
Proceedings of the Institution of Mechanical Engineers. Part C: Journal of Mechanical Engineering

Science, 229(8), pp. 1385–1398.
[8] Hidalgo, J., Dhingra, A. (2006): High-speed balancing of rotors with overhangs: when is overhang likely

to cause problems? Journal of Testing and Evaluation, 34(3), pp. 218–223.
[9] Hong, D.-K., Joo, D.-S., Woo, B.-C., Koo, D.-H., Ahn, C.-W. (2014): Unbalance response analysis and

experimental validation of an ultra high speed motor-generator for microturbine generators considering
balancing. Sensors, 14, pp. 16117–16127.

[10] Kaczmarczyk, T.Z., Żywica, G., Ihnatowicz, E. (2016): Vibroacoustic diagnostics of a radial
microturbine and a scroll expander operating in the organic Rankine cycle installation. Journal of

Vibroengineering, 18(6), pp. 4130-4147.
[11] Kicinski, J., Zywica, G. (2012): The numerical analysis of the steam microturbine rotor supported on foil

bearings. Advances in Vibration Engineering, 11(2), pp. 113-119.
[12] Marin, M.A. (2010): Practical uses of advanced rotor dynamic tools to ensure trouble free operation of an

overhung turbo-expander rotor. Proceedings of ASME Turbo Expo 2010, June 14-18, Glasgow, UK,
GT2010-22147.

[13] Marin, M.A. (2012): Rotor dynamics of overhung rotors: hysteretic dynamic behavior. Proceedings of

ASME Turbo Expo 2012, June 11-15, Copenhagen, Denmark, GT2012-68285.
[14] Moradi Tiaki, M., Hosseini, S.A.A., Zamanian, M. (2016): Nonlinear forced vibrations analysis of

overhung rotors with unbalanced disk. Arch Appl Mech, 86, pp. 797–817.
[15] Przybylowicz, P.M., Kurnik, W. (2020): Stability and Bifurcation Analysis of an Overhung Rotor with

Electromagnetic Actuators. Journal of Theoretical and Applied Mechanics, 58(2), pp. 525–539.
[16] Salamone, D.J., Gunter, E.J. (1980): Synchronous unbalance response of an overhung rotor with disk

skew. Journal of Engineering for Gas Turbines and Power, 102, pp. 749–755.
[17] Shende, R.W. (1997): Synchronous steady state response of an overhung rotor with squeeze film

damping. Mechanism and Machine Theory, 12, pp. 281–291.
[18] Traverso, A., Massardo, A.F., Scarpellini, R. (2006): Externally Fired micro-Gas Turbine: Modelling and

experimental performance. Applied Thermal Engineering, 26, pp. 1935–1941.
[19] Wlodarski, W. (2018): Experimental investigations and simulations of the microturbine unit with

permanent magnet generator. Energy, 158, pp. 59–71.
[20] Xu, Z., Lu, Y., Wang B. et al. (2019): Experimental evaluation of 100 kW grade micro humid air turbine

cycles converted from a microturbine, Energy, 175, pp. 687–693.
[21] Zhang, B., Qi, S., Feng, S. et al. (2018): An experimental investigation of a microturbine simulated rotor

supported on multileaf gas foil bearings with backing bump foils. Proc IMechE Part J: J Engineering

Tribology, 223(9), pp. 1169–1180.
[22] Zilli, A., Williams, R.J., Ewins, D.J. (2015): Nonlinear dynamics of a simplified model of an overhung

rotor subjected to intermittent annular rubs. J. Eng. Gas Turbines Power.,137(6), 065001.
[23] Żywica, G., Kaczmarczyk, T.Z. (2019): Experimental evaluation of the dynamic properties of an energy

microturbine with defects in the rotating system. Maintenance and Reliability, 21(4), pp. 670–678.

Paper-ID 26 99



10 Paper ID-26 

[24] Żywica, G., Kaczmarczyk, T.Z., Breńkacz, Ł., et al. (2020): Investigation of dynamic properties of the
microturbine with a maximum rotational speed of 120 krpm –predictions and experimental tests. Journal

of Vibroengineering, 22(2), pp. 298–312
[25] Żywica, G., Zych, P., Bogulicz, M. (2021): Dynamic characteristics of a high-speed supercritical rotor

with a significant overhang. Proceedings of SIRM 2021 Conference, February 17–19, Gdańsk, Poland,
Paper ID-15.

Paper-ID 26 100



SIRM 2023 – 15th International Conference on Dynamics of Rotating Machines,
Darmstadt, Germany, 22nd – 24th February 2023

Semi-Active Foundation Stiffness Control for Rotor Resonance Avoidance

Sampo S. Laine 1, Sampo A. Haikonen 2, Raine A. Viitala 3

1,2 ,3 Department of mechanical engineering, Aalto University, 02150, Espoo, Finland, sampo.laine@aalto.fi

Abstract
The operating speed range of large rotating systems is often limited by vibrations caused by subcritical resonances.
In this paper, a semi-active control method based on control of the foundation stiffness is presented. Modification
in the foundation stiffness of the rotor system results in a corresponding change in the natural frequencies. This
principle is used in the developed method to choose an optimal foundation stiffness for each rotating speed of
the rotor system. The presented method is validated with a rotor model based on experimental dimensions. The
vibration response of the model employing the foundation stiffness optimization is evaluated in the subcritical
speed region. With the optimal foundation stiffness, the subcritical resonances caused by multiple rotor bending
modes can be avoided in a given speed range. The extent of the resonance-free range depends on the control
range of the foundation stiffness. In the light of the presented results, the proposed semi-active foundation stiffness
control can be applied to reduce the total vibration levels in rotating systems. The presented method can be applied
in any rotating system where it is possible to modify the foundation stiffness during operation.

1 Introduction
Mitigating vibrations is important for the operation of large flexible rotors. In industries such as paper and steel

production, large rolls are used to work the material. Excess vibration of these rolls can cause quality problems in
the end-product. In worst cases, the vibration may even lead to unscheduled maintenance or component failure.
Subcritical vibrations are always present in rotating systems which operate at speeds lower than the critical speed.
Subcritical resonances occur when the operating speed coincides with an integer fraction of a natural frequency.
Avoiding the subcritical resonances is important for reducing vibrations in rotating machines [5]. Roller element
bearings are also known for causing vibrations in frequencies which are not harmonics of the operating speed, i.e.,
integer multiples of the rotating speed [9]. These vibrations originating from the bearing frequencies have however
been left out of the scope of this study for a simplified interpretation of the results.

Vibration suppression of rotating systems is often done using various forms of active, passive, or semi-active
dampers. Passive dampers rely on the dissipation of the vibration energy through a physical process, such as
fluid friction or eddy current loss. Active dampers use external energy to counteract vibrations through various
actuators, such as active magnetic bearings [8, 1] or magnetorheological fluid controlled by electromagnets [18].
Semi-active dampers usually have one adjustable characteristic which can be used to alter the vibration response
indirectly, increasing or decreasing the system damping based on the predominant conditions. As the damping of
the system is increased through passive or active means, the overall vibration levels can be decreased [3].

In almost all rotating machinery, at least the resonance conditions due to critical speeds are avoided through
operating region selection. Such an operating speed range is defined, where major excitations do not cross the
natural frequency of the rotor. In supercritical applications, the critical speed is crossed with rapid acceleration
to limit the vibrations to a short time. In advanced applications and larger rotor systems, also the subcritical
resonances can be avoided [12]. Estimating the critical speeds and unbalance response is a basic component of
rotor dynamic analyses.

Circumventing the resonance speeds is called resonance avoidance. This is an alternate mean to mitigate
vibrations, which does not rely on modifying the damping properties of the system. Resonance avoidance can be
achieved through operating speed limitations or altering the natural frequencies of the system based on predominant
excitations. The goal is simply to minimize the operating time of the rotating system in resonant conditions.
The duration of resonance can be minimized by adjusting or switching the stiffness properties of the system, or
increasing acceleration rate during crossing over the resonance speeds [19].
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The asymmetry of the foundation stiffness in vertical and horizontal directions is known to cause separation of
the first bending modes [7]. It is common for large rotating machinery to have two separate first bending modes,
one in both principal directions. The principal directions are typically denoted as vertical and horizontal. The
extent of the separation depends on the asymmetry of the supporting structure. For this reason, it is important to
separately model the vertical and horizontal properties of the rotor foundations i.e., the stiffness and damping of
the bearings and their supports.

Foundation stiffness is a parameter which is challenging to estimate in the design phase of rotor systems. If the
estimated design value for foundation stiffness varies from the actual stiffness, erroneous results can be expected
from rotordynamic analyses [7]. Experimental frequency response identification can be used to determine the
influence of foundation stiffness on rotor systems [2]. Moreover, adaptive foundation stiffness can be used to alter
natural frequencies of rotor systems, enabling the avoidance of resonant conditions. These problems have called
for rotor system designs with adjustable foundation stiffness. The operating principle of a device which can be
used to adjust the foundation stiffness to the extent that is described in this paper is based on stiffness provided by
an external adjustible-length beam. The referenced device is presented in detail in an earlier study [13].

Variable stiffness can be used in semi-active vibration isolators to produce zero stiffness [16, 15, 14]. Vibration
isolators are used in a wide range of applications, such as car suspension [17]. Adjustable stiffness can be achieved
using continuous or switching devices. Devices to modify foundation stiffness have been developed for seismic
protection [10]. Methods used in foundation stiffness modeling were recently compared by [6].

The methods available in the present literature mostly focus on vibration control strategies relying on vibration
dampers or narrow-band control of stiffness. Multiple methods have been presented to actively alter the foundation
stiffness, but methods for choosing an optimal foundation stiffness seem to be missing.

In this paper, a method based on semi-active control is presented. The resonant conditions are avoided by
altering the dynamic properties of the rotor system, namely, the horizontal foundation stiffness. In this method,
the natural frequencies of the system are chosen for the operating speed, instead of choosing the operating speed
for natural frequencies. The presented strategy does not significantly alter the damping of the system, but the
natural frequencies of the machine are actively modified to avoid subcritical resonances. The developed method is
validated with calculated responses of a rotordynamic model. The dimensions and foundation stiffness parameters
of the rotor are based on a physical rotor and foundation stiffness adjustment device persented in an earlier study
[13].

2 Methods
As this paper deals only with the horizontal dynamics of the rotor, in rest of the paper, the horizontal foundation

stiffness is referred to as the foundation stiffness, and the horizontal modes and natural frequencies are referred to
as the modes and natural frequencies of the rotor. The abbreviations 1x, 2x, .. refer to the excitation frequencies
which are integer multiples of the fundamental frequency. The rotor and foundation model used in the analysis is
presented in the following section. After that, the optimization procedure developed for the semi-active vibration
control is presented.

2.1 Rotor model
A rotor model consisting of 22 Timoshenko beam elements with 8 degrees-of-freedom was created to analyze

the foundation stiffness effects. The model was developed on a modified version of an open-source rotor dynamic
library [11]. The dimensions of the applied model are based on those of an actual paper machine roll used in
laboratory tests. The main dimensions of the roll are presented in Figure 1. The rotor itself is symmetric, but
the foundation stiffness is asymmetric in horizontal and vertical directions. The support stiffness is modeled as
additional spring elements at the bearing locations, which are nodes 1 and 21 in the model. Due to the support
asymmetry, the vertical and horizontal bending modes of the system separate. Point masses located at the same
nodes as the bearings are used to model the inertia of the supports.

The foundations are modeled as equivalent stiffness and damping at the bearing locations. The equivalent
stiffness and damping values for the horizontal and vertical foundations are identical in both ends of the rotor. The
equivalent support stiffness of the model consists of two components, the stiffness of the roller-element bearings
and the stiffness of the supporting structure. These two stiffness components are modeled as two linear springs in
series. The stiffness of the foundations is based on previous experimental results [13].

Modifying the foundation stiffness is observed as a shift in the horizontal natural frequency. The relationship
between the foundation stiffness and frequencies of the two lowest bending modes of the model is presented in
Figure 2. In the model, the first natural frequency can be controlled in a range of 9.29 Hz to 20.69 Hz. The
second natural frequency is simultaneously shifted in the range of 12.32 Hz to 31.02 Hz. These shifts in the natural
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Figure 1: Dimensions and elements of the rotor model consisting of 22 Timoshenko beam elements. The nodes
umbered from 0 to 22 mark the edges of the beam elements. The equivalent stiffness, damping and weight of the
supporting structures are added to nodes 1 and 21, positioned at 60 mm from the ends of the rotor. All dimensions
are in mm.

frequencies are achieved by altering the foundation stiffness values at the bearing locations from 2.04 MN/m to
18.3 MN/m. This natural frequency range produced by the model is similar to previous experimental results [13].
The natural frequencies are calculated from the eigenvalues of the system matrix of the model. The corresponding
vertical natural frequencies remain constant at 21.76 Hz and 33.38 Hz.
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Figure 2: Effect of the foundation stiffness adjustment on the first two damped horizontal natural frequencies (NF)

The material properties used in the model are presented in Table 1. Comparison to previous experimental
results shows a good agreement between the modeled and the measured natural frequencies of the system [4]. For
the present analysis the accuracy of the model is sufficient, but for a more detailed analysis impulse responses
should be used to further tune the stiffness and damping properties of the model.

Table 1: Material parameters used in the rotor model

Parameter ρ [kg/m3] E [GPa] ν [-]
Value 7764 209 0.3

In order to estimate the vibration response, an excitation force at integer multiples of the rotor rotation fre-
quency is designed. The harmonics of the excitation force can be thought to originate from, for example, unbalance
(1x), bending stiffness variation (2x), or bearing excitations (2x, 3x, 4x,...). The response is calculated for each
harmonic component, and summed to get the total response. Amplitude of the excitation force at fundamental
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frequency is based on an unbalance mass of 250 grams at 10 cm distance from the axis of rotation at node 15 the
roll model. The amplitudes of the subsequent harmonics are fractions of this amplitude. The input node is pur-
posely chosen to be offset from the center in order to excite bending modes which have a node in the middle of the
rotor. The complex valued excitation force comprising of the unbalance force and the three subsequent harmonics
defined proportionally to it are defined as follows

F (t) =
4∑

k=1

(Fk sin kωt+ jFk cos kωt), (1)

F1 = Aejϕ1 , Fk =
A

k
ejϕ1 , A = mεω2 (2)

where F is the unbalance force, A is the amplitude of the unbalance vibrations, m is the unbalance mass, ε is the
distance of the unbalance mass from the centre-point of the rotor, ϕ is the phase of the unbalance mass, and ω is
the rotating angular frequency. The unbalance force acts on the horizontal and vertical axes at an 90 degree phase
shift. Thus the forcing vector acting on the ith node where the unbalance is located at is

Fi =
[
Fi − jFi 0 0

]T
. (3)

This is a simple way to implement the forcing vector for the purposes of this study. In real rotor systems, the
higher order harmonic forces acting on the rotor are not due to the unbalance, but various complex phenomena
such as bending stiffness variation, bearing forces, gear meshing error and modal unbalances. Nevertheless this
approximation provides a sufficient means of analyzing the effects of the vibrations occurring at integer multiples
of the rotating frequency without needless increase of the modeling complexity.

The vibration response of the system is calculated by solving the global system of equations

Mq̈ + (C + ωG)q̇ +Kq = F (4)

where M, C, G, and K are the global mass, damping, gyroscopic and stiffness matrices of the rotor system,
respectively. q is the vector of the free variables. The harmonic solution to this system of equations is calculated
using the well-known receptance matrix approach [5]. The response is calculated separately at each rotating speed
for each harmonic component of the excitation force, and the total response at each rotating speed is the sum of
the individual responses.

It should be noted, that the amplitudes of the vibration response may greatly vary from ones that would be
experimentally measured due to the presented modeling assumptions. The modeling choices are justified, because
the absolute vibration amplitudes are not relevant for this paper, as the results are interpreted by the relative change
of vibration amplitudes.

2.2 Optimization procedure
The operating principle of the optimization is to cross the subcritical resonance frequencies at the lowest

possible operating speeds. The foundation stiffness is thus kept at minimum value until the operating region is
reached. In this controllable region, an optimal foundation stiffness value is calculated for each rotating speed. The
distance from the 2x excitation to the two lowest natural frequencies should be equal to maximize the separation
margin to the resonance. A boundary term is added if the natural frequency equals the 2x excitation or crosses it.
A visual reference to the optimization procedure is shown in Figure 3.

The optimization problem can be defined at one rotating speed as follows

min
k

|fex(ω)− λ1(k, ω)| − |fex(ω)− λ2(k, ω)|

s.t. fex(ω)− λ1(k, ω) > 0,

fex(ω)− λ2(k, ω) < 0,

kmin ≤ k ≤ kmax

(5)
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Figure 3 : An optimal foundation stiffness is chosen for each rotating speed to prevent subcritical resonances in the
operating speed region. Variables d1 and d2 denote the distance from the natural frequency to the 2x excitation. In
the proposed method, the optimal foundation stiffness is achieved when the two distances are equal.

where λ1 and λ2 are the first and second damped natural frequencies of the rotor system, k is the foundation
stiffness at each bearing, f ex is the 2x excitation frequency and ωis the rotating speed. The optimization procedure
is repeated for each rotating speed in the optimization range. The values used in the following analyzes for the
foundation stiffness represent those of a device presented in an earlier study [13].

3 Results and discussion
Dynamic response calculations are performed to analyze the developed method. The excitation force defined

in Equation 1 is applied to the rotor model presented in Section 2. The excitation force is applied to node 15 of the
model which contains 23 nodes. The calculated vibration response is the acceleration at the tending end bearing
location e.g., node 1.

The vibration response is calculated at rotation speeds 50-1000 rpm. This corresponds to the actual operating
speed range for which the modeled rotor is designed for. Two different test cases were calculated. In the first
case, the foundation stiffness is fixed to the maximum value of the adjustment range. This case corresponds to a
rotor in normal operation, without any stiffness adjustment. It is customary in the industry to maximize foundation
stiffness to avoid vibrations. If a significantly lower foundation stiffness was chosen, the rotor would reach critical
speed.

In the second test case, the stiffness is kept at the minimum value, until the first natural frequency crosses the
2x rotating speed frequency. An optimal foundation stiffness is chosen at each rotating speed as described by the
optimization problem defined in Equation 5 and applied to the model. The optimal foundation stiffness curve is
displayed in Figure 4. A visual explanation of the control method is presented in Figure 3.

Figure 5 displays the calculated acceleration response in the two aforementioned cases. The crossing of the
six subcritical resonance speeds due to the 2-4x excitation frequencies are visible in both experiments. In the
constant stiffness case, the crossing of the resonance speeds occur at higher frequencies, and their amplitudes are
consequently higher when compared to those in the optimized stiffness case. When the optimized lower stiffness
is applied, the resonances shift to lower rotating speeds, causing their relative amplitude to drop. In the higher
rotating speed range, the required optimal stiffness is out of the control range, thus causing the response to be
equal in both of the cases.

In addition to the six subcritical resonances, vertical resonance speeds are observed as peaks in the calculated
responses. These peaks are visible at approximately 500 rpm, 670 rpm and 865 rpm, which correspond to the
subcritical resonances of the two first vertical bending modes. The reason for the visibility of the vertical modes in
the horizontal response is unknown. Furthermore, a resonance is present in the results at approximately 845 rpm.
The resonance peak corresponds to the intersection of the 4x excitation and the 3rd horizontal natural frequency
of the rotor system which lies at 56.25 Hz when the maximum stiffness is reached. These resonances are excluded

yxDI-repaP5105 Paper-ID 14 

d1

d2



0 200 400 600 800 1000

Rotating speed [rpm]

0

2

4

6

8

10

12

14

16

18

20

Fo
un

da
tio

n
st

iff
ne

ss
[M

N
/m

]

Figure 4: Optimal stiffness is calculated for each rotating speed and applied to the model.
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Figure 5: Calculated total horizontal vibration response at one of the bearing nodes of the rotor model. The
maximum stiffness is reached at 776 rpm, after which the responses are equal. Applying the optimal stiffness
significantly decreases the vibration response of the rotor in the mid-speed region. The response is consequently
increased in lower rotating speeds due to the decreased stiffness.

from the Campbell diagram in Figure 3, as this paper focuses on the two lowest natural frequencies.
Due to the modeling limitations, the absolute amplitude of the calculated response would likely differ from

experimental measurements. This does not however greatly limit the interpretation of these results, as the presented
method aims to lower the relative vibration response of subcritical resonances in selected operating speed ranges.

4 Conclusion
Foundation stiffness can greatly influence the natural frequencies of a rotor system. Consequently, the subcrit-

ical resonance speeds are altered by the foundation stiffness. If the foundation stiffness of the rotor system can be
controlled, a semi-active control based on an optimization procedure can be used to create a resonance free oper-
ating speed region. The subcritical resonances can never be entirely avoided, but shifting them to lower rotating
speeds can significantly reduce the total vibrations in higher rotating speeds. The proposed method is especially
useful in applications, where the varying rotating speed causes multiple crosses of the subcritical speeds. More-
over, the method could be extended to control in supercritical applications. In future research the method will be
applied to actual rotor system and the results will be experimentally verified.
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[17] I. Youn and A. Hać, “Semi-active suspensions with adaptive capability,” Journal of Sound and Vibration,
vol. 180, no. 3, pp. 475–492, 1995, ISSN: 0022-460X. DOI: https://doi.org/10.1006/jsvi.
1995.0091.

[18] J. Yu, X. Dong, X. Su, and S. Qi, “Development and characterization of a novel rotary magnetorheological
fluid damper with variable damping and stiffness,” Mechanical Systems and Signal Processing, vol. 165,
p. 108 320, 2022, ISSN: 0888-3270. DOI: https://doi.org/10.1016/j.ymssp.2021.108320.
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Abstract
The reduction of noise or more general vibration amplitudes as one major issue in large structures can be

achieved with different methods. Preferable passive systems are used due to the reduced costs and easy application.
Besides conventional concepts like viscous dampers or tuned mass dampers, particle dampers offer a broadband
damping behaviour combined with a small increase of the overall mass of the system. The working principle of
particle dampers is based on energy dissipation induced by frictional contacts between the particles themselves as
well as particle and the surrounding structure. Several parameters influence the damping characteristic and thus
allow for an optimization of the system. In the case of granular materials at least the filling ratio, the particle
size and the particle shape define the frequency range, in which the damper works effective, and the amount of
dissipated energy. As the usage in rotating systems superimpose centrifugal forces on the particle dampers the
setup and chosen parameters for the usage in blades of a wind turbine or similar systems is quite different to non
rotating applications. Due to the centrifugal force the positioning of the granular materials in a damper cavity is
affected and the resulting contact behaviour varies. In this contribution the influence of the centrifugal force on the
damping behaviour of a granular particle damper in a blade structure is investigated. The vibration is measured
with a laser scanning vibrometer and a derotator, which is a special device to measure vibrations on rotating objects.
This method can be used to determine the vibration modes of the rotating blades in a body-fixed reference frame.

1 Introduction
Control of noise and structural vibration is a crucial step in the development process of any mechanical system

that is subjected to dynamic loads. Principally, two different damping mechanisms are used - [1] [2]. Vibration
can be a reason for excessive stresses and strains in the machine component, which can lead to fatigue failure. For
instance, several catastrophic failures can occur if the rotating velocity of a rotating machine component reaches
a system resonance frequency. Therefore, it is necessary to pay detailed attention to reducing the vibration and
sound emissions of a mechanical structure in the conceptual design phase. The determination of the damping can
be done with different methods: active vibration control (AVC) and passive vibration control (PVC). However,
the application of the PVC technique is preferable in comparison to the AVC technique because of its conceptual
simplicity, cost-effectiveness, low maintenance, and robustness in nature. Furthermore, the implementation of PVC
requires no external power supply to operate as it is in AVC, which makes PVC technology more favorable for
real-world applications. There are several methods for passive damping, like viscoelastic damper, viscous damper,
friction damper, and tuned mass damper. Nevertheless, the performance of these damping methods is extremely
sensitive to temperature, pressure, material selection, and other factors. For instance, the tuned mass damper is
designed to reduce the vibration amplitude of the specific vibration mode of a structure. On the other hand, the
performance of viscoelastic dampers can degrade at very low or high temperatures. To overcome the drawbacks
of the conventional PVC techniques particle damping technology can be used for vibration attenuation. Particle
dampers utilize the damping properties of granular materials to reduce or suppress the vibration amplitude of a
structure. Generally, a container is partially filled with granular materials and is attached to a vibrating structure
whose vibration amplitude needs to be reduced. The vibrational energy of the primary structure is transferred to
the granular materials through the container walls due to which inelastic collision between the particles and the
cavity walls takes place. This phenomenon leads to friction-based energy dissipation. A schematic illustration
of energy dissipation in a particle damper can be seen in Figure 1. The simple, inexpensive and robust design
of a particle damper along with its broadband damping efficiency makes this technique more attractive for real-
world applications. Moreover, depending on the granular materials the particle damper can be reused. In the
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current contribution, the waste of automotive tires is used to design the particle damper. In our previous works, the
particle damping technique has been successfully used to reduce the vibration amplitude of an automotive engine
oil pan [3, 4] and wind turbine components [5, 6].

In the current contribution, the focus is on analyzing the performance of particle dampers exposed to centrifugal
loads. For this purpose, a scaled wind turbine blade structure has been chosen. Although for the experimental
study the wind turbine blade structure is used, the obtained results can be used in any kind of rotating machine
components.

Particles

μ

Box

Wall
μ

μ

Figure 1: Schematic representation of the particle damper mechanisms [7].

2 Particle damper
Sandanshiv et al. [8] have studied the performance of particle damper on a rotating wind turbine blade model.

For their experimental investigation, they used three blades of 1525 mm in length. For particle damper design
they have used steel balls of 9 mm diameter which are enclosed in a polypropylene container. The authors have
investigated three different positions of the particle dampers on the blade, namely 300 mm, 600 mm, 900 mm,
and 1200 mm from the tip of the wind turbine blade. Furthermore, they have also studied the influence of particle
damper efficiency on three different rotational speeds 60 rpm, 70 rpm, and 80 rpm. The experimental investigation
has shown that the rotational speed of 60 rpm and particle damper position at 1200 mm from the wind turbine tip
is optimal for damping the primary structure. This corresponds to a centrifugal acceleration of 84 m/s2. For real
blades of a wind turbine the centrifugal acceleration can reach up to 170 m/s2 in the mid position of the blade
(96 m length, rot. speed 0.3 Hz).

ablade = Rcav ∙ Ω2 = 96 m/2 ∙ (0.3 Hz ∙ 2π)2 = 170 m/s2 (1)

However, the use of metallic particles to design a particle damper for wind turbine blades can be difficult because
of the lightning strike concern [6]. Furthermore, the additional mass of the granular material is a major concern
while implementing the particle damping technique to wind turbine blades. Therefore, it is necessary to use
lightweight granular materials, like rubber granulate, to design a particle damper [6]. Els [9] has studied the
effect of centrifugal force on the efficiency of particle damper. For his experimental investigation, he used a
rotating cantilever beam with a particle damper attached to its tip. His study shows that the centrifugal load can
influence the damping efficiency of a particle damper of steel balls of three different diameters. Michon et al. [10]
have studied particle damper efficiency for space applications. They have used soft hollow particles instead of
classical hard particles to maintain the additional mass of the granular materials low. It should be noted that in
their experimental investigation the honeycomb cantilever beam, which is partially filled with hollow particles
shows no damping for the first vibration mode. The application of particle damper in reducing the vibration
and noise of a bank note machine can be seen in the work of Xu et al. [11]. They have embedded the tungsten
particles of 0.5 mm diameter in the cam-shaft and folk-shaft of the banknote processing machine. According
to their experimental investigation, it has been found that the particle damper is highly effective in the frequency
range of 4000-6000 Hz and can reduce the vibration amplitude of the primary structure up to 40 dB. However,
for the frequency range of 0-2000 Hz, the tungsten particles show moderate damping capabilities. Furthermore,
6 dB(A) of noise reduction has been also achieved. Hollkamp et al. [12] attempt to study the influence of five
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different materials on vibration attenuation. The experimental investigation shows that the damping efficiency of
stainless steel, titanium, and tungsten are similar to each other. However, the damping performance of aluminum
was poor. Furthermore, the authors have examined the effect of particle size on damping. For this purpose, they
used glass beads of three different sizes. The studies show that the vibration attenuation increases as the particle
size increases. Xiao et al. [13] shows that the stainless steel balls of radius 3 mm as particle damper embedded in
the gear cavity reduces the vibration and sound emission of the gear system under centrifugal load. They found
that the optimal packing ratio of the particles depends on the centrifugal load, i.e. on the angular velocity of the
gear. Veeramuthuvel et al. [14] have successfully applied particle-damping techniques in the spacecraft industry.
They have attached a capsule-shaped particle damper on a printed circuit board, which experiences an enormous
amount of vibration during launch time. Authors have studied the influence of tungsten carbide, stainless steel,
and aluminium alloy on the vibration attenuation of the printed circuit board. In their investigation, it has been
observed that materials with higher densities are more efficient for vibration attenuation. Authors have found the
packing ratio of 60% effective for vibration suppression for all the materials they have investigated. Furthermore,
they have observed that irrespective of granular materials, the packing ratio of 100% is not effective for reducing
the vibration amplitude. A very similar effect has been also observed in our previous work [4]. Another application
of particle dampers in the aerospace industry can be seen in the work of Simonian [15]. He has experimentally
investigated the effectiveness of particle dampers to reduce the vibration amplitude from spacecraft cantilever
beam-type appendages. For this purpose, he has attached a small cavity box containing 30 g of lead shot to the
main structure at the position with the highest deflection during flight. The study has shown a significant reduction
in the vibration amplitude of the primary structure under random vibration. He has concluded that in comparison to
conventional damping materials like viscoelastic materials or viscous fluids, particle dampers are more suitable for
spacecraft applications due to their immense damping performance for higher vibration amplitude and also for their
insensitive nature towards extreme temperature. From the above discussion, it can be summarized that most of the
particle damper experimental investigation is done for the steady state or transient state [16]. Practical experiments
on the effect of particle dampers under centrifugal load are very limited [17]. Therefore, the interest of the current
work is to experimentally investigate the influence of particle dampers efficiency subjected to centrifugal load.

3 Dynamic behaviour of the blade structure

For this investigation, a replacement structure is used to measure a particle damper under rotating condition.
The propeller of the test rig is made of composite materials using long glass fibers with a Nylon matrix with a
diameter of 533 mm and a mass of 115 gram. To reach a similar centrifugal acceleration as in the real blade a
rotational speed of 368 rpm is necessary. The cavity is placed near the mid position at a radius of 11.5 cm.

aprop = Rcav ∙ Ω2 = 11.5 cm/2 ∙ (368 rpm ∙ 2π)2 = 170 m/s2. (2)

To measure the natural frequencies and the corresponding damping the propeller was directly excited by a shaker
Fig. (2). The transfer function was calculated from the reference point on the propeller hub to the surface of the
blades

Hi(ω) =
vi(ω)

vref (ω)
. (3)

This is useful to have the same reference later in the rotating system. Typically, the transfer function is formed
between vibration and applied force, but this is very challenging when measuring in the rotating system.
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Figure 2: Propeller on an electrodynamic shaker for the non-rotating measurement

The test rig Fig. (2) was used to determine the transfer functions for the propeller with and without the particle
damper. The application of the damper on the propeller will be discussed in the next section. Fig. (3) shows the
potential of amplitude reduction using the particle damper with rubber granulate.
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Figure 3: Frequency response of the non-rotating measurement - only propeller (see Fig. (2))

The corresponding mode shapes of the first 4 eigenfrequencies are all symmetric (see Fig. (4)) due to the
excitation in the center position of the propeller.
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Figure 4: Mode shapes of the propeller (75 Hz, 168 Hz, 267 Hz, 519 Hz)

4 Application of the particle damper on the blade
In order to attach the particle damper to the rotor blade, a cavity was created which contains the particles and

connects them to the surface of the blade. The cavity is screwed against the blade surface with a screw to close the
cavity so that no particles escape due to centrifugal force - Fig. (5). To reduce the imbalance caused by the cavities
and the filling, the cavities are only used empty or filled in pairs. The filling is only 1 gram, but on the radius
of 11.5 cm the propeller would otherwise be very unbalanced. Rubber granulate with an average particle size of
1.7 mm has been chosen as a filling material. The rubber granulate used in this study is manufactured by recycling
automotive tires. In previous work, it has been shown that the rough and textured surfaces and high non-linear
behavior of rubber particles can show exceptional damping behavior in comparison to other conventional granular
materials, like steel balls, which are generally used to design a particle damper [7]. Moreover, The lightweight
property and because of lightning safety requirements, the application of rubber granulate to design a particle
damper for the rotor blade of a wind turbine is favorable.

Figure 5: Particle damper - cavity with rubber particles (left), cavities mounted on propeller (right)

5 Measurement of the damping behaviour in a rotating system
To measure the blade vibrations during rotation, a derotator unit is used with a laser scanning vibrometer -

Fig. (6). The derotator is an optical unit with a rotating prisma wich redirects the laser beam of the laser scanning
vibrometer and the second beam of the reference vibrometer on the object. The rotational speed of the prisma is
synchronised with the propeller speed through the use of an incremental encoder which is connected to the motor
on the back side. In order for the derotator to track the target, the axis of rotation must be aligned very precisely. An
offset leads to an eccentricity and a misalignment leads to a wobbling of the object. In both cases, the laser beam
would not keep the measuring point constant and measures the movement as an additional component. Fig. (7)
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Figure 6: Laser scanning vibrometer with derotator unit (left), view with laser scanning vibrometer on rotating

object (right)

shows the test rig during rotation. The inner laser beam points on the hub an measures the reference in order to get
a correct phase information of the blade vibration. The second laser beam measures several points on the surface
of the blade. The measurement process involves scanning all measurement points (visible in Fig. (6) (right)) on
the blade surface, using 5 complex averages per point to compensate for variations in the object due to imperfect
synchronisation.

Figure 7: Propeller with motor and shaker (left) , measurement during rotation (right)

Before the transfer function is determined from the measurement signals, the frequency up to which the exci-
tation takes place must be checked. The reference in this case is the vibration at the rotor hub. Fig. (8) shows the
vibration velocity of the reference vref (ω) and the mean velocity of the surface vmean(ω). Two different cases are
shown, with and without excitation with the shaker connected with the motor mount. Without shaker excitation the
vibration at the blade hub is not sufficient to excite all natural frequencies. The usage of the shaker with a pseudo
random signal generates a sufficient excitation up to 300 Hz, above this frequency the transfer function could not
be proper calculated because of the limited resolution of the AD converter in the scanning vibrometer.
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Figure 8: Reference (left) and mean vibration (right) velocity at 1000 rpm

Due to the lack of excitation above 300 Hz, all measured transfer functions are shown limited up to this
frequency. The response was measured for different rotational speeds between 120 rpm and 1000 rpm. The limit
speed to reach the same centrifugal acceleration as in a real wind turbine is 368 rpm so that the measured operating
points are below and above the practically relevant boundary condition. The first stage at 120 rpm (Fig. (9)) shows
hardly a difference between the vibration with and without granular filling. Due to 1 gram more mass at the blade,
there is a frequency shift downwards for the 268 Hz peak.
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Figure 9: Frequency response at 120 rpm

At the 180 rpm operating point, on the other hand, an amplitude reduction for the peak at approx. 80 Hz is
noticeable - Fig. (10).
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Figure 10: Frequency response at 180 rpm

For the operating points at higher speeds, there is no amplitude reduction noticeable. On the contrary, some
natural frequencies are damped more weakly. Such negative damping effects due to internal damping in rotating
structures are known from rotor dynamics. Both stages Fig. (11) and Fig. (12) show higher peaks with particle
damper at 270 Hz than without filling.
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Figure 11: Frequency response at 660 rpm
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Figure 12: Frequency response at 1080 rpm

6 Conclusion
The particle damper can reduce the vibration of blade structures. For the non-rotating condition the damper

influences all eigenfrequencies up to 1000 Hz. Under rotating condition the damping effect is reduced and not all
eigenfrequencies are effected. At high speeds, the damping of some natural frequencies is reduced by the particle
damper. This effect is well known as destabilization due to inner damping in rotating machines.

For further investigations the test rig should be improved, the cavity on the surface of the blade has an influence
on the air flow around the blade and distort the system behaviour. To measure the transfer function of the blade
while rotating a piezo actuator could be mounted on the blade if the blade would be larger. The current excitation
procedure through the motor mount is not sufficient for frequencies higher than 300 Hz, which are definitively of
interest.
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Abstract 
The work is continuation of the article [8], in which an education model of fluid induced instabilities in rotating 

machinery and its application for solving rotordynamic problems in the industry were shown. Parametric 
vibrations, due to periodic changes in the rotor support stiffness caused by rubs or looseness are often wrongly 
diagnosed as fluid induced instabilities, so the goal of this of article is to present the educational model of such 
phenomena that allows correct identification in the industry conditions.  

Terminology 
Self-excited Vibration: Vibration of a system caused by an internal feedback mechanism converting a supply 

of external energy (which may or may not be oscillatory) to oscillatory force. 
Forced Vibration: The vibration response of the system due to a periodic exciting force (forcing function). 

Typically, the response frequency is at the same frequency as the excitation frequency and due to system 
nonlinearities may include harmonics. 

Fluid Induced Instability: Self excited rotor vibration (lateral or axial) caused by interaction between the 
rotor and surrounding fluid. 

Parametric Subsynchronous Vibration: Forced subsynchronous response of the rotor due to periodic 
changes in system parameters (rotor or support stiffness).    

Stability (practical): A system is stable if a transient perturbation does not result in a system response with 
amplitudes exceeding an acceptable level. 

1   Introduction 
The mechanism by which a rotor is able to develop strong subsynchronous vibration due to a rub condition 

was identified by Ehrich in 1966 [1] and explained by Bently in 1974 [2]. The mathematical model was introduced 
by Childs [3] in 1982, followed by works of many researchers to improve numeric models of contact events and 
improve prediction of behavior due nonlinearities on rotor response, for example Ehrich 1988 [4] and 1991 [5], 
Gonsalves et al 1992 [6] or Goldman and Muszynska 1993 [7]. However, in daily industrial practice use of rigid 
mathematical models is often prohibitive due to time and other costs required to identify parameters for highly 
nonlinear behavior of the machine. At the same time, the experience shows cases of incorrect identification of the 
malfunction, as the first and often only conclusion for subsynchronous phenomena is fluid induced instability. 
When numeric modelling is not possible or not practical, use of simple physical models, describing the machine 
behavior in terms of forces, stiffness, and vibration to explain observed vibration signal characteristics, was found, 
by this author’s service organization, to be an effective alternative of tables of symptoms which by their nature are 
static and may be not detailed enough. A simple educational model is presented, based on [9] as it is used in 
training of the diagnostic engineers and in problem solving during industrial analyses. 

2   Educational model of parametric subsynchronous vibration 
A test rotor that consists of a shaft with two disks supported by sleeve bushings, installed on rubber O-rings in 

rigid supports is used to demonstrate phenomenon (fig. 1a). There is a rub screw, that in the sample experiment 
below was installed between second disk and bearing 2 (fig. 1b) in the same angular direction as X-probe (45 
right from top vertical, when looking from driver to driven).  
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Figure 1: a) Standard training rotor), b) rub screw detail. 

Demonstration of the rub conditions show effects of deformation of orbit (rotor centerline motion trajectory), 
generation of higher harmonics and other classic rub symptoms but in some speed ranges there is also visible 
subsynchronous activity with the fractional component following the speed change, for example ½ X (X denotes 
rotational frequency), in fig. 2.  Experiments of this type can show subharmonics1

2⁄ 𝑋, 1
3⁄ 𝑋, 1

4⁄ 𝑋… 1
𝑛⁄ 𝑋), for the 

speed regions slightly higher than n times any resonance speed. More difficult to present are excitations of simple 
integer ratios   2 3 ⁄ X, 3

4 ⁄ X..., 𝑚 𝑛 ⁄ X) generated for the speed regions directly above n times the resonance speed and 
for m locations of contact.  

Figure 2: Full spectrum cascade plots for startup with the rub (training rotor) showing generation of ½ X 
component.  

During the dwell time of contact in a partial rub condition, the normal impact force and tangential friction force 
are converting some kinetic energy of shaft rotation into shaft vibration. The vibration transferred by a single 
contact event will decay but if the next impulse occurs with proper timing, the next impulse will increase in 
amplitude. Bently [9] illustrates this by analogy of “a child on a swing”: push applied at correct timing increases 
the amplitude of free vibration, push with incorrect timing removes the energy from system and amplitude 
decreases. If, for rub events there is a system resonance at the fractional speed then this fractional component of 
the vibration provides necessary timing: the ½ X component generation means the shaft operates at two times 
resonance speed and the energy impulse is added once per two revolutions of the shaft, the 1

3 ⁄ X can be generated 
if it is 3 times resonance speed, and so on. The orbit plots (with keyphasor, one per turn reference marks) allow 
demonstration of the part of the rotation cycle in which the rub impulse happens, followed by a single cycle (in 
case of ½ X) or cycles (in case of higher denominator number) of free vibration. 

a) b) 

Brg 1 Brg 2 

Brg 1 Brg 2 
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Figure 3: Sample orbits during excitation of subsynchronous component. The arrow indicates location of rub 
(close to bearing 2). 

One of the recognized effects of the rub is modification of the system natural frequency: the contact creates 
additional support, increasing system stiffness and reducing modal mass. For a partial rub, the stiffness changes 
during the vibration cycle: it is increased during the dwell time and normal for the rest of the cycle, causing an 
increase of the average effective stiffness (fig. 4a). A helpful analogy is the modification of the natural frequency 
of a pendulum with restriction (fig. 4b). 

Figure 4: a) Nonlinear stiffness due partial rub events and b) nonlinear pendulum analogy. 

The rub condition changes during speed change, for instance as speed increases more energy is transferred during 
contact, increasing vibration amplitude and leading to higher normal forces and longer dwell time, both effects 
increasing the effective stiffness. Thus, for a partial rub condition, the generation of 1 𝑛⁄ X is possible for some speed 
range that is above n times the unmodified resonance speed and the subsynchronous activity will last for the range 
of the increased speed as long as the increase of stiffness sustains the resonance condition. In the case of machine 
operation with constant speed, the behavior can continue until the contact condition and subsequently the stiffness 
change, due to wear.  

Periodic change of the system stiffness is also possible due to another type of malfunction, looseness in the 
supporting structures. If due to high 1X vibration the rotor is moved away from the constraint then, for part of the 
vibration cycle, the stiffness is reduced (fig. 5). For the rotor operating in the speed region slightly below n times 
unmodified resonance speed, there is a timing condition allowing conversion of the portion of the rotational energy 
into vibration, with 1

𝑛⁄ X component and exciting the rotor resonance. The rub condition, in which the effective 
stiffness increases is referred to as normal-tight condition. The looseness is named normal-loose condition. The 
speed range, in which excitation is observed (below or above n times resonance speed) allows identification of the 
malfunction. The other differentiator between the two phenomena is due to the need of driving force: excitation of 
parametric vibration due to looseness requires a significant 1X (unbalance) component and for a partial rub, the 
energy is transferred both for normal and tangential components of the contact force, so subharmonic action can 
be generated independently of the balance condition i.e., with or without significant 1X content.  

Brg 1 Brg 2 

a) b) 
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Figure 5: Nonlinear stiffness due looseness condition. 

As a result of experiment and the descriptive model of the phenomena, the students are expected to acquire the 
following knowledge:  

• Both partial rub and looseness in the support can lead to development of exact subsynchronous component
(and possibly its harmonics) if the rotor operates in the specific speed range. The condition is a
coincidence of excitation with modified (periodically changing) stiffness of the system.

• The rub condition momentarily increases system stiffness leading to higher effective stiffness, so the rotor
resonance is excited by 1

𝑛⁄  X component, for the speed range above n times any resonance speed.
• Looseness in the support reduces system stiffness, causing lower effective stiffness and the rotor

resonance is excited by an 1
𝑛 ⁄ X component, for the speed range below n times any resonance speed.

It can be noted that the most common situation in industrial machines is excitation of ½X, as many rotors are 
operating with speeds twice exceeding their first mode resonance but much less than three or more times.  
Generating rub induced subsynchronous components on a test rotor is intentionally done with non-fluid film 
bearings to demonstrate that not all ½ X vibration is fluid induced as is assumed by many in the industry. 
On two separate cases, the author was able to use such a demonstration to change the decision of a machine owner, 
from pursuing bearing replacement with a more expensive but technically correct option of internal alignment of 
turbine casing: the striking resemblance of visual patterns of orbits for the test rotor and real machine was evident 
even for non-experts.  
Data from real machines may look differently than on the test rotor. Both rub and looseness are nonlinear and 
produce variety of patterns. The analysts are expected to utilize all standard formats (vibration presented in time 
and frequency domain, position), across the range of conditions to match them to provided models of behavior. 
Sample analyses are provided below. 

3   Normal-tight condition in steam turbine – generator train 

The case was mentioned in the first part of this article [8] as example of typical “impostor” for the fluid induced 
instability. Following the replacement of generator bearing in the 30MW steam turbine-generator train, the repair 
company asked for analysis of the data because of unstable operation of the new bearing.    
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Figure 5: Re-excitation of rotor resonance by ½X component resulting from lubricated rub: a) full spectrum 
cascade plot, b) shaft centerline position in the clearance with overlaid orbits for stable and unstable conditions; 
orbit and timebase for c) speed below, d) speed at and e) speed above instable speed range. Dashed lines showing 
estimated location of contact.   

Forward subsynchronous component close to ½X appears in vibration when the speed exceeds 2700 rpm but ceases 
for speed higher than 2800 rpm (fig. 5a and 5c-e). For fluid induced instabilities, educational model in [8], the 
spontaneous stabilization on speed increase would not be expected, this suggests parametric vibration. The orbit 
timebase plots (fig. 5d) show precise timing of two separate cycles of vibration: the stationary position of 
keyphasor dots indicates the presence of an exact ½ X component, the energy is delivered at the same part of the 
cycle in one rotation of the shaft and then the next rotation is free vibration with motion away from an obstacle. 
Orbit shape shows characteristic deformation at upper left part suggesting limitation of trajectory i.e. angular 
location of the rub spot. Rub symptoms are present for a wider speed range than the excitation of ½ X. The latter 
is limited to the region above two times resonance speed which was identified from shutdown data to be 1280 rpm. 
The shaft centerline position gives no reason for the rub as the trajectory plotted around average position (fig. 5b) 
is still far away from the nominal clearance. The shape of the orbit is not typical for light, impact type rub but 
rather looks like a heavy rub, which by [9] is less likely to produce parametric vibration.  
Inspection of the newly installed bearing was requested and revealed the error in manufacturing: the end section 
from one side of bearing was machined with eccentricity and protruded in the bore, exactly at the angular location 
suggested by orbit and shaft centerline plot. The rub was a lubricated one, which can explain why impact type 
characteristics were not seen.  
The lesson learned is that with use of synchronous orbits and waveforms it is easy to recognize characteristic 
patterns of parametric excitation, because exact timing can be confirmed.  

a) b) 

c) 

2680 rpm 2780 rpm 2860 rpm 

d) e) 

2680 rpm 

2780 rpm 
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4   Normal-loose condition in steam turbine – generator train 
The following case study data were provided by John Winterton [10]: the 300MW steam turbine generator 

train coming from overhaul was not able to operate with full capacity due to elevated vibrations in front generator 
bearing. These vibrations were present when machine was loaded to more than 50% of nominal load and 
characterized by an exact ¼ X component.  

Figure 6: Re-excitation of rotor resonance by ¼ X component: a) orbit-timebase for unstable condition b) stable 
and unstable orbits overlaid on shaft centerline position in the clearance. 

As these types of units are starting with high gradient of speed through resonance regions, the exact value of the 
critical speed was unknown and speed range criterion could not be immediately applied. The shape of the orbit 
(fig. 6a) is not showing any clear truncation indicating rub contact. There is significant 1X vibration, so at least the 
normal-loose possibility should be considered.  
By comparing the stable and unstable shaft trajectories (orbits) in fig. 6b it can be also noted that free vibration 
cycles are higher and at bigger distance from the center of the clearance than the part of the cycle with normal 
stiffness. We can estimate which part of the cycle is normal stiffness because it is the same position and trajectory 
as stable cycle shown in green in fig. 6b. Considering that the machine is electric generator with high internal 
clearances, the rub is not suspected since there should not be point of contact in such direction for any condition 
of bearing or casing seals. The looseness theory was confirmed when operator tightened the support bolts (with 
unit still in operation): the subsynchronous vibration ceased, leaving 1X almost unmodified (fig.7). The resonance 
speed was identified during shutdown to be 930 rpm, so at operating speed 3600 rpm the unit was below 4 times 
resonance speed and thus with reduction of the stiffness the re-excitation of rotor resonance by ¼ X was possible. 

Figure 7: Full spectrum waterfall showing the ceasing of ¼ X component, following the tightening of the bearing 
support bolts. 

The lessons learned from this case are that the diagnostic model also works for looseness condition and although 
statistically the rub is a much more common malfunction than looseness, the diagnostic analysis should not be 
driven by statistics but by verifying alternative options, if supported by model. 

3600 rpm 

a) b) 
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5. Classification of forced subsynchronous phenomena and other forms of
subsynchronous parametric vibration.

By terminology used in diagnostic analyses the forced subsynchronous phenomena are often classified as 
instabilities. This is acceptable by definition of stability used in practical diagnostics, which is not based on strict 
utilization of Lyapunoff definition but rather postulates the system is stable if the transient perturbation does not 
result in the response amplitude increase above acceptable level. In this sense, re-excitation of natural frequency 
by an exact fractional component, which can lead to vibration increase well above alarm or even danger levels and 
thus make operation of the machine not possible, can be considered instability. However, it is not the same type 
of vibration as fluid induced instabilities, because it is not self-excited vibration, resulting from internal feedback 
mechanism converting a supply of external energy into vibration. In the case of fully developed self-excited 
vibration models [8] the limit for shaft vibration is the physical boundary (clearance) and once the system becomes 
unstable it requires significant change of parameters to stabilize (hysteresis). Rub and looseness are forced 
vibration phenomena, they require continuous forcing (repetitive impulses of energy from rub events or significant 
unbalance force for looseness) and if for some reason the forcing is removed, the vibration ceases. This required 
forcing is also a source of the timing of the impulses, so the amplification of vibration is only possible at exact 
fractional components, when they excite system resonances. On the other hand, forced vibration phenomena are 
typically defined as the response at the frequency of the forcing function or (due to system nonlinearities) at 
harmonics. From this perspective the forced subsynchronous action has indeed some characteristics from both 
classifications. Correct classification of observed vibration phenomenon (forced vs. self-excited) can be very 
useful in tracking of a root cause of vibration, which is illustrated by the case below. 

6. Parametric self-excited torsional vibration of single-shaft combined cycle
unit.

A newly built, single shaft combined cycle power generation unit showed high subsynchronous vibration during 
every startup, when operated with idle load [7]. The machine train consists of an electric generator driven from 
one side by gas turbine and from the other side by steam turbine. The high vibrations were present at the steam 
turbine bearing next to coupling to electric generator. When the load of gas turbine and generator was increased 
the vibration ceased (fig.8 a, b).  
The vibration was caused by the repetitive excursions of shaft movement in the clearance (fig. 9 a, b) with 
frequency 5.5Hz, coinciding with model calculated frequency of lowest torsional vibration mode, with its nodal 
point in the adjacent flexible coupling. The conversion of torsional vibration into radial motion was identified to 
be hard contact of the teeth between the coupling diaphragm and the flange guard (fig. 10 a, b). The teeth are a 
design safety feature, in case of damage to or an overload of the diaphragm. In normal operating condition, steady 
state or transient, the teeth should not be in contact. However, their assembly position is not in the center of the 
clearance but with an offset to compensate for a twist of the coupling when loaded by nominal torque during 
operation. Therefore, when the machine operates on idle load, a relatively small load change can lead to the contact 
and cause the impact followed by free vibration with the torsional natural frequency. Since the observed impulses 
are repetitive this could be either forced or self-excited vibration. No forcing function was found at 5.5Hz and this 
frequency is not a natural fraction of the rotating speed so forced vibration can be excluded. The torque produced 
is a function of fuel consumption and the changes in the latter are leading to rotating speed change, but the fuel 
flow and rotating speed were showing small and non-cyclic changes driven by operation of the emission control 
(NOx reduction) system.  
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Figure 8: Subsynchronous vibration in turbine bearing, when train on idle load. a) The vibration trend showing 
presence of non-synchronous content and b) full-spectrum waterfall. 

Figure 9: a) Orbit and timebase for shaft vibration during idle run and b) trajectory plotted on shaft centerline 
position with bearing clearance. 

a) 

b) 

Direct 

1X 

Idle load 

b) a) 
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Figure 10: a) The coupling design: flexible diaphragm with protection against excessive twist b) detail of coupling 
design: protection teeth between diaphragm and the flange guard. 

Based on the characteristics of the signal, the phenomenon was classified as parametric, self-excited vibration. 
The working hypothesis was that the system behaves unstable because of speed control interaction with nonlinear 
feedback mechanism (fig. 11). On the ground of the control system theory such a configuration can be unstable 
for all feedback signals exceeding the linear part of the characteristics.   

Figure 11: Postulated model of rotor behavior. 

Diagnostic service made no attempt to formalize a model or identify the parameters, it was only used to 
conceptualize and review possible solutions. If the model is applicable, then the system can be stabilized either by 
removing nonlinearity or by ensuring operation is within linear part of spring characteristics. The behavior of the 
machine agrees with this assumed model: when the train is loaded, the coupling operates with higher twist, further 
from the nonlinearity but also the amplitude of perturbations is lower because of the changes in the flow of fuel 
due to the emission control system are small percentage of the fuel flow due to load demand. Coupling redesign 
would not only be expensive but would also change the dynamic behavior of the whole train, so the alternative 
solution was pursued. The manufacturer optimized the algorithms of the emission control system to reduce the 
level of perturbations. This was a significant engineering project, based on strict modelling of the system, but it is 
worth mentioning that diagnosis of the machine behavior was done in short time and based on simple diagnostic 
models applied to basic characteristics of the vibration, as outlined above. 
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7   Conclusion 
Fluid induced instabilities are most common but not the only source of subsynchronous vibration problems in 

the rotating machinery. The next most common and often in practical cases wrongly recognized situation is forced 
subsynchronous action caused by re-excitation of rotor resonances by partial rub or by looseness in the rotor 
support. An educational model used in training of industry rotordynamic specialists has proven to be effective in 
correctly identifying the forced subsynchronous actions as well as in recognizing the situations when the behavior 
is not caused by one. Positive identification required analysis of shaft vibration trajectories (analysis in time 
domain), preferably with sampling synchronized with rotation, use of the phase reference mark (keyphasor) and 
analysis of the rotor position in the clearance.   
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Abstract
Squeeze film dampers depict strong nonlinearities in the impedance forces. However, they are usually included

in analytical dynamic models of jet engines as linear elements, especially in frequency domain, using linearized
coefficients. In this manner, the unbalance response of the system can be evaluated with relatively low computa-
tional cost. The linearization of SFDs in aircraft engine applications is not trivial, despite the fact that SFDs are
used in aircraft engines for more than 40 years. The present paper incorporates nonlinear SFDs in rotor dynamic
simulations through a harmonic balance approach. The method used is in principle a general approach and can be
used on any SFD type or model, as well as other types of nonlinear bearings. The method is firstly applied to a
Jeffcott rotor mounted on two SFDs in order to provide insights on its accuracy and its efficiency, comparing the
results to the time response of a reference model with nonlinear SFDs. It is shown that, depending on the system
configuration, higher harmonics are necessary in order to capture the response of the rotor. Finally, the method
is applied to a realistic jet engine model, where different unbalance and bearing configurations are applied. The
method aims to offer a solution on the implementation of load and speed dependent nonlinear SFD forces for a fast
frequency response analysis, which is required in the dynamic design of the machine.

1 Introduction
Typically, aircraft engine rotors are supported by rolling element bearings, mostly ball and roller bearings.

Bearings operate in series with squeeze film dampers in aerospace applications, which are the main source of
external damping applied on the rotor system. Moreover, they increase engine stability by isolating vibration
and reducing bearing wear. Due to journal motion, oil is constantly squeezed and displaced, which leads to the
generation of oil film impedance forces.

The most influential parameters for the performance of squeeze film dampers [14] are: the geometric charac-
teristics (length, diameter and radial clearance) and the oil characteristics (viscosity). However, many other design
parameters, such as seals type, cavitation profile along the oil film, supply pressure levels and fluid inertia, prove
to be important, thus their effect has been studied in detail. Reinhardt and Lund [12] examine journal bearings
and find out that the inclusion of the inertial term in the Reynolds equation leads to added mass coefficients that
importantly affect small rotors. Moreover, the influence of fluid inertia proves to be more important to open-ended
than partially sealed SFDs, while the vapor cavitation affects both configurations, especially for small Reynolds
numbers [6], [7]. It is also discovered that piston-ring seals provide significantly larger damping forces than end
seals and are less affected by the number of oil feeds [9]. Experiments show that piston-ring sealed SFDs re-
strict the lubricant leakage and, as a result, produce remarkably larger damping and added mass coefficients than
open-ended SFDs [1], [3].

Bearings and SFDs are in principle speed dependent and nonlinear with rotor displacement, hence linear anal-
ysis is not feasible, unless they are introduced in the dynamic models as linear elements. Linearization methods
can only be applied to bearings under the condition that they perform small perturbations about a fixed point, thus
their extension to cases of large amplitude motions is likely to produce inaccurate results. The results of journal
bearing unbalance response with linearized coefficients prove to be satisfying for amplitudes as large as 40% of
the radial clearance [10], [13]. In [8] the linearization process of multi-bearing rotor systems is explained in detail
and its results are compared to those of a nonlinear model. Another approach is presented in [11]; the separate
solution of linear and nonlinear system equations.

Paper-ID 52

15th SIRM – European Conference on Rotordynamics, 
Darmstadt, Germany, 22nd – 24th February 2023 

128



Contrary to journal bearings, the linearization of squeeze film dampers is not well documented, although SFDs
are used in aircraft applications for more than 40 years. Their linearization is only examined in [2], where dynamic
stiffness coefficients are calculated based on journal orbits.

Nonlinearities often become crucial for the dynamic behaviour of the system so that linear models are not
sufficient. Hence, a new multi-harmonic method is introduced in the present paper in order to solve nonlinear
systems in the frequency domain. Linearized SFD forces (under short bearing approximation) consisting of higher-
order harmonics are calculated based on journal orbits, through an iterative process. The method is significantly
faster than transient analysis and equally accurate, at the same time.

2 Analytical Model for Squeeze Film Damper Forces
Starting from Navier-Stokes equations and making the short bearing approximation [4], the Reynolds equation

for squeeze film dampers is given by (1). Inertial terms are neglected.

∂

∂z

(
h3

µ
· ∂P
∂z

)
= 12

∂h

∂t
(1)

Oil film thickness h and its first derivative with respect to time are calculated by (2).

h = cr − x · cos θ − y · sin θ ,
∂h

∂t
= −ẋ · cos θ − ẏ · sin θ (2)

(1) is integrated twice with respect to the axial direction z along the entire length L of the SFD. Open-ended
squeeze film dampers are selected for the present analysis, therefore the corresponding boundary conditions arise;
oil film pressure P equals to 0 at the two ends of the SFD (z = 0 and z = L) for any angle θ. The final expression
for film pressure along the circumferential and the axial direction is presented in (3).

P (θ, z) = 6µ · −ẋ · cos θ − ẏ · sin θ
(cr − x · cos θ − y · sin θ)3

·
(
z2 − L · z

)
(3)

Expressions for SFD oil film forces in x and y direction result from the integration of (3) with respect to θ and
z as presented in (4). SFD radius is symbolized by R.

Fx =

L∫
0

θ2∫
θ1

P (θ, z) · cos θ ·Rdθ dz , Fy =

L∫
0

θ2∫
θ1

P (θ, z) · sin θ ·Rdθ dz (4)

The substitution of (3) in (4) and the rearrangement of the terms leads to (5).

Fx = µ ·R · L3

θ2∫
θ1

ẋ · cos2 θ + ẏ · sin θ · cos θ
(cr − x · cos θ − y · sin θ)3

dθ , Fy = µ ·R · L3

θ2∫
θ1

ẋ · cos θ · sin θ + ẏ · sin2 θ
(cr − x · cos θ − y · sin θ)3

dθ (5)

Gümbel cavitation approach is selected in order to calculate the limits of integration θ1 and θ2 taking into
account oil cavitation. Hence, only positive pressure contributes to the calculation of oil film forces; (3) is positive
in the range between θ1 and θ2, where:

θ1 = arctan2(−ẋ, ẏ) , θ2 = θ1 + π (6)
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The forces of (5) are also expressed by (7), as a function of nonlinear damping coefficients.

{
Fx

Fy

}
=

[
cxx cxy
cyx cyy

]
·
{
ẋ
ẏ

}
,


cxx
cxy
cyx
cyy

 = µ ·R · L3

θ2∫
θ1

1

(cr − x · cos θ − y · sin θ)3
·


cos2 θ

sin θ · cos θ
cos θ · sin θ

sin2 θ

 dθ (7)

The effect of journal position in x and y direction on the nonlinear damping coefficients is examined in Figure
1, where the common logarithm of the coefficients is reflected across the z-axis. Sommerfeld cavitation approach
is selected (only for the present Figure), namely pressure is integrated along the entire SFD circumference, so that
journal velocity does not influence the coefficients.

Figure 1: SFD nonlinear damping coefficients for Sommerfeld cavitation approach.

Furthermore, the effect of both journal position and velocity on the coefficients along circular orbits about
bearing center under Gümbel cavitation approach is examined in Figure 2, where the common logarithm of the
coefficients is reflected across the z-axis. The coefficients are constant along the circular orbits.

Figure 2: SFD nonlinear damping coefficients along circular orbits about bearing center for Gümbel cavitation
approach.

In conclusion, SFD damping coefficients are highly nonlinear with respect to journal position and velocity,
hence their substitution with constant values regardless of bearing eccentricity is not an accurate approximation.
Therefore, a different approach is necessary.

3 Approximation of SFD Forces Using Discrete Fourier Transform and Solution of the System Using Multi-
Harmonic Analysis
Oil film forces are calculated at P discrete points along the orbit, where P is set to 60 in this paper. The angle

interval between two consecutive points is ∆ϕ. The forces are periodic with period T = 1/ω, where ω is the
whirling frequency of the journal in Hz. The approximation of forces is feasible using N harmonics, as shown in
(8).
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FSFD(ϕ) ≊ c0 +
N∑

n=1

[
cn · enjϕ

]
= c0 + c1 · ejϕ + c2 · e2jϕ + · · ·+ cN · eNjϕ , ϕ ∈ [0, 2π] (8)

The mean value of the force is symbolized by c0. The terms cn, n = 1, 2, · · · , N, are calculated [5] separately
for each order by Discrete Fourier Transform (DFT).

c0 =
1

P

P−1∑
i=0

F (ϕi) , cn =
2

P

P−1∑
i=0

F (ϕi) · e−njϕi (n = 1, · · · , N) (9)

The number of orders N is defined according to the accuracy required for the approximation of SFD impedance
forces. However, there are some general rules regarding the predefinition of the requisite orders. Firstly, the mean
values of the forces in both x and y direction equal to 0 for centered circular or elliptic orbits. Moreover, in the
case of circular centered orbits, the forces are described by single-harmonic sine or cosine functions, thus only the
first-order harmonic is required. On the other hand, in the case of elliptic centered orbits, the forces are described
by odd functions, thus even-order harmonics equal to 0 and can be omitted. Finally, in the case of off-centered
orbits, no symmetry is observed and no orders can be ignored.

A dynamic system of multiple DoFs is described by (10). The rotational speed is symbolized by Ω.

M · ẍ+ (ΩG+C) · ẋ+K · x = fu + fw + fSFD (10)

The external forces of the system are the unbalance force fu, the weight fw and the SFD impedance force fSFD.
The elements of fSFD that concern the DoFs of the SFD are described by (8). It is highlighted that they need to be
included with a negative sign in the right-hand side of (10). Hence the right-hand side of (10) is given by (11).

RHS = fu + fw + fSFD = f1e
jϕ + fw + (c0 + c1e

jϕ + c2e
2jϕ + · · ·+ cNeNjϕ) (11)

Hence, the solution of (10) has the general form:

x = x0 + x1e
jϕ + x2e

2jϕ + · · ·+ xNeNjϕ (12)

Subsequently, (11) and (12) are substituted in (10). In order to have a nontrivial solution of the system, (13)
need to apply.

x0 = K−1 · (fw + c0) x1 =
[
−Ω2M+ jΩ (ΩG+C) +K

]−1 · (f1 + c1)

xn =
[
−n2 · Ω2M+ jn · Ω (ΩG+C) +K

]−1 · cn (n = 2, · · · , N)

(13)

The calculations of the multi-harmonic method are repeated at each rotational speed. The algorithm followed
by the method is the following:

1. An initial estimation for the solution, which has the dimension of the number of DoFs multiplied by the
number of orders used for the approximation (N), is assumed based on the solution of the previous frequencies,
supposing that the calculations have converged.

2. SFD journal orbits are defined based on the initial estimation. Analytical SFD forces are calculated along the
orbit by (5), afterwards, they are approximated using (8) and, finally, they are included in fSFD of (10).

3. It is examined if (13) are satisfied. If this is not the case, the previous steps are repeated, starting from a new
estimation, until convergence.
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4 The Multi-Harmonic Method for the Evaluation of Dynamic Response of Jeffcott Rotor
A Jeffcott rotor of diameter Ds supported by two bearings B1 and B2 is presented in Figure 3a. The rotor

rotates with speed Ω and consists of a massless shaft and a disk attached to it. The Young’s modulus and the
density of the rotor are symbolized by E and ρ, respectively. Its total mass md is concentrated on the disk, which
is located in half the distance between the bearings (Ls).

x

y

z

D Ω

ρ,E
md

L

L/2

B1 B2

Ls
Ls

Ds

(a)

2mb

2kb

md

xb,ẋb,ẍb

2cb

Fu

xd,ẋd,ẍd

ks

(b)
Figure 3: (a) Jeffcott rotor supported by two bearings. (b) Simplified linear model of a Jeffcott rotor.

Each bearing is consisted of a rolling element bearing, a squirrel cage and a squeeze film damper. They are
connected to the housing, which is modeled as rigid ground. The shaft stiffness is symbolized by ks and its
damping equals to 0. Mass unbalance force Fu acts on the disk. Two models are examined and compared to each
other:

1. A linear model, in which each bearing is modeled as a mass (mb) - spring (kb) - damper (cb) system. The mass
mb is the mass of the journal. Bearing total stiffness kb comes from both the rolling element bearing itself and
the squirrel cage, while total damping cb comes from the rolling element bearing and the SFD. Eventually, the
system is simplified in the model presented in Figure 3b, which is identical for x and y direction. The results
of the linear model are deduced using linear harmonic analysis without taking the weight into account.

2. A nonlinear model, in which the linear damping coefficient cb is replaced by nonlinear SFD impedance forces.
In this way, anisotropy is introduced to the system, when weight is included in the simulations. The rest of
the parameters remain the same. The results of the nonlinear model are deduced using the multi-harmonic
method.

Time transient response evaluated by time integration of the nonlinear equations of motion including nonlinear
SFD impedance forces is used as a reference for the results of the models.

The degrees of freedom of the disk are xd and yd. Since the system is symmetric (no tilting of the disk is
assumed), the same set of DoFs (xb and yb) is used to describe both bearings. Moreover, their mass, damping and
stiffness act parallel to each other, thus they are added together, e.g mb,tot = 2mb. No gyroscopic phenomena are
observed because of the position of the disk.

The results of all the following figures concern the relative to the radial clearance eccentricity of the bearing in
x and y direction.
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Figure 4: Comparison of the unbalance response of the linear model to the transient response.
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The results of the linear model with constant damping coefficients (ranging from 65% to 135% of a typical
SFD damping coefficient) fail to approximate the transient response as observed in Figure 4. In total, three cases
of different G unbalance grades [15] with operating speed set at 1500 rad/s, shaft slenderness ratios (Ls/Ds)
and squirrel cage to shaft stiffness ratios (kc/ks) are examined. Although, the results of linear harmonic analysis
manage to capture decently the amplitude, they fail to predict the critical speed and the shape of the curve.

For the same three cases, the results of the nonlinear model using the multi-harmonic method are compared to
the transient response in Figure 5. Since circular orbits about the centerline are examined, SFD impedance forces
are described by a single-harmonic sine or cosine function and the response in the two directions is identical.
Therefore, only the first-order harmonic is required to capture the transient response. The results of the method are
identical to those of transient analysis. A small difference due to transient phenomena is observed in the third case.

