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Abstract
We propose a scalable Bayesian preference learning method for jointly predicting the pref-
erences of individuals as well as the consensus of a crowd from pairwise labels. Peoples’ 
opinions often differ greatly, making it difficult to predict their preferences from small 
amounts of personal data. Individual biases also make it harder to infer the consensus of 
a crowd when there are few labels per item. We address these challenges by combining 
matrix factorisation with Gaussian processes, using a Bayesian approach to account for 
uncertainty arising from noisy and sparse data. Our method exploits input features, such 
as text embeddings and user metadata, to predict preferences for new items and users that 
are not in the training set. As previous solutions based on Gaussian processes do not scale 
to large numbers of users, items or pairwise labels, we propose a stochastic variational 
inference approach that limits computational and memory costs. Our experiments on a rec-
ommendation task show that our method is competitive with previous approaches despite 
our scalable inference approximation. We demonstrate the method’s scalability on a natural 
language processing task with thousands of users and items, and show improvements over 
the state of the art on this task. We make our software publicly available for future work 
(https ://githu b.com/UKPLa b/tacl2 018-prefe rence -convi ncing /tree/crowd GPPL).

1 Introduction

Preference learning involves comparing a set of alternatives according to a particular 
quality (Fürnkranz and Hüllermeier 2010), which often leads to a divergence of opin-
ion between people. For example, in argument mining, a sub-field of natural language 
processing (NLP), one goal is to rank arguments by their convincingness  (Habernal 
and Gurevych 2016). Whether a particular argument is convincing or not depends on 
the reader’s point of view and prior knowledge (Lukin et al. 2017). Similarly, personal 
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preferences affect recommender systems, which often perform better if they tailor 
recommendations to a specific user  (Resnick and Varian 1997). Disagreements also 
occur when preference annotations are acquired from multiple annotators, for exam-
ple, using crowdsourcing, and are often mitigated by redundant labelling (Snow et al. 
2008; Banerji et al. 2010). Therefore, we require preference learning methods that can 
account for differences of opinion to (1) predict personal preferences for members of 
a crowd and (2) infer a consensus given observations from multiple users. For both 
tasks, our goal is to rank items or choose the preferred item from any given pair.

Recommender systems often predict a user’s preferences via collaborative filter-
ing, which overcomes data sparsity by exploiting similarities between the preferences 
of different users  (Resnick and Varian 1997; Koren et  al. 2009). Many recommender 
systems are based on matrix factorisation techniques that are trained using observa-
tions of numerical ratings. However, different annotators often disagree over numerical 
annotations and can label inconsistently over time (Ovadia 2004; Yannakakis and Hal-
lam 2011), as annotators may interpret the values differently: a score of 4/5, say, from 
one annotator may be equivalent to 3/5 from another. The problem is avoided by pair-
wise labelling, in which the annotator selects their preferred item from a pair, which 
can be quicker (Kendall 1948; Kingsley and Brown 2010; Yang and Chen 2011), more 
accurate (Kiritchenko and Mohammad 2017), and facilitates the total sorting of items, 
as it avoids two items having the same value.

Pairwise labels provided by a crowd or extracted from user logs (Joachims 2002) are 
often noisy and sparse, i.e., many items or users have few or no labels. This motivates 
a Bayesian treatment, which has been shown to benefit matrix factorisation  (Salakhut-
dinov and Mnih 2008) and preference learning   (Chen et  al. 2013). Some previous 
Bayesian methods for preference learning use Gaussian processes (GPs) to account 
for input features of items or users (Chu and Ghahramani 2005; Houlsby et al. 2012; 
Khan et al. 2014). These are features that can be extracted from content or metadata, 
such as embeddings  (Mikolov et  al. 2013; Devlin et  al. 2019), which are commonly 
used by NLP methods to represent words or documents using a numerical vector. Input 
features allow the model to extrapolate to new items or users and mitigate labelling 
errors (Felt et al. 2016). However, previous Bayesian preference learning methods that 
account for input features using GPs do not scale to large numbers of items, users, or 
pairwise labels, as their computational and memory requirements grow with the size of 
the dataset.

In this paper, we propose a scalable Bayesian approach to pairwise preference learn-
ing with large numbers of users or annotators. Our method, crowdGPPL, jointly mod-
els personal preferences and the consensus of a crowd through a combination of matrix 
factorisation and Gaussian processes. We propose a stochastic variational inference 
(SVI) scheme (Hoffman et al. 2013) that scales to extremely large datasets, as its mem-
ory complexity and the time complexity of each iteration are fixed independently of 
the size of the dataset. Our new approach opens the door to novel applications involv-
ing very large numbers of users, items and pairwise labels, that would previously have 
exceeded computational or memory resources and were difficult to parallelise. We 
evaluate the method empirically on two real-world datasets to demonstrate the scal-
ability of our approach, and its ability to predict both personal preferences and a con-
sensus given preferences from thousands of users. Our results improve performance 
over the previous state-of-the-art (Simpson and Gurevych 2018) on a crowdsourced 
argumentation dataset, and show that modelling personal preferences improves predic-
tions of the consensus, and vice versa.
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2  Related work

To obtain a ranking from pairwise labels, many preference learning methods model the 
user’s choices as a random function of the latent utility of the items. Inferring the utilities of 
items allows us to rank them, estimate numerical ratings and predict pairwise labels. Many 
popular instances of this approach, known as a random utility model (Thurstone 1927), are 
variants of the Bradley-Terry (BT) model  (Bradley and Terry 1952; Plackett 1975; Luce 
1959), which assumes a logistic likelihood, or the Thurstone-Mosteller model   (Thurs-
tone 1927; Mosteller 1951), which assumes a probit likelihood. Recent work on the BT 
model has developed computationally efficient active learning, but does not consider input 
features  (Li et al. 2018). Another commonly-used ranking method, SVM-rank (Joachims 
2002), predicts pairwise labels from input features without a random utility model, so can-
not predict utilities. Gaussian process preference learning (GPPL) provides a Bayesian 
treatment of the random utility model, using input features to predict the utilities of test 
items and share information between similar items (Chu and Ghahramani 2005). As GPPL 
can only predict the preferences of a single user, we introduce a new, scalable approach to 
model individuals in a crowd.

Previous work on preference learning from crowdsourced data treats disagreements 
as annotation errors and infers only the consensus, rather than modelling personal prefer-
ences. For instance, Chen et al. (2013) and Wang et al. (2016) tackle annotator disagree-
ment using Bayesian approaches that learn the labelling accuracy of each worker. Recently, 
Pan et al. (2018) and Han et al. (2018) introduced scalable methods that extend this idea 
from pairwise labels to noisy k-ary preferences, i.e., totally-ordered subsets of k items. Fu 
et al. (2016) improved SVM-rank by identifying outliers in crowdsourced data that corre-
spond to probable errors, while Uchida et al. (2017) extend SVM-rank to account for dif-
ferent levels of confidence in each pairwise annotation expressed by the annotators. How-
ever, while these approaches differentiate the level of noise for each annotator, they ignore 
labelling bias as the differences between users are not random but depend on personal 
preferences toward particular items. With small numbers of labels per item, these biases 
may reduce the accuracy of the estimated consensus. Furthermore, previous aggregation 
methods for crowdsourced preferences do not consider item features, so cannot predict the 
utility of test items (Chen et al. 2013; Wang et al. 2016; Han et al. 2018; Pan et al. 2018; Li 
et al. 2018). Our approach goes beyond these methods by predicting personal preferences 
and incorporating input features.

