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Abstract. A universal circuit (UC) can be programmed to simulate any circuit up to
a given size n by specifying its program inputs. It provides elegant solutions in vari-
ous application scenarios, e.g., for private function evaluation (PFE) and for improving
the flexibility of attribute-based encryption schemes. The asymptotic lower bound for
the size of a UC is �(n log n), and Valiant (STOC’76) provided two theoretical con-
structions, the so-called 2-way and 4-way UCs (i.e., recursive constructions with 2 and
4 substructures), with asymptotic sizes ∼ 5n log2 n and ∼ 4.75n log2 n, respectively.
In this article, we present and extend our results published in (Kiss and Schneider
EUROCRYPT’16) and (Günther et al. ASIACRYPT’17). We validate the practicality
of Valiant’s UCs by realizing the 2-way and 4-way UCs in our modular open-source
implementation. We also provide an example implementation for PFE using these size-
optimized UCs. We propose a 2/4-hybrid approach that combines the 2-way and the
4-way UCs in order to minimize the size of the resulting UC. We realize that the bot-
tleneck in universal circuit generation and programming becomes the memory con-
sumption of the program since the whole structure of size O(n log n) is handled by
the algorithms in memory. In this work, we overcome this by designing novel scalable
algorithms for the UC generation and programming. Both algorithms use only O(n)

memory at any point in time. We prove the practicality of our scalable design with a
scalable proof-of-concept implementation for generating Valiant’s 4-way UC. We note
that this can be extended to work with optimized building blocks analogously. More-
over, we substantially improve the size of our UCs by including and implementing the
recent optimization of Zhao et al. (ASIACRYPT’19) that reduces the asymptotic size
of the 4-way UC to ∼ 4.5n log2 n. Furthermore, we include their optimization in the
implementation of our 2/4-hybrid UCwhich yields the smallest UC construction known
so far.
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1. Introduction

Any computable Boolean function f (x) can be represented as a Boolean circuitCg
u,v(x)

with u input wires x = (in1, . . . , inu), v output wires out1, . . . , outv , and g gates for
some u, v, g. The size of such a Boolean circuit is n = u + v + g. Universal circuits
(UCs) are programmable circuits that can simulate any Boolean function f (x) up to a
given size n. To program a UC to compute f , programming or control bits are specified
as further inputs c f = {c1, . . . , cm}. The UC then receives these control bits as inputs
along with the input x and computes the result as UC(x, c f ) = f (x). This means that
the same UC can evaluate different Boolean circuits by specifying the respective control
bits. In analogy to a universal Turing machine, a universal circuit allows to turn any
function into data in the form of a program description.
Several efficient constructions considering both the size and the depth of UCs were

proposed. Valiant proposed in [66] an asymptotically size-optimal UC construction with
size �(n log n) and depth O(n) [68]. He presents two constructions, called 2-way and
4-way UCs, based on so-called edge-universal graphs (EUGs) that utilize either 2 or 4
subcircuits, respectively. The asymptotic complexity of the 4-way UC is ∼ 4.75n log2 n
which is smaller than that of the 2-way UC of ∼ 5n log2 n [66]. The 4-way UC has been
further improved in [72], where its size is reduced to ∼ 4.5n log2 n. An asymptotically
depth-optimal construction with depth �(d) that simulates circuits with depth d was
proposed in [17], but it has a significantly larger size ofO(n3d/ log n). In our paper, due
to the applications in cryptography that we revisit in Sect. 1.1, we concentrate on the
existing size-optimized UCs, especially that proposed by Valiant [66] with asymptotic
size �(n log n) with the optimization presented by Zhao et al. in [72].

1.1. Applications of Universal Circuits

Size-optimized universal circuits have many applications, which we review here and
refer to the original publications for a more detailed description.

Private Function Evaluation (PFE)

The most prominent application of universal circuits is the secure evaluation of private
functions based on secure function evaluation (SFE) or secure computation. SFE enables
two parties P1 and P2 to evaluate a publicly known function f (x, y) on their respective
private inputs x and y, ensuring that none of the participants learns anything about
the other participant’s input apart from the output of the computation. Many secure
computation protocols, such as Yao’s garbled circuit protocol [47,69,70] and the GMW
protocol [32], use Boolean circuits for representing the desired functionality. In some
applications, the function itself should be kept private. This setting is called private
function evaluation (PFE), where we assume that only one of the parties P1 knows the
function f (x), whereas the other party P2 provides the input to the private function x .
P2 should learn no information about f except for an upper bound on the size of the
circuit describing the function, and P1 should learn nothing about x beyond what can
be inferred from the result f (x).
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PFE can be reduced to SFE [1,44,58,63] by securely evaluating a UC that is pro-
grammed by P1 to evaluate the function f on P2’s input x . For this, P1 provides the
control bits c f for the UC and P2 provides his private input x into an SFE protocol that
computes UC(x, c f ). Here, the UC is a public function and the control bits c f—and
therefore the function f—and input x are kept private due to the properties of SFE. The
first implementation of PFE was provided in [44,61], which extends the Fairplay secure
computation framework [51] with universal circuits. The underlying UC construction
achieves a non-optimal asymptotic size of O(n log2 n) and depth O(n log n). We have
shown in [45] that it results in larger UCs than Valiant’s constructions for all reasonable
circuit sizes in practice. The complexity of PFE in this case is determined mainly by the
size and depth of the UC, while the security follows from that of the SFE protocol that
is used to evaluate the UC. If the SFE protocol is secure against semi-honest, covert, or
malicious adversaries, then the PFE protocol is secure in the same adversarial setting.
UC-based PFE can be easily integrated into any SFE framework and can directly benefit
from recent optimizations. For instance, outsourcing UC-based PFE to two or multiple
servers using XOR secret sharing is directly possible with outsourced SFE [42]. The
non-interactive secure computation protocol of [3] can be generalized to obtain a non-
interactive PFE protocol [46]. Moreover, with UC-based PFE, evaluating public and
private parts of a functionality can easily be performed together without modifying the
underlying secure computation framework.
In [40], Katz andMalka presented an alternative approach for PFE that does not rely on

UCs. They use additively homomorphic public-key encryption as well as a symmetric-
key encryption schemeand achieve constant-roundPFEwith linearO(n) communication
complexity. However, the number of public-key operations is linear in the circuit size,
and due to the gap between the efficiency of public-key and symmetric-key operations,
this results in a less efficient protocol. Their protocol is secure against semi-honest adver-
saries, uses Yao’s garbled circuits [70], and has recently been improved in [5], where
the authors modify the algorithm to perform one full execution from which information
can be reused in subsequent more efficient executions of the protocol. Mohassel and
Sadeghian consider PFE with semi-honest adversaries in [53] and propose a generic
PFE framework that can be instantiated with different secure computation protocols.
Their first protocol uses homomorphic encryption with which they achieve linear com-
plexity O(n) in the circuit size n and their second protocol relies solely on oblivious
transfers (OT), which results in a method with O(n log n) symmetric-key operations.
The OT-based construction from [53] or PFE using UCs is more desirable than the lin-
ear homomorphic encryption-based methods in practice, since using OT extension, the
number of expensive public-key operations can significantly be reduced, such that it is
independent of the number of OTs [2,36]. Biçer et al. [6] improve the communication
of the OT-based PFE protocol of [53] by around 40%. The asymptotic complexity of
the OT-based construction of [53] and Valiant’s UCs for PFE is the same, and therefore,
we compare these solutions for PFE in more detail in Sect. 8. Mohassel et al. extend
the framework from [53] to malicious adversaries in [54] with linear complexity O(n),
using additively homomorphic encryption. Active security of UC-based PFE is achieved
by using a secure computation protocol with active security. Even though their claimed
better efficiency, to the best of our knowledge, these protocols have not yet been imple-
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mented and are not as generally applicable as PFE with UCs, e.g., they cannot be easily
combined with secure evaluation of public functions.
Semi-private function evaluation (semi-PFE) has been proposed in [60] and allows

for PFE where the function f is in a set of functions F known by both parties. This
relaxes the necessary topology hiding requirement of generic PFE. Yao’s garbled circuit
can be used for evaluating circuits of the same topology as shown in [59]. Recently,
an automated approach for semi-PFE has been proposed in [39], where the circuits
representing f ∈ F have varying topologies, for which a container topology is found
that can be programmed to compute any of the available topologies. This has therefore
been defined as a set-universal circuit, i.e., a circuit that can be programmed to compute
any circuit from a pre-defined set of circuits. This approach has been further improved
in [41], where a modified garbled circuit protocol allows for efficient semi-PFE with
linear communication in the size of the largest circuit in F . However, semi-PFE does
not suffice for generic PFE where we have an exponential number of possible circuit
topologies.

