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Zusammenfassung

Mastergleichungen spielen eine große Rolle in den Naturwissenschaften, da sie die Zeit-
entwicklung der Wahrscheinlichkeitsverteilung eines Systems beschreiben. Während sie
oft als fundamental zitiert werden, werden für Lösungen entweder numerische Verfahren
oder Näherungsmethoden bedient. In dieser Arbeit präsentieren wir einen analytischen
Ausdruck einer stationären Lösung der Mastergleichung für endliche Systeme, welche auf
der Struktur des Netzwerks besteht, welches die Übergänge des Systems beschreibt. Dabei
wurde der Begriff der kleinsten absorbierenden Menge eingeführt. Diese Gleichung ist
übertragbar auf Markov Ketten mit diskreter Zeit.
Im zweiten Teil dieser Arbeit berechnen wir sie stationäre Lösung der Lindblad-Gleichung,
in dem wir deren Sprungdynamik als einen stückweise deterministischen Prozesses be-
trachten. Durch Vertauschen von Zeit- und Ensemblemittel ist es möglich, Zeitmittel
einer Einzeltrajektorie zu berechnen, indem man die stationären Wahrscheinlichkeiten
von klassischen Markovketten verwendet und einen klassischen Zustand durch einen
zeitgemittelten quantenmechanischen Zustand ersetzt. Das Ensemblemittel ergibt sich
aus den möglichen Langzeitverhalten der Trajektorien, die den kleinsten absorbierenden
Mengen des quantenmechanischen Übergangsnetzwerks entsprechen.
Unsere Methode ist limitiert durch die Forderung, dass die Anzahl an quantenmechani-
schen Zuständen direkt nach einem Sprung für jede Trajektorie endlich ist. Am Ende
dieser Arbeit diskutieren wir mögliche Verallgemeinerung zu einem abzählbar unend-
lichen Zustandsraum oder dem Fall, dass der quantenmechanische Zustand von einem
kontinuierlichen Parameter abhängt. In beiden Fällen benötigt man eine entsprechende
Verallgemeinerung für stationäre Lösungen von klassische Mastergleichungen auf abzählbar
unendlich großen Systemen.

vi



Abstract

Master equations play a crucial role in natural science, as they describe the time evolution
of a probability distribution in a system. While they are often referred to as being
essential, computing a solution is often avoided and people refer to numerical methods
or approximation techniques. In this thesis we present an analytical expression of the
stationary solution of a master equation for a finite-size system, which is based on the
structure of the associated state transition network and the notion of minimal absorbing
sets. This formula is also applicable to discrete-time Markov chains.
In the second part of this thesis we compute the stationary solution of the Lindblad
equation by using the quantum jump unravelling. After interchanging the time average
with the ensemble average, evaluating the time average of a single quantum trajectory is
possible using the stationary solutions of classical discrete-time Markov chains and by
replacing the classical states with time-averages quantum states. The ensemble average
corresponds to the possible long-term behaviors, given by the minimal absorbing sets of a
quantum state transition network.
So far our method is restricted to the case that for every quantum trajectory the number
of states directly after a quantum jump is finite. At the end of this thesis, we discuss
possible generalizations, either to a countable infinite state space or to states that depend
on a continuous parameter. Both cases require an analogue expression for stationary
solutions of classical master equations on a countable infinite state space.
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1. Introduction

This thesis has two major topics: While Chapter 2 focuses on Markov chains and classical
master equations, Chapter 3 is about quantum master equations and their differences to
the classical case.
Markov chains (both discrete- and continuous-time versions) appear in multiple con-
texts throughout science, whether to describe chemical reactions [Van92; Haa78; Bre14],
stochastic systems in biology [GR74; QG21; Bre14], quantum optics [Aga73], population
dynamics or migration models [HD83]. More recent applications also include weather
forecasting and election models [Xun21].
A Markov chain is a stochastic process, where the probability for the next state depends
only on the current state [Pri13; Dou+18; Bré20]. Despite (or perhaps because of) its
simple structure, it contains a rich theory, which is still subject of today’s research [Hoh98;
EN00; Van92; Hon12].
An equivalent way to study continuous-time Markov chains is the so-called master
equation. It describes the time evolution of all probabilities of the states of the system
and is determined by their transition rates. The master equation is usually formulated as
an initial value problem of a linear differential equation with constant coefficients. The
idea behind it is that the probability flows between the states of the system like a fluid,
where its total amount is being conserved. In this picture, the links between the states
can be interpreted as ‘pipes’ and the link strength as ‘pumping rates’.
A particularly interesting question to ask is the possible long-term behavior, as this
determines the state the system will eventually be in. This leads to the question of
existence and uniqueness of the stationary solutions and whether they are attracting.
While the existence of stationary solutions is guaranteed for a finite state space, the
stationary solution need not be unique and is only attracting for continuous-time Markov
chains, as discrete-time Markov chains can exhibit oscillations. For an infinite state space,
stationary solutions need not exist, as the example of a symmetric random walk on Z
shows [Bré20; Pri13; Dou+18].
In this thesis, we will focus on Markov chains with a finite state space and show in
Section 2.1 that while a limiting distribution need not exist, the stationary solution of a
discrete-time Markov chain can be computed by taking the time average. The number of
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linearly independent stationary solutions is then given by the dimension of the eigenspace
to the eigenvalue one (Equation (2.8)). For continuous-time Markov chains, all stationary
solutions are attracting (compare Section 2.2), giving rise to a formula analogously to the
discrete-time case (Equation (2.25)).
What this means for the state transition network is discussed in Section 2.3: For every
minimal absorbing set B (see definition 6) we can construct a stationary solution p∞(p0 ∈
B), whose positive entries correspond to the states within the minimal absorbing set.
Moreover, these vectors are linearly independent and span the linear subspace of all
stationary solutions.
The differences between discrete- and continuous-time Markov chains are discussed in
Section 2.4: Every transition matrix for a discrete-time Markov chain can be interpreted
as the generator of a continuous-time Markov chain after subtracting the identity matrix,
and for every continuous-time Markov chain there exists an embedded, discrete-time
Markov chain (defined in Equation (2.47)). This makes it possible to define a ‘jump
unravelling’ of the classical master equation (see 2.4.5).
The stationary solution itself will in general depend on the initial condition and can
be separated into a probability P(B |p0) determining the amount of probability mass
that is accumulated in the minimal absorbing set B (which is also the probability for a
single trajectory to reach this minimal absorbing set) times the stationary distribution
p∞(p0 ∈ B) associated to this minimal absorbing set. The full stationary solution is
given by the sum over all minimal absorbing sets, resulting in a Bayes like formula

p∞(p0) =
∑︂

B∈{min. ab. sets }

P(B |p0) p∞(p0 ∈ B). (1.1)

An analytical expression for both probabilities, relying only on the structure of the state
transition network is derived in Section 2.5.
This result is also applicable to discrete-time Markov chains, due to the similarities
discussed in 2.4.
Section 2.6 focuses on time reversible Markov chains and its connection to detailed balance
and Kolmogorov’s criterion, with connections to the canonical ensemble of statistical
physics being discussed in 2.6.1. As a strongly connected system evolves according
to the master equation, its entropy can be shown to be monotonously increasing (see
Section 2.6.2), compatible with physical intuition.

Quantum master equations describe the time evolution of open quantum systems [BP02].
They are usually formulated as an initial value problem for density matrices and are -
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in some sense - a generalization of classical master equations, as they describe not only
the time evolution of probabilities of states (the diagonal elements of a density matrix),
but also of the coherences between different states, which are the off-diagonal elements of
density matrices.
An open quantum system is a quantum mechanical system in contact with an external
environment. In order to derive an equation that describes the behavior of the system,
we (following the arguments in [BP02]) assume that the system is markovian and that it
is only weakly coupled to the environment, to arrive at the so-called Lindblad equation:

∂tρ(t) = L(ρ) = −i[H,ρ(t)]⏞ ⏟⏟ ⏞
von Neumann term

+
∑︂
k∈I

γk

(︃
Vk ρ(t)V

†
k − 1

2

{︂
V †
k Vk,ρ(t)

}︂)︃
⏞ ⏟⏟ ⏞

dissipator term

= −i (Hc ρ(t)− ρ(t)Hc) +
∑︂
k∈I

γk

(︂
Vk ρ(t)V

†
k

)︂
,

ρ(t = 0) = ρ0,

(1.2)

where [·, ·] and {·, ·} denote the commutator and anticommutator, respectively, and the
so-called conditional Hamiltonian Hc is defined as

Hc := H − i

2

∑︂
k∈I

γk

(︂
V †
k Vk

)︂
=: H − i

2
Λ, (1.3)

with h̄ = 1. (1.4)

There exist also other derivations, which are based on different assumptions, like low
density or singular coupling [BP02].
The generator L of the Lindblad equation guarantees that the solution is trace preserving
and completely positive. On the other hand, it is the only generator that has these
properties. This was first shown by Gorini, Kossakowski, and Sudarshan for the finite
dimensional case in 1975 [GKS76], with Lindblad extending this statement for bounded
operators one year later [Lin76]. While on one hand generators of Lindblad type had
already appeared in the physical literature [BP02], a similar statement for unbounded
operators is still unproven [BP02].
The Lindblad equation contains the von Neumann equation, describing a closed quantum
mechanical system, as a special case. The solution of the von Neumann equation is given
by e−iH t ρ0 eiH t, with the self-adjoint Hamiltonian H† = H. Since Hc is not self-adjoint,
the (conditional) time evolution operator e−iHc t is not unitary.
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The additional terms can be interpreted as modeling the influence of the environment, in
particular by inducing transitions between states of the system. The so-called Lindblad

operators {Vk | k ∈ I} can be interpreted as causing transitions ρ → Vk ρV †
k

Tr[Vk ρV †
k ]

, where

∅ ̸= I ⊂ N is a finite index set and γk > 0 are positive transition rates. We will restrict
ourselves to the finite-dimensional case, that is ρ, Vk,H ∈ CN×N , with N ∈ N, N ≥ 2.
When conducting a numerical simulation of a specific model, one often relies on unravellings
of the Lindblad equation, which are ensembles of stochastic trajectories whose average
yields the solution of the Lindblad equation [BP02]. While different unravellings may
yield qualitative different types of dynamics, all measurable quantities depend only on the
solution ρ(t), while additional properties depending on either a certain type of unravelling
or a specific quantum trajectory are not accessible to experimental observations.
One important aspect in the study of the quantum master equation is its long-term
behavior lim

t→∞
ρ(t |ρ0) and its steady states ρ∞(ρ0) (with ρ∞ defined by L(ρ∞) = 0), as

this determines the state where a quantum mechanical system will eventually be. When
certain algebraic conditions on the Lindblad operators are satisfied, the steady state is
unique and asymptotically stable. The most prominent theorem about such conditions
was given by Spohn [Spo77]. It requires that the set of Lindblad operators form a basis,
i.e. that the environment couples to all degrees of freedom, which applies only to a limited
set of physical systems and cannot easily be generalized.
Most papers studying the stationary states of the Lindblad equation require additional
properties of the Lindblad operators. Bua and Prosen propose a method which assumes
that the underlying symmetry of the system is already known [BP12]. While being
numerically cheap, finding all the symmetries of an open system can be highly non-
trivial, especially when both ‘strong’ and ‘weak’ symmetries are involved (see [TM21]
for a summary). Another approach was made by Trushechkina, where special kinds
of Lindblad operators were considered, which allow a ‘backwards’ transition for every
‘forward’ transition (see [Tru18]). For the dimension N = 2 a full discussion can be found
in [And+22].
The general nature of the Lindbladian in Equation (1.2) makes it difficult to compute
analytical expressions for all possible steady states. In this thesis, we aim at statements
about the stationary states, without making additional assumptions about the Lindblad
operators. We will address the nature and number of these stationary states, how they
can be determined and how they are related to the long-term behavior that results from
a given initial state.
The standard way to compute the stationary state from a given initial state ρ0 would be
to determine the solution t ↦→ ρ(t |ρ0) of the initial value problem of Equation (1.2) for all
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positive times t ≥ 0 and to evaluate the time average ⟨ρ(t |ρ0)⟩t≥0 = lim
T→∞

1
T

∫︁ T
0 ρ(t |ρ0) d t.

We propose a different method: We express the density matrix ρ(t) in terms of the average
of an ensemble of stochastic quantum trajectories. Then we make use of the fact that
the limit of the time average of a single quantum trajectory exists and that it may be
interchanged with the ensemble limit [KM04]. We will show that both the time average
and the ensemble average of a quantum trajectory can be explicitly evaluated with the
theory of discrete-time Markov chains when certain conditions (in particular the number
of quantum states directly after the quantum jump being finite) are satisfied.
After a short derivation of the Lindblad equation for finite dimensions (Section 3.1), we
introduce the concept of unravellings of the Lindblad equation and in particular the
so-called quantum-jump unravelling, which will be the focus of Chapter 3. The algorithm
for the density matrix unravelling of the Lindblad equation (Section 3.3.1) introduces
what is known as a stochastic quantum trajectory. An outline of our procedure to obtain
a stationary solution of the Lindblad Equation (1.2) using quantum jump unravellings
is given in Section 3.4. This involves computing the time average of a single quantum
trajectory (Section 3.5) and the definition of the state transition network for the quantum
jump unravelling in Section 3.6. After examples in Section 3.7 to demonstrate the basic
idea, we recover the classical case in Section 3.7.4. After proving the existence of an
analytical expression for the time-averaged state (Section 3.8), we put the building blocks
together in Section 3.9 to arrive at the final formula (Equation (3.59)).
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2. Markov chains and master equations for a
finite state space

Markov chains are special kinds of stochastic processes that satisfy the so-called Markov
property, which states that the probability for the next event depends only on the current
state and not on the previous history.
Both the underlying state space as well as the time can be discrete or continuous. In the
following (if not stated otherwise) we will restrict ourselves to the case of a finite state
space Ω = {1, . . . , |Ω|} with |Ω| <∞ and study the time average of both discrete-time,
and continuous-time Markov chains.
While Markov chains as well as their stationary solutions have been excessively discussed
in the existing literature [Pri13; Dou+18; Bré20], what these proofs lack are intuitive
arguments and simple pictures of what ‘happens’ during the time evolution, that are
mathematically sound at the same time. This work is meant to fill this gap. While the
original ideas in [FD22] were formulated in the language of master equations, they are
applicable to discrete-time Markov chains as well and are needed to determine steady
states of the Lindblad equation as we will see in Chapter 3.

2.1. Discrete-time Markov chains for a finite state space

2.1.1. Defining the system

Let (Xn)n∈N0 be a discrete-time Markov chain on Ω, where the transition probabilities
are given by

Qij := qj→i := P (Xn+1 = i |Xn = j)

= P (Xn+1 = i |Xn = j, . . . ,X0 = j0) (compare [Pri13]).
(2.1)

This specifies the transition matrix Q ∈ (R≥ 0)
|Ω|×|Ω|, which is a column-stochastic matrix

that satisfies

6



Qij ≥ 0 , for all i, j ∈ Ω and
|Ω|∑︂
i=1

Qij = 1 , for all j ∈ Ω.
(2.2)

Our system S is fully described by a directed, weighted graph S = (Ω, E , q) (which we will
call a network), where the nodes are given by the set of states Ω and the edges E ⊆ Ω×Ω
(also called links) are a set of ordered pairs of states which indicate the transition between
these states. The strength of a link is given by its weight function

q : E → [0, 1]

(j, i) ↦→ qj→i.
(2.3)

When there is no transition from state j to state i, the associated transition probability
vanishes, qj→i = 0.
To keep the notation simple, we do not distinguish between the index n ∈ {1, . . . , |Ω|}
and the state ωn ∈ Ω with index n:

ωn ˆ︁= n

{ω1, . . . , ω|Ω|} ˆ︁= {1, . . . , |Ω|} = Ω.
(2.4)

We call q a probability vector if q ∈ (R≥ 0)
|Ω| and ∥q∥1 = 1, that is a vector with

non-negative entries that sum up to one. When q(n) is a probability vector describing the
probability distribution of Ω at the time n ∈ N0, then q(n+ 1) := Q q(n) is a probability
distribution at the next time step n+ 1.

Definition 1 (Stationary solution).

A probability vector is called stationary solution of the Markov chain if its probability
distribution does not change after another time step (Q q = q), that is, if it is an
eigenvector of the transition matrix Q to the eigenvalue λ = 1.

2.1.2. Limiting behavior

The goal of this Section is to find an explicit expression for the long-term behavior of
discrete-time Markov chains for a finite state space.
The limiting behavior of a Markov chain is determined by the eigenvalues of the transition
matrix: When v is an eigenvector of Q to the eigenvalue λ ∈ C (Qv = λv), we have after
n ∈ N time steps:

7



Qn v = λn v
n→∞−−−−→

{︄
v, if λ = 1

0, if |λ| < 1.
(2.5)

So if every transition matrix Q were diagonalizable (Q = S DS−1 with D being diagonal
with the eigenvalues on its main diagonal and the columns of S being the normalized
eigenvectors) and every eigenvalue λ were either equal to one or had a modulus strictly

less than one (λ = 1 or |λ| < 1), we could write any initial state as q0 =
∑︁

λ∈σ(Q)

gλ∑︁
i=1

µ
(i)
λ v

(i)
λ

and compute the limiting behavior (apart from re-numbering the states) to

q∞(q0) := lim
K→∞

QK⏞⏟⏟⏞
S DK S−1

q0⏞ ⏟⏟ ⏞∑︁
λ∈σ(Q)

gλ∑︁
i=1

µ
(i)
λ v

(i)
λ

=

=
∑︂

λ∈σ(Q)

gλ∑︂
i=1

µ
(i)
λ S

(︃
lim
K→∞

DK

)︃
⏞ ⏟⏟ ⏞⎛⎝1gλ=1

0
0 0

⎞⎠
S−1 v

(i)
λ⏞ ⏟⏟ ⏞

ei

=

=

gλ=1∑︂
i=1

µ
(i)
λ v

(i)
λ=1.

(2.6)

Here, σ(Q) denotes the spectrum of Q (that is the set of eigenvalues), v(i)
λ the eigenvector

of the transition matrix Q to the eigenvalue λ ∈ C and gλ the geometric multiplicity of λ.
However, we are faced with two problems: First, not every transition matrix is diago-

nalizable, as can be seen from the counter-example Q = 1
12

⎛⎝7 4 3
2 5 3
3 3 6

⎞⎠, which has the

Jordan normal of

⎛⎝1
4 1 0
0 1

4 0
0 0 1

⎞⎠. Second, there are transition matrices with eigenvalues

possible such that λ ̸= 1 = |λ|, as can be seen from figure (2.1). The fact that there are
no eigenvalues with modulus greater than one follows from Gershgorin’s circle theorem
(see Section 27 and [Ger31]).
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1 2

q1→2 = 1

q2→1 = 1

Figure 2.1.: The state transition network of a Markov chain with period equal to two: The

corresponding transition matrix equals Q =

(︃
0 1
1 0

)︃
has the two eigenvalues

σ(Q) = {−1, 1}. Since Q2 k+1 = Q and Q2 k = 12, the probability distribution

oscillates between q(2 k) =

(︄
q
(1)
0

q
(2)
0

)︄
and q(2 k + 1) =

(︄
q
(2)
0

q
(1)
0

)︄
for all natural

numbers k ∈ N and the limit lim
k→∞

Qkq0 does not exist.

We will address these problems as follows: Instead of ‘normal’ eigenvectors, we consider
a basis of generalized eigenvectors of the transition matrix, namely hλ,s ∈ kern (Q −
λ 1)s\kern (Q − λ 1)s−1, where s is a natural number, less or equal to the algebraic
multiplicity of the corresponding eigenvalue, s ∈ {1, . . . , aλ}. We know from linear
algebra that an ordered basis of generalized eigenvectors always exists and we can write
the transition matrix as Q = S J S−1, where J is the Jordan normal form of Q and the
generalized eigenvectors are the columns of S.

Second, we focus on the time average lim
K→∞

1
K

K−1∑︁
k=0

Qk q0 instead of the time limit

lim
K→∞

QK q0. In Figure 2.1, for example, the time limit does not exist, whereas the

time average converges to the stationary solution of q∞ =

(︃
1/2
1/2

)︃
.

In order to prove that the time average exists, it suffices to show that the following two
conditions are satisfied:

i) For the eigenvalues λ = 1 of the transition matrix, the geometric multiplicity gλ=1

coincides with the algebraic multiplicity aλ=1, which means that Jordan normal

9



form of Q has the following form:

S−1QS =

⎛⎜⎜⎜⎝
1gλ=1

J1
. . .

Jn

⎞⎟⎟⎟⎠ (2.7)

ii) The time average for every Jordan block Jλ̸=1 vanishes: lim
K→∞

1
K

K−1∑︁
k=0

Jkλ ̸=1 = 0.

Then we could replace the time limit lim
K→∞

QK q0 by the time average lim
K→∞

1
K

K−1∑︁
k=0

Qk q0

in Equation (2.6) and get:

q∞(q0) := lim
K→∞

1

K

K−1∑︂
k=0

Qk⏞⏟⏟⏞
S Jk S−1

q0⏞ ⏟⏟ ⏞∑︁
λ∈σ(Q)

aλ∑︁
i=1

µ
(i)
λ (q0)h

(i)
λ

=

=
∑︂

λ∈σ(Q)

aλ∑︂
i=1

µ
(i)
λ (q0)S

(︄
lim
K→∞

1

K

K−1∑︂
k=0

Jk

)︄
⏞ ⏟⏟ ⏞⎛⎝1gλ=1

0
0 0

⎞⎠

S−1 h
(i)
λ⏞ ⏟⏟ ⏞

ei

=

=

gλ=1∑︂
i=1

µ
(i)
λ=1(q0)h

(i)
λ=1.

(2.8)

In the following we will prove the conditions i) and ii):

i) If gλ=1 < aλ=1, there would be a generalized eigenvector of Q to the eigenvalue
λ = 1 of step s = 2, namely

h2 := hλ=1,s=2 ∈ kern (Q− 1 · 1)2\kern (Q− 1 · 1).

Then by definition, h1 := hλ=1,s=1 := (Q−1 ·1)h2 is a ‘normal’ eigenvector of Q to
the eigenvalue λ = 1 and we have Qh2 = h2+h1. Then we can choose a probability
vector p0, a sufficiently small number ϵ > 0 and a normalization constant N , such
that p0+ϵh2

N is also a probability vector. After n ∈ N time steps we have:

10



Qn
(︃
p0 + ϵh2

N

)︃
=

pn + ϵh2 + ϵ nh1

N
, (2.9)

which is not bounded, in contradiction to the fact that p0+ϵh2

N is a probability
vector.

Another way to show that aλ=1 = gλ=1 for stochastic matrices Q, is to trace it back
to the fact that aλ=0 = gλ=0 for the corresponding generators ΓQ = Q− 1 of the
embedded continuous-time Markov chain (see Equation (2.51)), which is shown in
lemma 44.

ii) For every analytical function f and any Jordan block

J =

⎛⎜⎜⎜⎝
λ 1

. . . . . .
λ 1

λ

⎞⎟⎟⎟⎠ ∈ CD×D

of size D ∈ N≥ 2, we have

f(JD) =

⎛⎜⎜⎜⎜⎝
f(λ) f ′(λ) . . . f (D−1)(λ)

(D−1)!

. . . . . .
...

f(λ) f ′(λ)
f(λ)

⎞⎟⎟⎟⎟⎠ . (2.10)

When we choose a specific function

f(x) = lim
K→∞

1

K

K−1∑︂
k=0

xk⏞ ⏟⏟ ⏞
1−xK

1−x

= 0,

for all x ∈ {z ∈ C : |z| ≤ 1}\{1},

(2.11)

we get

lim
K→∞

1

K

K−1∑︂
k=0

(Jλ ̸=1)
k = f(Jλ ̸=1) = 0D×D =

⎛⎜⎝0 . . . 0
...

...
...

0 . . . 0

⎞⎟⎠ (2.12)
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Before we start looking at more explicit expressions for µ(i)λ=1(q0) and h
(i)
λ=1, we first have

a look at continuous-time Markov chains.

2.2. Continuous-time Markov chains and master equations for a
finite state space

Given a time homogeneous, continuous-time Markov process (Xt)t≥ 0 on the finite state
space Ω := {1, . . . , |Ω|}, then we have for all time points t1 < · · · < tn < tn+1 and all
states j1, . . . , jn−1, i, j ∈ Ω

P(Xtn+1 = i |Xtn = j, . . . ,Xt0 = j0)
Markov
====== P(Xtn+1 = i |Xtn = j). (2.13)

Time homogeneous means that the transition matrix, whose components are defined as

Qij(t2, t1) := P(Xt2 = i |Xt1 = j) for t1 < t2 (2.14)

depends only on the time difference, that is

Qij(t2, t1)
time homogeneous
============= Qij(t2 − t1, 0) =: Qij(t2 − t1). (2.15)

In addition, we assume that t ↦→ Qij(t) is a differentiable function such that

Qij(t+ ϵ) = P(Xt+ϵ = i |Xt = j) = δi,j + Q̇ij(0)⏞ ⏟⏟ ⏞
=:Γij

ϵ+ o(ϵ),

for ϵ→ 0+ and all t ≥ 0.

(2.16)

It follows thatQ(t) := (Qij(t))i,j∈Ω ∈ [0, 1]|Ω|×|Ω| is the time-dependent, column-stochastic
transition matrix, which is completely determined by the following initial value problem:

Q̇(t) = Q̇(t = 0)⏞ ⏟⏟ ⏞
Γ

Q(t) =: ΓQ(t) and

Q(t = 0) = 1|Ω|.

(2.17)

A formal way to show this, is to explicitly compute the derivative

d

dt
Q(t) = lim

ϵ→0+

1

ϵ

⎡⎢⎣Q(t+ ϵ)⏞ ⏟⏟ ⏞
Q(ϵ)Q(t)

−Q(t)

⎤⎥⎦ (2.13)
===== lim

ϵ→0+

1

ϵ
[Q(ϵ)−Q(0)]⏞ ⏟⏟ ⏞

Γ

Q(t)

= ΓQ(t),

(2.18)
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where we used the Markov property in the second step. Another way to see this, is
look at the Markov property directly, and conclude, that the only function satisfying
Q(t1 + t2) = Q(t1) · Q(t2) (compare Equation (2.19)), is the exponential et A, with the
generator A is given by the derivative A = d

dt e
t A⏞⏟⏟⏞
Q(t)

⃓⃓⃓
t=0

= Q̇(0) = Γ.

[︁
Q(t2)Q(t1)

]︁
ij
=
∑︂
k∈Ω

Qik(t2)⏞ ⏟⏟ ⏞
P(Xt2=i |X0=k)

Qkj(t1)⏞ ⏟⏟ ⏞
P(Xt1=k |X0=j)

Def Q
=====

∑︂
k∈Ω

P(Xt2 = i |X0 = k)⏞ ⏟⏟ ⏞
P(Xt1+t2=i |Xt1=k)

P(Xt1 = k |X0 = j)

time homogeneity +
==============

Markov property

∑︂
k∈Ω

(︂
P(Xt1+t2 = i |Xt1 = k,X0 = j)

)︂
⏞ ⏟⏟ ⏞

P(Xt1+t2
=i,Xt1

=k,X0=j)

P(Xt1
=k,X0=j)

(︂
P(Xt1 = k |X0 = j)

)︂
⏞ ⏟⏟ ⏞

P(Xt1
=k,X0=j)

P(X0=j)

=
∑︂
k∈Ω

(︃
P(Xt1+t2 = i,Xt1 = k,X0 = j)

P(X0 = j)

)︃
⏞ ⏟⏟ ⏞

P(Xt1+t2=i,Xt1=k |X0=j)

= P(Xt1+t2 = i |X0 = j) = [Q(t2 + t1)]ij .
(2.19)

Moreover, the following two initial value problems are equivalent:

ṗ(t) = Γp(t)

p(t = 0) = p0

⇐⇒ Q̇(t) = ΓQ(t)

Q(t = 0) = 1|Ω|,
(2.20)

with Γij =

⎧⎪⎪⎨⎪⎪⎩
γj→i , for i ̸= j

−
|Ω|∑︂
k=1

γj→k , for i = j .

When the solution of the left-hand side of Equation (2.20) is given by
p(t |p0) for every initial vector p0, we can define the transition matrix Q(t) as

Q(t) := (p(t |p0 = ej))j∈Ω =
(︁
p(t |p0 = e1), . . . ,p(t |p0 = e|Ω|)

)︁
,

which fulfills Q̇(t) = ΓQ(t) and Q(0) = 1|Ω|.
Vice versa, when Q(t) is given as above, then p(t |p0) := Q(t)p0 satisfies ṗ = Γp and
p(0) = p0.
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The left-hand side of Equation (2.20) is called the master equation. It is an initial value
problem, describing the flow of probability in a network, where the instantaneous change
of the flow of probability is the difference between in-going - and out-going probability.
Thereby the right hand side of Equation (2.20) depends linearly on the transition rates,
which are probabilities divided by unit time. The strength of these rates can be interpreted
as capacities of pipes or pumping rates. Its component-wise notation, is of the following
form:

d

dt
p(i)(t) =

|Ω|∑︂
j=1
j ̸=i

(︁
p(j)(t) γj→i − p(i)(t) γi→j

)︁
p(i)(t = 0) = p

(i)
0

(2.21)

The matrix Γ is called the (infinitesimal) generator of the transition matrix Q(t) of the
network S = (Ω, E , γ) [Bré20].
Note, that from Equation (2.16) it is clear, that both γj→i := Γij > 0, for i ̸= j and∑︁
i∈Ω

Γij = 0.

While the master equation describes the probability flow for a given initial state p0,
the differential equation of the solution operator Q̇(t) = ΓQ(t) describes ‘all possible’
probability flows for ‘all initial states’ at once.
So there are three different ways to define a time homogeneous continuous-time Markov
chain on a finite state space: Via the master equation (left-hand side of Equation (2.20)),
via the solution operator (right hand side of Equation (2.20) ) or via first principles (see
definition (2.13) and the consequence shown in Equation (2.16)). While these definitions
are - in some way - equivalent, they focus on different interpretations or pictures. The
first two definitions focus on what we call the ensemble interpretation, (not to be confused
with the ensemble interpretation of quantum mechanics), whilst the third definition uses
the interpretation as a single trajectory. The differences between these views (in particular
between the ensemble picture and that of a single trajectory) will be discussed in further
details in Section 2.4.6.
From this point on, the focus in this Section will be on the long-term behavior of
continuous-time Markov chains via the master equation.
Similar to the discrete-time case, we have an associated state transition network, where
the states correspond to the nodes and the links (indicating transitions between the
states) correspond to the edges. In contrast to the discrete-time case, the weights are only
required to be non-negative (in contrast to lying in the interval [0, 1]) and we explicitly
exclude self-loops:
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γ : E → R≥ 0

(j, i) ↦→ γj→i, with γi→i = 0.
(2.22)

This is due to the fact that for the continuous-time Markov chains we have transition
rates instead of transition probabilities, which means that the probability for remaining
in some state is always strictly positive: P(Xt = i |X0 = i) > 0 for all times t ≥ 0 and
all states i ∈ Ω.
The solution is given by p(t |p0) := etΓ p0, with the initial state p(t = 0) = p0 ∈ (R≥ 0)

|Ω|

and the solution operator

etΓ :=
∑︂
k∈N0

Γk tk

k!
= lim

n→∞

(︃
1 +

tΓ

n

)︃n
. (2.23)

Suppose we start with the probability vector p0 and let the system evolve with time. It
can be shown (lemma 26) that the solution p(t |p0) is again a probability vector. So
what we will see is probability ‘flowing’ between different states. We are interested in the
following question: What does the solution p(t |p0) look like as t→ ∞ and what is its
connection to the state transition network?
First, we notice the following facts about the generator Γ :

Proposition 1. i) Since the column sum of every column of the generator matrix equals
zero, λ = 0 must be an eigenvalue of Γ.

ii) From Gershgorin’s circle theorem (see Section 27 and [Ger31]), it follows that every
eigenvalue λ ̸= 0 of the generator of the transition matrix has a real part that is
strictly less than zero, Re [σ(Γ)\{0}] ⊂ R< 0.

iii) The geometric multiplicity for the eigenvalue λ = 0 agrees with the algebraic multi-
plicity, gλ=0 = aλ=0, since otherwise one could construct special initial probability
vectors, whose dynamics would not be bounded.

iv) Every stationary solution of the master equation lies in the kernel of the generator
of the transition matrix and vice versa.

v) The column sum of every matrix power of the generator matrix Γ equals zero,
whereas the column sum of the solution operator Q(t) equals one.

For a more detailed proof, see lemma 28 in the appendix.
The question is, what we can learn from these facts about the time evolution p(t |p0) =
etΓ p0, especially for the limit t→ ∞ ? When writing the initial probability vector as a
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linear combination of generalized eigenvectors of Γ, namely p0 =
∑︁

λ∈σ(Γ)

aλ∑︁
i=1

µ
(i)
λ (p0)h

(i)
λ ,

we know that the time evolution of any generalized eigenvector hλ ̸=0,m to an eigenvalue
λ ̸= 0 will tend to zero, while the eigenvectors for the eigenvalue λ = 0 are steady states:

etΓ hλ,m = eλ t
m−1∑︂
k=1

tk

k!
hλ,m−k

t→∞−−−→

{︄
hλ=0,m=1 = vλ=0 , if λ = 0

0 , if λ ̸= 0.
(2.24)

This means that the limiting state p∞(p0) := lim
t→∞

etΓ p0 exists and is a linear combination
of stationary states vλ=0 ∈ kern (Γ):

p∞(p0) := lim
t→∞

etΓ p0 =

gλ=0∑︂
i=1

µ
(i)
λ=0(p0)v

(i)
λ=0, (2.25)

where v
(i)
λ=0 are eigenvectors of the generator matrix to the eigenvalue λ = 0 and the

coefficients possibly depend on the initial condition.
So far, we have studied only the generator matrix Γ, which also encodes the corresponding
state transition network, with the states and possible transitions. But what does it mean
in the languages of directed graphs, when probability ‘flows’ in a network. In order to
address this question, we will need to introduce certain terminology.

2.3. Networks in the context of master equations

While equation (2.25) is the algebraic solution of the steady state of the master equation,
it tells us little about relation of the eigenvectors to the states of the system or the
dynamics of a trajectory. The following Section provides an intuitive picture using state
transition networks (directed, weighted graphs), while an interpretation as well as an
analytical expression for both the coefficient µ(i)λ=0(p0) and the eigenvector v

(i)
λ=0 is given

in Section 2.5.

2.3.1. Definition and preparatory considerations

Definition 2. Walks and paths
If state b ∈ Ω can be reached from state a ∈ Ω, a ̸= b via a finite series of transitions,
there is a walk from a to b, which we indicate by a ⇝ b, and we say that state b is
reachable from state a.
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Formally, this means that we call an n+ 1-tupel ω ∈ Ωn+1 a walk in the network S of

length |ω| = n ∈ N if it has a positive weight γω, defined as γω :=
|ω|∏︁
k=1

γωk→ωk+1
, which is

just the product over all the weights along that walk.
A path is a special walk, where all states (and therefore all links) are pairwise different.

