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Abstract. Wetting of surfaces with porous coating is relevant for a wide
variety of technical applications, such as printing technologies and heat
transfer enhancement. Imbibition and evaporation of liquids on surfaces
covered with porous layers are responsible for significant improvement
of cooling efficiency during drop impact cooling and flow boiling on
such surfaces. Up to now, no reliable model exists which is able to
predict the kinetics of imbibition coupled with evaporation on surfaces
with porous coatings. In this work, we consider one of possible mech-
anisms of imbibition on a substrate covered by a nanofiber mat. This
is the capillary pressure-driven flow in a corner formed between a flat
substrate and a fiber attached to it. The shape and the area of the cross-
section occupied by the liquid as well as the capillary pressure change
along the flow direction. A theoretical/numerical model of simultane-
ous imbibition and evaporation is developed, in which viscosity, surface
tension and evaporation are taken into account. At the beginning of
the process the imbibition length is proportional to the square root
of time, in agreement with the Lucas-Washburn law. As the influence
of evaporation becomes significant, the imbibition rate decreases. The
model predictions are compared with experimental data for imbibition
of water-ethanol mixtures into nanofiber mat coatings.

1 Introduction

Liquid wetting of porous materials, spreading and imbibition into porous layers, as
well as the concomitant heat and mass transfer phenomena play an important role in
a wide variety of technical applications. Understanding complex wetting and trans-
port phenomena is important for industrial applications such as ink-jet printing and
3D-printing, for building technologies in the control of moisture penetration into
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building components and filters in air conditioning systems and HVAC [1]. More-
over, the knowledge of wetting behaviour and mechanisms plays a fundamental role
in the development of design rules of functional materials, e.g. superhydrophobic
surfaces [2], and of porous coatings used for cooling of electronic devices and heat
transfer enhancement in spray cooling [3].

When a liquid drop encounters a porous layer, the transport of liquid over and
within this layer is governed by the physical and chemical properties of liquid and
solid in contact, the geometry of the porous structure, and the thickness of the layer.
Depending on those properties, different behavior types can been observed, including
perfect wetting, partial wetting, non wetting, and liquid imbibition into the layer,
both in the direction parallel and normal to the substrate. The phenomenon of imbi-
bition is present in many different types of structures and geometries that are able
to cause a capillary action between liquid and solid media [4–9]. The topography of
the substrate, the geometry and orientation of the pores and geometrical features
such as pillars can determine preferential liquid spreading directions and wetting
patterns [10].

One of the forms of porous coatings, which is promising for heat transfer appli-
cations such as spray cooling and boiling, is comprised of nanofibers arranged along
the substrate (nanofiber mats) [3,11–17]. When a water drop impacts on the layer,
the drop initially spreads over the surface and, as the maximum spreading diameter
is reached, the drop stays pinned. The splashing and receding of drop are consid-
erably suppressed [18]. The spreading stage is followed by imbibition, in which the
liquid penetrates into the mat and spreads radially within the porous coating. The
imbibition of liquid in the porous material causes the enlargement of the heat trans-
fer area, promoting the cooling of the substrate underneath by evaporation of liquid
and reducing significantly the liquid evaporation time in comparison with a drop on
an uncoated substrate [3,16]. The imbibed area increases, reaches a maximum and
afterwards decreases due to evaporation, until the substrate is completely dried. It
is clear that spreading and imbibition, from one side, and transport phenomena and
phase change, from the other side, are strongly coupled.

The spontaneous liquid rise in a small cylindrical tube in contact with a reservoir
can be considered as the simplest example of liquid imbibition. The liquid penetration
takes place for tube diameters smaller than the capillary length

√
σ/ρg, where σ

is the surface tension, ρ is the liquid density and g is the acceleration of gravity.
Excluding initial stage of the capillary rise, which is governed by intertia, and the final
stage, which is governed by gravity for vertical capillaries, the imbibition dynamics
is dominated by the balance between viscous and capillary forces. The dynamics l(t)
of the capillary tubes rise is described by the Lucas-Washburn law [19]:

l(t) =

√
σb cos θ

2µ
t, (1)

where θ is the equilibrium contact angle, µ is the dynamic viscosity of the liquid and
b is the tube internal radius.

The capillary rise in porous medium or in a porous layer connected to infinite
reservoir is also determined by the balance between the viscous and capillary forces,
apart from the early stage of the process. Many theoretical models of imbibition are
based on the assumption of Darcy flow within a porous layer or along the wall topog-
raphy [6,8,20,21]. If evaporation is not significant, the resulting imbibition length
still follows the t1/2-dependence, In addition, the imbibition length is proportional to
the quadratic root of the permeability of the porous medium and the capillary pres-
sure. Withstanding real system’s complexity, this simple diffusive-type law appears to
apply to a wide variety of porous or textured structures and rough surfaces [5,10,18].
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Bico et al. [5] developed a model aiming to describe the condition of imbibition
into a textured structure, formed by regularly spaced micro-size spikes. The model
predicts a critical contact angle, based on the geometrical parameter of the surface
design, such as surface roughness and a parameter characterizing the solid fraction
remaining dry. If the condition for imbibition is satisfied, the model predicts a time
evolution of the imbibition length in agreement with the

