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Abstract
We propose a theoretical framework to capture incremental solutions to cardinality
constrained maximization problems. The defining characteristic of our framework is
that the cardinality/support of the solution is bounded by a value k ∈ N that grows over
time, and we allow the solution to be extended one element at a time. We investigate
the best-possible competitive ratio of such an incremental solution, i.e., the worst ratio
over all k between the incremental solution after k steps and an optimum solution
of cardinality k. We consider a large class of problems that contains many important
cardinality constrained maximization problems like maximum matching, knapsack,
and packing/covering problems. We provide a general 2.618-competitive incremental
algorithm for this class of problems, and we show that no algorithm can have com-
petitive ratio below 2.18 in general. In the second part of the paper, we focus on the
inherently incremental greedy algorithm that increases the objective value as much as
possible in each step. This algorithm is known to be 1.58-competitive for submodular
objective functions, but it has unbounded competitive ratio for the class of incremental
problemsmentioned above.We define a relaxed submodularity condition for the objec-
tive function, capturing problems like maximum (weighted) d-dimensional matching,
maximum (weighted) (b-)matching and a variant of the maximum flow problem. We
show a general bound for the competitive ratio of the greedy algorithm on the class
of problems that satisfy this relaxed submodularity condition. Our bound generalizes
the (tight) bound of 1.58 slightly beyond sub-modular functions and yields a tight
bound of 2.313 for maximum (weighted) (b-)matching. Our bound is also tight for a
more general class of functions as the relevant parameter goes to infinity. Note that
our upper bounds on the competitive ratios translate to approximation ratios for the
underlying cardinality constrained problems, and our bounds for the greedy algorithm
carry over both.
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1 Introduction

Practical solutions to optimization problems are often inherently incremental in the
sense that they evolve historically instead of being established in a one-shot fash-
ion. This is especially true when solutions are expensive and need time and repeated
investments to be implemented, for example when optimizing the layout of logistics
and other infrastructures. In this paper, we propose a theoretical framework to capture
incremental maximization problems in some generality.

We describe an incremental problem by a set U containing the possible elements
of a solution, and an objective function f : 2U → R≥0 that assigns to each solution
S ⊆ U some non-negative value f (S). We consider problems of the form

max f (S)

s.t. |S| ≤ k

S ⊆ U , (1)

where k ∈ N grows over time.
An incremental solution S is given by an order (s1, s2, . . . ) in which the elements

of U are to be added to the solution over time. A good incremental solution needs to
provide a good solution after k steps, for every k, compared to an optimum solution
S�
k with k elements, where we let S�

k ∈ argmaxS⊆U ,|S|=k f (S) and f �
k := f (S�

k ).
Formally, we measure the quality of an incremental solution by its competitive ratio.
We let Sk := {s1, . . . , sk} ⊆ U denote the set of the first k elements of S, and we say
that S is (strictly) ρ-competitive if

max
k∈{1,...,|U |}

f �
k

f (Sk)
≤ ρ.

An algorithm is called ρ-competitive if it always produces a ρ-competitive solution,
and its competitive ratio is the infimum over all ρ ≥ 1 such that it is ρ-competitive.
Notice that we do not require the algorithm to run in polynomial time.

While all cardinality constrained optimization problems can be viewed in an incre-
mental setting, clearly not all such problems admit good incremental solutions. For
example, consider a cardinality constrained formulation of the classical maximum
s-t-flow problem: For a given graph G = (V , E), two vertices s, t ∈ V and capacities
u : E → R≥0, we ask for a subset E ′ ⊆ E of cardinality k ∈ N such that the max-
imum flow in the subgraph (V , E ′) is maximized. The example in Fig. 1 shows that
we cannot hope for an incremental solution that is simultaneously close to optimal for
cardinalities 1 and 2.
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General bounds for incremental maximization 955

Fig. 1 Example showing that the
s–t-flow problem does not
always admit good incremental
solutions, where ε > 0 is
arbitrarily small s t

1 1

ε

In order to derive general bounds on the competitive ratio of incremental problems,
we need to restrict the class of objective functions f that we consider. Intuitively, the
unbounded competitive ratio in the flow example comes from the fact that we have
to invest in the s-t-path of capacity 1 as soon as possible, but this path only yields its
payoff once it is completed after two steps.

In order to prevent this and similar behaviors, we can, for example, require f to
be monotone (i.e., f (S) ≤ f (T ) if S ⊆ T ) and sub-additive (i.e., f (S) + f (T ) ≥
f (S ∪ T )). Many important optimization problems satisfy these weak conditions,
and we give a short list of examples below. We will see that all these (and many
more) problems admit incremental solutions with a bounded competitive ratio. More
specifically, we develop a general 2.618-competitive incremental algorithm that can
be applied to a broad class of problems, including all problems mentioned below.
We illustrate in detail how to apply our model to obtain an incremental variant of the
matching problem, and then list incremental versions of other important problems that
are obtained analogously.

– Maximum Weighted Matching: Consider a graph G = (V , E) with edge
weights w : E → R≥0. If we think of edges as potential connections and edge
weights as potential payoffs, then it is not enough to find the final matching,
because we cannot construct the edges all at once: the goal is to find a sequence
of edges that achieves a high pay-off in the short, the medium, and the long term.
In terms of our formal framework, we add edges to a set S one at a time with
U = E and f (S) is the maximum weight of a matching M ⊆ S. In order to be ρ-
competitive, we need that, after k steps for every k, our solution S of cardinality k
is no worse than a factor of ρ away from the optimum solution of cardinality k, i.e.,
f (S) ≥ f (S�

k )/ρ. This model captures the setting where the infrastructure (e.g.
the matching, the knapsack, the covering, or the flow) must be built up over time.
The online model would be too restrictive in this setting because here we know
our options in advance. Note that, as we add more edges, the set of edges S only
needs to contain a large matching M , but does not have to be a matching itself.
The matching M can change to an arbitrary subset of S from one cardinality to the
next and does not have to stay consistent. This ensures that f (S) is monotonically
increasing, and is in keeping with the infrastructures setting where the potential
regret present in the online model does not apply: building more infrastructure can
only help, since once it is built, we can change how it is used. Accordingly, in all
the problems below, the set S does not have to be a valid solution to the cardinality
constrained problemat hand, but rather needs to contain a good solution as a subset.
The objective f (S) is consistently defined to be the value of the best solution that
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is a subset of S. Notice that this approach can easily be generalized toMaximum
b-Matching.

– Maximum Weighted d-Dimensional Matching: Given sets V1, . . ., Vd , vec-
tors E ⊆ V1× . . . Vd , and weightsw : E → R≥0, we ask for an incremental subset
S ⊆ E where f (S) is the maximumweight of a d-dimensional matching in S, i.e.,
themaximumweight of a subsetM ⊆ Swithvi 	= v′

i for all e = (v1, . . . , vd) ∈ M ,
e′ = (v′

1, . . . , v
′
d) ∈ M\{e}, and all i ∈ {1, . . . , d}.

– Set Packing: Given a set of weighted sets X we ask for an incremental subset
S ⊆ X where f (S) is the maximum weight of mutually disjoint subsets in S. This
problem captures many well-known problems such as Maximum Hypergraph
Matching and Maximum Independent Set.

– Maximum Coverage: Given a set of weighted sets X ⊆ 2U over an universe of
elementsU , we ask for an incremental subset S ⊆ X , where f (S) is the weight of
elements in

⋃
X∈S X . This problem captures maximization versions of clustering

and location problems.We can include opening costs c : X → R≥0 by letting f (S)

be the maximum over all subsets S′ ⊆ S of the number (or weight) of the sets in S′
minus their opening costs.

– Knapsack: Given a set X of items, associated sizes s : X → R≥0 and values
v : X → R≥0, and a knapsack of capacity 1, we ask for an incremental sub-
set S ⊆ X , where f (S) is the largest value

∑
x∈S′ v(x) of any subset S′ ⊆ S

with
∑

x∈S′ s(x) ≤ 1. This problem can be generalized to Multi-Dimensional
Knapsack by letting item sizes be vectors and letting the knapsack have a capacity
in every dimension.

