
Nonlinear Dyn (2020) 102:555–565
https://doi.org/10.1007/s11071-020-05870-6

ORIGINAL PAPER

Asynchronous parametric excitation: validation of
theoretical results by electronic circuit simulation

Artem Karev · Peter Hagedorn

Received: 27 April 2020 / Accepted: 31 July 2020 / Published online: 13 August 2020
© The Author(s) 2020

Abstract A validation of recent theoretical results
on the stability effects of asynchronous parametric
excitation is presented. In particular, the coexistence
of both resonance and anti-resonance at each combi-
nation resonance frequency is to be confirmed on a
close-to-experiment simulation model. The simulation
model reproduces the experimental setup developed
by Schmieg in 1976, remaining the only experimen-
tal study on asynchronous excitation to this day. The
model consists of two oscillating electronic circuits
with feedback-free coupling through parametric excita-
tion. In contrast to a mechanical system, the phase rela-
tions of the parametric excitation terms in an electronic
system can be easily adjusted. The implementation of
the simulation model is performed in the electronic cir-
cuit simulation software LTspice. The electronicmodel
itself is first validated against the experimental results
obtained by Schmieg and is then used to confirm the
theoretical findings. The results of the electronic circuit
simulation show excellent qualitative and quantitative
agreement with analytical approximations confirming
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1 Introduction

Parametric excitation in mechanical systems is well
known for its destabilizing resonance effect and, in
recent decades, increasingly also for its stabilizing
effect, i.e., parametric anti-resonance. While initially
the presence of parametric excitation was rather an
undesired feature affecting the system’s dynamics in
an unfavorable way, nowadays, there is a rich field of
applications with deliberately introduced time period-
icity. On the one hand, the destabilizing effects are
widely used in energy harvesting applications [2,27]
as well as in parametric amplifiers [12]; on the other
hand, the anti-resonance effect is introduced in order
to attenuate vibrations and to enhance dissipative prop-
erties [11]. Another quickly growing field of applica-
tion is the microelectromechanical systems (MEMS).
In the field of MEMS, there are several applications
employing stabilizing and destabilizing effects, e.g.,
highly sensitive mass sensing [21] and rapid switch-
ing in mechanical resonators [22], respectively.

Most of the theoretical studies and practical applica-
tions on time-periodic systems deal with synchronous
parametric excitation. In this case, all time-periodic
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excitation terms of a multi-dimensional system are
varying in phase. The first theoretical study on a para-
metrically excited system with out-of-phase excitation
terms was done by Cesari [5]. Cesari showed that in a
system of two undamped Mathieu equations coupled
via parametric excitation with a π/2 phase shift, the
trivial solution is unstable for all excitation frequen-
cies. The effect was later called total instability [6].
In 1976, for the first time, the stability effects of dif-
ferent phase relations (i.e., asynchronous excitation)
combined with non-uniform damping were extensively
studied by Schmieg [25]. In this work, the stability
problem was first approached theoretically using the
method of slowly varying phase and amplitude for the
derivation of stability boundaries and Lyapunov char-
acteristic exponents (LCEs). However, while the very
complex symbolic expression for LCEs was derived by
Schmieg in general form allowing the study of both sta-
bilizing and destabilizing effects of parametric excita-
tion, the analysis was limited to the destabilizing effect
only, as the anti-resonance effect was not yet known at
that time. The theoretical findings were also validated
experimentally. Since the required phase shift in the off-
diagonal excitation terms cannot be easily realized in
a mechanical system, the validation was performed on
an equivalent electronic system, where arbitrary phase
relations are readily implemented. Schmieg’s investi-
gations remain the only experimental work done on
asynchronous parametric excitation to this day.

