
International Journal on Software Tools for Technology Transfer (2021) 23:847–851
https://doi.org/10.1007/s10009-020-00572-1

COMPET IT IONS AND CHALLENGES

Special Issue: TestComp 2019

CoVeriTest: interleaving value and predicate analysis for test-case
generation

Marie-Christine Jakobs1,2

Published online: 6 July 2020
© The Author(s) 2020

Abstract
Verification techniques are well-suited for automatic test-case generation. They basically need to check the reachability of
every test goal and generate test cases for all reachable goals. This is also the basic idea of our CoVeriTest submission.
However, the set of test goals is not fixed in CoVeriTest , instead we can configure the set of test goals. For Test-Comp’19,
we support the set of all __VERIFIER_error() calls as well as the set of all branches. Thus, we can deal with the two test
specifications considered in Test-Comp’19. Since the tasks in Test-Comp are diverse and verification techniques have different
strengths and weaknesses, we also do not stick to a single verification technique, but use a hybrid approach that combines
multiple techniques. More concrete, CoVeriTest interleaves different verification techniques and allows to configure the
cooperation (i.e., information exchange and time limits). To choose from a large set of verification techniques,CoVeriTest is
integrated into the analysis framework CPAchecker. For the competition, we interleave CPAchecker’s value and predicate
analysis and let both analyses resume their analysis performed in the previous iteration.

Keywords Test-case generation · Software testing ·Model checking · Cooperative verification · CPAchecker

1 Test-generation approach

It is well known that test-case generation approaches come
with different strengths and weaknesses, i.e., they are well-
suited for certain programs and perform poorly on others.
The programs in the Test-Comp benchmark set are diverse.
No single test-case generation approach will perform well
on all of them. To deal well with all Test-Comp tasks, we
thus need to use different test-case generation approaches.
Therefore, our Test-Comp’19 submission CoVeriTest is a
hybrid approach that combines different approaches. Encour-
aged by recent advances in software verification, veri-
fiers’ bug finding capabilities as well as their abilities to
achieve high coverage—each test goal is encoded as one
reachability query–, we combine different verification tech-
niques. More concrete, we use a combination that is one

Marie-Christine Jakobs: Jury-member.

B Marie-Christine Jakobs
jakobs@sosy.ifi.lmu.de

1 LMU Munich, Munich, Germany

2 Present Address: TU Darmstadt, Darmstadt, Germany

specific instance of cooperative, verifier-based testing [4].
Co-operative, verifier-based testing iteratively combines dif-
ferent verification techniques for test-case generation. In each
iteration, it runs the verification techniques in sequence limit-
ing each technique to its individual, user-defined time budget.
Additionally, one can define the level of cooperation, i.e.,
which information is exchanged between different verifi-
cation runs. Currently, the exchange of precisions, abstract
reachability graphs, and conditions [2], which describe pro-
gram paths that have already been explored, is supported.

For our CoVeriTest submission, we select the instance
of cooperative, verifier-based testing that performed best in
a recent study [4]. It iteratively combines two verification
techniques: a value analysis [7] and a predicate analy-
sis [6]. The value analysis explicitly tracks the values of
all variables stored in its precision. For all remaining vari-
ables, the analysis assumes that they can have any possible
value. The predicate analysis uses predicate abstraction with
adjustable block encoding [6], which is configured to abstract
at loop heads only. Both analyses use counterexample-guided
abstraction refinement [9] to adapt their precision (the set
of tracked variables or the set of predicates). Furthermore,
cooperation between verification runs is configured to

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-020-00572-1&domain=pdf


848 M.-C. Jakobs

Fig. 1 CoVeriTest workflow
for Test-Comp’19

exchange abstract reachability graphs between different veri-
fication runs of the same analysis. Practically, this means that
verification runs either resume a previous value or predicate
analysis.

Figure 1 presents the workflow of our CoVeriTest
submission. Given a program and a test specification, it
first translates the test specification (either cover call to
__VERIFIER_error() or cover all branches) into a set of
test goals. During test-case generation, the set of test goals
is split into two disjoint sets: open (goals that still need to be
considered) and covered (goals for which a test case has been
generated). Initially, the set of covered goals is empty. Both
analyses, i.e., the value and predicate analysis, use the set of
open test goals as specification, which must not be reached.

