
The Visual Computer (2020) 36:2327–2340
https://doi.org/10.1007/s00371-020-01886-6

ORIG INAL ART ICLE

OLBVH: octree linear bounding volume hierarchy for volumetric
meshes

Daniel Ströter1 · Johannes S. Mueller-Roemer2 · André Stork2 · Dieter W. Fellner2,3

Published online: 6 July 2020
© The Author(s) 2020

Abstract
We present a novel bounding volume hierarchy for GPU-accelerated direct volume rendering (DVR) as well as volumetric
mesh slicing and inside-outside intersection testing. Our novel octree-based data structure is laid out linearly in memory using
space filling Morton curves. As our new data structure results in tightly fitting bounding volumes, boundary markers can be
associated with nodes in the hierarchy. These markers can be used to speed up all three use cases that we examine. In addition,
our data structure is memory-efficient, reducing memory consumption by up to 75%. Tree depth and memory consumption
can be controlled using a parameterized heuristic during construction. This allows for significantly shorter construction times
compared to the state of the art. For GPU-accelerated DVR, we achieve performance gain of 8.4×–13×. For 3D printing, we
present an efficient conservative slicing method that results in a 3×–25× speedup when using our data structure. Furthermore,
we improve volumetric mesh intersection testing speed by 5×–52×.

Keywords Bounding volume hierarchy · GPGPU · Volumetric meshes · Direct volume rendering · Intersection detection ·
Slicing

1 Introduction

Bounding volume hierarchies (BVHs) and spatial data struc-
tures in general are indispensable tools in computer graphics.
They are used to accelerate amultitude of algorithms, includ-
ing collision detection, frustum culling, and ray tracing. Due
to the low cost and high performance of massively parallel
manycore graphics processing units (GPUs), BVHs that can
be efficiently constructed and traversed on the GPU are of
particular interest in GPU-accelerated physically based ani-
mation and ray tracing.

However, current research focuses on GPU BVHs for tri-
angular surface meshes or point clouds (see Sect. 2). BVHs
for volumetric meshes, e.g., tetrahedral meshes used in finite
element simulations, must have different characteristics to
achieve high performance. For example, volumetric meshes

B Daniel Ströter
daniel.stroeter@gris.tu-darmstadt.de

1 Technische Universität Darmstadt, 64277 Darmstadt,
Germany

2 Fraunhofer IGD and Technische Universität Darmstadt,
Darmstadt, Germany

3 Technische Universität Graz, Graz, Austria

generally fill a space more densely than surface meshes and
therefore lead to deeper hierarchies. Volumetric meshes are
widely used in physically based animation, computational
physics, and scientific visualization of simulation results (see
Fig. 1). Furthermore, volumetric meshes are advantageous
for the description of 3D printed models, as they enable the
description of material gradients (see, e.g., Altenhofen et al.
[2]).

In this paper, we examine how construction and traver-
sal performance as well as memory use can be improved
by adapting previous GPU-optimized BVHs for volumet-
ric meshes. We introduce a novel octree-based linear BVH
(OLBVH) based on the linear BVH (LBVH) by Lauterbach
et al. [12]. We demonstrate the performance and memory
benefits of using an octree-based BVH instead of a binary
tree-based BVH for Direct volume rendering (DVR), plane
intersection for cross-section computation or slicing, and
inside-outside intersection testing. Furthermore, OLBVH
creates a hierarchy of tightly fitting bounding boxes, unlike
the original LBVH and most other LBVH variants (see
Sect. 2). This allows for the introduction of boundary flags
(see Sect. 3.1) that enable efficient space skipping in DVR,
conservative slicing, and inside-outside intersection testing
between volumetric meshes (see Sect. 4).

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00371-020-01886-6&domain=pdf
http://orcid.org/0000-0002-2672-7377
http://orcid.org/0000-0002-0712-0457
http://orcid.org/0000-0001-7756-0901


2328 D. Ströter et al.

Fig. 1 The octree linear bounding volume hierarchy OLBVH enables
efficient direct volume rendering of scientific data on unstructured vol-
umetric meshes. The mesh shown has 12 million tetrahedra

In the following, Sect. 2 discusses related work in the field
of GPU-optimized BVHs. Section 3 describes the concepts
behind our novel BVH and relevant implementation details.
Section 4 discusses the performance and memory character-
istics of our data structure and compares them with current
state-of-the-art GPU BVHs. Finally, Sect. 5 summarizes the
paper, discusses limitations, and provides avenues for further
research.

2 Related work

In this section, we discuss related work in the field of bound-
ary volume hierarchies with GPU-accelerated construction
and traversal.

The linear bounding volume hierarchy (LBVH) intro-
duced by Lauterbach et al. [12] forms the basis of many
of the newer approaches. They use Morton codes [15] (see
Fig. 2) to approximately spatially sort discretized element
centroids in parallel. Split positions for the hierarchy are
determined in parallel according to differing bits of neigh-
boring codes. While construction is very fast, it results in
many singleton nodes, i.e., nodes with only one child, and
nodes overlap significantly due to the approximate nature
of Morton order sorting. They also introduce a surface area
heuristic (SAH) hierarchy that ameliorates these issues, but
significantly increases construction cost.

A number of authors have since improved SAH-LBVH
construction performance. Pantaleoni and Luebke [20] intro-

Fig. 2 Morton codes for a 4× 4 grid. The bits of the individual integer
coordinates are interleaved, leading to a space-filling curvewith a fractal
Z-like shape

duced a two-level hierarchical LBVH (HLBVH) Morton
sortingmethodwith better performance for dynamicmeshes.
Thismethodwas further improved byGaranzha et al. [8] who
introduced a task-based approach to HLBVH construction
that enables construction in a single kernel call. Karras [11]
developed an approach that computes all hierarchy levels in
parallel leading to better scaling, while also generalizing to
k-D trees and octrees. This approachwas further improved by
Apetrei [3] using atomic operations to avoid binary searches
to improve construction speed. However, surface area heuris-
tics do not map well to volumetric meshes.

A potential alternative to the SAH are the extended Mor-
ton codes (EMCs) introduced by Vinkler et al. [25]. EMCs
encode the discretized bounding box size into an arbitrary
number of bits of the code, while the number of bits per
coordinate can be varied as well. However, the position of
these bits must be chosen carefully for good performance.
Furthermore, high-quality volumetric meshes for simulation
tend to vary smoothly in element size (see, e.g., Alliez et al.
[1]), reducing the potential benefit of EMCs.

For time-varying data, refitting, as used in an early CPU-
based work by Wald et al. [26], is an interesting alternative.
However, the resulting BVHs are of lower quality and would
lose the beneficial properties of tightly fitting nodes.