√
t diffusion-like dynamics

and with the results of the experiments performed on the surface by the authors.
Lembach et al. [18] investigated water drop impact, spreading and imbibition into

a PAN electrospun nanofiber coatings. The dynamics of the radially propagating
imbibition front was found once again to follow the

√
t-dependence, in the first stage

of the process, and has been quantified by the mean transport parameter. In the
experimentally observed following stages, imbibition rate decreases and eventually
stops due to the combined effect of the limited liquid volume and evaporation of the
fluid, which later leads to wetted area shrinkage.

In the experimental work of Courbin et al. [10], drop imbibition in a texture
of micropillars covering a substrate was discussed. Different flow patterns during
liquid imbibition were observed, from circular to square and octagonal, underling the
anisotropy of imbibition characteristic of those decorated surfaces. Furthermore, the
distance of the moving contact line from the reservoir was found to generally follow
the
√
t-dependence. Accordingly with the already observed wetting anisotropy, the

moving contact line propagation prefactor D in the relation l ∼ D t1/2 was found to
assume a higher value along the diagonal of the pattern. The knowledge of micro-scale
behaviours and dependencies on the geometrical parameter is, therefore, necessary
for the understanding of complex wetting in texture and fiber structured substrates.

Romero and Yost [22] and Rye et al. [23] proposed a model for capillary-driven
flow in V-shaped grooves in the absence of evaporation. The flow has been described
in form of a nonlinear equation derived using the mass balance under an assumption
of a Poiseuille flow. The governing equation was converted to an ordinary differen-
tial equation by similarity transformation and was later numerically solved. Results
show that the wetting front position is proportional to the square root of time, and
the prefactor D is proportional to square root of the ratio between surface tension
and viscosity of the liquid, groove depth, and a function of the contact angle and
groove angle (characterizing groove opening). The authors demonstrated that the
same ∼D t1/2 flow dynamics can be shown in arbitrarily shaped groove.

Recently, Gurumurthy et al. [24] performed full-scale numerical simulations of
liquid imbibition in a corner of a square capillary using the Volume-of-Fluid (VoF)
method. The same method has been applied to simulation of capillary rise in open
rectangular channels [25]. The capillary-driven liquid flow was directed against the
gravity in both cases. The predicted rivulet growth rate followed the t1/3 asymptotic
behavior, in agreement with previous experimental works. The same asymptotic law
has been derived using a simplified model, in which it has been assumed that the flow
in rivulet is unidirectional, the inertia is negligible and the curvature in the direction
of capillary rise is very small. The advantage of full-scale numerical simulations is the
ability to predict the flow field beyond the validity limits of the simplifying assump-
tions. However, these computations are highly expensive in terms of computational
time.

Modelling the capillary flow in a corner (or wedge) geometry in the presence of
evaporation has been performed in the past under simplifying assumptions, including
the assumptions of unidirectional flow and negligible curvature in any plane paral-
lel to the groove axis [26,27]. In [26,27] evaporation in a pure vapor atmosphere is
considered. The models have been developed for the prediction of a stationary shape
of a rivulet within a groove. One of the important outcomes in [27] is the predicted
location of the dryout point.
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Only in a few works the evaporation during spreading and imbibition has
been taken into account in a numerical model. Mekhitarian et al. [28] studied
experimentally and theoretically imbibition and evaporation of a volatile liquid
drop into a textured surface made of cylindrical pillars (of the order of tens of
micron), where the radii and heights if the pillars were varied maintaining con-
stant distance between the pillars. The authors have found that for small pillars
evaporation-dominated regime prevails, in which imbibition does not take place.
In a spreading-dominated regime, taking place for large pillars, the imbibed area
propagates up to a maximum extension, corresponding to the simultaneous central
cap-shaped drop disappearance. The authors have developed a model describing the
evolution of the drop base radius and the imbibition radius. Diffusion-limited evap-
oration from a thin drop has been assumed in the model. The detailed modelling of
the permeability of the structure and the capillary pressure was beyond the scope of
the model, and approximate expressions for these parameters have been used.

Kolliopoulos et al. [29] developed a one-dimensional model describing the imbi-
bition and evaporation of liquids in rectangular channels. The model resulted in a
scaling law for the final position of the liquid front. According to this law, the final
front position is inversely proportional to the square root of evaporative mass flux.

In [30] the simultaneous imbibition and evaporation from triangular grooves has
been modelled for two evaporation regimes: for diffusion-governed evaporation and
for evaporation driven by a constant heating rate. It was assumed that the capillary
rise takes place at constant contact angle and is governed by the capillary and viscous
forces. In addition, it was assumed that the imbibition length significantly exceeds
the linear dimensions of the groove cross-section and that the flow in the groove is
unidirectional. It was shown that, if the supply of liquid is infinite, the imbibition
length first increases following the t1/2 law and then reaches a steady state. For both
evaporation regimes the maximal imbibition length is inversely proportional to the
square root of the evaporation rate.

