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Abstract
We present completions of mock theta functions to harmonic weak Maass forms of
weight 1/2 and algebraic formulas for the coefficients of mock theta functions. We
give several harmonic weak Maass forms of weight 1/2 that have mock theta functions
as their holomorphic part. Using these harmonic weak Maass forms and the Millson
theta lift, we compute finite algebraic formulas for the coefficients of the appearing
mock theta functions in terms of traces of singular moduli.

Keywords Mock theta function · Harmonic weak Maass form · Theta lift · Traces of
singular moduli
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1 Introduction

Mock theta functions first appeared in Ramanujan’s last letter to his friend Hardy in
1920. In this letter he told Hardy that he had discovered a new class of functions
which he called mock theta functions. Ramanujan did not give any definition of what
a mock theta function should be, but listed 17 examples, divided into four groups of
orders 3, 5, 7 and 10, respectively, given as q-hypergeometric series, and stated various
identities between them and some analytical properties. For example, the four mock
theta functions of order 3 that Ramanujan defined in his letter are
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1030 D. Klein, J. Kupka

f (q) :=
∞∑

n=0

qn2

(−q; q)2n
, φ(q) :=

∞∑

n=0

qn2

(−q2; q2
)

n

,

ψ(q) :=
∞∑

n=1

qn2

(
q; q2

)
n

, χ(q) :=
∞∑

n=0

qn2 (−q; q)n(−q3; q3
)

n

,

where we have used the standard notation

(
a; qk

)

n
:=

n−1∏

m=0

(
1 − aqmk

)
.

Since then many mathematicians (especially Watson in his work [17]) have dealt
with Ramanujan’s 17 functions, and have proven many of the identities he had given.
A number of 16 further mock theta functions were later found in Ramanujan’s Lost
Notebook (see, e.g., [5,15]), including seven functions of order 6. Other mathemati-
cians have also discovered more mock theta functions that had not been considered
before: In [9] Gordon and McIntosh found functions of order 8 while McIntosh also
studied mock theta functions of order 2 in [13].

Articles that offer a good first overview on this topic are, for example, [8,18]. A
more detailed survey over all mock theta functions of the different orders, including
their definitions, relations and transformation formulas is provided in [10]. In this
paper we will use the standard definitions of the mock theta functions as given in [10].

One major breakthrough in a deeper understanding of mock theta functions came
in 2002 when Sander Zwegers found a connection between mock theta functions and
harmonic weakMaass forms of weight 1/2. He proved that a mock theta function could
be completed to a harmonic weak Maass form of weight 1/2 by multiplying it by a
suitable power of q and subsequently adding a certain non-holomorphic function to
it. Zwegers considered these completions for the fifth- and seventh-order mock theta
functions in his PhD thesis [20], and for two of the third-order mock theta functions in
[19]. Moore followed the work of Zwegers and found transformation laws for mock
theta functions of order 10 and their relation to harmonic weak Maass forms in [14].
Though Ramanujan had not explained what the order of a mock theta function should
be, it turned out that the order is related to the level of the corresponding Maass form.

We will present such completions to a harmonic weak Mass form of weight 1/2 for
22 different mock theta functions of orders 2, 3, 6 and 8. For example, we will show
for the sixth-order mock theta function

σ(q) :=
∞∑

n=0

q
1
2 (n+1)(n+2) (−q; q)n(

q; q2
)

n+1

that the function q− 1
12 σ(q) is the holomorphic part of a harmonic weak Maass form

of weight 1/2 for the subgroup
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Completions and algebraic formulas for mock theta functions 1031

{(γ, φ) ∈ Mp2(Z) | γ ∈ �(6)}

of the metaplectic group Mp2(Z), where �(6) is the principal congruence subgroup
of level 6.

A further example of what we will prove is that, if

F(τ ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f0(τ )

f1(τ )

f2(τ )

f3(τ )

f4(τ )

f5(τ )

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

:=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
8 q− 1

12 σ(q)

2 q
1
4 ρ(q)

q− 1
48 φ(q

1
2 )

q− 1
48 φ(−q

1
2 )

√
2 q− 3

16 ψ(q
1
2 )

√
2 q− 3

16 ψ(−q
1
2 )

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

with q := e2π iτ , τ ∈ H, and the mock theta functions σ , ρ, φ and ψ of order 6, then
the function

F̃(τ ) :=√
2 f0(τ ) [−(e2 − e22) − (e10 − e14)] + 2 f1(τ ) [−(e6 − e18)]

+ ( f2(τ ) + f3(τ )) [(e1 − e23) − (e7 − e17)]
+ ( f2(τ ) − f3(τ )) [(e5 − e19) − (e11 − e13)]
+ √

2 ( f4(τ ) + f5(τ )) (e3 − e21) + √
2 ( f4(τ ) − f5(τ )) [−(e9 − e15)],

where er are the standard basis vectors of the group algebraC[Z/24Z], is the holomor-
phic part of a harmonicweakMaass formofweight 1/2 for the dualWeil representation.
This result opens up the possibility to use the powerful tool of theta lifts between spaces
of modular forms.

The Millson theta lift, which maps weight 0 to weight 1/2 harmonic weak Maass
forms, uses theMillson theta function as an integration kernel and was studied in great
detail by Alfes in her thesis [1] and by Alfes-Neumann and Schwagenscheidt [2]. In
particular, Alfes-Neumann found formulas for the coefficients of the holomorphic
part of the Millson theta lift in terms of traces of singular moduli. By writing the
harmonic weak Maass form of weight 1/2 containing the mock theta functions as the
Millson theta lift of a suitable weakly holomorphic modular form, we can derive finite
algebraic formulas for the coefficients of the considered mock theta functions in terms
of traces of singular moduli. Continuing our example from above, we will prove that
the coefficients aσ (n) of the mock theta function σ of order 6 are given by

aσ (n) = − i

4
√
48n − 4

(
tr+e(6),1

(4 − 48n, 2) − tr−e(6),1
(4 − 48n, 2)

)
,
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where the trace functions tr+e(6),1
and tr−e(6),1

are given as in (2.4), and e(6),1 ∈ M !
0(12)

is defined as

e(6),1(z) :=
(

η(z)η(3z)

η(4z)η(12z)

)2

− 16

(
η(4z)η(12z)

η(z)η(3z)

)2

with η(τ) = q
1
24

∏∞
n=1(1−qn) denoting the Dedekind eta function. Similar formulas

for the order 3 mock theta functions f and ω (see, e.g., [7] for its definition) have
already been proven by Bruinier and Schwagenscheidt in [7].

This paper is organized as follows. We will start with the necessary definitions,
notations and results in Sect. 2, followed by the results on the completions and formulas
for the coefficients of the mock theta functions in Sect. 3. We will consider mock theta
functions of different orders separately and in Sect. 3.1, those of order 6, will be
worked out in detail. As the ideas and strategies for the other orders are very similar
to the case of order 6, the subsections corresponding to the other orders only contain
known results and no proofs.

Most of the results presented in this paper first appeared in our Master’s theses [12]
and [11] where they also have been proven in more detail.

2 Preliminaries

2.1 Lattices, theWeil representation and theta functions

Let N > 0 be an integer. We consider the lattice L = Z with the quadratic form
n �→ Nn2. The discriminant group D := L ′/L can then be identified with Z/2NZ

together with the Q/Z-valued quadratic form r �→ r2
4N (mod Z). The associated

bilinear form on D is (r , r ′) = rr ′
2N (mod Z).

For r ∈ L ′/L we define er to be the standard basis vectors of the group algebra
C[L ′/L] equipped with the standard inner product 〈·, ·〉 satisfying 〈er , er ′ 〉 = δr ,r ′ .
The associated Weil representation ρL is defined on the generators T = (

( 1 1
0 1 ), 1

)
and

S = (
( 0 −1
1 0 ),

√
τ
)
of the metaplectic group Mp2(Z) by

ρL(T )er = e
(
Q(r)

)
er and ρL(S)er = e(−1/8)√

2N

∑

r ′(2N )

e
( − (r , r ′)

)
er ′ , (2.1)

where e(z) = e2π i z for z ∈ C and
√

z = z
1
2 always denotes the principal branch of the

square root. The dual Weil representation corresponds to the lattice L with quadratic
form −Q and will be denoted by ρL .