Besides efficient construction, traversal requires special
attention on the GPU as it is typically performed recursively
and the stack resides in local memory (a thread-private area
of GPU RAM) and the compute-to-bandwidth ratio is very
large. Murguia et al. [18], García et al. [9], as well as Binder
and Keller [5], use bit trails for stackless traversal. Bit trails
store the path through a tree as individual bits in an inte-
ger. However, these approaches are designed for binary trees
and incur additional memory overheads such as allocation of
empty nodes or hash maps. Vaidyanathan et al. [22] recently
introduced a short stack approach which avoids these over-

123



OLBVH: octree linear bounding volume hierarchy meshes 2329

heads and supports higher tree arities, albeit at the cost of
requiring some stack space.

While Zellmann et al. [28] use the LBVH data struc-
ture for volumetric data, they do so for volumetric data on
a sparse regular grid, avoiding looseness a priori. General
unstructured volumetricmeshes require a different approach.
In particular, octrees are beneficial as volumetric data fill
space more densely and octrees help avoid excessive hierar-
chy depth. For the use case of surface reconstruction from
point clouds, Zhou et al. [29] construct an octree using a
bottom-up approach based on Morton order sorting. While
large point clouds can be stored efficiently, the memory over-
head of the hierarchy itself is large and limits tree depth.
Furthermore, hierarchy levels are allocated separately, lead-
ing to increased allocation and synchronization overhead. Gu
et al. [10] introduce the octree-based LOBVH and a binary
tree-based variant LLBVH based on the work of Karras et
al. [11]. However, their approach requires full allocation of
the finest octree level followed by a compaction step. This
severely limits the maximum octree depth and results in a
large memory overhead.

With the advent of specialized ray tracing cores in con-
sumer graphics cards (see, e.g., Stich [21]), another option is
to use the built-in hardware-acceleratedBVH.Wald et al. [27]
trace very short rays to perform point location in tetrahedral
meshes. They achieve significant speedups compared to a
pure general purpose computing on graphics processing units
(GPGPU) approach, despite performing ray casting instead
of direct point location. However, availability of GPUs with
ray tracing hardware is currently limited to only the newest
generation from a single vendor. Furthermore, efficient hard-
ware BVH construction is itself an open research topic (see,
e.g., Doyle et al. [7] or Viitanen et al. [23,24]).

3 Concept and implementation

In this section, we describe the basic concept of the OLBVH
data structure and detail the implementation of the data struc-
ture as well as construction and traversal algorithms.

Like previous LBVH variants (see Sect. 2), our data struc-
ture relies on approximate spatial sorting of elements ordered
by Morton code [15]. We quantize the input coordinates x ,
y, and z as l-bit integers x̂ = (xl−1, xl−2, . . . , x0) and inter-
leave their bits as shown in Fig. 2:

m(x̂, ŷ, ẑ) = (xl−1, yl−1, zl−1, . . . , x0, y0, z0) (1)

For quantization purposes, we use the enclosing axis-
alignedboundingbox (AABB) H(M)of the volumetricmesh
M:

H(M) =
(
xMmin, x

M

max

)
, (2)

where xMmin and xMmax are the componentwise minimum and
maximum positions within the mesh.

A key difference to previous LBVH variants is that we
do not encode the centroids of AABBs. Instead, we use the
fact that Morton codes inherently span an equidistant grid.
The resolution of this grid depends on the number of bits l
used for quantization. The cell size of the Morton grid can
be calculated as:

sl = (slx , s
l
y, s

l
z)

T :=xMmax − xMmin

2l − 1
(3)

Using this size, quantization and reconstruction follow the
equations below, respectively:

q(x) =
⌊
x − xMmin

slx
+ 1

2

⌋
= x̂

q−1(x̂) = xMmin + x̂ · slx
(4)

The quantized AABB Ĥ(P) of a primitive P ∈ M is defined
by two quantized points:

Ĥ(P):=
(
x̂Pmin, x̂

P

max

)
(5)

For each primitive P ∈ M, we generate the Morton codes
enclosed by the primitive’s quantized AABB Ĥ(P). The set
of generated Morton codes for a primitive P ∈ M is given
by:

M(Ĥ(P)):=
⎧⎨
⎩m(x̂ ′, ŷ′, ẑ′) |

{x,y,z}∧
c

ĉPmin ≤ ĉ′ ≤ ĉPmax

⎫⎬
⎭ (6)

Combined with a heuristic to determine the tree depth
L = l + 1 (the root level is present, even for 0-bit Mor-
ton codes), we use M(Ĥ(P)) to split primitives a priori and
eliminate looseness, i.e., BVH sibling cells never overlap.
Additionally, we store boundary flags at every node of the
tree, allowing for early termination at nodes containing only
interior cells when only determining if a point or bounding
box is inside or outside the mesh M. As interior primitives

123



2330 D. Ströter et al.

Fig. 3 This figure shows the data layout of the CO and PO arrays for a
sample tree. The gray circles represent the tree nodes. The blue num-
bers above the tree nodes represent entries of the CO array, and the

red numbers represent entries of the PO array. The green arrow in the
background indicates the in-memory order

near the boundary must share points with boundary primi-
tives and the sets M(Ĥ(P)) are inclusive, cells that contain
empty space must always contain boundary primitives pro-
vided that no primitive has a negative signed volume.

3.1 Data structure

The OLBVH data structure consists of six arrays containing:

1. primitive indicesP[nm] in [0, n p) sorted byMorton code,
2. tree node bounding volumes BV[nn],
3. child node offsets CO[nni + 1] in [0, nn),
4. primitive index offsets PO[nn + 1] in [0, nm],
5. boolean boundary flags BF[nn],
6. per-level node offsets NO[L] in [1, nn],

where n p is the number of primitives in M, nm is sum of
the numbers of Morton codes per primitive, nn is the number
of tree nodes, and nni is the number of internal tree nodes
excluding leaves.

As the bounding volume of a primitive may intersect with
several spatial cells of the Morton grid, Pmay contain dupli-
cate indices. The bounding volumes of tree nodes BV are
laid out linearly in memory following a breadth-first traver-
sal order. In order to allow for top-down traversal, CO stores
child offsets for the tree nodes. Every tree node is associated
with a maximum of eight children. Due to the contiguous
levelwise order in memory, the CO array enables retrieval of
the child node indices Ci of a given tree node i :

Ci :={ j | CO[i] < j ≤ CO[i + 1]}. (7)

In order to manage memory efficiently, the CO array only
contains entries for internal, i.e., non-leaf, nodes. As a result
of the chosen data structure, the node index of an internal
node’s rightmost child is equal to the child offset of its suc-
ceeding node in memory, i.e.,

Node i is j’s rightmost child �⇒ CO[ j + 1] = i (8)

This property is usefulwhile constructing the internal hier-
archy levels starting from the leaves (see Sect. 3.2).

The OLBVH also incorporates a primitive offsets array
PO to infer the primitive indices in P are associated with
node i . As nodes reside in memory in breadth-first order, it is
necessary to handle adjacent nodes of different hierarchical
levels:

Pi :=
{

{P[ j] | 0 ≤ j < PO[i + 1]}, if PO[i] > PO[i + 1]
{P[ j] | PO[i] ≤ j < PO[i + 1]}, otherwise

(9)

As any rightmost child has the same upper offset as its parent
node, it holds that:

Node i is j’s rightmost child �⇒ PO[i + 1] = PO[ j + 1]
(10)

The memory layout of the CO and PO arrays is illustrated for
a sample tree in Fig. 3.