A number of methods use matrix factorisation to predict personal preferences from 
pairwise labels, including Yi et al. (2013), who focus on small numbers of pairs per user, 
and Salimans et al. (2012), who apply Bayesian matrix factorisation to handle sparse data. 
Matrix factorisation represents observed ratings in a user-item matrix, which it decomposes 
into two matrices of lower rank than the user-item matrix, one corresponding to users and 
one to items. Users with similar ratings have similar columns in the user matrix, where each 
entry is a weight over a latent rating. By multiplying the low-dimensional representations, 
we can predict ratings for unseen user-item pairs. Kim et al. (2014) use a simplification that 
assumes that each user’s preferences depend on only one latent ranking. However, previ-
ous works combining matrix factorisation with pairwise preference labels do not account 
for input features. This contrasts with work on matrix factorisation with side information, 
where the ratings or preferences as well as input features are directly observed, includ-
ing recent neural network approaches (Volkovs et al. 2017), Bayesian approaches that con-
catenate input feature vectors with the low-dimensional factored representations (Porteous 



692 Machine Learning (2020) 109:689–718

1 3

et  al. 2010), and GP-based methods  (Adams et  al. 2010). Besides providing a Bayesian 
method for matrix factorisation with both input features and pairwise labels, this paper 
introduces a much more scalable inference method for a GP-based model.

GPs were previously used for personal preference prediction by Guo et al. (2010), who 
propose a GP over the joint feature space of users and items. Since this scales cubically 
in the number of users, Abbasnejad et al. (2013) propose to cluster users into behavioural 
groups, but distinct clusters do not allow for collaborative learning between users whose 
preferences only partially overlap, e.g. when two users both like one genre of music, but 
have different preferences over other genres. Khan et al. (2014) instead learn a GP for each 
user, then add a matrix factorisation term that performs collaborative filtering. However, 
this approach does not model the relationship between input features and the low-rank 
matrices, unlike Lawrence and Urtasun (2009) who place GP priors over latent ratings. 
Neither of these last two methods are fully Bayesian as the users’ weights are optimised 
rather than marginalised. An alternative is the collaborative GP (collabGP) (Houlsby et al. 
2012), which places GP priors over user weights and latent factors, thereby exploiting input 
features for both users and items. However, unlike our approach, collabGP predicts only 
pairwise labels, not the utilities of items, which are useful for rating and ranking, and can 
only be trained using pairwise labels, even if observations of the utilities are available. 
Furthermore, existing GP-based approaches suffer from scalability issues and none of the 
previous methods jointly model the consensus as well as personal preferences in a fully-
Bayesian manner.

Established methods for GP inference with non-Gaussian likelihoods, such as the 
Laplace approximation and expectation propagation  (Rasmussen and Williams 2006), 
have time complexity O(N3) with N data points and memory complexity O(N2) . For col-
labGP, Houlsby et  al. (2012) use a sparse generalized fully independent training condi-
tional (GFITC) approximation (Snelson and Ghahramani 2006) to reduce time complexity 
to O(PM2 + UM2) and memory complexity to O(PM + UM) , where P is the number of 
pairwise labels, M ≪ P is a fixed number of inducing points, and U is the number of users. 
However, this is not sufficiently scalable for very large numbers of users or pairs, due to 
increasing memory consumption and optimisation steps that cannot be distributed. Recent 
work on distributing and parallelising Bayesian matrix factorisation is not easily applicable 
to models that incorporate GPs  (Ahn et al. 2015; Saha et al. 2015; Vander Aa et al. 2017; 
Chen et al. 2018).

To handle large numbers of pairwise labels, Khan et  al. (2014) subsample the data 
rather than learning from the complete training set. An alternative is stochastic variational 
inference (SVI) (Hoffman et al. 2013), which optimises a posterior approximation using a 
different subsample of training data at each iteration, meaning it learns from all training 
data over multiple iterations while limiting costs per iteration. SVI has been applied to GP 
regression (Hensman et al. 2013) and classification (Hensman et al. 2015), further improv-
ing scalability over earlier sparse approximations.  Nguyen and Bonilla (2014) introduce 
SVI for multi-output GPs, where each output is a weighted combination of latent functions. 
They apply their method to capture dependencies between regression tasks, treating the 
weights for the latent functions as hyperparameters. In this paper, we introduce a Bayes-
ian treatment of the weights and apply SVI instead to preference learning. An SVI method 
for GPPL was previously introduced by Simpson and Gurevych (2018), which we detail 
in Sect. 4. However, as GPPL does not consider the individual preferences of users in a 
crowd, we propose a new model, crowdGPPL, which jointly models personal preferences 
and the crowd consensus using a combination of Gaussian processes and Bayesian matrix 
factorisation.
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3  Bayesian preference learning for crowds

We assume that a pair of items, a and b, have utilities f (xa) and f (xb) , which represent their 
value to a user, and that f ∶ ℝ

D
↦ ℝ is a function of item features, where xa and xb are 

vectors of length D containing the features of items a and b, respectively. If f (xa) > f (xb) , 
then a is preferred to b (written a ≻ b ). The outcome of a comparison between a and b is a 
pairwise label, y(a, b). Assuming that pairwise labels never contain errors, then y(a, b) = 1 
if a ≻ b and 0 otherwise. Given knowledge of f, we can compute the utilities of items in a 
test set given their features, and the outcomes of pairwise comparisons.

Thurstone (1927) proposed the random utility model, which relaxes the assumption that 
pairwise labels, y(a, b), are always consistent with the ordering of f (xa) and f (xb) . Under 
the random utility model, the likelihood p(y(a, b) = 1) increases as fa − fb increases, i.e., 
as the utility of item a increases relative to the utility of item b. This reflects the greater 
consistency in a user’s choices when their preferences are stronger, while accommodat-
ing labelling errors or variations in a user’s choices over time. In the Thurstone-Mostel-
ler model, noise in the observations is explained by a Gaussian-distributed noise term, 
� ∼ N(0, �2):

Integrating out the unknown values of �a and �b gives:

where z = f (xa)−f (xb)√
2�2

 , and Φ is the cumulative distribution function of the standard normal 
distribution, meaning that Φ(z) is a probit likelihood.1 This likelihood is also used by Chu 
and Ghahramani (2005) for Gaussian process preference learning (GPPL), but here we 
simplify the formulation by assuming that �2 = 0.5 , which leads to z having a denominator 
of 

√
2 × 0.5 = 1 , hence z = f (xa) − f (xb) . Instead, we model varying degrees of noise in 

the pairwise labels by scaling f itself, as we describe in the next section.
In practice, f (xa) and f (xb) must be inferred from pairwise training labels, y , to obtain 

a posterior distribution over their values. If this posterior is a multivariate Gaussian distri-
bution, then the probit likelihood allows us to analytically marginalise f (xa) and f (xb) to 
obtain the probability of a pairwise label:

where f̂a and f̂b are the means and C is the posterior covariance matrix of the multivariate 
Gaussian over f (xa) and f (xb) . Unlike other choices for the likelihood, such as a sigmoid, 
the probit allows us to compute the posterior over a pairwise label without further approxi-
mation, hence we assume this pairwise label likelihood for our proposed preference learn-
ing model.

(1)p(y(a, b)|f (xa) + �a, f (xb) + �b) =

{
1 if f (xa) + �a ≥ f (b) + �b
0 otherwise,

(2)
p(y(a, b)|f (xa), f (xb))

= ∫ ∫ p(y(a, b)|f (xa) + �a, f (xb) + �b)N
(
�a;0, �

2
)
N
(
�b;0, �

2
)
d�ad�b = Φ(z),

(3)p(y(a, b)�y) = Φ(ẑ),ẑ =
f̂a − f̂b√

1 + Ca,a + Cb,b − 2Ca,b

,

1 Please note that a full list of symbols is provided for reference in “Appendix 5”.
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3.1  GPPL for single user preference learning

We can model the preferences of a single user by assuming a Gaussian process prior over 
the user’s utility function, f ∼ GP(0, k�∕s) , where k� is a kernel function with hyperpa-
rameters � and s is an inverse scale parameter. The kernel function takes numerical item 
features as inputs and determines the covariance between values of f for different items. 
The choice of kernel function and its hyperparameters controls the shape and smoothness 
of the function across the feature space and is often treated as a model selection prob-
lem. Kernel functions suitable for a wide range of tasks include the squared exponential 
and the Matérn (Rasmussen and Williams 2006), which both make minimal assumptions 
but assign higher covariance to items with similar feature values. We use k� to compute a 
covariance matrix K� , between a set of N observed items with features X = {x1,… , xN}.