– Disjoint Paths: Given a graph G = (V , E), a set of pairs X ⊆ V 2 with
weights w : X → R≥0, we ask for an incremental subset S ⊆ X , where f (S)

is the maximum weight of a subset S′ ⊆ S, such that G contains mutually disjoint
paths between every pair in S′.

– Maximum Bridge-Flow: We argued above that the maximum s-t-flow problem
is not amenable to the incremental setting because it does not pay off to build paths
partially.
To overcome this, we consider a natural restriction of the flow problem where
most edges are freely available to be used, and only the edges of a directed s-t-cut
need to be built incrementally. If there are no edges over the reversely oriented cut,
every s-t-path contains exactly one edge that needs to be built, and we never have
to invest multiple steps to establish a single path. This problem captures logistical
problems where links need to be established between two clusters, such as when
bridges need to be built across a river, cables across an ocean, or when warehouses
need to be opened in a supplier-warehouse-consumer network. Formally, given a
directed graph G = (V , E) with capacities u : E → R, vertices s, t ∈ V , and a
directed s-t-cutC ⊆ E induced by the partition (U ,W ) of V such that the directed
cut induced by (W ,U ) is empty, we ask for an incremental subset S ⊆ C where
f (S) is the value of a maximum flow in the subgraph (V , E\(C\S)).

It is easy to verify that the objective functions of all the problems mentioned above
(and many more) have the following properties for all S, T ⊆ U :

1. (monotonicity): S ⊆ T ⇒ f (S) ≤ f (T ),
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General bounds for incremental maximization 957

2. (sub-additivity): f (S) + f (T ) ≥ f (S ∪ T ),
3. (accountability): ∃s ∈ S : f (S\{s}) ≥ f (S) − f (S)/ |S|.
To our knowledge, the accountability property has not been named before. Intuitively,
it ensures that at least one element contributes not more than the average to the value
of every set S ⊆ U . While it is easy to formulate artificial problems that have mono-
tonicity and sub-additivity but no accountability, or vice-versa, we were not able to
identify any natural problems of this kind. This justifies that we rely on accountability
in our general incremental algorithm. Note that both sub-additivity and accountability
are implied by submodularity.

Observe that a ρ-competitive incremental algorithm immediately yields a ρ-
approximation algorithm for the underlying cardinality constrained problem, with
the caveat that the resulting approximation algorithm might not be efficient, since we
make no demands on the runtime of the incremental algorithm. The converse is rarely
the case, since approximation algorithms usually do not construct their solution in
an incremental fashion. A prominent exception are greedy algorithms that are inher-
ently incremental in the sense that they pick elements one-by-one such that each pick
increases the objective by the maximum amount possible. This type of a greedy algo-
rithm has been studied as an approximation algorithm formany cardinality constrained
problems, and approximation ratios translate immediately to competitive ratios for the
incremental version of the corresponding problem. In particular, the greedy algorithm
is known to have competitive ratio (exactly) e

e−1 ≈ 1.58 if the objective function f is
monotone and submodular [32]. Note, however, that of all the incremental problems
listed above, only Maximum Coverage (without opening costs) has a submodular
objective function. It is also known that if we relax the submodularity requirement
and allow f to be the minimum of two monotone (sub-)modular functions, the greedy
algorithm can be arbitrarily bad [25].We provide a different relaxation of submodular-
ity that captures Maximum (Weighted) d-Dimensional Matching, Maximum
(Weighted) (b-)Matching, and Maximum Bridge-Flow, and where the greedy
algorithm has a bounded competitive/approximation ratio.

Our Results. As our first result, we show that a large class of incremental problems
admits a bounded competitive ratio. We remark that our upper bound does not require
sub-additivity, while our lower bound still works for sub-additive objectives.

Theorem 1 Every incremental problem with monotone, accountable objective admits
a (1 + ϕ)-competitive algorithm, where ϕ is the golden ratio and (1 + ϕ) ≈ 2.618.
No general deterministic algorithm for this class of problems has a competitive ratio
of 2.18 or better.

Again, note that we make no guarantees regarding the running time of our incre-
mental algorithm. In fact, our algorithm relies on the ability to compute the optimumof
the underlying cardinality constrained problem for increasing cardinalities. If we can
provide an efficient approximation of this optimum, we get an efficient incremental
algorithm in the following sense.

Corollary 1 If there is a polynomial time α-approximation algorithm for a cardinality
constrained problem with monotone, accountable objective, then we can design a
polynomial time α(1 + ϕ)-competitive incremental algorithm.
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We also analyze the approximation/competitive ratio of the greedy algorithm. We
observe that for many incremental problems like Knapsack, Maximum Indepen-
dent Set, and Disjoint Paths, the greedy algorithm has an unbounded competitive
ratio (Observation 4). On the other hand, we define a relaxation of submodularity
called α-augmentability (see Definition 2 below) under which the greedy algorithm
has a bounded competitive ratio. In particular, this relaxation captures Maximum
Weighted α-Dimensional Matching (Proposition 4), and, for α = 2, it captures
cardinality constrained versions of Maximum (Weighted) (b-)Matching (Propo-
sition 5) and Maximum Bridge-Flow (Proposition 6). We get the following result,
where the tight lower bound for α = 2 is obtained for Maximum Bridge-Flow,
and the lower bound of α for α ∈ N is obtained for Maximum Weighted α-
Dimensional Matching.

Theorem 2 For every cardinality constrained problem with a monotone and α-aug-
mentable objective, the greedy algorithm has approximation/competitive ratio at most
α eα

eα−1 . This bound is tight for problemswith 2-augmentable objectives, and, the greedy
algorithm has competitive ratio at least α for α-augmentable objectives with α ∈ N.

We point out that submodularity implies 1-augmentability (Proposition 2) which,
in turn, implies accountability (Proposition 3), but not vice-versa (Observation 5).
In particular, Theorem 2 generalizes the bound of e

e−1 ≈ 1.58 that is known for
submodular functions to the larger class of 1-augmentable functions. For α = 2, our
tight bound is 2e2

e2−1
≈ 2.313. For α → ∞ our lower bound of α becomes tight,

since eα

eα−1 → 1. We note that the greedy algorithm is well known to yield an α-
approximation for Maximum Weighted α-Dimensional Matching.

Related Work. Most work on incremental settings has focused on cardinality con-
strained minimization problems. A prominent exception is the robust matching
problem, introduced by Hassin and Rubinstein [19]. This problem asks for a weighted
matchingM with theproperty that, for everyvalue k, the totalweight of themin(k, |M |)
heaviest edges of M comes close to the weight of a maximumweight matching of car-
dinality at most k. Note that this differs from our definition of incremental matchings
in that the robust matching problem demands that the “incremental” solution consists
of a matching, while we allow any edge set that contains a heavy matching as a subset.
Since their model is more strict, all of the following competitive ratios carry over to
our setting. Note that, in contrast to our setting, the objective function of the robust
matching problem is submodular, and hence the greedy algorithm has competitive
ratio at most e

e−1 ≈ 1.58 [32]. Hassin and Rubinstein [19] gave an improved, deter-

ministic algorithm that achieves competitive ratio
√
2 ≈ 1.414. They also give a tight

example for this ratio of
√
2, which also works in our incremental setting. Fujita et

al. [14] extended this result to matroid intersection, and Kakimura and Makino [21]
showed that every independence system allows for a

√
μ-competitive solution, with

μ being the extendibility of the system. Matuschke at al. [28] describe a randomized
algorithm for this problem that, under the assumption that the adversary does not know
the outcome of the randomness, has competitive ratio ln(4) ≈ 1.386.
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Avariant of the knapsack problemwith a similar notion of robustness was proposed
by Kakimura et al. [22]. In this problem a knapsack solution needs to be computed,
such that, for every k, the value of the k most valuable items in the knapsack com-
pares well with the optimum solution using k items, for every k. Kakimura et al. [22]
restrict themselves to polynomial time algorithms and show that under this restric-
tion a bounded competitive ratio is possible only if the rank quotient of the knapsack
system is bounded. In contrast, our results show that if we do not restrict the run-
ning time and if we only require our solution to contain a good packing with k items
for every k, then we can be (1 + ϕ)-competitive using our generic algorithm, even
for generalizations like Multi-Dimensional Knapsack. If we restrict the running
time and use the well-known PTAS for the knapsack problem [20,26], we still get a
(1+ϕ)(1+ε)-competitive algorithm.Megow andMestre [29] andDisser et al. [9] con-
sidered another variant of the knapsack problem that asks for an order in which to pack
the items that works well for every knapsack capacity. Kobayashi and Takazawa [23]
study randomized strategies for cardinality robustness in the knapsack problem.

