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Abstract
Background  Most currently used surgical robots have no force feedback; the next generation displays forces visually. A 
novel single-port robotic surgical system called FLEXMIN has been developed. Through an outer diameter of 38 mm, two 
instruments are teleoperated from a surgeon’s control console including true haptic force feedback. One additional channel 
incorporates a telescope, another is free for special instrument functions.
Methods  This randomized cross-over study analyzed the effect of haptic feedback on the application of intracorporeal forces. 
In a standardized experiment setup, the subjects had to draw circles with the surgical robot as gently as possible. The applied 
forces, the required time spans, and predefined error rates were measured.
Results  Without haptic feedback, the maximum forces (median/IQR) were 6.43 N/2.96 N. With haptic feedback, the maxi-
mum forces were lower (3.57 N/1.94 N, p < 0.001). Also, the arithmetic means of the force progression (p < 0.001) and their 
standard deviations (p < 0.001) were lower. Not significant were the shorter durations and lower error rates. No sequence 
effect of force or duration was detected. No characteristic learning or fatigue curve was observed.
Conclusions  In the experiment setup, the true haptic force feedback can reduce the applied intracorporeal robotic force to 
one-half when considering the aspects maximum, means, and standard deviation. Other test tasks are needed to validate the 
influence of force feedback on surgical efficiency and safety.
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Regaining the sense of touch

In a surgical environment, haptics plays an important role 
for tissue assessment and interaction. Surgeons mainly use 
tactile and force feedback to identify anatomical structures 

like vessels or nerves, to distinguish between healthy and 
diseased tissue as well as for instrument control. The role 
of haptic feedback in surgery is still widely discussed, 
especially since the introduction of robotically assisted 
procedures [1]. When using a master–slave setup, the 
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instrument–tissue interaction point and the surgeon’s hand 
are physically disconnected. As a result, all conceivable hap-
tic feedback is completely eliminated [2, 3]. Restoring the 
haptic information involves a three-step procedure: tactile or 
force assessment, digital signal transformation, and display 
as a perceivable feedback in the haptic interface. In general 
surgery, no generic haptic feedback is in clinical use to date. 
However, technical realization has already been proven in 
experimental setups [4, 5]. Possible causes are high demands 
made of the sensors such as sterilizability, insensitivity to 
influences within the abdominal cavity, and also the imita-
tion of true haptic perception.

“True haptic perception”

With this term we describe force feedback without chang-
ing the somatosensory modality. The opposite could be 
pseudo-haptic feedback, where visual and tactile vibrations 
are transmitted to symbolize grasping forces between the 
instrument jaws [6, 7]. To differentiate the sensor channels, 
we take a closer look at the tactile sense when describing 
a passive recognizing process of several different tactile 
stimuli. It includes static proprioception (spatial awareness), 
visceroception (visceral signaling), nociception (perception 
of pain), thermoception (perception of temperature differ-
ences),, and surface sensitivity (perception of mechanical 
irritations such as compression, vibration,, and elonga-
tion). Some tactile sensations are perceived with direct 
conjunction to kinaesthetic receptors [8]. The combination 
of passive tactile feedback (tissue perception) and dynamic 
kinaesthetic feedback (motion perception, as part of pro-
prioception) is considered haptic feedback [9, 10]. Conse-
quently, haptics generally stands for an active procedure of 
exploration and requires interaction with an object. It can be 
synonymously described as a “tentative understanding.” For 
the interpretation of all sensory information,, we make use 
of different exploratory procedures: unsupported holding, 
enclosure, applied pressure, lateral motion,, and contour fol-
lowing [11–13]. The pursued object properties to be deter-
mined by a surgeon are mainly size, surface, and material 
characteristics as well as position.

