
Vol.:(0123456789)

Machine Learning (2020) 109:689–718
https://doi.org/10.1007/s10994-019-05867-2

1 3

Scalable Bayesian preference learning for crowds

Edwin Simpson1 · Iryna Gurevych1

Received: 21 January 2019 / Revised: 11 December 2019 / Accepted: 18 December 2019 /
Published online: 6 February 2020
© The Author(s) 2020

Abstract
We propose a scalable Bayesian preference learning method for jointly predicting the pref-
erences of individuals as well as the consensus of a crowd from pairwise labels. Peoples’
opinions often differ greatly, making it difficult to predict their preferences from small
amounts of personal data. Individual biases also make it harder to infer the consensus of
a crowd when there are few labels per item. We address these challenges by combining
matrix factorisation with Gaussian processes, using a Bayesian approach to account for
uncertainty arising from noisy and sparse data. Our method exploits input features, such
as text embeddings and user metadata, to predict preferences for new items and users that
are not in the training set. As previous solutions based on Gaussian processes do not scale
to large numbers of users, items or pairwise labels, we propose a stochastic variational
inference approach that limits computational and memory costs. Our experiments on a rec-
ommendation task show that our method is competitive with previous approaches despite
our scalable inference approximation. We demonstrate the method’s scalability on a natural
language processing task with thousands of users and items, and show improvements over
the state of the art on this task. We make our software publicly available for future work
(https ://githu b.com/UKPLa b/tacl2 018-prefe rence -convi ncing /tree/crowd GPPL).

1 Introduction

Preference learning involves comparing a set of alternatives according to a particular
quality (Fürnkranz and Hüllermeier 2010), which often leads to a divergence of opin-
ion between people. For example, in argument mining, a sub-field of natural language
processing (NLP), one goal is to rank arguments by their convincingness (Habernal
and Gurevych 2016). Whether a particular argument is convincing or not depends on
the reader’s point of view and prior knowledge (Lukin et al. 2017). Similarly, personal

Editors: Karsten Borgwardt, Po-Ling Loh, Evimaria Terzi, and Antti Ukkonen.

 * Edwin Simpson
 simpson@ukp.informatik.tu-darmstadt.de

 Iryna Gurevych
 gurevych@ukp.informatik.tu-darmstadt.de

1 Ubiquitous Knowledge Processing Lab, Department of Computer Science, Technische Universität
Darmstadt, Darmstadt, Germany

http://orcid.org/0000-0002-6447-1552
https://github.com/UKPLab/tacl2018-preference-convincing/tree/crowdGPPL
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-019-05867-2&domain=pdf

690 Machine Learning (2020) 109:689–718

1 3

preferences affect recommender systems, which often perform better if they tailor
recommendations to a specific user (Resnick and Varian 1997). Disagreements also
occur when preference annotations are acquired from multiple annotators, for exam-
ple, using crowdsourcing, and are often mitigated by redundant labelling (Snow et al.
2008; Banerji et al. 2010). Therefore, we require preference learning methods that can
account for differences of opinion to (1) predict personal preferences for members of
a crowd and (2) infer a consensus given observations from multiple users. For both
tasks, our goal is to rank items or choose the preferred item from any given pair.

Recommender systems often predict a user’s preferences via collaborative filter-
ing, which overcomes data sparsity by exploiting similarities between the preferences
of different users (Resnick and Varian 1997; Koren et al. 2009). Many recommender
systems are based on matrix factorisation techniques that are trained using observa-
tions of numerical ratings. However, different annotators often disagree over numerical
annotations and can label inconsistently over time (Ovadia 2004; Yannakakis and Hal-
lam 2011), as annotators may interpret the values differently: a score of 4/5, say, from
one annotator may be equivalent to 3/5 from another. The problem is avoided by pair-
wise labelling, in which the annotator selects their preferred item from a pair, which
can be quicker (Kendall 1948; Kingsley and Brown 2010; Yang and Chen 2011), more
accurate (Kiritchenko and Mohammad 2017), and facilitates the total sorting of items,
as it avoids two items having the same value.

Pairwise labels provided by a crowd or extracted from user logs (Joachims 2002) are
often noisy and sparse, i.e., many items or users have few or no labels. This motivates
a Bayesian treatment, which has been shown to benefit matrix factorisation (Salakhut-
dinov and Mnih 2008) and preference learning (Chen et al. 2013). Some previous
Bayesian methods for preference learning use Gaussian processes (GPs) to account
for input features of items or users (Chu and Ghahramani 2005; Houlsby et al. 2012;
Khan et al. 2014). These are features that can be extracted from content or metadata,
such as embeddings (Mikolov et al. 2013; Devlin et al. 2019), which are commonly
used by NLP methods to represent words or documents using a numerical vector. Input
features allow the model to extrapolate to new items or users and mitigate labelling
errors (Felt et al. 2016). However, previous Bayesian preference learning methods that
account for input features using GPs do not scale to large numbers of items, users, or
pairwise labels, as their computational and memory requirements grow with the size of
the dataset.

In this paper, we propose a scalable Bayesian approach to pairwise preference learn-
ing with large numbers of users or annotators. Our method, crowdGPPL, jointly mod-
els personal preferences and the consensus of a crowd through a combination of matrix
factorisation and Gaussian processes. We propose a stochastic variational inference
(SVI) scheme (Hoffman et al. 2013) that scales to extremely large datasets, as its mem-
ory complexity and the time complexity of each iteration are fixed independently of
the size of the dataset. Our new approach opens the door to novel applications involv-
ing very large numbers of users, items and pairwise labels, that would previously have
exceeded computational or memory resources and were difficult to parallelise. We
evaluate the method empirically on two real-world datasets to demonstrate the scal-
ability of our approach, and its ability to predict both personal preferences and a con-
sensus given preferences from thousands of users. Our results improve performance
over the previous state-of-the-art (Simpson and Gurevych 2018) on a crowdsourced
argumentation dataset, and show that modelling personal preferences improves predic-
tions of the consensus, and vice versa.

691Machine Learning (2020) 109:689–718

1 3

2 Related work

To obtain a ranking from pairwise labels, many preference learning methods model the
user’s choices as a random function of the latent utility of the items. Inferring the utilities of
items allows us to rank them, estimate numerical ratings and predict pairwise labels. Many
popular instances of this approach, known as a random utility model (Thurstone 1927), are
variants of the Bradley-Terry (BT) model (Bradley and Terry 1952; Plackett 1975; Luce
1959), which assumes a logistic likelihood, or the Thurstone-Mosteller model (Thurs-
tone 1927; Mosteller 1951), which assumes a probit likelihood. Recent work on the BT
model has developed computationally efficient active learning, but does not consider input
features (Li et al. 2018). Another commonly-used ranking method, SVM-rank (Joachims
2002), predicts pairwise labels from input features without a random utility model, so can-
not predict utilities. Gaussian process preference learning (GPPL) provides a Bayesian
treatment of the random utility model, using input features to predict the utilities of test
items and share information between similar items (Chu and Ghahramani 2005). As GPPL
can only predict the preferences of a single user, we introduce a new, scalable approach to
model individuals in a crowd.

Previous work on preference learning from crowdsourced data treats disagreements
as annotation errors and infers only the consensus, rather than modelling personal prefer-
ences. For instance, Chen et al. (2013) and Wang et al. (2016) tackle annotator disagree-
ment using Bayesian approaches that learn the labelling accuracy of each worker. Recently,
Pan et al. (2018) and Han et al. (2018) introduced scalable methods that extend this idea
from pairwise labels to noisy k-ary preferences, i.e., totally-ordered subsets of k items. Fu
et al. (2016) improved SVM-rank by identifying outliers in crowdsourced data that corre-
spond to probable errors, while Uchida et al. (2017) extend SVM-rank to account for dif-
ferent levels of confidence in each pairwise annotation expressed by the annotators. How-
ever, while these approaches differentiate the level of noise for each annotator, they ignore
labelling bias as the differences between users are not random but depend on personal
preferences toward particular items. With small numbers of labels per item, these biases
may reduce the accuracy of the estimated consensus. Furthermore, previous aggregation
methods for crowdsourced preferences do not consider item features, so cannot predict the
utility of test items (Chen et al. 2013; Wang et al. 2016; Han et al. 2018; Pan et al. 2018; Li
et al. 2018). Our approach goes beyond these methods by predicting personal preferences
and incorporating input features.

A number of methods use matrix factorisation to predict personal preferences from
pairwise labels, including Yi et al. (2013), who focus on small numbers of pairs per user,
and Salimans et al. (2012), who apply Bayesian matrix factorisation to handle sparse data.
Matrix factorisation represents observed ratings in a user-item matrix, which it decomposes
into two matrices of lower rank than the user-item matrix, one corresponding to users and
one to items. Users with similar ratings have similar columns in the user matrix, where each
entry is a weight over a latent rating. By multiplying the low-dimensional representations,
we can predict ratings for unseen user-item pairs. Kim et al. (2014) use a simplification that
assumes that each user’s preferences depend on only one latent ranking. However, previ-
ous works combining matrix factorisation with pairwise preference labels do not account
for input features. This contrasts with work on matrix factorisation with side information,
where the ratings or preferences as well as input features are directly observed, includ-
ing recent neural network approaches (Volkovs et al. 2017), Bayesian approaches that con-
catenate input feature vectors with the low-dimensional factored representations (Porteous

692 Machine Learning (2020) 109:689–718

1 3

et al. 2010), and GP-based methods (Adams et al. 2010). Besides providing a Bayesian
method for matrix factorisation with both input features and pairwise labels, this paper
introduces a much more scalable inference method for a GP-based model.

GPs were previously used for personal preference prediction by Guo et al. (2010), who
propose a GP over the joint feature space of users and items. Since this scales cubically
in the number of users, Abbasnejad et al. (2013) propose to cluster users into behavioural
groups, but distinct clusters do not allow for collaborative learning between users whose
preferences only partially overlap, e.g. when two users both like one genre of music, but
have different preferences over other genres. Khan et al. (2014) instead learn a GP for each
user, then add a matrix factorisation term that performs collaborative filtering. However,
this approach does not model the relationship between input features and the low-rank
matrices, unlike Lawrence and Urtasun (2009) who place GP priors over latent ratings.
Neither of these last two methods are fully Bayesian as the users’ weights are optimised
rather than marginalised. An alternative is the collaborative GP (collabGP) (Houlsby et al.
2012), which places GP priors over user weights and latent factors, thereby exploiting input
features for both users and items. However, unlike our approach, collabGP predicts only
pairwise labels, not the utilities of items, which are useful for rating and ranking, and can
only be trained using pairwise labels, even if observations of the utilities are available.
Furthermore, existing GP-based approaches suffer from scalability issues and none of the
previous methods jointly model the consensus as well as personal preferences in a fully-
Bayesian manner.

Established methods for GP inference with non-Gaussian likelihoods, such as the
Laplace approximation and expectation propagation (Rasmussen and Williams 2006),
have time complexity O(N3) with N data points and memory complexity O(N2) . For col-
labGP, Houlsby et al. (2012) use a sparse generalized fully independent training condi-
tional (GFITC) approximation (Snelson and Ghahramani 2006) to reduce time complexity
to O(PM2 + UM2) and memory complexity to O(PM + UM) , where P is the number of
pairwise labels, M ≪ P is a fixed number of inducing points, and U is the number of users.
However, this is not sufficiently scalable for very large numbers of users or pairs, due to
increasing memory consumption and optimisation steps that cannot be distributed. Recent
work on distributing and parallelising Bayesian matrix factorisation is not easily applicable
to models that incorporate GPs (Ahn et al. 2015; Saha et al. 2015; Vander Aa et al. 2017;
Chen et al. 2018).