Subsequently, three cases of elliptic centered orbits are presented in Figure 6. Nonsymmetric squirrel cages
are employed in order to produce elliptic journal motions. It is reminded that only the odd-order harmonics are
required for these cases. Although the first-order harmonic excellently approximates the transient response in the
first and the third case, the third-order harmonic offers a significant improvement in the second case.

Finally, three cases of off-centered orbits are examined. In these cases, the squirrel cage and the shaft slender-
ness ratio remain constant, while G unbalance grade ranges from G1 to G6.3. The squirrel cage is symmetric in x
and y direction and flexible, hence large static eccentricity (> 70% of the radial clearance) is observed. The unbal-
ance response in y direction for the three cases is presented in Figure 6. For cases of flexible or, even, not present
squirrel cage, the journal whirls close to the radial clearance. As a result, the zeroth-order response is crucial since
it lifts the journal, especially at high rotational speeds. Finally, it is observed that the third-order harmonic offers a
significant improvement in the approximation of the transient response in the second and, mainly, the third case.
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Figure 5: Comparison of the multi-harmonic method to transient analysis for circular centered orbits.
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Figure 6: Comparison of the multi-harmonic method to transient analysis for elliptic centered orbits about the
bearing center.
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Figure 7: Comparison of the multi-harmonic method to transient analysis for off-centered orbits.
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The multi-harmonic method is also validated by comparing its results to MSC Nastran nonlinear harmonic
balance for a case of centered circular orbit. Hence, only the first-order harmonic is required. The two methods
provide similar results, since the relative error is about 3% for both the disk and the journal response. However,
this small error is due to a difference on the SFD geometry between the two models.
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Figure 8: Comparison of the multi-harmonic method to MSC Nastran nonlinear harmonic balance.

5 Rotor Dynamic Simulations of Realistic Aircraft Engine
The simulations of the current Chapter concern the model of Figure 9. The jet engine consists of 2 counter-

rotating rotors, Low Pressure (LP) rotor (in blue, yellow and magenta) and High Pressure (HP) rotor (in green),
and the casing (in red). The speed ratio ΩHP /ΩLP equals to -1.6. There are three Low Pressure Compressor
(LPC) stages and five High Pressure Compressor (HPC) stages, as well as one High Pressure Turbine (HPT) and
one Low Pressure Turbine (LPT) stages. Their place is symbolized by black squares. The five bearings (B1 - B5)
are depicted as light blue springs. The nodes where the bearings are connected to the rotor are symbolized by red
squares. Finally, the grey dashed line is the centerline of the engine. Because of the symmetry about the centerline,
only half the engine is depicted in Figure 9.

1 5432
1 32

1
1

LPC HPC LPT
HPT

B1 B2 B3 B4 B5

Casing

B1 B2 B3 B4 B5

Figure 9: Realistic aircraft engine model.

The two rotors are dynamically decoupled. Henceforward, it is preferred to present results of the multi-
harmonic method that concern the HP rotor, since the entire model has approximately 350 DoFs and the simu-
lations are time-consuming, especially when multiple harmonics are used. The nonlinear multi-harmonic method
is applied to the HP rotor for a variety of cases.

The parameters for the following simulations are:

1. the configuration of the bearings B3 and B4 that support the HP rotor. They may consist of a rigid or flexible
squirrel cage and a SFD of constant or eccentricity dependent damping.

2. the weight of the rotor, that is included or not.
3. the unbalance case, either single or pair.
4. the number of orders for the multi-harmonic method.
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Due to the high stiffness of the squirrel cages B3 and B4 and the low weight of the HP rotor, the static deflection
is minimal. The maximum deflection of the rotor is 7.7% of the radial clearance and the static eccentricity of the
journals B3 and B4 is 6.9% and 4.8%, respectively. All squirrel cages and rolling element bearings of the system
are isotropic and the weight is negligible, thus the orbit is circular and the second-order harmonic, as well as
higher-order harmonics, are insignificant. Hence, only the first-order harmonic is employed for the multi-harmonic
method. The weight is not included in the simulations in order to compare the results of the method to those of
linear harmonic analysis with constant coefficients.

Two cases are examined, one of single and one of pair unbalance. They both correspond to balance grade
”G25”, in order to provoke large eccentricities. For the nonlinear simulations using the multi-harmonic method, the
bearing B3 consists of a squirrel cage and a nonlinear SFD, while a squirrel cage and a SFD of constant damping
are employed for the bearing B4. An indicative value has been selected for the constant damping according to
standard design. B3 and B4 squirrel cages have stiffness of 8 · 107 N/m and 1.5 · 108 N/m, respectively. For the
linear simulations, a squirrel cage and a SFD of constant damping are employed for both bearings B3 and B4. The
unbalance response of node 7 (first HPC stage) and node 21 (HPT stage) is presented in Figure 10.

The constant bearing damping is higher than required, therefore the results of the linear analysis underestimate
the amplitudes. In particular, the values calculated are 2-2.5 times lower than the results of the nonlinear model.
However, the critical speeds are sufficiently approximated by the linear analysis.
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Figure 10: HP rotor unbalance response with constant and nonlinear bearings (SFD employed at B3).

Subsequently, a nonlinear SFD is also employed for the bearing B4. The rest of the parameters of the simula-
tions remain the same.

Vast difference is observed between the results of the two methods. The use of two SFDs alters the quality
of the unbalance response and shifts the critical speeds. The journals whirl at eccentricities close to the radial
clearance (> 90%cr) and jump phenomena are observed.
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Figure 11: HP rotor unbalance response with constant and nonlinear bearings (SFD employed at B3 and B4).

Afterwards, a flexible squirrel cage of stiffness 3 · 107 N/m and a nonlinear SFD are employed for B3, while
a stiff squirrel cage of stiffness 1.5 · 108 N/m and constant damping are used for B4. The weight of the HP rotor
is intentionally doubled in order to provoke larger static deflection, which renders off-centered orbits and system
anisotropy. The static eccentricity of the journals B3 and B4 is now 30.2% and 8.3% of the radial clearance,
respectively, and the weight is included in the simulations. The unbalance response is approximated by the zeroth,
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the first and the second-order harmonics. The unbalance response for balance grades G2.5 and G6.3 are presented
in Figure 12.

One major resonance is observed at c.a. 6500 RPM for both nodes 7 and 21. The orbits are circular, but their
centers are now located at −28.4%cr and −12.9%cr, respectively. The effect of the second-order harmonic is
minimal close to the resonance and its contribution is evaluated to be less than 1% of the radial clearance.
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Figure 12: HP rotor single unbalance response with nonlinear bearings (SFD employed at B3 and weight in-
cluded).

The results of the multi-harmonic method are validated by comparing its results to MSC Nastran nonlinear
harmonic balance for the cases examined in Figure 11. The difference between the results of the two methods is
minimal and is possibly due to a small difference on the SFD geometry.

Moreover, the calculations of MSC Nastran nonlinear harmonic balance do not converge during the jump,
therefore, the entire response is not displayed. On the contrary, the multi-harmonic method succeeds in passing
through the jump.
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Figure 13: Comparison of the multi-harmonic method to MSC Nastran nonlinear harmonic balance.
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6 Conclusion
The main problem examined in this paper is the treatment of nonlinear SFDs and bearings for simulations in

the frequency domain. A new multi-harmonic method for the linearization of nonlinear bearing and SFD forces is
presented. The main idea of the method is the approximation of nonlinear forces along the orbit and it is achieved
using Discrete Fourier Transform. Subsequently, unbalance response is calculated by multi-harmonic analysis.
The steps of the method are repeated until convergence in response amplitude is achieved, at each discrete rotating
speed. Although nonlinear SFD forces are employed for the simulations of this paper, the method is general and
can be used on any type and model of SFD or nonlinear bearing.

The method is tested on a Jeffcott rotor model and a realistic jet engine rotor. The results of the method are
compared to those of linear harmonic analysis with constant bearing damping. It is shown that, in many cases,
linear methods fail to predict engine’s unbalance response, hence, it is necessary to resort to nonlinear methods,
such as the multi-harmonic method. Small and large amplitudes, circular and elliptic, as well as centered and
off-centered journal orbits are examined.

The method achieves to capture the transient response using only the first or the first three harmonics (along
with zeroth order, which originates from the weight and the mean value of the forces). Specifically, the first-
order harmonic is sufficient for circular centered orbits and only the odd-order harmonics are required for elliptic
centered orbits.

Concerning off-centered orbits, there are no general rules concerning the requisite number of harmonics. Nev-
ertheless, the first-order harmonic seems to be sufficient for off-centered circular orbits. The simulations on the
Jeffcott rotor model showed that the second and the third-order harmonic majorly improve the approximation for
off-centered elliptic orbits. However, higher-order harmonics do not influence significantly the response in the
simulations on the HP rotor. All things considered, the first order, along with the zeroth order when weight is
included, usually provides very good or, even, excellent approximation, while second and third-order harmonics
are important for large orbits and small models. Extreme cases of static eccentricities and orbit radii close to the
radial clearance can be an exception and even higher-order harmonics may be necessary.

All in all, the validity and the accuracy of the multi-harmonic method has been verified by conducting many
simulations on a wide variety of models and conditions and comparing its results to transient response and MSC
Nastran nonlinear harmonic balance.

The multi-harmonic method can be combined with linear analysis in order to avoid time-consuming calcula-
tions by making a first approximation of the unbalance response using linear simulations and, then, applying the
multi-harmonic method close to the resonances. Finally, the method could be very useful during the preliminary
rotor dynamic design stages of jet engines. The nonlinear method can be applied once in order to calculate forces
exerted by the nonlinear bearings SFDs. After some minor changes to the model, a linear analysis can be applied
using the recorded forces from the nonlinear simulation. Nevertheless, this method only works for similar rotors
and bearings.
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Abstract
The balancing of flexible rotor-bearing systems throughout multiple critical speeds is one of the most challeng-

ing tasks in rotor dynamics. The disadvantage of conventional balancing methods is that they require multiple trial
runs, which are costly and time-consuming. Therefore, flexible rotor balancing methods based on the Numerical
Assembly Technique (NAT) have been proposed in recent years, which substitute the measurement of influence
coefficients with simulations. The advantages of NAT are that it leads to analytical solutions and is very computa-
tionally efficient.
The work aims to validate and improve the utility of NAT for the field balancing of flexible rotors. Therefore,
a NAT simulation is used to balance the first two modes of a test bed without trial runs. The internal damping
is included with a viscoelastic material model using fractional time derivatives. The mode shapes, eigenvalues
and unbalance responses are measured and compared to values calculated with NAT, to show the accuracy of the
simulation. The system is successfully balanced using influence coefficients calculated with NAT and a significant
reduction of the vibration amplitude is achieved.

1 Introduction
Rotor bearing systems are balanced to avoid excessive vibration, which reduces the life span of machines. If

the operational speed is in the proximity to or exceeds the first critical speed, flexible balancing techniques, like
modal balancing [3] or the influence coefficient method [19], are necessary to reduce unbalance [20].
Traditional influence coefficient methods [19] require multiple trial runs, which are expensive and time-consuming.
These trial runs are avoided if the influence coefficients are calculated with an accurate rotor-dynamic model [12].
In this paper, the Numerical Assembly Technique (NAT) is applied to determine influence coefficients. NAT is
an efficient, quasi-analytic method to find the steady-state harmonic response and eigenvalues of rotor-bearing
systems. It has been introduced in 1999 by Wu and Chou [24, 25]. The early versions of NAT are only capable
of calculating the harmonic-response of one-dimensional structure, but in the last 20 years, the method has been
significantly extended, especially in the field of rotor dynamics. The natural frequencies of uniform beams using
NAT are determined by Chen and Wu [4, 5]. In [10] and [11], the method has been extended to include the effects
of multiple lumped masses, multiple-pinned supports, and rotary inertias. Wang et al. applied these approaches to
the Timoshenko beam theory and examined the effect of the slenderness ratio and the shear coefficient [23]. The
effects of axial forces on Timoshenko [27] and Reddy-Bickford beams [28] has been studied by Yesilce. In 2014,
NAT was extended to rotating systems and the forward and backward whirling speeds has been determined [26].
In [6], Timoshenko beams on elastic supports have been investigated and in [22] the effects of various material
and geometric discontinuities have been examined using NAT. Klanner et al. extended NAT to include distributed
loading [7], unbalance [8], and fractional derivative damping [9]. In recent years, Quinz et al. proposed a modal
balancing technique [16] and an influence coefficient balancing technique [17] utilizing NAT. First experimental
investigations concluded that the balancing procedure would benefit from the inclusion of additional damping ef-
fects like material or air damping [18].
The main aim of this work is to verify and improve the utility of an influence coefficient balancing method based
on NAT. Multiple experiments are performed on a test bed, where measured and calculated values are compared
and two test setups are balanced with the proposed method. The novelty of this work lies - besides the performed
experiments - in the inclusion of partial time-derivative material parameters and air damping in the NAT scheme.
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2 Methods

In this section, the proposed balancing method is described. It is a model-based influence coefficient method,
where the influence coefficients are calculated with a simulation of the rotor-bearing system using NAT.

2.1 Numerical Assembly Technique

NAT uses a continuum model to calculate analytic solutions if the unbalance is introduced at concentrated
points. For distributed unbalances it utilizes the Fourier extension method to generate semi-analytical results. Pre-
vious numeric simulations have shown that it can be used to accurately describe and balance linear rotor-bearing
systems with stepped shafts and multiple disks, supported on roller bearings [16] or fluid film bearings [17] and
excited by concentrated or distributed unbalances. The results of state-of-the-art FEM models converge with in-
creasing amount of nodes to those obtained by NAT [17]. Furthermore, numerical comparisons show a reduction
in computational time by a factor of ten compared to FEM [8].
The applied version of NAT improves upon the versions described in [16] and [18]. For better simulation accu-
racy, the Timoshenko beam theory is used instead of the Rayleigh theory, air damping is introduced and material
damping is considered utilizing a fractional derivative damping model. In this paper, only the basic equations of
NAT are briefly explained, a more detailed description of the applied version of NAT is found in [21].
The space fixed coordinate system Oxyz is defined according to Figure 1 so that Ox and Oy are perpendicular to
each other and transverse to Oz, which passes the undeflected axis of the rotor in its bearings. In NAT, the rotor-

Figure 1: General rotor problem. [17]

bearing system is represented by N stations and M = N − 1 segments. Stations define disks, bearings, steps, and
the ends of the rotor. Segments represent the cylindrical elements between the stations. For this paper, bearings
are modeled as spin-speed independent spring and damper elements, although more complex representations are
also possible with NAT [17]. Disks are defined with a mass m(i), a mass moment of inertia about the x- and y-axis
Θ

(i)
t , a mass moment of inertia about the z-axis Θ

(i)
p , an amount of eccentricity ϵ(i), and an angular position of

eccentricity β(i). Segments are modeled according to the Timoshenko beam theory [2] and are described by the
frequency-dependent complex Young’s modulus E⋆

ℓ , shear modulus Gℓ, density ρℓ, area of the cross-section Aℓ,
its diametric moment of area of the cross-section about the x- and y-axis Iℓ, air damping coefficient daℓ and the
shear correction factor kSℓ. Ω describes the constant spin speed of the system and ω its complex eigenvalue. In
case of unbalance excitation Ω = ω. The state of the rotor is represented by a solution vector x⃗ consisting of the
displacements rx and ry , the rotations of the cross-section φx and φy , the bending moments Mx and My and the
shear forces Qx and Qy . The characteristic equations of the Timoshenko beam theory result from the equilibrium
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ℓ Ē0ℓ

2
ε̃+(z), (1a)

∂2r̃+y (z)

∂z2
+
(
ω̄2
ℓ Ē0ℓ − d̄aℓ

)
r̃+y (z) +

∂φ̃+
x (z)

∂z
=

j Ω̄2
ℓ Ē0ℓ
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Assuming a solution of the form of
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leads to eight ordinary differential equations. Since the solutions have to be complex conjugated to get a real
solution only four of these equations are necessary and only the equations with the +-index are considered
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The total solution vector of each rotor segment is the sum of the homogeneous and the particular solution x⃗ℓ(zℓ) =
x⃗hℓ(zℓ)+x⃗pℓ(zℓ). Point unbalances or distributed unbalances are considered in the particular solution. Assembling
the characteristic equations of each segment with the boundary and interface conditions results in a system of linear
equations

Ac⃗ = b⃗, (4)

where A is the system matrix, b⃗ the right-hand side vector and c⃗ a vector of unknown constants. The unknown
constants c⃗ determine the total solution vector x⃗, which defines the behaviour of the rotor.
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2.2 Fractional derivative damping model
This paper utilizes an effective four-parameter fractional derivative damping model developed by Pritz et al.

[15], a generalization of the Zener material model. The fractional Zener model has the advantage, that it accurately
describes materials over a wide frequency range. In contrast to the hysteric damping model, the Zener model is also
capable of representing a nearly frequency-independent, low loss factor [15]. In the time domain, the constitutive
equation is

σzz(x, y, z, t) + bE0ℓ
∂αE

ℓ σzz(x, y, z, t)

∂tα
E
ℓ

= aE0ℓεzz(x, y, z, t) + aE1ℓ
∂αE

ℓ εzz(x, y, z, t)

∂tα
E
0ℓ

, (5)

with aE0ℓ, a
E
1ℓ, b

E
0ℓ as positive real constants and the restrictions

aE0ℓ <
aE1ℓ
bE0ℓ

, 0 < αE
ℓ < 1.

∂•

∂t• denotes a fractional derivative, which has multiple different mathematical definitions in literature. The Riemann-
Liouville definition is applied in this work since it allows for a simple representation of the four-parameter model
in the frequency domain. Setting bE0ℓ = 0 in Equation (5) to acquire the fractional Kelvin-Voigt model results in

E⋆
±ℓ(ω) = aE0ℓ + (j (ω ∓ Ω))α

E
ℓ aE1ℓ, G⋆

ℓ (ω) =
1

2(1 + ν)
aE0ℓ + (jω)α

E
ℓ aE1ℓ, (6)

where E⋆
±ℓ(ω) is the complex Young’s modulus, G⋆

ℓ (ω) the complex shear modulus, and ν the Poisson’s ratio. The
parameters aE0ℓ, a

E
1ℓ and αE

ℓ are derived by measurements and are available for many commonly used materials
[14].

2.3 Influence coefficient method
The influence coefficient method [19] enables the balancing of flexible rotor-bearing systems as long as they

have a linear force-displacement behaviour. Influence coefficients αik(Ω) describe the ratio of displacement to
unbalance

αik(Ω) =
xi(Ω)

Uk
, (7)

where xi(Ω) is the displacement at position i caused by an unbalance Uk at position k. Influence coefficients
are usually measured, which is very costly and time-consuming. In this paper, influence coefficients are instead
calculated with NAT. The influence coefficients of all combinations of unbalance planes k and measurement planes
i are called influence coefficient matrix α

x⃗ = αU⃗, (8)

where x⃗ are the displacements of the rotor-bearing system caused by the addition of test weights and U⃗ is the
unbalance vector. By inverting the influence coefficient matrix the initial unbalance is determined from the initial
unbalance response

U⃗c = −α−1x⃗0, (9)

where U⃗c are the correction unbalances, and x⃗0 are the displacements of the rotor bearings system without test
weights. Mounting the correction unbalances reduces the vibration of the system. Surplus information of additional
measurement planes or spin speeds can be included with the least-squares method [13].
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3 Results and Discussion
In this section, the rotor-dynamic test bed, its NAT model and the performed experiments are described. First,

the eigenvalues and mode shapes are measured and compared to calculations, then, the proposed balancing tech-
nique is applied to balance the first mode and later, the first two modes of a test setup.

3.1 Test bed
The rotor dynamic test bed of the Institute of Mechanic of the Graz University of Technology is shown in Figure

2. An elastic shaft with a maximal diameter of 15 mm, on which an arbitrary amount of disks can be mounted, is
supported on two roller bearings. Since the supports are much stiffer than the isotropic shaft, the anisotropy of the
bearing housing is negligible for the balancing process. The shaft is connected through a magnetic coupling to an
electrical motor with a maximum spin speed of 400 Hz and a power of 7 kW. Four laser displacement measurement
systems with an accuracy of 0.025 µm determine the unbalance response. The phase is measured with an inductive
sensor that works up to 120 Hz. During operation, the test bed is secured by two safety bearings and a blast
protection. All calculations are performed on an Intel® CoreTM i7-8700 CPU with 3.2 GHz running on a Windows

Motor

Inductive
 sensor

Laser sensors

Bearing
housing

Safety bearings

Bearing
housing

Figure 2: Rotordynamic test bed of the Institute of Mechanik of the University of Technology Graz without blast
protection.

10 operating system using MATLABTM version R2019a. For the experiments, five disks of different weights are
mounted on the shaft. As is illustrated in Figure 3, weights can be mounted on two of these disks, at a radius of
42.5 mm. To maximise the effect of material damping on the rotor-bearing system, external damping is minimized,
by using roller bearings and no external damping elements. Even without mounting unbalance weights, the rotor
is excited by a bow of the shaft. The slow-roll bow is shown in Table 1. NAT is designed for straight rotor-bearing
systems. To show that it also works reasonably well for warped shafts, the initial bow is considered in a simplified
manner: The slow-roll bow is deducted at measurements before the first critical speed. At supercritical speeds,
self-centering of the shaft occurs and the initial bend of the shaft is neglected.

Table 1: Bow of the pre-bent shaft.

Left disk Right disk
Axial position 88 mm 448 mm

Bow 0.08694 mm 0.11108 mm
Angular position 173.91◦ 196.53◦
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Figure 3: Setup of the test bed.

3.2 Rotor model
A mathematical model of the test bed is built with a NAT simulation. The stations of the NAT model are

modelled according to Table 2, where z is the axial position, m the mass of the disks, Θxy the angular mass of the
disk about the x- and y-axis, Θzz the angular mass about the z-axis, cx the bearing stiffness in x-direction, cy the
bearing stiffness in y-direction and d the damping coefficient of the bearing. The cylindrical segments of the rotor

Table 2: Stations of the NAT model
z m Θxy Θzz cx cy d
m kg kg m2 kg m2 N/m N/m Ns/m
0 0 0 0 0 0 0

0.008 0 0 0 282540000 129968400 80
0.012 0 0 0 0 0 0
0.088 2.0200 0.00150 0.0028 0 0 0
0.143 0.1300 2.139× 10−5 3.4589× 10−5 0 0 0
0.268 0.0926 1.297× 10−5 1.9986× 10−5 0 0 0
0.448 2.0200 0.00150 0.0028 0 0 0
0.524 0 0 0 0 0 0
0.528 0 0 0 282540000 129968400 80
0.574 0.6471 0.0020322 0.00034134 0 0 0
0.596 0 0 0 0 0 0

are modelled with a density of 7700 kg/m3, a shear modulus of 8.1× 1011N/m, a shear correction factor of 0.89,
an air damping coefficient of 45 Ns/m and the fractional derivative damping parameters aE0 = 2.2 × 1011N/m,
aE1 = 6.887× 109, bE0 = 0 and αE = 0.3. The unbalance of the test bed is unknown and therefore not included in
the model.

3.3 Eigenfrequencies and mode shapes
As first step, the accuracy of the simulation is investigated by comparing the measured and calculated eigen-

values and mode shapes. Using a recursive search algorithm described in [16] and [17], the eigenvalues of the
system are found at 59.107Hz and 145.483 Hz. As is seen in Figure 4, these values correlate with the measured
excitation of the test bed at the left disk (without any additional weights), although a precise measurement of the
critical speeds is not possible without balancing. The dimensionless mode shapes of the NAT calculation are also
compared to measurements near the critical speeds at the axial positions z = 0.088 m, 0.268 m and 0.448 m in
Figure 5. The NAT calculation of the test bed agrees with the measurements and can be utilized for balancing in
the following experiments.
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Figure 4: Unbalance response due to residual unbalance and initial bow of the rotor.

Figure 5: Comparison of mode shapes: NAT calculation in blue, measurements in red.

3.4 Balancing of 1 mode
For the first balancing test, no unbalance weights are mounted and the rotor is only excited through the ec-

centricity of the shaft and disks. In order to be able to easily compare the proposed balancing technique with
established techniques, the system is balanced below the first eigenvalue. First, the initial vibration of the left
disk is measured at 50 Hz. This is the only measurement necessary for the proposed method, which calculates the
influence coefficients and the balancing weight within a total computation time of 0.019152 s. For comparison,
six trial runs are performed to balance the system with a rigid balancing technique. In Table 3, the results of both
approaches are compared. Both methods lead to similar results, indicating that NAT simulations are capable of
substituting test runs. Mounting a balancing weight of 5.57 g at the left disk at the 356◦ position and at the right
disk at the 328◦ leads to a significant reduction of vibration, as is seen in Figure 6. The amplitude of vibration due
to unbalance at 50 Hz is reduced by 77.4% at the central disk.

3.5 Balancing of 2 modes
In the second balancing test, two modes of the system are balanced. To increase the excitation of the second

mode, additional unbalance weights of 5.57g are mounted on a radius of 42.5mm on the left balancing disk at the
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Figure 6: Balancing success of the first example at the central
disk.

Table 3: Balancing weights of the first ex-
ample

NAT Rigid balancing
Left 4.57 g 5.24 g

355.94◦ 355.32◦

Right 6.31 g 5.57 g
328.04◦ 351.87◦

0◦ position and at the right balancing disk at the 180◦ position. The unbalance response of the test bed is measured
at 50 Hz and 119 Hz. The influence coefficients and balancing weights, shown in Table 4, are calculated with NAT
in 0.030204 s. Mounting the calculated balancing weights on the listed positions leads to a significant reduction of

Table 4: Balancing weights of the second example.

Left disk Right disk
Amount 2.2229 g 10.6788 g
Position 21.205◦ 353.369◦

vibration for the first two modes, as is shown in Figure 7.
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Figure 7: Balancing success of the second example at the left disk.
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The reduction of vibration amplitude is catalogued in Table 5. The remaining vibration is caused to a significant
part by the bow of the shaft, which is not influenced by balancing weights.

Table 5: Reduction of the vibration of the second example.

Left disk Right disk
50 Hz 84.78% 77.29%

128 Hz 77.04% 20.67%

3.6 Next steps
Although NAT assumes a straight rotor, a warped shaft can also be balanced reasonably well, when the initial

bow is considered in a simplified manner. Nevertheless, the research indicates that the balancing success could be
improved when the influence of warped shafts is introduced into the NAT scheme. Further experimental investi-
gations should focus on systems with higher damping to examine the accuracy of the NAT simulation at critical
speeds. Also, the balancing of flexible shafts supported on fluid film bearings using NAT has been performed
only numerically and should be verified experimentally in future research. The influences of bearing pedestals and
foundations are also worth investigating.

4 Conclusion
In this paper, the utility of a model-based balancing approach using the Numerical Assembly Technique (NAT)

has been investigated on a test bed. Eigenvalues and mode shapes calculated with NAT agree with measured
values. In a first balancing test, balancing weights calculated with NAT correspond closely to balancing weights
found using trial runs. In a second balancing test, the first two modes of a rotor-bearing system were successfully
balanced with the proposed method, leading to a reduction of vibration amplitude of up to 84.78%. The proposed
method is very computationally efficient with calculation times below 0.05s to find the influence coefficients and
balancing weights of both experiments. The presented experiments indicate that the proposed method can be
successfully applied to balance flexible rotor-bearing systems without trial runs.
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Abstract
Typically, the dynamic/mechanical analysis of turbomachinery systems is divided into rotordynamics, which

focuses on the shaft-bearing system with simplified blade, disks and beam elements, and blade dynamics, which
deals with isolated bladed disks. This division into two separate sections significantly simplifies the modelling and
calculation effort. It is permissible as long as the natural frequencies of the two subsystems are well separated
and their coupling is sufficiently weak, so that the mutual influence is negligibly small. Recent trends towards
steam turbines with longer blades with lower natural frequencies and lighter rotors with higher natural frequencies
increase the importance of a combined analysis of both subsystems.

In [1] vibration measurement results were presented which show increased blade amplitudes when the rotating
frequency reaches half of the nodal diameter 1 resonance frequency of the blades. At the same time, a signif-
icant dip of the shaft lateral vibrations was observed at the bearings which was not predicted. This implies an
interrelationship between rotor and blade vibrations.

The authors of [1] were able to reproduce these rotor unbalance induced blade vibrations with a numerical sim-
ulation of a coupled rotor-blade-model. As a next step the exact circumstances and conditions, which are responsi-
ble for the described behaviour, have to be determined. In this paper, further investigations on the aforementioned
industrial rotor-blade-model are carried out to gain a better understanding on the effects of rotor-blade-coupling.
The system is used as a starting point to derive the relevant parameters for the observed rotor-blade-interaction.
The findings are then applied to a simplified rotor-blade-model to validate their impact on the systems behaviour.
Besides steady state simulations also transient resonance passages will be investigated.

1 Introduction
Coupling between modes of a bladed disk and the shaft only occurs when the subsystems are able to exchange

energy with each other. Only certain combinations of rotor and blade vibrations comply with this condition.
Following coupling effects are possible for a system with identical and equispaced blades [2]:

1. Torsional shaft vibrations are coupled with a uniform circumferential vibration of the blades with nodal diam-
eter 0 (ND 0).

2. Axial shaft vibrations are coupled with umbrella-like (ND 0) out-of-plane vibrations of the blade row.
3. Flexural lateral shaft vibrations are coupled with ND 1 in-plane vibrations of the blades.
4. Tilting vibrations of the shaft are coupled with ND 1 out-of-plane vibrations of the blades.

Modes with higher blade nodal diameters are not coupled with the shaft vibration. Fig. 1 illustrates case 3. The
amplitude distributions for the first three nodal diameters are plotted for an exemplary bladed disk in individual
blade coordinates and in coordinates fixed at the centre of the disk. Only the ND 1 mode has a mean amplitude
different from zero in the disk coordinate system. The phase shift of 180◦ for opposing blades causes them to
vibrate in the same direction, when viewed from the disk centre. This means the center of mass of the blade row
changes with the blade vibration and therefore has an impact on the overall dynamics of the shaft-blade-system,
the vibrations are coupled. With all higher nodal diameters the individual blade deflections sum up to balance out
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each other again so the dynamics of the shaft are not influenced by higher ND vibrations of the blades. The same
can be shown for case 4. Only when opposing blades vibrate with 180◦ phase shift the individual inertias do not
compensate each other but sum up and cause tilting of the shaft.

The above exactly holds true in the case where all blades are identical. Nevertheless, taking misstuning into
account, the coupling of higher nodel dameter is still negligible.
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Figure 1: First three nodal diameters of a bladed disk in individual blade coordinates and in a disk fixed reference
frame with the axes x and y. The blue and red lines at the blades indicate the direction of positive and negative
deflection in the corresponding blade coordinate system.

Coupled torsional blade-shaft vibrations have been a topic of research for several decades [3]. By now, the
phenomenon is already well understood and guidelines on how to consider it during the design stage of a new
machine are available [4]. Coupled vibrations where tilting and lateral vibrations of the shaft interact with the
blades ND 1 mode however, are still not fully understood and therefore will be investigated further in this paper.
Interesting research on the topic can be found in [5] where blade-shaft coupling and different resonance conditions
are investigated theoretically as well as experimentally, where an active magnet bearing is used as additional
source of excitation. In [6] a calculation approach for simplified rotor-blade-models is presented and applied
which reduces the blade row to the modes that can actually couple with the rotor vibrations.

An important parameter for the coupling between ND 1 blade modes and shaft bending is the stiffness anisotropy
of the bearings and the supporting structure. An unbalanced rotor on isotropic bearings only exhibits a station-
ary deflection for a constant rotation frequency Ω but no vibrating excitation when viewed in a rotating frame.
However, when bearings are anisotropic and the rotor orbit becomes elliptical a backward whirl component oc-
curs in the rotating frame with double the rotation frequency, which can excite the blades [7]. Fig. 2 illustrates
the displacement of the rotor for one revolution of a rotor on anisotropic bearings. It can be seen that the rotor
performs two full periods around a median value during one revolution. [7] recommends to keep the first blade
resonance above twice the operational speed to avoid an additional critical resonance for the blades. For modern
steam turbines this is not always possible and therefore, it is important to study the related effects in order to be
able to assess what significance they have in practice.

In [1] it was shown that the 2Ω excitation is not only relevant to the blade vibrations but also to the shaft
vibrations. When Ω was equal to half of the first ND 1 blade eigenfrequency (ωb

2 ) the blades show a resonance
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Figure 2: Displacement from the origin for one revolution of a rotor with imbalance on anisotropic bearings.
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peak while the shaft exhibits a pronounced dip of vibration amplitudes which indicate a coupling phenomenon
between both subsystems. For this reason, the aim of this paper is to better understand the rotor-blade coupling in
this context and to determine more precisely which conditions are responsible for the behaviour described there.

Simulation Method/Theoretical Approach
The multi-frame approach used in this investigation was first presented in [8]. More details on the theoretical

background can be found there. In [1] detailed information regarding the modelling of the industrial model used
in this investigation can be found. Therefore, the approach is only briefly described and summarized here.

The main difficulty for the simulation of a full model with stator, rotor and bladed disk are the unavoidable
time dependent terms in the system matrices which prevent the application of the conventional methods of linear
rotordynamics. While the stator part with anisotropic bearings and supporting structure can be simply represented
in the inertial frame, the terms related to the blades will become time dependent since the structure with individual
separated blades is not rotational but only cyclic symmetric. On the other hand, in a rotating frame the blades can be
described with constant terms while the anisotropic bearings and supporting components become time dependent.
To minimize the computational effort resulting from this unavoidable time dependency a multi-frame approach is
used. This way, the stator and supporting elements can be defined in a fixed frame while the rotating parts are
defined in a rotating frame. Both frames are coupled at the bearings so the time dependency in the system matrices
only occurs at the linking constraints in the form of time-dependent Lagrange multiplier constraints. However only
translational displacements are considered. Therefore an error is introduced when the actual axis of rotation differs
from the z-axis (axis of rotation of the undeformed rotor). For typical rotordynamic systems this error is usually
small since the shaft vibration amplitudes are small compared to the dimensions of the rotor. To additionally
reduce the computational effort the subsystems can be further reduced via Craig-Bampton method. The dynamic
system is then solved in the time domain with an implicit Newmark scheme. To calculate a steady state response
the rotational frequency is increased stepwise. At each step the amplitude is captured at the bearings and blade tips
after the free vibrations have decayed. The described multi-frame approach is implemented in the Samcef/mecano
solver package, which is used to perform all calculations carried out in this paper.

Industrial Model
Starting point of the investigation is the industrial model shown in [1] which shows significant coupling effects

that were not predicted by conventional models with simplified, stiff disks. The behaviour was also measured
during coast downs of the actual turbo machine. Therefore, this model is a valuable basis for insights into lateral
rotor-blade-coupling. Since the model is a very detailed representation of the complex, real system it features many
parameters which might not be relevant for the observed behaviour. For this reason the number of parameters shall
be reduced to create a simplified model. First, the industrial model and the system parameters will be characterized.
Then a simplified rotor model will be set up which is similar for the relevant parameters. The investigated industrial
rotor is part of a turbo-generator set. Fig. 3 provides an overview of the system. Between bearing no. 5 and 6 a
self synchronizing coupling is located, allowing to decouple the steam turbine part from the gas turbine/generator
part. The steam turbine stator consists of three fluid-film bearings and their supporting structure, the shaft and the
bladed disk which is the last stage of the steam turbine. Unbalances at three locations excite lateral shaft vibrations
mainly in the regime of the second rotor bending mode of the IP/LP rotor. The bladed disk carries 58 blades. Each
blade is represented in a Finite Element model by an identical mesh to avoid numerical mistuning. The strong non-
linear beahviour due to untwist, stress-stiffening and spin softening etc. is considered during the super element
generation for the rotation frequency of 38 Hz which is the most relevant frequency in this investigation.

Fig. 4 shows simulation results for the system. In contrast to [1] cross-coupling of the fluid-film bearings
is negelected here as a first step to reduce the model complexity. Fig. 4 (a) shows the shaft orbits at a bearing
location near ωb

2 . The elongated elliptical shape due to anisotropy is clearly visible. At 38 Hz the orbit gets smaller
and more circle-like. The orbits are not aligned with the system coordinate axes, therefore in the following the
deflection amplitude in direction of the orbit principal axes will be used for better comparability of the different
systems and parameters. In Fig. 4 (b) the deflection amplitudes in direction of the orbit principal axes w and v are
plotted over the rotational frequency. The deflection amplitudes are at an elevated level in a wide frequency range.
The visible peak belongs to the first resonance related to the second shaft bending mode of the IP/LP rotor. Around
38 Hz the impact of the flexible, bladed disk is visible. While the amplitudes of the larger principal axis drop the
amplitude for the smaller principal axis rises. The blade amplitudes show a sharp peak at ωb

2 = 38 Hz.
The system features the following main characteristics:

• ωb

2 lies in a region with high shaft vibration amplitudes, close to the second bending mode of the shaft.
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Figure 3: Outline of the industrial system. The part right of the clutch with bearings 6,7 and 8 is modeled and
investigated in this paper.
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Figure 4: Simulation results for the industrial rotor. (a) Orbits of the rotor node at a bearing location. (b) Steady
state deflection amplitudes ws and vs at a bearing location and wb for a blade tip node. Solid lines represent the
model with flexible blades, dotted lines represent a conventional model.

• High degree of anisotropy for the bearing stiffness, about 1:7 horizontal vs. vertical.
• Soft bearing stiffness compared to shaft stiffness, rotor modes are significantly split.
• Relation of disk to shaft mass is about 1:8.
• Bearings are not identical and have slightly different properties.
• Wide resonance peaks indicate high external damping from the bearings, which is typical for oil-film

bearings.
• Complex, twisted blades with certain stagger angle which causes a mix of in-plane and out-of-plane

vibration.
• Tilting of disk and blades due to their position on the shaft.

Transient Resonance Passages
In addition to the stepwise steady state simulations also transient resonance passages were simulated for the

industrial model. In Fig. 5 the results for different sweep rates are shown. The results for the blade vibration show
the common transient behaviour which can also be observed for linear single degree-of-freedom systems [9]. Faster
sweep rates lead to smaller amplitudes, beating increases for higher sweep rates and results for run up and coast
down are almost similar. However, the situation is different for the bearing vibrations. Significant deviations related
to the resonance crossing direction can be seen. For run-ups the maximum amplitudes are generally higher than
for run-downs with the same gradient and even exceed the steady state amplitude considerably. The general rule of
steadily decreasing amplitudes for increased gradients is also no longer valid here. The maximum bearing vibration
amplitude occurs for 2 Hz/s while faster and slower resonance passages cause smaller maximum amplitudes.

The phenomenon is similar to the TAMS effect (Transient Amplitude Amplification of Mistuned Structures),
which was observed in the context of split double modes in turbine blades [10–12]. Basically, the TAMS effect
describes an amplitude amplification under transient excitation compared to the maximum amplitudes possible
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Figure 5: Calculated transient resonance passages of the industrial model with unbalance induced vibrations for
different sweep rates. Results for the bearing node x̂s,b are in inertial coordinates, results for the blade tip ŵbl node
are in rotating coordinates.

with the same mechanical system under stationary excitation. The reason for this is the excitation of two modes
within a small frequency range during a resonance passage. The vibrations excited by the first resonance passed
are only partially decayed when the second resonance is reached and can lead to the amplitudes subsequently
exceeding the stationary maximum. However while for the TAMS effect two closely spaced modes are excited by
the same engine order excitation, here two widely separated resonances are excited in short time by two different
excitation mechanisms. The rotor related resonance is excited with Ω and the blade dominated resonance is excited
with 2Ω due to the bearing anisotropy.

Sweep rate, frequency distance and damping have a particularly large influence on the transient superposition
of the two excited resonances, as they determine the amplitude and phase position of the induced oscillation. If the
maximum bearing amplitudes of a new rotor-stator system are relevant during the design phase of a new rotor it
may be advisable to use transient simulations as a reference instead of the steady-state solution.

Simplified Rotor-Blade Model
Based on the parameters of the industrial system a simplified model is developed. Like a LAVAL rotor it

consists of a shaft with uniform diameter supported by identical bearings at both ends. The bearings feature a
significant degree of anisotropy and a relatively high stiffness proportional damping value. The rotor is designed
so that the first two bending modes are in the range of 25-50 Hz and significantly split due to the anisotropic
bearings. The bladed disk is attached to the shaft in the middle between both bearings to avoid tilting of the disk
or any movement in axial direction to keep the system simple. The bladed disk carries 10 identical blades with a
rectangular cross-section which are either oriented with a stagger angle of 0◦ or 90◦ (in-plane-blades / out-of-plane
blade). An unbalance is defined at the blade disk centre node to excite lateral shaft vibrations.

The relevant parameters are summarised in the following table:

Table 1: Relevant parameters of the simplified rotor-blade model.
Rotor diameter 50 mm Blade length 215 mm
Rotor length 1.4 m Blade footprint 15x3 mm
Rotor weight 21.2 kg Disk weight 2.24 kg
Bearing stiffness prop. damping 0.002 Step size 0.0001 s
Horiz. bearing stiffness 1 N

µm Vert. bearing stiffness 7 N
µm
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Simulation Results
Fig. 6 shows simulation results for the simplified rotor model with blades attached under 90◦ stagger angle.

In Fig. 6(a) the bearings are isotropic. In this case there is no difference between a model with a flexible bladed
disk and a model where the bladed disk is represented by a simple mass element. The blades show no sign of
vibration at this configuration. In Fig. 6(b) the bearings are distinctly anisotropic. The two rotor modes due to
anisotropy are clearly visible. The blades show a sharp peak in vibration amplitude at ωb

2 ≈ 33Hz. In the same
range the rotor shows significant coupling effects. Similar to the industrial model, the amplitudes of both axes
approach each other. The larger principal axis amplitude drops clearly while the smaller principal axis amplitude
rises slightly. Apart from the clear differences in the vicinity of ωb

2 , there are also slight differences in the range
between the two rotor resonances. Fig. 7 shows the same system with anisotropic bearings but with the blades
attached under 0◦ stagger angle. The length of the blades in the model is ajusted to keep ωb

2 at ≈ 33 Hz. However
no rotor-blade-coupling effect is visible near ωb

2 . Similar to the 90◦ arrangement, only small blade amplitudes
occur in the range of the second rotor resonance at ≈ 45 Hz. The simulations show that the bearing anisotropy
of the unbalanced rotor is the source of excitation for the blades through the rotor-blade-coupling. The lateral
movement of the rotor mainly excites in-plane vibrations and thus mainly affects blades with 90◦ stagger angle,
where the flatwise bending direction coincides with the in-plane vibration direction.

Table 2: Possible cases for the positioning of ωb

2 relative to the neighbouring two rotor eigenfrequencies.
Case 1 ωb

2 ≤ ωr1 ≤ ωr2

Case 2 ωr1 ≤ ωb

2 ≤ ωr2

Case 3 ωr1 ≤ ωr2 ≤ ωb

2

In the following, the impact of the frequency of ωb

2 relative to the nearest rotor resonances is investigated. Table
2 shows the three possible cases. The first one, where ωb

2 is at a lower frequency than the two rotor resonances was
already discussed above. To achieve the frequency shift of ωr1 and ωr2 a mass element is added at the blade disk
centre to lower the rotor eigenfrequencies without influencing the blade resonance. Fig. 8 shows the results for
case 2 and 3. The characteristics of the rotor-blade-coupling change significantly with each case. For case 1 the
amplitudes of the principal orbit axis at Ω ≈ ωb

2 approach each other, with the amplitude of the major principal axis
decreasing and the amplitude of the minor principal axis increasing. For case 3 the behavior is reversed, here the
amplitudes of the principal orbit axis at Ω ≈ ωb

2 separate each other, with the amplitude of the major principal axis
increasing and the amplitude of the minor principal axis decreasing. Case 2 seems to be a combination of the other
two cases. First the maximum amplitude drops and the amplitudes approach each other followed by an amplitude
amplification which even exceeds the overall maximum amplitude of the conventionally modeled system with rigid
disk by a significant amount.

To verify if the observed behaviour can be generalized or if it is specific for this system the same procedure with
added weights is done for the industrial model. In Fig. 9 cases 2 and 3 are shown for the industrial model. Although
for the industrial model ωb

2 interacts with the second bending modes of the rotor instead of the first bending as in
the simplified model, the behaviour is similar. Case 2 shows a amplitude reduction followed by an amplification
and case 3 shows an opposing trend for the amplitudes. Therefore, the different coupling characteristics seem to
be a general phenomenon that does not depend on the respective rotor mode.

From the previous comparisons it follows that certain general conditions change depending on where ωb

2 is
located relative to the rotor resonances which changes the characteristics of the coupling on the rotor orbit. A
possible explanation could be the different relation of the forward and backward whirl portion of the motion which
changes significantly in the different regions. Fig. 10 shows for the conventional model two parameters with
different behaviour in the regions before, after and between the two rotor resonances that could influence the
characteristics of the rotor-blade-coupling. Fig. 10(a) shows the forward and backward component of the elliptical
bearing orbit calculated from the orbits principal axes and the whirl direction [7]. Before the first resonance
the movement is determined almost equally by the forward and the backward part with the forward part slightly
predominating. Between the two rotor related resonances the backward portion exceeds the forward portion and the
rotor performs a backward whirl motion. After the second resonance the backward component drops sharply and
the rotor gets back to a forward whirl motion. Since the backward whirling component is the excitation mechanism
for the blades it is conceivable that its value and relative height compared to the forward whirl component is
relevant.
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(a) (b)
Figure 6: Steady state simulation results for the simple system with (a) stagger angle 90◦, bearing stiffness in x/y:
4/4 N

µm and (b) stagger angle 90◦, bearing stiffness in x/y: 1/7 N
µm . Solid lines represent the model with flexible

blades, dotted lines represent a conventional mode.

Figure 7: Steady state simulation results for stagger angle 0◦, bearing stiffness 1 / 7 N
µm .

Fig. 10(b) shows the orientation of the elliptic orbits at the bearing node and of the disk centre node. The
angle α between the horizontal x-axis and the larger principal axis of the orbit is plotted over the frequency. For
frequencies below the first rotor resonance α is small for both orbits which indicates a nearly aligned, horizontal
orientation of the orbits. With increasing frequency the deviation between both orbits becomes larger. Between
the two rotor resonances the inclination angle rises sharply until the second resonance is reached. The system with
flexible bladed disk shows a sharp peak at ωb

2 which indicates a relation between orbit orientation and coupling
effects. While α reaches its maximum at the bearing node at the second rotor resonances and returns to a horizontal
orientation afterwards the orbit at the disk centre reaches a nearly vertical orientation and remains at these levels
even after the second rotor resonance. Here, again, significant differences can be observed in the relative orbit
orientation at the different frequency ranges before, after and between the two rotor resonances. Depending on the
relative orbit orientation, either one or the other of the axes of the orbits could be stretched or compressed.
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(a) (b)
Figure 8: Deflection amplitude of the principal axes at a bearing node of the simplified rotor model. Weight is
added to the rotor at the disk to shift the rotor dominated resonance relative to the blade dominated resonance
which is fixed at 33.5 Hz. (a) Case 2 with 6 kg added to the rotor. (b) Case 3 with 20 kg added to the rotor.

(a) (b)
Figure 9: Deflection amplitude of the principal axes at a bearing node of the industrial rotor model.Weight is added
to the rotor to shift the rotor dominated resonance relative to the blade dominated resonance which is fixed at 38
Hz. (a) Case 2 with 10 t added to the rotor. (b) Case 3 with 50 t added to the rotor.

(a) (b)
Figure 10: Different system parameters for the simplified rotor with conventional model and 6 kg added to the
rotor (case 2). (a) Forward and backward component of the bearing orbit ellipsis. (b) Orientation of the bearing
and disk centre orbits. α is the angle between the horizontal x-axis and the larger principal axis.
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Possible Future Applications: Online Blade health Monitoring
One difficulty with industrial rotor-blade systems is that the number of sensors for vibration monitoring in

operation is usually severely limited. Typically, only the bearing vibrations are monitored. For this reason, changes
to the blades due to damage or wear are not directly visible to the operator, making efficient maintenance difficult.
However, the rotor-blade coupling opens up possibilities to obtain information about the condition of the blades
indirectly via the bearing vibrations.

In [13] the potential of on-bearing and on-casing vibration measurements is investigated to assess if they can
be used to identify damaged blades. It could be shown that it is possible in limited quantities. However, anisotropy
and the related excitation mechanism is not considered in the simulations. Also the combination of rotor resonance
and ωb

2 is not considered. Near the rotor-dominated resonance the blade influence on the bearing vibrations is much
more severe, as seen in the previous parts of the paper, and therefore changes in the blade vibration parameters are
magnified and better visible. Fig. 11 shows exemplary simulation results where one blade of the simplified model
is mistuned via additional weight at the blade tip. Two distinct dips are visible whereby the lower one, which is to
be attributed to the mistuned blade, is less pronounced. The simulation shows that individual blades with deviating
parameters can be identified through the bearing vibrations and that the rotor-blade coupling effects can provide
an approach for indirect online blade health monitoring. The coupling of the individual blades through the disk
is a limiting factor for this method. For large steam turbines with stiff disks the blades show nearly stand alone
behaviour and therefore should be well suited for this approach.
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Figure 11: Steady state simulation for the simplified model with one mistuned blade (4g added at one blade tip).
(a) Amplitudes at a bearing node. (b) Amplitudes for all blades.

Conclusions
In this paper, the coupling phenomenon between rotor and blade vibrations were investigated with steady-state

and transient simulations of two different systems under unbalance excitation. In particular, the focus was on rotors
with soft bearing stiffness, high degree of anisotropy and high external damping by the bearings, so that half of
the first ND 1 blade eigenfrequency (ωb

2 ) falls into a range of high rotor amplitudes. It could be confirmed that the
cause of the observed rotor-blade-interaction lies in the anisotropy of the bearings. The anisotropy causes an ND1
in-plane vibration of the blades with the frequency of 2Ω. For this vibration the blade row centre of mass deviates
from the geometric centre of the disk and thereby influences the dynamics of the rotor. It was found that the
characteristics of the rotor-blade-coupling significantly depends on the position of ωb

2 relative to the rotor related
split eigenfrequencies. Three cases with different behaviour were identified. Especially when ωb

2 lies between two
rotor natural frequencies, split by high anisotropy, the rotor-blade-coupling should be taken into account since this
setup can lead to an amplitude amplification similar to or even higher than the steady-state amplitudes at the rotor
related resonances. The importance of transient simulations in this context also has been demonstrated. When two
resonances lie in a small frequency range or are excited simultaneously by different effects, like in this case, the
vibrations induced by the first resonance might still be present when the second resonance is reached and therefore
can superimpose in a way that they can even exceed the maximum steady state amplitude.
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Further investigations about the impact of other parameters which are relevant for real industrial systems,
like stagger angle, tilting of the bladed disk or cross-coupling at the bearings are ongoing research. Based on
this, the usability for online monitoring in operation of blade damage or damping behaviour can be evaluated in
the future. In addition, it is planned to validate the simulation approach through comparisons with experimental
measurements.
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Abstract
Turbine blade vibrations are often measured during operation for monitoring purposes as well as during the

design development and for basic research and validation. In this paper the dynamic behaviour of an academic free-
standing bladed disk is investigated at various operating points using both Strain Gauges and Blade Tip Timing
measurements. The blades first bending mode was tested both without and with two different types of nonlinear
underplatform friction dampers at two engine orders. Several excitation forces for the transient resonance passages
were investigated, in order to evaluate the equivalence of the results from both measurement systems. In addition
to the equipment effort, this comparison also includes the assessment of the recorded measurement data. For
this purpose, the individual deflection-stress ratios and their development along the resonance peaks and captured
forced response functions were examined. Additionally, the experimentally determined linear eigenfrequencies
of all blades without the dampers were compared with the results of simulated blade alone frequencies, obtained
from mesh-morphed blade Finite Element models. It is shown that both measurement systems provide comparable
results for engine runs with friction nonlinearities due to the underplatform dampers, along with very good accuracy
during linear testing.

Nomenclature
a sine fitting factors
BA blade alone
d deflection
EO Engine Order
H transfer function
j probe number
MM mesh-morphing
N number of probes
V deflection-stress ratio
θ blisk angular position
σ stress

1 Introduction
During the operation of turbo machines, speed-synchronous or transient disturbances can generate an excita-

tion of the turbine blades. These can result in vibration states that cause damage to the structural parts, e.g. through
high cycle fatigue if the operating speed is too close to a resonance and therefore the blades experience stress above
their limiting strength.
In order to prevent these fatal failures, turbine blades are being meticulously developed and are frequently moni-
tored during operation (see [10], [12]). Measurements support the design process afterwards or during fundamental
research as well as identifying a potentially critical vibration event while operating.
Depending on the application, the most commonly used measurement systems for turbine blade vibrations are
Laser Doppler Vibrometers, Strain Gauges (SG) and Blade Tip Timing (TT). All of the above require distinct se-
tups and generate different measurement variables and data, which is why the usage of more than one can both
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Strain Gauges

Figure 1: CAD model of the evaluated blisk with 40 free-standing blades (left) and schematic view of asymmetric
underplatform friction dampers, as also used by Hoffmann et. al. [5].

support the overall quality of information about the blades dynamics and increase the understanding of each sys-
tem. Several comparisons have already been made between Tip Timing and Laser Doppler Vibrometers (see [6]),
as well as Strain Gauges and Tip Timing (see [4], [9]). Maywald et. al. [7] for example put the focus of their
comparison on mistuning, whereas the other measurements were either applied to real turbine stages or bladed
disks (and blisks) without frictional dampers.
A typical specimen of these are nonlinear underplatform dampers (UPD), which are applied to a turbine blade in
order to decrease its vibration amplitude at resonance by dissipating the kinetic energy. In addition to geomet-
ric blade mistuning, each turbine blade thereby experiences different frictional contact states. Correspondingly,
friction damping at large, as well as the modification to the simulations of such a blisk involving mistuning by
e.g. mesh-morphing is part of current fundamental research. In this paper both effects will be evaluated through
rotating measurements by means of Tip Timing and Strain Gauges.

2 Measurement setup
With the aim of simplification in academia, a turbine stage is often modelled as a blisk with a reduced complex-

ity of the blades geometry. Within this paper the focus lies on the effect of friction damping on the blisks dynamic
behaviour and the Tip Timing and Strain Gauge measurement systems, so that the shape of the free-standing blade
as a simple cantilever beam is sufficient. The CAD model on the left side of Figure 1 depicts the evaluated blisk
with 40 blades, that has already been designed, manufactured, equipped with Strain Gauges and measured in the
course of the joint research program COOREFlex-turbo in the frame of AG Turbo (see [5]), aiming on the predic-
tion of blisk dynamics with frictional damping.
Here two different types of underplatform dampers are used, one with a cylindrical and the other with an asym-
metrical axial cross-section, the latter being shown on the right-hand side of Figure 1. In contrast to the simpler
cylindrical damper this asymmetric shape causes both a larger shift in resonance frequency as well as achieving a
smaller vibration amplitude for small Nodal Diameters while maintaining the same excitation force (see [8]).

vacuum chamber blisk

magnet mounting
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Figure 2: CAD model of the rotational test rig (left) and recorded excitation force spectrum acting on one blade,
resulting from ten circumferentially even distributed magnets (right).
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Figure 3: Condition numbers for the utilized probe positions with highlighted Engine Orders 10 (left) and the
resulting correlation of a least-squares fit per speed over all probes (right) of Blade # 21.

Evenly distributed discrete permanent magnets around the circumference axially excite harmonics of their quantity
in addition to a static offset. The excitation force is captured by calibrated Hall sensors (see [5]). Because of the
imperfect harmonic shape of the magnetic field, this leads to the spectrum shown in Figure 2. The rotational test rig
is furthermore equipped with a vacuum chamber (see Figure 2), which minimizes the possibility of an additional
aerodynamic excitation and ventilation of the blisk.
The hardware and equipment for Strain Gauge measurements is already integrated in the test rig and was tested
extensively in the past. From the actual Strain Gauge glued on the blade roots, the recorded measurement data is
amplified and filtered via a circuit board and then transmitted to the data acquisition system via a slip ring (see
[5]).
All probes of the utilized AGILIS Tip Timing system were attached to a mounting inside the test rigs vacuum
chamber, that allows both a variable circumferential and axial installation of each probe individually. Additional
fixtures ensure the necessary orientation and its precision.
Concerning the analysis of a synchronous vibration the positioning of the Tip Timing probes is primarily of impor-
tance. The geometrically simplest form of positioning the probes evenly distributed around the circumference has
the disadvantage that harmonic oscillations may not be detected during a following least-squares fitting. According
to Diamond and Heyns in [2], the ideal probe positions commonly are calculated via the condition number of the
design matrix, which is a measure for the sensitivity with respect to the positioning.
Since a circumferential Nodal Diameter vibration is assumed, the design matrix can be formed by the relationship
of the resulting displacements dj with the position θj of the j-th probe and the unknown factors of a phase-shifted
sinusoidal function a to


d1
d2
...
dj

 =


1 sin(EO · θ1) cos(EO · θ1)
1 sin(EO · θ2) cos(EO · θ2)

...
1 sin(EO · θj) cos(EO · θj)


a0
a1
a2

 , (j = 1, 2, ..., N). (1)

In order to obtain optimal angular positions, the condition number of the design matrix was minimized by means
of a simple MATLAB algorithm as with Diamond and Heyns in [2]. Figure 3 depicts on the left side the con-
dition numbers for several Engine Orders with the optimized probe positions and EO 10 (highlighted) exhibits a
reasonable value according to instructions from AGILIS. This has proven sufficient accuracy for these results, as
the relatively high correlation of a subsequent least-squares fit in Figure 3 demonstrates for Engine Order 10.

3 Blade allocation
Due to the Strain Gauge placement on each blade root, those individual measurement signals are naturally

assigned to a specific blade number. Contrary to this, the Tip Timing software is only capable of sorting the blades
relative to each other. Accordingly, in order to compare the two systems, at first it is essential to allocate both
Strain Gauge and Tip Timing signals of each individual blade to one another.
Typically this can be archived either via a once per revolution sensor or, if it is not present, a manual processing
like creating an artificially increased reflectance of one tip, e.g. through reflection tape. Since for this measurement
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Figure 4: Normalized peaks of positive deflection every 10 blades in an exemplary stack plot (left) and a single
corresponding milled blade tip (right).

each tip already has been equipped with this tape, due to its improvement of the signal-to-noise ratio, and the used
Tip Timing system not being equipped with an once per revolution sensor, this allocation had to be performed
manually afterwards via the collected measurement data.
First off, through manufacturing the blisk has milled tips on four blades, that are equally spread along its circum-
ference and can easily be identified in a stack plot, where the individual blades steady state deflections are shown
(see [3]). Viewing an exemplary stack plot of the blisk from outside of a resonance (see Figure 4), four evenly
distributed positive outliers in the measurement data are noticeable at every 10th blade. They can be assigned to
the mentioned milled blade tips, so now only four possible Strain Gauge to Tip Timing blade number assignments
are left. In order to complete the allocation, both systems vibration responses were compared against each other
for individual blades. Figure 5 shows the measured transfer functions from Strain Gauge and Tip Timing mea-
surements of four neighbouring blades, where all depicted progressions are clearly distinguishable in both data
sets. Consequently the assignment of the individual blade numbers could easily be achieved. Likewise the relative
allocation of blades by means of the Tip Timing system from AGILIS has proven to be very robust, since the
established mapping rule for this blisk is applicable to mostly all measurements.

4 Measurement results
In order to gain a comprehensive comparison of both measuring systems against each other, two Engine Order

resonance crossings each were measured both linearly without the dampers and with the asymmetric or cylindrical
friction damper at several excitation forces. For this purpose, the comparison is first made using the linear mea-
surements without underplatform dampers, which are then used as a reference for the quality and the influence of
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Figure 5: Individual blade transfer functions without the dampers for both Strain Gauge (left) and Tip Timing data
(right) with easily distinguishable progressions.
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Figure 6: Speed deviation of Tip Timing measurements from the test rig acquisition (left, malfunctioning Strain
Gauges left out) and shifted Tip Timing data, as well as interpolated Strain Gauge data (right) of Blade # 28.

the friction damping on the comparison of both measurement systems in the presence of mistuning. In addition to
the correlation of the transfer functions |H|SG and |H|TT, the deflection-stress ratios of individual blades are also
considered, both during resonance alone and over the speed progression.
The deflection-stress ratio is defined as

V =
dTT

σSG
(2)

and beforehand has been determined for the first bending mode (1F) at V = 2.9 by comparing Laser Doppler
Vibrometer and Strain Gauge measurements at standstill.

4.1 Speed calculation accuracy
An initial examination of the correlation between Tip Timing and Strain Gauge data revealed a speed deviation

of about 0.2% from the measured resonances between both measurement systems, as depicted in Figure 6. Main
reason for this is the limited number of data points per revolution from the Tip Timing at the relatively low oper-
ating speed and comparatively high sweep rate of 0.6RPM

s , so that the calculation time for the Tip Timing speed
may be too high. Contrary to that, the data acquisition of the test rigs speed has a higher resolution per revolution
due to the installed incremental encoder.
In order to prevent polluting the results of the pursued comparison, the Tip Timing measurement data is conse-
quently being shifted relative to its rotational speed. This is carried out by assessing the cross correlation of both
data sets and moving the Tip Timing data by the resulting lags. The consequential transfer functions are shown in
Figure 6, where the initial speed deviation between original Tip Timing and Strain Gauge data can easily be iden-
tified. Likewise the shifted data optically matches the Strain Gauge data, which additionally is spline interpolated
for the subsequent comparison at the Tip Timing sampling points. Therefore all following comparisons are drawn
between the shifted Tip Timing and the interpolated Strain Gauge data. Additionally, the data derived from seven
temporarily malfunctioning Strain Gauges was left out if necessary (e.g. Figure 6).

4.2 Linear free-standing blade
First, in order to validate the measurement in general, the curves of the transfer functions and the deflection-

stress ratio of the linear measurements without dampers are examined. Optically, the transfer functions for both
Engine Orders have the same qualitative progression, as can be seen in Figure 7. Likewise, the beating phenomenon
after the resonance peak due to the transient speed sweep can be seen in this Figure.
If one considers the progress of the deflection-stress ratio along the speed increase for individual blades, attention
is drawn to the fact that it is continuously constant within the range of the resonance peak, and deviations only
are present within the duration of the beat phenomenon after the resonance peak. This is probably due to the
Tip Timing measurement systems internal computation method for the tip deflection from the blades time of
arrival (ToA). Fundamentally though for both crossings the ratio at resonance speed on average is about V = 3.2.
Correspondingly, the Nodal Diameter of the oscillation has no or only very little influence on the blades mode
shape. Any occurring deviations presumably originate from different overall rotational speeds at both Engine
Order resonance crossings.
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Figure 7: Transfer functions of Strain Gauge and Tip Timing data of Blade # 28 without dampers and selected
blade individual deflection-stress ratios for both Engine Order 10 (left) and 20 (right) resonance crossings.

Even without the dampers, every individual blade exhibits a comparatively high spread in its transfer function due
to mistuning, both in terms of amplitude and frequency of the resonance peaks shown in Figure 8. Despite all of
the above, the respective deflection-stress ratio at resonance of the individual blade does not show any significant
deviations (see Figure 8). Thus, as expected, the mode shapes of all turbine blades, represented by their deflection-
stress ratios, are equal, regardless of the present amount of mistuning.

4.3 Nonlinear friction-damped blade
For a further assessment the measurements with the nonlinear underplatform dampers are evaluated. Here, the

main focus is on the comparability of both measurement systems and the effect of the friction damping. Again,
this is primarily considered via the deflection-stress ratio.
If one considers the transfer functions of individual blades in Figure 9, now with a cylindrical underplatform
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Figure 8: Blade individual response functions without the dampers during the Engine Order 10 crossing relative
to the mean resonance speed (left) and the corresponding deviations from the mean deflection-stress ratios at
resonance speed (right).
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Figure 9: Individual blade response functions with a cylindrical friction damper for both Strain Gauge (left) and
Tip Timing data (right) with still distinguishable shapes.

damper, a slightly reduced agreement between both measurement systems is noticeable in relation to Figure 5, but
still all blades clearly can be assigned visually over their progressions along an increasing speed.
When considering the transfer functions for both underplatform dampers of an Engine Order 10 crossing in Fig-
ure 10, it is immediately noticeable that the beating phenomenon (see Figure 7) is no longer present, because of
friction damping and thus a fast decay of the blades eigenfrequency response. Due to the reduced amplitude of the
oscillation by means of friction damping, the signal to noise ratio is larger than without the dampers and there is
no longer a distinct resonance peak, which causes the speed shift of the Tip Timing measurement data to tend to
function less effectively.
As expected, both measurement results with dampers in Figure 10 exhibit a lower deflection-stress ratio in reso-
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Figure 10: Transfer functions of Strain Gauge and Tip Timing data of Blade # 28 and selected blade individual
deflection-stress ratios for an asymmetric (left) and a cylindrical (right) friction damper.
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Figure 11: Normalized transfer functions of an EO 20 crossing with an asymmetric damper of Blade # 28 (left) and
its normalized performance curve with mean and standard deviation values for resonance deflection-stress ratios
(right).

nance than without the dampers, but differ only marginally from each other. This is due to the placement of the
dampers under the blade platform, which reduces the free length of the blade. For both damper types, however the
dissimilar blade stiffening due to the differently shaped contact surfaces therefore currently is negligible for this
consideration.
In order to further evaluate the effect of friction damping, for both damper types the Engine Order 20 resonance
crossings were measured at several magnetic force levels (see Figures 11 and 12). By increasing the excitation
acting on the blade, principally the amplitude rises. This leads to at first a higher friction damping and eventually
a damper, that is slipping (see [1], [8]). On the other hand, the peaks of the associated transfer functions first de-
crease and then, in the case of slipping, converge towards the results without dampers. This process can especially
be seen in Figure 11, where at the left four transfer functions normalized by a reference amplitude are depicted.
Following the increasing excitation, the progression of the transfer function converges towards the resonance speed
without the dampers, as expected when slipping is present. Next to this a performance curve is shown, as presented
by Cameron et. al. in [1] as the (normalized) resonance amplitude against the excitation force, and additionally
the respective deflection-stress ratio. All values are depicted as the mean value along all blades with a functioning
Strain Gauge for one measurement and its standard deviation.
As anticipated, a clear change can be seen in the ratios progression for both dampers in Figures 11 and 12, as the
amplitude rises nonlinearly. Succinctly the ratio first declines and then rises again, with its minimum being roughly
at the same excitation force as the maximally occurring damping, which is represented by the lowest peak of all
transfer functions (see e.g. Figure 11). As stated by Panning et al. [8] cylindrical and asymmetric underplatform
dampers exhibit dissimilar behaviour due to their different mass as well as contact surfaces, which can be observed
when comparing Figures 11 and 12. Also noteworthy is the normalized resonance amplitudes rising standard de-
viation in the case of a slipping damper, as can be seen in Figure 11 for the highest excitation force. Some blades
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Figure 12: Normalized transfer functions of an EO 20 crossing with a cylindrical damper of Blade # 28 (left) and
its normalized performance curve with mean and standard deviation values for resonance deflection-stress ratios
(right).
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Figure 13: Blade individual 1F resonance frequency mistuning pattern measured with Strain Gauges and Tip
Timing and calculated with mesh-morphing (left) and the resulting percentage deviation of mesh-morphing results
against Tip Timing (right).

experience a mostly stuck damper, while others are already slipping, which derives primarily from the structural
mistuning.

5 Comparative blade-alone simulations
Within the scope of another ongoing project at the Institute of Dynamics and Vibration Research (IDS) the

actual geometry of the blisk has been measured at BTU Cottbus with an optical 3D measurement system and the
FE model has been extended accordingly to an as-manufactured model of every blade, which will be discussed by
Strehlau et. al. in [11] as well.
Structural mistuning typically is not considered in a cyclic expansion of a single simulated blisk sector. Mesh-
morphing on the other hand, is a method to circumvent this by using the measured blisk geometry for the gener-
ation of a full Finite Element model (see [11]). For this paper, solely the simulated blade alone frequencies were
evaluated, since only the blades could be measured sufficiently and furthermore the disk can justifiably be assumed
to be rigid. The measured resonance frequencies however are determined by the maximum of the frequency re-
sponse functions peak.
In this paper, only the resulting mistuning pattern in Figure 13 is considered, in order to validate it as the primary
origin of the transfer function scatter (see Figure 8). For both measurement system, as well as the simulation, it
represents each individual blades resonance frequency against the mean value from all blades as an percentage
value.
As expected, there is a qualitatively good agreement of the patterns from Strain Gauge and Tip Timing measure-
ments, the seven non-functioning Strain Gauges were left out for this depiction. Comparing the calculated blade
alone with the Tip Timing mistuning pattern, a distinct agreement likewise is noticeable. The deviation of the cal-
culated from the measured pattern in regard to a tuned case (value 1) is relatively low with a maximum deviation
of ±0.5% (see Figure 13). Thus, this correlation now can validate the geometric mistuning as the fundamental
reason for the scatter of the transfer functions without the dampers.

