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Abstract

Machine learning and argumentation can potentially greatly benefit from each other. Combining deep classifiers with
knowledge expressed in the form of rules and constraints allows one to leverage different forms of abstractions within
argumentation mining. Argumentation for machine learning can yield argumentation-based learning methods where the
machine and the user argue about the learned model with the common goal of providing results of maximum utility to
the user. Unfortunately, both directions are currently rather challenging. For instance, combining deep neural models with
logic typically only yields deterministic results, while combining probabilistic models with logic often results in intractable
inference. Therefore, we review a novel deep but tractable model for conditional probability distributions that can harness
the expressive power of universal function approximators such as neural networks while still maintaining a wide range
of tractable inference routines. While this new model has shown appealing performance in classification tasks, humans
cannot easily understand the reasons for its decision. Therefore, we also review our recent efforts on how to “argue” with
deep models. On synthetic and real data we illustrate how “arguing” with a deep model about its explanations can actually
help to revise the model, if it is right for the wrong reasons.

Keywords Argumentation-based ML - Explainable Al - Interactive ML - Influence Function - Deep Density Estimation -
Probabilistic Circuits

1 Introduction of knowledge representation and reasoning into account by

developing models on more formal logical and statistical

Classification is the problem of categorizing new obser-
vations by using a classifier learnt from already catego-
rized examples. In general, the area of machine learning
has brought forth a series of different approaches to deal
with this problem, from decision trees over support vector
machines to deep neural networks. Recently, approaches to
statistical relational learning [6] even take the perspective

We only sketch and review our recent efforts. More details can
be found in the corresponding publications [9, 31, 33, 37] and
current submissions to conferences and journals.
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grounds. One can even combine the latter with deep learn-
ing into a single system. The resulting neural-symbolic sys-
tems such as DeepProbLog [20] are capable of modeling
knowledge and constraints with a logic formalism, while
maintaining the computational power of deep neural. One
can even integrate probabilistic circuits such as sum-prod-
uct network [35], featuring deep hierarchical models with
tractable inference.

These developments impact both computational mod-
els of argumentation [3] and argumentation mining [19].
In computational argumentation, structured arguments have
been studied and formalized for decades using models that
can be expressed in a logic framework. At the same time, ar-
gumentation mining has rapidly evolved by exploiting state-
of-the-art neural architectures coming from deep learning.
However, these two worlds have progressed largely inde-
pendently of each other. Only recently, a few works have
taken some steps towards the integration of such methods,
by applying techniques combining sub-symbolic classifiers
with knowledge expressed in the form of rules and con-
straints to argumentation mining, see e.g. [10]. Moreover,
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argumentation-based machine learning employs computa-
tional models of argumentation for reasoning within ma-
chine learning itself [23, 28, 39]. For instance, Thimm and
Kersting [39] proposed a two-step classification approach.
In the first step, rule learning algorithms are used to extract
frequent patterns and rules from a given data set. The out-
put of this step comprises a huge number of rules (given
fairly low confidence and support parameters) and these
cannot directly be used for the purpose of classification as
they are usually inconsistent with one another. Therefore,
in the second step, they interpret these rules as the input for
approaches to structured argumentation. This allows one to
obtain classifiers, which are by design able to explain their
decisions, and therefore address the recent need for Ex-
plainable Al: classifications are accompanied by a dialecti-
cal analysis showing why arguments for the conclusion are
preferred to counterarguments. Argumentation techniques
in machine learning also allows the easy integration of ad-
ditional expert knowledge in form of arguments.

While these results on combining machine learning and
argumentation are encouraging, there are still many chal-
lenges. Consider e.g. neural-symbolic systems. While deep
neural networks are highly expressive, they typically yield
only deterministic results. In contrast, (deep) density es-
timators can model uncertainty, but (marginal) inference
is in general intractable. Indeed, probabilistic circuits such
as sum-product networks (SPNs) [26] provide tractable in-
ference, but unfortunately, they are generally not univer-
sal function approximators [4]. Therefore, we recently pro-
posed conditional sum-product networks (CSPNs) [33] that
can harness the expressive power of universal function ap-
proximators such as neural networks, while still maintain-
ing a wide range of probabilistic inference routines. Empir-
ically, CSPNs achieve appealing performance in classifica-
tion tasks.