Here we extend the original definition of GPPL (Chu and Ghahramani 2005), by intro-
ducing the inverse scale, s, which is drawn from a gamma prior, s ∼ G(�0, �0) , with shape 
�0 and scale �0 . The value of 1 / s determines the variance of f, and therefore the magnitude 
of differences between f (xa) and f (xb) for items a and b. This in turn affects the level of 
certainty in the pairwise label likelihood as per Eq. 2.

Given a set of P pairwise labels, y = {y1,… , yP} , where yp = y(ap, bp) is the preference 
label for items ap and bp , we can write the joint distribution over all variables as follows:

where f = {f (x1),… , f (xN)} is a vector containing the utilities of the N items referred to 
by y , and p(yp|f ) = Φ

(
zp
)
 is the pairwise likelihood (Eq. 2).

3.2  Crowd preference learning

To predict the preferences of individuals in a crowd, we could use an independent GPPL 
model for each user. However, by modelling all users jointly, we can exploit correlations 
between their interests to improve predictions when preference data is sparse, and reduce 
the memory cost of storing separate models. Correlations between users can arise from 
common interests over certain subsets of items, such as in one particular genre in a book 
recommendation task. Identifying such correlations helps to predict preferences from fewer 
observations and is the core idea of collaborative filtering (Resnick and Varian 1997) and 
matrix factorisation (Koren et al. 2009).

As well as individual preferences, we wish to predict the consensus by aggregat-
ing preference labels from multiple users. Individual biases of different users may affect 
consensus predictions, particularly when data for certain items comes from a small sub-
set of users. The consensus could also help predict preferences of users with little or no 
data by favouring popular items and avoiding generally poor items. We therefore propose 
crowdGPPL, which jointly models the preferences of individual users as well as the under-
lying consensus of the crowd. Unlike previous methods for inferring the consensus, such as 
CrowdBT (Chen et al. 2013), we do not treat differences between users as simply the result 
of labelling errors, but also account for their subjective biases towards particular items.

For crowdGPPL, we represent utilities in a matrix, F ∈ ℝ
N×U , with U columns cor-

responding to users. Within F , each entry Fa,j = f (xa, uj) is the utility for item a for user j 

(4)p
(
y, f , s|k� ,X, �0, �0

)
=

P∏
p=1

p(yp|f )N(f ;0,K�∕s)G(s;�0, �0)
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with user features uj . We assume that F = VTW + t1T is the product of two low-rank matri-
ces plus a column vector of consensus utilities, t ∈ ℝ

N , where W ∈ ℝ
C×U is a latent repre-

sentation of the users, V ∈ ℝ
C×N is a latent representation of the items, C is the number of 

latent components, i.e., the dimension of the latent representations, and 1 is a column vec-
tor of ones of length U. The column v.,a of V , and the column w.,j of W , are latent vector 
representations of item a and user j, respectively. Each row of V , vc = {vc(x1),… , vc(xN)} , 
contains evaluations of a latent function, vc ∼ GP(0, k�∕s

(v)
c
) , of item features, xa , where k 

is a kernel function, s(v)
c

 is an inverse function scale, and � are kernel hyperparameters. The 
consensus utilities, t = {t(x1),… , t(xN)} , are values of a consensus utility function over item 
features, t ∼ GP(0, k�∕s

(t)) , which is shared across all users, with inverse scale s(t) . Simi-
larly, each row of W , wc = {wc(u1),… ,wc(uU)} , contains evaluations of a latent function, 
wc ∼ GP(0, k�∕s

(w)
c
) , of user features, uj , with inverse scale s(w)

c
 and kernel hyperparameters � . 

Therefore, each utility in F can be written as a weighted sum over the latent components:

where uj are the features of user j and xa are the features of item a. Each latent component 
corresponds to a utility function for certain items, which is shared by a subset of users 
to differing degrees. For example, in the case of book recommendation, c could relate to 
science fiction novels, vc to a ranking over them, and wc to the degree of agreement of 
users with that ranking. The individual preferences of each user j deviate from a consen-
sus across users, t, according to 

∑C

c=1
vc(xa)wc(uj) . This allows us to subtract the effect of 

individual biases when inferring the consensus utilities. The consensus can also help when 
inferring personal preferences for new combinations of users and items that are very differ-
ent to those in the training data by accounting for any objective or widespread appeal that 
an item may have.

Although the model assumes a fixed number of components, C, the GP priors over wc and 
vc act as shrinkage or ARD priors that favour values close to zero (MacKay 1995; Psorakis 
et al. 2011). Components that are not required to explain the data will have posterior expecta-
tions and scales 1∕s(v) and 1∕s(w) approaching zero. Therefore, it is not necessary to optimise 
the value of C by hand, providing a sufficiently large number is chosen.

Equation  5 is similar to cross-task crowdsourcing  (Mo et  al. 2013), which uses matrix 
factorisation to model annotator performance in different tasks, where t corresponds to the 
objective difficulty of a task. However, unlike crowdGPPL, they do not use GPs to model 
the factors, nor apply the approach to preference learning. For preference learning, col-
labGP (Houlsby et al. 2012) is a related model that excludes the consensus and uses values in 
vc to represent pairs rather than individual items, so does not infer item ratings. It also omits 
scale parameters for the GPs that encourage shrinkage when C is larger than required.

We combine the matrix factorisation method with the preference likelihood of Eq. 2 to 
obtain the joint preference model for multiple users, crowdGPPL:

(5)f (xa, uj) =

C∑
c=1

vc(xa)wc(uj) + t(xa),

(6)

p
(
y,V,W, t, s

(v)

1
,… , s

(v)

C
, s

(w)

1
,… , s

(w)

C
, s(t)|k� ,X, k� ,U, �(t)

0
, �

(t)

0
, �

(v)

0
, �

(v)

0
, �

(w)

0
, �

(w)

0

)

=

P∏
p=1

Φ
(
zp
)
N
(
t;0,K�∕s

(t)
)
G
(
s(t);�

(t)

0
, �

(t)

0

) C∏
c=1

{
N
(
vc;0,K�∕s

(v)
c

)

N
(
wc;0,L�∕s

(w)
c

)
G
(
s(v)
c
;�

(v)

0
, �

(v)

0

)
G
(
s(w)
c
;�

(w)

0
, �

(w)

0

)}
,
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where zp = vT
.,ap

w.,up
+ tap − vT

.,bp
w.,up

− tbp , index p refers to a user and a pair of items, 
{up, ap, bp} , U is the set of feature vectors for all users, K� is the prior covariance for the 
items as in GPPL, and L� is the prior covariance for the users computed using k�.

4  Scalable inference

Given a set of pairwise training labels, y , we aim to find the posterior over the matrix 
F∗ = V∗TW∗ of utilities for test items and test users, and the posterior over consensus 
utilities for test items, t∗ . The non-Gaussian likelihood (Eq.  2) makes exact inference 
intractable, hence previous work uses the Laplace approximation for GPPL  (Chu and 
Ghahramani 2005) or combines expectation propagation (EP) with variational Bayes for 
a multi-user model  (Houlsby et  al. 2012). The Laplace approximation is a maximum 
a-posteriori solution that takes the most probable values of parameters rather than inte-
grating over their distributions, and has been shown to perform poorly for classifica-
tion compared to EP  (Nickisch and Rasmussen 2008). However, a drawback of EP is 
that convergence is not guaranteed   (Minka 2001). More importantly, inference for a 
GP using either method has computational complexity O(N3) and memory complexity 
O(N2) , where N is the number of data points.