6 Conclusion
The implementation effort of a tip timing system is relatively low, but attention must be paid not only to the

positioning of the probes, but also to a potentially manual blade allocation and an alignment with other measure-
ment equipment, e.g. like the utilized speed encoder or Strain Gauges.
Despite the scattering of the transfer functions due to mistuning, the progression along the two Engine Order
crossings considered without the dampers shows very good correlation between the measurement results of Strain
Gauges and Tip Timing in both instances.
Similarly, the nonlinear results for both types of underplatform dampers still show a sufficiently good agreement,
and the effect due to the slipping of the dampers can also be represented using both measurement systems. Con-
sidering the deflection-stress ratio, the mode shapes change as expected.
Finally the blade alone frequencies, obtained by means of mesh-morphing, display approximately the same mistun-
ing pattern as the results without the dampers from both measurement systems and can thus indicate geometrical
mistuning as the main cause for the spread of the linear transfer functions from individual blades without dampers,
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as long as the blade-alone estimation is valid.
Summarising the above, it is shown that both measurement systems provide comparable results for engine runs
with friction nonlinearities due to the underplatform dampers, along with very good accuracy during linear test-
ing. Likewise, the mesh-morphed blade models are able to represent the trend of the measured mistuning pattern
adequately.
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Abstract 
Unavoidable geometric uncertainties due to the manufacturing process could significantly affect the dynamic 

properties of bladed disks and of blade integrated disks (blisks). These small geometric deviations from the design 
intention are known as mistuning. Consequently, the rotor blades are featuring different eigenfrequencies, which 
could possibly affect the safety and reliability of the engine. This work focuses on identifying blade geometry 
mistuning and investigates the effect of geometric mistuning on blade eigenfrequencies. The geometry of a blisk 
with 40 blades is captured by optical geometric measurement and computation models are generated from the 
measured point cloud. A mesh-morphing procedure is carried out to generate new FE-meshes for each individual 
blade. The frequency mistuning pattern of the first bending mode (1F) is calculated for morphed blade models, 
using Finite Element Analysis (FEA). Additionally, the deviation from the nominal geometry is represented by 
means of principal components analysis (PCA), in which the geometric deviation can be represented by several 
uncorrelated geometric mistuning modes (GMM). The computed mistuning distributions, calculated with FEA and 
with the PCA-GMM method are compared to experimental tip-timing results. 

1   Introduction 
In addition to the advantage of weight savings, the use of blade integrated disks (blisks) has the disadvantage 

of an adverse structural dynamic behaviour compared to compressor disks using conventionally connected blades 
for instance with fir tree profiles [Bei2008, Nip2011]. The reason for this specific behaviour is the lack of friction 
damping, which already facilitates high forced responses by itself. Moreover, the response magnifying effect of 
mistuning may worsen. Remarkably severe magnifications of the maximum forced response up to a factor of five 
have been reported by Whitehead [Whi1998] and Petrov and Ewins [Pet2003]. An overview of the phenomenon 
has been published by Castanier and Pierre [Cas2006]. In order to ensure a safe operation of these components, 
the knowledge of their structural dynamic behaviour is very important. The mistuning effect is induced by two 
main reasons, material inhomogeneities and geometrical deviations. The latter becomes more and more important 
during operation due to wear and abrasion [Kla2008].  

The geometrical reasons for a blade individual behaviour are addressed in this paper. An optical 3d-geometry 
measurement of the academic blisk is carried out and the resulting point cloud is foundation for the two evaluation 
methods. Firstly, a mesh morphing procedure of a design FE-model provides a geometrically updated FE-model 
of the blisk, which is employed to compute the mistuning pattern of the first flap mode. Similar approaches are 
presented in [Sch2009, Str2011, Kas2018, May2017]. Secondly, a PCA (Principle Component Analysis) and 
GMM (Geometric Mistuning Modes) method is presented in order to compute the mistuning pattern of the first 
flap mode. Similar approaches are presented in [Sin2008, Pop2015, Car2018]. Numerical results of both 
approaches are compared and the correlation with tip-timing measurement data is considered.  

The subject of investigation is a test blisk with 40 blades, serving as a test blisk at the Institute of Dynamics 
and Vibration Research, Leibniz University of Hannover. This blisk has been procured primarily for damping tests 
and is milled from solid and equipped with strain gauges on each blade (Figure 1) [Hof2020]. 
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Figure 1: Test blisk of the Institute of Dynamics and Vibration Research (IDS), Leibniz University of Hannover. 

2   3D-geometry measurement 
Production-related deviations are the most frequent cause of mistuning of newly manufactured blisks. In order 

to capture these often very small differences in the blade shapes, a 3d geometry measurement is suitable. The 
digitisation of a real measurement object requires a careful procedure in several steps. 

2.1 Preparation 
In order to ensure a good handling of the measurement object during the measurement process, a mounting is 

designed, that supports the blisk and provides the connection to the used turntable. Optical reference points are 
also needed for the measurement. These are glued on a frame in order to increase the accuracy when assembling 
the different 3d-scans. Figure 2 shows a CAD model of the nominal perfectly cyclic blisk and a photo of the 
measurement object with its mounting and reference frame.  

Figure 2: Blisk and mounting; CAD-model (left), photo of measurement setup (right) 

2.2 Digitisation-blue light fringe projection 
The digitisation takes place in two steps. First step is the photogrammetry. For this purpose, two calibrated 

reference bars and coded reference marks are placed in the measurement environment. By means of the reference 
bars the absolute position of the coded marks are known to the measurement software. In this way, the uncoded 
marks, that are placed on the reference frame and the blisk itself are recognisable for the digitalisation software. 
More than 600 photos from different perspectives around the object were taken to ensure that all of about 2,000 
reference marks are recognised by the digitisation software. 

The surface scan was conducted using a blue light fringe projection with 1,165 different perspectives. In this 
manner an almost closed surface was digitised. Some regions with a poor optical accessibility, especially at the 
damper pockets, could not be digitised and had to be extrapolated in these areas after the scanning process. Figure 
3 shows an example of a typical repair region with a poor optical accessibility. 
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Figure 3: Measured surface in damper pocket area before (left) and extrapolation (right). 

In order to get an impression of the measured and repaired surface a best fit (least square method) comparison 
of the measured surface and the tuned CAD geometry is carried out. Areas which do not correspond to the CAD 
model, especially regions with strain gauges including their cabling and its bonding are excluded from the best-fit 
calculation. The result is shown in Figure 4. Strain gauges are clearly visible and all blades show a significant 
twist along the longitudinal axis with respect to the nominal geometry. Also, tool marks are clearly recognisable 
(Figure 5). However, a local best-fit on a blade surface is calculated for this. 

Figure 4: Real-geometry compared with CAD-geometry in a best-fit of all blades in two perspectives 
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Figure 5: Real-geometry compared with CAD-geometry in a local best-fit on surface of one blade 

3   Computation of models with mistuned geometry properties 
In order to create a numerical model from measured blade-specific geometry properties, two different paths 

are chosen. Firstly, a tuned FE-model of the whole blisk is the basis for a morphing process. The characteristics of 
the morphed and thus mistuned FE-model are captured by computational modal analysis. Secondly, an FE sector 
model of the blisk is used for a PCA (Principle Component Analysis) in conjunction with a GMM (Geometric 
Mistuning Modes)-analysis.  

3.1 Generation of the geometrically mistuned FE-model of the whole blisk 
In order to get a calculation model of the measured blisk, an FE-model based on the CAD geometry of one 

sector is created. One sector (Figure 6) is meshed and its two sector boundaries feature the same node architecture. 
This single sector model is patterned and the 40 sectors are merged, to create a model of the whole blisk. It consists 
of about 4.7 million quadratic tetrahedral elements and almost 7.2 million nodes. The measured point cloud and 
the FE-model of the whole blisk have to be aligned. 

Figure 6: FE-model of one sector 

Each FE-node at the surface in the blade area of the CAD-based whole blisk FE-model is moved into a plane 
constructed by vectors in the measured point cloud (Figure 7). Firstly, the ten closest neighbours (blue dots in 
Figure 7) of each FE-node to be morphed are searched in the measured point cloud (black dots). Then nine vectors 
are formed, each starting from the nearest neighbour to the nine remaining neighbours. Two of these vectors, 
usually one of the longest and one of the shortest vectors, are used to define the plane, in which the FE-node is 
moved. Both vectors have to fulfil the constraint, that the angle between them is greater than 20° and less than 
160° (black arrows in Figure 7). If this constraint is violated, another combination of vectors gets checked with 
regard to a sufficient linear independence. The scalar product between the normal vector of the plane and the vector 
between FE-node and nearest neighbour in the point cloud defines the length of the shift of the FE node in the 
plane-normal direction (purple arrow in Figure 7). In this way each FE-node is moved by the shortest distance to 
the plane defined by the nearest neighbour points of the measured cloud. 
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Figure 7: Artificially generated projection plane for morphing process 

The FE-model of the whole blisk, generated in the descripted way, reflects the geometry with strain gauges, 
cables and its bondings. However, the material properties of these added parts are difficult to evaluate and even if 
they were known, the assignment to the individual elements in the FE-model would only be possible imprecisely. 
Therefore, these elements are removed from the measured point cloud. For this purpose, the areas covered with 
strain gauges, cables and duct tape are cut out and the resulting holes are filled using locally adapted CAD surfaces, 
which are sewn to the remaining point cloud. The result is shown exemplarily for one strain gauge in Figure 8. 
Although a FE-model created with this approach does not represent the real blisk vibration behaviour, it 
presumably shows the smallest inaccuracy, in comparison to the strain gauge influence. With the help of this FE- 
model, blade individual frequencies are calculated. The results are shown in section 4. 

Figure 8: Measured STL-mesh original (left), with removed strain gauges (right) 

3.2 PCA and geometric mistuning modes 
To capture the geometrical mistuning due to manufacturing effects, PCA (Principle Component Analysis) is 

applied to the measured blade geometries [Sin2008]. In this step, the surface geometry 𝑆 of nominal blade and 
surface geometries 𝑆′ of real blades are compared. The geometries of real blades can be represented by the in 
section 3.1 morphed FE-models, because the comparison results in section 5 show that the eigenfrequencies of 
real blades can be represented by morphed FE-models equivalently. 
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Figure 9: Projection in normal direction 

In order to reduce the data dimension, the geometrical mistuning between 𝑆 and 𝑆′ is assumed to be dominated 
by the thickness variation [Car2018]. Under this assumption, a normal projection procedure is adopted (Figure 9). 
Each FE-node 𝑃𝑖  of nominal blade surface 𝑆 is projected into the real blade surface 𝑆′. The projected point is 𝑄𝑖  
and the projection direction is the local normal direction 𝒏𝑖 of FE-node 𝑃𝑖 . 

The normal vector 𝒏𝑖 is calculated based on the existing unmorphed FE-mesh as shown in Figure 6. Finding 
the projection 𝑄𝑖  is carried out in following steps. Firstly, three nonaligned candidate FE-nodes 𝐴, 𝐵 and 𝐶 on 
surface 𝑆′ are selected. Then the normal vector 𝒏𝑖 can be represented by linear combination of three independent 
vectors, as descripted in Eq.(1). 

[𝒓𝑃𝑖𝐴, 𝒓𝑃𝑖𝐵, 𝒓𝑃𝑖𝐶] [
𝑎
𝑏
𝑐

] = 𝒏𝑖 (1)

Here 𝒓𝑃𝑖𝐴 ,  𝒓𝑃𝑖𝐴  and , 𝒓𝑃𝑖𝐶  represent the vectors from 𝑃𝑖  to 𝐴 , B and C in global coordinate system, 
respectively. If all the combination coefficients have the same sign (i.e. 𝑎, 𝑏, 𝑐 ≥ 0 or 𝑎, 𝑏, 𝑐 ≤ 0), the projected 
point 𝑄𝑖  lies within the triangle △ 𝐴𝐵𝐶. The selected candidate points will then be retained for calculation in the 
next step. Otherwise, a new set of candidate points will be generated. The coordinates of a projected point 𝑄𝑖  can 
be obtained by two other equations: 

(1) 𝑄𝑖  is in the plane defined by 𝐴, 𝐵 and 𝐶

[𝒓𝐴𝐵, 𝒓𝐴𝐶] [
𝛼
𝛽] = 𝒓𝐴𝑄𝑖

(2)

(2) 𝑄𝑖  is in the line defined by normal vector 𝒏𝑖.
𝒓𝑃𝑖𝑄𝑖

= 𝜆𝒏𝑖 (3)

applying the geometrical relation 𝒓𝐴𝑄𝑖
= 𝒓𝐴𝑃𝑖

+ 𝒓𝑃𝑖𝑄𝑖
, the unknown variables 𝛼, 𝛽 and 𝜆 can be solved by 

Eq.(4). The coordinates of 𝑄𝑖  are given by 𝒓𝑄𝑖
= 𝒓𝑃𝑖

+ 𝜆𝒏𝑖 and the normal distance 𝑑𝑖 = ‖𝒓𝑃𝑖
− 𝒓𝑄𝑖

‖. 

[𝒓𝐴𝐵 , 𝒓𝐴𝐶 , −𝒏𝑖] [

𝛼
𝛽
𝜆

] = 𝒓𝐴𝑃𝑖
(4)

The procedure mentioned above is repeated for all FE-nodes 𝑃𝑖 , 𝑖 = 1, … , 𝑁 in the nominal blade surface and 
for all morphed blade surfaces 𝑆𝑗

′, 𝑗 = 1, … ,40. Eq. (5) shows the deviation matrix 𝑫, where the column 𝒅𝑗 =

[𝑑1𝑗 , 𝑑2𝑗 , … , 𝑑𝑁𝑗]
𝑇
 represents the normal deviations between nominal blade surface and the 𝑗-th morphed blade 

surface. 

𝑫 = [

| | ⋯ |
𝒅1 𝒅2 ⋯ 𝒅40

| | ⋯ |
] (5)
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According to PCA, each column of matrix 𝑫 is subtracted from the column mean �̅� and the resulting matrix 𝑿 
is decomposed using SVD (singular value decomposition). 

𝑿 = [

| | ⋯ |

𝒅1 − �̅� 𝒅2 − �̅� ⋯ 𝒅40

| | ⋯ |

− �̅�] = 𝑼𝜮𝑽𝑇 . (6)

Here �̅� represents the mean geometrical deviation of all 40 morphed blades relative to the nominal one, as 
shown in Figure 10 (left). Red regions and blue regions in the contour plot represent positive and negative 
deviations along the local normal direction, respectively. Figure 10 shows that the average blade geometry reflects 
a twist-dominated geometrical mismatch. 

Figure 10: Average blade geometry (left) and singular values (right) 

3.3 Comparison FEM-Mistuning / PCA&GMM-Mistuning 
According to PCA, the matrix 𝑼 in Eq. (6) expands the column space of deviation matrix 𝑫. Thus, the columns 

of 𝑼 can be regarded as geometric mistuning modes (GMM) included in the data set. The diagonal elements in the 
singular value matrix 𝚺 represent the participation amplitude of each geometric mistuning mode as shown in 
Figure 10 (right). The first few modes have greater singular values and represent the most common geometric 
mismatches which almost all blades experience, such as thickness variation and twist, as shown in Figure 11 (left). 
On the contrary, the mismatches represented by modes of higher order reflect more individual features which 
happen only to some of the blades, as shown in Figure 11 (right). They are of less importance compared to the first 
few modes. In order to reduce the dimension of the problem and to focus on the main mistuning features, a 
truncated set of 26 GMMs can be selected according to Eq. (7).  

∑|𝜎𝑗|

𝑡𝑟

𝑗=1

≥ 0.9 ∑|𝜎𝑗|

40

𝑗=1

⇒ 𝑡𝑟 = 26 (7)

�̃� = [

|

�̅�
|

] [1,1, … ,1] + 𝑼𝑡𝑟𝜮𝑡𝑟𝑽𝑡𝑟
𝑇 = [

| | ⋯ |

�̃�1 �̃�2 ⋯ �̃�40

| | ⋯ |

] (8)
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Figure 11: The first 6 geometric mistuning modes (left) and the last 6 geometric mistuning modes (right) 

After truncation the deviation matrix 𝑫 can be approximated by �̃� in Eq.(8) which contains a less number of 
modes. Applying �̃�𝑗( 𝑗 = 1, … ,40) as pre-defined normal deviation, it is possible to reconstruct a set of blades in 
which only the dominated geometric mismatches are considered. The reconstruction procedure requires a further 
stiffness-based mesh-morphing which is explained in [Car2018]. Figure 12 shows the percentage error in first flap 
eigenfrequency using truncated GMM set. The error is small for all blades and it is thus sufficient to use the first 
26 GMMs to represent the modal behaviour of geometric mistuned blades 

Figure 12: Percentage error of first flap eigenfrequencies using truncated GMM set 

4   Comparison calculation results and tip-timing results 
In this section the blade individual frequencies of the first flap mode of both calculation methods (the directly 

morphed FE-model and the model created with PCA-GMM-method) and the blade resonance frequencies 
measured in rig-tests by tip-timing are compared. Information regarding the tip-timing measurement can be found 
in [Bri2023].   

Figure 13 shows the frequency distributions of the 40 blades in relation to their respective mean values. The 
deviation between both calculated results, correlate well, the differences are quite small. In contrast the tip-timing 
measurement results of the frequency mistuning distribution show bigger differences compared to the calculation 
results. Reasons for these differences are probably caused in editing the measured geometry point cloud. The 
removal of the strain gauges and the repair of several areas with poor optical accessibility are sources of 
inaccuracies and may lead to a random geometrical mismatch of the measured point cloud. The errors introduced 
in this way continue in the further processing of the morphed FE-meshes. Another reason for differences is the 
rotational speed, that is not considered in the calculations.   

Paper-ID 66 176



9 Paper ID-66 

Figure 13: Frequency mistuning distribution, calculated (PCA, FEM) and measured via tip timing 

5   Conclusion 
Two different approaches are shown in this paper in order to create models for calculating blade individual 

frequencies of the first blade mode from a point cloud based on a 3d measurement. It is found that the differences 
between both computational models, on the one hand the directly morphed full FE-model and on the other hand 
the model generated by PCA (Principal Component Analysis) and GMM (Geometric Mistuning Modes) are quite 
small. Starting from the same measured and processed point cloud of the blisk, various morphing algorithms as 
well as the reduction of the computational effort of the PCA-GMM method have low impact on the calculation 
result of the blade individual frequencies of the first flap mode. In contrast, the differences between the calculation 
models and the tip-timing measurement are greater, even if the mistuning range and the rough shape of the 
mistuning pattern are well comparable. Especially the retouching of the strain gauges with their cables etc. as well 
as the manual insertion of the replacement surfaces probably leads to inaccuracies. Furthermore, the calculation 
results are generated with stationary systems and thus dynamic effects (stiffness) of the rotating system, with which 
the measurement results are generated via tip-timing, are not included und increase the uncertainty. Possible 
material inhomogeneities are not taken into account in the calculation model. The work should be repeated with a 
measurement object that requires a reduced amount of post-processing and thus eliminates the probably most 
important uncertainty.  
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Abstract 
Nowadays, supercritical carbon dioxide (S-CO2) cycles are of great interest in the scientific research especially 

considering the energy transition that is occurring. The S-CO2 high density and relatively low viscosity make it 
an interesting fluid for power generation. For large heat sources, large flowrates of fluid can be obtained. Therefore, 
the development of axial flow expanders can allow large power generations.  

In the presence of rotor eccentricities, the aerodynamic loading of free-standing blades is not constant 
tangentially and will promote the lateral vibration of the rotor. The dynamic phenomenon that arises is known as 
Thomas-Alford force. The Thomas-Alford force determines an increase of the vibration level of the machine and 
a higher risk of instabilities.  

In this paper, a preliminary investigation of a S-CO2 axial expander stage is performed. Different correlations 
proposed in the literature are adopted to estimate the magnitude of the Thomas-Alford force. A mono-dimensional 
code and a simplified computational fluid dynamics (CFD) model are adopted to obtain the parameters of the stage 
considered. In this preliminary investigation, only free-standing blades are considered.  

The results obtained show a good agreement between 1D and CFD inputs required by the different correlation 
used. Despite this, the cross coupled stiffness calculated are widely dependent on the correlation used; then, this 
study can be considered as the starting point for more detailed investigations validating the correlations behavior 
in this environment through an unsteady CFD and/or a proper test campaign.  

1   Introduction 
In the energy transition and decarbonization perspective, scientific research is focusing more and more on 

renewable energy sources. Among the others, supercritical carbon dioxide (S-CO2) cycles are of great interest.  
As reported in [1], S-CO2 cycles have a wide range of applications. They can be considered as a substitute for 

the water Rankine cycles in nuclear and fossil fuels power plants or they can be also applied to Waste Heat 
Recovery applications [9]. S-CO2 cycles can also be applied with renewable energy sources like the geothermal 
and the solar ones [10]. As for the fluids used in organic Rankine cycles (ORCs), S-CO2 is characterized by large 
density and low viscosity. The big advantage of S-CO2 is that is not flammable, not toxic, and has a much lower 
impact on the environment than most of the gases used for ORCs.  

Typically, the power generation for Waste Heat Recovery cycles is performed by radial expanders. However, 
if large heat sources are available, there may be the possibility to process larger flowrates of working fluid to 
generate more power. For this reason, there is a great interest in developing axial expanders. However, due to the 
large flowrates and physical properties of the S-CO2, the blades will need to sustain large aerodynamic loading. 
If free-standing blades are considered, a small eccentricity of the shaft with respect to the casing would determine 
a non-homogenous tangential distribution of clearance. As a result, the blades will be non-homogeneously loaded. 
Eventually, the inhomogeneity of the load causes unsteady forces orthogonal to the defection which promotes the 
vibration of the shaft and increases the risk of instabilities. This phenomenon is known as Alford force in the 
literature. Actually, it was first investigated by Thomas [19] in 1958 for axial turbines and then by Alford [2] in 
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1965 for axial compressors (indeed, for turbomachinery in general). Most of the papers of Thomas were written 
in German, and were not popular in the United States, so the phenomenon started to be named in the English 
literature as “Alford force”. 

As reported in [18], the model proposed by Thomas for turbines is generally accepted. In the case of an 
eccentricity as that shown in Figure 1, the effect of the horizontal force 

xF  can be modeled by means of as a cross 
coupled stiffness 

xyK : 

x

xy

p

F T
K

Y D h


= =

+
 (1) 

where Y+  is the shaft deflection, T  is the stage torque, 
pD  is the mean diameter and h  is the blade height. 

Parameter  was introduced by Alford as the change in the thermodynamic efficiency but now is considered as 
an empirical factor to match computational predictions with experimental data. For turbines, generally 1 5  , 
[18]. 

Figure 1: Schematic representation of whirling rotor. 

Different models regarding axial compressors are present in the literature. 
Ehrich et al. proposed the parallel compressor model, [6], where the shaft whirling is neglected and a static 

eccentricity is considered instead. The circumferential evolution of the clearance is considered half at minimum 
clearance and half at maximum clearance. 

Spakovszky et al. in [17] considered the non-stationary motion of the shaft for which a complex fluid model is 
adopted to extract the flow quantities necessary for the evaluation of the Alford force. 

Song and Cho in [14] presented a model to evaluate the rotodynamic forces in a compressor generated by non-
uniform tip clearance. The model is based on the analysis presented by Song and Martinez-Sanchez in [15,16] 
developed for axial turbines and on the experimental campaign presented in [11] and is based on the “actuator 
disk” approach. The modeling of the flow in the clearance region is also necessary. 

More recently, Pan et al. in [12,13] investigated with Computational Fluid Dynamics (CFD) the dynamic forces 
acting on an off-centered un-shrouded axial steam turbine. The authors also investigated the shape of the tip of the 
blade and the clearance on the dynamic forcing. In [3], the authors proposed a CFD study on the first stage of a 
high-pressure steam turbine focused on the effect of the shroud and labyrinth seals. 

In [8], Ehrich et al. compared the results obtained with the previously mentioned models with experimental 
results obtained with a testbench recreating the operation of an axial compressor.  

A similar phenomenon happens also in the case of shrouded blades. As reported by Alford [2], the shaft orbiting 
causes a tangential non-homogeneous distribution of pressure inside the seal that eventually worsen the orbiting 
phenomenon. Similar conclusions are reported by Ehrich et al. in [7]. More recently, CFD was applied to study 
the effect of dry gas seal of radial expanders for S-CO2 applications, [20,22,23]. In [21], the authors investigated 
the effect of the length, depth, and number of teeth on the performance of a labyrinth seal for S-CO2 applications. 
In [4,5], the authors presented a detailed study on the effect of shroud seals on the fluid flow of an axial S-CO2 
turbine stage. 

180



Paper-ID 81 

Regarding the blade aerodynamic forcing, most of the research present in the literature focused on axial 
compressors since they are more sensible to instabilities than turbines. However, the physical properties of S-CO2 
are very different from those of the gases usually processed in axial expanders. The aerodynamic loading exerted 
by the S-CO2 on the blades can be significantly higher than the one exerted by steam. Therefore, it is worth to 
address this topic in the design of the axial turbine for S-CO2 cycles. 

In this paper, a stage of an axial expander for S-CO2 is considered. The stage parameters are extracted with 
two approaches. At first, a simplified mono-dimensional model based on the mean line approach is applied; then, 
a CFD model of the blade channel is used along with the simulation of the leakage flow at the tip of the blade. In 
Section 2, the models used for the evaluation of the stage parameters are introduced together with the correlations 
adopted to evaluate the Alford force. The results obtained are reported and discussed in Sections 3 and 4 
respectively. The prediction of the Alford forces is partially affected by the model selected for the evaluation of 
the stage parameters (1D and CFD are almost aligned) and, above all, by the correlation used. Finally, the 
conclusion are drawn in Section 5. 

The results reported in this paper highlight the necessity to further investigate the phenomenon at least for a 
validation of the correlation that is more accurate for S-CO2 application. However, also more sophisticated models 
to extract the stage parameters will be helpful in improving the estimation of the Alford force. Another approach, 
in the short term and beyond a test case with the required geometric and thermodynamics conditions, could be to 
address this subject as a sensitivity analysis on a full rotor behavior to evaluate if the instability risk is avoided 
even with the most – conservative correlation that provide the worst cross – coupled stiffness. 

2   Materials and Methods 

2.1 Stage parameters 
The investigation is focused on a stage of an axial turbine for S-CO2 applications. A simplified meridional 

view of the flow path is shown in Figure 2. 

Figure 2: Stage 2D schematization. 
The outer and inner diameters are respectively outD  and inD , h is the rotor blade height and cl is the radial 

tip clearance between the rotor blade and the shroud casing. The mean diameter 
pD is calculated as: 

,2 2p in

h
D D= +  (2) 

The rotor blade is unshrouded. The analysis is carried out at five different levels of clearance. The percent 
increments with respect to the nominal clearance ( 1cl ) are listed in Table 1. 

Table 1: Dimensionless levels of rotor blade clearance considered for analysis. 

1cl 2cl 3cl 4cl 5cl

1 1.24 1.42 1.61 1.79 
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2.2 1D model 
At first, the analysis is carried out at mean-line level. A 1D code works on a single geometric streamline, the 

mean-line, where it solves the velocity triangles of a turbine stage by means of loss and deviation correlations. The 
losses of the row are estimated together with the turn efficiency considering different loss mechanisms. Clearly, 
blade geometry is reduced to a short set of parameters complemented by default rules.  

The total-to-total pressure ratio is considered fixed for the 5 levels of tip clearance reported in Table 1. The tip 
clearance is assumed uniform tangentially. The 1D model returns the estimated performance of the stage at the 
design point ( 1cl ) and at the four off-design conditions ( 2 5cl cl− ). The outputs include the torque generated by the 
rotor blading which serves as input for all the models presented in the first paragraph. The information made 
available by the 1D code provides a measure of the efficiency penalty and of the power/torque reduction as a 
function of the tip clearance. 

Therefore, the underlying assumption for the subsequent rotor dynamic analysis is that the outputs of those 
five runs are to be merged to model a unique non-uniform tangential distribution of torque. Considering the highly 
unsteady nature and tangential non-uniformity of the investigated phenomenon, this is of course a significant 
simplification to be validated by more complex modelling strategies. 

Two more assumptions need to be introduced. The fluid is treated as a semi-perfect gas. The approximation on 
the evaluation of the thermodynamic properties with respect to a rigorous real fluid modelling is negligible 
considering the narrow thermodynamic space covered by the expansion of a single stage and the wide margin from 
the phase transition guaranteed by the highly supercritical conditions imposed by the cycle. The second assumption 
is on the secondary flows. Given the purpose of this assessment, neither wheel space nor shroud cavities are 
included in the calculation domain to avoid unnecessary complexity for the 3D CFD analysis and not to taint the 
evidences related to the investigated phenomenon. 

2.3 CFD model 
The same approach and assumptions of the 1D model are adopted for the 3D CFD analysis carried. The 

commercial code ANSYS CFX is selected for the analysis. For each tip clearance level, a RANS (Reynolds-
averaged Navier Stokes) simulation is run. 

The single-block grids (OH type) are realized in Numeca AutoGridTM environment and are then imported in 
ANSYS CFX. The mesh, with more than 1.5 million elements for both stator and rotor, is built to comply with all 
the standard quality metrics. The clearance region above the blade tip is meshed with a number of cells in the 
radial direction proportional to the opening itself (increasing from 1cl  to 5cl ) as the blade is of the unshrouded 
type. Boundary conditions and fluid modelling are the same of the 1D model setup. The selected turbulence model, 
common to all the cases, is the SST K-Omega, typical option for gas turbine CFD simulations. This model 
combines the advantages of the K-Epsilon for the free-stream region with those of the K-Omega for the resolution 
of the boundary layer. Therefore, it offers a good prediction of flow separation and the ability to account for the 
transport of the principal shear stress in adverse pressure gradient boundary layers. The turbulence model selection 
is not expected to significantly affect the analysis results provided that the turbulence properties are correctly 
initialized. A medium level of turbulence intensity is applied as a boundary condition for all the investigated cases. 
Furthermore, the presence of the meshed clearance (symmetric or asymmetric) region above the blade tip is not 
driving the turbulence model selection as SST K-Omega is expected to return accurate results in any near-wall 
regions, blade tip included. 

In summary, the analysis setup fully adheres to the standard template adopted for CFD analysis on gas turbines. 
3D CFD enables the detailed assessment of the flow field of the tip clearance. The information extracted from 

the simulation post processing is anyway the overall torque of the stage, as required by all the correlations 
evaluating Alford forces. 

2.4 Correlations 
The dimensionless stage torques obtained for the different clearances of the rotor blade, and used to feed the 

correlations, are presented in Figure 3. Dimensionless torques is obtained by normalizing the dimensional torque 
by the value obtained for 1cl . 

The Alford correlation has been shown in Equation (1). The cross-coupled stiffness coefficient 
xyK  is evaluated 

for different values of the parameter  . 
In [6] the parallel compressor model is introduced. The static eccentricity 𝑌 is considered and the whirling 

motion is neglected. The tangential distribution of clearance is simplified as shown in Figure 4. Half the rotor has 
the minimum radial clearance ( 1cl ). The other half has the maximum radial clearance ( 5cl ). 

In [6], Ehrich proposed to evaluate   as: 
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where 5T and 1T are the stage torques for 5cl  and 1cl respectively. 
Once   is calculated, Equation (1) is applied to evaluate the Alford force. 
In [17], the effect of the whirling motion is taken into consideration. However, neither the 1D model nor the 

CFD model can be applied to obtain the unsteady flow quantities. Therefore, a simplified approach is considered. 
The tangential evaluation of the aerodynamic forces is evaluated only considering an eccentric rotor. For the 
analysis, 100 𝜇𝑚 and 200 𝜇𝑚 peak-to-peak eccentricities are considered for the minimum and the maximum 
clearance values in Table 1. The tangential distribution of the torque 𝑇𝜃  caused by the static eccentricity is obtained 
with an interpolation. 

Then, the tangential distribution of the force f  is: 

p

T
f

D


 =  (4) 

The tangential evolution of f  for the 1D model and the CFD model are shown in Figure 5. 
If synchronous 1X vibrations are considered, the force 

xF is defined as: 
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where   is the tangential coordinate. 

Figure 3: Torque at different levels of rotor blade clearance - 1D vs CFD. 
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Figure 4: Schematic representation of parallel compressor model, [6]. 

Figure 5: Tangential evolution of f  for 100 and 200 p-p eccentricity for 1cl  and 5cl . 
(Left) 1D model, (Right) CFD model 

3   Results 
The results obtained with the different correlations are presented in this section. The evolution of the absolute 

value of 
xyK  with the radial clearance for the 1D and CFD models is shown in Figure 6. Those results are obtained 

by applying the Alford correlation, Equation (1), to the data shown in Figure 3 and in Table 1. 

184



Paper-ID 81 

Figure 6: Evolution of xyK with tip clearance considering Alford correlation for 1D and 

CFD model. 

If   is calculated according to in Equation (3), the resulting values obtained for 
xyK  by applying Equation (1) 

are listed in Table 2. Both the 1D and CFD models are considered. Results reported by Figure 6 and Table 2 
highlight that the cross-coupled stiffness is approximately constant over the evaluated clearance domain while it
shows a large variability based on the correlation used for the Alford force estimation. Therefore, from now on,
the results are presented as average values covering the whole tip clearance span. 

Table 2: Results for Ehrich correlation for 1D and CFD model. 

𝐌𝐨𝐝𝐞𝐥 β  xy
K MN / m

1D -2.15 -5.78

CFD -1.50 -4.77

Equation (5) is applied to obtain xF in the case of Spakovszky correlation. Then Equation (1) is applied to 
calculate 

xyK . In this case, the static eccentricity considered is 50Y m+ = for the 100 m peak-to-peak case and 
100Y m+ = for the 200 m peak-to-peak. The results obtained for the 1D model and the CFD model are listed 

in Table 3. Since these results are not affected by the clearance and the static eccentricity, only the results for 1cl

and 50Y m+ =  are reported; it is strictly connected to the definition reported in Equation (5) where a double 
force value variation due to a double amplitude is divided by a double eccentricity. 

Table 3: Results for Spakovszky correlation for 1D and CFD model. 

𝐌𝐨𝐝𝐞𝐥 Clearance level  +Y μm  xy
K MN / m

1D 1 50 -0.44

CFD 1 50 -0.38

4   Discussion 
Considering the results of application of the Alford correlation, reported in Figure 6, lower cross-coupled 

stiffness and then aerodynamic forces are obtained if the 1D model is considered instead of the CFD one. With 
this difference on the inputs required for the correlation, the difference between the 1D and CFD results is around 

15%− . In addition, directly connected to the slope of trending lines of Figure 3, the impact on torque of radial 
clearance variation of the rotor blade is larger for 1D than CFD model, respectively 4% for the 1D model and 3% 
for the CFD model.  
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According to the frame of reference indicated in Figure 1, a negative value of the cross-coupled stiffness 
xyK

indicates the promotion of forward whirl, typical for turbines, [18]. The torque positive direction selected in this 
paper is the opposite than the one indicated by Alford, [2]. Therefore, the values of

xyK shown in Figure 6 are 
negative ad forward whirl is predicted with the Alford correlation. When the Ehrich correlation is applied to both 
the 1D and CFD model negative values for  are obtained, see Table 2. Therefore, negative values are obtained 
for

xyK predicting a forward whirl phenomenon. Since the Ehrich correlation is more connected to the torque
variation with clearance, it is quite straightforward that the larger cross-coupled stiffness is obtained for 1D model 
that is characterized by a higher trending line slope, see Figure 3. Moreover, the simplified 1D model overestimates 
of 21%+  the value of 

xyK  with respect to the CFD prediction.  
The results obtained with the Spakovszky correlation are listed in Table 3. Also in this case a forward whirl is 

predicted. The discussion provided on the results obtained with the Ehrich correlation is applicable also in this 
case. However, the results obtained with the Spakovszky correlation are one order of magnitude lower than the 
results obtained with the Ehrich correlation. As a matter of fact, both the 1D and CFD results are much lower, in 
absolute value, than the ones obtained with the Alford and Ehrich correlations. The hypotheses of stationary 
condition and the interpolation of the torque tangential evolution are too strict, and the results obtained could lose 
significance. On the other hand, it could be that this last correlation, more connected to the aerodynamic behaviour 
of the analysed stage, provides results closer to the real phenomenon. However, a more detailed investigation is 
required to reduce the uncertainty for this application. 

As summary, the results reported in this paper are an initial evaluation of the Alford effect for a S-CO2 
application. Different behaviours are obtained considering the different correlations. Different results are obtained 
with the application of the 1D and CFD models. However, the major effect on the value of the cross-coupled 
stiffness 

xyK  is related to the choice of the correlation. From a quantitative point of view, the Ehrich correlation 
provides values higher than the ones obtained with the Alford correlation of 110% for the 1D model and 48% for 
the CFD model. Similarly, the Spakovszky correlation provides, in general, values an order of magnitude lower if 
compared both with the Ehrich and Alford correlations. As highlighted by the results shown in this paper, both the 
1D and CFD model give comparable results. Therefore, the simplified 1D approach can be used for the 
investigation at this stage of the analysis since the flow path modelling is not as impacting as the choice of the 
correlation. A more detailed investigation of the effect of the Alford force on this S-CO2 application is required. 

5   Conclusions 
In this paper, the Alford effect in an axial turbine stage for S-CO2 application is investigated. The Alford effect 

is introduced using the different empirical correlations already published in the literature. 
The parameters characterizing the stage are obtained with a 1D mean line model and a CFD model. The Alford, 

Ehrich, and Spakovszky correlations are selected, considering the data available for the 1D and CFD models 
considered and their results on the estimation of 

xyK are shown. All three models agree in the prediction of forward 
whirl excitation, a typical phenomenon for axial turbines. Nonetheless, a deeper investigation is required to fully
comprehend the phenomenon of the Alford force. 

Focusing on the numerical models adapted, the uncertainty introduced in the analysis by using the 1D or the 
CFD model is an order of magnitude lower than the uncertainty in the final value of the cross-coupled stiffness 
obtained with the different correlations. Therefore, reliable results can be obtained applying the 1D model, 
reducing the complexity and computational cost required by analysis based on CFD. It is understood that the fairly 
good agreement between 1D and CFD results can be leveraged as far as overall performance parameters and/or 
section averaged quantities are to be provided to Alford effect correlations. Therefore, 1D data provide consistent 
feedback when dealing with the conceptual and the preliminary design phases of new products. The use of CFD 
data is recommended for detailed analyses to be executed once the flow path design is mature, thus enabling the 
designer to evaluate local flow conditions and to estimate the impact related to the introduction of complex 3D 
geometrical features. 

In general, the correlations considered agree that the cross-coupled stiffness estimated for the considered stage 
is of the order of 610 /N m . This value is generally common for a whole turbine and not for a single stage as in 
this case; this result is an additional confirmation of the huge impact of the S-CO2 density and of the need to 
properly address this phenomenon on the development of an axial turbine for S-CO2 power generation. 

Future works are necessary to better understand the phenomenon of the Alford force on the S-CO2 applications 
at least for a validation of the correlation that is more accurate for them. To get a proper validation, the only 
worthwhile way is a specific test bench even simplified but capable to reproduce the phenomenon. However, also 
more sophisticated models to extract the stage parameters will be helpful in improving the estimation of the Alford 
force. In the short term, without developing an experimental test rig that reproduces the geometrical and 
thermodynamic conditions, a sensitivity analysis can be performed on the whole rotor structure. The instability 
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risk should be assessed considering the different values of the cross-coupled stiffness obtained with the different 
correlations to establish how harmful the Alford force can be for this application. 
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Abstract 
The presence of wall slip has a significant impact on the Stribeck curve for the infinite journal bearing. In this 

paper, molecular dynamics (MD) simulation is employed to calculate the slip length of Newtonian fluid confined 
between two iron smooth surfaces. MD simulations are accomplished by LAMMPS open-source software. The 
lubrication oil served in this research is polyalphaolefin base oil consisting of 1-Decane molecules. Results 
revealed that with decreasing temperature, the shear stress values, as well as dynamic viscosity, increase as an 
Arrhenius law. Besides, results indicate that slip length is increasing with decreasing gap height as an asymptotic 
expansion.  

Keywords: Slip length, journal bearing, molecular dynamics, shear rate 

1   Introduction 

Lubricants are widely used to reduce unwanted friction between the sliding surfaces of rotating machines. The 
goal is to reduce wear, prolong the lifecycle of the components and therefore reduce cost and environmental impact 
while keeping the usage of lubricant fluids at a minimum. When working with fluid dynamics, one important 
boundary condition that is used to calculate the flow properties of Newtonian fluids is the no-slip boundary 
condition. It states that the tangential velocity component of the fluid in contact with a stationary wall is also zero. 
While ignoring slip velocity in the macroscopic scale, this is not applicable in the microfluidic scale [1]. A large 
slip length indicates lower friction of the fluid and lower drag of solids moving in or in contact with the liquid. 
Therefore, creating tribological systems with surfaces that increase the slip length may be desired.  

Numerous experiments [1] and simulations [2, 3, 4]  showed that the usual magnitude of the slip length is in 
the order of tens of nanometers. The magnitude of slip length has an important influence on the flow properties in 
the micro and nanoscale. The experimental studies of slip length are complex because it is tough to resolve the 
fluid velocity profile in the region near the liquid-solid interface at these length scales. Alternatively, molecular 
dynamics (MD) simulation have been widely employed to investigate the slip properties of liquid flowing past a 
solid wall since it can resolve the velocity profile from the atomistic level [2, 3, 4]. Moreover, there are no 
assumptions about the slip velocity at the interface are required. So far, numerous studies have been performed 
with the goal of linking the slip length to the physical parameters of liquid and surface parings, though, no explicit 
dependence of slip on solid-liquid interactions or surface geometry has been accomplished yet. 

Hydrodynamic bearings, i.e. slider or journal bearings, are the most widely used bearings and are often decisive 
for the availability and function of machines, e.g. turbo-machinery. However, they are also decisive for the 
energetic quality of these machines and thus for the sustainability of their functional performance. Sommerfeld 
discussed the paradox between Coulomb friction and Newtonian, i.e. viscous friction, for journal bearings. In 
Coulomb friction, the tangential frictional drag force component is proportional to the normal force component 
and independent of the relative velocity of the two friction partners. In contrast, in Newtonian friction, the frictional 
force is independent of the normal force but proportional to the relative velocity [1].  
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The dimensionless Stribeck curve introduced by Sommerfeld (see figure 1) for the no-slip condition, i.e. 𝜆=0, 
confirmed that there is also an asymptotic friction characteristic of the Coulomb type for small relative velocities, 
i.e. large Sommerfeld numbers, in the area of hydrodynamic lubrication. In this limiting case, the friction force
becomes independent of the relative velocity, as in the case of Coulomb friction. In the limiting case of large
relative velocity, i.e. small Sommerfeld number, the results of Sommerfeld present the results of viscous
Newtonian friction. Here, it could be generalised that the results for wall slip, indicate the relevance of wall slip
for a typical journal bearing. In this paper, it is used the MD simulation method to calculate the slip length values,
which is explained in the next section.
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Figure 1: (a) The dimensionless force-displacement curve and (b) the dimensionless Stribeck curve without dry 
friction introduced by Sommerfeld for an infinite journal bearing with wall slip [1]. 

2   Simulation 

MD simulations have long been used successfully to provide a representative behavior of atomic motion. MD 
simulations are based on the integration of the coupled differential equations of Newton’s law of motion. The 
trajectories of the atoms can then be tracked by numerically solving the equations with a time-stepping algorithm 
in conjunction with initial positions and boundary conditions. However, MD simulations are prone to cumulative 
errors when used with inadequate solving algorithms [5]. The most commonly employed numerical integration 
method for MD simulations is the algorithm proposed by Verlet [5]. To use the Verlet algorithm with initial values 
for place and velocity of the atom 𝑖, a Taylor series is constructed with the timestep ∆𝑡. 

Choosing an appropriate timestep ∆𝑡 determines both the accuracy and the efficiency of the computation. The 
timestep ∆𝑡 must be smaller compared to characteristic time periods of the system, to keep the cumulative error 
small in comparison to the solution. In terms of error propagation, the advantage of the Verlet algorithm lies in an 
associated global error of 𝑂     compared to 𝑂    of Euler’s method for differential equations. The Verlet 
algorithm is also used by the LAMMPS software [5] to integrate Newton’s equations of motion. The force acting 
upon the atom depends on an energy function. Thus, it is of utmost importance to choose a sufficient potential 
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function, which accurately describes the dynamics of a molecular system. If adequate integration algorithms, 
potential functions and parameter selections are chosen, the only major limitations of standard MD simulations 
are time and size scales. Time scales usually remain in the tens of nanoseconds. Which also depends on the number 
of atoms and molecules in the simulation. A higher number of particles as well as lower shear rates, increase the 
equilibration time and thus affects the overall simulation time and computational effort.  Both of these can be 
partially compensated by the ever-advancing performance of parallel supercomputing. For this purpose, this study 
also makes use of the Lichtenberg supercomputer to allow for a more complex system with a larger time and size 
scale. 
    To reduce the computational effort, neighbor list as proposed by Verlet [5] is usually implemented in MD-
Simulation algorithms. The neighbor list can be updated depending on the velocity of the system. Higher present 
velocities create a higher chance of new atoms approaching the vicinity of the central atom. The following 
interaction can then only be considered if a new neighbor list for that timestep is built. The potential energy 
function usually consists of bonded and unbonded interaction potentials [5]: 

 𝑏𝑜𝑛𝑑𝑒𝑑 +  𝑢𝑛𝑏𝑜𝑛𝑑𝑒𝑑   (1) 

A general potential function which includes both intra- and intermolecular forces is given by Eq. (2) 
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The first four terms describe the bonded interactions, and the last two represent the unbonded interactions. The 
first term describes a harmonic potential which increases in energy when the bond length 𝑙𝑖 deviated further from 
the equilibrium value 𝑙𝑖, . The second term also is a harmonic potential which is summed over all the angle 
deviations 𝜃𝑖  𝜃𝑖,   from the reference angle 𝜃𝑖,   of bonded atoms. The third term includes a torsion potential 
where 𝛾 refers to a phase factor that determines the minimum value of the torsional angle. The fourth term deploys 
a second torsion angle energy, which takes the geometry of the molecule into account. The last two terms are used 
to describe unbonded interactions. Here, the energy is calculated between all pairs of atoms 𝑖 and 𝑗. As depicted 
in the formula above, these forces are usually modeled by using a Lennard-Jones (LJ) potential for van der Waals 
interactions and a Coloumbic potential for electrostatic interactions between the atoms. For modeling the walls, 
simple spring potentials can be employed or a more sophisticated force field for metals can be chosen. For this 
research, the EAM potential is used to model the iron walls. The Embedded-Atom Method (EAM) is a popular 
choice for modeling the force field of metals and alloys. 

To decrease computational cost and expand the time and size scales of an MD simulation Coarse-Grain-Models 
like Unite Atom (UA) are often employed. Coarse-grain models can reduce the amount of complexity in a 
molecular system by grouping atoms into summarized structures. Well-designed Coarse-Grain-Models can retain 
the accuracy of the all-atom counterpart by smoothening the energy landscape to a reasonable resolution. Coarse-
grain-Models can typically be used with similar force field formulas, e.g., harmonic bonds, LJ-potentials etc., as 
all-atom models, which makes them easy to utilize. 

Polyalphaolefins (PAO) are synthetic lubricants consisting of oligomerized alpha olefins, which are alkenes 
with a carbon double bond starting at the α-carbon atom position. The result is a mixture of olefin dimers, trimers 
and tetramers (see Figure 2) [2, 3].  
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Figure 2: PAO molecule Structure, a mixture of the 1-Decane dimer, trimer, and tetramer. 

Compared to mineral oil-based lubricants, synthetic PAO lubricants offer superior thermal and oxidative 
stability and are highly shear stable, with the additional benefits of being non-corrosive and non-toxic to mammals. 
Their shear stability stems from the alkyl groups preventing the molecules from easily aligning themselves in an 
orderly way, thus reducing contact surface and intramolecular interaction between the molecules. This also leads 
to the beforementioned thermal stability, keeping a high viscosity even at low temperatures. With all these 
characteristics, PAO oils reduce friction, wear, and energy consumption, while also lasting 5-10 times longer than 
their mineral oil counterparts. PAOs are widely used in the industrial and automotive sectors as well as high-
performance applications. 

Past studies have shown that United Atom Coarse-Grain models can accurately depict the behavior of 
hydrocarbons at various pressures [4]. One of them is the NERD Force Field for linear and branched alkanes, 
which can be extended to suit alpha olefins [2]. For the coarse-graining, CH3, CH2 and CH groups are modeled as 
single interaction sites. The NERD Force Field employs an LJ potential for non-bonded interaction sites, excluding 
intramolecular interactions within 3 bonds of the same molecule. A standard Lennard-Jones 12-6 potential is used 
for this non-bonded interaction. 

The simulation box consists of a 3-dimensional rectangular shape with periodic boundary conditions in the x- 
and y direction. Lubricant molecules were designed by Avogadro software [6], and then assembled and optimized 
by the Packmol software [7]. A non-periodic boundary is imposed in the z-direction. Figure 3 shows the MD 
simulation box generated by Packmol software. To prevent molecules from interacting with each other over the 
periodic boundary, sufficient box dimensions must be met. A common approach for alkanes up to CHx-groups 
demands a system size of minimum the backbone length of the molecule plus two times the cutoff distance of the 
Lennard-Jones-potential. With an estimated length of a 1-decane molecule of 1.32 nm and an LJ-cutoff distance 
of 1 nm, the chosen box size of 5 to 30 nm satisfies these criteria. The two parallel walls are comprised of a body-
centric cubic (bcc) lattice of iron atoms with a lattice constant of 2.87 Å. The walls span the entire simulation box 
in the x- and y-direction. The height of the stationary smooth wall is 2 nm. The fluid is confined between the 
stationary and the moving wall, inducing a shear-driven Couette flow. 

To obtain the slip length, the velocity profile is linearly extrapolated from bulk liquid data at the central region. 
This means that the bins adjacent to the walls are not considered in the linear fit. The obtained linear formula is 
then used to calculate the slip length by calculating the length 𝜆 at which the velocity would reach zero. 
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Figure 3: MD simulation box generated by Packmol software. The PAO molecules are confined between iron 
atom surfaces. 

3   Results 

To verify the simulation, the density and viscosity values of oil were calculated. The mass density distribution 
across the gap in Figure 4 shows the molecular layering of the PAO oil molecules. Regions close to the surfaces 
are the adsorption layer with high sudden mutation and oscillations in the mass density profiles. It can be seen that 
the 1-Decane dimer has the lowest values of density. It is also found that the atomic boundary layers had slightly 
higher density peaks for the tetramer than the atomic boundary layers of the trimer. It is interesting to note the 
splitting of the peak near the surfaces in the density profile. That can be demonstrated by the less area of repulsion 
of the UA groups where they can approach the surfaces further closely, possibly binding more firmly to the iron 
wall. The measured density values of the PAO 2, 4 & 6 were 0.80, 0.825, and 0.835 g/mL, respectively. The 
calculated densities of three molecule structures agree with the measured mass densities. 

DIMER

TRIMER

TETRAMER

Figure 4: Calculated averaged density of three different structures of 1-Decane. 

Viscosity is a fluid property that shows how resistant that liquid is to flow. Higher viscous fluids carry much longer 
to flow from their container than a relatively lower viscosity fluid. To quantify viscosity, it simulated bulk fluid 
consisting of a number of very thin layers. In order for the liquid to flow, a force will be required to slip these 
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layers relative to one another. The force required is assumed to be directly proportional to the area of the layers in 
contact with one another and the different velocities between the layers. Also, the force is inversely proportional 
to the distance between the layers. 
The dynamic viscosity of the liquid   was estimated as the ratio of the shear stress 𝜎𝑥𝑧 and the shear rate �̇�, 
𝜎𝑥𝑧  �̇�. To calculate the shear stress, a general formulation of stress tensor for many-body interaction potentials 
under periodic boundary conditions was utilised [7]. Figure 5 has shown apparent dynamic viscosity as a function 
of different apparent shear rates of PAO 6 oil at different temperatures. Viscosity alters with temperature, typically 
becoming smaller as the temperature is elevated. This trend happens due to the raised kinetic motion at higher 
temperatures enables the breaking of intermolecular bonds between adjacent molecule layers. A significant amount 
of research has been carried out in an attempt to comprehend the exact nature of the temperature variation of 
viscosity. One relatively straightforward model considers that the viscosity follows an ‘Arrhenius-law’ equation 
[1] of the form

 ~    ( 
𝐸

 𝑇
)  (3) 

where   is the viscosity,   is 8.3145 J  ol  , and   is the temperature. The activation energy can either be 
estimated straight produced at two specific temperatures and a rate constant at two temperatures [1]. The calculated 
activation energy is about 26  kJ  ol
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Figure 5: Apparent dynamic viscosity as a function of different apparent shear rates for PAO 6 oil. As the 
temperature increased, the viscosity values decreased as an Arrhenius behavior.

Figure 6 shows the calculated values of 𝜆 versus gap heights and asymptotic expansion Eq. (4) as solid lines. 
It was assumed the initial wall distance 𝑎        for three different molecules. For  →   the slip length becomes 
infinite. For  → ∞, it is expected a constant value of the slip length 𝜆 →  𝜆∞. Hence, an asymptotic expansion 
reads 

𝜆  𝜆∞ ( +
𝑎

ℎ
)  (4) 

Through this expansion, infinite slip 𝜆∞ is determined for three different molecules of PAO oil. The general 
trend of the diagrams shows a steep decrease in wall slip up to       oil film thickness. It may state that the liquid 
behavior adjacent to the wall is too complex to be explained by a slip length related to the shear stress.  
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Figure 6: Slip length 𝜆 as a function of wall distance   for PAO oil molecules. As the apparent shear rate is below 
the critical shear rate, the slip length values should be independent of the shear rate.  

4   Conclusion 
 This paper employed an investigation of the shear flow of PAO oils within two smooth iron surfaces to calculate 
slip length with application in a journal bearing. The united-atom method helped capture molecular trends in the 
tribological modeling of large and complex models due to its comparably low computational cost. In order to be 
convinced that the performance seen in MD simulations is representative of an actual dynamical system, a proper 
Force Field that is qualified for the density and viscosity prediction of branched alkane was selected. For more 
reliability of the simulation results, verification of the method was accomplished for the metal-alkane interface. 
The slip length values were calculated by averaging Couette velocity profiles that the velocity profiles were linear 
up.  
 The results showed that the slip length is highly dependent on the molecular shape. We concluded that by raising 
the number of branches, slip increases in agreement with the previous MD modeling [4]. The viscosity calculation 
showed that the critical shear rate increases with increasing temperature. This result indicates that PAO lubricant 
can show various lubrication performances based on temperature. Also, the shear stress calculation showed that 
the viscosity decreases with increasing temperature. 
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Abstract 

The increasing demand for numerical models that accurately represent real-life applications, supporting the 
development of techniques for fault diagnoses and analysis, has driven researchers to elaborate and refine models 
for reliable condition monitoring of rotating machines. In this context, this work trains the support vector machine 
(SVM) algorithm with pre-processed acceleration data to investigate different ball bearings defects according to 
their type and location. The system consists of four ball bearings, pedestals, a gearbox, and a flywheel, including 
random errors and position fluctuations in the simulations. Noise is added to the vibration signal to approximate 
the response to experimental data from the literature. The contact model between each sphere and raceways 
considers elastohydrodynamic (EHD) lubrication, assuming a reduced model in the reactions bearing forces. The 
complete 34 degrees of freedom system of equations are solved by outputting vibration signals for different 
conditions of faulty and healthy bearings. The defects are modeled according to their location, i.e., inner-race, 
outer-race, or single rolling element, with sinusoidal ball trajectory into the spall. The application of Fast 
Kurtogram (FK) is proposed as a pre-processing tool for the optimal frequency range selection to improve the 
identification process. 

1   Introduction 

The mathematical formulation presented in [1] is a classic approach to the study of bearing dynamics. Its 
application includes fault modeling [2]–[4] and it is also used in the present work for comparison in some cases. 
A similarity between most models for angular contact ball bearings is the absence of damping effects of the 
lubricant film thickness, present at the contact interfaces. Generally, this effect is considered as Hertz dry contact, 
or the lubrication model neglects the participation of the rolling elements relative motion.  

The elastohydrodynamic theory most accurately represents the lubricated contact. Nevertheless, it leads to high 
computational costs, resulting in few studies combining this theory with the contact stiffening and damping of the 
lubricant film, preferring classical models. Studies in [6] and [7] on the nonlinear effects of EHD were further 
adapted to take into account variations in fluid properties due to temperature and pressure. In the work of [8], a 
reduced order model for the lubricated contact in deep groove bearings was proposed, using an implicit nonlinear 
formulation to adjust the solution for the transient EHD contact point [9]. In this work, the first step is the numerical 
solution for the EHD lubricated contact obtained by the Multi-Level Multi-Integration (MLMI) algorithm [10] and 
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[11]. A reduced model can be applied by optimization of equivalent stiffness parameters and linear damping 
parameters to adjust the contact forces curves in the bearing elements and, subsequently, in the complete bearing 
equivalent coefficients, [12], [13] and [14]. In [15] and [16], the authors modeled a complete rotor-bearing system 
based on the work of [17] for experimental comparison purposes. The rotor model includes the shaft and disk finite 
element model using the well-known Timoshenko’s beam theory for the shaft. In this approach, inertia, elasticity, 
and shear effects are taken into account, which was widely employed based on [18] and [19] respectively.  

An extended analysis in [20] compared numerical model and test rig measurements for gear bearing systems 
using a 34 DOF model, from a lumped mass parameter model. The model included localized faults on the outer 
and inner race, as well as in sphere elements, using Hertzian contact model. The approach considers the stiffness 
coefficient varying in time, but it neglects the damping effect. Given continuity of this work [21], the authors 
numerically included the model of extended faults (rough surface) in both inner and outer races.  

In [22] the authors investigated the fault size estimation. The identification considered two fault interactions 
with the rolling elements, the entry point, with low frequency response - when a rolling element enters a localized 
defect, and the successive exit point. An empirical model-based signal processing method was proposed to 
effectively identify the entry point and the differentiation for the exit of the fault.  

A comprehensive work on the state of the art regarding fault diagnosis for rolling element bearing can be found 
in [23]. This paper reviews key concepts in the analysis of bearing faults and it gives a brief introduction to rolling 
elements inherent cycle stationarity, also pointing to the analysis of the envelope signals as a more efficient source 
of information in the diagnosis than raw signals analysis, presenting enhancement methods for extracting and 
filtering information of bearing signals.  

The work of [24] shows the spectral kurtoses (SK) as a powerful technique to indicate the presence and location 
of a series of transients in the frequency domain, hence, the effect signature caused by localized faults. In the same 
year, [25] applied this method to vibratory monitoring of the rotating machine, but mainly as an auxiliary tool to 
detect filters able to extract the mechanical signature of the fault, being one of the most important advantages of 
this approach, as opposed to other classical techniques, finding the optimal frequency band to be processed. Later, 
[26] presented the concept of Fast Kurtogram (FK), i.e., the fast computation of the kurtogram, mostly feasible in
industry and user-friendly, as it displays the optimum choice for frequency/frequency resolution. Consequently,
the FK is selected in the present work to process the envelope spectrum analysis.

Several researchers have applied supervised methods of machine learning to bearings fault identification, [27] 
performed SVM having as features the eigenvectors extracted response using principal component analysis. [28] 
proposed an automatization process using one class v-SVM to identify abnormal signals using the frequency 
spectrum as input prior to an envelope analysis. [29] aimed to find an optimum number of features for SVM and 
PSVM classifiers for statistical and histogram features of time domain signal classification of roller bearing faults. 
[30] detected and identified wind turbine bearing faults using fault-specific features by envelope analysis as input
for training models, achieving an automatic identification. The one-class support vector machine method was able
to detect the fault earlier but it still demanded additional techniques to identify the fault location.

The present work uses the SVM for identifying and classifying the bearings condition using simulated noisy 
vibration signals, recognizing specific patterns that may indicate the occurrence of faults. Due to the noise and its 
eventual impact on the time response, data processing can be necessary to reduce its influence, preserving as much 
information as possible. Hence, the Fast Kurtogram (FK) is proposed to identify the optimal frequency range and 
frequency resolution capable of improving the identification process. 

2   Methodology 

2.1 Bearing model 
Initially, the static load and rotation speeds on the bearing elements must be determined to be the inputs for the 

EHD contact simulations. The outputs must be the angular speeds, contact forces and displacements between the 
rolling elements and the raceways surfaces, so the EHD non-linear parameters for the restitutive force and the 
linear damping coefficients can be defined. 

At this point, a reduced-order model represents the nonlinear restoring contact force for the bearing 
characterization, in both contacts between spheres and internal/external raceways. The multilevel numerical 
integration algorithm solves the EHD to successive adjusting of the parameters of equivalent nonlinear stiffness 
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𝐾, displacement exponent 𝑑 and the residual force 𝛥𝐹. The Levenberg-Marquardt optimization algorithm is 
applied to the static equilibrium data for this purpose. The parameters of the reduced-order model must be able to 
reproduce the force versus displacement curve, as shown in Equation (1) [14]. 

𝐹 = 𝐾𝛿𝑑 + Δ𝐹 (1) 

The model for the rotor bearing system is based on the work of [21]. The spall on the bearings is modeled 
according to Figure 1(b) as a function of ℎ(𝜃𝑓), 

ℎ(𝜃𝑓) =  𝐶𝑑  (1 – |cos (𝜋
𝜃𝑓

𝜃
)|) (2) 

 Figure 1(a) shows three possible cases for the configuration between the spall and the sphere-raceway 
dimension, being 𝐶𝑠 the spall depth and 𝐶𝑚 the possible depth base on the width and sphere-raceway radius of 
curvature. Case I shows 𝐶𝑠 > 𝐶𝑚, case II considers 𝐶𝑠 = 𝐶𝑚 and case III𝐶𝑠 < 𝐶𝑚. It is always considered 𝐶𝑑 the 
minimum of 𝐶𝑠 and 𝐶𝑚. 

(a) (b) 
Figure 1 (a) Extension of the fault based on the sphere size (b) Improved ball trajectory. 

The system in [20,21] contains a gear-pinon pair and four ball bearings. The contact model in the bearings was 
here updated to EHD lubrication, as a reaction for each bearing node equilibrium in 𝐹𝑦, 𝐹𝑧, 𝐹�̇� and 𝐹�̇�, 

𝐹𝑦 =  ∑[(𝐾(𝑧𝑚 ∙ 𝑐𝑜𝑠(𝜓𝑗) + 𝑦𝑚 ∙ 𝑠𝑖𝑛(𝜓𝑗))
𝑑
+ 𝛥𝐹 − ℎ(𝜃𝑓))  ∙ 𝑐𝑜𝑠(𝜓𝑗)]

𝑍

𝑗=1

 (3) 

𝐹𝑧 =  ∑[(𝐾(𝑧𝑚 ∙ 𝑐𝑜𝑠(𝜓𝑗) + 𝑦𝑚 ∙ 𝑠𝑖𝑛(𝜓𝑗))
𝑑
+ 𝛥𝐹 − ℎ(𝜃𝑓))  ∙ 𝑠𝑖𝑛(𝜓𝑗)]

𝑍

𝑗=1

 (4) 

Considering the local damping in each contact as 𝐷, the reaction forces due to dissipative effects are: 

𝐹�̇� =∑[(𝐷(�̇�𝑚 ∙ 𝑐𝑜𝑠(𝜓𝑗) + �̇�𝑚 ∙ 𝑠𝑖𝑛(𝜓𝑗)) + 𝜔𝑐(𝑧𝑚 ∙ 𝑠𝑖𝑛(𝜓𝑗) + 𝑦𝑚 ∙ 𝑐𝑜𝑠(𝜓𝑗))) ∙ 𝑐𝑜𝑠(𝜓𝑗)]

𝑍

𝑗=1

 (5) 

𝐹�̇� =∑[(𝐷(�̇�𝑚 ∙ 𝑐𝑜𝑠(𝜓𝑗) + �̇�𝑚 ∙ 𝑠𝑖𝑛(𝜓𝑗)) + 𝜔𝑐(𝑧𝑚 ∙ 𝑠𝑖𝑛(𝜓𝑗) + 𝑦𝑚 ∙ 𝑐𝑜𝑠(𝜓𝑗))) ∙ 𝑠𝑖𝑛(𝜓𝑗)]

𝑍

𝑗=1

 (6) 

2.2 Support vector machine identification 
Support vector machine is a well-known method for supervised machine learning. Developed by [31], it 

consists of solving a non-linear optimization problem of the convex objective function, 

{

min
w,b

Φ =
1

2
𝑤𝑇𝑤 + 𝐶∑𝜉𝑖

𝑁

𝑖=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: (𝑤𝑇𝑥𝑖 + 𝑏)𝑑𝑖 > 1 − 𝜉𝑖
𝜉𝑖 ≥ 0

(7) 
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where 𝜉 is the slack variable for outliers’ control, C is a constant, 𝑥𝑖 is the i-th support vector, 𝑏 is the bias, 𝑑𝑖 ∈
{−1,1}  and 𝑤 is the weight vector.   

Figure 2 Representation of two classes separated by a hyperplane solved by SVM 

Figure 2 illustrates how the method separates the data into specific classes by maximizing the margin distance 
between the adjacent vectors in each class, denominating then support vectors. In the optimization process they 
consist of non-trivial solutions and, most of the time, incur a penalty when a sample is misclassified or within the 
margin boundary. The data fully outside the limits, namely, everything but the support vectors, can fluctuate under 
the condition of not surpassing the decision boundaries, in a way the result is independent of this remaining data 
[32]. 

When the hyperplane that divides different classes is not assumed linear, it is required to map the patterns, Φ, 
and take it to a feature space (FS) of higher unknown order, where the data can be linearly approached. For the 
optimization, it is only needed the scalar product of the mapping Φ in the FS and the result when returning to the 
input space is a Kernel, 𝐾 , function that satisfies Mercer's Theorem [33]. This work uses the radial basis function 
(RBS): 

𝐾(𝑢, 𝑣) = exp(−𝛾 ‖𝑢 − 𝑣‖2) (8) 

where 𝛾 is a constant that defines how broad the Gaussian-like curve is. 
The automation process accomplishes a variation of cases in the same rotation speed and load condition. The 

variation of this data consists in randomizing the extension and depth of the three types of faults, changing these 
parameters inside acceptable limits. In sequence, an approximate 25 dB white noise addition to the resulting signal 
emulates an ambient acquisition noise. These signals are then divided into segments. The different segments are 
the samples and each point of the acceleration signal in time is an attribute. Those samples are separated into test 
and training samples to proceed with the SVM analyses and to obtain the Confusion matrix.  

To enhance the signal analysis, fast computation of the kurtogram, as proposed in [26] is carried out. This 
process consists in finding the optimal pair, carrier frequency, and frequency band that maximizes the kurtosis of 
the signal. The kurtosis, the fourth statistic central moment, is a common tool to identify impact-like signals, as in 
the case of bearings with an initial spall.  
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Figure 3 Fast kurtogram map of the (frequency/frequency resolution) plane 

Figure 3 shows the construction of the fast kurtogram, based on [26], structured as a filter bank, computing the 
kurtosis values for each level that represents a bandpass frequency per central frequency, in which an FIR filter is 
performed. Each kurtosis value has the corresponding dyad, frequency, and frequency resolution, designated to 
perform the envelope analysis, or in this work case, each pair frequency and frequency resolution are computed 
for all the training samples. 

3   Results and Discussion 
The data used in this work is a simulation of the system presented in the work of [34]. The system was subject 

to a 50-Nm load and 10Hz rotational frequency. Vibration signals were sampled at 48 kHz, the bearings have an 
0º contact angle, 7.12 mm sphere diameter, and a pitch diameter of 38.5 mm. The outer race spall has 0.8 mm wide 
and has an assumed depth of 19.1 µm, while the inner race has a depth of 27.6 µm. The ball defect is 0.5 mm wide 
with an assumed depth of 10.7 µm when touches the inner race, and 7.4 µm depth for the outer race.  