Let N be as above and a ∈ Z. For τ ∈ H we define the unary theta function θN of
level N as

θN (τ ) :=
∑

a (2N )

θN ,a(τ ) ea, where θN ,a(τ ) :=
∑

n≡a (2N )

n q
n2
4N =

∑

n≡a (2N )

n e2π iτ n2
4N .
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Completions and algebraic formulas for mock theta functions 1033

The definition of θN ,a depends only on a (2N ). If we consider the lattice above as
well as its associated Weil representation, then the vector valued theta function θN is
a holomorphic vector valued modular form of weight 3/2 for this Weil representation.
Thus, the function θN ,a is holomorphic on H and has the modular transformation
properties

θN ,a(τ + 1) = e

(
a2

4N

)
θN ,a(τ ) (2.2)

and

θN ,a

(
−1

τ

)
= τ

3
2

e
(− 1

8

)
√
2N

∑

k (2N )

e

(
− ak

2N

)
θN ,k(τ ). (2.3)

Let Q be an exact divisor of N , i.e. Q ∈ Z>0 with Q|N and gcd(N/Q, Q) = 1.
The Atkin–Lehner involution associated to Q is then defined by any matrix

W N
Q =

(
Qα β

Nγ Qδ

)
,

where α, β, γ, δ ∈ Z with det(W N
Q ) = Q. The map

W N
Q : Mk(N ) → Mk(N ), f �→ f |k W N

Q

does not depend on the choice of α, β, γ and δ and defines an involution. For two
exact divisors Q, Q′ of N we define the product

Q ∗ Q′ := Q · Q′

gcd(Q, Q′)2
,

which is compatible with the action of the Petersson slash operator, i.e. we have

f |k W N
Q∗Q′ = f |k W N

Q |k W N
Q′ .

The automorphism group Aut(Z/2NZ) acts on vector valued modular forms f =∑
r∈Z/2NZ

fr er for ρL or ρL by

f σ =
∑

r

fr eσ(r).

These automorphisms are all involutions, which are also called Atkin–Lehner invo-
lutions and correspond to exact divisors Q of N . The automorphism σQ corresponding
to Q is defined by the two equations

σQ(r) ≡ −r (2Q) and σQ(r) ≡ r (2N/Q)
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1034 D. Klein, J. Kupka

for an element r ∈ Z/2NZ.

2.2 Harmonic Maass forms and the �-operator

Vector valued harmonic weak Maass forms were first introduced by Bruinier and
Funke [6]. We will consider a more general setting than they have in their article.

Let V be a vector space over C of finite dimension d and let k ∈ 1
2Z with k �= 1.

For τ ∈ H we put u := Re(τ ) and v := Im(τ ), so that τ = u + iv. Moreover, recall
the weight k hyperbolic Laplace operator, given by

�k = −v2
(

∂2

∂u2 + ∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂v

)
.

Let ρ : Mp2(Z) → GL(V ) be a unitary representation of Mp2(Z) that satisfies
ρ(T )N = Id for some N ∈ N, let f : H → V be a twice continuously differentiable
function and � ⊆ Mp2(Z) a subgroup of finite index. We call f a harmonic weak
Maass form of weight k with respect to the representation ρ and the group � if

(1) f (γ τ) = φ(τ)2k ρ(γ, φ) f (τ ) for all (γ, φ) ∈ �,
(2) there is a constant C > 0 such that for any cusp s ∈ Q ∪ {∞} of � and (δ, φ) ∈

Mp2(Z) with δ∞ = s the function fs(τ ) := φ(τ)−2k ρ−1(δ, φ) f (δτ ) satisfies
fs(τ ) = O(eCv) as v → ∞ (uniformly in u),

(3) �k f = 0.

Condition (ii) says that f increases at most linear exponentially at all cusps of �.
The space of these forms is denoted by Hk,ρ(�). If we have � = Mp2(Z), we write

as an abbreviation Hk,ρ(Mp2(Z)) =: Hk,ρ . Further, let M !
k,ρ be its subspace of weakly

holomorphic modular forms, consisting of those forms in Hk,ρ that are holomorphic
on H.

A harmonicweakMaass form f ∈ Hk,ρ has a unique decomposition f = f ++ f −,
where f + is the holomorphic part and f − is the non-holomorphic part of f . If we
write the Fourier expansion of the holomorphic part of f ∈ Hk,ρ as

f +(τ ) =
∑

n∈Z
a+(n) e

(nτ

N

)
,

where a+(n) are vector valued coefficients, then the Fourier polynomial

P( f )(τ ) =
∑

n∈Z,n≤0

a+(n) e
(nτ

N

)

is called the principal part of f .
For f ∈ Hk,ρ the differential operator ξk is given by

ξk( f )(τ ) = 2i vk ∂

∂τ
f (τ ).
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Completions and algebraic formulas for mock theta functions 1035

The operator ξk is antilinear and defines a surjective mapping ξk : Hk,ρ → M !
2−k,ρ

with kernel given by M !
k,ρ . We can use ξk to define the subspace

H+
k,ρ := { f ∈ Hk,ρ | ξk( f ) ∈ S2−k,ρ},

so that H+
k,ρ consists of all harmonic weak Maass forms in Hk,ρ that are mapped to

cusp forms under ξk . The holomorphic part f + of f ∈ H+
k,ρ is sometimes also called

a mock modular form, and ξk f is called the shadow of f .
We will use the following lemma when we prove our formulas for the coefficients.

Lemma 2.1 [7, Lemma 2.3]. Let G be a harmonic weak Maass form of weight 2−k ∈
1/2 + Z for ρL or ρL whose principal part vanishes and which maps to a cusp form
under ξ2−k (or a holomorphic modular form if k = 1/2). Then G is a cusp form.

2.3 TheMillson theta lift and traces of CM-values

For a discriminant D < 0 and r ∈ Z with D ≡ r2 (4N ) denote by QN ,D,r the
set of integral binary quadratic forms Q(x, y) = ax2 + bxy + cy2 of discriminant
D = b2 − 4ac and satisfying N |a and b ≡ r (2N ). This set splits into the sets
of positive and negative definite quadratic forms, which we denote by Q+

N ,D,r and

Q−
N ,D,r , respectively. The group �0(N ) acts on both of these sets with finitely many

orbits and the number ωQ = 1
2 |�0(N )Q | is finite. For each Q ∈ Q+

N ,D,r the equation
Q(zQ, 1) = 0 is solved by the associated CM-point zQ = (−b + i

√|D|)/2a.
For a weakly holomorphic modular form F ∈ M !

0(N ) of weight 0 for �0(N ) we
define the two trace functions

tr+F (D, r) =
∑

Q∈Q+
N ,D,r /�0(N )

F(zQ)

ωQ
and tr−F (D, r) =

∑

Q∈Q−
N ,D,r /�0(N )

F(zQ)

ωQ
.

(2.4)

The Millson theta lift IM (F, τ ) of a weakly holomorphic modular form F ∈
M !

0(N ) is defined as an integral

IM (F, τ ) = i√
N

∫

�0(N )\H
F(z) �M (τ, z)

dxdy

y2
,

where we write z = x + iy and �M (τ, z) denotes the Millson theta function. The
theta function �M (τ, z) is �0(N )-invariant in the variable z and transforms like a
modular form of weight 1/2 for the dual Weil representation ρL in the variable τ . The
assignment F �→ IM (F, τ ) then defines a map IM : M !

0(N ) → H1/2,ρL . For more
details see [1] or [2]. As it turns out, the coefficients of the holomorphic part of the
Millson theta lift can be computed using the trace functions which we defined above.

123



1036 D. Klein, J. Kupka

Theorem 2.2 [1, Theorem 4.3.1] Let F ∈ H+
0 (N ) be a harmonic weak Maass form of

weight 0 for �0(N ), D < 0 a discriminant and r ∈ L ′/L with D ≡ r2 (4N ). Then the
coefficient of index (−D, r) of the holomorphic part of the Millson theta lift IM (τ, F)

is given by

i√−D

(
tr+F (D, r) − tr−F (D, r)

)
.

3 Completions and algebraic formulas for the coefficients of mock
theta functions

3.1 Mock theta functions of order 6

Wewant to complete sixth-order mock theta functions to harmonic weakMaass forms
and want to derive algebraic formulas for their coefficients. For this aim we will first
construct two different vector valued Maass forms, one containing the sixth-order
functions σ, ρ, φ and ψ and the other comprising μ, λ, ν and ξ . Their definitions,
and also the definitions of the mock theta functions of other orders, can be found
in [10]. Afterwards we will derive the transformation behaviour of its components.
Starting from our vectors we will further construct two vector valued harmonic weak
Maass forms for the dual Weil representation. We will then be able to obtain algebraic
formulas for the coefficients of the mentioned mock theta functions.