Eicher [14,15] and Dohnal [7,9] also studied asyn-
chronous parametric excitation from different per-
spectives. Eicher thoroughly studied the destabiliz-
ing behavior focusing, however, only on the stability
boundaries. The symbolic expressions for the bound-
ary curves were derived by the method of succes-
sive approximation [14]. The impact of asynchronous
excitation was observed in terms of shifted stability
boundaries, while the actual reason for the shift was
not recognized. Dohnal extensively studied the stabi-
lizing effect of general harmonic excitation focusing
mostly on stability conditions and stability boundaries
applying the averaging method. The LCEs, denoted by
Dohnal as equivalent damping, were discussed in detail
for the special cases of in-phase and anti-phase para-
metric excitation [7]. Further, equivalent damping for
the general case of asynchronous excitation was dis-
cussed briefly in [9], focusing, however, again on the
stabilizing effect. In this way, the stability effects of
asynchronous parametric excitationwere studied either

from the destabilizing or the stabilizing perspective
only.

Recently, it was found that total instability is only
a special case for a uniformly damped system with
asynchronous parametric excitation. In case with non-
uniform damping, there are wide alternating areas of
stabilized and destabilized behavior [18]. Further, it
was shown that, contrary to the previous state of knowl-
edge, resonance and anti-resonancemay coexist at each
combination resonance frequency resulting in a sharp
transition between the stabilizing and the destabiliz-
ing behavior [19]. Analysis based on the LCEs evalu-
ated over the whole region of excitation frequencies
provided a deeper insight into the various stability
effects of asynchronous excitation, which were previ-
ously observed only as shifts of the stability boundaries.

The theoretical results concerning these newly dis-
covered stabilizing effects of asynchronous excitation
have to be verified and validated in order to acquire
credibility. The semi-analytical results obtained by the
method of normal forms have already been verified by
numerical integration, i.e., Floquet analysis [19]. The
purpose of the present contribution is to validate the
stabilizing effects, in particular, the coexistence of res-
onance and anti-resonance at a combination resonance
frequency. As indicated by the previous analytical
investigations [18], specific phase relations, depending
on the structure of systemmatrices, are required for the
coexistence of resonance and anti-resonance. For sys-
tems with purely symmetric system matrices, i.e., sys-
tems without circulatory terms, only the phase shift in
the off-diagonal terms leads to such effects. For more
complex systems featuring skew-symmetric coupling
through circulatory terms, there are several additional
phase relations possible, which are not limited to the
phase shift in the off diagonal. Considering mechani-
cal systems, the practical realization of the seemingly
more simple case seems to be impossible—there are
no mechanical systems known featuring phase-shifted
off-diagonal parametric excitation terms. On the other
hand, themore complex casewith skew-symmetric sys-
temmatrices and necessary phase relations of paramet-
ric excitation terms is more likely to appear in mechan-
ical systems. For example, the minimal model of a disk
brake with asymmetric bearing, as treated in [18,26],
does indeed fulfill all necessary conditions for the coex-
istence of resonance and anti-resonance. However, as
to the question of validation, such a complex system
featuring also gyroscopic terms along with circulatory
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terms is rather inadequate for this purpose—the inter-
action and superposition of different effects make it
impossible to study the implications of individual sys-
tem parameters. For this reason, the validation of the
newly discovered stability effects is performed using a
close-to-experiment simulation setup of an electronic
system based on the real experiment conducted by
Schmieg [25]. According to the IEEE Standard for Val-
idation of Computational Electromagnetics Computer
Modeling and Simulations, the suitable validation ref-
erences are not limited to measurements, i.e., “silicon
data.” Another suitable reference for validation may be
also obtained from comparison of two different mod-
eling techniques [16]. If the used techniques are dif-
ferent enough, then high confidence in the results can
be obtained [13]. For this purpose, additionally to the
solution of differential equations, a detailed electronic
system is implemented in the electronic circuit simula-
tion software LTspice XVII which is based on SPICE
electronic circuit simulator [1]. SPICE, standing for
Simulation Program with Integrated Circuit Emphasis,
is the worldwide standard integrated circuit simulator
widely used in education, research and industry. The
invention of SPICE in 1970 was recognized as a sig-
nificant technical achievement and awarded an IEEE
Milestone [17]. With the simulation results being very
close to real silicon data, SPICE is considered as a
“golden reference” in industry and is also used for val-
idation [23]. In the present contribution, the electronic
simulation model itself is first validated by means of
the existing experimental data. Based on this validated
model, the theoretical findings concerning the coexis-
tence of resonance and anti-resonance are to be con-
firmed. In this way, a simulation-based validation is
performed due to the missing real world experimental
data.

