
Vol.:(0123456789)

Public Transport (2020) 12:631–645
https://doi.org/10.1007/s12469-020-00248-8

1 3

ORIGINAL RESEARCH

Efficient monitoring of public transport journeys

Felix Gündling1 · Florian Hopp1 · Karsten Weihe1

Accepted: 18 August 2020 / Published online: 12 September 2020
© The Author(s) 2020

Abstract
Many things can go wrong on a journey. From minor disturbances like a track
change to major problems like train cancellations, everything can happen. The broad
availability of smartphones enables us to keep the traveler up-to-date with informa-
tion relevant for the journey. This way, the traveler can react to changes as early as
possible and make well-informed decisions. Naive approaches are too inefficient to
monitor a large number of journeys in real-time. This paper presents an efficient way
to monitor millions of journeys in parallel. In our approach, the selection of change
notices to be communicated to a traveler may be flexibly adapted to the travelers
individual needs.

Keywords Real-time · Public transport · Personalized · Connection monitoring

1 Introduction

Every day, millions of travelers use public transportation to get to their destinations.
Not all of those journeys run smoothly. Problems may be caused by delays, rerout-
ings, cancellations, track changes, etc. If they occur, information is key to finding
a solution. The earlier a problem is communicated by the transportation provider,
the more options are available to the customer to react. With the advent of smart-
phones, it is now possible to inform the user as soon as new information about the
situation becomes apparent. This imposes some constraints on the data processing:
once a real-time update (e.g. a delay) is available, the system needs to determine the

This work was partially supported by Deutsche Bahn AG.

 * Felix Gündling
 guendling@cs.tu-darmstadt.de

 Florian Hopp
 hopp@cs.tu-darmstadt.de

 Karsten Weihe
 weihe@cs.tu-darmstadt.de

1 Technical University of Darmstadt, Hochschulstraße 10, 64289 Darmstadt, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s12469-020-00248-8&domain=pdf

632 F. Gündling et al.

1 3

affected journeys in a timely manner. Due to the large number of travelers, the real-
time monitoring of all current and future (i.e. booked) journeys is a challenging task
for the transportation provider.

On the one hand, the customers always want to be up-to-date regarding the status
of their journey. On the other hand, no one wants to annoy customers with jour-
ney updates they are not interested in: while some customers might be interested
in a notice about an upcoming transfer, others only want to be bothered with essen-
tial information regarding the feasibility of the journey. Here, the remaining time
until the corresponding event (e.g. the transfer in question) is important: a traveler is
probably not interested in a predicted change in arrival time of 2 min when there are
still 2 h left until the interchange.

This would probably trigger many unnecessary alerts, since forecasts so far in the
future are inherently inaccurate. Not only currently active journeys need to be moni-
tored. Changes may also concern all future journeys already booked by customers.
For example, a schedule change due to planned construction work may change the
arrival time at the destination, which should be communicated to all affected cus-
tomers who already booked their journey.

In this paper, we address both of the above-mentioned challenges: our system
is capable of monitoring millions of customer journeys in real-time on commodity
hardware; every customer can set an individual profile for each journey. This profile
specifies precisely about which changes they want to get informed. Separate pro-
files for each journey, not one per customer, enables customers to specify a different
“alert level” for different journeys. For example, for their way to work they are only
interested in cancellations and delays above 15 min but when traveling to an impor-
tant appointment, they might choose a more elaborate setting.

This paper is organized as follows. Section 2 discusses related approaches. Sec-
tion 3 introduces the setting and notation. Section 4 describes the configuration
options the monitoring profile provides. Section 5 explains the input real-time data
and how it is processed. Section 6 presents two monitoring approaches which are
being evaluated with real-world data (timetables as well as real-time updates from
Deutsche Bahn AG) in Section 7.

2 Comparison to related work

Previous work (Frede et al. 2008; Müller-Hannemann and Schnee 2009) focuses on
incorporating real-time information into a graph model which represents the public
transport schedule. This way, it is possible to provide feasible real-time alternatives
to customers. However, Frede et al. (2008); Müller-Hannemann and Schnee (2009)
do not address any topics related to personalized connection monitoring. In contrast,
our approach builds on top of an up-to-date real-time graph and provides a scalable
but personalized connection monitoring.