To the best of our knowledge, there have been no attempts to model the mech-
anisms of imbibition in porous coatings based on (nano)fibers arranged parallel to
the substrate, in spite of numerous advantages of this kind of coatings for practical
application. The aim of the present work is to model the liquid capillary rise cou-
pled with evaporation within a corner between a plane (representing a substrate)
and a cylindrical fiber as one of possible mechanisms contributing to imbibition on
substrates coated with nanofiber mats. In order to assess the relevance of this mech-
anism, the results are compared with experimental data on water-ethanol mixture
drop imbibition on substrates with thin nanofiber mat coatings.

2 Physico-mathematical model

2.1 Governing equations

In this section, a model describing the capillary rise in a corner between a fiber and a
flat horizontal substrate coupled with liquid evaporation is introduced. In Figure 1 a
schematic representation of cross-sectional area of the modelled geometry is shown:
the liquid coming into contact with the solid walls forms a meniscus whose radius
r depends on the contact angles θ1 and θ2, formed respectively with the fiber and
the substrates. This configuration is possible as long as the contact angles satisfy the
inequality θ1 + θ2 < π.

The flow of liquid is assumed to be unidirectional over the fiber length. It is
assumed that inertia and gravitational forces are negligible, and the flow is driven by
the surface tension. The relation between the gravitational force and surface tension
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Fig. 1. Schematic representation of the geometry.

is determined by the Bond number, Bo =
ρgr2fib

σ , where ρ is the density of the liquid,
g is the gravity of acceleration, and rfib denotes the fiber radius. For the typical
fiber diameter of 400 nm the Bond number for water and ethanol has the order of
magnitude of 10−8. The curvature radius r is assumed to be much smaller than the
meniscus curvature radius in any plane parallel to the z axis, so that the interface
curvature is defined in the x − y plane. This curvature changes along the z axis. It
follows that the pressure is constant in each cross-section of rivulet and is determined
by Laplace pressure jump. Thermophysical properties are assumed to be constant.

The velocity u (x, y) in z direction is described by the Navier-Stokes equation,
which under the model assumptions accepts the following form:

− ∂p

∂z
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
= 0, (2)

where p denotes the pressure and µ is the dynamic viscosity of the liquid. The pressure
gradient can be determined from the gradient of the curvature radius:

∂p

∂z
= − ∂

∂z

(σ
r

)
=

σ

r2
∂r

∂z
, (3)

where σ denotes the surface tension.
A part of meniscus is shown in Figure 2. The integral mass balance over the

control volume V illustrated in this figure has the following form:

ρ
∂V

∂t
= Γz − Γz+dz − jevdz, (4)

where Γz and Γz+dz are the mass flow rates respectively entering and exiting the con-
trol volume and jev is the evaporation rate from the given cross-section (in kg/s/m).
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Fig. 2. Control volume considered in the integral mass balance.

This mass balance can be rewritten in the following form:

∂a

∂t
= − ∂

∂z

∫
a

u da− jev
ρ
, (5)

where a is the cross-sectional area of the meniscus.
The evaporation rate jev is determined by the composition of the gas phase, ther-

modynamic conditions, geometry, and thermal boundary conditions at the substrate.
For example, if the evaporation takes place in the atmosphere of a non-condensable
gas, the evaporation rate is limited by the diffusion of the vapor in the gas. The local
value jev(z) strongly depends on the shape of the rivulet cross-section at the location
z (which is defined by the length h shown in Fig. 1) and on the geometry of the space
filled with the gas [30]. If the evaporation takes place in a pure vapor atmosphere,
the transport processes in the gas phase do not affect the evaporation rate. If in this
case the wall temperature is prescribed, evaporation rate is limited by the thermal
resistance of the liquid and depends on h [27]. If the evaporation in a vapor atmo-
sphere takes place at a constant heat flux qw applied at the back side of the wall,
which is significantly thinner than the typical rivulet length, it can be assumed that
the heat is transported from the wall to the fluid through evaporation only, since the
heat removal by conduction and free convection in vapor is negligible in comparison
to evaporation. In this case the evaporation rate per unit length can be approximated
as jev = qwd

∆hev
, where ∆hev is the latent heat of evaporation and 2d is the average

distance between two fibers in the first layer. For the configurations considered in
this paragraph the evaporation rate can be written in the form jev = jev0J (h/rfib).