Moreover, the high predictive performance of highly ex-
pressive deep classifiers raises the question whether we
can actually trust them by only looking at the accuracy.
Just because a machine learning model is highly accurate
does not mean it represents the right mapping. Consider
the recent study due to Lapuschkin er al. on what ma-
chine learning models really learn [16]. This study observed
that a deep neural network trained on the PASCAL VOC
2007 data set [8] focuses actually on source tags, which
incidentally correlate with the labels, for prediction. This
“Clever Hans”-like moments [32] happens when the model
has learnt spurious artifacts, also known as confounding
factors. Especially in real-world domains that are typically
high dimensional, collecting “enough* data is often very
expensive or even impossible. In this case the data is prone
to spurious artifacts, which could be accidentally learnt by
the models [2]. When the model’s underlying behavior is
systematically wrong, it may not generalize well to unseen
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data. Systematic wrong behavior can be hard to spot and
do real harm. For instance, Obermeyer et al. [25] revealed
that a widely-used commercial model for predicting med-
ical needs exhibits significant racial bias where black pa-
tients are considerably sicker than white patients, at a given
risk score. This is attributed to the fact that the model uses
medical expenses to predict medical needs, however, black
people have less access to medical care, which means fewer
medical expenses are given to them compared to white peo-
ple. This racial bias in the model could pose a real danger to
black patients. While using Explainable Al or making even
deep learning explainable by design, for instance using ar-
gumentation-based machine learning, may help to discover
the bias, the true goal is to eliminate bias. To this end, we
add the expert into the training loop such that she starts to
argue with the model by providing feedback on its argu-
ments for classification, i.e., explanations.

In the following we will briefly inform about our work
conducted towards understanding and “arguing” with clas-
sifiers within the ”Argumentative Machine Learning”
(CAML) project as part of the SPP “RATIO”. Gener-
ally, CAML aims for a general argumentation framework.
Towards this end, we extend e.g. rule mining algorithms
to extract rules from statistical models, and we consider
interactive explanations in machine learning as a new form
of argumentation. We proceed as follows. First, we review
the definition and learning algorithm for conditional sum-
product networks in Sect. 2 along with some empirical
evaluations. Then we review our work on interactively
correcting differentiable classification models in Sect. 3,
and we show the effectiveness of our method empirically.

2 A novel tractable deep probabilistic
classifier

Argumentation Mining aims at identifying and interpreting
argument components out of input text [19]. For example,
if we take a basic claim-premise argument model, possi-
ble tasks could be claim detection [1, 18], evidence de-
tection [27], and the prediction of links between claim and
evidence [11, 24]. One way to exploit domain knowledge in
argumentation mining is to apply a set of hand-engineered
rules on the output of some first stage classifier (such as
a neural network). NeSy or SRL approaches can impose
those rules as constraints during training to ensure that so-
lutions are consistent with those rules. Therefore, if a neural
network is trained to classify argument components, and an-
other one is trained to detect links between them, additional
global constraints can be enforced to adjust the weights of
the networks toward admissible solutions. We refer to [10]
for implementation examples with DeepProbLog and with
GS-MLNs. Sum-Product Logic [35] even features deep hi-
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Fig.1 Overview of the architecture (left) and a concrete CSPN exam-
ple encoding P (Y | X) (right). X is the set of conditional variables and
Y consists of three RVs Y|, Y5 and Y3. Each color of the arrow repre-
sents one data flow. Here, the gating weights, possibly also leaf nodes,
are parameterized by the output of neural networks given X. Taken
from [33]

erarchical models with tractable inference within neural-
symbolic Al

However, as argued above, we may want to put some
(conditional) structure into neural-symbolic approaches,
which may also be improved iteratively as we show later.

To this end, we develop conditional sum-product net-
works (CSPNs), which is a conditional variant of sum-prod-
uct networks (SPNs). We formally defined CSPNs, provided
a learning framework for them, and provided arguments for
why CSPNs are more compact than SPNs.