(a)

1

2 3

4

γ1→2

γ2→3

γ3→4

γ1→4

γ
3→

1

(b)

1

2 3

4

γ1→2

γ2→3

γ3→4

γ1→4

γ
3→

1

Figure 2.2.: Example and counter example of a path in a network: The blue links w1 =
(1, 2, 3, 4) in Figure 2.2a form a path with the corresponding weight γw1 =
γ1→2 γ2→3 γ3→4, whereas the dashed red linesw2 = (1, 2, 3, 1, 4) in Figure 2.2b
only form a walk and not a path, since it contains the state number 1multiple
times.

We denote with

• R(→a) := {b ∈ Ω | b⇝ a} the set of states from where a path to a exists and with

• R(a→) := {b ∈ Ω | a⇝ b} the set of states to which a path from a exists.

Definition 3 (Weak, unilateral, and strong connectedness).

We call the network S = (Ω, E , γ)

i) weakly connected if the corresponding undirected graph of S is connected;

ii) unilaterally connected if for all a, b ∈ Ω, b is reachable from a OR a is reachable
from b;
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iii) strongly connected if for all a, b ∈ Ω, b is reachable from a and a is reachable from
b, a⇝ b AND b⇝ a.

Figure 2.3 illustrates the difference.

(a) weakly, but not unilaterally con-
nected

(b) unilaterally, but not strongly
connected

Figure 2.3.: The differences between weak, unilateral and strong connectivity.

Definition 4 (Subnetworks).

We call a network SB = (ΩB, EB) a subnetwork of S = (Ω, E) if it contains some of its
states and all the original links between those states, that is:

SB ⊆ S ⇐⇒ ΩB ⊆ Ω and
EB := {(i, j) ∈ E : i, j ∈ ΩB}.

(2.26)

(a)

1 2

3

γ1→2

γ2→1

γ
1→

3 γ 3
→
2

(b)

1 2

γ1→2

γ2→1

(c)
1 2

3

γ
1→

3 γ 3
→
2

Figure 2.4.: Illustrating the concept of subnetworks: With Figure 2.4a being the original
network, Figure 2.4b is a subnetwork, according to definition 4, while Fig-
ure 2.4c is not.

Definition 5 (Absorbing subsets).

We call a subnetwork SB = (B, EB) ⊆ S absorbing if there are no edges pointing out of
B, that is if γb→bc = 0 for all b ∈ B and bc ∈ BC .
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In the context of master equations, this means that probability cannot flow out of B,
which means that the probability mass focused in B can only increase:

d

dt

(︄∑︂
b∈B

pb(t)

)︄
=
∑︂
b∈B

ṗb(t)⏞⏟⏟⏞∑︁
j∈Ω

pj γj→b−pbγb→j

Ω=B∪̇BC

========

=
∑︂
b∈B

⎛⎝∑︂
β∈B

pβ γβ→b +
∑︂
α∈BC

pα γα→b

⎞⎠
−
∑︂
b∈B

⎛⎝∑︂
β∈B

pb γb→β +
∑︂
α∈BC

pb γb→α⏞ ⏟⏟ ⏞
0

⎞⎠ =

=
∑︂
α∈BC

pα
∑︂
b∈B

γα→b +
∑︂
b∈B

∑︂
β∈B

pβ γβ→b −
∑︂
b∈B

∑︂
β∈B

pb γb→β⏞ ⏟⏟ ⏞
0

≥ 0

(2.27)

Note that the intersection of absorbing sets is again absorbing. This follows directly from
the definition. Later, we will use the fact that R(→a)C and R(a→) are absorbing subsets.
The two statements are shown as follows:

• If R(→a)C were not absorbing, there would be a state c ∈ R(→a)C and a state
b ∈ R(→a) such that c ⇝ b. However, this would imply c ⇝ b ⇝ a, which is a
contradiction.

• If R(a→) were not absorbing, there would be a state b ∈ R(a→) and a state
c ∈ R(a→)C such that b ⇝ c. However, this would imply a ⇝ b ⇝ c, which is a
contradiction.

So absorbing sets can be seen as ‘attractors’, towards which the probability mass flows to.
But within such an absorbing set, there can be a sub-structure, namely again absorbing
sets which are strictly smaller than the original. When repeating this process, we arrive
(since the state space is finite) at absorbing sets, which are smallest, in the sense of set
inclusion. This leads to the following definition.

Definition 6 (Minimal absorbing sets).

An absorbing subnetwork SB ⊆ S is called minimal if for all absorbing subnetworks
SC ⊆ S with SC ⊆ SB, we have SB = SC . In particular, there can be more than one
minimal absorbing subnetwork.
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We call B ⊆ Ω a minimal absorbing set, whenever (B, EB) ⊆ S is a minimal absorbing
subnetwork.
Every minimal absorbing set B is strongly connected. To see this, assume that there
are two states i, j ∈ B with iHH⇝ j. Then i ∈

(︁
R(→j)C ∩ B

)︁
and j /∈

(︁
R(→j)C ∩ B

)︁
.

This implies that
(︁
R(→j)C ∩ B

)︁
is an intersection of two minimal absorbing sets, which

is non-empty (i ∈
(︁
R(→j)C ∩ B

)︁
) and strictly less than B (j /∈

(︁
R(→j)C ∩ B

)︁
), in

contradiction to the assumption that B is minimal.
For every state ω ∈ Ω the set R(ω→) is absorbing, so it must contain a minimal absorbing
set. This means, that for every state ω ∈ Ω there is a path to some minimal absorbing set,
that is there exists a minimal absorbing set B ⊆ Ω and a state b ∈ B such that ω ⇝ b.

Definition 7 (Directed graph associated to a matrix and adjacency matrix).

For any complex matrix A ∈ CN×N with N ∈ N≥ 2 the associated directed graph SA of
A, is the graph with N states, such that two states j and i are connected if and only if
Aij > 0:

SA = (ΩA, EA) ΩA = {1, . . . , N}
EA = {(j, i) ∈ {1, . . . , N}2 : Aij > 0}.

(2.28)

When A has only non-negative entries (Aij ≥ 0 for all i, j ∈ {1, . . . , N}), then the i-j-th
component of the matrix power An for n ∈ N≥ 1 is strictly positive if and only if there is
a path of length n from state j to state i.
An important matrix for a directed graph is the adjacency matrix, whose i-j-th entry
equals one, whenever there is a link from j to i and zero otherwise:

Aij =

{︄
1 , if γj→i > 0 and
0 , else.

(2.29)

In contrast to Γ, the adjacency matrix A has zeros on the main diagonal and only tells
qualitatively whether two links j and i are directly connected. It contains no quantitative
information about the strength of the links.
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1 2

γ1→2

γ2→1

Figure 2.5.: Illustrating the difference between the adjacency matrix A =

(︃
0 1
1 0

)︃
and

the generator matrix Γ =

(︃
−γ1→2 γ2→1

γ1→2 −γ2→1

)︃
.

Figure 2.5 shows an example of a strongly connected network. The corresponding

adjacency matrix is A =

(︃
0 1
1 0

)︃
and the generator is Γ =

(︃
−γ1→2 γ2→1

γ1→2 −γ2→1

)︃
. Unlike

the adjacency matrix A, all the column sums of the generator Γ equal zero.
The associated graph of the adjacency matrix is the graph itself. In this case, the i-j-th
entry of its n-th matrix power is exactly the number of paths of length n from j to i.

Definition 8 (Direct sum of two networks).

The direct sum of two networks S1 = (Ω1, E1) and S2 = (Ω2, E2) is given by S1 ⊕ S2 :=
{Ω1 ×Ω2, E1 × E2}. The adjacency matrix of the combined network is given by the direct
sum of the two adjacency matrices:

AS1⊕S2 = AS1 ⊕AS2 =

(︃
AS1 0
0 AS2

)︃
. (2.30)

Then every network is the direct sum of its weakly connected components.

Definition 9 (Diagonal dominance of column vectors).

Let A ∈ CN×N be a complex matrix.

• For j ∈ {1, . . . , N}, we call the j-th column of A strictly diagonal dominant (SDD)

if |Ajj | >
N∑︁

i=1,
i ̸=j

|Aij |.

• If every column of a matrix is SSD, then by Gershgorin circle theorem [HW06], this
matrix is non-singular.
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• The definition of a weakly diagonal dominant (WDD) column of a matrix is the
same as the previous one, but with a ‘≥’ sign instead of a ‘>’ sign.

• We call the columns of a matrix A weakly chained diagonal dominant (WCDD)
if every column is WDD and for all columns j ∈ {1, . . . , N}, there exists a SDD
column jSSD ∈ {1, . . . , N} of A, an index n ∈ {1, . . . , N} and a path j = j1 → · · · →
jn = jSSD to the state with this SSD column jSSD in the directed graph associated

to A (see definition 7) , that is
n−1∏︁
k=0

Ajk+1,jk ̸= 0 for some states jk ∈ {1, . . . , N}

and k ∈ {1, . . . , n}.

It can be shown that matrices with WCDD columns (rows) are non-singular (see Section 29
in the Appendix for a proof).
The reason why we introduced definition 9, is that in the following Section 2.3.2 we
prove that a certain matrix (called ΓB0 ) is invertible. While SDD matrices are always
invertible (this follows directly from Gershgorin’s circle theorem 27), WDD matices need

not be invertible, as can be seen from the matrix
(︃

1 −1
−1 1

)︃
. The condition WCDD is

‘in between’ the other two conditions, in the sense that it is both not as restricting an
assumption as SDD, but at the same time powerful enough to guarantee invertibility.

2.3.2. Structure of the generator matrix Γ

Below, we will use the matrix Γ in a specific form that can be obtained by re-numbering
the states.
Let B = {B ⊆ Ω : B is a minimal absorbing set } be the set of minimal absorbing sets

and define B0 := Ω\
(︃ ⋃︁
B∈B

B

)︃
. We number the states as follows: The first |B0| states are

those not contained in minimal absorbing networks. Then we count the states which lie
in minimal absorbing networks block-wise, that is

B0 := {1, . . . , |B0|} = Ω\

⎛⎝ |B|⋃︂
i=1

Bi

⎞⎠
Bn =

⎧⎨⎩
n−1∑︂
k=0

|Bk|+ l : l ∈ {1, . . . , |Bn|}

⎫⎬⎭
=

⎧⎨⎩
n−1∑︂
k=0

|Bk|+ 1, . . . ,

n−1∑︂
k=0

|Bk|+ |Bn|

⎫⎬⎭ , for n ∈ {1, . . . , |B|}.

(2.31)
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This means that every set Bi for i ∈ {0, 1, . . . , |B|} consists of successive natural numbers.
After this re-numbering of the states, we can write Γ in the following form

Γ =

⎛⎜⎜⎜⎝
ΓB0 0|B0|×|B1| . . . 0|B0|×|B|B||

ΓB0→B1 ΓB1 0|B1|×|B|B||

...
. . .

ΓB0→B|B| 0|B|B||×|B1| ΓB|B|

⎞⎟⎟⎟⎠ with the matrices

ΓB0 ∈ R|B0|×|B0|, ΓBi ∈ R|Bi|×|Bi|

and ΓB0→Bi ∈ R|Bi|×|B0|, for i ∈ {1, . . . , |B|}.

(2.32)

If there is no matrix ΓB0 (|B0| = 0) and there is only one minimal absorbing set (|B| = 1),
then Γ is called irreducible [HW06; HJ12], otherwise it is called reducible.
Figure 2.6 gives an illustrating example.

ΓB0

ΓB1

ΓB2
ΓB3

1 2

3
4 5

6

78

γ1→2

γ2→1γ 1
→
3

γ
1→

4 γ4→5

γ5→4

γ
6→

7

γ7→8

γ 8
→
6

γ2→6

Figure 2.6.: Example of a network / directed graph with the minimal absorbing sets being
B1 = {3}, B2 = {4, 5} and B3 = {6, 7, 8}.

The matrices of the absorbing subnetworks and the full matrix Γ for this example are

ΓB1 = 0, ΓB2 =

(︃
−γ4→5 γ5→4

γ4→5 −γ5→4

)︃
, ΓB3 =

⎛⎝−γ6→7 0 γ8→6

γ6→7 −γ7→8 0
0 γ7→8 −γ8→6

⎞⎠
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and

Γ =

⎛⎜⎜⎝
ΓB0 0 0 0

ΓB0→B1 ΓB1 0 0
ΓB0→B2 0 ΓB2 0
ΓB0→B3 0 0 ΓB3

⎞⎟⎟⎠ =

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−γ1→2 − γ1→3 − γ1→4 γ2→1 0 0 0 0 0 0
γ1→2 −γ2→1 − γ2→6 0 0 0 0 0 0
γ1→3 0 0 0 0 0 0 0
γ1→4 0 0 −γ4→5 γ5→4 0 0 0
0 0 0 γ4→5 −γ5→4 0 0 0
0 γ2→6 0 0 0 −γ6→7 0 γ8→6

0 0 0 0 0 γ6→7 −γ7→8 0
0 0 0 0 0 0 γ7→8 −γ8→6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Lemma 10 (If the matrix ΓB0 exists, it is invertible).

In order to show that the matrix ΓB0 is invertible, it suffices to show that ΓB0 is WCDD
(compare the definition 9 of WCDD and the proof of lemma 29, that WCDD matrices are
indeed non-singular).
We assume that Γ is of the form (2.32) and B = {B1, . . . , B|B|} is the set of minimal
absorbing sets.

1) ΓB0 is WDD, since

|B0|∑︂
i=1,
i ̸=j

| (ΓB0)ij |⏞ ⏟⏟ ⏞
|Γij |

≤
|Ω|∑︂
i=1,
i ̸=j

|Γij | = |Γjj | = | (ΓB0)jj |.

2) Let b0 ∈ B0 be an arbitrary state in B0. Then there are two cases:

i) If γb0→b > 0 for some b ∈ Ω\B0, then the b0-th row is SDD, since

|B0|∑︂
i=1,
i ̸=b0

| (ΓB0)i, b0 |⏞ ⏟⏟ ⏞
|Γi, b0

|

<

|B0|∑︂
i=1,
i̸=b0

|Γi, b0 |+ |Γb, b0 |⏞ ⏟⏟ ⏞
γb0→b

≤
|Ω|∑︂
i=1,
i ̸=b0

|Γi, b0 | = |Γb0, b0 | = | (ΓB0)b0, b0 |.

ii) If the b0-th column is not SSD (γb0→b = 0 for all b ∈ Ω\B0), we know from
Section 6 that there exists a path from the state b0 to some minimal absorbing
set B ∈ B, that is b0 → . . . → b′0 → b for some state b ∈ Ω\B0 and b′0 ∈ B0.
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But this again means that if the b0-column is not SDD, there is a path from
b0 to the SDD column b′0 (where γb′0→b > 0, for some b ∈ Ω\B0).

Hence, we conclude that ΓB0 is WCDD and therefore invertible.

Definition 11 (Relaxing networks).

We call a network S = (Ω, E) relaxing if there exists a unique stationary state p∞
such that for all initial conditions p0 the dynamics of the master equation converges to
this stationary state, that is lim

t→∞
p(t |p0) = p∞. This means that the eigenspace of Γ

corresponding to the eigenvalue λ = 0 is one-dimensional, dim (kern (Γ)) = 1.

2.3.3. A sufficient criterion for a relaxing network

In the following Section, we are looking for a sufficient criterion for a network to be
relaxing. We start with the following observation:

Observation 12.

Let v be an eigenvector of Γ to a real eigenvalue λ ∈ R, that is Γv = λv. Then we have

eλ t∥v∥1 = ∥eλ tv∥1 = ∥etΓv∥1 =
|Ω|∑︂
i=1

⃓⃓⃓⃓
⃓⃓ |Ω|∑︂
j=1

(︁
etΓ
)︁
ij
vj

⃓⃓⃓⃓
⃓⃓ ≤

(∗)
≤

|Ω|∑︂
i, j=1

⃓⃓⃓⃓
⃓⃓⃓⃓ (︁etΓ)︁

ij⏞ ⏟⏟ ⏞
≥ 0

⃓⃓⃓⃓
⃓⃓⃓⃓ · |vj | = |Ω|∑︂

j=1

|vj |

⎛⎝ |Ω|∑︂
i=1

(︁
etΓ
)︁
ij

⎞⎠
⏞ ⏟⏟ ⏞

=1

= ∥v∥1.
(2.33)

The identity
|Ω|∑︁
i=1

(︁
etΓ
)︁
ij
= 1 is shown in lemma 28 in the appendix.

Now, let v ∈ kern (Γ), which means λ = 0 and we have equality in the above estimation.
But on the other hand, we have equality in (*) if and only if

(︂(︁
etΓ
)︁
i,1
v1, . . . ,

(︁
etΓ
)︁
i,|Ω| v|Ω|

)︂
∈ (R≥ 0)

|Ω| ∪ (R≤ 0)
|Ω| for all i ∈ {1, . . . , |Ω|}, (2.34)

that is, when all vectors on the left-hand side of Equation (2.34) have either only non-
negative or non-positive entries.
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If we were able to show that v ∈ (R≥ 0)
|Ω| ∪ (R≤ 0)

|Ω| for all v ∈ kern (Γ), then we could
conclude that the network were relaxing, since any vector space with only non-negative
entries or non-positive entries must be one-dimensional (see lemma 33 in the appendix
for a formal proof).
Clearly, a sufficient criterion is, when the solution operator etΓ has only strictly positive
entries, (etΓ)ij > 0 for all i, j ∈ {1, . . . , |Ω|}.
However, this need not be the case for an arbitrary network, where the solution operator
can have vanishing entries (see Figure 2.7). Having only non-negative entries is not
sufficient, as the remark 32 in the appendix shows.

1 2
γ1→2

Figure 2.7.: Example of a network with generator Γ =

(︃
−γ1→2 0
γ1→2 0

)︃
with the solution

operator, whose entries are not strictly positive: etΓ =

(︃
e−t γ1→2 0

1− e−t γ1→2 1

)︃

This sufficient criterion is met, when the corresponding network is strongly connected,
where a proof is given in lemma 30 in the appendix.
This leads to the following theorem:

Theorem 13 (Consequences of a strongly connected network).

When the network S = (Ω, E) is strongly connected, then it is relaxing, and the stationary
state p∞ has only strictly positive entries, p∞ ∈ (R>0)

|Ω|. In that case, the network is
called ergodic.

Proof. We know from lemma 30 that a strongly connected network implies strictly positive
entries of the solution operator: etΓ ∈ (R>0)

|Ω| for all t > 0.
Following the arguments made in observation 12, this means that the network is relaxing
(dim(kern (Γ− 0 · 1)) = 1).
So let p∞ ∈ kern (Γ) ∩ (R≥ 0)

|Ω| be the unique steady state, with non-negative entries
and ∥p∞∥1 = 1. Then p∞ has only strictly positive components since we have equality
in (2.35) if and only if all components of p∞ are zero:
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p(i)∞ =

|Ω|∑︁
j=1,
j ̸=i

p
(j)
∞ γj→i

|Ω|∑︁
j=1,
j ̸=i

γi→j

≥ 0 . (2.35)

2.3.4. The relation between the dimension of the kernel of the generator
matrix and the number of minimal absorbing sets

Theorem 14 ( gλ=0 = |B| ).

The number of minimal absorbing sets |B| equals the dimension gλ=0 of the kernel of the
generator matrix Γ.

Proof. Let B be the set of minimal absorbing sets and let Γ be of the form (2.32), that is

Γ =

⎛⎜⎜⎜⎝
ΓB0 0|B0|×|B1| . . . 0|B0|×|B|B||

ΓB0→B1 ΓB1 0|B1|×|B|B||

...
. . .

ΓB0→B|B| 0|B|B||×|B1| ΓB|B|

⎞⎟⎟⎟⎠ (2.36)

• First, we show that for every minimal absorbing set, we can construct a steady
state of Γ and these steady states are linearly independent: Let pBi

∈ kern (ΓBi) ∩
(R>0)

|Bi| with ∥pBi
∥1 = 1 for all i ∈ {1, . . . , |B|}. We know from Section 6 that all

Bi are strongly connected and from Theorem 13 that all pBi
are well defined and

uniquely determined.

Further, define

p∞ (p0 ∈ Bi) :=

⎛⎜⎜⎜⎜⎜⎝0, . . . , 0⏞ ⏟⏟ ⏞
i−1∑︁
k=0

|Bk|

,pBi
, 0, . . . , 0⏞ ⏟⏟ ⏞

|B|∑︁
k=i+1

|Bk|

⎞⎟⎟⎟⎟⎟⎠ (2.37)

and note that the set of vectors {p∞(p0 ∈ Bi) : i ∈ {1, . . . , |B|}} are linearly
independent (even pairwise orthogonal).
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The vector p∞(p0 ∈ B) is indeed the stationary probability vector the system
approaches, assuming that the initial probability distribution was restricted to the
minimal absorbing set B, that is

∑︁
b∈B

p
(b)
0 = 1.

Then we have

Γ p∞ (p0 ∈ Bi) =

⎛⎜⎜⎜⎜⎜⎝0, . . . , 0⏞ ⏟⏟ ⏞
i−1∑︁
k=0

|Bk|

,ΓBi pBi⏞ ⏟⏟ ⏞
0

, 0, . . . , 0⏞ ⏟⏟ ⏞
|B|∑︁

k=i+1
|Bk|

⎞⎟⎟⎟⎟⎟⎠
pBi

∈ kern (ΓBi
)

============ 0|Ω|. (2.38)

and hence span ({p∞(p0 ∈ Bi) : i ∈ {1, . . . , |B|}}) ⊆ kern (Γ).

• On the other hand, we show that every arbitrary element v ∈ kern (Γ) of the kernel
of Γ, lies in the span of the stationary states constructed above:

We start, by writing v as

v = (v0,v1, . . . ,v|B|) ∈ R|B0| × R|B1| × · · · × R|Bn| with vi ∈ R|Bi|. (2.39)

Then we know that

0|Ω| v ∈ kern (Γ)
========= Γv =

⎛⎜⎜⎜⎝
ΓB0 v0

ΓB0→B1 v0 + ΓB1 v1
...

ΓB0→B|B| v0 + ΓB|B| v|B|

⎞⎟⎟⎟⎠ ΓB0
is invertible

============
⇒v0=0

⎛⎜⎜⎜⎝
0|B0|

ΓB1 v1
...

ΓB|B| v|B|

⎞⎟⎟⎟⎠ .

(2.40)

The last equality holds because ΓB0 is invertible, hence v0 = 0|B0|. Moreover, since
dim kern (ΓBi) = 1 for all i ∈ {1, . . . , |B|}, we conclude that

vi ∈ kern (ΓBi) = span
(︁
p∞(p0 ∈ Bi) : i ∈ {1, . . . , |B|}

)︁
, (2.41)

that is vi = λi p∞(p0 ∈ Bi) for some λ ∈ R.

It then follows that
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v =

⎛⎜⎝0, . . . , 0⏞ ⏟⏟ ⏞
|B0|

, λ1 pB1
, . . . , λ|B| pB|B|

⎞⎟⎠
T

=

=

|B|∑︂
i=1

λi

⎛⎜⎜⎜⎜⎜⎝
i−1∑︁
k=0

|Bk|⏟ ⏞⏞ ⏟
0, . . . , 0,pBi

,

|B|∑︁
k=i+1

|Bk|⏟ ⏞⏞ ⏟
0, . . . , 0

⎞⎟⎟⎟⎟⎟⎠
T

⏞ ⏟⏟ ⏞
p∞(p0∈Bi)

=

|B|∑︂
i=1

λi p∞(p0 ∈ Bi), and hence

kern (Γ) ⊆ span
(︂{︁

p∞(p0 ∈ Bi) : i ∈ {1, . . . , |B|}
}︁)︂
.

(2.42)

This means that we can construct a basis of steady states from the set of minimal
absorbing sets, with every basis vector corresponding to exactly one minimal absorbing
set.
For the example given in Figure 2.6, the vectors pBi

are given by

pB1
= 1, pB2

=
1

γ4→5 + γ5→4

(︃
γ5→4

γ4→5

)︃
,

pB3
=

1

γ7→8 γ8→6 + γ8→6 γ6→7 + γ6→7 γ7→8

⎛⎝γ7→8 γ8→6

γ8→6 γ6→7

γ6→7 γ7→8

⎞⎠,
whereas the the basis vectors p∞(p0 ∈ Bi) are
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p∞ (p0 ∈ B1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,p∞ (p0 ∈ B2) =

1

γ4→5 + γ5→4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

γ5→4

γ4→5

0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

p∞ (p0 ∈ B3) =
1

γ7→8 γ8→6 + γ8→6 γ6→7 + γ6→7 γ7→8

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0

γ7→8 γ8→6

γ8→6 γ6→7

γ6→7 γ7→8

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Remark 15.

• In theorem 13 we have seen that a strongly connected network is a sufficient, but
not a necessary condition. With the help of theorem 14, we can say that the master
equation is relaxing if and only if the corresponding state transition network has
exactly one minimal absorbing set.

• In Section 2.2, we have seen what the stationary solution would look like, namely

p∞(p0) := lim
t→∞

etΓ p0
(2.25)
=====

gλ=0∑︂
i=1

µ
(i)
λ=0(p0)v

(i)
λ=0, (2.43)

Now we now that the geometric multiplicity gλ=0 of the eigenvalue λ = 0 is just the
number of minimal absorbing sets |B|, so we can replace the sum by a sum over all

minimal absorbing sets:
gλ=0∑︁
i=1

→
∑︁
B∈B

. Further, we know that every eigenvector vλ=0

corresponds to exactly one minimal absorbing set B, in the sense that its strictly
positive entries are associated to the states in this minimal absorbing set:
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p∞(p0 ∈ B) =

⎛⎜⎜⎜⎜⎜⎝0, . . . , 0⏞ ⏟⏟ ⏞
i−1∑︁
k=0

|Bk|

, pB, 0, . . . , 0⏞ ⏟⏟ ⏞
|B|∑︁

k=i+1
|Bk|

⎞⎟⎟⎟⎟⎟⎠ . (2.44)

2.4. Connection between continuous- and discrete- time Markov
chains

We started in Section 2.1 with the study of discrete-time Markov chains and found that
the stationary solution, given by its time average, is a linear combination of eigenvectors
to the eigenvalue λ = 1, even though it need not be attracting.
In Section 2.2 we considered continuous-time Markov chain and found with Equation (2.25)
a similar formula, whose connection with the structure of the state transition network
was shown in Section 2.3. In this Section we want to explore both the difference of, and
the connection between continuous- and discrete-time Markov chains.

2.4.1. From continuous- to discrete-time Markov chains

Lemma 16 (The waiting time distribution ).

The waiting time of a state j ∈ Ω is the time, the system remains at that state until the next
jump. It is a random variable, which is exponentially distributed (see Section A.9 in the
appendix for a proof) with parameter γj→ := −Γj,j =

∑︁
k∈Ω

γj→k, that is τj→ ∼ Exp (γj→).

When we assume that we already know that the waiting time for a specific transition
j → k is exponentially distributed with parameter γj→k (*), the proof is much simpler:

P(tn+1 − tn > t |Xtn = j) = P

⎛⎜⎜⎜⎝{τj→k > t} for all k ∈ Ω⏞ ⏟⏟ ⏞⋂︁
k∈Ω

{τj→k>t}

⎞⎟⎟⎟⎠ =

the random variables {τj→k : k∈Ω}
=======================

are mutually independent

∏︂
k∈Ω

P (τj→k > t)⏞ ⏟⏟ ⏞
e−t γj→k

=

(∗)
=== e

−t
∑︁
k∈Ω

γj→k

= e−t γj→ .

(2.45)
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Lemma 17 ( Transition probability ).

Let the system be in state j ∈ Ω with γj→ ̸= 0. Then the probability for the next state
to be i ∈ Ω\{j} is given by γj→i

γj→

Proof.

P
(︁
Xtn+1 = i |Xtn = j

)︁
=

∫︂
R>0

γj→i e−t γj→i P

⎛⎝ ⋂︂
k∈Ω\{i}

{τj→k > t}

⎞⎠
⏞ ⏟⏟ ⏞∏︁

k∈Ω\{i}
P
(︁
{τj→k>t}

)︁
dt =

independence
==========

∫︂
R>0

γj→i

⎛⎜⎝e−t γj→i
∏︂

k∈Ω\{i}

e−t γj→k⏟ ⏞⏞ ⏟
P(τj→k > t)

⎞⎟⎠
⏞ ⏟⏟ ⏞

e−t γj→

dt

=

∫︂
R>0

γj→i e−t γj→ dt =
γj→i

γj→
=

Γij
−Γjj

.

(2.46)

This means that for every continuous-time Markov chain there is an embedded discrete-
time Markov chain, whose transition matrix QΓ is given by

(QΓ)ij := P
(︁
Xtn+1 = i |Xtn = j

)︁
=

{︄
δij , if Γjj = 0

δij +
Γij

(−Γjj)
, if Γjj ̸= 0

=

= δij − Γij (Γjj)
◦ or in matrix notation

QΓ = 1 − Γ [diag (Γ)]◦ ,

(2.47)

where the symbol ◦ denoted the Moore-Penrose pseudoinverse. For a diagonal matrix D,
it is defined as follows:

(D◦)ij = δi,j (Dii)
◦ with

(Dii)
◦ :=

{︄
0, if Dii = 0
1
Dii
, else

(2.48)

We note that the columns of the transition matrix of the associated discrete-time Markov
chain are given by
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(︂
(QΓ)i j

)︂
i∈Ω

=
(︂
(1 − Γ [diag (Γ)]◦)i j

)︂
i∈Ω

=

⎧⎨⎩ej , if γj→=0(︂
γj→i

γj→

)︂
i∈Ω

, else.
(2.49)

An example is given in Figure 2.8

D =

⎛⎝2 0 0
0 ± 1 0
0 0 0

⎞⎠ =⇒ D◦ =

⎛⎝1
2 0 0
0 ± 1 0
0 0 0

⎞⎠
Figure 2.8.: Example of a matrix and the associated Moore-Penrose pseudoinverse.

The matrix QΓ is column-stochastic, which means we can interpret it as the associated
transition matrix of the embedded discrete-time Markov chain, which we call embedded
discrete-time Markov chain associated to the continuous-time Markov chain with the
generator Γ (see Figure 2.9 for an illustration).
This is known as the property of competing exponentials [Bré20].
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(a) network
S = (Ω, E , γ)

1 2

3

γ1→2

γ2→1

γ
1→

3 γ 3
→
2

(b) Embedded network
Sdisc
emb = (Ω, E , γdisc

emb)

1 2

3

γ1→2

γ1→2+γ1→3

1

γ
1→

3

γ
1→

2 +
γ
1→

3

1

Figure 2.9.: Illustrating the difference between a continuous-time Markov chain with the
generator

Γ =

⎛⎝−γ1→2 − γ1→3 γ2→1 0
γ1→2 −γ2→1 γ3→2

γ1→3 0 −γ3→2

⎞⎠ with stationary solution

p∗ =
1
Zp

⎛⎝ γ3→2 γ2→1

(γ1→2 + γ1→3) γ3→2

γ2→1 γ1→3

⎞⎠ and the transition matrix of the associated

discrete-time Markov chain: QΓ =

⎛⎝ 0 1 0
γ1→2

γ1→2+γ1→3
0 1

γ1→3

γ1→2+γ1→3
0 0

⎞⎠ with stationary solu-

tion q∗ =
1
Zq

⎛⎝ 1
1

γ1→3

γ1→2+γ1→3

⎞⎠, where Zp and Zq are normalization factors.

We further note, that for the minimal absorbing set B ∈ B the sequence
(︃∑︁
b∈B

(QΓ)
n
b,j

)︃
n∈N

is convergent, since it is both bounded and monotonously increasing:∑︂
b∈B

(︁
Qn+1

Γ

)︁
b,j⏞ ⏟⏟ ⏞∑︁

k∈Ω
(QΓ)b,k

(︁
Qn

Γ

)︁
k,j

B⊆Ω
≥

∑︂
k∈B

(QnΓ)k,j
∑︂
b∈B

(QΓ)b,k⏞ ⏟⏟ ⏞
1

B is absorbing
===========

∑︂
k∈B

(QnΓ)k,j .

(2.50)
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This fact will be relevant in Equation (2.80) in Section 2.5.2, where we look for an
analytical expression for the probability of a single trajectory to be captured by a minimal
absorbing set.

2.4.2. From discrete- to continuous-time Markov chains

Given a discrete-time Markov chain S = (Ω, E , q) with the corresponding transition
matrix Q, we can define a continuous-time Markov chain Scont = (Ω, Econt

q , γcont
q ) with

the generator

ΓQ := Q− 1|Ω|. (2.51)

Note, that in contrast to discrete-time Markov chain, state transition networks of
continuous-time Markov chains must not have self-loops.
Figure 2.10 demonstrates this procedure:

(a)

1 2q1→1 q2→2

q1→2

q2→1

(b)

1 2

q1→2

q2→1

Figure 2.10.: Illustration of a discrete-time Markov chain, given by the transition matrix

Q =

(︃
1− q1→2 q2→1

q1→2 1− q2→1

)︃
and the associated continuous-time Markov

chain given by its generator ΓQ =

(︃
−q1→2 q2→1

q1→2 −q2→1

)︃
.

Equation (2.51) also implies that every generalized eigenvector hλ,s(Q) of the eigenvalue
λ ∈ σ(Q) of the transition matrix Q is at the same time a generalized eigenvector
hλ−1,s(ΓQ) to the eigenvalue λ− 1 ∈ σ(ΓQ) of the generator Γ:

hλ,s(Q) ∈ kern (Q− λ1)s\kern (Q− λ1)s−1 ˆ︁=
hλ−1,s(ΓQ) ∈ kern (ΓQ − (λ− 1)1)s\kern (ΓQ − (λ− 1)1)s−1.

(2.52)

When interested in the long-term behavior q∞ of a discrete-time Markov chain with
initial distribution q0 and transition matrix Q, one can instead compute the long-term
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behavior of the corresponding continuous-time Markov chain with the generator matrix
ΓQ = Q− 1|Ω|: q∞(q0, Q) = p∞(q0, Q− 1|Ω|).