Applications of PFE

PFE can be applied in scenarios where one of the parties wants to keep the evaluated
function private. One of the first applications for PFE was privacy-preserving checking
for credit worthiness [21], where not only the loanee’s data, but also the loaner’s function
that computes if the loanee is eligible for a credit needs to be kept private. The original
scheme, using garbled circuits, can represent simple policies, but by evaluating aUC their
scheme can be extended to more complicated credit checking policies. [15] shows an
application for secure computation, where evaluating UCs or other PFE protocols would
ensure privacy: When autonomous mobile agents migrate between several distrusting
hosts, the privacy of the inputs of the hosts is achieved using SFE, while privacy of
the mobile agent’s code can be guaranteed with PFE. [57] shows a method to filter
remote streaming data obliviously, using secret keywords and their combinations. Their
scheme can additionally preserve data privacy by using PFE to search the matching
data with a private search function. PFE allows for running proprietary software on
private data, such as privacy-preserving evaluation of diagnostic programs that was
considered in [13], where the owner of the program does not want to reveal the diagnostic
method and the user does not want to reveal his data. Example applications for such
programs include medical diagnostics [9] and remote software fault diagnosis, where
the function and the user’s input are desired to be handled privately. In the protocol
presented in [13], the diagnostic programs are represented as binary decision trees or
branching programs which can easily be converted into a Boolean circuit representation
and evaluated using PFE based on universal circuits. Moreover, PFE can be applied
to create blinded policy evaluation protocols [20,24]. [20] utilizes UCs for so-called
oblivious circuit policies and [18] for hiding the circuit topology in order to create
one-time programs. In [25,59], universal circuits are used for hiding queries in private
database management systems (DBMSs). The Blind Seer DBMS [25] was improved
in [59] by making use of a simpler UC for evaluating queries, which does not hide the
circuit topology. The authors mention that in case the topology of the SQL formula and
the circuit have to be kept private, a generic UC should be utilized. Further applications
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of PFE given in [53] are evaluation of branching programs on encrypted data [37] and
privacy-preserving intrusion detection [56].

UC Applications Beyond PFE

Apart from being used for PFE, UCs can be applied in various other scenarios. Efficient
verifiable computation on encrypted data was studied in [22]. A verifiable computation
scheme was proposed for arbitrary computations, and a UC is required to hide the
function. [29] make use of UCs for reducing the verifier’s preprocessing step. In [30],
a DDH-based multi-hop homomorphic encryption scheme is proposed that uses re-
randomizable garbled circuits, for whichUCs are used to achieve function privacy.When
the common reference string is dependent on a function that the verifier is interested in
outsourcing, then the function description can be provided as input to aUCof appropriate
size. As described in [4], the Attribute-based encryption (ABE) schemes [27,34] for any
polynomial-size circuits can be turned into ciphertext-policy ABE by using UCs. The
ABE scheme of [28] also uses UCs. Universal circuits can be applied for program
obfuscation. Candidates for indistinguishability obfuscation are constructed using a UC
as a building block in [14,26]. The algorithmof [26] has been implemented in [12],which
can be improved using Valiant’s UC implementation [45]. Direct program obfuscation
was proposed in [71], where the circuit is a secret key to a UC. [46] mentions that UCs
can be applied for secure two-party computation in the batch execution setting, where
the cost of evaluating Yao’s garbled circuits is amortized if the same circuit—a UC—is
evaluated [35,49]. This protocol has been made round-optimal in [52].

Implied Theoretical Results

We mention two theoretical results relying on UCs. Both the depth-optimized UC from
[17] andValiant’s size-optimizedUCswere adapted in [8] to constructuniversal quantum
circuits. The design of universal parallel computers was inspired by Valiant’s UCs as
well [33,50].

1.2. Our Contributions and Outline

In Sect. 2,we recapitulate the necessary preliminaries for ourwork.We revisit the asymp-
totically size-optimal UCs of [66] in Sect. 3. This complex construction makes use of an
internal graph representation and programs a so-called edge-universal graph (Sect. 3.1).
Thereafter,wedescribe howanedge-universal graph canbe translated into a universal cir-
cuit (Sect. 3.2). Finally, we revisit Valiant’s 2-way (Sect. 3.3) and 4-way UCs (Sect. 3.4)
and the improved building block proposed by Zhao et al. [72] for the latter.
Our modular programming algorithm (Sect. 4). We detail our modular algorithm for

programming a universal circuit that provides the description of the input function f
as program bits c f to the UC, for both Valiant’s 2-way and 4-way UCs. Our method
consists of two steps, the block edge-embedding (Sect. 4.1) and the recursion point
edge-embedding (Sect. 4.2).

New universal circuit constructions and extensions (Sect. 5). We describe Lip-
maa et al.’s generalization [46] of Valiant’s universal circuit to any k-way UC (Sect. 5.1)
and detail how our modular programming algorithm from Sect. 4 can be directly gener-
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alized for this extension. We continue with presenting a new 3-way UC (Sect. 5.2) that
is predicted to be more efficient than the existing UCs. However, after providing mod-
ular building blocks for this UC, we show that it is asymptotically larger than Valiant’s
UCs, due to an optimization that cannot be applied for one of its building blocks. Then,
we propose a hybrid UC construction (Sect. 5.3) that can efficiently combine k-way
UCs for multiple values of k. With this, we combine Valiant’s 2-way and 4-way UCs
to achieve the smallest universal circuit known so far. Lastly, we provide our scalable
algorithms (Sect. 5.4) that allow for generating and programming UCs with only linear
O(n) memory instead of handling the whole structure of size O(n log n) in memory at
once.
Optimized size and depth of UCs (Sect. 6).We compare the asymptotic (Sect. 6.1) and

concrete (Sect. 6.2) sizes of Valiant’s (2-way and 4-way) UCs and that of different k-way
UCs. We show that of all k-way UCs of Lipmaa et al. [46], Valiant’s 4-way UC provides
the smallest size for large circuits, whereas Valiant’s 2-way UC provides the smallest
depth. We include size optimizations, achieving a linear concrete improvement for all
UCs. Moreover, we show that our 2/4 hybrid method for generating UCs improves over
the 4-way UCs, i.e., both over Valiant’s 4-way UC and over the optimized 4-way UC of
[72].
Implementation of Valiant’s UCs and experiments (Sect. 7). We detail the steps of

our algorithm for a practical realization of Valiant’s UC construction and implement the
2-way and recently optimized 4-way UCs as well as our 2/4 hybrid UC construction.
We note that our implementation is the first implementation that includes the optimiza-
tion of Zhao et al. [72], which achieves the best size ∼ 4.5n log2 n to date. We describe
the architecture of our UC compiler (Sect. 7.1). We experimentally evaluate the per-
formance of our UC generation and programming algorithms with a set of example
circuits (Sect. 7.2). We provide the evaluation of our scalable 4-way UC as well and
compare it with our memory-based implementation of Valiant’s 4-way UC.
Toolchain for private function evaluation using universal circuits (Sect. 8).Weprovide

the implementation of an example application for universal circuits, namely of private
function evaluation (PFE) by extending the ABY secure function evaluation framework
[19] to evaluate our universal circuits (Sect. 8.1). We provide the first implementa-
tion for PFE with O(n log n) complexity and show experimental results for performing
PFE (Sect. 8.2). We theoretically compare PFE with UCs with other state-of-the-art
approaches for PFE (Sect. 8.3).

1.3. Additions to Conference Versions

This journal article is a significantly extended and improved version of the conference
publications [45] and [31]. Our added contributions are as follows.

1. Optimizations.We included the optimized building block of [72] in our 4-way and
hybrid implementations as well as in the size and depth comparisons. This allows
us to compare all state-of-the-artmethods forUCs. This is the first implementation
of their construction, which has the lowest asymptotic and concrete sizes known
so far.
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2. Scalability.We extend our design and implementation with a scalable 4-way UC
construction based onValiant’s 4-wayUC,which reduces thememory complexity
fromO(n log n) toO(n)when generating and programming the universal circuit.
This construction involves a novel layer-by-layer approach for generating and
topologically ordering the universal circuit and programs the structure according
to the recursion steps, i.e., subcircuit by subcircuit.

3. Universal circuit depths. We examine the depth of the universal circuits in addi-
tion to their sizes, since though being optimized for the latter, some applications
also require to minimize the former. For instance, the number of communication
rounds in PFE via secure function evaluation with the GMW protocol [32]—
which in contrast to Yao’s garbled circuits allows to precompute all symmetric
cryptographic operations [64]—depends on the depth of the universal circuit.

