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Abstract
The combinatorial integral approximation decomposition splits the optimization of
a discrete-valued control into two steps: solving a continuous relaxation of the dis-
crete control problem, and computing a discrete-valued approximation of the relaxed
control. Different algorithms exist for the second step to construct piecewise con-
stant discrete-valued approximants that are defined on given decompositions of the
domain. It is known that the resulting discrete controls can be constructed such that
they converge to a relaxed control in the weak∗ topology of L∞ if the grid constant
of this decomposition is driven to zero. We exploit this insight to formulate a general
approximation result for optimization problems, which feature discrete and distributed
optimization variables, andwhich are governed by a compact control-to-state operator.
We analyze the topology induced by the grid refinements and prove convergence rates
of the control vectors for two problem classes. We use a reconstruction problem from
signal processing to demonstrate both the applicability of themethod outside the scope
of differential equations, the predominant case in the literature, and the effectiveness
of the approach.
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1 Introduction

This article concerns the following class of optimization problems

inf
x
j(K (x))

s.t.x ∈ L∞(ΩT , V ),

x(s) ∈ {ξ1, . . . , ξM } ⊂ V for almost all (a.a.) s ∈ ΩT

(P)

for some bounded domain ΩT ⊂ R
d , d ≥ 1. It is an infinite-dimensional and non-

smooth optimization problem, in which the distributed optimization variable x is
restricted to a finite number of realizations, often also called bangs. The control-to-
state operator K solves the dynamics of the underlying system that is controlled. We
note that the feasible set of (P) is bounded. However, we cannot generally expect
that (P) admits a minimizer because the feasible set of (P) is not closed in the weak∗
topology. Apart from control of ODEs and PDEs with discrete-valued control inputs,
the problem class (P) also covers problems from image denoising and topology opti-
mization. However, we note that there are also prevalent instances of these problems,
where the properties of the control-to-state operator that are required for our analysis
do not hold, see for example the problem in [7, Sect. 4.2.2].

Clason et al. treat a similar problem class with a so-called multi-bang control regu-
larization that generalizes an L1-type penalty to promote a corresponding multi-bang
solution structure (that is the solution takes the values ξ1, . . . , ξM ) in the series of
articles [5–7]. Buchheim et al. [4] treat an instance of (P) following the two steps
a) discretize (P) into a finite-dimensional integer program (IP), and b) solve the dis-
cretized problem with a finite-dimensional IP-technique, namely a branch-and-bound
algorithm for convex quadratic integer programs. Their results show that the compu-
tational demand may become excessive for fine discretizations. This is unsurprising
because the discretized problem is an integer quadratic program (IQP), a class of
problems, which is NP-hard in general.

We use the results on convexification reformulations and the combinatorial inte-
gral approximation (CIA) decomposition from [12,15,21,23,24,26,27,36]. The CIA
decomposition splits the optimization into

1. deriving and solving a continuous relaxation of the problem (P), and
2. computing a discrete-valued approximation of the control of the relaxation.

The splitting allows us to take advantage of the infinite-dimensional structure of the
problem, which allows to use efficient algorithms to compute approximations of (P).
Obviously, the continuous relaxation cannot be solved to optimality in function space
on a computer with finite precision. In [16,22], it is shown that if the minimizers of
finite-dimensional approximations of the continuous relaxation approximate a mini-
mizer of the continuous relaxation, the discrete-valued approximation of the relaxed
control can be constructed to approximate the infimum of (P). Both steps of the CIA
decomposition have been analyzed by means of a reformulation of the problem with
binary controls that serve as activation functions of the control realizations ξ1,. . .,ξM .
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Compactness and convergence rates in integral approximation 571

We follow this procedure and introduce the terms of binary and relaxed control; see
[22].

Definition 1.1 The term binary control denotes a measurable function ω : ΩT →
{0, 1}M with

∑M
i=1 ωi = 1 almost everywhere (a.e.). A measurable function α :

ΩT → [0, 1]M with
∑M

i=1 αi = 1 a.e. in ΩT is called a relaxed control.

Following the literature, we call algorithms that transform continuous-valued variables
into discrete-valued ones rounding algorithms.

The proposed approach is advantageous because we can assume that both steps can
be executed efficiently. For the second step, different algorithmic approaches exist.
We name sum-up rounding (SUR) [24], next-forced rounding (NFR) [14], and the
optimization-based ones presented in [2,37]. All of them take a relaxed control and
construct a binary control that is piecewise constant on the cells of a given grid, the
so-called rounding grid. If the grid constant, in this case the maximum volume of
the grid cells, tends to zero, another quantity, the so-called integrality gap, tends to

zero as well. If ΩT = (t0, t f ) this means that supt∈[t0,t f ]
∥
∥
∥

∫ t
0 α − ωΔ

∥
∥
∥ → 0 for a

relaxed control α and the binary control ωΔ that was computed on a rounding grid
with grid constant Δ. To avoid ambiguities, we note that we refer to the maximum
cell volume in the cells that make up the rounding grid by the symbol Δ and the term
grid constant. If the operator K exhibits sufficient compactness properties, namely if
it maps weakly convergent sequences to norm convergent sequences, and the objective
functional is a continuous function of the state vector, we obtain convergence of the
objective functional. This gives rise to an optimality principle, which has been shown
in [22] for the case of elliptic boundary value problems (BVPs).

The presented approach is closely related to the approximation of control inputs
into differential equations or inclusions with so-called chattering controls, a theory,
which has been investigated in the optimal control community for several decades.
In particular, the Lyapunov convexity theorem [17,18] and the Filippov-Ważewski
theorem [9,35] are important findings in this context. We also note Tartar’s work [32]
because it provides a constructive means to compute discrete-valued controls from
continuously-valued ones in Theorem 3. His construction can also be used in the
second step of the CIA decomposition. A similar idea is pursued by Gerdts [10,11]
under the name variable time transformation in the one-dimensional – that is the
time-dependent – case. In [24,28], Sager employs this approximation approach in
the context of discrete-valued optimal control of ODEs. The results are extended
constructively using the aformentioned SUR algorithm in [15,26] and transferred to
evolution equations with semigroup theory in [12,21]. In [22,36], the algorithmic
approach is transferred to the multi-dimensional setting.

1.1 Contributions

TheCIAdecomposition has been developed originally for the approximation of control
inputs and corresponding solutions of differential equations. We show that it is in
fact always applicable to optimization problems, in which distributed optimization
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572 C. Kirches et al.

variables are passed into compact or completely continuous control-to-state operators
and provide a signal processing example that does not involve any differential equation.

The objective corresponding to a relaxed control can be approximated arbitrarily
well with discrete-valued control trajectories if the grid size of the rounding grid tends
to 0. From a function space point of view, this is independent of the method that is
chosen to solve the relaxed optimization problem.

We show that rounding grids induce pseudometrics. Under a regularity assumption
on the refinement of the rounding grids, we prove that the induced pseudometrics form
a Hausdorff topology. Moreover, this assumption implies a convergence rate for the
integer approximation in the H−1-norm. We show an improved convergence rate for
the state vector approximation for a class of one-dimensional signal filtering approx-
imation problems under a differentiability assumption on the convolution kernel.

We demonstrate computationally that our methodology allows us to obtain high
precision approximations of the infimum of (P) without the need to solve a potentially
NP-hard discretized problem, which allows for an efficient algorithmic framework
and allows for finer discretizations compared to the approach presented in [4].

1.2 Structure of the article

In Sect. 2, we introduce a general formulation of the model problem (P) and derive
the relaxation for the first step of the CIA decomposition. In Sect. 3, we introduce
rounding algorithms and an approximation property that can be satisfied by suitable
algorithms in the second step of the relaxation. We show that this is sufficient to obtain
the desired convergence of the objective value by employing compactness properties.
In Sect. 4, we motivate and prove a convergence rate of the controls in the space H−1.
In Sect. 5, we apply the results from Sect. 3 to a model problem from signal processing
and prove a convergence rate on the approximated signal under a suitable regularity
assumption. Section 6 demonstrates our findings computationally for a variant of the
signal processing problem presented in [4], and Sect. 7 draws a conclusion.

1.3 Notation

For a Banach space X , we denote its topological dual space by X∗. For an optimization
problem (OP), we denote its feasible set by F(OP). We denote the unit simplex by

S
M :=

{

x ∈ R
M : x ∈ [0, 1]M and

M∑

i=1

xi = 1

}

.