Figure 4 presents the time vibration signal for inner race defect bearing and Figure 5 shows the corresponding 
power spectrum density (PSD) against the health bearing signal response. Pink noise was added with a resulting 
SNR of 20 dB approximately, to compare and validate the response with [21].  

Figure 4 Acceleration time signal of the ball bearing with inner race defect. 
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Figure 5 PSD of a health bearing (green) and bearing with inner race defect (red). 

To determine the size of the input feature, it is necessary to guarantee that every sample contains at least one 
fault signature in the time domain, there is, the fault effectively passing through the bearing load zone. The required 
number of points is the sampling frequency (FS) divided by the minimum of all the frequencies that can modulate 
the signal fault. In the current case, the sphere defect is responsible for modulating the signal not only by the sphere 
spin velocity but also depending on the cage angular velocity of 4.07 Hz. So, considering an unfiltered signal, for 
the fault signal to be seen at least once, is necessary 0.25 seconds, resulting in 11.794 points needed, given a FS 
of 48000 Hz. For convenience, the number of points is practically doubled to 24 thousand points.  

The samples from simulated signals represent four cases: health bearings, outer race fault, inner race fault, and 
sphere fault. Variations from the assumed parameters of width and depth, as the proportion to the initial spall 
shown in table 1, must be combined to create the data set, separating slices of the acceleration signal in time to 
replicate different instances of the same case and creating more samples.  

Table 1. Cases of fault parameters combination 

Cases The proportion of the initial spall depth and width Number of samples 
I 0.13 – 0.6 –  1.3 – 6.0 1920 
II 0.13 – 0.6 – 1.3 1080 
III 0.13 – 0.36 – 0.6  1080 
IV 0.6 –1.3 – 3.65 1080 

White noise is added to the vibration signal and kept the same for all samples with different amplitudes. It 
represents an acquisition noise for realistic system representation. The achieved SNR varied from sample to 
sample, resulting in an average of 25 dB.  
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Case I Case II 

Case III Case IV 
Figure 6. Confusion matrix for the four cases selected. 

The confusion matrices resulting from the SVM analysis for each case are presented in Figure 6. The SVM 
algorithm gives a considerable number of false negatives, indicating health bearing between 20 and 60% defective 
samples, especially in case of spheres fault.  

After performing the fast kurtogram for all training set and organizing which pair frequency/band is the most 
recurrent in each label, it is necessary to compute the bandwidth that occurs the most for each carrier frequency. 
The next step is the definition of the carrier frequency of highest occurrence for each of the four condition classes: 
health, outer race, inner race, and sphere defect. Table 2 shows these results for case I. 

Table 2 Carrier frequency and bandwidth modes for labels for case I. 

Labels Carrier 
frequency 

[Hz] 

Bandwidth 
[Hz] 

Ball 7500 3000 
Health 6000 12000 
Inner 21000 6000 
Outer 20000 6000 

The four possible ways of filtering all the input data according to each condition led to the necessity of 
considering all of the faulty cases. Rearranging the features in a way of keeping the same number of samples, but 
increasing the number of features in every sample, all the input data are filtered and concatenated, according to 
the three fault cases, presented in figure 7. 
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Figure 8 Schematic representation of filtering and concatenating matrices for SVM. 

 The resulting confusion matrices are presented in Figure 8. 

Case I Case II 

Case III Case IV 
Figure 8 Confusion matrix after FK selection and filtering 

Table 3 reports the accuracy improvement using FK as a preprocessing for input features augmentation. 
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Table 3 Accuracies for each case study 

Case I Case II Case III Case IV 
Accuracy 77.50% 69.62% 69.62% 69.25% 

Accuracy/FK 91.66% 91.11% 91.85% 79.63% 
Relative Improvement 18.27% 30.87% 31.93% 14.99% 

It is noticeable the SVM process accuracy rises by a higher number of samples since a better accuracy could 
be achieved for case I. However, after the process of filtering and concatenating the input data according to the 
FK, cases II and III significantly improved, practically reaching the case I accuracy, after the same process.  

7   Conclusion 

The present work uses the support vector machine for classifying the operation of ball bearings subject to 
elastohydrodynamic lubrication when exposed to four distinct working conditions: healthy, with an inner or an 
outer race fault, or with a ball defect.  

The data is generated by modeling the bearing contact as a reduced elastohydrodynamic lubrication model. 
Next, pink noise is added to the generated signals to compare and validate the methodology with the literature, 
showing that the reduced model theory can represent the complexity of the interaction behavior of forces and 
displacements without increasing the computational costs.  

In conclusion, the support vector machine algorithm is promising for identifying and classifying mechanical 
faults in ball bearings. In addition, the fast kurtogram, by selecting the frequency range of the signals with the most 
information about the defects, has proven to be a powerful feature engineering tool, improving the SVM’s accuracy 
by more than 10% for all cases.  

Future studies should investigate whether the fast kurtogram feature engineering method can improve the 
performance of other machine learning algorithms, such as artificial neural networks or gradient boosting 
machines. Furthermore, for complete validation of the proposed methodology, the support vector machine, and 
the fast kurtogram should be evaluated on experimental data. 
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Abstract
The dynamic pressure generated within journal bearings can be predicted using the Reynolds equation and

it is generally coupled to rotor equations of motion for predicting their dynamic behavior. Such simulations for
high-speed rotating machinery require high computational efforts. Many different methods exist in the literature
to efficiently solve the Reynolds equation for a plain journal bearing (without any features like oil feed holes or
grooves). The database approach is one of these methods where the Reynolds equation is non-dimensionalized and
transformed into a partial differential equation that only depends on two independent parameters. These parameters
are functions of bearing dimensions, lubricating oil viscosity, rotor state variables, and rotational speed. A database
of bearing forces can be created by considering different sets of values for these two parameters within their finite
range. Such a database can be used to predict bearing forces using multivariate interpolation. The authors extended
this approach to consider oil feed holes in the journal bearings by introducing two additional parameters. The
Reynolds equation expressed in terms of these four parameters is solved using the MATLAB PDE toolbox to
generate the database. The vibration response of a turbocharger rotor supported on a semi-floating journal bearing
consisting of oil feed holes is investigated using the proposed database approach. The oil feed holes modeling
improved the predictability of sub-synchronous vibrations when compared with experimental results. In the end, the
impact of a different number of oil feed holes on the turbocharger rotordynamics response is also presented.

1 Introduction
Turbocharger rotors are either supported by the journal and thrust bearings or ball bearings [1]. They play

a vital role in maintaining the overall functioning of the system [2]. Turbochargers are complex machines that
operate at high rotational speeds and experience higher temperatures, flow-induced disturbances from turbine and
compressor, engine excitations, etc [2, 3, 4]. They also induce vibrations and forces that are transferred to the
connecting parts radiating unavoidable noise in the vehicles [5]. The majority of the turbochargers use either semi-
or full-floating journal bearings as shown in Figure 1. These bearings have two oil films, inner and outer oil films [6].
Turbocharger rotors are flexible and they generally operate above their first bending critical speed. These resonances
are dampened by the journal bearings allowing an overall smoother operation of the rotor. Yet, the journal bearings
experience instabilities due to the self-excited vibrations known as oil whirl/oil whip [2, 6]. These instabilities in
the two oil films occur at different rotational speeds and the instability in one oil film is usually dampened by the
other oil film to reach a limit cycle. Due to that such systems operate safely even at higher rotational speeds. Oil
supply conditions to journal bearings like pressure and temperature are specific to the engine and vary according
to its running conditions. Turbochargers should have acceptable vibration behavior at all operating and boundary
conditions like different oil supply conditions, bearing clearances, and assembly imbalances, with heat transfer
from turbine, housings, and viscous shear in the oil films, etc. This generally is confirmed through testing on a
hot gas stand or on engines. Due to that design cycles are time-consuming and incur higher costs. Advanced
simulations capturing complex elasto-hydro-aero-thermo-dynamic behavior of the turbocharger system can address
these concerns and bring down the design cycle times.

The journal bearings are supplied with lubricating oil through feed holes or grooves in the circumferential or
axial direction. The dynamic pressure generated inside journal bearings can be predicted by solving the Reynolds
equation, a linear second-order partial differential equation (PDE) derived with certain assumptions [7]. Simplified
models using short or long-bearing theories can be applied for circular bearing geometries when their length-to-
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Figure 1: Typical automobile turbocharger system components

diameter (L/D) ratio values are within a certain range [7]. For other L/D ratio values, non-circular bearing surfaces,
and bearing geometries with specific features like oil holes, and grooves, the Reynolds equation needs to be solved
by numerical methods. Several approaches like the finite element method (FEM), finite difference method (FDM),
spectral methods, finite volume method (FVM), etc. can be applied to solve the Reynolds equation [8]. Alternatively,
a database is created for the bearing forces at certain non-dimensional parameters derived from the Reynolds
equation of a plain journal bearing and used in the rotor dynamic simulations in [9, 10]. In two other works [11, 12],
a database approach is proposed using the principle of the superposition of the partial solutions of the Reynolds
equation. The partial solutions are obtained by solving the Reynolds equation after exclusively considering viscous
shear flow, squeeze effects, and pressure supply boundary conditions at oil grooves or holes. But the accuracy of
their approach in fluid pressure and bearing force calculations is unknown. In the current work, the authors propose
an extension to the database approach to be applicable for bearings with oil feed holes. The Reynolds equation is
transformed and expressed in terms of four independent parameters without making any further assumptions. These
parameters are functions of bearing dimensions, rotational speed, rotor state variables, and oil properties and also
they take values within a finite range only. The Reynolds equation is solved using MATLAB PDE toolbox [13] for
various combinations of the values for these four parameters to build a database and it is described in detail in the
next section.

X

Y

1

2

3 4
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6

(b) With 6 holes

Hole

OB

OJ

e

Figure 2: Eccentric rotor (a) bearing without holes and (b) bearing with holes

The rotor operates at an eccentric position from the bearing center during operation (refer to Figure 2) forming
converging and diverging clearance regions about the line of center axis. The oil film pressure becomes negative in
the Reynolds equation solution in the semicircle region where clearance increases from minimum to maximum
value in the direction of rotation of the shaft. Liquids under normal operating conditions do not withstand negative
pressures which lead to oil film rupture and cavitation. Gumbel boundary condition [7] is used in this study due to
its simplicity where negative pressures are disregarded by equating them to zero. This boundary condition is suitable
for run-up simulations but it does not fulfil fluid continuity, and also does not satisfy the conservation of mass
throughout the fluid and cavitation regions within the bearing. It is possible to consider complex cavitation boundary
conditions like Jacobson, Floberg, and Olsson, Elrod cavitation models [14, 15] that satisfy these conditions
while generating the required database. The authors want to consider it in future studies. The knowledge about
the influence of oil feed holes on rotor vibrations is limited and especially their influence on turbocharger rotor
vibrations is not investigated in detail in the literature to the best knowledge of authors. In the current work, the
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run-up vibration response of a turbocharger rotor supported on a semi-floating journal bearing is simulated using the
proposed database approach without and with oil feed holes modelled. The simulation results are compared with the
test results on an engine test bed. The current paper is organized in the order of sections discussing the database
approach and rotor modelling, results, and conclusions.

2 Numerical modelling
2.1 Database approach for plain bearings

The Reynolds equation governing dynamic pressure generated within journal bearings in its non-dimensional
form is given as follows,

∂

∂θ

(
H3 ∂ p̄

∂θ

)
+

(
D
L

)2
∂

∂ z̄

(
H3 ∂ p̄

∂ z̄

)
= 12

{
ε̇cos(θ)+ ε

(
ϕ̇

Ω
− 1

2

)
sin(θ)

}
, (1)

where the non-dimensional variables can be expressed as p̄ = p
µΩ

( c
R

)2, H = h
c = 1+ εcos(θ), z̄ = z

L/2 , ε = e
c ,

ε̇ = ė
cΩ

, p is the dynamic pressure, h is the oil film thickness around the bearing circumference, µ is the oil viscosity,
Ω is the angular velocity of the shaft, c is the bearing radial clearance, R and L are the bearing radius and length
respectively, and D = 2R, θ and z are the bearing’s angular and axial coordinates, e is the eccentric distance between
shaft and bearing centers, ϕ is the attitude angle, ∂

∂θ
, ∂

∂ z̄ and ∂

∂ t refers to the spatial and temporal derivatives of a
variable. Either end of the bearing is exposed to ambient pressure boundary conditions.

The non-dimensional pressure in the Equation 1 depends on the following three variables whose values are
unbounded for a specific bearing geometry and rotational speed:

ε ∈ [0,1] ,
ε̇ ∈ ℜ,

ϕ̇ ∈ ℜ.

(2)

The Equation 1 is divided by

√
ε̇2 +

{
ε

(
ϕ̇

Ω
− 1

2

)}2
and a new variable for pressure is defined as p̂= p̄√

ε̇2+
{

ε

(
ϕ̇

Ω
− 1

2

)}2
.

Then Equation 1 will change to the form as given below,

∂

∂θ

(
H3 ∂ p̂

∂θ

)
+

(
D
L

)2
∂

∂ z̄

(
H3 ∂ p̂

∂ z̄

)
= 12


ε̇√

ε̇2 +
{

ε

(
ϕ̇

Ω
− 1

2

)}2
cos(θ)+

ε

(
ϕ̇

Ω
− 1

2

)
√

ε̇2 +
{

ε

(
ϕ̇

Ω
− 1

2

)}2
sin(θ)

 .

(3)

After introducing a new variable α = tan−1

(
ε

(
ϕ̇

Ω
− 1

2

)
ε̇

)
in the Equation 3, it will change to the following

equation,

∂

∂θ

(
H3 ∂ p̂

∂θ

)
+

(
D
L

)2
∂

∂ z̄

(
H3 ∂ p̂

∂ z̄

)
= 12{cos(α)cos(θ)+ sin(α)sin(θ)} . (4)

The transformed Reynolds equation will now only depend on two variables which are functions of rotor state
variables, bearing clearance and rotational speed. The values of these two variables are also confined to a finite
range as follows,

ε ∈ [0,1] ,
α ∈ [0,2π] .

(5)

A finite number of values m for ε and n for α are defined within their finite range and using different combinations
of these two parameters, the Reynolds equation is solved for the dynamic pressure p̂ for mxn times. After applying
the Gumbel boundary condition, the pressure is integrated to calculate the bearing forces in rotating coordinates
using the following equation,
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Fr =

{∫ 2π

0

∫ 1

0
p̂cos(θ)dθdz̄

}
µΩ
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ε

(
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)}2

,
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{∫ 2π
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p̂sin(θ)dθdz̄

}
µΩ

(
R
c

)2

RL

√
ε̇2 +
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ε

(
ϕ̇

Ω
− 1

2

)}2

.

(6)

Then the database of bearing forces for Fr and Ft with a matrix size of m by n is generated as shown below,

Fr =

 f11 · · · fn1
...

. . .
...

fm1 · · · fmn


mxn

,Ft =

 f11 · · · fn1
...

. . .
...

fm1 · · · fmn


mxn

. (7)

It is used as a lookup table while solving equations of motion of the rotor system for calculating bearing forces
using multivariate interpolation.

2.2 Database approach for bearing with oil feed holes
The journal-bearing geometry with oil feed holes after unwrapping is shown in Figure 3 along with applicable

boundary conditions. The Dirichlet boundary condition at the oil feed holes region does not permit following the
same approach as explained in the last section to create the database. Instead, the database can be generated for the
feed holes case from the dimensional form of the Reynolds equation given in Equation 8,

∂

∂θ

{
H3

R2
∂ p
∂θ

}
+

∂

∂ z

{
H3 ∂ p

∂ z

}
= 12

{
ėµ

c3 cos(θ)+
eµ

c3

(
ϕ̇ − Ω

2

)
sin(θ)

}
. (8)
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Figure 3: Unwrapped geometry of a bearing with oil feed holes

Three new variables ξ = ėµ

c3 , η = eµ

c3

(
ϕ̇ − Ω

2

)
and u = 1√

1+ξ 2+η2
are introduced into the Equation 8 and after a

rearrangement of the terms on the right side of the equation, it changes to the following form,

∂

∂θ

{
H3

R2
∂ p
∂θ

}
+

∂

∂ z

{
H3 ∂ p

∂ z

}
= 12

√
1−u2

u

{
ξ√

ξ 2 +η2
cos(θ)+

η√
ξ 2 +η2

sin(θ)

}
. (9)

Additional variable β = tan−1
(

η

ξ

)
is introduced to further simplify the equation to the form,

∂

∂θ

{
H3

R2
∂ p
∂θ

}
+

∂

∂ z

{
H3 ∂ p

∂ z

}
= 12

√
1−u2

u
{cos(β )cos(θ)+ sin(β )sin(θ)} . (10)

The database approach is implemented for the Reynolds equation expressed in the rotating coordinates where the
bearing geometry mesh starts at the line of centers axis. But it is not valid anymore for the oil feed holes due to the
fixed locations of these holes on the bearing circumference. The mesh instead needs to start at a fixed location such
as the vertical axis. Based on the orientation of the line of centers axis with feed holes and vertical axis, the pressure
profile will be different due to the pressure supply boundary condition at the feed holes region. This introduces an
additional variable, the attitude angle in the Reynolds equation as given below,
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∂

∂θ

{
H̄3

R2
∂ p
∂θ

}
+

∂

∂ z

{
H̄3 ∂ p

∂ z

}
= 12

√
1−u2

u
{cos(β )cos(θ)+ sin(β )sin(θ)} , (11)

where, H̄ = 1+ εcos(θ +ϕ).

The above equation depends on the following four variables for a bearing geometry with specific values for its
length, width, hole diameter, number of holes (nholes), and oil supply pressure,

ε ∈ [0,1] ,
β ∈ [0,2π] ,

u ∈ (0,1] ,

ϕ ∈
[

0,
2π

nholes

]
.

(12)

As the oil feed holes are uniformly distributed around the bearing circumference, using their symmetric
arrangement, the range of values for attitude angle ϕ to consider in the database generation will reduce from [0,2π]

to
[
0, 2π

nholes

]
. A finite number of values p for ε , q for β , r for u and s for ϕ are considered within their finite range

and using different combinations of their values, the Reynolds equation is solved for the dynamic pressure for
pxqxrxs times. After applying the Gumbel boundary condition, the pressure is integrated to calculate the bearing
forces in rotating coordinates using the following equation,

Fr =
∫ 2π

0

∫ L

0
pcos(θ)Rdθdz,

Ft =
∫ 2π

0

∫ L

0
psin(θ)Rdθdz.

(13)

The size of the database and computational time required for solving the Reynolds equation for pxqxrxs times
increases if a finer resolution is used for the values of these four variables. The data calculated can be represented in
the form of a four-dimensional database as shown in Figure 4. It is used for calculating bearing forces while solving
the equations of motion using multivariate interpolation which only takes low computational effort.

Figure 4: Database for forces of a bearing with oil feed holes

3 Results & Discussion
3.1 Case study: Turbocharger vibration behavior

A turbocharger rotor as shown in Figure 1 is considered in this section as a case study. This turbocharger rotor is
supported on a semi-floating journal bearing. It consists of a circumferential groove on the outer oil film as shown
in Figure 1 which constantly supplies oil to the inner oil film through feed holes at the supply pressure. The outer
oil film is modelled as a squeeze film damper and it interacts with the inner oil film through bearing vibrations.
The major dimensions of the system along with some important boundary and operation conditions are given in
Table 1. The rotor is modelled using Timoshenko beam finite elements and the authors used MATLAB-based rotor
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Figure 5: Finite element model of the turbocharger rotor supported on a semi-floating journal bearing

Table 1: Turbocharger rotor and journal bearing details
Variable Value Units

Rotor Mass 0.159 kg
Rotor length 0.124 m
Rotational speed (Ω) up to 210000 rpm
Bearing:
Inner film (Li/Di) ratio 0.54
Inner film radial clearance (ci) 12 µm
Outer film (Lo/Do) ratio 0.56
Outer film radial clearance (co) 40 µm
Number of oil holes (nH ) 4
Oil hole radius (rH ) 0.7 mm
Oil type SAE 0W20
Oil supply pressure (Psup) 4 bar
Oil supply pressure (Tsup) 100 ◦C

software developed by Friswell et al. [16]. The beam element considers 4 degrees of freedom (DOF) per node
which are transverse and rotational movements along the horizontal and vertical axis. The finite element method
(FEM) model of this turbocharger along with the bearing is shown in Figure 5. The compressor and turbine inertia
properties are lumped at their center of mass location. The rotor FEM model is connected to the bearing which in
turn is connected to the bearing housing through oil films.

The pressure and temperature of oil entering the turbocharger system mainly depend on the engine speed,
load, and operating temperatures. Higher oil pressure and lower temperature are possible when starting a cold
engine, whereas higher temperature and low oil pressure are possible under hot engine idling conditions. The oil
supply conditions impact turbocharger’s rotordynamic behavior and subsequently its sub-synchronous vibration
behavior can be different. Turbochargers are usually tested at all these extreme oil supply conditions on engines
before undertaking their mass production. The test data of a turbocharger tested on an engine at specific oil supply
conditions is used to validate simulation results in this paper. Simulations are performed for oil supply at 4 bar
at 100◦C without and with considering oil supply holes in the bearing modelling. These simulation results are
compared to measurements in Figure 6 where vibrations measured at the shaft nut (refer to sensor location in Figure
5) location are processed to create the waterfall plots. Major loads in turbochargers are generated by the unbalances
in the system and it is low in the current case as this turbocharger is balanced after assembling and used in the
tests. The turbocharger is supplied oil continuously at 4 bar at 100◦C and its speed changes with time. The oil film
temperatures, oil viscosity and bearing clearances change with rotational speed due to the heat transfer from the
turbine and housings, oil film shear in the inner oil films. All these parameters are used as input to the rotordynamics
simulations which are either measured in the tests or obtained from advanced multi-physics simulations. The current
paper discusses neither the methods used for determining them nor reports the values of these parameters explicitly
as they are the proprietary information of the organization and also out of the scope of this paper. Otherwise,
consistently same inputs are used in the simulations without and with oil feed holes which warrants the difference in
the results of these cases solely due to the oil feed holes modelling in the bearing. The rotordynamics simulation
results are usually non-dimensionalized and compared.

Two types of sub-synchronous vibrations are common in the case of semi-floating bearings due to the oil whirl
in inner oil film [6]. The rotor becomes unstable at low rotational speeds due to oil whirl and reaches a stable limit
cycle (first bifurcation) and the sub-synchronous vibrations (Sub1) excite conical vibration mode. The rotor further
bifurcates at high rotational speeds where the first sub-synchronous vibrations become unstable and the second
limit cycle arises. This second sub-synchronous vibration (Sub2) excites the cylindrical mode of the rotor. The
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Figure 6: (a)-(c) Waterfall plots of the run-up vibration response at sensor location (d) comparison of rotor
synchronous and sub-synchronous vibration components at 4 bar, 100◦C oil supply

vibration amplitudes of the rotor at these limit cycles will be moderate and generally do not interfere with their
safe operation [6]. The combination of operating conditions like low unbalance, moderate oil viscosity (100◦C oil
supply), and higher oil pressure (4 bar) induced dominant (compared to synchronous vibrations) sub-synchronous
vibrations like Sub1 and Sub2 in the test results in Figure 6. The Sub2 vibrations are under-predicted by the plain
bearing model and they exist until 172000 rpm only in contrast to the oil feed holes model which predicts Sub2 until
maximum speed similar to the test results. The rotational speeds at which the Sub1 and Sub2 vibrations exist in the
waterfall plots depend on the oil supply conditions and the resultant temperatures in the oil films. In addition to
these sub-synchronous vibrations, synchronous vibrations due to the residual unbalance in the system and additional
vibrations at speeds corresponding to engine orders are also visible in the measurement results. Only the frequency
representation of vibrations is used for comparison with test measurements in the current work. It is possible to
compare the vibration amplitudes vs. rotational speed by filtering engine vibrations from test measurements but
they are excluded here for brevity.

Other performance variables like the bearing load capacity, forces transmitted to housing, and power losses are
difficult to measure in the tests on an engine. But they can be calculated using rotordynamics simulations. However,
their accuracy depends on the maturity of the simulation models and the preciseness of inputs used. The journal
eccentricities, bearing forces, and power loss calculated for the compressor and turbine side journal bearings using
the bearing models without and with oil feed holes are compared in Figure 7. They are normalized with maximum
values obtained in the simulations. The bearing inner oil film forces with oil feed holes modelled increases by an
average of around 24% in the mid-high turbo speed range. Other variables shown in that figure are increasing in the
same speed range as follows. The inner oil film eccentricity increases by an average of around 24%. This indicates
a drop in the load capacity of the bearing when oil feed holes are modelled. Dynamic forces generated due to the
fluid pressure in the outer oil film are transferred to the bearing housing which is generally radiated as the noise
at the corresponding vibration frequencies. These forces are predicted to be higher by an average of around 32%
with oil feed holes modelling. The power loss due to lubrication shear in the inner oil film is also calculated to
be higher with the oil feed holes modelling. This is mainly due to the increase in eccentricity and also due to the
increase in area around the bearing surface that generates positive dynamic pressure when the oil supply pressure
boundary condition is considered at feed holes. As a result, power loss increased by an average of around 32%
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at 4 bar, 100◦C oil supply. The power loss calculation will not be accurate with the Gumbel boundary condition
[14, 15]. It needs to be verified if the relative difference may still be true when the cavitation boundary condition
is implemented into the database generation. All these comparisons show the improvement in results with more
detailed bearing models used in the simulations. The difference in the results without and with oil feed holes is not
significant for the balanced rotor used in the tests. This may change for other unbalance situations in the hardware
as rotor unbalance changes over time during the operation.

0

0.5

1

In
n

e
rf

ilm
  

  
 

  
  

F
o

rc
e

  
  

 

Without holes

With holes

0

0.5

1

In
n

e
rf

ilm
  

  
 

  
  

F
o

rc
e

  
  

 

0

0.5

1

  
  

In
n

e
rf

ilm
  

 

E
c
c
e

n
tr

ic
it
y
  

  

0

0.5

1

  
  

In
n

e
rf

ilm
  

 

E
c
c
e

n
tr

ic
it
y
  

  
0

0.5

1

O
u

te
rf

ilm
  

  
 

  
  

F
o

rc
e

  
  

 

0

0.5

1

O
u

te
rf

ilm
  

  
 

  
  

F
o

rc
e

  
  

 

0 30 60 90 120 150 180 210

Rotational speed (krpm)

0

0.5

1

P
o

w
e

rl
o

s
s

0 30 60 90 120 150 180 210

Rotational speed (krpm)

0

0.5

1

P
o

w
e

rl
o

s
s

Compressor side bearing Turbine side bearing

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 7: Comparison of innerfilm forces, eccentricity, outerfilm forces, powerloss (a)-(d) compressor side bearing
(e)-(h) turbine side bearing between without and with oil feed holes at 4 bar, 100◦C oil supply

The accuracy of the database approach depends on the number of values considered for the four independent
variables (refer to Equation 12) in the Reynolds equation. In the current work, the following values are used for
generating the database, p = 60,q = 60,r = 60 and s = 11. It took around 14 hours on an ordinary workstation to
generate the database. The run-up simulations using the database approach took nearly 30 hours and it varies with
the convergence of MATLAB ODE solver for different operating and boundary conditions. It might take several
days if the Reynolds equation needs to be solved along with the equations of motion solution. Simulations with
the database approach take at least 3−4 times higher time than with the short bearing theory. The bearing forces
calculated using the state variables from the run-up response of the turbocharger rotor and following the database
approach are compared in Figure 8 with the direct solution of the Reynolds equation solved using the MATLAB
PDE toolbox. The average error in bearing forces calculation with the database approach is close to 6% for the
compressor side bearing and 8% for the turbine side bearing. The extension proposed to the database approach is
limited to semi-floating bearings, as an additional Dirichlet boundary condition for centrifugal pressure at oil feed
holes has to be considered for full-floating bearings due to their rotational speed.
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Figure 8: Comparison of inner film force calculation of bearing with oil feed holes: direction solution vs. database
approach (a) compressor side bearing (b) turbine side bearingg
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3.2 Influence of the number of holes on turbocharger rotordynamic behavior
The feed holes are essential to supply sufficient oil into the bearings to avoid starvation and control temperature

rise due to the fluid shear in the oil films. The semi-floating bearing used in the turbocharger case study consists of
4 feed holes. It is unknown if the number of feed holes in that design is optimum or not. Further investigations with
2 and 6 holes in the bearing are carried out here to assess the influence of a number of feed holes on turbocharger
rotordynamic behavior. Oil flow to the bearing will be lower with 2 holes and high with 6 holes in the bearing. As
a result, inner oil film temperatures decrease with an increasing number of oil holes. It is assumed that sufficient
oil is supplied to the inner film of the bearing independent of the number of oil holes for the sake of comparing
rotordynamics behavior entirely. The waterfall plots of the vibrations simulated at the sensor location with 2, 4, and
6 holes are compared in Figure 9. The results show relatively lower sub-synchronous vibrations when the oil feed
holes in the bearing are minimum. The Sub2 vibrations are confined up to 185 krpm when there are only 2 holes
considered in the bearing (refer to Table 2). The Sub1 vibrations are extended until 121 krpm in the case of 6 oil
feed holes. The bearing outer film forces are also compared in Figure 10. They are respectively normalized with
the maximum value calculated in the case of 4 holes which is considered as a reference. The outer film forces are
low in the case of 2 oil feed holes and high in the case of 6 oil feed holes in the bearing. Lower sub-synchronous
vibrations and low-bearing outer film forces are respectively positive indicators for better load capacity and lower
noise emissions from the system. Thus the consideration of 2 oil feed holes in the bearing is optimum if enough oil
flow into the inner film of the bearing can be ensured. It can be either checked with computational fluid dynamics
simulations or tested on a gas stand or engine test cell. The case study discussed in this work brings forward
additional features like the number of feed holes and their diameter into the bearing design studies to optimize their
performance.

Figure 9: Influence of the number of feed holes on the run-up vibration response (simulations) at sensor location
for 4 bar, 100◦C oil supply

4 Summary & Conclusions
A database approach for the calculation of forces of journal bearings considering oil feed holes is successfully

demonstrated in this work and it is useful for efficiently solving the equations of motion of high-speed machinery.
The vibration behavior of an automobile engine turbocharger rotor supported on a semi-floating journal bearing is
also investigated in this study. Simulation results without and with oil feed holes in the bearing model are compared
to measured results at 4 bar, 100◦C oil supply. The bearing model with oil feed holes better predicted Sub2 similar
to the test results. The impact of oil feed holes modelling is not immense on the shaft motion behavior for the
balanced rotor case used in this study. But it improved the prediction of other bearing performance variables such as
load capacity and transmitted forces. It is hardly possible to measure them in the tests on an engine. So, accurate
prediction using better models allows us to choose an optimum design and can substitute tests required for the
qualification of bearing systems for new turbocharger applications. The bearing with the least number of feed holes
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possible is found to be a good design choice for the turbocharger rotor investigated in this study. The influence of
feed holes can be predominant at other operating or boundary conditions and nonetheless, their modelling offers an
additional dimension to the bearing design studies to improve their performance.
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Figure 10: Comparison of bearing outer film forces with 2, 4, and 6 holes (a) compressor side bearing, (b) turbine
side bearing

Table 2: Variation in the extent of sub-synchronous frequencies with number of oil feed holes
Sub-synchronous

vibrations
Rotational speed

2 holes 4 holes 6 holes

Sub1
Start 0 0 0
End 77 krpm 77 krpm 121 krpm

Sub2
Start 77 krpm 77 krpm 121 krpm
End 185 krpm 210 krpm 210 krpm
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Abstract
The Lomakin effect influences the rotordynamic characteristics not only of seals but also of journal bearings

with axial flow. Recent findings have shown that the corresponding pressure loss coefficient is circumferentially
distributed. If this distribution is supplied to hydrodynamic lubrication film models it can improve the predictions
of load bearing capacity and attitude angle in steady-state cases. Thus, in the present paper a dynamic case was
studied to investigate the influence of the circumferentially distributed loss coefficient on rotordynamic coefficients.

Three-dimensional CFD flow simulations in a rotating reference frame have been conducted to determine the
loss coefficient distribution and to compute a set of linear rotordynamic coefficients. Additionally, two sets of
computations have been conducted with the lubrication film model CAPM. For one computation a standard pres-
sure loss formulation was used while the the other computation was supplied with the loss coefficient distribution
determined by CFD. The results show generally a good agreement between the CFD and both CAPM results.
Unfortunately, the model results determined with use of the loss coefficient distribution show no improvement
compared to the standard formulation. However, a physically consistent and accurate treatment of the boundary
conditions allows better analyses and improvements of other model aspects.

1 Introduction
Journal bearings and annular seals have considerable impact on the rotordynamics of hydraulic turbomachinery

like centrifugal pumps. The pressure difference over a seal results in a significant axial flow additional to the
circumferential Couette flow due to the shaft rotation. The same can be said for media-lubricated journal bearings
which use the process medium as lubricant. In both cases the axial flow results in an entrance pressure loss which
has significant influence on the load bearing capacity resp. stiffness of a bearing or seal. This is called the Lomakin
effect [1, 2].

The Lomakin effect has to be accounted for by hydrodynamic lubrication film models which are needed for
prediction of load or dynamic forces on the rotor. The corresponding pressure loss is usually modeled by means
of Bernoulli’s equation with a pressure loss coefficient as inlet boundary condition. Recently, it was found that
the loss coefficient is not a constant but a circumferential distribution around the annulus [11]. If provided to
lubrication film models, it can improve predictions of load bearing capacity, attitude angle and leakage flow for
steady-state operation conditions.

In general, the established lubrication models can be divided into three types: Reynolds’ equation, one-
dimensional bulk flow models and two-dimensional bulk flow models. All three types have certain shortcomings
which can result in unacceptable prediction uncertainty. Thus, the Clearance-Averaged Pressure Model (CAPM)
has been developed [5, 7, 8, 10]. The CAPM is a general superordinate model for plain annuli and can reliably
predict forces on the rotor including the Lomakin effect at laminar and turbulent flow.

In the present paper, the loss coefficient distribution is analyzed by means of quasi steady-state three-dimensio-
nal CFD simulations in a rotating reference frame for a dynamic case at turbulent flow. The entrance pressure loss
distribution is determined and supplied to the CAPM as boundary condition. The influence on model prediction
accuracy for rotordynamic coefficients of stiffness, damping and inertia is quantified and compared to the CFD
results and results of the CAPM with standard boundary conditions.
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Nomenclature

∆p̃ axial pressure difference across
the bearing

˜̄Cz average axial velocity equal to to-
tal axial volume flow divided by
gap area

˜̄h mean gap height or fluid film
thickness

ν̃ fluid kinematic viscosity
Ω̃ journal rotational speed
ϱ̃ fluid density
L̃ bearing length
R̃ journal radius
r̃, φ, z̃ cylindrical coordinates
s̃ := R̃+ ˜̄h− r̃ channel coordinate
x̃, ỹ, z̃ Cartesian coordinates
γ tilt angle for journal misalignment
ω := ω̃/Ω̃ orbit frequency ratio
ϕ := ˜̄Cz/(Ω̃R̃) flow number
ψ := ˜̄h/R̃ relative gap height
ε := ε̃/˜̄h relative eccentricity
ζ pressure loss coefficient

L := L̃/R̃ nondimensional bearing length
Re := Ω̃R̃˜̄h/ν̃ Reynolds number
β attitude angle

F⃗ := 2 ⃗̃F
ϱ̃Ω̃2R̃4L

nondimensional force vector

cφ := c̃φ/(Ω̃R̃) nondimensional circumferential
velocity component

cz := c̃z/
˜̄Cz nondimensional axial velocity

component
F nondimensional bearing load
h := h̃/˜̄h nondimensional gap height
p := 2 p̃

ϱ̃Ω̃2R̃2
nondimensional pressure

r := r̃/R̃ nondimensional radial coordinate
s := s̃/h̃ nondimensional channel coordi-

nate
z := z̃/L̃ nondimensional axial coordinate
M ; m nondimensional inertia coeffi-

cients
C; c nondimensional damping coeffi-

cients
K; k nondimensional stiffness coeffi-

cients

2 Clearance-Averaged Pressure Model
The Clearance-Averaged Pressure Model (CAPM) is a general lubrication film model and solver for incom-

pressible flow in full circular bearings or annular seals. It was first derived and implemented by Lang [7] and since
then was improved, verified and validated by Robrecht et al. [10], Robrecht and Pelz [11], Kuhr, Lang and Pelz
[5], Kuhr, Nordmann and Pelz [6].

The model geometry of a generic annular gap of a bearing or seal is depicted in figure 1. Throughout the
paper, variables with tilde denote dimensional quantities and the corresponding variables without tilde the dimen-
sionless quantities. The rotor has the radius R̃, rotational speed Ω̃ and can be dislocated with the eccentricity ε̃
and misaligned with the tilt angle γ. It performs an orbital motion with rotational frequency ω̃ around the stator
centerline. The stator has the length L̃ and radius R̃ + ˜̄h where ˜̄h is the mean gap height. The gap with variable
gap height h̃ is filled with fluid of kinematic viscosity ν̃ and density ϱ̃. The total volume flow though the annular
gap due to an axial pressure difference ∆p̃ is characterized by the mean axial velocity ˜̄Cz . The fluid enters the gap
with a circumferential velocity which can vary due to ”preswirl”. The only fundamental assumption of the CAPM
is ˜̄h ≪ R̃ (or ψ ≪ 1) which is easily fulfilled for journal bearings and annular seals. This assumption leads to a
negligible pressure gradient over the gap height where the name CAPM stems from.

The CAPM is based on a cylindrical coordinate system (r̃, φ, z̃) in a rotating reference frame with the same
rotational speed ω̃ as the orbit motion. Thus, the absolute velocity ⃗̃c is given with

⃗̃c ≈ ⃗̃w + ω̃R̃ e⃗φ . (1)

The rotating coordinate system eliminates the time dependency caused by the orbital rotor motion. Furthermore we
assume incompressible flow as well as constant material properties of the Newtonian fluid and exclude cavitation
and wear effects from our considerations. Additionally, we define the channel coordinate s̃ := R̃ + ˜̄h − r̃ so that
e⃗s = −e⃗r. From here on we will only use nondimensional variables (without tilde) whose definitions can be found
in the nomenclature.

The considered control volume for the model extends over the complete gap height and infinitesimal segments
in axial and circumferential direction. Due to ψ ≪ 1, the pressure gradient ∂p/∂s ≈ 0 is negligible, cf. [12, 13].
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Figure 1: Model of an annular gap for the CAPM.

The function of gap height is defined as

h(φ, z) = 1− (ε+ εγ) cosφ (2)

with the additional eccentricity εγ caused by misalignment with tilt angle γ. Throughout this study, we assume
γ = εγ = 0. On this basis, the governing equations of the CAPM are given by Lang [7]. The nondimensional
continuity equation, the circumferential and axial momentum equations for steady-state flow in this control volume
read

∂

∂φ

(
h

∫ 1

0

wφ ds

)
+
ϕ

L

∂

∂z

(
h

∫ 1

0

cz ds

)
= 0 , (3)

∂

∂φ

(
h

∫ 1

0

w2
φ ds

)
+
ϕ

L

∂

∂z

(
h

∫ 1

0

wφ cz ds

)
= −h

2

∂p

∂φ
+

1

2ψ
τsφ|10 and (4)

ϕ
∂

∂φ

(
h

∫ 1

0

wφ cz ds

)
+
ϕ2

L

∂

∂z

(
h

∫ 1

0

c2z ds

)
= − h

2L

∂p

∂z
+

1

2ψ
τsz|10 . (5)

The terms of the remaining fluid shear stresses and the Coriolis force can be neglected as result of an analysis of
order of magnitude [7].

To close the equation system (3) to (5), ansatz functions for the velocity profiles wφ(s, φ, z) and cz(s, φ, z)
have to be defined so that the integrals over s can be evaluated. The ansatz functions are of the form c(s, φ, z) =
fn(s, c∗) where c∗(φ, z) is a characteristic flux variable like gap mean velocity, center-line velocity or specific
volume flow.

For laminar flow, the profiles can be given as

wφ(s, φ, z) =

(
−6

V̇φ
h

− 6ω + 3

)
s2 +

(
6
V̇φ
h

+ 6ω − 2

)
s− ω and (6)

cz(s, φ, z) =
6

ϕ

V̇z
h

(
−s2 + s

)
. (7)

with the specific volume flows V̇φ(φ, z) and V̇z(φ, z) as characteristic flux variables [11]. For turbulent flow at
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moderate Reynolds numbers the profiles can be stated with power law ansatz functions

wφ(s, φ, z) =

{
(Wφ + ω) (2s)

1/nφ − ω , 0 ≤ s ≤ 0.5

(Wφ + ω − 1) (2− 2s)
1/nφ − ω + 1 , 0.5 < s ≤ 1

(8)

cz(s, φ, z) =

{
Cz (2s)

1/nz , 0 ≤ s ≤ 0.5

Cz (2− 2s)
1/nz , 0.5 < s ≤ 1

(9)

with the center line velocities Wφ(φ, z) and Cz(φ, z) as characteristic flux variables and the empirical exponents
nφ and nz [7]. For typical bulk flow models at high Reynolds numbers, the ansatz function is simply constant 1
and the gap mean velocities w̄φ(φ, z) and c̄z(φ, z) are the characteristic flux variables:

wφ(φ, z) = w̄φ and (10)
cz(φ, z) = c̄z . (11)

Furthermore, the wall shear stress terms τsφ|10(φ, z) and τsz|10(φ, z) in eqs. (4) and (5) have to be given as
function of the same characteristic variables. For turbulent flow the well known model by Hirs [3] is used which is
common for bulk flow models, too. For laminar flow the gradients of the velocity profiles can be used to calculate
the analytical expressions.

The independent variables φ and z then are discretized in a finite differencing scheme and the system of
coupled nonlinear partial differential equations is solved by means of a SIMPLEC algorithm [14]. The results are
the pressure field p(φ, z) and the two fields of the characteristic variables over φ and z. The solution will also give
the flow number with prescribed pressure difference or vice versa.

It is possible to compute the three components of each of the resulting force and torque vector on the rotor. For
this we make use of an additional Cartesian coordinate system (x̃, ỹ, z̃) which rotates with ω̃ as well, see figure 1.
Thus, the x̃-coordinate always is directed in the direction of eccentricity. The force components of most interest
are the lateral ones which are given with

Fx =

∫ 1

0

∫ 2π

0

−p cosφ cos γ dφdz and (12)

Fy =

∫ 1

0

∫ 2π

0

−p sinφ cos γ dφdz . (13)

Furthermore, we define a resulting force (bearing load) as magnitude of the planar force vector with

F =
√
F 2
x + F 2

y . (14)

similar to a Sommerfeld number. The bearing attitude angle can be calculated with

β = arctan |Fy /Fx| . (15)

Finally, the linear rotordynamic coefficients in an inertial frame of reference (x̃′, ỹ′, z̃′) in the form of

−
[
F ′
x

F ′
y

]
=

[
M m
−m M

] [
ẍ′

ÿ′

]
+

[
C c
−c C

] [
ẋ′

ẏ′

]
+

[
K k
−k K

] [
x′

y′

]
(16)

are readily obtained in the rotating frame at different orbit frequencies ω at a constant (small) eccentricity ε for
small rotor motion about the concentric position [2, 7]. Transformation of equation (16) into the rotating reference
frame with the orbit motion yields the corresponding equations

Fx/ε = M ω2 − c ω −K and (17)

Fy/ε = −mω2 − C ω + k (18)
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which are used for parameter identification. The nondimensional definitions of the rotordynamic coefficients are

{M ; m} := 2
ψ

L

{M̃ ; m̃}
ϱ̃R̃3

, (19)

{C; c} := 2
ψ

L

{C̃; c̃}
ϱ̃R̃3Ω̃

and (20)

{K; k} := 2
ψ

L

{K̃; k̃}
ϱ̃R̃3Ω̃2

. (21)

3 Lomakin effect and boundary conditions
When an axial flow component is present, the entrance of an annulus represents a sudden contraction of the

flow cross section which leads to a flow separation at the entrance edge due to fluid inertia. The resulting separation
bubble is a further reduction of the flow cross section after which it expands again. This results in a pressure loss of
Carnot type. Due to the higher velocity in the wider part of the eccentric gap there will be a greater pressure loss.
This is shown exemplary in the left of figure 2. The right diagram shows the circumferential pressure distribution
at the gap entrance. The resulting pressure field in the fluid film will exert a centering force on the rotor and will
increase the bearing stiffness. This effect was first described by Lomakin [9] and is well known in the application
of annular seals [1, 2]. Nonetheless, the effect also occurs in journal bearings when an axial flow component is
present, even at laminar flow conditions [11].

The Lomakin effect can be modeled by means of Bernoulli’s equation from the inlet plenum to the gap entrance
with a pressure loss term. Usually, the pressure loss coefficient is assumed to be a constant but it was shown that
it is circumferentially distributed [11]. Furthermore, typically the orbit motion is neglected due to the assumption
of very small amplitudes. Here, we want to derive a physically consistent formulation considering the rotating
reference frame due to the orbit motion.

Assuming steady-state flow in the rotating reference frame and a plenum with approximately constant total
pressure before the entrance of the annular gap, Bernoulli’s equation along a streamline from the plenum to a point
directly at the gap inlet is given by

(
C̄φ, plenum − ω

)2
+∆p = p(φ) + [1 + ζ(φ)]

[
w̄2

φ(φ) + ϕ2 c̄2z(φ)
]

(22)

with the pressure difference over the annular gap ∆p ≈ const., the volume averaged plenum circumferential
velocity C̄φ, plenum ≈ const., the gap height averaged velocity components w̄φ and c̄z at the gap entrance, cf. [11].

0
2.5

3

3.5

4

CIRCUMFERENTIAL COORDINATE 𝜑

𝑧 = 0

P
R
E
S
S
U

R
E
 𝑝

CFD

SPLINE

𝜋/2 𝜋 3𝜋/2 2𝜋

𝜑 = 0

𝜑 = 𝜋

0 0.5 1

AXIAL COORDINATE 𝑧

0

1

2

3

4

P
R
E
S
S
U

R
E
 𝑝

CFD

Figure 2: Axial and circumferential pressure distribution due to the Lomakin effect (study case ω = 0).
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The empirical pressure loss coefficient is defined as

ζ :=
2∆p̃loss

ϱ̃ | ⃗̃̄w|2
. (23)

The plenum circumferential velocity is usually small (cf. table 2) and can be neglected for actual plenum type inlets.
For other inlet geometries it could vary which is usually called ”preswirl”. This might also affect w̄φ(φ) at the gap
entrance which is typically unknown. Furthermore, the loss coefficient can be a function of the circumferential
coordinate and in general can be dependent on all model parameters, cf. [10, 11]:

ζ = ζ (φ, ε, γ, ω,Re, ϕ, ψ, L) . (24)

With a known distribution of ζ(φ) for a given parameter set the average value is calculated with

ζ̄ :=
1

2π

∫ 2π

0

ζ(φ) dφ . (25)

Bernoulli’s equation (22) is needed as boundary condition for integro-differential models like the CAPM to
consider the Lomakin effect. The numerical solution of the governing equations (3) to (5) of the CAPM requires
boundary conditions for all three dependent variables c∗φ, c∗z and p. Equation (22) at the inlet (z = 0) is a nonlinear
boundary condition coupling the pressure and the velocity. While the axial velocity component is governed by
the prescribed pressure difference resp. the flow number, an additional condition for the circumferential velocity
at the gap entrance is needed. In the gap the boundary layers will be fully developed after a short length and the
gap averaged circumferential velocity will adjust to an average value of c̄φ ≈ 0.5 which is a good general guiding
value. However, the exact value can be influenced by ”preswirl” which means the circumferential velocity in the
plenum before the gap.

The boundaries at φ = 0 and φ = 2π are treated with a periodicity condition. At the outlet (z = 1) the
boundary conditions are more simple. It is reasonable to assume the outlet to be of a plenum type, too. Thus, the
pressure at the gap outlet without loss of generality is p = p0 = 0.

4 Results
To investigate the influence of the Lomakin effect and the circumferential distribution of the entrance pressure

loss coefficient, a numerical study by means of three-dimensional CFD simulations has been conducted. The
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Figure 4: Pressure differences over orbit frequency.

numerical setup is very similar to the one described by Robrecht and Pelz [11] where an detailed description is
given and a grid study has been performed. The main difference is that the simulations in the present paper are
quasi steady-state in a rotating reference frame. This allows to consider a circular orbit motion of the rotor about
the stator center axis similar to the method of the CAPM described in section 2.

The nondimensional parameters of the study are listed in table 1. It is a case of a media-lubricated journal
bearing which is represented by a moderate Reynolds number and significant flow number. The geometry and
operation conditions have been chosen so that the results of the present study can be validated with published
experimental data for rotordynamic coefficients published by Kuhr [4]. The value for the eccentricity ε has been
chosen to be at the upper limit of the range of linearity of the rotordynamic coefficients. This has been done to
show the maximum influence of the circumferential distribution of the entrance loss coefficient. The values of the
orbit rotational frequency ω are typical arbitrary values used for parameter identification [2].

The results of the CFD simulations have been used to evaluate the circumferential distribution of the entrance
pressure loss according to equation (22) with the method described by Robrecht and Pelz [11]. The method is
to determine the mean values over the gap height of the pressure, circumferential and axial velocity component
at the gap entrance. Due to the disturbance of the separation bubble (compare figure 2) the pressure needs to be
extrapolated from the gap to the entrance region. This is done at eight discrete positions around the circumference.
The discrete distribution is made continuous be means of a periodic interpolation spline.

The results are shown in figure 3. It can be seen that the loss coefficient is a pronounced function of the
circumferential coordinate. The steady-state case ω = 0 shows the typical form with the maximum around the
widest part of the gap. At the narrowest part the coefficient is zero, which shows there is no flow separation. The
case ω = 0.5 shows the maximum values and a reversed form. This is caused by generally very small values of
w̄φ at ω = 0.5 and the minimum of c̄z at φ = 0. The curves at the other orbit frequencies are successively lower
and more flat. The corresponding mean values ζ̄ are listed in table 2.

Moreover, the circumferential velocity in the plenum due to ”preswirl” can be characterized by a volume
averaged value

C̄φ, plenum :=
1

Vplenum

∫∫∫
Vplenum

cφ dV . (26)

Table 1: Parameters of the CFD study.

Re ϕ L ψ ε γ ω

4000 0.7 1.3 0.0042 0.4 0 0; 0.5; 1; 1.5; 2
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Figure 5: Relative forces over orbit frequency and polynomial fitting curves for parameter identification.

The value is somewhat arbitrary since it depends on the specific integration domain. Nonetheless, it can give an
indication of the value of the gap entrance.

The CFD results show that the circumferential velocity at the gap entrance c̄φ is only a weak function of the
circumferential coordinate and in good approximation can be considered constant. The average value defined by

C̄φ, 0 :=
1

2π

∫ 2π

0

c̄φ(z = 0) dφ . (27)

is used as velocity boundary condition at the gap inlet for the CAPM. The average values of the mean plenum
circumferential velocity, the mean circumferential velocity at the gap entrance, the mean loss coefficient and the
pressure difference of the five CFD simulations are listed in table 2.

For comparison, computations by means of the CAPM have been carried out. The first set of computations
uses Bernoulli’s equation (22) with the parameters of table 2 and the splines for ζ(φ) of figure 3. The other set
uses the typical form of Bernoulli’s equation (cf. [10]) without consideration of the rotating reference frame and a
typical constant value of ζ∗ = 0.5.

Figure 4 shows the resulting pressure difference ∆p across the bearing. The three sets of markers show the
results of the CFD and the two CAPM computations as described above. The simulations show a very slight
increase of pressure difference with increasing orbit frequency ω. Both CAPM computations give almost the same
results which qualitatively agree very well with the simulation. Quantitatively, the CAPM predictions show an
roughly constant offset of 0.5 over the whole orbit frequency range compared to the simulation results.

Figure 5 show the lateral forces Fx and Fy relative to the eccentricity ε over the orbit frequency ω. The markers
represent the computation results and the curves represent the polynomial fitting curves according to equation (18)
which are used for parameter identification. In x-direction the results of all three models are different and the
CAPM results with ζ(φ) are generally too high. In y-direction the two sets of CAPM computations are almost the
same and differ slightly from the simulation results.

Table 2: Results of the five CFD cases.
ω C̄φ, plenum C̄φ, 0 ζ̄ ∆p

0 0.18 0.34 0.21 3.99
0.5 0.13 0.29 0.88 3.97
1.0 0.13 0.28 0.69 3.99
1.5 0.13 0.27 0.45 4.06
2.0 0.14 0.29 0.33 4.16
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Figure 6: Rotordynamic coefficients of the three models.

The identified rotordynamic coefficients of the three models are shown in figure 6. In general, there is a good
agreement between CFD and CAPM. The predictions for the direct inertia M are a little too low compared to
the simulations (66 %, 80 %). The cross-coupled inertia is zero as usual. The model predictions for the direct
damping C is a little to high (114 %, 113 %). The cross-coupled damping c is significantly too low for the CAPM
results with ζ(φ) (24 %) and a little too low for the CAPM with constant ζ∗ (80 %). The agreement for direct
stiffness K is very good (100 %, 92 %). Finally, the predictions for the cross-coupled stiffness k are a little too
high (127 %, 131 %). All values for the rotordynamic coefficients approximately agree with experimental values
determined by Kuhr [4].

5 Conclusion
In the present study the Lomakin effect was revisited due to recent findings for laminar flow [11]. It was

found that the corresponding entrance pressure loss coefficient is a circumferential distribution and can improve
the prediction accuracy of lubrication film models for steady-state cases in journal bearings and annular seals. In
the present study, a dynamic case at turbulent flow was investigated by means of CFD simulations and compared
to the lubrication film model CAPM. The influence of the loss coefficient on the prediction accuracy of the CAPM
for rotordynamic coefficients was analyzed.

The results confirm that the entrance pressure loss coefficient is a pronounced circumferential distribution for
turbulent flow, too. The curves differ qualitatively and quantitatively for varying orbit frequencies. The curves were
then supplied to the CAPM as inlet boundary condition. The results of the CFD, the CAPM with circumferentially
distributed loss coefficient and the CAPM with the typical constant loss coefficient have been used to compute
three sets of rotordynamic coefficients and have been compared.

The results show generally a good agreement between the CFD simulation and the CAPM. The circumferential
distribution can only provide a marginal improvement to the prediction of direct and cross-coupled stiffness. How-
ever, the prediction of direct inertia is slightly worse and cross-coupled damping is significantly worse. Nonethe-
less, the physically consistent and accurate description of the boundary conditions allows to distinguish different
physical effects in the context of the whole model and can help to improve other corresponding aspects, e.g. the
shear stress model for dynamic cases.
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Abstract
Dynamic simulations of rotor systems supported on journal bearings require a solution for the Reynolds equation

at every time step. Such simulations for high-speed rotors can be time-consuming. A novel method is demonstrated
in this paper where the pressure variation along the bearing length is represented by a basis function satisfying
the boundary conditions at the bearing ends. The basis function can be a polynomial or an exponential function
whose coefficients are functions of the bearing length (L) to diameter (D) ratio. The same basis function is used as
a test function to reduce the dimension of the Reynolds equation to 1D using the Galerkin method. The reduced
differential equation is solved using the pseudospectral method (PSM). The computational effort required for
solving the reduced equation is on par with short/long bearing theories. Bearing forces and peak dynamic pressure
generated within the bearings as predicted by this equation are compared with the solution of the two-dimensional
Reynolds equation solved using the MATLAB PDE toolbox. In the end, the dynamic response of a turbocharger
rotor supported on finite length full-floating journal bearings is simulated using this reduced equation and also
compared with the results obtained using short bearing theory and 2D Reynolds equation solution for bearings. The
approach demonstrated in this work can also be extended for pressure calculations in gas and thrust bearings.

1 Introduction
Journal bearings are commonly used in rotating machinery due to their longer life, low cost, and superior

damping properties compared to any other types of bearings. Such bearings are susceptible to certain instabilities
like oil whirl/whip, which often settle to a stable limit cycle. It is possible to limit the overall impact of these
instabilities on rotor vibrations by choosing an appropriate bearing design. Mathematical modelling of the bearings
and their coupling to the rotor model will allow predicting the rotor’s vibration behavior. Such simulations need
to be accurate and fast enough to carry out large bearing design studies considering bearing dimensions as design
variables. The pressure generation inside journal bearings can be predicted by solving the Reynolds equation, a
linear second order partial differential equation (PDE) derived with certain assumptions [1]. Several approaches like
finite element method (FEM), finite difference method (FDM), spectral methods, finite volume method (FVM), etc.
can be applied to solve the Reynolds equation [2]. Simplified models like long and short bearing approximations to
the Reynolds equation are applicable to bearings if their length to diameter ratios are L/D > 2 and L/D < 0.5
respectively which will reduce the PDE to one dimension (1D) either in axial or circumferential coordinate. Hence,
the less computational effort is required to solve the resultant 1D equation. But, bearing forces are inaccurate at
higher eccentricities with these simple models. However, these approximations are not applicable for other L/D
ratios. A correction factor was proposed to forces [3] or pressure [4] obtained from short bearing theory to extend
its validity for bearing dimensions with L/D ratios up to 1.25. Many studies can be found in the literature where
solutions are proposed for the two-dimensional Reynolds equation using various methods. Few of them are based
on the approximate analytical methods [7, 6, 5], database method [8, 9, 11] and scaled boundary finite element
method [10]. Recently, Baum et al. [12] applied Galerkin’s method to reduce the dimension of the compressible
Reynolds equation for efficiently calculating airfoil journal bearing forces. They have proposed an approach to
determine an optimal base function for pressure variation along the bearing length from the 2D Reynolds equation
solution. Later, they used it as a test function in Galerkin’s method to eliminate the length coordinate resulting in
a reduced equation in only the circumferential coordinate. Their approach is not described in detail and also the
accuracy of the reduced equation is not discussed. The authors adopted their idea to derive a reduced equation for
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journal bearing in the current work and proposed an approach to extend its validity for a wide range of L/D ratios.
The accuracy of the reduced equation at various eccentricities and L/D ratios is compared with the solution of the
Reynolds equation using MATLAB PDE toolbox [13]. In the end, the run-up vibration response of a turbocharger
rotor supported on two full-floating bearings with L/D = 1 for their inner oil films is simulated using the Reynolds
equation (both reduced and not reduced) and short bearing theory.

2 Mathematical modelling
The hydrodynamic pressure generated within journal bearings (refer to Figure 1) can be calculated using the

Reynolds equation. For more details on its derivation and underlying assumptions refer to [1] and the equation is

(
1

R

)2
∂

∂θ

(
h3 ∂P

∂θ

)
+

∂

∂z

(
h3 ∂P

∂z

)
= 12µ

(
Ω

2

∂h

∂θ
+

∂h

∂t

)
, (1)

where P is the dynamic pressure generated in the bearing, h is the oil film thickness around the bearing circumference,
µ is the oil viscosity, Ω is the angular velocity of the shaft, θ and z are the bearing circumferential and axial
coordinates, ∂

∂θ ,
∂
∂z and ∂

∂t refers to the spatial and temporal derivatives of a variable, and

h = c+ ecos (θ) ,

∂h

∂θ
= − esin (θ) ,

∂h

∂t
= ėcos (θ) + eϕ̇sin (θ) ,

(2)

where c is the bearing radial clearance, e is the eccentric position of the shaft center from the bearing center along
the line of centers as shown in Figure 1, φ is the attitude angle, ė and φ̇ are the velocities of eccentricity and attitude
angle.

The Reynolds equation given in Equation 1 can be transformed into the non-dimensional form as given below,

∂

∂θ

(
H3 ∂P̄

∂θ

)
+

1

4

(
D

L

)2
∂

∂z̄

(
H3 ∂P̄

∂z̄

)
= 12

{
ε̇cos (θ) + ε

(
φ̇

Ω
− 0.5

)
sin (θ)

}
, (3)

where D is the bearing diameter, P̄ = P
µΩ

(
c
R

)2
is the non-dimensional pressure, H = 1 + εcos (θ) is the

non-dimensional film thickness with ε = e
c and z̄ = z

L , ε̇ = ė
cΩ .

2.1 Short bearing theory
Pressure variation along the bearing circumference is negligible in comparison to that along its length for L/D

< 0.5. Thus the Reynolds equation given in Equation 3 is reduced to one dimension and can be integrated easily to
get an analytical expression for the pressure. Typical boundary conditions for a journal bearing at the bearing ends
are equal to atmospheric pressure as it is exposed to ambient conditions. The expression for fluid film pressure with
short bearing approximation and after applying the boundary conditions is given in Equation 4,

P̄ = − 24

H3

(
L

D

)2
{
ε̇cos (θ) + ε

(
ϕ̇

Ω
− 0.5

)
sin (θ)

}
z̄(1− z̄). (4)

2.2 Galerkin method
The dynamic pressure generated within the journal bearing can be represented as a product of two independent

functions as given in Equation 5,

P̄ (θ, z̄, t) ≈ ˆ̄P (θ, z̄, t) = P̄θ (θ, t) P̄z (z̄) . (5)
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After comparing Equations 4 & 5, we can assume a polynomial function like P̄z (z̄) = 4z̄(1− z̄) for pressure
variation along the bearing length coordinate. Initially, the Reynolds equation reduction procedure is demonstrated
using this polynomial function which is valid for bearings whose L/D < 0.5, and later the extension of this
methodology is presented for other L/D ratios. The pressure function assumed in Equation 5 should satisfy the
boundary conditions of the bearing and also when substituted in the Reynolds equation make the residual (refer to
Equation 6) small, i.e.

ϵ (θ, z̄, t) =
∂

∂θ

(
H3 ∂

ˆ̄P

∂θ

)
+

1

4

(
D

L

)2
∂

∂z̄

(
H3 ∂

ˆ̄P

∂z̄

)
− f (θ, εx, εy, ε̇x, ε̇y) , (6)

where right hand side of the Equation 3 is represented as f (θ, εx, εy, ε̇x, ε̇y).
The P̄z (z̄) function is also used as a weighing function and following the weighted residual method, the inner

product of the residual with this function is made zero (performed for half bearing length) as given in Equation 7,∫ 0.5

0

ϵ (θ, z̄, t) P̄z (z̄) dz̄ = 0. (7)

The final equation after integration will be independent of the length coordinate z̄ as given in Equation 8,

4

5

∂

∂θ

(
H3 ∂P̄θ

∂θ

)
− 2

(
D

L

)2

H3P̄θ = f (θ, εx, εy, ε̇x, ε̇y) . (8)

The P̄θ is an unknown function in the final equation that can be solved using numerical methods like finite
element, finite difference, or spectral methods [2]. Beyond the L/D < 0.5, the pressure variation along the bearing
length deviates from the function P̄z (z̄) = 4z̄(1 − z̄). The pressure variation along the bearing length at an
eccentricity value of ε = 0.8 for various L/D ratios within the range of 0.25− 10 for a journal bearing is shown in
Figure 2. It is difficult to find one function like P̄z (z̄) = 4z̄(1− z̄) to represent pressure variation along the bearing
length that is applicable for all L/D ratios and also for all eccentricities. Therefore, it is proposed in the current
work to divide the bearing dimensions into the following two ranges: 0.25 < L/D < 3 and 3 < L/D < 10. After
analyzing the pressure profiles in Figure 2, the fluid pressure at lower L/D ratios can be represented using higher
order polynomials but at higher ratios, the exponential function fits better. Accordingly, a fourth-order polynomial
satisfying bearing’s boundary condition is chosen for 0.25 < L/D < 3 as given in the Equation 9,

P̄z (z̄) = a4z̄
4 + a3z̄

3 + a2z̄
2 + a1z̄. (9)

This range can be extended or reduced with the consideration of higher or lower order polynomials respectively.
The polynomial coefficients a1, a2, a3, a4 are determined from curve fitting to the respective pressure profiles
in Figure 2. The values of these coefficients vary with L/D ratios as shown in Figure 3. After substituting the
polynomial function given in Equation 9 into the Equations 5-7 we get a reduced differential equation as given in
the Equation 10,
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where the variables A1, A2, A3 are functions of polynomial coefficients given as follows,
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Figure 3: Polynomial coefficients values at various L/D ratios between 0.25− 3

A1 =
70a24 + 315a3a4 + 720a2a4 + 1680a1a4 + 360a23 + 1680a2a3 + 4032a1a3 + 2016a22 + 10080a1a2 + 13440a21

322560
,

A2 =
90a24 + 315a3a4 + 588a2a4 + 1260a1a4 + 252a23 + 840a2a3 + 1680a1a3 + 560a22 + 1680a1a2

26880
,

A3 =
6a4 + 15a3 + 40a2 + 120a1

960
.

Paper-ID 59230



The reduced equation given in Equation 10 is applicable for bearing dimensions within 0.25 < L/D < 3 range.
In the same way, for bearing dimensions in the range of 3< L/D < 10, an exponential function satisfying boundary
conditions as given in the Equation 11 is chosen,

P̄z (z̄) = a
(
ebz̄ − ecz̄

)
. (11)

The variables a, b, c are determined from the curve fitting to the respective pressure profiles shown in Figure 2.
The values of these coefficients vary with L/D ratios as shown in the below Figure 4. This exponential pressure
function is substituted in the Equations 5-7 to get a reduced differential equation as given in Equation 12,

B1
∂

∂θ

(
H3 ∂P̄θ

∂θ

)
+B2

(
D

L

)2

H3P̄θ = B3f (θ, εx, εy, ε̇x, ε̇y) , (12)

where the variables B1, B2, B3 are functions of exponential function variables given as follows,

B1 = −a2
(
2e(b+c)/2

b+ c
− 2
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+

1

2b
+

1

2c
− eb

2b
− ec

2c

)
,

B2 =
a2
(
b2 − 2b2e(b+c)/2 − 2c2e(b+c)/2 − 2bc+ c2 + b2eb + c2ec + bceb + bcec

)
8 (b+ c)

,

B3 =
a
(
b− c− bec/2 + ceb/2

)
bc

.

The reduced equation given in Equation 12 is applicable for bearings with dimensions in the range of 3 < L/D
< 10.
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Figure 4: Exponential function variables values at various L/D ratios between 3− 10

The basic criteria for choosing the basis function are that they better represent the pressure variation along the
bearing length, need to be integrable, and also satisfy the pressure boundary conditions at the bearing ends. The
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reduced 1D differential equation (Equations 10 & 12) with P̄θ as a dependant variable is solved in the current study
using pseudospectral method (PSM). The details of this method are not described here and refer to [14] for further
details. The 2D pressure profile around a bearing surface can be calculated using the 1D pressure profile P̄θ along
with the respective P̄z function. The Gumbel boundary condition [1] is applied in this study where the negative
pressures in P̄θ are disregarded by equating them to zero. This is a simple boundary condition to implement but it
does not fulfill fluid continuity, and also does not satisfy conservation of mass throughout the fluid and cavitation
domains. It is also possible to consider complex approaches that satisfy these conditions like Jacobson, Floberg and
Olsson, Elrod cavitation models [15] and can be coupled to this Galerkin reduction method. After applying the
boundary condition, bearing forces are calculated in the fixed coordinates (Fx, Fy in Figure 1) as given in Equation
13,

Fx = 2

∫ 2π

0

∫ 0.5

0

P̄θP̄zcos(θ + φ)µLΩ
R3

c2
dθdz̄,

Fy = 2

∫ 2π

0

∫ 0.5

0

P̄θP̄zsin(θ + φ)µLΩ
R3

c2
dθdz̄.

(13)

To evaluate the accuracy of the reduced equations, bearing forces from full and reduced equations are compared
in the next section. The 2D Reynolds equation is solved using the MATLAB PDE toolbox [13]. The bearing forces
at different eccentricities are compared using the Sommerfeld number (S) as given in the Equation 14,

S =
µΩLD

2πW

(
R

c

)2

, (14)

where W =
√

F 2
x + F 2

y .

The proposed Galerkin reduction method can be extended for thrust bearings, gas bearings, and airfoil bearings.
The computational time will be reduced by many times as it eliminates one dimension in the Reynolds equation
offering the possibility to use more complex and intensive cavitation algorithms. However, the accuracy of the
proposed approach needs to be verified when more complex and accurate cavitation models are used. This method
also has a limitation that it cannot be applicable for bearing geometries with features like oil feed holes, partial
circumferential grooves, and pressure dams.