The boundary flag arrayBF stores a boolean boundary flag
for each tree node i . The final array NO stores the node index
offsets for each level. It is used to determine the hierarchical
level of a node given its index.

3.2 Construction

The OLBVH construction procedure receives any volumet-
ric mesh M with marked boundary primitives as input. We
focus on tetrahedral meshes in our evaluation. However,
OLBVH is equally applicable to general polyhedral meshes.
Weuse theGPU-optimized tetrahedralmeshdata structure by
Mueller-Roemer et al. [16,17] to efficiently store and process
tetrahedralmeshes on theGPU, and use it to determinewhich
primitives lie on the boundary, i.e., have one or more faces
with only one neighbor. As this is part of pre-processing, not
BVH construction, and covered in previous publications, we
do not evaluate the computation of initial boundary primi-
tive marking. If H(M) is not known beforehand, a parallel
reduction on the mesh’s vertices calculates xMmin and xMmax.
Parallel primitives, such as reductions, parallel prefix sums,
and sorting, are efficiently implemented in libraries such as

123



OLBVH: octree linear bounding volume hierarchy meshes 2331

CUB [13] or Thrust [4]. We use Thrust in our implementa-
tion. Construction is performed in four stages:

1. Determine the tree depth heuristically
2. Calculate and sort Morton codes of primitive AABBs
3. Record at which levels the sorted Morton codes split
4. Bottom-up construction based on split positions.

In the initial stage, we determine the number l ≤ lmax of
bits to use for quantization, and therefore the depth of the tree,
according to element size. The maximum possible number
of quantization bits is lmax = 10 in our implementation, as
we use 32-bit integers to store Morton codes. In parallel over
primitives, we estimate the tree level by first computing the
binary logarithm of the largest tetrahedron AABB axis in
relation to the maximum grid resolution:

αP = max

(⌊
ld

⌊
xPmax − xPmin

slmax

⌋

max

⌋
, 0

)
(11)

where the division is performed per component. The binary
logarithm can be efficiently implemented using a count
leading zeros instruction (the __clz intrinsic in CUDA).
Subsequently, the construction procedure chooses

l = clamp (�10.5 − (avg (αP) + α)� , 0, 10) (12)

by performing a parallel reduction on αP, where α ∈ [0, 10]
is a tuning coefficient. While it is possible to choose a nega-
tive α, it is not advised, as the resultingMorton grid would be
finer than most primitive AABBs. This would lead to over-
sampling. Therefore, we define α ∈ [0, 10]. Increasing α

results in a coarser Morton grid and thereby faster construc-
tion and reduced use of memory.

Since the maximum level is heuristically determined, we
continue with calculating the Morton codes in the second
stage. The size of the Morton grid cells sl can be computed
using Eq. 3. On the basis of sl , we generate a temporary array
of Morton codes MC. As the overall number of Morton codes
nm is not known a priori, we perform two parallel passes over
primitives to determine nm and allocate and fill MC. Each

thread calculates
∣∣∣M(Ĥ(P))

∣∣∣ for one primitive. A parallel

exclusive prefix sum determines the array offsets the Morton
codes of each primitive are written to. By performing the
prefix sum for n p + 1 elements, the final offset corresponds
to nm and additional branching is avoided. A second pass
over all primitives generates the sets M(Ĥ(P)) and writes
the Morton codes into MC at the computed offsets, while
also writing each primitive’s index to P at the corresponding
offset.

With a parallel sort, the primitive indices P are sorted
using the Morton codes in MC as keys. As a result, the primi-

tive indices are ordered along the Z-curve. Primitive indices
are potentially duplicated, as M(Ĥ(P)) may include several
Morton codes. Additionally, the root node of the OLBVH is
constructed at this point. Because the root node encloses all
primitives P ∈ M, its AABB is set to H(M). Moreover, the
two initial entries of PO are set to 0 and the overall number
ofMorton codes nm , respectively. Straightforwardly, the first
entry of CO is 0, the first entry of NO is 1, and the last is nn .
Additionally, the root boundary flag BF[0] is set to true.

In the third stage, we determine the indices at which the
Morton codes in MC indicate splits between BVH nodes. As
the OLBVH is an octree, we compare Morton codes advanc-
ing in 3-bit steps beginning from the most significant bit.
Thus, each split is associated with a level lc < L and an
index referring to a Morton code in the MC array. As the split
positions refer to the Morton codes of primitives, the split
generation procedure writes these positions to the PO array.
As in the case of Morton code generation, we first determine
the number of splits between neighboring codes. A parallel
scan is then used to determine the size of and offsets into
the corresponding arrays. As no split is recorded for the last
Morton code, a split is appended sequentially by the CPU
for each level. This can be done concurrently while filling
the remainder of the PO. A parallel stable sort by key proce-
dure sorts PO by split level resulting in the intended primitive
offset order. As the splits are sorted by level, the remaining
entries of the NO array can be calculated by exploiting the
per-level contiguous order. In parallel over splits, we search
for adjacent splits of different level. If two such splits are
found at positions i and i + 1, a node level offset was found
and thus NO[splits[i].lc] = i + 1.

The final stage relies on NO and PO to construct the
OLBVH in a bottom-upmanner, i.e., starting at the leaf level.
As the data layout does not allow for immediate inference of
the parent node for a given node, we cannot construct the
hierarchy in a single kernel launch using atomic flags as in
Apetrei’s [3] agglomerative LBVH builder.

Wefirst calculate the leaf nodeAABBs and boundary flags
BF using Algorithm 1. As all Morton codes associated with
a leaf node are equal, the minimum AABB coordinates are
obtained by calculating q−1(m−1(mx,y,z)) for an arbitrary
mx,y,z associated with the leaf node. Furthermore, the max-
imum AABB coordinates are calculated by adding the grid
size sl to the minimum coordinates. As a result, leaf node
AABBs can be calculated in constant time. The boundary
flag BF[i] of a leaf node is set if any primitive in Pi is tagged
as a boundary element. Therefore, boundary flag calculation
for a leaf node is O(|Pi |).