In each round, our CoVeriTest submission first performs
test-case generation with the value analysis and thereafter
with the predicate analysis. The limit of the value analy-
sis is 20 s per round, and the limit of the predicate analysis
is 80 s. Both analyses resume their exploration from the
previous round and do not exchange any further informa-
tion. Note that for the sake of readability, the figure does not
show the exchange of the abstract reachability graph required
for analysis resumption. The time limits and the cooperation
setting (reuse own results, but do not exchange information
between different analyses except for covered goals) are the
result of a bunch of experiments with the Test-Comp tasks.

Next, let us look at the test-case generation details. When-
ever one of the two analyses reports a violation of the
specification, a test case is constructed from the corre-
sponding counterexample [1]. The test case is output in the
Test-Comp exchange format.1 To avoid that another test case
is generated for the test goal that triggered the specification
violation, this test goal is moved from the set of open goals to
the set of covered goals. Thereafter, the analysis that reported
the violation is continued with the modified specification.2

1 https://gitlab.com/sosy-lab/software/test-format/tree/master
2 The set of open test goals changed.

2 Tool architecture

CoVeriTest is part of CPAchecker [5], a software
analysis tool mainly written in Java. In its front end,
CPAchecker uses the Eclipse CDT parser.3 In addition,
CPAchecker employs JavaSMT [10] to integrate different
SMT solvers. For Test-Comp’19, we chooseCPAchecker’s
default SMT solver MathSAT5 [8].

The core of CPAchecker is the configurable program
analysis (CPA) framework [3]. The CPA framework provides
the basis to express different verification approaches and con-
sists of two parts: configurable program analyses (CPAs) and
the CPA algorithm. CPAs define program analyses (abstract
domain plus the analysis operators post, merge, and stop)
and can freely be combined to build more complex analy-
ses. Two example CPAs are the value and predicate analysis
used by CoVeriTest. Given a CPA and a program, the CPA
algorithm performs the corresponding reachability analysis.

On top of the CPA framework, different verification
algorithms, e.g., counterexample-guided abstraction refine-
ment (CEGAR) [9], are integrated into CPAchecker. Also,
CoVeriTest is implemented on top of the CPA framework.
Basically, we added two algorithms: a test-case genera-
tion algorithm and a circular algorithm performing the con-
tinuous iteration over a set of analyses. The test-case genera-
tion algorithm wraps another analysis and is responsible for
test-case generation. To this end, it runs the wrapped analy-
sis, constructs test cases from counterexamples [1] reported
by the wrapped analysis, updates the analysis specification
(removing covered goals), and resumes the wrapped analy-
sis afterward. The circular algorithm instance that we use for
CoVeriTest in Test-Comp’19 iterates over two instances of
the test-case generation algorithm, one wrapping the predi-
cate analysis and the other the value analysis.

3 https://www.eclipse.org/cdt/

123

https://gitlab.com/sosy-lab/software/test-format/tree/master
https://www.eclipse.org/cdt/


CoVeriTest: interleaving value and predicate analysis for test-case generation 849

3 Strengths and weaknesses

CoVeriTest won the third place in Test-Comp’19 in
both categories, Cover-Error and Cover-Branches, as well
as in the category Overall. Two main characteristics of
CoVeriTest are responsible for its success. To tackle
the diverse set of tasks in the Test-Comp benchmark
set, CoVeriTest combines different analyses for test-
case generation. CoVeriTest’s specialty is the iterative
combination. Additionally, CoVeriTest’s test-case gen-
eration is directed at the test specification of interest.
Since CoVeriTest is based on verification technologies,
it is easy for CoVeriTest to specifically search for the
test goals of interest and abstract away from unimpor-
tant program behavior. This is, for example, reflected in
the low number of test cases (typically less than one)
produced for the bug finding category Cover-Error. More-
over, most of the produced tests in this category are
confirmed. Only in a few cases, we failed to properly
generate a test case from the counterexample. Hence, we
are rather confident that we typically produce valuable test
cases.

Looking at the detailed results,4 we observe that
CoVeriTest performs well on the subcategories BitVectors,
Control-Flow, Floats, Heap, and Loops.