As shown in recent studies conducted in Chicago (Tang and Thakuriah 2012)
and New York (Brakewood et al. 2015), even information in the form of a real-
time arrivals boards may increase ridership and customer satisfaction. A study from

633

1 3

Efficient monitoring of public transport journeys

Stockholm by Cats et al. (2011) suggests that real-time information may change the
paths chosen by passengers.

The system presented in this paper takes real-time information one step further:
instead of providing information statically through displays at stations or on cus-
tomer request in a smartphone application, the system monitors all customer jour-
neys. Based on a personalized monitoring profile, it informs customers (e.g. through
smart phone push notification, SMS, or email) about the events they are interested
in.

The monitoring system presented in this paper can work hand in hand with distur-
bance management systems (e.g. the ones described in Jespersen-Groth et al. 2009;
Törnquist 2007): efficiently detecting all travelers who are affected by a decision
(e.g. a track change) and informing them is a core functionality of our approach. A
seamless and timely communication in case of disturbances improves the outcomes
for the passenger.

3 Basic terminology

We introduce the notion of departure events edep and arrival events earr . Important
events are events where the traveller either enters or exits a vehicle. Monitoring
these events is sufficient to monitor all relevant aspects (e.g. feasibility) of a jour-
ney. We define an interchange as a pair of an arrival and a departure event (edep, earr)
where both events have to take place either at the same station or at two stations in
convenient walking distance. As our system allows walks between nearby stations to
occur in connections, the station(s) of these events do not need to match.

For each station, the schedule provides a minimal transfer time tt(s) required to
get from one vehicle to another. Depending on the input data, this function can be
fine-grained and adjustable for eldery or handicapped people. However, for our eval-
uation we did not have access to data at this level of detail. Furthermore, the sched-
ule contains stations between which it is possible to walk: this is defined as a tuple
(s1, s2, t) where s1 and s2 are two stations and t is the corresponding time to walk
from s1 to s2.

Thus, an interchange (edep, earr) between two vehicles at the same station s is con-
sidered valid if t(edep) − t(earr) ≥ tt(s) . For foot walks, the estimated walking time
between the two stations may not be undercut.

4 Monitoring profile

All interchanges as well as the first departure and the last arrival of a connection
are particularly important for the user. Besides the changes concerning the time
of an event which is part of an interchange, users may be concerned about the
time between the arrival and the departure of an interchange. More specifically,
they might not want to be informed about changes where departure and arrival
of an interchange are both delayed by N minutes: they have still the same time
buffer for the interchange. However, they could be interested in a delayed arrival

634 F. Gündling et al.

1 3

when the connecting train departs on schedule because this would make the inter-
change inconvenient or even infeasible. Note that both aspects can be configured
separately. Psychologically, it might feel safer to get a message when any of those
aspects change—which is also supported by the system described here.

The system stores the attribute value (e.g. the timestamp of an interchange
event, the interchange time buffer, the overall feasibility of the journey, etc.) most
recently communicated to the users for each attribute for each aspect of the stored
connection. The initial values are taken from the journey stored by each user.
Usually, these are the scheduled values. However, in case of a real-time alter-
native for a missed connection, the initial values may differ from the scheduled
values. If the latest value announced to the users differs from the actual real-time
value more than a specified threshold, the users get informed about this change.
After an update has been sent to them, the updated value will be stored by the
system. The system allows monitoring the following attribute value changes (rel-
ative to the value most recently announced to the user) separately:

1. For the first departure: later departure, earlier departure
2. For the last arrival: later arrival, earlier arrival
3. For the events of an interchange: earlier arrival, later arrival, earlier departure,

later departure, and the time difference between departure and arrival
4. For an interchange: a notice about the oncoming interchange a fixed time before

the arrival
5. Messages to customers using a specific vehicle: these messages address specific

stops of the stop sequence of a vehicle.

The monitoring profile is comprised of one two-dimensional look-up table for
each aspect described above.