The contribution is structured as follows. In Sect. 2,
the common as well as the newly discovered stability
effects of parametric excitation are presented. Section 3
deals with the design of the electronic system used for
the validation. The validation results are presented in
Sect. 4 followed by conclusions.

2 Stability effects of parametric excitation

2.1 Stability criterion

In order to thoroughly study the various stability phe-
nomena of parametric excitation and to establish a com-
parison between the results obtained by different meth-
ods, an appropriate stability criterion has to be adopted.
For this purpose the Lyapunov characteristic exponents
(LCEs) are chosen, which are equal to the characteris-
tic numbers introduced by Lyapunov taken with the
inverse sign [4,20]. The LCEs are defined for both
autonomous and time-periodic systems. For a linear
autonomous dynamical system those are given by the
real parts of the eigenvalues. For a time-periodic system
with period T , the LCEs are given by

λi = 1

T
ln |ρi |, (1)

where ρi are the Floquet multipliers, i.e., the eigenval-
ues of the monodromy matrix.

An asymptotically stable trivial solution is charac-
terized by all LCEs being negative. However, it is suf-
ficient to consider only the largest LCE which will be
denoted further as � with � = (λi )max. This uni-
form stability criterion enables comparison between
autonomous and time-periodic systems. Moreover, the
LCEs, contrary to the Floquet multipliers, are not dis-
torted by different periods T , enabling a comparison
of the stability characteristics for different excitation
frequencies as well.

2.2 Parametric resonance effects

In contrast to the stability effects of asynchronous exci-
tation, the common stability effects of displacement-
proportional synchronous parametric excitation are
limited to narrow frequency ranges around the well-
known resonance frequencies

� = |ωk ∓ ωl |
p

, k, l = 1, 2, . . . (2)

with ωk and ωl denoting the k-th and the l-th cir-
cular eigenfrequencies (i.e., natural frequencies) of
the underlying undamped autonomous system. The
denominator p ∈ N denotes the order of the reso-
nance with higher orders quickly becoming less signif-
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Fig. 1 Stability effects of synchronous parametric excitation in
system (3): the largest LCE � for varying excitation frequency
� with ω1 = 1, ω2 = √

5, δ11 = 0.15, δ22 = 0.05

icant. The fundamental resonances with k = l involve
only one eigenfrequency and have always a destabi-
lizing effect in systems with positive definite stiffness
matrix. On the other hand, combination resonances,
involving two eigenfrequencies with k �= l, may have
either a stabilizing (anti-resonance) or a destabiliz-
ing (resonance) effect in systems with non-uniform
damping matrix [10]. In case of synchronous excita-
tion, resonance and anti-resonances are always sep-
arated: If there is resonance at the sum combination
resonance frequency � = ωk + ωl , there will be anti-
resonance at the difference combination resonance fre-
quency � = |ωk − ωl | and vice versa.

As the different resonances involve at most two
eigenfrequencies, all of the significant resonance effec-
ts can be quickly demonstrated with the following two
degrees of freedom MDK + C(t) system

(
1 0
0 1

) (
q̈1
q̈2

)
+

(
δ11 0
0 δ22

)(
q̇1
q̇2

)
+

[(
ω2
1 0
0 ω2

2

)

+ε

(
cos(�t) cos(�t)
cos(�t) cos(�t)

)] (
q1
q2

)
= 0 (3)

with synchronous displacement-proportional paramet-
ric excitation of amplitude ε. Figure 1 shows the stabil-
ity impact in terms of the largest LCE � obtained from
numerical Floquet analysis. All of the characteristic
features are clearly represented: dominating first-order
fundamental and combination resonances, p = 1, with

anti-resonance at the difference combination resonance
frequency. These stability effects are well known and
have also been demonstrated experimentally, e.g., in a
recent study byDohnal using electromagnetic variable-
stiffness actuators [11].