The cost of inference can be reduced using a sparse approximation based on a set of 
inducing points, which act as substitutes for the points in the training dataset. By choos-
ing a fixed number of inducing points, M ≪ N , the computational cost is cut to O(NM2) , 
and the memory complexity to O(NM) . Inducing points must be selected using either 
heuristics or by optimising their positions to maximise an estimate of the marginal like-
lihood. One such sparse approximation is the generalized fully independent training 
conditional (GFITC) (Naish-guzman and Holden 2008; Snelson and Ghahramani 2006), 
used by Houlsby et al. (2012) for collabGP. However, time and memory costs that grow 
linearly with O(N) start to become a problem with thousands of data points, as all data 
must be processed in every iterative update, before any other parameters such as s are 
updated, making GFITC unsuitable for very large datasets (Hensman et al. 2015).

We derive a more scalable approach for GPPL and crowdGPPL using stochastic 
variational inference (SVI)  (Hoffman et  al. 2013). For GPPL, this reduces the time 
complexity of each iteration to O(PiM

2 + P2
i
M +M3) , and memory complexity to 

O(PiM +M2 + P2
i
) , where Pi is a mini-batch size that we choose in advance. Neither Pi 

nor M are dependent on the size of the dataset, meaning that SVI can be run with arbi-
trarily large datasets, and other model parameters such as s can be updated before pro-
cessing all data to encourage faster convergence. First, we define a suitable likelihood 
approximation to enable the use of SVI.

4.1  Approximating the posterior with a pairwise likelihood

The preference likelihood in Eq.  2 is not conjugate with the Gaussian process, which 
means there is no analytic expression for the exact posterior. For single-user GPPL, we 
therefore approximate the preference likelihood with a Gaussian:
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where Q is a diagonal noise covariance matrix and we omit the kernel hyperparameters, 
� , to simplify notation. For crowdGPPL, we use the same approximation to the like-
lihood, but replace f  with F . We estimate the diagonals of Q by moment matching our 
approximate likelihood with Φ(zp) , which defines a Bernoulli distribution with variance 
Qp,p = Φ(zp)(1 − Φ(zp)) . However, this means that Q depends on z and therefore on f  , 
so the approximate posterior over f  cannot be computed in closed form. To resolve this, 
we approximate Qp,p using an estimated posterior over Φ(zp) computed independently for 
each pairwise label, p. We obtain this estimate by updating the parameters of the conjugate 
prior for the Bernoulli likelihood, which is a beta distribution with parameters � and � . 
We find � and � by matching the moments of the beta prior to the prior mean and variance 
of Φ(zp) , estimated using numerical integration. The prior over Φ(zp) is defined by a GP 
for single-user GPPL, p(Φ(zp)|K, �0, �0) , and a non-standard distribution for crowdGPPL. 
Given the observed label yp , we estimate the diagonals in Q as the variance of the posterior 
beta-Bernoulli:

The covariance Q therefore approximates the expected noise in the observations, hence 
captures variance due to � in Eq.  2. This approximation performs well empirically for 
Gaussian process classification (Reece et al. 2011; Simpson et al. 2017) and classification 
using extended Kalman filters (Lee and Roberts 2010; Lowne et al. 2010).

Unfortunately, the nonlinear term Φ(z) means that the posterior is still intractable, so we 
replace Φ(z) with a linear function of f  by taking the first-order Taylor series expansion of 
Φ(z) about the expectation �[f ] = f̂ :

where ẑ is the expectation of z computed using Eq. 3, and [i = a] = 1 if i = a and is 0 other-
wise. There is a circular dependency between f̂  , which is needed to compute ẑ , and G . We 
estimate these terms using a variational inference procedure that iterates between updating 
f  and G (Steinberg and Bonilla 2014) as part of Algorithm 1. The complete approximate 
posterior for GPPL is now as follows:

where Z is a normalisation constant. Linearisation means that our approximate likelihood is 
conjugate to the prior, so the approximate posterior is also Gaussian. Gaussian approxima-
tions to the posterior have shown strong empirical results for classification (Nickisch and 
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)(
2yp − 1

)(
[i = ap] − [i = bp]

)
,
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(
f ;f̂ ,C

)
,
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Rasmussen 2008) and preference learning (Houlsby et al. 2012), and linearisation using a 
Taylor expansion has been widely tested in the extended Kalman filter (Haykin 2001) as 
well as Gaussian processes (Steinberg and Bonilla 2014; Bonilla et al. 2016).

4.2  SVI for single user GPPL

Using the linear approximation in the previous section, posterior inference requires invert-
ing K with computational cost O(N3) and taking an expectation with respect to s, which 
remains intractable. We address these problems using stochastic variational inference 
(SVI) with a sparse approximation to the GP that limits the size of the covariance matri-
ces we need to invert. We introduce M ≪ N inducing items with inputs Xm , utilities fm , 
and covariance Kmm . The covariance between the observed and inducing items is Knm . For 
clarity, we omit � from this point on. We assume a mean-field approximation to the joint 
posterior over inducing and training items that factorises between different sets of latent 
variables:

where q(.) are variational factors defined below. Each factor corresponds to a subset of 
latent variables, � i , and takes the form ln q(� i) = �j≠i[ln p(� i, x, y)] . That is, the expecta-
tion with respect to all other latent variables, � j,∀j ≠ i , of the log joint distribution of the 
observations and latent variables, � i . To obtain the factor for fm , we marginalise f  and take 
expectations with respect to q(s):

where the variational parameters f̂m and S are computed using an iterative SVI procedure 
described below. We choose an approximation of q(f ) that depends only on the inducing 
point utilities, fm , and is independent of the observations:

where A = KnmK
−1
mm

 . Therefore, we no longer need to invert an N × N covariance matrix to 
compute q(f ) . The factor q(s) also depends only the inducing points:

where � = �0 +
M

2
 and 𝛽 = 𝛽0 +

1

2
tr
(
K−1

mm

(
S + f̂m f̂

T

m

))
 . The expected value is �[s] = �

�
.

We apply variational inference to iteratively reduce the KL-divergence between our 
approximate posterior and the true posterior (Eq. 12) by maximising a lower bound, L , on 
the log marginal likelihood (detailed equations in “Appendix 1”), which is given by:

To optimise L , we initialise the q factors randomly, then update each one in turn, taking 
expectations with respect to the other factors.
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The only term in L that refers to the observations, y , is a sum of P terms, each of 
which refers to one observation only. This means that L can be maximised by consider-
ing a random subset of observations at each iteration (Hensman et al. 2013). For the ith 
update of q

(
fm

)
 , we randomly select Pi observations yi = {yp∀p ∈ Pi} , where Pi is a ran-

dom subset of indexes of observations, and Pi is a mini-batch size. The items referred 
to by the pairs in the subset are Ni = {ap∀p ∈ Pi} ∪ {bp∀p ∈ Pi} . We perform updates 
using Qi (rows and columns of Q for pairs in Pi ), Kim and Ai (rows of Knm and A in Ni ), 
Gi (rows of G in Pi and columns in Ni ), and ẑi =

{
ẑp∀p ∈ Pi

}
 . The updates optimise the 

natural parameters of the Gaussian distribution by following the natural gradient (Hens-
man et al. 2015):

where �i = (i + �)−r is a mixing coefficient that controls the update rate, �i =
P

Pi

 weights 
each update according to sample size, � is a delay hyperparameter and r is a forgetting 
rate (Hoffman et al. 2013).

