
Electronic Supplementary Material 1 

2 

Determination of free chlorine based on ion 3 

chromatography - application of glycine as a selective 4 

scavenger 5 

Mohammad Sajjad Abdighahroudi1,2, Torsten C. Schmidt1,3,4 and Holger V. Lutze1,2,3,4 6 

7 

1 University of Duisburg-Essen, Faculty of Chemistry, Instrumental Analytical Chemistry, Universitätsstraße 8 
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Figure S 1 Speciation of glycine and hypochlorous acid, pKa(glycine carboxyl) = 2.35, pKa(glycine 20 

amino) = 9.78, pKa(HOCl) = 7.4 (1) 21 

22 

Figure S 2 Speciation of N-chloroglycine calculated by calculator Plugins MarvinSketch 19.3.0, 23 

2019, ChemAxon (http://www.chemaxon.com) showing a pKa of 1.06 for carboxyl and 3.81 for 24 

amino group 25 

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

P
er

ce
n

ta
g
e 

pH

⁺NH₃-CH₂-COOH

⁺NH₃-CH₂-COO⁻

NH₂-CH₂-COO⁻

HOCl

OCl⁻

0

10

20

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

P
er

ce
n
ta

g
e 

pH

NHCl-CH₂-COO⁻

NHCl-CH₂-COOH

⁺NH₂Cl-CH₂-COO⁻

⁺NH₂Cl-CH₂-COOH



26 

Figure S3 Schematic view of the IC and PCR system. Eluent: 1.6 mmol L-1 sodium carbonate, 27 

flowrate of 0.8 mL min-1, PCR: [KI] = 270 mmol L-1, [ammonium molybdate tetrahydrate] = 28 

50 μmol L-1, [sulfuric acid] = 100 mmol L-1, KI was added separately, flowrate of PCR reagents 29 

0.2 mL min-1, wavelength of UV-detection: 352 nm, injection volume 300 µL 30 
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Figure S4 A graphical representation of DPD procedure for measurement of FAC in the presence 37 

of ClO2  38 

 39 

 40 

Figure S5 A graphical representation of DPD procedure for measurement of intrinsic HOCl 41 

formed in the reaction of ClO2 42 
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 44 

Figure S 6 Calibration and 95% confidence intervals for DPD and IC-PCR-UV methods. Error 45 

bars show the standard deviation of triplicate measurements. (FAC=added HOCl, expressed as 46 

Cl2 equivalents)  47 



 48 

Figure S7 Calibration of FAC using DPD and IC-PCR-UV method. Different concentrations of 49 

FAC in ultrapure water are measured with DPD and N-chloroglycine methods. 50 

 51 

Figure S 8 Residuals of linear regression for DPD and IC-PCR-UV methods. (FAC = added HOCl, 52 

expressed as Cl2 equivalents) 53 
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 55 

Figure S 9 Performance of DPD and N-chloroglycine method (IC-PCR-UV) for FAC measurement 56 

in the presence of ClO2. To measure FAC by DPD method, “scavenged” samples (ClO2) are 57 

subtracted from “not scavenged” samples (ClO2 + HOCl). Different concentrations of FAC 58 

ranging from 0 to 400 µg L-1 are mixed with different ClO2 concentration with 400 µg L-1 being 59 

the sum of FAC and ClO2 (FAC = added HOCl, expressed as Cl2 equivalents) 60 

 61 
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 63 

Figure S10 First order decomposition of N-chloroglycine at different pH values, 64 

[N-chloroglycine]0 = 100 µmol L-1, [phosphate buffer] = 5 mmol L-1 65 

 66 
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Table S1 Anions of the water matrix measured alongside FAC in spiked tap water samples using 74 

N-chloroglycine method (IC-CD); Water sample taken at the University of Duisburg-Essen on 75 

August 24, 2018 with a pH of 7.80. 76 

Anion 
Fluoride 

/ (µg L-1) 

Chloride 

/ (mg L-1) 

Bromide 

/ (µg L-1) 

Nitrate 

/ (mg L-1) 

Sulfate 

/ (mg L-1) 

Concentration 133 63.3 114 4.69 33.0 

Confidence 

interval 
± 2 ± 0.2 ± 4 ± 0.02 ± 0.3 

Precision 0.985 0.996 0.966 0.996 0.99 

 77 
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Text S1: Measurement of monochloramine by modified system 94 

Due to the absence of anionic species for monochloramine and the presence of the conjugate 95 

acid to some extent (pKa = 1.44 (2), Figure S11), monochloramine will not pass the ion suppressor. 96 

To selectively determine monochloramine in water samples, ion suppressor and conductivity 97 

detector can be bypassed. By using the PCR-UV detection, a separation-based quantification can 98 

be performed with this setup. This can selectively determine monochloramine and other ions that 99 

are capable of oxidizing iodide (e.g., chlorite, chlorate). The result from such set up is shown in 100 

Figure S12 and Figure S13. Due to the fact that this system cannot measure most conservative 101 

anions and needs higher skill levels to operate compared to cheaper methods already introduced to 102 

determine monochloramine, everyday use of such a system is not endorsed. However, it can be 103 

used to validate the performance of other methods for chloramine determination.  104 

 105 

Figure S11 Speciation of monochloramine, pKa = 1.44 (2) 106 
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 108 

Figure S12 Chromatogram for separation of 5µmol L-1 monochloramine in IC-PCR-UV: 109 

separation column A Supp 4; Eluent 1.6 mmol L-1 Na2CO3+0.1 mmol L-1 NaHCO3; Flowrate 1 110 

mL min-1; Sample loop 20µL 111 

 112 

Figure S13 Calibration of monochloramine determined by IC-PCR-UV; separation column A 113 

Supp 4; Eluent 1.6 mmol L-1 Na2CO3+0.1 mmol L-1 NaHCO3; Flowrate 1 mL min-1; Sample loop 114 

20µL 115 

 116 



Text S2: N-chloroglycine decomposition 117 

As all chloramines, N-chloroglycine is inherently unstable and decomposes according to 118 

Equations S1 and S2 (3–5). 119 

 

Equation S1 

 

Equation S2 

The most critical parameter affecting the stability of N-chloroglycine is pH (6,7). Therefore, 120 

the kinetics of N-chloroglycine decomposition was determined in different pH values for assessing 121 

the stability of samples to be measured by the N-chloroglycine method (Figure S10). The other 122 

factor of importance is the presence of hydrogen carbonate or any other naturally occurring proton 123 

donor, such as hydrogen phosphate (8). These compounds are acid catalysts and play a role in the 124 

disproportion reaction of chloramines.  125 

The presence of the α-hydrogen in glycine can promote dehydrohalogenation. However, it 126 

seems that N-chloroglycine is relatively stable compared with other organic chloramines (9). A 127 

possible reason can be the absence of the alkane group in the α-carbon for glycine as the simplest 128 

amino acid. Organic chloramines such as N-chloroglycine can also undergo thermal decomposition 129 

(10), and the decomposition rate will decrease a lot at lower temperatures (6,7). 130 

 131 

 132 
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