In the following, a simpleMDK+C(t) systemwith
out-of-phase parametric excitation is considered

(
1 0
0 1

)(
q̈1
q̈2

)
+

(
δ11 0
0 δ22

) (
q̇1
q̇2

)
+

[(
ω2
1 0
0 ω2

2

)

+ ε

(
0 cos(�t)

cos(�t + ζc) 0

)] (
q1
q2

)
= 0. (4)

Initially, the case of asynchronous excitation was
treated in 1940 by Cesari for a simple undamped
two-degree-of-freedom system only revealing the so-
called total instability, where any infinitesimally small
parametric excitation leads to instability for all exci-
tation frequencies [5]. Later in 1970s and 1980s,
Schmieg [25] and Eicher [15] studied general non-
uniformly damped two-degree-of-freedom systems
with asynchronous harmonic excitation. As at that
time the anti-resonance was not known yet, only the
unstable case, i.e., the problem of stability bound-
aries, was treated. However, the expressions derived by
Schmieg describe the stabilizing behavior as well. On
the other hand, Dohnal studied similar systems from
the anti-resonance perspective, while the phase shifts
in the parametric excitation were expressed in terms of
sine and cosine functions of different amplitude [8,9].
Recent studies on asynchronous parametric excita-
tion revealed that, in general, both effects—resonance
and anti-resonance—coexist at each combination reso-
nance frequency, while their strength depends strongly
on the phase angle between the off-diagonal excitation
terms [18,19]. The coexistence of stabilizing and desta-
bilizing effects for two different cases of asynchronous
excitation is shown in Fig. 2.

Based on the highly complex general analytical
expressions for the LCEs, Schmieg derived concise
expressions for the characteristic features of the desta-
bilizing effect, including the location and the mag-
nitude of the strongest destabilization. Extending the
approach to the stabilizing effect as well, in [19]
further characteristic points were derived by means
of the method of normal forms: points P s and P d

describing the location and the magnitude of the
strongest stabilization {�s,�s} and of the strongest
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Fig. 2 Stability effects of asynchronous parametric excitation
in system (4) with ω1 = 1, ω2 = √
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destabilization {�d ,�d}, respectively, as well as point
P 0 describing the transition between the two effects
{�0,max{− δ11

2 ,− δ22
2 }}, as shown in Table 1. In this

way, the behavior is described only at specific points,
i.e., without frequency detuning, characterizing the
most important stability features and ensuring inter-
pretability of the symbolic expressions. There are
further quantities of importance in context of anti-
resonance. As shown by Dohnal [7,9] and as also
clearly seen from the expressions for �s in Table 1,
the maximum anti-resonance is limited to �∗,s =
− 1

4 (δ11 + δ22) for excitation amplitudes exceeding the
threshold value ε∗. Depending on whether the maxi-
mum stabilization is reached or not, different formulas
apply for the location of the strongest stabilizing effect,
see Table 1.

The expressions for �d and �d coincide with those
derived by Schmieg [25], while the expressions for �s

and ε∗ contain the special cases of in-phase and anti-
phase excitation treated by Dohnal [7]. The general
case of asynchronous excitation was studied byDohnal
exactly at the combination resonance frequencies with
� = |ω1 ± ω2| [9]. However, as seen in Table 1, the
characteristic frequencies �s and �d , i.e., the loca-
tion of the strongest stability effects, in general, do not
exactly coincide with the combination resonance fre-
quencies. Even though the shift appears to be rather
small, it has a substantial effect on the LCE due to
the high sensitivity to the excitation frequency in this
region.

The symbolic expressions in Table 1 clearly demon-
strate the appearance of resonance and anti-resonance
as well as their coexistence depending in a simple way
on the phase shift ζc. Looking at �s,d and �s,d , it can
be clearly seen that the case ζc = π (skew-symmetric
excitation) is opposite to ζc = 0 (symmetric exci-
tation) with resonance and anti-resonance swapping
the locations—there is no coexistence for these phase
angles. For another special case featuring coexistence
with ζc = ±π/2, the characteristic points are located
symmetrically to the combination resonance frequen-
cies due to the relation tan (ζc) = cot (ζc) and swap
their positions depending on whether the upper or the
lower sign applies.