The velocity of the wetting front is equal to the average velocity of the liquid at
this front (z = l):

dl

dt
=

(
1

a

∫
a

u da

) ∣∣∣∣
z=l

. (6)

The following dimensionless variables are introduced:

X =
x

rfib
, Y =

y

rfib
, Z =

z

rfib
, λ =

l

rfib
, τ =

tσ

rfibµ
,
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H =
h

rfib
, R =

r

rfib
, A =

a

r2fib
, U = −u

(
σr2fib
µr2

∂r

∂z

)−1
, (7)

where x, y and z are coordinates (see Fig. 1), h is the wetted length of the substrate
(see Fig. 1), r is the meniscus radius and u is the velocity of the liquid. We assume
that the capillary rise in the corner takes place at constant contact angles θ1 and
θ2. In this case the dimensionless interface curvature radius R and the dimensionless
cross-sectional area of the meniscus A are functions of H.

With these definitions, the Navier-Stokes equation takes the following dimension-
less form:

∂2U

∂X2
+
∂2U

∂Y 2
= −1. (8)

The volume flow rate can be expressed as

∫
a

u da = −
σr4fib
µr2

∂r

∂z

∫
A

U dA = −
σr2fib
µR2

∂R

∂Z
Φ(H), (9)

where Φ(H) =
∫
A
U dA is a dimensionless flow rate.

The mass balance equation (5) accepts the following dimensionless form:

∂A

∂τ
=

∂

∂Z

(
Φ

R2

∂R

∂Z

)
− EJ (H), (10)

or

dA

dH

∂H

∂τ
=

Φ

R2

dR

dH

∂2H

∂Z2
+

d

dH

(
Φ

R2

dR

dH

)(
∂H

∂Z

)2

− EJ (H), (11)

where

E =
jev0ν

rfibσ
, (12)

is the dimensionless evaporation number. Herein ν denotes the kinematic viscosity of
the liquid.

The equation for the velocity of the wetting front propagation (6) has the following
dimensionless form:

dλ

dτ
= −

(
Φ

AR2

∂R

∂Z

) ∣∣∣∣
Z=λ

= −
(

Φ

AR2

dR

dH

∂H

∂Z

) ∣∣∣∣
Z=λ

. (13)

Equation (10) is defined in the interval 0 ≤ Z ≤ λ(τ), which changes with the
time. Introducing the new dimensionless coordinate

ψ =
Z

λ(τ)
, (14)
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and performing the transformation of variables, the mass balance equation can be
brought to the form:

dA

dH

(
λ2
∂H

∂τ
− 1

2

dλ2

dτ
ψ
∂H

∂ψ

)
=

Φ

R2

dR

dH

∂2H

∂ψ2
+

d

dH

(
Φ

R2

dR

dH

)(
∂H

∂ψ

)2

− λ2EJ (H).

(15)
This equation is defined in the interval 0 ≤ ψ ≤ 1. The equation for the velocity

of the wetting front propagation has the form:

1

2

dλ2

dτ
= −

(
Φ

AR2

dR

dH

∂H

∂ψ

) ∣∣∣∣
ψ=1

. (16)

By introducing the functions

c1(H) =
Φ

R2

dR

dH

(
dA

dH

)−1
,

c2(H) =
d

dH

(
Φ

R2

dR

dH

)(
dA

dH

)−1
,

c3(H) =
Φ

AR2

dR

dH
. (17)

Equations (15) and (16) can be written down in a compact form:

∂H

∂τ
=

ψ

2λ2
dλ2

dτ

∂H

∂ψ
+
c1
λ2

∂2H

∂ψ2
+
c2
λ2

(
∂H

∂ψ

)2

− EJ (H)

(
dA

dH

)−1
, (18)

1

2

dλ2

dτ
= −c3(0)

(
∂H

∂ψ

) ∣∣∣∣
ψ=1

. (19)

The functions H(ψ, τ) and λ(τ) can be determined by solution of the system of
equations (18) and (19) subject to the boundary conditions

H(0, τ) = Hm, H(1, τ) = 0, (20)

and initial conditions

H(ψ, 0) = Hm(1− ψ), λ(0) = λmin. (21)

If in the above λmin is a small enough, the choice of λmin and of the initial
distribution of H does not affect the long-time evolution of the functions λ(τ) and
H(ψ, τ). Hm is maximum value of the dimensionless wetted substrate length H, which
corresponds to infinite curvature radius for the fixed values of θ1 and θ2:

Hm = 2
cos θ2−θ12 cos θ2+θ12

sin θ2
. (22)

By setting the boundary condition H(0, τ) = Hm we assume that the liquid is
supplied to the corner between the substrate and the fiber from an infinite reservoir,
for example, a large drop.
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Fig. 3. Solution of Poisson equation in a meniscus cross-section for θ1 = θ2 = π/6, H = 1.2.

2.2 Solution

The velocity field in a meniscus cross-section has been determined by the solution
of equation (8). The geometry of the computational domain is fully determined by
the contact angles θ1 and θ2 and by the dimensionless wetted substrate length H.
The latter varies between zero and Hm. An example of the computational domain
together with the resulting solution for the dimensionless velocity field U(X,Y ) is
illustrated in Figure 3. The Poisson equation has been solved subject to the no-
slip boundary condition (homogeneous Dirichlet conditions) at the substrate/liquid
and fiber/liquid interfaces and zero shear stress boundary condition (homogeneous
Neumann condition) at the liquid/gas interface.

