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Abstract. The formation of clusters at sub-saturation densities in
nuclear matter can be seen as a result of many-body correlations. Var-
ious theoretical models have been developed to take this effect into
account, mostly on a phenomenological level using energy density func-
tionals. These models are constructed in such a way that clusters appear
solely in dilute matter and dissolve when the density approaches the
nuclear saturation density. At higher densities only nucleons survive as
quasi-particles and no explicit correlations between the constituents of
nuclear matter are considered. The possible description of correlations
with cluster degrees of freedom at supra-saturation densities is explored
using the example of a quasi-deuteron in a generalized relativistic den-
sity functional. The required change in the density dependence of the
cluster mass shift, responsible for describing the cluster dissolution in
the present model, is derived for nuclear matter at zero temperature.

1 Introduction

Short-range correlations between nucleons are an essential feature in strongly inter-
acting systems [1,2]. They originate from the repulsive hard-core of the nuclear
interaction and the short-range attraction in specific channels. These correlations
appear not only in nuclei but they can also affect the thermodynamic properties of
nuclear matter in a large range of baryon density, temperature and isospin asym-
metry in the phase diagram. Even the chemical composition can be modified due
to the appearance of many-body bound states, i.e. nuclei. This cluster formation
is particularly crucial for applications in astrophysics where the equation of state
is an important ingredient in the determination of compact-star properties or in
simulations of core-collapse supernovae and neutron-star mergers [3].

Many methods have been developed in nuclear physics in order to take short-
range correlations into account in theoretical calculations using realistic nucleon-
nucleon interactions, see, e.g., [3–5] and references therein. Alternatively, effective
field-theoretical methods are employed that are guided by symmetry principles from
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QCD and that explore the concept of scale separation using systematic expansions
in powers of small parameters [2,6].

Another line of approaches are energy density functionals (EDFs) which are usu-
ally derived in self-consistent mean-field approximation with an effective in-medium
interaction [7]. They are more phenomenological models without a direct connection
to the nucleon-nucleon interaction in free space. Instead, their parameters are deter-
mined from directly fitting properties of finite nuclei and sometimes characteristic
parameters of nuclear matter near saturation, e.g., the binding energy per nucleon,
the saturation density or the incompressibility. There are various versions of this
approach, e.g., non-relativistic models using Skyrme or Gogny type interactions [8,9]
or relativistic models based on the exchange of mesons [10]. In general, only baryons
are the relevant degrees of freedom in these EDFs. They become quasi-particles in
the medium with modified properties as compared to the vacuum. However, there
are no explicit correlations between these quasi-particles.

About a decade ago, interacting clusters were introduced as explicit degrees of
freedom in relativistic density functionals, concentrating on the light clusters 2H, 3H,
3He and 4He at first [11]. This generalization of standard EDFs is quite natural since
the description of very dilute matter as an ideal mixture of nucleons and all nuclei from
the table of isotopes in thermodynamic equilibrium, usually called nuclear statistical
equilibrium (NSE), is widely used in astrophysics. This approximation, however, is
valid only as long as the interaction between the constituents can be neglected. There
is even an exact low-density limit at finite temperatures, the virial equation of state
[12–15]. It can take interaction effects into account and depends only on experimental
observables like binding energies and scattering phase shifts. A generalization based
on a quantum statistical approach has been developed [16–22].

But in simple models with cluster degrees of freedom a new problem arises. With
increasing density, the system approaches nuclear saturation density. It is expected
that all clusters dissolve in the medium so that only nucleons remain at higher den-
sities. This is not realized in a standard NSE approach. Instead a conversion of the
matter to a mixture of heavier and more strongly bound nuclei is found. There are
two main methods to describe the dissolution of clusters with increasing density.
The traditional excluded-volume approach uses a simple geometric picture [23–26]. A
finite size is assigned to every cluster so that they cannot exist above a certain density
since the maximum packing fraction is reached. In Figure 1 a simple example for the
deuteron mass fraction Xd = 2nd/nb in symmetric neutron-proton-deuteron matter
is depicted. Here, nd and nb = nn + np + 2nd are the deuteron number density and
the total baryon number density, respectively. NSE calculations (dashed lines) for
different temperatures are compared to calculations assuming a finite volume of the
deuteron (full lines). The effect of the deuteron suppression with increasing density
is obvious, in particular the rapid decrease of Xd when a certain limiting density is
approached from below, independent of the temperature.