Definition of Conditional SPNs (CSPNs). Specifically,
a CSPN as a rooted DAG containing three types of nodes,
namely leaf, gating, and product nodes, encoding a condi-
tional probability distribution P(Y|X). See Fig. 1 for an
illustrative example of a CSPN. Each leaf encodes a nor-
malized univariate conditional distribution P(Y |X) over
a target random variable (RV) ¥ € Y, where Y is de-
noted as the leaf’s conditional scope. One can also realize
neural CSPNs, which rely on random SPN structures pa-
rameterized by the output of deep neural networks. While
this approach does not have the benefit of carefully learned
structures, it gains expressiveness through increased model
size. See Fig. 1 for this architecture illustration.

(Structure) Learning CSPNs. To learn CSPNs, we pro-
posed a LearnCSPN routine that builds a CSPN top-down
by introducing nodes while partitioning a data matrix whose
rows represent samples and columns RVs in a recursive and
greedy manner. LearnCSPN creates one of the three node
types at each step: (1) a leaf, (2) a product, or (3) a gating
node. If only one target RV Y is present, one conditional
probability distribution can be fit as a leaf. To generate prod-

uct nodes, conditional independencies are found by means
of a statistical test to partition the set of target RVs Y.
If no such partitioning is found, then training samples are
partitioned into clusters (conditioning) to induce a gating
node.

Specifically, we use Generalized Linear Models (GLMs)
[21] in the leaves to model univariate distribution but
note that any univariate tractable conditional model can
be plugged into a CSPN effortlessly in order to model
P(Y |X). That is, we compute P(y|un = glm(X)) by
regressing univariate parameters @ from features X, for
a given set of distributions in the exponential family.

For product nodes, we are interested in decomposing the
labels Y into subsets that are independent given X. Since
we aim to accommodate arbitrary leaf conditional distribu-
tions in CSPNs, regardless of their parametric likelihood
models or data types (i.e. discrete or continuous), we adopt
a non-parametric pairwise conditional independence (CI)
test procedure to decompose labels Y. Specifically, we em-
ploy randomized conditional correlation test (RCoT). We
refer to [36] for further details. After we get the pairwise
conditional independence on Y, we create a graph where
the nodes are RVs in Y and put an edge between two
nodes Y;,Y; if we cannot reject the null hypothesis that
Y; 1L Y; | X for a given threshold «. The conditional scopes
of product children are then given by connected compo-
nents of this graph, akin to [12].

Finally, gating nodes represent a mixture of Y condi-
tioned on X weighted by a gating function gi (X). Ideally,
we select a differentiable parametric function, such as lo-
gistic regression or a neural network, as the gating function.
This function is restricted to allow for a proper mixture of
distributions, i.e., > ,gx(X) = 1 and Vxgr(X) > 0. To
learn the components of the mixture, we perform cluster-
ing over features X, and denote the corresponding member
assignment as a one-hot coded vector Z. We then proceed
to fit the gating function to predict Z; = g (X).

Having a structure, one can estimate the parameters of
the CSPNs, i.e., the weights for the gating nodes and the
distributional parameters for the leaf nodes. During struc-
ture learning, we learn the parameters automatically with
the structure. However, those parameters are only locally
optimized and usually not optimal for the global distribu-
tion. Since CSPNs are differentiable, we can maximize the
overall conditional likelihood in an end-to-end fashion us-
ing gradient-based optimization techniques after structure
learning. An alternative for learning CSPNss is to start with
a random structure, and initialize all the parameters ran-
domly as well, then directly conduct parameter optimiza-
tion end-to-end.