The Poisson equation (8) has been solved using the Finite Elements Method
(FEM) within the Matlab PDE Toolbox. The resulting field has been numerically
integrated over the liquid area A to obtain Φ(H). The convergence test has been
performed by mesh refinement. The number of elements has been chosen in a such a
way that the relative change of value of Φ after the further mesh refinement is below
10−5.

The functions R(H) and A(H) have been determined by the numerical solution of
a system of relevant trigonometric equations. On the basis of known R(H), A(H) and
Φ(H) the auxiliary functions (dA/dH)−1, c1(H), c2(H) and c3(H) have been eval-
uated following the definitions (17). These functions show the following asymptotic
behavior as H approaches zero: (

dA

dH

)−1
∝ H−2,

c1(H) ∝ H2,

c2(H) ∝ H,
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c3(H) ∝ H. (23)

It is evident that ψ = 1 is a singular point of equations (18) and (19). In particular,
it follows from equation (19) that, as soon as dλ2/dτ 6= 0, the derivative ∂H

∂ψ is infinite

at ψ = 1. In order to handle this singularity, we investigate the behavior of the solution
in the vicinity of the point ψ = 1. Equation (19) can be rewritten in the form:

1

2

dλ2

dτ
= −γ

(
H
∂H

∂ψ

) ∣∣∣∣
ψ=1

= −γ
2

(
∂H2

∂ψ

) ∣∣∣∣
ψ=1

, (24)

where the coefficient γ depends on the values of θ1 and θ2. This leads to the following
asymptotic behavior in the vicinity of the point ψ = 1:(

∂H2

∂ψ

) ∣∣∣∣
ψ→1

→ − 1

γ

dλ2

dτ
,

H2

∣∣∣∣
ψ→1

→ 1

γ

dλ2

dτ
(1− ψ) . (25)

Combining these two equations, we get

(
1

H2

∂H2

∂ψ

) ∣∣∣∣
ψ→1

→
(

2

H

∂H

∂ψ

) ∣∣∣∣
ψ→1

→ − 1

1− ψ
. (26)

Equation (26) can be used for definition of a boundary condition of the third kind
at ψ = 1− ε, where ε� 1:

∂H

∂ψ
+
H

2ε
= 0. (27)

The system of equations (18) and (19) has been solved in the domain 0 ≤ ψ ≤ 1−ε
subject to the first boundary condition of equation (20) and the boundary condi-
tion (27). The computations have been performed with ε = 0.01. Equation (18) has
been spatially discretized using the finite differences approach with 1000 points and
converted into a system of ordinary differential equations. These equations together
with boundary conditions and equation (19) have been integrated numerically using
the Matlab routine ode15s.

3 Experimental method

Nanofiber coatings have been manufactured by electrospinning. The electrospinning
setup used in this work was purchased from Avectas Spraybase. In this work square
silicon wafers have been used as base substrates. Polyacrylonitrile (PAN), a polymer
that is partially wettable by water [18], has been used to spin the nanofiber mats. The
spinning solution consists of 5 wt.% PAN dissolved in DMF (Dimethylformamide).
The solution was stirred for 48 hours at room temperature and set to rest for an addi-
tional two hours prior to electrospinning. Fiber diameters for the 5 wt.% PAN/DMF
solution are of the order of 200–300 nm with some bead-like structures stretched over
several micrometers. The pore sizes at the surface are of the order of 4−7 µm. The
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Fig. 4. SEM image of a nanofiber mat.

mat thickness used in this work was around 45−50 µm. A typical SEM image of the
nanofiber mat is shown in Figure 4.

Drop spreading experiments have been carried out in a closed test cell in air
atmosphere at a temperature of 26 ◦C and a relative humidity of ≈2.5%. Drops are
dispensed with a syringe pump which is connected to a cannula inside the test cell.
The coated substrates are placed underneath the cannula. The distance of the needle
tip to the substrate surface is 10 mm. The experiments have been performed for pure
water, pure ethanol and their mixtures for 10, 20, 50, 80 and 90 wt.% of ethanol. The
dynamic viscosity of the mixtures have been measured with the Brookfield DV-III
ULTRA instrument. All drops have been formed using cannulas of the same size.
The drop size at the moment of release from the needle was determined by the force
balance between the gravity and surface tension. Since the surface tension and density
of the mixture depend on its composition, the resulting initial drop diameters in the
experiment also depended on composition. The initial drop diameter was 2.43 mm
for pure water, 1.81 mm for 50 wt.% of ethanol, and 1.75 mm for pure ethanol. The
drop spreading and evaporation experiments have been repeated nine times for each
mixture. The imbibition into the nanofiber mat and consequent evaporation have
been observed with a camera (Andor Zyla 5.5) mounted in a top view with a frame
rate of 36 Hz.