A more recent approach to describe the dissolution of clusters uses a microscop-
ically motivated method. The basic idea is that the properties of the clusters can
change in the medium, in particular the mass or binding energy. This effect will
depend not only on the density but also on temperature and even the momentum
of the cluster. The size of this mass shift can be calculated employing a many-body
Schrödinger equation with appropriate potentials taking the medium into account
[16,17,22]. One essential feature of this approach is the Pauli exclusion principle.
The formation of clusters is suppressed when a considerable fraction of the available
single-particle states in momentum space is already occupied and is no longer avail-
able for the cluster. This Pauli blocking is less strong when the surface of the Fermi
sphere becomes more dilute at higher temperatures or the center-of-mass momentum
of the cluster is much larger than the typical radius of this sphere. The mass shifts
from microscopic calculations can be parametrized using simple functional forms with
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Fig. 1. Deuteron mass fraction Xd in isospin symmetric neutron-proton-deuteron matter in
a NSE model without (dashed lines) and with (full lines) excluded-volume mechanism as a
function of the total baryon number density nb for different temperatures from 1 MeV (top)
to 20 MeV (bottom).

appropriate extrapolations to high densities [11,22,27,28]. Then they are used in the
EDF for the calculation of the system properties, e.g., the equation of state of nuclear
matter. Details for light clusters will be given in Section 2. When the effective in-
medium binding energy of a cluster vanishes, at the so-called Mott density, the cluster
will dissolve since no bound state exists any more.

In the existing EDFs with the excluded-volume mechanism or with medium-
dependent mass shifts, all clusters disappear above nuclear saturation density by
construction and a simple system of neutron and proton quasi-particles remains.
But it is well known that short-range correlations between nucleons also exist at
supra-saturation densities. One experimental evidence is found from nucleon knock-
out reactions on nuclei using inelastic electron scattering, see [1] and references
therein. A sizable fraction of correlated nucleon-nucleon pairs is observed. This
causes an extended tail in the single-nucleon momentum distribution. It decreases
approximately proportional to the inverse fourth power (∝ k−4) of the momentum k.
Interestingly, the absolute height of these tails is practically identical for neutrons and
protons even in a neutron-proton asymmetric system. Thus a stronger enhancement
of the tail of the minority species as compared to the majority species is observed
[29].

Considering the discussion above, the question arises whether clusters can be used
as a surrogate for an explicit treatment of short-range correlations in EDFs. Since the
many-body wave function of a cluster contains correlated nucleons, this would leave
an imprint on the single-nucleon momentum distribution of dense nuclear matter
even at zero temperature. In order to find these quasi-clusters above the saturation
density, a substantial modification of the cluster mass shift has to be expected. In this
work, the necessary modifications of a relativistic EDF with clusters above saturation
will be investigated concentrating on deuteron-like clusters. The relevant condition
on the mass shift will be formulated and compared to the traditional treatment.

This work is structured as follows. In Section 2 the basics of the generalized
relativistic density functional (GRDF) are given with particular attention to the
mass shifts of light clusters and the extension to zero temperature. The dependence
of the mass shifts on the density above saturation is discussed using as example
the deuteron. Conditions on the deuteron mass shift in symmetric nuclear matter
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are discussed in Section 3 if the deuteron is used as an effective means to include
short-range nucleon-nucleon correlations. Conclusions and an outlook are given in
Section 3.

2 Relativistic density functional with clusters

The GRDF is an extension of a conventional relativistic mean-field model with nucle-
ons by adding light clusters (d = 2H, t = 3H, h = 3He, α = 2He) as explicit degrees
of freedom [11]. The effective in-medium interaction between nucleons, free or bound
in clusters, is described by the exchange of mesons with density dependent couplings.
The mass-shift approach is used to obtain the dissolution of clusters with increasing
density. Here we follow the notation in [30] where more details can be found.