Definition 3.1 For τ ∈ H we define the vector valued functions

F(6),1(τ ) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
8 q− 1

12 σ(q)

2 q
1
4 ρ(q)

q− 1
48 φ(q

1
2 )

q− 1
48 φ(−q

1
2 )√

2 q− 3
16 ψ(q

1
2 )√

2 q− 3
16 ψ(−q

1
2 )

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

and F(6),2(τ ) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−√
2 q− 1

12 μ(q)

−q
1
4 λ(q)

−2 q− 1
48 ν(q

1
2 )

−2 q− 1
48 ν(−q

1
2 )

−√
8 q− 3

16 ξ(q
1
2 )

−√
8 q− 3

16 ξ(−q
1
2 )

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

with q = e2π iτ .

These two functions have the same modular transformation properties as the fol-
lowing lemma states.

Lemma 3.2 For j = 1, 2 and τ ∈ H the function F(6), j satisfies

F(6), j (τ + 1) =

⎛

⎜⎜⎜⎜⎜⎜⎝

ζ−1
12 0 0 0 0 0
0 i 0 0 0 0
0 0 0 ζ−1

48 0 0
0 0 ζ−1

48 0 0 0
0 0 0 0 0 ζ−3

16
0 0 0 0 ζ−3

16 0

⎞

⎟⎟⎟⎟⎟⎟⎠
F(6), j (τ ) (3.1)
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Completions and algebraic formulas for mock theta functions 1037

and

1√−iτ
F(6), j

(
− 1

τ

)
=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1√
3

0
√

2
3 0

0 0
√

2
3 0 − 1√

3
0

1√
3

√
2
3 0 0 0 0

0 0 0 1√
3

0 −
√

2
3√

2
3 − 1√

3
0 0 0 0

0 0 0 −
√

2
3 0 − 1√

3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

F(6), j (τ ) + R(6)(τ ), (3.2)

where

R(6)(τ ) :=
√
6i

τ

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

−√
8 J1(

6π i
τ

)

−2 J ( 6π i
τ

)

J1(
3π i
2τ )

K1(
3π i
τ

)
1√
2

J ( 3π i
2τ )√

2 K ( 3π i
τ

)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

and J , J1, K , K1 are given by

J (α) =
∫ ∞
0

e−αx2

cos h(αx)
dx, K (α) =

∫ ∞
0

e− 1
2 αx2

cos h
(
1
2αx

)

cos h(αx)
dx,

J1(α) =
∫ ∞
0

e−αx2
cos h

(
2
3αx

)

cos h(αx)
dx, K1(α) =

∫ ∞
0

e− 1
2 αx2

cos h
(
5
6αx

)
− cos h

(
1
6αx

)

cos h(αx)
dx .

Proof Let j = 1. The formula (3.1) follows directly if we insert τ + 1.
If we use the transformation formulas for σ(q), ρ(q), φ(−q) and ψ(−q) in [10],

p. 123 with α = 3π i/τ (which implies q = e−3π i/τ , β = −π iτ/3 and q1 = e2π iτ/6), as
well as the formulas for φ(q) and ψ(q) with α = 3π i/2τ (which yields q = e−3π i/2τ ,
β = −2π iτ/3 and q1 = e2π iτ/3), we obtain (3.2).

For j = 2 the proof is analogous, using the transformation formulas for μ, λ, ν and
ξ . ��

We can now write the function R(6) from the previous lemma in terms of integrals
over sums of theta functions θN ,a which have been defined in Sect. 2.1.

Lemma 3.3 For τ ∈ H we have

R(6)(τ ) = i
3
2√
24

∫ i∞

0

g(6)(z)√−i(zτ − 1)
dz, (3.3)

123



1038 D. Klein, J. Kupka

where g(6) is the vector (g(6),0, g(6),1, g(6),2, g(6),3, g(6),4, g(6),5)
T and

g(6),0(z) := √
2 (θ12,2(z) + θ12,10(z)),

g(6),1(z) := 2 θ12,6(z),

g(6),2(z) := −(θ12,1(z) + θ12,5(z) − θ12,7(z) − θ12,11(z)),

g(6),3(z) := −(θ12,1(z) − θ12,5(z) − θ12,7(z) + θ12,11(z)),

g(6),4(z) := −√
2 (θ12,3(z) − θ12,9(z)),

g(6),5(z) := −√
2 (θ12,3(z) + θ12,9(z)).

The integration over a vector valued function in the lemma means that we integrate
each of its components.

Proof Let

M(6) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1√
3

0
√

2
3 0

0 0
√

2
3 0 − 1√

3
0

1√
3

√
2
3 0 0 0 0

0 0 0 1√
3

0 −
√

2
3√

2
3 − 1√

3
0 0 0 0

0 0 0 −
√

2
3 0 − 1√

3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Replacing τ by −1/τ in the transformation formula for S and subsequently multi-
plying both sides by 1√−iτ

M(6) yields

R(6)(τ ) = − 1√−iτ
M(6) R(6)

(
−1

τ

)
.

If we choose τ := i t with t ∈ R, t > 0, we get

R(6)(i t) = − 1√
t

M(6) R(6)

(
i

t

)
.

We consider the first component

√
6t

(
− 1√

3
J1

(
3π t

2

)
− 1√

3
J

(
3π t

2

))

of this vector. If we use the identity J1(α) = 1
2 J (α)+ 1

6 J (α
9 ) (see, e.g., [10], p. 122),

the partial fraction decomposition

1

cos h(π y)
= − i

π

∑

n∈Z

1

y − i
(
2n + 1

2

) − i

π

∑

n∈Z

1

−y − i
(
2n + 1

2

)
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Completions and algebraic formulas for mock theta functions 1039

and the identity

∫ ∞

−∞
e−π t y2

y − ir
dy = π ir

∫ ∞

0

e−πr2u

√
u + t

du

for r ∈ R, r �= 0 and t ∈ R, t > 0 (see, e.g., [19, Lemma 1.18]), then a straightforward
computation yields

√
6t

(
− 1√

3
J1

(
3π t

2

)
− 1√

3
J

(
3π t

2

))

= 2i
3
2√

3
√

i t

∫ i∞

0

⎛

⎝3
∑

n∈Z
(
2n + 1

2

)
e6π i(2n+1/2)2z

√
−i

(
z − 1

i t

) +
∑

n∈Z
(
2n + 1

2

)
e

2
3 π i(2n+1/2)2z

√
−i

(
z − 1

i t

)

⎞

⎠ dz.

The identity above is valid for all t ∈ R, t > 0; thus, the identity theorem for
holomorphic functions yields that for all τ ∈ H the first component of R(6)(τ ) is equal
to

2√
3

i
3
2

∫ i∞

0

3
∑

n∈Z
(
2n + 1

2

)
e6π i(2n+1/2)2z + ∑

n∈Z
(
2n + 1

2

)
e
2
3π i(2n+1/2)2z

√−i(zτ − 1)
dz.

To rewrite the numerator in terms of theta functions we note that

∑

n≡2 (3)

(
2n + 1

2

)
e
2
3π i(2n+1/2)2z = −3 ·

∑

n∈Z

(
2n + 1

2

)
e6π i(2n+1/2)2z .

By a calculation this implies

3
∑

n∈Z

(
2n + 1

2

)
e6π i(2n+1/2)2z +

∑

n∈Z

(
2n + 1

2

)
e
2
3π i(2n+1/2)2z

= 1

4
(θ12,2(z) + θ12,10(z)).

Hence the first component of identity (3.3) follows.
Using the appropriate partial fraction decompositions of the appearing functions,

the identities for the other components can be verified analogously. For more details
we refer the reader to [11]. ��

Now we can define a non-holomorphic function G(6) such that F(6),1 − G(6) and
F(6),2 − G(6) are vector valued harmonic weak Maass forms.

Definition 3.4 For τ ∈ H let

G(6)(τ ) := i√
24

∫ i∞

−τ

g(6)(z)√−i(z + τ)
dz,

with g(6) as defined in Lemma 3.3.
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1040 D. Klein, J. Kupka

Lemma 3.5 The function G(6) has the same modular transformation properties under
τ �→ τ + 1 and τ �→ −1/τ as the one of F(6),1 and F(6),2, stated in Lemma 3.2.

Proof Let

N(6) :=

⎛

⎜⎜⎜⎜⎜⎜⎝

ζ−1
12 0 0 0 0 0
0 i 0 0 0 0
0 0 0 ζ−1

48 0 0
0 0 ζ−1

48 0 0 0
0 0 0 0 0 ζ−3

16
0 0 0 0 ζ−3

16 0

⎞

⎟⎟⎟⎟⎟⎟⎠
.

