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Abstract 
This work deals with a new methodology for the implementation of high-resolution (HR) 
schemes employed to advect the volume fraction in the volume of fluid (VOF) method, in which 

the numerical stability and convergence depend heavily on the numerical advection scheme 
and implementation method. The proposed method is based on the normalized weighting 
factor (NWF) method, which linearizes the normalized interpolation profile and rewrites the face 

value directly using the donor, acceptor, and upwind nodes. However, unlike the NWF, which is 
fully implicit and results in pentadiagonal linear systems, the new modified normalized 
weighting factor (MNWF) method only forms the implicit terms with the contribution of the 

donor and acceptor nodes, while the contribution of the upwind node explicitly forms part of 
the source term. Therefore, the method results in a tridiagonal linear system. The comparison of 
the new method with the deferred correction (DC), downwind weighting factor (DWF), and the 

RNWF methods shows that the MNWF requires about 5%−25% fewer iterations than DC and 
RNWF, and around 10%−85% less than DWF. Thus, a similar order of accuracy of the results can 
be obtained with less computational time.  
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1 Introduction 

The volume of fluid (VOF) method of Hirt and Nichols 
(1981) is a well-established conservative method to solve 
multiphase flow problems. The VOF introduces an additional 
transport equation to advent a marker function called volume 
fraction to define the position of the interface between the 
fluids. The volume fraction must be updated every time that 
the fluids move, and the boundary between the different 
fluids changes position. Nevertheless, updating the marker 
function is critical for the success of the simulation of 
multiphase flows and also is not a trivial job due to the purely 
convective nature of the transport equation (Tryggvason et 
al., 2001).  

An option to deal with this problem is using the 
blended High Resolution (HR) schemes also known as 
interface-capture schemes which combine a high order (HO) 
diffusive scheme, a compressive scheme, and the Convection 

Boundedness Criterion (CBC) ensuring that no oscillatory 
behavior is experienced in the solution and have relatively 
low numerical diffusion (Tryggvason et al., 2001; Moukalled et 
al., 2016). An example of such schemes is CICSAM (Ubbink 
and Issa, 1999). However, the direct introduction of the 
blended HR schemes into the discretized equation is not 
suitable because of their composite nature. Thus, some 
techniques initially created to implement the HR schemes 
in the momentum equation have been used to overcome 
this difficulty. 

For instance, Meyer et al. (2016) implemented the 
blended interface capture scheme BICS (Wackers et al., 
2011) with the deferred correction (DC) method of Rubin 
and Khosla (1977) to develop a new code for simulating 
free-surface flows around modern sailing yachts. For the 
DC method, the implicit terms of the discretized equation 
are based on the upwind scheme, whereas the difference 
between the BICS schemes and the upwind scheme is 
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Nomenclature 

u  velocity vector (m·s−1) 
p  pressure field (Pa) 
Α  volume fraction 
Ρ  density (kg·m−3) 
Μ  dynamic viscosity (kg·m−1·s−1) 
V  volume of the control volume (m3) 
S  surface of the control volume (m2) 
T  time (s) 
Cx  convective flux (m3·s−1) 
AP, AF, AE,  
AEE, AW,  coefficients of the algebraic equation (m3·s−1) 
AWW 
bP  source term of the algebraic equation (m3·s−1)
P, F, E,  
EE, W,  center and neighbor control volumes 
WW 
D, A, U donor, acceptor, and upwind control volumes 
α   normalized volume fraction 

λ  blended function 
θf  the angle between the flow direction and the grid 

  lines at face f 
Co  local courant number 
UD  Upwind scheme 
DD  Downwind scheme 
DC  Deferred Corrector method 
DWF  Downwind Weighting Factor method 
NWF  Normalized Weighting Factor method 
RNWF Reviewed Normalized Weighting Factor method 
MNWF Modified Normalized Weighting Factor method 
[ ],m , L factors for the NWF formulation 
n+1, n,  superscript to indicate the next, current, and last
n−1  time-step 
f  subscript that denotes variable approximated at the 
   face of the control volume 
ζ  convergence criterion 

  
considered as a source term. Although according to Darwish 
and Moukalled (1996), DC suffers from low convergence 
rates, whereas the general approach of Meyer et al. showed 
better performance than other codes. However, the influence 
of DC on the general approach was not studied. 

On the other hand, CICSAM and its modifications such 
as THOR (Hogg et al., 2006), MCICSAM-W (Wacławczyk 
et al., 2007), and MCICSAM-Z (Zhang et al., 2014) employ 
the Downwind Factor Method (DWF) method of Leonard 
and Mokhtari (1990). The DWF introduces an auxiliary 
factor that implicitly contains higher-order wide-stencil 
information, but its implementation involves only the adjacent 
upwind and downwind node values. So, this method is 
suitable for tridiagonal solvers. However, the coefficients 
obtained from a DWF implementation sometimes are not 
diagonally dominant; thus, the formulation is not stable for 
many flow configurations and requires substantial relaxation 
to achieve convergence. Despite the described problem, this 
method is still used commonly in the multiphase community. 

Another technique that overcomes the shortcomings of 
the DWF method, but which is rarely applied in the context 
of multiphase flows is the full implicit Normalized Weighing 
Factor (NWF) method (Darwish and Moukalled, 1996). The 
NWF linearizes the normalized interpolation profiles and 
rewrites the face value directly using the central, upwind, and 
downwind nodes so that the method uses a pentadiagonal 
stencil, and the diagonal coefficient results are always positive. 
Consequently, the NWF is much more robust than the 
DWF and faster than DC methods (Darwish and Moukalled, 
1996). Nevertheless, NWF is not frequently used because it 

requires the pentadiagonal matrix algorithm (PDMA) to 
solve the system of equations.  

In 2018, a revision of the described normalized weighting 
factor (RNWF) method was presented by Chourushi 
(2018), which is applicable for tridiagonal equation solvers. 
This method relies on the final discretization of the normalized 
weighting factor method and removes the contribution of 
far-off nodal values from the diagonal coefficient. These terms 
are later added as a source term. According to the author, the 
RNWF is four times faster than DC and 1.3 times faster 
than NWF.  

Because of the stability advantages and efficiency of the 
NWF formulation compared to DC and DWF, and the new 
possibility of using it with tridiagonal equation solvers, we 
tested the RNWF method in the context of multiphase 
fluids and found that the convergence rate of the RNWF is 
similar to the DC method in the case of multiphase flows 
and that the RNWF method tends to degenerate the interface 
slightly. We supposed that the problem lies in the introduction 
of two explicit terms in the source term, the value of the 
center point and the upwind point instead of only the 
upwind point as is suggested in the original NWF method. 
Our new idea is only to introduce the upwind value as a 
source term. 