2.4.3. ‘Switching’ between continuous - and discrete-time Markov chains

We have seen how to switch from continuous-time Markov chains to discrete-time Markov
chains (Γ → Q) and vice versa (Q → Γ). We now look at what happens if one keeps
repeating this process:
Starting with the generator of a continuous-time Markov chain Γ, then ΓQΓ

̸= Γ is
possible, but QΓ = QΓQΓ

:

QΓ
Def
==== 1 − Γ [diag (Γ)]◦

ΓQΓ

Def
==== QΓ − 1 = −Γ [diag (Γ)]◦

QΓQΓ

Def
==== 1 − ΓQΓ⏞ ⏟⏟ ⏞

−Γ [diag (Γ)]◦

⎡⎢⎣diag

⎛⎜⎝ ΓQΓ⏞ ⏟⏟ ⏞
−Γ [diag (Γ)]◦

⎞⎟⎠
⎤⎥⎦
◦

=

= 1 − Γ [diag (Γ)]◦

⎡⎢⎣diag
(︁
Γ [diag (Γ)]◦

)︁⏞ ⏟⏟ ⏞
diag (Γ) [diag (Γ)]◦

⎤⎥⎦
◦

=

(2.54a)
====== 1 − Γ [diag (Γ)]◦

[︁
diag (Γ) [diag (Γ)]◦

]︁◦⏞ ⏟⏟ ⏞
diag (Γ) [diag (Γ)]◦

=

(2.54b)
====== 1 − Γ [diag (Γ)]◦ diag (Γ) [diag (Γ)]◦⏞ ⏟⏟ ⏞

[diag (Γ)]◦

=

(2.54c)
====== 1 − Γ [diag (Γ)]◦ = QΓ,

(2.53)

where we used the fact that for a diagonal matrix D we have:

diag (AD) = diag (A) diag (D) and (2.54a)
(DD◦)◦ = (DD◦) (2.54b)
D◦DD◦ = D◦. (2.54c)

Equation (2.53) immediately gives us QΓQΓQ
= QΓQ

. When depicting a transition from a
continuous-time Markov chain to a discrete-time Markov chain via a dashed arrow, we
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have the following diagram:

(a)

Γ QΓ ΓQΓ

Q ΓQ QΓQ
ΓQΓQ

(b)(︃
−γ1→2 γ2→1

γ1→2 −γ2→1

)︃
⏞ ⏟⏟ ⏞

Γ

(︃
0 1
1 0

)︃
⏞ ⏟⏟ ⏞

QΓ

(︃
−1 1
1 −1

)︃
⏞ ⏟⏟ ⏞

ΓQΓ(︃
1− q1→2 q2→1

q1→2 1− q2→1

)︃
⏞ ⏟⏟ ⏞

Q

(︃
−q1→2 q2→1

q1→2 −q2→1

)︃
⏞ ⏟⏟ ⏞

ΓQ

(︃
0 1
1 0

)︃
⏞ ⏟⏟ ⏞
QΓQ

(︃
−1 1
1 −1

)︃
⏞ ⏟⏟ ⏞

ΓQΓQ

Figure 2.11.: Illustration of the transitions froma (continuous/discrete)-timeMarkov chain
towards a (discrete/continuous)-time Markov chain and vice versa. While
Figure 2.11a shows the general transformation of transition matrices, Fig-
ure 2.11b shows that it is indeed possible to have ΓQΓ

̸= Γ, QΓQ
̸= Q and

ΓQΓQ
̸= ΓQ.

2.4.4. The connection between stationary solutions of continuous- and
embedded discrete-time Markov chains

Now that we have seen how continuous- and discrete-time Markov chains are connected,
we have a look at the relation between their stationary solutions.
Let Γ := ΓB be the generator of a minimal absorbing set B ⊆ Ω of a continuous-time
Markov chain, p∞ its stationary solution (Γp∞ = 0) and QΓ = 1 − [diag (Γ)]◦ Γ the
transition matrix of the embedded discrete-time Markov chain, corresponding to the
generator Γ. Then
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q∞ :=

{︄
1 , if |B| = 1
−diag (Γ)p∞
∥diag (Γ)p∞∥1 , if |B| ≥ 2

(2.55)

is the stationary solution of the embedded discrete-time Markov chain QΓ (note that(︁
−(diag (Γ)p∞)i

)︁
i∈Ω =

(︁
−Γii⏞⏟⏟⏞
≥ 0

p(i)∞⏞⏟⏟⏞
> 0

)︁
i∈Ω = 0 ⇐⇒ Γii = 0 for all i ∈ Ω, so this is well

defined):

QΓ q∞ =
(︁
1 − Γ [diag (Γ)]◦

)︁
[diag (Γ)]p∞⏞ ⏟⏟ ⏞

q∞

= q∞ + Γ [diag (Γ)]◦ diag (Γ)p∞⏞ ⏟⏟ ⏞
Γp∞=0

= q∞,

(2.56)

where we used the fact that

(Γ [diag (Γ)]◦ diag (Γ)p∞)i =
∑︂
j∈Ω

Γij (Γjj)
◦ (Γjj)⏞ ⏟⏟ ⏞

1−δ0,Γjj

p∞(j) =

=

⎛⎝∑︂
j∈Ω

Γij p∞(j)

⎞⎠
⏞ ⏟⏟ ⏞

(Γp∞)i=0

+
∑︂
j∈Ω

Γjj=0

Γij p∞(j)

Γjj=0⇒
=========
Γij=0∀ i∈Ω

0.

(2.57)

When on the other hand, the stationary solution of the embedded, discrete-time Markov
chain QΓ is given by q∞ (that is QΓ q∞ = q∞), then

p∞ :=

{︄
1 , if |B| = 1
−[diag (Γ)]◦ q∞
∥[diag (Γ)]◦ q∞∥1 , if |B| ≥ 2

(2.58)

is the stationary solution of the original Markov chain (by a similar argument as made
above, this is well defined):

Γp∞
Def p∞====== Γ [diag (Γ)]◦ q∞ +

0⏟ ⏞⏞ ⏟(︁
QΓ

)︁⏞ ⏟⏟ ⏞
1−Γ [diag (Γ)]◦

q∞ − q∞ =

= 0.

(2.59)
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2.4.5. Jump unravelling of the master equations

In analogy to the so called quantum jump unravelling of quantum master equation (which
we will consider in Section 3.3), we define a jump unravelling of the classical master
equation. It is a way to ‘extract’ a single trajectory ω ∈ U out of the set of all possible
trajectories U .

1) Choose a starting state: X(t = 0, ω) = j ∈ Ω and a final stopping time Tf := Tfinal

2) Choose the waiting time according to

P(tn+1 − tn > t |X(tn) = j)
lemma 16
======= e−t γj→ = etΓj,j (2.60)

3a) If γj→ = 0 the waiting time is infinite, that is P(tn+1 = ∞) = 1 and hence the
system will remain in that state forever: X(t, ω) = j for all t ≥ tn.

3b) If γj→ > 0 the waiting time is finite, and the probability distribution for the next
state is given by:

P
(︁
X(tn+1) = i |X(tn = j)

)︁ lemma 17
=======

γj→i

γj→
=
γj→i

−Γjj
=

γj→i∑︁
k∈Ω

γj→k
. (2.61)

We now repeat the steps 2) and 3), until the final time is reached, tn+1 > Tf .

Now that we have computed a single trajectory, the question remains, ‘how likely’ such a
trajectory is, that is, what is the probability density P(ω) ? Clearly, when conducting
a numerical simulation, one could compute p(i)(t |p0 = ej) by computing multiple
trajectories and taking the average:

p(i)(t |p0 = ej) = lim
N→∞

1

N

N∑︂
n=1

1{X(t,ωn)=i |X0=j}
N≫1
≈ 1

N

N∑︂
n=1

1{X(t,ωn)=i |X0=j}. (2.62)

An alternative way is shown in [BP02]: We have p(i)(t |p0 = ej) =
∑︁
n∈N

p(i)(n, t |p0 = ej),

where
(︁
p(i)(n, t |p0 = ej)

)︁
n∈N are the probabilities of reaching state i ∈ Ω from state

j ∈ Ω after a time t ≥ 0 and exactly n ∈ N jumps and can be computed iteratively:
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p(i)(n = 0, t |p0 = ej) = [P(t1 − t0 > t)]⏞ ⏟⏟ ⏞
e−t γj→

· δi,j = δi,j e−t γj→

p(i)(n+ 1, t |p0 = ej) =

∫︂ t

0
dτ
∑︂
l∈Ω
l ̸=i

e−(t−τ) γi→ γl→i p
(l)(n, τ |p0 = ej).

(2.63)

2.4.6. Two different views: Ensemble versus single trajectory

Let us take another look at the master equation. We have:

p(t |p0) := etΓ p0⏞ ⏟⏟ ⏞∑︁
j∈Ω

p
(j)
0 ej

=
∑︂
j∈Ω

p
(j)
0 etΓ ej⏞ ⏟⏟ ⏞

p(t |p0=ej)

=
∑︂
j∈Ω

p
(j)
0 p(t |p0 = ej)⏞ ⏟⏟ ⏞∑︁

i∈Ω
ei p(i)(t |p0=ej)

=
∑︂
i,j∈Ω

ei p
(i)(t |p0 = ej) p

(j)
0 ,

(2.64)

so it suffices to compute

p(i)(t |p0 = ej) =

∫︂
U

dP(ω)P (X(t, ω) = i |X(t = 0, ω) = j) .

There are two ways to interpret p(i)(t |p0 = ej): We can either see it as the fraction
of a ‘probability mass’ which has started at state j and is now (after some time t > 0)
accumulated at state i, or as the probability for a single realization to be at time t in
state i, provided that it started at state j.
The connection between these two interpretations, is to interpret the ‘probability mass’
as an (uncountable) ensemble of trajectories (compare Figure 2.12 for an illustration).
Note that a single trajectory need not converge, neither for continuous-, nor for discrete-
time Markov chains. In fact, it converges if and only if the minimal absorbing set the
trajectory is eventually captured in, consists of exactly one state.
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Figure 2.12.: Illustration of the two different interpretations of the time evolution of the
master equation: The Figures 2.12a to 2.12c show the ‘ensemble interpreta-
tion’, by illustrating the flow of the ‘probability mass’ in the state transition
network. The behavior is similar to that of a fluid, where the states can be
interpreted as ‘containers’, the links as ‘pipelines’ and the link strength as
the capacity of the pipeline or the pumping rate.
On the other hand, the figures 2.12d to 2.12f shows possible trajecto-
ries of a single ‘particle’, hopping between different states. Averaging
over all possible trajectories gives the solution of the master equation:
p(i)(t |p0 = ej) =

∫︁
U 1{X(t,ω)=i |X0=j} dP(ω).
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2.4.7. The time average of a single trajectory

In Chapter 3 we need to compute the time average of a single quantum trajectory. In
favor of a better comparison with the quantum case, we will compute the time average of
a single trajectory of a continuous-time Markov chain.
We define:

the time average as ⟨•⟩t≥0 := lim
T→∞

1

T

∫︂ T

0
dt • and the

ensemble average as ⟨•⟩ω∈U :=

∫︂
U

dP(ω)•

p(i)∞ (ω |p0 = ej) := ⟨1{X(t,ω)=i,X(t=0,ω)=j}⟩t≥0

(2.65)

We know that a single trajectory is eventually being ‘captured’ by some minimal absorbing
set B ∈ B (see Section A.8 in the appendix). Depending on whether the number of jumps
in a trajectory is finite or infinite, its time average differs. In order to compute it, we
have to distinguish these two cases:

i) finitely many jumps
In this case, the trajectory will eventually be in some minimal absorbing set B = {i},
which includes exactly one state:

p(i)∞ (ω |p0 = ej)
X(t,ω)=i∀t≥t0
=========== lim

T→∞

1

T

∫︂ t0

0
1{X(t,ω)=i,X0=j} d t⏞ ⏟⏟ ⏞

0

+ lim
T→∞

1

T

∫︂ T

t0

1{X(t,ω)=i,X0=j} d t⏞ ⏟⏟ ⏞
T−t0

T

= 1.
(2.66)

ii) infinitely many jumps

For a fixed trajectory ω ∈ U with infinitely many jumps and a fixed state s ∈ Ω
appearing in the trajectory we denote by αs(k) the position in the trajectory, where
the corresponding state s appears for the k-th time, by J(t) the number of jumps
before time T > 0 and by Js(T ) the number of times the trajectory has visited
state s ∈ Ω, so

42



αs(k) := αs(k, ω)

:= min
M∈N

{︁
| {X(tn, ω) : X(tn, ω) = s and n ≤M} | = k

}︁
J(T ) := J(ω, T ) = |{n ∈ N : tn ≤ T}|
Js(T ) := Js(ω, T ) = |{n ∈ {1, . . . , J(T )} : X(tn) = s}|

(2.67)

Note that we define αs(k) only for those states that actually appear in the trajectory.
In particular we have X(tαs(k), ω) = s for all k ∈ N and for all states s appearing
in the trajectory. Moreover, we can rearrange the following sum:

T =
1

J(T )

J(T )−1∑︂
n=0

τn

=
∑︂
B∈B

∑︂
b∈B

Jb(T )

J(T )

1

Jb(T )

Jb(T )−1∑︂
k=0

τ
(︁
αb(k)

)︁
for all trajectories ω ∈ U ,

(2.68)

where τn := τ(ω, n) := t(ω, n+ 1)− t(ω, n) = tn+1 − tn is the waiting time defined
in lemma 16. This rearrangement will be used in Equation (2.72) to compute the
time average of a single trajectory for a classical, continuous-time Markov chain.

For all states the waiting times are independent, identically distributed, so by the
law of large numbers we have:

1

K

K−1∑︂
k=0

τ(αb(k)),
K→∞−−−−→ τb, (2.69)

where τb is the average waiting time for the state b ∈ Ω.

Now we are in a position to compute the time-averaged probability, which is the
time-averaged fraction of time the trajectory spends in a specific state. Let i, j ∈ Ω
be two states. Since every trajectory is eventually ‘captured’ by some minimal
absorbing set (compare Section A.8 in the appendix), we have for a transient state
i ∈ B0

p(i)∞ (ω |p0 = ej) = ⟨1{X(t,ω)=i,X0=j}⟩t≥0
if i∈B0====== 0, (2.70)
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so the time average vanishes, whenever the final state is not contained in some
minimal absorbing set.

On the other hand, when a trajectory is already contained in some minimal absorbing
set B ∈ B, then for every state s ∈ B the fraction Js(T )

J(T ) converges to the stationary

probability q(s)∞ (p0 ∈ B) associated to this minimal absorbing set:

Js(T )

J(T )
=

1

J(T )

J(T )−1∑︂
k=0

δX(tn),s
T→∞−−−−→ q(s)∞ (p0 ∈ B). (2.71)

Then we can compute the time average of a stochastic trajectory ω starting at the
state j ∈ Ω and assume that this trajectory will eventually be captured by the
minimal absorbing set B ∈ B. This time average can be interpreted as the fraction
of time this trajectory spends in the state i ∈ Ω:
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p(i)∞ (ω |p0 = ej , ω ∈ B eventually ) = ⟨1{X(t,ω)=i,X0=j,ω∈B eventually }⟩t≥0

= lim
T→∞

1

T

∫︂ T

0
dt 1{X(t,ω)=i,X0=j}⏞ ⏟⏟ ⏞

J(T )−1∑︁
n=0

∫︁ tn+1
tn

dt 1{X(t,ω)=i, X0=j}

· 1{ω∈B eventually }

= lim
T→∞

1

T

∑︂
s∈Ω

Js(T )−1∑︂
k=0

∫︂ τ
(︁
αs(k)

)︁
0

dt 1{X(t,ω)=i,X0=j}⏞ ⏟⏟ ⏞
δs,i τ

(︁
αs(k)

)︁ · 1{ω∈B eventually }

= lim
T→∞

J(T )

T

Ji(T )

J(T )

1

Ji(T )

Ji(T )−1∑︂
k=0

τ
(︁
αs(k)

)︁
· 1{ω∈B eventually }

= lim
T→∞

Ji(T )
J(T )

1
Ji(T )

Ji(T )−1∑︁
k=0

τ
(︁
αi(k)

)︁
T

J(T )

·
1{ω∈B eventually }

1{ω∈
⋃︁

B′∈B
B′ eventually }

= lim
T→∞

1{ω∈B eventually }
Ji(T )
J(T )

1
Ji(T )

Ji(T )−1∑︁
k=0

τ
(︁
αi(k)

)︁
∑︁
B′∈B

1{ω∈B′ eventually }
∑︁
b∈B

Jb(T )
J(T )

1
Jb(T )

Jb(T )−1∑︁
k=0

τ
(︁
αb(k)

)︁

|Ω|<∞
======

q
(i)
∞ (p0∈B)⏟ ⏞⏞ ⏟(︃

lim
T→∞

Ji(T )

J(T )
· 1{ω∈B eventually }

)︃ τi⏟ ⏞⏞ ⏟⎛⎝ lim
T→∞

1

Ji(T )

Ji(T )−1∑︂
k=0

τ
(︁
αi(k)

)︁⎞⎠
∑︁
B′∈B

∑︁
b′∈B′

(︃
lim
T→∞

1{ω∈B′ eventually }
Jb′(T )

J(T )

)︃
⏞ ⏟⏟ ⏞

q
(b′)
∞ (p0∈B′)

⎛⎝ lim
T→∞

1

Jb′(T )

Jb′ (T )−1∑︂
k=0

τ
(︁
αb′(k)

)︁⎞⎠
⏞ ⏟⏟ ⏞

τb′

=
q
(i)
∞ (p0 ∈ B) τi∑︁

B′∈B

∑︁
b′∈B′

q
(b′)
∞ (p0 ∈ B′) τb′

=:
q
(i)
∞ (p0 ∈ B) τi

N
= p(i)∞ (p0 ∈ B),

(2.72)
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where N :=
∑︁
B′∈B

∑︁
b′∈B′

q
(b′)
∞ (p0 ∈ B′) τb′ is a normalization constant.

We note that this expression (in agreement with Equation (2.58)), is independent
of the initial state p0 = ej and does not depend on all the states of the trajectory
ω ∈ U , but only on the minimal absorbing set B ∈ B it is eventually captured in.

For the general case we have:

p(i)∞ (ω |p0 = ej) = ⟨1{X(t,ω)=i,X0=j, ω∈
⋃︁

B∈B
B eventually }⟩t≥0

=
∑︂
B∈B

1{ω∈B eventually , X0=j}⏞ ⏟⏟ ⏞
1U(j⇝B)(ω)

· ⟨1{X(t,ω)=i,X0=j, ω∈B eventually }⟩t≥0⏞ ⏟⏟ ⏞
p
(i)
∞ (p0∈B)

=
∑︂
B∈B

1U(j⇝B)(ω)
q
(i)
∞ (p0 ∈ B) τi∑︁

B′∈B

∑︁
b′∈B′

q
(b′)
∞ (p0 ∈ B′) τb′

,

(2.73)

where U (j ⇝ B) is the set of all trajectories that started at state j and are
eventually in the minimal absorbing set B ∈ B, with U (j ⇝) :=

⋃︁
B∈B

U (j ⇝ B)

and P (U (j ⇝)) = 1.

When interpreting p(i)∞ (ω) as the average fraction of time the trajectory ω spends
in state i ∈ Ω, then we can conclude from Equation (2.72) that the average time
spent in a state is proportional to the fraction of visits q(i)∞ (ω) to that state times
the average waiting time τi in that state. These considerations will be important in
Section 3.4.

This can be used to show that the time average and the ensemble average commute
for any trajectory, starting at some state j ∈ Ω:
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⟨⟨1{X(t,ω)=i,X0=j}⟩t≥0⏞ ⏟⏟ ⏞
p
(i)
∞ (ω |p0=ej)

⟩ω∈U =

∫︂
U(j⇝)

p(i)∞ (ω |p0 = ej)⏞ ⏟⏟ ⏞∑︁
B∈B

1U(j⇝B)(ω)
q
(i)
∞ (p0∈B) τi

N

dP(ω)

=
∑︂
B∈B

q
(i)
∞ (p0 ∈ B) τi

N

∫︂
U(j⇝B)

dP(ω)⏞ ⏟⏟ ⏞
P
(︁
U(j⇝B)

)︁
=

=
∑︂
B∈B

P
(︁
U(j ⇝ B)

)︁⏞ ⏟⏟ ⏞
P(j⇝B)

q
(i)
∞ (p0 ∈ B) τi

N
=

lemma 31
======= lim

t→∞

(︁
etΓ
)︁
ij

= lim
t→∞

P(X(t) = i |X0 = j) =

= ⟨P(X(t) = i |X0 = j)⏞ ⏟⏟ ⏞
⟨1{X(t,ω)=i, X0=j}⟩ω∈U

⟩t≥0 =

= ⟨⟨1{X(t,ω)=i,X0=j}⟩ω∈U ⟩t≥0.

(2.74)

2.5. Analytical expression for the stationary solution of the
master equation

2.5.1. The steady state of a minimal absorbing set

In the following, we derive an analytical expression for the stationary state of the
master equation in the case that the state transition network is strongly connected. In
this case, the kernel of the generator is one-dimensional (see: Section 13) and p∞ ∈
kern (Γ)∩ (R> 0)

|Ω| has strictly positive entries and is uniquely determined by ∥p∞∥1 = 1.
This fact is known as the ‘Markov chain tree theorem’. Various proofs can be found in
[MG13; CK78; Wil22; Hil66; LR86]. The original statement was first formulated in 1948
by Tutte [Tut48].

We denote with [A]i j the first minor of the matrix A, that is the determinant of the
matrix that results from a matrix A ∈ CN×N by deleting row number i and column
number j (For a general definition of minors, see definition 41). With this notation, the
adjugate of the matrix A is defined as
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adj(A) :=
(︂
(−1)j+i [A]j i

)︂
i,j∈{1,...,N}

=

⎛⎜⎝ (−1)1+1 [A]1 1 . . . (−1)N+1 [A]N 1
...

...
(−1)1+N [A]1N . . . (−1)N+N [A]N N

⎞⎟⎠ ,

(2.75)
with the property A adj(A) = det (A) 1N = adj(A)A.
Since the generator Γ is singular, we have

0|Ω|×|Ω| = det (Γ)⏞ ⏟⏟ ⏞
0

1|Ω| = Γ adj(Γ) = Γ

⎛⎜⎝adj (Γ) e1⏞ ⏟⏟ ⏞
∈ kern (Γ)

, . . . , adj (Γ) e|Ω|⏞ ⏟⏟ ⏞
∈ kern (Γ)

⎞⎟⎠ . (2.76)

This means that all columns of the adjugate must lie in the kernel of Γ (adj (Γ) ei ∈
kern (Γ) for all i ∈ Ω) and are therefore proportional to the unique stationary solution
adj (Γ) ei ∝ p∞. Hence we have for all i ∈ Ω:
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p∞
(2.76)
∝ adj(Γ) ei =

(︂
adj(Γ)ki⏞ ⏟⏟ ⏞

(−1)k+i [Γ]k, i

)︂
k∈{1,...,|Ω|}

=

(2.75)
===== (−1)k+i

(︂
[Γ]k i⏞⏟⏟⏞

(−1)k+i [Γ]k, k

)︂
k∈{1,...,|Ω|}

=

lemma 43
=======

⎛⎜⎝ [Γ]1, 1
...

[Γ]|Ω|,|Ω|

⎞⎟⎠ (A.26)
=====

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑︂
T ∈T (→1,S)

γT

...∑︂
T ∈T (→|Ω|,S)

γT

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

=⇒ p∞ =
1

ZΩ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑︁
T ∈T (→1,S)

γT

...∑︁
T ∈T (→|Ω|,S)

γT

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
with the normalization factor

ZΩ :=
∑︂
j∈Ω

∑︂
T∈T (→j,S)

γT and

T (→ j,S) := {in-trees in the network S rooted at the state j ∈ Ω},
compare definition 36.

(2.77)

We used the definition of the adjugate, that is expressing its entries via first minors
(adj (Γ)ij = (−1)i+j [Γ]j,i) and the fact that for the generator matrix Γ, every first minor
[Γ]j,i is related to the first principal minors, via [Γ]j,i = (−1)i+j [Γ]i,i. The first principal
minors of Γ can be computed via the sums of the weights of all possible in-trees, as shown
in theorem 42.
We now want to talk briefly about the computational complexity needed to compute
all stationary solutions p∞(p0 ∈ B). It is possible to search numerically for strongly
connected components in linear time [GM78]. When merging these strongly connected
components into a single state via graph condensation [GM78] and following a single
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path to its end, one arrives at a minimal absorbing set. This requires O
(︁
|Ω|+ |E|

)︁
time.

Computing the stationary solution pB for a minimal absorbing set B ∈ B can be done
in O

(︁
|EB| · NB

)︁
, where NB is the total number of in-trees of the subnetwork SB :=

{B, {(i, j) ∈ E : i, j ∈ B}}. This results in a total time of O
(︁
|Ω|+ |E|+

∑︁
B∈B

|EB| ·NB

)︁
.

(a)

1 2

3

γ1→2

γ2→1

γ
1→

3 γ 3
→
2

(b) In-tree rooted in 1

1 2

3

γ1→2

γ2→1

γ
1→

3 γ 3
→
2

(c) In-tree rooted in 3

1 2

3

γ1→2

γ2→1

γ
1→

3 γ 3
→
2

(d) 1st in-tree rooted in 2

1 2

3

γ1→2

γ2→1

γ
1→

3 γ 3
→
2

(e) 2nd in-tree rooted in 2

1 2

3

γ1→2

γ2→1

γ
1→

3 γ 3
→
2

Figure 2.13.: Example of a strongly connected network (Figure 2.13a) together with the
corresponding in-trees rooted in state number 1 (Figure 2.13b) and 3 (Fig-
ure 2.13c), and the two in-trees rooted in state number 2 (Figure 2.13d and
2.13e). The kernel of Γ is the span of a vector whose i-th component is the
sum over all in-trees rooted in state number i of the product of the rates of
all edges that constitute that particular in-tree. In this example we have:

kern (Γ) = span

⎧⎨⎩
⎛⎝ γ3→2 · γ2→1

γ1→2 · γ3→2 + γ1→3 · γ3→2

γ2→1 · γ1→3

⎞⎠⎫⎬⎭.
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2.5.2. Explicit expression for the probabilities µB(p0)

We note that the coefficients µB in front of the vectors p∞(p0 ∈ B) are non-negative and
sum up to one:

µB(p0) = µB(p0) ·
∑︂
b∈B

(p∞(p0 ∈ B))(b)⏞ ⏟⏟ ⏞
1

=
∑︂
b∈B

µB(p0) · (p∞(p0 ∈ B))(b)⏞ ⏟⏟ ⏞
(p∞(p0))

(b)

≥ 0

1 =
∑︂
j∈Ω

⎛⎜⎜⎜⎝ p∞(p0)⏞ ⏟⏟ ⏞∑︁
B∈B

µB(p0) ·p∞(p0∈B)

⎞⎟⎟⎟⎠
(j)

=
∑︂
B∈B

µB(p0) ·
∑︂
j∈Ω

(p∞(p0 ∈ B))(j)⏞ ⏟⏟ ⏞
1

=

=
∑︂
B∈B

µB(p0).

(2.78)

This means, we can interpret (µB(p0))B∈B as a probability distribution, with µB(p0)
being the fraction of probability ‘mass’ contained in the minimal absorbing set B ∈ B, or
alternatively, as probability, that a single trajectory is eventually being captured by the
minimal absorbing set B ∈ B, so

µB(p0) = P(B |p0) =: P(p0 ⇝ B eventually ). (2.79)

This means that these coefficients (µB)B∈B, appearing in a basis decomposition of the
initial state (compare Equation (2.25)), have an interpretation as a probability. In order
to find an analytical expression, we consider:

µB(ej) = P(B |p0 = ej) = P(j ⇝ B eventually ) =

= lim
t→∞

∑︂
b∈B

(︁
etΓ
)︁
b,j⏞ ⏟⏟ ⏞

P(Xt∈B |X0=j)

= lim
k→∞

P(Xtk ∈ B |X0 = j)⏞ ⏟⏟ ⏞∑︁
b∈B

(QΓ)
k
b,j

=

= lim
k→∞

∑︂
b∈B

(QΓ)
k
b,j =

∑︂
ω∈

⋃︁
n∈N

W
(︂
Sdisc

emb,j
n−−→B

)︂qω,
(2.80)

where the sum goes over all walks in the network Sdisc
emb associated to the embedded,

discrete-time Markov chain (defined in Section 2.4.1) from the state j to any state b ∈ B.
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Note, that we have seen, that the expression lim
k→∞

∑︁
b∈B

(QΓ)
k
b,j indeed converges, since it

is monotonously increasing and bounded (compare Equation (2.50)).
When ω = (j = a0, . . . , aL⏞⏟⏟⏞

∈B

) is a walk of Length L ∈ N from state j to the minimal

absorbing set B, with (a0, . . . , aL) ∈ ΩL, then the corresponding weight of this walk is
given by

qω :=

L−1∏︂
j=0

qaj→aj+1⏞ ⏟⏟ ⏞
γaj→aj+1

γaj→

.
(2.81)

When we have j ∈ B, then µB(j) = 1.
Figure 2.14 illustrates what the expression µB(j) means in terms of weight of walks in
the embedded network Semb. Whereas the maximum length of the walks to the minimal
absorbing sets is bounded in the two figures 2.14a and 2.14b, there are walks of arbitrary
length possible in Figure 2.14c. For example, the probability for a trajectory starting in
state 1 to eventually reach the minimal absorbing set {3} is given by :

P(1⇝ {3}) = γ1→3

γ1→2 + γ1→3
·
∑︂
n≥ 0

(︃
γ1→2

γ1→2 + γ1→3
· γ2→1

γ2→1 + γ2→4

)︃n
⏞ ⏟⏟ ⏞

1

1− γ1→2
γ1→2+γ1→3

· γ2→1
γ2→1+γ2→4

=
γ1→2 γ2→1 + γ1→3 γ2→4

γ1→2 γ2→1 + γ1→3 γ2→4 + γ1→2 γ2→4
.

(2.82)

With the initial state being given by p0 =
∑︁
j∈Ω

p
(j)
0 ej , we have:
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1

2 3

γ 1
→
2

γ 1
→
2
+
γ 1

→
3 γ

1→
3

γ
1→

2 +
γ
1→

3

1 1

(a) ·P(1⇝ {2}) = γ1→2

γ1→2 + γ1→3
,

·P(1 ⇝ {3}) = γ1→3

γ1→2 + γ1→3

1

2

34

γ 1
→
2

γ 1
→
2
+
γ 1

→
3

γ
1→

3

γ
1→

2
+
γ
1→

3

γ2→
3

γ2→
3 + γ2→

4

γ 2
→
4

γ 2
→
4
+
γ 2

→
4

11

(b) ·P(1⇝ {3}) = γ1→3

γ1→2 + γ1→3
+ γ1→2

γ1→2 + γ1→3
· γ2→3

γ2→3 + γ2→4
,

·P(1⇝ {4}) = γ1→2

γ1→2 + γ1→3
· γ2→4

γ2→3 + γ2→4
,

·P(2⇝ {3}) = γ2→3

γ2→3 + γ2→4
,

·P(2⇝ {4}) = γ2→4

γ2→3 + γ2→4

1 2

3 4

γ1→2

γ1→2+γ1→3

γ2→1

γ2→1+γ2→4

γ 1
→

3
γ 1

→
2
+
γ 1

→
3 γ

2→
4

γ
2→

1 +
γ
2→

4

11

(c) ·P(1⇝ {3}) = γ1→3 γ2→1 + γ1→3 γ2→4

γ1→3 γ2→1 + γ1→3 γ2→4 + γ1→2 γ2→4
,

·P(1⇝ {4}) = γ1→2 γ2→4

γ1→3 γ2→1 + γ1→3 γ2→4 + γ1→2 γ2→4
,

·P(2⇝ {4}) = γ1→2 γ2→4 + γ1→3 γ2→4

γ1→3 γ2→1 + γ1→3 γ2→4 + γ1→2 γ2→4
,

·P(2⇝ {3}) = γ1→3 γ2→1

γ1→3 γ2→1 + γ1→3 γ2→4 + γ1→2 γ2→4

Figure 2.14.: Illustrating the analytical expression of the coefficient
µB(j) = P(j ⇝ B) for three examples of embedded networks Sdisc

emb.
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∑︂
B∈B

µB(p0)p∞(p0 ∈ B) = p∞(p0) = lim
t→∞

(︁
etΓ
)︁
p0

p0=
∑︁
j∈Ω

p
(j)
0 ej

===========
∑︂
j∈Ω

p
(j)
0

⎛⎜⎜⎜⎜⎜⎝ lim
t→∞

etΓ ej⏞ ⏟⏟ ⏞∑︁
B∈B

µB(ej)p∞(p0∈B)

⎞⎟⎟⎟⎟⎟⎠ =

=
∑︂
B∈B

⎛⎝∑︂
j∈Ω

µB(ej) p
(j)
0

⎞⎠
⏞ ⏟⏟ ⏞

µB(p0)

p∞(p0 ∈ B) and

=⇒ µB(p0) =
∑︂
j∈Ω

p
(j)
0 µB(ej)

(2.80)
=====

∑︂
j∈Ω

p
(j)
0

∑︂
ω∈

⋃︁
n∈N

W
(︂
Sdisc

emb, j
n−−→B

)︂qω.

(2.83)

2.6. Time reversible Markov chains, detailed balance and
Kolmogorov’s criterion

In the following Section we will explore conditions under which a Markov chain is time
reversible. This will lead us to the concept of detailed balance and Kolmogorov’s criterion.

Definition 18 (Stationary and time reversible Markov chains).

A probability vector (both for discrete times, as well as for continuous times) on a discrete
state space Ω is called

- stationary with respect to p∗ := (P(Xtk = i))i∈Ω ∈ (R≥ 0)
|Ω| if

P
(︂
Xtj = ij : j ∈ {1, . . . , n}

)︂
= P

(︂
Xt+tj = ij : j ∈ {1, . . . , n}

)︂
and (2.84)

- time reversible with respect to p∗ := (P(Xtk = i))i∈Ω ∈ (R≥ 0)
|Ω| if
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P
(︂
Xtj = ij : j ∈ {1, . . . , n}

)︂
= P

(︂
Xt−tj = ij : j ∈ {1, . . . , n}

)︂
, (2.85)

for all times t1 < . . . < tn, t ∈ R and all states i1, . . . , in ∈ Ω with n ∈ N.

A reversible Markov chain is always in a stationary state:

P
(︂
Xtj = ij : j ∈ {1, . . . , n}

)︂
reversible
======= P

(︂
Xt−tj = ij : j ∈ {1, . . . , n}

)︂
t=0
==== P

(︂
X−tj = ij : j ∈ {1, . . . , n}

)︂
reversible
======= P

(︂
Xt−(−tj) = ij : j ∈ {1, . . . , n}

)︂
= P

(︂
Xt+tj = ij : j ∈ {1, . . . , n}

)︂
.

(2.86)
What reversibility in a Markov chain means, is that a movie of its time evolution (once a
stationary state is reached) looks equivalently, when it is played backwards.
We note that this does not mean we can invert the process in some way, say:

p1 := p(t |p0) and
p0 = p(t |p1).

(2.87)

We also note that the ‘time-inversion operator’ e−tΓ does not necessarily map probability
vectors to probability vectors. We only have

e−t1 Γ : {etΓ p0 : t ≥ t1} → {e(t−t1) Γ p0 : t ≥ t1}. (2.88)

Definition 19 (Detailed balance).

We recall the definition of the stationary solution of a Markov chain. A Markov chain is
defined as

ṗ(t) = Γp(t), for the continuous-time case and
∆qn := qn+1 − qn = (Q− 1) qn, for the discrete-time case.

(2.89)

A probability vector is called stationary if the right hand side of Equation (2.89) vanishes:

Γp∗ = 0 ⇐⇒ for all i ∈ Ω : 0 =
∑︂
j∈Ω

(︂
p
(j)
∗ γj→i − p

(i)
∗ γi→j

)︂
(Q− 1) q∗ = 0 ⇐⇒ for all i ∈ Ω : 0 =

∑︂
j∈Ω

(︂
q
(j)
∗ qj→i − q

(i)
∗ qi→j

)︂
.

(2.90)
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When in Equation (2.90) every summand vanishes (as apposed to the whole sum), we say
that the stationary solution exhibits detailed balance.
Note that a statement about detailed balance is only non-trivial if both states i and j lie
in the same minimal absorbing set.

Theorem 20. A Markov chain is time reversible with respect to p∗ if and only if, p∗
satisfies the detailed balance condition.