3 Results and Discussion
A typical pressure profile in the circumferential (P̄θ) and axial (P̄z) directions calculated for an arbitrary bearing

geometry and operating conditions are shown in Figure 5 along with its 2D profile calculated using the Equation 5.
As detailed in the previous section, one of the two 1D differential equations given in Equations 10 and 12 is chosen
based on the bearing L/D ratio and solved for estimating P̄θ instead of solving the 2D Reynolds equation. After
that bearing forces can be calculated using Equation 13 and the accuracy of the results with the Galerkin method are
compared in the next section.

3.1 Bearing forces comparison
The reduced and full Reynolds equation at steady state conditions (velocity terms in the right-hand side of the

Equation 3 are ignored) are solved at different eccentricities in the range of 0.1− 0.9 and different L/D ratios to
calculate the bearing forces. These forces are expressed in the form of Sommerfeld number and compared for a few
cases in Figure 6 (a)-(e). The relative error between the solutions of these two equations is also compared in Figure
6 (f). The results of the reduced equation match very well with the results of the full Reynolds equation solution.
The maximum relative error at various L/D ratios between 0.25− 10 are plotted in Figure 7. The error is lowest
at L/D = 0.25 when the fourth order polynomial function is used in the Galerkin reduction and it increases with
increasing L/D ratios until 3. The same error is highest at L/D = 3 and it further decreases with increasing L/D
ratio until 10 when an exponential function is used in the Galerkin reduction. The error can be further reduced by
using higher order polynomials or any other mathematical functions but they may make the reduction procedure and
also the coefficients of the reduced equation further complex.
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Figure 5: Dynamic pressure profile around the bearing surface (unwrapped) and its decomposition along the
circumferential and length directions
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Figure 6: Comparison of Sommerfeld number calculated with full and reduced Reynolds equation

3.2 Turbocharger rotor simulations
The run-up vibration response of a turbocharger rotor supported on two identical full-floating bearings with

a circumferential groove on the outer surface as shown in the Figure 8 is simulated. The details of the rotor and
bearings are given in Table 1. The rotor is modelled using finite beam elements and the authors used the mode
superposition method in this work to derive the reduced model considering the first six flexible bending vibration
modes of the rotor. The operating speed of turbochargers will generally be below their second bending vibration
mode frequency, so the number of vibration modes considered in the reduction is sufficient to capture the system’s
dynamic behavior accurately. The reduced model equations of motion are solved using the ode15s solver within
MATLAB with zero initial conditions for both displacements and velocities of the modal coordinates. The rotor
is accelerated from 0 to maximum speed 300000 rpm linearly in 10 seconds. The circumferential groove splits
the outer surface into two shorter-width oil films which are modelled using the short bearing theory. These two
oil films are exposed to oil supply pressure boundary conditions at one end and atmospheric pressure boundary
conditions at the other end. The oil flows from the circumferential groove to oil feed holes and then enters the inner
oil film, but these feed holes are not modelled in this work. The inner oil film is modelled as a plain bearing and
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Figure 7: Comparison of Sommerfeld number calculated with full and reduced Reynolds equation

exposed to atmospheric pressure at either end of the bearing length. The inner oil film forces are calculated using
the short bearing theory, 2D, and reduced Reynolds equation. The authors used the Spectral method or the global
Galerkin method described in [17] for solving 2D Reynolds equation in the run-up simulations. It is an efficient and
semi-analytical approach for solving fluid pressure in plain bearings.

Bearing 1 Bearing 2
Full floating 

bearing
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LiDiDo

Lo2Turbine 

wheel

Compressor

wheel
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Unbalance

Plane 1

Unbalance

Plane 2

Unbalance

Plane 3

Unbalance

Plane 4

Bearing span

Figure 8: FEM model of the turbocharger rotor supported on full-floating bearings

Table 1: Turbocharger rotor and journal bearing details

Variable Value Units

Rotor Mass 0.065 kg
Rotor length 0.1 m
Rotational speed (Ω) upto 300000 rpm
Bearing span 0.021 m
Total unbalance 0.14 g −mm

Bearing:
Inner oil film ( Li

Di
) ratio 1.0

Outer oil film (Lo1+Lo2

Do
) ratio 0.7

Bearing radial clearances ( cico ) 0.36

Oil type SAE 0W20
Oil supply pressure 1 bar
Oil supply temperature 150 ◦C

The vibration response simulated at the sensor location using these methods is compared in Figure 9 (a) and
their waterfall plots are shown in Figure 9 (b)-(d). Three types of sub-synchronous vibrations Sub1, Sub2, and
Sub3 are common in the case of full-floating bearings due to the oil whirl in the inner and outer oil films [16]. The
rotor becomes unstable at low rotational speeds due to the oil whirl in the inner oil film and reaches a stable limit
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cycle (first bifurcation) and the sub-synchronous vibrations (Sub1) excite conical vibration mode. The rotor further
bifurcates at high rotational speeds where the first sub-synchronous vibrations become unstable and a further limit
cycle arises. Based on the rotor and bearing parameters, and operating and boundary conditions, several possibilities
exist for these limit cycles. Either sequential or simultaneous limit cycles due to the unstable oil whirl in the inner
oil film (Sub2) and outer oil film (Sub3) exciting the rotor cylindrical mode and conical mode respectively are
possible [16]. In the current case, Sub1 vibrations exist from the 0− 50000 rpm range and Sub2 vibrations exist for
a short speed range. But these instabilities due to the inner oil film whirl are not severe when compared to the Sub3
vibrations due to the oil whirl in the outer oil film. Such dominant Sub3 vibrations are typical with full-floating
bearings when supplied oil at low pressure and high-temperature conditions. The nature of these sub-synchronous
vibrations will change if oil at a higher pressure and low-temperature conditions is supplied to the bearings.
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Figure 9: (a) Comparison of sensor deflections, waterfall plots of the run-up vibration response at sensor location
simulated using (b) 2D Reynolds equation, (c) Galerkin method, and (d) short bearing theory

The inner oil film L/D ratio is equal to 1 which neither belongs to the short nor the long bearing theory
applicable geometries. Usually, the 2D Reynolds equation needs to be solved to accurately predict bearing dynamic
pressure and forces. But due to the high computational effort requirement, the short bearing theory is often used for
run-up simulations which introduce an error in the results which can be observed in the sensor deflections shown in
Figure 9 (a). The computational time taken for simulating the run-up in 10 s using all three methods for calculating
bearing forces on the same computer are compared in Table 2. The results presented in this section confirm that the
same accuracy level as the 2D Reynolds equation is achieved with the reduction method without severely increasing
the computational effort when compared to the case of using the short bearing theory.
4 Conclusions

A method to reduce the dimension of the Reynolds equation to 1D that can be used to accurately predict the
dynamic pressure generated within the plain bearings is demonstrated in this work. This method is applicable for
bearings with dimensions whose L/D ratio is within the range of 0.25− 10. The error in bearing forces predicted
by the reduced and 2D Reynolds equation is less than 3.5%. The computational effort required is comparable to
the case that uses short bearing theory. Due to this, it is now possible to simulate the run-up vibration response of

Paper-ID 59235



Table 2: Computational time comparison

Method Time Units

2D Reynolds equation 26 hours
Galerkin reduction 11 hours
Short bearing theory 7 hours

high-speed rotors supported on the finite-length journal bearings in less time. Simulations of the turbocharger rotor
supported on two finite-length full-floating bearings highlight the differences between the results with the short and
finite bearing models. The bearing forces, rotor deflections, and sub-synchronous vibrations are under-predicted
when pressure variation along the bearing circumference is ignored in the short bearing theory. Simulation results
with the Galerkin reduced equation match very well with those predicted by the 2D Reynolds equation model for
bearings. The proposed method achieves the accuracy of the 2D Reynolds equation model with relatively low
computational effort.
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Abstract 
Fluid film cavitation may strongly affect the vibration and stability behavior of rotors supported in 

hydrodynamic journal bearings. Different cavitation effects are distinguished in literature. Considering 
hydrodynamic bearings, cavitation is mainly caused by surrounding air, which is sucked into the bearing gap and 
also by outgassing of dissolved gases. Diverse physical and numerical approaches have been suggested in order to 
incorporate fluid film cavitation in the Reynolds equation. Here, a mass-conserving two-phase cavitation method 
is applied, where a nonlinear relationship is used to describe the dependency between density and pressure of the 
oil/gas-mixture. Different two-phase modelling approaches are presented and compared. Run-up simulations with 
a rotor/bearing co-simulation model are carried out to investigate the dynamics and especially the bifurcation 
behavior of rotor/bearing systems including a two-phase cavitation approach. The numerical model for the 
rotor/bearing system consists of a multibody subsystem for the rotor and several finite element subsystems for the 
fluid films. Diverse high-speed rotor/bearing systems are analyzed, namely systems with single oil film bearings 
and systems with full-floating ring bearings. The influence of the cavitation parameters on the nonlinear vibration 
behavior of the rotor/bearing system is investigated. The different cavitation approaches are also compared with 
respect to numerical efficiency. 

1   Bearing model 

1.1 Mass-conserving cavitation models 
Different methods exist to physically and mathematically describe fluid film cavitation in hydrodynamic 

bearings [3]. Here, a two-phase cavitation approach is used. Therefore, a mixture approach is applied to represent 
the mixture of lubricant and gas in the bearing gap. With the nonlinear lubricant fraction function 𝜗 according to 
𝜗(𝑝) = 𝜌(𝑝)/𝜌0 = 𝜂(𝑝)/𝜂0, 𝜗′(𝑝) = 𝜕𝜗(𝑝)/𝜕(𝑝), an averaged value for density 𝜌 and viscosity 𝜂 is calculated 
as a function of the local pressure 𝑝. Note that 𝑝0 denotes the ambient pressure and 𝜌0 = 𝜌(𝑝0) as well as 𝜂0 =
𝜂(𝑝0) (𝜌0 and 𝜂0 denote the properties of the liquid lubricant; the gas portion can be neglected). The function 𝜗 
separates the full-film zone (𝑝 ≥ 𝑝0) from the cavitation zone (𝑝 < 𝑝0). In the full-film zone (𝜗 ≈ 1, 𝜗′ ≪ 1), the 
oil almost behaves like an incompressible fluid. In the cavitation zone (0 < 𝜗 < 1), ϑ  decribes the mixture 
between oil and gas (air or dissolved lubricant).  

Here, four different functions 𝜗(𝑝) (or 𝜗(𝑥), 𝑥 = 𝑝/𝑝0) are used and compared, see Figure 1. 
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Figure 1: Ansatz functions a), b), c) and d) for the lubricant fraction function. 

a) Regularized step function:

In the first approach, a regularized step function is used, which is mathematically described by a third order 
polynomial for the transition zone (𝑥0 < 𝑥 < 1, e.g. 𝑥0 = 0.9) and linear functions with a small gradient for the 
high pressure zone (𝑥 ≥ 1) and the low pressure zone (𝑥 ≤ 𝑥0) so that 𝜗′ is continuous, see Figure 1(a). Using the 
regularized step function, numerical problems may occur. Due to the high gradient 𝜗′ ≫ 1 in the transition zone, 
a large convection term is produced in the compressible Reynolds equation. In the high pressure zone and also in 
the low pressure zone, the small gradient 𝜗′ ≪ 1 yields a very small coefficient for the ∂𝑝/ ∂𝑡- term in the time-
dependent Reynolds equation. Both, very small and very large values of 𝜗′ entail stiff differential equations so 
that appropriate numerical approaches and stabilization techniques have to be applied (see [11], section 4.2.1.3). 
Abbreviations: 𝑎_0 →  𝑥0 = 0; 𝑎_0.8 → 𝑥0 = 0.8; 𝑎_0.9 → 𝑥0 = 0.9; 𝑎_0.98 → 𝑥0 = 0.98. 

b) Polynomial of degree 2:

Within the second ansatz, the polynomial 𝜗(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 with 𝑎 = (𝜗0
′ − 𝜗0

′𝑥0 −  1)/(𝑥0
2 − 2𝑥0 + 1), 

𝑏 = 𝜗0
′ − 2𝑎 and 𝑐 = 1 − 𝑎 − 𝑏 (𝑥0 = 𝑐𝑜𝑛𝑠𝑡., 𝜗0

′ = 𝑐𝑜𝑛𝑠𝑡.≪  1) is used in the region 𝑥 ≤ 1. In the high pressure 
zone 𝑥 > 1, the linear function 𝜗0

′(𝑥 − 1) + 1 is used to provide a small gradient 𝜗′ = 𝜗0
′ . Abbreviations: 𝑏_0 →

𝑥0 = 0; 𝑎_0.8 → 𝑥0 = 0.8; 𝑏_0.9 → 𝑥0 = 0.9; 𝑏_0.98 → 𝑥0 = 0.98, see Figure 1(b). 

c) Polynomial of degree 3:

Here, the polynomial 𝜗(𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑  with 𝑎 = (2 − 2𝜗0
′ + 2𝜗0

′𝑥0)/(𝑥0
3 − 3𝑥0

2 + 3𝑥0 − 1) , 
𝑏 = −𝑎(3𝑥0

2 − 3)/(2𝑥0 − 2) , 𝑐 = 𝜗0
′ − 3𝑎 − 2𝑏  and 𝑑 = 1 − 𝑎 − 𝑏 − 𝑐  ( 𝑥0 = 𝑐𝑜𝑛𝑠𝑡. , 𝜗0

′ = 𝑐𝑜𝑛𝑠𝑡.≪ 1 ) is 
used in the region 𝑥 ≤ 1. In the high pressure zone 𝑥 > 1, again the linear function 𝜗0

′(𝑥 − 1) + 1 is used to 
provide a small gradient 𝜗′ = 𝜗0

′ . It should be mentioned that the ansatz a) with 𝑥0 = 0 equals the polynomial 
ansatz of degree 3 (i.e. 𝑎_0 = 𝑐_0 ). Abbreviations: 𝑐_0 → 𝑥0 = 0 ; 𝑐_0.8 → 𝑥0 = 0.8 ; 𝑐_0.9 → 𝑥0 = 0.9 ; 
𝑐_0.98 → 𝑥0 = 0.98, see Figure 1(c). 

d) Exponential function:

The lubricant function can also be implemented by an exponential function according to 𝜗(𝑥) = 1 −

𝑒−𝑘(𝑥−𝑥0) + 𝜗0
′(𝑥 − 𝑥0) with 𝑘 = 𝑐𝑜𝑛𝑠𝑡., 𝑥0 = 𝑐𝑜𝑛𝑠𝑡. and 𝜗0

′ = 𝑐𝑜𝑛𝑠𝑡.≪ 1. The function 𝜗0
′(𝑥 − 𝑥0) is added 

in order to provide a small gradient 𝜗′(𝑥) ≈ 𝜗0
′  in the high pressure zone. The following parameters have been 

chosen in this work: d_0 → 𝑘 = 2, 𝑥0 = 0; d_0.8→ 𝑘 = 20, 𝑥0 = 0.8; d_0.9→ 𝑘 = 50, 𝑥0 = 0.9; d_0.98→  𝑘 =
200,  𝑥0 = 0.98, see Figure 1(d). 

Using a two-phase cavitation model, the compressible time-dependent Reynolds equation 
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] (1) 

has to be used to calculate the pressure field 𝑝(𝜙, 𝑧) . 𝜙  represents the circumferential coordinate, 𝑧  is the 
dimensionless axial coordinate of the bearing. 𝐻 = 1 + 𝐷𝑥 sin𝜙 − 𝐷𝑦 cos 𝜙 denotes the gap function, where 𝐷𝑥 
and 𝐷𝑦  represent the components of the dimensionless displacement of the journal center. 𝜀 = √𝐷𝑥

2 + 𝐷𝑦
2/𝐶 

defines the dimensionless eccentricity. The bearing has the radius 𝑅, the axial width 𝐵 and the nominal radial 
clearance 𝐶. 𝜔 denotes the angular velocity of the rotor. 

Here, single oil film bearings with a circumferential oil groove are considered, see Figure 2(a). The boundary 
conditions are illustrated in Figure 2(b). At the two boundaries of the circumferential oil groove, the Dirichlet 
boundary condition 𝑝 = 𝑝𝑖𝑛  is applied, where 𝑝𝑖𝑛 denotes the oil inlet pressure. At the axial boundaries, special 
Neumann boundary conditions are used [11], namely  

(
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2
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2

(
𝐶

𝑅
)
2

[
𝐻3

6𝜂0

𝜕𝑝

𝜕𝑧
]
𝜙, 𝑧=1

= −𝑔(𝑝) (2) 

with the pressure dependent penalty function 𝑔(𝑝) = 𝑎𝑒
𝑏
𝑝−𝑝0
𝑝0 , where 𝑎 ≪ 1  and 𝑏 ≫ 1 . Hence, in the high 

pressure region (𝑝 ≥ 𝑝0) one gets ∂𝑝/ ∂𝑧 ≫ 1, so that the pressure is almost the ambient pressure 𝑝0 . In the 
cavitation region (𝑝 < 𝑝0) one gets ∂𝑝/ ∂𝑧 ≪ 1, so that the axial flow is almost zero. 

Figure 2: a) Bearing geometry with a circumferential oil groove; b) Developed gap geometry with boundary 
conditions. 

1.2 Non-mass-conserving cavitation models 
To discuss the influence of fluid film cavitation on the rotordynamic behavior, we also consider non-mass 

conserving cavitation approaches. On the one hand, we use the well-known half-Sommerfeld boundary conditions 
(Gümbel approach), where the incompressible Reynolds equation is used and the pressure below the ambient 
pressure is ignored. On the other hand, a penalty approach is applied. Therefore, the following Reynolds equation 
is considered 

𝜕
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− Pen(𝑝) (3) 

with the penalty term Pen(𝑝) = 𝑎𝑒
−𝑏

𝑝−𝑝0
𝑝0 (𝑎 ≪ 1, 𝑏 ≫ 1). This term may be interpreted as an artificial source 

term: fluid is provided into the cavitation zone so that 𝑝 is always larger than 𝑝0. Note that the penalty approach 
produces smooth pressure functions at the cavitation boundaries, while the half-Sommerfeld boundary conditions 
entire a non-smooth pressure profile. 
In Section 3.2 and Section 3.3, full-floating ring bearings with a circumferential oil groove in the outer fluid film 
gap are considered, see Figure 3(c) and 3(d). 

2   Rotor/bearing co-simulation model 
The rotor/bearing system is decomposed into several subsystems: one subsystem for the rotor (multibody 

system [12], MBS) and further subsystems for each fluid film (finite element systems). The MBS is coupled with 
the FE-subsystems by a co-simulation method [8][16][17]. Here, an explicit sequential coupling approach (Gauss-
Seidel type) is used, where the MBS-subsystem is used as the master subsystem. A force/displacement 
decomposition technique is applied, i.e. output variables of the MBS subsystem are kinematical variables, whereas 
the output variables of the FE-subsystems are resultant forces/torques of the different fluid-films. The co-
simulation is executed in the following way. Firstly, subsystem 1 (rotor, master) integrates from the macro-time 
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point 𝑇𝑛 to 𝑇𝑛+1 with the macro-time step 𝐻. For the numerical integration of the equations of motion of the MBS, 
the bearing forces/torques are required. Therefore, extrapolated bearing forces/torques are used. Secondly, the FE-
subsystems (slaves) are integrated from 𝑇𝑛 to 𝑇𝑛+1. For the numerical integration of the FE-subsystem, kinematical 
quantities of subsystem 1 are required. Therefore, interpolated coupling variables are used. 

Within the master-slave approach, a variable macro-time grid is used, which is defined by the step-size of the 
master-subsystem. Here, the MBS is solved with a BDF solver (absolute and relative error = 1𝐸 − 6, Hmax =
1𝐸 − 6 s) [4]. The FE-subsystems are also solved with a BDF integrator (absolute error = 1𝐸 − 6, relative 
error = 1𝐸 − 5, Hmax = 1𝐸 − 6 s). The coupling variables are extrapolated and interpolated with quadratic 
polynomials. 

3   Simulation results with different rotor models 
Transient run-up simulations have been performed with different rotor/bearing models, see Figure 3, to study 

the influence of the cavitation model on the rotordynamic vibration and stability behaviour [10][18]. Additional 
information on the rotor models can be found in [13][14][15]. 

Figure 3: Rotor models: (a) Jeffcott rotor in single oil film bearings; (b) Jeffcott rotor in full-floating ring 
bearings; (c) Turbocharger in full-floating ring bearings; (d) Developed gap geometry with boundary conditions 

and mesh. 

The first rotor system is a Jeffcott rotor symmetrically supported in two single oil film bearings with a 
circumferential oil groove, see Figure 3(a). Two cases are considered: (i) small external damping and (ii) large 
external damping. Note that the external damping force is applied in the center 𝑀 of the rotor mass according to 
𝐹𝑑𝑒

= −𝑑𝑒[�̇�𝑥
𝑀, �̇�𝑦

𝑀]
𝑇
. The parameters for case (i) are given in Table 1. The same parameters have been used for

case (ii) with two exceptions: 𝑑𝑒 = 500 Ns/m and 𝑐 = 2000  N/mm. 

Table 1: Parameters of the Jeffcott rotor with single oil film bearings for case (i) 
Name Symbol Value Unit 
Rotor mass 𝑚 6 kg 
Unbalance 𝑈 3 gmm 
Shaft stiffness 𝑐 5000 N/mm 
External damping 𝑑𝑒 1 Ns/m 
Internal shaft damping 𝑑𝑖 0.1 Ns/m 
Bearing width 𝐵 20 mm 
Bearing diameter 𝐷 25 mm 
Nominal radial bearing clearance (warm) 𝐶 35 μm 
Oil viscosity (warm) 𝜂 12 mPas 
Ambient pressure 𝑝0 1 bar 
Inlet pressure 𝑝𝑖𝑛  1 bar 
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The second rotor system is identical with the first rotor, however, full-floating ring bearings with a 
circumferential oil groove in the outer fluid film gap are used, see Figure 3(b). The parameters of the rotor system 
are given in Table 2. 

Table 2: Parameters of the Jeffcott rotor with full-floating ring bearings 
Name Symbol Value Unit 
Rotor mass 𝑚 6.2 kg 
Unbalance 𝑈 3 gmm 
Shaft stiffness 𝑐 20000 N/mm 
External damping 𝑑𝑒 1 Ns/m 
Internal shaft damping 𝑑𝑖 0.1 Ns/m 
Floating ring mass 𝑚𝐹 70 g 
Diameter of connecting channels 𝐷 3 mm 
Circumferential oil groove 𝐵 3.5 mm 
Inner bearing width 𝐵𝑖  20 mm 
Inner bearing diameter 𝐷𝑖  25 mm 
Inner nominal radial bearing clearance (warm) 𝐶𝑖 35 μm 
Inner oil viscosity (warm) 𝜂𝑖 12 mPas 
Outer bearing width 𝐵 2∙8.5 mm 
Outer bearing diameter 𝐷 34 mm 
Outer nominal radial bearing clearance (warm) 𝐶 40 μm 
Outer oil viscosity (warm) 𝜂 22 mPas 
Oil density 𝜌 𝑖𝑙 830 kg/m3 
Ambient pressure 𝑝0 1 bar 
Inlet pressure 𝑝𝑖𝑛  2 bar 

The third rotor system is a turbocharger rotor supported in full-floating ring bearings with the subsequent model 
parameters given in Table 3. 

Table 3: Parameters of the turbocharger rotor with full-floating ring bearings 
Name Symbol Value Unit 
Rotor mass 𝑚 6.2 kg 
Compressor unbalance 𝑈 1 gmm 
Turbine unbalance 𝑈𝑇 2 gmm 
Floating ring mass 𝑚𝐹 68.82 g 
Diameter of connecting channels 𝐷 3 mm 
Circumferential oil groove 𝐵 3.5 mm 
Inner bearing width 𝐵𝑖  20 mm 
Inner bearing diameter 𝐷𝑖  25 mm 
Inner nominal radial bearing clearance on the compressor side (warm) 𝐶𝑖 35.19 μm 
Inner nominal radial bearing clearance on the turbine side (warm) 𝐶𝑖

𝑇 35.61 μm 
Inner oil viscosity on the compressor side (warm) 𝜂𝑖

 13.29 mPas 
Inner oil viscosity on the turbine side (warm) 𝜂𝑖

𝑇 10.47 mPas 
Outer bearing width 𝐵 2∙8.5 mm 
Outer bearing diameter 𝐷 34 mm 
Outer nominal radial bearing clearance on the compressor side (warm) 𝐶 47.99 μm 
Outer nominal radial bearing clearance on the turbine side (warm) 𝐶 

𝑇 46.03 μm 
Outer oil viscosity on the compressor side (warm) 𝜂 23.26 mPas 
Outer oil viscosity on the turbine side (warm) 𝜂 

𝑇 19.98 mPas 
Oil density 𝜌 𝑖𝑙  830 kg/m3 
Ambient pressure 𝑝0 1 bar 
Inlet pressure 𝑝𝑖𝑛  2 bar 

3.1 Jeffcot rotor with single oil film bearings 
To study the influence of the different cavitation models on the vibration and bifurcation behaviour, run-up 

simulations are carried out. The rotor speed is increased linearly from 0 to 900 Hz in 3 s. Figure 4(a) and 4(b) 
depict the rotor vibration in  -direction for the four two-phase cavitation models with 𝑥0 = 0.9 as well as for the 
two non-mass-conserving cavitation approaches for the two cases (i) low and (ii) high external damping. In Figure 
4(c) and 4(d), corresponding frequency spectra are shown, namely the FFT of the run-up simulation with the 
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Penalty approach for case (i) and the FFT of the curve d_0.9 for case (ii). As can be seen in Figure 4(c), the rotor 
gets unstable (oil whirl/whip) at 𝑡 ≈ 750 ms and remains unstable since the external damping is very small. For 
the case of high external damping, see Figure 4(d), the rotor becomes unstable (oil whirl/whip) at 𝑡 ≈ 700 ms. 
The unstable region can, however, be driven through and the rotor gets stable again at 𝑡 ≈ 1110 ms.  

Figure 4(e)-(h) show the dimensionless bearing eccentricities for the different cavitation models with 𝑥0 = 0, 
𝑥0 = 0.8, 𝑥0 = 0.9 and 𝑥0 = 0.98 for the case of low external damping. Significant differences can be observed 
between the mass-conserving cavitation models with 𝑥0 = 0 , 𝑥0 = 0.8  and 𝑥0 = 0.9  and the non-mass-
conserving cavitation approaches (the two- phase approaches become unstable earlier); comparatively small 
differences are detected for 𝑥0 = 0.98. The difference between the two non-mass conserving approaches is rather 
small. 

In Figure 4(i)-(l), corresponding plots are shown for the case of higher external damping. Substantial 
differences can be detected between the run-up simulations with the mass-conserving and the non-mass-conserving 
cavitation approaches. While the two non-mass-conserving cavitation approaches only exhibit a small region of 
instability with very small whirl/whip-amplitudes, significantly larger whirl/whip-amplitudes are obtained with 
the mass-conserving models. The onset of the whirl/whip oscillation is earlier with the two-phase models. 
However, the instability is also passed through so that the system is stabilized again at higher rotor speeds. 
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Figure 4: Run-up simulation of the Jeffcott rotor in single oil film bearings with different cavitation models and 
cavitation parameters: (a) and (b) Displacement 𝑟𝑦𝑀 of rotor mass in  -direction for 𝑑𝑒 = 1 Ns/m and 𝑑𝑒 = 500 

Ns/m (𝑥0 = 0.9); (c) and (d) FFT of 𝑟𝑦𝑀 for 𝑑𝑒 =  1 Ns/m (penalty ansatz) and 𝑑𝑒 = 500 Ns/m (d_0.9). 
Dimensionless bearing eccentricities 𝜀: (e) 𝑑𝑒 = 1 Ns/m and 𝑥0 = 0; (f) 𝑑𝑒 = 1 Ns/m and 𝑥0 = 0.8; 

(g) 𝑑𝑒 =  1  Ns/m and 𝑥0 = 0.9; (h) 𝑑𝑒 = 1 Ns/m and 𝑥0 = 0.98; (i) 𝑑𝑒 = 500 Ns/m and 𝑥0 = 0; (j) 𝑑𝑒 =
500 Ns/m and 𝑥0 = 0.8; (k) 𝑑𝑒 = 500 Ns/m and 𝑥0 = 0.9; (l) 𝑑𝑒 = 500 Ns/m and 𝑥0 = 0.98.

3.2 Jeffcot rotor with full-floating ring bearings 
Now, the Jeffcott rotor supported in full-floating ring bearings is investigated with the help of run-up 

simulations [15]. Results are collected in Figure 5. Figure 5(a) illustrates the rotor vibration in  -direction for the 
four two-phase cavitation models with 𝑥0 = 0.9 and for the two non-mass-conserving cavitation approaches. A 
frequency spectrum for the Penalty approach is shown in Figure 5(b): the rotor gets unstable at 𝑡 ≈ 620 ms, where 
the whirl/whip of the inner fluid films are generating self-excited rotor vibrations. After the whirl/whip of the inner 
fluid films is driven through at 𝑡 ≈ 2200 ms, the outer fluid films get unstable and produce a corresponding oil 
whirl/whip oscillation. The influence of the cavitation parameter 𝑥0 on the bifurcation behaviour is discussed in 
the Figure 5(c)-(h). Marked differences can be observed between the mass-conserving and the non-mass-
conserving approaches. The deviations between the different mass-conserving models are, however, 
comparatively small. 
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Figure 5: Run-up simulation of Jeffcott rotor in full-floating ring bearings with different cavitation models and 
cavitation parameters: (a) and (b) Displacement 𝑟𝑦𝑀 of rotor mass in  -direction with 𝑥0 = 0.9 and FFT with 
penalty ansatz. Dimensionless inner and outer bearing eccentricities 𝜀𝑖 and 𝜀 : (c) and (d) 𝑥0 = 0; (e) and (f) 

𝑥0 = 0.8; (g) and (h) 𝑥0 = 0.9. 

The simulation times for the different cavitation models are collected in Table 4. As can be seen, very significant 
differences may be observed between the different cavitation approaches.  

Table 4: Simulation time of Jeffcott rotor in full-floating ring bearings 
Cavitation model time Cavitation model time 
a_0 84.2 hours c_0 100.1 hours 
a_0.8 186.3 hours c_0.8 177.6 hours 
a_0.9 239.9 hours c_0.9 224.6 hours 
b_0 84.2 hours d_0 60.9 hours 
b_0.8 143.5 hours d_0.8 66.7 hours 
b_0.9 187.7 hours d_0.9 57.5 hours 

3.3 Turbocharger model 
Finally, a turbocharger rotor is considered (see [14] for further details), which is supported in two full-floating 

ring bearings, see Figure 3(c). Run-up simulations – the rotor speed is increased linearly from 0 to 1200 Hz in 4 s 
– have been carried out to examine the influence of the cavitation model on the dynamics of the system. Figure
6(a) depicts the vertical displacement of the compressor wheel for five different mass-conserving models and for
the non-mass-conserving Penalty approach. The bearing eccentricities of the inner and outer fluid films of the
compressor- and turbine-sided bearing are shown in Figure 6(b)-(e). Run-up spectra for the cavitation model d_0.9
and for the Penalty approach are depicted in Figure 6(f)-(g). Three subsynchronous oscillations are observed with
all cavitation models. For a detailed physical description of the bifurcations and subsynchronous vibrations, we
would like to refer to literature (see, e.g., [1][2][5][6][7][13][14]).
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Figure 6: Run-up simulation of turbocharger with different cavitation models and cavitation parameters: a) 
Displacement 𝑟𝑦  of the compressor center in  -direction; b) and c) inner and outer bearing eccentricities 

compressor-sided; d) and e) inner and outer bearing eccentricities turbine-sided; f) und g) FFT of 𝑟𝑦  with penalty 
ansatz and ansatz d_0.9. 

As in Section 3.2, the differences between the diverse mass-conserving models are rather small. However, large 
differences with respect to the simulation time are observed, see Table 5. 

Table 5: Simulation time of turbocharger 
Cavitation model time 
b_0 14.7 days 
c_0 22.3 days 
d_0 5.5 days 
d_0.8 7.2 days 
d_0.9 12.2 days 
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5   Conclusion 

The influence of different mass-conserving and non-mass-conserving cavitation models on the vibration and 
bifurcation behavior of rotor systems has been investigated. Therefore, a Jeffcott rotor supported in single and full-
floating ring bearings has been considered. Furthermore, a commercial turbocharger rotor supported in full-
floating ring bearings has been analyzed. Rather large differences have been observed between the simulation 
results obtained with the mass-conserving and the non-mass-conserving cavitation algorithms. Noticeable 
deviations between the various mass-conserving have also been detected for the Jeffcott rotor model with single 
oil film bearings. For the Jeffcott rotor with full-floating ring bearings and also for the turbocharger rotor, the 
deviations between the mass-conserving models have been rather small. Comparing the simulation times required 
with the different mass-conserving algorithms, comparatively large differences have been detected. To improve 
and optimize the simulation time, the proper choice of an adequate cavitation approach is an important issue. 
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Abstract
Foil-air bearings (FABs) are predominantly used for high-speed, oil-free applications. Offering many advan-

tages such as friction loss at high speeds, stability and price, they lack, however, load capacity as well as start-up
and coast-down friction wear resistance.

The friction losses of FABs have been studied experimentally by many authors, e.g. [11]. In order to predict
the friction and, consequently, the lifespan of a FAB, the start-up and coast-down regimes are modelled in such a
way that allows for accurate, efficient simulation and later optimisation of lift-off speed and wear characteristics.

The proposed simulation method applies the Kirchhoff-Love plate theory to the top foil mapping [20]. This
system of differential equations is coupled with the underlying compliant foil to simulate the displacement due to
the pressure buildup. Consequently, this coupled system allows for simulation from almost zero rounds per minute
(rpm) to full speed. The underlying simulation model uses the finite difference method for spatial discretisation
and a temporal explicit Runge-Kutta method.

Difficulties to overcome are the smooth combination of various friction regimes across the sliding surfaces as
well as the synchronous coupling of Reynolds, deformation and kinematic equations with highly non-linear terms.
Introducing an exponential pressure component based on Greenwood and Tripp’s theory avoids impingement be-
tween the rotor and foil.

Nomenclature

d thickness of foil [m]
D = 2R rotor diameter / radius [m]
e0 average of standard deviation of

surface roughness [m]
e rotor displacement [m]
E Young’s modulus [Nm−2]
f force [N]
F5/2 Gaussian distribution function [−]
h gap height [m]
H = h

e0
non-dim. gap height [−]

ksf local compliant foil stiffness per
unit area [Nm−3]

Ksf =
ksfe0
p0

non-dim. local compliant foil stiff-
ness [−]

ktf =
Ed3

12(1−ν) top foil stiffness prefactor [Nm]
Ktf = ktf

e0
p0R4 non-dim. top foil stiffness prefactor

[−]
L bearing length [m]
m mass of the rotor [kg]
m,n matrix subscripts
Mtf =

e0ρtfdtf
4p0

non-dim. mass of top foil [−]
p pressure [Nm−2]

P = p
p0

non-dim. pressure [−]
p0 =min(pamb) reference pressure [Nm−2]
s state vector
s′ non-linear function on right hand of

state equation [−]
t time [s]
w deformation of foil [m]
x, y x and y position [m]
ϵ = e

σ non-dim. rotor displacement [−]
ζ = z

R non-dim. longitudinal position [−]
η, β, σ roughness parameters [m,m,m]
ηhys hysteretic damping loss factor [−]
µ air viscosity [Nsm−2]
ν Poisson’s ratio [−]
θ angular coordinate [rad]
Λ = 6µΩ

p0

(
R
σ

)2
bearing number [−]

ρ material density [kgm−3]
τ non-dim. time [−]
Ψ = PffH non-dim. dependent vector of state

variable [−]
ω circular frequency, whirl speed

[rad s−1]
Ω rotation speed [rad s−1]
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1 Introduction
Compared to other types of aerodynamic bearings, foil-air bearings (FABs) offer superior damping qualities

and allow for thermal and rotational expansion of the rotor because of their compliant structure. However, the
top foil separates from the rotor only after pressure buildup due to rotation. Thus, with each start and stop cycle,
boundary and mixed friction are presently leading to unwanted friction losses and wear. Essentially this is the
same effect reported by Stribeck [19]. Additionally, preloading the bearings can lead to increased stability at high
speeds [10]. Hence, preloading leads to an unwanted conflict of goals, as the load is one of the main contributing
factors to friction and wear.

The friction and wear of preloaded FABs have been experimentally quantified by Mahner et al. or San Andrés
and Abraham Chirathadam [11, 16], among other authors. Therefore, the first local minimum torque measurement
during start-up or coast-down is defined as the lift-off speed. Other methods of identifying the lift-off speed have
been suggested, e.g. by Baginski and Żywica [1].

Modelling of the coupled system is mostly done by solving the pressure buildup with the Reynolds equation
and deformation of the foil structure using various linear and non-linear structure models, e.g. [2]. The rotor
motion is generally solved by defining a force equilibrium by integrating of the pressure acting on the rotor and
summing up all external forces.

There has been plenty of analysis of oil-bearing start-up friction experimentally and computationally, e.g. [13,
14, 18]. The asperity contact pressure for oil bearings is often modelled by applying Greenwood and Tripp’s widely
used theory. There seems to be good agreement between simulation and measurement for oil-bearings which is the
basis for exerting these known theories to FABs.

2 Numerical Approach
The investigated rotor-bearing model is based on three-lobe bearing design optimised for low-lift-off speeds

and sufficient stability at high speeds. The numerical representation is simple to focus on modelling the boundary
friction and transition to full aerodynamic lift. The following limiting conditions are introduced:

– The rotor does not tilt in the bearing; there are only two degrees of freedom for movement
– The temperature is constant
– The viscosity is constant
– The pressure at the axial ends of the bearing is kept constant
– All simplifications introduced by the compressible Reynolds equation [4]

Figure 1 depicts the basic design of the physical model.

(a)

-axis

-ax
is

foil

thickness

(b)

Figure 1: Rotor bearing system (a) and top foil supported by springs with pressure acting on the top side (b).

The following substitution is used for non-dimensionalising the time derivatives (1).

dt =
2

Ω(t)
dτ −→ ∂·

∂t
=

Ω(t)

2

∂·
∂τ

−→ ˙(·) = Ω

2
(·)′ (1)

Paper-ID 8248



A fully coupled system of equations is set up to simulate the start-up or coast-down behaviour of a FAB. The
state variables for one node are listed in equation (2).

s =
[
Ψ H H ′ ϵ ϵ′

]⊺
, s′ =

([
Ψ H H ′ ϵ ϵ′

]⊺)′
(2)

The vector comprises all dependent variables in their discretised form, with Ψ being the product of non-
dimensional fluid film pressure (Pff) and H , which is the non-dimensional gap height between the rotor and the top
foil. The last two elements of vector s are the non-dimensional eccentricity ϵ of the rotor from the bearing centre
and its corresponding derivative with respect to non-dimensional time. The state vector can be integrated for each
time step with its interconnected system of non-linear equations, which will be further explained in subsection 2.4.
As all Ψ values are equal to H for ζ-edge nodes, they are removed from the system vector and system of equations.
m is the number of node points in the θ-direction and n in the ζ-direction. ϵ contains two entries, namely the x-
and the y-coordinates of the rotor centre. All variables combined lead to a system with m(n−2)+2×mn+2×2
variables and equations.

This approach has been widely used, e.g. by [3, 17]. The system of equations comprises the following equa-
tions:

– Reynolds equation for fluid flow (see subsection 2.1)
– Foil deformation equation based on force equilibrium on top foil (see subsection 2.2)
– Equations of motion of the rotor (see subsection 2.3)

The following sections will describe the modelling of these physical regimes.

2.1 Reynolds Equation
The fluid flow is modelled using the isothermal and compressible Reynolds equation in the form of cylindrical

coordinates in equation (3).

1

R2

∂

∂θ

(
pffh

3

µ

∂pff

∂θ

)
+

∂

∂z

(
pffh

3

µ

∂pff

∂z

)
︸ ︷︷ ︸

Poiseuille flow

= 6Ω
∂pffh

∂θ︸ ︷︷ ︸
Couette flow

+ 12
∂pffh

∂t︸ ︷︷ ︸
Unsteady flow

(3)

In this formula, various assumptions are made, e.g., the flow velocity perpendicular to the circumferential
direction pointing to the centre of rotation being zero. These simplifications are widely used, and their accuracy is
for instance discussed by Pinkus and Sternlicht [15].

2.2 Foil Deformation
The foil deformation is modelled time-dependent with damping as well as with mass inertia. The mass inertia

term does not contribute significantly to the response of the bearing at low speeds (see equation (4)). A pressure
equilibrium on the top foil defines the equation.

ktf∇2∇2w︸ ︷︷ ︸
force from

top foil deformation

+ ksfw︸︷︷︸
force from

compliant foil

deformation

+ ksf
ηhys

ω
ẇ︸ ︷︷ ︸

damping force from

compliant foil

+ ρtfdtfẅ︸ ︷︷ ︸
mass inertia force

from

top foil

= p− pamb︸ ︷︷ ︸
pressure acting on

top foil

(4)

The variable ktf is the geometry-dependent stiffness of the top foil and ksf the stiffness of the supporting
compliant foil based on the simple elastic foundation model (SEFM) from [21]. ω represents the whirl frequency
of the rotor. Subsequently, it is assumed that ω = Ω, which is a simplification also used by Bonello and Pham [3].
Lastly, ρtf and dtf are the density and thickness of the top foil.

Due to the bearing number Λ approaching zero at slow rotor speeds, there is practically no pressure buildup
from the Reynolds equation (3) [15]. Consequently, another force must be acting on the foil to separate it from
the rotor. This force is estimated using Greenwood and Tripp’s model of contact pressure due to rough surfaces
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touching each other. The basic approach for solving two surfaces in boundary lubrication has been described by
Sander et al. for oil-lubricated journal bearings. However, for setting up a fully-coupled model for FABs, the
pressure buildup from Reynold’s equation and Greenwood and Tripp’s model must be combined. First, the contact
pressure pGT for boundary friction as described in subsubsection 2.2.1. Second, the fluid film pressure pff which is
defined through the Reynolds equation (3).

p = pGT + pff (5)

In this approach, the underlying compliant foil is not coupled in θ- or ζ-direction, which, depending on the
geometry of the compliant foil, can be inaccurate. However, it has been shown that a SEFM model seems to be in
good agreement with measurements in many cases [12].

The Kirchhoff-Love plate model couples deflections in θ- and ζ-direction and distributes point contacts across
the top foil. A linear Kirchhoff-Love plate equation is used for simplicity, ignoring the non-linearity effects of
large deformations. The assumption of small deflections for the plate theory seems inadequate as this assumption
is only valid up to deflections smaller than 20% of the plate thickness, which is usually exceeded by preloading
the bearing or with high unbalance and, thus, large rotor movements [20]. However, the goal is to prove that a
full 2D simulation is feasible even with zero net aerodynamic force acting on the top foil free edges for runs from
zero rpm to full separation of the top foil from the rotor. Moreover, the stiffening effect of the curvature of the
top foil is modelled by an artificial stiffening in the ζ-direction by treating the top foil material as orthotropic with
different Young’s moduli in θ- and ζ-direction. This approach has been used by San Andrés and Kim [17] before.
The boundary conditions of the Kirchhoff-Love plate are modelled using Kirchhoff’s supplementary forces.

Compared to other approaches, when simulating very low speeds, the pressure buildup from the Reynolds
equation is practically zero. This behaviour of the Reynolds equation is discussed in subsubsection 2.2.2.

2.2.1 Contact Pressure
The contact pressure is modelled using an asperity pressure approach considering the rotor-foil combination’s

surface roughness. This approach has been suggested by Greenwood and Tripp [6] and has since found widespread
usage in the simulation of elastohydrodynamic lubrication phenomena. The pressure in this model is solely depen-
dent on the distance h and is used as an independent variable in equation (6)

pGT =
8
√
2

15
π (ηβσ)

2
√

σ

β
EeffF5/2(H) (6)

The non-dimensional surface height H is defined as H = h/e0 = h/σ. Furthermore, η, β and σ are ex-
perimental roughness parameters, and Eeff is the effective combined elastic modulus between foil and rotor e. g.
defined in [9].

The Gaussian distribution function F5/2 is approximated algebraically by various authors to speed up numerical
simulations [8, 5]. The approximation used in this approach is based on [8].

F5/2(H) = 0.616634 e0.00121735H
4−0.02342695H3−0.2696729H2−1.7433954H (7)

It has to be noted that the contact pressure model is only defined for 0 < H ≤ 4. The discontinuity leads to
a non-smooth transition between the two pressure sources, which leads to small time steps and inaccuracies in the
transition region in this modelling approach.

2.2.2 Considerations of Low Speeds and Small Gaps
Pinkus and Sternlicht [15] elaborated on the inaccuracy of the compressible Reynolds equation for tiny bearing

numbers (Λ) as well as small gaps. The inaccuracies arise due to the continuum theory of flow not modelling the
flow conditions correctly at these conditions. The flow in these regions is more accurately described as molecular
flow. One method for simulating these conditions is to use ”slip flow” models. These models discard the ”no-
slip” conditions on boundary surfaces and can be used to advance the continuum flow model into regions of the
molecular flow. However, it is also stated that the incompressible Reynolds equation is a good approximation
for low bearing numbers. The incompressible Reynolds equation is linear when uncoupling p from h and can be
solved very efficiently.
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2.3 Rotor Motion
The rotor motion is modelled in two dimensions. As for initial simulations, a symmetrical bearing is assumed

with load solely acting on its centre plane. It is derived by force equilibrium on the centre of gravity (CG) of the
rotor (8).

më = ffoil + fext = frot (8)

With frot being the resultant force vector acting on the CG of the rotor and ë the acceleration vector of the CG
of the rotor. Moreover, ffoil is the force acting on the rotor surface due to the pressure p, and fext is the resultant
vector of all external forces acting on the rotor.

Rotational inertia forces do not act on the rotor as the reference system is in the CG. All forces acting on the
rotor are depicted in figure 2a.

(a)

(b)
Figure 2: Forces acting on the rotor (a) and non-uniform grid for simulation (b).

The pressure force from the foil (ffoil) is the integral of the sum of the contact pressure (pGT) and the fluid film
pressure (pff) (9)

ffoil =

[
ffoil x
ffoil y

]
= R2

∫ +L/2R

−L/2R

∫ 2π

0

(pGT + pff)

[
cos (θ)
sin (θ)

]
dθdζ (9)

2.4 System of Equations
A system of non-linear differential equations is formulated for solving the transition from very low rpm to lift-

off speeds. This system of equations consists of the Reynolds equation in non-dimensional form (10), the equation
for foil deformation (11) and the forces acting on the rotor (12). The non-dimensional values are Ψ = PffH and
H = h/e0 = h/σ. Additionally, Ktf and Ksf are non-dimensional stiffnesses, and Mtf is the non-dimensional
top foil mass. The non-dimensional rotor displacement ϵ is defined as e/σ. Furthermore, the non-dimensional
pressure P = p/p0 is used, which again is the sum of contact and fluid film pressure.

∂

∂θ

(
ΨH2 ∂(Ψ/H)

∂θ

)
+

∂

∂ζ

(
ΨH2 ∂(Ψ/H)

∂ζ

)
= Λ

∂Ψ

∂θ
+ Λ

∂Ψ

∂τ
(10)

Ktf∇2∇2W +KsfW +Ksf
ηhys

2
W ′ +MtfW

′′ = P − Pamb (11)

mσΩ2

4
ϵ′′ = frot (12)
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The equations below show the relationship between the non-dimensional deformation W and height H .

W = H −H0 + ϵx cos(θ) + ϵy sin(θ), W ′ = H ′ + ϵ′x cos(θ) + ϵ′y sin(θ), W ′′ = H ′′ + ... (13)

H0 is the initial height profile of the undeformed foil. Negative H0 occurs at preloaded areas.

2.5 Discretisation
All spatial dimensions are discretised using higher-order finite difference formulations on non-uniform grids.

The order for the spatial discretisation is the 4th order in the circumferential (θ) direction and the 6th order in the
longitudinal direction (ζ). The difference in order is due to numerical instabilities at regions with large second
derivatives. For the same reason, a non-uniform mesh refines regions of high pressure gradients. Figure 2b shows
the full mesh for the case detailed in the appendix. Previous simulation results show moderately high state vector
derivatives in the ζ-direction despite being near the edges. The derivates in θ-direction are comparatively high,
necessitating higher mesh density along this axis. Consequently, the cell’s aspect ratio is high, and the individual
cells are elongated.

The spatial discretisation is based on the finite difference model with higher order accuracy in both directions.
The temporal discretisation uses an implicit Runge-Kutta formula.

2.6 Computation Procedure for Simulation
Figure 3 depicts a flow chart for the simulation steps with the essential substeps.

Excel data input

Create mesh and H0
Calculate support
structure stiffness

Calculate finite
difference matrices

Set up DAE/ODE
for steady-state and
unsteady simulation

Guess initial values
for state vector s0 =
[Ψ , H,H ′, ϵ, ϵ′]

⊺

Solve steady
state for Ψ

Solve steady
state for H and ϵ

∥si−1 −
si∥ <

residual

Solve non-linear
s fully coupled

Estimate H ′ and
ϵ′ with forward

difference approach

Start unsteady
simulation

ΛSolve DAE Solve ODE

Integrate DAE/ODE
over time domain

Λ → 0 Λ > 0

Figure 3: Flow chart for a start and stop cycle simulation.

Before the unsteady simulation of the fully coupled system can be performed, it is crucial to have correct initial
conditions for the state vector s. Otherwise, the unsteady simulation will fail. To find proper initial conditions for
the non-linear equations, the system is first solved uncoupled for steady-state conditions. An initial state vector for
a fully coupled system is found by updating the state variables iteratively. The approximated state vector is input
for a fully coupled steady-state simulation. This approach is used as the high gradients of the second derivatives of
the Reynolds equation, and the higher-order terms of the Greenwood-Tripp model lead to numerical oscillations
that prohibit finding a solution for the fully coupled system. To guess fitting initial conditions for the unsteady
simulation, the state variables Ψ ′ and ϵ′ are estimated using finite differences in non-dimensional time. Numerical
instabilities tend to increase with decreasing Λ. This instability is due to the ordinary differential equation (ODE)
becoming increasingly stiff, and thus, the duration of the time steps must be reduced. A solution to this is to switch
the ODE system to a differential-algebraic system of equations (DAE) for the Reynolds equation terms.
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3 Results and Discussion
Figure 4 depicts a resulting orbit plot from 1 to 10000rpm with 261.8 turns. As expected, the orbit centres

follow an up and right pointing so-called ”Gumbel Curve” approaching the bearing centre. Moreover, the amplitude
of the orbit is growing due to the increasing influence of the unbalance force.
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Figure 4: Orbit plot (top) with attitude angle plot (bottom left) and phase/amplitude plot (bottom right) during
start-up.

The pressure buildup from very low speeds results mainly from contact pressure due to the very low bearing
numbers. The pressure from the fluid film approaches zero at zero rpm (see figure 5a). It can be seen that the
sum of contact pressure and fluid film pressure follows a slightly rising slope. Interestingly in the region where
the contact pressure approaches zero, a discontinuity exists in the curve of maximum pressures. This could be
explained by the limitation of the employed Greenwood and Tripp model. Contrary to many other experimental
drag torque measurements, the transition between mixed and aerodynamic lubrication occurs at low speeds. This
could be due to the relatively soft compliant foil and low preload, but it requires further analysis.

Interestingly, even at very low rpm, the characteristic aerodynamic pressure wedges are formed with shallow
effective pressure buildup, as seen in figure 6. Further worth noting are the sharp down-pointing peaks of pressure
near the ζ-edges of the bearing in the transition region. Whether they are purely numerical or physical is yet to
investigate. However, these peaks seem to coincide with the peaks of contact pressure (see figure 7) at 500 and
1000rpm. These peaks appear to agree with typical wear locations on foils going through multiple start-stop cycles.
It seems intuitive that the contact pressure is highest where the aerodynamic pressure is the lowest, e.g. zero fluid
flow pressure buildup on the ζ-edges.

Paper-ID 8253



0 2000 4000 6000 8000 10000

Rotation speed [rpm]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
P

re
s
s
u
re

 [
P

a
]

104

Mean fluid film pressure

Mean contact pressure

Maximum fluid film pressure

Maximum contact pressure

(a)

0 2000 4000 6000 8000 10000

Rotation speed [rpm]

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

T
o
rq

u
e
 [
N

c
m

]

Fluid film friction torque

Contact torque

Total torque

(b)
Figure 5: Pressure (a) and torque during start-up (b).

Figure 6: Aerodynamic pressure at different speeds.

The most engaging result is the representation of the torque generated by the bearing (see figure 5b). It is
evaluated by the integral of contact pressure over the surface with an arbitrary friction coefficient of 0.2 for contact
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pressure and by using Petroff’s Law as an approximation for viscous torque generated by the fluid flow [7]. The
logarithmic scale shows the transition between contact and fluid film torque and the typical ”Stribeck-Gumbel”
curve of a foil bearing.

Figure 7: Contact pressure at different speeds.

4 Summary and Outlook
The presented approach combines two often ignored physical properties of FABs, which are the variation

of height in two dimensions and the introduction of contact pressure due to insufficient pressure buildup at low
speeds. It has been shown that it is feasible to simulate the transition between mixed lubrication and aerodynamic
lubrication, even for preloaded foil bearings. Due to the simulation of the foil deformation in two dimensions, the
contact pressure in the mixed lubrication regime can be determined without the limitation of constant air gaps in
the ζ-direction.

It has been demonstrated that the typical ”Stribeck-Gumbel” curve can be qualitatively predicted by the pre-
sented simulation approach.

The edges are typical locations of wear for FABs after several start-stop cycles. In order to increase the lifespan
of the bearing, the wear has to be reduced. The presented simulation technique coherently predicts the locations
of high mechanical impact and the corresponding force in the expected regions. After validating the results, an
optimisation attempt of the compliant foil structure or bearing housing contour can be made in future studies to
decrease mechanical wear during start-up or coast-down.

The time-steps for very low speeds are expected to be very small as the stiffness of the state equation increases
with a decreasing bearing number.

The current approach uses a relatively simple finite difference model which could be replaced by a numerically
more stable and accurate discretisation, e.g. finite elements. Moreover, the entirely linear model for the foil
deformation is a shortcoming of this approach.

In future steps, the model will be validated using experimental data and refined to become a helpful tool for
predicting the wear and lifespan of FABs.
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Appendix
The following table 2 lists the simulation regime

Table 2: Start cycle conditions for simulation

Start Stop Duration Ramp Rounds Unbalance
[rpm] [rpm] [s] [-] [gmm]
1 10000 1.0 linear 261.8 0.1

The design parameters are summarised in table 3.

Table 3: Geometry of the simulated FAB

Diameter (D) Length (L) Preload Foil thickness (d) Pads Compliant foil stiffness (ksf)
[mm] [mm] [µm] [mm] [-] [N/m³]
35.0 25.0 10 0.1 3 1.7× 109
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Abstract
The paper deals with the numerical implementation of a bump type foil bearing in a rotor dynamic simulation

in order to calculate Campbell diagram and perform run-up time integration. The realised workflow utilizes an
online numerical solution of the Reynolds partial differential equation applied to ideal gas law based on finite
volume method in combination with different models for the foil deformation.

A common approach is to use a 1d discretisation in circumferential direction assuming steady state conditions
frequently based on analytical formulation of bump foil stiffness or finite element model of foil. This can be easily
enhanced to a 2d ansatz in order to take misalignment or tilting motion of shaft into account. To describe the
damping of the foil structure in an appropriate way, the time dependent foil deformation behaviour needs to be
considered, which requires inclusion of inertia properties as well as a friction model. For the sake of simplicity,
the friction model is handled by a Rayleigh damping approach, while a finite element based 2d-foil model is
introduced. The described formulation leads to further state space equations, which are solved either by an implicit
Runge-Kutta- or a Newmark-algorithm embedded in the time integration of rotor equation of motions, where the
latter are treated always by the implicit Runge-Kutta solver.

1 Introduction
An essential point in the design of rotor dynamic systems is the bearing arrangement. Compared to more

conventional bearing concepts such as plain and roller bearings, gas or foil bearings have significantly lower power
losses, which is primarily due to the low viscosity and the associated shear stresses of the fluid used (air). Further
advantages are the omission of lubricant feeding system, large temperature range, which allow for conditions of
use beyond the limits of oil based bearings.

As a consequence of the low viscosity small clearance is mandatory to ensure a reasonable load carrying
capacity. In order to compensate temperature growth as well as centrifugal growth of shaft, the bearing shell
is designed to allow elastic deformation, which is usually realised by a system of metal foils, e.g. top foil and
underlying bump foil. Moreover, the relative motion between the foils provides additional damping.

During the design process rotor dynamic simulations need to be carried out in order to predict amplitudes due
to unbalance as well as subsynchronous vibrations, where the latter indicates the stability limit of the system.

2 Literature review
Typically, the task in the design of rotating systems is to predict the vibration amplitudes. For this purpose,

Campbell diagrams are created in which the dependence of the natural frequencies on the rotor speed is compared
with corresponding excitation frequencies from unbalance or other mechanisms in order to identify possible res-
onance regions. In a first approximation, linear isotropic bearing properties are assumed for this purpose, which
applies well to rolling bearings. When journal bearings are used, the properties are load- and speed-dependent and
can be taken from tables. Such models can also be used to obtain information on damping and the stability limit.

From a scientific point of view, the branching behavior of the solution is also of interest in order to determine
the existence and number of equilibrium positions above the stability limit. The associated bifurcation analyses are
based on eigenvalue considerations [7, 9, 24], often assuming geometric limit cases in order to derive analytical
solutions of the Reynolds PDE1 (short bearing theory, wide bearing theory and comparable finite length solutions).

1PDE – Partial Differential Equation
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Figure 1: Schematic illustration of typical foil bearing designs: leaftype (left) and bumptype (right). [5]

In contrast, for the prediction of the actual vibration behavior under arbitrary external loads, general bearing design
and without restriction of the rotor motion behavior, a numerical time integration of the equations of motion
including online solution with respect to hydro- and thermodynamics has to be performed, which reflects the state
of the art in the field of liquid lubricated journal bearings [1, 4, 8, 14, 25].To reduce the effort for the online solution
of the Reynolds PDE, recent developments rely on semi-analytical finite element approaches2[26, 27].

However, the focus in air bearings investigations is still often set on stationary considerations. Air bearings,
specifically the foil bearings addressed here, are characterized not only by the alternative fluid but also by a com-
pliant bearing shell structure to improve load carrying capacity and reduce frictional losses.

The typical designs of foil bearings are shown in Figure (1), while bearings with bump structure often being the
subject of investigation. The modeling of the bearings varies primarily in the representation of the foil structure.
Starting with simple spring models with locally constant spring stiffness (SEFM3) [5, 11, 13, 29, 30] increasingly
complex approaches have been pursued. Of particular note is the LEFSM4, where the bump structure is mapped
based on point masses interacting via three-joint kinematics as well as springs and frictional contacts [19, 20, 31,
33].

Alternatively, the foil structure can be modeled using finite shell elements that also represent the geometric
contour [17, 18, 21]. The described approaches have in common that the foil deformation is averaged over the
width direction, which reduces the computational effort, but neglects effects like skewing/tilting and hence contact
at the bearings edges.

Furthermore, the temperature effects in film-supported rotor systems are occasionally addressed. Gad and
Kaneko [10] use an analytical model assuming pure Couette flow in the fluid.

In contrast, Michel [23] applies the finite volume method to the energy transport problem to determine spatially
resolved temperatures in wave, film and foils. Similarly, Mahner [22] also analyzes steady states, consistently using
FE approaches to discretize the energy equation. The discretization of the rotor and foils is two-dimensional in
each case, while the gap is meshed in three dimensions.

As a third point, dynamic issues are also addressed. For reasons of efficiency, simple foil models (analogous
to SEFM) are used, neglecting thermodynamics [16, 34].

With such a model subsynchronous oscillations can be simulated. However, comparisons with measured data
sometimes reveal large discrepancies [32] , which is due, among other things, to the neglect or incomplete coupling
of the above-mentioned influences.

3 Model
As pointed out in the abstract, this paper aims for enhancement of foil model in order to reproduce tilting due

to shaft bending motions, while other tasks like advanced friction contact model or thermodynamic analysis of the
bearing are left open for later investigation.

2SBFEM - Scaled Boundary Finite Element Method
3SEFM - Simple Elastic Foundation Model
4LEFSM - Lumped-Element Foil Structure Model
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3.1 Reynolds PDE for air bearings
As a basis for the investigation of the dynamic behavior of air-bearing systems, the nonlinear stiffness and

damping characteristics resulting from the R-PDE

∂

∂x

(
ϱ(p)h3

12η

∂p

∂x

)
+
∂

∂y

(
ϱ(p)h3

12η

∂p

∂y

)
= um

∂(ϱ(p)h)

∂x
+
∂(ϱ(p)h)

∂t
(1)

have to be mapped. In Equation (1), a pressure-density relation must be incorporated, e.g. the ideal gas law
ϱ = p/(R ·T ), which is true to a good approximation for air as a fluid in the gap. The resulting nonlinear character
of the equation necessitates iterative solution strategies, which for efficiency reasons is ideally implemented using
the Newton-Raphson method. Hence, Equation (1) is discretised on the bearing surface domain with a set of
nx × ny nodes using FVM5 by applying

2πr∫
0

b/2∫
−b/2

. . . dxdy =
∑
i

∫∫
Ωi

. . . dxdy

 for i = 1 . . . nx × ny (2)

to Equation (1), which then yields a corresponding set of equations

f(p) = r −A(p) · p = 0 . (3)

A Taylor series expansion then yields the Newton-Raphson iteration scheme

p(i+1) = p(i) − J(p(i))−1 f(p(i)) (4)

with the Jacobian

J(p(i)) =
∂f

∂p

∣∣∣∣
p(i)

−

A(p(i)) + ∂A

∂p

∣∣∣∣
p(i)

p(i)

 . (5)

However, for foil bearings their deformation uel has to be considered as part of the air gap

h(x, y) = c (1− ϵ cos γ) + uel . (6)

Furthermore, the transient term in Equation (1) serves as link to the motion of rotor and foil structure on the one
hand and attenuates the pressure development on the other hand

∂(p h)

∂t
= ϑ

∂h

∂t
+ hr

∂p

∂t
= ϑ ḣ+ h

∂p

∂t
. (7)

While ḣ is directly linked to the translational velocity of the rotor as well as the foil, the transient development of
the density or pressure respectively needs to be discretised w.r.t. time, e.g. by a backward difference

h
∂p

∂t
= h

∣∣∣
t

pt − pt−∆t

∆t
(8)

5FVM – Finite Volume Method
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for each finite volume i. The FVM process requires the integration of Equation (8), which on the 2d grid with
mesh size ∆x×∆y results in

∫∫
Ωi

h
∂p

∂t
dxdy = h

∣∣∣
t

∆x∆y

∆t
pt − h

∣∣∣
t

∆x∆y

∆t
pt−∆t . (9)

While the last term enters in the right hand side r of Equation (3), the first one applies to the diagonal of A. Since
∆t is a rather small value, Equation (9) serves as a kind of penalty formulation between the current and the past
pressure, which avoids timeless changes. Furthermore, this relation ensures the positive definiteness of A, which
allows a unique solution, even if no explicit fluid supply is present, which is usually the case in foil bearings.

3.2 Equations of motion
Depending on its speed, the shaft can either be modeled with rigid or elastic properties, which is in both cases

mapped by the general equation of motion

M
MBS

(q) a+ hω(w, q, q̇) + hel(q, q̇) = ha(q) with a =

 r̈Aẇ
q̈

 (10)

resulting from a multibody simulation approach. Therein, r and x = [α β γ]T denote translational and rotational
degrees of freedom for rigid body motions, where the orientation x is kinematically linked to the rotational speed
ω. Furthermore, q are modal coordinates, which map superimposed elastic deformations according to the typical
BFRF6 approach. Stiffness and damping of the elastic structure enter via hel, while hω represent centrifugal,
gyroscopic and Coriolis forces. In contrast, outer forces as well as the nonlinear bearing forces (resulting from the
pressure distribution p by integration w.r.t. bearing surface) enter via the right hand side vector ha.

In general, Equation (10) can also be used to handle the foil deformation, but since the foil does not move w.r.t.
the inertial system

M üel +D u̇el +K uel = f
el

(11)

may also be used, e.g. for the sake of simplicity or due to efficiency reasons. Details on different methods to
determine the mass, damping and stiffness matrices are given in Section 4.2. Since the pressure in the bearing acts
on the foil as well as on the shaft, the bearing forces enter also in Equation (11) in the vector f

el
.

3.3 Time integration
Typically, the mechanical degrees of freedom are arranged in the state-space form

zMBS = [ra x q ṙa ω q̇] . (12)

Accordingly, the corresponding deriviations w.r.t. time can be gathered by solving Equation (10) for the accelera-
tions

żMBS = [ṙa ẋ q̇ r̈a ω̇ q̈] ≡ f(t, zMBS) . (13)

Starting with some initial values zMBS(t = 0) a time integration scheme for ODEs7

zMBS,t+∆t =

t̂=t+∆t∫
t̂=t

f(t, zMBS,t) dt̂ (14)

6BFRF – Body Fixed Reference Frame
6ODE – Ordinary Differential Equation
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can be applied for their successive solution. Here, a semi-implicit one-step algorithm of second order based on
[12] has proven as suitable. Therein, automatic choice of time step is implemented using an embedded algorithm
of third order.

While this method is well suited for non-linear stiff systems with comparatively small number of unknowns,
for larger systems of the type of Equation (11) a Newmark method

K∗uel,t+∆t = f∗ with (15)

K∗ =K +
1

β∆t2
M +

γ

β∆t
D (16)

f∗ = f
el,t

+

[
1

β∆t2
uel,t +

γ

β∆t
u̇el,t +

(
1

2β
− 1

)
üel,t

]
M (17)

+

[
γ

β∆t
uel,t +

(
γ

β
− 1

)
u̇el,t +

(
γ

2β
− 1

)
∆t üel,t

]
D (18)

is often the better choice. The parameters are set as γ = 0.6 and β = 1
4 (γ + 0.5)2 in order to add numerical

damping for high-frequency modes and to ensure unconditional stability [28]. Again an error estimator [35] is
used to control the step size following the recommendations in [28]. However, in order to use Newmark together
with the ODE solver, a common time step is chosen based on the minimal time step ∆t = min(∆tMBS,∆tNewmark).
Finally, this time step is also used for the treatment of the transient term Equation (9) in the Reynolds PDE, where
a decoupled backward Euler method is applied as suggested in [15].

4 Results
The described model needs to be validated against measurements or simulation results present in the literature.

One of the earliest papers with comparatively good description of the used equipment and the measured data was
written by Ruscitto in 1978 [29], which has over the years turned out as a kind of bench mark [2, 3, 6]. On an
overhung shaft supported in ball bearings, the test bearing is placed at the free end. The test bearing housing,
on which the load is applied, is able to move translatory but rotations are constrained. The bearing parameters
as well as operating conditions are given in Table (1). The data was used to set up a finite element model
of top and bump foil using four-node shell element8. The resulting model as well as the used constraints are
shown in Figure (2). The model can be used to determine the system matrices, which occur in Equation (10).
Alternatively, the radial stiffness of the foil structure is determined by applying unit loads in radial direction on
each node. In order to avoid in this case intersection of bump and top foil, both are connected node to node
in radial direction where the top foil touches the bump foil. Averaging the displacements and inverting then
yields a radial stiffness cFE,average = 10 × 1010 N/m3, which is larger than the analytical formula by Heshmat
canalytical = 0.47× 1010 N/m3 [11], whereby top foil stiffness neglected .

4.1 Steady state validation
According to the experimental test procedure in [29], the simulation was set up as single mass oscillator with

the foil bearing supporting the bearing housing, while the shaft was only able to rotate. Here, the 1d-ODE foil
model was chosen to model the foil, cf. Section 4.2. The load was applied by a smooth transition from zero to full
value in order to avoid shock. Once the initial disturbances have been vanished, the minimal gap was determined.

8In Ansys: SHELL181 – four-node element with six degrees of freedom at each node.

Table 1: Parameters and operating conditions according to [29]

width 38.1 mm shaft speed 30000/45000/60000 1/min
diameter 38.1 mm load 5 . . . 200 N
clearance 57.0 µm

no. of bumps 26 [−] ambient pressure 101325 Pa
bump width 3.556 mm viscosity 1.85 · 10−5 Ns/m2

bump height 0.508 mm
bump distance 4.572 mm
foil thickness 0.106 mm
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Figure 2: FE model of foil structure according to [29] with shell elements: top-foil (yellow ocher) and bump-
foil(blue) in 3D view (right) and 2d view with boundary conditions (left). Cyan symbols mark the constrained
radial displacements of bump foil, while red symbols mark the clamping of both foils at the bearing’s top.