Another important factor for the decision of whether to inform users about a
change is the remaining time until the event will take place. The closer to the
event in question, the more urgent it is to inform the users and the more pre-
cise predictions can be. For example, an anticipated delay increase of 2 min
might be relevant 30 min before the actual event. However, predicted delays in
a complex public transport network (e.g. the German railway network) cannot be
very precise on an extended time horizon of several hours and are thus subject
to fluctuations. We introduce the following rule set as means to avoid informing
users about changes that are not (yet) relevant and subject to change: the system
requires a two-dimensional look-up table where for each remaining time until the
actual event (row) and change in minutes (column), it is specified whether the
users should get informed about that change. Note that this is not necessarily the
way, an end-user would need to specify this: a mobile app might come completely
pre-configured or condense these detailed settings into a few profiles to suite dif-
ferent user groups.

Changes in different directions (increase of delay/decrease of delay) might be
of different importance to the user. Consequently, the system incorporates dif-
ferent matrices for each value (listed above) for each direction. For example, a

635

1 3

Efficient monitoring of public transport journeys

change of five minutes delay increase might have a larger impact for the arrival
event of an interchange than for the departure event.

5 Real‑time data

5.1 Identifier

Real-time data (for example provided by the operator—in our case Deutsche Bahn)
contains data that references stations, identified by their unique station id. Later on,
we will make use of the following entities:

– vehicles, identified by the train number,1 first stop id, and first stop departure
time

– events, identified by the vehicle (see above), the station the event takes place, its
schedule time and the event type (either arrival or departure)

This data will be used as key in our data structures (e.g. a hash map) to uniquely
identify the referenced entity.

5.2 Message types

In this section, we will outline the structure of the real-time data processed by the
system:

– A delay message contains either anticipated or real (measured) delays of public
transport vehicles. It refers to the vehicle in question as well as a list of events
with their corresponding delay (which can be zero or even negative if the event
took place earlier than planned).

– A rerouting message refers to a specific vehicle and contains a list of added stops
with their corresponding schedule time and a list of removed stops.

– A cancellation message is analogous to rerouting messages, except that there are
no added stops.

– A track change message refers to a specific event and contains the new track, the
vehicle arrives/departs at.

– A free text message contains a text written by the operator and targets a specific
section (identified by the first and the last stop) of a vehicle. It can be used to
inform the travelers about important issues (e.g. guidance in critical situations).

1 The train number by itself is only unique for one traffic day.

636 F. Gündling et al.

1 3

5.3 Delay propagation

The information basis for the connection monitoring is the schedule timetable on
the one hand and a continuous stream of real-time messages on the other hand. The
timetable is represented as a time-dependent routing graph (as introduced in Dis-
ser et al. (2008)). This graph is updated according to the received real-time data to
represent the current and predicted real-time situation. The basic update approach
is described in Müller-Hannemann and Schnee (2009). This approach propagates
delays along the vehicle path, respects waiting time rules among vehicles and fixes
resulting data inconsistencies (e.g. delay update messages that permute the event
order of a vehicle). Note that the application of waiting time rules enables the propa-
gation of delays from one vehicle to another. This way, delays can spread not only
along the vehicle path but throughout the entire network.

One objective of the system is to warn users about anticipated problems, not
those that are already obvious from the real (measured) delays from the past. The
real-time data stream does not contain the propagated delays. Thus, a monitoring
approach based on the real-time data itself will not work. Therefore, the system uses
both, delays as well as propagated delays for the connection monitoring.

6 Connection monitoring

In this section, we will discuss the two approaches to monitor a set of stored connec-
tions. Section 7 evaluates and compares the performance of both approaches.

6.1 Periodic approach

One method to monitor a set of stored connections (regarding the values listed in
Sect. 4) is to check each connection separately in a fixed period of time (e.g. every
minute). The first step is to check for each connection whether it is affected by any
received real-time change. The second step is to check if this real-time change needs
to be communicated to the users based on their individual monitoring profile (intro-
duced in Sect. 4). Later on, we will refer to this approach as the periodic approach.
But since most stored connections will not have relevant changes that need to be
communicated to the user, this may result in a waste of runtime.

6.2 Event‑based approach

The basic idea of our event-based approach is to determine the set of connections
that need to be checked based on the events that changed during the real-time update
of the routing graph. Assuming that not every real-time update affects every event
contained in the stored connections, this is much less computational effort compared
to the periodic approach. This assumption is reasonable considering that most stored
(i.e. booked) connections will not take place right now or in the next few hours. Even

637

1 3

Efficient monitoring of public transport journeys

if the periodic approach would only check the connections of the current, previous,
and next day (to detect problems in overnight connections), the system would need
to check many connections that are not actually affected by the real-time update.