Furthermore,weobserve thatCoVeriTesthas difficulties
with subcategory Arrays and ECA. For us, this is no surprise.
We already know that the underlying analyses have problems
with tasks that contain large arrays. For the ECA tasks, we
identified two possible problems. First, the branching struc-
ture of the ECA tasks makes them hard for CoVeriTest. On
the one hand, the branch conditions contain many Boolean
connectors. Since CPAchecker internally splits Boolean
connections before CoVeriTest computes its set of test
goals, the considered set of test goals is much larger than
the actual number of branches. On the other hand, only few
syntactic paths are feasible in each loop iteration of an ECA
task. CoVeriTest must exclude many infeasible paths in
each loop iteration, which is costly. Second, we know that
the value analysis is much better on the ECA tasks than
the predicate analysis, which gets more runtime in our con-
figuration.An adaptive division of the runtimemight improve
the performance on the ECA tasks.

Surprisingly, the performance of CoVeriTest differs
for the subcategories Recursive and Sequentialized when
it comes to covering errors and branches, respectively.
CoVeriTest has significant problems with the subcategory
Recursive and problems with about 40% of tasks in the sub-
category Sequentialized (especially, lcr tasks and overflows)
when the task is to cover the error. Since we know that our
analyses do not support recursion, we expect a bad perfor-

4 https://test-comp.sosy-lab.org/2019/results/results-verified/

Table 1 Comparing the overall scores achieved by CoVeriTest sub-
mitted to Test-Comp with the scores achieved by a sequential analysis
combination achieved on the Test-Comp benchmark set

Property Score Test-Comp Score Sequential

Cover-Error 331 360

Cover-Branches 753 744

mance for recursive tasks. Interestingly, many branches of
the recursive tasks can be reached without a recursive call.
Moreover, the error in some of the sequentialized tasks seems
to be particularly difficult to reach in comparisonwith the rest
of the reachable branches.

At last, we want to show that the iterative combination
of analyses in CoVeriTest pays off. Our motivation for
an iterative combination is that analyses getting stuck while
trying to cover a particular goal can recover after another
analysis in the combination covered the goal. To study
whether CoVeriTest benefits from this idea, we compare
CoVeriTest with a sequential combination of its analy-
ses. We derive the sequential combination from the iterative
CoVeriTest configuration by only changing the time limits.
The new, sequential time limits for the value and predicate
analysis are 180s and 720s (the accumulated time spent by
each analysis in the original CoVeriTest configuration).
Then, we compare the results of both configuration on the
Test-Comp benchmark set.

Table 1 shows the sum of all scores achieved by both
configurations in each of the two Test-Comp categories
Cover-Error and Cover-Branches. We observe that the
CoVeriTest configuration submitted to Test-Comp, which
uses an interleaved combination, covers less errors. All errors
exclusively covered by the sequential combination are found
by the value analysis. We think the sequential combination
performs better for those tasks because some operation of
the value analysis, e.g., counterexample check or refinement,
cannot be finished within 20s (time limit for value analysis
in each iteration in the Test-Comp configuration). However,
it can be performed within the 180s time limit (time limit
of value analysis in the sequential combination). Neverthe-
less, the Test-Comp configuration detects one error that the
sequential combination does not report. For branch coverage,
the original intention of CoVeriTest, the picture looks dif-
ferent. When using an inter-leaved combination (Test-Comp
configuration), a higher overall score is achieved. Interleav-
ing pays off. To further substantiate this, let us look at
the scatter plot in Fig. 2. For each Test-Comp task in the
category Cover-Branches, the scatter plot compares the
branch coverage of the Test-Comp submission (x axis) with
the coverage of the sequential combination (y axis). We
observe that many points are on the diagonal, few are in
the upper right half, and a significant amount of points is in
the lower right half (meaning the CoVeriTest configuration

123

https://test-comp.sosy-lab.org/2019/results/results-verified/


850 M.-C. Jakobs

Fig. 2 Scatter plot that compares the branch coverage (score) of our
CoVeriTest submission and of the sequential analysis combination

submitted to Test-Comp performs better). Hence, when
generating test-suites for structural coverage properties, an
interleaved combination—as used for Test-Comp—pays off.

4 Setup and configuration

To set up CoVeriTest, one needs to download
CPAchecker5 (the tool in which CoVeriTest is inte-
grated). For Test-Comp’19, we used the revision 30375
from the CPAchecker trunk. Furthermore, one requires
a Java 8 runtime environment. After proper setup, the
following command executes CoVeriTest on a single
program program.i. The file property.prp is a
placeholder for the test specification, either coverage-
error-call.prp or coverage-branches.prp.

scripts/cpa.sh -testcomp19 -benchmark

-heap 10000m −spec property.prp program.i

The command above assumes that program.i runs in
a 32-bit environment. For C programs requiring a 64-bit
environment, one must add the parameter -64. Moreover,
for machines with less RAM one can adjust the amount of
memory given to the JavaVM. Just change thememory value
passed with the parameter -heap.