Algorithm 2 outlines internal node generation. We allo-
cate an auxiliary array CI of the same size as the overall
number of generated Morton codes nm . The hierarchy con-
struction procedurewrites node indices to the primitive offset
positions of CI for each level. On construction of the parent

123



2332 D. Ströter et al.

Algorithm 1 Leaf node bounding volume and boundary flag
determination.
1: procedure generateLeafNodes(l)
2: for all i ∈ [NO[l − 1],NO[l]) do 	 In parallel
3: p ← P[PO[i + 1] − 1] 	 Pick any entry in Pi
4: mx,y,z ← MC[p] 	 Calculate AABB
5: min ← q−1(m−1(mx,y,z))

6: max ← min + sl

7: BV[i] ← (min, max)
8: for all P ∈ Pi do 	 Calculate boundary flag
9: if P is marked as boundary primitive then
10: BF[i] ← true
11: return
12: end if
13: end for
14: BF[i] ← false
15: end for
16: end procedure

hierarchical level, we exploit Eq. 10 to lookup the rightmost
child indices for internal nodes at the upper primitive offset
positions of the CI array. To reduce the number of kernel
launches, the computation of CI can be merged with gen-
erateLeafNodes for the first iteration. Between internal
levels, a separate kernel must be used to prevent conflicting
reads and writes. CI and PO are used to determine the child
offsets CO according to Eq. 8. Finally, internal node AABBs
and boundary flags are determined from their children.

Algorithm 2 Construction of internal nodes of level li .
1: procedure generateInternalNodes(li )
2: for all i ∈ [NO[li ],NO[li + 1]) do 	 In parallel
3: CI[PO[i + 1]] ← i
4: end for
5: CI[0] ← NO[li ] − 1
6: for all i ∈ [NO[li − 1],NO[li ]) do 	 In parallel
7: (begin, end) ← (PO[i],PO[i + 1])
8: if begin > end then 	 Calculate primitive range
9: begin ← 0
10: end if
11: CO[i] ← CI[begin]
12: cbegin ← CO[i] + 1
13: cend ← CI[end]
14: if i = NO[li ] − 1 then 	 Set last child offset
15: CO[i + 1] ← cend
16: end if
17: BV[i] ← BV[cbegin] ∪ · · · ∪ BV[cend] 	 Merge AABBs
18: BF[i] ← false
19: for j ← cbegin, . . . , cend do 	 j ∈ Ci
20: if BF[ j] then 	 Calculate boundary flag
21: BF[i] ← true
22: end if
23: end for
24: end for
25: end procedure

3.3 Traversal

Algorithm 3 outlines our OLBVH traversal approach. Fig-
ure 4 presents a sample traversal execution. Traversing the
OLBVH for input geometric predicates FN for nodes and FP

for primitives proceeds by pushing child nodes to a traver-
sal stack. If a full traversal stack is used, its size is bounded
by 7 · l + 8 node indices. This typically exceeds the amount
of available fast on-chip shared memory, resulting in hav-
ing to use slower cache-backed local memory. Consequently,
OLBVH traversal uses a short stack [22] to reduce the mem-
ory requirement for the stack. As a result of the shallow
hierarchy, a 32-bit integer is sufficient to encode the trail.
Leaf nodes can be determined efficiently by comparison with
the lower level offset of the last level. Since siblings are on
the same level, it suffices to check the first child node. The
short stack approach uses a queue Q to record the nodes in
Ci (cf. Eq. 7) for which the predicate FN evaluates as true.
On the evaluated GPUs, the use of a short stack results in a
minor approx. 5% speedup, which is not evaluated in detail,
on older GPUs we observed larger speedups.

Algorithm 3 OLBVH traversal using a short stack.
1: procedure traverseOLBVH(FN , FP )
2: trail ← 0x0
3: lcur ← 0
4: Sshort ← ∅
5: i ← 0 	 Initiate at root
6: result ← 0 	 Alternatively, N ← ∅
7: found ← false
8: nodeBound ← NO[l − 1]
9: exit ← false
10: do
11: Q ← ∅
12: k ← (trail  3lcur ) & 0x7
13: leafLevel ← CO[i + 1] > nodeBound
14: for j ∈ Ci do
15: if FN ( j) then
16: if leafLevel then
17: exit ← true
18: found ← true
19: result ← j 	 Alternatively, push j onto N
20: else
21: Q ← Q ∪ { j}
22: end if
23: end if
24: end for
25: manageShortStack(Sshort , trail, lcur , i , Q, k, exit)
26: while ¬exit
27: if found then 	 Alternatively, test intersection for every j ∈ N
28: if FP (PM) for any PM ∈ Presult then 	 cf. Eq. 9
29: treat incident
30: return
31: end if
32: end if
33: end procedure

123



OLBVH: octree linear bounding volume hierarchy meshes 2333

Fig. 4 Traversal proceeds on the compacted tree until a leaf node
satisfies FN . The green arrows indicate the traversal path. Variable
assignments and short stack states appear below the tree. Initially, traver-
sal concludes that FN holds for nodes 1, 2, 5 and 6. Thus, the next node
is 1, while nodes 2, 5 and 6 remain on the short stack. In the second

step, none of 1’s children satisfy FN . Thus, traversal pops 2 from the
short stack, determines the corresponding parent level, increments the
trail bits of that level, and finds the current level using Eq. 13. Finally,
FN holds for 16 and traversal terminates

Unlike Vaidyanathan et al.’s [22] short stack implemen-
tation, we do not tag parent nodes, avoiding unnecessary
branching. Additionally, our implementation does not treat
leaf nodes satisfying FN throughout traversal. This is due
to the fact that depending on α leaf nodes contain several
primitives and a high primitive count may lead to significant
thread divergence. After pushing intersecting child nodes
to Q, the manageShortStack(. . . ) procedure pushes tree
nodes from Q to the short stack and identifies the tree node
at which traversal continues. This procedure corresponds to
lines 10–27 of Vaidyanathan et al.’s [22] BVH−N traversal
methodwith N = 8. The only two adaptations are the bit-trail
handling and comparison of NO[parentLevel] to determine
the level of a node on short stack pop to avoid unnecessary
branching (lines 16–20 in Stack Pop):

lcur = parentLevel + (NO[parentLevel] ≤ n) (13)

In many applications, it is sufficient to traverse the tree
evaluating FN until a leaf node is reached, as sibling cells
never overlap. Primitives associated with the resulting leaf
node are then checkeduntil FP evaluates to true.However, for
some applications such as intersection detection it is required
to keep track of intersecting leaf nodes and to test primitives
for intersection. In such scenarios, a node set N is used to
maintain leaf nodes satisfying FN . This approach is inher-
ently prone to overflow.Thus, additional treatment is required
in order to prevent exceeding the size of N on node push. One
solution is to evaluate FP for the primitives of all nodes in N
if a node pushwould result in an overflow. After traversal, we
evaluate FP for the primitives associated with the resulting
leaf node or the set of leaf nodes N .

4 Results

In this section, we evaluate OLBVH construction time
and memory consumption. In addition, we investigate our
acceleration structure’s benefits in three application areas:
direct volume rendering of unstructuredmeshes for scientific
visualization, conservative slicing for 3D-printing, and inter-
section detection. In order to avoid inaccuracies in runtime
measurements, we calculate the median of 50 repetitions.
All algorithms were implemented in C++ and CUDA using
Visual Studio 2015 and CUDA 10.1. Our implementation of
Wald et al.’s [27] method additionally uses OptiX 7.0 [19].
All measurements were performed on one machine with an
RTX 2080 Ti and another with a Quadro GP100. The latter
GPU does not support RTX in hardware.We consistently use
a short stack size of 8. The meshes used throughout the eval-
uation are shown in Fig. 5. While good simulation meshes
have smoothly varying element sizes and tetrahedrawith high
aspect ratios, the meshes were chosen to include both good
meshes andmeshes with very large variances in element size,
as shown in Table 1. Additionally, while most of the meshes
fill themajority of their bounding box, we included two shell-
like meshes, “Part” and “Pot.”