Sensitive endoscopic surgeons

Minimally invasive surgeons usually draw conclusions 
regarding tissue texture by visually examining the tis-
sue surface. However, with the exclusive use of visual 
feedback, the subsurface stays hidden. For detailed tis-
sue assessment,, visual feedback has to be combined with 
kinaesthetic feedback in the course of dynamic examina-
tion. Tissue elasticity, for instance, can be estimated by 

observing the tissue deformation during force application 
[14]. Some studies have shown that providing both visual 
and kinaesthetic feedback is superior to solely visual or 
kinaesthetic feedback in terms of tissue characterization 
[15, 16]. Other working groups have argued that direct or 
indirect visual monitoring during tasks performed mini-
mally invasively can completely compensate the absence 
of haptic feedback [17]. It is undeniable that additional 
visual information definitely leads to an improvement in a 
person’s motor skills [18]. However, the reliance on exclu-
sively visual feedback attempts to make a virtue out of a 
necessity since no haptic feedback is available to date. 
The effect of reduced haptic feedback is also seen in lapa-
roscopic surgery. Boer et. al [19] found that sensitivity 
feedback qualities of commercially available laparoscopic 
dissectors are eight times inferior to those of bare fingers. 
Besides the elimination of direct contact with the object 
(no tactile feedback), the transformation of applied forces 
through the instrument shaft is of special interest (modi-
fied kinaesthetic feedback) [3, 20, 21]. Force quality is 
influenced by inverted movement directions (fulcrum 
effect). Force quantity is affected by torsion forces in the 
abdominal wall and friction forces in the trocar [22].

Experiment haptic setup

To investigate the role of haptic feedback in robotic surgery, 
a novel telerobotic master–slave operating system, called 
FLEXMIN (Fig. 1) [23, 24], was developed in a coopera-
tion between Tübingen University Hospital and Darmstadt 
Technical University. The aim and result of this R&D project 
funded by the German Research Foundation (DFG) was a 
single-port system that, in particular, can be inserted rectally 
as for transanal endoscopic micro-surgery (TEM/TEO [25]). 
It incorporates two instruments remote-controlled from a 
surgeon’s control console with force feedback. The slave 
robot with an outer diameter of 38 mm has a camera channel 
for a long telescope and a working channel for insertion of 
special assistance instruments (Fig. 1C).

Research question

We still lack evidence whether haptic feedback gives addi-
tional information to the surgeon, which then helps improve 
surgical techniques and reduce perioperative complica-
tions. Consequently, the relevance of haptics in this con-
text remains unclear [18]. The aim of the present study is to 
quantify the impact of tactile perception on applied forces 
using the surgical robot FLEXMIN in an experiment setup.
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Materials and methods

Master‑slave system FLEXMIN

The presented study was conducted with the FLEXMIN sys-
tem (Fig. 1), a single-port surgical robot (outer shaft diam-
eter 38 mm, two instruments with four degrees of freedom, 
Simulink real-time target machine, sampling rate 4 kHz, 
hardware connected via EtherCAT bus, bandwidth of force 
sensor ~ 6 kHz, and delay between force measurement and 
feedback (1 ms). The study subjects were operated the right 
FLEXMIN slave instrument with their right hand at the right 
haptic interface (Fig. 1B) [26, 27]. FLEXMIN’s control unit 
recorded the trajectories of the instrument tip and also its 
applied force with the help of an additional 6-axis force/
torque (f/t) sensor (Nano17-E, ATI Industrial Automation, 
Apex, NC, USA). For live image presentation, a laparoscope 
(R. Wolf, 10 mm, 25° viewing direction, two-dimensional) 
and an endocam (R. Wolf, 3CCD, PAL) were used. The 
subjects read their task instructions on an LCD monitor on 
their right side and viewed the endovideo on a second LCD 
monitor (24″) in front of them.

Study group

The study group included 31 subjects with no experience in 
laparoscopic or robotically assisted surgical interventions. 
Exclusion criteria were any movement disorder or other neu-
rological disease conditions influencing the motor system of 
the upper body. Necessary precondition for inclusion was at 
least average motor coordination skills when completing the 
Purdue Pegboard Test [28]. Three subjects were left-handed, 
but not excluded because they scored sufficient results on the 

Purdue Pegboard Test using their non-dominant right hand. 
One student was not able to complete the test phase due to 
technical failure. All participants granted their written con-
sent before joining the study. After enrollment, the subjects 
were randomly and equally allotted to two groups (Fig. 4).