4 Results and discussion

4.1 Numerical results

The solution of equations (18) and (19) in the absence of evaporation (E = 0) tends
asymptotically to a time-independent self-similar distribution H0 (ψ). This distribu-
tion is depicted in Figure 5 for different values of contact angles θ1 and θ2. The
temporal evolution of dimensionless imbibition front position for these contact angles
is shown in Figure 6. The curves corresponding to the sets (θ1 = 0°, θ2 = 30°),
(θ1 = 40°, θ2 = 20°) and (θ1 = 30°, θ2 = 30°) are indistinguishable from each other
on this scale and therefore the latter two are not shown in the figure. It is obvious
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Fig. 5. Time-independent distributions of dimensionless wetted length, H0, for different
values of contact angles θ1 and θ2 (results of numerical simulation).

Fig. 6. Dimensionless imbibition length for different values of contact angles θ1 and θ2 in
the absence of evaporation (results of numerical simulation).

that all the λ(τ) curves asymptotically tend to straight lines in logarithmic scale
with λ ∝ τ1/2, indicating the Lucas-Washburn imbibition law [19]. Similar trends
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have been predicted for the capillary rise in a triangular groove [23,30]. The asymp-
totic behavior of the λ(τ) dependence is reached as soon as the distribution H (ψ, τ)
attains the time-independent form H0 (ψ). Moreover, the coefficient of proportionality
in the asymptotic relation λ ∝ τ1/2 can be determined from the following asymptotic
form of equations (18) and (19) with E = 0:

c1
d2H0

dψ2
+ c2

(
dH0

dψ

)2

= −ψκ
2

2

dH0

dψ
, (28)

κ2

2
= −c3(0)

(
dH0

dψ

) ∣∣∣∣
ψ=1

. (29)

The parameter

κ =

(
lim
τ→∞

dλ2

dτ

)1/2

, (30)

determines the rate of capillary rise in the Lucas-Washburn regime. The dimensional
capillary rise dynamics in this regime can be determined from the relation

l2(t) = l20 + κ2
trfibσ

µ
. (31)

In the presence of evaporation the rate of capillary rise decreases due to the mass
loss. The numerical simulations have been performed for the case jev = const or
J(H) = 1. The evolution of dimensionless imbibition length for θ1 = 30° and θ2 = 30°
is depicted in Figure 7 for different values of the dimensionless evaporation rate, E.
It is evident that, starting from a certain time instant, the evolution λ(τ) deviates
from the Lucas-Washburn dynamics. With increasing of E the deviation from the
Lucas-Washburn regime takes place earlier. In the case of simultaneous capillary rise
and evaporation in triangular grooves it has been shown that at large values of τ
the rivulet length reaches a maximum value, which is inversely proportional to the
square root of dimensionless evaporation rate [30]. This result has been obtained
both for evaporation at constant wall heat flux leading to constant evaporation rate,
and for the diffusion-limited evaporation. In the present work, we have defined the
nominal maximal dimensionless imbibition length based on the condition that the
rate of change of the imbibition length abruptly decreases. We have found that the

most robust criterion for that is the time derivative dλ2

dτ . Therefore, the nominal
maximal imbibition length, λmax, and the time at which this length is reached, τmax,

are defined at the instant for which dλ2

dτ = 0.03. These points are marked in Figure 7
by diamond symbols for all λ(τ) curves. The values λmax and τmax are depicted in
Figure 8 as functions of E. It is clear that λmax ∝ E−1/2 and τmax ∝ E. The same
scaling has been predicted for the capillary rise in triangular grooves in [30] and for
capillary rise and evaporation in open rectangular microchannels [29].

In the following we shall show that the above scaling is valid for a wide range
of evaporation modes. Assume that the equations (18) and (19) allow a stationary
solution H(ψ, τ) = Hst(ψ), dλ2/dτ = 0, λ = λmax. This solution can be determined
from the following equation:

c1
d2Hst

dψ2
+ c2

(
dHst

dψ

)2

− Eλ2maxJ (H)

(
dA

dH

)−1
= 0, (32)
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Fig. 7. Dimensionless imbibition length for θ1 = 30° and θ2 = 30° and different values of
E (results of numerical simulation). The diamond-shaped symbols correspond to the points
(τmax, λmax).

Fig. 8. Nominal maximal dimensionless imbibition length (a) and dimensionless time, at
which this length is reached (b) as functions of dimensionless evaporation rate, E.

subject to boundary conditions described in Section 2, which don’t contain neither
E nor λmax. The maximal imbibition length is contained in the description of the
problem only in combination Eλ2max. It follows that even if the evaporation rate is
not uniform, the scaling λmax ∝ E−1/2 still holds.

Evidently, the results obtained in this section are only valid for an infinite supply
of liquid at the origin (z = ψ = 0).