We use formula (2.2) with z replaced by z − 1 and obtain

g(6)(z − 1) = N(6) g(6)(z).

This leads to the identity

G(6)(τ + 1) = N(6) G(6)(τ )

by a transformation of the defining integral.
Using formula (2.3) we get the transformation behaviour

g(6)

(
−1

z

)
= (−i z)

3
2 (−M(6)) g(6)(z).

Via an integral transformation this gives us the identities

1√−iτ
G(6)

(
−1

τ

)
= − i√

24

∫ −τ

0

M(6) g(6)(u)√−i(u + τ)
du

and

1√−iτ
G(6)

(
−1

τ

)
− M(6) G(6)(τ ) = R(6)(τ ).

��
Using the last lemma we now get that F(6),1 and F(6),2 are the holomorphic parts

of two vector valued harmonic weak Maass forms of weight 1/2.

Theorem 3.6 The functions H(6),1 and H(6),2, defined for τ ∈ H by

H(6),1(τ ) := F(6),1(τ ) − G(6)(τ ),

H(6),2(τ ) := F(6),2(τ ) − G(6)(τ ),
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Completions and algebraic formulas for mock theta functions 1041

are vector valued harmonic weak Maass forms of weight 1/2 for the metaplectic group
Mp2(Z).

For j = 1, 2 and τ ∈ H we have

H(6), j (τ + 1) =

⎛

⎜⎜⎜⎜⎜⎜⎝

ζ−1
12 0 0 0 0 0
0 i 0 0 0 0
0 0 0 ζ−1

48 0 0
0 0 ζ−1

48 0 0 0
0 0 0 0 0 ζ−3

16
0 0 0 0 ζ−3

16 0

⎞

⎟⎟⎟⎟⎟⎟⎠
H(6), j (τ ) (3.4)

and

H(6), j

(
−1

τ

)
= √−iτ

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1√
3

0
√

2
3 0

0 0
√

2
3 0 − 1√

3
0

1√
3

√
2
3 0 0 0 0

0 0 0 1√
3

0 −
√

2
3√

2
3 − 1√

3
0 0 0 0

0 0 0 −
√

2
3 0 − 1√

3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

H(6), j (τ ). (3.5)

Corollary 3.7 We have ξ1/2(H(6),1)(τ ) = ξ1/2(H(6),2)(τ ) = − 1√
12

g(6)(τ ).

Now we know the transformation behaviour of the functions H(6),1, H(6),2 under
the generators of the modular group as well as the explicit representations to which
they transform. We will see now that we can use the transformation properties in
Theorem 3.6 to obtain two functions that transform to the Weil representation.

More precisely, we consider the lattice L defined at the beginning of Sect. 2.1 with
N = 12, and its associated Weil representation (2.1). We find the following result:

Lemma 3.8 Suppose that the function H = (h0, h1, h2, h3, h4, h5)
T satisfies the

transformation properties (3.4) and (3.5) in Theorem 3.6. Then the function

H̃ :=√
2 h0 [−(e2 − e22) − (e10 − e14)] + 2 h1 [−(e6 − e18)]

+ (h2 + h3) [(e1 − e23) − (e7 − e17)] + (h2 − h3) [(e5 − e19) − (e11 − e13)]
+ √

2 (h4 + h5) (e3 − e21) + √
2 (h4 − h5) [−(e9 − e15)]

transforms like a vector valued modular form of weight 1/2 for the dual Weil represen-
tation ρL considered above.

From the last lemma we immediately obtain two vector valued harmonic weak
Maass forms H̃(6),1, H̃(6),2 of weight 1/2 for Mp2(Z) and the dual Weil representation
ρL of level N = 12, if we apply the lemma for H = H(6),1 and H = H(6),2,
respectively. Hence H̃(6),1, H̃(6),2 ∈ H+

1/2,ρL
.
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1042 D. Klein, J. Kupka

Now we come back to our initial functions H(6),1 and H(6),2 and want to relate
their components to scalar valued harmonic weak Maass forms. In order to do that we
consider the congruence subgroup

�(6) =
{(

a b
c d

)
∈ SL2(Z)

∣∣∣ b ≡ c ≡ 0 (6), a ≡ d ≡ 1 (6)

}
.

With the use of Sage [16] we determined a system of generators for this group,
decomposed the generators into products of S and T , andmultiplied the corresponding
matrices from Theorem 3.6 according to these products, to obtain the transformation
properties of H(6),1 and H(6),2 under all generators. All of the appearing transformation
matrices are diagonal, so we get:

Theorem 3.9 For j = 1, 2 the components of the vector valued harmonic weak Maass
form H(6), j are scalar valued harmonic weak Maass forms of weight 1/2 for the sub-
group

{(γ, φ) ∈ Mp2(Z) | γ ∈ �(6)}

of the metaplectic group Mp2(Z).

Hence the sixth-order mock theta functions σ, ρ, φ,ψ,μ, λ, ν and ξ are the holo-
morphic parts of scalar valued harmonic weak Maass forms.

Remark 3.10 The ξ -images of the harmonic weakMaass forms in Theorem 3.9 can be
easily obtained from Corollary 3.7 by looking at the components of ξ1/2(H(6),1)(τ )

and ξ1/2(H(6),2)(τ ).

As an application of the Millson theta lift, we can now compute the coefficients of
the treated mock theta functions in terms of traces of singular moduli by writing them
as the Millson theta lift of a suitable weakly holomorphic modular form.

Definition 3.11 We define the functions

e(6),1(z) :=
(

η(z)η(3z)

η(4z)η(12z)

)2

− 16

(
η(4z)η(12z)

η(z)η(3z)

)2

(3.6)

and

e(6),2(z) :=
(

η(z)η(3z)

η(4z)η(12z)

)4

− 162
(

η(4z)η(12z)

η(z)η(3z)

)4

. (3.7)

These functions areweakly holomorphicmodular forms ofweight 0, level 12whose
principal parts start with q−1 and q−2, respectively.
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Completions and algebraic formulas for mock theta functions 1043

Theorem 3.12 Let e(6),1(z) ∈ M !
0(12) be defined as in (3.6).

(1) For n ≥ 0 the coefficients aσ (n) of σ(q) are given by

aσ (n) = − i

4
√
48n − 4

(
tr+e(6),1

(4 − 48n, 2) − tr−e(6),1
(4 − 48n, 2)

)
.

(2) For n ≥ 0 the coefficients aρ(n) of ρ(q) are given by

aρ(n) = − i

4
√
48(n + 1) − 36

× (
tr+e(6),1

(36 − 48(n + 1), 6) − tr−e(6),1
(36 − 48(n + 1), 6)

)
.

(3) For n ≥ 0 the coefficients aφ(n) of φ(q) are given by

aφ(n) =
{

i
2
√
48n−1

(
tr+e(6),1

(1 − 48n, 1) − tr−e(6),1
(1 − 48n, 1)

)
, if n is even,

i
2
√
48n−25

(
tr+e(6),1

(25 − 48n, 5) − tr−e(6),1
(25 − 48n, 5)

)
, if n is odd.

(4) For n ≥ 0 the coefficients aψ(n) of ψ(q) are given by

aψ(n) =
⎧
⎨

⎩

i
4
√
48n−9

(
tr+e(6),1 (9 − 48n, 3) − tr−e(6),1 (9 − 48n, 3)

)
, if n is even,

i
−4

√
48(n+1)−81

(
tr+e(6),1 (81 − 48(n + 1), 9) − tr−e(6),1 (81 − 48(n + 1), 9)

)
, if n is odd.

Proof As already proven before, the function H̃(6),1 is a vector valued harmonic weak
Maass form of weight 1/2 for the dual Weil representation. Using the series expansion

of σ, ρ, φ and ψ , one immediately sees that its principal part is given by 2 q− 1
48 (e1 −

e7+e17−e23). The function e(6),1 is an eigenfunction of all Atkin–Lehner involutions,
with eigenvalue +1 for the operators W1 and W3 and eigenvalue −1 for W4 and W12.
Thus, the Fourier expansions of e(6),1 at the cusps of �0(12) only differ by a possible
minus sign. Then the Millson theta lift maps the function e(6),1 to a harmonic weak
Maass form of weight 1/2 transforming with respect to the dual Weil representation,
having the same principal part as H̃(6),1. In the light of Lemma 2.1, this implies that
H̃(6),1−IM

1,1(e(6),1, τ ) is a cusp formand thus H̃(6),1 = IM
1,1(e(6),1, τ ) as S1/2,ρL = {0}.