6.2.1 Handling cancellations, reroutings, delays, and track changes

To efficiently determine the set of connections affected by incoming real-time
updates, we utilize data structures which allow for a fast lookup. Our goal is to cre-
ate a function �ev that takes a set of updated events (either updated directly or
through propagation) R as input and returns the subset of these connections that is
affected by at least one of the changes. For every changed event e, we aim to imple-
ment a lookup of affected stored connections E[e] where E is an efficient O(1)
lookup from an event to a set of connections (i.e. a hash map data structure). Using
the information that uniquely identifies an event as described in Sect. 5.1 as key, we
can build a data structure E mapping an event to the set of connections that contain
this event. Regarding the algorithmic complexity, a hash map is a sound choice for
this task. With the help of this lookup table E, we can implement �ev(R) =

⋃

e∈R

E[e].

To monitor the properties described in Sect. 4 (besides the free text messages—
the handling of which will be described in Sect. 6.2.2), it is sufficient to check the
interchanges of a journey as well as its first and last stop. Instead of monitoring
every event contained in every stored connection, we can focus on 2N

i
+ 2 events

per journey where N
i
 is the number of interchanges (edep, earr) of journey i. This

accounts for all interchanges as well as the first departure and last arrival.
Since a single connection i is associated with several keys (2N

i
+ 2 events) which

wastes memory, we create an indirection: the map just stores a unique integer that
references the associated connection. To lookup the details of a connection, we
introduce an additional map data structure mapping from the unique connection
integer to the details (stop sequence, used vehicles, walk times, etc.) describing the
associated connection. When adding a new connection to the set of monitored con-
nections, this connection needs to be indexed: every important event (first departure,
last arrival, and all interchanges) gets extracted and added to the mapping.

6.2.2 Handling free text messages

For the special case of free text messages, the approach described in Sect. 6.2.1 is
not suitable because free text messages can target arbitrary events in the journey, not
just interchanges, the first departure, and last arrival. Fortunately, instead of index-
ing all events of the journey, indexing the vehicles used in a journey is sufficient.
Analogously to E which maps events to connections, hash map V maps vehicles onto
a set of connections containing the respective vehicle. Thus, we can define a lookup
function for vehicles �v(T) =

⋃

t∈T

V[vehicle(t)] where T is a set of free text messages

and vehicle(t) extracts the vehicle in question from a free text message. Uniting the
results of both functions, �ev and �v yields the set of affected connections.

638 F. Gündling et al.

1 3

6.2.3 Putting the pieces together

After the affected connections have been determined (through �ev and �v), the next
step is to check for each connection whether the change exceeds the configured
threshold introduced in Sect. 4. Thus, the system checks every aspect mentioned in
the monitoring profile (described in Sect. 4). Basically, the system needs to store the
value known to the user. For example, as described in Sect. 4, for each interchange,
the system stores the arrival time, the departure time and the interchange buffer. For
each stop, it stores the free text messages that were communicated to the user. This
way, it is possible to check whether the user needs to be informed: if a connection
is affected by a real-time change (which is determined using �ev and �v), each stored
value is compared to the current value. Since the time until the event will take place
is also known, both row (change in minutes) and column (remaining time until the
actual event) of the change within the two-dimensional look-up table (introduced in
Sect. 4) are available. Consequently, the system can compare the current change in
each entity with the threshold value from the two-dimensional look-up table.

6.2.4 Deferred checking

If the difference between the value (e.g. interchange time buffer for a specific inter-
change of the connection) last known to the user and the current value determined
by the system (based on the real-time schedule and delay propagation) exceeds
the threshold from the two-dimensional look-up table, the system informs the user
instantly. Otherwise, the system needs to check the connection again later: as time
goes by, the time until the monitored event decreases. Therefore, other (smaller)
threshold values become relevant in the two-dimensional look-up table. By iterating
the rows (time until event) in the column (computed change) from the current row
in decreasing order, we can determine the first row where the user would need to get
informed if the computed change stays the same. Therefore, the system may setup a
timer to check the connection again at this time. This can be seen as an event-driven
simulation. Since these are potentially many timers, the system collects all theses
events in a queue which is sorted by the timer expiry (earliest check first). Since all
users have their own personal preferences on time thresholds, each event may occur
multiple times (one for each stored connection). This way, only one timer for the
first element in the queue is required. When the timer expires, the system iterates all
entries from the queue until the first entry where the expiry value is not exceeded
anymore. When checking those iterated entries it may be the case that the user
already was informed because of another change that occurred between the inser-
tion into the vector and the iteration. It may also be the case that the user needs to be
informed. In both cases, the entry is removed from the vector. Lastly, the value may
have changed between the insertion into the vector and the iteration so that the user
does not need to get informed now. In the last case, the entry will be reinserted into
the queue with the new timer expiry value. Comparing the event-based approach to
the periodic approach, the event-based approach reduces the number of connections
to look at by checking on demand, not periodically.