4.2 Experimental results and comparison with the model

All experiments start from a fast initial spreading of the drop, which stops after a few
milliseconds. After this moment a radial imbibition of the liquid in the porous coating
can be observed. The measured imbibition area as a function of time is presented in
Figure 9. For all drop compositions the same scenario can be observed: the imbibition
area initially increases, reaches a maximum value, decreases due to evaporation and
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Fig. 9. Measured imbibed area as a function of time for water-ethanol mixtures.

finally reaches zero. Since in the case of a drop spreading the supply of liquid is limited
by the drop volume, the maximal imbibition area can be determined by evaporation
rate or by the drop volume. Each curve (surrounded by error bars) corresponding to
a certain composition of liquid results from a series of nine test runs. The relatively
wide error bars for the imbibition curves with water and the water-ethanol mixtures
with high water concentration appear due to a deformation of the nanofiber mats
by the capillary forces. The maximal imbibition area decreases for each subsequent
spreading drop. However, this scattering of data is small for the times below 10s. The
measured imbibition area at the early stage of experimental runs (without the error
bars) is shown in Figure 10 for the early stage of imbibition. The straight lines show
the linear fitting in the interval between 1 and 5 s. It is clear that within this time
interval the imbibition follows the Lucas-Washburn law:

aimb(t) = πl2exp(t) = aimb,0 + kt, (33)

where aimb denotes the imbibition area, lexp is the equivalent imbibition length, aimb,0
and k are the parameters of the linear fit. The linear dependence between the imbi-
bition area and the time implies that in this time interval evaporation does not affect
the imbibition rate. Based on this fitting and comparison with equation (31), one can
define the parameter

κ2exp =
kµ

πrfibσ
. (34)

This value can be used for assessment of the governing imbibition mechanisms.
In the following we use the value κexp in order to assess the relevance of the capillary
rise of the liquid between the substrate and the first layer of the nanofibers to the
imbibition of liquid into the nanofiber mat coatings. It is clear that the imbibition can
depend on multiple additional mechanisms, including the capillary rise in “channels”
formed by nanofibers of different layers which are not in contact with the silicon
substrate. In addition, the fibers in the coating are oriented randomly and not only
along the path from the drop center to the periphery. However, we expect that, if the
mechanism described in the theoretical part of this work has a significant contribution
to the overall imbibition process, the κexp values are close or at least comparable with
the numerically predicted values of κ.
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Fig. 10. Measured imbibed area as a function of time for water-ethanol mixtures for the
early stage of imbibition. The straight lines are based on a linear fitting of the data in the
interval from 1 to 5 s for all compositions.

Table 1. Mixture properties and imbibition parameters.

Ethanol wt.% k, mm2/s µ, kg/(m s) σ, kg/s2 κexp θ2,°

0 11.54 8.83 · 10−4 72.01 · 10−3 0.336 47.7
10 10.77 1.24 · 10−3 47.53 · 10−3 0.473 41.6
20 7.97 1.70 · 10−3 37.97 · 10−3 0.532 36.9
50 7.14 2.17 · 10−3 27.96 · 10−3 0.664 23.9
80 6.10 1.91 · 10−3 23.82 · 10−3 0.624 16.6
90 6.86 1.53 · 10−3 22.72 · 10−3 0.606 15.3
100 8.20 1.08 · 10−3 21.82 · 10−3 0.568 14.8

The properties of the water-ethanol mixture, the values of k determined from
the linear fit to experimental data presented in Figure 10 and the values of κexp
determined from equation (34) with the fiber diameter of 400 nm are summarized in
Table 1. The dynamic viscosity has been measured by the authors, and the surface
tension data at 25 ◦C have been obtained from the literature [31]. The values of the
contact angles between the water-ethanol mixture and the silicon substrate (corre-
sponding to θ2) have been interpolated from [32] for the case of untreated air-aged
silicon. No data on the contact angle between the ethanol-water mixture and PAN
nanofibers could be found in literature. It is known however that the surface of the
nanofibers is rough (see Fig. 4) and that the water on PAN cast samples exhibits
the contact angle of 30 ◦–40 ◦ [18]. Since the surface tension of ethanol is signifi-
cantly below the surface tension of water, we can suggest that the angle θ1 for all
water-ethanol mixtures lies below 40 ◦.

It can be observed in Table 1 that the values k and κexp show different trends. The
parameter k exhibits a minimum for the mixture with 80% ethanol mass fraction,
whereas κexp has a maximum at 50% ethanol mass fraction. The minimum of k can be
explained by the nonmonotonic behaviour of dynamic viscosity of the water-ethanol
mixture, which has a strong maximum at 50% ethanol mass fraction.

The experimentally determined values κexp along with the results of the simu-
lations are displayed in Figure 11 versus the contact angle θ2. The results of the
simulations are plotted for θ1 = 85°, θ1 = 40° and θ1 = 0° (perfect wetting). Evi-
dently, the predicted values of κ decrease monotonically with increasing of θ1 and θ2.
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Fig. 11. Imbibition front propagation coefficient as a function of the contact angle θ2.
Lines represent the results of numerical simulations, diamond-shaped symbols illustrate the
experimental data (see the column κexp in Tab. 1).