By performing updates in terms of mini-batches, the time complexity of Eqs. 17 and 18 
is O(PiM

2 + P2
i
M +M3) and memory complexity is O(M2 + P2

i
+MPi) . The only param-

eters that must be stored between iterations relate to the inducing points, hence the memory 
consumption does not grow with the dataset size as in the GFITC approximation used by 
Houlsby et al. (2012). A further advantage of stochastic updating is that the s parameter 
(and any other global parameters not immediately depending on the data) can be learned 
before the entire dataset has been processed, which means that poor initial estimates of s 
are rapidly improved and the algorithm can converge faster.

The complete SVI algorithm is summarised in Algorithm 1. It uses a nested loop to learn 
Gi , which avoids storing the complete matrix, G . It is possible to distribute computation in 
lines 3-6 by selecting multiple random samples to process in parallel. A global estimate of 
f̂m and S is passed to each compute node, which runs the loop over lines 4 to 6. The resulting 
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updated f̂m and S values are then passed back to a central node that combines them by taking 
a mean weighted by �i to account for the size of each batch.

Inducing point locations can be learned as part of the variational inference procedure, 
which breaks convergence guarantees, or by an expensive optimisation process  (Hens-
man et al. 2015). We obtain good performance by choosing inducing points up-front using 
K-means++ (Arthur and Vassilvitskii 2007) with M clusters to cluster the feature vectors, then 
taking the cluster centres as inducing points that represent the distribution of observations.

The inferred distribution over the inducing points can be used to estimate the posteriors of 
test items, f (x∗) , according to:

where C∗ is the posterior covariance of the test items, K∗∗ is their prior covariance, and K∗m 
is the covariance between test and inducing items.

4.3  SVI for crowdGPPL

We now provide the variational posterior for the crowdGPPL model defined in Eq. 6:

where Um are the feature vectors of inducing users and the variational q factors are defined 
below. We use SVI to optimise the lower bound on the log marginal likelihood (detailed in 
“Appendix 2”), which is given by:

The SVI algorithm follows the same pattern as Algorithm 1, updating each q factor in turn 
by computing means and covariances for Vm , Wm and tm instead of fm (see Algorithm 2). 
The time and memory complexity of each update are O(CM3
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respectively. The variational factor for the cth inducing item component is:
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where posterior mean v̂m,c and covariance S(v)
c

 are computed using equations of the same 
form as Eqs. 17 and 18, except Q−1 is scaled by expectations over wm,c , and f̂m,i is replaced 
by v̂m,c,i . The factor for the inducing points of t follows a similar pattern to vm,c:

where the equations for t̂ and S(t) are the same as Eqs. 17 and 18, except f̂m,i is replaced by 
t̂m,i . Finally, the variational distribution for each inducing user’s component is:

where ŵc and �c also follow the pattern of Eqs. 17 and 18, with Q−1 scaled by expectations 
of wc,m , and f̂m,i replaced by ŵm,c,i . We provide the complete equations for the variational 
means and covariances for vm,c , tm and wm,c in “Appendix 3”. The expectations for inverse 
scales, s(v)

1
,… , s(v)

c
 , s(w)

1
,… , s(w)

c
 and s(t) can be computed using Eq. 15 by substituting the 

corresponding terms for vc , wc or t instead of f .
Predictions for crowdGPPL can be made by computing the posterior mean utilities, F∗ , 

and the covariance �∗
u
 for each user, u, in the test set:

where t̂∗ , v̂∗
c
 and ŵ∗

c
 are posterior test means, C∗

t
 and C∗

v,c
 are posterior covariances of the test 

items, and �∗
c,u

 is the posterior variance of the user components for u. (see “Appendix 4”, 
Eqs. 39 to 41). The mean F∗ and covariances Λ∗

u
 can be inserted into Eq. 2 to predict pair-

wise labels. In practice, the full covariance terms are needed only for Eq. 2, so need only be 
computed between items for which we wish to predict pairwise labels.

5  Experiments

Our experiments test key aspects of crowdGPPL: predicting consensus utilities and per-
sonal preferences from pairwise labels and the scalability of our proposed SVI method. In 
Sect. 5.1, we use simulated data to test the robustness of crowdGPPL to noise and unknown 
numbers of latent components. Section 5.2 compares different configurations of the model 
against alternative methods using the Sushi datasets2 (Kamishima 2003). Section 5.3 eval-
uates prediction performance and scalability of crowdGPPL in a high-dimensional NLP 
task with sparse, noisy crowdsourced preferences (UKPConvArgCrowdSample,3  Simpson 
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2 http://www.kamis hima.net/sushi /.
3 https ://githu b.com/ukpla b/tacl2 018-prefe rence -convi ncing .

http://www.kamishima.net/sushi/
https://github.com/ukplab/tacl2018-preference-convincing
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and Gurevych (2018)). Finally, Sect. 5.4 evaluates whether crowdGPPL ignores redundant 
components. The datasets are summarised in Table 1.

As baselines, we compare crowdGPPL against GPPL, which we train on all users’ pref-
erence labels to learn a single utility function, and GPPL-per-user, in which a separate 
GPPL instance is learned for each user with no collaborative learning. We also compare 
against the GPVU model  (Khan et  al. 2014) and collabGP   (Houlsby et  al. 2012). Col-
labGP contains parameters for each pairwise label and each user, so has a larger memory 
footprint than our SVI scheme, which stores only the moments at the inducing points.

We test crowdBT (Chen et al. 2013) as part of a method for predicting consensus utili-
ties from crowdsourced pairwise preferences. CrowdBT models each worker’s accuracy, 
assuming that the differences between workers’ labels are due to random errors rather than 
subjective preferences. Since crowdBT does not account for the item features, it cannot 
predict utilities for items that were not part of the training set. We therefore treat the poste-
rior mean utilities produced by crowdBT as training labels for Gaussian process regression 
using SVI. We set the observation noise variance of the GP equal to the crowdBT posterior 
variance of the utilities to propagate uncertainty from crowdBT to the GP. This pipeline 
method, crowdBT–GP, tests whether it is sufficient to treat annotator differences as noise, 
in contrast to the crowdGPPL approach of modelling individual preferences.

We evaluate the methods using the following metrics: accuracy (acc), which is the frac-
tion of correct pairwise labels; cross entropy error (CEE) between the posterior probabili-
ties over pairwise labels and the true labels, which captures the quality of the pairwise pos-
terior; and Kendall’s � , which evaluates the ranking obtained by sorting items by predicted 
utility.

5.1  Simulated noisy data

First, we evaluate whether crowdGPPL is able to model individual preferences with vary-
ing amounts of labelling noise. We set the number of latent components to C = 20 and all 
Gamma hyperparameters for crowdGPPL, GPPL and GPPL-per-user to �0 = 1 , �0 = 100 . 
We use Matérn 3/2 kernels with the length-scale for each dimension of the feature vector, 
d, chosen by a median heuristic:

Table 1  Summary of datasets showing average counts for the training and test sets used in each fold/sub-
sample

The test sets all contain gold-standard rankings over items as well as pairwise labels, except the simula-
tions, which are not generated as we evaluate using the rankings only. Numbers of features are given after 
categorical labels have been converted to one-hot encoding, counting each category as a separate feature

Dataset #folds/ #users total training set test set #features

samples #items #pairs #pairs #items items users

Simulation a and b 25 25 100 900 0 100 2 2
Simulation c 25 25 100 36–2304 0 100 2 2
Sushi A-small 25 100 10 500 2500 10 18 123
Sushi A 25 100 10 2000 2500 10 18 123
Sushi B 25 5000 100 50000 5000 100 18 123
UKPConvArgCrowdSample 32 1442 1052 16398 529 33 32310 0
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This is a computationally frugal way to choose the length-scales, that has been extensively 
used in various kernel methods (e.g.,  Bors and Pitas (1996); Gretton et al. (2012)). The 
SVI hyperparameters were set to � = 0.9 , Pi = 1000 and � = 1 . Hoffman et  al. (2013) 
found that higher values of � gave better final results but slightly slower convergence, rec-
ommending 0.9 as a good balance across several datasets, and did not find any effect from 
changing � . We follow their recommendations and do not find it necessary to perform fur-
ther tuning in our experiments. Both M and Pi are constrained in practice by the computa-
tional resources available—we investigate these further in Sect. 5.3.