Using the result of Theorem 2.2, the holomorphic coefficients of IM
1,1(e(6),1, τ ) at

q(48n−r2)/48er for r2 − 48n < 0 are given by

i√
48n − r2

(
tr+e(6),1

(r2 − 48n, r) − tr−e(6),1
(r2 − 48n, r)

)
.

Comparing the coefficients of the holomorphic parts of both H̃(6),1 and IM
1,1(e(6),1, τ )

yields the stated formulas. ��
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1044 D. Klein, J. Kupka

Theorem 3.13 Let e(6),1(z) ∈ M !
0(12) and e(6),2(z) ∈ M !

0(12) be defined as in (3.6)
and (3.7) and put E(6)(z) := e(6),2(z) + 3e(6),1(z).

(1) For n ≥ 0 the coefficients a2μ(n) of 2μ(q) are given by

a2μ(n) = i

2
√
48n − 4

(
tr+E(6)

(4 − 48n, 2) − tr−E(6)
(4 − 48n, 2)

)
.

(2) For n ≥ 0 the coefficients aλ(n) of λ(q) are given by

aλ(n) = i

4
√
48n − 36

(
tr+E(6)

(36 − 48n, 6) − tr−E(6)
(36 − 48n, 6)

)
.

(3) For n ≥ 0 the coefficients aν(n) of ν(q) are given by

aν(n) =
{− i

8
√
48n−1

(
tr+E(6)

(1 − 48n, 1) − tr−E(6)
(1 − 48n, 1)

)
, if n is even,

− i
8
√
48n−25

(
tr+E(6)

(25 − 48n, 5) − tr−E(6)
(25 − 48n, 5)

)
, if n is odd.

(4) For n ≥ 0 the coefficients aξ (n) of ξ(q) are given by

aξ (n) =
⎧
⎨

⎩
− i

16
√
48n−9

(
tr+E(6)

(9 − 48n, 3) − tr−E(6)
(9 − 48n, 3)

)
, if n is even,

i
16

√
48(n+1)−81

(
tr+E(6)

(81 − 48(n + 1), 9) − tr−E(6)
(81 − 48(n + 1), 9)

)
, if n is odd.

Proof The proof is analogous to that of Theorem 3.12. ��
Remark 3.14 The stated formulas were checked numerically using Sage [16].

3.2 Mock theta functions of order 2

In this subsectionwe consider themock theta functions A, B andμ of order 2 and prove
similar results for their completions to harmonic weak Maass forms as in Sect. 3.1.
We omit the proofs here since all results of this subsection can be proven analogously
to the results of the previous subsection.

Definition 3.15 For τ ∈ H we define the vector valued functions

F(2)(τ ) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 q− 1
16 A(q

1
2 )

4 q− 1
16 A(−q

1
2 )√

8 q
1
4 B(q

1
2 )√

8 q
1
4 B(−q

1
2 )

q− 1
16 μ(q

1
2 )

q− 1
16 μ(−q

1
2 )

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where q = e2π iτ , and

G(2)(τ ) := i√
2

∫ i∞

−τ

g(2)(z)√−i(z + τ)
dz,
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Completions and algebraic formulas for mock theta functions 1045

where g(2) is the vector (g(2),0, . . . , g(2),5)
T with components

g(2),0(z) := θ4,1(z) + θ4,3(z),

g(2),1(z) := θ4,1(z) − θ4,3(z),

g(2),2(z) := √
2 θ4,2(z),

g(2),3(z) := −√
2 θ4,2(z),

g(2),4(z) := −(θ4,1(z) − θ4,3(z)),

g(2),5(z) := −(θ4,1(z) + θ4,3(z)).

The so-defined functions F(2) and G(2) have the same modular transformation
properties. As before we can consider F(2) − G(2) which will be a vector valued
harmonic weak Maass form as the following theorem states:

Theorem 3.16 The function H(2), defined for τ ∈ H by

H(2)(τ ) := F(2)(τ ) − G(2)(τ )

is a vector valued harmonic weak Maass form of weight 1/2 for the metaplectic group
Mp2(Z).

For τ ∈ H we have

H(2)(τ + 1) =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 ζ−1
16 0 0 0 0

ζ−1
16 0 0 0 0 0
0 0 0 i 0 0
0 0 i 0 0 0
0 0 0 0 0 ζ−1

16
0 0 0 0 ζ−1

16 0

⎞

⎟⎟⎟⎟⎟⎟⎠
H(2)(τ ) (3.8)

and

H(2)

(
−1

τ

)
= √−iτ

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
1 0 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
H(2)(τ ). (3.9)

Corollary 3.17 We have ξ1/2(H(2))(τ ) = −g(2)(τ ).

After we have constructed a vector valued harmonic weakMaass form that contains
mock theta functions of order 2, we again take a closer look at its components. We
consider

�(2) =
{(

a b
c d

)
∈ SL2(Z)

∣∣∣ b ≡ c ≡ 0 (2), a ≡ d ≡ 1 (2)

}
,
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1046 D. Klein, J. Kupka

the principal congruence subgroup of level 2, and obtain the following result:

Theorem 3.18 The components of the vector valued harmonic weak Maass form H(2)
are scalar valued harmonic weak Maass forms of weight 1/2 for the subgroup

{(γ, φ) ∈ Mp2(Z) | γ ∈ �(2)}

of the metaplectic group Mp2(Z).

So we have interpreted all second-order mock theta functions as the holomorphic
part of a scalar valued harmonic weak Maass form.

Remark 3.19 As in the previous section, the ξ -images of the harmonic weak Maass
forms in Theorem 3.18 follow immediately from Corollary 3.17.

3.3 Mock theta functions of order 3

We now turn to the mock theta functions φ, ψ and ν of order 3. As before, we omit
proofs in this subsection.

Definition 3.20 For τ ∈ H we define the vector valued functions

F(3)(τ ) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

q− 1
48 φ(q

1
2 )

q− 1
48 φ(−q

1
2 )

2 q− 1
48 ψ(q

1
2 )

2 q− 1
48 ψ(−q

1
2 )√

2 q
1
6 ν(q

1
2 )√

2 q
1
6 ν(−q

1
2 )

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where q = e2π iτ , and

G(3)(τ ) := i√
24

∫ i∞

−τ

g(3)(z)√−i(z + τ)
dz,

where g(3) is the vector (g(3),0, . . . , g(3),5)
T with components

g(3),0(z) := −(θ12,1(z) + θ12,5(z) + θ12,7(z) + θ12,11(z)),

g(3),1(z) := −(θ12,1(z) − θ12,5(z) + θ12,7(z) − θ12,11(z)),

g(3),2(z) := θ12,1(z) + θ12,5(z) + θ12,7(z) + θ12,11(z),

g(3),3(z) := θ12,1(z) − θ12,5(z) + θ12,7(z) − θ12,11(z),

g(3),4(z) := −√
2 (θ12,4(z) + θ12,8(z)),

g(3),5(z) := √
2 (θ12,4(z) + θ12,8(z)).
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Completions and algebraic formulas for mock theta functions 1047

Since these two functions have the same modular transformation properties, we
find for the function F(3) − G(3):

Theorem 3.21 The function H(3), defined for τ ∈ H by

H(3)(τ ) := F(3)(τ ) − G(3)(τ ),

is a vector valued harmonic weak Maass form of weight 1/2 for the metaplectic group
Mp2(Z).

For τ ∈ H we have

H(3)(τ + 1) =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 ζ−1
48 0 0 0 0

ζ−1
48 0 0 0 0 0
0 0 0 ζ−1

48 0 0
0 0 ζ−1

48 0 0 0
0 0 0 0 0 ζ6
0 0 0 0 ζ6 0

⎞

⎟⎟⎟⎟⎟⎟⎠
H(3)(τ ) (3.10)

and

H(3)

(
−1

τ

)
= √−iτ

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 1 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
H(3)(τ ). (3.11)

Corollary 3.22 We have ξ1/2(H(3))(τ ) = − 1√
12

g(3)(τ ).

We now want to complete the mock theta functions φ,ψ and ν to scalar valued
harmonic weak Maass forms. We again consider the group �(2) and obtain:

Theorem 3.23 The components of the vector valued harmonic weak Maass form H(3)
are scalar valued harmonic weak Maass forms of weight 1/2 for the subgroup

{(γ, φ) ∈ Mp2(Z) | γ ∈ �(2)}

of the metaplectic group Mp2(Z).

Thuswe have related themock theta functions φ,ψ and ν to scalar valued harmonic
weak Maass forms.

Remark 3.24 Again we get the ξ -images of the harmonic weak Maass forms in The-
orem 3.23 from Corollary 3.22.