Autoregressive SPN. CSPNs can be naturally combined
with other CSPNs and SPNs to impose a rich structure on
high-dimensional joint distributions. We illustrate this by
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chain rule of
probabilities
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Fig.2 Imposing structure on deep probabilistic architectures. (Left) An Autoregressive Block-wise CSPN (ABCSPN) factorizes a distribution over
images along image patches. (Right) Conditional image generation with ABCSPNs: bottom row images are sampled while conditioning on the
two classes to which individuals from the two upper rows belong. Taken from [33]

introducing ABCSPNS, i.e. autoregressive SPNs for condi-
tional image generation. That is, we model images block
by block and decompose the joint image distribution into
a product of (C)SPNs, cf. Fig. 2 (left). We investigated
ABCSPNs on a subset (20000 random samples) of MNIST
and Olivetti faces by splitting each image into 16 resp. 64
blocks of equal size where we normalized the greyscale
value for MNIST. Then we trained a CSPN on Gaussian
domain for each block conditioned on all the blocks above
and to the left of it and on the image class and formulate the
distribution of the images as the product of all the CSPNs.
As can be seen in Fig. 2 (right), samples from ABCSPNs
look quite plausible.

Multi-Label Classification. To further demonstrate the
efficiency of CSPNs, we consider multi-label classification.
This is a generalization of the classical multi-class clas-
sification, which is the single-label problem of categoriz-
ing instances into precisely one of more than two classes.
In multi-label classification there is no constraint on how
many of the classes the instance can be assigned to. We
evaluated CSPNs on several multilabel image classifica-
tion tasks. The goal of each task was to predict the joint
conditional distribution of binary labels Y given an image
X . Experiments were conducted on the CelebA data set,
which features images of faces annotated with 40 binary
attributes. In addition, we constructed multilabel versions
of the MNIST and Fashion-MNIST data sets, by adding ad-
ditional labels indicating symmetry, size, etc. to the existing
class labels, yielding 16 binary labels total.

We compared CSPNs to two different common ways of
parameterizing conditional distributions using neural net-

works. The first is the mean field approximation. Second,
we compared to mixture density networks with 10 mixture
components, each itself a mean field distribution. The re-
sulting conditional log-likelihoods as well as accuracies are
given in Tab. 1. The results indicate that the commonly used
mean field approximation is inappropriate on the considered
data sets, as allowing the inclusion of conditional dependen-
cies resulted in a pronounced increase in both likelihood and
accuracy. In addition, the improved model capacity of the
CSPN compared to the MDN yielded a further performance
increase. On CelebA, our CSPN outperforms a number of
sophisticated neural network architectures from the litera-
ture, despite being based on a standard convnet with only
about 400k parameters [7].

Poisson Distributions. Finally, CSPNs are not restricted
to binary or Gaussian output distributions. They can also en-
code multi-variate conditional distributions of other statis-
tical types. We considered temporal vehicular traffic flows
from [14], where the data represents the count of vehicles
reported by 39 stationary detectors within a fixed time in-
terval with a total of 1440 samples. Specifically, we used
CSPNs using Poisson leaf nodes and compared them to
Poisson SPNs [22]. The task was to predict the next time
snapshot (Y| = 39) from a previous one (|X| = 39). We
trained both CSPNs and SPNs controlling the depth of the
models. The CSPNs used GLMs with exponential link func-
tion as leaf models. The results are summarized in Fig. 3.
As one can see CSPNs are more accurate; the root mean
squared error (RMSE) is always lower. As expected, deeper
models have lower predictive error compared to shallow
CSPNs. Moreover, smaller CSPNs perform equally well or

Table 1 Average test conditional log-likelihood (CLL) and test accuracy of the mean field (MF) model, mixture density network (MDN), and
neural conditional SPN (CSPN) on multilabel image classification tasks. Predictions on MNIST and Fashion are counted as accurate only if all 16
labels are correct. For CelebA, we report the average accuracy across all labels. The best results are marked in bold. As one can see, the additional

representational power of CSPNs yields notable improvements [33]

CLL Accuracy

MF MDN CSPN MF MDN CSPN

MNIST -0.70 -0.61 -0.54 74.1% 76.4% 78.4%
Fashion -0.95 -0.73 -0.70 73.4% 73.7% 75.5%
CelebA -12.1 -11.6 -10.8 86.6% 85.3% 87.8%
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even better than SPNs. This provides clear evidence for the
benefit of directly modeling a conditional distribution as
well as the expressive power of CSPNs.