In simulation (a), to test consensus prediction, we generate a 20 × 20 grid of points and 
split them into 50% training and test sets. For each gridpoint, we generate pairwise labels 
by drawing from the generative model of crowdGPPL with U = 20 users, C = 5 , each s(v)

c
 

set to random values between 0.1 and 10, and s(w)
c

= 1,∀c . We vary s(t) to control the noise 
in the consensus function. We train and test crowdGPPL with C = U and repeat the com-
plete experiment 25 times, including generating new data.

Figure 1a shows that crowdGPPL better recovers the consensus ranking than the base-
lines, even as noise increases, as GPPL’s predictions are worsened by biased users who 
deviate consistently from the consensus. For GPPL-per-user, the consensus is simply the 
mean of all users’ predicted utilities, so does not benefit from sharing information between 
users when training. For simulation (b), we modify the previous setup by fixing s(t) = 5 and 
varying s(v)

c
,∀c to evaluate the methods’ ability to recover the personal preferences of simu-

lated users. The results in Fig. 1b show that crowdGPPL is able to make better predictions 
when noise is below 0.3.

We hypothesise that crowdGPPL can recover latent components given sufficient 
training data. In simulation (c), we generate data using the same setup as before, but fix 
s(t) = s(v)

c
= s(w) = 1,∀c and vary the number of pairwise training labels and the number 

of true components through Ctrue ∈ {1, 3, 10, 20} . We match inferred components to the 
true components as follows: compute Pearson correlations between each unmatched true 
component and each unmatched inferred component; select the pair with the highest cor-
relation as a match; repeat until all true components are matched. In Fig. 1c we plot the 
mean correlation between matched pairs of components. For all values of Ctrue , increasing 
the number of training labels beyond 700 brings little improvement. Performance is highest 
when Ctrue = 20 , possibly because the predictive model has C = 20 , so is a closer match to 
the generating model. However, crowdGPPL is able to recover latent components reason-
ably well for all values of Ctrue given > 500 labels, despite mismatches between C and Ctrue.

5.2  Sushi preferences

The sushi datasets contain, for each user, a gold standard preference ranking of 10 types 
of sushi, from which we generate gold-standard pairwise labels. To test performance with 
very few training pairs, we obtain Sushi-A-small by selecting 100 users at random from 
the complete Sushi-A dataset, then selecting 5 pairs for training and 25 for testing per user. 
For Sushi-A, we select 100 users at random from the complete dataset, then split the data 
into training and test sets by randomly selecting 20 training and 25 test pairs per user. For 
Sushi-B, we use all 5000 workers, and subsample 10 training and 1 test pair per user.

We compare standard crowdGPPL with four other variants:

(26)ld,MH = median({||xi,d − xj,d||,∀i = 1,… ,N,∀j = 1,… ,N}).



704 Machine Learning (2020) 109:689–718

1 3

– crowdGPPL∖inducing: does not use the sparse inducing point approximation and 
instead uses all the original points in the training set;

– crowdGPPL∖u : ignores the user features;
– crowdGPPL∖u∖x : ignores both user and item features;
– crowdGPPL∖u∖t : excludes the consensus function t from the model as well as the 

user features.

For methods with ∖u , the user covariance matrix, L , is replaced by the identity matrix, 
and for crowdGPPL∖u∖x , K is also replaced by the identity matrix. As the user features 
do not contain detailed, personal information (only region, age group, gender, etc.), they 
are not expected to be sufficiently informative to predict personal preferences on their 
own. Therefore, for crowdGPPL and crowdGPPL∖inducing, we compute L for 10 latent 
components using the Matérn 3/2 kernel function and use the identity matrix for the 
remaining 10. CollabGP is also tested with and without user features. We set hyperpa-
rameters C = 20 , � = 1 , � = 0.9 , Pi = 200 for Sushi-A-small and Sushi-A, and Pi = 2000 
for Sushi-B, without optimisation. For the gamma hyperparameters, a grid search over 
{10−1,… , 103} on withheld user data from Sushi-A resulted in �0 = 1, �0 = 100 for 
GPPL variants, and �(t)

0
= 1, �

(t)

0
= 100 , �(v)

0
= 1, �

(v)

0
= 10 and �(w)

0
= 1, �

(w)

0
= 10 for 

crowdGPPL variants. The complete process of subsampling, training and testing, was 
repeated 25 times for each dataset.

The results in Table 2 illustrate the benefit of personalised models over single-user 
GPPL. The inducing point approximation does not appear to harm performance of 
crowdGPPL, but including the user features tends to decrease its performance com-
pared to crowdGPPL∖u and crowdGPPL∖u∖x , except on Sushi-A-small, where they 
may help with the small amount of training data. Comparing crowdGPPL∖u with 
crowdGPPL∖u∖t , including the consensus function improves performance modestly. 
The strong performance of GPPL-per-user suggests that even 10 pairs per person were 
enough to learn a reasonable model for Sushi-B. As expected, the more memory-inten-
sive collabGP performs comparably well to crowdGPPL on accuracy and CEE but does 
not provide a ranking function for computing Kendall’s � . GPVU does not perform 
as well as other personalised methods on Sushi-A and Sushi-B, potentially due to its 
maximum likelihood inference steps. The results show that crowdGPPL is competitive 
despite the approximate SVI method, so in the next experiment, we test the approach on 
a larger crowdsourced dataset where low memory consumption is required.

(a) (b) (c)

Fig. 1  Simulations: rank correlation between true and inferred utilities. a and b vary the level of noise in 
pairwise training labels, c varies the number of pairwise training labels
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5.3  Argument convincingness

We evaluate consensus learning, personal preference learning and scalability on an NLP 
task, namely, ranking arguments by convincingness. The task requires learning from 
crowdsourced data, but is not simply an aggregation task as it requires learning a pre-
dictor for test documents that were not compared by the crowd. The dataset, UKPCon-
vArgCrowdSample, was subsampled by Simpson and Gurevych (2018) from raw data 
provided by Habernal and Gurevych (2016), and contains arguments written by users of 
online debating forums, with crowdsourced judgements of pairs of arguments indicat-
ing the most convincing argument. The data is divided into 32 folds (16 topics, each 
with 2 opposing stances). For each fold, we train on 31 folds and test on the remaining 
fold. We extend the task to predicting both the consensus and personal preferences of 
individual crowd workers. GPPL previously outperformed SVM and Bi-LSTM methods 
at consensus prediction for UKPConvArgCrowdSample (Simpson and Gurevych 2018). 
We hypothesise that a worker’s view of convincingness depends on their personal view 
of the subject discussed, so crowdGPPL may outperform GPPL and crowdBT-GP on 
both consensus and personal preference prediction.