4.1 Construction

WecompareOLBVHconstructionwithApetrei’s [3] improved
LBVH construction and OptiX’ acceleration structure con-
struction with subsequent compaction. The details of OptiX’
acceleration structure are not documented and are consid-
ered a black box. The resulting construction times are shown

123



2334 D. Ströter et al.

Fig. 5 Meshes used in the evaluation. Surface overlaid over a cross sec-
tion shown to visualize both exterior and interior resolution. From top
left to bottom right: Bar, Bunny, Cube, Cylinder, Die, Dragon, Fusion,

Gargoyle, Jets, Part, Pot, Tardis, and Wrench. The models include both
meshes with highly regular primitive size (e.g., Part) and others with
large variance in primitive size (e.g., Tardis)

Table 1 Mesh element size and quality information for the meshes
shown in Fig. 5

Mesh Volume Ratio Aspect Ratio

Minimum Median Maximum

Bar 1 0.233 0.233 0.233

Bunny 5.5 · 105 0.005 0.126 0.331

Cube 183 0.043 0.268 0.333

Cylinder 693 0.059 0.259 0.333

Die 2.5 · 104 0.002 0.256 0.333

Dragon 2.6 · 1011 0.011 0.258 0.333

Fusion 128 0.007 0.054 0.196

Gargoyle 5.2 · 1011 0.000 0.195 0.333

Jets 1 0.239 0.239 0.239

Part 4.4 · 103 0.003 0.266 0.333

Pot 586 0.022 0.259 0.333

Tardis 1.2 · 108 0.011 0.258 0.333

Wrench 2.5 · 106 0.000 0.197 0.333

Besides the ratio of the largest absolute element volume to the small-
est, we list the minimum, median and maximum element aspect ratios
(inradius over circumradius) [6] rounded to the third decimal

in Fig. 6. As tree depth is affected by the choice of α, we
present construction times for α ∈ {0, 1, 2}. For α = 0
our construction approach is slower than Apetrei’s LBVH
builder. For α ∈ {1, 2} our approach outperforms or matches
the construction times of the LBVH builder in many cases.
If no hardware acceleration is used, OLBVH construction is
faster than OptiX on all but the smallest meshes (cf. Table 2),
even for α = 0. When hardware acceleration is present, our
construction approach is slightly slower than OptiX’ BVH
construction for α = 0, but achieves significantly lower run-
times when α ∈ {1, 2}.

Besides construction time, another beneficial aspect of
our data structure is its memory consumption. Table 2 com-
pares thememory consumption of our OLBVH to LBVHand
OptiX’ acceleration structure. OLBVH consumes signifi-
cantly lessmemory than LBVHorOptiXwithout specialized
RTX hardware. For the jets and dragon meshes, OptiX con-
sumes slightly less memory than OLBVH with α = 0 when
RTX hardware is used. Increasing α results in a significant
reduction of memory consumption.

123



OLBVH: octree linear bounding volume hierarchy meshes 2335

Fig. 6 Comparison of construction times between LBVH using Ape-
trei’s [3] fast agglomerative approach, OptiX, and OLBVH with α ∈
{0, 1, 2} on a Quadro GP 100 (upper) and an RTX 2080 Ti (lower)

Table 2 Mesh sizes (in number of tetrahedra) and comparison of
memory consumption between LBVH, OptiX’ compacted BVH, and
OLBVH for α ∈ {0, 1, 2}
Mesh Tets LBVH OptiX Ours α =

non-RTX RTX 0 1 2

Bunny 32.0k 2.07 10.4 1.94 1.83 0.57 0.27

Dragon 824.8k 53.5 250 44.1 52.9 15.9 7.41

Part 1.1M 71.3 313 54.9 28.4 12.3 7.22

Fusion 3.0M 195 840 158 116 45.2 24.6

Jets 12.3M 797 3427 399 433 164 91.2

All memory consumptions are given in MiB. Even for α = 0, our
approach results in significantly lower memory consumption for most
meshes due to the flatter octree hierarchy and compact offset-based
encoding

4.2 Direct volume rendering

Direct volume rendering of unstructured meshes requires
repeated point location along each view ray. A potential per-
formance issue is that a large number of samples may not
hit the geometry. We use the boundary marking to efficiently

Table 3 Mesh sizes (in number of tetrahedra) for the DVR evaluation
meshes.We also give the ray interval computation times inmilliseconds
on the Quadro GP 100

Mesh Tets Ray Interval α =
0 1 2

Wrench 390.3k 2.5 1.4 0.8

Part 1.1M 3.1 1.6 0.8

Fusion 3.0M 5.7 3.3 1.9

Pot 4.0M 4.8 2.5 1.4

Jets 12.3M 5.3 3.0 2.1

compute the relevant ray interval in which the ray intersects
the geometry. Prior to ray marching, we traverse only the
boundary nodes of the OLBVH for each ray and determine
the intervals for which each ray intersects leaf node AABBs.
Subsequently, we perform efficient ray marching by travers-
ing the OLBVH for each sample until a leaf node containing
the sample is found.

We compare our approach with the LBVH as well asWald
et al.’s [27] approach with and without RTX hardware accel-
eration. In order to provide a good basis for comparisons, we
evaluate all approaches using the same camera settings. The
sizes of the evaluated meshes are given in Table 3. In every
measurement, a 10242 image was rendered. The runtimes
for the ray interval computation appear in Table 3. Because
the traversal for determining the relevant ray interval safely
skips the majority of nodes, its runtime imposes a negligible
overhead. UnlikeMoriccal et al.’s [14] space skipping exten-
sion to Wald et al.’s approach, we do not require a secondary
acceleration structure.

Figure 7 shows the sampling rates per second for the dif-
ferent raymarching variants. If no specialized RTXhardware
is used and α = 0, our approach outperforms the ray march-
ing technique ofWald et al. [27] by up to 8.4× and the LBVH
variant by 2×–13×. The Jets mesh benefits the least, which
is due to the fact that it is geometrically a cube (compare
Fig. 1 and 5). Thus, our ray marching approach cannot ben-
efit from the prior space skipping. Nonetheless, we observe
a significant speedup. For the fusion and part meshes, it is
even possible to choose α = 1 and match the performance of
Wald et al.’s method [27]. When the Pot mesh is used, we are
able to match the sampling rate of Wald et al.’s method [27]
with α = 2. Therefore, an application could construct the
OLBVHmore quickly and use less memory while achieving
the same performance. The LBVH results in lower sampling
rates than the other methods. Traversing the binary radix tree
consumes significantlymore time than using ourmethodwith
α ∈ {0, 1}. However, RTX hardware accelerated ray march-
ing is faster than our method. As only a minority of GPUs
provides RTXhardware, we expect ourmethod to be superior
on the majority of GPUs.