This paper presents this new idea that we call Modified 
Normalized Weighting Factor (MNWF) method which we 
apply for the numerical implementation of six blended HR 
schemes: CICSAM, MCICSAM-W, MCICSAM-Z, HRIC 
(Muzaferija et al., 1998), FBICS (Tsui et al., 2009), and 
CUIBS (Patel and Natarajan, 2015). The implementations 
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are realized on the in-house finite-volume flow solver FASTEST, 
based on a block-structured collocated grid arrangement. 
For the investigation, we consider four test cases: the slotted 
circle, the circle in shear fluid, the rising bubble, and the 
break-dam with an obstacle. The convergence rate is given 
by the total number of iterations required for convergence, 
and the accuracy of the results is analysed for each test case 
and compared with the obtained one using the DC, DWF, 
and RNWF methods. 

In the following sections, the mathematics and results 
of the new approach are presented. First, the governing 
conservation equations of the multiphase dynamics are 
shown, as well as the discretization process of the volume 
fraction equation. Then, the DC, DWF, NWF, and RNWF 
methods are reviewed, and their disadvantages are pointed 
out. Finally, the modified normalized weighing factor 
(MNWF) method is described in detail and used to solve 
the test problems. 

2  Governing equations 

Two viscous, incompressible, and immiscible fluids are modelled 
as a single effective fluid whose behavior is described by the 
conservation transport equations of mass, momentum, and 
volume fraction: 

 0u⋅ =  (1) 

 
2

σ
ρu ρu u μ u p ρg f
t

¶
+ ⋅ +  =- + +

¶
  (2) 

 
0α u α

t
¶

+ ⋅ =
¶

 (3) 

where u is the velocity vector, p the pressure field, α the 
volume fraction field of one of the fluids, and ρ, μ are the 
physical properties density and dynamic viscosity, respectively. 
In the momentum equation (Eq. (2)), the last two terms of the 
right-hand side represent the gravity forces and the force 
due to surface tension. Since the multiphase system of the 
two fluids is treated as a single fluid, the local density and 
dynamic viscosity can be evaluated as a function of the 
volume fraction using the following relations: 

 1 2 1 2(1 ) , (1 )ρ αρ α ρ μ αμ α μ= + - = + -  (4) 
where the subscripts 1 and 2 refer to each fluid and α denotes 
the presence (α = 1) or absence (α = 0) of the traced fluid. A 
volume fraction between 0 and 1 indicates the presence of a 
mixture, and the value of 0.5 defines the interface between 
the fluids.  

The three conservation equations are discretized in 
space with the second-order finite-volume method and in 
time with the second backward differentiation BDF2 time 
scheme (Ferziger and Perić, 2012). The discretization of the 
mass and momentum equations for multiphase flow systems 

follows the methodology detailed in Sauer (2000) and it is 
not shown here as it is outside the focus of this paper. 
However, the following sections will be dedicated to the 
discretization of the volume fraction transport equation. 

3  Discretization of the volume fraction transport 
equation 

In order to solve the volume fraction governing equation, 
the domain is subdivided into an arbitrary number of control 
volumes which form a structured grid domain. Then, Eq. (3) 
is integrated over each control volume, and the volume 
integral of the divergence of α is transformed to a surface 
integral applying the Gauss theorem. Hence, the integral 
form of the volume fraction transport equation results in 

 
d d 0

V S

α V αu n S
t
¶

+ ⋅ =
¶ ò ò  (5) 

where V is the volume and S is the surface of the control 
volume, and n is the normal vector to the surface. The 
volume integral is resolved using the BDF2 time scheme, 
and the surface integral is numerically approximated by the 
mid-point ruler. For an arbitrary control volume P Eq. (5) 
becomes 

 

1 1
1

( )
1

( )

3 4 Δ ( )
2Δ

n n n
P P P n

P f f
f nb P

n
f f

f nb P

α α α V uα St
C α

+ -
+

+

- +
=- ⋅

=

å

å



 (6) 

where the superscripts n+1, n, and n-1 represented the 
values at the next, current, and last time-step respectively. 
The subscript f denotes the variable approximated at 
the center of each face of the control volume P, and C is 
the convective flux. After some arithmetic operation, the 
algebraic form of the discretized equation reads  

 
(time)( )

P

P P P F F P
F

A A α A α b+ = +å
∼ΝΒ

 (7) 

with (time)
3Δ
2Δ

P
P

VA
t

=  and 
n n
P P

P P
α αb V

t

14 Δ
2Δ

-- +
= . AP and 

AF are defined according to the advection scheme used to 
approximate the face volume fraction 1n

fα + . 

4  Blended high resolution (HR) schemes 

The accuracy of the numerical solution of Eq. (7) depends 
on the proper estimation of the face volume fraction. This 
demands an advection scheme that should neither produce 
numerical diffusion nor unbounded values (Muzaferija et 
al., 1998). Over the last decades, blended advection schemes 
between a compressive and a diffusive high resolution (HR) 
scheme have been used to advect the volume fraction. The 
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reason for this is, that the use of just the compressive 
schemes can cause an alignment of the fluid interface with 
the grid (Ubbink, 1997), or that the use of only the diffusive 
HR schemes deteriorates the accuracy when the flow is not 
orientated along a grid line due to the false diffusion 
(Darwish and Moukalled, 2006). The switching strategy 
depends on the angle θf between the flow direction and the 
grid lines. This approach has been employed to develop 
several blending advection schemes, also known as interface- 
capture schemes, for example, CICSAM (Ubbink and Issa, 
1999), HRIC (Muzaferija et al., 1998), STACS (Darwish and 
Moukalled, 2006), and FBICS (Tsui et al., 2009).  

A high resolution scheme is a composite high-order scheme 
combined with the Convective Boundedness Criterion (CBC) 
of Gaskell and Lau (1988) to ensure that the interpolation 
profile at the cell face does not underflow or overflow the 
cell (Moukalled et al., 2016). Some examples of them are 
SUPERBEE, MUSCL, SMART, or STOIC. The HR schemes 
can be formulated in the framework of the Normalized 
Variable Diagram (NVD) introduced by Leonard (1991), 
which is illustrated in Fig. 1. The UD line refers to the 
upwind differencing scheme, DD to the downwind differencing 
scheme, and the shaded area indicates the part of the NVD 
that fulfils the CBC. The schemes close to the UD line are 
linked with numerical diffusion but always produce a bounded 
solution and are stable, whereas the schemes near the DD 
line are unstable but introduce a negative numerical diffusion, 
so they are known as compressive schemes.  

For the NVD, the normalized volume fraction α  in 
the vicinity of the cell P is defined as  

 ( )( ) U

A U

α r αα r
α α

-
=

-
  (8) 

where the subscripts D, A, and U refer to the donor, 
acceptor, and upwind cells designated depending on the 
flux direction (see Fig. 2), and r is the position vector. 
With this normalization relation U Aα α,0 1,= =  and the 
normalized volume fraction at the cell face fα  becomes a 
function of Dα . 

 
 

Fig. 1  NVD combined with the CBC showing the region where 
fα  is bounded. 

 
Then, a blended HR scheme designed within the NVD 

framework defines the normalized face volume fraction as 

 (blended HR) (compressive) (HR scheme)(1 )f f fα λα λ α= + -    (9) 

where the blending function λ = f(θf) varies between 0 and 1.  
Due to its composite nature (blended HR)fα  cannot be 

directly expressed in terms of the nodal values of the control 
volume P and neighbors F, which is necessary to determine 
the AP and AF  coefficients and to solve Eq. (7) for the unknown 
values at the central nodes. So, several methodologies 
have been developed for the numerical implementation of 
the blended HR schemes. The following section provides a 
brief introduction of some commonly used methods, and 
the next section explains in detail the proposed new 
alternative. 