Figure 2 shows the LCEs for two different phase
angles with otherwise identical parameters. The char-
acteristic points evaluated using the symbolic expres-
sions fromTable 1 showavery good agreementwith the
numerical results. In the first case with ζc = −π/2, the
effects are equally strong near the sum and the differ-
ence combination resonance areas, while the amplitude
of variation ε = 0.2 is very close to the threshold value
ε∗ = 0.21. In the second case with ζc = −π/4, the
anti-resonance is dominating in the difference combi-
nation resonance area with variation amplitude ε = 0.2
exceeding the threshold value ε∗ = 0.16, while in
the sum combination resonance area the resonance is
much more pronounced and the amplitude of variation
ε = 0.2 is way below the threshold value ε∗ = 0.39.
The complex stability behavior is very well captured
by the few characteristic points.

The approximate analytical expressions fromTable 1
, derived by the semi-analytical method of normal
forms, have been verified by comparing the results
with the numerical results obtained via Floquet anal-
ysis [19]. However, while the unstable behavior has
been validated by Schmieg by conducting experimen-
tal studies on an electronic circuit system, the stable
behavior of an asynchronously excited system has yet
to be validated on a physical system.

3 Electronic system design

Schmieg used an electronic system for the validation
of the theoretical findings concerning the instability in
case of asynchronous parametric excitation [25]. The
stabilization effects could have been studied by the
same experimental setup, but were not in the scope
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Table 1 Coordinates of the characteristic points P s(�s ,�s), P d (�d ,�d ), P 0(�0,max{− 1
2 δ11,− 1

2 δ22}) for asynchronous parametric
excitation in system (4)

Difference combination resonance � ≈ |ω1 − ω2| Sum combination resonance � ≈ ω1 + ω2

�s Re

(
− δ11+δ22

4 + 1
4

√
(δ11 − δ22)

2 − ε2(1+cos (ζc))
2ω1ω2

)
Re

(
− δ11+δ22

4 + 1
4

√
(δ11 − δ22)

2 − ε2(1−cos (ζc))
2ω1ω2

)

�d Re

(
− δ11+δ22

4 + 1
4

√
(δ11 − δ22)

2 + ε2(1−cos (ζc))
2ω1ω2

)
Re

(
− δ11+δ22

4 + 1
4

√
(δ11 − δ22)

2 + ε2(1+cos (ζc))
2ω1ω2

)

� s

∣∣∣∣∣
ε < ε∗ ω2 − ω1 − 1

2 (δ11 − δ22) tan (
ζc
2 )

ε > ε∗ ω2 − ω1 − ε2 sin (ζc)
4ω1ω2(δ11−δ22)

ω2 + ω1 + 1
2 (δ11 − δ22) cot (

ζc
2 )

ω2 + ω1 + ε2 sin (ζc)
4ω1ω2(δ11−δ22)

� d ω2 − ω1 + 1
2 (δ11 − δ22) cot (

ζc
2 ) ω2 + ω1 − 1

2 (δ11 − δ22) tan (
ζc
2 )

� 0 ω2 − ω1 + 1
2 (δ11 − δ22) cot ζc − ε2 sin ζc

8ω1ω2(δ11−δ22)
ω2 + ω1 + 1

2 (δ11 − δ22) cot ζc + ε2 sin ζc
8ω1ω2(δ11−δ22)