The comparison of measurement and simulation shows overall a good accordance for all loads as well as for all
rotational speeds, cf. Figure (3). Two graphs are available for each measured rotational speed, where one relates
to the minimal gap in the bearing center line, while the second graph illustrates the minimal gap on a slice parallel
to the center line, but axially shifted by a quarter of the bearing width. The latter is expected to match the axial
average of the foil displacement, which is a good measure for the results of the 1d-ODE foil model, since this
is based on the axial averaged pressure. It can be seen, that the simulation results are always slightly above the
measurement mean graphs for all rotational speeds. However, due to the typical pressure distribution one would
expect the center values to be larger than the mean values, which is only true for 45.000 1/min and 60.000 1/min.
Ruscitto mentions tilting/cocking as possible reason for the differing behaviour at 30.000 1/min; other authors [2]
argue, that the stated bearing clearance in the reference is too large and should be diminished in order to get the

Figure 3: Minimal film thickness vs. applied force at different speeds: Measurement data was available at bearing
centerline (center) and on the half between the center and the edge, which is expected to coincide with the axial
mean value (mean) [29]. Since simulation was performed with axial averaged foil deflection, the results correlates
with the mean measurements.
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curve in better coincidence.

4.2 Different foil models
For the sake of simplicity and better comparability, different foundation models for the foil structure are created

1: 1d-ODE: constant foil displacement in axial direction with simple elastic foundation,
2: 1d-Newmark: constant foil displacement in axial direction with simple elastic foundation,
3: 2d-ODE: 2d foil deflection is allowed with finite element-based elastic foundation,
4: 2d-Newmark: 2d foil deflection is allowed with finite element-based elastic foundation.

The first one is as mentioned earlier widely used in literature since it provides a good compromise between accu-
rateness and computational cost. However, its main drawback is the missing ability to map misalignment or tilting
between shaft and foil structure/housing. This is tolerable during bearing design but in analyses of the whole
rotor-bearing system in order to check the occurrence of subsynchrounous vibrations, the model lacks of damping.
Hence, model 3 and 4 are introduced, which account for possible tilting. They use a finite element based elastic
foundation according to Figure (2) instead of simple elastic foundation. This ensures an axial coupling between
nodes, especially at the bearing edges: Due to pressure boundary at the bearing edge the resulting load is always
zero there. Hence, in models without cross coupling between the nodes, the deformation at the bearing edge is per
se zero, which doesn’t map the reality and moreover leads to massive rigid body contact there. In the 1d models 1
and 2 this is avoided by axial averaging. However, therewith the model 3 and 4 are able to handle tilting shaft mo-
tions. Moreover, the models differ by the method used for integrating Equation (10) w.r.t. time. While model 1 and
3 use the force-states approach common in multibody system simulation in conjunction with the ODE integrator
Equation (14), the models of type 2 and 4 use the Newmark method described in Equation (15).

Both time integration methods are to be compared here, since handling a foil structure with 2× nx × ny force
states in an ODE method causes comparatively large state vectors. The used ODE method involves a Jacobian,
which must be computed repeatedly by numerical differentiation. This leads to a large number of additional calls
of the equations of motion as well as the Reynolds-PDE and hence to high computational effort. In contrast, the
Newmark method is well suited for larger number of unknowns as they occur in FE-systems.

Hence, at first the 1d models with simple elastic foundation, but different time integration methods are com-
pared, cf. Figure (4). The figure shows a good accordance of both methods, which proves the general applicability
of the Newmark method in this context. Besides, the Newmark method is even with low numbers of unknowns as
they appear in the models slightly faster than the pure ODE approach (reduction ∆trel ≈ 1%).
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Figure 4: Comparison of 1d models ODE vs. Newmark: Orbit during transient initialisation process. Model data
corresponds to Table (1).
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Figure 5: Transient initialisation process of rotor and final orbit under unbalance (red) using 2d models ODE vs
Newmark.

The results obtained with model type 3 and 4 including finite element foil structure are shown in Figure (5).
Again the transient initialisation process under steady load of 40N at 45.000 1/min and an additional unbalance
is plotted. The results of both methods coincide very well at the beginning while later on some minor differences
occur.

The corresponding pressure distribution as well as the top foil deformation are plotted in Figure (6). In the foil
deflection, the underlying bump structure and the clamping of both foils at the bearing’s top are readily identifiable.
However, the pressure distribution is – at least under this load scenario – still smooth; the bump structure is not
recognizable here. Finally, a look on the computational effort shows, that Newmark 2d method is with significantly
faster than the ODE method (reduction ∆trel ≈ 80%). This is due to the large amount of force states (2 × nx ×
ny = 2 × 79 × 14 = 2212) in the ODE method, which causes high effort for obtaining the Jacobian needed in

Figure 6: 3d representation of pressure (left) and top foil deformation (right) according to model type 3. Bump
structure as well as clamping of foil on top of bearing are readily identifiable. The blue arrow represents direction
of load. Instant of time corresponds to maximal deflection of final orbit in Figure (5).
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Equation (14).

5 Outlook
The paper at hand aims for the simulation of rotor-bearing systems with foil bearings. Since in the complete

model tilting may occur due to shaft bending motion, the bearing model should be able to handle this. Hence, the
usual simple elastic foundation model was enhanced based on a FE model of bump and top foil structure.

Of course, the foil model is still rather simple, since damping was only considered by Rayleigh approach.
Thus, the next step will be to consider both foils as separated bodies in the sense of multibody systems in order
to introduce contact forces at their intersection using a penalty-like contact formulation in normal direction as
common in FE applications. If necessary, a nonlinear penalty stiffness characteristic, e.g. based on the roughness
contact according to Greenwood-Williamson/Tripp, may be better suited in the context of time integration, since
this enables a continuous transition during the contact closing process and thus tends to provide larger time step
sizes. In addition to the described normal contact, the tangential contact needs to be modeled using a rheological
friction model (e.g. Coulomb models or Jenkins elements), which makes it possible to take into account the
relevant damping properties of the film structure in the rotor dynamics.

With regard to the numerical aspects, the FE foil model can be transformed into the modal space in order to
reduce the number of unknowns by selecting only relevant mode shapes. Additionally, due to the decoupling of
foil degree of freedoms this allows for replacing the solution of the linear system of equations in the Newmark
method Equation (15) by simple division, which will decrease the necessary computational effort.

Nomenclature

d diameter ψ relative clearance
(
=

2 c

d

)
b width β bulk modulus of oil
h film width ω rotational speed
p pressure η dynamical viscosity of oil
t time Ω computational domain

um effective surface velocity
(
=
ωshaft−ωshell

2

d

2

)
ε relative eccentricity

(
=

2 e

d

)
x circumferential coordinate ρ density
y axial coordinate ν Poisson’s ratio
c absolute clearance E Young’s modulus

K stiffness matrix J Jacobian
M mass matrix r right hand side vector
D damping matrix f force vector
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Abstract 
The rotors of turbomolecular pumps (TMPs) are subject to continuous further development in various aspects 

to meet the increasing requirements. Vibration and noise emissions are becoming more relevant. Applications such 
as electron microscopes or ion mobility spectrometers require a low vibration level of the TMP used. 

The rotor of a TMP always has a certain residual unbalance, which results in radial forces that are transmitted 
to the housing via the bearing and lead to vibrations and noise. In practice the installation of a rotor with a high 
balance quality does not always result in low vibration and noise emissions from the TMP.  

The bearing system of the TMP rotor consists of a combination of ball bearing and passive permanent magnet 
bearing (PMB). The PMB of such TMP with hybrid-bearing is focus of this study. Due to intrinsic imperfections 
in the magnetic rings, there is an additional radial force that can affect the running characteristics of rotor and 
pump, called magnetic bearing error. 

During TMP operation, the heating of the rotor leads to an axial displacement between the rotor and stator 
magnetic rings and thus to a change of the radial rotor forces. With the aid of an experimental investigation, this 
behavior was reproduced and the effect, that the magnetic bearing error exhibits a strong dependence on the axial 
displacement between the stator and rotor, was observed for the first time. The experimental results showed that 
this dependence of the magnetic bearing error strongly influences the first resonance of the rotor in terms of 
amplitude and resonance frequency. 

By means of a simulation, a deeper understanding of the magnetization properties and their influence on the 
generation of additional forces on the rotor was derived. An optimization approach was developed to select and 
optimize the arrangement of magnetic rings within the PMB based on their individual magnetization properties. 
This reduces the dependence of the magnetic bearing error on axial forces.  

The derived measures contribute to the overall objective of reduced vibrational and noise emissions of a TMP 
and an improved transfer of the balance quality of the rotor to the pump. 

1   Introduction 
In the last few years, increasing demands on the turbomolecular pumps with hybrid-bearing system have 

characterized its secondary properties in particular. In addition to primary properties relating to pump performance, 
such as ultimate pressure or pumping speed, secondary properties are becoming increasingly relevant. In addition 
to service life, compactness or cleanliness in terms of a particle-free vacuum and the outgassing behavior of the 
components, this also includes the vibrational and noise emissions of the TMP, the NVH (Noise Vibration 
Harshness) emissions. In order to meet the increasing requirements, continuous further development of TMP is 
necessary, resulting in non-trivial rotor and housing geometries [17]. 

The focus of a dissertation in which this publication is included is particularly on the rotordynamic design of 
the TMP rotors, the optimization of the balancing technology and the balancing quality transfer. Thus, the subject 
matter fits into the field of optimization of NVH emissions. The present work is limited to a TMP with a bearing 
system composed of a permanent magnet bearing and an oil lubricated ball bearing, hereinafter referred to as 
hybrid bearing. A primary question of the research project is to investigate the causes of TMPs with noticeable 
vibration and noise even with a well-balanced rotor. Increased vibration and noise emissions affect numerous 
applications in which these vacuum pumps are employed, such as electron microscopes or ion mobility 
spectrometers [14]. Therefore, it is relevant that the underlying causes are investigated in order to be able to realize 
an optimization of NVH emissions. Thus, a contribution to meet the continuously increasing requirements for 
TMP can be made.  
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In addition to other possible causes of TMPs with noticeable vibration and noise, such as residual unbalance 
of a rotor before installation in the housing, assembly errors or damage in the ball bearing [3], the focus of the 
present investigation is on the coupling between rotor and housing of the pump via the PMB. On the one hand, the 
general coupling of the rotor via the bearing is relevant, since unbalance-induced forces are transmitted to the 
housing and, consequently, to the application. However, it is known from the work of Katter [8] that certain 
magnetic properties in the PMB have an influence on the generation of additional, undesirable forces on the rotor. 
Furthermore, the rotor heats up more during operation than the pump housing. The linear expansion results in an 
axial displacement between the stator and the rotor within the PMB and thus generates additional axial forces. In 
addition, when the rotor is mounted in the TMP, the stator part of the PMB is replaced (balancing machine system 
vs. pump), so that the magnetic properties are different. These facts fall into the field of balance quality transfer 
and could be another cause of TMPs with noticeable vibration and noise even with low residual unbalance.  

These findings have laid the foundation for why this paper focuses on the investigation of the PMB of a hybrid-
bearing TMP. The term hybrid bearing, i.e. the combination of PMB and ball bearing, should not be confused with 
a hybrid magnetic bearing as described in [18]. The influence of additional forces in the PMB on the rotor dynamics 
and running behavior due to certain magnetic properties as well as axial displacements between the stator and rotor 
will be discussed more detailed. In the context of the present work, an alternative simulation approach is presented. 
The simulative results are verified by an experiment. Here it is observed for the first time that the so-called 
magnetic bearing error shows a strong dependence on axial forces. Finally, an optimization approach for reducing 
the axial force-dependent magnetic bearing error is presented. This can be targeted in practice to contribute to the 
overall goal of optimizing NVH emissions in hybrid bearing TMPs. 

2   Fundamentals on hybrid-bearing turbomolecular pumps with permanent magnetic bearing 
Magnetic bearings in general have numerous advantages over other types of bearings, such as conventional 

roller or plain bearings. They operate without mechanical contact and thus allow very high rotor speeds without 
frictional wear [11]. This results in maintenance free operation, lower noise generation and significantly lower 
transmission of vibrations to adjacent components [15]. By eliminating the need for lubricants, magnetic bearings 
can be used in environments where the highest level of cleanliness is required. This makes them particularly 
suitable for use in TMPs to create an (ultra) high vacuum. Other applications of magnetic bearings include high-
speed turbines, compressors, centrifuges, flywheels or high-precision machine tools [11]. Magnetic bearings can 
be divided into active, passive and electrodynamic systems. Lang [9] shows in his work that passive systems with 
permanent magnets can achieve comparable bearing pressures as active magnetic bearings, especially considering 
the required volume. Kabelitz and Fremerey [7] refer to the use in TMPs and list further advantages of a passive 
PMB: low cost due to the absence of electronic components (e.g. coils & control technology), compact design, 
auto-centering of the rotor (e.g. in case of power failures or external shocks) or operability in case of power failures. 
For the aforementioned reasons, passive permanent magnetic bearings have gained acceptance in TMP in recent 
years, which is why this paper is limited to this type of bearing.  

The essential structure of a modern TMP with hybrid bearing is described in the patent application by Conrad 
and Mädler [4]. The structure of a typical PMB used there is shown schematically in Figure 1a and describes the 
object of investigation of the present work as an example. The PMB consists of several axially magnetized 
permanent magnet rings which are divided into a stator and a rotor magnet stack. The stator rings are arranged 
concentrically to the rotor rings on the inside. The radial bearing gap is located between the two magnet stacks. 
Due to the high rotor speed and centrifugal forces, there is a possibility of destruction of the magnet rings, so that 
the rotor magnet stack requires an external radial support on the outside [5].  

The PMB under investigation is a radial bearing of repulsive design, where the magnetic rings are stacked 
axially and have opposite polarization (identical magnetic poles are axially opposite to each other). The pair of 
rings consisting of stator and rotor at the same axial height has the same magnetization direction, resulting in radial 
repulsion and thus radial centering due to the rotational symmetry of the rings. Axially magnetized permanent 
magnet rings are used for reasons of availability and easier manufacturability [19]. It is necessary to use a hard-
magnetic material, such as neodymium-iron-boron or samarium-cobalt. These materials have a very high 
coercivity and therefore cannot be demagnetized by adjacent magnetic rings of the same material. They are 
therefore particularly suitable for a repulsive configuration [19]. Other possible configurations of radial or thrust 
bearings according to attractive or repulsive configuration are listed in the dissertation of Betschon [2]. 

In the previous chapter, the hybrid bearing arrangement of the TMP has already been briefly mentioned. The 
reason for the use of a ball bearing is described below. The Earnshaw’s Theorem states that it is not possible to 
statically stabilize a body using only a passive bearing with permanent magnets. A PMB has a negative axial 
stiffness equal to twice the radial stiffness. For this reason, an additional bearing is needed, e.g. an additional 
rolling bearing, to control the axial degree of freedom [9]. The ball bearing is used for radial and axial support of 
the rotor (see Figure 1b). 

Paper-ID 27 269



Figure 1: a) Cross-section through the exemplary structure of the PMB of a TMP with 5 ring pairs (not to scale). 
b) 3D model of a TMP rotor (three-quarter section view) c) Images of mechanical defects such as cracks and
spalling as well as relevant characteristics of permanent magnetic rings for quality control: angular errors,
inhomogeneities and N/S asymmetries are typical error patterns resulting from intrinsic magnetization properties.

In the past, there have been various publications with the objective of increasing the stiffness of the PMB while 
using as little material as possible. An increase in radial stiffness can be achieved by a suitable ratio between air 
gap width and axial height of the magnetic rings or ring width and height [4]. The stacking of several rings as well 
as the use of a rotating magnetization direction also lead to an increase of the stiffnesses as described in [21]. The 
structure of the PMB of modern TMPs shown in Figure 1a has been proven successful in recent years and is used 
as a basis for this work. This distinguishes it from other publications, since the focus is not on increasing the radial 
stiffness by optimizing the PMB geometry, but on the intrinsic magnetization properties of the individual rings. It 
is known from the manufacturing processes used (isostatic or tool pressed) for permanent magnet rings that 
magnetic deviations can occur. For this reason, the individual magnetization properties of the single rings are 
checked to carry out quality controls, thus increasing the quality of the PMB. Reese [13] describes a possible setup 
as well as the procedure for checking the quality characteristics of a permanent magnet ring. This includes, for 
example, checking for fractures, cracks and spalling in the material, as well as angular errors, inhomogeneities and 
north/south asymmetries (see Figure 1c). 

3   Methods for evaluation, validation and optimization of the magnetic bearing error of TMPs 
This methods chapter starts with the theory and describes the use of a simulation to determine the resulting 

forces on the rotor based on the individual intrinsic magnetization properties, taking axial displacements into 
account. Subsequently, an experimental setup is described, which provides a new insight into an axial force-
dependent magnetic bearing error and thus validates the simulations. At the end of this chapter, the development 
and validation of an approach to optimize of the axial force-dependent magnetic bearing error is presented. 

3.1 Theoretical investigation of the PMB of a TMP as well as the magnetic properties based on a 
simulation 

Numerous investigations and theoretical calculation approaches for PMB already exist. A paper by Yonnet 
[20] describes a method for estimating stiffness and force of simple PMB configurations, consisting of a single
stator and rotor ring, that is limited to a 2-dimensional problem. The work of Jiang et al. [6] extends the calculation
to a 3-dimensional problem and employs the magnetic vector potential. Here axial and radial displacements can
be considered in the PMB. Other authors have performed other calculation methods of PMB (see [9], [10] and
[12]). Lang’s dissertation generally presents a comprehensive review on PMB and is based on a similar calculation
approach as described in this chapter.
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In contrast to the publications mentioned above, this work investigates the influence of the individual 
magnetization properties of each ring as well as their composition within the PMB, which is basically a 3-
dimensional problem. Furthermore, the resulting forces on the rotor of the TMP are of interest. The theoretical 
approach of this work is implemented into the MATLAB environment and designed to investigate the objective. 
The resulting simulation allows the calculation of the resulting forces in the PMB of a hybrid-bearing TMP, taking 
into account the magnetization properties of the individual rings as well as axial displacements between stator and 
rotor. 

The structure of the MATLAB simulation is described below. First, the geometry of the PMB is designed 
according to a repulsive setup with axially magnetized rings. The number of ring pairs, dimensions of the rings as 
well as the size of the radial bearing gap can be freely designed here. In addition, it is possible to shift the individual 
rings radially and axially, whereby the focus is on the axial shift of the entire rotor magnet stack. The static 
magnetic field is then calculated based on the individual ideally magnetized stator and rotor rings. This is done for 
all defined field points in the near field region, i.e. in a radius of a few centimeters around the magnetic rings. In 
the next step, the individual intrinsic magnetization properties of the single rings are considered. These are divided 
into individual ring segments, whereby the magnitude as well as the angle of the magnetization can be varied, 
deviating from an ideal axial magnetization. The resulting additional magnetic field is calculated and the vector 
addition of the magnetic field of the previously assumed ideal magnetic rings is performed for all defined field 
points.  

The basis for the calculation is the surface current model. Tangential surface currents occur at the shell surfaces 
of a magnet with axial magnetization (see Figure 2a) since no adjacent elementary currents occur there. Due to 
the repulsive structure, opposing surface currents are present at the bearing gap. Because of the force effect 
between the ring magnets, radial repulsion occurs in all directions and a radial bearing is formed [5]. Urankar 
describes an analytical method for calculating the vector potential as well as the magnetic field of a thin circular 
conical cylindrical segment, which is the basis of this work. The shell segment carries a surface current and can 
have an arbitrary tangential circumferential and axial length. During the calculation, Jacobian elliptic functions 
and complete and incomplete elliptic integrals of the first, second and third kind are used. The equations derived 
from Urankar are fully adopted in the underlying MATLAB simulation and can be found in [16, p. 915]. Therefore, 
they are not described in detail in this publication. For the case of the ideally magnetized ring, only surface currents 
occur on the tangentially extending surfaces, so the formulas simplify to the case of the derived complete, 
nonconical cylinder. However, for rings that are not ideally axially magnetized, surface currents also occur at the 
top and bottom faces. In addition, the intrinsic magnetization properties vary along the circumference of the ring, 
so that the generally derived Urankar equations must be used for ring segments of any size. 

Figure 2: a) Axially magnetized rings exhibit tangential surface currents. For clarity, only an exemplary 2-ring 
pair PMB is shown here and the bearing air gap is significantly larger. b) Cross-section of the exemplary PMB 
showing the MST shell which only encloses the rotor magnet stack for the calculation of forces. c) Schematic 
representation of the simulation model of a hybrid-bearing TMP rotor 
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After the distribution of the magnetic field over the defined field points is calculated, the resulting forces can 
now be determined with the help of the Maxwell stress tensor (MST). This method is used, among others, in the 
work of Bekinal [1]. The MST describes the relationship between electromagnetic forces and mechanical forces, 
moments and impulses. Each individual field point can be assigned a mechanical stress state via the MST. The 
forces can then be determined by integrating the stresses along a closed surface. Only one magnet (stack) may be 
included in this process [9]. The rotor magnet stack in the form of a closed MST shell is chosen here as the 
integration path (see Figure 2b). 

At this point, the present publication further differs from other published methods and provides a novel 
approach by considering a rotor with PMB and ball bearing (see Figure 2c). The forces just calculated in the 
individual field points along the closed MST shell (dotted green line), hereafter referred to as intrinsic forces dF⃗⃗ , 
generate individual torques dM⃗⃗⃗  in the ball bearing via the rotor p⃗ , respectively the virtual lever arm r'⃗⃗ . These 
individual iteratively determined torques dM⃗⃗⃗  are now added vectorially. Due to the support of the rotor in the ball 
bearing, the torque there leads to resulting radial forces. Only those torque components are of interest which lead 
to a radial deflection of the rotor in the PMB. The assumption is made that the displacements in the PMB are very 
small compared to the length of the rotor, so that a perpendicularity between the rotor p⃗ , the resulting force Fx⃗⃗⃗⃗  and 
the torque My⃗⃗ ⃗⃗  ⃗ in the ball bearing applies. On the other hand, the vector sum of the intrinsic axial forces is used as 
the resulting axial force, since the rotor is free to move axially in the PMB. Based on this model assumption, the 
torque in the ball bearing generated by the intrinsic forces in the magnetic bearing is mapped in the horizontal 
plane of the PMB. For example, intrinsic axial forces dFz⃗⃗⃗⃗  generate a torque My⃗⃗ ⃗⃗  ⃗ via the rotor as a lever arm, which 
results in a radial force Fx⃗⃗⃗⃗ . 

Of particular interest for the objective of this work is the magnetic bearing error (MBE), i.e. the total radial 
deflection of the rotor (peak-to-peak) within the magnetic bearing from the axis of symmetry between the two 
bearing points. This is determined from the resulting radial force Fr as well as the radial stiffness kr. The radial 
stiffness kr in turn can be derived from the axial force Fax and stiffness kax during axial displacement dz, as shown 
in (1). 

kax(z) = 
dFax

dz
,         kr(z) = -0,5 ⋅ kax(z), MBE = 

Fr

|kr(z)|
 ⋅ 2 (1) 

The underlying Urankar equations of this MATLAB simulation only calculate static resulting forces, therefore 
another novel assumption is made. The operation of the TMP leads to a rotation of the rotor rings and their 
magnetic induced forces. This leads to a harmonic rotating radial force and the magnetic bearing error. The 
simulation results can thus be transferred to practice, so that an application-related theoretical analysis of the PMB 
of a TMP is possible. The influence of axial displacements (due to heating of the rotor during operation) as well 
as the individual magnetization properties (due to the manufacturing processes of permanent magnet rings) on the 
resulting radial force in the described system can thus be investigated in detail. 

3.2 Experimental investigation of the magnetic bearing error of a TMP 
For the experimental investigation of the magnetic bearing error of a TMP, a special test setup is used (see 

Figure 3), which is similar to the setup of a balancing machine system for TMP rotors. This experimental setup is 
chosen because the bearing arrangement is very similar to the bearing arrangement inside the TMP itself. In 
addition, the setup offers the possibility that the radial deflection in the bearing points can be measured using eddy 
current sensors. This inductive measurement principle measures the total radial deflection of the rotor from the 
symmetry axis with an accuracy of a few μm. The stator of the magnetic bearing can be moved axially. This allows 
adjustment of the relative displacement between the stator and the rotor, which occurs when the rotor is heated 
inside the pump and thus expands in length. The axial force correlating with the axial displacement is measured 
by a sensor located in the mounting support for the bearing. 

To check the magnetic bearing error, the rotor is mounted in the experimental setup, accelerated to a low speed 
and the radial deflection in the PMB is measured. A low speed in the range of a few revolutions per second is 
already sufficient here to be able to measure the radial deflection of the magnetic bearing error. This process is 
repeated at different relative axial displacements, whereby these are precisely set via the measured axial force. A 
total of 21 rotors are measured in this way, with the magnetic bearing error exceeding the limit for a majority of 
the rotors. These rotors are selected intentionally because the magnetic bearing error of the so-called rejected rotors 
in particular, is to be reduced. 17 of these rotors are also accelerated to the corresponding maximum speed in order 
to check the influence of the axial displacement on the run-up behavior of the rotor and at higher speeds.  

Paper-ID 27 272



Figure 3: Experimental setup for the investigation of the magnetic bearing error: the stator part of the PMB can 
be moved axially to adjust the axial force. The radial displacement within the PMB is measured at different axial 
forces. 

The magnetic bearing error is a vector, because the measured radial displacement has a magnitude (total 
displacement “peak-to-peak" in μm) as well as a direction. This phase direction is referenced by a Hall sensor, 
which measures the polarity of the motor. Within the scope of the investigation, both magnitude and phase of the 
magnetic bearing error vector are evaluated. 

3.3 Optimization approach for the PMB to reduce the axial force-dependent magnetic bearing error 
The interim findings to date lay the foundation for the development of an optimization approach. This offers 

the possibility of reducing the axial force-dependent magnetic bearing error of the PMB by using a combinatorial 
approach as well as the MATLAB simulation described above. Here, additional MATLAB program modules are 
necessary. First, a program part is used to reconstruct the magnetization properties from the raw magnetic data of 
real rings. The code is adapted so that the magnetic properties can be transferred to the corresponding ring segments 
and read into the MATLAB simulation as starting parameters in a suitable manner. On the other hand, coefficient 
matrices are developed and used to describe the influence of the intrinsic magnetization properties of a single ring 
segment on the generation of forces in the entire rotor. These coefficient matrices are developed with the help of 
numerous simulations by calculating the resulting forces due to different amplitudes of the individual magnetic 
properties as a function of the axial displacement. Trend lines describing the influence can be derived from the 
results. The parameters of the trend lines are mapped in the coefficient matrices and are valid for a defined PMB 
geometry (including the axial displacement) independent of the magnetization properties. 

A method to compensate for magnetic deviations from the state of ideal magnetization is known from a method 
by Katter [8]. However, this refers solely to the error pattern of the north/south-asymmetry. The procedure of the 
present optimization approach is described below. At the beginning, a certain number of magnetic rings is selected 
and measured in the quality control device. Subsequently, the reconstruction of the magnetization properties takes 
place. This results in magnetic ring models in the simulation whose properties of the individual ring segments 
correspond to the magnetization of the real rings. Now the PMB configurations are built up from all possible 
combinations (permutations without repetitions) of the magnetic ring models used. In this step, the rings of each 
PMB configuration are rotated and aligned with each other according to the deviation of their primary magnetic 
preferred direction from the cylinder symmetry axis. This is already done inside the magnetic bearing to reduce 
the initial magnetic bearing error [8]. The calculation of the magnetic bearing error curve shape is performed using 
the coefficient matrices. Here, systems of equations are solved for all ring segments so that the individual force 
components are known, based on the individual magnetization characteristics. These are added vectorially for each 
PMB configuration so that the resulting radial force curves are obtained as a function of axial displacement (based 
on defined grid points) for all combinations. Subsequently, a rating criterion is determined for all individual force 
curves. This represents the sum of all displacement vectors between the individual grid points and thus describes 
the vector change of the magnetic bearing error, taking magnitude and phase into account. Finally, the best PMB 
combinations with the smallest possible vector change are selected in an iterative step, whereby the combinations 
of already used rings are sorted out. Magnetic ring combinations whose rating criterion is above a specified 
threshold are also sorted out. This results in PMB combinations of real magnetic rings with the lowest possible 
axial force-dependent magnetic bearing error. 

The verification of the optimization approach is carried out simulatively and experimentally in cooperation 
with a company. For the first case, 100 real magnetic rings are measured in order to reconstruct the magnetization 
properties. After applying the optimization approach, 16 (out of 20 theoretically possible) optimized PMBs (5-
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ring-pair) are obtained here, since some ring combinations are not used due to a threshold being exceeded. 
Subsequently, the axial force-dependent course of resulting radial force or magnetic bearing error is calculated for 
all combinations using the method from chapter 3.1. Here, the reconstructed magnetization properties are also 
considered. For comparison, the results of non-optimized PMB, but with the same reconstructed magnetic rings, 
are used. However, the combinations are chosen such that the magnetic rings are stacked according to their 
extracted order, resulting in 16 random combinations of PMB. 

In the experimental verification, a total of 110 TMPs are built with optimized PMBs. The optimization 
approach is used to determine the magnetic ring combinations and assemble them in real rotors. Some optimized 
rotors are checked in the experimental test setup and the measured values are compared with those of non-
optimized or the already measured (rejected) rotors. The overall target considers not only the rotor but also the 
entire TMP. Therefore, an additional evaluation of all optimized rotors is performed as part of the standardized 
functional testing at the manufacturer. In this process, relevant parameters are evaluated during the balancing 
process of the rotors as well as the final functional test of the complete pump. These parameters are then compared 
with data from identical TMPs with non-optimized PMBs from the same production period. 

4   Results 

4.1 Theoretical and experimental investigation of the PMB with focus on magnetic properties and the 
magnetic bearing error of a TMP 

By using MATLAB simulations, the influences of the intrinsic magnetization properties as a function of the 
axial displacement can be theoretically investigated. Typical magnetic error patterns, which have already been 
briefly described in Figure 1b, have different effects on the rotor and can be better taken into account in the future. 
The findings of the theoretical investigation confirm and extend some statements on individual magnetic error 
patterns from the publication of Katter [8]. Figure 4 summarizes their effects on the generation of additional radial 
and axial forces as a function of axial displacement. The inhomogeneity represents a deviation in magnitude of the 
magnetization from the average magnetic field of the entire ring. It leads to an offset of the radial force curve. The 
angular error represents a deviation of the magnetic preferred direction from the symmetry axis of the magnetic 
ring and describes the opening angle of the parabolic curve shape. The north/south-asymmetry is a rotational 
symmetric tilting of the magnetization and leads exclusively to additional axial forces. 

Figure 4: a) Inhomogeneity and angular error both result in additional radial forces with different dependence on 
axial displacement, but no axial forces. b) The slope of the axial force curve results from the axial displacement 
itself. The N/S-asymmetry generates additional axial forces only (parallel displacement of the force curve). 

During the experimental investigation, an interesting phenomenon was observed for the first time. The 
measured total radial deflection of the rotor within the PMB at a low, predefined rotor speed (magnetic bearing 
error) is very strongly dependent on axial displacements between stator and rotor. Figure 5a shows typical curves, 
which were observed in all 21 rotors in varying extents. The magnitude of the magnetic bearing error generally 
shows a parabolic curve shape and is in the range of a few μm. The phase of the magnetic bearing error vector also 
varies differently by up to 180° (not shown). Through the practical know-how of the cooperating company, it is 
clear that a very strong influence on the residual unbalance of a few 100 mg can thus be expected.  

The run-up measurements carried out up to the maximum operating speed show that both the amplitude of the 
first rigid-body mode of the rotor and its resonance frequency also change very strongly (see Figure 5b). The 
decrease in radial stiffness due to axial displacement cannot be the sole reason for this strong change. This 
observation will not be pursued further in this investigation, so that the cause remains still unclear. 
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Figure 5: a) The results of four rotors (experimental) respectively four PMB (simulative) show a strong 
dependence of the magnetic bearing error at different axial forces and thus under variation of the axial 
displacement. b) The first rigid-body mode of a single rotor (amplitude & frequency) also changes significantly 
during run-up at different axial forces. 

The phenomenon observed in the experimental investigations can also be verified with theoretical simulations. 
From the axial force-dependent curve of the resulting radial force, the curve shape of the magnetic bearing error 
itself can be estimated, taking into account the changing radial stiffness. Both curves are qualitatively very similar, 
so that experiment and simulation validate each other (see Figure 5a). For the comparison, axial force (experiment; 
blue lines) and axial displacement (simulation; orange dashed lines) are to be equated. From the findings of the 
theoretical investigation, however, it is clear that primarily the angular error or the individual magnetization angle 
appears to be the cause for the strong dependence on the axial force. At this point it should be mentioned that the 
angular error as well as the North/South-asymmetry in the simulation consists from a suitable configuration of the 
magnetization angle of the individual ring segments.  

Furthermore, the theoretical investigation of PMB with real, reconstructed magnetic rings has shown that the 
order of identical magnetic ring models can have a relevant influence on the radial force curve. This means that 
not only the intrinsic magnetization properties themselves, but their individual arrangement within the PMB has 
to be considered. Based on this insight, an optimization approach for the design of PMBs was developed, whose 
objective is to reduce the amount of magnetic bearing error as well as its dependence on axial displacement by a 
suitable combination of rings based on their intrinsic magnetization properties. 

4.2 Simulative and experimental results prove that the optimization approach reduces the axial force-
dependent magnetic bearing error 

Regardless of the calculation of a very large number of possible magnetic ring combinations, reasonable 
computation times are achieved for the optimization approach, since MATLAB is specifically designed for matrix 
calculation. Determining the optimal combinations from 24 rings (~ 5 million possible combinations) takes only 
about two minutes. The simulative verification of the optimization approach shows a significant improvement of 
the axial force dependent magnetic bearing error (see Figure 6a & b). The curve of 16 optimized PMB is 
significantly flatter than the one of 16 non-optimized PMB. The rating criterion for estimating the vectorial change 
(magnitude and phase) of the magnetic bearing error is also significantly lower.  

The first part of the experimental verification also shows much flatter curves for the rotors with 39 optimized 
PMB and a reduction of the magnetic bearing error itself (see Figure 6c & d). This is represented by the mean 
value at an axial force of about 0.36 p.u. There are no rotors above the threshold (red horizontal line) although a 
completely new method for combining magnetic rings was employed. As expected, the curves of 13 rejected rotors 
(dashed curves) are partially above the limit. However, even the 22 non-optimized rotors show measurement 
values close to or above the threshold. In addition, the amplitude of the magnetic bearing error is generally higher. 

In the second part of the experimental verification, a comparison is made between all optimized (110x) and 
non-optimized specimens (~ 4,500x) in the same period. The relevant parameters are determined with the aid of a 
database query. In the course of the standardized functional test, some rotors or TMP can have multiple test runs. 
The causes here can be very numerous, e.g. incorrect mounting of the ball bearing or leaks, and are not always 
attributable to the PMB. For this reason, some of the data collected must be checked and cleansed manually, which 
is not practicable in the case of the comparative data due to the large data set of approx. 4,500 entries. For the 
evaluation, however, a basis of comparison as identical as possible is created by comparing only final or complete 
runs. For example, the amplitude of the first rigid-body mode is measured several times during the pump test. Test 
runs that ended prematurely are not considered. The relative changes of the optimized PMB are shown in Table 1 
and tend to show an improvement of the evaluated parameters in different amounts. For example, in the balancing 
process, the magnetic bearing error is significantly reduced, the residual unbalance of the rotor as well as the 
housing vibrations of the pump are also slightly reduced. 
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Figure 6: All four graphs show the magnetic bearing error as a function of axial displacement (simulation) or 
axial force (experiment): the upper row shows the results of the simulative verification with PMB (a & b). The 
bottom row shows the experimental measurement of real rotors (c & d). 

However, no particularly large influence is to be expected here, since both parameters relate to the maximum 
rotor speed and the magnetic bearing error only prevails at low speeds. The amplitude of the first rigid-body mode, 
on the other hand, is reduced clearly, which is to be expected due to the optimization of the magnetic bearing error 
itself. In particular, when evaluating the functional test of the entire TMP, it should be noted that numerous other 
causes can have an influence on the results. 

Table 1: The optimization approach achieves a slight to significant improvement in the context of rotor 
balancing (magnetic bearing error, residual unbalance) and TMP functional testing (vibration at final speed, 
amplitude of first rigid-body mode) compared to parameters from a database of over 4,500 non-optimized rotors. 

Magnetic 
bearing error 

Residual 
unbalance 

Vibration amplitude 
at final speed 

Amplitude of 1st 
rigid-body mode 

Reduction of optimized PMB -29% -5% -3% -15%

In general, both the simulative and the experimental verification of the optimization approach show that the 
objective of reducing the magnetic bearing error itself as well as the dependence on axial displacements is met. To 
be mentioned is that the magnetic rings used are taken from a device for automated quality control and measured 
again on a separate device to obtain the required raw data. In this process, non-negligible measurement 
inaccuracies which have an influence on the optimization approach were observed, although the same 
measurement methodology was employed. The optimization approach is based on the reconstructed raw magnetic 
data and is less efficient if the data do not correspond to the real magnetization. In a next step, it is therefore 
necessary to examine whether the measurement inaccuracies can be further reduced and thus the benefit of the 
optimization approach can be increased in practice. 

5   Conclusion 
In this publication, the PMB of a hybrid-bearing TMP was investigated in detail to determine the influence of 

additional resulting forces on the rotor dynamics and running behavior due to the magnetic properties as well as 
axial displacements between stator and rotor. A simulation model was developed that can be used to investigate 
the effects of intrinsic magnetization properties on the generation of undesirable forces on the rotor. This has 
provided a more focused understanding of typical magnetic error patterns in a hybrid bearing TMP. Experimental 
investigations have shown for the first time that the magnetic bearing error has a strong axial dependence and thus 
influences the balancing quality transfer. This phenomenon was theoretically confirmed in the simulations and the 
causes were identified, which lie in an unsuitable combination of permanent magnet rings based on their magnetic 
properties, especially the angular error. With these findings, an optimization approach was developed. It allows 
the targeted design of PMBs and demonstrates the reduction of the magnetic bearing error as well as its dependence 
on axial displacements. In addition, it is now possible to optimize the PMB geometry of a hybrid bearing TMP. 
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The obtained knowledge as well as the possibility to reduce the magnetic bearing error contribute to the overall 
objective and support the optimization of balancing quality transfer and NVH emissions. Based on the 
observations, a possible cause for hybrid-bearing TMPs with noticeable vibration and noise even with low residual 
unbalance was found. The proven reduction in the amplitude of the first rigid-body mode has a positive effect on 
rotor run-up and thus numerous applications, such as ion mobility spectrometers. Furthermore, the tendency of a 
reduction of the housing vibrations at rated rotor speed is noticeable. Since the magnetic bearing error cannot be 
separated in the balancing process, another possible influence is expected here.  

In a subsequent study as part of the associated dissertation, the correct consideration of the axial force-
dependent magnetic bearing error in the balancing of the rotors will be investigated. Furthermore, additional ideas 
for the advancement of the optimization approach itself have been arisen during the investigation. These can be 
considered in addition to the verification of the measurement inaccuracies observed in the quality control of the 
permanent magnet rings. The cause originally suspected in the introduction, namely that a change of the magnetic 
bearing stator has a significant influence on the balancing quality transfer, was also not considered further for the 
time being, but continues to represent a possible research question.  
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Abstract 
Several industrial sectors, including aerospace, energy, and automotive, are dependent on rotating machines, 

such as turbines, motors, turbo generators, pumps, or compressors. Thus, there is a continually growing need to 
improve performance, whilst reducing costs and pollutant agents associated with system operation. To achieve 
these goals, strategies to control the rotor dynamic behaviour are critical. One approach to control the dynamics 
of a rotating system is through changing the bearing characteristics, directly altering the stiffness and/or damping 
of the system as a whole. A traditional bearing can become an active bearing through combining it with any 
element that enables control, thus making it an active hybrid bearing. In the case of a traditional conical bearing, 
its dynamic characteristics could easily be manipulated through compensation of the shaft axial position, which 
could be achieved via a thrust magnetic bearing. Therefore, this paper proposes to create an alternative hybrid 
bearing which consists of a radial conical fluid bearing and a thrust magnetic bearing to improve performance. 
The assessment of the concept is evaluated through the analysis of the rotor in the frequency domain, with results 
showing that the rotor vibration can be reduced by up to 70%. 

1   Introduction 
Excessive vibration in rotating machines has been a topic of concern for many years. Additionally, the presence 

of this machinery in every industrial sector has pushed engineers to improve system performance and reduce the 
costs and pollutant agents associated with its operation. In this regard, strategies to control the rotor dynamic 
behaviour are crucial. Therefore, these tendencies have driven research and development of controllable bearings, 
which are commonly known as active bearings. An active bearing is one which is capable of change its 
characteristics over time. Active magnetic bearings are the most common type and have been successfully used in 
rotating machines for fault tolerant and vibration control [1, 19, 21]. However, high cost and low damping 
capabilities are drawbacks for their use in every machine. Moreover, any traditional bearing (for example, ball or 
fluid film) can become controllable through combining it with an element that enables such control [17], creating 
an active hybrid bearing. 

Jensen and Santos [11] developed an active tilting pad journal bearing to control the vibrations of a rotor and 
its foundation. Pressurised oil was supplied to the chambers behind the pads to make them move. A similar 
approach was proposed by Pai and Parkins [18]. Combining a ball bearing, springs, and piezoelectric actuators, 
Heindel et al. [9] developed a hybrid active bearing to suppress the bearing forces and the rotor resonances. 
Zapomel et al. [24] developed a new mathematical model of a magneto-rheologic fluid film damper to control the 
lateral displacement of a rotor. Another interesting design of a hybrid bearing was proposed by Chasalevris and 
Dohnal [3]. In this case, they allowed the bottom part of a hydrodynamic bearing to move vertically, which was 
supported by a beam spring and a chamber containing oil to provide spring and damping capabilities to the part. 
The bearing was passively controlled by the forces generated by the fluid film between the journal and bearing 
inner surface. Finally, El-Shafei [5] assembled a radial magnetic bearing on top of a radial journal bearing to create 
a new concept of an active hybrid bearing. 

Despite the advantages of hybrid bearings, they are not regularly used in industrial rotating machinery due to 
their design complexity. Instead, fluid film bearings are commonly used because of their high load carrying 
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capacity and damping properties. In addition, by modifying the fluid film thickness or clearance, it is possible to 
control the dynamic behaviour of the bearing, which is not a simple task when a traditional geometric format is 
used. Nevertheless, if a conical bearing is utilised, then its dynamic characteristics could be easily manipulated 
through compensation of the shaft axial position. 

Conical bearings are usually applied to high-speed rotating machines and were first developed to combine 
thrust and radial bearings in one single element. One of the first conical bearing studies was produced by Rowe 
[20], where this component was analysed in a grinding spindle, whereas Ettles and Svoboda [6] investigated the 
application of a double inclined conical journal bearing to centrifugal pumps. Hannon and Braun [7] based their 
work on [4] to develop a generalised mathematical formulation for the Reynolds and Energy equations for a conical 
bearing. A study by Hong et al. [10] presented the dynamic characteristics (stiffness and damping coefficients 
together with stability) of pocket conical bearings. A numerical analysis considering magneto-rheologic fluid and 
surface roughness was developed by Sharma and Kumar [23]. 

It is evident that the literature is scarce on papers that explore the relationship between the fluid film thickness 
and axial position of the shaft to control the bearing characteristics and consequently the rotor behaviour. One of 
study discuss the use of different types of control strategies to improve the friction loss in conical journal bearings. 
In this case Kazakov et al. [12] used hydrostatic pressure to force the shaft moving in the axial direction, and 
therefore change the bearing average clearance. Therefore, this work proposes a proof of concept of an alternative 
hybrid bearing for use in small to mid-range machinery. It consists of radial conical fluid bearing and a thrust 
magnetic bearing, such that the magnetic bearing can sustain the thrust force generated by the pressure field, and 
by applying a stronger or weaker reaction force actuate the shaft axial position. This arrangement is expected to 
improve the load carrying capacity and/or reduce the vibration levels, with analysis of the rotor completed in the 
frequency domain. 

2   System modelling 

2.1 Conical hydrodynamic bearings 
The basis of the classical hydrodynamic lubrication theory is given by the Reynolds equation, which is derived 

from the Navier-Stokes and continuity equations under simplifying assumptions. For conical bearings (see Figure 
1), the problem is conveniently formulated if the Reynolds equation is written in spherical coordinates, with one 
of the angles being constant and equal to the inclination angle γ, as presented by: 

1

𝑟𝑠𝑖𝑛(𝛾)

𝜕

𝜕𝑟
[𝑟𝑠𝑖𝑛(𝛾)ℎ3
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𝜕𝑟
] +

1

𝑟2𝑠𝑖𝑛2(𝛾)

𝜕

𝜕𝜃
[ℎ3

𝜕𝑝

𝜕𝜃
] = 6𝜇𝜔

𝜕ℎ

𝜕𝜃
+ 12𝜇

𝜕ℎ

𝜕𝑡
, (1) 

where, r and θ are the radial and circumferential coordinates. The pressure is denoted by p, the lubricant viscosity 
by µ, the rotating speed of the journal by ω, time by t, and the fluid film thickness by h, which depends on the 
nominal clearance h0 and the position of the centre of the journal in x, y, and z directions, as shown by: 

ℎ = ℎ0 − [𝑒𝑦𝑐𝑜𝑠(𝜃) + 𝑒𝑧𝑠𝑖𝑛(𝜃)]𝑐𝑜𝑠(𝛾) + 𝑒𝑥𝑠𝑖𝑛(𝛾). (2) 

The solution of Equation (1) gives the pressure distribution generated by the fluid film. Nevertheless, the 
Reynolds equation does not have a complete analytical solution, and therefore, the Finite Volume Method can be 
used to numerically solve it. Once the pressure is known, one can obtain the bearing reaction forces by integrating 
it over the inner surface of the bearing, giving: 

𝑓𝑥 = ∫ ∫ 𝑝𝑠𝑖𝑛(𝛾)𝑟𝑠𝑖𝑛(𝛾)𝑑𝑟𝑑𝜃
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Since the hydrodynamic forces present a low degree of nonlinearity, they are usually linearised through a first 
order Taylor series expansion around journal’s equilibrium position as:  

𝑓𝑥 = 𝑓𝑥0 + 𝑘𝑥𝑥∆𝑥 + 𝑘𝑥𝑦∆𝑦 + 𝑘𝑥𝑧∆𝑧 + 𝑐𝑥𝑥∆�̇� + 𝑐𝑥𝑦∆�̇� + 𝑐𝑥𝑧∆�̇�,

𝑓𝑦 = 𝑓𝑦0 + 𝑘𝑦𝑥∆𝑥 + 𝑘𝑦𝑦∆𝑦 + 𝑘𝑦𝑧∆𝑧 + 𝑐𝑦𝑥∆�̇� + 𝑐𝑦𝑦∆�̇� + 𝑐𝑦𝑧∆𝑧,̇

𝑓𝑧 = 𝑓𝑧0 + 𝑘𝑧𝑥∆𝑥 + 𝑘𝑧𝑦∆𝑦 + 𝑘𝑧𝑧∆𝑧 + 𝑐𝑧𝑥∆�̇� + 𝑐𝑧𝑦∆�̇� + 𝑐𝑧𝑧∆�̇�.

 (4) 

in which the derivatives of the forces with respect to the journal position and velocity are the stiffness and damping 
coefficients used to represent the bearing dynamics in the rotating system [15] of the form: 

𝑘𝑚𝑛 =
𝜕𝑓𝑚

𝜕𝑛
|

𝑥0,𝑦0,𝑧0

𝑐𝑚𝑛 =
𝜕𝑓𝑚

𝜕�̇�
|

𝑥0,𝑦0,𝑧0

(𝑚, 𝑛 = 𝑥, 𝑦, 𝑧). (5) 

a) 

b) 

Figure 1: Schematic drawing of a conical bearing. (a) lateral view, (b) frontal view. 

Assuming the bearing is infinitely short, it is possible to neglect the effects of the circumferential pressure 
gradient in Equation (1), and, therefore, an analytical solution becomes viable. Despite this simplification, the 
pressure calculated with the analytical solution is in reasonable agreement with the complete solution for bearings 
having a length-diameter ratio up to 0.5 [8]. The main advantage of the analytical solution is its nearly 
instantaneous computational time. 

Therefore, applying the hypothesis of an infinitely short bearing to the Reynolds equation and rearranging, 
produces: 
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Expanding the left-hand side of Equation (6), and rearranging: 
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)

1

ℎ3
, (7) 

which is a nonhomogeneous second order differential equation with variable coefficients. The solution of Equation 
(7) can be obtained using the substitution 𝑢 = 𝑑𝑝 𝑑𝑟⁄  and integration factor 𝜇(𝑟) = 𝑒𝑙𝑛(𝑟) = 𝑟. For the boundary
conditions, it is known that the relative pressure value at r = R1 and r = R2 is zero. Thus, the analytical equation
for the pressure as a function of r and θ is:
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,
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𝐴
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(𝑅1
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2)

[𝑙𝑛(𝑅1) − 𝑙𝑛(𝑅2)]
𝑙𝑛(𝑅1)} .

(8) 

2.2 Rotating system 
The Finite Element Method is a classical method to model the dynamics of flexible bodies and will be 

implemented in this work. With it, a continuous body can be represented by the superposition of several simpler 
elements that can be considered continuous themselves. The kinetic and potential energies can then be calculated 
with the work of the nonconservative forces for all elements. Thus, applying the Lagrange formulation produces 
the equation of motion for the rotating shaft system [13]: 

Mq̈+(C+𝜔G)q̇+Kq=f (9) 

with M, C = αM + βK, G and K denoting the mass, damping, gyroscopic and stiffness matrices, respectively. The 
vector containing the degrees of freedom is q, f is the vector containing the external forces, and α and β are the 
proportionality coefficients for internal damping. 

The present work also includes axial vibration with the classical lateral vibrations, causing each node to have 
five degrees of freedom, where shaft torsion is neglected. To model the shaft lateral vibration, the Timoshenko 
beam element model is used [16], while the axial vibration was modelled using the axial bar element [2]. Moreover, 
the disk is modelled as a rigid disk element with gyroscopic effects. 

It is possible to solve Equation (9) in the frequency domain by assuming a harmonic solution of the type q =
Q𝑒𝑗𝜔𝑡. Therefore, the transfer function for the rotating system is: 

Q = (−𝜔2M + 𝑗𝜔(C − 𝜔G) + K)−1f (10) 

2.3 Magnetic bearing 
The purpose of the thrust magnetic bearing in this system is to sustain the thrust forces applied by the conical 

bearings and, by applying a greater or lower reaction force be able to control the axial position of the whole rotor. 
Figure 2 provides a schematic of a magnetic thrust bearing. It has an opposing pair configuration, and the resultant 
axial force will be the sum of the forces generated by the coils individually. Thus, the magnetic force developed 
by a pair of coils is [22]: 

𝑓𝑚𝑏 =
𝜇0𝐴𝑐𝑁𝑐

2(𝑖1 + 𝑖𝑐)2

[
𝑙𝑖

𝜇𝑟
+ 2(𝑙0 − 𝑥)]

−
𝜇0𝐴𝑐𝑁𝑐

2(𝑖2 − 𝑖𝑐)2

[
𝑙𝑖

𝜇𝑟
+ 2(𝑙0 + 𝑥)]

(11) 

where li is the path length through the coil core, l0 is the nominal air gap, µr is the relative permeability of the 
magnetic core, µ0 is the relative permeability of air, A is the area of the face of the pole, Nc is the number of coil 
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windings, i1 and i2 are the bias current for each coil of the pair, and ic is the control current. Linearising Equation 
(11) around x = ic = 0, one has:

𝑓𝑚𝑏 = 𝑘𝑖𝑖𝑐 + 𝑘𝑠𝑥 (12) 

with ki and ks denoting the current gain and negative stiffness, respectively. 

It is possible to obtain the control current using PID feedback control. Since the dynamics of the system is 
solved in the frequency domain, the effects of the integral gain can be neglected, and PD feedback control can be 
used with proportional gain kp and derivative gain kd. Therefore, the force exerted by the magnetic bearing is: 

𝑓𝑚𝑏 = −(𝑘𝑖𝑘𝑝 − 𝑘𝑠)𝑥 − 𝑘𝑖𝑘𝑑�̇� (13) 

As presented, x and �̇� represent the vibration of the rotor around the axial central position. However, it is 
extremely important the right demand is sent to the controller such the shaft is placed in the correct axial position, 
which in turn will modify the conical bearing film thickness and the rotor vibration response. Figure 3 presents the 
block diagram for the system control. 

Figure 3: Control block diagram. 

The first block is responsible for producing the demand for the controller, i.e., the axial position in which the 
rotor core should be located at a specific rotating speed. The desirable position is the one that minimises the 
vibration of the rotating system. Thus, considering the axial position of the rotor as a variable, it is possible to 
solve a minimisation problem to reduce the rotor vibration. As the problem is unidimensional, a very simple but 
robust procedure, the dichotomic search, can be used [14]. In addition, the objective function considers the 
Euclidean norm of the rotor vibration at the disks and bearing positions. Since the calculation of the conical bearing 
coefficients are the most computationally expensive part of the processes, this task is accomplished taking into 
account the analytical solution. Then, the feedback control is used to maintain the rotor core in the desired position 
and reduce its axial and lateral vibrations. 

3   Results and discussion 
The simulations were accomplished using the rotor set up provided in Figure 4. This rotor is composed of 21 

Timoshenko beams elements and three rigid disk elements at nodes 8, 13 (both with diameter equal to 95 mm and 
length equal to 47 mm) and 21 (diameter equal to 60 mm and length equal to 25 mm), the last one acting as the 
rotor core for the thrust magnetic bearing. The shaft, which is 550 mm long and has a diameter of 12 mm, is 
supported by two identical conical bearings placed at nodes 3 and 18. Table 1 shows the bearing relevant data, and 
the structural damping is taken to be proportional only to the stiffness matrix K, in which 𝛽 = 1.5 × 10−5 s. The 

Figure 2: Schematic drawing of a thrust magnetic bearing. 
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shaft and disks are made of steel with elastic modulus 𝐸 = 200 GPa and density 𝜌 = 7850 kg m3⁄ . The 
parameters needed for the operation of the magnetic bearing and control are shown in Table 2. Moreover, two 
unbalance masses (m = 1.7 g) were introduced at nodes 7 and 8 - which represent the right and left faces of disks 
1 and 2, respectively - at 37 mm far from the disk centre and 180º out of phase. 

Figure 4: Finite element model of the shaft. 

    Table 1: Conical fluid-film bearing parameters  Table 2: Magnetic bearing control parameters 
Bearing smaller diameter (𝑅1𝑠𝑖𝑛(𝛾)) 31 mm 
Inclination angle (γ) 20º 
Bearing length (L) 18 mm 
Bearing nominal clearance (h0) 90 µm 
Lubricant viscosity (µ) 65 mPa.s 

a) b) 

c) d) 

Figure 5: Unbalance response of the rotor without control. (a) bearing 1, (b) bearing 2, (c) disk 1, (d) disk 2. 

Figure 5 presents the unbalance response of the rotor at disks and bearings positions when no control is applied 
to the system. The system presents two critical speeds, one at 27 Hz and one at 115 Hz. Since bearing 2 is between 

Negative stiffness (ks) 1.94×106 N/m 
Current gain (ki) 530 N/A 
Proportional gain (kp) 3×106 A/m 
Derivative gain (kd) 5×103 As/m 
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a disk and the rotor core, the static load applied to this bearing is greater and it will have a higher eccentricity than 
bearing 1. Therefore, for the same nominal clearance, bearing 2 will be stiffer than bearing 1, which is shown by 
its lower vibration levels. It is also possible to observe that the vibration levels due to the second critical speed are 
greater in the left-hand side of the system. The system was simulated with both bearings having their conicity in 
the same direction when the control was enabled. However, when no control is available, the hydrodynamic 
bearings must have their conicity opposing to each other to balance the axial forces, as presented in Figure 1.  

a) b) 

c) d) 

Figure 6: Unbalance response of the rotor with position and vibration control. (a) bearing 1, (b) bearing 2, (c) 
disk 1, (d) disk 2. 

The unbalance response of the controlled rotor is shown in Figure 6. In this situation, the optimisation process 
finds the axial position that reduces the rotor vibration. This is possible due to the dependence of the fluid film 
thickness on the axial position, which will affect the pressure field and, consequently, the stiffness and damping 
characteristics of the bearings and rotating system – a negative position tends to reduce the nominal clearance and 
increase the load carrying capacity of the bearing. The demand position and the force that must be exerted by the 
magnetic bearing can be seen in Figure 7. Therefore, the disk unbalance response indicates an average reduction 
of 34% in the first critical speed vibration levels and 53% in the second critical speed vibration level. However, 
there is an increase in the vibration at the bearings due to the disk displacements being much greater than the 
journal displacements and dictating the value of the objective function. Thus, the axial position found is the one 
which improves the vibration at these positions, causing an increase in the nominal clearance and making the 
bearings less stiff (Figure 7). This combination results in the observed behaviour. 
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a) b) 

Figure 7: Magnetic bearing behaviour. (a) axial position demand, (b) force that must be exerted by the magnetic 
bearing to achieve the demand. 

a) b) 

c) d) 

Figure 8: Unbalance response of the rotor with position control only. (a) bearing 1, (b) bearing 2, (c) disk 1, (d) 
disk 2. 

In the previous simulation the feedback signal considered both the axial demand and vibration of the rotor core. 
Due to the conical bearings coupling the axial and lateral dynamics, the reduction of the axial vibration increases 
the vibration in the y-z plane, which makes the control sub-optimum. However, one can achieve greater reductions 
of the lateral vibrations if only the average vibration of the rotor core (i.e. its static axial position) is provided as 
feedback, as shown in Figure 8. In this situation, an average reduction of 79% and 60% is expected in the first and 
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second critical speeds at the disk positions. However, as the vibrations at the bearings increase, the axial vibration 
is greatest when the rotor crosses the first natural frequency. 

4   Conclusions 

The concept of a hybrid bearing that combines a conical hydrodynamic bearing and a thrust magnetic bearing 
is presented in this work. A system composed of a shaft, two disks, two conical bearings, and a magnetic thrust 
bearing, was analysed by means of its unbalance response. 

The controller demand was calculated by a unidimensional minimisation of the vibration at specific points of 
the rotor, namely the bearing and disk positions. Due to the vibration of the disks being greater than those of the 
bearings, they were considered the most influential parameters of the objective function. Therefore, by analysing 
the results, it is possible to conclude that the concept is promising, as it was able to reduce the most significant 
vibrations included in the objective function. 

Moreover, two different feedback strategies were evaluated, one with axial position and vibration signals and 
the other with just the axial position signals. Because the axial and lateral vibrations are coupled, the axial vibration 
reduction caused an increase of the lateral vibrations, which reduced the effectiveness of this control strategy. 
When no axial vibration control was set, the strategy could reduce the lateral vibrations by an average of 70%, 
however, the axial vibrations became prominent vibration at the bearings. 

The fact that the concept uses information of the disks and bearing displacements for the demand calculation 
might cause some issues for its use in existing real machines. Therefore, possible solutions for this problem would 
be the use of the axial vibration measured at the magnetic bearing position to adapt the position of the shaft. In 
addition, it is well known that proximity sensors, and/or accelerometers are embedded at the journal bearing 
position. Then, it would be possible to use these data, and knowledge about the modal shapes of the rotor, to 
estimate the vibration at the disk positions, and use it for the optimisation procedure. Another possibility would be 
the use of the proposed bearing with rigid rotors instead of flexible ones. All these situations would be evaluated 
in future works regarding this project. 

To conclude, the bearing concept presented in this paper is a viable alternative for the development of future 
active hybrid bearings and it can successfully control rotor vibrations, which will improve the performance of 
rotating system and delay maintenance operations, reducing costs. 

Acknowledgement 
The authors thank the Engineering and Physical Sciences Research Council – EPSRC grant [EP/P006930/1] 

for the financial support. 

References 
[1] Abulrub, A.H.G., Sahinkaya, M.N., Burrows, C.R., Keogh, P.S. (2006): Adaptive control of active

magnetic bearings to prevent rotor-bearing contact. In: Proceedings of the ASME 2006 International

Mechanical Engineering Congress and Exposition. Dynamic Systems and Control, Parts A and B. Chicago,
USA, Nov. 5-10, pp. 1523-1529.

[2] Bathe, K. (1982): Finite Element Procedures in Engineering Analysis. Prentice-Hall, New Jersey.
[3] Chasalevris, A., Dohnal, F. (2015): A journal bearing with variable geometry for the suppression of

vibrations in rotating shafts: Simulation, design, construction and experiment. Mechanical Systems and

Signal Processing, 52-53, pp. 506-528, http://dx.doi.org/10.1016/j.ymssp.2014.07.002.
[4] Dowson, D. (1962): A generalized Reynolds equation for fluid-film lubrication, International Journal of

Mechanical Science, 4, pp.159-170.
[5] El-Shafei, A. (2018): SEMAJIB: A versatile high performance smart bearing, In Cavalca K., Weber H.

(eds) Proceedings of the 10th International Conference on Rotor Dynamics – IFToMM, IFToMM 2018,
Mechanisms and Machine Science, 62, Springer, Charm, pp. 372-385.

[6] Ettles, C., Svoboda, O. (1975): The application of double conical journal bearings in high speed centrifugal
pumps — Part 1. Proceedings of the Institution of Mechanical Engineers. 189(1), pp. 221-230,
doi:10.1243/PIME_PROC_1975_189_030_02

[7] Hannon, W.M., Braun, M.J. (2007): Numerical solution of a fully thermally coupled generalized universal
Reynolds equation (GURE) and its application. Part 1: Conical bearings. Tribology Transactions, 50, pp.
540-557, DOI: 10.1080/10402000701631742.

[8] Hashimoto, H., Wada, S., Ito, J. (1987): An application of short bearing theory to dynamic characteristic
problems of turbulent journal bearings, Journal of Tribology, 109, pp. 307-314.

Paper-ID 55 286

https://doi.org/10.1243/PIME_PROC_1975_189_030_02


[9] Heindel, S., Becker, F., Rinderknecht S. (2017): Unbalance and resonance elimination with active bearings
on a Jeffcott rotor. Mechanical Systems and Signal Processing, 85, pp. 339-353,
http://dx.doi.org/10.1016/j.ymssp.2016.08.016.

[10] Hong, G., Xinmin, L., Shaoqi, C. (2009): Theoretical and experimental study on dynamic coefficients and
stability for a hydrostatic/hydrodynamic conical bearing. Journal of Tribology, 131, 041701, DOI:
10.1115/1.3176991.

[11] Jensen, K.M., Santos, I.F. (2022): Design of actively-controlled oil lubrication to reduce rotor-bearing-
foundation coupled vibrations - theory & experiment. Proceedings of the Institution of Mechanical

Engineers, Part J: Journal of Engineering Tribology. 236(8), pp. 1493-1510.
doi:10.1177/13506501221100615.

[12] Kazakov, Y.N., Kornaev, A.V., Shutin, D.V., Li, S., Savin, L.A. (2022): Active fluid-film bearing with
deep Q-network agent-based control system. Journal of Tribology, 144, 081803, DOI: 10.1115/1.4053776.

[13] Lalanne, M., Ferraris, G. (1998): Rotordynamics prediction in engineering. Wiley, Chicester.
[14] Luenberger, D. G., Ye, Y. (2008): Linear and nonlinear programming. Springer Science + Business Media

LLC, New York.
[15] Lund, J.W. (1987): Review of the concept of dynamic coefficients for fluid film journal bearings. ASME

Journal of Tribology, 109(1), pp. 37-41.
[16] Nelson, H. D. (1980): A finite rotating shaft element using Timoshenko beam theory. ASME Journal of

Mechanical Design, 102(4), pp. 793-803.
[17] Ortega, A.B., Navarro, G.S., Ocampo, J.C., Salazar, M.O., Valdés, G.V. (2012): Automatic balancing of

rotor-bearing systems. Advances on analysis and control of vibrations - Theory and applications, Mauricio
Zapateiro de la Hoz and Francesc Pozo, DOI: 10.5772/48621.

[18] Pai, R., Parkins, D.W. (2018): Performance characteristics of an innovative journal bearing with adjustable
bearing elements. Journal of Tribology, 140, DOI: 10.1115/1.4039134.

[19] Park, J., Palazzolo, A., and Beach, R. (2008): MIMO Active vibration control of magnetically suspended
flywheels for satellite IPAC service. ASME. J. Dyn. Sys., Meas., Control, 130(4): 041005.
https://doi.org/10.1115/1.2936846.

[20] Rowe, W.B. (1967): Experience with four types of grinding machine spindles, In Proceedings of the 8th

International MTDR Conference, Manchester, United Kingdom, pp. 453-477.
[21] Schweitzer, G. (2011): Applications and research topics for active magnetic bearings. In Gupta, K. (eds)

IUTAM Symposium on Emerging Trends in Rotor Dynamics. IUTAM Bookseries, vol. 1011, Springer,
Dordrecht. https://doi.org/10.1007/978-94-007-0020-8_23.

[22] Schweitzer, G., Maslen, E.H. (2009), Magnetic bearings: theory, design and application to rotating

machinery. Springer-Verlag, Berlin.
[23] Sharma, S.C., Kumar, A. (2021): On the behaviour of roughened conical hybrid journal bearing system

operating with MR lubricant. Tribology International, 156, 106824,
https://doi.org/10.1016/j.triboint.2020.106824.

[24] Zapomel, J., Ferfecki, P., Kozanek, J. (2017): Modelling of magnetorheological squeeze film dampers for
vibration suppression of rigid rotors. International Journal of Mechanical Sciences, 127, pp. 191-197,
https://doi.org/10.1016/j.ijmecsci.2016.11.009.

Paper-ID 55 287

https://doi.org/10.1115/1.2936846
https://doi.org/10.1016/j.triboint.2020.106824
https://doi.org/10.1016/j.ijmecsci.2016.11.009


SIRM 2023 – 15th International Conference on Dynamics of Rotating Machines,
Darmstadt, Germany, 22nd – 24th February 2023

Effect of motor control on torsional vibration response in variable speed
drive systems

Urho Hakonen 1, Sampo Laine 2, Sampo Haikonen 3, Raine Viitala 4

1,2,3,4 Department of Mechanical Engineering, Aalto University, 02150, Espoo, Finland, urho.hakonen@aalto.fi

Abstract
This paper investigates the torsional response of an electric powertrain considering the effect of the control methods
of the electric motor drive, consisting of a variable frequency drive and an electric motor. The vibratory torque
occurring in the mechanics of an electric powertrain driven with classical induction motor control methods (open-
loop V/Hz and closed-loop V/Hz) were compared. The simulated powertrain was accelerated to a chosen operating
speed and a sinusoidal torque excitation was applied. The shaft vibratory torque was calculated over a range of
motor operating speeds. The analysis was conducted on simulation results produced using an electric motor drive
simulator and a torsional vibration analysis software. The simulation results indicate that the control has a major
effect on the torsional response of the powertrain, especially in the case of an improperly configured control system.
The combination of the software used is an open-source toolchain for simulating the effects of motor control on
the torsional vibration response of powertrain mechanics.

1 Introduction
Electric motor driven powertrains can be controlled with a variable frequency drive (VFD). VFDs are an in-
creasingly common option for powertrains where varying the operating speed and torque of the electric motor
is required. The electric drive may excite the torsional modes of the connected mechanical drivetrain [3, 10].
Excitations originate from torque harmonics produced by the electric motor or the VFD. Another possible source
of instability is the closed-loop control of the electric drive. VFD controlled powertrains have allegedly caused
several incidents with torsional problems [5].

Often the model of the electrical subsystem is not available for modelling torsional dynamics, or there is a lack
of suitable tools to combine the electrical and mechanical subdomains. Furthermore, treating the electrical and
mechanical subsystems separately may complicate the analysis of the combined system or yield incorrect results.
For these reasons, it is hard to fully anticipate the behaviour of a VFD-driven powertrain at its design phase.

In this paper, the torsional response of an electric powertrain is investigated, considering the effect of open-
loop V/Hz and closed-loop V/Hz control methods of the electric drive. A powertrain model is constructed using
open-source tools programmed in Python. The mechanical drivetrain model is created using the torsional vibration
analysis software openTorsion [1] and connected to an induction motor model created with the electric drive sim-
ulation tool motulator [2]. Motulator is used to simulate the powertrain in time domain. The simulated powertrain
is accelerated to a chosen operating speed and excited with sinusoidal torque variation. Vibratory torque response
in the drivetrain shafts is calculated from the steady-state part of the simulated response. The results are then
compared for the effect of motor control method on torsional response of the powertrain.