Proof of the discrete-time version :

‘ =⇒ ’ Suppose, the Markov chain is reversible. With p(i)∗ := P(Xn = i) we have:

p
(i)
∗ · qi→j = P(Xn+1 = j |Xn = i) · P(Xn = i)⏞ ⏟⏟ ⏞

P(Xn+1=j,Xn=i)

= P(Xn+1 = j, Xn = i)

reversible
======= P(Xn+1 = i, Xn = j) = P(Xn = j)⏞ ⏟⏟ ⏞

p
(j)
∗

· P(Xn+1 = i |Xn = j)⏞ ⏟⏟ ⏞
qj→i

= p
(j)
∗ · qj→i.

(2.91)

This means that the Markov chain exhibits detailed balance.

‘ ⇐= ’ When the condition for detailed balance is fulfilled for every two states we can
define the ‘starting probability’ as P(X1 = i1) := p

(i1)
∗ and compute the transition

probability according to:

P(X1 = i1, . . . , Xn = in) =
n−1∏︂
k=1

P(Xk+1 = ik+1 |Xk = ik)⏞ ⏟⏟ ⏞
qik→ik+1

· P(X1 = i1)⏞ ⏟⏟ ⏞
p
(i1)
∗

= p
(i1)
∗

n−1∏︂
k=1

qik→ik+1

detailed balance
============

successively
p
(in)
∗⏞⏟⏟⏞

P(X1=in)

·
n−1∏︂
k=1

qik+1→ik⏞ ⏟⏟ ⏞
P(Xk+1=ik |Xk=ik+1)

= P(X1 = in, . . . , Xn = i1).
(2.92)

This means that the Markov chain is reversible.
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Proof of the continuous-time version :

‘=⇒’ Suppose, the Markov chain is reversible. With p(j)∗ := P(Xt = j) we have:

p
(j)
∗ · γj→i = P(Xt = j) · lim

ϵ→0+

P(Xt+ϵ = i |Xt = j)

ϵ

= lim
ϵ→0+

P(Xt+ϵ = i, Xt = j)

ϵ

reversible
======= lim

ϵ→0+

P(Xt+ϵ = i, Xt = j)

ϵ

= P(Xt = i)⏞ ⏟⏟ ⏞
p
(i)
∗

· lim
ϵ→0+

P(Xt+ϵ = j |Xt = i)

ϵ⏞ ⏟⏟ ⏞
γi→j

= p
(i)
∗ · γi→j .

(2.93)

This means that the Markov chain exhibits detailed balance.

‘⇐= ’ When the condition for detailed balance is fulfilled for every two states we can
define the ‘starting probability’ as P(Xt = i1) := p

(i1)
∗ and compute the probability

density function

ρ(·, T ) : (Ω× R≥ 0)
n → R≥ 0

for the transition probability for a fixed time T > 0 according to:
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ρ
(︂τ1
i1 →· · · →

τn
in, T

)︂
= p

(i1)
∗

(︄
n−1∏︂
k=1

γik→ e−τk γik→
γik→ik+1

γik→

)︄
e−τn γin→

detailed balance
============ p

(in)
∗

(︄
n−1∏︂
k=1

γik+1→ik

)︄
e
−

n∑︁
k=1

τk γk→

= p
(in)
∗

(︄
n−1∏︂
k=1

γik+1→ e−τk+1 γik+1→
γik+1→ik

γik+1→

)︄
e−τ1 γi1→

= ρ

(︃
τn
in → · · · →

τ1
i1, T

)︃
.

By integrating over all possible waiting times, we get for a given path

P
(︂
i1 → · · · → in, T

)︂
=

∫︂ T

0
d τ1· · ·

∫︂ T

0
d τn 1{︃ n∑︁

k=1

τk=T

}︃ ρ
(︃
τ1
i1 → · · · →

τn
in, T

)︃
exchanging
=========

integrals

∫︂ T

0
d τn· · ·

∫︂ T

0
d τ1 1{︃ n∑︁

k=1

τk=T

}︃ ρ
(︃
τn
in → · · · →

τ1
i1, T

)︃
= P

(︂
in → · · · → i1, T

)︂
,

(2.94)

where the notation (i1 → · · · → in) means that the system moves sequentially

through the states i1 to in, while the notation
(︃
τ1
i1 → · · · →

τn
in

)︃
additionally requires

the system to stay in the state ik ∈ Ω for the time τk > 0.

From Equation (2.94) we can deduce that the probability for one sequence of
transitions is the same as the reverse sequence, hence the Markov chain is reversible.

Theorem 21 (Kolmogorov’s criterion). A Markov chain exhibits detailed balance with
respect to p∗ if and only if there are no net ‘circular flows’ within a minimal absorbing
set, that is for any finite number of states i1, . . . , in ∈ B ∈ B, we have
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n−1∏︂
k=1

qik→ik+1
· qin→i1 =

n−1∏︂
k=1

qik+1→ik · qi1→in for the discrete-times and

n−1∏︂
k=1

γik→ik+1
· γin→i1 =

n−1∏︂
k=1

γik+1→ik · γi1→in for the continuous-times,

(KC)

where B ∈ B is a minimal absorbing set and n ∈ N a natural number.

proof of the discrete-time version.

‘=⇒’ Suppose the condition for detailed balance holds. Let i1, . . . , in ∈ B be states in a
minimal absorbing set, such that there is a closed path i1 → . . . ,→ in. Then we
have:

p
(i1)
∗ qi1→i2 = p

(i2)
∗ qi2→i1

...
...

p
(in)
∗ qin→i1 = p

(i1)
∗ qi1→in

(2.95)

After multiplying these equations and keeping in mind that (since all states are in
some minimal absorbing set) all stationary probabilities are strictly positive, we
conclude that Kolmogorov’s criterion is fulfilled:

n−1∏︂
k=1

qik→ik+1
qin→i1 =

n−1∏︂
k=1

qik+1→ik qi1→in .

‘⇐=’ Suppose, that Kolmogorov’s criterion holds true. To check for detailed balance, we
choose a minimal absorbing set B ∈ B with |B| ≥ 3 (otherwise, detailed balance is
always fulfilled) and three, pairwise different states within it: i, j, x ∈ B.

Since B is strongly connected, every two states are mutually reachable and we
denote with q(i⇝ j) the weight of the path from state i to state j.

We define:

p
(k)
∗ :=

1

Z
q(x⇝ k)

q(k ⇝ x)
for all states k ∈ Ω\{x} and

p
(x)
∗ :=

1

Z
,

(2.96)
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where 1
Z is a normalization constant, such that

(︂
p
(i)
∗

)︂
i∈Ω

is a probability vector. It
suffices to show that this probability vector satisfies the detailed balance condition
and is therefore stationary.

Note, that definition (2.96) is independent of the choice of the specific path, since

for two paths i
(1)
⇝ x and i

(2)
⇝ x, as well as the reverse paths x

(1)
⇝ i and x

(2)
⇝ i we

have:

q(i
(1)
⇝ x) · q(x (2)

⇝ i)
Kolmogorov’s
==========

criterion
q(i

(2)
⇝ x) · q(x (1)

⇝ i)

=⇒ q(x
(1)
⇝ i)

q(i
(1)
⇝ x)

=
q(x

(2)
⇝ i)

q(i
(2)
⇝ x)

.
(2.97)

Let us now consider a closed path in the network: j ⇝ x⇝ i→ j and its reversed
path. By Kolmogorov’s criterion, both paths have the same weight, that is:

q(j ⇝ x) · q(x⇝ i) · qi→j
Kolmogorov’s
==========

criterion
qj→i · q(i⇝ x) · q(x⇝ j)

=⇒ q(x⇝ i)

q(i⇝ x)
· qi→j =

q(x⇝ j)

q(j → x)
· qj→i

=⇒ 1

Z
q(x⇝ i)

q(i⇝ x)⏞ ⏟⏟ ⏞
p
(i)
∗

qi→j =
1

Z
q(x⇝ j)

q(j ⇝ x)⏞ ⏟⏟ ⏞
p
(j)
∗

qj→i , for all i, j ∈ B\{x} and

qx→i q(i⇝ x)
Kolmogorov’s
==========

criterion
qi→x q(x⇝ i)

=⇒ p
(x)
∗⏞⏟⏟⏞
1
Z

qx→i =
1

Z
q(x⇝ i)

q(i⇝ x)⏞ ⏟⏟ ⏞
p
(i)
∗

qi→x.

(2.98)

This means that the condition for detailed balance is fulfilled.

proof of the continuous-time version.
Replacing the transition probability qi→j between two states by the corresponding transi-
tion rate γi→j in the above proof for the discrete-time case yields the desired result.

60



Theorem 22 (Equivalent characterization of detailed balance ).

i) version with no transient states:

For a Markov chain, there exists a positive value β > 0 (representing the inverse
temperature) and an ‘energy-vector’ ϵ ∈ R|Ω| such that for all states i, j ∈ Ω we
have

e−β ϵi γi→j = e−β ϵj γj→i for continuous times and

e−β ϵi qi→j = e−β ϵj qj→i for discrete times.
(2.99)

if and only if the Markov chain has a stationary solution, which exhibits detailed
balance and there are no transient states.

ii) general version:

There exists a stationary solution for the Markov chain, which exhibits detailed
balance if and only if there exists a positive value β > 0 (representing the inverse
temperature) and an ‘energy-vector’ ϵ ∈ (R ∪ {∞})|Ω|\

{︁
{∞}|Ω|}︁ (where some, but

not all energies can be infinite) such that for all states i, j ∈ Ω we have

e−β ϵi γi→j = e−β ϵj γj→i for continuous times and

e−β ϵi qi→j = e−β ϵj qj→i for discrete times.
(2.100)

Proof. We restrict ourselves to the continuous-time cases, the proof for discrete times is
analogous, when replacing the transition rate by the transition probability.

i) version with no transient state:

If the condition holds, we can define a stationary probability as p(i)∗ := e−β ϵi

Z , with
Z :=

∑︁
j∈Ω

e−β ϵj . The condition also implies, that a transition vanishes if and only if

the corresponding reverse transition vanishes, ruling out all transient states.
Vice versa if we have detailed balance and no transient states, we can set e−β ϵi := p

(i)
∗ ,

which is well defined, since all stationary probabilities in minimal absorbing sets
are strictly positive (compare theorem 13)

ii) general version:
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First, we notice that the condition, that not all energies are infinite is crucial,
since otherwise the condition would always be fulfilled. Moreover, the definition
p
(i)
∗ := e−β ϵi

Z is well defined, since the partition sum is strictly positive.
Vice versa, the definition e−β ϵi := p

(i)
∗ now makes sense even for transient states

i ∈ B0, where the stationary probability vanishes:
p
(i)
∗ = 0 =⇒ ϵi = ∞.

We note the existence of a stationary solution with detailed balance does not mean
that every stationary solution exhibits detailed balance. A counter example is given in
Figure 2.15 below.

1

2 345

6

γ
1→

2γ 1
→
4

γ2→3

γ3→2

γ4→5

γ
5→

6 γ6→
4

Figure 2.15.: Example of a network, whose set of stationary solutions is given by⎧⎨⎩α
⎛⎝ 0
pB1

0(3)

⎞⎠+ (1− α)

⎛⎝ 0

0(2)

pB2

⎞⎠ : α ∈ [0, 1]

⎫⎬⎭, with

pB1
= 1

γ2→3+γ3→2

(︃
γ3→2

γ2→3

)︃
and

pB2
= 1

γ5→6 γ6→4+γ6→4 γ4→5+γ4→5 γ5→6

⎛⎝γ5→6 γ6→4

γ6→4 γ4→5

γ4→5 γ5→6

⎞⎠, but only one of them,

namely

⎛⎝ 0
pB1

0(3)

⎞⎠ exhibits detailed balance.

This is due to the fact that as long as there is a non-vanishing probability
mass ϵ > 0 contained in the minimal absorbing set B2 = {4, 5, 6}, this
probability will ‘flow in the circle’ 4 → 5 → 6 → 4 indicated by the dashed
links and thus violating Kolmogorov’s criterion.
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2.6.1. The canonical ensemble

When the condition of theorem 22 is fulfilled for all states in a minimal absorbing set
B ∈ B, that is for all i, j ∈ B there exists a positive number β > 0 and a real vector
ϵ ∈ R|B| such that

e−β ϵi γi→j = e−β ϵj γj→i,

then the stationary solution of that minimal absorbing set is given by the canonical
ensemble, namely

pB =
e−β ϵ

Z
that is

pB,b =
e−β ϵb
Z

with Z =
∑︂
b∈B

e−β ϵb
(2.101)

In the special case when all energies are the same (that is all transition rates are identical),
the stationary solution is a uniform probability distribution:

pB =
1

|B|

(︂
1, . . . , 1⏞ ⏟⏟ ⏞

|B|

)︂
. (2.102)

Another way to interpret this is the high temperature limit β → 0+.

Proof. Since we know that the entries of the stationary solution are strictly positive, it
suffices to show, that p

(i)
∞

p
(j)
∞

= e−β ϵi

e−β ϵj
.

The idea is to turn an in-tree rooted at state i ∈ Ω into an in-tree rooted at some other state
j ∈ Ω by reversing some of the links on the path (j ⇝ i) := j = α(0) → · · · → α(L) = i,
for L ∈ N, while keeping track of the corresponding Boltzmann factors:
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γ(j ⇝ i) :=
L−1∏︂
l=0

γα(l)→α(l+1)⏞ ⏟⏟ ⏞
γα(l+1)→α(l) e

−β
(︂
ϵα(l+1)−ϵα(l)

)︂

=
L−1∏︂
l=0

γα(l+1)→α(l) ·
L−1∏︂
l=0

e−β
(︁
ϵα(l+1)−ϵα(l)

)︁
⏞ ⏟⏟ ⏞
e
−β

L−1∑︁
l=0

(︂
ϵα(l+1)−ϵα(l)

)︂

=

α(L)=i
======
α(0)=j

γ(i⇝ j) · ϵ−β (ϵi−ϵj).

(2.103)

This means, that for all in-trees T→i rooted at state i ∈ Ω and for all in-trees rooted
at some other state j ∈ Ω, we have γT→i = γT→j · ϵ−β (ϵj−ϵi), which means for the i-th
component of the stationary probability vector:

p(i)∞ =
1

Z
∑︂

T→i∈T (→i,S)

γT→i⏞ ⏟⏟ ⏞
γT→j

· ϵ−β (ϵi−ϵj)

= ϵ−β (ϵi−ϵj) · 1

Z
∑︂

T→i∈T (→j,S)

γT→j⏞ ⏟⏟ ⏞
p∞(j)

=⇒ p
(i)
∞

p
(j)
∞

=
e−β ϵi
e−β ϵj

.

(2.104)

This concludes the proof.

1 2

3

γ1→2

γ2→1

γ
1→

3

γ
3→

1 γ 2
→
3

γ 3
→
2

Figure 2.16.: Illustrating the reversal of links of in-trees in a network, corresponding to the
canonical ensemble. Reversing some the links results in an in-tree, whose
weight has additional Boltzmann factors (compare Equation (2.105)).

64



∑︂
T→1∈T (→1,S)

γT→1 = γ2→3⏞ ⏟⏟ ⏞
γ3→2 e−β (ϵ3−ϵ2)

γ1→3 e−β (ϵ1−ϵ3)⏟ ⏞⏞ ⏟
γ3→1

+ γ3→2 γ2→1⏞ ⏟⏟ ⏞
γ1→2 e−β (ϵ1−ϵ2)

+ γ3→1 γ2→1⏞ ⏟⏟ ⏞
γ1→2 e−β (ϵ1−ϵ2)

= e−β (ϵ1−ϵ2)

⎛⎝ ∑︂
T→2∈T (→2,S)

γT→2

⎞⎠
= e−β (ϵ1−ϵ2)

(︂
γ1→3 γ3→2⏞ ⏟⏟ ⏞

γ2→3 e−β (ϵ2−ϵ3)

+ γ3→2⏞ ⏟⏟ ⏞
γ2→3 e−β (ϵ2−ϵ3)

γ1→2

+

γ1→3 e−β (ϵ1−ϵ3)⏟ ⏞⏞ ⏟
γ3→1 γ1→2⏞ ⏟⏟ ⏞

γ2→1 e−β (ϵ2−ϵ1)

)︂

= e−β (ϵ1−ϵ3)

⎛⎝ ∑︂
T→3∈T (→3,S)

γT→3

⎞⎠ .

(2.105)

2.6.2. The maximization of entropy

Given a master equation of a strongly connected network as defined in Equation (2.20).
The goal of this subsection is to define a time-dependent entropy function and to show
that this function is increasing. We follow the arguments given by Kelly [Kel11].
We suppress the dependence of the initial state p0, in the sense that

p(t) = p(t |p0) and
p∗ := p∞(p0).

We first note, that for a stationary solution p∗ we have
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p∗ = eτ Γ p∗ and component-wise

p
(i)
∗ =

∑︂
j∈Ω

(︁
eτ Γ
)︁
ij
p
(j)
∗

(2.106)

Hence the following numbers are non-negative and add up to one:(︁
eτ Γ
)︁
ij
p
(j)
∗

p
(i)
∗

≥ 0

∑︂
j∈Ω

(︁
eτ Γ
)︁
ij
p
(j)
∗

p
(i)
∗

= 1.

(2.107)

Now let h : R → R be any concave function. Then the function defined as

H(t) :=
∑︂
i∈Ω

h

(︄
p(i)(t)

p
(i)
∗

)︄
(2.108)

is strictly increasing:

Proof.

H(t+ τ) =
∑︂
i∈Ω

p
(i)
∗ h

(︂
∑︁
j∈Ω

(︁
eτ Γ

)︁
ij
p(j)(t)⏟ ⏞⏞ ⏟

p(i)(t+ τ)

p
(i)
∗

)︂

=
∑︂
i∈Ω

p
(i)
∗ h

⎛⎝∑︂
j∈Ω

(︁
eτ Γ
)︁
ij
p
(j)
∗

p
(i)
∗

· p
(j)(t)

p
(j)
∗

⎞⎠
h concave
>

(2.107)

∑︂
i∈Ω

p
(i)
∗
∑︂
j∈Ω

(︁
eτ Γ
)︁
ij
p
(j)
∗

p
(i)
∗

h

(︄
p(j)(t)

p
(j)
∗

)︄

=
∑︂
j∈Ω

p
(j)
∗ h

(︄
p(j)(t)

p
(j)
∗

)︄
·
∑︂
i∈Ω

(︁
eτ Γ
)︁
ij⏞ ⏟⏟ ⏞

1

= H(t).

(2.109)
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When we choose h(x) := −x ln(x) as a special case of a concave function, then the
function

HS(t) = −
∑︂
i∈Ω

p(i)(t) ln

(︄
p(i)(t)

p
(i)
∗

)︄
=: −KL

(︁
(p(i)(t))i∈Ω ∥ (p(i)∗ )i∈Ω

)︁
(2.110)

becomes the negative of the Kullback-Leibler divergence (also called relative entropy).
This relative entropy is convergent (since it is increasing and bounded from above),
non-negative and it vanishes if and only if the two probability distributions coincide, that
is when the stationary state is reached p(t) = p∗ (which is never the case for a finite time
if p0 ̸= p∗).
This means from a physical point of view that a strongly connected system approaching
equilibrium is closely related to the fact that its relative entropy is maximized, where the
maximum of entropy of the system corresponds to its equilibrium state.
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3. The Lindblad equation

3.1. Derivation of the Lindblad equation for finite dimensions

In this Section we give a short derivation of the Lindblad equation following the arguments
from [BP02].
Given the initial state of a quantum system plus environment is a product state ρ(t =
0) = ρS(t = 0)⊗ ρB, where ρS ∈ CN×N is the state of the system and ρB ∈ CDB×DB is
the equilibrium state of the bath, which is constant over time.
The quantum state at a time t > 0 is given by first computing the time evolution of
the combined system (system + bath) and then taking the average over all the states
representing the environment (this is sometime called ‘tracing’ over the bath, due to the
fact that a quantum mechanical average of an observable is computed by taking a trace
of the density matrix times the observable). This results in the so-called Kraus operator
representation:

ρS(t) = TrB
[︂
U(t) (ρS(0)⊗ ρB)U(t)†

]︂
=

Kraus
=====

N2∑︂
i,j=1

ci,j(t)Fi ρS(0) (Fj)
†,

(3.1)

where (Fi)i∈{1,...,N2} is an orthonormal basis of CN×N with FN2 := 1√
N

1N and (cij)i,j∈{1,...,N2}
is a positive-definite coefficient matrix over the complex numbers. In the following we
will suppress the index ‘S’ of the density matrix of the system.
The generator can then be computed via

L(ρ(t)) = d
d t

ρ(t)
⃓⃓⃓
t=0

= lim
ϵ→0+

ρ(ϵ)− ρ(0)

ϵ

= −i[H,ρ(t)] +
N−1∑︂
i,j=1

aijFi ρ(t)F
†
j +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︃
aN2,N2

2
1N +

F † + F

2

)︃
⏞ ⏟⏟ ⏞

G

,ρ

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

(3.2)
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with aij := d
d tcij(t)

⃓⃓⃓
t=0

= c′ij(t = 0). Since the trace of L(ρ(t)) must vanish, we have:

0
!
== Tr[L(ρ(t))] = Tr

⎡⎢⎢⎢⎢⎣
⎛⎝2G+

N−1∑︂
i,j=1

aijF
†
j Fi

⎞⎠
⏞ ⏟⏟ ⏞

=0

,ρ(t)

⎤⎥⎥⎥⎥⎦ , which implies

G =
1

2

N2−1∑︂
i,j=1

aijF
†
j Fi.

(3.3)

After diagonalizing the coefficient matrix (aij)i,j∈{1,...,N2−1} with its eigenvalues γk ≥ 0,
we can write the generator as follows:

L(ρ(t)) = −i[H,ρ(t)] +
N2−1∑︂
k=1

γk

(︃
Vk ρ(t)V

†
k +

1

2

{︂
V †
k Vk, ρ(t)

}︂)︃
. (3.4)

For more details, see Section B.6.

3.2. The concept of an unravelling of the Lindblad equation

Unravellings are ensembles of stochastic quantum trajectories that are equivalent to the
Lindblad equation in the sense that the state of the system ρ(t) at a time t ≥ 0 is given
by the average over all possible trajectories,

ρ(t) = ⟨Θ(t, ω)⟩ω∈U :=

∫︂
U
Θ(t, ω) dP(ω). (3.5)

The parameter ω ∈ U labels the quantum trajectories R≥ 0 ∋ t ↦→ Θ(t, ω) ∈ {density matrices}
(see figure (3.1) for an illustration).
In particular, the expectation values of any quantum mechanical observable A, given the
system is in the state ρ, can be computed from these unravellings, according to

E [A |ρ] = Tr[ρA] =
∫︂
U

Tr[Θ(ω)A] dP(ω). (3.6)

Unravellings provide different perspectives on the subject of time evolution of open
quantum systems and can yield new insights since they are tackled by a different set of
mathematical tools: Instead of linear differential equations one has the theory of Markov
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chains, piecewise deterministic processes, and stochastic differential equations at hand
[BP02].
Moreover, unravellings are often superior when it comes to numerical simulations of
specific models, as a ket-state unravelling (defined in Section 3.3.4) requires less memory
storage (linear with the dimension of the system, instead of quadratic [Lid19]).
While unravellings are usually done in terms of ket-states, we want to focus on the so
called mixed-state unravellings, which assume values in the set of density matrices [BP02].
Among the different possible types of unravellings, we will use the quantum jump
unravelling. Other types of unravellings are for example the quantum state diffusion
model (see [GP92]), which relies on stochastic calculus. The main difference between
these unravellings is that a trajectory from quantum state diffusion is continuous in time,
in contrast to the quantum jumps coming from the quantum jump unravelling. One can
say that quantum state diffusion relies on ‘infinitesimal small’ jumps happening at every
time point, whereas the quantum jump model focuses on larger jumps, whose frequency
is determined by some stochastic process.
For a given Hamiltonian H and a given finite set of Lindblad operators {Vk : k ∈ I}, the
quantum jump unravelling is a piecewise deterministic process (see [BP02; Lid19]) where
the continuous, deterministic time evolution is interrupted by discontinuous quantum
jumps at times tn, where a Lindblad operator Vπn is applied.

3.3. The quantum jump unravelling: version for density matrices

The quantum jump unravelling is a special Piecewise-deterministic Markov process
(PDMP), which takes values in the density matrices. PDMP have first been introduced
by Mark H. A. Davis in [Dav84] and show both deterministic, as well as stochastic
features. A typical path contains discontinuities (so-called ‘jumps’), but between these
jump times, the time evolution is deterministic and determined by a differential equation
(see Figure 3.1 for an illustration). It is completely determined by the evolution equation,
the rate of the jumps and the transition probabilities [Dav84].
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U
Θ(t, ω1)

Θ(t, ω2)

Θ(t, ω3)

Figure 3.1.: Illustration of an ensemble of quantum trajectories, originating from the
quantum jump unravelling, which is a special type of piecewise deterministic
processes interrupted by quantum jumps. The average of the trajectories at
a given time t ≥ 0 yields the density matrix ρ(t).

So a trajectory of a quantum jump unravelling is completely determined by the sequence
of times (tn)n∈N ⊂ RN (which record when a quantum jump takes place) and the sequence
(πn)n∈N ∈ {Vk : k ∈ I}N of indices of Lindblad operators (which records which operator
has been applied at time tn). We define U to be the set of all possible quantum trajectories,
τn := tn+1 − tn to be the length of the time interval between two jumps and Θn := Θ(tn)
the state of the unravelling at time tn.
We use with Θ(t, ω) a different symbol for a state in the quantum trajectory ω ∈ U , to
distinguish it from the solution ρ(t) of the Lindblad Equation (1.2) at time tn, which is
the average over all quantum trajectories, ρ(t) = ⟨Θ(ω, t)⟩ω∈U .
We point out that all the sequences of time events (tn)n∈N, waiting times (τn)n∈N and
quantum states (Θn)n∈N depend on a specific unravelling ω ∈ U (which we will suppress
in the following):

71



tn := tn(ω)

τn := τn(ω)

Θn := Θn(ω).

(3.7)

Definition 23 (The operators for time evolution quantum jumps).

To avoid unnecessarily complicated notation, we denote by Ut the (non-unitary) time
evolution according to the conditional Hamiltonian Hc, and by Jk the quantum jump
operator, irrespective of the nature of the quantum state, be it a density matrix or a ket
state. Their action on these two types of quantum states is thus given by

Ut, Jk : CN×N → CN×N

Ut(Θ) = e−iHc tΘ eiH
†
c t

Jk(Θ) = VkΘV †
k

Ut, Jk : CN → CN

Ut(ψ) = e−iHc t ψ

Jk(ψ) = Vk ψ

(3.8)

During the time interval [tn, tn+1) between two quantum jumps there is a deterministic
time evolution Θ(t) = Ut−tn (Θn)

Tr[... ] , and directly after a quantum jump induced by the

Lindblad operator Vk the state of the quantum trajectory is given by Θ(tn) =
Jk(Θ)
Tr[... ]

(︂
we

write A
Tr[... ] instead of A

Tr[A] for any matrix A
)︂
.

Definition 24 (The waiting time distribution function).

Given that the quantum trajectory is in state Θ, the waiting time t for the next jump is
distributed according to
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f(t |Θ) := − d

dt
Tr

⎡⎢⎢⎣ Ut(Θ)⏞ ⏟⏟ ⏞
e−iHc t Θ eiH

†
c t

⎤⎥⎥⎦ = −Tr

⎡⎢⎢⎣ (−iHc)⏞ ⏟⏟ ⏞
−iH− 1

2
Λ

Ut(Θ) + Ut(Θ) (iH†
c )⏞ ⏟⏟ ⏞

iH− 1
2
Λ

⎤⎥⎥⎦ =

= iTr [H Ut(Θ)]− iTr [Ut(Θ)H]⏞ ⏟⏟ ⏞
0

+
1

2
Tr [ΛUt(Θ)] +

1

2
Tr [Ut(Θ)Λ]⏞ ⏟⏟ ⏞

Tr[ΛUt(Θ)]

=

= Tr[ΛUt(Θ)]

Λ=
∑︁
k∈I

γk V
†
k Vk

===========
∑︂
k∈I

γk Tr

⎡⎢⎣Vk e−iHc tΘ eiH
†
c t V †

k⏞ ⏟⏟ ⏞
Jk◦Ut(Θ)

⎤⎥⎦ =

=
∑︂
k∈I

γk Tr [Jk ◦ Ut(Θ)]⏞ ⏟⏟ ⏞
f (k)(t |Θ)

=:
∑︂
k∈I

f (k)(t |Θ).

(3.9)

with

f (k)(t |Θ) := γk Jk ◦ Ut(Θ) = γk Vk e−iHc tΘ eiH
†
c t V †

k (see [BP02]). (3.10)

Note that f(· |Θ) need not be a probability distribution since
∫︁

R≥ 0
f(t |Θ) d t < 1 is

possible. In this case, we call Θ a possible trapping state, which will be discussed below.

3.3.1. The algorithm for an unravelling

The algorithm for obtaining an unravelling is the following (see [Lid19] or[BP02] for a
detailed proof):

1) Choose an initial state ρ0 and set Θ0 := ρ0 = ρ(t0).

2) Given that the system at time tn is in state Θn, we calculate the waiting time τn to
the next jump according to the following considerations: The probability for τn to
lie in the interval [0, T ) is given by

P
(︁
τn ∈ [0, T ) |Θn

)︁
=

∫︂ T

0
f(t |Θn)⏞ ⏟⏟ ⏞

− d
dt

Tr[Ut(Θn)]

d t = 1− Tr [UT (Θn)] . (3.11)
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One way of determining the waiting time is the so-called inversion method (see:
[BP02]): We draw a random number ηn from the uniform distribution of the interval
[0, 1] and set

τn :=

{︄
f−1(ηn |Θn) , if ηn ∈ image

(︁
f(· |Θn)

)︁
∞ , otherwise

(3.12)

An illustration of this procedure is given in Figure 3.2.

0

1

waiting time τ

P
(t

n+
1
−
t n
<
τ
|)

P(tn+1 − tn <∞|Θ)

τ (1)

η(1)

η(2) τ (2) = ∞

Figure 3.2.: Determining the waiting time τ ∈ R≥ 0 ∪ {∞}, given a state Θ: Choose a
random variable η uniformly distributed over the interval [0, 1] and determine
the positive number τ that satisfies f(τ |Θ) = η. If no such number exists,
set τ = ∞. The two cases are indicated in the figure: When the random
number is η(1), the corresponding waiting time is τ (1); when it is η(2) the
waiting time is infinite, τ (2) = ∞.

Now we have to distinguish two cases:

i) When lim
t→∞

Tr[Ut(Θn)] = 0, then the quantum jump will occur at a finite time,
P(τn <∞|Θn) = 1.
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ii) When lim
t→∞

Tr[Ut(Θn)] ∈ (0, 1], then there is a nonzero chance that the process
no longer jumps, i.e. the waiting time is infinite (P(τn = ∞|Θn) > 0 ) .
In this case, the state of the quantum trajectory after the time tn is given
by Ut−tn (Θn)

Tr[... ] , and we call Θtrap := Θn a possible trapping state, since it is
possible that Θtrap ‘traps’ the discrete quantum trajectory in the sense that
the sequence of quantum states is finite, with Θtrap being the last of these
states.

We point out, that only the discrete quantum trajectory ‘stops’, in the sense
that no more quantum jumps take place. The time evolution keeps evolving
according to

Θtrap(t)
t>ttrap
======

Ut−ttrap(Θtrap)

Tr[. . . ]

3) If the waiting time is finite (τn <∞) , choose the operator Vπn that is applied at
time tn according to

P
(︁
πn = k |Θn, τ = τn

)︁
=

f (k)(τn |Θn)∑︁
j∈J

f (j)(τn |Θn)
, (3.13)

with the f (k)(· |Θ) defined in Equation (3.10). The next state is then given by

Θn+1 =
Jk

(︁
Uτn (Θn)

)︁
Tr[... ] .

Then for a fixed unravelling ω ∈ U , for positive times tn ∈ R≥0, and (possibly
infinite) times tn+1 ∈ R> 0 ∪ {∞}, we have

for t ∈ [tn, tn+1) : Θ(t, ω |ρ0) =
Ut−tn (Θn)

Tr[. . . ]
=
Ut−tn ◦ Jπn ◦ Uτn−1 ◦ · · · ◦ Jπ1 ◦ Uτ0 (ρ0)

Tr[. . . ]
Θn := Θ(tn, ω)

(3.14)
Depending on whether there are finitely many of infinitely many quantum jumps, the set
of states in the quantum trajectory varies:
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i) infinitely many jumps

Ωρ0
(ω) : = {ρ0 = Θ0} ∪

{︃
Jπn ◦ Uτn−1 ◦ · · · ◦ Jπ1 ◦ Uτ0 (ρ0)

Tr[. . . ]
: n ∈ N, ω = (ti, πi)i∈N

}︃
=

= {Θn(ω) : n ∈ N0, ω = (ti, πi)i∈N} ,
(3.15)

and the sequence (Θn)n∈N = (Θ(tn, ω |ρ0))n∈N is called the discrete quantum
trajectory.

ii) finitely many jumps
Let l ∈ N be the number of jumps, then the last state must be a possible trapping
state

Θtrap :=
Jπl ◦ Utl−tl−1

◦ . . . ◦ Jπ1 ◦ Ut1(ρ0)

Tr[. . . ]
.

and the set of states in the quantum trajectory is given by

Ωρ0
(ω) := {ρ0 = Θ0} ∪

{︃
Jπn ◦ Uτn−1 ◦ · · · ◦ Jπ1 ◦ Uτ0 (ρ0)

Tr[. . . ]
: n ∈ N≤ l, ω = (ti, πi)i≤l

}︃
∪ {⟨Θtrap(t)⟩t≥0} ,

(3.16)

time t
ρ0 = Θ(t = 0)

t = 0

Θn = Θ(tn)

tn

Θn+1 = Θ(tn+1) =
Jπn+1◦Uτn (Θn)

Tr[... ]

tn+1

τn = tn+1 − tn

tn < t < tn+1

Θ(t) = Ut−tn (Θn)
Tr[... ]

Figure 3.3.: Illustration of a quantum trajectory
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3.3.2. The set of states Ω

In a classical Markov chain with finite state space, the states could be associated to the
unit vectors: Ω = {1, . . . , |Ω|}ˆ︁={e1, . . . , e|Ω|}, with

ei = (0, . . . , 0⏞ ⏟⏟ ⏞
i−1

, 1, 0, . . . , 0⏞ ⏟⏟ ⏞
|Ω|−i

).

Now the system consists of both the states a quantum trajectory attains directly after
the quantum jump as well as the time-averages of all possible trapping states that is

Ωρ0
=
⋃︂
ω∈U

Ωρ0
(ω) (3.17)

In order to apply the methods of the previous section, we again assume, that this state
space is finite, |Ωρ0

| <∞. Some important examples will be considered later.

3.3.3. Two examples of discrete quantum trajectories

In this Section we want to illustrate the abstract procedure given above by two concrete
examples, which will come up again in Section 3.7.

Classical jump process between two states with two possible discrete quantum
trajectories.