To summarize, to be able to build more complex Al
models, we have extended the concept of sum-product net-
works (SPNs) towards conditional distributions by introduc-
ing conditional SPNs (CSPNs). Conceptually, they combine
simpler models in a hierarchical fashion in order to cre-
ate a deep representation that can model multivariate and
mixed conditional distributions while maintaining tractabil-
ity. They can be used to impose structure on deep proba-
bilistic models and, in turn, significantly boost their power
as demonstrated by our experimental results.

3 Interactively arguing with a classifier

However, CSPNs are deep models and consequently not
easy to understand and debug for humans. Therefore, we
worked on putting the expert back into the loop. Specifi-
cally, we now demonstrate how to constrain the underlying
decision logic of deep classifiers by interacting with hu-
mans.

To this end, we developed the novel learning setting of
explanatory interactive learning (XIL) [38] within CAML.
Here, the interaction takes the following form. In each step,
the learner explains its interactive query to the user. That is,
the machine provides its arguments for its decision. Then,
the user responds by proving feedback on the arguments,
correcting the prediction and arguments, if necessary. To
correct the predictions, one either makes use of automat-
ically generated counterexamples or regularizes the gradi-
ents in order to penalize wrong explanations. Recently, we
have demonstrated how to make use of influence functions

Actual Traffic Flows

(IFs)—a well known robust statistic [5, 15]—to correct the
model’s behaviour more effectively.

They trace the model’s prediction through the learning
algorithm and back to its training data, where the model
parameters ultimately derive from, in a closed-form.

Influence Functions. Mathematically, an influence func-
tion takes the following form:

1.zt = =V L Giens 0) Hz' Vi Vg L(z,6) |

where z and zy are a training sample and a test sample
respectively, L denotes the loss, x the inpl]t, 6 the model
parameters and H := 1/n);_VZL(z;,0) the Hessian.
I(z, ztesl)ﬁ: indicates the most influential direction of per-
turbing z for zyy, and the features of z in this direction
explains why the prediction on zg is made. Using just

1(z.0)L = Hg‘IVxV(;L(z,/@\)

computes the influence of z to 6 based on the second-order
approximation of the empirical loss around 6. Generally,
H=! provides the curvature information of the parameter
space and offers a better local approximation of the loss
compared to input gradient, and V,VyL(z,0) points to
the direction in which perturbing the training point z leads
to most significant model update. Since we are mainly inter-
ested in the latter information, we replace Hg‘1 by the iden-

tity matrix and, hence, propose the sum of VxV(;L(z,/@\)
as a more robust statistics for explanatory interactive ML.

To see this, consider Fig. 4. It gives some insights and
intuitions on IG-generated explanations and IF © IG-gener-
ated explanations by visualizing their vector fields and /-
norm generated by a three-layer MLP on some synthetic
2D classification data sets. As [29] noted, input gradients
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Fig.4 (Best viewed in color)
Input Gradients (IG) versus
Influence Function (IF) on two
2D data sets. From left to right:
data, vector fields of IG and IF
as well as their component-wise
product, /2-norm of IG and
IF vectors. As one can see, IF
integrates the different reasons
for a decision into a better
explanation

are sometimes noisy and not interpretable on their own.
One can see that the vector field of IF ® IG is sharper
around decision boundaries, while 1Gs yield quite blurry
and noisy explanations over the whole domain. Since the
decision boundary describes the model’s behavior, having
a less noisy and ambiguous decision boundary yields a bet-
ter description of the model.

The “Right for the Better Reasons” Loss. To make
use of IFs for explanatory interactive learning, i.e., to ar-
gue with the classifier about its decision and reasons for
them, we built upon the work on “Right for the Right Rea-
sons”(RRR) [30], we proposed to improve the efficiency by
formulating the constraints on the explanations based on the
more robust statistic to make the model right for better rea-
sons (RBR). That is, we use the influence function (IF) to
compute saliency maps of features and penalize features
according to user feedback using standard gradient-based
methods.