2 Methods
The electric powertrain model consists of a model of the mechanics, a model of an electric motor drive system and
motor control algorithms (Figure 1). The electric motor drive system includes a model of an induction motor and
a model of a power converter. The electric motor drive model and the control algorithms similar to the ones in this
paper are thoroughly documented in [2].

2.1 Electric motor drive system
The electric drive model can be used to calculate accurate torque produced by the motor, as the motor is affected
by the vibration of the flexible drivetrain. Additionally, the electric motor adds electromagnetic stiffness and
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Figure 1: A block diagram of the electric powertrain with V/Hz control, where ωm,ref is the rotational speed
reference, us,ref is the stator voltage reference and is is the stator current. The mechanical drivetrain is loaded
with the electromagnetic torque τM produced by the motor and the external excitation torque TL. The mechanical
rotational speed ωM of the drivetrain affects the state of the electric motor. In open-loop control, the voltage
reference for the electric motor drive is calculated using the stator frequency reference and the constant stator flux
reference. Slip compensation, RI compensation and voltage injection are added in closed-loop control. [9]

damping to the powertrain system [6]. Methods for estimating the effect of electromagnetic stiffness and damping
to torsional vibration are discussed in [8].

The well known inverse-Γ-equivalent circuit model (Figure 2) presented by Slemon [11] is used to model the
induction motor. The model is implemented in stator coordinates and complex space vectors are used. The voltage
equations are

dψs

dt
= us −Rsis

dψR

dt
= −RRiR + jpωMψR

(1)

where us is the stator voltage, is and iR are the stator and rotor currents, Rs and RR are the stator and rotor
resistances respectively, p is the number of pole pairs and ωM is the rotor mechanical rotational speed. The stator
and rotor flux linkages are

ψs = Lσis +ψR

ψR = LM(is + iR)
(2)

where Lσ is the leakage inductance and LM is the magnetizing inductance. The electromagnetic torque of the
motor is

τM =
3p

2
Im{is(ψs)

∗}. (3)

+

−
jpωMψR

iR
RR

dψs
dt

dψs
dt

us

is
Rs Lσ

LM

Figure 2: The inverse-Γ model.

The power converter included in the motor drive system is an equivalent model of a lossless inverter. The
inverter model is used to calculate AC-voltage from a constant DC-voltage source.
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The motor control methods used are open-loop V/Hz and closed-loop V/Hz control. In V/Hz control, the
motor speed is adjusted based on a reference speed command by altering the supply frequency and voltage fed
to the motor. A discrete-time implementation of V/Hz control similar to the control presented in [9] is used in
the powertrain simulation. This implementation uses measured stator current as feedback. In closed-loop V/Hz
control, gain parameters affecting stator voltage and stator frequency are included in the control for stabilizing the
electrical dynamics of the drive. Setting the gain parameters to zero results in an open-loop configuration.

2.2 Mechanical model and torsional response analysis
A shaft-line finite element model [7] of the powertrain mechanics is created. In the shaft-line finite element method
(FEM) the mechanics are modelled as one-dimensional lumped masses with inertia connected by massless shafts
with torsional stiffness (Figure 3). The modelled mechanics consist of three lumped masses and two shafts, thus a
system with three degrees of freedom is used to present the equations.

The shaft-line finite element method is used to form the equations of motion

Mθ̈(t) + Cθ̇(t) + Kθ(t) = T(t) (4)

where M is the mass matrix, C is the damping matrix and K is the stiffness matrix. The vector θ contains the
rotational angles at the ends of each element and the vector T contains the motor torque and the external load
torque. The mass matrix M, the stiffness matrix K and the vector T(t) are

M =

I1 0 0
0 I2 0
0 0 I3

 K =

 k1 −k1 0
−k1 k1 + k2 −k2

0 −k2 k2

 T(t) =

τM(t)
0

TL(t)

 (5)

where τM is the electromagnetic torque of the motor and TL is the external load torque. The damping matrix C is
formed by using estimated modal damping as presented in [4]:

M̂ = ΦTMΦ

Ĉ = diag(2ξiωi) · M̂

C = Φ−TĈΦ−1

(6)

where ξi is the modal damping coefficient of mode i and ωi is the ith torsional natural frequency. The natural
frequencies and the matrix containing the mode shape vectors Φ =

[
ϕ1 ϕ2 ... ϕi

]
of the mechanical model are

solved from the undamped eigenvalue problem
(
K− ω2

i M
)
ϕi = 0.

Figure 3: A shaft-line model of a drivetrain. Disk inertia is denoted with I and shaft rotational stiffness with k.

Transient analysis is required to calculate the response of the drivetrain shafts as the electric powertrain is sim-
ulated in time domain. The equations of motion (Equation 4) of a linear time-invariant system can be represented
in a state-space form

ẋ(t) = Ax(t) + Bu(t). (7)
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The state matrix A and the input matrix B are

A =

[
0 I

−M−1K −M−1C

]
B =

[
0

−M−1

]
(8)

where I is a 3x3 identity matrix in this three degrees of freedom case selected for analysis. The state vector x(t)
and the input vector u(t) are

x(t) =

[
θ(t)

θ̇(t)

]
u(t) =

[
0

T(t)

]
(9)

where θ(t) are the rotations, θ̇(t) are the rotational speeds at the drivetrain nodes and T(t) is the torque vector.
The shaft torque T sj of drivetrain element j can be solved using the torsional stiffness of the shaft and the

rotation of the element ends as follows:

T sj = kj(θi+1 − θi). (10)

where θi is the rotation of node i and kj is the torsional stiffness of shaft j. The total response is received by
calculating the shaft torque at each time step. In a case where the electromagnetic effects are not considered, the
harmonic response can be calculated for each excitation frequency with methods presented in [4].

2.3 Simulation
The electric powertrain simulation model was created using the torsional vibration analysis tool openTorsion and
the motor drive simulator motulator. OpenTorsion was used to construct a state-space model of the drivetrain
as described in section 2.2. The mechanics were tuned so that the first natural frequency of the drivetrain is
f1 = 20.12 Hz so that it is in the operating range of the simulated motor making the effect of the motor on the
torsional response more apparent. The specifications of the drivetrain are presented in Table 1. A modal damping
coefficient of 2 % is recommended for torsional analysis according to [4].

Table 1: Specifications of the simulated electric powertrain.

Drivetrain parameter Symbol Value Unit
First shaft stiffness k1 15 kNm/rad

Second shaft stiffness k2 10 kNm/rad
First disk moment of inertia I1 0.8 kgm2

Second disk moment of inertia I2 0.5 kgm2

Third disk moment of inertia I3 0.7 kgm2

First natural frequency f1 20.12 Hz
Modal damping coefficient ξi 0.02 -

Motor parameter Symbol Value Unit
Nominal speed ωM 1477 rpm

Frequency f 50 Hz
Current i 81 A
Voltage u 400 V
Power P 45 kW
Torque TM 291 Nm
Poles p 4 -

Rotor resistance RR 57 mΩ
Stator resistance Rs 29 mΩ

Leakage inductance Lσ 2.2 mH
Magnetizing inductance LM 24.5 mH
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A 45-kW four-pole induction motor was modelled using the inverse-Γ model with rated motor operating values
and estimated motor parameters. The specifications of the 45-kW induction motor are presented in Table 1.

Motulator includes by default a 1-DOF mechanical model representing the rotor of the electric motor. The
state-space model created with openTorsion was used in place of the default 1-DOF model.

The electric powertrain state consists of the motor state and the drivetrain state. The motor state is given by
voltage equations (Eq. 1) used in the inverse-Γ model as described in [11]. The drivetrain state is solved from the
state-space model (Eq. 7). Motulator uses the Runge-Kutta method to approximate the model state.

The simulation length was chosen to be 20 seconds to fully accelerate the powertrain to its operating speed and
to ensure the torsional response reached a steady-state. The excitation (Figure 4) was applied to the non-driven
end of the powertrain. The simulation was performed for each rotational speed.
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Figure 4: The applied torsional excitation was a sum of two sinudoids with amplitudes of 2% and 1% of the motor
nominal torque and frequencies of 1x and 2x drivetrain rotational speed respectively. The DC-component of the
excitation data equals the motor nominal torque.

3 Results
The simulation results were the torsional response of the drivetrain shafts in time domain (Figure 5). To make the
analysis of the torsional response more convenient, the steady-state part of the response was converted to frequency
domain with discrete Fourier transform. The simulation was repeated for operating speeds between 900 and 1500
rpm. The operating speed was increased in steps of 10 rpm for speeds 900-1200 rpm and 1300-1500 rpm between
individual simulations. For speeds 1200-1300 rpm the operating speed was increased in steps of 1 rpm as in this
range the response amplitude is the highest due to the first natural frequency of the drivetrain and for this reason it
was of the largest interest.

The total torsional response of the shafts of the simulated powertrain driven with an induction motor with
V/Hz control are presented in Figure 6. The amplitude represents the vibratory torque power at the correspond-
ing rotational speed, received by integrating the frequency domain response. The response was calculated for both
open-loop and closed-loop V/Hz control. Additionally, for baseline, the response of a model where the electric mo-
tor is modelled as a single lumped mass without electromagnetic effects and motor control was solved in frequency
domain using steady-state forced response analysis methods presented in [4].

The effect of the electromagnetic stiffness and damping can clearly be seen in the simulation results. The peak
amplitude of the response of the system without the control and the motor model is at the first natural frequency
of the drivetrain. The first natural frequency of the powertrain increases when the electric motor model is added.
This is due to the added electromagnetic stiffness of the electric motor drive. The amplitude of the response under
open-loop V/Hz control is higher than the response of the model with only the mechanical drivetrain, indicating
that the open-loop control reduces damping. The drivetrain parameters were chosen so that reduced damping can
be observed. The damping effect of closed-loop V/Hz control was also observed, as the response amplitude with
open-loop control was larger than with closed-loop control.

4 Conclusion
The vibratory torque occurring in the mechanics of an electric powertrain driven with open-loop V/Hz and closed-
loop V/Hz control methods were compared. The simulated powertrain was accelerated to a chosen operating speed
and a sinusoidal torque excitation was applied. The shaft vibratory torque was calculated over a range of motor
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Figure 5: The time domain response of shaft 1 in open-loop and closed-loop V/Hz control at the operating speed
of 1250 rpm. The transient part at 0 to 2.5 seconds is due to motor startup. The transient part at 6 seconds is caused
by the constant load. The sinusoidal excitation was applied at 10 seconds. The highlighted steady-state part was
used to calculate the response in frequency domain.
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Figure 6: Torsional response of the drivetrain shafts in open-loop and closed-loop V/Hz control and without the
electric drive model.

operating speeds. The analysis was conducted on simulation results produced using a motor drive simulator and a
torsional vibration analysis software. The results demonstrate the importance of the inclusion of an electric motor
drive model in torsional vibration analysis, especially if the natural frequency of the mechanics is in or near the
operating speed range of the motor.

The combination of the software used is an open-source toolchain for simulating the effects of motor control on
the torsional vibration response of powertrain mechanics. Inclusion of the effects of electric drives on the torsional
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vibration response of a drivetrain helps prevent and troubleshoot unexpected vibration problems in powertrains
already in the design phase. Future work includes torsional analysis of a simulated electric powertrain driven with
additional control algorithms and comparison of simulation results to experimental measurements.
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Abstract 
Rotating systems exist in a wide range of applications. In these systems, an uncontrolled oscillation can lead 

to resonances, which may result in devastating consequences for the systems. In this work real experimental data 
were used, from an experiment that had been conducted by NSF I/UCR Center for Intelligent Maintenance 
Systems. These data are analyzed in many studies, and a fault detection algorithm for a rolling bearing is 
developed, with the Support of Vector Machine (SVM) method. The performance and the validity of the method 
was checked by testing the algorithm with a laboratory test-to-failure experiment and data obtained from a fault-
seeded bearing test ring.  

1   Introduction 
The study of rotating systems on a scientific level date back to the middle of the 19th century. These systems 

are found in most technological constructions, therefore the study of their behavior in various situations is 
considered necessary for the efficiency of each machine. The dynamic analysis of the rotating systems is an issue 
that piqued the interest of many scientists, during the development and the continuing rise of the use of the 
machines. A worth noted job has been presented by Fernández-Francos et.al [1], in which initially a one-class m-
SVM is used to distinguish between normal and faulty conditions and then the problem is being localized with 
band-pass filters and Hilbert Transform. The oscillations and imbalances in a rotating system became more and 
more apparent while the machines were operated at higher speeds. Therefore, methods of modeling and scientific 
study of these systems had to be developed [2,3,7]. 

Nowadays the applications of rotating systems take place in a lot of areas of human life, such as 
transportation (internal combustion engines, turbojets, etc.),the production of electricity (gas turbines, wind 
turbines, generators) but also household appliances (vacuum cleaners, washing machine, etc.). 

A very important part of rotating systems is their mounting. The axles are mounted with roller or sliding 
bearings. In this work are studied the roller bearings. As mechanical elements, roller bearings require a certain 
analysis to define their characteristics, such as durability and corrosion [7]. Their behavior can be considered 
linear in a simplified model, but for a more accurate approach to reality it is worthwhile to include non-linearities 
in their analysis. One such study is that of Dong-Soo Lee and Dong-Hoon Choi, [2] who study the behavior of 
roller bearings as multistage shaft support elements for cases of linear and nonlinear bearing stiffness. 

Qiu et.al [5] processed real data for rolling element bearing prognostics using Wavelet transformation. 
A machine may lose its functionality due to mechanical faults. Damages arise as a result of  friction, 

environmental conditions, and fatigue of materials after a period in operation. So, it is worth researching the 
analysis and identification of those characteristics on a machine or a component, which indicate a possible 
failure and therefore damage to the system. This item is  studied in the work of Guanqiu Qi, el al[4] who develop 
an algorithm for failure diagnosis and prediction, of a reciprocating compressor located on an offshore oil rig 
using the SVM method. More specifically, this work analyzes big data, which were being collected for five 
years. These data were first preprocessed and then classified by Gaussian distribution into significant and non-
significant to diagnose defects. Another remarkable study is that of Hyung-Chul Jung and Susan Krumdieck [6], 
in which a Radial Inflow Turbine Rotor-Bearing System is being analyzed on the platform of ANSYS APDL, 
and a modal and mass unbalance response analyses were carried out with six cases having different shaft 
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diameters and bearing arrangements. Using SVM combined with multidimensional parameters of EMD Yerui 
Fanet al [9] developed an algorithm for bearing fault diagnosis. This proposed model is evaluated through 
experiments and comparative studies. A very interesting approach of fault diagnosis with SVM is made by Chih-
Jer Lin et.al [10] in which the separating hyperplane and the parameters C and γ of the SVM classifier are found 
using the PSO and artificial fish-swarm algorithm (AFSA). In this work the linear Kernel function is used to 
create the Hyperplane. Another work that is worth to mention that of Mohammed Hakim et.al [11]. In this work 
fault diagnosis is succeeded using different methods of deep learning (Convolutional neural networks, Auto-
encoder and stacked auto-encoder, Generative adversarial network, Recurrent neural network, Deep belief 
networks) and at the end it is made a comparison between the machine learning and deep learning on the case of 
fault diagnosis. A well-documented approach to rolling bearings fault diagnosis is this of  Bo Penget.al  [12]. In 
this survey paper are summarized the fault diagnosis methods of the rolling bearings based on vibration signals 
from the perspectives of faults detection and fault type recognition. 

In the current work experimental data were used, from an experiment that had been conducted by NSF 
I/UCR Center for Intelligent Maintenance Systems. These data were analyzed in many studies so to achieve a 
fault detection algorithm with the SVM method. Also, the performance of the method is checked by testing the 
algorithm with real data from a laboratory test-to-failure experiment and data obtained from a fault-seeded 
bearing test. The manipulation of the big data in combination with SVM method in order to  get diagnosis in a 
rolling bearing, using open-source data,  is the main contribution of this work. 

2   Theory 

2.1 Support Vectors Machines (SVMs) 

Vapnik [8] proposed Support Vectors Machine (SVM) for the first time, and since then it is a very popular 
approach to deal with the problem of classification. The base of SVM is the principle of Structural Risk 
Minimization (SRM) in the statistical learning theory, and it has outstanding generalization performance. SRM is 
used to maximize the margin between different classes. That is the reason why SVM is a useful statistical 
learning theory that can be used to deal with engineering problems. The main idea of SVM is to use a linear 
separating hyperplane for the division of the training samples into two classes.  

With linear classification function SVM separates the training data into two classes with a linear separating 
hyperplane. Figure 1 depicts the data of two classes, where the squares belong to the negative class and the 
circles are of the positive class. SVM method creates a linear boundary in the middle of the two classes. The 
distance of the two imaginary lines represents the maximum margin. The points that are crossed by the 
imaginary lines are called support vectors.  

Support vectors are the most important points because they define all the information used to design the 
classifier. 

.        

 Figure 1: Two classes classification using SVM. 
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So, the datapoints: 

(𝑥1, 𝑦1), … , (𝑥𝑙 , 𝑦𝑙), 𝑥 ∈ 𝑅𝑛 , 𝑦 ∈ {+1, −1}  (1) 
can be divided by a hyperplane equation: 

(𝑤 ⋅ 𝑥) + 𝑏 = 0 (2), (𝑤 ⋅ 𝑥𝑖) + 𝑏 ≥ 1  if 𝑦𝑖 = 1 (3),  (𝑤 ⋅ 𝑥𝑖) + 𝑏 ≤ 1  if 𝑦𝑖 = −1 (4) 

The optimal hyperplane is the one that can make sure that the distance between the different classes of 
samples is maximum. The separating hyperplane is explained using the equations (3) and (4).Then we try to find 
the optimal hyperplane by obtaining the minimum of the function below (6): 

Φ(𝑤) =
1

2
∥ 𝑤 ∥2=

1

2
(𝑤 ⋅ 𝑤) (5) 

Lagrange function is constructed in (6). 

𝐿(𝑤, 𝑏, 𝛼) =
1

2
𝑤𝑇 ⋅ 𝑤 − ∑  𝑛

𝑖=1 𝛼𝑖[𝑦𝑖(𝑤𝑇 ⋅ 𝑥𝑖 − 𝑏) − 1]  (6) 

𝛼𝑖 is Lagrange multiplier, which should satisfy the constraint 𝛼𝑖 ≥ 0, 𝑖 = 1, … , 𝑙. When condition (5) reaches its 
extremum, the corresponding points should satisfy Equations (7) and (8). 

∂𝐿

∂𝑏
= 0 ⇒ ∑  

𝑛

𝑖=1

 𝛼𝑖𝑦𝑖 = 0  (7),
∂𝐿

∂𝑤
= 0 ⇒ 𝑤 = ∑  

𝑛

𝑖=1

 𝛼𝑖𝑦𝑖𝑥𝑖   (8) 

Substitute Equations (7) and (8) into Lagrange function and eliminate 𝑤 and 𝑏. 

𝑤(𝛼) = ∑  𝑙
𝑖=1 𝛼𝑖 −

1

2
∑  𝑙

𝑖,𝑗 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗(𝑥𝑖 , 𝑥𝑗)  (9) 

Equation (9) should under the constraint 𝛼𝑖 ≥ 0, 𝑖 = 1, … , 𝑙 and ∑𝑖=1
𝑙  𝛼𝑖𝑦𝑖 = 0. Those 𝑥𝑖 ⋅ 𝑠 with 𝛼𝑖 > 0 are 

termed support vectors (SVs). The label of a testing data 𝑥𝑖 can then be obtained by 

𝑓(𝑥) = sign ( ∑

𝑥𝑖∈𝑋svM

 𝛼𝑖𝑦𝑖(𝑥 ⋅ 𝑥𝑖) + 𝑏) (10), 𝑊ℎ𝑒𝑟𝑒      𝑤 = ∑  

𝑥𝑖∈𝑋𝑆𝑉𝑀

𝛼𝑖𝑦𝑖𝑥𝑖  

Non-linear classification is always caused by nonlinearities or noise. In the case of the training samples 
cannot be separated linearly, so Cortes introduced the nonnegative variables 𝜉𝑖 and penalty function 𝐹(𝜉) = ∑𝜉𝑖  
to promote the optimal hyperplane to general situation. the nonnegative Cortes variables 𝜉𝑖 and penalty function
𝐹(𝜉) = ∑𝜉𝑖 , are used, so to promote the optimal hyperplane to general situation. A slack variable is introduced 
to condition (5). 

𝑦𝑖(𝑤𝑇 ⋅ 𝜑(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖  (11), min
1

2
∥ 𝑤 ∥2+ 𝐶 ∑ 𝜉𝑖 𝑖=1

𝑙
 (12)

The general classification hyperplane is minimum value of Equation (12) under the constrain (11).With the 
condition 𝑦𝑖(𝑤 ⋅ 𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖  is defined the value of the penalty term(c). The formula used on both 
occasions (Linear, Non-linear) is the same, but the constraint 𝛼𝑖 is different, because it is depended on the 0 ≤
𝛼𝑖 ≤ 𝐶. Therefore, using an appropriate inner product Kernel function 𝐾(𝑥𝑖 , 𝑦𝑖) in the optimal classification 
plane can achieve linear classification after a nonlinear transformation, and the computational complexity is not 
increased. The objective function is represented below. 

𝑊(𝛼) = ∑  𝑙
𝑖=1 𝛼𝑖 −

1

2
∑  𝑙

𝑖,𝑗=1 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑘(𝑥𝑖 , 𝑥𝑗)  (13) 
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The kernel is always used in input space because it can map the input samples into feature space and apply 
dot product in that space. There are many kinds of kernel, such as Polynomial Kernel Function, Linear Kernel 
Function, Sigmoid Kernel Function and Radian Basis Function (RBF), which are commonly used and showed in 
Table 1. For the current investigation the RBF method is used because a stochastic signal is analyzed. 

Table 1: Examples of Kernel functions

Kernel functions Formula 

Linear 𝑘(𝑥𝑖 , 𝑦𝑖) = 𝑥𝑖 ⋅ 𝑥𝑗 

Polynomial 𝑘(𝑥𝑖 , 𝑦𝑖) = (𝛾𝑥𝑖 ⋅ 𝑥𝑗 + 𝑟)
𝑑

, 𝛾 > 0 

Radian basis 
function 𝑘(𝑥𝑖 , 𝑦𝑖) = exp (−𝛾∥∥𝑥𝑖 − 𝑥𝑗∥∥

2
), 𝛾 > 0 

Sigmoid 𝑘(𝑥𝑖 , 𝑦𝑖) = tanh (𝛾𝑥𝑖 ⋅ 𝑥𝑗 + 𝑟) 

3   Data Analysis 

3.1 Data Model 
In this work, it is studied the oscillation signal from rolling bearings, which work until failure. In figure 2, the 

experimental setup is depicted: 

Figure 2: Experimental set up. [5] 

Purpose of this study is the analysis of the signal, so an algorithm to be developed that will detect the 
existence of a fault in the components of the signal. The signal used consists of experimental data which are 
obtained from an experiment that was conducted by the NSF I / UCR Center for Intelligent Maintenance 
Systems (IMS –www.imscenter.net) with the support of Rexnord Corp. in Milwaukee, WI.  

3.2 Experimental set up 
Four bearings were installed on a shaft, as presented in figure 2. The rotation speed was kept constant at 2000 

RPM by an AC motor coupled to the shaft via rub belts. A radial load of 6000 lbs is applied onto the shaft and 
bearing by a spring mechanism. All bearings are force lubricated.  

Rexnord ZA-2115 double row bearings were installed on the shaft as shown in Figure 2. PCB 353B33 High 
Sensitivity Quartz ICP accelerometers were installed on the bearing housing (two accelerometers for each 
bearing [x- and y-axes] for data set 1, one accelerometer for each bearing for data sets 2 and 3). Sensor 
placement is also shown in Figure 2. All failures occurred after exceeding the designed lifetime of the bearing 
which is more than 100 million revolutions. The fault occurred on the outer ring of the Bearing 1 [5].  
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The time response of the signal is shown in figure 3. 

Figure 3: Time response for each bearing. 

3.3 Fault diagnosis 
Firstly, the signal is divided into eight datasets according to the date of the recording. The model is trained 

using a number of datasets. Then predictions were made with the rest of the data, so to check how the algorithm 
works with new signal but also to understand how the amount of data that were used to train the model, affects 
its effectiveness. 

A system of permutations is being used to train the model. So, a set of 68 models is created. These models 
constitute every possible combination of training and validation, with the SVM method, of the available data. So, 
for the models 1-16 the algorithm was trained with 6 datasets (3 datasets of healthy operation and 3 datasets with 
incorrect operation) and validated with the rest 2, for the models 17-52 the algorithm was trained with 4 datasets 
(2 datasets of healthy operation and 2 datasets with incorrect operation) and validated with the rest 4 and for the 
models 53-68 the algorithm was trained with 2 datasets (1 dataset of healthy operation and 1 dataset with 
incorrect operation) and validated with the rest 6. 

This was done so that we could be sure that our model has been properly trained and that it can make a 
correct diagnosis with new data as an input. Figure 4 shows with a flowchart how this fault diagnosis work. 

Figure 4: Model Training flow chart. 

For the SVM model was used classification. The algorithm recognizes two classes, one for the healthy 
operation, with value -1 and one for the faulty operation with value +1. The system studied consists of a 
nonlinear and stochastic signal that has been produced by a physical experiment. So, in these cases the kernel 
function used is the Radial Basis Function (RBF).  
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The development of the fault diagnosis algorithm has been made with MATLAB. 

4. Results
The results we obtained following this procedure are quite encouraging and exceed 79% in success rate.
In the Figures 5 and 6 is depicted the Fourier and Hilbert transform of the signal on the first and the last day

of the experiment respectively. On the top of the pictures is also depicted the normalized signal. It is easily 
visible that on the first day the amplitude has lower values than on the eighth day. Another difference between 
the two figures 5 and 6 is on the power spectrum density of the Fourier transform. Finally, the content of energy 
changes from the first to the last day and that is depicted from on the Hilbert transform. From these diagrams, 
related to Hilbert transform, comes the result that the oscillation is more intense the last day of the experiment, 
which is a result of the damaged function of the bearings. 

Figure 5: First day dataset. 

Figure 6: Last day dataset. 

In figure 7 are presented the results of the algorithm for the three different cases. The success rate of the 
models that are trained with 6/8 datasets (100%) is a result of the success rate of 16 models. Respectively the 
success rate of the models that are trained with 4/8 datasets (79.17%) is a result of the success rate of 35 models 
and the success rate of the models that are trained with 2/8 datasets (95.83%) is a result of the success rate of 15 
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models. In conclusion the success rate of the models that have been trained with 4/8 datasets is the most reliable 
because it comes up from a greater number of  test than the success rate on the other cases.  

Figure 7: Success rate of the models that have been trained with 2 out of the 8 datasets, with 4 out of the 8 
datasets and with 6 out of the 8 datasets respectively. 

The Fourier and Hilbert transforms were applied to the entire signal, but we present in this paper only the 
first and the last day to save space.   

To be clear, it is not so important to set a general success rate as it is to study each case individually. As 
already mentioned, a system of permutations is applied so to gain as much results as possible from the available 
data. So, a set of 68 models is created. These models constitute every possible combination of training and 
validation, with the SVM method, of the data we have. In this work  20.152.320  sensor measurements data used 
per  model . 

To make the content of the figure 8 clearer, it is worth mentioning that in every model, the value -1 
(negative) means the non-detection of damage to the signal, while the value +1 (positive) means the detection of 
damage to it. In Figure 8 four different colors appear, where each is assigned to one state (blue → true negative, 
orange → true positive, yellow → false negative, purple → false positive). The states true positive and true 
negative, state the correct detection of damage or not, respectively. On the other hand, the false positive and false 
negative situations indicate the incorrect detection of damage or not, respectively. 

Figure 8: Example of the results for the models 21-30. 
To be more specific for the models 1-16 the algorithm was trained with 6 datasets and validated with the rest 

2, for the models 17-52 the algorithm was trained with 4 datasets and validated with the rest 4 and for the models 
53-68 the algorithm was trained with 2 datasets and validated with the rest 6, as it shown in figure 4.
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5. Conclusions
In this work real experimental data free from the literature were used, from Cincinnati University, by NSF

I/UCR Center for Intelligent Maintenance Systems. The used data  analyzed in many studies, in order to develop 
a fault detection algorithm using the support vector machine method. The performance of the method was also 
checked by relevant laboratory data. The below main conclusion may be addressed: 

Figure 7 depicts the overall results for the three cases of training-validation tests that we conducted. 
It is noticeable that the models that used 6/8 datasets for their training show a success rate that reaches 100%. 

Of course, this case is quite ideal as in most of the cases, there is not available such an amount of recording 
material, that can be used for training.  

The remarkable part of this study is that the other two cases had also a high success rate. Specifically, the 
models that had been trained with the 4/8 dataset noted a 79.17% success rate and the models that had been 
trained with 2/8 datasets marked 95.83% success rate. 

The result that is obtained from these results is that the SVM method is adequate to train a model that makes 
successful predictions of upcoming failure even with a small amount of data as a sample. 
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Abstract 
Identification of lubricated bearings parameters represents an activity of great interest in real applications, 

either to allow the adjustment of numerical models, to verify and correct operating conditions, or even to use these 
parameters for monitoring the equipment. Over the years, several methods for identifying dynamic coefficients of 
lubricated bearings have been used by the scientific community. Among these methods, filtering techniques have 
shown to be promising in different applications, since they present a relatively low computational cost and consider 
prediction-correction strategies. Thus, this work aims to evaluate the use of the extended Kalman filter (EKF) 
technique in the estimation of the roller bearing total parameters. Numerical tests performed in this work showed 
that EKF can successfully estimate roller bearing parameters, although low damping values can be insensitive to 
the dynamic response of the contact and, consequently, cause deviations in the final estimation. The results 
obtained in this work have shown satisfactory parameter estimation considering different signal-to-noise ratios for 
the measured signal. 

1   Introduction 
Lubricated journal bearings are machine elements which provide radial supporting to the rotor and relative 

motion in rotor-bearing systems. Since these support elements strongly influence the dynamic characteristics of 
the entire rotor-bearing system, much effort has been made to improve the theoretical predictions and experimental 
characterization of the dynamic properties of bearings. Over the years, different methods for parameter 
identification have been proposed. The use of filtering techniques such as the Kalman filter can be somewhat 
adequate in several applications, taking into account its relatively low computational cost and implementing 
complexity.  

Within this scenario, some works have explored filtering techniques to identify rotor and bearing parameters, 
as can be seen in the literature. An EKF is developed in [1] to estimate the equivalent dynamic coefficients for 
hydrodynamic bearings in rotor-dynamic applications from noisy measurements of the shaft displacement in 
response to imbalance and impact excitation. In previous studies [2], the authors proposed a new unbalance loads 
identification method using augmented Kalman filter algorithms, which proved good performance in online and 
real-time unbalance parameter identification. A novel method for identifying oil starvation in hydrodynamic 
journal bearing using EKF is proposed in [3], the method is suitable to identify oil starvation in real-time from 
noisy vibration signal. Another work recently published [4] uses EKF for predicting failures in feedback control 
systems and particularly in actuators. Despite the previously mentioned works, the use of EKF to identify roller 
bearings parameters has not yet been properly explored in the literature. It is important to mention that the 
identification of the parameters of the total lubricated contact force model in roller bearings represents a complex 
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task, mainly due to the significant differences between the orders of the parameters of stiffness, damping and 
surface separation constant. 

Therefore, based on the total lubricated contact force model of the roller bearing, this work aims to evaluate 
the use of the extended Kalman filter technique for estimation of the roller bearing total parameters, in order to 
asses the accuracy in the parameter estimation and identify the main advantages and limitations in this application. 

2   Roller bearing model 
The roller bearing force model is based on the dynamic relation between the rolling elements and the inner and 

outer rings. On nonconforming contacts of rollers and raceways, the resulting lubrication is elastohydrodynamic 
one (EHL) which considers the elastic deformation on the contact area and concurrently the oil film dynamics. 
Once the EHL system of equation is numerically solved, the responses of the contact dynamics are used to calculate 
the parameters of the EHL force reduced model of the roller bearing [5]. In this chapter the theoretical bases of the 
EHD lubrication related to roller bearings is presented. 

2.1 Elastohydrodynamic lubrication 
The elastohydrodynamic lubrication system of equations is given by the Reynolds equation, the oil film 

thickness equation, and the equation of contact motion. The Reynolds equation describes the lubricant fluid 
dynamics on the bearing: 

𝜕

𝜕𝑥
(

𝜌ℎ3

𝜂

𝜕𝑝

𝜕𝑥
) +

𝜕

𝜕𝑦
(

𝜌ℎ3

𝜂

𝜕𝑝

𝜕𝑦
) = 6𝑢𝑠

𝜕(𝜌ℎ)

𝜕𝑥
+ 12

𝜕(𝜌ℎ)

𝜕𝑡
 (1) 

where 𝑝 is the lubricant pressure, ℎ is the oil film thickness, 𝜂 is the fluid viscosity, 𝜌 is the oil density, us is the 
sum of the velocities of both contact surfaces, 𝑡 is the time reference and x-y are the circumferential and axial 
coordinates of the contact domain, in which x-axis is aligned with the direction of rotation of the bodies in contact 
and the y-axis is tangential to the velocity us. As a boundary condition for Reynolds equation, the Gümbel 
cavitation model is assumed and the pressure is positive or null in the entire domain. 

Due to the reduced contact area between the rolling element and rings, the pressure tends to be considerably 
elevated causing instantaneous elastic deformation on the contact roller-raceway. Consequently, the oil film 
thickness equation needs to consider the integration of pressure through the entire area of the contact domain Ω: 

ℎ(𝑥, 𝑦, 𝑡) = −𝛿(𝑡) +
𝑥2

2 𝑅
+

2

𝜋𝐸′ ∬
𝑝(𝑥′,𝑦′,𝑡)

√(𝑦−𝑦′)2+(𝑥−𝑥′)2

𝑜

Ω
𝑑𝑥′𝑑𝑦′  (2) 

where ℎ is the lubricant oil film thickness, 𝛿 is the mutual approach between the contact bodies, 𝑅 is the equivalent 
radius of curvature in the contact and 𝐸′ is the reduced modulus of elasticity. 

The equilibrium of the EHL model is given by the pressure distribution on the contact bodies and the applied 
external load 𝑓, resulting in the following equation of motion of the contact: 

𝑚𝑒�̈�(𝑡) + ∬ 𝑝(𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦 = 𝑓(𝑡)
𝑜

Ω
  (3) 

where the equivalent roller mass is 𝑚𝑒 and the acceleration between contact bodies is �̈�. 
In addition to the fundamental equations of elastohydrodynamic lubrication – Reynolds equation, film 

thickness equation, and contact motion equation – oil properties are functions of pressure due to the high-pressure 
conditions resulting from this type of lubrication [5]. The viscosity-pressure relationship 𝜂(𝑝) and the density-
pressure relationship 𝜌(𝑝) are respectively given by Equations (4) and (5): 

𝜂(𝑝) = 𝜂0 exp {
𝛼 𝑝0

𝑧
[−1 + (1 +

𝑝

𝑝0
)

𝑧

]}  (4) 

𝜌(𝑝) = 𝜌0  (
5.9∙108+1.34∙𝑝

5.9∙108+𝑝
)  (5) 

where 𝜂0 is the viscosity and 𝜌0 is the density at atmospheric pressure 𝑝0, 𝛼 is the pressure-viscosity coefficient 
and parameter 𝑧 is the viscosity-pressure ratio. 

The system of elastohydrodynamic equations is numerically solved by finite difference method and then solved 
using a classic numerical approach for EHL problems of multilevel techniques Multigrid and MLMI (Multilevel 
Multi-Integration) [6] in combination with Newmark-Beta integration scheme for time domain solution [5]. 
Afterwards, coefficients maps can be stored to bearing characterization under different operation condition. 
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2.2 Contact force model 
To model the roller bearing dynamic behaviour, the EHL contact between roller and ring is represented by a 

single degree of freedom as seen in Figure 1. On elastohydrodynamic lubricated contacts, the contact force 𝑓 is 
separated in restitutive 𝑓𝑘 and dissipative 𝑓𝑐 terms:  

𝑓 = 𝑓𝑘 + 𝑓𝑐  (6) 

The EHL restitutive force 𝑓𝑘 of the total roller bearing contacts can be written as [7], [8]: 

𝑓𝑘 = 𝑘𝑡 · 𝛿𝑡 + 𝛥𝐹𝑡  (7) 

where parameter 𝑘𝑡 is the equivalent EHL stiffness of total roller bearings contacts, the parameter Δ𝐹𝑡 is a surface 
separation EHL constant, and the variable 𝛿𝑡 is the total mutual approach between the rolling element and inner 
raceway displacement 𝛿𝑖 and rolling element and outer raceway mutual approach 𝛿𝑜:  

𝛿t = 𝛿i + 𝛿o  (8) 

Mutual approach 𝛿𝑖 and 𝛿𝑜 are numerically calculated at the static equilibrium position by the system of 
elastohydrodynamic equations of section 2.1 under a range of external forces for each raceway. The mutual 
approach must be positive or at least null to guarantee that the contact is on an elastohydrodynamic lubrication 
regime.  

Later, the Levenberg-Marquardt method is applied to curve-fit force and displacement and calculate 
stiffness 𝑘𝑡 and parameter Δ𝐹𝑡. Equation (7) has an outstanding characteristic of being an explicit EHL force-
displacement relation with independent parameters of stiffness and surface separation constant Δ𝐹𝑡.  

The dissipative term of the contact force is a characteristic of lubricated surfaces. In the proposed model [5], 
the dissipative EHL contact force 𝑓𝑐 is composed of a linear viscous damping 𝑐𝑡 and velocity 𝛿�̇�: 

𝑓𝑐 = 𝑐𝑡 ·  𝛿�̇�  (9) 

The equivalent damping of total contacts of the roller bearing 𝑐𝑡 is calculated considering that inner ring 
damping 𝑐𝑖 and outer ring damping 𝑐𝑜 are in series, as seen in Figure 1: 

1

𝑐𝑡
=

1

𝑐𝑖
+

1

𝑐𝑜
 (20) 

Figure 1: Roller bearing model under elastohydrodynamic lubrication. 

In the free vibration of EHL contact equation of motion, given by Equation (3), with the initial condition of 
perturbation in the equilibrium position of mutual approach 𝛿(𝑡), there is only restitutive energy. When the 
problem reaches the steady-state condition (𝑡 → ∞), energy is dissipated during contact vibration. The EHL 
viscous damping can be calculated by applying the principle of energy conservation [5]: 

𝑐𝑖,𝑜 =
1

2
𝑘𝑖,𝑜[𝛿𝑖,𝑜(∞)−𝛿𝑖,𝑜(0)]

2

∫ (�̇�𝑖,𝑜(𝑡)−�̇�𝑖,𝑜(0))
2
𝑑t

𝑡→∞
0

 (31) 
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where index 𝑖 and 𝑜 refer to the inner raceway and outer raceway respectively. Therefore, the total lubricated 
contact force of the roller bearing is: 

𝑓 = 𝑘𝑡𝛿𝑡 + 𝛥𝐹𝑡 + 𝑐𝑡𝛿�̇�  (12) 

3   The extended Kalman filter for parameter estimation 
The Extended Kalman filter operates by using the predict-update (prediction-correction) phases. The predict 

phase gives a prior estimate of the state and its covariance at time step 𝑛 based on process equation. The update 
phase uses new observation at time step 𝑛 + 1 to correct the deviation of the prior estimate. When using the 
discrete-time extended Kalman filter for estimating the unknown parameters of a system, these parameters must 
be treated as a random constant variable. So, if 𝜃𝑖 is constant then it is modeled as 

𝜃𝑖[𝑛 + 1] = 𝜃𝑖[𝑛] + 𝜁𝑖[𝑛]  (13) 

Where {𝜁𝑖[𝑛]} is a zero-mean Gaussian white noise term that allows the Kalman filter to change its estimate of 
𝜃𝑖[𝑛]. To estimate the unknown parameters, an augmented state space model is introduced by making 𝜃𝑖[𝑛] also 
as a state variable. Thus, the augmented state space model can be written as 

[
𝒙[𝑛 + 1]

𝜽[𝑛 + 1]
] = [

𝑓𝑛
𝑜𝑟(𝑛, 𝒙[𝑛], 𝜽[𝑛], 𝑢[𝑛])

𝜽[𝑛]
] + [

𝝃[𝑛]

𝜻[𝑛]
]  (14) 

 𝒓[𝑛 + 1] = 𝒇𝑛(𝑛, 𝒓[𝑛], 𝑢[𝑛]) + 𝒘[𝑛]  (15) 

 𝒚[𝑛] = 𝒉𝑛(𝑛, 𝒓[𝑛]) + 𝒗[𝑛]  (16) 

Where 𝒓[𝑛 + 1] is the augmented state vector, whose distribution is assumed to be a Gaussian random variable, 
𝒚[𝑛] the noisy measurement vector, 𝑢[𝑛] the known input at time n, 𝒘[𝑛] the process noise and 𝒗[𝑛]  the 
measurement one. These 𝒘 and 𝒗 are assumed to be uncorrelated zero-mean Gaussian white noises with time-
invariant covariance matrices Q and R. In general, 𝒙[𝑛]𝜖𝑹𝑚, 𝜽[𝑛]𝜖𝑹𝑝, 𝝃[𝑛]𝜖𝑹𝑤, 𝜻[𝑛]𝜖𝑹𝑠, 𝒗[𝑛]𝜖𝑹𝑞, 𝑞 ≤ 𝑚, and
𝑝, 𝑤, 𝑠 ≥ 1. 

𝒇𝑛
𝑜𝑟, 𝒇𝑛 and 𝒉𝑛 are vector-valued functions. 𝒇𝑛

𝑜𝑟 is the original process equation of the system. Following the 
state augmentation, 𝒇𝑛 and 𝒉𝑛 are then treated as the nonlinear process and the nonlinear observation equations at 
time n, respectively. In practice, at least 𝒇𝑛 or 𝒉𝑛 must be a nonlinear function in order to apply the extended 
Kalman filter. The filtering equations are derived from a linearization procedure of the Equations (15) and (16) 
to yield the first- or second-order EKF [9], [10]. The second-order “correction” term can be used to reduce the 
linearization error of the EKF for highly nonlinear systems. Considering the identification of roller bearings 
coefficients, the first-order filter is considered in this work. Thus, the Taylor series expansion of the Equation (15), 
rejecting the high-order remaining terms, is 

𝒓[𝑛 + 1] = 𝒇𝑛(𝑛, , �̂�[𝑛|𝑛], 𝑢[𝑛]) + 𝑓𝑟[𝑛](𝒓[𝑛] − �̂�[𝑛|𝑛])  (17) 

Where 𝑓𝑟[𝑛] =
𝜕𝒇𝒏

𝜕𝑟
|
�̂�
 is the Jacobian of the vector 𝒇𝑛, evaluated at the latest estimate, �̂�[𝑛|𝑛]. The predicted 

state to time 𝑛 + 1 from time 𝑛 obtained by taking the expectation of Equation (17) conditioned on given data is 

�̂�[𝑛 + 1|𝑛] = 𝒇𝑛(𝑛, �̂�[𝑛|𝑛], 𝑢[𝑛])  (18) 

The state prediction error is obtained by subtracting Equation (18) from Equation (17). Consequently, the state 
prediction covariance can be stated as 

𝑃[𝑛 + 1|𝑛] = 𝑓𝑟[𝑛]𝑃[𝑛|𝑛]𝑓𝑟[𝑛]𝑇 + 𝑄[𝑛]  (19) 

Similarly, the predicted measurement is written as 

�̂�[𝑛 + 1|𝑛] = 𝒉𝑛(𝑛 + 1, �̂�[𝑛 + 1|𝑛])  (20) 

The measurement prediction covariance or innovation covariance is 

𝑆[𝑛 + 1|𝑛] = ℎ𝑟[𝑛 + 1]𝑃[𝑛 + 1|𝑛]ℎ𝑟[𝑛 + 1]𝑇  (21) 

Where ℎ𝑟[𝑛 + 1] =
𝜕𝒉𝑛

𝜕𝑟
|
�̂�
 is the Jacobian of the vector 𝒉𝑛. Lastly, the expression of the filter gain, the update 

equation for the state and covariance are sequentially 

𝐺[𝑛 + 1] = 𝑃[𝑛 + 1|𝑛]ℎ𝑟[𝑛 + 1]𝑇{𝑆[𝑛 + 1|𝑛]}−1   (22) 

�̂�[𝑛 + 1|𝑛 + 1] = �̂�[𝑛 + 1|𝑛] + 𝐺[𝑛 + 1](𝒛[𝑛 + 1] − �̂�[𝑛 + 1|𝑛])  (23) 

𝑃[𝑛 + 1|𝑛 + 1] = (𝐼 − 𝐺[𝑛 + 1]ℎ𝑟[𝑛 + 1])𝑃[𝑛 + 1|𝑛]        (24) 
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𝒛[𝑛 + 1] is the noisy observation which is the input to the filter. Then �̂�[𝑛 + 1|𝑛]  and 𝑃[𝑛 + 1|𝑛] are the state 
estimate and its covariance before the observation 𝒛[𝑛 + 1] is processed, and  �̂�[𝑛 + 1|𝑛 + 1]  and 𝑃[𝑛 + 1|𝑛 + 1] 
are the state estimate and its covariance after the measurement is processed. The discrete-time EKF can be 
summarized using the following algorithm 

• Initialization at 𝑛 = 0:
�̂�0 = 𝔼[𝒓0]
𝑃0 = 𝔼[(𝒓 − �̂�0)(𝒓 − �̂�0)

𝑇]
• For 𝑛 = 1,2, … , 𝑇

(I) Compute the following partial derivative matrices:
𝑓𝑟[𝑛] =

𝜕𝑓𝑛

𝜕𝑟
|
�̂�

(II) Perform the state prediction �̂�[𝑛 + 1|𝑛] and estimation-error covariance 𝑃[𝑛 + 1|𝑛]
(III) Compute the following partial derivative matrices:

ℎ𝑟[𝑛 + 1] =
𝜕𝒉𝑛

𝜕𝑟
|
�̂�

(IV) Compute the filter gain 𝐺[𝑛 + 1], then the update of the state estimate, �̂�[𝑛 + 1|𝑛 + 1],
and estimation-error covariance, 𝑃[𝑛 + 1|𝑛 + 1]
(V) Let 𝑛 ∶=  𝑛 +  1 and iterate to item I.

4   Roller bearing parameter estimation 
Considering the Equation (12) for the total lubricated contact force of the roller bearing, the aim is to estimate 

the unknown and constant parameters 𝑘𝑡, ∆𝐹𝑡 and 𝑐𝑡. Therefore, these parameters must be modelled as random 
state variables and its values are estimated via extended Kalman estimator, accordingly the previous section. The 
case-study used in this work is based on [5], in which a static load (W) and a sinusoidal excitation are added to the 
model described by Equation (12), yielding the following equations 

𝑓 = W + 𝐹 sin(𝜔𝑒𝑡)  (25) 

𝑘𝑡𝛿𝑡 + 𝛥𝐹𝑡 + 𝑐𝑡𝛿�̇� = W + 𝐹 sin(𝜔𝑒𝑡)  (26) 

  𝛿�̇� = −
𝑘𝑡

𝑐𝑡
𝛿𝑡 −

1

𝑐𝑡
𝛥𝐹𝑡 +

1

𝑐𝑡
W +

1

𝑐𝑡
𝐹 sin(𝜔𝑒𝑡)         (27) 

So, given [𝑥 𝜃1 𝜃2 𝜃3]
𝑇 = [𝛿𝑡 𝑐𝑡  Δ𝐹𝑡  𝑘𝑡]

𝑇, if we replace �̇� by (𝑥[𝑛 + 1] − 𝑥[𝑛])𝑇𝑠
−1, where 𝑇𝑠 > 0 denotes the 

sampling time, the model becomes the following discrete-time nonlinear state-space description: 

[

 𝑥[𝑛 + 1]

𝜃1[𝑛 + 1]

𝜃2[𝑛 + 1]

𝜃3[𝑛 + 1]

] =

[

𝑥[𝑛] + 𝑇𝑠(−
θ3[𝑛]

θ1[𝑛]
𝑥[𝑛] −

𝜃2[𝑛]

θ1[𝑛]
+

W

θ1[𝑛]
+

𝐹

𝜃1[𝑛]
sin(𝜔𝑒𝑛𝑇𝑠))

𝜃1[𝑛]

𝜃2[𝑛]

𝜃3[𝑛] ]

+ [

𝜉[𝑛]

𝜁1[𝑛]

𝜁2[𝑛]

𝜁3[𝑛]

]  (28) 

𝑦[𝑛] = 𝑥[𝑛] + 𝑣[𝑛]  (29) 

Being 

𝑓𝑟[𝑛] =

[

1 −
θ̂3[𝑛]

θ̂1[𝑛]
𝑇𝑠 −

𝑇𝑠(−θ̂3[𝑛]𝑥[𝑛]−�̂�2[𝑛]+W+F sin(𝜔𝑒𝑛𝑇𝑠))

�̂�1
2[𝑛]

−
1

θ̂1[𝑛]
𝑇𝑠 −

𝑥[𝑛]

�̂�1[𝑛]
𝑇𝑠

0
0
0

 
1  0  0
0  1  0
0  0  1 ]

 (30) 

ℎ𝑟[𝑛 + 1] = [1 0 0 0]  (31) 

5   Results 
In this section the roller bearing parameters 𝑐𝑡, Δ𝐹𝑡, and 𝑘𝑡 are estimated at rotation speeds of 10, 20 and 30 

Hz. To generate the displacement signals, the roller bearing parameters introduced in Equation (27) were obtained 
for NJ 202 bearing data given in Table 1 [5], the lubricant data refer to ISO VG 32 oil at 27 ºC. Table 2 shows the 
calculated bearing parameters [5] referred to as theoretical ones (parameters of reference) from this point forward. 
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Table 1: Data of roller bearing NJ 202 

Number of rolling elements 10 

Rolling element diameter [mm] 5.5 

Effective length of roller [mm] 4.6 

Bearing pitch diameter [mm] 24.8 

Table 2: Theoretical parameters for numerical displacement responses 

Rotation speed [Hz] ct [Nm−1s] ΔFt [N] kt [Nm−1] 

10 6.42 24.71 7.39x107 

20 5.19 39.08 7.69x107 

30 5.06 51.30 7.76x107 

As the total mutual approach 𝛿𝑡 is the only observation available, the noise variance related to it is set as 
1𝑥10−18 m2, while the measurement noise variance is 1.5𝑥10−15 m2. The noisy measurement signal (observation) 
then obtained amounts to the signal-to-noise ratio of  30 dB. The static load is 90 N, and the excitation force 
amplitude is assumed to be 94.5 N (5% of W). These settings are maintained for the three rotation speeds 
mentioned above. Figure 2 shows the displacement observation simulated at 10 Hz, with 1000 data points, and 
𝛿𝑡(0) = 0. It is noteworthy that only the steady-state signals are used here. 

Figure 2: Displacement observation at rotation speed of 10 Hz. 

The filter input parameters summarized in Table 3 are used for performing the first-order EKF. The initial state 
estimate of 𝛿𝑡 is assumed to be the first value of the truncated displacement sequence when neglecting the transient 
part. Following similar consideration made in [11], the error covariance matrix 𝑃0 was set under the assumption 
that the initial bearing parameters estimates were 100% in error.  

Table 3: Input parameters of the filter 

�̂�0 [10Hz] [8.83x10−7 8 50 1x108]T Po diag([1 1x102 1x103 1x1016]) 

�̂�0 [20Hz] [6.62x10−7 7 50 1x108]T P0 diag([1 1x102 1x103 1x1016]) 

�̂�0 [30Hz] [4.98x10−7 7 80 1x108]T P0 diag([1 1x102 1x103 1x1016]) 

R 1.5x10−15 Q diag([1x10−18
1x10−5 1x10−5 1x104])

Figures 3-5 show the estimation results of the bearing parameters at 10 Hz using the first-order EKF algorithm. 
The average value after stabilization is taken as the estimated value, in the whole-time interval of 0.2 to 0.5 s. So, 
Table 4 exhibits the estimated results for the three rotating speeds considered.  
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Figure 3: Estimated-Theoretical comparison. (Left) Total damping parameter estimation, (right) Relative 
estimation error of the total damping parameter 

Figure 4: Estimated-Theoretical comparison. (Left) Estimation of the total surface separation parameter, (right) 
Relative estimation error of the total surface separation parameter 

Figure 5: Estimated-Theoretical comparison. (Left) Estimation of the total stiffness parameter, (right) Relative 
estimation error of the total stiffness parameter 

24.71 

7.39 

6.42 
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Table 4: Estimated results for the roller bearing parameters – SNR of 30 dB 

[Hz] Parameters Theoretical Estimated Rel. Error [%] 

10

ct 6.42 7.20 12.15

ΔFt 24.71 25.04 1.34

kt 7.39x107 7.40x107 0.02

20

ct 5.19 6.61 21.48

ΔFt 39.08 39.61 1.36

kt 7.69x107 7.69x107 0.02

30

ct 5.06 6.78 33.99

ΔFt 51.30 51.70 0.78

kt 7.76x107 7.76x107 0.01

It can be seen that there is little difference between the theoretical references and the estimated parameters 
given in Table 4 except for the damping coefficient. Numerical simulations were carried out with different 
combinations of the filter input parameters, even so the filter showed insensitive to improve the estimates of the 
total damping parameter. One of the plausible reasons for this is the low influence of this parameter in the system 
response. To verify such assumption, the estimated parameters were inserted in Equation (27) for reconstructing 
the displacement and velocity signals. Figure 6 shows the theoretical displacement signal together with the 
reconstructed one. 

Figure 6: Estimated-Theoretical comparison. (Left) Theoretical displacement signal and reconstructed one, 
(right) theoretical velocity signal and reconstructed one. 

As noted in Figure (6), the responses are rather close to each other, which suggests that the influence of the 
total damping parameter in this application is largely suppressed due to its short order regarding the order of the 
total stiffness and surface separation parameters. Based on the tests performed, it can be attested that the filter 
performance was more significantly affected by the initial state estimate and its error covariance matrix. 

Regarding the measurement noise, the filter still showed satisfactory performance for a value of 1.5𝑥10−14 
m2, which corresponds to a signal-to-noise ratio of about 20 dB, the results are given in Table 5. 

Paper-ID 48 310



Table 5: Estimated results for the roller bearing parameters – SNR of 20 dB 

[Hz] Parameters Theoretical Estimated Rel. Error [%] 

10

ct 6.42 7.58 21.50

ΔFt 24.71 26.30 6.43

kt 7.39x107 7.29x107 1.30

20

ct 5.19 6.41 23.51

ΔFt 39.08 40.68 4.09

kt 7.69x107 7.59x107 1.22

30

ct 5.06 6.43 27.08

ΔFt 51.30 52.85 3.02

kt 7.76x107 7.67x107 1.23

6   Conclusion 
This paper presents the EKF method to estimate the total roller bearing parameters from simulated noisy 

measurements. The EKF satisfactory estimated the total stiffness and surface separation parameters, but it needs 
to be improved in identifying the total damping parameter. However, due to the low damping present in this kind 
of bearings, the model representativeness may eventually not be compromised. Besides, even the endeavor to 
calculate damping deserves respect, this case study practically points out that any other possible damping in the 
system should prevail. The filter performance was more significantly influenced by the initial values of the bearing 
parameters and its error covariance matrix. As seen in the literature, if the initial error and the noises are not too 
large, then the EKF performs well. In general, EKF has successfully estimated the roller bearing parameters 
presenting satisfactory results for a signal-to-noise ratio of up to about 20 dB.  Future studies intend to improve 
the proposed method in order to estimate the parameters of roller bearings in operation on a dedicated test bench 
for testing lubricated bearings. In addition, other filtering techniques will be explored to improve accuracy in 
identifying roller bearing parameters. 
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Abstract
Current methods of rotor system condition monitoring require a substantial amount of manual work for large

fleets of machines. Data-driven automated fault diagnosis models based on deep learning (DL) have the potential
to drastically reduce the amount of time spent on manual analysis. However, there is often a lack of data from the
entire range of possible operating conditions of a system. The poor generalisation of most DL-based models to
operating conditions not present in the training data decreases their usefulness in industry applications. This paper
investigates the generalisation ability of a few-shot learning method using only a single example to learn each new
class. A prototypical network with a modified Deep Convolutional Neural Networks with Wide First-layer Kernels
(WDCNN) architecture was used as the few-shot model. The generalisation of the model was studied from sensor
to sensor and across operating speeds. The results indicate that the model is robust to changes in sensor orientation
and relatively robust against changes in sensor location. Additionally, the model showed promising results when
tested on operating speeds many times higher or lower than it was trained on. The results show that few-shot
learning methods have the potential to work in industry applications where limited training data is available. This
research also gives an excellent baseline for future research on the generalisation of few-shot learning methods on
rotor system fault diagnosis over large changes in operating conditions.

1 Introduction
Condition-based maintenance (CBM) has been recognised as the best maintenance strategy for machines that

should operate for lengthy periods of time uninterrupted [15]. An effective CBM strategy relies on accurate and
frequent assessments of the machine condition. With such assessments, the maintenance plans can be optimised for
each machine individually. In order to produce frequent machine condition assessments, online monitoring is often
required. Unfortunately, online monitoring can be laborious for experts, if the frequency of the required condition
assessments is high. Fortunately, numerous automatic condition monitoring algorithms have been developed [7, 12,
14, 15]. The automatic condition monitoring algorithms can be categorised into fault detection, fault diagnosis and
fault prognosis algorithms [15]. A large proportion of the latest research has focused on fault diagnosis based on
vibration [12]. Vibration data is often used because it includes patterns that characterise normal and faulty motion
of the rotating system components [15]. Furthermore, numerous powerful signal processing tools for vibration
data exist [15, 18, 27].

A great majority of the recent automatic fault diagnosis models for vibration data employ machine learning
(ML) [7, 12, 14]. These ML based diagnosis models either employ manually designed features and traditional
ML models, or deep learning (DL) models, which learn features autonomously [12]. Deep learning models have
been shown to learn to recognise vibration patterns from time series data directly [6, 17, 26]. Furthermore, some
studies have implied that deep learning models achieve better diagnosis results than traditional machine learning
based models with manually selected features [9, 13, 26]. Learning features autonomously may also save excessive
manual effort required for the design of the features.

Despite the recently achieved remarkable accuracies with DL-based fault diagnosis models, most of these
proposed models generalise poorly to real machines in real operating conditions. This is because commonly
used supervised learning hinders generalisation [2]. Results with DL models trained with supervised learning
perform unsatisfactorily if the training data is not identically distributed with the test data [3]. Therefore, it is
crucial that supervised model optimisation is performed with data that includes all realistic operating conditions
and faults. This criterion is very difficult to fulfill, and most publications proposing novel deep learning models
neglect it. Thus, the applicability of the majority of the DL-based fault diagnosis models for real world machines
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is questionable. Moreover, many publications demonstrate experiments on fault data acquired from a simple test
rig that was operated under relatively non-varied operating conditions [25].

In this work prototypical networks are used, which are optimised with a variant of supervised learning. This
variant is known as few-shot learning, which essentially trains the diagnosis model to learn how to learn. The
results show that this form of meta-learning is an effective solution for most generalisation problems related to
supervised learning and lack of data.

This work advances the current experimental paradigm employed in DL-based fault diagnosis research in two
dimensions. First, the fault diagnosis models are evaluated on data acquired on a relatively complex rotating
system. Second, the data distributions between the training data and the test data differ significantly: Experiments
are performed where the operating speeds in the test data are different from the operating speeds in the training
data. Furthermore, the experiments in this work also investigate fault diagnosis model performances on test data
acquired with different sensors from the training data.

2 Related work
Fault diagnosis model optimisation based on supervised learning requires numerous training samples of each

health condition. However, acquiring such a dataset with all relevant fault conditions present in varied operating
conditions can be difficult. A number of studies have recently proposed various meta-learning approaches that
seem promising for sparse data problems. These meta-learning approaches can be categorised as few-shot, one-
shot and zero-shot settings. In few-shot settings the aim is to optimise the model to learn a new class from very few
examples. The one-shot setting is similar, but the model is required to learn new classes from a single example. In
zero-shot setting the models learn to recognise an example from a new class based only on meta descriptions.

There have been several relatively successful attempts to develop meta-learning models based on deep learning
architectures. Siamese networks consist of two CNN-based feature extractors and a common distance metric
head for similarity assessment of pair-wise inputs [11]. The pair-wise similarity assessment network works in a
comparable way, but is augmented with memory [10]. However, Siamese networks may require training separately
for all k-shot tasks. Some potentially more flexible models are, for example, matching networks [21], prototypical
networks [19], and relation networks [20].

Recent fault diagnosis studies based on meta-learning have shown that these techniques are promising for
learning from sparse fault data [2]. For example, Siamese nets based on WDCNN architecture performed highly
accurately on the common bearing fault benchmark dataset by Case Western Reserve University (CWRU) [24].
Another study proposed to employ WDCNN trained with supervised learning as a feature extractor for the embed-
ding layer adapted from matching networks [22]. In addition, the prototypical network approach was experimented
on with a convolutional neural network that processed vibration data in the time and the frequency domains [23].
However, the majority of the studies have lacked data with largely varied rotating speeds. Moreover, there are
few studies reporting results of few-shot techniques on data where the test fault data is acquired from a different
location than the train fault data.

3 Methods
Few-shot models classify new samples based on support examples. The support examples are typically pro-

vided as a set S = (x1, yi)...(xM , yM ), where xi is an example, such as a vibration sample, and yi is the corre-
sponding class label. The few-shot setting can be described based on the number of different classes in S and the
number of examples from each class. That is, the support set consisting of N classes and K examples per class
establishes an N-way K-shot setting. N and K are not required to match between training and actual use, but best
results have been observed when the number of support examples K is matched in training and testing, and the
number of classes N is equal or higher when training [19]. In general, having a larger number of classes N or less
support examples K per episode makes the classification problem harder.

Prototypical networks employ an embedding model with learnable parameters to project support and query
examples to a RD dimensional space. Prototypes for each class are computed as the mean of the K embedded
support examples belonging to that class. New samples from the query set are classified based on the distances of
their embedding to the class prototypes. Figure 1 visualises the classification procedure of a query sample x̂ based
on L2 distance to three prototypes Pi, each computed from three support examples.

The rest of this section presents in more detail the architecture for the embedding network, the dataset employed
for experiments, and the specifics of training the model. Subsection 3.1 details the feature maps and layers of the
embedding model. Subsection 3.2 discusses the artificial gear faults, the data acquisition process and the down-
scaled azimuth thruster test rig. Subsection 3.3 describes the formation of few-shot episodes and other training
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algorithm related details.

P1

x P2

P3

^

Figure 1: Visualised computation and classification using prototypes. Each prototype Pn is the mean of the
surrounding samples translated into the embedding space. Each colored area describes the area where a sample
would be classified to the class 1, 2, or 3. x̂ corresponds to a sample that can be classified by comparing the
distance to each prototype.

3.1 Embedding Model
The embedding model employed in this study is adapted from a previously proposed model known as Deep

Convolutional Neural Networks with Wide First-layer Kernels (WDCNN) [26]. WDCNN is an effective model for
vibration data -based condition monitoring . The WDCNN has five convolutional layers, each of which consists
of a 1D convolution, batch normalization, a ReLU activation and a max pool in the respective order. The first
1D convolution has a kernel size of 64, and the following 1D convolutions have a kernel size of 3. The wide
first-layer kernels are effective at processing temporal patterns. The shorter kernels of the rest of the layers can
compute informative higher lever features from the first-layer features. The max pool layers are used to reduce the
resolution of the features between layers [16]. The specifics of the convolutional layers can be seen in Table 1. The
convolutional layers are followed by two fully connected (FC) layers used to form the class labels.

Table 1: The adapted WDCNN architecture

Layer Channels In Channels Out Kernel Stride Padding

Conv1D 1 16 64x1 16 24
MaxPool1D 16 16 2x1 2 0
Conv1D 16 32 3x1 1 1
MaxPool1D 32 32 2x1 2 0
Conv1D 32 64 3x1 1 1
MaxPool1D 64 64 2x1 2 0
Conv1D 64 64 3x1 1 1
MaxPool1D 64 64 2x1 2 0
Conv1D 64 64 3x1 1 1
MaxPool1D 64 64 2x1 2 0
FC 640 512 N/A N/A N/A

The adapted WDCNN in this work includes a few light architectural modifications to the original model. First,
the adapted model only includes one fully-connected layer, which computes the final embedding for the given
input. In addition, as the input size of 6000 used in this study is larger than the 2048 used in the original WDCNN,
the input width of the fully connected layer has been increased to match the output of the last convolutional layer.
Because the magnitudes of the input values differ significantly across operating speeds, the model includes a
normalisation function, which normalizes the embedding vectors to unit length. Additionally, multiplying the unit
length embedding vector with 100 was found to considerably increase model convergence stability and speed. A
depiction of the model can be seen in Figure 2.
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Figure 2: Feature maps of the adapted WDCNN for embedding vibration data

3.2 Dataset
The data was acquired with a small-scale azimuth thruster test bench designed to share the lowest natural

frequencies with a real thruster [4]. This test rig includes two servomotors at both ends of the drivetrain. The
first servomotor serves as the driving motor, and the second simulates the propeller loads of the thruster. The
test-rig also includes two gearboxes (gearbox 1 and 2) with gear ratios of 1:3 and 1:4, respectively. The test bench
was modified by replacing gearbox 2 with a bevel gear with an open structure, which enabled the introduction of
versatile deliberate gear faults.

Four accelerometers were used to measure vibration data simultaneously. The accelerometers are named here
S1, S2, S3, and S4. S1, S2, and S3 were mounted on the second gearbox at 90 degree angles to each other. S4 was
mounted on a bearing support between the drive motor and gearbox 1. All of the accelerometers had a sampling
rate of 3 kHz. Figure 3 shows the test rig at the configuration employed for data acquisition for this study.

Figure 3: A small scale azimuth thruster with the relevant parts indicated. The large gear box contains the bevel
gear where artificial gear faults were produced.

The dataset includes measurements of 10 different health states. The first state is the healthy state with no
changes to the powertrain, and the remaining 9 are fault states. The fault states were created by attaching thin
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metal sheets, referred to as shims from here on, to the teeth of the pinion gear of gearbox 2 shown in Figure 3.
One, two or three shim sheets were added at a time, with thicknesses of 0.01 mm, 0.03 mm, or 0.05 mm. All
sheets added at a time were the same thickness. The attached shims change the vibration pattern of the test bench,
as seen in Figure 5. Each of the health states were measured at 6 different drive motor speeds: 250, 500, 750,
1000, 1250, and 1500 RPM. For the rest of this paper, a class refers to a combination of a health state, an operating
speed expressed in RPM and the sensor used to measure it. The combination of fault states, drive motor speeds
and sensors add up to 10 · 6 · 4 = 240 possible separate classes. A breakdown of the dataset can be seen in Figure
4.

× ×

no shim
1 × 0.01 mm shim
2 × 0.01 mm shim
3 × 0.01 mm shim
1 × 0.03 mm shim
2 × 0.03 mm shim
3 × 0.03 mm shim
1 × 0.05 mm shim
2 × 0.05 mm shim
3 × 0.05 mm shim

Health state

250 RPM
500 RPM
750 RPM
1000 RPM
1250 RPM
1500 RPM

Operating speed

S1
S2
S3
S4

Sensor

Figure 4: Breakdown of all the different variables that form a class in the dataset.

Each combination of fault state and RPM was recorded for 150 seconds. The recordings were divided into 2
the second windows used as examples in this study. The 2 second example corresponds to 6000 sensor samples at
the 3 kHz sampling frequency. These time series examples were employed in training and testing. The 2 s window
size was chosen to include one or more pinion gear revolutions per example even at lower drive motor speeds. At
the lowest drive motor speed (250 RPM) the pinion gear with the shim sheets rotates at a rate of 1.389 1/s. Figure
5 shows two examples at 1000 RPM: the first with no shims attached and the second with one 0.05 mm shim sheet
attached.

Figure 5: Examples of the 2 second windows used in training and testing the model at 1000 RPM: (a) no shims
(b) 1 x 0.05 mm shim
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3.3 Training
The classes in the dataset were divided into test and training sets depending on the test case. To increase the

amount of examples available for training, example overlap was used. Support and query example pools were not
kept separate, but no overlap was allowed between support and query examples.