123



2336 D. Ströter et al.

Fig. 7 Comparison of sampling rates using LBVH, Wald et al.’s
method, and our approach for α ∈ {0, 1, 2} on a Quadro GP 100 (upper,
no RTX) and an RTX 2080 Ti (lower, with RTX). We consider only
samples inside the geometry

4.3 Conservative slicing

Like direct volume rendering, slicing of volumetric meshes
with volumetrically varying materials (see, e.g., Altenhofen
et al. [2]) is a point location problem. However, as post-
processing of 3D printed models using conventional CAM
or by polishing can only remove material, slicing typically
has to be performed conservatively, i.e., material must be
deposited in a voxel of the printing volume even if only the
AABB of the voxel intersects the geometry and not the cen-
troid itself. Therefore, if a tetrahedron intersects the AABB,
the sampling point is valid. We interpolate material/scalar
parameters for a sampling point inside the input mesh using
the containing tetrahedron. In case of a sampling point out-
side the mesh, we extrapolate using the closest tetrahedron
intersecting the conservative AABB. We evaluate on a 9992

grid using planes and slice thicknesses normal to the slicing
plane as they appear in Table 4.

In the following, we describe an efficient conservative
slicing algorithm using OLBVH. We initially traverse the
OLBVH for a sampling point, attempting to find a contain-

Table 4 Mesh sizes (in number of tetrahedra) and slicing setups for
conservative slicing where the origin is the mesh AABB’s midpoint.
The slice thickness is the voxel size normal to the slicing plane

Mesh Tets AABB Slice

Plane Thickn.

Bunny 32.0k 1×0.99×0.77 xy 0.05

Cylinder 172.4k 0.52×1.4×0.52 xz 0.025

Cube 1.5M 2×2×2 xy 0.05

Fusion 3.0M 4.9×4.9×2.9 xy 0.1

Jets 12.3M 127×127×127 xy 1

ing tetrahedron. Due to tightly fitting AABBs, it is sufficient
to find the single leaf node that contains the sampling point. If
no such tetrahedron canbe found, the samplingpoint is poten-
tially near the boundary. In that case, we reinitialize the short
stack and traverse the OLBVH for the corresponding AABB
while only considering boundary nodes. This decreases the
number of relevant tree nodes during traversal. In the sec-
ond traversal phase, we maintain a set N of intersecting leaf
nodes. The competing LBVH variant traverses the tree for
the voxel AABB finding the closest point in the mesh to the
sampling point. As Wald et al.’s [27] approach only applies
to point sampling, we do not consider it in this use case.

Figure 8 presents the runtimes for slicing using our
approach and LBVH. Our approach outperforms LBVH for
α ∈ {0, 1} with speedups between 3× and 25×. Therefore,
the OLBVH allows for acceleration of conservative slicing,
while applications can benefit from fast, memory-efficient
construction on GPUs.

4.4 Mesh intersection

The third use case is intersection/overlap detection between
two volumetric meshes. This has use cases in interactive
mesh editing and Lagrangian (moving mesh) simulations.
Initially, we construct an OLBVH for both input meshes.
Subsequently, traversing the OLBVH of one mesh for each
tetrahedron of the other yields a set of intersecting leaf nodes
N for each tetrahedron. By testing the tetrahedra contained
by the nodes in N for intersection with the traversal tetra-
hedron, we identify the tetrahedra which intersect the other
mesh. In order to avoid the vast majority of intersection tests,
we exploit the boundary marking to infer intersection for
interior nodes. When a tetrahedron intersects the AABB of a
non-boundary node, that tetrahedron must intersect with the
other mesh. In addition, we perform both traversals (A ⊂ B
and B ⊂ A) simultaneously.

We compare our OLBVH-accelerated mesh intersection
method to LBVH traversal using the test cases in Table 5, and
the benchmark results appear in Fig. 10. For example, Fig. 9

123



OLBVH: octree linear bounding volume hierarchy meshes 2337

Fig. 8 Comparison of slicing times for a single slice using LBVH and
our approach for α ∈ {0, 1, 2} on a Quadro GP 100 (upper) and an RTX
2080 Ti (lower)

Table 5 Mesh sizes (in number of Tetrahedra) for the intersection test
cases

No. Meshes Tets

1 Die Tardis 232.8k 150.8k

2 Bunny Bar 32k 491.5k

3 Cube Cube 1.5M 1.5M

4 Cube Gargoyle 1.5M 792.1k

illustrates the first intersection case. OLBVH-accelerated
intersection detection results in a speedup of 5×–52× for
α = 0. This is due to the fact that the overwhelming major-
ity of intersections can be inferred from the boundary flags,
while the LBVH-accelerated intersection detection method
has to perform narrow phase intersection checks for each
tetrahedron due to overlapping AABBs. Furthermore, a sig-
nificant benefit can be found for all α ∈ {0, 1, 2}. Mesh
intersectionusingOLBVHis fast and applications canbenefit
from quicker OLBVH construction and significantly reduced
memory consumption by choosing a higher α.

Fig. 9 Intersection case 1 between Tardis (red) and Die (blue) meshes.
Intersecting tetrahedra have been removed. As the Tardis mesh extends
far into the interior of the Die mesh, the vast majority of intersecting
tetrahedra can be detected early throughout traversal. Narrow phase
intersection detection is only required where mesh boundaries are close
to each other

Fig. 10 Comparison of calculation times for computing the intersec-
tions using LBVH and our method for α ∈ {0, 1, 2} on a Quadro GP
100 (upper) and an RTX 2080 Ti (lower). The numbers underneath the
bars correspond to the test cases in Table 5

5 Conclusion

In summary, we have introduced the OLBVH, a novel Mor-
ton curve based linear BVH for volumetric meshes. We have
proposed a novel linear BVH construction approach for vol-

123



2338 D. Ströter et al.

umetric meshes, which produces memory efficient trees in a
time efficient manner. The heuristic used during construction
is parameter controlled allowing for faster construction and
reduced memory footprint by generating shallower trees. In
addition, the resulting BVH is of high quality, as sibling cells
are non-overlapping.We have demonstrated that theOLBVH
is a versatile acceleration structure for volumetric meshes by
examining three use cases: direct volume rendering for scien-
tific visualization, conservative slicing for 3D printing, and
inside-outside intersection detection.

The introduction of boundary marking, which requires a
tightly fitting BVH, has enabled the development of efficient
algorithms for all three use cases.We have achieved a signifi-
cant increase of sampling rates inDVR, 8.4×–13× compared
to state-of-the-art methods without specialized hardware for
BVH traversal. OLBVH has allowed us to implement an
efficient conservative slicing algorithm that results in a 3×-
25× speedup. Additionally, we have accelerated intersection
detection by 5×–52×. As a result, our data structure has
opened the door for efficient GPU-accelerated volumetric
mesh lookups.