5  Major implementation methods for HR schemes 

5.1  Deferred corrector approach 

The deferred corrector (DC) method of Rubin and Khosla 
(1977) is a simple technique designed for tridiagonal matrix 
solvers that define the convective term of the volume 
fraction equation as 

 ( )UD blended HR UD
f f f f f f fC α C α C α α= + -  (10) 

The first term, the value obtained by the upwind scheme, 
is used to form the coefficient matrix A for the nodal 

 

  
Fig. 2  Schematic position of the nodes D, A, and U according to the direction of the flow in a one-dimensional domain. 
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algebraic equation, while the second term, the difference 
between the blended HR and UD schemes is explicitly 
computed using the last available values and added to the 
source term. Thus, the resulting coefficient matrix is always 
diagonally dominant, yielding a numerically stable method. 
Nevertheless, the convergence rate decreases as the difference 
between the cell face value estimated by the upwind scheme 
and the blended HR scheme increases (Moukalled et al., 
2016). 

5.2  Downwind Weighting Factor method 

The Downwind Weighing Factor (DWF) method was 
developed by Leonard and Mokhtari (1990) to overcome 
the low convergence rate associated with the DC method. 
The face value is defined as a weighted average between the 
donor and acceptor cell written as 

 ( )1f f A f Dα DWF α DWF α= + -  (11) 

where the DWF is the weighting factor that varies between 
0 and 1 and is explicitly computed as  

 

blended HR

1
f D

f
D

α α
DWF

α
-

=
-

 
  (12) 

Then, the convective term using nodal values and 
considering the flow direction takes the form 

 
[ ]
[ ]

max(0, ) (1 )
max( ,0) (1 )

f f f f F f P

f f P f F

C α C DWF α DWF α
C DWF α DWF α

= + - -

- + -  (13) 

which is used to generate the coefficient matrix A.  
The effect of this weighting formulation is a reduced 

stencil for the discretized coefficients, which allows the 
system of equations to be solved with a tridiagonal solver. 
However, the diagonal coefficient AP becomes negative 
when 0.5( )f D Aα α α> +  which is a common scenario for 
all HR schemes when 0.5Dα > . Consequently, this system 
of equations leads to unphysical results for many flow 
configurations and requires substantial relaxation to avoid 
convergence problems (Darwish and Moukalled, 1996). 

5.3  Normalized Weighting Factor method 

The Normalized Weighting Factor (NWF) method of 
Darwish and Moukalled (1996) describes the normalized 
face value as a linear function of the normalized donor 
value write as 

 f Dα α m= +   (14) 

where   represents the slope and m the intercept of each 
linear function that is part of the HR scheme employed. 
Then, this linear relation is rewritten as  

 

f U D U

A U A U

α α α α m
α α α α

- -
= +

- -
  (15) 

yielding 

 
f D U A U U

D A U

α α α m α α α
α mα m α
( ) ( )

(1 )
= - + - +

= + + - -


 

 
(16) 

The convective term using the nodal values is 

[ ]
[ ]

max(0, ) (1 )
max( ,0) (1 )

f f f f P f F f f U

f f F f C f f U

C α C α m α m α
C α m α m α

+

-

= + + - - -

- + + - -

 
   

 (17) 
The last expression allows the full implicit treatment of 

the HR schemes, so the values of the far nodes Uα+  and Uα-  
are actual nodes in the computational domain that can be 
resolved in the algebraic equation. For the one-dimensional 
structured grid, as shown in Fig. 2, the NWF form of the 
algebraic equation becomes 

 Ε W ΕΕ WW
P P P F F P

F
A A α A α b(time)

, , ,
( )+ = +å

∼  
(18) 

where 

 

max(0, ) max( ,0)
max(0, )(1 )
max(0, ) max( ,0)
max(0, )(1 )

max( ,0)(1 )
max( ,0)(1 )

( )

e e e e
E

w w w

w w w w
W

e e e

EE e e e

WW w w w

P E W EE WW e w

C m C
A

C m
C m C

A
C m

A C m
A C m
A A A A A C C

é ù- - +
ê ú= -ê ú- -ë û
é ù- - +
ê ú= -ê ú- -ë û

= - - -
= - - -

= + + + + +









 (19) 

AP(time) and bP remain as defined in the last part of Section 3. 
The above coefficients form a diagonally dominant 

matrix in which AP is always greater than zero because for 
almost all HR schemes,   is greater than m. Only for the 
DD scheme [ , ] [0,1]m = , AP becomes zero. In this case, 
[ , ]m  is set to [ ,1 ]fL Lα-  where L is the value of   from 
the previous interval of the composite scheme.  

The NWF formulation is more robust than the DWF 
and faster than the DC method (Moukalled et al., 2016; 
Chourushi, 2018). However, the discretization above involves a 
pentagonal stencil that includes the far nodes in each coordinate 
direction which result in a pentadiagonal coefficient matrix.  

5.4  Reviewed Normalized Weighting Factor (RNWF) 
method 

The Reviewed Normalized Weighting Factor method developed 
by Chourushi (2018) is a tridiagonal version of the previously 
described NWF method. From the discrete equation (18), 
the change from pentadiagonal to tridiagonal stencil was 
performed considering the far nodes EE and WW as explicit. 
Then, these nodal values with their AEE and AWW coefficients 
are placed in the source term. Also, AEE and AWW are removed 
from the AP coefficient and added to the source term, resulting 
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in the following modification of the previous AP and bP 
terms: 

 (time terms)

( )
( ) ( )

P E W e w
n n n n

P P EE EE P WW WW P

A A A C C
b b A α α A α α

= + + +

= + - + -
 
(20) 

In addition, to improve the numerical stability, the 
[ , ]m  factors in the case of the DD scheme are changed 
to [ ,1 ]DL Lα-  .  

The RNWF method was 4 times faster than DC and 1.3 
times faster than NWF for the test cases studied in Chourushi 
(2018). However, for our case, the numerical implementation 
of the interface-capture schemes in the context of multiphase 
flows, the RNWF did not show the same excellent efficiency 
than in the cases studied by Chourushi and sometimes 
slightly altered the interface geometry.  

6  Modified Normalized Weighting Factor (MNWF) 
method 

Encouraged by the numerical stability and efficiency of the 
NWF method, we decided to review again its formulation 
to be used in the context of multiphase flows. Unlike the 
RNWF, the formulation of our new alternative called Modified 
Normalized Weighting Factor (MNWF) method starts from 
the initial formulation of the NWF method and not from its 

final discretized equation as the RNWF method does.  
First, the values of  and m for the interface-capture 

scheme are determined according to Eq. (14) and following 
the blending concept of Eq. (7). The values of  and m for 
some popular blended HR schemes used in the context of 
multiphase flows are listed in Table 1.  