639

1 3

Efficient monitoring of public transport journeys

7 Evaluation

In this section, we present an experimental study of the concepts presented in
Sect. 6. We evaluate the event-based version and the periodic version. Additionally,
we measure the runtimes of parallel versions of both implementations. All versions
are implemented in C++ and run on a machine with an Intel® Core™ i7-6850K CPU
and 64GB of RAM.

7.1 Schedule timetable and real‑time data

Both, the schedule timetable as well as the real-time data are provided by Deutsche
Bahn. For our evaluation, we use the full public transport schedule timetable of Ger-
many. This includes buses, streetcars, subway, suburban trains, regional as well as
long-distance trains. We analyze a timespan of one week. In this timespan, 250,000
stations are served with an average of 24M events per day. The time-dependent
timetable graph has 4.9M nodes and 15.1M edges. A cumulative real-time update
is sent every 30 s by Deutsche Bahn. Note that our system (especially the event-
based approach) is also capable of handling updates at arbitrary times or update
periods. Every real-time update package sent by Deutsche Bahn contains an aver-
age of approximately 666 real-time updates (1.9M updates per day). Those updates
cover all trains (including suburban railway) operated by Deutsche Bahn as well as
the real-time data of certain local public transportation authorities (e.g. for Berlin or
the Rhein/Ruhr area). The system propagates these primary delays through the time-
table network which results in another 6713 forecasted delays per update that need
to be processed by the connection monitoring system.

Figure 1 shows the delay distribution over a regular Tuesday (number of mes-
sages against time of day). Note that a delay message is not only sent for delayed
arrival and departure events but also for events that take place as scheduled. Thus,
there is at least one delay update for each event of vehicles operated by Deutsche

(a) delay messages received (b) other messages received

Fig. 1 Distribution of real-time (delays, cancellations including reroutings, track changes and free text
updates) messages over the day: one dot represents all messages that occurred in a 30 s time period. a
Shows delay messages received from Deutsche Bahn. b All other message types without the delay mes-
sages

640 F. Gündling et al.

1 3

Bahn plus several delay forecast updates that need to be processed by the system.
Each dot represents the messages from a 30 second time interval. As is clearly vis-
ible, the delays are not uniformly distributed but raw delays received from Deutsche
Bahn (left plot) dip to below 100 update messages (per 30 s) at night times while
staying above 900 update messages every 30 s for several hours in the daytime. The
reason for this is that Deutsche Bahn operates more trains at daytime than at night
time. Peaks at 1200 messages to process in one turn are possible and should not lead
to any disruptions. Message spikes are caused by systems that are not under our con-
trol. Thus, the reasons for these deviations are not transparent to us. The plot in the
middle shows the number of total delays including raw delays as well as propagated
delays. Here, we can see that propagation adds roughly one order of magnitude to
the message count: raw messages (left plot) peak around 1200 messages every 30 s
against 12,500–17,500 when propagating delays. The number of other messages
(track change messages, free text messages, and reroute messages) is comparatively
small. The pattern of decreased message volume at night times is visible here, too
(Fig. 2).