The dataset contains 32,  310 linguistic and embedding features for each document 
(we use mean GloVe embeddings for the words in each document, see Simpson and 
Gurevych (2018)). The high-dimensionality of the input feature vectors requires us to 
modify the length-scale heuristic for all GP methods, as the distance between items 
grows with the number of dimensions, which causes the covariance to shrink to very 
small values. We therefore use ld,scaledMH = 20

√
D × ld,MH , where D is the dimension of 

the input feature vectors, and the scale was chosen by comparing the training set accu-
racy with scales in {

√
D, 10

√
D, 20

√
D, 100

√
D} . The hyperparameters are the same 

as Sect.  5.1 except GPPL uses �0 = 2 , �0 = 200 and crowdGPPL uses �(t)

0
= �

(v)

0
= 2 , 

�
(t)

0
= �

(t)

0
= 200 , �(w)

0
= 1 , �(w)

0
= 10 . We do not optimise �0 , but choose �0 by compar-

ing training set accuracy for GPPL with �0 ∈ {2, 200, 20000} . The best value of �0 is 

Table 2  Predicting personal preferences on Sushi datasets, means over 25 repeats

The standard deviations are ≤ 0.02 for all accuracies, ≤ 0.08 for all CEE, and ≤ 0.03 for all � . For Sushi-B, 
crowdGPPL, GPPL-per-user and collabGP had runtimes of   30 min on a 12 core, 2.6 GHz CPU server; 
GPPL required only 1 min
Bold values indicate the best performance in each column

Method Sushi-A-small Sushi-A Sushi-B

Acc CEE � Acc CEE � Acc CEE �

crowdGPPL .71 .56 .48 .84 .33 .79 .76 .50 . 54
crowdGPPL ∖inducing .70 .60 .45 .84 .34 .78 – – –
crowdGPPL ∖u .70 .58 .46 .85 .31 .80 .78 .50 .57
crowdGPPL ∖u∖x .71 .57 .49 .85 .33 .80 .77 .49 .56
crowdGPPL ∖u, ∖t .68 .60 .43 .84 .33 .80 .76 .51 .58
GPPL .65 .62 .31 .65 .62 .31 .65 .62 .31
GPPL-per-user .67 .64 .42 .83 .40 .79 .75 .60 .60
collabGP .69 .58 n/a .83 .35 n/a .76 .49 n/a
collabGP∖u .69 .59 n/a .84 .33 n/a .76 .50 n/a
GPVU .70 .67 .43 .72 .67 .42 .73 .59 .52
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also used for �(t)
0

 and �(v)
0

 , then training set accuracy of crowdGPPL is used to select 
�
(w)

0
∈ {1, 10, 100} . We set C = 50 , M = 500 , Pi = 200 , � = 10 , and � = 0.9 without 

optimisation.
Table 3 shows that crowdGPPL outperforms both GPPL and crowdBT–GP at predict-

ing both the consensus and personal preferences (significant for Kendall’s � with p < 0.05 , 
Wilcoxon signed-rank test), suggesting that there is a benefit to modelling individual work-
ers in subjective, crowdsourced tasks. We also compare against crowdGPPL without the 
consensus (crowdGPPL∖t ) and find that including t in the model improves personalised 
predictions. This is likely because many workers have few training pairs, so the consen-
sus helps to identify arguments that are commonly considered very poor or very convinc-
ing. Table 3 also shows that for workers with more than 50 pairs in the training set, accu-
racy and CEE improve for all methods but � decreases, suggesting that some items may be 
ranked further away from their correct ranking for these workers. It is possible that workers 
who were willing to complete more annotations (on average 31 per fold) deviate further 
from the consensus, and crowdGPPL does not fully capture their preferences given the data 
available.

We examine the scalability of our SVI method by evaluating GPPL and crowd-GPPL 
with different numbers of inducing points, M, and different mini-batch sizes, Pi . Figure 2a 
shows the trade-off between runtime and training set accuracy as an effect of choosing M. 
Accuracy levels off as M increases, while runtime continues to increase rapidly in a pol-
ynomial fashion. Using inducing points can therefore give a large improvement in runt-
imes with a fairly small performance hit. Figure 2b demonstrates that smaller batch sizes 
do not negatively affect the accuracy, although they increase runtimes as more iterations 
are required for convergence. The runtimes flatten out as Pi increases, so we recommend 
choosing Pi ≥ 200 but small enough to complete an iteration rapidly with the computa-
tional resources available. Figure 2c, d show runtimes as a function of the number of items 
in the training set, N, and the number of pairwise training labels, P, respectively (all other 
settings remain as in Fig. 2a). In both cases, the increases to runtime are small, despite the 
growing dataset size.

5.4  Posterior variance of item components

We investigate how many latent components were actively used by crowdGPPL on the 
UKPConvArgCrowdSample and Sushi-A datasets. Figure  3 plots the posterior expecta-
tions of the inferred scales, 1∕

(
s(v)
c
s(w)
c

)
 , for the latent item components. The plots show that 

many factors have a relatively small variance and therefore do not contribute to many of 

Table 3  UKPConvArgCrowd-
Sample: predicting consensus, 
personal preferences for all work-
ers, and personal preferences for 
workers with >50 pairs in the 
training set

Bold values indicate the best performance in each column

Method Consensus Personal: all 
workers

>50 training 
pairs

Acc CEE � Acc CEE � Acc CEE �

GPPL .77 .51 .50 .71 .56 .31 .72 .55 .25
crowdGPPL .79 .52 .53 .72 .58 .33 .74 .55 .27
crowdGPPL∖t – – – .68 .63 .23 .74 .57 .27
crowdBT-GP .75 .53 .45 .69 .58 .30 .71 .56 .23
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the model’s predictions. This indicates that our Bayesian approach will only make use of 
components that are supported by the data, even if C is larger than required.

6  Conclusions

We proposed a novel Bayesian preference learning approach for modelling both the 
preferences of individuals and the overall consensus of a crowd. Our model learns the 
latent utilities of items from pairwise comparisons using a combination of Gaussian pro-
cesses and Bayesian matrix factorisation to capture differences in opinion. We introduce 
a stochastic variational inference (SVI) method, that, unlike previous work, can scale to 
arbitrarily large datasets, since its time and memory complexity do not grow with the 
dataset size. Our experiments confirm the method’s scalability and show that jointly 
modelling the consensus and personal preferences can improve predictions of both. Our 
approach performs competitively against less scalable alternatives and improves on the 
previous state of the art for predicting argument convincingness from crowdsourced 
data (Simpson and Gurevych 2018).

Future work will investigate learning inducing point locations and optimising length-
scale hyperparameters by maximising the variational lower bound, L , as part of the 

(a) (b)

(c) (d)

Fig. 2  Wall-clock times for training+prediction of consensus utilities for arguments in the training folds of 
UKPConvArgCrowdSample. CrowdGPPL was run with C = 5 . In b, c and d, M = 100 . Lines show means 
over 32 runs, bands indicate 1 standard deviation (mostly very little variation between folds)
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variational inference method. Another important direction will be to generalise the like-
lihood from pairwise comparisons to comparisons involving more than two items (Pan 
et al. 2018) or best–worst scaling (Kiritchenko and Mohammad 2017) to provide scal-
able Bayesian methods for other forms of comparative preference data.
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Appendix 1: Variational lower bound for GPPL

Due to the non-Gaussian likelihood, Eq. 2, the posterior distribution over f  contains intrac-
table integrals:

We can derive a variational lower bound as follows, beginning with an approximation that 
does not use inducing points:

Writing out the expectations in terms of the variational parameters, we get:

The expectation over the likelihood can be computed using numerical integration. Now we 
can introduce the sparse approximation to obtain the bound in Eq. 16:

where the terms relating to �
[
p(f |fm) − q(f )

]
 cancel.

(27)p(f �y, k� , �0, �0) =
∫ ∏P

p=1
Φ(zp)N(f ;0,K�∕s)G(s;�0, �0)ds

∫ ∫ ∏P

p=1
Φ(zp)N(f �;0,K�∕s)G(s;�0, �0)dsdf

�
.