Training was done with successive N-way K-shot episodes as described by Snell et al. [19]. All training was
done with one-shot classification problems, i.e. K=1. Ten classes per episode, i.e. N=10, were used in training
for both 5-way and 10-way tests. The L2 distance was used as the distance metric between query embeddings and
prototypes. Loss for each training episode was calculated using cross entropy loss.

For training, the standard stochastic gradient descent (SGD) optimizer with a learning rate of 0.0076, momen-
tum of 0.95, and a weight decay of 0.0012 was used. Additionally, a step learning rate scheduler was used with a
step size of 10 and a gamma of 0.99. The embedding vector length used was 512. Values for the hyperparameters
were found with a combination of manual testing and the hyperparameter optimization framework Optuna [1].

4 Results
This section presents the results for two case studies: sensor to sensor and RPM to RPM experiments. In the

sensor to sensor experiment, a separate model is trained with each sensor and then tested against each of the rest. In
the RPM to RPM experiment, models are trained with either a set of low or high operating speeds and then tested
on the other. Test runs were repeated 10 times to mitigate the stochastic nature of neural network training. The
accuracy of each separate test run was computed using a number of random episodes depending on the experiment
type and the results shown are the averages of these test runs. It is important to note that the full test set includes
more than N classes, but only the classification accuracy of the N classes in an episode, 5 for 5-way and 10 for
10-way, is considered. Different combinations of these N classes were used to give a more robust estimate of the
models performance.

4.1 Case study I: Sensor to Sensor experiments
This case study evaluates how well the model generalizes to vibration samples from sensors it has not been

trained on. A model was trained on each of the four sensors separately, and then tested against all of the remaining
sensors. Figure 6 shows classification accuracies for these experiments. The average accuracy in the 5-way case
is 96.23 %, and 92.07 % in the 10-way case. We can also see that in both cases models trained with sensors S1,
S2, and S3 generalize very well when tested on any of the other two sensors. This shows that the method is robust
to changes in sensor orientation. When the model is trained or tested on S4, the results are slightly worse, but the
model is still able to generalise even with the change in sensor location.

Figure 6: 5-way (a) and 10-way (b) results of the sensor to sensor experiments. Each accuracy is an average over
10 test runs.
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4.2 Case study II: RPM to RPM experiments
This case study evaluates how well the model generalizes to unseen drive motor speeds. Models were trained

on low operating speeds and tested against high operating speeds (low-to-high) and vice versa (high-to-low). The
low operating speeds include 250, 500, and 750 RPM, and the high operating speeds include 1000, 1250, and 1500
RPM. All 10 health states were used. Furthermore, this case study was divided into two sub-experiments. In the
first, training and testing were done separately for all sensors. In the second, the model was trained on all sensors
and then tested separately against each sensor.

Figure 7 shows the classification accuracies of the single sensor training sub-experiment. From the figure we
can see that relatively good accuracies were achieved when generalizing to operating speeds closer to the ones
used to train the model with. However, especially in the low-to-high case, accuracies are promising even on the
operating speed furthest from the ones used for training.

Unlike in the sensor to sensor generalisation experiment, clear differences can be seen between the sensors.
The best performing sensor is S2, which maintains a nearly 90 % accuracy in all of the cases when tested on the
two RPMs nearer to the training values. On the other hand, S3 is over 20 pp worse than S2 in some comparisons.
Sensor alignment thus seems to have a major impact on generalization between operating speeds, as sensors S2
and S3 are located very close to each other.

Figure 7: 5-way (left) and 10-way (right) classification accuracies of the RPM to RPM experiments when each
model was trained with a single sensor. The upper half show results when trained on high operating speeds and
tested on low operating speeds, and the bottom half shows the opposite case. Each accuracy is an average over 10
test runs.

Figure 8 shows the results for the multi sensor training sub-experiment. Similarly to the single sensor training
sub-experiment, overall results are better when testing against operating speeds closer to those used for training.
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However, in contrast to the single sensor case, there is slightly less differences between the accuracies achieved
with each sensor.

Figure 8: 5-way (left) and 10-way (right) classification accuracies of the RPM to RPM experiments when each
model was trained with all sensors and tested on a single sensor. The upper half shows results when trained on high
operating speeds and tested on low operating speeds, and the bottom half shows the opposite case. Each accuracy
is an average over 10 test runs.

Table 2: Comparison between training each model with a single sensor (single-type) and training each model with
all the sensors (multi-type)

Trained w/ N-way Type Min [%] Mean [%] Max [%]

High 5 Single 65.73 81.97 94.16
Multi 69.96 83.09 93.30

10 Single 46.10 69.16 89.01
Multi 53.49 71.13 86.73

Low 5 Single 72.07 83.25 90.76
Multi 74.82 85.12 92.43

10 Single 55.61 70.57 80.94
Multi 57.38 72.98 85.29

The minimum, mean, and maximum accuracies of the different test cases for single and multi sensor training
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are summarized in Table 2. On average, training on multiple sensors results in 1.84 % better results than training
on a single sensor. Additionally, in no case was the mean accuracy worse or the minimum accuracy lower when
trained on multiple sensors than when trained on a single sensors. However, in some cases better maximum
accuracies were achieved when the model was trained with only the sensor used for testing. This would indicate
that training on multiple sensors can be beneficial even when results from the exact sensor used for training are
available, depending on the aim of the model.

5 Discussion
The results for both sensor to sensor and RPM to RPM generalization are promising for future applications.

Case study I (Section 4.1) shows that the few-shot learning model generalizes well to sensors it has not been trained
on. That is, the model diagnosis accuracy was satisfactory on previously unseen vibration patterns acquired with
sensors in new orientations and in new locations. This implies that few-shot learning models could generalize to
fleets of rotor systems, without a need to train a separate model for each separate system.

Case study II (Section 4.2) shows that the method generalizes to a relatively broad range of operating speeds.
This removes the need to manually create examples of rotor faults at a large number of possible operating speeds,
significantly reducing the need for manual work. Few-shot learning also seems to be a promising model in sit-
uations where an artificial dataset is hard to create and real world data is only sparsely available from multiple
operating conditions.

Few studies demonstrating such detailed results on few-shot rotor fault diagnosis generalization between sen-
sors and operating speeds have been done before. The differences in vibration signals from different operating
speeds are especially large in this study, as the different RPMs used were from such a large range. The changes
in the operating speed change both the amplitude of the vibration signal, and the number of rotations captured in
each sample.

An interesting topic for future research would be studying the change in generalisation when using examples
converted into the frequency domain. Studies have shown good results in machine health state classification when
using frequency domain input [5, 8, 23]. Another path for research would be studying results when both testing
sensor and operating speed are different than the ones used in training. Lastly, showing the ability to classify
multiple faults occurring simultaneously is important for industry use.

6 Conclusions
In this paper a few-shot learning method shown to generalise well with a low number of examples in classifi-

cation problems was applied to vibration data. Generalisation across operating speeds and from sensor to sensor
were tested. The trained models were found to generalize well to similar sensors and to operating speeds relatively
far from those used in training. Overall these results are significant in showing that few-shot learning could be a
viable method for use in condition monitoring applications. Especially so when it is not possible to separately train
a model for each possible machine and operating condition. Improving the generalisation abilities of ML based
rotor system fault diagnosis models would increase their usefulness in industry applications.

Acknowledgment
This work was supported by Academy of Finland as part of the High-Speed Elecromechanical Energy Conver-

sion Systems (HiECS) research project.

References
[1] Akiba, T., Sano, S., Yanase, T., Ohta, T. and Koyama, M. [2019]. Optuna: A next-generation hyperparameter

optimization framework, Proceedings of the 25rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining.

[2] Feng, Y., Chen, J., Xie, J., Zhang, T., Lv, H. and Pan, T. [2022]. Meta-learning as a promising approach for
few-shot cross-domain fault diagnosis: Algorithms, applications, and prospects, Knowledge-Based Systems
235: 107646.
URL: https://www.sciencedirect.com/science/article/pii/S0950705121009084

[3] Goodfellow, I., Bengio, Y. and Courville, A. [2016]. Deep Learning, MIT Press. http://www.
deeplearningbook.org.

Paper-ID 29321

http://www.deeplearningbook.org
http://www.deeplearningbook.org


[4] Haikonen, S., Koene, I., Keski-Rahkonen, J. and Viitala, R. [2022]. Small-scale test bench of maritime
thruster for digital twin research, 2022 IEEE International Instrumentation and Measurement Technology
Conference (I2MTC), pp. 1–6.

[5] He, Y., Zang, C., Zeng, P., Wang, M., Dong, Q. and Liu, Y. [2021]. Rolling bearing fault diagnosis based on
meta-learning with few-shot samples, 2021 3rd International Conference on Industrial Artificial Intelligence
(IAI), pp. 1–6.

[6] Hendriks, J., Dumond, P. and Knox, D. [2022]. Towards better benchmarking using the cwru bearing fault
dataset, Mechanical Systems and Signal Processing 169: 108732.

[7] Hoang, D.-T. and Kang, H.-J. [2019]. A survey on deep learning based bearing fault diagnosis, Neurocom-
puting 335: 327–335.

[8] Hu, Y., Liu, R., Li, X., Chen, D. and Hu, Q. [2022]. Task-sequencing meta learning for intelligent few-shot
fault diagnosis with limited data, IEEE Transactions on Industrial Informatics 18: 3894–3904.

[9] Jing, L., Zhao, M., Li, P. and Xu, X. [2017]. A convolutional neural network based feature learning and fault
diagnosis method for the condition monitoring of gearbox, Measurement 111: 1–10.

[10] Kaiser, L., Nachum, O., Roy, A. and Bengio, S. [2017]. Learning to remember rare events, International
Conference on Learning Representations.

[11] Koch, G., Zemel, R., Salakhutdinov, R. et al. [2015]. Siamese neural networks for one-shot image recognition,
ICML deep learning workshop, Vol. 2, Lille, p. 0.

[12] Lei, Y., Yang, B., Jiang, X., Jia, F., Li, N. and Nandi, A. K. [2020]. Applications of machine learning to
machine fault diagnosis: A review and roadmap, Mechanical Systems and Signal Processing 138: 106587.

[13] Li, C., Sanchez, R. V., Zurita, G., Cerrada, M., Cabrera, D. and Vásquez, R. E. [2015]. Multimodal deep
support vector classification with homologous features and its application to gearbox fault diagnosis, Neuro-
computing 168: 119–127.

[14] Liu, R., Yang, B., Zio, E. and Chen, X. [2018]. Artificial intelligence for fault diagnosis of rotating machinery:
A review, Mechanical Systems and Signal Processing 108: 33–47.

[15] Randall, R. B. [2021]. Vibration-based condition monitoring: industrial, automotive and aerospace applica-
tions, John Wiley & Sons.

[16] Scherer, D., Müller, A. and Behnke, S. [2010]. Evaluation of pooling operations in convolutional architectures
for object recognition, International conference on artificial neural networks, Springer, pp. 92–101.

[17] Shenfield, A. and Howarth, M. [2020]. A novel deep learning model for the detection and identification of
rolling element-bearing faults, Sensors 20(18).

[18] Smith, W. A. and Randall, R. B. [2015]. Rolling element bearing diagnostics using the case western reserve
university data: A benchmark study, Mechanical Systems and Signal Processing 64-65: 100–131.

[19] Snell, J., Swersky, K. and Zemel, R. [2017]. Prototypical networks for few-shot learning, Advances in neural
information processing systems 30.

[20] Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P. H. and Hospedales, T. M. [2018]. Learning to compare:
Relation network for few-shot learning, Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

[21] Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D. et al. [2016]. Matching networks for one shot learning,
Advances in neural information processing systems 29.

[22] Wang, D., Zhang, M., Xu, Y., Lu, W., Yang, J. and Zhang, T. [2021]. Metric-based meta-learning model for
few-shot fault diagnosis under multiple limited data conditions, Mechanical Systems and Signal Processing
155: 107510.

[23] Wang, Y., Chen, L., Liu, Y. and Gao, L. [2021]. Wavelet-prototypical network based on fusion of time and
frequency domain for fault diagnosis, Sensors 21(4).

[24] Zhang, A., Li, S., Cui, Y., Yang, W., Dong, R. and Hu, J. [2019]. Limited data rolling bearing fault diagnosis
with few-shot learning, IEEE Access 7: 110895–110904.

[25] Zhang, S., Zhang, S., Wang, B. and Habetler, T. G. [2020]. Deep learning algorithms for bearing fault
diagnostics—a comprehensive review, IEEE Access 8: 29857–29881.

[26] Zhang, W., Peng, G., Li, C., Chen, Y. and Zhang, Z. [2017]. A new deep learning model for fault diagnosis
with good anti-noise and domain adaptation ability on raw vibration signals, Sensors 17(2).

[27] Zhao, R., Yan, R., Chen, Z., Mao, K., Wang, P. and Gao, R. X. [2019]. Deep learning and its applications to
machine health monitoring, Mechanical Systems and Signal Processing 115: 213–237.

Paper-ID 29322



SIRM 2023 – 15th International Conference on Dynamics of Rotating Machines,
Darmstadt, Germany, 22nd – 24th February 2023

Nonlinear vibration analysis of a high speed turbocharger rotor in ball bear-
ings - simulation and measurement

Christoph Baum 1, Jürgen Brezina 2, Sudhakar Gantasala 3, Panagiotis Koutsovasilis 4

Dynamics Simulation & Methods, BorgWarner Systems Engineering GmbH, 67292 Kirchheimbolanden, Ger-
many, {1 cbaum, 3 sgantasala, 4 pkoutsovasilis}@borgwarner.com

Abstract
Most turbocharger rotors in vehicles are operated within oil-lubricated fluid film bearings. However, for high

performance and reduced friction losses a ball bearing system is superior. But there are several technical challenges
that need to be mastered in order to design, build and produce a reliable product for series applications. Examples
are high temperatures and temperature ranges due to the exhaust gases and different surrounding conditions in
combination with tight clearances and furthermore the fast rotational speeds at which these machines are typically
operated. In particular for the latter mentioned, vibrations, inherent to rotating devices, are gaining on importance.
They frequently come along with either high dynamical loads, which could lead to a failure of the bearing or
overall system, generate noise or both.

Besides hardware testing simulation is utilized to cope with the systems behaviour and investigate the source
as well as the vibration characteristics. To do this, a flexible rotor model of the turbocharger is coupled to a non-
linear ball bearing model considering the specific geometry and number of balls, for example. Here, and in contrast
to many other rotating machines operated in two separate bearings, a single bearing cartridge design is utilized.
Run-up simulations within time-domain are performed and compared with measurements with good agreement.

1 Introduction
Developing a new vehicle engine requires the definition for targets, which depend on the specific type of

vehicle, target customers, pricing, etc.. But now-days, independent of these criteria there is additional requirement
gaining on importance: sustainability. This copes for example with the used materials, production methods, overall
energy consumptions and emissions. In order to reduce the required energy and emissions of the vehicle during
operation, a turbocharger for combustion engines improves the engine’s efficiency and enables downsizing. Thus,

(a) Cross section of a turbocharger in ball bearings. (b) BorgWarner’s ball bearing cartridge design.
Figure 1: Design of turbocharger and cartridge
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Symbol Bezeichnung Wert
compressor wheel diameter 41mm
turbine wheel diameter 35mm

nmax maximum rotational speed (hardware) 260 krpm
m rotor mass ≈ 110 g
nW number of balls per row 9
Rbh cartridge radius (outside) 8.5mm

Table 1: Quantities of the turbocharger rotor and bearing system.

the same power can be provided with a smaller engine displacement, resulting in a lower fuel consumption and
reduction of CO2- Emissions.

Aiming for a maximization of the engine’s performance, the efficiency of the turbocharger should be maxi-
mized, too. Typically, a customization of the turbocharger according to the engine requirements starts with defini-
tion and selection of the aero components within a matching process. Consequently, the compressor and turbine
wheel and the volutes are defined and designed. Furthermore, when the overall performance of the turbocharger
is quantified, friction losses from the bearing system are taken into account. When targeting an optimizing of the
performance, these losses have to be minimized. Most turbochargers are operated in oil lubricated radial and axial
bearings. there, during operation a load carrying fluid film is build, separating rotating and non-rotating parts.
Shear stresses within the fluid result in friction torque acting on the rotor, and thus, generates power loss. The
friction torque depends on the viscosity of the fluid. Reducing the viscosity will reduce the friction losses, but
could lead to severe vibration issues and might end up in a failure of the rotor-bearing system. Another approach
to minimize bearing friction is to introduce a rolling element bearing system, [17].

Figure 1 shows an example of a turbocharger with a ball bearing system. Within the cross-section, as depicted
in Figure 1a, the turbine wheel is located on the right, the compressor wheel on the left and the bearing housing in
between, including the ball bearing cartridge in its centre. The bearing system is pre-assembled as a cartridge, see
Figure 1b. It consists of two sets of spherical rolling elements, their cages, two inner and a single outer ring. Table
1 lists some properties of the system.

Since turbocharger applications with ball bearings are less common than with oil lubricated bearings the avail-
able literature is also less extensive. Some fundamentals about bearing modelling are published in the book of
HARRIS and KOTZALAS [8], the dissertation of WENSING [16] or the publication [6] of LIEW et al. for example.
TANIMOTO et al. present in [15] the superior behaviour of silicon nitride ceramic balls over steel balls in automo-
tive turbo charger bearings. The system discussed here uses this material, too. DANIEL et al. investigate in [4]
the dynamics of turbochargers operated in ball bearings. But, in contrast to the presented system it utilizes two
single deep grove ball bearings. ASHTEKAR and SADEGHI investigate within [1] the dynamics of a turbo charger
test rig and a coupled dynamic model for commercial vehicles applications with larger wheels and lower rotational
speeds. In [2], CONLEY and SADEGHI measured the turbo charger motion and derive an overall simulation model
including a ball bearing cartridge system. Similar to here, sub-synchronous vibrations at low speeds are observed.

2 Performance Measurement
The friction generated within the bearing system is experimentally determined on a special test rig at Borg-

Warner’s Tech Center, see Figure 2a. Figure 2b shows as an example the measured and post-processed data of the
smallest available bearing cartridge design of BorgWarner (framesize BB01) and of an equivalent oil-lubricated
bearing system tested with the same rotor. The test was conducted with a 0W20 oil for identical supply conditions,
i.e. 90 ◦C, 2 bar. The diagram shows the power losses over the rotor speed for each core group, normalized by
the maximum power loss of the ball bearing system. It can be seen, that the journal bearing system generates a bit
more than twice as much friction losses as the equivalent ball bearing system independent of the rotational speed.
Thus, a turbocharger operated in ball bearings has a higher (thermodynamic) efficiency and furthermore operates
superior in transient operation. For example, if the driver wants the vehicle to accelerate quickly, the turbocharger
requires, due to the lower friction in the bearing system, a shorter time to reach its max. speed. Consequently, the
supplied air of the turbocharger within a constant time frame is higher and the acceleration of the vehicle improves.

But, due to the very high rotational speeds of these systems dynamical loads and vibrations topics or rotor
dynamics in general have to mastered. In order to analyse, simulate and design the rotating components and the
bearing system a simulation model is derived, validated and utilized.
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(a) BorgWarner’s turbo friction test rig in Kirchheimbolan-
den.
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(b) Comparison of bearing friction power losses over rotor speed.

Figure 2: Friction test rig and measured friction.

3 Physical Model
The overall simulation model combines three sub-models of the rotor, the ball bearing cartridge and a fluid film

model representing the squeeze film dampers acting between cartridge and bearing housing. All sub-models are
fully coupled within the numerical simulation and solved in parallel. Each sub-model is briefly introduced in the
following subsections.

3.1 Bearing Model
3.1.1 Macro geometry, positions and velocities
Within the bearing cartridge, see Figure 1b, two sets of spherical rolling elements, two inner and a single outer

ring are modelled. Similar to conventional deep groove ball bearings, each set is built of nW number of balls with
the same diameter dW , see Figure 3b. Furthermore, both inner and outer rings are geometrically defined by their
radii of curvatures rJ and rA, see Figure 3a, and the inner- and outer-ring raceway contact diameter di and do, see
Figure 3b. The bearings are designed with clearance. The diametral clearance

Gr = do − di − 2dW (1)

(a) (b)
Figure 3: Geometry paramaters of the ball bearing model.
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Figure 4: Angles and velocities of moving parts within the bearing.

quantifies the distance the inner ring can translated within the cross-sectional plane in total, when the position of
the outer ring is fixed. Similar, the axial clearance Ga measures the overall distance the inner ring can translate
axially. In the later mentioned case a line defined by both contact points between balls and raceways defines the
free contact angle α0, see Figure 3a. In general, during operation, the displacement of the inner ring will neither
be purely radial nor purely axial. And, as a result, only a reduced number of balls are in contact with both rings
at a certain time t. To identify the active balls, which are in contact with both rings, the positions of all balls with
respect to a space fixed reference frame have to be determined.

Under the assumption of pure rolling the relative velocity of both contact points on a ball and a ring are equal
zero (no slip). The speed of the inner ring raceway can be deduced through the angular velocity of the rotor and its
diameter vJ = ω di2 , see Figure 4. The velocity of the outer ring, since not rotating, is zero, vA = 0. Thus, through
linear interpolation, the translational velocity of a ball’s centre can be determined as

vW =
1

2
(vJ − vA) = ω

di
4
, (2)

and consequently the angular velocity of the cage as

ωK ≈
2vW

dW + di
=

di
2(dW + di)

ω. (3)

The corresponding position of the considered ball can then be deduced by integration with respect to time

θWj (t) =

∫
ωK dt, (4)

while the initial position of one ball θWj
(t = 0) is, without loosing generality, assumed to be zero. Since the

bearing has a cage guiding the rolling elements, but which is not physically modelled, the position of all other balls
can be deduced using the angle δW = 2π

nW
between two neighbouring balls, see Figure 4. No equation of motion

for each ball is considered within the model, their position is deduced from the kinematics of the surrounding and
moving structures.

3.1.2 Contact Model
Due to the clearance, only a few balls are in contact with both rings when the shaft is rotating. Solely, only the

active balls are transferring the loads from the rotor to the outer ring. For ideal geometries a point contact between
both bodies exist, which will result in high local contact pressures and stresses, causing a local deformation within
the contact zone. Hertzian contact theory [9], [10] is applied to describe the contact mechanics, see [11], [12], [5],
[8] e.g.. A lubricating fluid within the contact zone is neglected, which leads to the problem of dry contacts.

Figure 5a shows two generic bodies with a single contact point. Both bodies (Index 1 and 2) are approximated
- at least within the contact zone - by ellipsoids. The variables rix, riz, i = 1, 2 denote the principal radii of
curvature within two perpendicular directions. Both, convex and concave contact geometries are covered within
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(a) Generalized contact bodies. (b) Contact ellipse.
Figure 5: Parameters and Geometry of the contact problem.

this approach. For the investigated deep groove and angular contact bearings a single convex contact appears,
while all others are concave. For the latter mentioned case the radius, where the centre point is positioned outside
the body, is considered negative.

Due to an acting load FH , both bodies will deform within the contact area and the ideal point contact will
transform into a contact zone, see Figure 5a. Within the framework of the Hertzian contact theory, it is assumed,
that both bodies are linear elastic, homogeneous and isotropic and deformations are fully elastic. Furthermore, the
dimensions of the contact area are assumed to be much smaller than the dimension of both bodies characterized
by their radii of curvature. The governing equations are derived on the basis of the elastic-half space theory. In
addition, loads are assumed to act only normal to the surface, while shear stresses within the contact zone are
neglected. HERTZ postulates, a pressure (or normal stress) distribution of elliptical shape

σ = σmax

[
1−

(x
a

)2
−
(z
b

)2]1/2
, (5)

where a and b are both semi axes, see Figure 5b. Their ratio is defined as the non-dimensional parameter

κ =
b

a
. (6)

The maximum pressure within the contact zone is given by

σmax =
3FH
2πab

, (7)

whereas FH is the applied force.
The contact ellipse and consequently both semi-axes a and b are a function of the applied load FH and the

actual geometry (radii ri,j , i = 1, 2; j = x, z). Several relationships between the contact geometry (radii) and the
ratio of the semi-axes κ are proposed, see [12], [11], [16], [8] for example. Here, the approach

Dc =
(κ2 + 1)E − 2F

(κ2 − 1)E
(8)

given in [8] is used. The variable

Dc =
( 1
r1x
− 1

r1z
) + ( 1

r2x
− 1

r2z
)

1
r1x

+ 1
r2x

+ 1
r1z

+ 1
r2z

, (9)
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(a)
Figure 6: Sketch of contact forces between balls and inner raceway and deduced force acting on the rotor.

can be determined from the radii of curvature. Within (8),

F =

∫ π/2

0

[
1−

(
1− 1

κ2

)
sin2 φ

]−1/2
dφ (10)

is an elliptical integral of first kind,

E =

∫ π/2

0

[
1−

(
1− 1

κ2

)
sin2 φ

]1/2
dφ (11)

an elliptical integral of second kind. Once F , E and κ are iteratively determined, the force displacement relation-
ship of both bodies in contact

FH =

{
kHδ

3/2 if δ ≥ 0
0 if δ < 0

(12)

can be evaluated, using the equivalent Hertzian contact stiffness

kH =

(
2π2ERκ2E′2

9F3

)1/2

, (13)

with the reduced Youngs-Modulus E′ = 2(
1−ν2

1

E1
+

1−ν2
2

E2
)−1, and R′ the mean reduced radius of both bodies.

Knowing the contact force of a single ball, the resulting force acting on the rotor can be determined by summing
up the forces of all balls, which are active, respective in contact, see Figure 6a:

~F = Fx~e
a
x + Fy~e

a
y + Fz~e

a
z =

nW∑
j=1

~Fj . (14)

Similarly, the resulting force acting on the outer ring can be determined.

3.2 Squeeze Film Damper Model
The squeeze film damper acting between the outer ring of the cartridge and the bearing housing is modelled

on the basis of the conventional assumptions of fluid film theory: the fluid is considered as a continuum, the flow
is laminar, the gap height h in radial direction is much smaller than the dimensions in circumferential and axial
direction and the curvature of the fluid domain is neglected, see [14], [7] for example. Applying these assumption
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(a) Geometry and coordinates of squeeze film damper
model.

(b) Axial dimensions of squeeze film
dampers on outer ring.

Figure 7: Sketch of squeeze film damper model and geometry.

to the Navier-Stokes-Equations and combing the relationships with the continuity equation leads to the Reynolds-
Equation

1

R2
bh

∂

∂θ

[
h3
∂p

∂θ

]
+ h3

∂2p

∂z2
= 12µ

∂h

∂t
, (15)

which determines after solving the fluid pressure within the gap. Equation (15) was initially derived by REYNOLDS
in 1886, [13]. Note, that the right hand-side is simplified with respect to the standard form, since the outer ring
is not rotating (ωA = 0). The parameters within (15) are the viscosity of the fluid µ, the inner radius of the
bearing housing Rbh and the length of the squeeze film damper L. The cartridge has two squeeze films dampers.
Their length is denoted with an index 1 or 2 within Figure 7b to distinguish between both sides. The independent
variables are θ, z and the time t. Within (15), the dependent variable is the unknown fluid pressure p. Furthermore,
the film height h is a function of the eccentricity e = e(t) of the outer ring centre A, the clearance h0 and
circumferential position θ:

h = h0 − e cos θ, (16)

whereas tilting or misalignment of the cartridge with respect to the housing is neglected. To solve (15), pressure
boundary condition on both axial ends p(z = L

2 ) = p(z = −L2 ) = 0 of the squeeze film dampers are assumed.
Here, the pressure gradient in circumferential direction is considered to be small compared to the pressure gradient
in axial direction, since 2L < Rbh. Thus, the first term in (15) is neglected and short-bearing theory is applied, see
[14] e.g., resulting in the pressure

p(θ, z) = −6µ

h3
∂h

∂t

[(
L

2

)2

− z2
]
. (17)

Negative pressures, when occurring, are neglected by applying the GUEMBEL condition pG = max(p, 0). The
resulting force acting on the outer ring and in opposite direction on the bearing housing is deduced by integration
of the pressure field after projecting in the respective direction through

~FSFD = −

[
Rbh

∫ π

−π

∫ L
2

−L
2

pG cos θ dz dϕ

]
︸ ︷︷ ︸

Fx

~e 0
x −

[
Rbh

∫ π

−π

∫ L
2

−L
2

pG sin θ dz dϕ

]
︸ ︷︷ ︸

Fy

~e 0
y . (18)

3.3 Rotor Model
The turbocharger shaft is modelled as a flexible body using finite elements, see Figure 8. A 3D CAD model is

the starting point and a modal analysis is conducted. In order to minimize the computational costs in time transient
simulations, a model order reduction by means of CRAIG-BAMPTON is applied, [3]. Master-nodes at the bearing
and wheel locations are defined. In the last step the turbine and compressor wheel are linked to the flexible shaft
as rigid bodies.
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Figure 8: Flexible shaft of the turbocharger rotor model.

3.4 Simulation vs. Measurement
The commercial software package MSC Adams is used to simulate the transient behaviour of the fully coupled

system, consisting of the rotor, which combines shaft and wheels, both ball bearings combined to a single cartridge
and the two squeeze film dampers. Simulations are performed within the time domain. A typical simulation
scenario is a run-up test case, whereas the rotor speed increases linear with time. The vibrations of the system are
usually assessed by analysing the oscillations of the shaft nut. This part fixes the compressor wheel to the shaft,
see Figure 1a on the left end in gold. Typically, the identified vibrations are transformed in the frequency domain.
Figure 9a shows such a simulation result. Here, first order vibrations - identifiable as the diagonal - are visible over
the whole speed range, with maximum amplitudes at approx. 180 krpm. Additionally, sub-synchronous vibrations
with distinct amplitudes are occurring almost over the whole speed range, too. They appear the most dominant
also around 180 krpm.

Furthermore, measured oscillations of the corresponding shaft-nut deflections within the frequency domain are
shown in Figure 9b for comparison. Distinct first order vibrations can be observed there, as well . Additionally,
sub-synchronous vibration amplitudes are also present, independent of the operating speed of the rotor. Within the
hardware test, the highest amplitudes of the sub-synchronous vibrations appear at slightly lower shaft speeds as
within the simulations. Their related frequency in test and model are in good agreement. Within the lower rotor
speed range the sub-synchronous vibrations are similar to measurement, while their multiple order vibration is
more dominant within the measurement. At high speeds, some deviations for the sub-synchronous vibrations are
visible.

4 Summary
Ball bearing systems in turbocharger applications are quite rare. Never the less, they have some benefits com-

pared to hydrodynamic bearing systems. A major one is their lower friction loss, which will at the end improve the
transient response of the vehicle and the efficiency of the charging system and thus the engine. One the other hand
some challenges have to be met, when utilizing ball bearings in turbochargers. One copes with the high rotational
speeds and the vibrations generated through the rotating device. To examine the transient behaviour, a simulation

(a) Simulated waterfall plot. (b) Measured waterfall plot.
Figure 9: Frequency analysis of shaft-nut deflections as a function of rotational speed.
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model is deduced, implemented in a commercial simulation software and investigated. The model combines and
couples a flexible rotor model, a non-linear ball bearing model together with a non-linear hydrodynamic model
for the squeeze film dampers. All equations of motion are solved simultaneously within time domain, usually as
linear run-up simulations. An analysis of the shaft-nut deflections within the frequency domain shows synchronous
and concurrent sub-synchronous vibrations. At certain shaft speeds, the later one are more dominant. Finally, the
simulations results are compared with a measurement. An agreement of the dominating effects is a achieved.
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[9] Hertz, H. (1882): Über die Berührung fester elastischer Körper. J. für die reine und angewandte Mathematik,
92, pp. 156–171.
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Abstract 
The actual behaviour of real rotating machines is difficult to predict as it depends on a variety of geometrical, 

physical, and technological factors, the values of which are uncertain. It implies amplitude of their vibration or 
magnitudes of the transmitted forces can be estimated only with a certain degree of probability. Several methods 
have been developed for analysis of such systems. This paper deals with the approach utilizing the fuzzy 
numbers. Its application requires performing interval operations and the results are expressed also the fuzzy 
numbers. The usability of this method in the field of rotor dynamics was tested by employing computer 
simulations. The investigated rotor consisted of a shaft and one disc. The shaft was coupled with the stationary 
part by two hydrodynamic bearings and the disc by two elastically connected brushes. The rotor unbalance, the 
steady state speed of its rotation, and prestress of the brushes were regarded to be uncertain. The task was to 
determine the maximum radial displacement of the rotor disc. The advantage of the method based on the 
application of fuzzy numbers is that it does not require knowledge of the probability density function of the 
uncertain parameters, and the corresponding generators of random numbers, and makes it possible to assign a 
degree of credibility to the results. To perform the analysis, the sufficient experience of persons solving the 
problem and an adequately intensive knowledge database are needed. The originality and the new contribution of 
this paper consists in the utilization of analytical manipulations with fuzzy numbers in performing the interval 
operations. 

1   Introduction 
The actual behavior of real rotating machines depends on a variety of geometric, physical, and technological 

factors (e.g. stiffness or damping of the individual components or contact connections, speed of the rotation, 
material constants, parameters of the unbalance and applied loading, etc.), the values of which are uncertain 
because of different reasons. Several methods have been developed to solve such problems. The worst scenario 
method, the probabilistic approaches like the Monte Carlo method, the fuzzy number approach, or the sensitivity 
approaches are among them.  

The method based on utilization of the fuzzy numbers assumes that the value of each uncertain quantity is a 
real number from a certain interval and that the degree of membership, the magnitude of which runs between 0 
and 1, is assigned to each value from this interval. This assignment requires adequate experience from persons 
involved in the solution of the problem and on the data gathered in sufficiently extensive knowledge databases. 
The degree of membership approaching one indicates a higher probability of the uncertain quantity value while 
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the degree of membership approaching zero means that the probability of the corresponding value is low. The 
fuzzy numbers method requires performing interval analyses for chosen membership levels, the same for all 
uncertain quantities, which makes it possible to construct corresponding intervals and membership functions of 
the results. 

More details on fuzzy sets and fuzzy numbers can be found in [1] or [2]. Some rules and recommendations 
on how to determine the membership function are given in [3]. The fuzzy number approach was used in different 
fields of mechanics. Moens et al. [4] reported on the application of this method for the construction of the 
frequency-response function of damped structures. Sága et al. used the fuzzy number approach for the vibration 
analysis of vehicles [5]. Vaško at al. applied this method for damage prediction of mechanical structures [6]. 
Zapoměl et al. used the fuzzy numbers approach in the field of rotor dynamics [7], [8].  

The individual methods for solving the problems with uncertain input parameters mutually differ. The 
possibility of application of each of them depends on the extent of the data and the computational (hardware and 
software) tools that are to the disposal to persons solving the problem. It implies each method is applicable only 
for certain cases. The methods also differ in the character and interpretation of the results.  

The worst scenario method is based on searching for the worst case. It uses maximum extents of possible 
values of the uncertain parameters or such their values that lead to the worst solution from the point of view of 
the solved problem. The results are on the side of safety but they do not contain any information on the 
probability of occurrence of the worst case.  

The fuzzy numbers approach requires to specify the possible extents of values of the individual uncertain 
parameters. Consequently, these extents are divided into sub-intervals, the elements of which have the same 
probability or frequency of occurrence defined by the ill-specified quantifiers (e.g. this value of the uncertain 
parameter is very frequent, frequent, low frequent, the frequency is marginal, etc.), to which the degree of 
membership from the interval between 0 and 1 is assigned. Then utilizing the approximation, the continuous 
membership function is constructed over all sub-intervals. Consequently, the interval analysis for the chosen 
values of the membership function is performed, which means finding the corresponding minimum and 
maximum values of each output parameter. This can be done either by solving the problem for the specified 
combinations of values of the uncertain parameters or by application of the rules for arithmetic operations with 
the fuzzy numbers if possible. The values of the output parameters are fuzzy numbers, the membership function 
of which gives the idea on their probability. The fuzzy numbers approach has a great advantage because the sub-
intervals of the values of uncertain parameters can be determined by experienced engineers or workers. In 
addition, no statistic computational tools and no statistic treatment performed in advance are needed.  

Application of the Monte - Carlo method requires assigning the probability density function to each uncertain 
parameter. The actual procedure consists in performing a vast number of simulations for randomly generated 
values of all uncertain parameters in accordance with their probability density function. This requires having to 
the disposal the corresponding generators of random numbers. The calculated results are stochastic quantities, 
the most probable value of which can be determined from their probability density function.   

In this paper, the fuzzy numbers approach was applied to analyze non-linear steady state vibrations of a rotor 
by means of computer simulations. The studied rotor was rigid. Its shaft was supported by two hydrodynamic 
bearings and its disc was connected to the stationary part by two flexible brushes. Values of the rotor unbalance, 
the steady state speed of its rotation, and prestress of the brush springs were considered uncertain. The 
trigonometric collocation method was applied to determine the rotor steady state response. The goal of the 
analysis was determination of the rotor maximum radial displacement.  

The originality and the contribution of this paper to the development of the fuzzy numbers method consists in 
the utilization of analytical manipulations with fuzzy numbers in performing the interval operations and their 
combination with the computational procedure and introduction of the parameter for evaluation of the credibility 
of the results (degree of credibility).  

2   The equations of motion of the investigated rotor 
The investigated rotor and its stationary part are rigid (Fig. 1). The rotor consists of a shaft and of one disc. 

At both ends, the shaft is coupled with the stationary part by hydrodynamic bearings. The disc is connected to 
the frame by two pre-stressed flexibly supported brushes (Fig. 2). The rotor rotates at constant angular speed, is 
loaded by its weight, and excited by the disc unbalance. The whole system can be considered symmetric relative 
to the disc middle plane.  

The task was to determine maximum radial displacement of the disc. 
In the computational model the rotor and the stationary part were considered absolute rigid and stiffness of 

the springs pushing the brushes to the disc constant and the mass of the springs negligible. The design and 
geometric parameters of the hydrodynamic bearings made it possible to model them as bearings of finite length. 
The pressure distribution in the bearing gap is determined by solving the Reynolds equation. Pressure in the 
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cavitation areas was considered constant. Components of the hydraulic forces were obtained by integration of the 
pressure distribution around the circumference and along the length of the bearing considering different pressure 
profiles in cavitation and non-cavitated regions. Damping caused by the environment was regarded as linear. 

Figure 1: The investigated rotor system. 

The equations of motion were set up by means of Lagrange equations of the second order. 

𝑚�̈� + 𝑏𝑃�̇� = 𝑚𝑒𝑇𝜔2cos(𝜔𝑡) + 2𝐹ℎ𝑦 (1) 

𝑚�̈� + 𝑏𝑃�̇� + 2𝑘𝑧 = 𝑚𝑒𝑇𝜔2sin(𝜔𝑡) − 𝑚𝑔 + 𝑘(𝑠1 − 𝑠2) + 2𝐹ℎ𝑧 (2) 

m is the rotor mass, k is the stiffness of one brush spring (Fig. 2), bP is the coefficient of the linear rotor damping 
caused by the environment, eT is the eccentricity of the rotor center of gravity, ω is the angular speed of the rotor 
rotation, t is the time, g is the gravity acceleration, Fhy, Fhz are the horizontal and vertical components of the 
hydraulic force, s1, s2 are displacements prestressing the brush springs (Fig. 2), y, z are horizontal and vertical
displacements of the rotor, respectively, and (.), (..) denote the first and second derivatives with respect to time.

Figure 2: Prestress of the brush springs. 

The steady state solution of the equations of motion was obtained by application of the trigonometric 
collocation method. 
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3   Fuzzy analysis of the rotor steady state oscillations 

Figure 3: Membership functions of the uncertain parameters. 

The principal technical parameters of the rotor and its bearings are: mass of the rotor 325 kg, rated angular 
speed of the rotor rotation 400 rad/s, stiffness of each brush spring 5 MNm, rated pre-compression of each brush 
spring 500 µm, coefficient of linear damping caused by the environment 1.3 kNs/m, the bearings length/diameter 
100 mm/100 mm, and dynamic viscosity of the oil 0.008 Pas.  

The rotor eccentricity, speed of rotor rotation, and pre-compression of the brush springs are uncertain 
parameters. Their values are expressed by fuzzy numbers. The magnitude of eccentricity of the rotor center of 
gravity ranges from 40 to 60 µm, the angular velocity runs between 390 and 410 rad/s, and the pre-compression 
of each brush spring varies from 450 to 550 µm. The corresponding membership functions are depicted in Fig. 3. 

The pre-compression displacements s1 and s2 of the ends of the springs, by which the springs are attached to 
the rotor casing, occur in the equations of motion separately from other uncertain parameters in the form of their 
difference. This makes it possible to use the analytical relation for manipulation with the fuzzy numbers. It holds 

𝑠 = 𝑠1 − 𝑠2, (3) 

∆𝑠 = ∆𝑠1 + ∆𝑠2 (4) 

where 

𝑠1 = 𝑠1 ± ∆𝑠1, (5) 

𝑠2 = 𝑠2 ± ∆𝑠2, (6) 

𝑠  = 𝑠   ± ∆𝑠. (7) 

s is a new auxiliary parameter replacing displacements s1 and s2 in the equations of motion. The bar denotes the 
mean value of the displacements and Δs, Δs1, Δs2 are deviations from the mean values of parameters s, s1, s2, 
respectively. This holds for all membership levels (only the deviations differ). The performed modification 
reduces the number of uncertain parameters from four to three. 

The membership function for values of the auxiliary parameter s is drawn in Fig. 4. 

Figure 4: Membership function of the auxiliary parameter s. 
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The actual interval manipulations are done for three uncertain quantities, speed of the rotor rotation, 
eccentricity of the rotor centre of gravity, and the auxiliary parameter s. 

4   Results of the simulations 
The frequency response characteristic constructed for the rated or most probable values of uncertain 

parameters is depicted in Fig. 5. The figure shows the double amplitude of the rotor steady state vibration in the 
horizontal and vertical directions for angular velocity up to 1000 rad/s.  

Figure 5: Frequency response characteristic. 

The frequency responses show that the rated angular speed is near to the resonance area. It implies even a 
small deviation of angular velocity can significantly affect the vibration amplitude.  

Fig. 6 shows the steady state orbit of the rotor journal center in the hydrodynamic bearing for the rated 
velocity of the rotor rotation (400 rad/s), rated pre-compression of each brush spring (0.5 mm) and for the most 
probable value of the rotor eccentricity (55 µm).  

Figure 6: Steady state orbit of the rotor journal center (degree of membership 0.5). 

To perform analysis of the rotor steady state vibration considering uncertain values of some parameters, the 
individual levels of the membership function were specified (0.0, 0.2, 0.4, 0.6, 0.8, 1.0). Consequently, the 
steady state response of the rotor was calculated for all combinations of specified values of the uncertain 
parameters and the results were sorted according to the individual levels of the membership function.  

Fig. 7 shows the steady state trajectory of the rotor journal in the gap of the hydrodynamic bearing, which 
corresponds to the worst case (degree of membership 0.0). The steady state orbit is uncertain and has a fuzzy 
character.  
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Figure 7: Steady state orbit of the rotor journal center (worst case). 

Fig. 8 shows the membership function of the maximum radial displacement of the rotor disc. It is evident that 
its value ranges from 133 to 157 µm.  

Figure 8: Membership function of the rotor radial displacement. 

The interval related to the degree of membership of 0 corresponds to the worst case. The ratio of the lengths 
of intervals corresponding to the chosen degree of membership and the degree of membership of 0 can be 
considered as the degree of credibility, with which the results were obtained (Table 1).  

Table 1: Degree of credibility 

Degree of membership Extent  [ µm ] Degree of credibility   [ % ] 

1 1.0 147  -  151   16.7 % 
2 0.8 144  -  152   33.3 % 
3 0.6 142  -  154   50.0 % 
4 0.4 139  -  155   66.7 % 
5 0.2 136  -  156   83.3 % 
6 0.0 133  -  157 100.0 % 
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5   Conclusion 
The made simulations proved that the approach based on the application of fuzzy numbers can be applied to 

the analysis of systems with uncertain parameters in the field of rotor dynamics. The results are not single 
values, but they are fuzzy numbers. It implies the results are expressed by intervals and by the degree of 
credibility assigned to each of them.  

The fuzzy number approach has some advantages. It does not require knowledge of the probability density 
function of the individual uncertain parameters and corresponding generators of random numbers. If the number 
of uncertain parameters is not too large, the number of performed simulations can be considerably lower than 
those if the Monte Carlo method were applied. The number of simulations can be significantly reduced if it is 
possible to combine the computational interval operations with the analytical solution. Nevertheless, the correct 
application of the fuzzy number method requires the persons solving the problem to be adequately experienced 
or persons having a sufficiently extensive knowledge database to their disposal.  

The combination of the computational and analytical manipulations with fuzzy numbers to perform the 
interval operations and introduction of the degree of credibility are original and represent the principal 
contributions to the development of the procedures for analysis of machine systems with uncertain parameters in 
the field of rotor dynamics. 
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Abstract
The complexity and intricate dynamics of rotating machines generally requires models with a high number of

Degrees of Freedom (DOFs). In this way, any model must come with some reduction method, that reduces the
dimensionality of the system while retaining the major dynamic characteristic of it. The existence of nonlinear
effects often complicates even more the analysis, and they are often neglected in the model reduction by, for
example, relying on linearized models. Taking this into account, this paper presents a nonlinear model reduction
method to obtain Reduced Order Models (ROMs) to study rotating machines under nonlinear forces. The method
is based on the idea of Nonlinear Normal Modes (NNMs) and the existence of Invariant Manifolds (IMs). These
manifolds can be seen as an extension of the linear eigenspaces commonly used in modal analysis to reduce the
dimensionality of dynamical systems. The basis of the method is the obtention of the manifolds, allowing the
reduction of the model to a single nonlinear mode, thus essentially reducing the problem to integrating a single
pair of equations. In addition, the method is applied on a rotor-bearing systems with two kinds of nonlinearities: a
cubic nonlinearity and a hydrodynamic bearing.

1 Introduction
A common way of reducing the number of equations in dynamical systems is the projection of the equations

onto a lower-order subspace (Figure 1). In structural mechanics, a natural subspace is the space spanned by
the vibrating modes of the system, often called the eigenspace. An important characteristic of this space is the
invariance property, which states that any motion that starts on the eigenspace, remains on it as time tends to
infinity. This means that when the initial conditions is set to a single mode, no energy will be transferred to the
remaining modes, and they can thus be neglected in the dynamic analysis of the system. This, however, is not true
for nonlinear systems, where energy does not remains at a single mode, but is transferred back and forth between
them. In terms of the 3D system depicted in Fig. 1, this means that the projection of the trajectory q(t) will poorly
represent the full system trajectory x(t).

The main idea in the Invariant Manifold Method (IMM) [22, 17], is the obtention of nonlinear eigenspaces, that
take into account the interaction between the modes that occur in nonlinear systems. These spaces are manifolds
that are tangent to the linear eigenspaces near the equilibrium. In this way, the invariance property is regained,
and a single mode can be used to describe nonlinear systems. As defined in [22], the motion that occurs on these
manifolds gives the Nonlinear Normal Modes (NMMs) of the system. This is not, however, the only definition

x(t)

q(t)

Trajectory of full system

Lower-order space

S

x1

x2

x3

Figure 1: Reduction of a 3 dimensional system to a 2 dimensional one by a projection onto a lower-order space.
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for NNM, as the literature is vast on this topic, and one can find more information in the reviews [18, 1, 3]. An
important point about the above mentioned manifolds is that they may not be unique, specially for highly nonlinear
systems, as explored in [9]. In addition, more than one nonlinear mode is required in cases of internal resonance,
where there is a strong interaction between vibrating modes [13]. In [21], one can find several methods that have
been developed to obtain the manifolds in nonlinear systems. Further applications of the IMM and alike can be
seen in [12, 7, 2, 20].

This paper presents an application of the IMM in rotor-bearing systems. The rotor is modeled by means of
the Finite Element Method (FEM). The approach can be used to reduce the equations of motion to a single pair of
differential equations, allowing a fast obtention of forced solutions. Also, a wide variety of nonlinear forces can
be incorporated in the approach. The method is presented for a rotor-bearing system considering two nonlinear
bearing forces: a bearing with cubic nonlinearity, and a hydrodynamic bearing.

2 Theoretical Background
2.1 Rotordynamic model

The rotordynamic model considered in this paper is obtained through the discretization of the domain by the
FEM, which leads to the following differential equation,

M¨̄x(t) + (Cs +Cb +ΩG) ˙̄x(t) + (Ks +Kb)x̄(t) = fnl(x̄, ˙̄x) + fh(t) + fg (1)

where x̄(t) are the nodal displacements and rotations, M is the mass matrix, G is the gyroscopic matrix, Ω is the
rotation speed, Ks and Cs are the stiffness and damping matrices of the shaft, and Kb and Cb are the stiffness
and damping of the bearings, which come from a linearization procedure. The nonlinear force fnl, is the remaining
component after the linearization. Also, fh and fg, are the unbalance and the gravity force, respectively. The vector
x̄(t) is given as,

x̄(t) =
{
x̄1(t) x̄2(t) · · · x̄N (t)

}T
, x̄i(t) =

{
ūiy ūiz θ̄iy θ̄iz

}T
, i = 1, 2, . . . , N (2)

being N the number of nodes in the mesh and xi(t) the displacements of the ith node; ūiy and ūiz are the ith
nodal displacements and θ̄iy and θ̄iz the rotations. Figure 2 shows the coordinate system adopted. Since there are 4
Degrees of Freedom (DOFs) per node, the system in Eq. (1) has a total of 4N DOFs. The shape functions used to
construct the physical matrices for the shaft takes into account rotary inertia and shear deformation (Timoshenko
beam). One is referred to [11] or [6] on how to obtain the matrices. In addition to the shaft properties, the matrices
also have the contribution of rigid disks, which are added at their corresponding nodal points. The disks are
considered rigid masses with rotary inertia.

In order to apply the method proposed, Eq. (1) must be written with respect to the equilibrium position. This
can be done by a change of variables as, x(t) = x̄(t) − xe, being xe the equilibrium position. which is obtained
by setting ¨̄x(t) = ˙̄x(t) = fh = 0 in the equations of motion. Equation (1) is rewritten in terms of x(t) as,

Mẍ(t) +Dẋ(t) +Kx(t) = f(x, ẋ, t) (3)

where,

D = Cs +Cb +ΩG, K = Ks +Kb, f(x, ẋ, t) = fnl(x+ xe, ẋ) + fh(t) + fg − (Ks +Kb)xe (4)

x

y

uz

θz
θy

uy

z

Shaft element

Figure 2: Coordinate system of a shaft element.
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Equation (3) is the equation of motion for the rotor system written in terms of the equilibrium position. This
equation is used in the following analysis.

2.2 The Invariant Manifold Method
Before the aplication of the IMM, Eq. (3) needs to be transformed in the modal space. It is worth mentioning

that this step is not mandatory, since the IMM can be applied in the physical space as well (as first presented by [22],
for example). However, this transformation is applied for two reasons: first, the number of degrees of freedom may
be large in Eq. (3), which strongly affects the numerical cost in the IMM. Second, by transforming the equations in
the modal space, a interpretation of the manifolds as curved spaces tangent to the linear eigenspaces can be made.

Since the system is damped and with gyroscopic effect, a complex modal analysis is necessary to fully decouple
the equations [19]. Firstly, one rewrites the equations in state-space form, that is,

ẇ(t) = Aw(t) +G(w, t) (5)

where,

A =

[
0 I

M−1K M−1D

]
, w(t) =

{
x(t) ẋ(t)

}T
G(w, t) =

{
0 M−1f(w, t))

}T
(6)

here, 0 is a matrix of zeros and I is identity matrix, both with size 4N × 4N . To reduce the dynamical system, the
state vector is approximated in terms of the eigenvectors of the matrix A as follows,

w(t) ≈
n∑

i=1

(
ϕϕϕiqi(t) +ϕϕϕi∗q∗i (t)

)
(7)

where n ≪ 4N are the number of modes retained, ϕϕϕi are the eigenvectors, qi(t) are the modal (generalized)
coordinates, and * denotes complex conjugation. The appearance of the complex conjugates comes from the fact
that the modes in rotating machines are in general underdamped [8]. The eigenvectors and adjoints are the solution
of,

Aϕϕϕi = λiϕϕϕ
i AHψψψi = λ∗iψψψ

i for i = 1, 2, . . . , 2n (8)

being λi the eigenvalues, which are generally complex conjugate pairs, ψψψi the ith adjoint eigenvector, and H
denote the hermitian (complex conjugate) transpose. The adjoint eigenvectors are the complex conjugate of the
left eigenvectors, and they are necessary here due to the non-symmetric nature of A, which in turn is due to the
gyroscopic effect and possibly anisotropy of the bearings [6]. By substituting the expansion (7) in the equation of
motion (5), and multiplying by the adjoint eigenvectors ψψψ, one may have,

q̇i(t) = λiqi(t) + (ψψψi)TG(q, t)

q̇∗i (t) = λ∗i q
∗
i (t) + (ψψψi)HG(q, t)

for i = 1, 2, . . . , n (9)

which are 2n, first-order, complex equations coupled by the nonlinearity. In order to apply the invariant manifold
method, one needs to obtain the generalized coordinates qi as real instead of complex as above. By separating the
modal coordinates into its real and imaginary parts as qi = p2i−1 + jp2i, with j =

√
−1, Eq. (9) can be written as,

ṗ2i−1(t) = σip2i−1(t)− ωip2i(t) + Re
{
(ψψψi)TG(q, t)

}
ṗ2i(t) = σip2i(t) + ωip2i−1(t) + Im

{
(ψψψi)TG(q, t)

} for i = 1, 2, . . . , n (10)

with σi = Re{λi} and ωi = Im{λi}. Eq. (10) is completely equivalent to (9), and either can be solved for the
physical displacement w.
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The first step in the IMM is to select two generalized coordinates from the nmodes used in the model reduction,
say u = p2k−1 and v = p2k, to serve as ”master” coordinates. These are then used as a basis to describe
the remaining 2n − 2 ”slave” modes of the system. The relation between the remaining modes with the master
coordinates can be expressed as,

p2i−1 = Pi(u, v, θ), p2i = Qi(u, v, θ), for i = 1, 2, . . . , n; i ̸= k (11)

where Pi and Qi can be seen as the coordinates that compose the manifold, and θ = Ωt is the phase of the
unbalance excitation and its introduction is made to write the non-autonomous system as if it were an autonomous
one (see [14]). Since Pi and Qi depend on three quantities, one can think of the manifold as a 2D surface with
time-varying coordinates due the the external excitation. To obtain these coordinates, one differentiates Eq. (11)
with respect to time and substitutes the equations of motions of the slave modes, leading to the manifold equations,

σiPi − ωiQi + g2i−1 =
∂Pi

∂u

(
σku− ωkv + g2k−1

)
+
∂Pi

∂θ
Ω

+
∂Pi

∂v

(
σkv + ωku+ g2k

)
σiQi + ωiPi + g2i =

∂Qi

∂u

(
σku− ωkv + g2k−1

)
+
∂Qi

∂θ
Ω

+
∂Qi

∂v

(
σkv + ωku+ g2k

)
for i = 1, 2, . . . , n; i ≠ k (12)

where g2i−1 = Re
{
(ψψψi)TG(u, v, θ)

}
and g2i = Im

{
(ψψψi)TG(u, v, θ)

}
. The functional relationship with (u, v, θ)

has been avoided for better clarity. The above equations are partial differential equations (PDEs) and independent
of time. Their solution gives the coordinates of the invariant manifold Pi and Qi, for the ith mode. The problem
now consists in solving these equations and obtain the geometry of the invariant manifolds. After obtaining the
coordinates Pi and Qi, the first-order differential equations for the master coordinates need to be solved. They are
given by,

u̇(t) = σku(t)− ωkv(t) + Re
{
(ψψψi)TG(u, v,Ωt)

}
v̇(t) = σkv(t) + ωku(t) + Im

{
(ψψψi)TG(u, v,Ωt)

} (13)

It is important to note that the contribution of the slave modes in Eq. (13) will be given by the functional relations
Pi(u, v, θ) and Qi(u, v, θ). These functional relations account for the coupling between the generalized coordi-
nates due to the nonlinearity. Provided these functions are accurate, there is minimal lost of information comparing
Eq. (13) and (10). Thus, the problem of integrating 2n nonlinear equations, given by Eq. (10), is substituted by
the solution of 2n − 2 nonlinear partial differential equations for the geometry of the manifolds, Eq. (12), and an
integration of 2 nonlinear equations for the master coordinates, Eq. (13). If one has an efficient way to solve the
manifold equations, the approach reduces the solution to a single pair of nonlinear differential equations.

To solve Eq. (12), the coordinates are assumed as,

Pi(u, v, θ) =

Nu∑
l=1

Nv∑
m=1

Nθ∑
r=1

Clmr
i Tl,m(u, v)Fr(θ)

Qi(u, v, θ) =

Nu∑
l=1

Nv∑
m=1

Nθ∑
r=1

Dlmr
i Ul,m(u, v)Fr(θ)

for i = 1, 2, . . . , n; i ̸= k (14)

Being Clmr
i and Dlmr

i the unknown coefficients, Tl,m, Ul,m and Fr known shape functions, and Nu, Nv and
Nθ the number of shape functions assumed. For the expansion in u and v, the shape functions were assumed
standard Chebyshev polynomials, which are known to be very accurate in a wide range of applications [4, 5]. In
this case, the 2D shape functions are obtained by means of the tensor product of two 1D polynomials in the u and
v directions. For the expansion in θ, a Fourier series expansion was performed, taking advantage of the periodicity
of this coordinate [14].
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The coefficients are obtained from a Weighted Residual Method, namely the Galerkin method. In this manner,
the form assumed in Eq. (14) are substituted in (12), and a Galerkin projection is carried out in the residue,
resulting in a total of NuNvNθ(2n − 2) integro-algebraic equations that need to be solved for the coefficients
Clmr

i and Dlmr
i . With the functions Pi and Qi, for i = 1, 2, . . . , n, at hand, the equations of motion for the master

coordinates, Eq. (13), can be solved. The physical displacements and velocities are then obtained by,

w(t) =
n∑

i=1

(
Re{ϕϕϕi}p2i−1(t) + Im{ϕϕϕi}p2i(t)

)
= Re{ϕϕϕk}u(t) + Im{ϕϕϕk}v(t) +

n∑
i=1,i̸=k

(
Re{ϕϕϕi}Pi(u, v,Ωt) + Im{ϕϕϕi}Qi(u, v,Ωt)

) (15)

To summarize the proposed method: the rotordynamics problem given by Eq. (3), of size 4N , is first reduced by
linear modal analysis, leading to 2n equations, Eq. (9), with n≪ 4N . Then, by means of the IMM, the integration
of the 2n equations is reduced to a sigle pair of equations for the master mode only, together with 2n− 2 PDEs for
the remaining modes.

3 Results and Discussion
The rotor system studied in this work is depicted in Fig. 3. It consist of a steel shaft of diameter d = 12 mm

and length of L = 600 mm. The Young’s modulus and Poisson ratio considered were E = 210 GPa and ν = 0.3,
respectively. A rigid steel disk is positioned at L/3 from the left free end, with diameter of D = 95 mm and
thickness of h = 45 mm. In addition, two identical bearings are positioned at 50 mm from the free ends. The shaft
is modeled by the FEM, with 12 elements of equal length, giving a total of 48 DOFs. In all the subsequent sim-
ulations, a personal computer with an Intel(R) Core(TM) i7-7500U CPU @ 2.90 GHz processor and the software
MATLABTM were used. The equations were integrated using the ode45 integrator with standard options and zero
initial conditions. The manifold equations were solved by means of the fsolve function.

3.1 Rotor with nonlinear bearing
In the first example, the bearings are considered to have a cubic nonlinearity. The horizontal and vertical

components of the bearing force are given as,

Fy = c1 ˙̄uy + k1ūy + β1ūy(ū
2
y + ū2z), Fz = c2 ˙̄uz + k2ūz + β2ūz(ū

2
y + ū2z) (16)

being ci and ki the linear damping and stiffness coefficients, and βi the cubic coefficients (i = 1, 2). The coeffi-
cients are assumed to be constants. This model is suited to represent rolling-element bearings [10, 24, 8]. Note that
Eq. (16) is not written with respect to the equilibrium position (as denoted by the bars). The values considered for
the bearings were c1 = 10 Ns/m, c2 = c1, k1 = 105 N/m, k2 = 0.9k1, and β1 = β2 = β = 5×109 N/m3. Figure 4
presents the frequency response of the system near the first two critical speeds for an unbalance moment of 0.07
kg·mm. The first forward and backward critical speeds are found to be ωF

1 = 1516 rpm and ωB
1 = 1482 rpm,

respectively. The nonlinearity is clearly noticed by the bending of the resonance peaks, which is characteristic of
hardening-type spring. It is noted that the linear model is very accurate up until very close to the critical speeds.

0 0.1 0.2 0.3 0.4 0.5 0.6

-0.04

-0.02

0

0.02
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Bearing 1

Disk

Bearing 2

Figure 3: Rotor system studied.
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Figure 4: Frequency response of the rotor with cubic nonlinearity at the disk: horizontal (a) and vertical displace-
ment (b).
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Figure 5: Radial displacements and orbits at the disk: for Ω = ωB
1 (a) and (b), and for Ω = ωF

1 (c) and (d).
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Figure 6: Radial displacements and orbits at bearing 1: for Ω = ωB
1 (a) and (b), and for Ω = ωF

1 (c) and (d).

Table 1: Computation time comparison for the rotor with cubic bearing. In the IMM, the parenthesis shows the
computation time to obtain the manifolds.

Case Full nonlinear Linear Reduced nonlinear IMM
Ω = ωB

1 531 s 158 s 5.99 s 2.40 s (82.0 s)
Ω = ωF

1 527 s 151 s 6.97 s 2.05 s (84.4 s)
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Figure 7: Manifold for the first forward mode (rotor with cubic bearing): P1 (a) and Q1 (b).

In order to apply the IMM, the system is first reduced by modal analysis. The number of retained modes were
n = 6, being half forward and half backward modes. Next, one of these modes must be selected to be used as
a master mode. There is no clear procedure to follow here, and a test with several modes is required in general.
In the present system, the weakest excited mode proved to be a good choice. The reason for this is that multiple
solutions exist when the master mode posses high nonlinearity (see [7] for example). Not only this, but when the
selected master mode is weakly excited, the solution of the manifold equations has a much faster convergence.
Thus, the master mode selected was the second backward mode. In addition, the number of shape functions in
the expansion (14) were Nu = Nv = 2, which correspond to a bilinear base and Nθ = 5, which correspond to 4
harmonics plus the constant term. These numbers provided fast and accurate solutions for the system at hand.

Figures 5 and 6 show the time response of the system at the disk and bearing 1 for the first two critical speeds.
The nonlinear and linear responses are obtained by integrating the full equations, that is, with no modal reduction.
At first sight, the major difference between the linear and nonlinear system is clear, as the amplitudes of the latter
are smaller. This occurs due to the ”bending” of the resonance peak as shown in Fig. 4. The response by the IMM
is also shown, and a great agreement, at both speeds considered, between it and the full solution of the nonlinear
system is seen. The IMM needs much less numerical cost as compared to solving the full equations numerically,
as only 2 equations are solved. The full system, on the other hand, has 96 equations (which is double the number
of DOFs, as the equations need to be written in state-space form). Table 1 presents some comparison between the
mean values several computation runs. The time to solve the manifold equations is also shown in parenthesis. It is
worth mentioning that the obtention of the manifolds is an ”off-line” cost, which means that they are obtained prior
to the actual solution of the system. Even if one is to integrate the reduced system, that is, the 2n modal equations,
the IMM has some advantages. If one chooses the master mode as the weakest excited mode, the solution of the
manifold equations is very fast, and thus one needs to integrate only a pair of equations. Also, depending on the
master mode, the solution of the IMM gives only the steady state solutions, that is, with no transients. For a weakly
damped rotor, these transients may take long to die out, making the time integration process very costly if one is
interested in the steady state solutions only.

Figure 7 shows the manifolds of the first forward mode with respect to the master mode for θ = 0. One notes
that they are curved surfaces due to the nonlinearity. Also, the manifolds are not still, and have a combined motion
of rotation and translation [14]. It is this motion and the curvature of these surfaces that allows an effective model
reduction and a good agreement between the single mode solution and the full solution of the nonlinear system.

3.2 Rotor with hydrodynamic bearings
In the second example, a more challenging nonlinearity is tested. The force considered comes from the solution

of the Reynolds equation based on short bearing theory with half-Sommerfeld boundary conditions, of a fluid with
constant viscosity. The forces in the vertical and horizontal direction can be obtained by [23, 15, 16].

Fy = fε sinϕ+ fϕ cosϕ, Fz = fϕ sinϕ− fε cosϕ,


fε = −µRL

3
b

2C2

[
2ε2(Ω− 2ϕ̇)

(1− ε2)2
+
π(1 + 2ε2)ε̇

(1− ε2)5/2

]

fϕ =
µRL3

b

2C2

[
π(Ω− 2ϕ̇)ε

2(1− ε2)3/2
+

4εε̇

(1− ε2)2

] (17)

where ε is the dimensionless journal eccentricity, ϕ is the journal angular position relative to the negative vertical
axis, R the journal’s radius, µ is the fluid viscosity, Lb the bearing length and C the radial clearance. The lin-
earization of these forces can be obtained by a first-order Taylor expansion relative to the equilibrium position (see
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Figure 8: Radial displacements and orbits at the disk: for Ω = 0.96ωF
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1 (c) and (d).
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Figure 9: Radial displacements and orbits at bearing 1: for Ω = 0.96ωF
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Table 2: Computation time comparison for the rotor with hydrodynamic bearing.
Case Full nonlinear Linear Reduced nonlinear IMM

Ω = 0.96ωF
1 192 s 23.2 s 127 s 4.05 s (135 s)

Ω = ωF
1 175 s 22.7 s 129 s 4.01 s (136 s)

[16]). The following parameters were adopted for both bearings: Lb = 20 mm, R = 15.5 mm, C = 90 µm, and
µ = 0.028 Pa·s. In addition, an unbalance moment of 0.01 kg·mm is placed at the disk.

Prior to applying the IMM, the system must be reduced by means of modal analysis. Four highly overdamped
modes were found in the studied system. Although these are fast-decaying, non-vibrating modes, they must be
considered to correctly describe the full nonlinear system. The number of modes considered in the modal analysis
was n = 10, being four overdamped modes, and six vibrating modes with half forward and half backward charac-
teristics. The master mode was chosen to be the third forward mode for the same reasons discussed in the previous
example. In addition, the number of shape functions in the expansion (14) were Nu = Nv = 2 and Nθ = 5.

Figures 8 and 9 show the radial displacements and orbits at the disk and bearing 1 (the leftmost bearing in
Fig. 3) for Ω = 0.96ωF

1 and Ω = ωF
1 , with ωF

1 = 1939.7 rpm. The effect of the nonlinearity appears as an
distortion of the rotor’s orbit, which is simply an ellipse in the linear case. Also, the nonlinear effect appears more
severe at the bearing then at the disk, where the linear and nonlinear solutions are very similar. Comparing the
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results of the IMM with the full nonlinear solution, one sees a good agreement. Thus, the single pair of equations
given by the IMM is able to capture the full rotor system with a highly nonlinear force. Table 2 shows some numeric
values corresponding to the mean values of the computation runs. It is also shown in parenthesis the time for the
obtention of the manifolds. One can observe the large computation time reduction that the IMM provides. It is
worth mentioning that the computation time of the reduced nonlinear model is strongly affected by the overdamped
modes, which makes the equations numerically stiff. If they are neglected, one gets much faster results but with
higher errors compared with the full solution. The manifolds of the first forward mode are shown in Fig. 10, for
θ = 0. Again, these surfaces are not quite still, but move about according to the phase of the unbalance θ.

4 Conclusion
This work presented an aplication of the IMM in rotor-bearing systems with nonlinear forces. The basis of the

IMM is the obtention of manifolds, which are curved spaces tangent to the eigenspace of the linearized system.
With these manifolds, the method allows the obtention of forced responses of large DOFs systems by the integration
of a single pair of equations. The method was validated by two examples: a rotor with a cubic force nonlinearity,
and a rotor with hydrodynamic bearings. In both cases, the IMM proved accurate and fast for the obtention of the
solutions.

Although the examples were based on a simple rotor, the method has capabilities to be applied in high-
dimensional rotor systems modeled by the FEM. The main drawback of the IMM lies in the solution of the manifold
equations (12), which are highly nonlinear partial differential equations and might posses multiple solutions. The
best approach found was to select a weakly excited mode as the master mode. This makes the obtention of the
manifold easier, and provide fast and accurate solutions. With the manifolds at hand, the single pair of equations
can be integrated, and the response of the full system approximated with good accuracy.
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