7.2 Performance Comparison

In this section, we will analyze both approaches presented in Sect. 6 (periodic
and event-based) regarding the number of required check operations as well as
runtime performance. For this, we generated one million connections by using a
multi-criteria shortest path routing algorithm. Source, destination, and departure
time interval are chosen randomly with a uniform distribution over all stations
in the schedule and the complete schedule period of 1 week. These connections
were stored and indexed by both approaches: for the periodic approach no further
processing is required, whereas for the event-based approach all important events
need to be indexed. Event indexing took 19 min for 1M journeys. However, note

(a) messages propagated (b) messages without delays propagated

Fig. 2 Distribution of real-time (delays, cancellations including reroutings, track changes and free text
updates) messages over the day: one dot represents all messages that occurred in a 30 s time period. a
Shows all messages including those propagated by our system. b Shows all messages without the delay
messages including those propagated by our system

641

1 3

Efficient monitoring of public transport journeys

that this needs to be done only once and usually happens gradually when users
book their journeys. Indexing a single journey takes 1.15 ms on average.

Using the periodic approach, all one million connections need to be checked in
every iteration. Figure 3 shows the number of connections affected by real-time
messages (either directly received from Deutsche Bahn or generated by delay
propagation). Note that if a connection is affected by a delay, this does not nec-
essarily mean that the user needs to get informed. As we can see, from the one
million stored connections, only approximately 10,000 connections need to be
checked more closely.

Figure 4 shows the runtime of the event-based approach over the day. The
increased message volume at daytime compared to nighttime results in increased
runtimes at daytime. The runtime of the periodic approach is roughly constant
at close to 10 s per check run. The efficient lookup data structures used in the

(a) affected journeys one day (b) affected journeys one week

Fig. 3 The number of connections affected by real-time changes over time for the event-based approach

Fig. 4 Runtimes of the event-based connection checking approach in 30 s batches (as received by
Deutsche Bahn)

642 F. Gündling et al.

1 3

event-based approach lead to a runtime reduction of approximately two orders of
magnitude at daytimes (0.1 s against nearly 10 s).

7.3 Timer queue performance

As described in Sect. 6, the system keeps a list of connections that need to be
checked again at some point in the future. Since the timetable data provided by
Deutsche Bahn has a granularity of one minute, the system only works at discrete
points in time. Figure 5 shows (a) the number of checked journeys and (b) the runt-
ime at each minute of the day for two consecutive days. As there are less trains oper-
ated at night times, the pattern of reduced work load at night times is similar to those
visible in Fig. 4.

7.4 Improvements

The performance of both approaches can be further improved through better resource
usage of the underlying hardware. An analysis of better memory usage (RAM in
addition to disk) and CPU usage (multi-core instead of single-core) follows.

On-Disk against In-Memory Basically, all connections need to be stored persis-
tently so they can be loaded after system restarts. This on-disk database can be used
for the connection monitoring, too. Faster access times can speed up the checks. The
difference is shown in Fig. 6. The evaluation was conducted with different numbers
of connections (100, 1 k, 10 k, 100 k, 1 M). Obviously, both approaches perform
better with in-memory storage. While the periodic approach is less influenced by
the storage medium, the event-based approach is very sensible in this regard: for
10,000 connections, the performance does not show a big difference. However, for
100,000 connections and 1,000,000 connections the runtimes leap. This difference
in behavior may be explained by the access patterns of both approaches: the periodic

(a) queue checked journeys (b) queue time

Fig. 5 Timer Queue for 1 Million stored Connections over two days. a Shows the queue size, b shows the
journeys, which are checked again and c shows the time the queue needed for execution

643

1 3

Efficient monitoring of public transport journeys

approach on the one hand iterates all connections sequentially. On the other hand,
the event-based approach does not access connections in a particular order. Thus,
the event-based approach benefits more from the fast random-access read perfor-
mance of RAM storage. Finally, we can see that in practice, the periodic approach
scales poorly and is not able to keep up with the real-time message input (one update
every 30 s vs. more than 2 min for each check) for 100,000 registered connections.
The event-based approach scales easily up to 1 M connections.

Fig. 6 Analysis of how the storage medium (on-disk against in-memory) influences the runtime perfor-
mance (25% quantile, median, and 75% quantile) of both approaches for different counts of stored con-
nections

Fig. 7 Different parts and their time requirements

644 F. Gündling et al.

1 3

Parallelization Modern server CPUs have many cores. Utilizing all cores
is essential to make use of the compute resources the hardware provides. Both
approaches presented in this paper are parallelizable in a straightforward manner:
the checks for each real-time update (going through the map lookup data struc-
tures/iterating all connections) do not depend on each other. Therefore, several
stages of the connection monitoring can be processed in parallel. Figure 7 shows
the results of an evaluation conducted on a 6-core CPU: overall the average time
required to process one real-time update was reduced more than 25%. Since the
persistent storage medium does not benefit from a multi-core CPU, all I/O bound
processes (time to write updated journeys as well as the time to write the latest
value known to the user) do barely benefit from the parallelization. However, all
computational steps (identifying and updating affected journeys as well as updat-
ing the latest value known to the user) can be performed much faster.