Second, to ensure numerical consistency, the m factor 
for the blended HR scheme is corrected with the CBC 
condition. For which (blended HR)fα  is explicitly calculated 
using the blended HR scheme, and then bounded as  

 
( ) ( )(blended HR)min ,1 max ,1D f Dα α α  ≤ ≤  (21) 

This bounded value is used to corrected m according to 

 blended HR (blended  HR) blended HRf Dm α α= - 
 

 (22) 

Third, when [ ] [ ]m blended HR, 0,1 ,=  the strategy introduced 
in the RNWF methodology is used instead of the original 
NWF strategy as it proved to be more numerically stable. 
Thus, the [ ]blended HR,m factors are set to [ ],1 DL Lα-   where 
L is the   factor of an interval of the diffusive HR scheme 
to preserve stability. 

Fourth, following Eq. (15), Eq. (16) is obtained which is 
rewritten here for convenience as 

 

( )
f

f D A U
A S

α α mα m α
coefficients Source term

1


= + + - -  

 

(23) 

 
Table 1   and m factors in the NVD framework for some blended HR schemes used to advent the volume fraction 

Blended HR scheme [ ],m  factors for uniform grids 

CICSAM 

(Ubbink and Issa, 1999) 

Compressive scheme: 

HYPER-C (CBC) 

Diffusive HR scheme: 

ULTIMATE-QUICKEST (UQ)  

Blending function: 

( )cos 2 1
min ,12

f
f

θ
λ

ì üï ï+ï ï= í ýï ïï ïî þ
 

[ ] [ ]

[ ]

[ ]
( ) ( ) [ ]{ }

[ ]

D
D

D
D

D

α
α

Co Co
α

m α
Co

Co Co l m α
m

CBC

CBC
UQ

1
, 0 0 1, 1

, 0,1 0 1, 1

1, 0 else

1 3
min 3 , 1 , , 0 1

4 8,
1, 0 else

<

=

+ -
=

ì é ùïï ê úï ê úï ë ûïïïïíïïïïïïïïî
ì é ùïï ê úï ê úí ë ûïïïî










≤ ≤

≤ ≤

≤ ≤

≥

 

[ ] [ ] ( )[ ]CICSAM CBC UQ, , 1 ,f fm λ m λ m= + -    

MCICSAM-W 

(Wacławczyk et al., 2007) 

Compressive scheme: 

The steady version of HYPER-C 

(CBC) 

Diffusive scheme: 

FROMM (FR)  

Blending function: 
1/4cosf fλ θ=  

[ ]

[ ]

[ ]

[ ]

[ ]
[ ]{ }

[ ]

D D

D D

D

α α

m α α

l m α
m

CBC

CBC
FR

2, 0 0 1, 2 1

, 0,1 0 1, 2 1

1, 0 else

1
min 1, , , 0 1

4,
1, 0 else

<

=

=

ìïïïïíïïïïî
ì é ùïï ê úï ê úí ë ûïïïî

 

 




≤ ≤

≤ ≤ ≥

≤ ≤

 

[ ] [ ] ( )[ ]CICSAM-W CBC FR, , 1 ,f fm λ m λ m= + -    
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(Continued) 
Blended HR scheme [ ],m  factors for uniform grids 

MCICSAM-Z 
(Zhang et al., 2014) 
Compressive scheme: 
Compressive differencing scheme 
(CN-CBC) based on SUPERBEE
Diffusive scheme: 
MUSCL 
Blending functions: 

1fλ - , 2f uλ - - , and  

2f lλ - - (for more details, refer to 

the original paper) 
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HRIC 
(Muzaferija et al., 1998)  
Compressive scheme: 
Bounded downwind (BD) 
Diffusive scheme: 
The upwind differencing (UD)  
Blending function: 
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FBICS 
(Tsui et al., 2009)  
Compressive scheme: 
Bounded downwind (BD) 
Diffusive scheme: 
A HR scheme (HR)  
Blending function: 

4cosf fλ θ=  
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(Continued) 
Blended HR scheme [ ],m factors for uniform grids 

CUIBS 

(Patel and Natarajan, 2015)  

Compressive scheme: 

Bounded downwind (BD) 

Diffusive scheme: 

A HR scheme (HR)  

Blending function: 
1/4cosf fλ θ=  
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At this point of the NWF formulation, we decided to use 
only the terms related to the donor and acceptor nodal 
values to form the matrix coefficients of A, while the last 
term involving the far node U is explicitly determined and 
added directly to the source term as is shown in Moukalled 
et al. (2016). Hence, the expression in terms of nodal values 
Eq. (17) is used to obtain the following algebraic equation: 
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Finally, for a better explanation of the MNWF method, 
we give the algebraic equation for the one-dimensional 
structured grid presented in Fig. 2: 
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7  Results and discussion 

In this section, four test cases are presented to demonstrate 
the accuracy and efficiency of the new Modified Normalized 
Weighting Factor (MNWF) method. The results are compared 
with the traditional techniques Deferred Corrector (DC), 
Downwind Weighting Factor (DWF), and the recent 
alternative the Reviewed Normalized Weighting Factor 
(RNWF) method. For this purpose, the six blended high- 
resolution schemes described above (CICSAM, MCICSAM- 
W, MCICSAM-Z, HRIC, FBICS, and CUIBS) were implemented 
employing the four techniques. The efficiency is related to 
the computational effort of each technique; in other words, 
the total number of iterations required to achieve the 
convergence criterion during the simulation. The solution 
is assumed to have converged when the normalized residual 
defined by Eq. (28) is less than the chosen convergence 
criterion (ζ): 

 P

P P F F P
Fα

P P

A α A α b
R ζ

A α
all cells

all cells

max

max

- -
=

å
≤

∼ΝΒ
 (28) 

For all the cases, no under-relaxation factor is used, and 
the maximum number of iterations per time step is limited 
to 20, whereas the convergence criterion is different for 
each case.  

The solution algorithm employed for all the cases is a 
sequential one. At each time-step, the volume fraction 
equation (3) is firstly solved at the beginning of each time-step. 
Then, the new volume fraction field is used to compute the 
local density and viscosity using Eq. (4), and finally, the 
momentum and continuity equations (1) and (2) are solved 
by the predictor−corrector SIMPLE algorithm.  

The first two test cases are the advection of the slotted 
circle in a rotational flow field introduced by Zalesak (1979) 
and the advection of a circle in a shear flow presented by 
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Rudman (1997) which have simple exact solutions. These 
are frequently used in the multiphase community to check 
the performance of the advection schemes dealing with a 
non-uniform distribution of the Courant number and a 
considerable interface deformation, respectively (Ubbink 
and Issa, 1999; Zhang et al., 2014; Patel and Natarajan, 
2015). For both, the accuracy of the simulation results is 
verified using the root mean square (RMS) error defined as 

 

N
n a
i i

i
α α

error
N

2( )-
=

å

 
 (29) 

where n
iα  is the numerical solution, a

iα  is the exact solution, 
and N is the total number of control volumes. The initialization 
of the volume fraction field for these cases are illustrated in 
Fig. 3. 