Hartline and Sharp [18] considered an incremental variant of the maximum flow
problem where capacities increase over time. This is in contrast to our framework
where the cardinality of the solution increases.

Incremental solutions for cardinality constrained minimization problems have been
studied extensively, in particular for clustering [4,8], k-median [5,13,31], minimium
spanning tree [2,15], and facility location [16]. An important result in this domain is
the incremental framework given by Lin et al. [27]. This general framework allows
to devise algorithms for every incremental minimization problem for which a suitable
augmentation subroutine can be formulated. Lin et al. [27] used their framework to
match or improve many of the known specialized bounds for the problems above and
to derive new bounds for covering problems. In contrast to their result, our incremen-
tal framework allows for a general algorithm that works out-of-the-box for a broad
class of incremental maximization problems and yields a constant (relatively small)
competitive ratio.

Abstractly, incremental problems can be seen as optimization problems under
uncertainty. Various approaches to handling uncertain input data have been proposed,
ranging from robust and stochastic optimization to streaming and exploration. On this
level, incremental problems can be seen as a special case of online optimization prob-
lems, i.e., problemswhere the input data arrives over time (see [3,12]).Whereas online
optimization in general assumes adversarial input, incremental problems restrict the
freedom of the adversary to deciding when to stop, i.e., the adversary may choose the
cardinality k while all other data is fixed and known to the algorithm. Online problems
with such a “non-adaptive” adversary have been studied in other contexts [6,11,17].
Note that online problems demand irrevocable decisions in every time step – a require-
ment that may be overly restrictive in many settings where solutions develop over a
long time period. In contrast, our incremental model only requires a growing solution
“infrastructure” and allows the actual solution to change arbitrarily over time within
this infrastructure.

Regarding the greedy algorithm as an approximation algorithm for maximization
problems, we mentioned above that it is well-known to achieve a competitive ratio of
e

e−1 for monotone and submodular objectives [32]. Theorem 2 generalizes this result,
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since 1-augmentability is a relaxation of submodularity (Proposition 2). The submod-
ularity ratio was proposed by Das and Kempe [7] as a somewhat similar relaxation
of submodularity, with a submodularity ratio greater zero implying an approximation
guarantee for the greedy algorithm. We note that, while a submodularity ratio of 1
implies submodularity and thus 1-augmentability, otherwise, there is no relationship
between a constant submodularity ratio and α-augmentability for constant α.

Another important setting where the greedy algorithm yields an approximation are
independence systems with bounded rank quotient [24], where elements of the ground
set are weighted and the objective function value of a set is given by themaximum sum
of the weights over all independent subsets. This setting can be seen as a relaxation of
matroids, i.e., independence systems with rank quotient 1, for which the greedy algo-
rithm computes an optimum solution [10,33]. In fact, an independence system that is
the intersection of k matroids is has rank quotient 1/k [24]. In particular, this implies
that the greedy algorithm yields a d-approximation for the Maximum Weighted
d-Dimensional Matchingproblem.Another relaxationofmatroids are k-extendible
systems, for which greedy yields a k-approximation [30]. Again, while a rank quotient
of 1 (i.e., the matroid case) implies submodularity of the objective function [32] and
thus 1-augmentability, otherwise, there is no relationship between a bounded rank
quotient or bounded extendibility and α-augmentability for bounded α.

2 A competitive algorithm for accountable problems

In this section, we show the first part of Theorem 1, i.e., we give an incremental
algorithm that is (1 + ϕ ≈ 2.618)-competitive for all problems with a monotone and
accountable objective. For convenience, we define the density δS of a set S ⊆ U
via δS := f (S)/ |S|, and we let δ�

k := δS�
k
denote the optimum density for cardinal-

ity k. Our algorithm relies on the following two observations that follow from the
accountability of the objective function. We note that, throughout this section, we do
not require sub-additivity.

Lemma 1 If the objective f is accountable, then, for every k, there is an order-
ing (s�

1, s
�
2, . . . , s

�
k ) of S

�
k , such that δ{s�1 ,...,s�i } ≥ δ{s�1 ,...,s�i+1} for all i ∈ {1, . . . , k − 1}.

We call (s�
1, s

�
2, . . . , s

�
k ) a greedy order of S�

k .

Proof By accountability of f , there is an element s�
k ∈ S�

k for which

δS�
k \{s�k } = f (S�

k\{s�
k })

k − 1
≥ f (S�

k )

k
= δS�

k
.

We can repeat this argument for s�
k−1 ∈ S�

k\{s�
k }, s�

k−2 ∈ S�
k\{s�

k , s
�
k−1}, etc. to obtain

the desired ordering. ��
Lemma 2 If the objective f is monotone and accountable, we have δ�

k′ ≥ δ�
k for

all 1 ≤ k′ ≤ k.
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Proof Fix any cardinality k > 1. By accountability of the objective function f , there
is an element s� ∈ S�

k with

δ�
k = f (S�

k )

k
≤ f (S�

k\{s�})
k − 1

≤ f (S�
k−1)

k − 1
= δ�

k−1.

It follows that δ�
k is monotonically decreasing in k. ��

Now, we define k0 := 1 and ki := �(1 + ϕ)ki−1� for all positive integers i . Our
algorithm operates in phases i ∈ {0, 1, . . . }. In each phase i , we add the elements
of the optimum solution S�

ki
of cardinality ki to our incremental solution in greedy

order (Lemma 1). Note that we allow the algorithm to add elements multiple times
(without effect) in order to not complicate the analysis needlessly (of course we would
only improve the algorithm by skipping over duplicates). In the following, we denote
by ti the number of steps (possibly without effect) until the end of phase i , i.e., we
let t0 := k0 and ti := ti−1 + ki .

Lemma 3 For every phase i ∈ {0, 1, . . . }, we have ti ≤ ϕki .

Proof We use induction over i , with the case i = 0 being trivial, since t0 = k0. Now
assume that ti−1 ≤ ϕki−1 for some i ≥ 1. Using the property ϕ

ϕ+1 = ϕ − 1 of the
golden ratio, we get

ti = ti−1 + ki ≤ ϕki−1 + ki ≤ ϕ

ϕ + 1
ki + ki = ϕki .

��
Finally, we show the solution S computed by our algorithm is (1+ϕ)-competitive.

As before, we let Sk denote the set of the first k elements of S.

Theorem 3 If the objective f is monotone and accountable, then, for every cardinal-
ity k, we have f (Sk) ≥ f �

k /(1 + ϕ).