We denote convergence in the weak∗ topology by ⇀∗. We denote the Borel σ -algebra
by B. We denote the Lebesgue measure onRm by λRm . Ifm is obvious, we abbreviate
and simply write λ. For a set A ⊂ R

m , we write diam A = sup{‖x − y‖ : x, y ∈ A}.
For sequences (a(n))n ⊂ [0,∞) and (b(n))n ⊂ [0,∞), we abbreviate the fact that
0 ≤ c1a(n) ≤ b(n) ≤ c2a(n) for global constants c1, c2 > 0 by the Landau notation
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Compactness and convergence rates in integral approximation 573

b(n) = Θ(a(n)). We highlight that this is a slight deviation from the canonical use of
the Landau notation, where only the limiting behavior matters.

2 Standing assumptions and continuous relaxation

Before deriving relaxations and stating our assumptions, we define the term ultraweak-
complete continuity, which is tailored to our requirements on the control-to-state
operator.

Definition 2.1 Let X and Y be Banach spaces. We call a function A : X∗ → Y
ultraweak-completely continuous if for all sequences (x (n))n ⊂ X∗, we have that
x (n)⇀∗x implies A(x (n)) → A(x).

Remark 2.2 An operator A : X → Y is called completely continuous if x (n)⇀x in X
implies A(x (n)) → A(x) in Y for Banach spaces X and Y . If X is reflexive and A is
linear, this implies compactness of the operator A, that is if the sequence (x (n))n ⊂ X
is bounded, the sequence (A(x (n)))n ⊂ Y has a convergent subsequence. Furthermore,
compactness of a linear operator always implies its complete continuity. We define
ultraweak-complete continuity analogous to complete continuity but require weak∗
convergence for the domain sequence. In particular, we consider weak∗ convergence
in L∞ in this manuscript because it is the natural topology to discuss the convergence
of the discrete-valued control functions.Weak∗ convergence in L∞(ΩT ) implies weak
convergence in L p(ΩT ) for 1 ≤ p < ∞ because (L p(ΩT ))∗ ∼= Lq(ΩT ) for 1 ≤
p < ∞ and 1/p + 1/q = 1 by virtue of the canonical map, see [8, ThmIV.1.1], and
the continuous embeddings Lr (ΩT ) ↪→ Ls(ΩT ) for 1 ≤ s < r ≤ ∞. Therefore,
completely continuous operators defined on L p(ΩT ), p ∈ [1,∞), are ultraweak
completely continuous operators on L∞(Ω) ∼= (L1(ΩT ))∗.

If the control-to-state operator K is defined for functions x that take values in
conv{ξ1, . . . , ξM } and not only in {ξ1, . . . , ξM }, we can replace the discreteness con-
straint in (P) by its convex hull and obtain the relaxed problem (Q)

min
x

j(K (x))

s.t. x ∈ L∞(ΩT , V ),

x(s) ∈ conv{ξ1, . . . , ξM } for a.a. s ∈ ΩT .

(Q)

Employing the aforementioned algorithms in the second step of the CIA decom-
position allows us to compute the discrete-valued approximants of the solution of
(Q). However, the algorithms are defined on S

M -valued functions. This problem can
be circumvented because elements in conv{ξ1, . . . , ξM } can be represented by con-
vex combinations of {ξ1, . . . , ξM } by construction. We recall that conv{ξ1, . . . , ξM } is
compact because M < ∞.

In the context of differential equations, the convex coefficients are often used to
relax binary activation functions of terms that occur in the right hand side of an ODE
or PDE. For example, we may consider the initial value problem (IVP)
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574 C. Kirches et al.

ẏ(s) =
M∑

i=1

ωi (s) f (y(s), ξi ) a.e., y(0) = y0 (2.1)

for binary controls ω. This IVP is equivalent to

ẏ(s) = f (y(s), x(s)) a.e., y(0) = y0 (2.2)

for all feasible x(s) ∈ {ξ1, . . . , ξM } a.e. by means of x(s) = ∑M
i=1 ωi (s)ξi a.e. In this

case, the control-to-state operator of the relaxation does not have to be defined for all
control functions x(s) ∈ conv{ξ1, . . . , ξM } a.e. because it is sufficient to analyze the
control-to-state operator of (2.1). This strategy is called partial outer convexification
in the literature [12,15,26]. Thus from now on we consider control-to-state operators
that act on the convex coefficients. Therefore, we generalize the relaxation of (P)
below. It features a different operator KR and (R) is equivalent to (Q) if KR satisfies
the identity KR(α) = K

(∑M
i=1 αiξi

)
for all relaxed controls α.

min
α

j (KR(α))

s.t.α ∈ L∞(ΩT ,RM ),

α(s) ∈ S
M for a.a. s ∈ (t0, t f ).

(R)

By requiring that KR satisfies the identity KR(ω) = K
(∑M

i=1 ωiξi
)
for all binary

controls ω, we obtain that (R) is a relaxation of (P). We make the following standing
assumption on (P).

Assumption 1

1. Let ΩT ⊂ R
d be a bounded domain for some fixed d ∈ N.

2. Let Y be a Banach space.
3. Let K : {x ∈ L∞(ΩT , V ) : x(s) ∈ {ξ1, . . . , ξM } for a.a. s ∈ ΩT } → Y be a

function.
4. Let KR : L∞(ΩT ,RM ) → Y be ultraweak-completely continuous.
5. Let K

(∑M
i=1 ωiξi

) = KR(ω) for all binary controls ω.
6. Let j : Y → R be continuous.
7. Let the number of discrete control realizations M ∈ N be fixed.

Remark 2.3 As an alternative to the analysis we present here, one can also analyse
the problem (Q) if K is defined on all of L∞(ΩT , V ). Then, in Assumption 1 one
may require that K : L∞(ΩT , V ) → Y is ultraweak-completely continuous. To this
end, one generally requires the identification U∗ ∼= V for some Banach space U
and that the space V has the Radon–Nikodym property. Then, this allows to deduce
(L1(ΩT ,U ))∗ ∼= L∞(ΩT , V ), see [8, ThmIV.1.1]. This is a fairly general assumption
however and in particular, every reflexive Banach space satisfies this property.
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Compactness and convergence rates in integral approximation 575

3 Approximation arguments

The approximation arguments generalize work from [16,22], which analyze the case,
where KR and K are control-to-state operators of the BVPs governed by the Laplace
operator. In Sect. 3.1, we introduce important terms for our analysis and recall findings
from previous work. Sect. 3.2 derives norm convergence and an optimality principle
for the approximation based on Sect. 3.1.

3.1 Definitions and control approximation

The approximation properties in this section are stated for relaxed controls or
sequences of them. One should have in mind that the aforementioned algorithms
for the second step of the CIA decomposition produce binary controls, or sequences
of them, which satisfy these properties. We introduce the terms of rounding grid and
admissible sequence of rounding grids.

Definition 3.1 (Rounding grid) A finite partition {S1, . . . , SN } ⊂ B of the domainΩT

is called a rounding grid. We call Δ := maxi∈{1,...,N } λ(Si ) the grid constant of the
rounding grid.

Definition 3.2 (Order conserving domain dissection [20,22]) Let ΩT be a bounded

domain. A sequence
({

S(n)
1 , . . . , S(n)

N (n)

})

n
⊂ 2B(ΩT ) of rounding grids is called an

order conserving domain dissection of ΩT if

1. Δ
(n) → 0 for the corresponding sequence of grid constants

(
Δ

(n))
n ,

2. for all n and all i ∈ {1, . . . , N (n−1)}, there exist 1 ≤ j < k ≤ N (n) such that
⋃k

�= j S
(n)
� = S(n−1)

i , and

3. the cells S(n)
j shrink regularly, that is there exists C > 0 such that for each S(n)

j

there exists a ball B(n)
j such that S(n)

j ⊂ B(n)
j and λ(S(n)

j ) ≥ Cλ(B(n)
j ).

Remark 3.3 Definition 3.2 2 is important for the analysis in Sect. 4. Therefore, we
postpone a discussion to Sect. 4 and just note here that it can be satisfied by using
orderings of the grid cells that are induced by iterates of space-filling curves; see [22].
We note that Definition 3.2 3 is satisfied for isotropic refinements of quasi-uniform
meshes; see [22].

We introduce a quantity that is known to tend to zero if the grid constant tends to
zero for a sequence of rounding grids and the discrete-valued control functions are con-
structed with suitable rounding algorithms, which we call integrality gap; see [21,22].