The mock theta functions f and ω of order 3 have already been treated by Zwegers
[19], andBruinier and Schwagenscheidt [7] andwe state their results for completeness.
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1048 D. Klein, J. Kupka

Theorem 3.25 [19, Theorem 3.6]. The vector

F3(τ ) =
⎛

⎜⎝
q− 1

24 f (q)

2 q
1
3 ω(q

1
2 )

2 q
1
3 ω(−q

1
2 )

⎞

⎟⎠

is the holomorphic part of a harmonic weak Maass form H3 = (h0, h1, h2)
T ∈ H+

1/2
of weight 1/2, transforming as

H3(τ + 1) =
⎛

⎝
ζ−1
24 0 0
0 0 ζ3
0 ζ3 0

⎞

⎠ H3(τ )

and

H3

(
− 1

τ

)
= √−iτ

⎛

⎝
0 1 0
1 0 0
0 0 −1

⎞

⎠ H3(τ ).

This result can be used to construct a harmonic weak Maass form that transforms
with respect to the dual Weil representation.

Lemma 3.26 The function

H̃3 = h0 [e1 − e5 + e7 − e11] + (h2 − h1) [e2 − e10] + (h1 + h2) [−e4 + e8]
transforms like a vector valued modular form of weight 1/2 with respect to the dual
Weil representation ρL of level N = 6.

Let E4 denote the normalized Eisenstein series of weight 4 for SL2(Z).We consider
the function

e(3)(z) := − 1

40

E4(z) + 4E4(2z) − 9E4(3z) − 36E4(6z)

(η(z)η(2z)η(3z)η(6z))2
(3.12)

which is a weakly holomorphic modular form of weight 0, level 6 and whose principal
part starts with q−1.

Theorem 3.27 [7, Theorem 3.1]. Let e(3) ∈ M !
0(6) be the function defined in (3.12).

(1) For n ≥ 1 the coefficients a f (n) of f (q) are given by

a f (q) = i

2
√
24n − 1

(
tr+e(3)

(1 − 24n, 1) − tr−e(3)
(1 − 24n, 1)

)
.

(2) For n ≥ 1 the coefficients aω(n) of ω(q) are given by

aω(q) =

⎧
⎪⎪⎨

⎪⎪⎩

−i

8
√
24( n

2 +1)−16

(
tr+e(3) (16 − 24( n

2 + 1), 4) − tr−e(3) (16 − 24( n
2 + 1), 4)

)
, if n is even,

−i

8
√
24 n+1

2 −4

(
tr+e(3) (4 − 24 n+1

2 , 2) − tr−e(3) (4 − 24 n+1
2 , 2)

)
, if n is odd.
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3.4 Mock theta functions of order 5

For the mock theta functions of order 5 the necessary completions and their trans-
formation properties have already been studied by Zwegers and Andersen [3,20],
respectively. Using their results we derive algebraic formulas for their coefficients.
The proofs are analogous to the corresponding proofs in Sect. 3.1.

We define the two matrices

N(5) =

⎛

⎜⎜⎜⎜⎜⎜⎝

ζ−1
60 0 0 0 0 0
0 ζ 11

60 0 0 0 0
0 0 0 0 ζ−1

240 0
0 0 0 0 0 ζ 71

240
0 0 ζ−1

240 0 0 0
0 0 0 ζ 71

240 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
(3.13)

and

M(5) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 0
√
2 sin(π

5 )
√
2 sin( 2π5 ) 0 0

0 0
√
2 sin( 2π5 ) −√

2 sin(π
5 ) 0 0

1√
2
sin(π

5 ) 1√
2
sin( 2π5 ) 0 0 0 0

1√
2
sin( 2π5 ) − 1√

2
sin(π

5 ) 0 0 0 0

0 0 0 0 sin( 2π5 ) sin(π
5 )

0 0 0 0 sin(π
5 ) sin( 2π5 )

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.14)

Theorem 3.28 [20, Proposition 4.10] The vector

F(5),1(τ ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

q− 1
60 f0(q)

q
11
60 f1(q)

q− 1
240

( − 1 + F0(q1/2)
)

q
71
240 F1(q1/2)

q− 1
240 (−1 + F0

( − q1/2)
)

q
71
240 F1(−q1/2)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

is the holomorphic part of H(5),1 = ( f4,1, f196,1, f1,1, f169,1, g1,1, g169,1)T ∈ H+
1/2,

which is a harmonic weak Maass form of weight 1/2, transforming as

H(5),1(τ + 1) = N(5) H(5),1(τ ) (3.15)

and

H(5),1

(
− 1

τ

)
= √−iτ

2√
5

M(5) H(5),1(τ ), (3.16)
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where the matrices N(5) and M(5) are defined as in (3.13) and (3.14).

Theorem 3.29 [20, Proposition 4.13]. The vector

F(5),2(τ ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 q− 1
60 ψ0(q)

2 q
11
60 ψ1(q)

q− 1
240 ϕ0(−q

1
2 )

−q− 49
240 ϕ1(−q

1
2 )

q− 1
240 ϕ0(q

1
2 )

q− 49
240 ϕ1(q

1
2 )

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

is the holomorphic part of H(5),2 = ( f4,2, f196,2, f1,2, f169,2, g1,2, g169,2)T ∈ H+
1/2,

which is a harmonic weak Maass form of weight 1/2, transforming as

H(5),2(τ + 1) = N(5) H(5),2(τ ) (3.17)

and

H(5),2

(
− 1

τ

)
= √−iτ

2√
5

M(5) H(5),2(τ ), (3.18)

where the matrices N(5) and M(5) are defined as in (3.13) and (3.14).

Lemma 3.30 [3, Lemma 5] Suppose that ( f4,1, f196,1, f1,1, f169,1, g1,1, g169,1)T

transforms with the representation given in Theorem 3.28, and that
( f4,2, f196,2, f1,2, f169,2, g1,2, g169,2)T transforms with the representation given in
Theorem 3.29. For j = 1, 2 we define the function

H̃(5), j =
∑

0<r<60
r≡±1 (10)
gcd(r ,60)=1

(ar f1, j + br g1, j ) (er − e−r ) −
∑

0<r<60
r≡±2 (10)
gcd(r ,60)=2

f4, j (er − e−r )

+
∑

0<r<60
r≡±3 (10)
gcd(r ,60)=1

(ar f169, j + br g169, j ) (er − e−r )

−
∑

0<r<60
r≡±4 (10)
gcd(r ,60)=2

f196, j (er − e−r ),

where

ar =
{

+1 if 0 < r < 30,

−1 otherwise,
and br =

{
+1 if r ≡ ±1,±13 (60),

−1 otherwise.

Then H̃(5),1 ∈ H+
1/2,ρL

and H̃(5),2 ∈ H+
1/2,ρL

both transform like a vector valued
modular form of weight 1/2 for the dual Weil representation ρL of level N = 60.
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Definition 3.31 We define the functions

e(5),1(z) := η(z)η(12z)η(15z)η(20z)

η(3z)η(4z)η(5z)η(60z)
− η(3z)η(4z)η(5z)η(60z)

η(z)η(12z)η(15z)η(20z)
(3.19)

and

e(5),2 :=
(

η(z)η(12z)η(15z)η(20z)

η(3z)η(4z)η(5z)η(60z)

)2

−
(

η(3z)η(4z)η(5z)η(60z)

η(z)η(12z)η(15z)η(20z)

)2

. (3.20)

These functions areweakly holomorphicmodular forms ofweight 0, level 60whose
principal parts start with q−1 and q−2, respectively.

Theorem 3.32 Let e(5),1(z), e(5),2(z) ∈ M !
0(60) be defined as in (3.19) and (3.20) and

put E(5)(z) := −e(5),2 − e(5),1.

(1) For n ≥ 1 the coefficients a f0(n) of f0(q) are given by

a f0(n) = −i

2
√
240n − 4

(
tr+E(5)

(4 − 240n, 2) − tr−E(5)
(4 − 240n, 2)

)
.

(2) For n ≥ 1 the coefficients a f1(n) of f1(q) are given by

a f1(n) = −i

2
√
240(n + 1) − 196

(
tr+E(5)

(196 − 240(n + 1), 14)

−tr−E(5)
(196 − 240(n + 1), 14)

)
.