To handle large numbers of pairwise labels, Khan et al. (2014) subsample the data
rather than learning from the complete training set. An alternative is stochastic variational
inference (SVI) (Hoffman et al. 2013), which optimises a posterior approximation using a
different subsample of training data at each iteration, meaning it learns from all training
data over multiple iterations while limiting costs per iteration. SVI has been applied to GP
regression (Hensman et al. 2013) and classification (Hensman et al. 2015), further improv-
ing scalability over earlier sparse approximations. Nguyen and Bonilla (2014) introduce
SVI for multi-output GPs, where each output is a weighted combination of latent functions.
They apply their method to capture dependencies between regression tasks, treating the
weights for the latent functions as hyperparameters. In this paper, we introduce a Bayes-
ian treatment of the weights and apply SVI instead to preference learning. An SVI method
for GPPL was previously introduced by Simpson and Gurevych (2018), which we detail
in Sect. 4. However, as GPPL does not consider the individual preferences of users in a
crowd, we propose a new model, crowdGPPL, which jointly models personal preferences
and the crowd consensus using a combination of Gaussian processes and Bayesian matrix
factorisation.

693Machine Learning (2020) 109:689–718

1 3

3 Bayesian preference learning for crowds

We assume that a pair of items, a and b, have utilities f (xa) and f (xb) , which represent their
value to a user, and that f ∶ ℝ

D
↦ ℝ is a function of item features, where xa and xb are

vectors of length D containing the features of items a and b, respectively. If f (xa) > f (xb) ,
then a is preferred to b (written a ≻ b). The outcome of a comparison between a and b is a
pairwise label, y(a, b). Assuming that pairwise labels never contain errors, then y(a, b) = 1
if a ≻ b and 0 otherwise. Given knowledge of f, we can compute the utilities of items in a
test set given their features, and the outcomes of pairwise comparisons.

Thurstone (1927) proposed the random utility model, which relaxes the assumption that
pairwise labels, y(a, b), are always consistent with the ordering of f (xa) and f (xb) . Under
the random utility model, the likelihood p(y(a, b) = 1) increases as fa − fb increases, i.e.,
as the utility of item a increases relative to the utility of item b. This reflects the greater
consistency in a user’s choices when their preferences are stronger, while accommodat-
ing labelling errors or variations in a user’s choices over time. In the Thurstone-Mostel-
ler model, noise in the observations is explained by a Gaussian-distributed noise term,
� ∼ N(0, �2):

Integrating out the unknown values of �a and �b gives:

where z = f (xa)−f (xb)√
2�2

 , and Φ is the cumulative distribution function of the standard normal
distribution, meaning that Φ(z) is a probit likelihood.1 This likelihood is also used by Chu
and Ghahramani (2005) for Gaussian process preference learning (GPPL), but here we
simplify the formulation by assuming that �2 = 0.5 , which leads to z having a denominator
of

√
2 × 0.5 = 1 , hence z = f (xa) − f (xb) . Instead, we model varying degrees of noise in

the pairwise labels by scaling f itself, as we describe in the next section.
In practice, f (xa) and f (xb) must be inferred from pairwise training labels, y , to obtain

a posterior distribution over their values. If this posterior is a multivariate Gaussian distri-
bution, then the probit likelihood allows us to analytically marginalise f (xa) and f (xb) to
obtain the probability of a pairwise label:

where f̂a and f̂b are the means and C is the posterior covariance matrix of the multivariate
Gaussian over f (xa) and f (xb) . Unlike other choices for the likelihood, such as a sigmoid,
the probit allows us to compute the posterior over a pairwise label without further approxi-
mation, hence we assume this pairwise label likelihood for our proposed preference learn-
ing model.

(1)p(y(a, b)|f (xa) + �a, f (xb) + �b) =

{
1 if f (xa) + �a ≥ f (b) + �b
0 otherwise,

(2)
p(y(a, b)|f (xa), f (xb))

= ∫ ∫ p(y(a, b)|f (xa) + �a, f (xb) + �b)N
(
�a;0, �

2
)
N
(
�b;0, �

2
)
d�ad�b = Φ(z),

(3)p(y(a, b)�y) = Φ(ẑ),ẑ =
f̂a − f̂b√

1 + Ca,a + Cb,b − 2Ca,b

,

1 Please note that a full list of symbols is provided for reference in “Appendix 5”.

694 Machine Learning (2020) 109:689–718

1 3

3.1 GPPL for single user preference learning

We can model the preferences of a single user by assuming a Gaussian process prior over
the user’s utility function, f ∼ GP(0, k�∕s) , where k� is a kernel function with hyperpa-
rameters � and s is an inverse scale parameter. The kernel function takes numerical item
features as inputs and determines the covariance between values of f for different items.
The choice of kernel function and its hyperparameters controls the shape and smoothness
of the function across the feature space and is often treated as a model selection prob-
lem. Kernel functions suitable for a wide range of tasks include the squared exponential
and the Matérn (Rasmussen and Williams 2006), which both make minimal assumptions
but assign higher covariance to items with similar feature values. We use k� to compute a
covariance matrix K� , between a set of N observed items with features X = {x1,… , xN}.

Here we extend the original definition of GPPL (Chu and Ghahramani 2005), by intro-
ducing the inverse scale, s, which is drawn from a gamma prior, s ∼ G(�0, �0) , with shape
�0 and scale �0 . The value of 1 / s determines the variance of f, and therefore the magnitude
of differences between f (xa) and f (xb) for items a and b. This in turn affects the level of
certainty in the pairwise label likelihood as per Eq. 2.

Given a set of P pairwise labels, y = {y1,… , yP} , where yp = y(ap, bp) is the preference
label for items ap and bp , we can write the joint distribution over all variables as follows:

where f = {f (x1),… , f (xN)} is a vector containing the utilities of the N items referred to
by y , and p(yp|f) = Φ

(
zp
)
 is the pairwise likelihood (Eq. 2).

3.2 Crowd preference learning

To predict the preferences of individuals in a crowd, we could use an independent GPPL
model for each user. However, by modelling all users jointly, we can exploit correlations
between their interests to improve predictions when preference data is sparse, and reduce
the memory cost of storing separate models. Correlations between users can arise from
common interests over certain subsets of items, such as in one particular genre in a book
recommendation task. Identifying such correlations helps to predict preferences from fewer
observations and is the core idea of collaborative filtering (Resnick and Varian 1997) and
matrix factorisation (Koren et al. 2009).

As well as individual preferences, we wish to predict the consensus by aggregat-
ing preference labels from multiple users. Individual biases of different users may affect
consensus predictions, particularly when data for certain items comes from a small sub-
set of users. The consensus could also help predict preferences of users with little or no
data by favouring popular items and avoiding generally poor items. We therefore propose
crowdGPPL, which jointly models the preferences of individual users as well as the under-
lying consensus of the crowd. Unlike previous methods for inferring the consensus, such as
CrowdBT (Chen et al. 2013), we do not treat differences between users as simply the result
of labelling errors, but also account for their subjective biases towards particular items.

For crowdGPPL, we represent utilities in a matrix, F ∈ ℝ
N×U , with U columns cor-

responding to users. Within F , each entry Fa,j = f (xa, uj) is the utility for item a for user j

(4)p
(
y, f , s|k� ,X, �0, �0

)
=

P∏
p=1

p(yp|f)N(f ;0,K�∕s)G(s;�0, �0)

695Machine Learning (2020) 109:689–718

1 3

with user features uj . We assume that F = VTW + t1T is the product of two low-rank matri-
ces plus a column vector of consensus utilities, t ∈ ℝ

N , where W ∈ ℝ
C×U is a latent repre-

sentation of the users, V ∈ ℝ
C×N is a latent representation of the items, C is the number of

latent components, i.e., the dimension of the latent representations, and 1 is a column vec-
tor of ones of length U. The column v.,a of V , and the column w.,j of W , are latent vector
representations of item a and user j, respectively. Each row of V , vc = {vc(x1),… , vc(xN)} ,
contains evaluations of a latent function, vc ∼ GP(0, k�∕s

(v)
c
) , of item features, xa , where k

is a kernel function, s(v)
c

 is an inverse function scale, and � are kernel hyperparameters. The
consensus utilities, t = {t(x1),… , t(xN)} , are values of a consensus utility function over item
features, t ∼ GP(0, k�∕s

(t)) , which is shared across all users, with inverse scale s(t) . Simi-
larly, each row of W , wc = {wc(u1),… ,wc(uU)} , contains evaluations of a latent function,
wc ∼ GP(0, k�∕s

(w)
c
) , of user features, uj , with inverse scale s(w)

c
 and kernel hyperparameters � .

Therefore, each utility in F can be written as a weighted sum over the latent components:

where uj are the features of user j and xa are the features of item a. Each latent component
corresponds to a utility function for certain items, which is shared by a subset of users
to differing degrees. For example, in the case of book recommendation, c could relate to
science fiction novels, vc to a ranking over them, and wc to the degree of agreement of
users with that ranking. The individual preferences of each user j deviate from a consen-
sus across users, t, according to

∑C

c=1
vc(xa)wc(uj) . This allows us to subtract the effect of

individual biases when inferring the consensus utilities. The consensus can also help when
inferring personal preferences for new combinations of users and items that are very differ-
ent to those in the training data by accounting for any objective or widespread appeal that
an item may have.

Although the model assumes a fixed number of components, C, the GP priors over wc and
vc act as shrinkage or ARD priors that favour values close to zero (MacKay 1995; Psorakis
et al. 2011). Components that are not required to explain the data will have posterior expecta-
tions and scales 1∕s(v) and 1∕s(w) approaching zero. Therefore, it is not necessary to optimise
the value of C by hand, providing a sufficiently large number is chosen.

Equation 5 is similar to cross-task crowdsourcing (Mo et al. 2013), which uses matrix
factorisation to model annotator performance in different tasks, where t corresponds to the
objective difficulty of a task. However, unlike crowdGPPL, they do not use GPs to model
the factors, nor apply the approach to preference learning. For preference learning, col-
labGP (Houlsby et al. 2012) is a related model that excludes the consensus and uses values in
vc to represent pairs rather than individual items, so does not infer item ratings. It also omits
scale parameters for the GPs that encourage shrinkage when C is larger than required.

We combine the matrix factorisation method with the preference likelihood of Eq. 2 to
obtain the joint preference model for multiple users, crowdGPPL:

(5)f (xa, uj) =

C∑
c=1

vc(xa)wc(uj) + t(xa),

(6)

p
(
y,V,W, t, s

(v)

1
,… , s

(v)

C
, s

(w)

1
,… , s

(w)

C
, s(t)|k� ,X, k� ,U, �(t)

0
, �

(t)

0
, �

(v)

0
, �

(v)

0
, �

(w)

0
, �

(w)

0

)

=

P∏
p=1

Φ
(
zp
)
N
(
t;0,K�∕s

(t)
)
G
(
s(t);�

(t)

0
, �

(t)

0

) C∏
c=1

{
N
(
vc;0,K�∕s

(v)
c

)

N
(
wc;0,L�∕s

(w)
c

)
G
(
s(v)
c
;�

(v)

0
, �

(v)

0

)
G
(
s(w)
c
;�

(w)

0
, �

(w)

0

)}
,

696 Machine Learning (2020) 109:689–718

1 3

where zp = vT
.,ap

w.,up
+ tap − vT

.,bp
w.,up

− tbp , index p refers to a user and a pair of items,
{up, ap, bp} , U is the set of feature vectors for all users, K� is the prior covariance for the
items as in GPPL, and L� is the prior covariance for the users computed using k�.