When we set the Hamiltonian to be trivial and the two Lindblad operators to be ‘classical’
jump operators, that is

H ∝ 1, V1 =

(︃
0 0
1 0

)︃
, V2 =

(︃
0 1
0 0

)︃
, (3.18)

we get the following two possible discrete quantum trajectories:

(Θn)n∈N =

{︄(︁
ρ0,Θs2 , Θs3 , Θs2 , Θs3 . . . ,

)︁
with probability ρ11(0) and(︁

ρ0,Θs3 , Θs2 , Θs3 , Θs2 . . . ,
)︁

with probability ρ22(0),
(3.19)

with the two states

Θs2 :=

(︃
1 0
0 0

)︃
,Θs3 :=

(︃
0 0
0 1

)︃
and the initial state

ρ0 =

(︃
ρ11(0) ρ12(0)
ρ21(0) ρ22(0)

)︃
.

(3.20)
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The set of all possible states Ω is given by

Ω = {ρ0, Θs2 , Θs3}.

Simple case of a possible trapping state

In case of a trivial Hamiltonian and a projection operator as a Lindblad operator, that is

H ∝ 1, V1 =

(︃
1 0
0 0

)︃
, (3.21)

the initial state is a possible trapping state. This means (in this case) that the initial
state could, but need not be the last state in the discrete quantum trajectory.
This leads to the following two possible discrete quantum trajectories:

(Θn)n∈N =

{︄(︁
ρ0,Θs2 , Θs2 , Θs2 , . . . ,

)︁
with probability ρ11(0) and(︁

ρ0

)︁
with probability ρ22(0),

, (3.22)

where Θs2 is defined as

Θs2 :=

(︃
1 0
0 0

)︃
. (3.23)

The set of all possible states Ω is given by

Ω = {ρ0, Θs2}.

3.3.4. Connection between unravellings for pure quantum states and
ket-states

If some state in the quantum trajectory is a pure state (Θn = Pψn := |ψn⟩ ⟨ψn| ˆ︁=ψn), the
unravelling reduces to a ket-state unravelling from then on, and equations (3.9), (3.11),
(3.13), and (3.14) become

f(t |ψ) = −Tr[Ut(Pψ)] = −Tr[PUt (ψ)] = −∥Ut ψ∥2 (3.9*)

P
(︁
τn ∈ [0, T ) |ψn

)︁
=

∫︂ T

0
d t f(t |ψ)⏞ ⏟⏟ ⏞

− d
dt
∥UT (ψn)∥2

= 1− ∥UT (ψn)∥2 (3.11*)
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P
(︁
πn = k |ψn, τ = τn

)︁
=

f (k)(τn |ψn)∑︁
j∈J

f (j)(τn |ψn)
. (3.13*)

The states occurring during a ket-state unravelling ω ∈ U are given by

for t ∈ [tn, tn+1) : Ψ(t, ω |ψ0) =
Ut−tn (Ψn)

∥ . . . ∥

=
Ut−tn ◦ Jπn+1 ◦ Uτn ◦ · · · ◦ Jπ1 ◦ Uτ0 (Ψ0)

∥ . . . ∥
Ψn := Ψ(tn, ω)

(3.14*)

The transition to a ket-state unravelling occurs for instance when a Lindblad operator of
rank one (V = |ψ⟩ ⟨ϕ|) is applied at some point in the quantum trajectory,

Θn+1 =
|ψ⟩ ⟨ϕ| Uτn(Θn) |ϕ⟩ ⟨ψ|

Tr []
= |ψ⟩ ⟨ψ| ˆ︁=ψ. (3.24)

So, in some sense, Lindblad operators of rank one are ‘quasi-classical’.

3.4. The path to the stationary solution

3.4.1. How to ‘guess’ the stationary solution

In Chapter 2 we have computed the stationary solution of a classical Markov chain to

p∞(p0)
(2.83)
=====

∑︂
B∈B

P (p0 ⇝ B) p∞(p0 ∈ B)⏞ ⏟⏟ ⏞∑︁
i∈Ω

p
(i)
∞ (p0∈B) ei

(2.73)
=====

∑︂
B∈B

P (p0 ⇝ B)
∑︂
i∈Ω

p(i)∞ (p0 ∈ B)⏞ ⏟⏟ ⏞
q
(i)
∞ (p0∈B) τi

N

ei

=
∑︂
B∈B

P (p0 ⇝ B)
∑︂
i∈Ω

q
(i)
∞ (p0 ∈ B) τi

N
ei,

(3.25)

where the states correspond to a unit vector (for s ∈ Ω we have s ˆ︁= es = (0, . . . , 1, . . . , 0))
and the system is constant between two jumps (compare Figure 3.4a).
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(a) Classical trajectory

time t
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es2 τ2
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(b) Quantum trajectory

time t

qu
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ha
ni
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ta
te

s

t1 t2 t3 t4

Θs1

⟨Θs1(t)⟩t∈[0,τ1]
⟨Θs1(t)⟩t∈[0,τ3]

Θs2

⟨Θs2(t)⟩t∈[0,τ2]

Θs3

⟨Θs3(t)⟩t∈[0,τ4]

Figure 3.4.: Illustrating the difference between a classical trajectory and a trajectory
coming from a quantum jump unravelling: While the system is constant
between two time jumps and the states are associated to unit vectors, the
states in a quantum trajectory are density matrices and the system evolves
between two jumps according to the conditional time evolution t ↦→ Ut(Θ)

Tr[... ] .

Things are more complicated when it comes to the quantum jump unravelling. Here,
the states correspond to density matrices (for s ∈ Ωρ0

we have s ˆ︁=Θs ∈ CN×N ) and the
system evolves between two jumps according to the conditional Hamiltonian Hc (compare
Figure 3.4b).
Since the states are time dependent, we can no longer associate a state with Θs(t) for
some t ∈ [0, τ ], but we can do so with the time average: s ˆ︁= ⟨Θs(t)⟩t∈[0,τs] =

∫︁ τs
0 Θs(t) d t,

where the time average is taken for the duration of the waiting time. Since this waiting
time τs is a random variable, with the probability density function τs ∼ f(• |Θs), we get
the following analogy:
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τ s · es ↦→ ⟨τ · ⟨Θs(t)⟩t∈[0,τ ]⟩τ ∼ f(· |Θs)

In the special case of a time independent state we get the same result as for a classical
Markov chain, namely

⟨⟨Θs(t)⟩t∈[0,τ ]⏞ ⏟⏟ ⏞
Θs τ

⟩τ ∼ f(· |Θs) = Θs ⟨τ ⟩τ ∼ f(· |Θs)⏞ ⏟⏟ ⏞
τs

= Θs · τs. (3.26)

3.4.2. Outlining the procedure

Before going into the details, we are going to outline our approach:
The stationary solution ρ∞(ρ0) for an initial state ρ0 is obtained by taking the time
average of expression (3.5) and interchanging the time average with the ensemble average,

ρ∞(ρ0) = ⟨Θ∞(ω |ρ0)⟩ω∈U =

∫︂
U

Θ∞(ω |ρ0) dP(ω |ρ0), (3.27)

where the time average for a single trajectory is known to exist (see [KM04]) and is given
by

Θ∞(ω |ρ0) := ⟨Θ(t, ω |ρ0)⟩t≥0
[KM04]
====== lim

T→∞

1

T

T∫︂
0

Θ(t, ω |ρ0) d t. (3.28)

As we will see in Section 3.5, the set U of all possible unravellings, contains (under some
assumptions) only a finite number of different long-term behaviors, which themselves do
not depend on the initial state ρ0:

U =
·n⋃︂
i=1

Ui

Θ∞(ω |ρ0) =

n∑︂
i=1

Θ∞(Ui) 1Ui(ω).

(3.29)

This will give us the following expression for the stationary state:
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ρ∞(ρ0) =

∫︂
U

Θ∞(ω |ρ0)⏞ ⏟⏟ ⏞
n∑︁

i=1
Θ∞(Ui) 1Ui

(ω)

dP(ω |ρ0)

=
n∑︂
i=1

Θ∞(Ui)
∫︂
Ui

dP(ω |ρ0)

⏞ ⏟⏟ ⏞
P(Ui |ρ0)

=
n∑︂
i=1

P(Ui |ρ0)Θ∞(Ui),
(3.30)

where P(Ui |ρ0) is the probability for a certain subset of unravellings Ui ⊆ U , whose
analytical expression can be derived from the stationary solution of the Markov chain
associated to the quantum state transition network introduced in Section 3.6 (not to be
confused with the stationary solution of the Lindblad equation). For the classical analog
expression, compare Section 2.5.2.
On the other hand, the density matrix Θ∞(Ui) is indeed a stationary solution of the
Lindblad Equation (1.2), independent of the initial condition, but dependent on the
stationary solutions of Markov chains (compare equations (3.33)), as well as time averages,
for which analytical expressions will be derived in Section 3.8.
Calculating the different building blocks of this expression is the goal of this chapter. We
start in the next Section 3.5 by computing an explicit expression for the time average
Θ∞(ω |ρ0) of a single quantum trajectory.

3.5. The time average of a single quantum trajectory

In order to compute the time average for a single quantum trajectory, we perform similar
calculations as we did in Section 2.4.6.
Similar to the classical case, the time average of a trajectory depends on, whether the
number of jumps is finite or infinite:

i) finitely many jumps
When there are finitely many quantum jumps in the trajectory, then the last state
in the ‘discrete’ quantum trajectory must be a possible trapping state Θtrap (defined
in the algorithm for the unravelling, Section 3.3.1 ), with a non-zero chance (namely
lim
t→∞

Tr[Ut(Θtrap)] > 0) that no more jumps would occur. The time average of that

trajectory is then given by ⟨Θtrap(t)⟩t≥ 0 := ⟨Θ(t)⟩t≥ ttrap := lim
T→∞

1
T

∫︁ T
0

Ut(Θtrap)
Tr[... ] d t.

In favor of a uniform description, we say that the trajectory makes a transition
towards the time-averaged state (see Figure 3.5 for an illustration).
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(a)

Θtrap ⟨Θtrap(t)⟩t≥0

lim
t→∞

Tr[Ut(Θtrap)]

(b)

time

st
at

es

ttrap t = ∞

Θtrap

⟨Θtrap(t)⟩t≥ 0

(c)

time

st
at

es

ttrap t = ∞

Θtrap

⟨Θtrap(t)⟩t≥ 0

Figure 3.5.: Illustrating the transition from a possible trapping state Θtrap to the time-
averaged trapping state ⟨Θtrap(t)⟩t≥ 0: While the dynamics for t ≥ ttrap is in
fact continuously approaching the time-averaged state (compare Figure 3.5b),
we treat it as an instantaneous transition as depicted in Figure 3.5c, in order
to be compatible with the state transition network of the discrete-timeMarkov
chain (see Figure 3.5).

ii) infinitely many jumps

In order to compute the time average of a quantum trajectory (which we know
exists from [KM04]) for infinitely many jumps, we rely on the same notation as the
classical case, defined in Equation (2.67).

In addition to the average waiting time (see Equation (2.69)) we come across
expressions for the stationary probabilities within a minimal absorbing set, that is

Js(T )

J(T )

T→∞−−−−→ q∞(Θs |ρ0 ∈ B)

in probability, for all states s ∈ B ∈ B.
(3.31)

We use the notation q∞(Θs |ρ0 ∈ B) in contrast to q(s)∞ (p0 ∈ B), in order to focus
on the dependence of the density matrix Θs instead of the unit vector es in the
classical case.
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Another expression which appears is the "average of the same ’time averaged states’".
What this expression means, is that a time averaged state ⟨Θs(t)⟩t∈[0,τn] depends on
the waiting time, which is itself a random variable. By averaging over all outcomes
of this random variable, we get:

1

K

K−1∑︂
k=0

τ
(︁
αs(k)

)︁
· ⟨Θs(t)⟩t∈[0,τ(αs(k))]

K→∞−−−−→ ⟨τ · ⟨Θs(t)⟩t∈[0,τ ]⟩τ∼f(· |Θs)

=

∫︂ ∞

0
τ ⟨Θs(t)⟩t∈[0,τ ] f(τ |Θs) d τ

=

∫︂ ∞

0
d τ
∫︂ τ

0
d tΘs(t) f(τ |Θs).

(3.32)

When we assume that the quantum trajectory exhibits infinitely many quantum
jumps and is eventually captured by the minimal absorbing set B ∈ B, we can
compute its time average as follows:
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Θ∞(ω |ρ0, ω ∈ B eventually )
theorem (B.1)
========== ⟨Θ(ω, t |ρ0) · 1{ω∈B eventually }⟩t≥0

= lim
T→∞

1

T

∫︂ T

0
Θ(t, ω |ρ0) d t · 1{ω∈B eventually } =

= lim
T→∞

1

T

J(T )−1∑︂
n=0

∫︂ tn+1

tn

Ut−tn(Θn )

Tr [. . . ]
d t⏞ ⏟⏟ ⏞∫︁ τn

0
Ut(Θn )
Tr[... ] d t

· 1{ω∈B eventually }

= lim
T→∞

1

T

J(T )−1∑︂
n=0

∫︂ τn

0

Ut(Θn )

Tr [. . . ]
d t⏞ ⏟⏟ ⏞

τn · ⟨Θn(t)⟩t∈[0,τn]

· 1{ω∈B eventually }

= lim
T→∞

1

T

J(T )−1∑︂
n=0

τn · ⟨Θn(t)⟩t∈[0,τn] ·
1{ω∈B eventually }

1{ω∈
⋃︁

B′∈B
B′ eventually }

= lim
T→∞

∑︁
s∈Ωρ0

Js(ω,T )
J(ω,T ) 1{ω∈B event.}

1
Js(ω,T )

Js(ω,T )−1∑︁
k=0

ταs(k) · ⟨
Θs⏟ ⏞⏞ ⏟

Θαs(k) (t)⟩t∈[0,ταs(k)]

T
J(ω,T ) · 1{ω∈ ⋃︁

B′∈B
B′ event.}

=

∑︁
s∈Ωρ0

q∞(Θs |ρ0∈B)⏟ ⏞⏞ ⏟(︃
lim
T→∞

Js(ω, T )

J(ω, T )
1{ω∈B event.}

)︃ ⟨τ ·⟨Θs(t)⟩t∈[0,τ ]⟩τ∼f(· |Θs)⏟ ⏞⏞ ⏟⎛⎝ lim
T→∞

1

Js(ω, T )

Js(ω,T )−1∑︂
k=0

ταs(k) · ⟨Θs(t)⟩t∈[0,ταs(k)]

⎞⎠
∑︁
B′∈B

∑︁
b′∈B′

(︃
lim
T→∞

1{ω ∈B′ event.}
Jb(ω, T )

J(ω, T )

)︃
⏞ ⏟⏟ ⏞

q∞(Θb′ |ρ0∈B′)

⎛⎝ lim
T→∞

1

Jb′(ω, T )

Jb′ (ω,T )−1∑︂
k=0

ταs(k)

⎞⎠
⏞ ⏟⏟ ⏞

τb′

=

∑︁
b∈B

q∞(Θb |ρ0 ∈ B) ⟨τ · ⟨Θs(t)⟩t∈[0,τ ⟩τ∼f(· |Θs)

Tr[. . . ]
=: ΘB.

(3.33)

We note that the expression (3.33) does not depend on the initial state ρ0 and not
on the details of the quantum trajectory ω ∈ U but only on the minimal absorbing
set B ∈ B the trajectory is eventually captured in.

85



When the states are constant between quantum jumps, the time averaged state is
just the state times the waiting time (⟨Θs(t)⟩t∈[0,τ ] = τ · Θs) and Equation (3.33)
reduces to

ΘB :=

∑︁
s∈B

q∞(Θs |ρ0 ∈ B) τs Θs

Tr[. . . ]
. (3.34)

When additionally the conditional Hamiltonian is trivial (Hc = β 1 for some number
β ∈ R≥ 0 ), then all waiting times have the same distribution (τ ∼ Exp(β)) and
formula (3.33) reduces again to

ΘB :=

∑︁
s∈B

q∞(Θs |ρ0 ∈ B) τs · Θs

Tr[. . . ]
τs=

1
β

=====
∑︂
s∈B

q∞(Θs |ρ0 ∈ B) Θs.

(3.35)

For the general case we have:

Θ∞(ω |ρ0) = ⟨Θ(ω, t) · 1{ω∈ ⋃︁
B∈B

B eventually }⟩t≥0

=
∑︂
B∈B

1{ω∈B eventually ,Θ0=ρ0} · ⟨⟨Θ(ω, t |ρ0) · 1{ω∈B eventually }⟩t≥0⏞ ⏟⏟ ⏞
ΘB

,

=
∑︂
B∈B

1U(ρ0⇝B)(ω) ·

⎛⎝
∑︁
b∈B

q∞(Θb |ρ0 ∈ B) ⟨τ · ⟨Θs(t)⟩t∈[0,τ ⟩τ∼f(· |Θs)

Tr[. . . ]

⎞⎠
⏞ ⏟⏟ ⏞

ΘB

(3.36)
where

ΘB :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⟨Θtrap(t |ρ0)⟩t≥ 0 , for finitely many
quantum jumps and

∑︁
b∈B

q∞(Θb |ρ0∈B) ⟨τ ·⟨Θs(t)⟩t∈[0,τ ⟩τ∼f(· |Θs)

Tr[... ] , when the number of

jumps is infinite.

(3.37)
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3.6. The transition probabilities of the Markov chain

The set of possible states in the Markov chain was defined in equation (3.17) as

{Θs : s ∈ S} := Ωρ0
=
⋃︂
ω∈U

Ωρ0
(ω).

We choose the initial distribution vector qρ0
to be the first unit vector qρ0

= e1 =

(1, 0, . . . , 0) ∈ R|Ωρ0 |, corresponding to the initial state ρ0 = Θ0 ∈ Ωρ0
, which is the first

element of the set of possible states in the quantum trajectory.
We assume that in all quantum trajectories only finitely many states appear, |Ωρ0

| <∞.
The transition probability P(Θs1 → Θs2) is the probability that the next state in the
quantum trajectory equals Θs2 , provided that the last state was Θs1 . It can be computed
to

P(Θs2 |Θs1) =

∫︂
R≥ 0

p(τ,Θs2 |Θs1)⏞ ⏟⏟ ⏞
f(τ |Θs1 ) · P(Θs2 | τ,Θs1 )

dτ

=

∫︂
R≥ 0

f(τ |Θs1) · P(Θs2 | τ,Θs1)⏞ ⏟⏟ ⏞∑︁
k∈I(s1→s2)

f(k)(τ |Θs1 )

f(τ |Θs1 )

dτ

=
∑︂

k∈I(s1→s2)

∫︂
R≥ 0

f (k)(τ |Θs1) dτ,

(3.38)

where the sum goes over all Lindblad operators Vk that yield a transition from state Θs1

to Θs2 , or more formally: I(s1 → s2) := {k ∈ I : Jk ◦ Ut(Θs1) = Θs2 for some t > 0}.
The following examples illustrate both the states of all possible discrete quantum trajec-
tories as well as the transition probabilities.

3.7. Examples revisited

In this Section we present three examples that illustrate the state transition network Ωρ0

for a specific choice of Hamiltonian and Lindblad operators. We note that Ωρ0
depends

on the initial state ρ0 and certain transition probabilities can vanish for special initial
conditions (e.g. ρ11(0) = 0). The transition network consists of only those states, that
can be reached from ρ0.
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3.7.1. Example with trivial Hamiltonian and two transition operators

We consider a system of dimension N = 2 with a trivial Hamiltonian and two transition
operators as Lindblad operators, that is:

H ∝ 1, V1 =

(︃
0 0
1 0

)︃
, V2 =

(︃
0 1
0 0

)︃
and Λ =

(︃
γ1 0
0 γ2

)︃
. (3.39)

The set of possible states appearing in the Markov chain can be computed to:

Ωρ0
=
{︂
Θs1 =

(︃
ρ11(0) ρ12(0)
ρ21(0) ρ22(0)

)︃
,Θs2 =

(︃
1 0
0 0

)︃
,Θs3 =

(︃
0 0
0 1

)︃}︂
(3.40)

The transition matrix equals

Q =

⎛⎝ 0 0 0
ρ11(0) 0 1
ρ22(0) 1 0

⎞⎠ ,with the ordered states (Θs1 = ρ0,Θs2 ,Θs3) . (3.41)

In this example there are no possible trapping states.
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Θs1 =

(︃
ρ11(0) ρ12(0)
ρ21(0) ρ22(0)

)︃

Θs2 =

(︃
0 0
0 1

)︃
Θs3 =

(︃
1 0
0 0

)︃
ρ11(0) ρ22(0)

qs1→s3 = 1

qs3→s2 = 1

V1

V2

V1 V2

τs2 = 1
γ2

τs3 = 1
γ1

Figure 3.6.: State transition network for a system given by Equation (3.39). Every discrete
quantum trajectory starting at the initial state Θs1 = ρ0 is after one quantum
jump in the minimal absorbing set B = {Θs2 , Θs3}, where it oscillates be-
tween the two states Θs2 (with average waiting time τs2 = 1

γ2
) and Θs3 (with

average waiting time τs3 = 1
γ1

).
For ρ0 =

1
2 12, the three states are linearly dependent.

The stationary state can be computed as follows:

ρ∞(ρ0) =
∑︂
B∈B

P(B |ρ0)
∑︂
s∈B

q∞(s |B) ⟨τ · ⟨Θs(t)⟩t∈[0,τ ]⟩τ ∼ f(· |Θs)

Tr[. . . ]
=

B={B}
===========
B={Θs2 ,Θs2}

∑︂
B∈{B1}

P(B1 |ρ0)⏞ ⏟⏟ ⏞
(ρ11(0)+ρ22(0))=1

1

Tr[. . . ]

2∑︂
i=1

q∞(si |B1)⏞ ⏟⏟ ⏞
1
2

τ si Θsi =

=
1

Tr[. . . ]

[︃
1

2

1

γ1

(︃
1 0
0 0

)︃
+

1

2

1

γ2

(︃
0 0
0 1

)︃]︃
=

1

Tr[. . . ]

(︄
1
γ1

0

0 1
γ2

)︄
.
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3.7.2. Example with trivial Hamiltonian and one projection matrix as Lindblad
operator

We consider a system of dimension N = 2 with a trivial Hamiltonian and a projection
operator for a Lindblad operators, that is:

H ∝ 1, V1 =

(︃
1 0
0 0

)︃
, Λ =

(︃
γ1 0
0 0

)︃
. (3.42)

The set of possible states appearing in the Markov chain can be computed to:

Ωρ0
=

{︃
Θs1 =

(︃
ρ11(0) ρ12(0)
ρ21(0) ρ22(0)

)︃
,Θs2 =

(︃
0 0
0 1

)︃
,Θs3 =

(︃
1 0
0 0

)︃}︃
. (3.43)

In this case, Θs1 = ρ0 is a possible trapping state, since with non-vanishing probability, it
will be the first and only state in the discrete quantum trajectory. The transition matrix

is of the following form: Q =

⎛⎝ 0 0 0
ρ11(0) 1 0
ρ22(0) 0 1

⎞⎠.
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Θs1 =

(︃
ρ11(0) ρ12(0)
ρ21(0) ρ22(0)

)︃

Θs2 =

(︃
1 0
0 0

)︃
Θs3 =

(︃
0 0
0 1

)︃
ρ11(0) ρ22(0)

1 1

Figure 3.7.: State transition network for a systemgiven by Equation (3.42). In the quantum
trajectory, starting at Θs1 = ρ0, the Lindblad operator V1 is either applied
infinitely often (this happens with probability ρ11(0) and results in a constant
trajectory, Θ(t) = Θs2 for all t ≥ t1), or not at all. The latter happens with
probability ρ22(0) and results in the quantum trajectory converging to the
time-averaged state Θ(t)

t→∞−−−→ Θs3 = ⟨Θs1(t)⟩t≥0.

3.7.3. Example of a state transition network with |Ω| = 5 states and a
non-trivial Hamiltonian

We consider the following system with dimension N = 4, where the Hamilton operator
and the two Lindblad operators are given by:
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H =

⎛⎜⎜⎝
E1 0 0 0
0 E1 0 0
0 0 E2 0
0 0 0 E2

⎞⎟⎟⎠ , V1 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 1 0 0
1 0 0 0

⎞⎟⎟⎠ , V2 =

⎛⎜⎜⎝
0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ ,

Λ =

⎛⎜⎜⎝
E1 − iγ1

2 0 0 0

0 E1 − iγ1
2 0 0

0 0 E2 − iγ2
2 0

0 0 0 E2 − iγ2
2

⎞⎟⎟⎠ .

(3.44)

The set of possible states appearing in the Markov consists of the five states

Ωρ0
= {Θs1 = ρ0, Θs2 , Θs3 , Θs4 , Θs5} . (3.45)

with

Θs1 =

⎛⎜⎜⎝
ρ11(0) ρ12(0) ρ13(0) ρ14(0)
ρ21(0) ρ22(0) ρ23(0) ρ24(0)
ρ31(0) ρ32(0) ρ33(0) ρ34(0)
ρ41(0) ρ42(0) ρ43(0) ρ44(0)

⎞⎟⎟⎠

Θs2 =

⎛⎜⎜⎜⎝
0 0 0 0
0 0 0 0

0 0 ρ22(0)
ρ11(0)+ρ22(0)

ρ21(0)
ρ11(0)+ρ22(0)

0 0 ρ12(0)
ρ11(0)+ρ22(0)

ρ11(0)
ρ11(0)+ρ22(0)

⎞⎟⎟⎟⎠ , Θs3 =

⎛⎜⎜⎜⎝
ρ44(0)

ρ33(0)+ρ44(0)
ρ43(0)

ρ33(0)+ρ44(0)
0 0

ρ34(0)
ρ33(0)+ρ44(0)

ρ33(0)
ρ33(0)+ρ44(0)

0 0

0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠

Θs4 =

⎛⎜⎜⎜⎝
ρ11(0)

ρ11(0)+ρ22(0)
ρ12(0)

ρ11(0)+ρ22(0)
0 0

ρ21(0)
ρ11(0)+ρ22(0)

ρ22(0)
ρ11(0)+ρ22(0)

0 0

0 0 0 0
0 0 0 0

⎞⎟⎟⎟⎠ , Θs5 =

⎛⎜⎜⎜⎝
0 0 0 0
0 0 0 0

0 0 ρ33(0)
ρ33(0)+ρ44(0)

ρ34(0)
ρ33(0)+ρ44(0)

0 0 ρ43(0)
ρ33(0)+ρ44(0)

ρ44(0)
ρ33(0)+ρ44(0)

⎞⎟⎟⎟⎠ ,

and the transition probabilities
qs1→s2 = ρ11(0) + ρ22(0)

qs1→s3 = ρ33(0) + ρ44(0)
(3.46)
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Θs1 = ρ0

Θs2 Θs3Θs4 Θs5

τ s4 τ s2 τ s5τ s3

qs1→s2 qs1→s3

qs2→s4 = 1

qs4→s2 = 1

qs3→s5 = 1

qs5→s3 = 1V1

V2

V1

V2

V1

V2

Figure 3.8.: State transition network for a system of dimension N = 4, where the Hamil-
tonian and Lindblad operators are given by Equation (3.44). Starting with
the initial state ρ0, the second state in the discrete quantum trajectory is
either Θs2 or Θs3 , which determines its future evolution: Either we have an
oscillation between the states Θs2 and Θs4 in the minimal absorbing set
B1 = {Θs2 , Θs4}, or an oscillation between the states Θs3 and Θs5 in the
minimal absorbing set B2 = {Θs3 , Θs5}.

ρ∞(ρ0) =
∑︂
B∈B

P(B |ρ0)
∑︂
s∈B

q∞(Θs |B) ⟨τ · ⟨Θs(t)⟩t∈[0,τ ]⟩τ ∼ f(· |Θs)

Tr[. . . ]

(∗)
=== P(B1 |ρ0)⏞ ⏟⏟ ⏞

qs1→s2

∑︁
i∈{2, 4}

1
2⏟ ⏞⏞ ⏟

q∞(Θsi |B1) τ si Θsi

Tr[. . . ]

+ P(B2 |ρ0)⏞ ⏟⏟ ⏞
qs1→s3

∑︁
i∈{3, 5}

1
2⏟ ⏞⏞ ⏟

q∞(Θsi |B2) τ si Θsi

Tr[. . . ]

=

⎛⎜⎜⎜⎜⎝
γ2(ρ11(0)+ρ44(0))

γ1+γ2

γ2(ρ12(0)+ρ43(0))
γ1+γ2

0 0
γ2(ρ21(0)+ρ34(0))

γ1+γ2

γ2(ρ22(0)+ρ33(0))
γ1+γ2

0 0

0 0 γ1(ρ22(0)+ρ33(0))
γ1+γ2

γ1(ρ21(0)+ρ34(0))
γ1+γ2

0 0 γ1(ρ12(0)+ρ43(0))
γ1+γ2

γ1(ρ11(0)+ρ44(0))
γ1+γ2

⎞⎟⎟⎟⎟⎠ ,

where we used in step (*) that B = {B1, B2} = {{Θs2 , Θs4}, {Θs3 , Θs5}.
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3.7.4. Recovering the classical case

It is possible to recover the ‘classical’ master equation as the diagonal of a special Lindblad
equation, when we choose the Lindblad operators

Vmn
m̸=n
===== |n⟩ ⟨m| , with rate γm→n ≥ 0 and

Vmm = |m⟩ ⟨m| , with rate γm > 0
(3.47)

as the set of all transition operators |n⟩ ⟨m|, from state |m⟩ to state |n⟩ as well as all
the projection operators |m⟩ ⟨m| for all m,n ∈ {1, . . . , N}, where the dimension of the
Lindblad equation must be chosen to coincide with that of the master equation, N := |Ω|.
There are two ways, to see this:

The right-hand side of the differential equation

When computing the right-hand side of the Lindblad equation componentwise for the
Lindblad operators given above, we obtain the master equation for the diagonal terms,
while the off-diagonal terms decay exponentially to zero:

ρ̇i i =

N∑︂
m=1

ρmm γm→i − ρii γi→m

ρ̇i j
i ̸=j
==== −1

2

(︄
N∑︂
n=1

γi→n + γj→n

)︄
ρi j

≤ −γi→i + γj→j

2
ρi j .

(3.48)

Without introducing the projection operators |m⟩ ⟨m|, the off-diagonal elements need not
vanish.

The state transition network

An alternative way to see this is to compute the state transition network. The set of
possible states is given by |n⟩⟨m|Uτ (Θ)|m⟩⟨n|

Tr[... ] = |n⟩ ⟨n|.
The transition probabilities can be computed to
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P
(︂
Θ(tk+1) = |n⟩ ⟨n|

⃓⃓⃓
Θ(tk) = |m⟩ ⟨m|

)︂
=

∫︂ ∞

0
d τ γm→n Tr

[︁
|n⟩ ⟨m| Uτ (|m⟩ ⟨m|)⏞ ⏟⏟ ⏞

e−t γm→/2 |m⟩⟨m| e−t γm→/2

|m⟩ ⟨n|
]︁

=

∫︂ ∞

0
d τ e−t γm→ γm→n

=
γm→n

γm→

∫︂ ∞

0
d τ γm→ e−t γm→⏞ ⏟⏟ ⏞

1

,

(3.49)

which is precisely the transition probability of the associated, embedded discrete-time
Markov chain (compare lemma 17) with the waiting time distribution

f
(︂
t |Θ = |l⟩ ⟨l|

)︂
=

N∑︂
m,n=1

γm→n Tr
[︁
|n⟩ ⟨m| e−t γl→ |l⟩⏞ ⏟⏟ ⏞

e−t γl→ δl,m

⟨l| |m⟩ ⟨n|
]︁
= γl→ e−t γl→

and the average waiting time

τl =
1

γl→
.

(3.50)

3.8. Evaluating the stationary state ΘB of the Lindbladian for the
minimal absorbing set B

We now evaluate the stationary states ΘB occurring in Equation (3.37).
We write the conditional Hamiltonian Hc (see Equation (1.3)) as a direct sum of Jordan
blocks

Hc =

M⨁︂
m=1

Jm =

⎛⎜⎝J1 . . .
JM

⎞⎟⎠ , with

Jm =

⎛⎜⎜⎜⎝
δm 1

. . . . . .
δm 1

δm

⎞⎟⎟⎟⎠ ∈ Csm×sm

(3.51)
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being a Jordan block of size sm ∈ N and
M∑︁
m=1

sm = N .

We discuss separately the two cases of a finite and an infinite number of quantum jumps.

3.8.1. Infinitely many quantum jumps

When the quantum trajectory contains infinitely many quantum jumps, we need to
evaluate the expression ⟨τ · ⟨Θs(t)⟩t∈[0,τ ]⟩τ∼f(· |Θs) defined in Equation (3.32).
If Θs is not a possible trapping state, we can compute the (conditional) time evolution
operator e−iHc t (for details see appendix B.2) and get

⟨τ ·⟨Θs(t)⟩t∈[0,τ ]⟩τ∼f(· |Θs) =

∫︂ ∞

0
f(τ |Θs)⏞ ⏟⏟ ⏞

− d
dτ Tr[Uτ (Θs)]

τ · ⟨Θ(t)⟩t∈[0,τ ]⏞ ⏟⏟ ⏞∫︁ τ
0

Ut(Θs)
Tr[... ] d t

dτ =

partial
========
integration

−Tr[Uτ (Θs)] ·
∫︂ τ

0

Ut(Θs)

Tr[. . . ]
d t
⃓⃓⃓τ=∞

τ=0
+

∫︂ ∞

0
Tr[Uτ (Θs)]

Uτ (Θs)

Tr[Uτ (Θs)]
dτ =

= − lim
τ→∞

Tr[Uτ (Θs)] ·
∫︂ τ

0

Ut(Θs)

Tr[. . . ]
d t⏞ ⏟⏟ ⏞

0

+

∫︂ ∞

0
Uτ (Θs) dτ =

B.2
====

∫︂ ∞

0
Uτ (Θs) dτ

Def Uτ (·)
=======

∫︂ ∞

0
e−iHc τ Θs (e−iHc τ )† d τ =

=

∫︂ ∞

0

⎛⎜⎝e−i J1 τ 0
. . .

0 e−i JM τ

⎞⎟⎠
⎛⎜⎜⎝

Θ̂
(1,1)

. . . Θ̂
(1,M)

...
...

Θ̂
(M,1)

. . . Θ̂
(M,M)

⎞⎟⎟⎠
⎛⎜⎝ei JT

1 τ 0
. . .

0 ei JT
M τ

⎞⎟⎠
⏞ ⏟⏟ ⏞⎛⎜⎜⎜⎜⎜⎝

e−i J1 τ Θ̂(1,1) ei JT
1 τ . . . e−i J1 τ Θ̂(1,M) ei JT

M τ

...
...

e−i JM τ Θ̂
(M,1) ei JT

1 τ . . . e−i JM τ Θ̂
(M,M) ei JT

M τ

⎞⎟⎟⎟⎟⎟⎠

d τ =

=

⎛⎜⎜⎝
∫︁∞
0 e−i J1 τ Θ̂(1,1) ei JT

1 τ dτ . . .
∫︁∞
0 e−i J1 τ Θ̂(1,M) ei JT

M τ dτ
...

...∫︁∞
0 e−i JM τ Θ̂

(M,1) ei JT
1 τ dτ . . .

∫︁∞
0 e−i JM τ Θ̂

(M,M) ei JT
Y τ dτ

⎞⎟⎟⎠ .