(3) For n ≥ 1 the coefficients aF0(n) of F0(q) are given by

aF0 (n) =

⎧
⎪⎪⎨

⎪⎪⎩

i

4
√
240 n

2 −1

(
tr+E(5)

(1 − 240 n
2 , 1) − tr−E(5)

(1 − 240 n
2 , 1)

)
, if n is even,

i

4
√
240 n+1

2 −121

(
tr+E(5)

(121 − 240 n+1
2 , 11) − tr−E(5)

(121 − 240 n+1
2 , 11)

)
, if n is odd.

(4) For n ≥ 1 the coefficients aF1(n) of F1(q) are given by

aF1 (n) =

⎧
⎪⎪⎨

⎪⎪⎩

i

4
√
240 n+2

2 −169

(
tr+E(5)

(169 − 240 n+2
2 , 13) − tr−E(5)

(169 − 240 n+2
2 ), 13)

)
, if n is even,

i

4
√
240 n+1

2 −49

(
tr+E(5)

(49 − 240 n+1
2 , 7) − tr−E(5)

(49 − 240 n+1
2 , 7)

)
, if n is odd.

Theorem 3.33 Let e(5),1 ∈ M !
0(60) be defined as in (3.19).

(1) For n ≥ 1 the coefficients aψ0(n) of ψ0(q) are given by

aψ0(n) = −i

2
√
240n − 4

(
tr+e(5),1

(4 − 240n, 2) − tr−e(5),1
(4 − 240n, 2)

)
.
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(2) For n ≥ 1 the coefficients aψ1(n) of ψ1(q) are given by

aψ1(n) = −i

2
√
240(n + 1) − 196

(
tr+e(5),1

(196 − 240(n + 1), 14)

−tr−e(5),1
(196 − 240(n + 1), 14)

)
.

(3) For n ≥ 1 the coefficients aϕ0(n) of ϕ0(q) are given by

aϕ0 (n) =

⎧
⎪⎪⎨

⎪⎪⎩

i

2
√
240 n

2 −1

(
tr+e(5),1 (1 − 240 n

2 , 1) − tr−e(5),1 (1 − 240 n
2 , 1)

)
, if n is even,

−i

2
√
240 n+1

2 −121

(
tr+e(5),1 (121 − 240 n+1

2 , 11) − tr−e(5),1 (121 − 240 n+1
2 , 11)

)
, if n is odd.

(4) For n ≥ 1 the coefficients aϕ1(n) of ϕ1(q) are given by

aϕ1 (n) =

⎧
⎪⎪⎨

⎪⎪⎩

−i

2
√
240 n

2 −49

(
tr+e(5),1 (49 − 240 n

2 , 7) − tr−e(5),1 (49 − 240 n
2 , 7)

)
, if n is even,

i

2
√
240 n+1

2 −169

(
tr+e(5),1 (169 − 240 n+1

2 , 13) − tr−e(5),1 (169 − 240 n+1
2 , 13)

)
, if n is odd.

3.5 Mock theta functions of order 7

Similar to the previous subsection the necessary completion and its transformation
behaviour have already been studied by Zwegers and Andersen [4,20], respectively.
We use their results to derive algebraic formulas for the coefficients of the seventh-
order mock theta functions.

Theorem 3.34 [20, Proposition 4.5]. The vector

F(7)(τ ) =
⎛

⎜⎝
q− 1

168 F0(q)

q
47
168 F2(q)

q− 25
168 F1(q)

⎞

⎟⎠

is the holomorphic part of a harmonic weak Maass form H(7) = ( f1, f121, f25)T ∈
H+
1/2 of weight 1/2, transforming as

H(7)(τ + 1) =
⎛

⎝
ζ−1
168 0 0
0 ζ 47

168 0
0 0 ζ−25

168

⎞

⎠ H(7)(τ ) (3.21)

and

H(7)

(
− 1

τ

)
= √−iτ

2√
7

⎛

⎝
sin(π

7 ) sin( 3π7 ) sin( 2π7 )

sin( 3π7 ) − sin( 2π7 ) sin(π
7 )

sin( 2π7 ) sin(π
7 ) − sin( 3π7 )

⎞

⎠ H(7)(τ ). (3.22)
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Lemma 3.35 [4, Lemma 4]. Suppose that ( f1, f121, f25)T transforms with the repre-
sentation given in Theorem 3.34. Then the function

H̃(7) =
∑

r∈Z/168Z

H̃r er = f1 (e1 − e−1) + f1 (e41 − e−41)

−
∑

2≤r≤40
r2 (168)∈{1,25,121}

fr2 (er − e−r )

transforms like a vector valued modular form of weight 1/2 for the dual Weil represen-
tation ρL of level N = 42, so that H̃(7) ∈ H+

1/2,ρL
.

Definition 3.36 We define the function

e(7)(z) :=
(

η(z)η(6z)η(14z)η(21z)

η(2z)η(3z)η(7z)η(42z)

)2

−
(

η(2z)η(3z)η(7z)η(42z)

η(z)η(6z)η(14z)η(21z)

)2

. (3.23)

This function is a weakly holomorphic modular form of level 42, weight 0 whose
principal part starts with q−1.

Theorem 3.37 Let e(7) ∈ M !
0(42) be defined as in (3.23).

(1) For n ≥ 1 the coefficients aF0(n) of F0(q) are given by

aF0(n) = i

2
√
168n − 1

(
tr+e(7)

(1 − 168n, 1) − tr−e(7)
(1 − 168n, 1)

)
.

(2) For n ≥ 1 the coefficients aF1(n) of F1(q) are given by

aF1(n) = −i

2
√
168n − 25

(
tr+e(7)

(25 − 168n, 5) − tr−e(7)
(25 − 168n, 5)

)
.

(3) For n ≥ 1 the coefficients aF2(n) of F2(q) are given by

aF2(n) = −i

2
√
168(n + 1) − 121

(
tr+e(7)

(121 − 168(n + 1), 11)

− tr−e(7)
(121 − 168(n + 1), 11)

)
.

3.6 Mock theta functions of order 8

We now turn to the mock theta functions S0, S1, T0, T1, U0, U1, V0 and V1 of order 8.
They have the following linear relations between themwhich are an easy consequence
of the identities that are, e.g., given as (1.7) and (1.8) in [9].
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Lemma 3.38 We have

q− 1
32 U0(q

1
4 ) = q− 1

32 S0(q
1
2 ) + q

7
32 S1(q

1
2 ),

q− 1
32 U0(−q

1
4 ) = q− 1

32 S0(q
1
2 ) − q

7
32 S1(q

1
2 ),

q− 1
32 U1(q

1
4 ) = q− 1

32 T0(q
1
2 ) + q

7
32 T1(q

1
2 ),

q− 1
32 U1(−q

1
4 ) = q− 1

32 T0(q
1
2 ) − q

7
32 T1(q

1
2 ).

Definition 3.39 For τ ∈ H we define the vector valued functions

F(8)(τ ) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V0(q
1
2 )

V0(−q
1
2 )√

8 q− 1
8 V1(q

1
2 )√

8 q− 1
8 V1(−q

1
2 )√

2 q− 1
32 S0(q

1
2 )√

2 q− 1
32 S0(−q

1
2 )√

2 q
7
32 S1(q

1
2 )√

2 q
7
32 S1(−q

1
2 )√

8 q− 1
32 T0(q

1
2 )√

8 q− 1
32 T0(−q

1
2 )√

8 q
7
32 T1(q

1
2 )√

8 q
7
32 T1(−q

1
2 )

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where q = e2π iτ , and

G(8)(τ ) := i√
8

∫ i∞

−τ

g(8)(z)√−i(z + τ)
dz,

where g(8) is the vector (g(8),0, . . . , g(8),11)
T with components

g(8),0(z) := √
2 θ8,4(z),

g(8),1(z) := −√
2 θ8,4(z),

g(8),2(z) := θ8,2(z) + θ8,6(z),

g(8),3(z) := θ8,2(z) + θ8,6(z),

g(8),4(z) := −(θ8,1(z) − θ8,7(z)),

g(8),5(z) := −(θ8,1(z) + θ8,7(z)),

g(8),6(z) := θ8,3(z) − θ8,5(z),

g(8),7(z) := −(θ8,3(z) + θ8,5(z)),

g(8),8(z) := θ8,1(z) − θ8,7(z),

g(8),9(z) := θ8,1(z) + θ8,7(z),
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g(8),10(z) := −(θ8,3(z) − θ8,5(z)),

g(8),11(z) := θ8,3(z) + θ8,5(z).

Again the so-defined functions have the same modular transformation properties.
Considering the function F(8) − G(8) leads to the following theorem:

Theorem 3.40 The function H(8), defined for τ ∈ H by

H(8)(τ ) := F(8)(τ ) − G(8)(τ ) (τ ∈ H),

is a vector valued harmonic Maass form of weight 1/2 for the metaplectic group
Mp2(Z).