4 Scalable inference

Given a set of pairwise training labels, y , we aim to find the posterior over the matrix
F∗ = V∗TW∗ of utilities for test items and test users, and the posterior over consensus
utilities for test items, t∗ . The non-Gaussian likelihood (Eq. 2) makes exact inference
intractable, hence previous work uses the Laplace approximation for GPPL (Chu and
Ghahramani 2005) or combines expectation propagation (EP) with variational Bayes for
a multi-user model (Houlsby et al. 2012). The Laplace approximation is a maximum
a-posteriori solution that takes the most probable values of parameters rather than inte-
grating over their distributions, and has been shown to perform poorly for classifica-
tion compared to EP (Nickisch and Rasmussen 2008). However, a drawback of EP is
that convergence is not guaranteed (Minka 2001). More importantly, inference for a
GP using either method has computational complexity O(N3) and memory complexity
O(N2) , where N is the number of data points.

The cost of inference can be reduced using a sparse approximation based on a set of
inducing points, which act as substitutes for the points in the training dataset. By choos-
ing a fixed number of inducing points, M ≪ N , the computational cost is cut to O(NM2) ,
and the memory complexity to O(NM) . Inducing points must be selected using either
heuristics or by optimising their positions to maximise an estimate of the marginal like-
lihood. One such sparse approximation is the generalized fully independent training
conditional (GFITC) (Naish-guzman and Holden 2008; Snelson and Ghahramani 2006),
used by Houlsby et al. (2012) for collabGP. However, time and memory costs that grow
linearly with O(N) start to become a problem with thousands of data points, as all data
must be processed in every iterative update, before any other parameters such as s are
updated, making GFITC unsuitable for very large datasets (Hensman et al. 2015).

We derive a more scalable approach for GPPL and crowdGPPL using stochastic
variational inference (SVI) (Hoffman et al. 2013). For GPPL, this reduces the time
complexity of each iteration to O(PiM

2 + P2
i
M +M3) , and memory complexity to

O(PiM +M2 + P2
i
) , where Pi is a mini-batch size that we choose in advance. Neither Pi

nor M are dependent on the size of the dataset, meaning that SVI can be run with arbi-
trarily large datasets, and other model parameters such as s can be updated before pro-
cessing all data to encourage faster convergence. First, we define a suitable likelihood
approximation to enable the use of SVI.

4.1 Approximating the posterior with a pairwise likelihood

The preference likelihood in Eq. 2 is not conjugate with the Gaussian process, which
means there is no analytic expression for the exact posterior. For single-user GPPL, we
therefore approximate the preference likelihood with a Gaussian:

697Machine Learning (2020) 109:689–718

1 3

where Q is a diagonal noise covariance matrix and we omit the kernel hyperparameters,
� , to simplify notation. For crowdGPPL, we use the same approximation to the like-
lihood, but replace f with F . We estimate the diagonals of Q by moment matching our
approximate likelihood with Φ(zp) , which defines a Bernoulli distribution with variance
Qp,p = Φ(zp)(1 − Φ(zp)) . However, this means that Q depends on z and therefore on f ,
so the approximate posterior over f cannot be computed in closed form. To resolve this,
we approximate Qp,p using an estimated posterior over Φ(zp) computed independently for
each pairwise label, p. We obtain this estimate by updating the parameters of the conjugate
prior for the Bernoulli likelihood, which is a beta distribution with parameters � and � .
We find � and � by matching the moments of the beta prior to the prior mean and variance
of Φ(zp) , estimated using numerical integration. The prior over Φ(zp) is defined by a GP
for single-user GPPL, p(Φ(zp)|K, �0, �0) , and a non-standard distribution for crowdGPPL.
Given the observed label yp , we estimate the diagonals in Q as the variance of the posterior
beta-Bernoulli:

The covariance Q therefore approximates the expected noise in the observations, hence
captures variance due to � in Eq. 2. This approximation performs well empirically for
Gaussian process classification (Reece et al. 2011; Simpson et al. 2017) and classification
using extended Kalman filters (Lee and Roberts 2010; Lowne et al. 2010).

Unfortunately, the nonlinear term Φ(z) means that the posterior is still intractable, so we
replace Φ(z) with a linear function of f by taking the first-order Taylor series expansion of
Φ(z) about the expectation �[f] = f̂ :

where ẑ is the expectation of z computed using Eq. 3, and [i = a] = 1 if i = a and is 0 other-
wise. There is a circular dependency between f̂ , which is needed to compute ẑ , and G . We
estimate these terms using a variational inference procedure that iterates between updating
f and G (Steinberg and Bonilla 2014) as part of Algorithm 1. The complete approximate
posterior for GPPL is now as follows:

where Z is a normalisation constant. Linearisation means that our approximate likelihood is
conjugate to the prior, so the approximate posterior is also Gaussian. Gaussian approxima-
tions to the posterior have shown strong empirical results for classification (Nickisch and

(7)

p(f |y, s) ∝
P∏

p=1

p
(
yp|zp

)
p(f |K, s) =

P∏
p=1

Φ
(
zp
)
N(f ;0,K∕s)

≈

P∏
p=1

N
(
yp;Φ(zp),Qp,p

)
N(f ;0,K∕s) = N(y;Φ(z),Q)N(f ;0,K∕s),

(8)Qp,p ≈
(� + yp)(� + 1 − yp)

(� + � + 1)2
.

(9)Φ(z) ≈ Φ̃(z) = G
(
f − f̂

)
+ Φ(ẑ),

(10)Gp,i =
𝜕Φ(ẑp)

𝜕fi
= Φ(ẑp)

(
1 − Φ(ẑp)

)(
2yp − 1

)(
[i = ap] − [i = bp]

)
,

(11)p(f |y, s) ≈ N(y;G(f − �[f]) + Φ(ẑ),Q)N(f ;0,K∕s)∕Z = N
(
f ;f̂ ,C

)
,

698 Machine Learning (2020) 109:689–718

1 3

Rasmussen 2008) and preference learning (Houlsby et al. 2012), and linearisation using a
Taylor expansion has been widely tested in the extended Kalman filter (Haykin 2001) as
well as Gaussian processes (Steinberg and Bonilla 2014; Bonilla et al. 2016).

4.2 SVI for single user GPPL

Using the linear approximation in the previous section, posterior inference requires invert-
ing K with computational cost O(N3) and taking an expectation with respect to s, which
remains intractable. We address these problems using stochastic variational inference
(SVI) with a sparse approximation to the GP that limits the size of the covariance matri-
ces we need to invert. We introduce M ≪ N inducing items with inputs Xm , utilities fm ,
and covariance Kmm . The covariance between the observed and inducing items is Knm . For
clarity, we omit � from this point on. We assume a mean-field approximation to the joint
posterior over inducing and training items that factorises between different sets of latent
variables:

where q(.) are variational factors defined below. Each factor corresponds to a subset of
latent variables, � i , and takes the form ln q(� i) = �j≠i[ln p(� i, x, y)] . That is, the expecta-
tion with respect to all other latent variables, � j,∀j ≠ i , of the log joint distribution of the
observations and latent variables, � i . To obtain the factor for fm , we marginalise f and take
expectations with respect to q(s):

where the variational parameters f̂m and S are computed using an iterative SVI procedure
described below. We choose an approximation of q(f) that depends only on the inducing
point utilities, fm , and is independent of the observations:

where A = KnmK
−1
mm

 . Therefore, we no longer need to invert an N × N covariance matrix to
compute q(f) . The factor q(s) also depends only the inducing points:

where � = �0 +
M

2
 and 𝛽 = 𝛽0 +

1

2
tr
(
K−1

mm

(
S + f̂m f̂

T

m

))
 . The expected value is �[s] = �

�
.

We apply variational inference to iteratively reduce the KL-divergence between our
approximate posterior and the true posterior (Eq. 12) by maximising a lower bound, L , on
the log marginal likelihood (detailed equations in “Appendix 1”), which is given by:

To optimise L , we initialise the q factors randomly, then update each one in turn, taking
expectations with respect to the other factors.

(12)p
(
f , fm, s|y,X,Xm, k� , �0, �0

)
≈ q

(
f , fm, s

)
= q(s)q(f)q

(
fm

)
,

(13)ln q
(
fm

)
= lnN

(
y;Φ̃(z),Q

)
+ lnN

(
fm;0,

Kmm

�[s]

)
+ const = lnN

(
fm;f̂m, S

)
,

(14)ln q(f) = lnN
(
f ;Af̂m,K + A

(
S − Kmm∕�[s]

)
AT

)
,

(15)ln q(s) = �q(fm)
[
lnN

(
fm|0,Kmm∕s

)]
+ lnG(s;�0, �0) + const = lnG(s;�, �),

(16)

ln p
(
y|K, �0, �0

)
= KL

(
q
(
f , f

m
, s
)||p(f , f

m
, s|y,K, �0, �0

))
+ L

L = �
q(f)

[
ln p(y|f)] + �

q(fm,s)
[
ln p

(
f
m
, s|K, �0, �0

)

− ln q
(
f
m

)
− ln q(s)

]
.

699Machine Learning (2020) 109:689–718

1 3

The only term in L that refers to the observations, y , is a sum of P terms, each of
which refers to one observation only. This means that L can be maximised by consider-
ing a random subset of observations at each iteration (Hensman et al. 2013). For the ith
update of q

(
fm

)
 , we randomly select Pi observations yi = {yp∀p ∈ Pi} , where Pi is a ran-

dom subset of indexes of observations, and Pi is a mini-batch size. The items referred
to by the pairs in the subset are Ni = {ap∀p ∈ Pi} ∪ {bp∀p ∈ Pi} . We perform updates
using Qi (rows and columns of Q for pairs in Pi), Kim and Ai (rows of Knm and A in Ni),
Gi (rows of G in Pi and columns in Ni), and ẑi =

{
ẑp∀p ∈ Pi

}
 . The updates optimise the

natural parameters of the Gaussian distribution by following the natural gradient (Hens-
man et al. 2015):

where �i = (i + �)−r is a mixing coefficient that controls the update rate, �i =
P

Pi

 weights
each update according to sample size, � is a delay hyperparameter and r is a forgetting
rate (Hoffman et al. 2013).

By performing updates in terms of mini-batches, the time complexity of Eqs. 17 and 18
is O(PiM

2 + P2
i
M +M3) and memory complexity is O(M2 + P2

i
+MPi) . The only param-

eters that must be stored between iterations relate to the inducing points, hence the memory
consumption does not grow with the dataset size as in the GFITC approximation used by
Houlsby et al. (2012). A further advantage of stochastic updating is that the s parameter
(and any other global parameters not immediately depending on the data) can be learned
before the entire dataset has been processed, which means that poor initial estimates of s
are rapidly improved and the algorithm can converge faster.

The complete SVI algorithm is summarised in Algorithm 1. It uses a nested loop to learn
Gi , which avoids storing the complete matrix, G . It is possible to distribute computation in
lines 3-6 by selecting multiple random samples to process in parallel. A global estimate of
f̂m and S is passed to each compute node, which runs the loop over lines 4 to 6. The resulting

(17)S−1
i

= (1 − �i)S
−1
i−1

+ �i
(
�[s]K−1

mm
+ �iA

T
i
GT

i
Q−1

i
GiAi

)

(18)f̂m,i = Si

(
(1 − 𝜌i)S

−1
i−1

f̂m,i−1 + 𝜌i𝜋iA
T
i
GT

i
Q−1

i

(
yi − Φ(ẑi) + GiAi f̂m,i−1

))

700 Machine Learning (2020) 109:689–718

1 3

updated f̂m and S values are then passed back to a central node that combines them by taking
a mean weighted by �i to account for the size of each batch.