Standardized test task

The test task called for precise positioning and moving of the 
right instrument tip. Paper sheets were vertically positioned 
in front of the master–slave console in systematic considera-
tion of ergonomic posture. To ensure standardized condi-
tions, each test round was conducted on a new paper sheet. 
For warm-up, a task with four equal crosses and straight 
dotted lines was used (training task, Fig. 2). The main task 
showed three circles of various size and drawn with a dotted 
line (test task, Fig. 3). Installed behind the sheets was the 

Fig. 1   Single-port master–slave robotic system FLEXMIN. A Surgeon’s control console with haptic interface. B Haptic handle with force feed-
back. C Intracorporeal single-port instrument set with activation unit

Fig. 2   Training task
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force/torque sensor for measurement of the applied touching 
force in XYZ direction. The aim was to continuously trace 
the dotted straight and concentric lines within predetermined 
limits, with minimal force and without lifting the pencil 
lead. The pencil lead was fixed to the right robot effector. 
Leaving the boundaries was counted as an X/Y error. Lift-
ing the pencil lead off the paper sheet was counted as a Z 
error. The reason for choosing a planar circle to be drawn as 
the test task was to avoid several kinds of bias. Firstly, the 
task should be as easy as possible to understand in order to 

avoid information bias. Secondly, all subjects know how to 
drawn a circle on a flat paper. Therefore, there is no learn-
ing curve for the manual action itself. Thirdly, following the 
circular curve located in space requires continuous readjust-
ment of movement in all three directions in space. Fourthly, 
grasping actions would involve an additional grasping force 
that would overlay the drawing force. Since both have to be 
transmitted with the same handle, movement and grasping 
forces might interfere with each other. The drawing action 
avoids such a bias. The drawing of crosses as a warm-up task 
was designed to be even more simple, while also requiring 
continuous gentle contact with the paper. 

Statistical endpoints

Primary statistical endpoint was the assessment of the 
applied maximum touching force. Our hypothesis was that 
applied forces are reduced when using haptic feedback. The 
time required for performance of each circle and the number 
of X/Y and Z errors were defined as second endpoints.

Study design

The presented study was a two-armed prospective trial 
including 31 participants. The number of participants was 
identified by considering effect sizes. The diagram (Fig. 4) 
shows the study design as described below. All subjects 
completed a pre-test questionnaire asking for individual 
parameters such as age, sex, and handedness. Three subjects 
were left-handed and 28 were right-handed. With regard to 
time management and technical realization, students had to 
complete an abbreviated version of the Purdue Pegboard 
Test as instructed by a video and while referring to the Pur-
due Pegboard Test Manual. All instructions were shown 
as text on an additional monitor to the right of the endo 
monitor. The two tasks were demonstrated in brief videos 
shown on the same monitor. The first task was about picking 
up and placing items with the right hand (three times, 30 s 
each time). The second task was a bimanual assembly test 
procedure (three times, one minute each time). All 31 study 
participants showed at least average manual skills. For the 
purpose of familiarizing themselves with the master–slave 
console, a training phase followed. The training task instruc-
tions were demonstrated in a notebook presentation. The 
subjects were encouraged to trace four crosses consisting of 
eight straight dotted lines within given borders by operat-
ing the master–slave console with activated haptic feedback. 
Because of a technical failure on the first test day, that day’s 
last student was not able to complete the training task and 
was therefore excluded. After a 2-min break, the participants 
started the test phase. Under consideration of possible inter-
individual performance differences, a cross-over design was 
chosen for this phase. After another notebook presentation 

Fig. 3   Test task
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giving instructions for the test task, subjects were randomly 
divided into Group A (n = 16) and Group B (n = 14). The 
unequal group sizes were caused by the randomization com-
bined with the unexpected end of the training phase. The 
test task was to trace three circular lines six times within 
predetermined limits (large external circle first, medium 
circle next, small inner circle last). Group A was started by 
performing four test repetitions with activated haptic feed-
back (+), followed by one round without (−) and the last 
round with haptic feedback (+). Group B had the opposite 
sequence (− − − − + −). Consequently, a total number of 
30 × 6 × 3 = 540 circles were traced.