Definition 3.4 Let {S1, . . . , SN } be a rounding grid and letα andω be relaxed controls.
Then, we call the quantity

d(ω, α) := max
k∈{1,...,N }

∥
∥
∥
∥
∥

∫

⋃k
�=1 S�

α(s) − ω(s)ds

∥
∥
∥
∥
∥∞

the integrality gap between α and ω for this rounding grid.
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576 C. Kirches et al.

We will see in Lemma 4.1 that the function d constitutes a pseudometric as men-
tioned in Sect. 1. We state the main finding on the relationship between the integrality
gap, admissible sequences of rounding grids and weak convergence from [22] in the
following proposition.

Proposition 3.5 ([22, Thm4.7]) Let an order conserving domain dissection be given
with corresponding sequence of integrality gaps (d(n))n. Let α be a relaxed control
and (ω(n))n be a sequence of relaxed controls such that

d(n)(ω(n), α) → 0.

Then

ω(n)⇀∗α in L∞(ΩT ,RM ).

The corollary below follows immediately.

Corollary 3.6 Let the assumptions of Proposition 3.5 hold. Let V be the topological
dual space of a Banach space, and let V have the Radon–Nikodym property. Let
x := ∑M

i=1 αiξi and x (n) := ∑M
i=1 ω

(n)
i ξi for n ∈ N. Then, x (n)⇀∗x in L∞(ΩT , V ).

The literature [14,15,23,26,27] shows that the aforementioned approximation algo-
rithms admit constants C > 0, which are independent of the relaxed control α and

the sequence of rounding grids, such that they yield d(n)(α, ω(n)) ≤ CΔ
(n)

for ω(n)

being produced from α by the algorithm on an admissible sequence of rounding grids.
The bounds are usually established for the quantity supt∈[0,T ]

∥
∥

∫ t
0 (α − ω(n))

∥
∥∞ for

the case ΩT = (0, T ) and transfer to multidimensional formulations of the algorithm
with the correspondence established in [22, Sect. 4.1]. We note that the bounds on the
integrality gap hold for consistent orderings of the grid cells in a) the procedure of the
algorithm and b) the increasing union in the evaluation of the integrality gap. Thus,
Definition 3.2 and Proposition 3.5 giveω(n)⇀∗α and x (n)⇀∗x for an order conserving
domain dissection.

3.2 State approximation

The prerequisites on our setting transform the weak∗ into norm convergence and
convergence of the objective values.

Lemma 3.7 Letα(n)⇀∗α. Then KR(α(n)) → KR(α) and j
(
KR(α(n))

) → j
(
KR(α)

)
.

Proof The claim follows from Assumption 1 and the continuity of j . ��

Lemma 3.7 leverages the existence statement on approximating sequences.
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Lemma 3.8 Let α ∈ F(R). Then there exists a sequence (ω(n))n ⊂ F(R) of binary
controls such that

ω(n)⇀∗α in L∞(ΩT ,RM )

and

j(KR(ω(n))) → j(KR(α)).

Proof We construct an order conserving domain dissection. One possibility is to
employ a uniform triangulation with uniform refinements, which imply that Defi-
nition 3.2 1 and 3 hold for the induced sequence of rounding grids. We perform the
refinement such that each triangle is split up into several smaller triangles. Moreover,
we construct the sequence of grid cells of the refined grid by replacing each triangle
with the set of triangles into which it was split up. Therefore, Definition 3.2 2 holds for
the resulting sequence of rounding grids. Then one may use one of the approximation
algorithms like SUR to compute a sequence of binary controls (ω(n))n ⊂ F(R) on
these rounding grids.

Let d(n) denote the integrality gap and Δ
(n)

the grid constant induced by the n-th
rounding grid for n ∈ N. Bymapping grid cells to intervals that decompose the interval
[0, 1](see [22, Sect. 4]), the arguments in [15,26] imply that there exists C > 0 such
that

d(n)(ω(n), α) ≤ CΔ
(n)

for all n ∈ N. The uniform refinement gives that d(n)(ω(n), α) → 0 for n → ∞. Thus,
we apply Proposition 3.5 and obtain

ω(n)⇀∗α in L∞(ΩT ,RM )

The second claim follows from Lemma 3.7. ��
Starting from Lemma 3.8, we can prove the following optimality principle.

Theorem 3.9 Let Assumption 1 hold. For the optimization problems (P) and (R), it
holds true that

inf{ j(KR(α)) : α ∈ F(R)} = inf{ j(K (x)) : x ∈ F(P)}.

The optimization problem (R) admits a minimizer.

Proof Since (R) is a relaxationof (P), it suffices to show≥ for thefirst claim.Let (α(n))n
be a minimizing sequence for (R). We note that j(KR(α(n))) → −∞ is possible here.
For all n ∈ N and all ε > 0, we can construct a binary control α(kn) ∈ F(R) such that

j(KR(α(kn))) < j(KR(α(n)))+ε by Lemma 3.8. The choice x (kn) := ∑M
i=1 α

(kn)
i ξi ∈

F(P) and the identity KR(α(kn)) = K (x (kn)) from the assumptions yield the first claim.

123
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Fig. 1 Hilbert curve iterates approximating [0, 1]2. Small numbers indicate the induced orderings of the
grid cells along the curve

We observe that F(R) is closed with respect to the weak∗ topology. To see this, we
first apply [32,Theorem3],which gives that the limit of aweakly∗ convergent sequence
in F(R) is an a.e. [0, 1]M -valued function. The coordinate sequences sum to one a.e.
because adding L∞(ΩT )-functions is a continuous operationwith respect to theweak∗
topology in both arguments. Moreover, every sequence in F(R) is bounded and thus
admits a weak∗ accumulation point. Consequently, F(R) is compact with respect to
the weak∗ topology and the third claim follows from the extreme value theorem as the
mapping j ◦ KR is continuous from the weak∗ topology of L∞(ΩT , V ) to R. ��
Remark 3.10 If V is the topological dual space of a Banach space, and V has the
Radon–Nikodym property, analogous arguments hold for the relationship between
(Q) and (P).

Example 3.11 Considering the solution operator KR of the IVP (2.1) and the solution
operator K of the IVP (2.2), Assumption 1 is satisfied and Theorem 3.9 holds if f is
Lipschitz continuous in the first argument by virtue of [21, Thm 3.7].

4 Order-conserving domain dissections and convergence rate

To motivate the results in this section, we consider the first three approximants of
the Hilbert curve, a surjective and continuous mapping of the unit interval to the unit
square. A facsimile of the figure in [13] is displayed in Fig. 1.

By inspection of Fig. 1 and the recursive definition of the Hilbert curve iterates,
we observe that the ordering of the squares along the curve is preserved from an
iterate to the next. This is formulated as Definition 3.2 2 and gives rise to the name
order conserving domain dissections for sequences of rounding grids that satisfy this
property. Example 4.6 in [22] shows that Proposition 3.5 does not hold true if it is
dropped.Moreover, we observe that since theHilbert curve iterations induce a uniform
refinement of the grid cells, Definition 3.2 1 and the regular shrinkage condition
Definition 3.2 3 are satisfied as well.

In [22], we have executed the SUR algorithm mentioned above to approximate
continuous relaxations of the following elliptic boundary value problem (BVP)

− Δy =
M∑

i=1

αi fi , y|∂Ω = 0 (4.1)
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Compactness and convergence rates in integral approximation 579

Fig. 2 State approximation error for uniformly refined grids along the Hilbert curve approximant-induced

orderings (black, dashed), see [22, Fig. 3], with rate c2Δ
(n)

(blue, solid)

with Ω = (0, 1)2 for a given control α on the ordering induced by successive Hilbert
curve iterates. Again, we denote the grid constant by Δ. Figure 2 suggests that a
convergence rate for the state approximation error may be obtained (in the numerics
we observe O(Δ)).

4.1 Order-conserving domain dissections

Order conserving domain dissections have the advantage that we can conserve the
quantity

∫
S(n)
i

(α − ω(n)) in further grid iterations because the successive integration

(or averaging) always happens on partitions of cells from previous iterations; see [20].
Intuitively, one can think of Definition 3.2 2 as a means to maintain spatial coherence
of the error quantity in all coordinate directions during the grid refinements.We briefly
consider the topology induced by order-conserving domain dissections. A preliminary
variant of these results is part of the PhD thesis [19].

Lemma 4.1 (Lemma 8.15 in [19]) Let 1 ≤ p ≤ ∞. It holds that the function d :
L p(ΩT ,RM ) × L p(ΩT ,RM ) → R from Definition 3.4 is a pseudometric.