5.1 Limitations

While memory consumption and construction time can be
significantly reduced by increasing α, a more shallow tree
may lead to lower performance, as leaf nodes contain more
primitives. Furthermore, tetrahedra are assigned to nodes
based on their quantized AABBs. Therefore, some nodes
contain tetrahedra that do not overlap the node’s AABB.
For very large meshes, such as the 62M-tetrahedron jpn-
qk dataset used by Wald et al. [27], GPU memory on the
systems used in our evaluation is insufficient. Wald et al. par-
tially work around this issue by generating separate BVHs
for groups of 1M tetrahedra in the mesh.

5.2 Future work

A promising approach to improve the OLBVH is to generate
Morton codes for each tetrahedron based on the tetrahedron
itself instead of its AABB. Since the relevant ray intervals
can be computed efficiently, it may beworthwhile to sort rays
by their workload, in order to benefit from load balancing
and efficient memory access using the short stack. To over-
come the memory limitation, the workaround used by Wald
et al. could be implemented using OLBVH. Alternatively,
out-of-core variants could be examined. While current RTX
hardware allows for custom intersection shaders, it does not
allow for customBVHs. If it should become possible to com-
bine the built-in triangle intersection with custom BVHs, it
may be interesting to revisit tetrahedral DVR using the same
approach as Wald et al. but with OLBVH. Another interest-
ing avenue for future research is exploring the performance

benefits of a hardware or FPGA implementation of OLBVH.
Such an implementation would benefit from the short stack,
due to the small number of registers during traversal.

Acknowledgements OpenAccess funding provided by Projekt DEAL.
This work was supported by the Qu4lity EU project which is co-funded
by the Horizon 2020 Framework Programme of the European Union
under Grant Agreement No. 825030. The Fusion and Jets meshes are
courtesy of the university of Utah.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Alliez, P., Cohen-Steiner, D., Yvinec,M., Desbrun,M.: Variational
tetrahedralmeshing.ACMTrans.Graph. 24(3), 617 (2005). https://
doi.org/10.1145/1073204.1073238

2. Altenhofen, C., Luu, T.H., Grasser, T., Dennstädt, M., Mueller-
Roemer, J.S., Weber, D., Stork, A.: Continuous property gradation
for multi-material 3D-printed objects. In: Proceedings of the 29th
Annual International Solid Freeform Fabrication Symposium—
An Additive Manufacturing Conference, SFF ’18, pp. 1675–1685
(2018)

3. Apetrei, C.: Fast and simple agglomerative LBVH construction.
In: Computer Graphics and Visual Computing (CGVC), pp. 41–44
(2014). https://doi.org/10.2312/cgvc.20141206

4. Bell, N., Hoberock, J.: Thrust 1.8.1 (2015). https://thrust.github.io/
5. Binder, N., Keller, A.: Efficient stackless hierarchy traversal on

GPUs with backtracking in constant time. In: Assarsson, U., Hunt,
W. (eds.) Eurographics/ACM SIGGRAPH Symposium on High
Performance Graphics. The Eurographics Association, Aire-la-
Ville (2016). https://doi.org/10.2312/hpg.20161191

6. Cheng, S.W., Dey, T.K., Shewchuk, J.: DelaunayMeshGeneration.
CRC Press, Boca Raton (2012)

7. Doyle, M.J., Tuohy, C., Manzke, M.: Evaluation of a BVH con-
struction accelerator architecture for high-quality visualization.
IEEE Trans.Multi Scale Comput. Syst. 4(1), 83–94 (2017). https://
doi.org/10.1109/tmscs.2017.2695338

8. Garanzha, K., Pantaleoni, J., McAllister, D.: Simpler and faster
HLBVH with work queues. In: Proceedings of the ACM SIG-
GRAPH Symposium on High Performance Graphics, HPG ’11,
pp. 59–64 (2011). https://doi.org/10.1145/2018323.2018333

9. García, A., Murguia, S., Olivares, U., Ramos, F.F.: Fast parallel
construction of stack-less complete LBVH trees with efficient bit-

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/1073204.1073238
https://doi.org/10.1145/1073204.1073238
https://doi.org/10.2312/cgvc.20141206
https://thrust.github.io/
https://doi.org/10.2312/hpg.20161191
https://doi.org/10.1109/tmscs.2017.2695338
https://doi.org/10.1109/tmscs.2017.2695338
https://doi.org/10.1145/2018323.2018333


OLBVH: octree linear bounding volume hierarchy meshes 2339

trail traversal for ray tracing. In: Proceedings of the 13th ACM
SIGGRAPH International Conference on Virtual-Reality Contin-
uum and its Applications in Industry, pp. 151–158. ACM (2014).
https://doi.org/10.1145/2670473.2670488

10. Gu, F., Jendersie, J., Grosch, T.: Fast and dynamic construction of
bounding volume hierarchies based on loose octrees. In: Vision,
Modeling and Visualization (2018). https://doi.org/10.2312/vmv.
20181257

11. Karras, T.: Maximizing parallelism in the construction of BVHs,
octrees, and k-d trees. In: Proceedings of the Fourth ACM SIG-
GRAPH/Eurographics conference on High-Performance Graph-
ics, HPG ’12, pp. 33–37 (2012). https://doi.org/10.2312/EGGH/
HPG12/033-037

12. Lauterbach, C., Garland, M., Sengupta, S., Luebke, D., Manocha,
D.: Fast BVH construction on GPUs. Comput. Graph. Forum
28(2), 375–384 (2009). https://doi.org/10.1111/j.1467-8659.2009.
01377.x

13. Merill, D.: CUB 1.8.0 (2018). https://nvlabs.github.io/cub/
14. Morrical, N., Usher, W., Wald, I., Pascucci, V.: Efficient space

skipping and adaptive sampling of unstructured volumes using
hardware accelerated ray tracing. In: IEEE Visualization Confer-
ence (VIS) (2019). https://doi.org/10.1109/visual.2019.8933539

15. Morton, G.M.: A computer oriented geodetic data base; and a new
technique in file sequencing. IBM Corporation (1966)

16. Mueller-Roemer, J.S., Altenhofen, C., Stork, A.: Ternary sparse
matrix representation for volumetric mesh subdivision and pro-
cessing on GPUs. Comput. Graph. Forum 36(5), 59–69 (2017).
https://doi.org/10.1111/cgf.13245

17. Mueller-Roemer, J.S., Stork, A.: GPU-based polynomial finite ele-
ment matrix assembly for simplex meshes. Comput. Graph. Forum
37(7), 443–454 (2018). https://doi.org/10.1111/cgf.13581

18. Murguia, S., Avila, F., Reyes, L., Garcia, A.: GPU Pro 4: Advanced
Rendering Techniques, chap. Bit-trail traversal for stackless LBVH
on DirectCompute, pp. 319–336. CRC Press (2013)