Data acquisition and documentation

The applied touching forces were recorded with Matlab 
software (The MathWorks, Inc., Natick, MA, United States) 
using the f/t sensor. After the test task, X/Y errors in the 
form of drifting lines were counted by two independent 
experts. Z errors were recorded as force values of zero new-
tons and separately counted. Start and stop times for each 
circle were manually marked by pressing a digital switch 
and were also recorded with Matlab software. For additional 
documentation, performance of all test tasks was videoed 
and transferred to a PC/notebook via USB video grabber.

Statistical analysis

For statistical analysis, SPSS version 25 (IBM, Armonk, NY, 
United States) software was used. The groups were analyzed 
for normal distribution using the Shapiro–Wilk W test. For 
normally distributed measured values, the arithmetic means 
and standard deviations were calculated. For distribution-
free data, the median values and the interquartile range 
(IQR) were calculated. No carryover effect caused by rising 
repetition number was found. If the measuring data (forces 
and performance times) were not normally distributed, the 
Wilcoxon test was used to analyze the significance. Prob-
ability values of p < 0.05 were considered significant.

Results

Demographics of participants

Questions 1 to 3 of the pre-test questionnaire were asked 
for demographic details on the participants. The age 
of the 31 study participants ranged from 22 to 32 years 
(25.1 ± 2.2 years); 29 were males and two were female. 
Twenty-eight subjects were right-handed, and three were 
left-handed.

Mean body weight was 78.7 kg ± 16.1 kg, and mean 
height was 181 cm ± 7.9 cm.

The questionnaire was also asked for regular manual 
activities. Of all study participants, 38.7% play an instru-
ment (9.7% keyboard instrument, 29% string instrument), 
64.5% do handicrafts (such as painting, drawing or sculpt-
ing) in their leisure time, 38.7% regularly play skill games 
and 77.4% play computer games (51.6% more often than 
once a month, 25.8% even more often than once a week).

The parameters age, body weight, and height did not 
influence performance quality regarding force and time 
effort, either with or without haptic feedback.

Perdue Pegboard test

The results of the first Pegboard task (positioning with the 
right hand) do not allow any conclusions to be drawn regard-
ing force or time expended by the subjects in the test phase, 
either with or without haptic feedback. The same applies for 
the bimanual assembly test. The maximum touching force 
(Fig. 5) and the total performance time (Fig. 6) depending 
on the geometric mean Pegboard score are illustrated below.

First endpoint (touching force)

All measured data were distribution-free. Without haptic 
feedback, the maximum forces (median/min.–max./IQR) 
were 6.43 N/2.94 N–14.58 N/2.964 N. With haptic feedback, 
the maximum forces were significantly (p < 0.001) lower: 
3.57 N/1.30 N–10.23 N/1.936 N (Fig. 7). When using hap-
tic feedback, the mean forces also were significantly lower 
(p < 0.001) 1.72 N/0.64 N–6.29 N/1.42 N (Fig. 8), as well as 
the standard deviations of the force progressions (p < 0.001) 
0.79 N/0.23 N–2.05 N/0.44 N (Fig. 9). No sequence effect 
was detected in the force (Fig. 10). No characteristic learn-
ing or fatigue curve was visible.

Geometric mean Pegboard score [counts]
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Second endpoints

XY and Z errors

Similar to the first endpoint, no normal distribution 
was found for the second endpoints. The XY error rate 
(median/min.–max./IQR) without haptic feedback was 
0/0–13.33%/3.33%. With haptic feedback, only the inter-
quartile range differed and amounted to 0%. The Z error 
rate without haptics was 6.67/0–93.33%/16.67% versus 
0/0–76.6%/7% with haptics. Analysis of both parameters 
showed no statistical significance (Fig. 11).