Proof The symmetry of ‖·‖∞ implies the symmetry of d. The linearity of the integral,
the triangle inequality of ‖ · ‖∞, and the subadditivity of ess sup imply the triangle
inequality of d. ��
Proposition 4.2 (Proposition 8.17 in [19]) Let 1 ≤ p ≤ ∞. Consider an order

conserving domain dissection
({

S(n)
1 , . . . , S(n)

N (n)

})

n
of a bounded domain ΩT with

corresponding integrality gaps (d(n))n. Then, the induced family of functions ν(n) :
L p(ΩT ) → R

+,

ν(n)( f ) := d(n)( f , 0)

is a family of seminorms. The locally convex vector space of L p(ΩT )-functions
equipped with the topology determined by the family of seminorms (ν(n))n is Haus-
dorff, that is it is able to separate points.
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Proof The seminorm properties are induced from the pseudometric properties estab-
lished in Lemma 4.1. Thus the vector space of L p(ΩT )-functions equipped with the
topology induced by (ν(n))n is locally convex. For the Hausdorff property, we verify
that if ν(n)( f ) = 0 holds for all n ∈ N then f = 0 a.e.

Let ν(n)( f ) = 0 for all n ∈ N. Thus, for all n ∈ N and all k ∈ {1, . . . , N (n)}, we
deduce

∫

S(n)
k

f dλ =
∫

⋃k
�=1 S

(n)
�

f dλ −
∫

⋃k−1
�=1 S

(n)
�

f dλ = 0 (4.2)

by definition of d(n) and 0 = ν(n)( f ) = d(n)( f , 0).
Since an order conserving domain dissection is a sequence of partitions of the

domain ΩT , it holds that for all x ∈ ΩT there exists indices i1 ∈ {1, . . . , N (1)},
i2 ∈ {1, . . . , N (2)}, . . . such that x ∈ S(k)

ik
for all k ∈ N.

Moreover, the Definition 3.2 2 gives

S(1)
i1

⊃ S(2)
i2

⊃ . . .

Combining these inclusionswithDefinition 3.2 1 and 3 allows us to apply theLebesgue
differentiation theorem, see [31, Corollary 1.7]. This gives the identity

f (x) = lim
n→∞

1

λ(S(n)
in

)

∫

S(n)
in

f dλ =
(4.2)

0

for a.a. x ∈ ΩT , which means that f = 0 a.e., which closes the proof. ��
Corollary 4.3 Let 1 ≤ p ≤ ∞. The integrality gaps d(n) induced by order-conserving
domain dissections are pseudometrics that equip L p(ΩT ) with a Hausdorff topology.

Corollary 4.4 Let 1 ≤ p ≤ ∞. The integrality gaps d(n) induced by the successive
domain decompositions from the approximants of the Hilbert curve are pseudometrics
that equip L p(ΩT ) with a Hausdorff topology.

4.2 Control convergence rate in H−1

This subsection shows that order-conserving domain dissections allow us to prove a
convergence rate for the state vector approximation y(ω(n)) → y(α). Assume KR is
the solution operator of an elliptic BVP like (4.1). Then the Lax-Milgram lemma and
suitable regularity of the right hand side – that is if the fi are Lipschitz continuous,
fi ∈ W 1,∞(ΩT ) – of an elliptic BVP may yield Lipschitz estimates of the form

‖KR(α1) − KR(α2)‖H1(ΩT ) ≤ L‖α1 − α2‖H−1(ΩT )

for some L > 0. Thus we aim for an estimate on ‖α − ω‖H−1 from bounds on
d(ω, α) if ω is a binary control. Regarding the rounding grid one additional regularity
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Compactness and convergence rates in integral approximation 581

assumption is necessary to constrain the ratio of the diameters among the grid cells
per rounding grid.

Before stating the estimate, we define a helper function f for d ∈ N and 0 < ε ≤ 1
as

f (d, ε) :=

⎧
⎪⎨

⎪⎩

1
2 if d = 1,
2ε
1+ε

if d = 2,

0 if d ≥ 3.

(4.3)

Theorem 4.5 Let d ≥ 1. Let ΩT ⊂ R
d be a bounded Lipschitz domain. Let α be a

relaxed control. Let an order conserving domain dissection be given, and let the ratio
between the maximum and minimum diameters of the grid cells be uniformly bounded
over the grid iterations, that is let there exist ρ > 0 such that for all n ∈ N and all i ,
j ∈ {1, . . . , N (n)} it holds that ρ ≥ diam S(n)

i / diam S(n)
j .

Let (β(n))n be a sequence of relaxed controls and assume that there exists Ĉ > 0

such that d(n)(β(n), α) ≤ ĈΔ
(n)

for all n ∈ N. Then, for all 0 < ε ≤ 1 there exist
C(ε) > 0 such that for all grid levels n ∈ N for which there exists a grid level

1 ≤ n0(n) ≤ n with Δ
(n) = Θ((Δ

(n0(n))
)
3/2+d/2+ f (d,ε)/d

1+d/2 ), we obtain the estimate

‖α − β(n)‖H−1(ΩT ,RM ) ≤ C(ε)(Δ
(n)

)
1

1.5d+0.5d2+ f (d,ε)

The constant C(ε) only depends on ε if d = 2.

Proof We show the estimate for each component sequence individually and drop the
subscripts i of αi and β

(n)
i throughout the remainder of the proof. Then, the estimate

holds by equivalence of the �p-norms on R
M for p ∈ [1,∞].

We have to estimate ‖α−β(n)‖H−1 = sup{〈α−β(n), w〉 : ‖w‖H1
0

≤ 1}, where 〈·, ·〉
denotes the duality pairing of H1

0 (ΩT ) and H−1(ΩT ) (we could more generally also
consider H1(ΩT ) and H1(ΩT )∗). Let (φδ)δ ⊂ C∞

0 (Rd ,R) be a family of positive
mollifiers, see Definition A.1. Then there exists C1 > 0 such that for all 1 ≤ p ≤ ∞,
we have

‖φδ‖L p(Rd ) ≤ ‖φδ‖L∞(Rd )‖1‖1/pL1(Bδ(0))
≤ C1δ

−dδd/p = C1δ
d/p−d .

We restrict to the case w ∈ H1
0 (ΩT ) and note that for H1(ΩT ), one needs to

work with an extension instead of the extension by 0. This is possible for the assumed
Lipschitz domain by virtue of Stein’s extension theorem, see [30, Sect. VI.§3.1 Thm
5]. Let

‖w‖H1
0 (ΩT ) = ‖∇w‖L2(ΩT ) ≤ 1.

Then, the mollification wδ of w,

wδ(x) = (φδ ∗ w)(x) =
∫

Rd
φδ(z)w(x − z) dz,
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satisfies the estimate

‖wδ − w‖L2(ΩT ) ≤ ‖∇w‖L2(ΩT )δ ≤ δ, (4.4)

which is proven in Lemma A.2. We combine Young’s convolution inequality with the
continuous embedding H1

0 (ΩT ) ↪→ L p(ΩT ) for all 1 ≤ p ≤ ∞ for d = 1, for all
1 ≤ p < ∞ if d = 2 and all 1 ≤ p ≤ 2d/(d − 2) for d ≥ 3, see Theorem 5.4 in [1]
(Case A for d ≥ 3, Case B for d = 2, Case C for d = 1). Then we obtain

‖wδ‖L∞(ΩT ) ≤ ‖φδ‖L1(Rd )‖w‖L∞(ΩT ) ≤ C1C2

for d = 1 as well as

‖wδ‖L∞(ΩT ) ≤ ‖φδ‖Lq (Rd )‖w‖Lq/(q−1)(ΩT ) ≤ C1C2(ε)δ
2/(1+ε)−2

for d = 2 and all q = 1 + ε with 0 < ε ≤ 1, and we obtain

‖wδ‖L∞(ΩT ) ≤ ‖φδ‖L2d/(d+2)(Rd )‖w‖L2d/(d−2)(ΩT ) ≤ C1C2δ
1−d/2

for d ≥ 3. The constant C2 / C2(ε) arises from the continuous embedding of
H1
0 (ΩT ) ↪→ L p(ΩT ) and depends on ε if d = 2. Using (4.3), we can abbreviate

the estimates on ‖wδ‖L∞(ΩT ) as

‖wδ‖L∞(ΩT ) ≤ C1C2(ε)δ
1−d/2− f (d,ε).