To this end, we defined the loss function as a weighted
sum of the right answer loss (cross-entropy), the right rea-
son loss (user feedback on saliency map) and /2 regulariza-
tion:

1 <N K N
LOX.y, ) => " > = ynklog(nk)
right answers

N D
*h) 2y (Anal GO0 © Tia) + 22 6]
1

——
regularization

right reasons

IF x 1G Gl IF]l2
%, \"‘m,
-
| \M‘ _
> lﬂ,{
@

where A,4 € {-1,0, 1}""1 encodes user feedback. This
loss poses a bias towards the features annotated as —l1s,
against the features annotated as 1s and ignores the rest.
We note that one should be mindful of the faithfulness of
the saliency map when formulating right reason loss. This
is because plugging in an unfaithful saliency map may lead
to non-convergence. And we use the influence of z on the
model parameters, /(z, Q)ITF, as a measure to approximate
the relevance of each feature of z on the model.

RBR results in higher adversarial robustness. We
trained an eight-layer MLP as the classifier on the toy color
data set from [30] and MNIST [17] by directly constraining
IFs. The toy color data set consists of 5*5 images, and it
entails two independent rules: (1) four corner pixels are the
same and (2) top middle three pixels are different. Sam-
ples satisfying both rules belong to class 1, and samples
satisfying neither belong to class 2.

As a baseline, a vanilla classifier trained without any
form of constraint and a classifier trained with RRR were
used. To generate adversarial examples, we applied the
scheme of the Fast Gradient Sign Method (FGSM) [13]
but replaced the gradient with the influence function. Fig. 5
shows the accuracy of these three models on the adversar-
ial examples with increasing perturbations. As one can see
in Fig. 5, when perturbation increases from 10 to 200 on
MNIST, the accuracy of the RBR model dropped by less
than 10%, while the vanilla and RRR model dropped by
almost 80%. On toy color data set, the accuracy of RBR
model barely dropped with increasing perturbation, while
the vanilla and RBR model dropped by around 20% and

Fig.5 Accuracy of the vanilla on MNIST on Toy Colors
model, RRR and RBR on adver- - 1.0 e 1.0 -
sarial examples with increasing O O
perturbations & © 0.8 © 0.9

3 0.6 0 0.8

Q v}

< 0.4 = Vanilla < 0.7 = Vanilla

= =

) 0.2 RRR wn 06! RRR

? %4] — rer ? 9°1 — Rrer

0.0+ - 0.5
10 100 200 0.01 0.04 0.08

Perturbation €
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Fig.6 The cross-entropy (left 5 0.9
image) and accuracy (right = N0 constraint 0.8
image) of the classifier when 41 —— input gradient ’
training on decoyed MNIST influence function 0.71
with resp. no constraints, 1G 0.6
constraints and IF constraints 3] 0.51
21 0.4
0.31 = no constraint
1] 0.21 - input gradient
0'1_ —— influence function
0 100 200 300 400 500 0 100 200 300 400 500

30% respectively. This experiment demonstrates that the
RBR model is much more robust to adversarial perturba-
tions on both data sets compared to the vanilla and the RRR
model.

RBR needs less many iterations. On MNIST, we then
trained three MLPs, using no feedback, IG feedback (RRR)
and IF feedback (RBR). The cross-entropy and accuracy on
the test set reflect how well the model generalizes to un-
seen data. They are shown over the training epochs in Fig. 6.
Without any user feedback, we observed accuracy of 100%
on training sets. But on the test set, the cross-entropy is
surging and the accuracy dropping to random, suggesting
that the model overfits to the confounding factor and does
not generalize at all. Providing IF feedback prevents the
classifier from learning the confounding rules since the de-
creasing cross-entropy and improved accuracy on the test
set implies the model is able to generalize. Moreover, the
convergence speed is much faster compared to RRR.

Arguing with a Deep Network on PASCAL VOC
2007. Finally, we considered the PASCAL VOC 2007 data
set [8]. As classifier we used pre-trained VGG-16 [34] and
fine-tune it on this data set. PASCAL VOC 2007 consists
of labeled images from twenty object classes in realistic
scenes, and we reduce the problem to two object classes,
horse and dog, due to time restriction. Since there is a class
imbalance in the data set, we used the balanced accuracy
score defined as the average of recall obtained on each

class as an accuracy measure. Without user feedback on
the explanations, our fine-tuned vanilla classifier reached
accuracy of 99% and 87% on the training set and test set
resp.