7.1  Advection of a Slotted Circle in a rotational flow 

A circle with a diameter of 1 m and a slot of width 0.12 m 
and depth 0.62 m is centered at (2, 2.65) m of a square 4 m × 
4 m domain, and exposed to a clockwise circular velocity 
given by 

 ( ) ( )0 0,u ω y y v ω x x=- - = -  (30) 

where (x0, y0) = (2, 2) is the center of the rotation and ω = 
0.5 rad/s is the constant angular velocity. The time needed 
for one rotation is 12.57 s. The problem is discretized with a 
structured grid of 200×200 square control volumes, and it is 
solved for five different time-step sizes which produce a 
maximum Courant number (Co) of 0.2, 0.4, 0.6, and 0.8 at 
point (2, 2.15) m (Darwish and Moukalled, 2006). The 
convergence criterion is ζ = 5×10−3.  

The stacked columns shown in Fig. 4 represent the total 
number of iterations that each HR scheme performed to 
converge during one rotation of the slotted circle at different 
maximum Courant numbers. The bottom layer of the column 
represents the number of iterations performed using the DC 
method, the second relates to the DWF, the third to RNWF, 

and the last to MNWF. The results for the six different HR 
schemes are displayed in (a) to (f), with CICSAM shown in 
(a), MCICSAM-W in (b), MCICSAM-Z in (c), HRIC in (d), 
FBICS in (e), and CUIBS in (f). The efficiency between the 
four methods varies according to the HR scheme. However, 
for all of them, the new MNWF is the fastest to reach the 
convergence, whereas the DWF method is the slowest. For 
example, for CICSAM and MCICSAM-Z, the MNWF is 
about 20%−35% faster than DC and RNWF, and 35%−80% 
faster than DWF. Whereas for the HRIC and MCICSAM-W 
scheme, the MNWF works similarly to DC and RNWF but 
is noticeably better than DWF with about 20%−85% fewer 
total iterations. In the cases of FBICS and CUIBS, the total 
number of iterations used by MNWF is from 12%−25% less 
than by DC and RNWF, while 10%−85% less than for DWF. 

On the one hand, for low Co, the influence of the 
implementation method is negligible for all schemes. On 
the other hand, for medium and high Co, the implementation 
method plays a significant role. For instance, the MNWF is 
about 10%−30% more efficient than DC and RNWF, and 
50%−85% than DWF.   

Table 2 shows the accuracy of each HR scheme implemented 
through the four different techniques. For CICSAM, HRIC, 
and MCICSAM-W, the error varies according to the 
implementation technic used, and it is more significant for 
high Co. Nonetheless, the best performance remains in 
MNWF. To visualize this difference in accuracy, Fig. 5 shows 
the contour plots at Co = 0.8 of these three schemes. For the 
other three HR schemes, the error is independent of the 
implementation method. 

7.2  Advection of a circle in a shear flow 

The volume fraction field is initialized, as is shown in Fig. 
3(b). A circle of 0.2π m diameter with its center at (0.5π, 
0.2(1+π)) m filled with phase one is in a square domain of 
phase two. The two-phase configuration is exposed to a 
shear flow field described by 
 

  

Fig. 3  Initial configuration for (a) the slotted circle test case and (b) the circle in a shear flow. 
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Fig. 4  Comparison of the total number of iterations required for the convergence of (a) CICSAM, (b) HRIC, (c) MHRIC, (d) MCICSAM, (e) 
FBICS, and (f) CUIBS implemented using the DC, DWF, RNWF, and the new MNWF methods at different maximum Courant numbers.  

 
Table 2  RMS error after one rotation of the slotted circle 

HR scheme CICSAM (10−2) MCICSAM-W (10−2) MCICSAM-Z (10−2) 

Co DC DWF RNWF MNWF DC DWF RNWF MNWF DC DWF RNWF MNWF 

0.2 1.55 1.63 15.50 1.54 2.64 2.41 2.54 2.78 1.21 1.21 1.21 1.21 

0.4 1.69 1.87 7.53 1.48 2.62 2.42 2.51 2.40 1.28 1.28 1.28 1.28 

0.6 2.09 2.23 6.08 1.82 2.93 2.35 2.59 2.80 1.46 1.46 1.46 1.46 

0.8 3.36 3.38 5.35 3.25 3.00 2.88 2.90 2.44 2.10 2.10 2.10 2.10 

HR scheme HRIC (10−2) FBICS (10−2) CUIBS (10−2) 

Co DC DWF RNWF MNWF DC DWF RNWF MNWF DC DWF RNWF MNWF 

0.2 2.87 2.79 2.78 2.79 1.65 1.65 1.65 1.65 1.58 1.58 1.58 1.58 

0.4 2.85 2.79 2.70 2.79 1.67 1.67 1.67 1.67 1.60 1.60 1.60 1.60 

0.6 2.88 2.71 2.74 2.71 1.85 1.85 1.85 1.85 1.67 1.67 1.67 1.67 

0.8 3.26 2.81 3.09 2.79 1.60 1.60 1.60 1.60 1.64 1.64 1.64 1.64 
 

 sin( )cos( ), cos( )sin( )u x y v x y= =-  (31) 

where x, y ∈ [0, π]. The domain discretized with a 
uniform structured mesh consisting of 160×160 cells, and 
the time- step is chosen so that the local Courant number 
is 0.5. For observing the performance of the HR schemes 
together with the implementation method in the presence 
of interface deformation, the simulation is firstly run for n 
time-steps using the velocity defined in Eq. (31), then the 
flow is reversed, and the simulation is rerun for n time- 

steps. Hence, the interface should return to its initial shape. 
For this study, n = 1000 and n = 2000 are investigated. 

Figure 6 summarizes the total number of iterations 
required by the HR schemes implemented with the four 
methods DC, DWF, RNWF, and MNWF in the case of (a) 
n = 1000 and (b) n = 2000. The convergence criterium for 
these simulations is ζ = 5×10−3. In case (a), 1000 forward 
steps followed by 1000 backward steps, the MNWF is 
15%−50% faster than DC, 45%−84% faster than DWF, and   
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  DC DWF RNWF MNWF 

CICSAM 

  

MCICSAM-W 

  

HRIC 

  
Fig. 5  Contour plots of the slotted circle problem after one complete rotation at maximum Co = 0.8 for three blended HR schemes. 

 
(a) (b) 

  

Fig. 6  Total number of iterations for the circle in a shear flow test case using the different HR schemes implemented employing the DC, 
DWF, RNWF, and MNWF methods. (a) After 1000 forward steps, followed by 1000 backward steps. (b) After 2000 forward steps, 
followed by 2000 backward steps. 

 
about 3%−18% faster than RNWF. Only for MCICSAM-Z, 
the RNWF seems to be a better alternative. In case (b), 2000 
steps forward followed by 2000 steps backwards, the high 
degree of interface deformation reduces the efficiency of 
the MNWF. Thus, the computational effort between MNWF 
and RNWF are similar, and the MNWF is now only 5%−27% 
faster than DC and 45%−58% faster than DWF. Nevertheless, 
MNWF is still a good option for the implementation of the 
analyzed schemes.  