Moreover, wδ has Lipschitz constant C1δ
−d/2 because

‖∇wδ(x)‖ =
∣
∣
∣
∣

∫

Rd
φδ(z)∇w(x − z) dz

∣
∣
∣
∣ ≤ ‖φδ‖L2(Rd )‖∇w‖L2(ΩT ) ≤ C1δ

−d/2

for a.a. x ∈ ΩT .
Now, we consider a rounding grid at level n0 with grid constant Δ

(n0) and denote
by H = H(n0) the maximum diameter of its elements. Moreover, we choose δ > 0
such that δs = H for some s > max{1, d/2}, which will be adjusted below. Due to
the boundedness of the ratio of diameters, the rounding grid at level n0 decomposes
ΩT into N (n0) ≤ C3H−d = C3δ

−sd grid cells for some constant C3 > 0, see
Lemma A.4 with C > 0 and ρ > 0, which are uniformly constant over the iterations
by assumption andDefinition 3.2 3. Sincewδ has Lipschitz constantC1δ

−d/2, it can be
approximated by a piecewise constant function, the cell average, wH on the rounding
grid {S(n0)

1 , . . . , S(n0)
N (n0)} (having maximal cell diameter H = δs) such that

‖wδ − wH‖L∞(ΩT ) ≤ δs‖∇wδ‖L∞(ΩT ) ≤ C1δ
s−d/2, (4.5)

holds, see Lemma A.3.
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Compactness and convergence rates in integral approximation 583

We use the abbreviation I (n0) := {1, . . . , N (n0)}. For all n ≥ n0, we obtain

∣
∣
∣
∣

∫

ΩT

wH (x)(α(x) − β(n)(x)) dx

∣
∣
∣
∣

≤
N (n0)
∑

i=1

∣
∣
∣
∣
∣

∫

S
(n0)

i

wH (x)(α(x) − β(n)(x)) dx

∣
∣
∣
∣
∣

≤
N (n0)
∑

i=1

‖wH‖L∞(ΩT )

∣
∣
∣
∣
∣

∫

S
(n0)

i

(α(x) − β(n)(x)) dx

∣
∣
∣
∣
∣

≤ ‖wδ‖L∞(ΩT )N
(n0) max

i∈I (n0)

∣
∣
∣
∣
∣

∫

S
(n0)

i

(α(x) − β(n)(x)) dx

∣
∣
∣
∣
∣

≤ C1C2(ε)C3δ
−sdδ1−d/2− f (d,ε) max

i∈I (n0)

∣
∣
∣
∣
∣

∫

S
(n0)

i

(α(x) − β(n)(x)) dx

∣
∣
∣
∣
∣

for all 0 < ε ≤ 1. Here, the first inequality follows from the triangle inequality.
The second inequality follows from the fact that wH is piecewise constant per grid
cell. Because the cell averages wH do not exceed the extremal values, the estimate
‖wH‖L∞(ΩT ) ≤ ‖wδ‖L∞(ΩT ) holds in the third inequality.

For all i ∈ I (n0), we obtain

∫

S
(n0)

i

(α(x) − β(n)(x)) dx

=
∫

⋃i
j=1 S

(n0)

j

(α(x) − β(n)(x))ds −
∫

⋃i−1
j=1 S

(n0)

j

(α(x) − β(n)(x)) dx .

Because the grid sequence is an order conserving domain dissection, and in particular
Definition 3.2 2 holds, we have the estimate

∣
∣
∣
∣
∣

∫

⋃�
j=1 S

(n0)

j

(α(x) − β(n)(x))dx

∣
∣
∣
∣
∣
≤ d(n)(β(n), α)

for all � ∈ I (n0) and for all rounding grids n ≥ n0. Thus, the triangle inequality gives

max
i∈I (n0)

∣
∣
∣
∣
∣

∫

S
(n0)

i

(α(x) − β(n)(x))dx

∣
∣
∣
∣
∣
≤ 2d(n)(β(n), α) ≤ 2C4Δ

(n)

in iteration n for C4 := Ĉ from the prerequisites. We set C5(ε) := max
{C1,C1C2(ε)C32C4} and obtain

∣
∣
∣
∣

∫

ΩT

wH (x)(α(x) − β(n)(x)) dx

∣
∣
∣
∣ ≤ C5(ε)δ

1−(s+1/2)d− f (d,ε)Δ
(n)

. (4.6)
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In iteration n ≥ n0, we find r ≥ s such that the maximum grid size (diameter) is
given by Hn = δr . By Definition 3.2 3 we obtain

C7δ
rd ≤ Δ

(n) ≤ C6δ
rd (4.7)

with constants C7 > 0 and C6 > 0 independent of n.
We combine the estimates above to obtain
∣
∣
∣
∣

∫

ΩT

w(x)(α(x) − β(n)(x))dx

∣
∣
∣
∣

≤ ‖w − wδ‖L2(ΩT )‖α − β(n)‖L2(ΩT ) + ‖wδ − wH‖L∞(ΩT )‖α − β(n)‖L1(ΩT )

+
∣
∣
∣
∣

∫

ΩT

wH (x)(α(x) − β(n)(x)) dx

∣
∣
∣
∣

≤ ‖w − wδ‖L2(ΩT )

√
λ(ΩT ) + ‖wδ − wH‖L∞(ΩT )λ(ΩT )

+ C5(ε)δ
1−(s+1/2)d− f (d,ε)Δ

(n)

≤ C(ε)
(
Δ

(n)) 1
rd + C(ε)

(
Δ

(n)) s−d/2
rd + C(ε)

(
Δ

(n)) 1+(r−s−1/2)d− f (d,ε)
rd ,

where

C(ε) := max

⎧
⎨

⎩

√
λ(ΩT )

C
1
rd
7

,C1
λ(Ω)

C
1
rd
7

,C5(ε)C
(s+1/2)d+ f (d,ε)−1

rd
6

⎫
⎬

⎭
.

To obtain the second inequality, we have used (4.6) for the third term. For the first
and second term, we have applied Hölder’s inequality to estimate ‖α − β(n)‖L2 and
‖α −β(n)‖L1 using the estimate ‖α −β(n)‖L∞ ≤ 1. Here, ‖α −β(n)‖L∞ ≤ 1 follows
straightforwardly from the fact that α and β(n) are relaxed controls. We may include
λ(ΩT ) into the constants because λ(ΩT ) < ∞ follows from the fact that ΩT is a
bounded domain and hence a bounded open subset of Rd .

For the third inequality, we note that the first two terms in the max-operation in
the definition of C(ε) follow from the combination of the estimates (4.4) and (4.5)

with δ ≤ C
1
rd
7

(
Δ

(n)) 1
rd , which follows from (4.7), δ > 0, and the positive exponent

s − d/2 of δ. The positivity of s − d/2 follows from the restrictions on the choice of
δ and s above. The third term follows from (4.6) combined with the upper estimate in
(4.7), which can be applied here because the exponent of δ is negative in (4.6), which
follows from d ≥ 1, s ≥ 1 and f (d, ε) ≥ 0.

Balancing the terms requires the identities

1 = s − d/2 = 1 + (r − s − 1/2)d − f (d, ε).

Hence, s = 1 + d/2, (r − s − 1/2)d = f (d, ε) and we obtain

s = 1 + d/2, r = s + 1/2 − f (d, ε)/d = 3/2 + d/2 + f (d, ε)/d.
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This gives the estimate

‖α − β(n)‖H−1(ΩT ) ≤ 3C(ε)
(
Δ

(n)) 1
1.5d+0.5d2+ f (d,ε)

for n such that Δ
(n) = Θ(δrd), where C7δ

sd ≤ Δ
(n0) ≤ C6δ

sd and thus Δ
(n) =

Θ((Δ
(n0)

)r/s) = Θ((Δ
(n0)

)r/s) = Θ((Δ
(n0)

)
3/2+d/2+ f (d,ε)/d

1+d/2 ). Note that to derive the
estimate, we have made the choice Hn = δr . However, after the balancing identities
are solved, r is set to a specific value and s and Hn0 dictate the value of δ. The argument
holds true with a change in the constant C(ε) that does not depend on n0 and n if we
have Hn = Θ(δr ) instead of the definite choice Hn = δr . Combining our insights
above, we deduce

Hd
n = Θ(Δ

(n)
) = Θ

(

(Δ
(n0)

)
3/2+d/2+ f (d,ε)/d

1+d/2

)

= Θ
(
(δsd)

r
s

)
= Θ

(
δrd

)
,

which implies that Hn = Θ(δr ) indeed holds true and concludes the proof. ��
A few remarks are in order here.