Proof We use induction over k. The claim is true for k = t0 = 1, since S1 = S�
1

by definition of the algorithm. For the inductive step, we prove that if the claim is
true for k = ti−1, then it remains true for all k ∈ {ti−1 + 1, . . . , ti }. Recall that ki =
�(1 + ϕ)ki−1�. By Lemma 3, we have

ti−1 ≤ ϕki−1 < ki < ti−1 + ki = ti ,

and we can therefore distinguish the following cases.
Case 1: ti - 1 < k < ki. Since k > ti−1, our algorithm has already completed

phase i − 1 and added all elements of S�
ki−1

, so we have f (Sk) ≥ f �
ki−1

. Because k is
an integer and k < ki = �(1+ ϕ)ki−1�, we have that k < (1+ ϕ)ki−1. By Lemma 2,
we thus have

f �
k = δ�

k · k < δ�
ki−1

· (1 + ϕ)ki−1 = (1 + ϕ) f �
ki−1

≤ (1 + ϕ) f (Sk).
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Case 2: ki ≤ k ≤ ti. At time k, our algorithm has already completed the first
k − ti−1 elements of S�

ki
. Since the algorithm adds the elements of S�

ki
in greedy order,

we have f (Sk) ≥ (k − ti−1)δ
�
ki
. On the other hand, since k ≥ ki , by Lemma 2 we

have f �
k = k · δ�

k ≤ k · δ�
ki
. In order to complete the proof, it is thus sufficient to

show that k ≤ (1 + ϕ)(k − ti−1). To see this, let k = ki + k′ for some non-negative
integer k′. Because ti−1 is integral, Lemma 3 implies ti−1 ≤ �ϕki−1�. Since ϕ is
irrational and ki−1 is integral, ϕki−1 cannot be integral, thus

k − ti−1 = k′ + ki − ti−1 ≥ k′ + �(1 + ϕ)ki−1� − �ϕki−1� = k′ + ki−1 + 1.

This completes the proof, since

(1 + ϕ)(k − ti−1) ≥ (1 + ϕ)(k′ + ki−1 + 1) > k′ + (1 + ϕ)ki−1 + 1 ≥ k′ + ki = k.

��
Corollary 1 follows ifwe replace S�

ki
by anα-approximate solution for cardinality ki .

3 Lower bound on the best-possible competitive ratio

In this section, we show the second part of Theorem 1, i.e., we give a lower bound
on the best-possible competitive ratio for the maximization of incremental problems
with monotone, sub-additive, and accountable objective functions. For this purpose,
we define the Region Choosing problem. In this problem, we are given N disjoint
sets R1, . . . , RN , called regions, with region Ri containing i elements with a value of
δ(i) each. We say that δ(i) is the density of region Ri . The total value of all elements
in the region Ri is v(i) := i · δ(i) for all i ∈ {1, . . . , N }.

The objective is to compute an incremental solution S ⊆ U := ⋃N
i=1 Ri such

that the maximum value of the items from a single region in S is large. Formally, the
objective function is given by f (S) := maxi∈{1,...,N } |Ri ∩ S| · δ(i).

Observation 1 Region Choosing has a monotone, sub-additive, and accountable
objective function.

Proof The objective function of Region Choosing is monotone by definition.
Let S, T be two solutions to an instance of the Region Choosing problem, and

consider a region RS∪T ∈ argmaxi∈{1,...,N } |Ri ∩ (S ∪ T )| · δ(i) of maximum value
in the solution S ∪ T . Let vX denote the total value of the items from region RS∪T in
solution X . Then,

f (S ∪ T ) = vS∪T ≤ vS + vT ≤ f (S) + f (T ),

which proves sub-additivity.
To show accountability, let RS be the region of maximum value in solution S.

We need to find s ∈ S with f (S\{s}) ≥ f (S) − f (S)/|S|. If S\RS = ∅, then, for
every s ∈ S, we have

f (S\{s}) = f (S) − f (S)/|S|.
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Otherwise, for every s ∈ S\RS , we have

f (S\{s}) = f (S) ≥ f (S) − f (S)/|S|.

��
We state the following tight lower bound without proof.

Proposition 1 The algorithm of the previous section has competitive ratio at least
ϕ + 1 for Region Choosing for N → ∞ and with δ(i) = 1 for all i ∈ {1, . . . , N }.

For our general lower bound, we set δ(i) := iβ−1 for some β ∈ (0, 1) that we
will choose later. For this choice of β, we have δ(i) < δ( j) and v(i) > v( j) for
0 ≤ j < i ≤ N . Also, for N → ∞ we have limi→∞ v(i) = ∞. We call instances of
the Region Choosing problem in this form β-decreasing. Observe that in every β-
decreasing instance the optimum solution of cardinality i ≤ N is to take all i elements
from region Ri . This solution has value f �

i = iβ .
In order to impose a lower bound on the best-possible competitive ratio for β-

decreasing instances, we need some insights into the structure of incremental solutions
with an optimal competitive ratio. First, consider a solution that picks only i ′ < i ele-
ments from region Ri . In this case, we could have picked i ′ elements from region Ri ′
instead – this would only improve the solution, since densities are decreasing. Sec-
ondly, if we take i elements from region Ri , it is always beneficial to take them in
an uninterrupted sequence before taking any elements from a region R j with j > i :
Our objective depends only on the region with the most value, therefore it never helps
to take elements from different regions in an alternating fashion. This leads us the
following observation.

Observation 2 For every β-decreasing instance of Region Choosing there is an
incremental solution with optimal competitive ratio of the following structure: For
k0 < k1 < · · · < km ∈ N with m ∈ N, it takes k0 elements from region Rk0 , followed
by k1 elements from Rk1 , and so on, until finally km elements from region Rkm are
chosen.

Thus, we can describe an algorithm for the Region Choosing problem by an
increasing sequence of region indices k0, . . . , km . Note that, in order to have a bounded
competitive ratio if N → ∞, we must have m → ∞, since limi→∞ v(i) → ∞. We
are interested in a cardinality for which an incremental solution given by k0, . . . , km
has a bad competitive ratio. We define

αi := 1

ki

i∑

j=0

k j ∀i ∈ {0, . . . ,m} .

Observe that αi > 1 for all i ∈ {1, . . . ,m}. We know that the value of the optimum
solution for cardinality αi ki is v(αi ki ) = (αi ki )β , whereas the incremental solution
only achieves a value of v(ki ) = (ki )β . This allows us to derive the following necessary
condition on the αi -values of ρ-competitive solutions.
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Observation 3 If an incremental solution defined by a sequence k0, . . . , km is ρ-
competitive for some ρ ≥ 1, then, for all i ∈ {0, . . . ,m}, we must have

ρ ≥ v(αi ki )

v(ki )
=

(
αi ki
ki

)β

= α
β
i ⇐⇒ αi ≤ ρ

1
β . (2)

We will exclude a certain range of values of ρ by showing that we can find a β ∈
(0, 1) such that, for a sufficiently large number of regions N , necessary condition (2)
is violated. We do this by showing that, for some i� ∈ N and some fixed ε > 0, we
have αi+1 − αi > ε for all i ≥ i�, i.e., as i goes to ∞, condition (2) must eventually
be violated. The following definition relates a value of β ∈ (0, 1) to a lower bound on
the competitive ratio ρ for β-decreasing instances.

Definition 1 A pair (ρ, β) with ρ ≥ 1 and β ∈ (0, 1) is problematic if there is ε > 0
such that for all x ∈ (1, ρ1/β ] it holds that hρ,β(x) < 0, where

hρ,β(x) := (ρ
1
β + ε − x)

1
1−β − x

x − 1 + ε
.

We show that problematic pairs indeed have the intended property.

Lemma 4 If (ρ, β) is a problematic pair, then ρ is a strict lower bound on the compet-
itive ratio of incremental solutions for β-decreasing instances of Region Choosing.

Proof We fix a problematic pair (ρ, β) and let ε be as in Definition 1. Consider a β-
decreasing instance of sufficiently large size N and assume that there is aρ-competitive
incremental solution for this instance, given by the sequence k0, k1, . . . , km . Consider
a cardinality k = ∑i

j=0 k j for any i ∈ {1, . . . , N } for which the incremental solution
takes all elements from regions Rk0 , . . . , Rki . Assume thatwedonot take any additional
elements for larger cardinalities. We are interested in the first cardinality for which ρ-
competitiveness would be violated, i.e., where v(ki ) is not enough to be ρ-competitive.
This is the minimal cardinality ti with f �

ti = tβi > ρkβ
i = ρv(ki ), i.e.,

ti := min
{
ti ∈ N

∣
∣
∣ ti > ρ

1
β ki

}
≤ ρ

1
β ki + 1.