4. Comparison and implementation. In our previous works, we have compared the
2-way and 4-way UCs with each other and with the only other existing UC of
[44]. In this work, we implement the hybrid method that uses both 2-way and
4-way UCs and achieves the best concrete size for all simulated circuit sizes. We
also implement our new scalable 4-way UC construction, which utilizes very dif-
ferent algorithms than those applied before for UC generation. We compare these
methods with respect to runtime, communication, and memory consumption.

2. Preliminaries

As preliminaries for our paper, we introduce the graph and circuit theoretic background
in Sect. 2.1 and Sect. 2.2, respectively. We provide a summary of all our notations and
abbreviations in “Appendix A.”

2.1. Graph Theory

In this section, we describe the graph theoretic preliminaries necessary for our work.

Definition 1. The number of incoming [outgoing] edges of a node is called its indegree
[outdegree]. A graph has fanin [fanout] ρ if the indegree [outdegree] of all its nodes is
at most ρ.

We denote by �ρ(n) the set of all directed acyclic graphs with n nodes and fanin and
fanout ρ.

Definition 2. Let G = (V, E) be a directed graph with set of nodes V = {1, . . . , n}
and edges E ⊆ V × V . A mapping ηG : V → {1, . . . , n} is called topological order
if (i, j) ∈ E implies that ηG(i) < ηG( j) and ∀i, j ∈ V : ηG(i) = ηG( j) means
that i = j . In short, i > j implies that there is no edge or directed path from i to j .

A topological order of G ∈ �ρ(n) can be found with computational complexityO(ρn).
Further on, we require a labeling of the nodes in a topological order.
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Definition 3. Edge-embedding is a mapping from graph G = (V, E) into G ′ =
(V ′, E ′) that maps V into V ′ one-to-one, with possible additional nodes in V ′, i.e., V ⊆
V ′ and E into directed paths in E ′, such that all paths are pairwise edge-disjoint, i.e., an
edge can be used only in one path.

Theorem 1. (Kőnig–Hall theorem)Given a directed acyclic graph (DAG) G ∈ �2(n),
the set of edges E can be separated into two disjoint sets E1 and E2, such that
graphs G1 = (V, E1) and G2 = (V, E2) are instances of �1(n), having fanin and
fanout 1 for each node [38,48,66].

Proof of Theorem 1. Given the set of nodes in topological order V = {1, . . . , n}, we
can construct a bipartite graph G = (V , E)with nodes V = {m1, . . . ,mn,m′

1, . . . ,m
′
n}

and edges E such that (mi ,m′
j ) ∈ E if and only if (i, j) ∈ E . It is easy to see that the

fanin and fanout of the resulting bipartite graph is also 2. The edges of G and thus the
corresponding edges of G can be colored in a way that the result is a valid two-coloring.
Having fanin and fanout of at most 2, such coloring can be found directly with the
following method:

1: while there are uncolored edges in G do
2: Choose an uncolored edge e = (mi ,m′

j ) randomly and color the path or cycle
that contains it in an alternating manner: The neighboring edge(s) of an edge of the
first color will be colored with the second color and vice versa.

3: end while

This edge-coloring can be performed inO(n) steps and it defines the edges in E1 and E2,
such that E1 contains the edges colored with color one and E2 the ones with color two
and G1 = (V, E1) and G2 = (V, E2). �

The Kőnig–Hall theorem was used in [45,46] to provide a 2-coloring algorithm for the
edges of a graph with fanin and fanout 2. In its originally proposed form, however,
Kőnig’s theorem [38,48] applies also for k-coloring the edges of any graph with at
most k incoming and outgoing edges for each of its nodes. This transformation can be
easily generalized to graphs in �k(n), in which case the resulting bipartite graph will
have fanin and fanout k. We review this theorem and the corresponding algorithm here.

Theorem 2. (Kőnig’s theorem) If G is bipartite and its nodes have at most k incoming
and outgoing edges, then the number of colors sufficient to color all edges of G is k.

Proof of Theorem 2. ([38,48]) Take colors {1, . . . , k}, and greedily color edges. Let us
assume that at some point the coloring stops because we cannot color more edges. In
this step, (wi , z j ) is an uncolored edge. If we look at the colors of the edges adjacent
to wi and z j , we can define the set of available colors for both nodes. There is at least
one color for both wi and z j due to the fanin and fanout restriction, but there is no color
which is available for both nodes, otherwise we could color (wi , z j ).

There is a color that is used in an edge adjacent to wi , e.g., color a, but not on an
edge adjacent to z j . In the same way, we can find another color b that is used in an edge



1224 M. Y. Alhassan et al.

adjacent to z j , but not to wi . Take the longest unique path P from wi that uses colors a
and b alternatingly.

Indirectly, assume that this path also contains z j . It then terminates in z j due to the
fact that z j is not adjacent with an edge colored with a. Then, P ∪ (wi , z j ) is an odd
cycle, which is impossible since G is bipartite. Therefore, p does not contain z j , and we
can exchange colors a and b on path P and color (wi , z j ) with color a.
This process is continued until there are no uncolored edges in G. �

2.2. Circuit Theory

Definition 4. The fanin [fanout] of a circuit can be defined analogously to the fanin
[fanout] of a graph (cf. Definition 1), i.e., the maximum number of incoming [outgoing]
wires of all its gates, inputs and outputs.

Theorem 3. A circuit C ĝ
u,v with u inputs, ĝ gates, and v outputs and fanin and

fanout ρ > 2 can be transformed to a circuit Cg
u,v with fanin and fanout 2.

Proof of Theorem 3. Shannon’s expansion theorem [61,62] describes how gates with
larger fanin can be reduced to gates with two inputs by adding additional gates, which
results in a circuit Cg̃

u,v with g̃ fanin 2 gates. It was proven in [66] that the general case,
where the fanout of the circuit can be any integer ρ ≥ 2, can be transformed to the
special case when ρ ≤ 2 by introducing copy gates, each of which eliminates one from
the extra fanout of the original gate. We place a binary tree in place of each gate with
fanout larger than 2, following Valiant’s proposition: „Any gate with fanout x + 2 can
be replaced by a binary fanout tree with x +1 gates” [66, Corollary 3.1]. Thus, the class
of Boolean functions with u inputs and v outputs that can be realized by acyclic circuits
with g̃ gates and arbitrary fanout can also be realized with an acyclic fanout-2 circuit
with g̃ ≤ g ≤ 2g̃ + v gates.

Definition 5. We can regard Cg
u,v with u inputs, v outputs, and g gates as a �2(n)

graphG—which we commonly refer to as the graph of circuit Cg
u,v—with n = u+v+g

by creating a node for each input, gate, and output, and an edge for each wire in Cg
u,v .

3. Valiant’s Universal Circuit Constructions

In any circuit Cĝ
u,v , the inputs of each of the ĝ gates are either connected to one of the

u inputs, to the output of a previous gate, or are assigned a fixed constant. Due to the
nature of Valiant’s edge-universal graph (EUG) construction, the input circuit must have
fanin and fanout 2, which can be achieved with the transformations described in Sect. 2.2
and implemented in [44,45]. From here on, and without loss of generality, we assume
that our input circuit Cg

u,v has u inputs, g gates and v outputs and fanin and fanout 2.
The size of a function f represented by a circuit Cg

u,v with fanin and fanout 2 is
n = u + v + g, which can be represented as a graph G ∈ �2(n). In this section,
we describe Valiant’s UC constructions [66,68] that can be programmed to evaluate
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any function of size n. We explain the general idea behind Valiant’s UC construction
[66] in Sects. 3.1 and 3.2, and the 2-way and 4-way UCs along with improvements of
[31,45,46,72] in Sects. 3.3 and 3.4, respectively.

3.1. Valiant’s Edge-Universal Graph Construction

Valiant’s UC construction relies on the notion of so-called edge-universal graphs that
are then translated to universal circuits [66].

Definition 6. A graph Un(�ρ) = (VU , EU ) is an edge-universal graph (EUG) for
�ρ(n) if every graph G = (V, E) in �ρ(n) can be edge-embedded (cf. Definition 3)
into Un(�ρ).