Now, we started to argue with the classifier. As feed-
back we encoded the source tag features—a potential
confounder—in A to correct the deep network with RBR.
Fig. 7a shows an example for user feedback on one in-
stance. The pixels covered by the dark overlay over the
image are unsalient features annotated by user feedback,
and the rest are not annotated which means they are not
explicitly constrained by RBR. In order to investigate the
effectiveness of this argumentation-based correction, we
also randomized the user-annotated relevant features resp.
the irrelevant features across the whole test set. We call the
samples with randomized irrelevant features counter sam-
ples, and the samples with randomized relevant features as
random samples. Fig. 7b and ¢ show a counter sample and
a random example. Intuitively, if a classifier is right for the
right reasons, the accuracy on the counter examples should
be high because the classifier has all the salient features to
make decisions, and the accuracy on the random examples
should be low as no salient feature is present.

We applied input gradients across the test set to inspect
the model’s underlying behavior by human perception, and
we confirmed that the classifier often accidentally focuses
on the source tags to make predictions, as presented in [16].

C: Lothar Lenz
www pfordefotoarchiv.de

Fig.7 Left is an original image sample from test set of PASCAL VOC 2007 overlayed with user-annotated mask (the dark overlay denotes 1s in
the feedback matrix and the rest are Os), middle is the corresponding counter example where the user-annotated unsalient features are randomized,
right is the corresponding random example where the salient features are randomized
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Fig.8 (Best viewed in color)
Revising VGG-16 on PASCAL
VOC 2007. Horse images (left)
and their saliency maps before
(Middle) and after (Right) cor-
rection. The saliency maps are
overlaid with an edge filtered
original image for better inter-
pretability. As one can clearly
see, VGG-16 decisions are
based on the source tag but can
be revised by the user. Before
revising, the heatmap hightlights
the bottom left corner where the
source tags lie as salient regions.
This region is no longer salient
after correction

Fig. 8 shows some random samples from the test set as
well as their saliency maps before and after correction. As
one can see, the salient region for the vanilla classifier is
mainly on the left bottom corner where the source tags
lie. But after the feedback is given, the classifier does not
look at the source tags any more and the salient region
lies mostly on the target object. Furthermore, without any
feedback, the classifier achieved about 75% accuracy on the
counter examples, but only about 55% on random examples.
This suggests that the classifier did not learn to classify
objects and used the confounding factor to classify instead.
Fortunately, this unwanted behavior can be corrected by
penalizing irrelevant features based on user feedback, and
the accuracy for the counter examples dropped to about
53% and the accuracy for the random examples increased
to about 63%. This suggests that the classifier learnt to
focus on the target object to make decisions.

This confirms the necessity of understanding the behav-
ior of models and also shows clear evidence of the effec-
tiveness of arguing with a model’s explanations in high-
dimensional image domains.

4 Conclusions

Machine learning and argumentation represent two different
solutions for AI. We argue that combining both solutions
could bring great benefit. For example, combining deep
classifiers with knowledge expressed as arguments allows
one to leverage different forms of abstractions within ar-
gumentation mining. Argumentation for machine learning

@ Springer

can yield argumentation-based learning methods where the
machine and the user argue about the learned model with
the common goal of providing results of maximum utility
to the user. In this paper, we offered an overview of our
recent steps towards this combination and in turn towards
understanding and arguing with machine learning models.
Specifically, We reviewed our recent, efficient regulariza-
tion by interacting with the explanations of machine learn-
ing models to correct them. We illustrated how to do this for
differentiable models using influence functions and that this
can help to avoid “Clever Hans”-like moments. Besides, as
conventional neural function approximators used for pre-
dictive tasks are deterministic, and density approximators
are in general intractable, we also touched upon our recent
work on conditional sum-product networks. This is a deep
conditional density approximator which can both maintain
the expressive power and a wide range of tractable (condi-
tional) inference routines at the same time.
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