Then, for cardinality ti , the incremental solution must have taken enough value from
a later region to be ρ-competitive. Without loss of generality, we can assume this
region to be Rki+1 , otherwise the incremental solution that skips region Rki+1 is also
ρ-competitive, andwe can consider this solution instead. It follows that the incremental
solution must satisfy

⎛

⎝ti −
i∑

j=0

k j

⎞

⎠ δ(ki+1) ≥ 1

ρ
v(ti ) > kβ

i ,
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which, by definition of αi , implies

(
ρ

1
β ki + 1 − αi ki

)
δ(ki+1) > kβ

i . (3)

Defining qi := ki/ki−1 for all i ∈ {1, . . . , N } gives δ(ki+1) = δ(qi+1ki ) = δ(ki ) ·
qβ−1
i+1 . With this, Eq. (3) can be written as

v(ki ) = kβ
i <

(

ρ
1
β + 1

ki
− αi

)

qβ−1
i+1 δ(ki )ki =

(

ρ
1
β + 1

ki
− αi

)

qβ−1
i+1 v(ki ).

Dividing by v(ki ) yields

qi+1 <

(

ρ
1
β + 1

ki
− αi

) 1
1−β

. (4)

Since the incremental solution isρ-competitive,we haveαi ∈ (1, ρ
1
β ]by condition (2).

Because (ρ, β) is a problematic pair, we have

hρ,β(αi ) = (ρ
1
β + ε − αi )

1
1−β − αi

αi − 1 + ε
< 0. (5)

Observe that since limi→∞ ki = ∞, we can find an i� such that 1
ki

< ε for all i ≥ i�.
Thus, for i ≥ i� Eqs. (5) and (4) imply

qi+1 < (ρ
1
β + ε − αi )

1
1−β <

αi

αi − 1 + ε
.

For i ≥ i�, we therefore get

αi+1 − αi = 1

ki+1

i+1∑

j=0

k j − αi

= 1 + αi

qi+1
− αi

> ε.

But this implies that, if N is sufficiently large, condition (2) eventually gets violated,
which contradicts the fact that the incremental solution has competitive ratio ρ. ��

All that remains is to specify a problematic pair in order to obtain a lower bound
via Lemma 4. It is easy to verify that (2.18, 0.86) is a problematic pair. Note that the
resulting bound of 2.18 can slightly be increased to larger values below 2.19.

Theorem 4 There is no 2.18-competitive incremental Region Choosing algorithm.
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4 The greedy algorithm for augmentable problems

In this section, we analyze the greedy algorithm that computes an incremental solution
S with Sk = Sk−1 ∪ {sk}, where sk ∈ argmaxs∈U\Sk−1 f (Sk−1 ∪ {s}) and S0 =
∅. This algorithm is well-known to have a competitive ratio of e

e−1 ≈ 1.58 if the
objective function f is monotone and submodular [32]. Note that every (non-negative)
monotone and submodular function is sub-additive and accountable. On the other
hand, in general, the greedy algorithm does not have a bounded competitive ratio for
incremental problems.

Observation 4 The greedy algorithm has an unbounded competitive ratio for many
incremental problems with monotone, sub-additive, and accountable objectives, e.g.,
for the Knapsack, the Weighted Independent Set, and the Disjoint Paths
problem.

Proof We construct a knapsack instance with three types of items for small ε > 0 and
any k ∈ N: One itemof size and value both 1−ε, k items of size 2ε and value 1−2ε, and
k items of size and value both ε2. Obviously, the greedy algorithm first takes the largest
item and then continues with the smallest one, since each of them further increases
the maximum value that can be packed in the knapsack of capacity 1. Consequently,
the greedy solution has value below 1 for cardinality k, while the optimum value
approaches k.

We can reproduce the same behavior for the Weighted Independent Set prob-
lem by choosing a star of degree k plus k isolated vertices as our input graph, where
the center of the star has weight 1 − ε, the leaves of the star have weight 1 − 2ε, and
the isolated vertices have weight ε2.

Similarly, for Disjoint Paths, we can choose a long path and many isolated edges
as input. The endpoints of the path form a pair of weight 1 − ε, each edge along the
path is a pair of weight 1 − 2ε, and each isolated edge has weight ε2. ��

Wewill now define a subclass of incremental problems where the competitive ratio
of greedy can be bounded. Observe that submodularity of a function f : 2U → R≥0
implies that, for every S 	= T ⊆ U , there exists an element t ∈ T \S with f (S ∪
{t}) − f (S) ≥ ( f (S ∪ T ) − f (S))/ |T \S|. Accordingly, we can define the following
relaxation of submodularity.

Definition 2 We say that f : 2U → R≥0 is α-augmentable for an α > 0, if for every
S, T ⊆ U with T \S 	= ∅ there exists an element t ∈ T \S with

f (S ∪ {t}) − f (S) ≥ f (S ∪ T ) − α f (S)

|T | . (6)

4.1 Characterization of augmentability

We first observe that augmentability is a relaxation of submodularity in the following
sense. Note also that α-augmentability implies α′-augmentability for α′ > α.
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Proposition 2 Every submodular set function is 1-augmentable. Not every 1-augmen-
table set function is submodular.

Proof Assume that f is submodular, i.e., for all sets X ,Y , we have

f (X) + f (Y ) ≥ f (X ∪ Y ) + f (X ∩ Y ).

For every pair of sets S, T with T \S = {e1, . . . , ek} 	= ∅ it then follows that

k∑

i=1

f (S ∪ {ei }) ≥ f (S) + f (S ∪ {e1, e2}) +
k∑

i=3

f (S ∪ {ei })

≥ 2 f (S) + f (S ∪ {e1, e2, e3}) +
k∑

i=4

f (S ∪ {ei })

· · ·
≥ (k − 1) f (S) + f (S ∪ T ).

This implies that there exists t ∈ T \S with

f (S ∪ {t}) ≥ f (S ∪ T ) + (k − 1) f (S)

k
= f (S ∪ T ) − f (S)

k
+ f (S).

We rewrite this to obtain

f (S ∪ {t}) − f (S) ≥ f (S ∪ T ) − f (S)

|T \S| ≥ f (S ∪ T ) − f (S)

|T | ,

i.e., f is 1-augmentable.
It remains to provide a 1-augmentable function that is not submodular. One such

function f : 2U → R≥0 with U = {e1, e2, e3} is given by

f (S) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

7, if S = U ,

6, if S = {e1, e2},
5, if e1 ∈ S and e2 /∈ S,

|S|, otherwise.

It is easy to verify that this function is 1-augmentable, but it is not submodular (not
even sub-additive), since f ({e1, e3}) + f ({e2}) < f ({e1, e2, e3}). ��

We show the following relationship between 1-augmentability and accountability.
We will see later (Observation 5) that no such relationship holds for α-augmentability
with α ≥ 2.

Proposition 3 Every 1-augmentable function f : 2U → R≥0 is accountable.
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Proof Consider an arbitrary subset T ⊆ U with n := |T | and let S0 := ∅, T0 := T . For
i = 1, . . . , n−1,we incrementally construct sets Si := Si−1∪{ti } and Ti := Ti−1\{ti },
where we can choose ti ∈ Ti−1\Si−1 = Ti−1 such that

f (Si−1 ∪ {ti }) − f (Si−1) ≥ f (Si−1 ∪ Ti−1) − f (Si−1)

|Ti−1| ,

because f is 1-augmentable. With Ti−1 ∪ Si−1 = T and |Ti−1| = n − i + 1, this
yields

f (Si ) ≥ f (T ) − f (Si−1)

n − i + 1
+ f (Si−1) = f (T ) + (n − i) f (Si−1)

n − i + 1
,

or

f (T ) − f (Si ) ≤
(

n − i

n − i + 1

)

( f (T ) − f (Si−1)) .

Letting {tn} := Tn−1 and applying this inequality repeatedly yields

f (T ) − f (T \{tn}) ≤ (
f (T ) − f (S0)

) ·
n−1∏

i=1

n − i

n − i + 1
≤ f (T )

|T | ,

where we used that f is non-negative.
We conclude that tn satisfies the requirement for accountability. ��
Our definition of α-augmentability is meaningful in the sense that it induces an

interesting subclass of incremental problems. In particular, we show that it captures
the objective function of Maximum (Weighted) d-Dimensional Matching for
d = α.