An EUG Un(�ρ) has distinguished nodes called poles P = {p1, . . . , pn} ⊆ VU
where each node a ∈ V = {1, . . . , n} is mapped to exactly one pole with an injective
mapping ϕV : V → VU . This mapping is defined by a concrete topological order ηG

of the original graph G with ϕV (a) = pηG (a), i.e., every node in G has a corresponding
pole in Un(�ρ). Apart from the poles, Un(�ρ) might have additional nodes that enable
the edge-embedding (cf. Sect. 2.1). For each edge (ai , a j ) ∈ E , we then define a path
of variable length z between the corresponding poles ϕV (ai ) = pηG (ai ) = b1 and
ϕV (a j ) = pηG (a j )

= bz as (b1, . . . , bz), where b1, . . . , bz ∈ VU . All these paths are
edge-disjoint, i.e., theydonot use any edge inUn(�ρ) inmore thanonepath (cf. Sect. 2.1).
Let Un(�1) be an EUG for graphs in �1(n) with n poles P = {p1, . . . , pn} (we will

show concrete constructions for such EUGs in Sect. 3.3 and in Sect. 3.4). The nodes of
any topologically ordered �1(n) graph can be mapped to these poles. The poles have
fanin and fanout 1, while all other nodes have fanin and fanout 2.
An EUG Un(�ρ) for ρ ≥ 2 is created by taking ρ instances of Un(�1) EUGs with

poles P1 = {p1,1, . . . , p1,n}, . . . , Pρ = {pρ,1, . . . , pρ,n}, and merging each pole with
its multiple instances, i.e., the set of merged poles P = {p1, . . . , pn} is formed by
merging p1,1, . . . , pρ,i to obtain pi for i = 1, . . . , n. All edges are preserved, and thus,
the poles have fanin and fanout ρ, i.e., Un(�ρ) = (V ′

U , E ′
U ) is an EUG with fanin and

fanout ρ, constructed with Un(�1)1 = (V1, E1), . . . , Un(�1)ρ = (Vρ, Eρ). P contains
the merged poles and V ′

U = P∪ρ
i=1Vi\Pi and E ′

U = ∪ρ
i=1Ei . Thus, the poles inUn(�ρ)

have atmostρ inputs and outputs, and all other nodes have atmost two inputs and outputs.
Example. Let C be the circuit shown in Fig. 1a, and G = (V, E) be the graph of

circuit C with 5 nodes shown in Fig. 1b. Our aim is to edge-embed G into EUGU5(�2).
Therefore, we use two instances of U5(�1): U5(�1)1 in Fig. 1c and U5(�1)2 in Fig. 1d.
The edges (a1, a4), (a2, a3) and (a4, a5) are embedded inU5(�1)1, and the edges (a1, a3)
and (a3, a4) in U5(�1)2. Merging the poles of U5(�1)1 and U5(�1)2 produces U5(�2)

shown in Fig. 1e. In Sect. 3.2, we describe how to retrieve the resulting universal circuit
depicted in Fig. 1f.
Recursion Base. Valiant’s construction is recursive, and the recursion base graphs for
up to 6 nodes are shown in [66, Fig. 3] and [45, Fig. 1]. U1(�1) is a single pole and
U2(�1) and U3(�1) are two- and three-connected poles, respectively. Valiant provides
hand-optimized EUGs forU4(�1),U5(�1) andU6(�1), with 3, 7, and 9 additional nodes,
respectively (cf. [66, Fig. 3]).
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Fig. 1. a An example circuit and b the corresponding �2(5) graph G. c, d The edge-embedding of G into
two U5(�1) instances with poles (p1, . . . , p5). e The edge-embedding of G into the U5(�2) graph of the
universal circuit shown in (f).

3.2. Translating Edge-Universal Graphs into Universal Circuits

In this section, we define universal circuits (UCs) and describe how an edge-universal
graph is translated into a universal circuit.

Definition 7. A universal circuit UC is a Boolean circuit that can be programmed to
compute any circuit Cg

u,v up to a given size n by defining a set of programming bits c f

such that UC(x, c f ) = Cg
u,v(x).

In Valiant’s UC constructions, every node w ∈ VU fulfills a task when Un(�2) is
translated to a UC. Programming the UC means specifying its control bits along the
paths defined by the edge-embedding and by the gates of circuit Cg

u,v . Depending on the
number of incoming and outgoing edges and its type, a nodew is translated as described
below and shown in the example in Fig. 1f.

G1 If w is a pole and corresponds to an input (one of the first u poles) or an output
(one of the last v poles) in G, then w is an input or output in Cg

u,v as well.
G2 Ifw is not a pole and has indegree 1 and outdegree 2, this node has been placed to

copy its input to its two outputs. Therefore, when translated to a UC,w is replaced
by multiple outgoing wires in the parent node (as described in [45]), since the UC
does not need to fulfill the fanout 2 restriction. In Un(�2), w is added due to the
fanout 2 restriction in the EUG necessary for the edge-embedding.

G3 If w is not a pole and has indegree and outdegree 1, w is removed and replaced
by a wire between its parent and child nodes.

G4 If w is a pole and corresponds to a gate (poles {u + 1, . . . , u + g}) in G, w

is programmed as a universal gate (UG). A 2-input UG supports any of the 16
possible gate types represented by 4 control bits of the gate table (c1, c2, c3, c4).
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Fig. 2. Programmable switching blocks [43].

It implements function U : {0, 1}2 × {0, 1}4 → {0, 1} that computes

U (x1, x2, c1, c2, c3, c4) = x1 x2c1 + x1x2c2 + x1x2c3 + x1x2c4. (1)

G5 If w is not a pole and has indegree and outdegree 2, w is programmed as
an X-switching block, which computes X : {0, 1}2 × {0, 1} → {0, 1}2 with
X ((x1, x2), c) = (x1+c, x2−c) as shown in Fig. 2a. The inputs of an X-switching
block are forwarded to its outputs, switched or not switched, depending on control
bit c.

G6 If w is not a pole and has indegree 2 and outdegree 1, w is programmed as a Y-
switching block that computes Y : {0, 1}2×{0, 1} → {0, 1}with Y ((x1, x2), c) =
x1+c as visualized in Fig. 2b. The inputs of a Y-switching block are forwarded
to its output depending on the control bit c, i.e., it provides the functionality of a
2-input multiplexer.

We note that the u inputs and the v outputs can be ordered arbitrarilywithin themselves
as long as the inputs are kept before the g topologically ordered gates and the outputs
after them. Even though the output nodes cause an overhead in Valiant’s UC, they are
required to fully hide the topology of the circuit in the corresponding universal circuit.
Note that optionally it is possible to modify the input circuit such that the outputs of the
last v gates in order are the outputs of the circuit by inserting at most v copy gates [40].

The nodes programmed as UG (G4), X-switching block (G5), or Y-switching block
(G6) are so-called programmable blocks. This means that a control bit c or vec-
tor c = (c1, c2, c3, c4) is necessary aside from the two inputs to define their behavior.
The universal gates are programmed according to the simulated gates in Cg

u,v and the
universal switches according to the paths defined by the edge-embedding of the graph
of the circuit G into the edge-universal graph Un(�2). Depending on whether the path
takes the same direction during the embedding (e.g., arrives from the left and continues
on the left) or changes its direction at a given node (e.g., arrives from the left and con-
tinues on the right), the control bit of the universal switch is programmed accordingly.
In Sect. 7.1, we describe efficient implementations of programmable blocks. All control
bits and vectors together are the programming c f of the UC.

3.3. Valiant’s 2-way UC Construction

We described in Sect. 3.1 that a Un(�ρ) EUG can be constructed of ρ instances
of Un(�1) EUGs. Valiant [66] provides an EUG for �1(n) graphs, two of which can
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Fig. 3. Body block B(2) of Valiant’s 2-way EUG U (2)
n (�1) [66].

build an EUG for �2(n) graphs, which suffices for circuits with 2-input gates that have
at most two outgoing wires. Let P = {p1, . . . , pn} be the set of poles in Un(�1) that
have indegree and outdegree 1, corresponding to the inputs, gates and outputs of the
input circuit Cg

u,v , i.e., poles Pin = {p1, . . . , pu} correspond to the inputs, Pgate =
{p(u+1), . . . , p(u+g)} to the gates, Pout = {p(u+g+1), . . . , pn} to the outputs. The main,

so-called body block B(2) used for constructingValiant’s EUG for�1(n) graphsU (2)
n (�1)

of size∼ 2.5n log2 n is shown in Fig. 3 and consists of 2 poles (large circles), 4 so-called
recursion points (rectangles), and 3 additional nodes (small circles). The corresponding
UC has twice the size ∼ 5n log2 n, since it corresponds to an EUG for �2(n) graphs.
This construction is called the 2-way EUG or UC construction since there are two sets
of recursion nodes at each recursion step as we describe below.
The recursive construction works as follows: The rectangles are special nodes that

build up the set of poles in the next recursion step, i.e., R1
� n
2−1
 = {r11 , . . . , r1� n