19. NVIDIA: NVIDIA OptiX Ray Tracing Engine (2020). https://
developer.nvidia.com/optix

20. Pantaleoni, J., Luebke, D.: HLBVH: Hierarchical LBVH construc-
tion for real-time ray tracing of dynamic geometry. In: Proceedings
of the Conference on High Performance Graphics, HPG ’10, pp.
87–95 (2010)

21. Stich, M.: Introduction to NVIDIA RTX and DirectX ray trac-
ing (2018). https://devblogs.nvidia.com/introduction-nvidia-rtx-
directx-ray-tracing/

22. Vaidyanathan, K., Woop, S., Benthin, C.: Wide BVH traver-
sal with a short stack. In: Proceedings of the Conference on
High-Performance Graphics (2019). https://doi.org/10.2312/hpg.
20191190

23. Viitanen, T., Koskela, M., Jääskeläinen, P., Kultala, H., Takala, J.:
MergeTree: a fast hardware HLBVH constructor for animated ray
tracing. ACM Trans. Graph. 36(5), 169 (2017). https://doi.org/10.
1145/3132702

24. Viitanen, T., Koskela, M., Jääskeläinen, P., Tervo, A., Takala, J.:
PLOCTree. Proc. ACM Comput. Graph. Interact. Tech. 1(2), 1–19
(2018). https://doi.org/10.1145/3233309

25. Vinkler,M., Bittner, J., Havran,V.: ExtendedMorton codes for high
performanceboundingvolumehierarchy construction. In: Proceed-
ings of High Performance Graphics, HPG ’17, pp. 9:1–9:8 (2017).
https://doi.org/10.1145/3105762.3105782

26. Wald, I., Friedrich, H., Knoll, A., Hansen, C.D.: Interactive isosur-
face ray tracing of time-varying tetrahedral volumes. IEEE Trans.
Vis. Comput. Graph. 13(6), 1727–1734 (2007). https://doi.org/10.
1109/tvcg.2007.70566

27. Wald, I., Usher, W., Morrical, N., Lediaev, L., Pascucci, V.: RTX
beyond ray tracing: exploring the use of hardware ray tracing cores
for tet-mesh point location. High Perform. Graph. Short Papers
(2019). https://doi.org/10.2312/hpg.20191189

28. Zellmannn, S., Hellmann, M., Lang, U.: A linear time BVH con-
struction algorithm for sparse volumes. In: 2019 IEEEPacificVisu-
alization Symposium (PacificVis), pp. 222–226 (2019). https://doi.
org/10.1109/pacificvis.2019.00033

29. Zhou, K., Gong, M., Huang, X., Guo, B.: Data-parallel octrees for
surface reconstruction. IEEE Trans. Vis. Comput. Graph. 17(5),
669–681 (2011). https://doi.org/10.1109/TVCG.2010.75

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Daniel Ströter received his M.Sc.
in Computer Science at TU Darm-
stadt in 2019. He received the
best thesis award of Fraunhofer
Institute for Computer Graphics
Research (IGD) for his master the-
sis in GPGPU accelerated tetrahe-
dral mesh processing. As a PhD
candidate at the Interactive Graph-
ics Systems Group of TU Darm-
stadt, he continues his research
efforts.

Johannes S.Mueller-Roemer joined
the Interactive Engineering Tech-
nologies department of the Fraun-
hofer Institute for Computer Graph-
ics Research (IGD) in 2011 after
receiving his M.Sc. in Informa-
tion and Media Technology (with
honors and best thesis award) from
BTU Cottbus. He received the doc-
torate in computer science (summa
cum laude) from TU Darmstadt
in 2019. His research interests
include massively parallel GPU-
accelerated geometry processing,
visualization, and simulation.

André Stork is Head of the Inter-
active Engineering Technologies
group at Fraunhofer Institute for
Computer Graphics Research (IGD)
and Honorary Professor of Com-
puter Science at TU Darmstadt.
His research interests are geom-
etry processing, interactive tech-
niques, simulation, and visualiza-
tion. He has authored and co-
authored more than 200 papers.
He has been member of the pro-
gram committee or acted as
reviewer in many international con-
ferences, workshops, and journals.

He lectured “Computer Graphics III” and has lectured “Geometric
Methods in CAD/CAE” at TU Darmstadt. He is a member of IEEE,
Eurographics, ACM, Gesellschaft für Informatik (GI), and VDI.

123

https://doi.org/10.1145/2670473.2670488
https://doi.org/10.2312/vmv.20181257
https://doi.org/10.2312/vmv.20181257
https://doi.org/10.2312/EGGH/HPG12/033-037
https://doi.org/10.2312/EGGH/HPG12/033-037
https://doi.org/10.1111/j.1467-8659.2009.01377.x
https://doi.org/10.1111/j.1467-8659.2009.01377.x
https://nvlabs.github.io/cub/
https://doi.org/10.1109/visual.2019.8933539
https://doi.org/10.1111/cgf.13245
https://doi.org/10.1111/cgf.13581
https://developer.nvidia.com/optix
https://developer.nvidia.com/optix
https://devblogs.nvidia.com/introduction-nvidia-rtx-directx-ray-tracing/
https://devblogs.nvidia.com/introduction-nvidia-rtx-directx-ray-tracing/
https://doi.org/10.2312/hpg.20191190
https://doi.org/10.2312/hpg.20191190
https://doi.org/10.1145/3132702
https://doi.org/10.1145/3132702
https://doi.org/10.1145/3233309
https://doi.org/10.1145/3105762.3105782
https://doi.org/10.1109/tvcg.2007.70566
https://doi.org/10.1109/tvcg.2007.70566
https://doi.org/10.2312/hpg.20191189
https://doi.org/10.1109/pacificvis.2019.00033
https://doi.org/10.1109/pacificvis.2019.00033
https://doi.org/10.1109/TVCG.2010.75


2340 D. Ströter et al.

Dieter W. Fellner is professor
of computer science at TU Darm-
stadt, Germany and Director of
the Fraunhofer Institute of Com-
puter Graphics (IGD) at the same
location. He is also professor at
TU Graz, Austria, and he cur-
rently serves as Chairman of the
Fraunhofer Information and Com-
munication Technology Group. His
research activities over the last
years covered efficient rendering
and visualization algorithms, gen-
erative and reconstructive model-
ing, virtual and augmented reality,

graphical aspects of internet-based multimedia information systems,
cultural heritage and digital libraries as well as visual healthcare tech-
nologies. He is a member of the Academia Europaea and a Fellow of
the EUROGRAPHICS Association.

123


	OLBVH: octree linear bounding volume hierarchy for volumetric meshes
	Abstract
	1 Introduction
	2 Related work
	3 Concept and implementation
	3.1 Data structure
	3.2 Construction
	3.3 Traversal

	4 Results
	4.1 Construction
	4.2 Direct volume rendering
	4.3 Conservative slicing
	4.4 Mesh intersection

	5 Conclusion
	5.1 Limitations
	5.2 Future work

	Acknowledgements
	References