Table 3 contains the errors of these simulations, which 
are slightly different for all schemes and implementation 
techniques. For n = 1000, the six advection schemes almost 
recover the initial shape. Therefore, the errors are small and 

fluctuate between 1.83×10−2 and 4.55×10−2. While for n = 
2000, all schemes suffer from numerical diffusion, independently 
of the implementation technique. Thus, the errors are more 
significant and range from 8.87×10−2 to 11.4×10−2. Figure 7 
depicts the results of two of the tested schemes: CUIBS (low 
error values) and CICSAM (high error values) for (a) n = 
1000, and (b) n = 2000 forward and backward steps. 

7.3  Rising bubble 

The third test case, the rising bubble, is one of the 
multiphase flow benchmark cases of Hysing et al. (2009) 
which is an example of bubble dynamics with strong surface 
tension effects. Figure 8 illustrates the initial configuration  
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Table 3  RMS error for n forward and n backward steps of the circle in shear flow test case 

After 1000 steps forward followed by 1000 steps 
backwards (10−2) 

After 2000 steps forward followed by 2000 steps 
backwards (10−2) 

         Implementation
          method 

HR scheme DC DWF RNWF MNWF DC DWF RNWF MNWF 

CICSAM 4.51 4.53 4.55 4.55 9.52 9.43 10.80 9.46 

MCICSAM-W 3.34 3.26 3.31 3.34 9.47 9.00 10.20 9.17 

MCICSAM-Z 1.91 1.90 2.28 3.73 8.98 8.92 10.60 9.10 

HRIC 3.71 3.62 3.61 3.65 9.29 9.15 10.10 9.12 

FBICS 1.83 1.90 2.09 2.15 8.88 8.87 8.93 10.20 

CUIBS 1.85 1.93 1.91 1.89 8.90 8.89 11.40 8.89 
 

CICSAM 

(a)

 
 

(b)

 

CUIBS 

 
 

 
 

Fig. 7  Results of the circle in a shear flow test case for the CICSAM and CUIBS scheme implemented using MWFM. (a) After 1000 
forward steps, followed by 1000 backward steps. (b) After 2000 forward steps, followed by 2000 backward steps. 

 

  
Fig. 8  Initial configuration and boundary conditions for the 
rising bubble problem. 
 
and boundary conditions of the problem.  

A 0.5 m diameter bubble of fluid 2 is positioned at (0.5, 
0.5) m within a tank of 1 m × 2 m filled with fluid 2. The 
top and bottom walls are defined as no-slip boundary 
conditions and the vertical walls as symmetry boundary 
conditions. The density and dynamic viscosity of fluid 1 are 
ρ1 = 1000 kg/m3 and μ1 = 10 kg/(m·s), and for fluid 2 ρ2 = 
100 kg/m3 and μ2 =1 kg/(m·s). The dynamic of the bubble is 
controlled by a gravity force g = −0.98 m/s2 and a surface 
tension coefficient σ = 24.5 N/m. The benchmark quantities 
are the temporal evolution during three seconds of the center 
of mass of the bubble and its mean rising velocity which are 
determined as 

 2 2

2 2
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Ω Ω
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i i i i

i i
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where Ω2 denotes the region that the bubble occupies and 
δV size of the control volume. 

The above quantities are used to validate the multiphase 
code and also the quality of the overall solution method. 
The error of the simulation is quantified using the following 
relative error norm: 

 

t,ref t
1

t,ref
1

N

i
N

i

q q
error

q

=

=

-
=
å

å
 (33) 

where qt is the temporal evolution of the quantity xc or yc, 
and qref is the reference solution presented in Hysing et al. 
(2009). 

The computation is performed for three uniform structured 
grids which consist of 40×80, 80×160, and 160×320 hexahedral 
control volumes. The time steps selected for each mesh are 
0.02 s, 0.01 s, and 0.005 s respectably. This selection results 
in a maximum local Co of 0.45 for the three grids. The 
convergence criterion is ζ = 5×10−4 for the volume fraction 
field and ζu = 10−6 for the velocity field. The curvature is 
calculated with the height-function method (Malik et al., 
2007).  

Figure 9 shows the total number of iterations for the 
coarse, medium, and fine grid during three seconds of the 
calculation for the six HR schemes implemented using the 
DC, DWF, RNWF, and MNWF methods. For the three 
girds in this test case, the efficiency of the DC, DWF, 
RNWF and MNWF methods are similar for CICSAM and 
MCICSAM-Z. Although for the coarse and medium grid,  
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Fig. 9  Total number of iterations for (a) coarse grid, (b) medium grid, and (c) fine grid for the rising bubble test case. The six blended 
HR schemes implemented through the DC, DWF, RNWF, and MNWF methods are presented. 

      
the RNWF seems to have a small advantage. On the other 
hand, for the three grids and the other HR schemes, the 
percentage difference between the four methods is similar. 
The MNWF method is 15%−27% faster than DC, 6%−13% 
than RNWF, and 20%−50% than DWF. Although the most 
influential part of this simulation is the calculation of the 
curvature, the effects of the implementation techniques remained, 

and again the MNWF shows the best performance and DWF 
the worst.  

Besides that, the relative error of the results computed 
for the fine grid, presented in Table 4, reveals that the 
calculations performed using the MNWF method are in the 
same range of precision than with the other methods. 
Figure 10(a) shows the final position of the bubble solved  

 

Table 4  Relative error norm for the rising bubble test case solved using the different HR schemes and the implementation techniques for 
the fine grid 

Center of the mass (10−3) Rising velocity (10−3)            Implementmethod
HR scheme DC DWF RNWF MNWF DC DWF RNWF MNWF 

CICSAM 4.67 4.69 4.69 4.69 3.52 3.52 3.50 3.42 

MCICSAM-W 3.67 3.70 3.69 3.67 11.00 11.00 10.90 11.00 

MCICSAM-Z 3.39 3.39 3.14 3.23 3.32 3.32 3.25 3.24 

HRIC 4.67 4.69 4.69 4.69 14.80 14.80 14.60 14.90 

FBICS 3.28 3.30 3.26 3.26 4.24 4.25 4.23 4.27 

CUIBS 3.27 3.29 3.30 3.28 4.08 4.08 4.04 4.08 
   
(a)  (b) (c) 

   
Fig. 10  (a) Final position of the bubble at 3 s calculated using the CUIBS scheme in combination with the MNWF method for the fine 
grid. (b) Center of mass and (c) rise velocity of the rising bubble during 3 s for the six blended HR schemes implemented employing the 
new MNWF method for the fine grid. The reference refers to the results of Hysing et al. (2009)    
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with the CUIBS scheme in combination with MNWF for 
the fine grid, and (b) the evolution of the centre of mass 
with time, and (c) the rise velocity of the bubble for the 
six blended HR schemes implemented with the MNWF 
method. 