2−1
}
and R2

� n
2−1
 = {r21 , . . . r2� n

2−1
} are the poles of two smaller edge-universal graphs

called subgraphs. EUGs are built with these poles which produce new subgraphs with

size � � n
2−1

2 − 1
, such that we have four subgraphs at the next level, etc. The blocks

are chained together at the recursion points to form a skeleton, i.e., each recursion point
belongs to two in the corresponding subgraph. Thus, the main skeleton of the UC con-
sists of � n

2 
 such blocks with poles {p1, p2, . . . , pn}, and the next two skeletons consist
of � � n

2−1

2 
 blocks with sets of poles {r11 , . . . , r1� n

2−1
} and {r21 , . . . r2� n
2−1
}. We visualize

the process of chaining the blocks together to form this skeleton in Fig. 4.
We note that the top (resp. bottom) block of a skeleton does not need the upper

(resp. lower) recursion points since its poles are the inputs (resp. outputs) in the block.
Therefore, we presented optimized so-called head H (2) and tail T (2) blocks that occur
in the top and bottom of a skeleton, respectively, in [31, Fig. 2b–e].
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Fig. 4. Skeleton built of a chain of body blocks B(2) of Valiant’s 2-way EUG U (2)
n (�1).
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Theorem 4. ([66]) The resulting 2-way EUG is edge-universal, and therefore, the
resulting circuit is universal.

Proof of Theorem 4 [Val76]. We recapitulate the proof from [66] thatU (2)
n (�1) is edge-

universal for �1(n), such that any graph with n nodes and fanin and fanout 1 can be
edge-embedded intoU (2)

n (�1). According to the definition of edge-embedding, it has to
be shown that given any �1(n) graph G = (V, E), for any (i, j) ∈ E and (k, l) ∈ E we
can find pairwise edge-disjoint paths from pi to p j and from pk to pl in U (2)

n (�1). As
before, the labeling of nodes V = {1, . . . , n} in G is according to a topological order of
the nodes.
Firstly, each two neighboring poles of the EUG, p2s and p2s+1 for s ∈ {1, . . . , � n

2 
},
are thought of as merged poles, so-called superpoles, with their fanin and fanout becom-
ing 2. In a similar manner, any G ∈ �1(n) graph can be regarded as a �2(� n

2 
) graph
with supernodes, i.e., each pair (2s, 2s + 1) will be merged into one node in a �2(� n

2 
)
graph G ′ = (V ′, E ′). If there are edges between the nodes in G, they are simulated with
loops. The set of edges of this graphG is partitioned to disjoint sets E1 and E2, such that
G1 = (V, E1) and G2 = (V, E2) are instances of �1(� n

2 
) and �1(� n
2 �), respectively.

This can be done efficiently, as shown in Theorem 1. The edges in E1 are embedded
as directed paths in R1

� n
2−1
, and the edges in E2 as directed paths in R2

� n
2−1
. Both E1

and E2 have at most one edge directed into and at most one directed out of any supern-
ode, and therefore, there is only one edge from E1 and one from E2 to be simulated
going through any superpole inU (2)

n (�1) as well. Thus, the edge coming into a superpole
(p2s, p2s+1) in E1 is embedded as a path through r1s−1, while the edge going out of the
pole in E1 is embedded as a path through r1s in the appropriate subgraph. Similarly, the
edges in E2 are simulated as edges through r2s−1 and r2s . These paths can be chosen
disjoint according to the induction hypothesis. Finally, the paths from r1s−1 and r

2
s−1 to

superpole (p2s−1, p2s) as well as the paths from (p2s−1, p2s) to r1s and r
2
s can be chosen

edge-disjoint due to the skeleton built up of the body blocks shown in Fig. 3. With this,
Valiant’s graph construction results in a valid EUG with asymptotically optimal size
O(n log n) and depth O(n) [66]. With the building blocks described in Sect. 3.2, it is
easy to see that the resulting Boolean circuit is universal. �

Implementation.We provided an open-source implementation of this 2-way UC opti-
mized for PFE in [45]. In concurrent and independent related work, Lipmaa et al. [46]
also showed the practicality of Valiant’s 2-way UC. They decrease its total number of
gates compared to that of Valiant’s block (Fig. 3) by oneXORgate. However, the number
of AND gates is exactly the same, and therefore, their improvement does not affect PFE
using UCs, where XOR gates are evaluated for free [44].

3.4. Valiant’s 4-way UC Construction

Similarly to the 2-way EUG construction (cf. Sect. 3.3), Valiant provides a more effi-
cient 4-way EUG or UC construction [66] for �1(n) graphs which can be extended
to an EUG for �2(n) graphs by utilizing two instances U (4)

n (�1)1 and U (4)
n (�1)2 as

described in Sect. 3.1. U (4)
n (�1) has a 4-way recursive structure, i.e., at each recur-
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Fig. 5. Body block B(4) alternatives for 4-way EUG U (4)
n (�1).

sion step, nodes in special sets R1
� n
4−1
 = {r11 , . . . r1� n

4−1
}, R2
� n
4−1
 = {r21 , . . . r2� n

4−1
},
R3

� n
4−1
 = {r31 , . . . r3� n

4−1
} and R4
� n
4−1
 = {r41 , . . . r4� n

4−1
}1 are the poles in the next

recursion step (the main body block is shown in Fig. 5a). The recursion base is the same
as for the 2-way UC construction described in Sect. 3.1. This construction results in UCs
of smaller size ∼ 4.75n log2 n but has a more complicated structure and programming
algorithm. We have studied and implemented this universal circuit in [31] and recapit-
ulate our results here and in Sect. 7. Valiant offers the main, so-called body block B(4)

consisting of 4 poles (large circles), 15 nodes (small circles) as well as 8 recursion points
(rectangles) shown in Fig. 5a. As before, we provide so-called head H (4) and tail T (4)

blocks that occur at the top and bottom of a skeleton in [31, Figs. 4b-4i], respectively.
The blocks are connected such that the 4 top (resp. bottom) recursion points of one block
are the 4 bottom (resp. top) recursion points of the next block. Similarly to the 2-way
EUG, 4 sets are created for n nodes, i.e., R1

� n
4−1
, R

2
� n
4−1
, R

3
� n
4−1
, and R4

� n
4−1
 which

are the poles of 4 U� n
2 
−1(�1) EUGs in the next recursion step. Then, these also create

4 subgraphs until the recursion base is reached (cf. Sect. 3.1).

1n (mod 4) of these have size � n4 − 1�, but for the sake of simplicity, we do not distinguish these here.
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Recently, Zhao et al. in [72] optimized the body block of Valiant’s UC by finding
a more efficient block using exhaustive search over all possible blocks. As opposed
to Valiant’s UC that uses 15 additional nodes in the body block, their block uses only
14 additional nodes, and therefore, their UC achieves an asymptotically better size of
∼ 4.5n log2 n. We depict the further optimized body block B(4) of Zhao et al. in Fig. 5b.
Zhao et al. provide a computer generated proof of that this block can indeed be used to
construct universal circuits. Moreover, they show that there exists no block with only 13
additional nodes that can be used to construct UCs in the same manner. This proves that
the minimal size of a 4-way UC is the achieved ∼ 4.5n log2 n.

Theorem 5. ([66]) The resulting 4-way EUG is edge-universal, and therefore, the
resulting circuit is universal.

The proof of this theorem is analogous to that of Theorem 4.

4. Programming Valiant’s Universal Circuits

We designed the detailed embedding algorithm and the open-source UC implementation
of [45] specifically for the 2-wayUC, dealingwith thewholeUC skeleton as one block. In
contrast, based on the modular design of [46], we modularized the edge-embedding task
into multiple subtasks and described how they can be performed separately in [31]. In
this section, we detail this modular approach for edge-embedding a graph into Valiant’s
�-way EUG, where � = 2 or � = 4: The edge-embedding can be split into two parts,
which are then combined.
In the following, we describe the two main steps of our modular approach pre-

sented in [31] that are based on the edge-embedding algorithm of [45]. 1) Block edge-
embedding (Sect. 4.1) allows for the programming of the blocks visualized in Fig. 3 on
p. 12 and in Figs. 5a or b on p. 14.2) Recursion point edge-embedding (Sect. 4.2) takes
care of the programming of the whole UC. Here, the paths are defined and the necessary
information is provided to the blocks (cf. Sect. 4.2). The process can be generalized
to any 2i -way EUG. Moreover, the same modular edge-embedding algorithm can be
applied with a few modifications for Lipmaa et al.’s generalization to any k-way UC
[46], which we describe later in Sect. 5.1.