Proposition 4 The objective function of Maximum (Weighted) d-Dimensional
Matching is always d-augmentable, but, for every α < d, there exists an instance
where it is not α-augmentable.

Proof Let an instance of Maximum Weighted d-Dimensional Matching be
given by V1, . . . , Vd and E ⊆ V1 × · · · × Vdw : E → R≥0. Consider S, T ⊆ E
with T \S 	= ∅, and let MS , MS∪T be of maximum weight among all matchings
that are subsets of S, and S ∪ T , respectively. In particular, f (S) = w(MS) and
f (S ∪ T ) = w(MS∪T ).
For e = (v1, . . . , vd) ∈ MS∪T \MS , let MS,e := {e′ = (v′

1, . . . , v
′
d) ∈ MS | vi =

v′
i for some i ∈ {1, . . . , d}} denote the set of elements of MS that intersect e.
Observe that, since MS∪T is a d-dimensional matching, we have

⋃
e∈MS∪T \MS

MS,e ⊆
MS\MS∪T , and that every e′ ∈ MS is contained in at most d such intersection sets.
We can lower bound f (S ∪ {e}) by replacing in MS the elements MS,e by the single
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element e. This yields

∑

e∈MS∪T \MS

( f (S∪{e})− f (S)) ≥
∑

e∈MS∪T \MS

(
w(e) − w(MS,e)

)

≥ w(MS∪T \MS) − d · w
(⋃

e∈MS∪T \MS
MS,e

)

≥ w(MS∪T \MS) − d · w(MS\MS∪T )

= w(MS∪T )−w(MS ∩ MS∪T )−d ·w(MS\MS∪T )

= w(MS∪T ) − w(MS) − (d − 1) · w(MS\MS∪T )

≥ w(MS∪T ) − d · w(MS)

= f (S ∪ T ) − d · f (S).

Note that every summand on the left-hand side of this expression is non-negative,
and summands for e ∈ S are zero. It follows that, if MS∪T \S 	= ∅, there must exist
t ∈ (MS∪T \S) ⊆ T \S with

f (S ∪ {t}) − f (S) ≥ f (S ∪ T ) − d · f (S)

|MS∪T \S|
≥ f (S ∪ T ) − d · f (S)

|T \S|
≥ f (S ∪ T ) − d · f (S)

|T | .

If MS∪T \S = ∅, then f (S ∪ T ) = f (S), and we can choose any t ∈ T \S 	= ∅. Thus,
f is d-augmentable.
To see that f is not α-augmentable for α ∈ (0, d), consider an (unweighted)

instance of Maximum d-Dimensional Matching with Vi = {vi,1, . . . , vi,d}
for i ∈ {1, . . . , d} and E = S ∪ T with S := {(v1,1, v2,2, . . . , vd,d)} and T :=
⋃d

i=1{(v1,i , . . . , vd,i )}. For every e ∈ T \S, we have f (S ∪ {e}) = f (S) = 1, and
thus

f (S ∪ {e}) − f (S) = 0 <
d − α

d
= f (S ∪ T ) − α f (S)

|T | .

Hence, f is not α-augmentable. ��
We show next that 2-augmentability specifically captures the problems Max-

imum (Weighted) (b- )Matching and Maximum Bridge-Flow. Recall that,
for b : 2E → N, a b-matching in an unweighted graph G = (V , E) is a set of
edges M ⊆ E , such that the degree of every vertex v in (V , M) is upper bounded
by b(v). The problem Maximum Weighted b-Matching is defined anologously
toMaximum Weighted Matching.

Proposition 5 The objective function of Maximum (Weighted) b-Matching is
always 2-augmentable, but, for every α < 2, there exists an instance where it is not
α-augmentable.
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Proof Let G = (V , E) be a graph, let w : E → R≥0 be edge weights, let b : V → N

be vertex capacities, and let f : 2E → N such that f (S) denotes the maximumweight
of a b-matching in the subgraph (V , S) of G. Consider two edge sets S, T ⊆ E
with S 	= T and let MS ⊆ S be a maximum weight b-matching in the graph (V , S),
i.e., no vertex v ∈ V is incident to more than b(v) edges in MS and w(MS) = f (S),
where w(X) := ∑

e∈X w(e). We let dMS : V → N denote the vertex degrees of the
subgraph (V , MS), and define lMS (v) to be the weight of the b-matching MS that we
lose if we need to reduce b(v) by one, i.e., for every v ∈ V we define

lMS (v) :=
{
0, if dMS (v) < b(v),

mine={v,w}∈MS w(e), if dMS (v) = b(v).

Now take any edge e = {u, v} of the maximum weight b-matching MS∪T in the
graph (V , S ∪ T ), and assume that we need to add e to MS without violating vertex
capacities, i.e., we may first need to remove edges from MS to make room for e. If e
is already part of MS , we do not need to change the matching, and, in particular, the
weight of the matching remains unchanged. Otherwise, by definition of lMS , we can
ensure that the change in weight of the b-matching is at least

w(e) − lMS (u) − lMS (v).

Observe that, since e ∈ MS∪T , the weight values yielded by lMS (u) and lMS (v)

must originate from edges in MS\MS∪T . Therefore, if we sum the above change
over all edges in MS∪T \MS , and let b′(v) denote the degree of v in the sub-
graph (V , MS∪T \MS), we obtain

w(MS∪T \MS) −
∑

v∈V
b′(v)lMS (v)

≥ w(MS∪T \MS) − 2w(MS\MS∪T )

= w(MS∪T ) − w(MS∪T ∩ MS) − 2w(MS\MS∪T )

= w(MS∪T ) − w(MS) − w(MS\MS∪T )

≥ w(MS∪T ) − 2w(MS)

= f (S ∪ T ) − 2 f (S).

Since MS is a maximummatching in (V , S), no edge in S can have a positive contribu-
tion to this sum. If this expression is still positive, there must be an edge e ∈ MS∪T \S
that increases the weight of MS by at least

( f (S ∪ T ) − 2 f (S))/|MS∪T \S| ≥ ( f (S ∪ T ) − 2 f (S))/|T \S|,

and we get

f (S ∪ {e}) − f (S) ≥ ( f (S ∪ T ) − 2 f (S))/|T \S|,
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as claimed. Otherwise, the right-hand side is not positive, and the inequality is trivially
satisfied by monotonicity of f . Hence, f is 2-augmentable.

To see that the objective function need not be α-augmentable for α < 2, consider
an unweighted path P = (V , E) of length three with edges e1, e2, e3 ∈ E in this
order along the path. Recall that f (X) is the cardinality of a maximum matching in
the subgraph (V , X) for every X ⊆ E . With this, for S := {e2} and T := {e1, e3} we
have

f (S ∪ {t}) − f (S) = 0 <
2 − α

2
= f (S ∪ T ) − α f (S)

|T | ,

for all t ∈ T \S. Thus f is not α-augmentable for α < 2. ��
Proposition 6 The objective function of Maximum Bridge-Flow is 2-augmentable
but not α-augmentable for α < 2.

Proof Recall that for any subset S ⊂ C , f (S) is the value of the maximum flow using
edges in E\(C\S). For any set X ⊆ C , let GX be the graph that contains all the edges
of X , plus all the edges in G that are not in C : Let fS be some maximum flow in GS ,
and let val( fS) be its value. By definition of theMaximum Bridge-Flow objective
function we have val( fS) = f (S).

Now, fS can also be viewed as a flow in GS∪T . Let GS
S∪T be the residual graph in

GS∪T formed by flow fS . Let fr be the maximum flow in GS
S∪T (r for residual), and

let val( fr ) be its value.
By the properties of residual graphs, we know that f (S ∪ T ) = f (S) + val( fr ).