(28)

L =

P�
p=1

�q(f )

�
ln p

�
yp�f (xap ), f (xbp )

��
+ �q(f ),q(s)

⎡
⎢⎢⎢⎣
ln

p
�
f �0, K

s

�

q(f )

⎤⎥⎥⎥⎦

+ �q(s)

�
ln

p
�
s��0, �0

�
q(s)

�

(29)

L = �q(f )

[ P∑
p=1

yp lnΦ(zp) + (1 − yp)
(
1 − lnΦ(zp)

)]
+ �q(f )

[
lnN

(
f̂ ;�,K∕�[s]

)]

− �q(f

[
lnN

(
f ;f̂ ,C

)]
+ �q(s)

[
lnG

(
s;𝛼0, 𝛽0
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− lnG(s;𝛼, 𝛽)
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=
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p=1

yp�q(f )[lnΦ(zp)] + (1 − yp)
(
1 − �q(f )[lnΦ(zp)]
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−
1

2

{
ln |K| − �[ln s] + tr

((
f̂
T
f̂ + C

)
K−1

)
− ln |C| − N

}

− Γ(𝛼0) + 𝛼0(ln 𝛽0) + (𝛼0 − 𝛼)�[ln s] + Γ(𝛼) + (𝛽 − 𝛽0)�[s] − 𝛼 ln 𝛽.

(30)

L ≈ �q(f )[ln p(y|f )] + �q(fm),q(s)
[ln p(fm, s|K, 𝛼0, 𝛽0)]

− �q(fm)
[ln q(fm)] − �q(s)[ln q(s)]

=

P∑
p=1

�q(f )[ln p(yp|f (xap ), f (xbp ))] −
1

2

{
ln |Kmm| − �[ln s] − ln |S| −M

+ f̂
T

m
�[s]K−1

mm
f̂m + tr(�[s]K−1

mm
S)

}
+ lnΓ(𝛼) − lnΓ(𝛼0) + 𝛼0(ln 𝛽0)

+ (𝛼0 − 𝛼)�[ln s] + (𝛽 − 𝛽0)�[s] − 𝛼 ln 𝛽,



710 Machine Learning (2020) 109:689–718

1 3

Appendix 2: Variational lower bound for crowdGPPL

For crowdGPPL, our approximate variational lower bound is:

Appendix 3: Posterior parameters for variational factors in crowdGPPL

For the latent item components, the posterior precision estimate for S−1
v,c

 at iteration i is 
given by:

(31)

Lcr =

P∑
p=1

ln p(yp|v̂T.,ap ŵ.,jp
+ t̂ap , v̂

T

.,bp
ŵ.,jp

+ t̂bp )

−
1

2

{ C∑
c=1

{
ln |Kmm| − �

[
ln s(v)

c

]
− ln |S(v)

c
|

−Mitems + v̂T
m,c

�
[
s(v)
c

]
K−1

mm
v̂m,c + tr

(
�
[
s(v)
c

]
K−1

mm
Sv,c

)
+ ln |Lmm| − �

[
ln s(w)

c

]

− ln |�c| −Musers + ŵT

m,c
�
[
s(w)
c

]
L−1
mm

ŵm,c + tr
(
�
[
s(w)
c

]
L−1
mm

�c

)
+ ln |Kmm|
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[
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�
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�
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(
S
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where Ai = KimK
−1
mm

 , ŵc and �c are the variational mean and covariance of the cth latent 
user component (defined below in Eqs. 37 and 36), and u = {up∀p ∈ Pi} is the vector of 
user indexes in the sample of observations. We use S−1

v,c
 to compute the means for each row 

of Vm:

For the consensus, the precision and mean are updated according to the following:

For the latent user components, the SVI updates for the parameters are:

where the subscripts a = {ap∀p ∈ Pi} and b = {bp∀p ∈ Pi} are lists of indices to the first 
and second items in the pairs, respectively, Aw,i = LimL

−1
mm

 , and Hi ∈ Ui × Pi contains 
partial derivatives of the likelihood corresponding to each user ( Ui is the number of users 
referred to by pairs in Pi ), with elements given by:

(33)
v̂m,c,i = S

(v)

c,i

(
(1 − 𝜌i)

(
S
(v)

c,i−1

)−1

v̂m,c,i−1

+ 𝜌i𝜋iS
(v)

c,i
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i
GT

i
diag(ŵc,u)Q

−1
i

(
yi − Φ(ẑi) + diag(ŵc,u)GiAiv̂

T

c,m,i−1

))
.

(34)
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S
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i−1
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Appendix 4: Predictions with crowdGPPL

The means, item covariances and user variance required for predictions with 
crowdGPPL (Eq. 25) are defined as follows:

where A∗m = K∗mK
−1
mm

 , A(w)
um

= LumL
−1
mm

 and Lum is the covariance between user u and the 
inducing users.
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Appendix 5: Mathematical notation

A list of symbols is provided in Table 4.

Table 4  Table of symbols used to represent variables in this paper

Symbol Meaning

General symbols used with multiple variables
̂ An expectation over a variable

̃ An approximation to the variable
upper case, bold letter A matrix
lower case, bold letter A vector
lower case, normal letter A function or scalar
∗ Indicates that the variable refers to the test set, rather than 

the training set
Pairwise preference labels
y(a, b) A binary label indicating whether item a is preferred to 

item b
y
p

The pth pairwise label in a set of observations
y The set of observed values of pairwise labels
Φ Cumulative density function of the standard Gaussian 

(normal) distribution
x
a

The features of item a (a numerical vector)
X The features of all items in the training set
D The size of the feature vector
N Number of items in the training set
P Number of pairwise labels in the training set
x∗ The features of all items in the test set
�
a

Observation noise in the utility of item a
�2 Variance of the observation noise in the utilities
z
p

The difference in utilities of items in pair p, normalised 
by its total variance

z set of z
p
 Values for training pairs

GPPL (some terms also appear in crowdGPPL)
f Latent utility function over items in single-user GPPL
f Utilities, i.e., values of the latent utility function for a 

given set of items
C Posterior covariance in f  ; in crowdGPPL, superscripts 

indicate whether this is the covariance of consensus 
values or latent item components

s An inverse function scale; in crowdGPPL, superscripts 
indicate which function this variable scales

k Kernel function
� Kernel hyperparameters for the items
K Prior covariance matrix over items
�
0

Shape hyperparameter of the inverse function scale prior
�
0

Scale hyperparameters of the inverse function scale prior
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Table 4  (continued)

Symbol Meaning

CrowdGPPL
F Matrix of utilities, where rows correspond to items and 

columns to users
t Consensus utilities
C Number of latent components
c Index of a component
V Matrix of latent item components, where rows correspond 

to components
v
c

A row of V for the cth component
W Matrix of latent user components, where rows correspond 

to components
w
c

A row of W for the cth component
�
c

Posterior variance for the cth user component
� Kernel hyperparameters for the users
L Prior covariance matrix over users
u
j

User features for user j
U Number of users in the training set
U Matrix of features for all users in the training set
Probability distributions
N (multivariate) Gaussian or normal distribution
G Gamma distribution
Stochastic variational inference (SVI)
M Number of inducing items
Q Estimated observation noise variance for the approximate 

posterior
� , � Estimated hyperparameters of a Beta prior distribution 

over Φ(z
p
)

i Iteration counter for stochastic variational inference
f
m

Utilities of inducing items
K

mm
Prior covariance of the inducing items

K
nm

Prior covariance between training and inducing items
S Posterior covariance of the inducing items; in 

crowdGPPL, a superscript and subscript indicate which 
variable this is the posterior covariance for

� Posterior covariance over the latent user components
A K

nm
K−1

mm

G Linearisation term used to approximate the likelihood
a Posterior shape parameter for the Gamma distribution 

over s
b Posterior scale parameter for the Gamma distribution 

over s
�
i

A mixing coefficient, i.e., a weight given to the ith update 
when combining with current values of variational 
parameters

� Delay
r Forgetting rate
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