(3.52)
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For the component
(︂∑︁m−1

µ=1 sµ + j,
∑︁n−1

ν=1 sν + k
)︂
, we get with δx = Rx + i Ix:

(︂
⟨τ · ⟨Θs(t)⟩t∈[0,τ ⟩τ∼f(· |Θs)

)︂(︂∑︁m−1
µ=1 sµ+j,

∑︁n−1
ν=1 sν+k

)︂ =

(︃∫︂ ∞

0
e−i Jm τ Θ̂

(m,n) ei JT
n τ dτ

)︃
j k

(∗)
===

⎧⎪⎨⎪⎩
∑︁sm

α=j

∑︁sn
β=k

(︄
α− j + β − k

α− j

)︄
(−1)α−j+β−k (Θ̂

(m,n)
)jk

[i (Rn−Rm)+In+Im]α−j+β−k , if In ̸= 0 ̸= Im

0 , else.
(3.53)

In step (*) in the last line we used the fact that since Θs is not a possible trapping state,
a diagonal block of Θs must vanish whenever the corresponding eigenvalue of Λ vanishes(︂
λm = 0 =⇒ Θ̂

(m,m)
s = 0sm×sm

)︂
, see appendix B.2, and an inequality that is valid for

all density matrices: |(Θs)jk| ≤ (Θs)jj · (Θs)kk.
An important special case is when both Jordan blocks are of size one, that is sm = 1 = sn.
In that case we have

⎛⎝∫︂ ∞

0
e−i Jm t⏞ ⏟⏟ ⏞
e−i δm t

Θ̂
(m,n) ei JT

n t⏞ ⏟⏟ ⏞
ei δ∗n t

d t

⎞⎠
11

=

⎧⎪⎨⎪⎩
(︂
Θ̂

(m,n)
)︂

11
[i (Rn−Rm)+In+Im] , if In ̸= 0 ̸= Im

0 , else.
(3.54)

When the conditional Hamiltonian Hc is diagonalizable, then all Jordan blocks are of size
one, the block matrices Θ̂

(m,n) ∈ C are scalars, and expression (3.53) becomes:

(︂
⟨τ · ⟨Θs(t)⟩t∈[0,τ ]⟩τ∼f(· |Θs)

)︂
mn

=

(︂
Θ̂

(m,n)
)︂
11

i (δ∗n − δm)
=

{︄
(Θs)mn

[i (Rn−Rm)+In+Im] , if In ̸= 0 ̸= Im

0 , else.
(3.55)

3.8.2. Finitely many quantum jumps

When the number of jumps is finite, we have to evaluate ΘB =
⟨︂
Ut(Θtrap)

Tr[... ]

⟩︂
t≥0

, with Θtrap

being a possible trapping state.
By definition of a possible trapping state, we know that Tr[Ut(Θtrap)] converges to a
positive value: Tr[Ut(Θtrap)]

t→∞−−−→ q ∈ (0, 1]. Then we have
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(︂
Ut(Θtrap)

)︂(︂
m−1∑︁
µ=1

sµ+j,
n−1∑︁
ν=1

sν+k

)︂
Tr[Ut(Θtrap)]

=

sm∑︁
α=j

sn∑︁
β=k

ei (Rn−Rm) t e(In+Im) t t(α−j)

(α−j)!
t(β−k)

(β−k)!

(︂
Θ̂

(m,n)
)︂
α,β

Tr[Ut(Θtrap)]⏞ ⏟⏟ ⏞
t→∞−−−→q

t→∞−−−−−−−−−−→
if In<0 or Im<0

0

(3.56)
and

lim
T→∞

1

T

∫︂ T

0
ei∆E t d t =

{︄
1 , if ∆E = 0

lim
T→∞

ei∆E T−1
i∆E T = 0 , else

}︄
= δ∆E,0. (3.57)

When we combine the equations (3.56) and (3.57), we get

lim
T→∞

1

T

∫︂ T

0

(︃
Ut(Θtrap)

Tr[. . . ]

)︃(︂
m−1∑︁
µ=1

sµ+j,
n−1∑︁
ν=1

sν+k

)︂ d t

= δIn,0 δIm,0 δRn,Rm ·
(Θ(m,n))j, k∑︁

µ∈{1,...,M : Iµ=0}
(Θm,n)µ,µ

.

(3.58)

3.9. The stationary solution of the Lindblad equation and
differences to the classical case

Now that we have obtained all building blocks for the stationary solution, let us put them
together. Our starting point was the quantum jump unravelling (Section 3.2) and the fact
that the time and ensemble average can be interchanged (Section B.1) due to the fact
that the time average of a single trajectory exists. We assumed that the set of density
matrices that occur immediately after quantum jumps is finite (|Ωρ0

| < ∞), so that a
stationary solution of the corresponding Markov chain always exists. We evaluated the
time average ΘB := ⟨Θ(t, ω |ρ0)⟩t≥0) of a single trajectory ω ∈ U (see Equation (3.37)),
and we showed in Section 3.5 that it only depends on the minimal absorbing set B ⊆ Ωρ0

the quantum trajectory is eventually captured in. We therefore separated the integral
over the different unravellings into a sum over the minimal absorbing sets in the network,
where the integrand ΘB is constant over the set U(B) of quantum trajectories that all land
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in the associated minimal absorbing set B ⊆ Ωρ0
. Formally, this leads to the following

steps for obtaining the formula for the stationary density matrix ρ∞(ρ0), depending on
the initial state ρ0:

ρ∞(ρ0) = ⟨ ρ(t |ρ0)⏞ ⏟⏟ ⏞
⟨Θ(ω,t |ρ0)⟩ω∈U

⟩t≥0

= ⟨⟨Θ(ω, t |ρ0)⟩ω∈U ⟩t≥0 = ⟨⟨Θ(ω, t |ρ0)⟩t≥0⏞ ⏟⏟ ⏞
Θ∞(ω |ρ0)

⟩ω∈U

=

∫︂
U(ρ0⇝)

Θ∞(ω |ρ0)⏞ ⏟⏟ ⏞∑︁
B∈B

1U(ρ0⇝B)(ω) ·ΘB

dP(ω |ρ0)

=
∑︂
B∈B

ΘB

∫︂
U(ρ0⇝B)

dP(ω |ρ0)⏞ ⏟⏟ ⏞
P(ρ0⇝B)

=
∑︂
B∈B

P(ρ0 ⇝ B) ΘB.

(3.59)

This expression for stationary solutions of quantum master equations has structural
similarities to the stationary solution for classical master equations, given in equation
(3.25). Both expressions can be decomposed as sums over all minimal absorbing sets of
the state transition network, where each summand is the probability P

(︂
p0
ρ0
⇝ B

)︂
of a

single trajectory to land in this minimal absorbing set (which again depends on the initial
condition) times the stationary solution within such a minimal absorbing set.
There are also differences between the classical master equation and the quantum master
equation. The states are represented by unit vectors es in the classical case an density
matrices Θs in the quantum case. While a single trajectory of a jump unravelling is
constant between two jumps for classical master equations, its time evolution is governed
by the conditional Hamiltonian for the Lindblad equation (compare figure 3.4). Moreover
the stationary solution of the classical master equation is always limiting, which is not
necessarily the case for Lindblad equation. The most important difference however, is the
fact, that different states of the classical Master equation are linearly independent (even
orthogonal), which need not be the case of Lindblad equations (consider example 3.7.1,
with ρ0 =

1
2 1).
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4. Conclusion and discussion

In this chapter, we summarize our results and give an outlook what future work could
look like.

4.1. Summary

In Section 2 we computed an analytical expression for the stationary solutions of Markov
chains. The most striking difference between continuous-time Markov chains and discrete-
time Markov chains is that while discrete-time Markov chains admit stationary solutions
(corresponding to normalized eigenvector of Q to the eigenvalue λ = 1), they need
not have a limiting distribution (compare Figure 2.1), in contrast to continuous-time
Markov chains. The algebraic reason for this is the fact that, every non-zero eigenvalue
of continuous-time Markov chains has strictly negative real part (λ ̸= 0 ⇒ Re [λ] < 0)
(compare Propositions 1), while discrete-time Markov chains can have eigenvalues with
λ ̸= 1 = |λ|, where the corresponding eigenvectors could lead to oscillating behavior.
Another reason based on the topology of the state transition network, is the periodicity
of the network, where the period of a state i ∈ Ω is defined as

period (i) := gcd (n ∈ N : (Qn)i i > 0) , (4.1)

where gcd denotes the greatest common divisor.
Note that the period is a class property, meaning that all states in the same strongly
connected component have the same period [Bré20; Pri13]. It is possible to define a
discrete-time Markov chain for a given continuous-time Markov chain, such that the
stationary solution is also attracting, by adding self-loops at every state, while choosing
the transition probability between different states to be proportional the corresponding
transition rates (see Section A.11 in the appendix for details).
Let us summarize our method as follows: While it is (at least in principle) possible to
write down the solution operator etΓ and compute the limit, finding algebraic solutions for
these eigenvalues is not possible for dimensions larger than four [Wüs13]. This is known
as the Abel - Ruffini theorem. However, the minimal amount of information needed, is
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not the precise value of the eigenvalue, but only the fact that all non-zero eigenvalues have
negative real part and are thus declining to zero (compare proposition (1) and following
discussion).
When we look at the structure of the transition network and ask where the probability
will eventually flow, it leads to the definition of minimal absorbing sets, which can be
shown to be strongly connected (see definition 6). This allows us to write the generator Γ
in the form of Equation (2.32), where all transient states and minimal absorbing sets are
clustered.
The search for a sufficient criterion for the uniqueness of the stationary solution (in
which case the network is called relaxing) leads to the positivity of the solution operator
(Section 2.3.3), which is guaranteed if the network is strongly connected (Theorem 13).
Combining this with the structure of the generator matrix Γ, this leads to the observation
that the number of (linearly independent) stationary solutions equals the number of
minimal absorbing sets and that for each minimal absorbing set, we can construct a
stationary solution, whose non-zero components correspond to the states within this
minimal absorbing set (theorem 14).
This leads to the following formula for the stationary solution, which can be interpreted
as a variation of Bayes’s theorem:

p∞(p0) =
∑︂
B∈B

P(p0 ⇝ B)⏞ ⏟⏟ ⏞
P(p0 |B)

p∞(p0 ∈ B).
(4.2)

The i-th entry of the stationary solution p∞(p0 ∈ B) corresponding to the minimal
absorbing set B ∈ B is proportional to the sum of all weights of in-trees rooted at state i
if i ∈ B (see Section 2.5.1), while the probability P(p0 ⇝ B) for reaching this minimal
absorbing set is the sum over all possible paths in the state transition network of the
embedded discrete-time Markov chain (see Section 2.5.2).
Section 2.6 provides a physical explanation for the dynamical behavior of the classical
master equation for a strongly connected system: As long as the stationary solution
p∞(p0) is not reached (which is never the case for a finite time if the initial condition was
not already stationary), the entropy of the system increases, as shown in Equation (2.109).
When a stationary solution additionally satisfies the detailed balance condition (see
definition 19), it is invariant under time reversal, meaning that at the stationary solution
there is no net circular flow (compare Kolmogorov’s criterion in theorem 2.6).
In Chapter 3 we start with a derivation of the Lindblad equation for finite dimensions:
Starting with the unitary time evolution of system and bath and tracing over the subspace
spanning the bath, results in the Kraus operator representation, whose generator can be
shown to be of the Lindblad form (see Section 3.1. This theorem has first been proved
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by Gorini, Kossakowski, and Sudarshan [BP02] for finite dimensions, with Lindblad
extending the proof for bounded operators. The question, of whether an analog generator
for unbounded operators must also be of the Lindblad form is still open (date 2022).
Since the computational complexity of the solution scales quadratically with the dimension
of the system, analytical solutions of larger systems are practically unfeasible (this has
been referred to as the ‘curse of dimensionality’ [Lid19] ). One way to tackle this problem
is via unravellings, which are stochastic trajectories, whose ensemble average must equal
the solution at a given time. This is usually done in terms of ket-state unravellings, in
order to reduce complexity.
In order to avoid having to check that different decompositions∑︂

i

pi Pψi(0) = ρ0 =
∑︂
i

p′i Pψ′
i(0)

lead to the same density matrix in time∑︂
i

pi Pψi(t) = ρ(t |ρ0) =
∑︂
i

p′i Pψ′
i(t)
,

we use density matrices as quantum states and the so-called quantum state unravelling ,
which is what Davies called a piecewise-deterministic process [Dav84].
The stationary solution of the Lindblad equation is given by its time average and we use
the fact that Kümmerer and Maassen showed that the time average of a single trajectory
exists and one can exchange the time- with the ensemble average (compare [KM04]).
When the number of quantum states directly after the quantum jump is finite, the
so-called discrete quantum trajectory defines a classical, discrete-time Markov chain with
transition probabilities and minimal absorbing sets, whose stationary probabilities are
given in the previous chapter. Moreover, it is possible to find an expression for the time
average between two jumps using the Jordan normal form of matrices.
In conclusion, we can say that analytical expressions for the stationary solutions of
classical Markov chains on a finite state space exist and have an intuitive picture in the
corresponding state transition network.
Stationary solutions of the Lindblad equation can be obtained from the quantum jump
unravelling, by exchanging time- and ensemble average and interpreting the quantum
states directly after a quantum jump as a Markov chain. In case that the number of
these quantum states is finite (which is in particularly guaranteed, when the action of the
conditional Hamiltonian on these states is trivial), an explicit expression of the steady
state can be computed, using the stationary probabilities of the classical case.
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4.2. Outlook

In this Section we want to look ahead and see what future research in this area could
look like.
For almost all cases throughout this thesis, we restricted ourselves to the case of a finite
system, |Ω| <∞. The reason why we made this additional assumption is that for finite
systems we can work with matrices and use theorems like the one of Perron-Frobenius
[Per07; Fro+12] or Gershgorin [Ger31], for which there is no analog for the infinite
dimensional case. What is more, having an infinite index set, one has to clarify the
space on which this operator is well defined, that is, satisfying the semi-group property.
However, given the very specific structure of the set of differential equations, one can
be confident that these problems could be overcome, at least in the most common cases
[GL05].
There are some limit cases where the solution coming from mathematics would surely
coincide with the physical intuition. An example would be an infinite dimensional system
Ω∞, for which there exists a finite sub-system, Ω<∞ ⫋ Ω∞, where all the probability
mass is contained in. A slightly more general case would be if for all ϵ > 0 there existed a
finite sub-system Ωϵ ⫋ Ω∞, such that the probability mass in Ωϵ is at least (1− ϵ) for all
times .
On the other hand, a system like the one depicted in Figure 4.1, where the probability mass
is just ‘flowing towards infinity’ will surely not have a limiting probability distribution.

1 2 3 . . .
γ1→2 γ2→3 γ3→...

Figure 4.1.: Example of a transition network for a continuous-time Markov chain with an
infinite state space: Since the probability pi(t) for every state converges to
zero, there can be no limiting distribution.

There is slightly more material to be found in the literature concerning infinite, discrete-
time Markov chains. In this case, an irreducible, recurrent and aperiodic Markov chain is
not sufficient to ensure the existence of a limiting distribution - a counterexample would
be the symmetric random walk on Z [Bré20; Pri13; Dou+18]. The reason for this is, that
while a single trajectory starting at the origin will almost surely reach the origin again,
it will take an infinite amount of time to do so. This phenomena is also known as the
‘gambler’s ruin’ as this indicates that even a fair game (throwing a fair dice and winning
or loosing a coin, depending on the outcome) could lead to ruin of the gambler, when the
game is played for only a finite time. A Markov chain with this characteristic is called
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null recurrent [Bré20; Dou+18; Pri13]. However, when having a finite expectation value
of the return time (which is called positive recurrent) rules this out and guarantees the
existence of a limiting distribution.
Analytical expressions for classical Markov chains on an infinite state space are also
crucial for a possible generalization of our result for quantum master equations, where
the assumptions of a finite state space is needed (compare Section B.3).
One has to admit that this assumption is a highly non-generic case, in particular, when
the conditional Hamiltonian acts non-trivially on the quantum states, which will then
depend on the continuous parameter of the waiting time, resulting (in general) in a state
space that is uncountably infinite.
However, it is possible to weaken this assumption a little bit. If trajectories were (even for
an infinite state space) eventually captured by some minimal absorbing set, it would most
likely suffice if the conditional Hamiltonian were to act trivially only for all the quantum
states that lie within some minimal absorbing sets (compare the example in Section B.4).
Another way to generalize this, would be to allow an infinite state space, but requiring
that the number of cluster point for every possible unravelling must be finite. Then
one were in a position to divide every member of the discrete quantum trajectory into
a finite partition of subsequences converging to different limits, where every member of
the discrete quantum trajectory belongs to exactly one subsequence. However, this too
would not cover the general case, since even a sequence consisting of only a countably
infinite number of terms, may have uncountably many cluster points, as can be seen from
a rotation by an angle that is no rational multiple of 2π.
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A. Appendix A: Master equation

A.1. Properties of the transition matrix of a discrete-time - and
the solution of a continuous-time Markov chain

Lemma 25 (Eigenvalues of the transition matrix).

The number 1 is an eigenvalue of the transition matrix Q for a discrete-time Markov
chain with a finite state space, while all eigenvalues have a modulus less or equal to one

Proof. With 1 := (1, . . . , 1)T we have

1T Q =

⎛⎜⎜⎜⎜⎝
|Ω|∑︂
i=1

Qi,1⏞ ⏟⏟ ⏞
1

, . . . ,

|Ω|∑︂
i=1

Qi,|Ω|⏞ ⏟⏟ ⏞
1

⎞⎟⎟⎟⎟⎠ = 1T , (A.1)

so QT 1 = 1 ·1. This means that 1 is an eigenvalue of both QT and (since det(QT −1 1) =
det
(︁
(Q− 1 1)T

)︁
= det(Q− 1 1)) as well as Q.

Let λM be one of the (possible multiple) eigenvalues of Q with the largest absolute value,
corresponding the the eigenvector v, which we can assume has the one-norm of one. Then
we have:

|λM | = |λM | ∥v∥1⏞⏟⏟⏞
1

= ∥ λM v⏞ ⏟⏟ ⏞
Qv

∥ ≤ ∥Q∥1⏞ ⏟⏟ ⏞
1

∥v∥1⏞⏟⏟⏞
1

= 1.
(A.2)

Lemma 26 (Properties of the solution function ).

When p0 is a probability vector, then the solution of the master equation p(t |p0) := eΓ t p0

is also a probability vector for all times t ≥ 0.
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Proof.
When for some state i ∈ {1, . . . , |Ω|} and some time t ≥ 0, the probability p(i)(t) of being
in that state at that time equals one (zero), then the time derivative d

dtp
(i)(t) of that

probability is negative (positive), that is

p(i)(t) = 1 =⇒ d

dt
p(i)(t)

(2.21)
=====

|Ω|∑︂
j=1
j ̸=i

(︁
p(j)(t)⏞ ⏟⏟ ⏞

0

γj→i − p(i)(t)⏞ ⏟⏟ ⏞
1

γi→j

)︁

= −
|Ω|∑︂
j=1

γi→j ≤ 0

p(i)(t) = 0 =⇒ d

dt
p(i)(t)

(2.21)
=====

|Ω|∑︂
j=1
j ̸=i

(︁
p(j)(t) γj→i − p(i)(t)⏞ ⏟⏟ ⏞

0

γi→j

)︁

=

|Ω|∑︂
j=1

p(j)(t) γj→i ≥ 0.

(A.3)

This means, that the solution p(t |p0) will always have non-negative entries. In order to
show that it is also a probability vector, we notice that the time derivative of the sum of
all its components vanishes:

d

dt

⎛⎝ |Ω|∑︂
i=1

p(i)(t)

⎞⎠ =

|Ω|∑︂
i=1

(︃
d

dt
p(i)(t)

)︃
(2.21)
======

|Ω|∑︂
i,j=1
i̸=j

(︁
p(j)(t) γj→i − p(i)(t) γi→j

)︁
= 0.

(A.4)
This means, that the sum of the components of the solution p(t |p0) is constant with

time, so
|Ω|∑︁
i=1

p(i)(t) =
|Ω|∑︁
i=1

p(i)(t = 0) = 1.

A.2. Gershgorin circle theorem

Lemma 27 (Gershgorin circle theorem and consequences for the eigenvalues of Γ).

Let B(z, r) := {x ∈ C : |z − x| ≤ r} denote the closed ball around the complex number z
with radius r > 0. For a N ×N complex matrix (N ∈ N), the spectrum σ(A) of A (that
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is the set of all eigenvalues of A) lies within the union of all Gershgorin circles:

σ(A) ⊆
N⋃︂
i=1

B

⎛⎜⎝Aii, N∑︂
j=1,
j ̸=i

|Aji|

⎞⎟⎠
Proof. Let v be an eigenvector of the matrix A ∈ CN×N to the eigenvalue λ, that is
Av = λv. We can choose that for some component i ∈ {1, . . . , N} the corresponding
entry in the eigenvector equals one, vi = 1, and for all other components j ∈ {1, . . . , N}
we have |vj | ≤ 1. Now we make the following estimation:

λ =λ vi⏞⏟⏟⏞
1

= (λv)i = (Av)i =

N∑︂
j=1,
j ̸=i

Aij vj +Aii vi⏞⏟⏟⏞
1

=⇒ |λ−Aii| =

⃓⃓⃓⃓
⃓⃓⃓ N∑︂
j=1,
j ̸=i

Aij vj

⃓⃓⃓⃓
⃓⃓⃓ ≤ N∑︂

j=1,
j ̸=i

|Aij | · |vj |⏞⏟⏟⏞
≤1

≤
N∑︂

j=1,
j ̸=i

|Aij |

When we apply the Gershgorin circle theorem to the generator matrix Γ, we get the
following result:
Γ has only eigenvalues with a non-positive real part

(︂
Re (σ(Γ)) ⊆ R≤0

)︂
and λ = 0 is the

only eigenvalue of Γ where the real part equals zero
(︂
σ(Γ) ∩ (iR) = {0}

)︂
.

This follows directly from figure A.1 and the fact that −Γii =
N∑︁

j=1,
j ̸=i

|Γji| for all i ∈

{1, . . . , N}: The origin is the only point in the intersection of the Gershgorin circle and
the half-space {z ∈ C |Re(z) ≥ 0}.

107



0

Im(·)

Re(·)
Gershgorin circle

Γii

−Γii

Figure A.1.: The union of all Gershgorin circles containing all eigenvalues of Γ.
Hence Re(σ(Γ)) ⊆ R≤0 and σ(Γ) ∩ (iR) = {0}.

A.3. Properties of the generator matrix of the master equation

Lemma 28 (Proof of various facts about the generator matrix Γ, listed in Proposition 1).

i) The number zero is an eigenvalue of the generator Γ.

ii) All eigenvalues of the generator matrix Γ apart from zero have strictly negative real
part, that is Re [σ(Γ)\{0}] ⊂ R< 0.

iii) The geometric multiplicity for the eigenvalue λ = 0 agrees with the algebraic
multiplicity, that is gλ=0 = aλ=0.

108



iv) Every stationary solution of the master equation lies in the kernel of the generator
matrix and vice versa.

v) The column sum of every matrix power of the generator equals zero

(︄
|Ω|∑︁
i=1

(Γn)ij = 0

)︄
,

while the column sum of the solution operator equals one

(︄
|Ω|∑︁
i=1

(eΓ t)ij = 1

)︄
for all

j ∈ {1, . . . , |Ω|}.

Proof.

i) Since sum of all columns of Γ is zero

(︄
|Ω|∑︁
i=1

Γij = 0 for all j ∈ {1, . . . , |Ω|}

)︄
, the

column vectors must be linearly independent and hence Γ can not be invertible, so
λ = 0 must be an eigenvalue. Another way to see this, is to compute

(1, . . . , 1⏞ ⏟⏟ ⏞
|Ω| times

) · Γ = (0, . . . , 0⏞ ⏟⏟ ⏞
|Ω| times

) = 0 · (1, . . . , 1⏞ ⏟⏟ ⏞
|Ω| times

),

which means that (1, . . . , 1⏞ ⏟⏟ ⏞
|Ω| times

)T is an eigenvector of ΓT (and hence also of Γ) to the

eigenvalue λ = 0.

ii) This follows directly from Gershgorin’s circle theorem (see Section 27 in the appendix)
.

iii) Let hλ,m ∈ kern (Γ− λ 1)m\kern (Γ− λ 1)m−1 be a generalized eigenvector of the
generator of the transition matrix Γ of rank m ∈ N to the eigenvalue λ. The action
of the time evolution operator eΓ t on this vector is given by

eΓ t hλ,m = eλ t
m−1∑︂
k=0

tk

k!
hλ,m−k , (A.5)

where we used the Jordan normal form of the generator Γ (see [HJ12] for details).

For non-zero eigenvalues λ ̸= 0, this tends to zero since Re[λ] < 0.

For λ = 0, we must have m = 1 since the solution of the master Equation (2.21)
is bounded. If we had m ≥ 2, then for any initial state p0 ∈ (R> 0)

|Ω| with strictly
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positive entries we could choose a small number ϵ > 0 and a normalization constant
N > 0 such that p0+ϵhλ=0,m=2

N is a probability vector. The time evolution of this
modified initial state would be

eΓ t
(︃
p0 + ϵhλ=0,m=2

N

)︃
=

eΓ t p0

N⏞ ⏟⏟ ⏞
∈
(︁
R≥ 0

)︁|Ω|

+
ϵ

N
(hλ=0,m=2 + thλ=0,m=1) ,

(A.6)

which is unbounded, in contradiction to the fact that the solution of the master
equation remains a probability vector for all times (see lemma 26 in the appendix).

A proof that uses no other properties other than the structure of the generator
matrix is given in lemma 44.

This means, that for the eigenvalue λ = 0 we only have ‘normal eigenvectors’ of
rank m = 1: h

(i)
λ=0,m=1 = v

(i)
λ=0 for i ∈ {1, . . . , gλ=0}.

iv) When p ∈ kern (Γ), then eΓ t p =

(︄
1 +

∑︁
n≥1

(Γ t)n

n!

)︄
p = p, so p is stationary. When

on the other hand, p is stationary, that is eΓ t p = p for all times t ≥ 0, we have
Γp = lim

t→0+
eΓ t−1
t p = 0, so p lies in the kernel of Γ.

v) This is proven by induction over the matrix power n ∈ N≥ 1. For n = 1 this follows
from the definition of the generator matrix Γ. For the induction step, we have:

|Ω|∑︂
i=1

(Γn+1)ij⏞ ⏟⏟ ⏞
|Ω|∑︁
k=1

(Γn)ik Γkj

=

|Ω|∑︂
k=1

Γkj

|Ω|∑︂
i=1

(Γn)ik⏞ ⏟⏟ ⏞
0

= 0,
(A.7)

while for the solution operator we use its representation as a power series

|Ω|∑︂
i=1

(eΓ t)ij⏞ ⏟⏟ ⏞∑︁
n∈N0

(Γ t)n

n!

=
∑︂
n∈N0

tn

n!

|Ω|∑︂
i=1

(Γn)ij⏞ ⏟⏟ ⏞
δn,0

= 1.
(A.8)
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A.4. Weakly chained diagonal dominant (WCDD) matrices

Lemma 29 (WCDD matrices are non-singular).

Proof. The fact that SDD matrices are non-singular follows from Gershgorin’s circle
theorem [HW06] (for a proof, see Section 27 in the Appendix).
Now let A ∈ CN×N be WCDD and assume that A is singular. Then A as well as AT

has an eigenvalue λ = 0 and a corresponding eigenvector x ∈ kern(AT − 0 · 1), w.l.o.g.
assume that there is an i ∈ {1, . . . , N} such that 1 = |xi| ≥ |xk| ∀k ∈ {1, . . . , N}, k ̸= i.
Then we have

0 = (AT x)i =

N∑︂
k=1,
k ̸=i

(AT )ik⏞ ⏟⏟ ⏞
Aki

xk +Aii xi =⇒ −Aii xi =
N∑︂

k=1,
k ̸=i

Aki xk (A.9)

=⇒ |Aii| = | −Aii xi |
(A.9)
=

⃓⃓⃓⃓
⃓⃓⃓ N∑︂
k=1,
k ̸=i

Aki xk

⃓⃓⃓⃓
⃓⃓⃓ ≤ N∑︂

k=1,
k ̸=i

|Aki | |xk|⏞⏟⏟⏞
≤1

(∗)
≤

N∑︂
k=1,
k ̸=i

|Aki|
A...WDD

≤ |Aii|

(A.10)

Hence, in line (A.10) we have equality everywhere. In particular:

i) The last equality tells us that the i-the row is not SDD.

ii) Equality in (*) means that whenever Aki ̸= 0 =⇒ |xk| = 1.

Since A is WCDD we know there exists a path i = i0 → i1 → · · · → ik = j to the SDD

row number j. In particular, we have Ai1, i0 ̸= 0
ii)
=⇒ |xi1 | = 1. Repeating the argument

from the beginning, we get from i) that the i1-th row is not SDD. When we keep iterating,
we finally get, that the j-th row is not SDD which is a contradiction.

A.5. The solution operator - positivity and long-term behavior

Lemma 30 (Positivity of entries of the solution operator and the reachability of the
corresponding states).

Given a network S = (Ω, E , γ) with two states i, j ∈ Ω such that state i is reachable
from state j, j ⇝ i, then the i-j-th entry of the solution operator is strictly positive,(︁
etΓ
)︁
ij
> 0 for all t > 0.

In particular, for a strongly connected network S, the solution operator has only strictly
positive entries for all times, etΓ ∈ (R>0)

|Ω|×|Ω| for all t > 0.
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Proof.

Let i, j ∈ Ω be states in the network, such that state i is reachable from state j, j ⇝ i.
Since we know that the limit etΓ = lim

n→∞
(1+ tΓ

n )n exists, it suffices to show that that the
sequence

(︄(︃(︃
1 +

tΓ

n

)︃n)︃
ij

)︄
n∈N

=

|Ω|∑︂
k1=1

· · ·
|Ω|∑︂

kn−1=1

(︃
1 +

Γ t

n

)︃
i, k1

. . .

(︃
1 +

Γ t

n

)︃
kn−1, j

(A.11)

has a strictly positive lower bound.

(a) Original network S

1

2 3

4

γ1→2

γ1→4

γ2→3

γ3→4

γ
3→

1

(b) Network S̃n associated to 1 + tΓ
n

1

2 3

4

t
n γ1→2

t
n γ1→4

t
n γ2→3

t
n γ3→4

t
n γ

3→
1

1 + t
n Γ11

1 + t
n Γ22 1 + t

n Γ33

1 + t
n Γ44

Figure A.2.: Illustrating the difference between the original network S and network S̃n
associated to the matrix 1+ tΓ

n , with the modified link strength and additional
self-loops.
The walk (1, 1, 2, 3, 3, 4) ∈ WP(1

5−−→ 4, S̃n) ⊆ W(1
5−−→ 4, S̃n), after remov-

ing the self-loops, becomes a path, where as the walk (1, 2, 3, 1, 2, 3, 4) ∈
W(1

6−−→ 4, S̃n)\WP(1
6−−→ 4, S̃n) does not.

We call S̃n := (Ω, Ẽ , γ̃) the network associated to the matrix 1 + tΓ
n , provided that n ∈ N

is large enough, such that all links are positive (in particular, 1 + t
n Γii is positive for all

i ∈ Ω). It can be recovered from the original network S, by modifying the links between
different states with a factor of t

n and adding a self-loop at every state with a weight of
1 + tΓss

n for all s ∈ Ω.
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We need the following definitions:

Γmin :=min{Γll : l ∈ {1, . . . , |Ω|}} < 0

W(j
n−−→ i, S) :={ all walks ω ∈ Ωn+1 of length n ∈ N from state j ∈ Ω

to state i ∈ Ω in the network S}

P(j
n−−→ i, S) :={ all paths ω ∈ Ωn+1 of length n ∈ N from state j ∈ Ω

to state i ∈ Ω in the network S}

WP(j
n−−→ i, S) :={ all walks ω ∈ Ωn+1 of length n ∈ N from state j ∈ Ω

to state i ∈ Ω in the network S,
which become paths after removing the self-loops}

P(j ⇝ i, S) :=
⋃︂
n∈N

P(j
n−−→ i, S)

= { all paths of arbitrary length from state j ∈ Ω

to state i ∈ Ω in the network S

(A.12)

Clearly, we have

P(j
n−−→ i, S) ⊆ WP(j

n−−→ i, S) ⊆ W(j
n−−→ i, S).

A non-zero summand in the right hand side of Equation (A.11) can be interpreted as the
weight γω̃ of a walk ω̃ ∈ W(j

n−−→ i, S̃n) of length |ω̃| = n from j to i.
When we look only at the weight of a special walk

ω̃ ∈ WP(j
|ω̃|−−→ i, S̃n) ⊆ W(j

|ω̃|−−→ i, S̃n),

then this weight can be separated into the weight of the corresponding path

ω ∈ P(j
|ω|−−→ i, S) times a scaling factor

(︁
t
n

)︁|ω| times the weight of the self-loops:

γω̃ =

n∏︂
α=1

γω̃α→ ω̃α+1 =

|ω|∏︂
k=1

t

n
γωk→ωk+1⏞ ⏟⏟ ⏞

=
(︁
t
n

)︁|ω|
γω

·
∏︂

s∈{self-loops(ω̃)}

(︃
1 +

tΓss
n

)︃
⏞ ⏟⏟ ⏞

≥
(︂
1+

tΓmin
n

)︂|ω̃|−|ω|

≥

≥ γω

(︃
t

n

)︃|ω| (︃
1 +

tΓmin

n

)︃|ω̃|−|ω|
,

(A.13)
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where the product is taken over all self-loops of ω̃.

(a) The walk
ω̃ = (1, 1, 2, 3, 3, 4) ∈ WP(1

|ω̃|=5−−−−→ 4, S̃n)

1

2 3

4

t
n γ1→2

t
n γ1→4

t
n γ2→3

t
n γ3→4

t
n γ

3→
1

1 + t
n Γ11

1 + t
n Γ22

1 + t
n Γ33

1 + t
n Γ44

(b) The path
ω = (1, 2, 3, 4) ∈ P(1

|ω|=3−−−−→ 4, S̃n)
and self-loops.

1

2 3

4

t
n γ1→2

t
n γ1→4

t
n γ2→3

t
n γ3→4

t
n γ

3→
1

1 + t
n Γ11

1 + t
n Γ22

1 + t
n Γ33

1 + t
n Γ44

Figure A.3.: Illustrating the separation of the weight of a walk ω̃ ∈ WP(1
|ω̃|=5−−−→ 4, S̃n)

into the weight of a path ω ∈ P(1
|ω|=3−−−→ 4, S̃n) and a product of the weights

of self-loops.
For a fixed path ω = (1, 2, 3, 4) ∈ P(1

|ω|=3−−−→ 4, S̃n), there are
(︁|ω̃|=5
|ω|=3

)︁
=

10 many ω̃ ∈ WP(1
|ω̃|=5−−−→ 4, S̃n) that include the original path, with only

additional self-loops, namely
ω̃1 = (1, 1, 1, 2, 3, 4), ω̃2 = (1, 1, 2, 2, 3, 4), ω̃3 = (1, 1, 2, 3, 3, 4),
ω̃4 = (1, 1, 2, 3, 4, 4), ω̃5 = (1, 2, 2, 2, 3, 4), ω̃6 = (1, 2, 2, 3, 3, 4),
ω̃7 = (1, 2, 2, 3, 4, 4), ω̃8 = (1, 2, 3, 3, 3, 4), ω̃9 = (1, 2, 3, 3, 4, 4),
and ω̃10 = (1, 2, 3, 4, 4, 4).