4.1. Block Edge-Embedding

We consider the � top (resp. bottom) recursion points of a block (Figs. 3 and 5a or b) as
intermediate nodes where the inputs (resp. outputs) of the block enter (resp. exit). The
blocks are built so that any of these inputs can be forwarded to exactly one of the � poles
of the block and the output of any pole can be forwarded to an output or another pole
with a higher topological order.
We formalize this behavior as follows: In U (�)

n (�1) = (VU , EU ), let B(�) be the
(i − 1)th block in the skeleton made up of blocks visualized in Fig. 3 for � = 2 and
Fig. 5a or b for � = 4 with poles p�i+1, . . . , p�i+�. Let the mapping ηU : VU → N

+
denote a topological order of all nodes and poles in VU . Then, the nodes r1i , . . . , r�

i and
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r1i+1, . . . , r
�
i+1 denote the input and output recursion points of block B(�). Additionally,

let in = (in1, . . . , in�) ∈ {0, . . . , �}� and out = (out1, . . . , out�) ∈ {0, . . . , 2� − 1}�
denote the input and output vectors of B(�). The value 0 of the input and output vectors
is a dummy value which is used if there is no specific path between an input and a
pole, or between a pole and an output of B(�). The output vector has a larger value
range, since a pole can be forwarded to another pole or an output recursion point.
Therefore, we use values 1, . . . , �−1 for poles p�i+2, . . . , p�i+� and values �, . . . , 2�−1
for the output recursion points. Pole p�i+1 cannot be a destination for a path in B(�),
since ηU (p�i+1) is less than the topological order of any other pole in B(�). Additionally,
the values of in and out need to be pairwise different or 0. Every combination of
input and output vector covering the conditions formalized below in Eqs. 2–6 is valid
for B(�). A pair (rli , p j ) ∈ P or (p j , rli+1) ∈ P is a path from rli to p j or p j to rli in

the set of all paths P in B(�). Then, P(�)
B ⊆ P denote the paths that are to be edge-

embedded (cf. Sect. 3.1).

InPolePath: ∀l ∈ {1, . . . , �} : inl �= 0 →(rli , p�i+inl ) ∈ P(�)
B , (2)

PolePolePath: outl �= 0 ∧ outl < � →(p j , p�i+1+outl ) ∈ P(�)
B ∧ ηU (p j ) < ηU (p�i+1+outl ),

(3)

PoleOutPath: outl > � − 1 →(p�i+l , r
outl−�−1
i+1 ) ∈ P(�)

B . (4)

InDiff: ∀ini , in j ∈ in : i �= j →ini = 0 ∨ ini �= in j . (5)
OutDiff: ∀outi , out j ∈ out : i �= j →outi = 0 ∨ outi �= out j . (6)

4.2. Recursion Point Edge-Embedding

Block edge-embedding covers only the programming of the nodes within the blocks of
the UC. Another task is to program the recursion points. We use the construction of [45]
which, in every step, splits a �2(n) graph in two �1(n) graphs, which are merged to
two �2(� n

2 − 1
) graphs. This, as described later, results in a tree of graphs with fanin
and fanout one or two called supergraph [45]. We use this supergraph for defining the
paths in Valiant’s 2-way EUG. For Valiant’s 4-way EUG, we use every second step of
the algorithm with a minor modification. We describe our modular algorithm for the
2-way and 4-way UCs below and in Listing 1.
Let Ck

u,v be the Boolean circuit computing function f that our UC needs to compute
and G ∈ �2(n) its graph representation (cf. Sect. 2.2).

1. Splitting G ∈ �2(n) in two �1(n) graphs G1 and G2: As described in Sect. 3.1,
Valiant’s UC is derived from an EUG for �2(n) graphs, which is built up of two
EUGs (U (�)

n (�1))1 and (U (�)
n (�1))2 for �1(n) graphs merged by their poles. G

is similarly split into two �1(n) graphs G1 and G2, which then need to be edge-
embedded into (U (�)

n (�1))1 and (U (�)
n (�1))2, respectively. G = (V, E) ∈ �2(n)

is split by 2-coloring its edges [45,66], which can always be done due to Kőnig’s
theorem [38,48] recapitulated in Theorems 1 and 2 on p. 7–8. After 2-coloring,
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E is divided into sets E1 and E2, using which we build G1 = (V, E1) and G2 =
(V, E2), with the following conditions:

EdgeInE1orE2 : ∀e ∈ E : (e ∈ E1 ∨ e ∈ E2) ∧ ¬(e ∈ E1 ∧ e ∈ E2). (7)
Fanin1E1 : ∀e = (v1, v2) ∈ E1 : ¬∃e′ = (v3, v4) ∈ E1 : v2 = v4 ∨ v1 = v3. (8)
Fanin1E2 : ∀e = (v1, v2) ∈ E2 : ¬∃e′ = (v3, v4) ∈ E2 : v2 = v4 ∨ v1 = v3. (9)

2. Merging a �1(n) graph into a�2(� n
2 −1
) graph. In an EUG, the number of poles

decreases in each recursion step and merging a �1(n) graph into a �2(� n
2 − 1
)

graph provides information about the paths to be taken. LetG1 = (V, E) ∈ �1(n)

be a topologically ordered graph and Gm = (V ′, E ′) ∈ �2(� n
2 − 1
) be a graph

with nodes V ′ = {v′
1, . . . , v

′
� n
2 
}. We define two labelings ηin and ηout on Gm

with ηin(vi ) = i and ηout(vi ) = ηin(vi ) − 1 = i − 1. Additionally, we define a
mapping θV that maps a node vi ∈ V to a node v j ∈ V ′ with θV (vi ) = v′

� i
2 
, i.e.,

two nodes in G1 are mapped to one node in Gm . At last, we define a mapping θE
that maps an edge ei = (vi , v j ) ∈ E to an edge e j ∈ E ′ with θE ((vi , v j )) =
(vηin(θV (vi )), vηout(θV (v j ))), i.e., every edge in G1 is mapped to an edge in Gm as
follows: e = (vi , v j ) ∈ E is mapped to e′ = (v′

k, v
′
l) ∈ E ′, such that v′

k =
θV (vi ), and the new node of v j in Gm is v′

l+1 (not v′
l ). Gm is built as follows:

V ′ = {v′
1, . . . , v

′
� n
2 
} and E ′ = ⋃

e∈E θE (e). Then for all e = (v′
i , v

′
j ) ∈ E ′

and j < i , e is removed from E ′, along with the last node v� n
2 
 (due to the

definition of θE , it does not have any incoming edges). The resulting Gm is a
topologically ordered graph in �2(� n

2 − 1
).
3. The supergraph for Valiant’s EUG construction. In the first step, G is split into

two �1(n) graphs G1 and G2. G1 and G2 contain all the edges that should be
embedded as paths between poles in the first and second EUGs for �1(n), respec-
tively. We now explain how to edge-embed the �1(n) graph G1 into an EUG
U (�)
n (�1) (for G2 it is analogous).

For edge-embedding in the 2-way EUG,G1 is first merged to a�2(� n
2 −1
) graphGm .

Gm is then 2-colored and split into two �1(� n
2 − 1
) graphs G1

1 and G2
1 [45]. These

get merged to two graphs G1
m and G2

m , which are then 2-colored and split into two

�1(� � n
2−1

2 − 1
) graphs. These steps are repeated until the recursion base is reached.