During execution, CoVeriTest produces a test-suite,
which consists of a metadata file and test-case files in the
XML format6 defined by Test-Comp. CoVeriTest writes
the test-suite to a directory named test-suite. This
directory is a subdirectory within the output directory of
CPAchecker.

5 https://cpachecker.sosy-lab.org
6 https://gitlab.com/sosy-lab/software/test-format/tree/master

We participate with our CoVeriTest submission in all
categories of Test-Comp’19.

5 Project and contributors

CoVeriTest is integrated into the open-source project
CPAchecker, which is maintained by Dirk Beyer and his
group at LMU Munich. Currently, members of the Insti-
tute for System Programming of the Russian Academy of
Sciences, Paderborn University, TU Darmstadt, and sev-
eral other universities and institutes contribute to or use
CPAchecker. We would like to thank all contributors for
their work on CPAchecker.

Acknowledgements OpenAccess funding provided by Projekt DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala, R., Majumdar,
R.: Generating tests from counterexamples. In: Proceedings of
ICSE, pp. 326–335. IEEE (2004). https://doi.org/10.1109/ICSE.
2004.1317455

2. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Con-
ditional model checking: a technique to pass information between
verifiers. In: Proceedings of FSE. ACM (2012). https://doi.org/10.
1145/2393596.2393664

3. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software
verification: concretizing the convergence of model checking and
program analysis. In: Proceedings of CAV, LNCS 4590, pp. 504–
518. Springer (2007). https://doi.org/10.1007/978-3-540-73368-
3_51

4. Beyer, D., Jakobs, M.: CoVeriTest: cooperative verifier-based test-
ing. In: Proceedings of FASE, LNCS 11424, pp. 389–408. Springer
(2019). https://doi.org/10.1007/978-3-030-16722-6_23

5. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for config-
urable software verification. In: Proceedings of CAV, LNCS 6806,
pp. 184–190. Springer (2011). https://doi.org/10.1007/978-3-642-
22110-1_16

6. Beyer, D., Keremoglu, M.E., Wendler, P.: Predicate abstraction
with adjustable-block encoding. In: Proceedings of FMCAD, pp.
189–197. FMCAD (2010). http://ieeexplore.ieee.org/document/
5770949/

7. Beyer, D., Löwe, S.: Explicit-state software model checking based
on CEGAR and interpolation. In: Proceedings of FASE, LNCS

123

https://cpachecker.sosy-lab.org
https://gitlab.com/sosy-lab/software/test-format/tree/master
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1109/ICSE.2004.1317455
https://doi.org/10.1145/2393596.2393664
https://doi.org/10.1145/2393596.2393664
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1007/978-3-030-16722-6_23
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
http://ieeexplore.ieee.org/document/5770949/
http://ieeexplore.ieee.org/document/5770949/


CoVeriTest: interleaving value and predicate analysis for test-case generation 851

7793, pp. 146–162. Springer (2013). https://doi.org/10.1007/978-
3-642-37057-1_11

8. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The
MathSAT5 SMT solver. In: Proceedings of TACAS, LNCS 7795,
pp. 93–107. Springer (2013). https://doi.org/10.1007/978-3-642-
36742-7_7

9. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.:
Counterexample-guided abstraction refinement for symbolic
model checking. J. ACM 50(5), 752–794 (2003). https://doi.org/
10.1145/876638.876643

10. Karpenkov, E.G., Friedberger, K., Beyer, D.: JavaSMT: a uni-
fied interface for SMT solvers in Java. In: Proceedings of VSTTE,

LNCS 9971, pp. 139–148. Springer (2016). https://doi.org/10.
1007/978-3-319-48869-1_11

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/978-3-642-37057-1_11
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1145/876638.876643
https://doi.org/10.1145/876638.876643
https://doi.org/10.1007/978-3-319-48869-1_11
https://doi.org/10.1007/978-3-319-48869-1_11

	CoVeriTest: interleaving value and predicate analysis for test-case generation
	Abstract
	1 Test-generation approach
	2 Tool architecture
	3 Strengths and weaknesses
	4 Setup and configuration
	5 Project and contributors
	Acknowledgements
	References