Remark 4.6 The proof presented above balances several approximations based on
mollification, piecewise averaging and the bound on the integrality gap induced by
rounding algorithms. An improved estimate can be obtained under the additional
assumption that the grid cells of a rounding grid are ordered along the coordinate axis
(time axis) in the case d = 1. In this case, one can derive an improved estimate follow-
ing the lines of [12,25] that lead to their state space estimate in C([0, T ]) into which
W 1,p((0, T )) is continuously embedded. This is shown briefly in the next subsection.

Remark 4.7 We have formulated the proof of Theorem 4.5 for relaxed controls β(n) to
do justice to the generality of the argument. However, one should keep in mind that all
binary controls are of course relaxed controls as well. We note that for binary controls
ω(n) produced by the rounding algorithm SUR, we obtain the bound d(n)(ω(n), α) ≤
C4Δ

(n)
for some fixed C4 > 0. In the case d = 1, this follows directly from the

analysis in [15,26]. For d ≥ 2, this follows with the arguments in Section 2 of [22],
in particular Proposition 2.4.

Remark 4.8 For the balancing argument to hold, we make an assumption on the grid

levels, namely Δ
(n) = Θ

(
(Δ

(n0)
)q

)
for a specific q > 1 depending on d. We show

in Proposition 4.9 below that this can be satisfied under under mild assumptions
on the grid refinement, namely that the considered maximum grid cell volumes are

montonously decreasing and that Θ(Δ
(n)

) = Θ(Δ
(n+1)

).

Proposition 4.9 Let Δ
(n) → 0. Let q > 1 and k1 > 1 be such that 0 < Δ

(n) ≤
Δ

(n−1) ≤ k1Δ
(n)

for all n ∈ N. Then, there exists n1 ∈ N such that for all n ≥ n1 it

holds that (Δ
(n)

)
1
q ≤ Δ

(1)
. Moreover, for all n ≥ n1 the function

n0(n) := max
{
n0 ∈ N

∣
∣
∣ (Δ

(n)
)
1
q ≤ Δ

(n0)
}
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is well-defined and

Δ
(n) = Θ

((
Δ

(n0(n))
)q)

.

Proof Since Δ
(n) ↓ 0, there exists n1 ∈ N such that (Δ

(n)
)
1
q ≤ Δ

(1)
holds for all

n ≥ n1. Combining this with the fact that Δ
(n)

> 0 for all n ∈ N yields that n0(n) is
well-defined, which also gives the inequality

Δ
(n) ≤

(
Δ

(n0(n))
)q

.

Moreover, we have thatΔ
(n) ≥ 1

kq1

(
Δ

(n0(n))
)q

. To see that this inequality holds, we

first note that it is equivalent to (Δ
(n)

)
1
q ≥ 1

k1
Δ

(n0(n))
. Then, we argue by contradiction

and assume (Δ
(n)

)
1
q < 1

k1
Δ

(n0(n))
. The prerequisites give Δ

(n0(n)) ≤ k1Δ
(n0(n)+1)

.
Combining both inequalities gives

(Δ
(n)

)
1
q <

1

k1
Δ

(n0(n)) ≤ Δ
(n0(n)+1)

,

which implies

(Δ
(n)

)
1
q ≤ Δ

(n0(n)+1)
.

This contradicts the definition of n0(n) because n0(n)+1 > n0(n). Consequently, we

have Δ
(n) = Θ

((
Δ

(n0(n))
)q)

for n ≥ n1, which concludes the proof. ��

4.3 Improved bound in the one-dimensional case

We consider the case that a rounding algorithm is executed on the discretization t0 <

. . . < tN = t f of [t0, t f ], that is Si := [ti−1, ti ) for i ∈ {1, . . . , N − 1} and SN =
[tN−1, tN ] to compute a binary control ω from a relaxed control α. In this case, the
integrality gap can be stated independently of the rounding grid, namely

d1D(ω, α) := sup
t∈[0,T ]

∥
∥
∥
∥

∫ t

0
α(s) − ω(s)ds

∥
∥
∥
∥∞

,

and the rounding algorithms mentioned in Sect. 1 satisfy d1D(α, ω) ≤ CΔ for Δ :=
max {ti − ti−1 : i ∈ {1, . . . , N }} for some C > 0, which is independent of α and the
specific choice of the rounding grid. This follows from

max
i∈{1,...,N }

∥
∥
∥
∥
∥

∫

⋃i
j=1 S j

α(s) − ω(s) ds

∥
∥
∥
∥
∥∞

≤ CΔ
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and the fact that α − ω is a piecewise monotone function because ω is piecewise
constant and binary-valued. The order of the grid cells (intervals) Si along the time-
axis matters in this case; see [19,26].

Theorem 4.10 Let d = 1. We consider (0, T ) ⊂ R for T > 0. Let α, β be relaxed
controls. Let p ∈ [1,∞]. Then, ‖α − β‖(W p((0,T ),RM ))∗ ≤ C̃d1D(α, β) for some

C̃ > 0.

Proof For i ∈ {1, . . . , M}, we restrict to the coordinate sequence and drop the sub-
scripts i of αi and βi below. We abbreviate W 1,p := W 1,p((0, T )). We compute an
estimate on

‖α − β‖(W 1,p)∗ = sup
{
〈α − β,w〉 : w ∈ W 1,p, ‖w‖W 1,p = 1

}
,

where 〈·, ·〉 denotes the duality pairing of (W 1,p)∗ and W 1,p. Let w ∈ W 1,p with
‖w‖W 1,p ≤ 1. Since α − β ∈ L∞((0, T )), we represent the duality pairing with inte-
gration. The one-dimensional domain implies that w has a continuous representative
and that the continuous embedding W 1,p ↪→ C([0, T ]) holds, see [1, Thm 5.4]. We
use integration by parts and the triangle inequality to deduce

∣
∣
∣
∣

∫ T

0
w(s)(α(s) − β(s)) ds

∣
∣
∣
∣

≤
∣
∣
∣
∣w(T )

∫ T

0
(α(s) − β(s)) ds

∣
∣
∣
∣ +

∣
∣
∣
∣

∫ T

0
w′(s)

∫ s

0
α(τ) − β(τ)dτds

∣
∣
∣
∣ .

The first term of the right hand side is bounded by C1‖w‖W 1,pd1D(α, β), where
the constant C1 > 0 is due to the continuous embedding W 1,p ↪→ C([0, T ]). The
second term is bounded by C2‖w‖W 1,p d1D(α, β) for some C2 > 0 by means of
Hölder’s inequality,where the constantC2 > 0 is due to the the continuous embeddings
W 1,p ↪→ L p((0, T )) ↪→ L1((0, T )).

Combining these estimates for the coordinate sequences with the equivalence of
the �p-norms on R

M for p ∈ [1,∞] yields the claim. ��

5 Application to signal processing

Let t0, t f ∈ R. We consider the optimization problem

min
x

J (x) = 1

2

∫ t f

t0
((k ∗ x)(t) − f (t))2dt

s.t. x ∈ L2((t0, t f )),

x(t) ∈ {ξ1, . . . , ξM } ⊂ R a.e. on (t0, t f ).

(P”)

The problem (P”) constitutes a case where the dynamics of the process are not
governed by a differential equation. It arises from (P) by defining j : L2((t0, t f )) → R
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as

j(y) := 1

2
‖y − f ‖2L2

with the choices V := R and K : L2((t0, t f )) → L2((t0, t f )) as

K (x) := k ∗ x

for a fixed filter kernel function k ∈ L1((t0, t f )) and a fixed tracking objective f ∈
L2((t0, t f )). This setting is well-defined by Young’s convolution inequality.

To relate this problem to the analysis of Sect. 3, we define the operator KR :
L∞((t0, t f ),RM ) → L2((t0, t f )) through

KR(α) := K

(
M∑

i=1

αiξi

)

.

Then, we obtain the following proposition, which implies that Assumption 1 holds for
the considered problem.

Proposition 5.1 Let ΩT := (t0, t f ). Y := L2((t0, t f )), V := R. Let j , K , and
KR defined as above. Then, Assumption 1 holds. Moreover, the operator K :
L∞((t0, t f )) → L2((t0, t f )) is ultraweak-completely continuous

Proof All properties except the ultraweak-complete continuity of K and KR fol-
low immediately from the definition. The operators K and KR are linear, the space
R is reflexive, and xn⇀∗x in L∞((t0, t f )) implies xn⇀x in L2((t0, t f )), see also
Remark 2.2. Thus, it suffices to know that K and KR are compact operators, which
follows for example from [29, Thm 3.1.17]. ��

Following Sect. 2, we obtain the relaxation

min
x

j(K (x)) = 1

2

∫

ΩT

((k ∗ x)(s) − f (s))2ds

s.t. x ∈ L2(ΩT ),

x(t) ∈ [ξL , ξU ] a.e. on (t0, t f )

. (Q”)

with ξL := min{ξ1, . . . , ξM } and ξU := max{ξ1, . . . , ξM }. To estimate grid constants
for the rounding algorithm a priori, we are interested in estimates on the reconstruction
error of the filtered trajectory in L2, that is on

‖k ∗ x − k ∗ xΔ‖L2((t0,t f )).