8 Conclusion and outlook

We presented two different approaches to monitoring booked connections of pub-
lic transport travelers: the naive approach checks every stored connection periodi-
cally whereas the event-based approach reduces the number of connections that
need to be checked by several magnitudes (e.g. from 1M to below 10,000). The
system provides an elaborate rule system to configure which information should
be pushed (e.g. via an mobile application, SMS, or e-mail) to the user (on a per-
connection basis) to avoid annoying the users with updates they are not inter-
ested in. Our evaluation, which is based on real data provided by Deutsche Bahn
(schedule timetable as well as real-time updates), shows that the event-based sys-
tem is capable of monitoring millions of connections on a default desktop work-
station. Different improvements (parallel real-time update processing as well as
in-memory storage) further enhances the runtime performance of the system. In
our future work, we aim to incorporate real-time updates of other means of trans-
portation (e.g. flight data or traffic flow updates) into our system.

Funding Open Access funding provided by Projekt Deal.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen
ses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

645

1 3

Efficient monitoring of public transport journeys

References

Brakewood C, Macfarlane GS, Watkins K (2015) The impact of real-time information on bus rider-
ship in New York City. Transp Res Part C Emerg Technol 53:59–75

Cats O, Koutsopoulos H, Burghout W, Toledo T (2011) Effect of real-time transit information on
dynamic path choice of passengers. Transp Res Record J Transp Res Board 2217:46–54

Caulfield B, O’Mahony M (2009) A stated preference analysis of real-time public transit stop infor-
mation. J Public Transp 12(3):1–20

Disser Y, Müller-Hannemann M, Schnee M (2008) Multi-criteria shortest paths in time-dependent
train networks. In: McGeoch CC (eds) Experimental algorithms. WEA 2008. Lecture Notes in
Computer Science, vol 5038. Springer, Berlin, pp 347–362

Frede L, Müller-Hannemann M, Schnee M (2008) Efficient on-trip timetable information in the pres-
ence of delays. In OASIcs-OpenAccess Series in Informatics, vol 9. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik. https ://doi.org/10.4230/OASIc s.ATMOS .2008.1584

Jespersen-Groth J, Potthoff D, Clausen J, Huisman D, Kroon L, Maróti G, Nyhave Nielsen M (2009)
Robust and online large-scale optimization. Disruption management in passenger railway trans-
portation. Springer, New York, pp 399–421

Müller-Hannemann M, Schnee M (2009) Efficient timetable information in the presence of delays. In:
Ahuja RK, Möhring RH, Zaroliagis CD (eds) Robust and online large-scale optimization. Lec-
ture Notes in Computer Science, vol 5868. Springer, Berlin, pp 249–272

Tang L, Thakuriah PV (2012) Ridership effects of real-time bus information system: a case study in
the city of Chicago. Transp Res Part C Emerg Technol 22:146–161

Törnquist J (2007) Railway traffic disturbance management—an experimental analysis of disturbance
complexity, management objectives and limitations in planning horizon. Transp Res Part A Policy
Pract 41(3):249–266

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://doi.org/10.4230/OASIcs.ATMOS.2008.1584

	Efficient monitoring of public transport journeys
	Abstract
	1 Introduction
	2 Comparison to related work
	3 Basic terminology
	4 Monitoring profile
	5 Real-time data
	5.1 Identifier
	5.2 Message types
	5.3 Delay propagation

	6 Connection monitoring
	6.1 Periodic approach
	6.2 Event-based approach
	6.2.1 Handling cancellations, reroutings, delays, and track changes
	6.2.2 Handling free text messages
	6.2.3 Putting the pieces together
	6.2.4 Deferred checking

	7 Evaluation
	7.1 Schedule timetable and real-time data
	7.2 Performance Comparison
	7.3 Timer queue performance
	7.4 Improvements

	8 Conclusion and outlook
	References