The experimental data are shown using the diamond-shaped symbols. First of all, it
can be seen that the experimental data are close to the model predictions for θ1 = 0°.
This confirms that the capillary rise in a corner between the substrate plane and
the nanofibers from the first layer can significantly contribute to the imbibition into
the nanofiber mat coating. However, the nonmonotonic behavior of κexp exhibiting a
maximum for the mixture with 50 wt.% ethanol can’t be explained in the framework
of the suggested model. The discrepancy can be caused by the presence of additional
imbibition mechanisms which are acting in the bulk of the porous coating, which have
not been considered in the present work. The simplifying assumptions, for example,
the assumption of the constant contact angles θ1 and θ2, could be the further cause
of discrepancy.

In addition, the nonmonotonic behavior of κexp can be explained by the effect
of evaporation combined with the Marangoni effect. In the following we don’t con-
sider the thermal Marangoni effect, which depends on the thermal properties of the
substrate and the thermal boundary conditions, and discuss only the solutocapillary
convection. Evaporation of mixtures leads to depletion of the more volatile compo-
nent both in the case of evaporation into the non-condensable gas and in case of
evaporation into the vapor atmosphere [33–35], whereas the change of concentration
can happen before the mass loss due to evaporation becomes important. If the com-
ponents of the mixture have different surface tensions, the non-uniform evaporation
rate results in non-uniform distribution of liquid composition at the interface and
gradient of the surface tension. This surface tension gradient induces the liquid flow
from the locations of lower surface tension to the regions of high surface tension.
Modelling the change of liquid composition with time and location for the settings
of the experiment is beyond the scope of the present work. We can however assume
that at the origin of the propagating rivulet (z = 0) the liquid has the same compo-
sition as the drop placed on the coated surface. Therefore, the concentration of the
less volatile component (water) increases along the flow direction. Since water has
a higher surface tension than ethanol, the surface tension increases along the flow
direction. As a result, the flow due to surface tension gradient (solutocapillary flow)
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has the same direction as the capillary rise and therefore leads to increasing of the
imbibition rate and increasing of κ. This mechanism does not exist for pure water
and for pure ethanol, in which cases there is no contribution of Marangoni-induced
flow to the front propagation rate and to κ. This can explain the fact that the values
κexp for the pure substances - 0 wt.% ethanol (corresponding to θ2 = 47.7°) and for
100 wt.% ethanol (corresponding to θ2 = 14.8°) - are close to the theoretical curve
for θ1 = 0°, whereas the values for mixtures lie above this curve, and a maximum
of κexp appears for the water-ethanol mixture with 50 wt.% ethanol. The velocity
due to the curvature radius gradient scales as

σrfib

µl , whereas the velocity due to the

Marangoni effect has the scale
∆σrfib

µl , where ∆σ is the characteristic surface tension

difference in the system. The importance of the Marangoni-driven flow is therefore
determined by the ratio ∆σ/σ. This value has an upper limit for each initial liquid
composition (in the drop) and corresponding initial surface tension of the mixture:
∆σ ≤ ∆σmax = σwater − σ, since the maximum achievable surface tension at the
rivulet tip is the surface tension of water, σwater. For the mixture containing 50 wt.%
of ethanol ∆σmax/σ = 1.58. Although this is an upper limit for the ratio, which is
not necessarily reached for all mixtures, the estimation indicates that the solutal
Marangoni effect can have a significant influence on the rate of the capillary rise.

5 Conclusions

In this work a theoretical model is developed which describes simultaneous capil-
lary rise and evaporation in a corner formed between a plane and a cylinder. This
is one of the mechanisms contributing to imbibition of liquids into nanofiber mat
coatings. It is assumed that the flow in the corner is unidirectional, the imbibition
length is much larger than the fiber radius and that the flow is governed by the sur-
face tension and viscosity. In addition, the constant and uniform evaporation rate
is assumed. The model predicts that, as long as the evaporation is insignificant, the
imbibition length increases proportional to the square root of time, in agreement with
the Lucas-Washburn law. Evaporation leads to decreasing of the capillary rise rate.
The predicted nominal maximal dimensionless imbibition length is inversely propor-
tional to the square root of the dimensionless evaporation rate, which agrees with the
scaling predicted for capillary rise in triangular grooves and for capillary rise in open
rectangular microchannels.

Imbibition of ethanol, water and water-ethanol mixture drops into a nanofiber mat
coating has been studied experimentally. Although the maximum imbibition area is
affected by the deformation of the mats caused by the spreading of previous drops,
this phenomenon is insignificant at the early stage of imbibition, which takes place
in Lucas-Washburn regime. Comparison of the experimentally determined imbibition
rate with the model prediction implies that the capillary rise in the corner between
the substrate and the first layer of nanofibers is a possible mechanism contribution
to imbibition. At the same time the results show that additional mechanisms should
be taken into account to explain the observed behaviour, for example, the Marangoni
effect.
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