ε∗
√

2(δ11−δ22)2ω1ω2
1+cos ζc

√
2(δ11−δ22)2ω1ω2

1−cos ζc

with �∗,s = − 1
4 (δ11 + δ22) the strongest stabilization for ε > ε∗

of interest and remained concealed by stability. In the
present contribution, the same experimental setup is
reproduced in detail in the electronic circuit simula-
tion program LTspice. In order for the LTspice simu-
lation model to provide a suitable validation reference
in compliance with the IEEE standard [16], it has to
be different enough from the other methods used for
analysis. This is ensured by constructing a detailed
electronic model containing various components like
operational amplifiers and amplitudemodulators,while
the numerical and semi-analytical results are based on
abstract differential equations representing the concep-
tual model of the underlying system. The close-to-
experiment simulation model itself will be first vali-
dated against the available experimental data in order
to establish confidence in the model and later used to
confirm the theoretical results concerning the stabiliz-
ing effects of parametric excitation.

Analogously to mechanical oscillators, oscillating
circuits can as well be realized using electronic com-
ponents. An RLC electronic circuit consists of three
main components: resistor (R), inductor (L) and capac-
itor (C). The behavior of an RLC circuit is analogous
to a one-dimensional damped mechanical oscillator,
while resistance corresponds to damping, inductance to
mass and capacitance to the inverse of stiffness (com-
pliance) [3]. The electronic system analyzed in the fol-
lowing consists of two RLC circuits (RLC1 and RLC2)
coupled through parametric excitation without feed-
back. The voltage from one RLC circuit is transferred
and amplified by means of a buffer amplifier enabling

feedback-free coupling. The voltage signal is multi-
plied with cosine or sine signal (realized as amplitude
modulation) introducing parametric excitation. After
integration, the signal is then introduced to the sec-
ond RLC circuit through a voltage-controlled current
source. The simulation schematic is presented in Fig. 3.

The governing equations of the above system in
terms of voltage ui , with i = 1, 2, are obtained apply-
ing the Kirchhoff’s current law. After differentiation
the equations are given as follows

(
1 0
0 1

) (
ü1
ü2

)
+

(
1

C1R1
0

0 1
C2R2

)(
u̇1
u̇2

)
+

[(
1

C1L1
0

0 1
C2L2

)

−
(

0 1
C1Rint,1

cos(�t)
1

C2Rint,2
cos(�t+ζc) 0

)] (
u1
u2

)
= 0,

(5)

where Ci , Ri and Li are the capacitance, resistance
and inductance values of theRLC circuits, respectively.
Rint,i represents the resistance in the integration block
through which the amplitude of parametric excitation
will be controlled. Obviously, Eqs. (4) and (5) have the
same structure. According to themechanical–electrical
analogy, the following equivalence is given: The damp-
ing coefficients δi i correspond to 1

Ci Ri
, the squared nat-

ural frequencies ω2
i correspond to

1
Ci Li

, and the ampli-

tude of variation ε is given by − 1
Ci Rint,i

. In the fol-
lowing, the notation used in the general formulation in
Eq. (4) will be used for the electrical system as well. In
order to obtain the same natural eigenfrequencies and
damping values as in the experiments done bySchmieg,
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Fig. 3 Simulation schematic: two RLC circuits with feedback-free coupling through asynchronous parametric excitation

the parameters of the RLC circuits are set according to
Table 2.

Stability maps in terms of the variation amplitude
ε and excitation frequency � identify the transition
between the stable and the unstable region and rep-
resent a common tool in the analysis of parametrically
excited systems. However, they miss a great deal of
information about what exactly is happening inside
each of the regions. In particular, any potential stabiliz-
ing effects cannot be recognized. Therefore, a deeper
insight requires the analysis of the Lyapunov character-
istic exponents (LCEs). Schmieg investigated only the
unstable region and determined the LCEs from the rate
of exponential growth of the signals. While this is eas-
ily done in the case of an exponentially unstable triv-
ial solution with monotonously growing amplitudes,
determining the LCEs from the signals’ time history
in the stable case is rather complicated and unreliable.
The reason is that in the stable case the amplitudes
are quickly decaying beating waves, so that an enve-
lope function accounting for the beat effects has to be
constructed. Here, the simulation approach in LTspice
offers a significant advantage over the experimental
setup: instead of analyzing the time histories, a proper
Floquet analysis can be performed on the electronic

system providing reliable LCE values. With the ability
to precisely define the initial conditions of the simula-
tions and to know the solution at any instant of time,
the monodromy matrix, and with this the LCEs, can be
calculated with high precision.