Inducing point locations can be learned as part of the variational inference procedure,
which breaks convergence guarantees, or by an expensive optimisation process (Hens-
man et al. 2015). We obtain good performance by choosing inducing points up-front using
K-means++ (Arthur and Vassilvitskii 2007) with M clusters to cluster the feature vectors, then
taking the cluster centres as inducing points that represent the distribution of observations.

The inferred distribution over the inducing points can be used to estimate the posteriors of
test items, f (x∗) , according to:

where C∗ is the posterior covariance of the test items, K∗∗ is their prior covariance, and K∗m
is the covariance between test and inducing items.

4.3 SVI for crowdGPPL

We now provide the variational posterior for the crowdGPPL model defined in Eq. 6:

where Um are the feature vectors of inducing users and the variational q factors are defined
below. We use SVI to optimise the lower bound on the log marginal likelihood (detailed in
“Appendix 2”), which is given by:

The SVI algorithm follows the same pattern as Algorithm 1, updating each q factor in turn
by computing means and covariances for Vm , Wm and tm instead of fm (see Algorithm 2).
The time and memory complexity of each update are O(CM3

items
+ CM2

items
Pi + CMitemsP

2
i

+CM3
users

+ CM2
users

Pi + CMusersP
2
i
) and O(CM2

items
+ P2

i
+MitemsPi + CM2

users
+MusersPi) ,

respectively. The variational factor for the cth inducing item component is:

(19)f ∗ = K∗mK
−1
mm

f̂m, C∗ = K∗∗ + K∗mK
−1
mm

(S − Kmm∕�[s])K
−1
mm

KT
∗m
,

(20)

p
(
V,Vm,W,Wm, t, tm, s

(v)

1
,… , s

(v)

C
, s

(w)

1
,… , s

(w)

C
, s(t)|y,X,Xm,U,Um, k, �0, �0

)

≈ q(t)q(tm)q
(
s(t)

) C∏
c=1

q(vc)q(wc)q(vc,m)q(wc,m)q
(
s(v)
c

)
q
(
s(w)
c

)
,

(21)

Lcr = �q(F)[ln p(y|F)] + �q(tm ,s(t))

[
ln p

(
tm, s

(t)|Kmm, �
(t)

0
, �

(t)

0

)
− ln q(tm) − ln q

(
s(t)

)]

+

C∑
c=1

{
�
q
(
vm,c,s

(v)
c

)
[
ln p

(
vm,c, s

(v)
c
|Kmm, �

(v)

0
, �

(v)

0

)
− ln q(vm,c) − ln q

(
s(v)
c

)]

+ �
q
(
wm,c,s

(w)
c

)
[
ln p

(
wm,c, s

(w)
c
|Lmm, �

(w)

0
, �

(w)

0

)
− ln q(wm,c) − ln q

(
s(w)
c

)]}
.

(22)
ln q(vm,c) = �q(t,wm,c� ∀c

� ,vm,c� ∀c
��c)

�
lnN

�
y;Φ̃(z),Q

��
+ lnN

⎛
⎜⎜⎜⎝
vm,c;0,

Kmm

�

�
s
(v)
c

�
⎞
⎟⎟⎟⎠
+ const

= lnN
�
vm,c;v̂m,c, S

(v)
c

�
,

701Machine Learning (2020) 109:689–718

1 3

where posterior mean v̂m,c and covariance S(v)
c

 are computed using equations of the same
form as Eqs. 17 and 18, except Q−1 is scaled by expectations over wm,c , and f̂m,i is replaced
by v̂m,c,i . The factor for the inducing points of t follows a similar pattern to vm,c:

where the equations for t̂ and S(t) are the same as Eqs. 17 and 18, except f̂m,i is replaced by
t̂m,i . Finally, the variational distribution for each inducing user’s component is:

where ŵc and �c also follow the pattern of Eqs. 17 and 18, with Q−1 scaled by expectations
of wc,m , and f̂m,i replaced by ŵm,c,i . We provide the complete equations for the variational
means and covariances for vm,c , tm and wm,c in “Appendix 3”. The expectations for inverse
scales, s(v)

1
,… , s(v)

c
 , s(w)

1
,… , s(w)

c
 and s(t) can be computed using Eq. 15 by substituting the

corresponding terms for vc , wc or t instead of f .
Predictions for crowdGPPL can be made by computing the posterior mean utilities, F∗ ,

and the covariance �∗
u
 for each user, u, in the test set:

where t̂∗ , v̂∗
c
 and ŵ∗

c
 are posterior test means, C∗

t
 and C∗

v,c
 are posterior covariances of the test

items, and �∗
c,u

 is the posterior variance of the user components for u. (see “Appendix 4”,
Eqs. 39 to 41). The mean F∗ and covariances Λ∗

u
 can be inserted into Eq. 2 to predict pair-

wise labels. In practice, the full covariance terms are needed only for Eq. 2, so need only be
computed between items for which we wish to predict pairwise labels.

5 Experiments

Our experiments test key aspects of crowdGPPL: predicting consensus utilities and per-
sonal preferences from pairwise labels and the scalability of our proposed SVI method. In
Sect. 5.1, we use simulated data to test the robustness of crowdGPPL to noise and unknown
numbers of latent components. Section 5.2 compares different configurations of the model
against alternative methods using the Sushi datasets2 (Kamishima 2003). Section 5.3 eval-
uates prediction performance and scalability of crowdGPPL in a high-dimensional NLP
task with sparse, noisy crowdsourced preferences (UKPConvArgCrowdSample,3 Simpson

(23)
ln q(tm) = �q(wm,c∀c,vm,c∀c)

[
lnN

(
y;Φ̃(z),Q

)]
+ lnN

(
tm;0,

Kmm

�[s(t)]

)
+ const

= lnN
(
tm;t̂m, S

(t)
)
,

(24)

ln q(wm,c) =�q(t,wm,c� ∀c
��c,vm,c� ∀c

�)

[
lnN

(
y;Φ̃(z),Q

)]
+ lnN

(
wm,c;0,

Lmm

�[s
(w)
c]

)
+ const

= lnN
(
wm,c;ŵm,c,�c

)
,

(25)F∗ = t̂
∗
+

C∑
c=1

v̂∗T
c
ŵ∗
c
, �

∗
u
= C∗

t
+

C∑
c=1

𝜔∗
c,u
C∗
v,c

+ ŵ2
c,u
C∗
v,c

+ 𝜔∗
c,u
v̂cv̂

T

c
,

2 http://www.kamis hima.net/sushi /.
3 https ://githu b.com/ukpla b/tacl2 018-prefe rence -convi ncing .

http://www.kamishima.net/sushi/
https://github.com/ukplab/tacl2018-preference-convincing

702 Machine Learning (2020) 109:689–718

1 3

and Gurevych (2018)). Finally, Sect. 5.4 evaluates whether crowdGPPL ignores redundant
components. The datasets are summarised in Table 1.

As baselines, we compare crowdGPPL against GPPL, which we train on all users’ pref-
erence labels to learn a single utility function, and GPPL-per-user, in which a separate
GPPL instance is learned for each user with no collaborative learning. We also compare
against the GPVU model (Khan et al. 2014) and collabGP (Houlsby et al. 2012). Col-
labGP contains parameters for each pairwise label and each user, so has a larger memory
footprint than our SVI scheme, which stores only the moments at the inducing points.

We test crowdBT (Chen et al. 2013) as part of a method for predicting consensus utili-
ties from crowdsourced pairwise preferences. CrowdBT models each worker’s accuracy,
assuming that the differences between workers’ labels are due to random errors rather than
subjective preferences. Since crowdBT does not account for the item features, it cannot
predict utilities for items that were not part of the training set. We therefore treat the poste-
rior mean utilities produced by crowdBT as training labels for Gaussian process regression
using SVI. We set the observation noise variance of the GP equal to the crowdBT posterior
variance of the utilities to propagate uncertainty from crowdBT to the GP. This pipeline
method, crowdBT–GP, tests whether it is sufficient to treat annotator differences as noise,
in contrast to the crowdGPPL approach of modelling individual preferences.

We evaluate the methods using the following metrics: accuracy (acc), which is the frac-
tion of correct pairwise labels; cross entropy error (CEE) between the posterior probabili-
ties over pairwise labels and the true labels, which captures the quality of the pairwise pos-
terior; and Kendall’s � , which evaluates the ranking obtained by sorting items by predicted
utility.

5.1 Simulated noisy data

First, we evaluate whether crowdGPPL is able to model individual preferences with vary-
ing amounts of labelling noise. We set the number of latent components to C = 20 and all
Gamma hyperparameters for crowdGPPL, GPPL and GPPL-per-user to �0 = 1 , �0 = 100 .
We use Matérn 3/2 kernels with the length-scale for each dimension of the feature vector,
d, chosen by a median heuristic:

Table 1 Summary of datasets showing average counts for the training and test sets used in each fold/sub-
sample

The test sets all contain gold-standard rankings over items as well as pairwise labels, except the simula-
tions, which are not generated as we evaluate using the rankings only. Numbers of features are given after
categorical labels have been converted to one-hot encoding, counting each category as a separate feature

Dataset #folds/ #users total training set test set #features

samples #items #pairs #pairs #items items users

Simulation a and b 25 25 100 900 0 100 2 2
Simulation c 25 25 100 36–2304 0 100 2 2
Sushi A-small 25 100 10 500 2500 10 18 123
Sushi A 25 100 10 2000 2500 10 18 123
Sushi B 25 5000 100 50000 5000 100 18 123
UKPConvArgCrowdSample 32 1442 1052 16398 529 33 32310 0

703Machine Learning (2020) 109:689–718

1 3

This is a computationally frugal way to choose the length-scales, that has been extensively
used in various kernel methods (e.g., Bors and Pitas (1996); Gretton et al. (2012)). The
SVI hyperparameters were set to � = 0.9 , Pi = 1000 and � = 1 . Hoffman et al. (2013)
found that higher values of � gave better final results but slightly slower convergence, rec-
ommending 0.9 as a good balance across several datasets, and did not find any effect from
changing � . We follow their recommendations and do not find it necessary to perform fur-
ther tuning in our experiments. Both M and Pi are constrained in practice by the computa-
tional resources available—we investigate these further in Sect. 5.3.

In simulation (a), to test consensus prediction, we generate a 20 × 20 grid of points and
split them into 50% training and test sets. For each gridpoint, we generate pairwise labels
by drawing from the generative model of crowdGPPL with U = 20 users, C = 5 , each s(v)

c

set to random values between 0.1 and 10, and s(w)
c

= 1,∀c . We vary s(t) to control the noise
in the consensus function. We train and test crowdGPPL with C = U and repeat the com-
plete experiment 25 times, including generating new data.

Figure 1a shows that crowdGPPL better recovers the consensus ranking than the base-
lines, even as noise increases, as GPPL’s predictions are worsened by biased users who
deviate consistently from the consensus. For GPPL-per-user, the consensus is simply the
mean of all users’ predicted utilities, so does not benefit from sharing information between
users when training. For simulation (b), we modify the previous setup by fixing s(t) = 5 and
varying s(v)

c
,∀c to evaluate the methods’ ability to recover the personal preferences of simu-

lated users. The results in Fig. 1b show that crowdGPPL is able to make better predictions
when noise is below 0.3.