2.1 Fundamental quantities of the GRDF

The model for nuclear matter is introduced in a thermodynamic formulation by defin-
ing a total grand canonical potential density ω that depends on the temperature T
and the chemical potentials µi of all constituents, i.e., nucleons, d, t, h, and α. Since
the case of zero temperature will be considered in this work, the standard form of ω
as given in [30] for finite temperatures has to be generalized by adding a term that
considers the contribution of bosonic particles in condensates. Thus it is given as

ω(T, {µi}) =
∑
i

(
ωi +

1− σi
2

ω
(cond)
i

)
+ ωmeson − ω(r)

meson − ω(r)
mass (1)

with the standard non-mesonic quasi-particle contribution

ωi(T,m
∗
i , µ
∗
i ) = −T gi

σi

∫
d3k

(2π)3
ln

{
1 + σi exp

[
−Ei(k,m

∗
i )− µ∗i
T

]}
, (2)

a condensate contribution, only relevant for bosons,

ω
(cond)
i = giξi (m∗i − µ∗i ) , (3)

and three additional terms: the contribution of mesons, a rearrangement contribution
due to the density dependence of the nucleon-meson couplings and a term arising from
the density dependence of the cluster mass shifts. Explicit expressions for ωmeson,

ω
(r)
meson, and ω

(r)
mass can be found in [30]. The sign σi distinguishes between fermions

(σi = +1) and bosons (σi = −1). In equation (2) the degeneracy factor gi and the

energy Ei =
√
k2 + (m∗i )

2 of a quasi-particle i appear. The factor ξi in equation
(3) quantifies the size of the condensate contribution, see below. The effective mass
m∗i = mi − Si and effective chemical potential µ∗i = µi − Vi contain scalar and vector
potentials that are given by

Si = Cσgiσnσ + Cδgiδnδ −∆mi = S
(meson)
i −∆mi (4)

and

Vi = Cωgiωnω + Cρgiρnρ +BiV
(r) +W

(r)
i = V

(meson)
i +W

(r)
i , (5)
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respectively, if a vector density dependence of the nucleon meson couplings Γm in
Cm = Γ2

m/m
2
m is assumed. Here, four types of mesons m are considered: σ, ω, ρ, and

δ with the corresponding source densities nm. The DD2 parametrization [11] of the
couplings is used. The factors gim define the strength of the coupling between a quasi-
particle i and a meson m and Bi is the baryon number. The quantities ∆mi, V

(r),

and W
(r)
i are the mass shift, the rearrangement term due to the density dependence

of Γm, and the mass-shift rearrangement contribution. All relevant equations and
quantities can be derived from the potential density (1).

The quasi-particle number densities (= vector densities) are found as

ni = − ∂ω

∂µi

∣∣∣∣
T,{µj}j 6=i

= n
(v)
i = gi

∫
d3k

(2π)3
di(T, k,m

∗
i , µ
∗
i ) +

1− σi
2

giξi (6)

from the proper derivatives of (1) with respect to the chemical potentials µi with the
distribution function

di =

{
exp

[
Ei(k,m

∗
i )− µ∗i
T

]
+ σi

}−1

. (7)

The rearrangement terms in the vector potential (5) are essential to obtain this
standard form for the densities. From a differentiation of (1) with respect to the
particle vacuum masses mi, the scalar densities

n
(s)
i =

∂ω

∂mi

∣∣∣∣
T,{µj}

= gi

∫
d3k

(2π)3

m∗i
Ei

di(T, k,m
∗
i , µ
∗
i ) +

1− σi
2

giξi (8)

are obtained. The condensate density n
(c)
i = giξi gives identical contributions to the

vector and scalar densities unlike the standard thermal parts that vanish for T → 0.

2.2 Mass shifts of light clusters

The suppression of cluster formation in the GRDF is achieved by introducing the
mass shifts ∆mi in the scalar potentials (4) for all clusters composed of nucleons.
In general there are several contributions to ∆mi, e.g., from the Pauli blocking of
states in nuclear matter or a change of the cluster binding energy in compact star
matter where the Coulomb interaction is screened by the electronic background. In
the case of nuclear matter, the electromagnetic interaction is not taken into account
and there are no electrons included to compensate the charge of protons to achieve

charge neutrality. Hence, the total mass shifts is just the strong mass shifts ∆m
(strong)
i

from Pauli blocking.
The strong mass shifts can be calculated explicitly for various conditions of

temperature, density and isospin asymmetry of the medium by solving the in-
medium many-body Schrödinger equation with proper potentials containing factors
that take the Pauli blocking into account. These results can be approximated by
more-or-less simple functions over a large range of thermodynamic variables. Several
parametrizations have been developed [11,22,27,28]. Here the form