For τ ∈ H we have

H(8)(τ + 1) = N(8) H(8)(τ ) (3.24)

and

H(8)

(
−1

τ

)
= √−iτ M(8) H(8)(τ ), (3.25)

where the transformation matrices N(8) and M(8) are defined as

N(8) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 ζ−1

8 0 0 0 0 0 0 0 0
0 0 ζ−1

8 0 0 0 0 0 0 0 0 0
0 0 0 0 0 ζ−1

32 0 0 0 0 0 0
0 0 0 0 ζ−1

32 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ζ 7

32 0 0 0 0
0 0 0 0 0 0 ζ 7

32 0 0 0 0 0
0 0 0 0 0 0 0 0 0 ζ−1

32 0 0
0 0 0 0 0 0 0 0 ζ−1

32 0 0 0
0 0 0 0 0 0 0 0 0 0 0 ζ 7

32
0 0 0 0 0 0 0 0 0 0 ζ 7

32 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and

M(8) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1√
2

0 1√
2

0 0 0 0 0

0 0 0 0 0 0 0 0 1√
2

0 1√
2

0

0 0 0 0 1√
2

0 − 1√
2

0 0 0 0 0

0 0 0 0 0 0 0 0 − 1√
2

0 1√
2

0
1√
2

0 1√
2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
√

2−√
2

2 0
√

2+√
2

2
1√
2

0 − 1√
2

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
√

2+√
2

2 0 −
√

2−√
2

2
0 1√

2
0 − 1√

2
0 0 0 0 0 0 0 0

0 0 0 0 0
√

2−√
2

2 0
√

2+√
2

2 0 0 0 0
0 1√

2
0 1√

2
0 0 0 0 0 0 0 0

0 0 0 0 0
√

2+√
2

2 0 −
√

2−√
2

2 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Corollary 3.41 We have ξ1/2(H(8))(τ ) = − 1
2 g(8)(τ ).

In the following we consider the congruence subgroup

�(8) =
{(

a b
c d

)
∈ SL2(Z)

∣∣∣ b ≡ c ≡ 0 (8), a ≡ d ≡ 1 (8)

}
.

This leads to:

Theorem 3.42 The components of the vector valued harmonic weak Maass form H(8)
are scalar valued harmonic weak Maass forms of weight 1/2 for the subgroup

{(γ, φ) ∈ Mp2(Z) | γ ∈ �(8)}

of the metaplectic group Mp2(Z).

Remark 3.43 As before, the ξ -images of the harmonic weak Maass forms in Theorem
3.42 can be directly obtained from Corollary 3.41.

Finally we consider the yet omitted mock theta functions U0 and U1. Using their
relations to S0, S1, T0 and T1 in Lemma 3.38 and denoting the components of H(8) by
h(8),0, . . . , h(8),11 gives us

h(8),4(τ ) ± h(8),6(τ ) = q− 1
32 U0(±q

1
4 )

+ i

4

∫ i∞

−τ

θ8,1(z) ∓ θ8,3(z) ± θ8,5(z) − θ8,7(z)√−i(z + τ)
dz,

h(8),8(τ ) ± h(8),10(τ ) = q− 1
32 U1(±q

1
4 )

+ i

8

∫ i∞

−τ

−θ8,1(z) ± θ8,3(z) ∓ θ8,5(z) + θ8,7(z)√−i(z + τ)
dz.
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It can be shown via Sage [16] that h(8),4 and h(8),6 have the same transformation
behaviour under all generators of �(8), and also the two functions h(8),8 and h(8),10
have the same transformation properties under all generators of �(8). From this and
Theorem 3.42 we can conclude:

Theorem 3.44 The functions h(8),4 ± h(8),6 and h(8),8 ± h(8),10 are scalar valued
harmonic weak Maass forms of weight 1/2 for the subgroup

{(γ, φ) ∈ Mp2(Z) | γ ∈ �(8)}

of the metaplectic group Mp2(Z).

With the treatment of U0 and U1 we have now related all eighth-order mock theta
functions to scalar valued harmonic weak Maass forms.

Remark 3.45 We get the ξ -images of the harmonic weak Maass forms in Theorem
3.44 from Corollary 3.41 by adding and subtracting the respective components of
ξ1/2(H(8))(τ ).

3.7 Mock theta functions of order 10

The necessary completion and its transformation behaviour has already been studied
by Moore [14]. We consider the matrices

N(10) :=

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 ζ10 0 0 0
0 0 0 ζ−1

10 0 0
ζ10 0 0 0 0 0
0 ζ−1

10 0 0 0 0
0 0 0 0 ζ−1

40 0
0 0 0 0 0 ζ−9

40

⎞

⎟⎟⎟⎟⎟⎟⎠
(3.26)

and

M(10) :=

⎛

⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 sin( 2π5 ) − sin(π
5 )

0 0 0 0 sin(π
5 ) sin( 2π5 )

0 0 sin( 2π5 ) sin(π
5 ) 0 0

0 0 sin(π
5 ) − sin( 2π5 ) 0 0

sin( 2π5 ) sin(π
5 ) 0 0 0 0

− sin(π
5 ) sin( 2π5 ) 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎠
. (3.27)
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Theorem 3.46 [14, Theorem 1] The vector

F(10)(τ ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

q
1
10 φ(q

1
2 )

q− 1
10 ψ(q

1
2 )

q
1
10 φ(−q

1
2 )

q− 1
10 ψ(−q

1
2 )

q− 1
40 X(q)

q− 9
40 χ(q)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

is the holomorphic part of H(10) = (h(10),0, h(10),1, h(10),2, h(10),3, h(10),4, h(10),5)
T ∈

H+
1/2, which is a harmonic weak Maass form of weight 1/2, transforming as

H(10)(τ + 1) = N(10) H(10)(τ )

and

H(10)

(
− 1

τ

)
= √−iτ

2√
5

M(10) H(10)(τ ),

where the matrices N(10) and M(10) are defined as in (3.26) and (3.27).

The following result is a simple consequence from the statement above.

Lemma 3.47 The function

H̃(10) : = (h(10),0 + h(10),2) [−e6 + e−6] + (h(10),0 − h(10),2) [−e4 + e−4]
+ (h(10),1 + h(10),3) [−e2 + e−2] + (h(10),1 − h(10),3) [−e8 + e−8]
+ h(10),4 [e1 − e−1 − e9 + e−9] + h(10),5 [e3 − e−3 − e7 + e−7]

transforms with respect to the dual Weil representation ρL of weight 1/2 and level
N = 10.

Definition 3.48 We define the function

e(10)(z) :=
(

η(z)η(2z)

η(5z)η(10z)

)2

− 25

(
η(5z)η(10z)

η(z)η(2z)

)2

. (3.28)

This function is a weakly holomorphic modular form of weight 0, level 10 whose
principal part starts with q−1.

Theorem 3.49 Let e(10)(z) ∈ M !
0(10) be defined as in (3.28).

(1) For n ≥ 1 the coefficients aX (n) of X(q) are given by

aX (n) = i

2
√
40n − 1

(
tr+e(10)

(1 − 40n, 1) − tr−e(10)
(1 − 40n, 1)

)
.
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(2) For n ≥ 1 the coefficients aχ (n) of χ(q) are given by

aχ (n) = i

2
√
40n − 9

(
tr+e(10)

(9 − 40n, 3) − tr−e(10)
(9 − 40n, 3)

)
.

(3) For n ≥ 1 the coefficients aφ(n) of φ(q) are given by

aφ(n) =

⎧
⎪⎪⎨

⎪⎪⎩

−i

4
√
40 n+2

2 −36

(
tr+e(10) (36 − 40 n+2

2 , 6) − tr−e(10) (36 − 40 n+2
2 , 6)

)
, if n is even,

−i

4
√
40 n+1

2 −16

(
tr+e(10) (16 − 40 n+1

2 , 4) − tr−e(10) (16 − 40 n+1
2 , 4)

)
, if n is odd.

(4) For n ≥ 1 the coefficients aψ(n) of ψ(q) are given by

aψ(n) =

⎧
⎪⎪⎨

⎪⎪⎩

−i

4
√
40 n

2−4

(
tr+e(10) (4 − 40 n

2 , 2) − tr−e(10) (4 − 40 n
2 , 2)

)
, if n is even,

−i

4
√
40 n+3

2 −64

(
tr+e(10) (64 − 40 n+3

2 , 8) − tr−e(10) (64 − 40 n+3
2 , 8)

)
, if n is odd.
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