For a given path ω ∈ P(j
|ω|−−→ i) and some fixed natural number |ω̃| greater or equal to

|ω|, |ω̃| ∈ N≥ |ω|, there are
(︁|ω̃|
|ω|
)︁

many walks ω̃ ∈ WP(j
|ω̃|−−→ i), which include the original

path, but have additional self-loops (out of |ω̃| many transitions, choose the positions of
|ω| non-trivial ones).
For a last estimation, we notice that the following two sequences are both monotonously
increasing (denoted by ↗) and converge, which allows us to make the following estimation
for a fixed, but sufficiently small number ϵ0 > 0 and for sufficiently large number n ∈ N≥|Ω|
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:

n!
(n−|ω|)!·n|ω|

n→∞−−−−→ 1(︂
n!

(n−|ω|)!·n|ω|

)︂
n∈N

↗

⎫⎪⎬⎪⎭ =⇒ n!

(n− |ω|)! · n|ω|
≥ (1− ϵ0)

(︂
1 + tΓmin

n

)︂n−|ω| n→∞−−−−→ etΓmin(︃(︂
1 + tΓmin

n

)︂n−|ω|
)︃
n∈N

↗

⎫⎪⎪⎬⎪⎪⎭ =⇒
(︃
1 +

tΓmin

n

)︃n−|ω|
≥ (1− ϵ0) etΓmin

(A.14)

(︃(︂
1 +

tΓ

n

)︂n)︃
ij

=

|Ω|∑︂
k1=1

· · ·
|Ω|∑︂

kn−1=1

(︃
1 +

Γ t

n

)︃
i, k1

· . . . ·
(︃

1 +
Γ t

n

)︃
kn−1, j

=
∑︂

ω̃∈W
(︂
j

n−−→ i, S̃n

)︂ γω̃
W ⊇WP

≥
∑︂

ω̃∈WP
(︂
j

n−−→ i, S̃n

)︂ γω̃⏞ ⏟⏟ ⏞
≥ γω

(︁
t
n

)︁|ω|
(︂
1+

tΓmin
n

)︂n−|ω|

(A.13)
≥

∑︂
ω∈P

(︂
j⇝ i, S̃n

)︂
(︃
n

|ω|

)︃
γω

(︃
t

n

)︃|ω| (︃
1 +

tΓmin

n

)︃n−|ω|

=
∑︂

ω∈P
(︂
j⇝ i, S̃n

)︂
n!

(n− |ω|)!n|ω|⏞ ⏟⏟ ⏞
≥ (1−ϵ0)

γω t
|ω|

|ω|!

(︃
1 +

tΓmin

n

)︃n−|ω|

⏞ ⏟⏟ ⏞
≥ (1−ϵ0) etΓmin

(A.14)
≥ (1− ϵ0)

2

2
etΓmin

∑︂
ω∈P

(︂
j⇝ i, S̃n

)︂
γω t

|ω|

|ω|!

> 0.

(A.15)

In the fourth step, we used both the estimate of Equation (A.13) and the fact that every
‘walk-path’ can be separated into a path and self-loops and in the last step the fact that
|ω| ≤ |Ω| ≤ n.
This concludes the proof.
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Lemma 31 (The structure of the ‘stationary’ solution operator lim
t→∞

etΓ).

Let B ∈ B be a minimal absorbing set and pB the corresponding stationary state, given
by Equation (2.77). Then pB · (1, . . . , 1⏞ ⏟⏟ ⏞

|B|

) is the matrix, whose columns are the vector pB :

pB · (1, . . . , 1⏞ ⏟⏟ ⏞
|B|

) =

⎛⎝ | . . . |
pB . . . pB
| . . . |

⎞⎠ =

⎛⎜⎝ p
(1)
B . . . p

(1)
B

... . . .
...

p
(|B|)
B . . . p

(|B|)
B

⎞⎟⎠ ∈ (R> 0)
|B|×|B| with

pB =

⎛⎜⎜⎜⎜⎝
∑︁

T∈T (→ 1,B)

γT

...∑︁
T∈T (→|B|,B)

γT

⎞⎟⎟⎟⎟⎠
(A.16)

lim
t→∞

eΓ t =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0|B0|×|Ω|

P(B0 → B1)pB1
· (1, . . . , 1⏞ ⏟⏟ ⏞

|B1|

) pB1
· (1, . . . , 1⏞ ⏟⏟ ⏞

|B1|

)

. . .
P(B0 → B|B|)pB|B|

· (1, . . . , 1⏞ ⏟⏟ ⏞
|B1|

) pB|B|
· (1, . . . , 1⏞ ⏟⏟ ⏞

B|B||

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 . . . . . . 0
... . . . . . .

...
0 . . . . . . 0

P (B0 → B1)

⎛⎝ | . . . |
pB1

. . . pB1

| . . . |

⎞⎠ ⎛⎝ | . . . |
pB1

. . . pB1

| . . . |

⎞⎠
...

. . .

P
(︁
B0 → B|B|

)︁ ⎛⎝ | . . . |
pB|B|

. . . pB|B|

| . . . |

⎞⎠ ⎛⎝ | . . . |
pB|B|

. . . pB|B|

| . . . |

⎞⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Remark 32 (Non-negative entries of etΓ are not sufficient).
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Let v ∈ RN be a vector and A ∈ (R≥ 0)
N×N is a matrix with non-negative entries such

that for all i ∈ {1, . . . , N} we have (Ai,1 v1, . . . , Ai,N vN ) ∈ (R≥ 0)
N ∪ (R≤ 0)

N . Then we
can not conclude, that v ∈ (R≥ 0)

N ∪ (R≤ 0)
N , as the following example show:

A =

(︃
0 1
1 0

)︃
,v =

(︃
1
−1

)︃
⎛⎝A1,1⏞⏟⏟⏞

0

v1, A1,2⏞⏟⏟⏞
1

v2⏞⏟⏟⏞
−1

⎞⎠ = (0,−1) ∈ (R≤ 0)
N=2 and

⎛⎝A2,1⏞⏟⏟⏞
1

v1⏞⏟⏟⏞
1

, A2,2⏞⏟⏟⏞
1

v2

⎞⎠ = (1, 0) ∈ (R≥ 0)
N=2

(A.17)

Lemma 33 (Any linear subspace of RN contained in (R≥ 0)
N ∪ (R≤ 0)

N must be on-
dimensional ).

Proof.

An abstract argument is, that the vector space, when removing the zero vector, is no
longer path connected, and this is only the case for one-dimensional vector spaces.
A technical proof using only tools from linear algebra is given below. The idea is to use
assume the vector space were at least two dimensional and then construct a vector with a
strictly positive and a strictly negative entry.
So let v1 and v2 be two linear independent vectors and without loss of generality we
assume that both the two vectors as well as their difference have only non-negative entries,
v1, v2,v1 − v2 ∈ (R≥0)

N .
Then for all components i ∈ {1, . . . , N} we can choose an ϵi ∈ [0, 1] such that ϵi v

(1)
1 = v

(1)
2 .

We define ϵm (ϵM ) be the smallest (largest) of these epsilons and im (iM ) to be the
corresponding index, that is

ϵm := min{ ϵi : i ∈ {1, . . . , N} } im := argmin{ ϵi : i ∈ {1, . . . , N} }
ϵM := max{ ϵi : i ∈ {1, . . . , N} } iM := argmax{ ϵi : i ∈ {1, . . . , N} }.

(A.18)

Since v1 and v2 are linearly independent, we know that ϵm < ϵM . Then for any
ϵ ∈ (ϵm, ϵM ), that is ϵm < ϵ < ϵM , the vector ϵv1 − v2 has both strictly positive as well
as strictly negative components:
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component iM : ϵ⏞⏟⏟⏞
<ϵM

v
(iM )
1 − v

(iM )
2 < ϵM v

(iM )
1 − v

(iM )
2

Def ϵM , iM======== 0

component im : ϵ⏞⏟⏟⏞
>ϵm

v
(im)
1 − v

(im)
2 > ϵm v

(im)
1 − v

(im)
2

Def ϵm, im
======== 0.

(A.19)

This is a contradiction to the assumption that two linearly independent vectors exists,
which concludes the proof.

A.6. In-trees and in-forests of a network

Definition 34 (In-trees).

We call a network T = (Ω, ET ) with no self-loops an in-tree (also called anti-arborescence
[GM78]) rooted at state i0 ∈ Ω if for all states i ∈ Ω there is a unique directed walk
leading from state i towards the root i0. An example is given in Figure A.4, where the
root is state number i0 = 2. Note, that since the walk is unique, it has to be a path,
meanig that all states must be different. The weight of an in-tree is the product of the
link-strength of all edges of the in-tree: γT :=

∏︁
(i,j)∈ET

γi→j .

1

2

7

3

4

5

6

γ
1→

2

γ3→4

γ5→6

γ 6→
7

γ
4→

7

γ7→
2

Figure A.4.: Example of an in-tree rooted at state number 2. There is a unique directed
walk from each state of the tree leading to state number 2. Its weight equals
γT =

∏︁
(i,j)∈E(T )

γi→j = γ1→2 γ7→2 γ7→2 γ4→7 γ6→7 γ3→4 γ5→6

Definition 35 (In-forests).
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We call a network F→B = (Ω, EF ) an in-forest rooted at the states B ⊆ Ω if its weakly
connected components are in-trees, that is F→B =

⨁︁
b∈B

T→b. In-trees are special in-forests,

with exactly one weakly connected component.
This means that for all states i ∈ Ω there is a unique state b ∈ B and a unique directed
path leading from state i towards this state b ∈ B (for i ∈ B, this would be the trivial
walk (i)).
In particular, this means that the set {R(→ b) : b ∈ B} is a partition of Ω, that is⋃︂

b∈B
R(→ b) = Ω and

R(→ b1) ∩R(→ b2) = ∅, for b1 ̸= b2.

(A.20)

Analogously to in-trees, the weight of an in-forest is defined as the product over the links
of its edges: γF :=

∏︁
(i,j)∈EF

γi→j =
∏︁
b∈B

γT→b.

An example is given in Figure A.5, where the roots are given by B = {2, 3, 6}.

1

2

7γ
1→

2 γ7→
2

3

4
5γ

4→
3

γ5→4

6

Figure A.5.: Example of an in-forest rooted at the set B = {2, 3, 6}. There is a unique
directed path from each state of the tree leading to either one of the states
2, 3 or 6. Its weight equals
γF =

∏︁
(i,j)∈EF

γi→j = γT→2 · γT→3 · γT→6 = γ1→2 γ7→2 · γ5→4 γ4→3.

Further, we define the set of possible in-trees and in-forests of a given network as follows:

Definition 36 (The set of partitions of a set, the set of possible in-trees and of possible
in-forests of a network).

Le Ω be any set and ∅ ̸= J ⊆ Ω be a non-empty subset. We denote with Part(Ω, J ⊆ Ω)
the set of all partitions of Ω into |J | many elements Ωj (that is

⋃̇︁
j∈J Ωj = Ω) such that

j ∈ Ωj for all j ∈ J .
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Let S = (Ω, E) be a network with i0 ∈ Ω and J ⊆ Ω, J ̸= ∅. Then

T (→ i0,S) : = {(Ω, ET ) ⊆ S : (Ω, ET ) is an in-tree rooted at the state i0 ∈ Ω }
F(→ J,S) : = {(Ω, EF ) ⊆ S : (Ω, EF ) is an in-forest rooted at the states B ⊆ Ω }

=
⋃︂

{Ωj : j∈J}∈
Part(Ω,J⊆Ω)

⋃︂
(︁
ET1 ,...,ET|J|

)︁
∈
⨁︁
j∈J

EΩj(︂
Ωj ,ETj

)︂
∈T

(︂
→j,

(︂
Ωj ,EΩj

)︂)︂

⎧⎨⎩⨁︂
j∈J

(︁
Ωj , ETj

)︁⎫⎬⎭ ,

with EΩj : = {(a, b) ∈ Ω2
j : (a, b) ∈ E}.

(A.21)
It should be noted, that an in-tree T of a network S need not be a subnetwork defined in
4. In fact, T can only a subnetwork of original network S, if S itself is an in-tree.
An illustration is given in the figures A.6 and A.7.

(a)

1

2 3

γ 1
→
2

γ2→3

γ
3→

1

γ 2
→
1

γ
1→

3

γ3→2

(b) In-tree T1
1

2 3

γ 1
→
2

γ2→3

(c) In-tree T2
1

2 3
γ2→3

γ
1→

3

(d) In-tree T3
1

2 3

γ 2
→
1

γ
1→

3

(e) In-forest F1

1

2 3

γ 1
→
2

(f) In-forest F2

1

2 3

γ
1→

3

Figure A.6.: Example of a network, whose in-trees rooted at state 3 are given by
T (→ 3,S) = {T1, T2, T3} and whose in-forests rooted at the states {2, 3} are
given by F(→ {2, 3},S) = {F1, F2}.
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(a) (ET3 , ET5 , ET8) = ({}, {(2, 1), (1, 3), (4, 5)}, {(6, 7), (7, 8)})

1 2

3
4 5

6

78

γ1→2

γ2→1γ 1
→
3

γ
1→

4 γ4→5

γ5→4

γ
6→

7

γ7→8

γ 8
→
6

γ2→6

γ 6
→
8

γ8→7

γ
7→

6

(b) (ET3 , ET5 , ET8) = ({}, {(2, 1), (1, 3), (4, 5)}, {(6, 8), (7, 8)})

1 2

3
4 5

6

78

γ1→2

γ2→1γ 1
→
3

γ
1→

4 γ4→5

γ5→4

γ
6→

7

γ7→8

γ 8
→
6

γ2→6
γ 6
→
8

γ8→7

γ
7→

6

(c) (ET3 , ET5 , ET8) = ({}, {(2, 1), (1, 3), (4, 5)}, {(6, 8), (7, 6)})

1 2

3
4 5

6

78

γ1→2

γ2→1γ 1
→
3

γ
1→

4 γ4→5

γ5→4

γ
6→

7

γ7→8

γ 8
→
6

γ2→6

γ 6
→
8

γ8→7

γ
7→

6

Figure A.7.: Example of three possible in-forests rooted in the set J = {3, 5, 8}, while
fixing the partition (Ω3,Ω5,Ω8) = ({3}, {1, 2, 4, 5}, {6, 7, 8}). Other ele-
ments of Part(Ω, J) are ({1, 2, 3}, {4, 5}, {6, 7, 8}),({3}, {4, 5}, {1, 2, 6, 7, 8}) ,
({1, 3}, {4, 5}, {2, 6, 7, 8}) and ({3}, {1, 4, 5}, {2, 6, 7, 8}), making a total of 15
in-forests, rooting in the set J = {3, 5, 8}.
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For a given link (a, b) ∈ E , we call the state a ∈ Ω a starting point. Then we can
characterize in-trees as follows:

Lemma 37 (Characterization of in-trees and in-forests).

A network (Ω, ET ) is an in-tree rooted at the state i0 ∈ Ω, if and only if the following
three conditions are satisfied:

i) All states j ∈ Ω\{i0} are starting points of some link

ii) |ET | = |Ω| − 1

iii) The network contains non cycles

Proof. Let (Ω, ET ) be an in-tree. Since for every state j ∈ Ω there is a unique walk to the
root (j ⇝ i0), every state j ∈ Ω\{i0} must be the starting point of some link. This also
implies |ET | ≥ |Ω| − 1. At the same time, no state can be the starting point of more than
one link, since then the walk to the root would no longer be unique (if a→ b⇝ i0 and
a→ c⇝ i0 for b ̸= c, there are are at least two walk from state a to the root i0 ). This is
also the reason why there can be no cycles: With a cycle one is able to construct walks of
arbitrary length ( if a⇄ b→ i0, we have a→ b→ i0, a→ b→ a→ b→ i0, etc. ).
Vice versa, assume that a given network satisfies the above conditions. We can construct
a walk from every state to the root as follows: Take an arbitrary state j ∈ Ω. If j = i0,
we have the trivial walk (i0) and are done. Otherwise there will be a link j → j2 to some
other state j2 ∈ Ω. If j2 = i0, we are done, otherwise we repeat the process. Since there
are only finitely many state and no cycles, this process must come to an end, meaning,
the constructed walk must reach a state, which is no starting point. This state can only
be the root i0, as it is the only state, which is no starting point. Moreover, condition i)
together with condition iii) implies that every state other than the root is the starting
point of exactly one link, making the walk constructed above unique. This means, that
the network is indeed an in-tree rooted at state i0.

Since every connected component of an in-forest in an in-tree, we also have a characteri-
zation of in-forests:

A network (Ω, EF ) is an in-forest rooted at the states J ⊆ Ω, if and only if the following
three conditions are satisfied:

i) All states j ∈ Ω\J are starting points of some link

ii) |EF | = |Ω| − |J |
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iii) The network contains non cycles.

Lemma 38 (In-trees and minimal absorbing sets ).

For a given network S = (Ω, E), the set of possible in-trees rooted at the state a ∈ Ω is
non-empty, if and only if the state a lies in the only minimal absorbing set, that is

T (→ a,S) ̸= ∅ ⇐⇒ a ∈
⋂︂
B∈B

B (A.22)

Proof. ‘⇐=’ We know from definition 6 that all states lead to some minimal absorbing
set. If this minimal absorbing set B ∈ B is unique, then all states must lead to B
and since B is strongly connected, then there must be a path from all other states
to state a ∈ B, so there is at least one in-tree of S rooted in state a.

‘=⇒’ We prove this by contraposition: Suppose, there were a minimal absorbing set
B0 ∈ B with a /∈ B0. Since B0 is absorbing, the state a cannot be reached by any
state in B0 (B0HH⇝ a), so the set of in-trees of S rooted at state a is empty.

Lemma 39 (In-forests and minimal absorbing sets ).

The set of possible in-forests rooted at the states J ⊆ Ω is non-empty, if and only if the
intersection of every minimal absorbing set with J is non-empty:

F(→ J,S) ̸= ∅ ⇐⇒ for all B ∈ B the intersection of B
with J is non-empty: B ∩ J ̸= ∅

(A.23)

Proof. ‘=⇒’ We prove this by contraposition: Let B0 ∈ B be a minimal absorbing set
such that B0 ∩ J = ∅. Then no state in J can be reached by any state in B0 (that
is jHH⇝b0 for all b0 ∈ B0 and j ∈ J ) and thus there can be no in-forest rooted at
the state J ⊆ Ω.

‘⇐= ’ We prove this again by contraposition, so we assume that there is an in-forest rooted
at the states J ⊆ Ω and we choose an arbitrary minimal absorbing set B ∈ B. From
the definition of an in-forest, we know that for all states b ∈ B there exists a state
jb ∈ J such that b ⇝ jb. Since B is absorbing, this can only be true, if jb ∈ B.
Since B ∈ B was arbitrary, the claim follows.

Corollary 40 (Indicator term of multiple minimal absorbing sets).
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For some fixed natural number j ∈ N, the term
∑︁

J∈Pow (Ω)
|J|=j

∑︁
F∈F(→J,S)

γF vanishes, if and

only if there are strictly more than j many minimal absorbing sets, that is |B| > j.

Proof. We have

0 =
∑︂

J∈Pow (Ω)
|J|=j

∑︂
F∈F(→J,S)

γF , (A.24)

if and only if for all subsets J ⊆ Ω with |J | = j elements, there are no in-forests rooted
at the set J . By lemma 39, this is the case if and only if for all J ⊆ Ω with |J | = j
there exists a minimal absorbing set BJ ∈ B such that BJ ∩ J = ∅. This can only be the
case, when there are more than |J | = j minimal absorbing set (since otherwise one could
choose J = {b1, . . . , b|B|, b|B|+1, . . . , b|J |}) and vice versa, when |B| > |J | there can be no
in-forests rooted at the states in J .

A.7. Analytical expression for the principal minors of the
generator matrix

In the following, we need the notion of minors of matrices, which are determinants of
smaller submatrices.

Definition 41 (minors of matrices).

Let M,N ∈ N≥ 2 be natural numbers, A ∈ CM×N be a matrix and I ⫋ {1, . . . ,M}, J ⫋
{1, . . . , N} be subsets of the first M (N) natural numbers. We denote by AI,J ∈
CM−|I|,N−|J | the submatrix of A that is obtained by deleting all rows i ∈ I and all
columns j ∈ J and set [A]I,J to be the determinant of AI,J

(︂
[A]I,J := det(AI,J)

)︂
, pro-

vided that AI,J is a square matrix. [A]I,J is called a principal minor if I = J (compare
the two example in Figure A.8 ).
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(a)

A =

⎛⎝a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞⎠ ,

A{2},{2} =

⎛⎝a11 □ a13
□ □ □
a31 □ a33

⎞⎠
[A]2, 2 := [A]{2},{2} =

=

⃓⃓⃓⃓
a11 a13
a31 a33

⃓⃓⃓⃓
=

= a11 a33 − a31 a13

(b)

M =

⎛⎜⎜⎝
m11 m12 m13 m14 m15

m21 m22 m23 m24 m25

m31 m32 m33 m34 m35

m41 m42 m43 m44 m45

⎞⎟⎟⎠ ,

M{1,3},{1,3,4} =

⎛⎜⎜⎝
□ □ □ □ □
□ m22 □ □ m25

□ □ □ □ □
□ m42 □ □ m45

⎞⎟⎟⎠
[M ]{1,3},{1,3,4} =

⃓⃓⃓⃓
m22 m25

m42 m45

⃓⃓⃓⃓
=

= m22m45 −m42m45

Figure A.8.: Example of the minors of two matrices: In example A.8a, we delete the row
number 2 and the column number 2, whereas in example A.8b we delete
the rows 1 and 3 and the column with the numbers 1, 3 and 4. [A]{2},{2} is a
principal minor whereas [M ]{1,3},{1,3,4} is not.

In the following we want to show that the principal minors of the (negative) generator
matrix can be computed via sums of weights of in-forests.

Theorem 42 (Principal minors of the generator matrix).

Let Γ be the generator matrix of a network S = (Ω, E), given by Equation (2.21), and
J ⊆ {1, . . . , |Ω|} be a subset of the first |Ω| numbers. Then the principal minors of the
negative generator matrix are given by:

[−Γ]J,J =
∑︂

F∈F(→J,S)

γF =
∑︂

{Ωk : k∈J}∈Part(Ω,J⊆Ω)

∏︂
j∈ J

∑︂
Tj∈T (→j,Sk)

γTj =

=
∑︂

{Ωk : k∈I}∈Part(Ω,J⊆Ω)

∑︂
(Tk)k∈J∈

(︄⨁︁
k∈J

T (→k,Sk)

)︄
∏︂
j∈ J

γTj ,
(A.25)

with the subnetwork Sk := (Ωk, {(a, b) ∈ E : a, b,∈ Ωk}).
For J = {j}, this reduces to
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[−Γ]j, j = (−1)|Ω|−1 [Γ]j, j =
∑︂

Tj∈T (→j,S)

γTj (A.26)

Proof. We follow the proof given in [MG13]. First, a few definitions:

- We denote by Perm(Ω\J) the set of all permutations of the set Ω\J

- For a permutation π ∈ Perm(Ω\J), we set Fix(π) := {i ∈ {1, . . . , |Ω\J |} : π(i) = i}
to be the set of fixed points of π and Cπ := {cycles of π} the set of all cycles of the
permutation π.

- The weight of all the cycles of the permutation π is defined as
γCπ :=

∏︁
i∈Ω\(J∪Fix(π))

γi→π(i)

We can write any permutation π ∈ Perm(Ω\J) as a product of cycles, namely π = c1 ◦

. . . ◦ c|Cπ |, with the cycles ci := (ω
(i)
1 , . . . , ω

(i)
ki
) :=

(︄
ω
(i)
1 . . . ω

(i)
ki

ω
(i)
2 . . . ω

(i)
1

)︄
for i ∈ {1, . . . , |Cπ|}.

The principal minors of the negative generator matrix are given by

[−Γ]J,J =
∑︂

π∈Perm(Ω\J)

sgn(π)
∏︂

α∈Ω\J

(−Γ)π(α),α. (A.27)

The sign of a permutation π ∈ Perm(Ω\J) can be computed to

sgn(π) =
|Cπ |∏︂
i=1

sgn(ci)⏞ ⏟⏟ ⏞
(−1)ki−1

= (−1)

|Cπ |∑︁
i=1

ki−|Cπ |
= (−1)Kπ+|Cπ | , (A.28)

with Kπ :=
|Cπ |∑︁
i=1

ki = |Ω\(J ∪ Fix(π))|.

For the product, we get:
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∏︂
α∈Ω\J

(−Γ)π(α),α =
∏︂

i∈Fix(π)

(−Γ)i,i⏞ ⏟⏟ ⏞
|Ω|∑︁
ji=1

γi→ji

·
∏︂

β∈Ω\(J∪Fix(π))

(−Γ)π(β),β⏞ ⏟⏟ ⏞
(−1) γβ→π(β)

=
∏︂

i∈Fix(π)

|Ω|∑︂
ji=1

γi→ji⏞ ⏟⏟ ⏞∑︁
j∈{1,...,|Ω|}|Fix(π)|

∏︁
i∈Fix(π)

γi→ji

∏︂
β∈Ω\(J∪Fix(π))

(−1) γβ→π(β)⏞ ⏟⏟ ⏞
(−1)Kπ γCπ

= (−1)Kπ γCπ

∑︂
j∈{1,...,|Ω|}|Fix(π)|

∏︂
i∈Fix(π)

γi→ji ,

(A.29)

where the first sum s over the ‘vector index’ j ∈ {1, . . . , |Ω|}|Fix(π)|.
When we put these together, we end up with

[−Γ]J,J =
∑︂

π∈Perm(Ω\J)

sgn(π)
∏︂

α∈Ω\J

(−Γ)π(α),α =

=
∑︂

π∈Perm(Ω\J)

(−1)|Cπ |
∑︂

j∈{1,...,|Ω|}|Fix(π)|

γCπ

∏︂
i∈Fix(π)

γi→ji⏞ ⏟⏟ ⏞
monomial

(A.30)

For a given network S, we call a product of weights of links a monomial of size k ∈ N, if
this product constitutes of k different links with k different starting points.
Every summand in Equation (A.30) is a product over Kπ + |Fix(π)| = |Ω| − |J | many
different links, whose starting points are the set Ω\J .
Now we consider a fixed monomial γM and ask, with how many permutations π ∈
Perm(Ω\J), we can construct this monomial.
Since the term

∏︁
i∈Fix(π)

γi→ji can yield additional cycles, we set CM := { cycles in M} ⊇ Cπ

to be the set of cycles in M .
For every cycle in CM , we can either construct it with permutations via the term γCM

or
with the help of fixed points via the term

∏︁
i∈Fix(π)

γi→ji . So for every k ∈ {0, . . . , |CM |}

there are
(︃
|CM |
k

)︃
many different ways to choose a permutation π ∈ Perm(Ω\J), such

that |Cπ| = k.
Although the monomial γM will be the same for all permutations, the sign can vary
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due to the term (−1)|Cπ |. So for a fixed monomial γM with a positive number of cycles
(|CM | > 0), we have:

γM

|CM |∑︂
k=0

(︃
|CM |
k

)︃
(+1)|CM |−k (−1)k = γM (1− 1)|CM | = 0. (A.31)

1 2

3

4 5

γ1→2

γ 2
→
3

γ
3→

1

γ4→5

γ5→4

(a) π1 = (1 2 3) (4 5):
|Cπ1

| = 2, (−1)|Cπ1 | = 1
γM = γ1→2γ2→3γ3→1γ4→5γ5→4

1 2

3

4 5

γ1→2

γ 2
→
3

γ
3→

1
γ4→5

γ5→4

(b) π2 = (1 2 3) :
|Cπ2

| = 1, (−1)|Cπ2
| = −1,

γM = γ1→2γ2→3γ3→1 γ4→5γ5→4

1 2

3

4 5

γ1→2

γ 2
→
3

γ
3→

1

γ4→5

γ5→4

(c) π3 = (4 5) :
|Cπ3

| = 1, (−1)|Cπ3
| = −1,

γM = γ1→2γ2→3γ3→1 γ4→5γ5→4

1 2

3

4 5

γ1→2
γ 2
→
3

γ
3→

1

γ4→5

γ5→4

(d) π4 = Identity :
|Cπ4

| = 0, (−1)|Cπ4
| = 1,

γM = γ1→2γ2→3γ3→1 γ4→5γ5→4

Figure A.9.: Example of the associated network of two cycles of the monomial

γM = γ1→2 γ2→3 γ3→1 γ4→5 γ5→4 =
∑︁

π∈Perm({1,...,5})
γCπ

∏︁
i∈Fix(π)

|Ω|=5∑︁
ji=1

γi→ji .

There are four different permutations that lead to these cycles with |CM | = 2.

This means, that all monomials with a positive number of cycles cancel out and only the
monomials with no cycles (|CM | = 0) remain.
These monomials correspond to a subnetwork of S, with no cycles and || − |J| many links,
whose starting points are all states in \J.
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By lemma 37, these networks are exactly the in-forests of the network S, rooted at the
set J . This finishes the proof.

Lemma 43 (First minors of the generator matrix ). In order to evaluate [Γ]i,j , we first
have a look at a more general case:
Let A ∈ CN×(N−1) be an arbitrary matrix, whose columns sum up to zero, that is
(1, . . . , 1⏞ ⏟⏟ ⏞
N times

)A = ( 0, . . . , 0⏞ ⏟⏟ ⏞
N−1 times

). Then the first minors [A]{i},∅ of A, which are obtained by

deleting row number i and taking the determinant of the resulting sub-matrix, satisfy the
relation

[A]{i},∅ = (−1)i−1 [A]{1},∅, (A.32)

with the notation introduced in Definition 41.

Proof. The statement is trivial for i = 1, so let us assume that i ≥ 2. We define the
square matrix

B :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eT1 A+ eTi A
eT2 A

...

eTi A
...

eTN A

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1,1 +Ai,1 . . . A1,N−1 +Ai,N−1

A2,1 . . . A2,N−1
...

...
Ai,1 . . . Ai,N−1

...
...

AN,1 . . . AN,N−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ KN×(N−1), (A.33)

where a box around an entry Aij means that this entry is missing. We notice that all its
column sums vanishes, so B must be singular and its determinant must be equal to zero:

0 = det (B) =

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
A1,1 . . . A1,N−1

...
...

Ai,1 . . . Ai,N−1

...
...

AN,1 . . . AN,N−1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓

⏞ ⏟⏟ ⏞
[A]{i},∅

+

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
Ai,1 . . . Ai,N−1

...
...

Ai,1 . . . Ai,N−1

...
...

AN,1 . . . AN,N−1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓

⏞ ⏟⏟ ⏞
(−1)i−2 [A]{1},∅

=

(∗)
=== [A]{i},∅ + (−1)i−2 [A]{1},∅

(A.34)
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In the last step (∗), we have used the fact that the determinant changes its sign when
interchanging two rows and we have move the first row eiA = (Ai,1, . . . , Ai,N−1) = (A ei)
successively i− 2-times to the bottom.

In particular, the column sums of the matrix Γ∅,{j} (that is, deleting the j-th column
from the generator matrix) equals zero, so we can compute:

[Γ]ij
Def
====

[︁
Γ∅,{j}

]︁
{i},∅⏞ ⏟⏟ ⏞

(−1)i−1
[︁
Γ∅,{j}

]︁
{1},∅

= (−1)i−1
[︁
Γ∅,{j}

]︁
{1},∅⏞ ⏟⏟ ⏞

(−1)j−1
[︁
Γ∅,{j}

]︁
{j},∅

= (−1)i−1 (−1)j−1⏞ ⏟⏟ ⏞
(−1)i+j

[︁
Γ∅,{j}

]︁
{j},∅⏞ ⏟⏟ ⏞

[Γ]jj

= (−1)i+j [Γ]jj .
(A.35)

This means that we can compute all first minors [Γ]ij of the generator matrix Γ from
its first principal minors [Γ]jj . This can be used to compute the stationary state of a
strongly connected network, as done in Section 2.5.1.

Lemma 44 (Connection between aλ=0 and |B| ).

The algebraic multiplicity aλ=0 for the eigenvalue λ = 0 of the generator matrix Γ equals
the number of minimal absorbing sets.

Proof. Let the characteristic polynomial of the matrix Γ be given by

det (t 1 − Γ) = t|Ω| + χ1 t
|Ω|−1 + . . .+ χ|Ω|−j t

j + . . . χ|Ω|−1 t
1 + χ|Ω|⏞⏟⏟⏞

0

.
(A.36)

When a := aλ=0 is the algebraic multiplicity of the eigenvalue λ = 0, we have:

χ|Ω| = 0 = . . . = χ|Ω|−(a−1) that is

χ|Ω|−i = 0 for all i ∈ {0 . . . , a− 1}
(A.37)

We know from [HJ12] that the absolute value of χ|Ω|−j for j ∈ {1, . . . , |Ω| − 1} is given
by the sum over all principal minors of Γ of order j, namely

|χ|Ω|−j |
[HJ12]
=====

∑︂
J∈Pow (Ω)

|J|=j

[Γ]J,J
Thm 42
======

∑︂
J∈Pow (Ω)

|J|=j

∑︂
F∈F(→J,S)

γF . (A.38)

By Corollary 40, this vanishes, if and only if there are strictly more than j minimal
absorbing sets in S
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0 = χ|Ω|−(a−1)

0 = χ|Ω|−(a−1) ⇐⇒ |B| ≥ a

}︄
=⇒ |B| ≥ a (A.39)

This means that there are at least a many minimal absorbing set, which results in

aλ=0

(A.39)
≤ |B| 14

=== gλ=0 ≤ aλ=0.
(A.40)

This also gives an elementary proof that the geometrical multiplicity gλ=0 must coincide
with the algebraic multiplicity aλ=0 of the generator matrix Γ for the eigenvalue λ = 0.
Since for any column stochastic matrix Q we can interpret the matrix ΓQ := Q− 1|Ω| as
a generator matrix, this is also an elementary proof that the algebraic multiplicity aλ=1

of the stochastic matrix Q agrees with its geometric multiplicity gλ=1:

aλ=1(Q) = aλ=0(Q− 1|Ω|⏞ ⏟⏟ ⏞
ΓΩ

)
A.40
==== gλ=0(Q− 1|Ω|⏞ ⏟⏟ ⏞

ΓΩ

) = gλ=1(Q).
(A.41)

(a) Three in-trees rooted at the states 3, 5 and 7

1 2

3

4 5

6

78

γ
1→

4

γ4→5

γ
6→

7γ 8
→
6

γ2→6

(b) Three in-trees rooted at the states 3, 4 and 8

1 2

3

4 5

6

78

γ 1
→
3

γ5→4

γ
6→

7

γ7→8

γ2→6

Figure A.10.: Example of two decomposition of the network Ω into three in-trees each.
Since Ω has three minimal absorbing sets, it is not possible to decompose
it into less than three in-trees.
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T3 = (Ω3, E3) = {{3}, ∅}
T5 = (Ω5, E5) = {{1, 4, 5}, {(1, 4), (4, 5)}}
T7 = (Ω7, E7)

= {{2, 6, 7, 8}, {(2, 6), (6, 7), (8, 6)}}
F{3,5,7} = {Ω, EF1}

EF1 = {(1, 4), (4, 5), (2, 6), (6, 7), (8, 6)}

T3 = (Ω3, E3) = {{1, 3}, {(1, 3)}}
T4 = (Ω4, E4) = {{4, 5}, {(5, 4)}}
T8 = (Ω8, E8)

= {{2, 6, 7, 8}, {(2, 6), (6, 7), (7, 8)}}
F{3,4,8} = {Ω, EF2}

EF2 = {(1, 3), (5, 4), (2, 6), (6, 7), (7, 8)}

A.8. Facts about trajectories in discrete-time Markov chains

Lemma 45 (Trajectories in discrete-time Markov chains and minimal absorbing sets).