7.3.1  3D rising bubble  

In order to measure the efficiency of the new approach in 
3D scenarios, the 2D rising bubble test case was extended to 
3D according to the configuration showed in Turek et al. 
(2019). The physical properties, gravity, and surface tension 
coefficient are the same as for the 2D case. Only now all walls 
are set as non-slip boundary conditions. The computational 
domain is a uniform structured grid of 80×80×160 hexahedral 
control volumes divided into 32 blocks. The time step is 
0.005 s which produces a maximum Co ~0.55. The curvature 
is calculated with the standard second-order central difference 

scheme (CDS). The convergence criterion is ζ = 5×10−4 for the 
volume fraction and ζu = 10−7 for the velocity. For this part, 
the results obtained with CICSAM and MCICSAM-Z are 
not presented because their low performance shown in the 
2D case is almost the same in the 3D case, and these impede 
the precise observation of the other results. Figure 11 shows 
the new initial geometric configuration, the simulation results 
of the position of the bubble at three seconds, and the evolution 
of the rise velocity. The four schemes MCICSAM-W, HRIC, 
FBICS, CUIBS, implemented with the MNWF method agree 
with the reference result published in Turek et al. (2019). 

Concerning the efficiency of the MNWF method, the 
performance shown for the 2D case is almost the same for 
the 3D case. The MNWF method is the fastest and the 
DWF method the slowest. Except for the FBICS scheme 
where the quickest is the DC. See Fig. 12.  

 
(a) 

 

(b) 

 

(c) 

 
Fig. 11  (a) Geometric initial configuration for the 3D rising bubble test case, (b) bubble position at 3 s. The lines depict the division 
into blocks of the grid. (c) Temporal evolution of the rise velocity of the center of the bubble obtained with four methods implemented 
with MNWF and the reference results computed with NaSt3D, OpenFOAM, and FeatFlow.              

  
Fig. 12  Total number of iterations for the 3D rising bubble test 
case for the four blended HR schemes implemented using the DC, 
DWF, RNWF, and MNWF methods.  

7.4  Dam break flow impacting a rigid structure 

Finally, to validate our proposed MNWF method for more 
realistic applications, the classic dam breaking example is 
computed. It was experimentally studied by Koshizuka (1995) 
to describe the collapse of a water column impacting a rigid 
structure. Figure 13 represents the geometry and physical 
parameters of the problem. It consists of a box open to the 
atmosphere that contains a water column which collapses 
and hits a rigid obstacle. The high-density fluid is water, 
and the low-density fluid is air, both with standard physical 
properties. The two-phase flow is considered laminar, and 
the surface tension effects are neglected. 

The computation is run for two grids consisting of 
hexahedral control volumes (CV), a coarse grid of 2384 CV 
and a fine grid of 9536 CV. Each mesh is formed by five    
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(a) 

 
(b) 

Fig. 13  (a) Geometrical configuration and physical parameters of the dam break flow impacting a rigid structure test case. The 
dimensions are in mm. (b) Initial condition in the coarse computational domain.        
blocks divided according to the contour of the obstacle and 
following a hyperbolic distribution as is shown in Fig. 
13(b). The simulations are computed for 0.9 s with a 
variable time-step defined for each grid to maintain a Co 
below one. For these calculations, the adaptative time step 
is chosen because the kinematic energy of the water 
increases with the time, which produces a constant increase 
of the Courant number. If a small constant time step is selected, 
the calculation is stable but is inefficient, while a large 
value leads to divergence when the velocity of the water is 
higher. The convergence criterion for the volume fraction 
field is ζ = 5×10−4, and ζu = 10−7 for the velocity and 
pressure.  

Figure 14 presents the total number of iterations 
required in each grid for the six HR schemes implemented 
using DC, DWF, RNWF, and MNWF. For the two grids, 
the difference in the performance of the methods is less 

evident than for the other cases. It is because the timing 
control results in low Courant numbers over a large part 
of the simulation period, thus decreasing the difference 
in efficiency that exists between the methods. As shown 
in the first case, the advection of a Slotted Circle in 
a rotational flow, for low Co, all four methods act 
similarly. However, for these grids, one observes that for 
the CICSAM and MCICSAM-Z schemes, the new MNWF 
method is considerably better than DC and DWF, and 
slightly better than RNWF. Although RNWF is the 
quickest for MCICSAM-Z in the coarse grid domain. 
MNWF computed results with 31%−44% fewer iterations 
than DC, 50% fewer than DWF, and 2%−25% fewer than 
RNWF. 

Meanwhile, for MCICSAM-W, HRIC, FBICS, and CUIBS, 
the advantage in speed of MNWF in comparison with the 
other techniques is less evident but existent. The MNWF 

  
Fig. 14  Total number of iterations required for the six HR schemes implemented using the DC, DWF, RNWF, and MNWF methods. 
The simulations of the dam-break flow impacting a rigid structure case were calculated for 0.9 s. 
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t = 0 s 

t = 0.25 s 

 

t = 0.3 s 

 

t = 0.4 s 

 

t = 0.5 s 

Fig. 15  A comparison of the free surface profile in the dam break experiment of Koshizuka (1995) at the same snapshot time. The results 
were obtained using the MCICSAM-Z scheme implemented with our new modified normalized weighting factor (MNWF) method.   
is approximately 5%−7% faster than DC or RNWF, and 
15%−32% than DWF. Furthermore, in this case, we noted 
that the numerical precision of the implementation method 
directly affects the calculation of the velocity. Thus, the 
velocity needs more interactions to converge, especially for 
DWF as this method on many occasions does not achieve 
the converge criterion.  

Finally, in Fig. 14, a qualitative comparison between 
the simulation results obtained for the fine grid using the 
MCICSAM-Z scheme implemented with the proposed method 
MNWF and the experimental results from Koshizuka (1995) 

are presented to demonstrate the quality of the simulations. 

8  Conclusions 

We presented a new methodology, the MNWF method, to 
deal with the implementation of blended HR schemes in 
the context of multiphase flow. The method is based on the 
NWF methodology and produces a system of tridiagonal 
equations. The resulting coefficient matrix is always diagonally 
dominant, with AP coefficients greater than zero, giving a 
numerically stable method without the necessity of under 
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relaxation. The main advantage of the new approach is its 
high rate of convergence in comparison to the other methods 
studied in this work, the DC, DWF, and RNWF methods. 
Also, MNWF does not degenerate the interface. 

The superiority in the rate of convergence of the new 
MNWF compared to the other methods depends on the 
test case. However, generally, it can be concluded that the 
MNWF is about 5%−25% faster than the DC and RNWF 
methods, and markedly quicker than the DWF method. For 
medium and high Co cases, this difference exceeded 80% 
because the DWF method in many occasions does not converge, 
and the maximum number of iterations is executed. Thus, 
confirming what was mentioned by Darwish and Moukalled 
(1996), that the coefficients generated with the DWF form a 
numerically unstable system of equations. 

Additionally, we observed that the convergence rate is 
strongly influenced by the methodology used to implement 
the blended HR schemes for medium and high local Co. 
Especially in the case of CICSAM and its modifications, 
which were initially developed to be implemented with the 
DWF method.  

Also, observing the number of iterations for the three 
refined grids in the 2D rising bubble and in the dam break 
flow impacting a rigid structure test cases, we can conclude 
that the methodology is independent of the grid size, and 
the most influential parameter is the Courant number. 