Rearranging we get that val( fr ) = f (S ∪ T ) − f (S). Now, by the property of flows,
the flow fr can be decomposed into source-sink paths and cycles, and we can define
fr to be a max flow in GS

S∪T that contains only paths (no cycles), because such a max
flow must always exist. There are two types of paths to consider in the decomposition
of fr : some use backwards edges in S, while others only forward edges in S∪T . Note
that the total capacity of all backwards residual edges in GS

S∪T is val( fS) = f (S).
Thus, if we let f nbr be the sub-flow of fr that uses no backwards edges (nb for no
backwards edges), and we let val( f nbr ) be its value, then we have

val( f nbr ) ≥ val( fr ) − f (S) = f (S ∪ T ) − 2 f (S). (7)

Now, note that the flow f nbr is decomposed into paths which each cross the cut C
exactly once, because by the problem definition the cut C is directed one way, and
f nbr contains no backwards edges with which to go back to the source side of the
cut. Moreover, none of these paths use any edges in S; if such a path existed, then
it would use no edges in C\S (because it crosses the cut exactly once), so it could
have been added to fs in GS , which contradicts fS being the maximum flow in GS .
Thus, every flow-path in f nbr uses a single edge in T \S and no other edges in C .
Now, for any edge e ∈ T , let f nbr (e) be the flow on e in f nbr . We now argue that
f (S ∪ {e}) − f (S) ≥ f nbr (e). To see this, let GS

S∪{e} be the residual graph of GS∪{e}
defined by flow fS . By the properties of residual graphs we have that f (S∪{e})− f (S)

is precisely the value of the maximum flow in GS
S∪{e}. But note that all the flow-paths
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Fig. 2 Example of a Maximum
Bridge-Flow instance with unit
capacities that is
not 1-augmentable s te2

e1

e3

in f nbr that go through edge e do not go through any other edge in T , and so they are
also valid flow-paths in GS

S∪{e}. Thus, the value of the maximum flow in GS
S∪{e} is at

least f nbr (e), as desired.
Since every flow-path in f nbr only goes through a single edge in T we have

val( f nbr ) = ∑
e∈T f nbr (e). Also, since fS is a maximum flow in GS , we have

f nbr (e) = 0 for e ∈ S, and thus val( f nbr ) = ∑
e∈T \S f nbr (e). Thus, there is some

edge e ∈ T with f nbr (e) ≥ val( f nbr )/|T \S|, so by the argument in the paragraph
above, f (S∪{e})− f (S) ≥ val( f nbr )/|T \S|. Equation (7) then completes the proof.

To see that the objective function need not be α-augmentable for α < 2, consider
the graph G = (V , E) in Fig. 2, where all arcs have capacity 1, and the directed cut
is C = {e1, e2, e3}. Recall that the objective function of the Bridge-Flow problem is
defined such that f (X) is the value of a maximum flow in the graph (V , (E\C) ∪ X)

for X ⊆ C . With this, for S := {e2} and T := {e1, e3} we have

f (S ∪ {t}) − f (S) = 0 <
2 − α

2
= f (S ∪ T ) − α f (S)

|T | ,

for all t ∈ T \S. Thus f is not α-augmentable for α < 2. ��

4.2 Upper bound for the greedy algorithm

We now show the first part of Theorem 2, i.e., we show an upper bound on the com-
petitive ratio of the greedy algorithm for incremental problems with monotone and
α-augmentable objective functions. Note that, by Proposition 2, our result strengthens
the known upper bound of e

e−1 for submodular objectives, by establishing the same
bound for the slightly larger class of 1-augmentable set functions.

Theorem 5 For every maximization problem with monotone and α-augmentable
objective, the greedy algorithm is α eα

eα−1 -competitive.

Proof Fix any k ∈ {1, . . . , |U |} and, for i ∈ {0, . . . , k}, let Si be our greedy
incremental solution after i elements have been added. Then, for i ∈ {1, . . . , k},
α-augmentability applied with S = Si−1 and T = S�

k guarantees the existence of an
element t ∈ S�

k\Si−1 such that

f (Si−1 ∪ {t}) − f (Si−1) ≥ f (Si−1 ∪ S�
k ) − α f (Si−1)

k
≥ f �

k − α f (Si−1)

k
, (8)

where we used monotonicity of f .
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Since we construct Si greedily, we have f (Si ) ≥ f (Si−1∪{t}). With (8) this yields

f (Si ) ≥
(α

k
− 1

) (
1

α
f �
k − f (Si−1)

)

+ 1

α
f �
k ,

or, equivalently,

1

α
f �
k − f (Si ) ≤

(
1 − α

k

) (
1

α
f �
k − f (Si−1)

)

.

Applying this inequality repeatedly, we obtain

1

α
f �
k − f (Si ) ≤

(
1 − α

k

)i
(
1

α
f �
k − f (S0)

)

≤ e− αi
k
1

α
f �
k , (9)

where we used that f (S0) ≥ 0 and 1 + x ≤ ex for x ∈ R.
Finally, setting i = k in (9) yields

f (Sk) ≥ 1

α

(
1 − e−α

)
f �
k ,

or
f �
k

f (Sk )
≤ α eα

eα−1 . ��
With this, we can complement Proposition 3 by showing that there is no relationship

between accountability and α-augmentability for α ≥ 2.

Observation 5 A monotone and accountable set function need not be α-augmentable
for any α. Conversely, for every α ≥ 2, a monotone and α-augmentable set function
need not be accountable.

Proof The first part of the statement follows directly from Observation 4 and Theo-
rem 5.

For the second part of the statement, consider ground set U = {e1, e2, e3} and the
monotone function f : 2U → R≥0 given by

f (S) :=

⎧
⎪⎨

⎪⎩

4, if S = U ,

2, if S = {e1},
|S|, otherwise.

It is easy to verify that f is 2-augmentable and thusα-augmentable forα ≥ 2.However,
f is not accountable, since f (U\{e}) = 2 < 4 − 4

3 = f (U ) − f (U )
|U | for all e ∈ U . ��

4.3 Lower bounds for the greedy algorithm

We now show the second part of Theorem 2, i.e., we show lower bounds on the
competitive ratio of the greedy algorithm. Note that the upper bound of α eα

eα−1 shown
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above converges to α in the limit α → ∞. We first establish an asymptotically tight
lower bound of α for α-augmentable objectives.

Theorem 6 Forα ∈ N,α ≥ 2, the greedy algorithmhas a competitive ratio of at leastα
for the α-augmentable problemMaximum Weighted α-Dimensional Matching.

Proof Consider an instance of Maximum Weighted α-Dimensional Match-
ing with Vi = {vi,1, . . . , vi,2α−1} for i ∈ {1, . . . , α} and E = E1 ∪ E2 ∪ E3,
where we set E1 := ⋃α

i=1{(v1,i , . . . , vα,i )}, E2 := {(v1,1, v2,2, . . . , vα,α)}, and
E3 := ⋃2d−1

i=α+1{(v1,i , . . . , vα,i )}. Let w(e) = 1 for e ∈ E1, let w(e) = 1 + ε

for e ∈ E2, and let w(e) = ε for e ∈ E3, where ε > 0 is arbitrarily small. The
greedy algorithm computes an incremental solution S that first selects the element in
E2, then the elements in E3, and finally the elements in E1. In particular, we have
f (Sα) = 1 + αε and f �

α = α. The competitive ratio of the greedy algorithm is thus
bounded by

ρ ≥ α

1 + αε
→ε→0 α.

��
For submodular objectives, it is well-known that the greedy algorithm has compet-

itive ratio exactly e
e−1 [32]. By Proposition 2, the corresponding lower bound carries

over to 1-augmentable objectives, which implies that our upper bound is tight beyond
the class of all submodular functions. We now show that our upper bound is also tight
for 2-augmentable objectives, which may be an indication that the bound is tight in
general.