In order to perform the Floquet analysis of the elec-
tronic system in LTspice for different parameters and to
efficiently process the results, a matlab script is writ-
ten (ver. R2018a). The script coordinates the LTspice
runs starting each simulation with appropriate parame-
ters, including the amplitude of parametric excitation ε,
the excitation frequency�, the damping coefficients δi i
as well as the phase angle ζc. For the post-processing,
the results of the LTspice simulation are imported to
matlab using LTspice2Matlab function.

4 Validation of the theoretical findings

The electronic LTspice model itself is first validated
with respect to its ability to identify the stability bound-
aries for different excitation frequencies � and ampli-
tudes of variation ε. In particular, the ability of the
model to represent the shift of the stability boundaries
in case of asynchronous excitation is demonstrated.
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Table 2 Parameters of the RLC circuits with ω1 = 2π · 768 sec−1, ω2 = 2π · 1325 sec−1 and variable damping coefficients δi i

Notation symbol Expression Numerical value Unit Parameter description

C1 – 330 µF Capacitance RLC1

C2 – 330 µF Capacitance RLC2

R1
1

δ11C1
– � Resistance RLC1

R2
1

δ22C2
– � Resistance RLC2

L1
1

C1ω
2
1

130.138 µH Inductance RLC1

L2
1

C2ω
2
2

43.721 µH Inductance RLC2

Further, a more detailed investigation of the stability
effects in terms of the largest LCE is performed. Here,
the electronicmodel is validated against the experimen-
tal data available for the unstable region. The validated
model is then used to confirm the stability effects iden-
tified by analytical and numerical methods.

In the first step, the data from Schmieg’s experi-
ments, available only in printed version, are extracted
using the software WebPlotDigitizer [24]. However,
Schmieg provides only scarce information on param-
eter values giving only the eigenfrequencies and the
damping coefficients, while other parameters of the
electronic circuit such as those defining the amplitude
of variation are unknown. Instead, the amplitude is rep-
resented by an effective voltage Ueff scaled with an
unknown factor. Therefore, the amplitude of variation
ε has to be determined, which is done by matching
the stability boundaries between the experiment and
the numerical Floquet analysis for one single value of
variationUeff = 6 V for the uniformly damped system
without a phase shift. The following relation is found
and used for all subsequent calculations:

Ueff = 362500 V · sec2 ε. (6)

For a better representation, a new amplitude parameter
ε̃ is introduced, which is of the samemagnitude asUeff ,
i.e., ε̃ = ε/362500.

Figure 4 shows the stability boundaries for a uni-
formly damped system with δ11 = δ22 = 70 sec−1 and
varying phase angle ζc. For each case, ζc = 0 and ζc =
π/2, four sets of data are compared: Schmieg’s analyt-
ical and experimental data, numerical Floquet analysis
and electronic circuit simulation with LTspice, denoted
further as “analytical,” “experiment,” “Floquet” and
“LTspice,” respectively. The comparison shows reason-
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Fig. 4 Stability boundary of system (5): δ11 = δ22 = 70 sec−1,
variable phase shift ζc

able qualitative and quantitative agreement between all
four data sets, while only for the case of ζc = π/2
a noticeable deviation can be seen in the lower exci-
tation frequencies �. Partially, the deviation may be
explained by errors during the data extraction process
from the printed media. This is confirmed by compar-
ing the analytical data obtained from the expressions
derived by Schmieg against the same analytical data
obtained from the digitized plot. Nevertheless, Fig. 4
shows that the reconstructed electronic LTspice model
is performing well in predicting the stability boundary
for synchronous and asynchronous parametric excita-
tion over wide regions of ε and �.