On the other hand, the accuracy of the results does not 
seem to be affected by the methodology used to implement 
the schemes numerically. Instead, it seems to be a characteristic 
of each scheme. Except for CICSAM, which generates less 
accurate results if it is implemented with RNWF. 

In summary, the new MNWF methodology is highly 
recommended to work with medium and high Co as well as 
to improve the stability of the blended HR schemes. 

Acknowledgements 

This work is supported by the “Excellence Initiative” of the 
German Federal and State Governments within the Graduate 
School of Computational Engineering at Technische Universität 
Darmstadt. 

Funding note 

Open access funding provided by Projekt DEAL.  

References 

Chourushi, T. 2018. Computationally inexpensive and revised normalized 
weighting factor method for segregated solvers. Int J Comput 
Math, 95: 1622–1653.  

Darwish, M. S., Moukalled, F. 1996. The normalized weighting factor 

method: A novel technique for accelerating the convergence of 
high-resolution convective schemes. Numer Heat Tr B: Fund, 30: 
217–237.  

Darwish, M., Moukalled, F. 2006. Convective schemes for capturing 
interfaces of free-surface flows on unstructured grids. Numer 
Heat Tr B: Fund, 49: 19–42. 

Ferziger, J. H., Perić, M. 2012. Computational Methods for Fluid 
Dynamics, 3rd edn. Springer-Verlag Berlin Heidelberg. 

Gaskell, P. H., Lau, A. K. C. 1988. Curvature-compensated convective 
transport: SMART, a new boundedness-preserving transport 
algorithm. Int J Numer Meth Fl, 8: 617–641.  

Hirt, C. W., Nichols, B. D. 1981. Volume of fluid (VOF) method 
for the dynamics of free boundaries. J Comput Physs, 39: 201– 
225.  

Hogg, P. W., Gu, X. J., Emerson, D. R. 2006. An implicit algorithm for 
capturing sharp fluid interfaces in the volume of fluid advection 
method. In: Proceedings of the European Conference on 
Computational Fluid Dynamics. 

Hysing, S., Turek, S., Kuzmin, D., Parolini, N., Burman, E., Ganesan, 
S., Tobiska, L. 2009. Quantitative benchmark computations of 
two-dimensional bubble dynamics. Int J Numer Meth Fl, 60: 
1259–1288.  

Koshizuka, S. 1995. A particle method for incompressible viscous 
flow with fluid fragmentation. Comput Fluid Dyn J, 4(29). 

Leonard, B. P. 1991. The ULTIMATE conservative difference scheme 
applied to unsteady one-dimensional advection. Comput Method 
Appl M, 88: 17–74.  

Leonard, B. P., Mokhtari, S. 1990. Beyond first-order upwinding: The 
ultra-sharp alternative for non-oscillatory steady-state simulation of 
convection. Int J Numer Meth Eng, 30: 729–766.  

Malik, M., Fan, E. S. C., Bussmann, M. 2007. Adaptive VOF with 
curvature-based refinement. Int J Numer Meth Fl, 55: 693–712.  

Meyer, J., Renzsch, H., Graf, K., Slawing, T. 2016. Advanced 
CDF-simulations of free-surface flows around modern sailing 
yachts using a newly developed OpenFOAM solver. In: Proceedings 
of the 22nd Chesapeake Sailing Yacht Symposium. 

Moukalled, F., Mangani, L., Darwish, M. 2016. The Finite Volume 
Method in Computational Fluid Dynamics. Springer International 
Publishing Switzerland. 

Muzaferija, S., Perić, M., Sames, P. C., Shellin, T. 1998. A two-fluid 
Navier–Stokes solver to simulate water entry. In: Proceedings of 
the 22nd Symposium on Naval Hydrodynamics, 638–651. 

Patel, J. K., Natarajan, G. 2015. A generic framework for design of 
interface capturing schemes for multi-fluid flows. Comput Fluids, 
106: 108–118.  

Rubin, S. G., Khosla, P. K. 1977. Polynomial interpolation methods 
for viscous flow calculations. J Comput Phys, 24: 217–244.  

Rudman, M. 1997. Volume-tracking methods for interfacial flow 
calculations. Int J Numer Meth Fl, 24: 671–691. 

Sauer, J. 2000. Instationär kavitierende Strömungen: ein neues Modell, 
basierend auf front capturing (VoF) und Blasendynamik. Universität 
Karlsruhe. 

Tryggvason, G., Scardovelli, R., Zaleski, S. 2001. Direct Numerical 
Simulations of Gas–Liquid Multiphase Flows. Cambridge University 
Press.  



A Modified Normalized Weighting Factor method for improving the efficiency of the blended high-resolution advection… 

 

225

Tsui, Y. Y., Lin, S., Cheng, T., Wu, T. C. 2009. Flux-blending schemes 
for interface capture in two-fluid flows. Int J Heat Mass Tran, 52: 
5547–5556.  

Turek, S., Mierka, O., Bäumler, K. 2019. Numerical benchmarking for 
3D multiphase flow: New results for a rising bubble. In: Numerical 
Mathematics and Advanced Applications ENUMATH 2017. 
Lecture Notes in Computational Science and Engineering, Vol. 
126. Radu, F., Kumar, K., Berre, I., Nordbotten, J., Pop, I. Eds. 
Springer Cham, 593–601. 

Ubbink, O. 1997. Numerical prediction of two fluid systems with 
sharp interfaces. Imperial College of Science, Technology & 
Medicine, London, UK.  

Ubbink, O., Issa, R. I. 1999. A method for capturing sharp fluid 
interfaces on arbitrary meshes. J Comput Phys, 153: 26–50.  

Wackers, J., Koren, B., Raven, H. C., van der Ploeg, A., Starke, A. R., 
Deng, G. B., Queutey, P., Visonneau, M., Hino, T., Ohashi, K. 
2011. Free-surface viscous flow solution methods for ship 
hydrodynamics. Arch Comput Method E, 18: 1–41.  

Wacławczyk, T., Caner Gemici, Ö., Schäfer, M. 2007. Novel high- 
resolution scheme for interface capturing in multi-phase flow. In: 
Proceedings of the 6th International Conference on Multiphase 
Flow, S1-Fri-A64. 

Zalesak, S. T. 1979. Fully multidimensional flux-corrected transport 
algorithms for fluids. J Comput Phys, 31: 335–362. 

Zhang, D., Jiang, C., Liang, D., Chen, Z., Yang, Y., Shi, Y. 2014. 
A refined volume-of-fluid algorithm for capturing sharp fluid 
interfaces on arbitrary meshes. J Comput Phys, 274: 709–736.  

 
Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as 
long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made.  

The images or other third party material in this article are included in 
the article’s Creative Commons licence, unless indicated otherwise in a 
credit line to the material. If material is not included in the article’s 
Creative Commons licence and your intended use is not permitted by 
statutory regulation or exceeds the permitted use, you will need to obtain 
permission directly from the copyright holder.  

To view a copy of this licence, visit http://creativecommons.org/ 
licenses/by/4.0/. 

 