We hypothesise that crowdGPPL can recover latent components given sufficient
training data. In simulation (c), we generate data using the same setup as before, but fix
s(t) = s(v)

c
= s(w) = 1,∀c and vary the number of pairwise training labels and the number

of true components through Ctrue ∈ {1, 3, 10, 20} . We match inferred components to the
true components as follows: compute Pearson correlations between each unmatched true
component and each unmatched inferred component; select the pair with the highest cor-
relation as a match; repeat until all true components are matched. In Fig. 1c we plot the
mean correlation between matched pairs of components. For all values of Ctrue , increasing
the number of training labels beyond 700 brings little improvement. Performance is highest
when Ctrue = 20 , possibly because the predictive model has C = 20 , so is a closer match to
the generating model. However, crowdGPPL is able to recover latent components reason-
ably well for all values of Ctrue given > 500 labels, despite mismatches between C and Ctrue.

5.2 Sushi preferences

The sushi datasets contain, for each user, a gold standard preference ranking of 10 types
of sushi, from which we generate gold-standard pairwise labels. To test performance with
very few training pairs, we obtain Sushi-A-small by selecting 100 users at random from
the complete Sushi-A dataset, then selecting 5 pairs for training and 25 for testing per user.
For Sushi-A, we select 100 users at random from the complete dataset, then split the data
into training and test sets by randomly selecting 20 training and 25 test pairs per user. For
Sushi-B, we use all 5000 workers, and subsample 10 training and 1 test pair per user.

We compare standard crowdGPPL with four other variants:

(26)ld,MH = median({||xi,d − xj,d||,∀i = 1,… ,N,∀j = 1,… ,N}).

704 Machine Learning (2020) 109:689–718

1 3

– crowdGPPL∖inducing: does not use the sparse inducing point approximation and
instead uses all the original points in the training set;

– crowdGPPL∖u : ignores the user features;
– crowdGPPL∖u∖x : ignores both user and item features;
– crowdGPPL∖u∖t : excludes the consensus function t from the model as well as the

user features.

For methods with ∖u , the user covariance matrix, L , is replaced by the identity matrix,
and for crowdGPPL∖u∖x , K is also replaced by the identity matrix. As the user features
do not contain detailed, personal information (only region, age group, gender, etc.), they
are not expected to be sufficiently informative to predict personal preferences on their
own. Therefore, for crowdGPPL and crowdGPPL∖inducing, we compute L for 10 latent
components using the Matérn 3/2 kernel function and use the identity matrix for the
remaining 10. CollabGP is also tested with and without user features. We set hyperpa-
rameters C = 20 , � = 1 , � = 0.9 , Pi = 200 for Sushi-A-small and Sushi-A, and Pi = 2000
for Sushi-B, without optimisation. For the gamma hyperparameters, a grid search over
{10−1,… , 103} on withheld user data from Sushi-A resulted in �0 = 1, �0 = 100 for
GPPL variants, and �(t)

0
= 1, �

(t)

0
= 100 , �(v)

0
= 1, �

(v)

0
= 10 and �(w)

0
= 1, �

(w)

0
= 10 for

crowdGPPL variants. The complete process of subsampling, training and testing, was
repeated 25 times for each dataset.

The results in Table 2 illustrate the benefit of personalised models over single-user
GPPL. The inducing point approximation does not appear to harm performance of
crowdGPPL, but including the user features tends to decrease its performance com-
pared to crowdGPPL∖u and crowdGPPL∖u∖x , except on Sushi-A-small, where they
may help with the small amount of training data. Comparing crowdGPPL∖u with
crowdGPPL∖u∖t , including the consensus function improves performance modestly.
The strong performance of GPPL-per-user suggests that even 10 pairs per person were
enough to learn a reasonable model for Sushi-B. As expected, the more memory-inten-
sive collabGP performs comparably well to crowdGPPL on accuracy and CEE but does
not provide a ranking function for computing Kendall’s � . GPVU does not perform
as well as other personalised methods on Sushi-A and Sushi-B, potentially due to its
maximum likelihood inference steps. The results show that crowdGPPL is competitive
despite the approximate SVI method, so in the next experiment, we test the approach on
a larger crowdsourced dataset where low memory consumption is required.

(a) (b) (c)

Fig. 1 Simulations: rank correlation between true and inferred utilities. a and b vary the level of noise in
pairwise training labels, c varies the number of pairwise training labels

705Machine Learning (2020) 109:689–718

1 3

5.3 Argument convincingness

We evaluate consensus learning, personal preference learning and scalability on an NLP
task, namely, ranking arguments by convincingness. The task requires learning from
crowdsourced data, but is not simply an aggregation task as it requires learning a pre-
dictor for test documents that were not compared by the crowd. The dataset, UKPCon-
vArgCrowdSample, was subsampled by Simpson and Gurevych (2018) from raw data
provided by Habernal and Gurevych (2016), and contains arguments written by users of
online debating forums, with crowdsourced judgements of pairs of arguments indicat-
ing the most convincing argument. The data is divided into 32 folds (16 topics, each
with 2 opposing stances). For each fold, we train on 31 folds and test on the remaining
fold. We extend the task to predicting both the consensus and personal preferences of
individual crowd workers. GPPL previously outperformed SVM and Bi-LSTM methods
at consensus prediction for UKPConvArgCrowdSample (Simpson and Gurevych 2018).
We hypothesise that a worker’s view of convincingness depends on their personal view
of the subject discussed, so crowdGPPL may outperform GPPL and crowdBT-GP on
both consensus and personal preference prediction.

The dataset contains 32, 310 linguistic and embedding features for each document
(we use mean GloVe embeddings for the words in each document, see Simpson and
Gurevych (2018)). The high-dimensionality of the input feature vectors requires us to
modify the length-scale heuristic for all GP methods, as the distance between items
grows with the number of dimensions, which causes the covariance to shrink to very
small values. We therefore use ld,scaledMH = 20

√
D × ld,MH , where D is the dimension of

the input feature vectors, and the scale was chosen by comparing the training set accu-
racy with scales in {

√
D, 10

√
D, 20

√
D, 100

√
D} . The hyperparameters are the same

as Sect. 5.1 except GPPL uses �0 = 2 , �0 = 200 and crowdGPPL uses �(t)

0
= �

(v)

0
= 2 ,

�
(t)

0
= �

(t)

0
= 200 , �(w)

0
= 1 , �(w)

0
= 10 . We do not optimise �0 , but choose �0 by compar-

ing training set accuracy for GPPL with �0 ∈ {2, 200, 20000} . The best value of �0 is

Table 2 Predicting personal preferences on Sushi datasets, means over 25 repeats

The standard deviations are ≤ 0.02 for all accuracies, ≤ 0.08 for all CEE, and ≤ 0.03 for all � . For Sushi-B,
crowdGPPL, GPPL-per-user and collabGP had runtimes of 30 min on a 12 core, 2.6 GHz CPU server;
GPPL required only 1 min
Bold values indicate the best performance in each column

Method Sushi-A-small Sushi-A Sushi-B

Acc CEE � Acc CEE � Acc CEE �

crowdGPPL .71 .56 .48 .84 .33 .79 .76 .50 . 54
crowdGPPL ∖inducing .70 .60 .45 .84 .34 .78 – – –
crowdGPPL ∖u .70 .58 .46 .85 .31 .80 .78 .50 .57
crowdGPPL ∖u∖x .71 .57 .49 .85 .33 .80 .77 .49 .56
crowdGPPL ∖u, ∖t .68 .60 .43 .84 .33 .80 .76 .51 .58
GPPL .65 .62 .31 .65 .62 .31 .65 .62 .31
GPPL-per-user .67 .64 .42 .83 .40 .79 .75 .60 .60
collabGP .69 .58 n/a .83 .35 n/a .76 .49 n/a
collabGP∖u .69 .59 n/a .84 .33 n/a .76 .50 n/a
GPVU .70 .67 .43 .72 .67 .42 .73 .59 .52

706 Machine Learning (2020) 109:689–718

1 3

also used for �(t)
0

 and �(v)
0

 , then training set accuracy of crowdGPPL is used to select
�
(w)

0
∈ {1, 10, 100} . We set C = 50 , M = 500 , Pi = 200 , � = 10 , and � = 0.9 without

optimisation.
Table 3 shows that crowdGPPL outperforms both GPPL and crowdBT–GP at predict-

ing both the consensus and personal preferences (significant for Kendall’s � with p < 0.05 ,
Wilcoxon signed-rank test), suggesting that there is a benefit to modelling individual work-
ers in subjective, crowdsourced tasks. We also compare against crowdGPPL without the
consensus (crowdGPPL∖t) and find that including t in the model improves personalised
predictions. This is likely because many workers have few training pairs, so the consen-
sus helps to identify arguments that are commonly considered very poor or very convinc-
ing. Table 3 also shows that for workers with more than 50 pairs in the training set, accu-
racy and CEE improve for all methods but � decreases, suggesting that some items may be
ranked further away from their correct ranking for these workers. It is possible that workers
who were willing to complete more annotations (on average 31 per fold) deviate further
from the consensus, and crowdGPPL does not fully capture their preferences given the data
available.

We examine the scalability of our SVI method by evaluating GPPL and crowd-GPPL
with different numbers of inducing points, M, and different mini-batch sizes, Pi . Figure 2a
shows the trade-off between runtime and training set accuracy as an effect of choosing M.
Accuracy levels off as M increases, while runtime continues to increase rapidly in a pol-
ynomial fashion. Using inducing points can therefore give a large improvement in runt-
imes with a fairly small performance hit. Figure 2b demonstrates that smaller batch sizes
do not negatively affect the accuracy, although they increase runtimes as more iterations
are required for convergence. The runtimes flatten out as Pi increases, so we recommend
choosing Pi ≥ 200 but small enough to complete an iteration rapidly with the computa-
tional resources available. Figure 2c, d show runtimes as a function of the number of items
in the training set, N, and the number of pairwise training labels, P, respectively (all other
settings remain as in Fig. 2a). In both cases, the increases to runtime are small, despite the
growing dataset size.

5.4 Posterior variance of item components

We investigate how many latent components were actively used by crowdGPPL on the
UKPConvArgCrowdSample and Sushi-A datasets. Figure 3 plots the posterior expecta-
tions of the inferred scales, 1∕

(
s(v)
c
s(w)
c

)
 , for the latent item components. The plots show that

many factors have a relatively small variance and therefore do not contribute to many of

Table 3 UKPConvArgCrowd-
Sample: predicting consensus,
personal preferences for all work-
ers, and personal preferences for
workers with >50 pairs in the
training set

Bold values indicate the best performance in each column

Method Consensus Personal: all
workers

>50 training
pairs

Acc CEE � Acc CEE � Acc CEE �

GPPL .77 .51 .50 .71 .56 .31 .72 .55 .25
crowdGPPL .79 .52 .53 .72 .58 .33 .74 .55 .27
crowdGPPL∖t – – – .68 .63 .23 .74 .57 .27
crowdBT-GP .75 .53 .45 .69 .58 .30 .71 .56 .23

707Machine Learning (2020) 109:689–718

1 3

the model’s predictions. This indicates that our Bayesian approach will only make use of
components that are supported by the data, even if C is larger than required.