∆m
(strong)
i (T, {n(v)

i }) = fi(n
(eff)
i , n

(diss)
i )B

(0)
i (9)
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with a shift function fi and the cluster binding energy B
(0)
i in vacuum is used. The

shift function depends on all quasi-particle vector densities n
(v)
i via the effective

density

n
(eff)
i =

2

Ai
[ZiYq +Ni(1− Yq)]nb (10)

and on the temperature T via the dissociation density

n
(diss)
i =

B
(0)
i

δBi(T )
. (11)

A dependence of the mass shift on the momentum of the cluster with respect to the
medium is neglected in this parametrization for simplicity. Explicit expressions for
δBi(T ) are given in [11]. They regulate the temperature dependence of the mass shifts.
In the limit T → 0, the expressions of equation (26) and (27) of reference [11] reduce

to δBi(0) = ai,1/(2a
3/2
i,2 a

2
i,3) = 3634.16 MeV fm3 for i = d and δBi(0) = ai,1/a

3/2
i,2 =

3389.70, 3901.00, 4715.99 MeV fm3 for the light clusters i = t, h, α with parameters
ai,1, ai,2, ai,3 given in table I of reference [11]. The effective density (10) introduces
a dependence of the mass shifts on the isospin asymmetry of the system. In equation
(10), the charge number Zi, the neutron number Ni, and the mass number Ai =

Zi + Ni of the cluster i enter as well as the baryon number density nb =
∑
iBin

(v)
i

with baryon numbers Bi = Ai and the hadronic charge fraction Yq =
∑
i Zini/nb of

the system. In symmetric nuclear matter with Yq = 1/2 one has n
(eff)
i = nb. In this

work the particular functional form

fi =


x if x ≤ 1

x+ (x−1)3(y−1)
3(y−x) if x > 1 and x < y

∞ if x ≥ y
(12)

with the two parameters

x =
n

(eff)
i

n
(diss)
i

y =
nsat

n
(diss)
i

(13)

is used for the shift function as introduced in [30]. With this choice a linear increase of
the mass shift with nb at low baryon densities is described consistent with the results
obtained in [11,22,27,28]. As soon as the effective density becomes larger than the
dissociation or Mott density, i.e. x > y, a stronger density dependence is assumed.
This extrapolation is only heuristic in order to prevent the clusters to reappear at
higher baryon densities.

The density dependence of the mass shifts of the four light clusters in the GRDF
model is depicted in Figure 2 for symmetric nuclear matter at zero temperature. The
change of the slope clearly shows the transition from the linear to the cubic depen-
dence. This happens for the deuteron at a much lower baryon density as compared
to t, h, and the α cluster. This transition point is defined by the vanishing of the

effective binding energy B
(eff)
i = B

(0)
i −∆mi as shown in Figure 3. Obviously, B

(eff)
i

becomes identical to B
(0)
i in the limit nb → 0. The strong increase of the mass shifts

for nb approaching the nuclear saturation density nsat = 0.149065 fm−3 of the GRDF
model with parametrization DD2 leads to a strong suppression of their densities so
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Fig. 2. Mass shifts ∆m of light clusters at zero temperature in isospin symmetric nuclear
matter as function of the total baryon number density in the GRDF model with the
parametrizations (9).

Fig. 3. Effective binding energies B
(eff)
i of light clusters at zero temperature in isospin

symmetric nuclear matter as function of the total baryon number density in the GRDF
model.

that they are removed from the system and only matter composed of neutrons and
protons remains above saturation.

3 Quasi-deuterons above saturation

With the basic quantities and parametrizations of the GRDF model with light clusters
defined in the previous section, a possible modification of the cluster mass shifts can
be investigated so that they can be used as an effective means to model nucleon-
nucleon correlations. Since two-body short-range correlations in the np 3S1 channel
are much more important than other many-body correlations, the deuteron is chosen
as example. Of course, the deuteron inside the medium will have a different wave
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function as compared to the deuteron in vacuum but here the main interest is in the
size of the deuteron mass shift.