Of greater importance is, however, the ability of
the LTspice electronic model to reliably reproduce the
LCEs of the underlying physical system. Schmieg’s
experiments provide data for the unstable behavior,
which are used for the validation of the LTspice model.
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Fig. 5 Stabilizing and
destabilizing effects of
asynchronous parametric
excitation: δ11=220 sec−1,
δ22=22 sec−1, ε̃=6,
variable phase shift ζc
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Figure 5 shows the largest LCE of a non-uniformly
damped system under parametric excitation with vari-
able phase shift ζc. Again, four data sets are pre-
sented: analytical, experimental, Floquet and LTspice.
A remarkable qualitative and quantitative agreement
can be identified between all four data sets in the unsta-
ble region with � > 0. In particular, the electronic
model predicts the experimental data with great accu-
racy.

So far, the close-to-experiment LTspice model has
been validated with respect to its ability to predict
the stability boundaries as well as the LCEs in the
unstable region confirming the physical accuracy of
the model. The validation domain includes the varia-
tion of the phase angle with ζc = 0, π/2, the varia-
tion of the damping ratio with δ11/δ22 = 1, 10 and the
variation of the excitation frequency in the frequency
range � = [2030, 2150] Hz. The intended application
domain of the electronic simulation model lies com-
pletely within the validation domain, which addition-
ally increases the confidence in prediction based on this
model. Therefore, it is further assumed that the elec-
tronic model represents a suitable validation reference
and reliably reproduces the stability behavior of the
underlying physical system.

Further comparison between the LTspice electronic
circuit simulation, Floquet and analytical results in the
stable region is performed in order to prove the phys-
ical significance of the predicted stabilizing effects of
asynchronous parametric excitation. Figure 5 shows
that also in the stable region there is good agree-
ment between the three data sets. Also the analytically
derived expressions for the characteristic points P s ,

P d and P 0 match very well with the results of the
electronic circuit simulation. In this way, the predicted
coexistence of resonance and anti-resonance is con-
firmed by simulation of a physical system represented
by the electronic circuit.

Figure 5 provides a comprehensive insight into the
impact of asynchronous excitation covering both the
stabilizing and the destabilizing behavior. In the stud-
ies performed by Schmieg [25], the impact was char-
acterized as a mere shift of the stability boundaries,
while the actual reason—merging of resonance and
anti-resonance—was not recognized. In the sameman-
ner, Dohnal [9] studied the shifts of the stability bound-
aries in case of anti-resonance, where particular atten-
tion has to be paid to the adjacent resonance area with
a sharp transition to possible instability.

5 Conclusions

An electronic simulation model was used to validate
new theoretical findings on asynchronous parametric
excitation. Recent studies revealed coexistence of res-
onance and anti-resonance at each combination reso-
nance frequency for general phase relations between
the excitation terms.While the effects of asynchronous
excitation in case of instability were explored and val-
idated by Schmieg in 1976, the more general behav-
ior, including the coexistence of resonance and anti-
resonance, remained unrecognized for a long time.
The close-to-experiment simulation using the elec-
tronic circuit simulation software LTspice confirmed
the recent theoretical findings. The use of a simula-
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tion model offers significant advantages over an exper-
imental setup and enables a thorough study of stability
phenomena in terms of stability boundaries, but also,
more importantly, in terms of Lyapunov characteristic
exponents, providing deeper insight into all possible
stabilizing and destabilizing effects. Further, the simu-
lation also confirmed the usefulness of the more practi-
cal characteristic points describing the most prominent
stability features like the location and the magnitude of
the strongest stabilization and destabilization.

Although the presented electronic systemwas desig-
ned exclusively to validation purposes, it also empha-
sizes the physical significance of the coexistence phe-
nomenon.On the one hand, this newphenomenonhelps
to understand the stability behavior of complex dynam-
ical systems, e.g., the minimal model of a disk brake
with asymmetric bearing [26], where coexistence was
found to be the key to understanding the previously
observed but unexplained behavior [18]. On the other
hand, it might be of importance in the design of future
applications of parametric excitation, in particular in
the field of microelectromechanical systems by mak-
ing use of the steep transition between the stabilizing
and the destabilizing behavior.
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