Performance time

Median performance time was minimally lower in the haptic 
group (32.8 s versus 37.3 s in the group without haptics), but 
without significance (Fig. 12). For the minimal and maximum 
performance time as well as the interquartile range, haptic 
feedback showed no positive influence.
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Discussion

The presented randomized comparative experiment trial 
showed a benefit of true haptic force feedback as indicated 
by a significant reduction in applied forces. In previous stud-
ies, maximum pulling forces were measured with the gall 
bladder in a box trainer [29]. The used traumatic graspers 
usually damaged the tissue when the pulling force exceeded 
a value of 23.3 N ± 8.2 N. In laparoscopy ,such brute forces 
are applied only with large graspers, namely to tissue that 
will be extracted. When using atraumatic graspers, the tissue 
slipped out at pulling forces in a range of 11.5 N ± 3.2 N, 
whereby it is not clear how “atraumatic” these manipula-
tions really were. In the present study, maximum forces 
ranged from 2.9 to 14.6 N without haptics and from 1.30 
to 10.23 N with haptics. Consequently, this reduction of 
the applied intracorporeal robotic forces by one-half could 
mean the difference whether a tissue is damaged or not. For 
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better interpretation of our results, we classified the complex 
topic of haptics (Fig. 13) reported in the literature. Firstly, 
our study analyzed haptics in a robotic not involved in the 
laparoscopic surgical approach. Secondly, we measured 
only the three-dimensional application force at the tip of 
the surgical instrument, but not the tactile surface informa-
tion. Therefore, we delivered force/kinesthetic feedback and 
not tactile/cutaneous feedback. Thirdly, the force feedback 
was conveyed as a true haptic force feedback unlike visual 
or pseudo-haptic representation [30].

Visual feedback can contain a lot of information, but 
is principally not transparent due to the implied change in 
sensation channel. There is a consensus concerning the fact 
that especially novices perform significantly faster and with 
fewer errors in box trainers or simulator studies when using 
three-dimensional (3D) laparoscopic imaging systems [31]. 