To show this lower bound, we construct the following family of instances for the
Maximum Bridge-Flow problem. For k ∈ N, we define a graph Gk = (Vk, Ek)

with designated nodes s and t by (see Fig. 3)

Vk := {s, t} ∪
{
v1i , v

4
i

∣
∣
∣ i = 1, . . . , 2k} ∪

{
v2i , v

3
i

∣
∣
∣ i ∈ {1, . . . , 4k}} ,

Ek := E1
k ∪ E∞

k ∪
2k⋃

i=1

Ek,i ∪
2k⋃

i=1

E ′
k,i ,

E1
k :=

{
(s, v2i ), (v

3
3k+i , t)

∣
∣
∣ i ∈ {1, . . . , k}} ,

E∞
k :=

{
(s, v23k+i ), (v

2
i , v

3
i ), (v

2
3k+i , v

3
3k+i ), (v

3
i , t)

∣
∣
∣ i ∈ {1, . . . , k}} ,

Ek,i :=
{
(s, v1i ), (v

1
i , v

2
k+i ), (v

2
k+i , v

3
k+i ), (v

3
k+i , v

4
i ), (v

4
i , t)

}
∀i ∈ {1, . . . , 2k},

E ′
k,i :=

{
(v1i , v

2
j ), (v

3
3k+ j , v

4
i )

∣
∣
∣ j = 1, . . . , k} ∀i ∈ {1, . . . , 2k}.

The edge capacities uk : Ek → R≥0 are given by uk(e) = ( k
k−1 )

2k+1−i for e ∈ Ek,i ,

by uk(e) = 1
k (

k
k−1 )

2k+1−i for e ∈ E ′
k,i , by uk(e) = 1 for e ∈ E1

k , and by uk(e) = ∞
for e ∈ E∞

k .

123



General bounds for incremental maximization 975

s

v1
1

v1
2k

v2
1

v2
k

v2
k+1

v2
3k

v2
3k+1

v2
4k

v3
1

v3
k

v3
k+1

v3
3k

v3
3k+1

v3
4k

v4
1

v4
2k

t
...

...

...

...

...

...

...

...

1

1

∞

∞

∞

∞

(
k

k−1

)2k

(
k

k−1

)1

∞

∞

∞

∞

1

1

Fig. 3 The lower bound construction Gk for the greedy algorithm

For every Gk , we choose a directed s-t-cut Ck := {
(v2i , v

3
i )

∣
∣ i = 1, . . . , 4k}.

Without loss of generality, we will assume in the following that we can resolve all
ties in the greedy algorithm to our preference. This can be done formally by adding
some very small offsets to the edge weights, but we omit this for clarity. Now consider
how the greedy algorithm operates on graph Gk .

Lemma 5 In step j ∈{1, . . . , 2k}, the greedy algorithm picks edge (v2k+ j ,v
3
k+ j ).

Proof We prove the lemma by induction on j , starting with step j = 1, together with
the fact that all picked edges can fully be saturated. Choosing (v2k+1, v

3
k+1) ∈ Ck in the

first step results in a possible s-t-flow of ( k
k−1 )

2k along the s-t-path in Ek,1, thus fully
saturating the edge. By construction, selecting (v2k+i , v

3
k+i ) ∈ Ck with i ∈ {2, . . . , 2k}

yields less s-t-flow, since these edges have lower capacity. Picking edge (v2i , v
3
i ) ∈ Ck

with i ∈ {1, . . . , k, 3k + 1, . . . , 4k} results in a flow value bounded by the sum of the
incoming edge capacities at v2i or the outgoing edge capacities at v

3
3k+i . In either case,

we get a flow of

1 + 1

k

2k∑

i=1

(
k

k − 1

)i

= 1 + 1

k

⎛

⎜
⎝

(
k

k−1

)2k+1 − 1

k
k−1 − 1

− 1

⎞

⎟
⎠

= 1 + 1

k

(

(k − 1)

(
k

k − 1

)2k+1

− (k − 1) − 1

)

=
(

k

k − 1

)2k

.
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Thus, no other edge results in more s-t-flow than edge (v2k+1, v
3
k+1), and with suitable

tie-breaking we can ensure that the greedy algorithm picks this edge first, as claimed.
Now assume that greedy picked edges (v2k+1, v

3
k+1), . . . , (v

2
k+ j−1, v

3
k+ j−1) before

step j , and these edges can fully be saturated. Then, in step j , it can pick
edge (v2k+ j , v

3
k+ j ) to increase the s-t-flow value by ( k

k−1 )
2k+1− j along the s-t-

path in Ek, j , thus saturating the edge. This is again better than selecting an edge
(v2k+i , v

3
k+i ) ∈ Ck for i ∈ { j + 1, . . . , 2k}, since these edges have lower capacity. For

the remaining edges, we need to account for the fact that the edges (s, v1i ) and (v4i , t)
for i ∈ {1, . . . , j − 1} are already saturated, by induction. Therefore, the gain in flow
value if we add any edge (v2i , v

3
i ) ∈ Ck with i ∈ {1, . . . , k, 3k + 1, . . . , 4k} in step j

is

1 + 1

k

2k+1− j∑

i=1

(
k

k − 1

)i

= 1 + 1

k

⎛

⎜
⎝

(
k

k−1

)2k+2− j − 1

k
k−1 − 1

− 1

⎞

⎟
⎠

= 1 + 1

k

(

(k − 1)

(
k

k − 1

)2k+2− j

− (k − 1) − 1

)

=
(

k

k − 1

)2k+1− j

.

This is again not better than picking edge (v2k+ j , v
3
k+ j ), and with suitable tie-breaking

we can ensure that the greedy algorithm picks (v2k+ j , v
3
k+ j ), as claimed. ��

With this, we are ready to show the following result, which, together with Propo-
sition 6, implies the second part of Theorem 2.

Theorem 7 The greedy algorithm has competitive ratio at least 2e2

e2−1
≈ 2.313 for

Maximum Bridge-Flow.

Proof By Lemma 5, in the first 2k steps, the greedy algorithm picks the edges
(v2k+1, v

3
k+1), . . . , (v

2
3k, v

3
3k). Thus, after step 2k, greedy can send an s-t-flow of value

2k∑

i=1

(
k

k − 1

)i

=
⎛

⎜
⎝

(
k

k−1

)2k+1 − 1

k
k−1 − 1

− 1

⎞

⎟
⎠ = (k − 1)

(
k

k − 1

)2k+1

− k.

On the other hand, the solution of size 2k consisting of the edges (v21, v
3
1), . . . ,

(v2k , v
3
k ), and (v23k+1, v

3
3k+1), . . . , (v

2
4k, v

3
4k) results in an (optimal) flow value of

2k + 2
2k∑

i=1

(
k

k − 1

)i

= 2(k − 1)

(
k

k − 1

)2k+1

.
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This corresponds to a competitive ratio of

2(k − 1)
(

k
k−1

)2k+1

(k − 1)
(

k
k−1

)2k+1 − k
=

2
(

k
k−1

)2k

(
k

k−1

)2k − 1
=

2
(

k
k−1

)2(k−1)+2

(
k

k−1

)2(k−1)+2 − 1
.

Substituting x := k − 1 and using the identity limx→∞(1 + 1/x)x = e, we get the
lower bound on the competitive ratio of the greedy algorithm claimed in Theorem 2
in the limit:

lim
x→∞

2
( x+1

x

)2x ( x+1
x

)2

( x+1
x

)2x ( x+1
x

)2 − 1
= lim

x→∞
2e2

( x+1
x

)2

e2
( x+1

x

)2 − 1
= 2e2

e2 − 1
.

��

5 Conclusion

We have defined a formal framework that captures a large class of incremental prob-
lems and allows for incremental solutions with bounded competitive ratios. We also
defined a new and meaningful subclass consisting of problems with α-augmentable
objective functions for which the greedy algorithm has a bounded competitive ratio.
Hopefully our results can inspire future work on incremental problems from a per-
spective of competitive analysis.

The following open problems are left for future research:

1. Close the gap between our bounds of 2.618 and 2.18 for the best-possible com-
petitive ratio of (deterministic) incremental algorithms.

2. Extend our lower bound of 2.18 to randomized algorithms and/or show that ran-
domized algorithms can perform strictly better than deterministic algorithms in
terms of competitive ratios.

3. For α-augmentable objectives, we showed that our bound of α eα

eα−1 for the com-
petitive ratio of the greedy algorithm is tight when α ∈ {1, 2} and when α → ∞.
Prove or disprove that the bound is tight for all α ∈ N.

4. Prove whether or not the greedy algorithm is a best-possible incremental algorithm
for α-augmentable objectives.
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