In the supergraph, Gψ◦1
1 and Gψ◦2

1 are the first and second subgraphs of Gψ
1 for any ψ ,

respectively.
In Valiant’s 4-way EUG construction [66], a supergraph that creates 4 subgraphs in

each step is necessary. We require a merging method where a �1(n) graph is merged to
a �4(� n

4 − 1
) graph where 4 nodes build a new node, and 4-color this graph to retrieve
4 subgraphs. However, this can directly be solved by using the method described above
from [45]: After repeating the 2-coloring and the merging twice, we gain 4 subgraphs
(G11

1 , G12
1 , G21

1 and G22
1 ). These can be used as if they were the result of 4-coloring the

graph obtained by merging every 4 nodes into one.
However, there is a modification in this case: The first 2-coloring is a preprocessing

step, which does not map to an EUG recursion step. Therefore, we have to define another
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Listing 1. Edge-embedding algorithm for Valiant’s �-way EUG.
1 procedure edge−embedding (U , G1 = (V, E))
2 Let S be the set of the � �1 subgraphs of G1 in the supergraph
3 Let R be the � recursion step graphs
4 Let B be the set of blocks in U
5 for al l e = (vi , v j ) ∈ E do
6 Let i ′ and j ′ denote the positions of vi and v j in their blocks

7 bi ← � i
�

 , b j ← � j

�

 / / number of block in which vi and v j are

8 Let out [r1 ] denote the output vector [ recursion points ] of B[bi ]
9 Let in [r0 ] denote the the input vector [ recursion points ] of B[b j ]
10 i f bi = b j do / / vi and v j are in the same block
11 i f vi �= v j do
12 outi ′ ← j ′ − 1
13 end if
14 else / / vi and v j are in different blocks
15 Let s = (V ′, E ′) ∈ S denote the �1 graph with e′ = (pbi , pb j−1 ) ∈ E ′ and e′ is not marked

16 Mark e′
17 Let x denote the number with s = S[x]
18 Set the control bit of r x0 to 1
19 i f b j = bi + 1 do / / b j and bi are neighbours
20 y ← 0
21 else
22 y ← 1
23 end if
24 Set the control bit of r x1 to y
25 outi ′ ← x + � , inx ← j ′
26 end if
27 end for
28 Edge−embed al l blocks in B / / edge−embed all sub−blocks
29 for i = 1 to � do
30 i f S[i] exists do
31 call edge−embedding(R[i] , S[i])
32 end if
33 end for
34 end procedure

labeling ηoutP (v) = ηin(v), since in this preprocessing step we need to keep node v� n
2 
.

Then the creation of the supergraph for the 4-way EUG construction works as follows:
We merge G1 to a �2(� n

2 
) graph with labeling ηin and ηoutP and get Gm . After that,
we split Gm into two �1(� n

2 
) graphs G1
1 and G2

1. These get merged to �2(� n
4 
 − 1)

graphs G1
m and G2

m using the ηin and ηout labelings. Finally, these two graphs get split
into 4 �1(� n

4 − 1
) graphs G11
1 , G12

1 , G21
1 , and G22

1 . These are the relevant graphs for
the first recursion step in Valiant’s 4-way EUG construction. Then we continue for all 4
subgraphs until we reach the recursion base.
�-way Edge-Embedding Algorithm. In Listing 1, we combine block edge-embedding
and recursion point edge-embedding.
Let U denote the part of U (�)

n (�1) without recursion steps (the main skeleton) and
G1 = (V, E) be the �1(n) graph which is to be edge-embedded inU (�)

n (�1). S denotes
the set of � subgraphs of G1 in the supergraph, i.e., S = {G1

1,G
2
1} for � = 2 and

S = {G11
1 ,G12

1 ,G21
1 ,G22

1 } for � = 4. A recursion step graph of U is one of the graphs
having one of the � sets of recursion points as poles (e.g., r11 , . . . , r

1
� n

�
−1
) without the

recursion steps.R denotes the set of all � recursion step graphs of U , and B denotes the
set of all blocks in U .
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We give a brief explanation of Listing 1 that describes the edge-embedding process.
For any edge e = (vi , v j ) ∈ E in G1, bi and b j denote the block numbers in which vi
and v j are. We distinguish between two cases:
Case 1. vi and v j are in the same block: bi = b j . The edge-embedding is solved
within the block, and no recursion points have to be programmed for the path. Therefore,
vector out of block B[bi ] is set accordingly.
Case 2. vi and v j are in different blocks: bi �= b j . There exists an edge e′ = (bi , b j−1)

in one of the � �1(� n
�
−1
) subgraphs of G1 that is not yet used for an edge-embedding.

This determines that the path in the next recursion step has to be between poles pbi
and pb j−1 . We denote with s ∈ S the subgraph of G1 which contains e′ and x denotes
its number in S, i.e., S[x] = s. This implies in which of the � recursion step graphs we
need to edge-embed the path from pbi to pb j−1 , and so which recursion points we need
to program. We first set the control bit of the x th input (resp. output) recursion points
to 1 since the path between the poles with labeling i and j enters (resp. exits) the next
recursion step over this recursion point. A special case to be considered here is when
blocksB[bi ] andB[b j ] are neighbors (i.e., b j = bi +1). Then, the path enters and leaves
the next recursion step graph at the same node, whose control bit thus has to be 0. The
output vector of block B[bi ] is the i ′th value to the x th recursion point, and the input
vector of block B[b j ] is the x th value to the j ′th pole in this block.

We repeat these steps for all edges e ∈ E . Since all input and output vector of all blocks
in B are set, they can be embedded with the block edge-embedding. For all � subgraphs
of G1 in the supergraph and in the EUG, we call the same procedure with S[i] ∈ S,
R[i] ∈ R, 1 ≤ i ≤ �.

5. Extensions to Valiant’s UC Constructions

Here, we describe ideas for novel UC constructions and implementations. Firstly,
in Sect. 5.1, we describe the k-way generalization of Valiant’s UC presented by Lip-
maa et al. in [46]. In Sect. 5.2, we describe our modular building blocks for a potentially
more efficient 3-way UC. We show that Valiant’s optimized U3(�1) cannot directly be
applied as a building block in the construction due to the fact that it must have an addi-
tional node to be part of a generic EUG. We prove that the EUG without this node is
not a valid EUG by showing a counterexample. Therefore, it actually results in a worse
asymptotic size than Valiant’s 2-way and 4-way UCs [66]. Thereafter, in Sect. 5.3, we
propose a hybrid UC, utilizing both Valiant’s 2-way and 4-way UCs or Valiant’s 2-way
and Zhao et al.’s 4-wayUC [72] so that the overall size of the resulting hybrid UC is min-
imized and is at least as efficient as the better construction for the given size (in Sect. 6.2
we show its concrete improvement). Finally, in Sect. 5.4, we propose a different modular
and scalable approach of Valiant’s 4-way UC. This approach requires a lot of modifica-
tions in the UC generation and programming algorithm, but can be generalized to any
k-way UC or to our hybrid UC.
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Fig. 6. k-way EUG construction U (k)
n (�1) [46].

5.1. Generalized k-way UC

In [46], Lipmaa et al. generalize Valiant’s approach by providing a UC with any number
of recursion points k, the so-called k-way EUG or UC. We note that their construction
slightly differs from Valiant’s EUG, since they do not consider the restriction on the
fanout of the poles, i.e., the nodes in the EUG that correspond to universal gates or
inputs (cf. Sect. 3.1). This optimization has also been included in [45] when translating
an EUG to a UC, but including it in the block design leads to better sizes for the number
of XOR gates. This, however, does not make a difference in case of our most prominent
application of private function evaluation (PFE) (cf. Sect. 1.1), where XOR gates are
free, i.e., do not require cryptographic operations and communication.
The idea is to split n = u + v + g in m = � n

k 
 blocks as shown in Fig. 6. Every
block i consists of k inputs r1i , r2i , . . . , rki and k outputs r1i+1, r

2
i+1, . . . , r

k
i+1 as well

as k poles, except for the last block which has a number of poles depending on n mod k.
For every j ≤ k, the list of all r j

i builds the poles of the j th subgraph of the next
recursion step, i.e., we have k subgraphs. Additionally, every block begins and ends
with a Waksman permutation network [67] such that the inputs and outputs can be
permuted to any pole. A Y-switching block is placed in front of every pole pi which
is connected to the i th output of the permutation network as well as the i th output of
a block-intern EUG Uk(�1). This means that Lipmaa et al. in [46] reduce the problem
of finding an efficient k-way EUG U (k)

n (�2) block B(k) to the problem of finding the
smallest EUG Uk(�1). Their solution is to build the block-intern EUG with the UC of
[44], which was claimed to be more efficient for smaller circuits than [66]. Moreover,
they calculate the optimal k value to be around 3.147 with their construction, which
implies that the best solutions are found using small EUGs, for which Valiant provides
hand-optimized solutions (i.e., for k = 2, 3, 4, 5, 6) [66].

We note that the results recently presented by Zhao et al. [72] do not fit into this
generalized k-way construction. Therefore, Zhao et al.’s optimized 4-way block is an
optimization over Valiant’s modular 4-way block construction [66].

Programming the Generalized UC

In this section, we extend the recent work of [46] by providing a detailed and modular
embedding mechanism for any k-way EUG construction. We provide the main differ-
ences to the edge-embedding of the 2-way and 4-way EUG detailed in Sect. 4.
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k-wayBlockEdge-Embedding. In this setting, ourmain block is a programmable block
B(k) with k poles p1, . . . , pk , and k input [output] recursionpoints r10 , . . . , rk0 [r

1
1 , . . . , r

k
1 ].