If we had used 3D vision in our study, like in the da Vinci 
robotic system, the non-haptics group might have benefit-
ted more than the 2D group. However, the pencil lead cast a 
shadow on the paper, thus clearly indicating the moment of 
touch. In addition, the notepad was slightly elastic. Hence, 
applying a touch force resulted in visible movement of 
the paper surface. On the other hand, 3D vision requires 
adaption and selection of the subjects. For this reason, the 
authors preferred to use two-dimensional vision with help-
ful illumination instead of 3D. Most existing haptic displays 
emerged from virtual reality environments and generate only 
a pseudo-haptic feedback presented by vibrations or fluid 
surface variations. Only a few cases of true haptic force 
feedback are reported [32, 33]. However, until now, these 
concepts have not provided any proof of concept in general 
surgery. In future, haptic gloves might pose a new research 
area [34]. So far, also no surgical instrument has been clini-
cally established that would allow imitation of the complex 
tactile movements between the fingertips as applied in open 
surgical procedures. Consequently, the only available tac-
tile information is the three-dimensional instrument–tissue 
interaction force and possibly the grasping force [5]. This 
is why there is only little literature addressing surgical pal-
pation with tactile sensors. Schostek et al. [35] technically 
described a tactile sensor with 3 × 10 tactile elements inside 
the instrument jaws. Perri et al. [36] evaluated a laparoscopic 
tactile sensing system with 4 × 15 tactile elements grasping 
ex vivo bovine liver tissue. The force distribution was shown 
visually in the form of a color contour pressure map and the 
total force in a bar chart. Perri found a 71% reduction in the 
applied maximum pressure as compared to an endoscopic 
grasper. However, his results are not comparable with ours, 
because the force was assessed between the jaws and not as a 
forward-pushing force exerted by the instrument tip. In addi-
tion, the feedback was displayed visually. Reiley et al. [37] 
hypothesized that visualization of applied forces is a haptic 
feedback surrogate. In his study, four surgeons with da Vinci 
experience and six novices completed a standardized knot 
tying task under different sensory substitution (no feedback, 
visual feedback, auditory feedback, combined audio-visual 
feedback). The applied force parameters were recorded by 
an instrument tracking system that was integrated in the da 
Vinci robot. The authors found that any sensory substitution 
scenario, alone or in combination, led to a measurable reduc-
tion of applied forces. However, the visual force feedback 
showed an advantage only for surgeons with no da Vinci 
training. The authors suspected that experienced surgeons 
are probably more adept at using visual cues for task com-
pletion [31]. Meccariello et al. [17] share the opinion that 
surgical experience can compensate the lack of haptic feed-
back. In an experimental palpation task, three membranes 
each with a different thickness had to be touched and then 
ordered according to hardness. In addition, a hidden metallic 
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clip behind the membranes had to be identified. The expert 
surgeons scored 8.87 and significantly (p < 0.05) better than 
did the non-experts with a score of 3.57. They also logged a 
shorter performance time of 28.8 s compared to 71.3 s. Since 
only novices participated in our study, it can be assumed 
that if experts had participated we might have found less 
benefit from the haptic feedback, because the experts would 
have found more visual cues for force control. However, the 
“expert effect” can not be carried over to our study, because 
the tasks and the scoring were quite different [32]. Haouch-
ine et al. [38] presented an approach to indirect estimation of 
instrument–tissue interaction forces without any mechanical 
force sensor. A stereoscopic camera gathered two slightly 
different perspectives that were used to calculate a three-
dimensional biomechanical model on-the-fly. The interac-
tion force was estimated from the computed tissue deforma-
tions and was visualized as an augmented live endovideo. 
Nevertheless, the system requires detailed surface textures 
and, difficult to access, subsurface elastic tissue properties. 
Sutherland et al. [32] designed an image-guided robot arm, 
called “neuroArm,” that allows the visual presentation of 
positional and instrument–tissue force information. It was 
used to resect glioma in 18 patients. The elaborate system is 
specialized for neurosurgery offering micro-manipulation, 
high sensitivity, and MR compatibility. The two-armed robot 
is designed for use in an open operative site and supported 
by additional manual instruments. Nevertheless, even though 
the robot is not suitable for the laparoscopic approach, the 
haptic console is of special interest. The applied forces were 
about 10 times smaller than those applied in our laparo-
scopic scenario. By the way, the “neuroArm” robot and 
also a force-sensing surgical tool [39] use the same kind of 
force sensor that we applied in our study. In contrast to the 
aforementioned works, studies have shown that the absence 
of haptic feedback can lead to excessive and inadequate 
force application [26]. In this context, a larger number of 
incidents of tissue damage [40] or inappropriate suture han-
dling [4] have been described. In our comparative study, 
task performance was subjected to neither a learning nor 
a fatigue curve. It can be assumed that the test task was 
brief enough to not impair the subjects’ attention level. The 
highly significant results relativize a possible bias caused by 
the fact that the number of subjects in the two study arms 
differed slightly. Moreover, it seems that the handling of 
the FLEXMIN system was intuitive enough to perform the 
task straight away without a learning effect bias. This is 
the advantage of the standardized experimental setup. We 
are aware that it remains to be proven whether and how the 
impact of real haptic feedback can be transferred to clinical 
routine. So far, the FLEXMIN robotic system is a scientific 
tool and not approved for clinical use.

Conclusion

In the experiment setup, the true haptic force feedback can 
reduce the applied intracorporeal robotic force by one-half 
considering the aspects maximum, mean, and standard devi-
ation. To ensure smooth operation with insensitive surgical 
robots, the surgeon must have learned to interpret visual 
cues of force application. This is possible for experienced 
robotic surgeons as opposed to the novices in our study, but 
is certainly not intuitive. It is desirable to restore force sen-
sation for the robotically operating physician. Giving the 
robotic surgeon force feedback is sensible in any case, espe-
cially since haptics is natural and perfectly compatible with 
diligent visual observation. Further studies with different 
test tasks and subjects having varying surgical experience 
are needed to validate the influence of force feedback and 
pseudo-haptic feedback on surgical efficiency and safety.
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