Here, x = x(α) denotes a feasible point of (Q”) and xΔ = x(ω) = ∑M
i=1 ωiξi the

discrete-valued input variable arising from an approximation of x on a rounding grid
with grid constant Δ.
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We follow the considerations in Sect. 4.3, and use the function d1D to derive an
additional priori estimate. A preliminary version of the result has been obtained as
Theorem 9.12 in the PhD thesis [19].

Theorem 5.2 Let ΩT = (t0, t f ). Let α be a relaxed control and ω be a binary control.

Let x = ∑M
i=1 αiξi and xΔ = ∑M

i=1 ωiξi . Let k ∈ W 1,1(R). Let p ∈ [1,∞]. Then,

‖k ∗ x − k ∗ xΔ‖L p((t0,t f )) ≤ Cd1D(ω, α)

for some C > 0 depending on p, ‖ξ‖RM , t0, t f , and ‖k‖W 1,1 . For p = ∞, the estimate
also holds in C([t0, t f ]).
Proof Let Y := W 1,p((t0, t f )) and thus Y ∗ = (W 1,p((t0, t f )))∗. Then,

(k ∗ (x − xΔ))(t) =
(
k(t − ·), x − xΔ

)

L2((t0,t f ))

=
〈
k(t − ·), x − xΔ

〉

Y ,Y ∗

≤ ‖k(t − ·)‖Y ‖x − xΔ‖Y ∗

holds for all t ∈ (t0, t f ), where the second identity follows from theRiesz–Fréchet rep-
resentation theorem and the continuous embedding Y ↪→ L2((t0, t f )). The inequality
follows from the definition of the dual norm.

Clearly, ‖k(t − ·)‖Y ≤ ‖k(t − ·)‖W 1,1(R) holds for all t ∈ (t0, t f ). Moreover,

‖x − xΔ‖Y ∗ ≤
M∑

i=1

|ξi |‖αi − ωi‖Y ∗

and the claim follows by virtue of Theorem 4.10 and Hölder’s inequality. ��

6 Computational experiments

A discretization transforms (Q) into a finite-dimensional linear-least squares problem
which can be solved with standard algorithms for convex optimization problems with
box constraints. We name the references [3,34] which are implemented in the Open-
Source library SciPy, see [33], which we use for the computational results in this
section.

6.1 The Sum-Up Rounding Algorithm for Control Approximation

We briefly recap the sum-up rounding (SUR) algorithm for one-dimensional prob-
lems, which is one possible approximation algorithm in the second step of the CIA
decomposition. It is stated in Definition 6.1 below.
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590 C. Kirches et al.

Definition 6.1 (Sum-Up-Rounding Algorithm, [24,26,28])
Let t0 < . . . < tN = t f discretize [t0, t f ] with h := maxi∈{0,N−1} ti+1 − ti . For a

relaxed control α ∈ L∞((0, T ),RM ), we define the piecewise constant binary control
ω(α) : [t0, t f ] → {0, 1}M for i = 0, . . . , N − 1 iteratively by

ω(α) j (t)|[ti ,ti+1] :=
{
1 : j = argmax

k∈{1,...,M}
∫ ti+1
t0

αk(t)dt − ∫ ti
t0

ω(α)k(t)dt,

0 : otherwise.

If the maximizing index j is ambiguous, the smallest of the maximizing indices is
chosen.

SURproceeds through the time intervals indexed by i = 0, . . . , N−1 and computes
the approximation for the current interval. The index j ∈ {1, . . . , M} identifies an
coordinate of the function ω. In the first iteration, the coordinate, in which

∫ t1
t0

α

exhibits the highest value, is set to one in ω on the interval [t0, t1]. All other entries
of ω are set to zero in the first interval. This procedure is iterated. For the i-th time
interval index, SUR sets ω to one in the coordinate that exhibits a maximum value of∫ ti+1
t0

α − ∫ ti
t0

ω, and to zero in all other coordinates.
Asmentioned above, Proposition 3.5, Lemmas 3.7 and 3.8 andTheorem3.9 hold for

approximations constructed by means of SUR. We briefly recap that Proposition 3.5
holds, which yields the other statements.

Proposition 6.2 ([26])For all relaxed controlsα and all rounding grids, SURproduces
a binary control ω. Furthermore, there exists a constant C > 0 such that d(α, ω) ≤
CΔ.

We illustrate the behavior of SUR in Fig. 3. We have executed SUR to compute
binary controls for twopredetermined relaxed controls. The sigmoid function in the left
column is approximated very closely by SUR because most of its values are almost
binary-valued already. In the bottom image one observes that a finer discretization
implies that a difference in norm has to persist when the ascent of the function is
approximatedmore closely. Contrary to the case of the sigmoid function, the difference
between the constant function and its SUR approximants in the right column in norm
is constant regardless of the chosen discretization. The right column depicts the same
effect as [21, Fig. 1].

6.2 Signal processing example

We consider a similar example to the one from [4], which stems from Filtered Approx-
imation in electronics. We introduce a function

κ(t) := A

(

1 − √
2 exp

(

−ω0t√
2

)

cos

(
ω0t√
2

− π

4

))
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Fig. 3 Sum-Up Rounding approximation (blue) for functions (black) g(t) (left) and h(t) (right) on coarse
(top) and fine grid (bottom)

We define the convolution kernel for (P) and the reformulations and relaxations thereof
as follows

k(t) :=
{

(−κ)′(t) t ≥ 0,
0 else,

which yields

(k ∗ x)(t) =
∫ t

t0
k(t − τ)x(τ )dτ.

We use t0 = −1 and t f = 1 as domain bounds. Regarding the target function f , we set
f (t) := 0.2 cos(2π t). Assuming that an equidistant discretization of (t0, t f ) into N
intervals, i.e. t f − t0 = NΔ, we obtain a piecewise constant function x = ∑M

i=1 xiχi

with xi ∈ R for i ∈ {1, . . . , N } if χi denotes the characteristic function of the i-th
interval. This gives

∫ t

t0

N∑

i=1

xi k(t − τ)χi (τ )dτ

=
N∑

i=1

xi

∫ iΔ

(i−1)Δ
k(t − τ)dτ

=
N∑

i=1

xi (κ(t − (i − 1)Δ)1t≥(i−1)Δ − κ(t − iΔ)1t≥iΔ)dτ.

Setting g̃(s) := (κ(s)1s≥0 − κ(s − Δ)1s≥Δ), we obtain an IQP similar to the one
studied in [4]. We have chosen the parameter values ω0 = π and A = 0.1, see also
[4, Fig. 1].
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The feasible realizations for the images of x are ξL = ξ1 = −1, ξ2 = 0 and
ξU = ξ3 = 1. We discretize the resulting relaxation (Q) as described above. Then,
we solve (Q) using scipy.least_squares, that is with SciPy’s Trust Region
implementation (with parameter method=’trf’ – Trust Region Reflective algorithm),
see [33]. To apply SUR, we need to compute the convex coefficient functions α from x
such that

∑M
i=1 αiξi = x . Because this computation is not unique, we have chosen the

most intuitive one from our point of view, see also [22], for an elliptic control problem.
Specifically, we compute α(t) such that for t ∈ [t0, t f ], x(t) is the interpolant between
its twoneighboring points in {ξ1, . . . , ξM }, that iswe select i such that ξi ≤ x(t) ≤ ξi+1
and set

αi (t) := ξi+1 − x(t)

ξi+1 − ξi
,

αi+1(t) := 1 − αi (t) and α j (t) := 0 for j /∈ {i, i + 1}. Then, we apply SUR on
a sequence of successively refined grids until the rounding grid coincides with dis-
cretization grid for the solution of (Q). We note that the convergence holds if the
approximation continuous relaxation is not fixed but refined in every iteration as well
and the minimizers of the approximations of the continuous relaxation converges to a
minimizer of (P); see [22].