The chemical composition of the system is defined by the total baryon density

nb = nn + np +Adnd (14)

and the hadronic charge fraction

Yq =
np + Zdnd

nb
(15)

under the condition of chemical equilibrium, i.e., the relation

µd = Ndµn + Zdµp (16)

of the chemical potentials has to hold. In the following the case of zero temperature is
assumed. Then the neutron and proton densities are given by nn = gnk

3
n/(6π

2) and
np = gpk

3
p/(6π

2) with Fermi momenta kn, kp and degeneracy factors gn = gp = 2.
The deuteron density nd = ddξd with gd = 3 is given by the contribution from the
condensate term only. The factor ξd is not apriori given but cannot have any value

because the deuteron density has to lie between n
(min)
d = 0 and

n
(max)
d = min

[
Yqnb
Zd

,
(1− Yq)nb

Nd

]
(17)

since at T = 0 all neutron (protons) will be bound inside the deuteron for neutron-rich
(proton-rich) matter. The relation of the chemical potentials (16) can be expressed
as

m∗d + Vd = Nd

[√
k2
n + (m∗n)2 + Vn

]
+ Zd

[√
k2
p + (m∗p)

2 + Vp

]
(18)

where the mass shift of the deuteron enters via the effective mass of the deuteron
m∗d = md − Si and the mass rearrangement terms

W
(r)
i =

∑
j=n,p,d

n
(s)
j

∂∆mj

∂n
(v)
i

= n
(s)
d

∂∆md

∂n
(v)
i

(19)

for i = n, p, d in the vector potentials (5). Thus equation (18) is a linear first-order
partial differential equation for ∆md in general.

Equation (18) simplifies considerably for specific choices of the coupling factors
gim in equations (4) and (5) and of the density dependence of the mass shift (9). It is
natural to assume that the nucleons inside the deuteron couple to the Lorentz vector
mesons with the same strength as the free nucleons. Hence

gdω = Nd + Zd = 2 gdρ = Nd − Zd = 0 (20)

for the deuteron and

gnω = gpω = 1 gnρ = −gpρ = 1 (21)

for the nucleons. Then equation (18) reduces to

md + ∆md (22)
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Fig. 4. Deuteron mass shift ∆md at zero temperature in isospin symmetric matter in the
original GRDF model (red dashed line) in comparison with mass shifts from equation (25)
to find a given deuteron mass fraction Xd (colored full lines). The horizontal black line
indicates the experimental deuteron binding energy in vacuum. See text for details.

= S
(meson)
d +Nd

√
k2
n + (mn − S(meson)

n )2 + Zd

√
k2
p + (mp − S(meson)

p )2

+NdW
(r)
n + ZdW

(r)
p −W (r)

d

without the mesonic contributions to the vector potentials. The density dependence
of the deuteron mass shift is a function of only the effective density

n
(eff)
d =

2

Ad
[Zd(np + Zdnd) +Nd(nn +Ndnd)] (23)

and thus the term

NdW
(r)
n + ZdW

(r)
p −W (r)

d = n
(s)
d

∂∆md

∂n
(eff)
d

(
Nd

∂n
(eff)
d

∂n
(v)
n

+ Zd
∂n

(eff)
d

∂n
(v)
p

−
∂n

(eff)
d

∂n
(v)
d

)
(24)

= n
(s)
d

∂∆md

∂n
(eff)
d

2

Ad

[
N2
d + Z2

d −
(
Z2
d +N2

d

)]
= 0

with the derivatives vanishes. Then the deuteron mass shift is only a simple function

∆md = S
(meson)
d −md (25)

+Nd

√
k2
n + (mn − S(meson)

n )2 + Zd

√
k2
p + (mp − S(meson)

p )2 .

For a given baryon density nb, hadronic charge fraction Yq, and deuteron mass fraction
Xd = 2nd/nb, the number densities of n, p, and d are fixed and the deuteron mass
shift can be calculated explicitly in this way assuming T = 0 and that the deuteron
contribution arises exclusively from the condensate.

The case of symmetric nuclear matter at zero temperature is studied in Figure 4.
The deuteron mass shift in the parametrization of the original GRDF model [11] is
depicted as the red dashed line, corresponding to the full red line in Figure 2. It
starts with a vanishing mass shift at zero baryon density and then increases with the
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density of the medium. It rises particularly fast when the deuteron binding energy in

vacuum, the horizontal black line, is crossed at the dissociation density of n
(diss)
d =