In a classical, discrete-time Markov chain with a finite state space a trajectory (Xn)n∈N will
eventually be captured by a minimal absorbing set, that is

∑︁
B∈B

P(Xn ∈ B{ eventually }) =

1.

Proof. We know that for every state s ∈ Ω in the network there is a path to a minimal
absorbing set B ⊆ Ω (see definition 6 ). This means that there are a finite number of
states s = s0, . . . , sL ∈ B with qsj→sj+1 > 0 [FD22]. We now let lb be the length of
the shortest (non-zero) path to the minimal absorbing set b ∈ B and qB be the largest
probability for reaching the set B ∈ B in lB time steps, namely

lB := min
l∈N0

{︁
(ω0 = s, . . . , ωl ∈ B) : qωj→ωj+1 > 0 for all j ∈ {0, . . . , l}

}︁
L := max

B∈B
{lB}

qB := max
ω∈ΩlB+1

⎧⎨⎩
lB−1∏︂
j=0

qωj→ωj+1 , with ω0 = s and ωlB ∈ B

⎫⎬⎭
q0 := min

B∈B
{qB}.

Further, be let L (q0) be the largest (smallest) of the lB (qB). For a fixed natural number
m ∈ N we define the event that a trajectory ω ∈ ΩN after L ·m time steps is not contained
in a minimal absorbing set
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Am := {ω ∈ ΩN : ωL·m /∈
⋃︂
B∈B

B}. (A.42)

The corresponding probability for Am to occur can be estimated to P(Am) ≤ (1− q0)
m.

Since the sum over all probabilities of Am is finite (
∑︁
m∈N

P(Am) < ∞), we know by the

lemma of Borel-Cantelli that the probability for Am to occur infinitely often vanishes,
P(Am infinitely often ) = 0.

A.9. From Markov chains to exponential waiting times

In this Section we prove the fact that a continuous-time Markov chain leads to exponential
waiting time. To see this, we first compute the probability that the waiting time τ in
some state j ∈ Ω is larger than t+ ϵ, provided we already know that the waiting time is
larger than t:

P(τ > t+ ϵ | τ > t, X0 = j) =
P (τ > t+ ϵ |X0 = j)

P (τ > t |X0 = j)

=
P (Xt+ϵ = j, Xδ = j ∀ δ ∈ (0, t] |X0 = j)

P (Xδ = j ∀ δ ∈ (0, t] |X0 = j)

= P (Xt+ϵ = j | Xδ = j ∀ δ ∈ [0, t])

Markov
====== P (Xt+ϵ = j | Xt = j)

time
=========
homogeneity

P (Xϵ = j | X0 = j)

= 1− γj→ ϵ+ o(ϵ) for ϵ→ 0+,

(A.43)

where γj→ =
∑︁
k∈Ω

γj→k is the sum of all outgoing transition rates.

When taking the (right-sided) time derivative of the logarithm of the above equation, we
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get:

d
dt

ln
(︂
P
(︁
τ > t |X0 = j

)︁)︂
= lim

ϵ→0+

1

ϵ

⎡⎢⎣ln
⎛⎜⎝ P (τ > t+ ϵ |X0 = j)⏞ ⏟⏟ ⏞

P(τ>t |X0=j) · P(τ>t+ϵ | τ>t,X0=j)

⎞⎟⎠− ln(P (τ > t |X0 = j)
)︁⎤⎥⎦

= lim
ϵ→0+

1

ϵ

⎡⎢⎣ln
⎛⎜⎝P (τ > t |X0 = j)⏞ ⏟⏟ ⏞

1−γj→ · ϵ+o(ϵ)

⎞⎟⎠
⎤⎥⎦

(∗)
=== −γj→,

(A.44)
where we used in step (∗) the fact that f(ϵ) = 1 − γj→ · ϵ + o(ϵ) for ϵ → 0+ implies
ln
(︁
f(ϵ)

)︁
= −γj→ · ϵ+ o(ϵ) for ϵ→ 0+.

Equation (A.44) implies P (τ > t |X0 = j) = e−t γj→ , when we keep in mind that the
waiting time is almost surely positive.

A.10. The effect of including self-loops for discrete-time Markov
chains

Suppose, we are given an irreducible, continuous-time Markov chain on a finite state
space with generator matrix Γ and (unique) stationary solution p∗. How can we construct
a discrete-time Markov chain Q(Γ), with the same stationary solution ?
This question has not been answered, with Section 2.4, since the associated, embedded
discrete-time Markov chain QΓ has (usually) a different solution (compare Figure 2.9).
But, choosing the transition probabilities proportional to the corresponding transition
rates, while at the same time adding a self-loop at every state not only results in the
same stationary solution, but guaranteeing at the same time that this stationary solution
is attracting.

Theorem 46. For a given generator matrix Γ of a strongly connected network, a transition
matrix (Qij)i,j∈Ω := (qj→i)i,j∈Ω defined as

qj→i := γj→i∆t ∈ [0, 1)

qj→j := 1− γj→∆t ∈ (0, 1]

with 1
∆t > max

j∈Ω
γj→.
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has the same stationary solution p∗ as the original network and this stationary solution
is attracting.

Proof. The fact that the stationary solutions coincide, follows from the fact that Q(Γ) =
1 +∆tΓ and that the stationary solution for a strongly connected network is unique:

dim
(︁
kern (Q(Γ)− 1 · 1)

)︁⏞ ⏟⏟ ⏞
∆tΓ

= dim
(︁
∆tΓ− 0 · 1)

)︁ Thm 13
====== 1. (A.45)

What remain is to show that this stationary solution is indeed attracting, that is
lim
n→∞

Q(Γ)n q0 = p∗.
The choice of ∆t guarantees that every state has a self-loop (qj→j > 0), which ensures
that the whole network is aperiodic and every discrete-time Markov chain on a finite
state space, which is both irreducible and aperiodic (and therefore also positive recurrent)
has a unique limiting distribution [Bré20; Dou+18; Pri13].
Another way to see this, is to apply Gershgorin’s circle theorem, which guarantees that
every eigenvalue is either equal to one or has a modulus strictly less than one: |λ| ≤ 1
and |λ| = 1 ⇐⇒ λ = 1. By the reasoning of subSection 2.1.2, this is sufficient for an
attracting solution.
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Im(·)

Re(·)
qj→j

qj→×0
1−1

i

−i

•×

×

×

Gershgorin circle

Figure A.11.: The union of all Gershgorin circles of the matrix Q(Γ). Apart from the
(non-degenerate) eigenvalue λ = 1, all eigenvalues have an absolute value
strictly less than one, resulting in the fact that all (discrete) trajectories
qn(q0) = (Q(Γ))n q0 converge to the stationary distribution.
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B. Appendix B: Lindblad equation

B.1. The time average and the ensemble average

From [KM04] we know that for almost all ω ∈ U the time average

Θ∞(ω |ρ0) := ⟨Θ(t, ω |ρ0)⟩t≥0 := lim
T→∞

1

T

∫︂ T

0
dt Θ(t, ω |ρ0) (B.1)

exists and it commutes with the ensemble average

⟨⟨Θ(t, ω |ρ0)⟩t≥0⟩ω∈U = ⟨⟨Θ(t, ω |ρ0)⟩ω∈U ⟩t≥0. (B.2)

Here Θ∞(ω |ρ0) is a random variable whose expectation value is the time average of
ρ(t |ρ0).

B.2. Auxiliary calculations for Section 3.8.1

The form of the (conditional) time evolution operator

With respect to a suitable basis, we can write the conditional Hamiltonian in the Jordan
normal form, that is

Hc =

M⨁︂
m=1

Jm =

⎛⎜⎝J1 . . .
JM

⎞⎟⎠ , with

Jm =

⎛⎜⎜⎜⎝
δm 1

. . . . . .
δm 1

δm

⎞⎟⎟⎟⎠ ∈ Csm×sm , with
M∑︂
m=1

sm = N.

(B.3)

The eigenvalues of Hc are then given by {δ1, . . . , δM}
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This makes it easier to compute matrix exponentials, in particular the conditional time
evolution operator

e−iHc t =

⎛⎜⎝e−i J1 t 0
. . .

0 e−i JM t

⎞⎟⎠ =

M⨁︂
m=1

e−i Jm t =

M⨁︂
m=1

e−i δm t

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 t1

1! . . . t(sm−1)

(sm−1)!

1 t1

1!
t(sm−2)

(sm−2)!

. . . . . .
...

. . . t1

1!
1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(B.4)

When applying the conditional time evolution to a density matrix Θs, we get

Uτ (Θs) =

⎛⎜⎝e−i J1 τ 0
. . .

0 e−i JM τ

⎞⎟⎠
⎛⎜⎜⎝

Θ̂
(1,1)

. . . Θ̂
(1,M)

...
...

Θ̂
(M,1)

. . . Θ̂
(M,M)

⎞⎟⎟⎠
⎛⎜⎝ei JT

1 τ 0
. . .

0 ei JT
M τ

⎞⎟⎠ =

=

⎛⎜⎜⎝
e−i J1 τ Θ̂(1,1) ei JT

1 τ . . . e−i J1 τ Θ̂(1,M) ei JT
M τ

...
...

e−i JM τ Θ̂
(M,1) ei JT

1 τ . . . e−i JM τ Θ̂
(M,M) ei JT

M τ .

⎞⎟⎟⎠
(B.5)

When we look at the components
(︂m−1∑︁
µ=1

sµ + j,
n−1∑︁
ν=1

sν + k
)︂

of Equation (B.5), we get:

(Uτ (Θs))(︂m−1∑︁
µ=1

sµ+j,
n−1∑︁
ν=1

sν+k

)︂ =
(︂
e−i Jm τ Θ̂

(m,n) ei JT
n τ
)︂
j k

=

=

sm∑︂
α=1

sn∑︂
β=1

(︁
e−i Jm t

)︁
j α⏞ ⏟⏟ ⏞

e−i δm t t(α−j)

(α−j)!
1{j≤α}

(︂
Θ̂
m,n
)︂
αβ

(︂
ei JT

m t
)︂
β k⏞ ⏟⏟ ⏞

ei δn t t(β−k)

(β−k)!
1{k≤β}

=

=

sm∑︂
α=j

sn∑︂
β=k

ei (δ∗n−δm) t⏞ ⏟⏟ ⏞
ei (Rn−Rm) t e−(In+Im) t

t(α−j)

(α− j)!

t(β−k)

(β − k)!

(︂
Θ̂

(m,n)
)︂
α,β

.

(B.6)
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Auxiliary Calculations for Equation (3.52)

When Θs ∈ Ωρ0
is a state in the quantum trajectory that is not a possible trapping state,

then

lim
τ→∞

Tr[Uτ (Θs)] ·
∫︂ τ

0

Ut(Θs)

Tr[Ut(Θs)]
d t = 0. (B.7)

Proof. It suffices to show that the left hand side of Equation (B.7) is a positive semi-
definite matrix with vanishing trace. To see this, we take an arbitrary vector ψ ∈ CN and
compute

⟨ψ |Ut(Θs)ψ⟩ =
⟨︂
eiH

†
c t ψ |Θs eiH

†
c t ψ

⟩︂
≥ 0, (B.8)

where we used the fact that the density matrix Θs is positive semi-definite. Since
multiplying by a positive scalar and integrating over the interval [0, τ ] does not change
positivity, we have shown the first part of our claim.
For the second part we use the Jordan normal form of Hc (see Equation (B.3))
We recall that for non-possible trapping states Θs the trace Ut(Θs) vanishes as t tends to
infinity (see the algorithm for the unravelling in Section 3.3.1, 2 ii)) and compute

0
Θs is no possible
============

trapping state
lim
t→∞

Tr[Ut(Θs)] = lim
t→∞

M∑︂
m=1

sm∑︂
j=1

(Uτ (Θs))(︂m−1∑︁
µ=1

sµ+j,
m−1∑︁
µ=1

sµ+j

)︂
⏞ ⏟⏟ ⏞(︂

e−i Jm τ Θ̂
(m,m) ei JT

m τ
)︂
j j

=

= lim
t→∞

M∑︂
m=1

sm∑︂
j=1

sm∑︂
α,β=j

e−2 Im t t(α−j)

(α− j)!

t(β−j)

(β − j)!

(︂
Θ̂

(m,m)
)︂
α,β

(B.9)

This means that whenever the imaginary part of an eigenvalue of the conditional Hamil-
tonian equals zero, then the corresponding block of Θs must vanish

Im [δm] = 0 =⇒ Θ̂
(m,m)

= 0sm×sm . (B.10)

When we now take the trace over the left side of Equation (B.7), we get

lim
τ→∞

Tr[Uτ (Θs)] · Tr
[︃∫︂ τ

0

Ut(Θs)

Tr[Ut(Θs)]
d t
]︃

⏞ ⏟⏟ ⏞
τ

(B.10)
===== 0,

(B.11)
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since multiplying Equation (B.9) by a factor of τ does not influence the limiting behavior.

B.3. The need for a finite state space

Now that we have derived a formula for the stationary solution of the Lindblad equation,
which is valid when certain assumptions are satisfied, we will look at these assumptions
and check whether they can be dropped.
One crucial assumptions was the need for a finite state space |S| <∞. When dropping
this assumption, the formula does no longer hold true in general, as the following counter-
example shows:

V1 =

(︄
1 0
0 1√

2

)︄
, V2 =

(︃
0 1/2
0 1/2

)︃
, Λ =

2∑︂
k=1

γkV
†
k Vk =

(︃
γ1 0

0 γ1+γ2
2

)︃
(B.12)

For γ1 = γ2, the set of possible states appearing in the Markov chain can be computed to

Ωρ0
=
{︂
ρ0, Θsk : k ∈ N0

}︂
(B.13)

with

Θs2 k
=

1
ρ22(0)
2k

+ ρ11(0)

(︄
ρ11(0)

ρ11(0)

2k/2
ρ21(0)

2k/2
ρ22(0)
2k

)︄
,

Θs2 k+1
=

1
1
2k

+ 1

(︃
1 1

2k/2
1

2k/2
1
2k

)︃
.

(B.14)

The probability for applying the Lindblad operators V1 and V2 is given by

P(πk+1 = 1 |Θk) = 1− γ2
γ1 + γ2

·
(Θn)22

2k (Θn)11 + (Θn)22

P(πk+1 = 2 |Θk) =
γ2

γ1 + γ2
·

(Θn)22
2k (Θn)11 + (Θn)22

.

(B.15)

Then, by the lemma of Borel-Cantelli, the probability for applying the operator V2
infinitely often is zero (for ρ11(0) ̸= 0), since

∞∑︁
k=0

P(πk+1 = 2 |Θk) <∞.

Hence we know almost surely that from a certain time step k ∈ N onward only the
Lindblad operator V1 will be applied (so the system will eventually follow the black arrow
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of Figure B.1). This means that all states are transient states and hence no stationary
distribution for this Markov chain exists.

ρ0

Θs1 Θs3 Θs2 k+1
Θs2 k+3

. . .

Θs2 Θs4 Θs2 k
Θs2 k+2

. . .

q1(0) q1(1) q1(k − 1) q1(k)

q ρ
01 (0)

q
ρ0
1 (1) q

ρ0
1 (2) q

ρ0
1 (k − 1) q

ρ0
1 (k)

q
ρ 0

2
(0
)

qρ
0

2
(1
)

q ρ
02
(2)

q ρ
02 (k)

q2(1)

q2(k)

q2(0)
. . .

. . .

Figure B.1.: State transition network for the the Lindblad operators of example B.12. All
states are transient states and the systemwill eventually follow only the black
transitions, indicating the application of operator V1.

Clearly, this can not happen, for finitely many states. The fact that there is no stationary
solution of the corresponding Markov chain in the previous example, does not mean, that
no stationary solution for the original Lindblad equation exist. And indeed, the stationary

solution is given by ρ∞ =

(︃
1 0
0 0

)︃
The reason for this discrepancy is the fact that the sequence of states in the dis-
crete quantum trajectory (Θn)n∈N converges, while the classical states are unit vectors
(en)n∈N ∈ l2(N), which do not converge ( with en = (0, . . . , 0, 1, 0, . . . )).
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B.4. Example of a state transition network with an infinite state
space, where the number of recurrent states is finite

Let the Hamiltonian and the Lindblad operators be given by

H =

⎛⎜⎜⎝
E1 0 0 0
0 E2 0 0
0 0 E3 0
0 0 0 E3

⎞⎟⎟⎠ , V1 =

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
1 0 0 0
0 1 0 0

⎞⎟⎟⎠ , V2 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

⎞⎟⎟⎠ ,

V3 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞⎟⎟⎠ , Λ =

⎛⎜⎜⎝
2 γ1 0 0 0
0 2 γ1 0 0
0 0 γ2 0
0 0 0 γ3

⎞⎟⎟⎠ ,

Hc =

⎛⎜⎜⎝
E1 − iγ1 0 0 0

0 E2 − iγ1 0 0

0 0 E3 − iγ2
2 0

0 0 0 E3 − iγ3
2

⎞⎟⎟⎠ .

(B.16)

The set of possible states appearing in the Markov consists of the five states

Ωρ0
= {Θs1 = ρ0, Θs2 , Θs3 , Θs4 , Θs5} . (B.17)

with
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Θs1 =

⎛⎜⎜⎝
ρ11(0) ρ12(0) ρ13(0) ρ14(0)
ρ21(0) ρ22(0) ρ23(0) ρ24(0)
ρ31(0) ρ32(0) ρ33(0) ρ34(0)
ρ41(0) ρ42(0) ρ43(0) ρ44(0)

⎞⎟⎟⎠ ,

Θs2(τ) =

(︄
1
2

ρ11(0) + ρ22(0)

)︄⎛⎜⎜⎝
ρ22(0) ρ21(0) eiτ(E1−E2) ρ21(0) eiτ(E1−E2) ρ22(0)

ρ12(0) e−iτ(E1−E2) ρ11(0) ρ11(0) ρ12(0) e−iτ(E1−E2)

ρ12(0) e−iτ(E1−E2) ρ11(0) ρ11(0) ρ12(0) e−iτ(E1−E2)

ρ22(0) ρ21(0) eiτ(E1−E2) ρ21(0) eiτ(E1−E2) ρ22(0)

⎞⎟⎟⎠ ,

Θs3 =

(︄
1
2

ρ11(0) + ρ22(0)

)︄⎛⎜⎜⎝
ρ11(0) ρ12(0) ρ12(0) ρ11(0)
ρ21(0) ρ22(0) ρ22(0) ρ21(0)
ρ21(0) ρ22(0) ρ22(0) ρ21(0)
ρ11(0) ρ12(0) ρ12(0) ρ11(0)

⎞⎟⎟⎠ ,

Θs4 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞⎟⎟⎠ , and Θs5 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎞⎟⎟⎠
(B.18)

and the transition probabilities

qs1→s1 = 0,

qs1→s2 = ρ11(0) + ρ22(0),

qs1→s3 = 0,

qs1→s4 = ρ33(0),

qs1→s5 = ρ44(0),

qs2→s1 = 0,

qs2→s2 = 0,

qs2→s3 =
1

2
,

qs2→s4 =
1

2

ρ11(0)

ρ11(0) + ρ22(0)
,

qs2→s5 =
1

2

ρ22(0)

ρ11(0) + ρ22(0)
,

qs3→s1 = 0,

qs3→s2 =
1

2
,

qs3→s3 = 0,

qs3→s4 =
1

2

ρ22(0)

ρ11(0) + ρ22(0)
,

qs3→s5 =
1

2

ρ11(0)

ρ11(0) + ρ22(0)
,

qs4→s1 = 0,

qs4→s2 = 0,

qs4→s3 = 0,

qs4→s4 = 0,

qs4→s5= 1,

qs5→s1 = 0,

qs5→s2 = 0,

qs5→s3 = 0,

qs5→s4= 1,

qs5→s5 = 0.
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This results in the following state transition network, which consists of an infinite number
of states:

Θs1 = ρ0

{Θs2(τ) : τ ≥ 0} Θs3

Θs4 Θs5

q s1
→s

2

qs1→s4 qs1→s5

qs2→s3

qs3→s2

qs2→s4 qs2→
s5qs3→

s4
qs3→s5

qs4→s5 = 1

qs5→s4 = 1

Figure B.2.: State transition network for a system of dimension N = 4, with an infinite
number of states due to the set of states {Θs2(τ) : τ ≥ 0}, but only finitely
many states within a minimal absorbing set B = {Θs4 ,Θs5}, between which
every quantum trajectory oscillates.

Since the number of states in each quantum trajectory remains finite, the stationary
solution can still be computed, according to:
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ρ∞(ρ0) =
∑︂
B∈B

P(B |ρ0)
∑︂
s∈B

q∞(Θs |B) ⟨τ · ⟨Θs(t)⟩t∈[0,τ ]⟩τ ∼ f(· |Θs)

Tr[. . . ]

B={B1}=
==========
{{Θs4 ,Θs5}}

P(B1 |ρ0)⏞ ⏟⏟ ⏞
1

∑︁
i∈{4, 5}

1
2⏟ ⏞⏞ ⏟

q∞(Θsi |B1) τ si Θsi

Tr[. . . ]

=

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 γ2

γ2+γ3
0

0 0 0 γ3
γ2+γ3

⎞⎟⎟⎠ .

B.5. The limit of two fractions

Lemma 47. When the number of quantum jumps in a quantum trajectory is not bounded,
then the time point tJ(T ) of the latest time event divided by the time T converges in
probability to one.

Proof. Fix ϵ > 0, then we have:

P
(︃⃓⃓⃓⃓
tJ(T )

T
− 1

⃓⃓⃓⃓
> ϵ

)︃
= P

(︁
T − tJ(T ) > ϵT

)︁
= Tr[Uϵ T (ΘJ(T ))]

T→∞−−−−→ 0, (B.19)

where we used the fact that ΘJ(T ) can never be a possible trapping state, since the number
of quantum jumps is by assumption not bounded, so the quantum trajectory will almost
surely jump at some point.

B.6. Auxiliary calculations for Section 3.1

Let the quantum state of the bath and the time evolution operator be given by

ρB =

DB∑︂
β=1

λβ |ϕβ⟩ ⟨ϕβ| ∈ CDB×DB . (B.20)

Then we get for the time evolution:
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ρS(t) = TrB
[︂
U(t) (ρS(0)⊗ ρB)U(t)†

]︂

=

DB∑︂
α=1

(︂
1DS

⊗ ⟨ϕα|
)︂
U(t)

⎛⎜⎜⎜⎜⎝ρS(0)⊗

ρB⏟ ⏞⏞ ⏟
DB∑︂
β=1

λβ |ϕβ⟩ ⟨ϕβ|

⎞⎟⎟⎟⎟⎠
⏞ ⏟⏟ ⏞√︁

λβ

(︂
1DS

⊗
⃓⃓
ϕβ

⟩︁)︂
ρS(0)

(︂
1DS

⊗
⟨︁
ϕβ

⃓⃓)︂√︁
λβ

U†(t)
(︂

1DS
⊗ |ϕα⟩

)︂

=

DB∑︂
α,β=1

√︁
λβ

(︂
1DS

⊗ ⟨ϕα|
)︂
U(t)

(︂
1DS

⊗ |ϕβ⟩
)︂

⏞ ⏟⏟ ⏞
Wα,β(t)

ρS(0)
(︂

1DS
⊗ ⟨ϕβ|

)︂
U(t)†

(︂
1DS

⊗ |ϕα⟩
)︂

⏞ ⏟⏟ ⏞[︃(︂
1DS

⊗⟨ϕα|
)︂
U(t)

(︂
1DS

⊗
⃓⃓
ϕβ

⟩︁)︂]︃†√︁
λβ

=

DB∑︂
α,β=1

Wα,β(t)ρS(0)
(︂
Wα,β(t)

)︂†
,

with

Wα,β(t) =
√︁
λβ

(︂
1DS

⊗ ⟨ϕα|
)︂
U(t)

(︂
1DS

⊗ |ϕβ⟩
)︂
∈ CDS×DS

(B.21)
For the Kraus-operators Wα,β(t) the following relation holds:

146



DB∑︂
α,β=1

Wα,β(t)
†Wα,β(t)

=

DB∑︂
α,β=1

√︁
λβ

(︂
1DS

⊗ ⟨ϕβ|
)︂
U(t)†

(︂
1DS

⊗ |ϕα⟩
)︂(︂

1DS
⊗ ⟨ϕα|

)︂
⏞ ⏟⏟ ⏞

1DS
⊗|ϕα⟩⟨ϕα|

U(t)
(︂

1DS
⊗ |ϕβ⟩

)︂√︁
λβ

=

DB∑︂
β=1

λβ

(︂
1DS

⊗ ⟨ϕβ|
)︂
U(t)†

(︂
1DS

⊗

1DS⏟ ⏞⏞ ⏟
DB∑︂
α=1

|ϕα⟩ ⟨ϕα|
)︂
U(t)⏞ ⏟⏟ ⏞

1DS

(︂
1DS

⊗ |ϕβ⟩
)︂

=

DB∑︂
β=1

λβ 1DS
⟨ϕβ |ϕβ⟩⏞ ⏟⏟ ⏞

1

=

⎛⎝DB∑︂
β=1

λβ

⎞⎠
⏞ ⏟⏟ ⏞

1

1DS
.

(B.22)
Let

(︁
Fi
)︁
i∈{1,...,D2

S}
be an ordered basis of CDS×DS with

FD2
S
=

1√
DS

1DS
and

Wα,β(t) =

D2
S∑︂

i=1

Fi Tr[FiWα,β(t)].

Then we can write ρS(t) as follows
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ρS(t) =

DB∑︂
α,β=1

Wα,β(t)⏞ ⏟⏟ ⏞
D2
S∑︁

i=1
Fi Tr[FiWα,β(t)]

ρS(0)
(︂
Wα,β(t)

)︂†
⏞ ⏟⏟ ⏞

D2
S∑︁

j=1
F †
j Tr[Fj Wα,β(t)]

=

DS∑︂
i,j=1

⎛⎝ DB∑︂
α,β=1

Tr[FiWα,β(t)]Tr[FjWα,β(t)]

⎞⎠
⏞ ⏟⏟ ⏞

ci j(t)

Fi ρS(0)F
†
j ,

(B.23)

where the coefficient matrix (cij(t))i,j∈{1,...,D2
S}

is self-adjoint and positive semi-definite:

cij(t) = cji(t) and

⟨v, cv⟩ =
D2

S∑︂
i,j=1

vi cij(t) vj

=

DB∑︂
α,β=1

⎛⎜⎝Tr

⎡⎣D2
S∑︂

i=1

viFiWα,β(t)

⎤⎦ Tr

⎡⎣D2
S∑︂

j=1

vjFjWα,β(t)

⎤⎦
⎞⎟⎠

⏞ ⏟⏟ ⏞⃓⃓⃓
Tr

⎡⎣D2
S∑︁

j=1
vjFj Wα,β(t)

⎤⎦⃓⃓⃓2
≥ 0,

for all v ∈ CD
2
S

(B.24)

In order to compute the generator of the semi-group, we need to compute the time
derivative at t = 0.
with

ai j :=
d
dt
cij(t)

⃓⃓⃓
t=0

= c′ij(t = 0) = lim
ϵ→0+

cij(ϵ)− δi,D2
S
δj,D2

S
N

ϵ
and

F :=
1√
N

D2
S−1∑︂
i=1

aiD2
S
Fi

(B.25)

we get:
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L(ρ(t)) = d
d t

ρ(t)
⃓⃓⃓
t=0

= lim
ϵ→0+

ρ(ϵ)− ρ(0)

ϵ
lim
ϵ→0+

D2
S∑︁

i,j=1
cij(ϵ)Fi ρ0 F

†
j − ρ0

ϵ

= aD2
S D

2
S
ρ0 +

DS−1∑︂
i,j=1

ai j Fi ρ0 F
†
j

+

⎛⎜⎜⎜⎜⎜⎝
(︄

1√
DS

DS−1∑︂
i=1

aiD2
S
Fi

)︄
⏞ ⏟⏟ ⏞

F

ρ0 + ρ0

⎛⎝ 1√
DS

DS−1∑︂
j=1

aD2
S j
F †
j

⎞⎠
⏞ ⏟⏟ ⏞

F †

⎞⎟⎟⎟⎟⎟⎠
⏞ ⏟⏟ ⏞

(F−F†)ρ0−ρ0 (F−F†)
2

+
(F+F†)ρ0+ρ0 (F+F†)

2

= −i

⎡⎢⎢⎢⎣
(︃
F − F †

−2 i

)︃
⏞ ⏟⏟ ⏞

H

, ρ

⎤⎥⎥⎥⎦+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︃
aD2

S D
2
S

2
+
F + F †

2

)︃
⏞ ⏟⏟ ⏞

=:G

, ρ

⎫⎪⎪⎪⎬⎪⎪⎪⎭+

DS−1∑︂
i,j=1

ai j Fi ρ0 F
†
j

= −i[H,ρ(t)] +
DS−1∑︂
i,j=1

aij Fi ρ(t)F
†
j +

{︂(︃
aD2

S ,D
2
S

1DS
+
F † + F

2

)︃
⏞ ⏟⏟ ⏞

G

,ρ
}︂
.

(B.26)
For the time evolution to be trace preserving, the trace of L(ρ) must vanish:
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0
!
== Tr[L(ρ(t))] = 2Tr[Gρ(t)] +

DS−1∑︂
i,j=1

aij Tr[Fi ρ(t)F
†
j ]⏞ ⏟⏟ ⏞

Tr[F †
j Fi ρ(t)]

= Tr

⎡⎢⎢⎢⎢⎣
⎛⎝2G+

DS−1∑︂
i,j=1

aij F
†
j Fi

⎞⎠
⏞ ⏟⏟ ⏞

0

ρ(t)

⎤⎥⎥⎥⎥⎦
=⇒ G =

1

2

DS−1∑︂
i,j=1

aij F
†
j Fi.

=⇒ L(ρ(t)) = −i[H,ρ(t)] +
DS−1∑︂
i,j=1

(aij)⏞⏟⏟⏞
D2
S
−1∑︁

k=1
Sik γk (S†)kj

(︂
Fi ρ(t)F

†
j +

{︂
F †
j Fi,ρ

}︂)︂

= −i[H,ρ(t)]

+

D2
S−1∑︂
k=1

γk

⎛⎜⎜⎜⎜⎜⎜⎝
⎛⎝D2

S−1∑︂
i=1

Fi Sik

⎞⎠
⏞ ⏟⏟ ⏞

Vk

ρ(t)

⎛⎝D2
S−1∑︂
j=1

F †
j S

†
kj

⎞⎠
⏞ ⏟⏟ ⏞

V †
k

+

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎝
D2

S−1∑︂
j=1

F †
j S

†
kj⏞ ⏟⏟ ⏞

V †
k

·
D2

S−1∑︂
i=1

Fi Sik⏞ ⏟⏟ ⏞
Vk

⎞⎟⎟⎟⎟⎟⎟⎠ , ρ(t)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎟⎠
= −i[H,ρ(t)] +

D2
S−1∑︂
k=1

γk

(︂
Vk ρ(t)V

†
k +

{︂
V †
k Vk, ρ

}︂)︂
.

(B.27)
In the last step, we used the fact that the coefficient matrix (aij)i,j∈{1,...,D2

S−1} is positive
semi-definite, hence there exists a unitary coefficient matrix (Sij)i,j∈{1,...,D2

S−1} and non-

negative eigenvalues (γk)k∈{1,...,D2
S−1} such that aij =

D2
S−1∑︁
k=1

Sikγk (S
†)kj .
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C. Appendix C : Nomenclature

S = (Ω, E , γq ) Directed, weighted graph
with weight function γ:E→R≥ 0

q:E→[0,1]

p0 =
(︁
p
(1)
0 , . . . , p

(|Ω|)
0

)︁
Initial state

q0 =
(︁
q
(1)
0 , . . . , q

(|Ω|)
0

)︁
for a continuous-time

discrete-time
Markov chain

p(t |p0) =
(︁
p(1)(t |p0), . . . , p

(|Ω|)(t |p0)
)︁

probability vector of the
q(n | q0) =

(︁
q(1)(n | q0), . . . , q(|Ω|)(n | q0)

)︁ continuous-time
discrete-time at time t≥0

n∈N ,
given the initial state p0

q0
.

p∞(p0) =
(︁
p
(1)
∞ (p0), . . . , p

(|Ω|)
∞ (p0)

)︁
The stationary solution of the

q∞(q0) =
(︁
q
(1)
∞ (q0), . . . , p

(|Ω|)
∞ (p0)

)︁ continuous-time
discrete-time Markov chain

corresponding to the
initial state p0

q0
.

Q transition matrix for a
discrete-time Markov chain

Q(t) transition matrix for a
continuous-time
Markov chain

Γ generator of the transition
matrix for a continuous-time

Markov chain
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γj→i probability rate of a continuous-time
Markov chain between the states

j ∈ Ω and the state
i ∈ Ω

γi→ :=
∑︁
j∈Ω
j ̸=i

γi→j The sum of the

outgoing rates
from state i ∈ Ω

qi→ :=
∑︁
j∈Ω
j ̸=i

qi→j The sum of the

outgoing probabilities
from state i ∈ Ω

⟨⟩t≥0 := lim
T→∞

1
T

∫︁ T
0 dt time average

U set of all
possible unravellings

⟨⟩ω∈U :=
∫︁
U dP(ω) ensemble average

gcd greatest common divisor

aλ and gλ algebraic and geometric
multiplicity of the

eigenvalue λ.

Subnetworks see: definition 4

Perm(J) the set of all permutation of the set J

Fix(π) the set of all fixed points
of the permutation π
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Pow (Ω) The power set of the set Ω

hλ,s := hλ,s(A) ∈ The generalized eigenvector
kern (A− λ1)s\kern (A− λ1)s−1 to the eigenvalue λ

of the matrix A
of step s ∈ N

in-trees see definition 34

in-forests see definition 35

T (→ j,S) and
F(→ J,S) see definition 36

A
Tr[] :=

A
Tr[A] for every matrix A

(Θn)n∈N discrete quantum trajectory

H Hamiltonian operator

{Vk : k ∈ I} set of Lindblad
operators with |I| <∞

Λ :=
∑︁
k∈I

γk V
†
k Vk

Hc := H − i
2 Λ conditional Hamiltonian

not self-adjoint, H†
c ̸= Hc

determines the time evolution
between two quantum jumps

Θn := Θ(ω, tn) n-th state in the
discrete quantum trajectory

Ut(Θ) := e−i tHc Θ
(︁
e−i tHc

)︁† time evolution
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without normalization

Θ(t) := Ut(Θ)
Tr[... ] time evolution according to

the conditional Hamiltonian Hc.⋃︁
i∈I
̇ Ai disjoint union of sets, that is⋃︁

i∈I
with Ai ∩Aj = ∅, for i ̸= j.
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