6 Conclusions

We proposed a novel Bayesian preference learning approach for modelling both the
preferences of individuals and the overall consensus of a crowd. Our model learns the
latent utilities of items from pairwise comparisons using a combination of Gaussian pro-
cesses and Bayesian matrix factorisation to capture differences in opinion. We introduce
a stochastic variational inference (SVI) method, that, unlike previous work, can scale to
arbitrarily large datasets, since its time and memory complexity do not grow with the
dataset size. Our experiments confirm the method’s scalability and show that jointly
modelling the consensus and personal preferences can improve predictions of both. Our
approach performs competitively against less scalable alternatives and improves on the
previous state of the art for predicting argument convincingness from crowdsourced
data (Simpson and Gurevych 2018).

Future work will investigate learning inducing point locations and optimising length-
scale hyperparameters by maximising the variational lower bound, L , as part of the

(a) (b)

(c) (d)

Fig. 2 Wall-clock times for training+prediction of consensus utilities for arguments in the training folds of
UKPConvArgCrowdSample. CrowdGPPL was run with C = 5 . In b, c and d, M = 100 . Lines show means
over 32 runs, bands indicate 1 standard deviation (mostly very little variation between folds)

708 Machine Learning (2020) 109:689–718

1 3

variational inference method. Another important direction will be to generalise the like-
lihood from pairwise comparisons to comparisons involving more than two items (Pan
et al. 2018) or best–worst scaling (Kiritchenko and Mohammad 2017) to provide scal-
able Bayesian methods for other forms of comparative preference data.

Acknowledgements Open Access funding provided by Projekt DEAL. This work was supported by the
German Federal Ministry of Education and Research (BMBF) under promotional references 01UG1416B
(CEDIFOR), by the German Research Foundation through the the German-Israeli Project Cooperation (DIP,
Grant DA1600/1-1 and Grant GU 798/17-1), and by the German Research Foundation EVIDENCE Project
(Grant GU 798/27-1). We would like to thank the journal editors and reviewers for their valuable feedback.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

(a) (b)

Fig. 3 Latent component variances, 1∕
(
s
(v)
c
s
(w)
c

)
 in crowdGPPL, means over all runs

http://creativecommons.org/licenses/by/4.0/

709Machine Learning (2020) 109:689–718

1 3

Appendix 1: Variational lower bound for GPPL

Due to the non-Gaussian likelihood, Eq. 2, the posterior distribution over f contains intrac-
table integrals:

We can derive a variational lower bound as follows, beginning with an approximation that
does not use inducing points:

Writing out the expectations in terms of the variational parameters, we get:

The expectation over the likelihood can be computed using numerical integration. Now we
can introduce the sparse approximation to obtain the bound in Eq. 16:

where the terms relating to �
[
p(f |fm) − q(f)

]
 cancel.

(27)p(f �y, k� , �0, �0) =
∫ ∏P

p=1
Φ(zp)N(f ;0,K�∕s)G(s;�0, �0)ds

∫ ∫ ∏P

p=1
Φ(zp)N(f �;0,K�∕s)G(s;�0, �0)dsdf

�
.

(28)

L =

P�
p=1

�q(f)

�
ln p

�
yp�f (xap), f (xbp)

��
+ �q(f),q(s)

⎡
⎢⎢⎢⎣
ln

p
�
f �0, K

s

�

q(f)

⎤⎥⎥⎥⎦

+ �q(s)

�
ln

p
�
s��0, �0

�
q(s)

�

(29)

L = �q(f)

[P∑
p=1

yp lnΦ(zp) + (1 − yp)
(
1 − lnΦ(zp)

)]
+ �q(f)

[
lnN

(
f̂ ;�,K∕�[s]

)]

− �q(f

[
lnN

(
f ;f̂ ,C

)]
+ �q(s)

[
lnG

(
s;𝛼0, 𝛽0

)
− lnG(s;𝛼, 𝛽)

]

=

P∑
p=1

yp�q(f)[lnΦ(zp)] + (1 − yp)
(
1 − �q(f)[lnΦ(zp)]

)]

−
1

2

{
ln |K| − �[ln s] + tr

((
f̂
T
f̂ + C

)
K−1

)
− ln |C| − N

}

− Γ(𝛼0) + 𝛼0(ln 𝛽0) + (𝛼0 − 𝛼)�[ln s] + Γ(𝛼) + (𝛽 − 𝛽0)�[s] − 𝛼 ln 𝛽.

(30)

L ≈ �q(f)[ln p(y|f)] + �q(fm),q(s)
[ln p(fm, s|K, 𝛼0, 𝛽0)]

− �q(fm)
[ln q(fm)] − �q(s)[ln q(s)]

=

P∑
p=1

�q(f)[ln p(yp|f (xap), f (xbp))] −
1

2

{
ln |Kmm| − �[ln s] − ln |S| −M

+ f̂
T

m
�[s]K−1

mm
f̂m + tr(�[s]K−1

mm
S)

}
+ lnΓ(𝛼) − lnΓ(𝛼0) + 𝛼0(ln 𝛽0)

+ (𝛼0 − 𝛼)�[ln s] + (𝛽 − 𝛽0)�[s] − 𝛼 ln 𝛽,

710 Machine Learning (2020) 109:689–718

1 3

Appendix 2: Variational lower bound for crowdGPPL

For crowdGPPL, our approximate variational lower bound is:

Appendix 3: Posterior parameters for variational factors in crowdGPPL

For the latent item components, the posterior precision estimate for S−1
v,c

 at iteration i is
given by:

(31)

Lcr =

P∑
p=1

ln p(yp|v̂T.,ap ŵ.,jp
+ t̂ap , v̂

T

.,bp
ŵ.,jp

+ t̂bp)

−
1

2

{ C∑
c=1

{
ln |Kmm| − �

[
ln s(v)

c

]
− ln |S(v)

c
|

−Mitems + v̂T
m,c

�
[
s(v)
c

]
K−1

mm
v̂m,c + tr

(
�
[
s(v)
c

]
K−1

mm
Sv,c

)
+ ln |Lmm| − �

[
ln s(w)

c

]

− ln |�c| −Musers + ŵT

m,c
�
[
s(w)
c

]
L−1
mm

ŵm,c + tr
(
�
[
s(w)
c

]
L−1
mm

�c

)
+ ln |Kmm|

}

− �
[
ln s(t)

]
− ln |S(t)| −Mitems + t̂

T
�
[
s(t)

]
K−1

mm
t̂ + tr

(
�
[
s(t)

]
K−1

mm
S(t)

)}

+

C∑
c=1

{
lnΓ

(
𝛼
(v)

0

)
+ 𝛼

(v)

0

(
ln 𝛽

(v)

0

)
+ lnΓ

(
𝛼(v)
c

)
+
(
𝛼
(v)

0
− 𝛼(v)

c

)
�
[
ln s(v)

c

]

+
(
𝛽(v)
c

− 𝛽
(v)

0

)
�[s(v)

c
] − 𝛼(v)

c
ln 𝛽(v)

c
+ lnΓ

(
𝛼
(w)

0

)
+ 𝛼

(w)

0

(
ln 𝛽

(w)

0

)
+ lnΓ

(
𝛼(w)
c

)

+
(
𝛼
(w)

0
− 𝛼(w)

c

)
�
[
ln s(w)

c

]
+
(
𝛽(w)
c

− 𝛽
(w)

0

)
�[s(w)

c
] − 𝛼(w)

c
ln 𝛽(w)

c

}
+ lnΓ

(
𝛼
(t)

0

)

+ 𝛼
(t)

0

(
ln 𝛽

(t)

0

)
+ lnΓ

(
𝛼(t)

)
+
(
𝛼
(t)

0
− 𝛼(t)

)
�
[
ln s(t)

]
+
(
𝛽(t) − 𝛽

(t)

0

)
�
[
s(t)

]

− 𝛼(t) ln 𝛽(t).

(32)

(
S
(v)

c,i

)−1

=(1 − 𝜌i)
(
S
(v)

c,i−1

)−1

+ 𝜌iK
−1
mm

�
[
s(v)
c

]

+ 𝜌i𝜋iA
T
i
GT

i
diag

(
ŵ2
c,u

+ �c,u,u

)
Q−1

i
GiAi,

711Machine Learning (2020) 109:689–718

1 3

where Ai = KimK
−1
mm

 , ŵc and �c are the variational mean and covariance of the cth latent
user component (defined below in Eqs. 37 and 36), and u = {up∀p ∈ Pi} is the vector of
user indexes in the sample of observations. We use S−1

v,c
 to compute the means for each row

of Vm:

For the consensus, the precision and mean are updated according to the following:

For the latent user components, the SVI updates for the parameters are:

where the subscripts a = {ap∀p ∈ Pi} and b = {bp∀p ∈ Pi} are lists of indices to the first
and second items in the pairs, respectively, Aw,i = LimL

−1
mm

 , and Hi ∈ Ui × Pi contains
partial derivatives of the likelihood corresponding to each user (Ui is the number of users
referred to by pairs in Pi), with elements given by:

(33)
v̂m,c,i = S

(v)

c,i

(
(1 − 𝜌i)

(
S
(v)

c,i−1

)−1

v̂m,c,i−1

+ 𝜌i𝜋iS
(v)

c,i
AT
i
GT

i
diag(ŵc,u)Q

−1
i

(
yi − Φ(ẑi) + diag(ŵc,u)GiAiv̂

T

c,m,i−1

))
.

(34)
(
S
(t)

i

)−1

= (1 − �i)
(
S
(t)

i−1

)
+ �iK

−1
mm

�
[
s(t)

]
+ �i�iA

T
i
GT

i
Q−1

i
GiAi

(35)t̂m,i = S
(t)

i

(
(1 − 𝜌i)

(
S
(t)

i−1

)−1

t̂m,i−1 + 𝜌i𝜋iA
T
i
GT

i
Q−1

i

(
yi − Φ(ẑi) + GiAi t̂i

))
.

(36)
�
−1
c,i

= (1 − 𝜌i)�
−1
c,i−1

+ 𝜌iL
−1
mm

�
[
s(w)
c

]
+ 𝜌i𝜋iA

T
w,i(

HT
i
diag

(
v̂2
c,a

+ S(v)
c,a,a

+ v̂2
c,b

+ S
(v)

c,b,b
− 2v̂c,av̂c,b − 2S

(v)

c,a,b

)
Q−1

i
Hi

)
Aw,i

(37)
ŵm,c,i = �c,i

(
(1 − 𝜌i)�c,i−1ŵm,c,i−1 + 𝜌i𝜋iA

T
w,i
HT

i
diag(v̂c,a − v̂c,b)Q

−1
i

(
yi − Φ(ẑi) + diag(v̂c,a − v̂c,b)H

(i)
u
ŵT

c,m,i−1

))
,

(38)Hp,j = Φ(�[zp])(1 − Φ(�[zp]))(2yp − 1)[j = up].

712 Machine Learning (2020) 109:689–718

1 3

Appendix 4: Predictions with crowdGPPL

The means, item covariances and user variance required for predictions with
crowdGPPL (Eq. 25) are defined as follows:

where A∗m = K∗mK
−1
mm

 , A(w)
um

= LumL
−1
mm

 and Lum is the covariance between user u and the
inducing users.

(39)t̂
∗
= K∗mK

−1
mm

t̂m, C(t)∗ =
K∗∗

�
[
s(t)

] + A∗m

(
S(t) − Kmm

)
AT
∗m
,

(40)v̂∗
c
= K∗mK

−1
mm

v̂m,c, C(v)∗
c

=
K∗∗

�

[
s
(v)
c

] + A∗m

(
S(v)
c

− Kmm

)
AT
∗m

(41)ŵ∗
c
= L∗mL

−1
mm

ŵm,c, 𝜔∗
c,u

= 1∕�
[
s(w)
c

]
+ A(w)

um
(�w,c − Lmm)A

(w)T
um

713Machine Learning (2020) 109:689–718

1 3

Appendix 5: Mathematical notation

A list of symbols is provided in Table 4.