6.1×10−4 fm−3. The density dependence of the deuteron mass shift is rather different
when it is calculated from equation (25) assuming the condition of condensation. In
symmetric nuclear matter at zero temperature the deuteron mass fraction can have

any value between zero and X
(max)
d = 2n

(max)
d /nb = 1. The result for ∆md depends

on the assumed deuteron fraction Xd in nuclear matter because the Fermi momenta
of the nucleons and the scalar potentials of the particles are different. The full lines
in Figure 4 show the dependence for four values Xd = 0.0, 0.1, 0.2, and 0.5 with the
largest Xd corresponding to the lowest mass shift. In the low-density limit, the quasi-
deuteron mass shift (25) approaches the deuteron binding energy in vacuum because

µn = mn, µp = mp, and µd = md + ∆md = mn + mp − B(0)
d + ∆md = µn + µp. At

high baryon densities above approx. 10−4 fm−3 these mass shifts for the condensate
condition are lower than that of the original GRDF parametrization. A comparison of
the full blue line in Figure 4 for Xd = 0.0, i.e., the onset condition for condensation,
and the red dashed line of the original GRDF mass shift is of particular interest. At

high densities µd = md + ∆md − S(meson)
d � µn + µp and there will be no deuterons

at all in the system as expected. On the contrary, µd < µn + µp below the crossing
point at low densities but this is not allowed. All nucleons would form deuterons as
neutron-proton bound states because the pure nucleonic system is less strongly bound
than the condensate of deuterons. Considering more strongly bound bosonic clusters
such as α particles, 12C, or 16O, the formation of these heavier clusters is expected.
In fact, in the limit of infinite cluster mass, the density region of the liquid-gas phase
transition is entered at low densities with the coexistence of macroscopic regions of
low and high density nuclear matter.

In the practical application of an extended GRDF model with quasi-clusters at
supra-saturation densities, a proper interpolation of the mass shift between the low-
density limit from the microscopic Pauli blocking calculation and the high-density
limit of the condensate model has to be introduced. As seen in Figure 4 it should be
possible to find such a parametrization.

4 Conclusions and outlook

The GRDF model for nuclear matter can describe the dissolution of clusters with
increasing density using the concept of cluster mass shifts. They are chosen custom-
arily in such a way that the clusters, which have modified properties in the medium,
do not appear at supra-saturation densities. The possibility of using these quasi-
clusters as an effective means to consider nuclear short-range correlation requires a
change in the density dependence of the mass shifts. Exploratory calculations for
quasi-deuterons in symmetric nuclear matter show that a much weaker increase of
the mass shift is needed at high densities than in the present parametrization of the
GRDF model. Since the case of zero temperature is studied, the deuteron fraction
is determined by the density of the boson condensate that is incorporated into the
model. At finite temperatures there will be a thermal contribution too because quasi-
deuterons can be in excited states with a finite cm momentum. In contrast to the
zero-temperature case, the single-particle momentum distribution of the nucleons will
already develop a finite high-momentum tail because of the change in the distribution
functions. The contribution of the quasi-deuterons will give only a certain fraction for
high momenta partly arising from the neutron-proton short-range correlation inside
the deuteron and partly from the thermal motion of the deuteron itself.
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For a future application of the cluster-correlation concept a suitable parametriza-
tion of the mass shifts has to be introduced that interpolates between the low-density
limit constrained by microscopic many-body calculations and the high-density behav-
ior derived in this work. Also a momentum dependence of the mass shift and a more
involved dependence on the isospin asymmetry has to be considered. The precise
form of the parametrization can be constrained by experimental results for the effec-
tive deuteron fraction in nuclear matter near saturation. The parametrization of the
mass shift will only determine the mass fraction of the quasi-deuteron. To explore
the single-particle momentum distribution in nuclear matter, explicit deuteron wave
functions in the medium are needed. They can be obtained from microscopic cal-
culations and will contain short-range correlations. Of course, the quasi-deuteron in
the medium will look different than the deuteron in free space. Combining the rel-
ative nucleon-nucleon motion with the cm motion of the quasi-deuteron will give a
contribution to the single-particle momentum distribution in nuclear matter. It is
expected that a high-momentum tail emerges even at zero temperature. However,
only more involved calculations can reveal how the momentum dependence will look
like and how it compares to the experimentally observed k−4 dependence. Work in
this direction is in progress. In the present exploratory study only quasi-deuterons
were considered. The effect of including heavier clusters and their relative importance
can also be investigated, in particular the resulting differences in the high-momentum
tail of the single-nucleon momentum distribution.
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