6.3 Results

For 256 intervals discretizing (t0, t f ), we have visualized the results in Fig. 4. The
images in the left column show k ∗ x(α) in the first row and k ∗ x(ω) for ω being
computed for N = 4, N = 32 and N = 256 rounding intervals. The convergence of
k ∗ x(ω) to k ∗ x(α) is clearly visible. The right column shows the solution of (Q”),
x(α), in its first row and the SUR approximants x(ω) for the rounding grids consisting
of N = 4, N = 32 and N = 256 intervals.

For 4096 intervals discretizing (t0, t f ), we have tabulated the approximation and the
relative error in the objective in Table 1. The relative error, which is the relative error

of a squared L2-difference, approximately follows a trend proportional to Δ
2
. The

convergence to zero can be observed clearly. We consider the execution times of the
code on a laptop computer equipped with a Intel(R) Core(TM) i7-6820 CPU clocked
at 2.70GHz. The main part of the computational costs is caused by the solution of
(Q”). The costs for the execution of SUR are negligible. The execution time for 4096
intervals is 9222s. Execution times for 2i intervals, i ∈ {7, . . . , 12} are tabulated in
Table 2.

Parts of the numerical results, in particular preliminary versions of Table 2 and
Fig. 4 have been published in the PhD thesis [19].

7 Conclusion

The computational results in Sect. 6 strengthen our claim that the proposed methodol-
ogy provides a computationally efficient way to compute discrete-valued distributed
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Fig. 4 Relaxed solution (top) and SUR approximations of x , k ∗ x for N = 4, N = 32 and N = 256 (rows
two to four). This is a rework of Figure 10.3 from [19]
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Table 1 Convergence

j(K (x(ωΔ))) → j(K (x(α)))

with convolution and relaxed
solution computed on finest grid

N J (x(ω))−J (x(α))
J (x(α))

CΔ
2

J (y(ω))

2 5.0 × 101 3.4 × 104 2 × 10−2

4 6.2 × 102 2.1 × 103 2.4 × 10−1

8 4.9 × 102 5.3 × 102 1.9 × 10−1

16 1.1 × 102 1.3 × 102 4.2 × 10−2

32 3.2 × 101 3.3 × 101 1.3 × 10−2

64 4.3 × 100 8.2 × 100 2.1 × 10−3

128 3.6 × 100 2.1 × 100 1.8 × 10−3

256 5.5 × 10−1 5.1 × 10−1 6.1 × 10−4

512 8.6 × 10−2 1.3 × 10−1 4.3 × 10−4

1024 7.6 × 10−3 3.2 × 10−2 4.0 × 10−4

2048 8.8 × 10−3 8.0 × 10−3 4.0 × 10−4

4096 2.0 × 10−3 2.0 × 10−3 3.9 × 10−4

Relax. 0 3.9 × 10−4

Table 2 Execution times of the
solution of (Q”) for N intervals
discretizing (t0, t f ). This is
Table 10.2 from [19]

N Time to solve (Q”)

128 1.81 × 101 s

256 5.15 × 101 s

512 1.18 × 102 s

1024 3.22 × 102 s

2048 1.51 × 103 s

4096 9.22 × 103 s

variables without the need to use discrete optimization algorithms which might have
problemswith the high number of variables when fine discretizations of the distributed
variables are desired. In the considered function space setting, we achieve

inf
x∈{ξ1,...,ξM } j(K (x)) = min

x∈[ξL ,ξM ] j(K (x))

and a constructive way to compute a minimizing sequence to the optimum. Finally,
we note a shortcoming in the presented theory. To compute solutions of the relaxed
problems (Q) or (R) numerically efficiently, it is often necessary to introduce regular-
ization since the problems are usually not strictly convex. Common regularizers like
powers L p-norms are not weakly continuous, but only weakly lower semi-continuous,
which yields a bounded suboptimality of the form

min
x∈[ξL ,ξM ] j(K (x)) + λR ≥ inf

x∈{ξ1,...,ξM } j(K (x)) + λr(x) ≥ min
x∈[ξL ,ξM ] j(K (x)) + λr(x)
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where r : L p → R denotes the regularizer and R := supx∈[ξL ,ξM ] r(x). Thus, the
suboptimality is controlled by the value of coefficient λ.
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A Auxiliary statements for Theorem 4.5

Definition A.1 ([38, Chap. 1.6]) Let d ∈ N. Let φ ∈ C∞
0 (Rd ,R) be a nonnegative

function such that supp φ ⊂ B1(0) and
∫
Rd φ = 1. Then, the family of functions

(φδ)δ>0 withφδ(x) := 1
δd

φ(x/δ) for all x ∈ R
n is called a family of positivemollifiers.

Lemma A.2 Let w ∈ H1
0 (ΩT ). Let (φδ)δ be a family of positive mollifiers. Let wδ :=

φδ ∗ w. Then ‖wδ − w‖L2(ΩT ) ≤ ‖∇w‖L2(ΩT )δ.

Proof We use the the construction of the mollifiers as φδ(x) = 1
δd

φ(x/δ) to deduce

|(φδ ∗ w)(x) − w(x)| =
∣
∣
∣
∣

∫

Bδ(0)
φδ(y)w(x − y)dy − w(x)

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

Bδ(0)
φδ(y)w(x − y)dy −

∫

Bδ(0)
φδ(y)w(x)dy

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

Bδ(0)
φδ(y)(w(x − y) − w(x))dy

∣
∣
∣
∣

=
∣
∣
∣
∣

∫

B1(0)
δdφδ(δz)(w(x − δz) − w(x))dz

∣
∣
∣
∣

=
∫

B1(0)
φ(z)

∣
∣
∣
∣

∫ 1

0

d

ds
w(x − sδz)|s=τdτ

∣
∣
∣
∣ dz.

We insert this expression into the left hand side. Then we use the chain rule for weakly
differentiable functions; see [38, Chap.2.2]. This gives the estimate

∫

Rd
|φδ ∗ w − w|2 ≤

∫

Rd

∫

B1(0)
φ(z)2

∣
∣
∣
∣

∫ 1

0

d

ds
w(x − sδz)|s=τdτ

∣
∣
∣
∣

2

dzdx

=
∫

Rd

∫

B1(0)
φ(z)2

∣
∣
∣
∣

∫ 1

0
∇w(x − τδz)T (δz)dτ

∣
∣
∣
∣

2

dzdx
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≤
∫

B1(0)
φ(z)2

∫ 1

0

∫

Rd
|∇w(x − τδz)|2δ2dxdτdz

≤ ‖∇w‖2L2δ
2.

��

Lemma A.3 Let w ∈ W 1,∞(ΩT ). Then, w can be approximated by a piecewise con-
stant function wH on a grid with (maximum) cell diameter (grid size) H such that
‖w − wH‖L∞(ΩT ) ≤ ‖∇w‖L∞(ΩT )H.

Proof Let S be a grid cell with diameter less or equal than H . Then, we have for x ∈ S
that

|w(x) − wH (x)| =
∣
∣
∣
∣w(x)

1

λ(S)

∫

S
dy − 1

λ(S)

∫

S
w(y) dy

∣
∣
∣
∣

≤ 1

λ(S)

∫

S
|w(y) − w(x)| dy

≤ ‖∇w‖L∞(ΩT )

1

λ(S)

∫

S
|y − x | dy

≤ ‖∇w‖L∞(ΩT )H .

��

Lemma A.4 Let d ∈ N. Let ΩT ⊂ R
d be a bounded domain. Let a rounding grid

S1, . . . , SN be given that decomposes ΩT . Assume that there exists C > 0 such that
for all j ∈ {1, . . . , N }, there exists a ball B j such that λ(S j ) ≥ Cλ(Bj ). Let H, ρ > 0
be constants such that diam(S j ) ≥ ρH. Then,

N ≤ λ(ΩT )Γ (d/2)2d

πd/2ρdC
H−d ,

where Γ denotes the gamma function.

Proof Let j ∈ {1, . . . , N }. Since S j ⊂ Bj , it holds that ρH ≤ diam S j ≤ diam Bj .
Moreover,

λ(S j ) ≥ Cλ(Bj )

≥ C
πd/2

Γ (d/2)

(
diam Bj

2

)d

≥ C
πd/2

Γ (d/2)

(ρ

2

)d
Hd .
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Dividing the volume of ΩT through this lower estimate on the volume of a single grid
cell gives

N ≤ λ(ΩT )

min j λ(S j )
≤ λ(ΩT )Γ (d/2)2d

πd/2ρdC
H−d .

��
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