Table 4 Table of symbols used to represent variables in this paper

Symbol Meaning

General symbols used with multiple variables
̂ An expectation over a variable

̃ An approximation to the variable
upper case, bold letter A matrix
lower case, bold letter A vector
lower case, normal letter A function or scalar
∗ Indicates that the variable refers to the test set, rather than

the training set
Pairwise preference labels
y(a, b) A binary label indicating whether item a is preferred to

item b
y
p

The pth pairwise label in a set of observations
y The set of observed values of pairwise labels
Φ Cumulative density function of the standard Gaussian

(normal) distribution
x
a

The features of item a (a numerical vector)
X The features of all items in the training set
D The size of the feature vector
N Number of items in the training set
P Number of pairwise labels in the training set
x∗ The features of all items in the test set
�
a

Observation noise in the utility of item a
�2 Variance of the observation noise in the utilities
z
p

The difference in utilities of items in pair p, normalised
by its total variance

z set of z
p
 Values for training pairs

GPPL (some terms also appear in crowdGPPL)
f Latent utility function over items in single-user GPPL
f Utilities, i.e., values of the latent utility function for a

given set of items
C Posterior covariance in f ; in crowdGPPL, superscripts

indicate whether this is the covariance of consensus
values or latent item components

s An inverse function scale; in crowdGPPL, superscripts
indicate which function this variable scales

k Kernel function
� Kernel hyperparameters for the items
K Prior covariance matrix over items
�
0

Shape hyperparameter of the inverse function scale prior
�
0

Scale hyperparameters of the inverse function scale prior

714 Machine Learning (2020) 109:689–718

1 3

Table 4 (continued)

Symbol Meaning

CrowdGPPL
F Matrix of utilities, where rows correspond to items and

columns to users
t Consensus utilities
C Number of latent components
c Index of a component
V Matrix of latent item components, where rows correspond

to components
v
c

A row of V for the cth component
W Matrix of latent user components, where rows correspond

to components
w
c

A row of W for the cth component
�
c

Posterior variance for the cth user component
� Kernel hyperparameters for the users
L Prior covariance matrix over users
u
j

User features for user j
U Number of users in the training set
U Matrix of features for all users in the training set
Probability distributions
N (multivariate) Gaussian or normal distribution
G Gamma distribution
Stochastic variational inference (SVI)
M Number of inducing items
Q Estimated observation noise variance for the approximate

posterior
� , � Estimated hyperparameters of a Beta prior distribution

over Φ(z
p
)

i Iteration counter for stochastic variational inference
f
m

Utilities of inducing items
K

mm
Prior covariance of the inducing items

K
nm

Prior covariance between training and inducing items
S Posterior covariance of the inducing items; in

crowdGPPL, a superscript and subscript indicate which
variable this is the posterior covariance for

� Posterior covariance over the latent user components
A K

nm
K−1

mm

G Linearisation term used to approximate the likelihood
a Posterior shape parameter for the Gamma distribution

over s
b Posterior scale parameter for the Gamma distribution

over s
�
i

A mixing coefficient, i.e., a weight given to the ith update
when combining with current values of variational
parameters

� Delay
r Forgetting rate

715Machine Learning (2020) 109:689–718

1 3

References

Abbasnejad, E., Sanner, S., Bonilla, E. V., & Poupart, P., et al. (2013). Learning community-based pref-
erences via dirichlet process mixtures of Gaussian processes. In Twenty-third international joint
conference on artificial intelligence (pp. 1213–1219). Retrieved January 17, 2020 from https ://
www.ijcai .org/Proce eding s/13/Paper s/183.pdf.

Adams, R. P., Dahl, G. E., & Murray, I. (2010). Incorporating side information in probabilistic matrix fac-
torization with Gaussian processes. In Proceedings of the twenty-sixth conference on uncertainty in
artificial intelligence (pp. 1–9). AUAI Press.

Ahn, S., Korattikara, A., Liu, N., Rajan, S., & Welling, M. (2015). Large-scale distributed Bayesian matrix
factorization using stochastic gradient MCMC. In Proceedings of the 21th ACM SIGKDD interna-
tional conference on knowledge discovery and data mining (pp. 9–18). ACM.

Arthur, D., & Vassilvitskii, S. (2007). k-means++: The advantages of careful seeding. In Proceedings of the
eighteenth annual ACM-SIAM symposium on discrete algorithms (pp. 1027–1035). Society for Indus-
trial and Applied Mathematics.

Banerji, M., Lahav, O., Lintott, C. J., Abdalla, F. B., Schawinski, K., Bamford, S. P., et al. (2010). Galaxy
zoo: Reproducing galaxy morphologies via machine learning. Monthly Notices of the Royal Astronom-
ical Society, 406(1), 342–353.

Bonilla, E., Steinberg, D., & Reid, A. (2016). Extended and unscented kitchen sinks. In M. F. Balcan & K.
Q. Weinberger (Eds.), Proceedings of the 33rd international conference on machine learning, PMLR,
New York, New York, USA, proceedings of machine learning research (Vol. 48, pp. 1651–1659).
Retrieved January 17, 2020 from http://proce eding s.mlr.press /v48/bonil la16.html.

Bors, A. G., & Pitas, I. (1996). Median radial basis function neural network. IEEE Transactions on Neural
Networks, 7(6), 1351–1364.

Bradley, R. A., & Terry, M. E. (1952). Rank analysis of incomplete block designs: I. The method of paired
comparisons. Biometrika, 39(3/4), 324–345.

Chen, X., Bennett, P. N., Collins-Thompson, K., & Horvitz, E. (2013). Pairwise ranking aggregation in a
crowdsourced setting. In Proceedings of the sixth ACM international conference on web search and
data mining (pp. 193–202). ACM.

Chen, G., Zhu, F., & Heng, P. A. (2018). Large-scale Bayesian probabilistic matrix factorization with
memo-free distributed variational inference. ACM Transactions on Knowledge Discovery from Data,
12(3), 31:1–31:24.

Chu, W., & Ghahramani, Z. (2005). Preference learning with Gaussian processes. In Proceedings of the
22nd international conference on machine learning (pp. 137–144). ACM.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of the 2019 conference of the North American
chapter of the association for computational linguistics: Human language technologies (long and
short papers), association for computational linguistics, Minneapolis, Minnesota (Vol. 1, pp. 4171–
4186). https ://doi.org/10.18653 /v1/N19-1423.

Felt, P., Ringger, E., & Seppi, K. (2016). Semantic annotation aggregation with conditional crowdsourcing
models and word embeddings. In Proceedings of COLING 2016, the 26th international conference
on computational linguistics: Technical papers (pp. 1787–1796). Osaka, Japan: The COLING 2016
Organizing Committee.

Symbol Meaning

�
i

Weight given to the update at the ith iteration
P
i

Subset of pairwise labels used in the ith iteration
P
i

Number of pairwise labels in the ith iteration subsample
U

i
Number of users referred to in the ith subsample

u Users in the ith subsample
a Indexes of first items in the pairs in the ith subsample
b Indexes of first items in the pairs in the ith subsample

Table 4 (continued)

https://www.ijcai.org/Proceedings/13/Papers/183.pdf
https://www.ijcai.org/Proceedings/13/Papers/183.pdf
http://proceedings.mlr.press/v48/bonilla16.html
https://doi.org/10.18653/v1/N19-1423

716 Machine Learning (2020) 109:689–718

1 3

Fu, Y., Hospedales, T. M., Xiang, T., Xiong, J., Gong, S., Wang, Y., et al. (2016). Robust subjective visual
property prediction from crowdsourced pairwise labels. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 38(3), 563–577.

Fürnkranz, J., & Hüllermeier, E. (2010). Preference learning and ranking by pairwise comparison. In Prefer-
ence learning (pp. 65–82). Springer.

Gretton, A., Sejdinovic, D., Strathmann, H., Balakrishnan, S., Pontil, M., Fukumizu, K., & Sriperumbudur,
B. K. (2012). Optimal kernel choice for large-scale two-sample tests. In Advances in neural informa-
tion processing systems (pp. 1205–1213). Retrieved January 17, 2020 from https ://paper s.nips.cc/paper
/4727-optim al-kerne l-choic e-for-large -scale -two-sampl e-tests .

Guo, S., Sanner, S., & Bonilla, E. V. (2010). Gaussian process preference elicitation. In Advances in neural
information processing systems (pp. 262–270). Retrieved January 17, 2020 from https ://paper s.nips.cc/
paper /4141-gauss ian-proce ss-prefe rence -elici tatio n.

Habernal, I., & Gurevych, I. (2016). Which argument is more convincing? analyzing and predicting con-
vincingness of web arguments using bidirectional LSTM. In Proceedings of the 54th annual meeting of
the association for computational linguistics (Vol. 1: long papers, pp. 1589–1599). Berlin, Germany:
Association for Computational Linguistics.

Han, B., Pan, Y., & Tsang, I. W. (2018). Robust Plackett-Luce model for k-ary crowdsourced preferences.
Machine Learning, 107(4), 675–702.

Haykin, S. (2001). Kalman filtering and neural networks. Wiley.
Hensman, J., Fusi, N., & Lawrence, N. D. (2013). Gaussian processes for big data. In Proceedings of the

twenty-ninth conference on uncertainty in artificial intelligence (pp. 282–290). AUAI Press.
Hensman, J., Matthews, A. G. D. G., & Ghahramani, Z. (2015). Scalable variational Gaussian process clas-

sification. In Proceedings of the 18th international conference on artificial intelligence and statistics
(pp. 351–360). Retrieved January 17, 2020 from http://proce eding s.mlr.press /v38/hensm an15.

Hoffman, M. D., Blei, D. M., Wang, C., & Paisley, J. W. (2013). Stochastic variational inference. Journal of
Machine Learning Research, 14(1), 1303–1347.

Houlsby, N., Huszar, F., Ghahramani, Z., & Hernández-Lobato, J. M. (2012). Collaborative Gaussian pro-
cesses for preference learning. In Advances in neural information processing systems (pp. 2096–2104).
Retrieved January 17, 2020 from http://paper s.nips.cc/paper /4700-colla borat ive-gauss ian-proce sses-
for-prefe rence -learn ing.

Joachims, T. (2002). Optimizing search engines using clickthrough data. In Proceedings of the eighth ACM
SIGKDD international conference on knowledge discovery and data mining (pp. 133–142). ACM.

Kamishima, T. (2003). Nantonac collaborative filtering: Recommendation based on order responses. In Pro-
ceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining
(pp. 583–588). ACM.

Kendall, M. G. (1948). Rank correlation methods. New York City: Griffin.
Khan, M. E., Ko, Y. J., & Seeger, M. (2014). Scalable collaborative Bayesian preference learning. In: S.

Kaski & J. Corander (Eds.), Proceedings of the seventeenth international conference on artificial intel-
ligence and statistics, PMLR, Reykjavik, Iceland, proceedings of machine learning research (Vol. 33,
pp. 475–483). Retrieved January 17, 2020 from http://proce eding s.mlr.press /v33/khan1 4.

Kim, Y., Kim, W., & Shim, K. (2014). Latent ranking analysis using pairwise comparisons. In 2014 IEEE
international conference on data mining (ICDM), IEEE (pp. 869–874). Retrieved January 17, 2020
from https ://ieeex plore .ieee.org/abstr act/docum ent/70234 15.

Kingsley, D. C., & Brown, T. C. (2010). Preference uncertainty, preference refinement and paired compari-
son experiments. Land Economics, 86(3), 530–544.

Kiritchenko, S., & Mohammad, S. (2017). Best-worst scaling more reliable than rating scales: A case study
on sentiment intensity annotation. In Proceedings of the 55th annual meeting of the association for
computational linguistics (Vol. 2: short papers, pp. 465–470). Vancouver, Canada: Association for
Computational Linguistics. https ://doi.org/10.18653 /v1/P17-2074.

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Com-
puter, 42(8), 30–37.

Lawrence, N. D., & Urtasun, R. (2009). Non-linear matrix factorization with Gaussian processes. In Pro-
ceedings of the 26th international conference on machine learning (pp. 601–608). ACM.

Lee, S. M., & Roberts, S. J. (2010). Sequential dynamic classification using latent variable models. The
Computer Journal, 53(9), 1415–1429.

Li, J., Mantiuk, R., Wang, J., Ling, S., & Le Callet, P. (2018). Hybrid-MST: A hybrid active sampling strat-
egy for pairwise preference aggregation. In Advances in neural information processing systems (pp.
3475–3485). Retrieved January 17, 2020 from https ://paper s.nips.cc/paper /7607-hybri d-mst-a-hybri
d-activ e-sampl ing-strat egy-for-pairw ise-prefe rence -aggre gatio n.

https://papers.nips.cc/paper/4727-optimal-kernel-choice-for-large-scale-two-sample-tests
https://papers.nips.cc/paper/4727-optimal-kernel-choice-for-large-scale-two-sample-tests
https://papers.nips.cc/paper/4141-gaussian-process-preference-elicitation
https://papers.nips.cc/paper/4141-gaussian-process-preference-elicitation
http://proceedings.mlr.press/v38/hensman15
http://papers.nips.cc/paper/4700-collaborative-gaussian-processes-for-preference-learning
http://papers.nips.cc/paper/4700-collaborative-gaussian-processes-for-preference-learning
http://proceedings.mlr.press/v33/khan14
https://ieeexplore.ieee.org/abstract/document/7023415
https://doi.org/10.18653/v1/P17-2074
https://papers.nips.cc/paper/7607-hybrid-mst-a-hybrid-active-sampling-strategy-for-pairwise-preference-aggregation
https://papers.nips.cc/paper/7607-hybrid-mst-a-hybrid-active-sampling-strategy-for-pairwise-preference-aggregation

717Machine Learning (2020) 109:689–718

1 3

Lowne, D., Roberts, S. J., & Garnett, R. (2010). Sequential non-stationary dynamic classification with
sparse feedback. Pattern Recognition, 43(3), 897–905.

Luce, R. D. (1959). On the possible psychophysical laws. Psychological Review, 66(2), 81.
Lukin, S., Anand, P., Walker, M., & Whittaker, S. (2017). Argument strength is in the eye of the

beholder: Audience effects in persuasion. In Proceedings of the 15th conference of the European
chapter of the association for computational linguistics (pp. 742–753).

MacKay, D. J. (1995). Probable networks and plausible prediction–a review of practical Bayesian meth-
ods for supervised neural networks. Network: Computation in Neural Systems, 6(3), 469–505.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of
words and phrases and their compositionality. In Advances in neural information processing sys-
tems (pp. 3111–3119). Retrieved January 17, 2020 from https ://paper s.nips.cc/paper /5021-distr
ibute d-repre senta tions -of-words -and-phras es-and-their -compo sitio nalit y.

Minka, T. P. (2001). Expectation propagation for approximate Bayesian inference. In Proceedings of
the seventeenth conference on uncertainty in artificial intelligence (pp. 362–369). arXiv :1301.2294.

Mo, K., Zhong, E., & Yang, Q. (2013). Cross-task crowdsourcing. In Proceedings of the 19th ACM
SIGKDD international conference on knowledge discovery and data mining (pp. 677–685). ACM.

Mosteller, F. (1951). Remarks on the method of paired comparisons: I. The least squares solution assum-
ing equal standard deviations and equal correlations. Psychometrika, 16, 3–9.

Naish-Guzman, A., & Holden, S. (2008). The generalized FITC approximation. In J. C. Platt, D. Koller,
Y. Singer, & S. T. Roweis (Eds.), Advances in neural information processing systems 20 (pp. 1057–
1064). Curran Associates, Inc.

Nguyen, T. V., & Bonilla, E. V. (2014). Collaborative multi-output Gaussian processes. In Proceedings
of the thirtieth conference on uncertainty in artificial intelligence (pp. 643–652). AUAI Press.

Nickisch, H., & Rasmussen, C. E. (2008). Approximations for binary Gaussian process classification.
Journal of Machine Learning Research, 9, 2035–2078.

Ovadia, S. (2004). Ratings and rankings: Reconsidering the structure of values and their measurement.
International Journal of Social Research Methodology, 7(5), 403–414.

Pan, Y., Han, B., & Tsang, I. W. (2018). Stagewise learning for noisy k-ary preferences. Machine Learn-
ing, 107(8–10), 1333–1361.

Plackett, R. L. (1975). The analysis of permutations. Applied Statistics, 24, 193–202.
Porteous, I., Asuncion, A., & Welling, M. (2010). Bayesian matrix factorization with side information

and Dirichlet process mixtures. In Proceedings of the twenty-fourth AAAI conference on artificial
intelligence (pp. 563–568). AAAI Press.

Psorakis, I., Roberts, S., Ebden, M., & Sheldon, B. (2011). Overlapping community detection using
Bayesian non-negative matrix factorization. Physical Review E, 83(6), 066114.

Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning (Vol. 38, pp.
715–719). Cambridge: The MIT Press.

Reece, S., Roberts, S., Nicholson, D., & Lloyd, C. (2011). Determining intent using hard/soft data and
Gaussian process classifiers. In Proceedings of the 14th international conference on information
fusion (pp. 1–8). IEEE.

Resnick, P., & Varian, H. R. (1997). Recommender systems. Communications of the ACM, 40(3), 56–58.
Saha, A., Misra, R., & Ravindran, B. (2015). Scalable Bayesian matrix factorization. In Proceedings

of the 6th international conference on mining ubiquitous and social environments (Vol. 1521, pp.
43–54). Retrieved January 17, 2020 from http://ceur-ws.org/Vol-1521/paper 6.pdf.

Salakhutdinov, R., & Mnih, A. (2008). Bayesian probabilistic matrix factorization using Markov chain
Monte Carlo. In Proceedings of the 25th international conference on machine learning (pp. 880–
887). ACM.

Salimans, T., Paquet, U., & Graepel, T. (2012). Collaborative learning of preference rankings. In Pro-
ceedings of the sixth ACM conference on recommender systems (pp. 261–264). ACM.

Simpson, E., Reece, S., & Roberts, S. J. (2017). Bayesian heatmaps: Probabilistic classification with
multiple unreliable information sources. In Joint European conference on machine learning and
knowledge discovery in databases (pp. 109–125). Springer.

Simpson, E., & Gurevych, I. (2018). Finding convincing arguments using scalable Bayesian preference
learning. Transactions of the Association for Computational Linguistics, 6, 357–371. https ://doi.
org/10.1162/tacl_a_00026 .

Snelson, E., & Ghahramani, Z. (2006). Sparse Gaussian processes using pseudo-inputs. In Advances in
neural information processing systems (pp. 1257–1264). Retrieved January 17, 2020 from https ://
paper s.nips.cc/paper /2857-spars e-gauss ian-proce sses-using -pseud o-input s.

Snow, R., O’Connor, B., Jurafsky, D., & Ng, A. (2008). Cheap and fast— but is it good? Evaluating non-
expert annotations for natural language tasks. In Proceedings of the 2008 conference on empirical

https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality
http://arxiv.org/abs/1301.2294
http://ceur-ws.org/Vol-1521/paper6.pdf
https://doi.org/10.1162/tacl_a_00026
https://doi.org/10.1162/tacl_a_00026
https://papers.nips.cc/paper/2857-sparse-gaussian-processes-using-pseudo-inputs
https://papers.nips.cc/paper/2857-sparse-gaussian-processes-using-pseudo-inputs

718 Machine Learning (2020) 109:689–718

1 3

methods in natural language processing (pp. 254–263). Honolulu, Hawaii: Association for Computa-
tional Linguistics.

Steinberg, D. M., & Bonilla, E. V. (2014). Extended and unscented Gaussian processes. In Advances in
neural information processing systems (pp. 1251–1259). Retrieved January 17, 2020 from https ://paper
s.nips.cc/paper /5455-exten ded-and-unsce nted-gauss ian-proce sses.

Thurstone, L. L. (1927). A law of comparative judgment. Psychological Review, 34(4), 273.
Uchida, S., Yamamoto, T., Kato, M. P., Ohshima, H., & Tanaka, K. (2017). Entity ranking by learning and

inferring pairwise preferences from user reviews. In Asia information retrieval symposium (pp. 141–
153). Springer.

Vander Aa, T., Chakroun, I., & Haber, T. (2017). Distributed Bayesian probabilistic matrix factorization.
Procedia Computer Science, 108, 1030–1039.

Volkovs, M., Yu, G., & Poutanen, T. (2017). Dropoutnet: Addressing cold start in recommender systems.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.),
Advances in neural information processing systems 30 (pp. 4957–4966). Curran Associates, Inc.

Wang, X., Wang, J., Jie, L., Zhai, C., & Chang, Y. (2016). Blind men and the elephant: Thurstonian pairwise
preference for ranking in crowdsourcing. In 2016 IEEE 16th international conference on data mining
(ICDM) (pp 509–518). IEEE.

Yang, Y. H., & Chen, H. H. (2011). Ranking-based emotion recognition for music organization and retrieval.
IEEE Transactions on Audio, Speech, and Language Processing, 19(4), 762–774.

Yannakakis, G. N., & Hallam, J. (2011). Ranking vs. preference: A comparative study of self-reporting. In
International conference on affective computing and intelligent interaction (pp. 437–446). Springer.

Yi, J., Jin, R., Jain, S., & Jain, A. (2013). Inferring users’ preferences from crowdsourced pairwise com-
parisons: A matrix completion approach. In First AAAI conference on human computation and crowd-
sourcing. Retrieved January 17, 2020 from https ://www.aaai.org/ocs/index .php/HCOMP /HCOMP 13/
paper /view/7536.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://papers.nips.cc/paper/5455-extended-and-unscented-gaussian-processes
https://papers.nips.cc/paper/5455-extended-and-unscented-gaussian-processes
https://www.aaai.org/ocs/index.php/HCOMP/HCOMP13/paper/view/7536
https://www.aaai.org/ocs/index.php/HCOMP/HCOMP13/paper/view/7536

	Scalable Bayesian preference learning for crowds
	Abstract
	1 Introduction
	2 Related work
	3 Bayesian preference learning for crowds
	3.1 GPPL for single user preference learning
	3.2 Crowd preference learning

	4 Scalable inference
	4.1 Approximating the posterior with a pairwise likelihood
	4.2 SVI for single user GPPL
	4.3 SVI for crowdGPPL

	5 Experiments
	5.1 Simulated noisy data
	5.2 Sushi preferences
	5.3 Argument convincingness
	5.4 Posterior variance of item components

	6 Conclusions
	Acknowledgements
	References