B(k) is topologically ordered with mapping ηU as defined in Sect. 2.1. Vectors in =
(in1, . . . , ink) ∈ {0, . . . , k}k and out = (out1, . . . , outk) ∈ {0, . . . , 2k−1}k denote the
input and output vectors of B(k), respectively. Values k, . . . , 2k − 1 in out denote the
recursion point targets r11 , . . . , r

k
1 (cf. Sect. 4.1). The setting of in and out is formalized

in Eqs. 2–6 when � = k.
k-way Recursion Point Edge-Embedding. G ∈ �2(n) denotes the transformed graph

of a Boolean circuit Cg
u,v , where n = u + v + g.

1. Splitting G ∈ �2(n) into two �1(n) graphs G1 and G2: Similarly as in Sect. 4.2,
we first split G into two �1(n) graphs G1 and G2 with 2-coloring.

2. Merging a �1(n) graph into a �k(� n
k − 1
) graph G1 = (V, E) ∈ �1(n) is

merged into a �k(� n
k − 1
) graph Gm = (V ′, E ′) (same for G2). Therefore, we

redefine mapping θV (cf. Sect. 4.2) that maps node vi ∈ V to node v j ∈ V ′. In
this scenario, k nodes in V build one node in V ′, so θV (vi ) = v� i

k 
. The mapping
of the edges θE is the same as in the 2-way and 4-way EUG construction, and
(v′

i , v
′
j ) ∈ E ′ where j < i edges are removed along with v� n

k 
 in the end. Gm is
then a topologically ordered graph in �1(� n

k − 1
).
3. The supergraph for Lipmaa et al.’s k-way EUG construction The next step of

the construction is to split Gm ∈ �1(� n
k − 1
) into k �1(� n

k − 1
) graphs. This
is done with k-coloring: A directed graph K = (V, E) can be k-colored, if k
sets E1, . . . , Ek ⊆ E cover the following conditions:

Disjoint ∀i, j ∈ {1, . . . , k} : i �= j → Ei ∩ E j = ∅. (10)

EdgeInEi ∀e ∈ E : ∃i ∈ {1, . . . , k} : e ∈ Ei . (11)

Fanin1Ei ∀i ∈ {1, . . . , k},∀e = (v1, v2) ∈ Ei :
¬∃e′ = (v3, v4) ∈ Ei \ {e} : v2 = v4 ∨ v1 = v3. (12)

According toKőnig’s theorem [38,48] described in Sect. 2.1,�k(n) graphs can always
be k-colored efficiently with a dedicated algorithm. The rest of the supergraph construc-
tion and the way it is used for edge-embedding is the same as for the 2-way and 4-way
EUG as described in Sect. 4.2.

k-way Edge-Embedding Algorithm. The edge-embedding algorithm is the same as
shown in Listing 1, with � = k.

5.2. Potentially More Efficient 3-Way UC

The optimal k value for minimizing the size of the k-way UC was calculated to be 3.147
in [46]. We describe our idea of a 3-way UC. Intuitively, based on an optimization by
Valiant [66], this UC should result in the best asymptotic size. The asymptotic size of
any k-way UC depends on the size of its modular body block B(k) (e.g., Fig. 5a or b on
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p. 14 for the 4-way UC). Once it is determined, the size of the UC is size(U (k)
n (�2)) =

2 · size(U (k)
n (�1)) ∼ 2 · size(B(k))

k n logk n = 2 · size(B(k))
k log2(k)

n log2 n. The modular block

consists of two permutation networks P(k), an EUG Uk(�1), and (k − 1) Y-switching
blocks (cf. Sect. 5.1, [46]).2

Size of Body Block B(3) with Valiant’s OptimizedU3(�1). According to Valiant [66],
an EUG U3(�1) with 3 poles contains only three-connected poles (used as recursion
base in Sect. 3.1). An optimal permutation network P(3) that achieves the lower bound
has 3 nodes as well. This implies that size(B(k)) = 2 · P(3) + size(U3(�1)) + (3− 1) =
11. Then, the size of the UC becomes ∼ 2 · 11

3 log2 3
n log2 n ∼ 4.627n log2 n, which

means an asymptotically by around 2.5% smaller size than that of Valiant’s 4-way UC
with ∼ 4.75n log2 n.
However, there is a flaw in this initial design. Valiant’s U3(�1) only works as an

EUG for 3 nodes under special conditions, e.g., when it is a subgraph within a larger
EUG. There are 3 possible edges in a topologically ordered graph G = (V, E) in �1(3):
(1, 2), (2, 3) and (1, 3). (1, 2) and (2, 3) can be directly embedded in U3(�1) using
(p1, p2) and (p2, p3), respectively. (1, 3), however, has to be embedded as a path through
node 2, i.e., as a path ((p1, p2), (p2, p3)). WhenU3(�1) is a subgraph of a bigger EUG,
this is possible by programming p2 accordingly. However, when we use this U3(�1) as
a building block in the body block of our EUG, it cannot directly be applied, due to the
fact that the programming of p2 depends on other constraints as well. A genericU3(�1)

that can embed (1, 3) without going through p2 as before has an additional Y-switching
block between p2 and p3.
We depict in Fig. 7a the 3-way body block that uses Valiant’s optimized U3(�1) in

the k-way block design of [46] and show that it is not a valid body block for an EUG
construction. Assume that the output of pole p3i+1 has to be directed to pole p3i+3
(green path). Then, it needs to go through pole p3i+2, which means that the red edge
going to p3i+2 is used by this path. However, there can be an other edge coming from
the permutation network as an input to p3i+2, e.g., from p3i from the preceding block
through r1i (blue path). This cannot be directed to p3i+2 anymore, as shown in Fig. 7a,
since the red edge would carry two different values. Therefore, in the 3-way body block
construction, it does not suffice to use Valiant’s optimized U3(�1) [66].
Size of Body Block B(3) withOurGenericU3(�1). In Fig. 7b, we show the 3-way body
block with the genericU3(�1) that allows the output from p3i+1 to be directed to p3i+3
without having to go through p3i+2 (green path), and the edge going into p3i+2 can
be utilized by the path directed into this node (blue path). This results in size(B(3)) =
2 · P(3) + size(U3(�1)) + (3 − 1) = 12, which implies that the size of the UC is
∼ 2 · 12

3 log2 3
n log2 n = 5.047n log2 n. Unfortunately, this is even worse than the size of

the 2-way UCwith∼ 5n log2 n, and we therefore conclude that the most efficient known
UC is Valiant’s 4-way UC with Zhao et al.’s optimization.
Recently, Zhao et al. [72] have shown by exhaustive search over all possible topologies

that the 3-way body block B(3) presented in Fig. 7b results in the smallest 3-way UC by

2We note that in this section, we design the body block according to [46], i.e., the poles do not have a
fanout restriction. However, all other nodes have fanout-2 restriction.
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Fig. 7. Body block B(3) construction for our 3-way EUG U (3)
n (�1).

showing that no block with only 11 additional nodes can be used as a universal block,
and indeed, our block with 12 additional nodes can be utilized.

5.3. 2/4 Hybrid UC Construction

In this section, we detail our hybrid UC based on Valiant’s 2-way and 4-way UCs with
the optimization by Zhao et al. [72], which yields the smallest UCs to date. Given the
size of the input circuit Cg

u,v , i.e., n = u + v + g, we can calculate at each recursion
step if it is better to create 2 subgraphs of size � n

2 − 1
 and utilize the 2-way recursive
skeleton, or it is more beneficial to create a 4-way recursive skeleton with 4 subgraphs
of size � n

4 − 1
.
We assume that for every n, we have an algorithm that computes the size (i.e.,

size(U hybrid(K )
n (�1))) of the hybrid UC for sizes smaller than n. We give details on

how it is computed in Sect. 6. Then, Listing 2 describes the algorithm for constructing a
hybrid UC, at each step based onwhich strategy ismore efficient.We note that our hybrid
construction is generic, and given multiple k-way UCs as parameter K (K = {2, 4} in
our example), it minimizes the concrete size of the resulting UC.



Efficient and Scalable Universal Circuits 1241

Listing 2. Hybrid construction algorithm, where B(k)(i), H (k)(i) and T (k)(i) denote body, head and tail
blocks with i poles in the k-way UC, respectively.

1 procedure hybrid ( p1, . . . , pn , K = {2, 4})
2 Let size(Uhybrid(K )

n′ (�1)) be the function calculating the size of the smaller hybrid constructions with
↪→ size n′ ≤ n

3 for al l k ∈ K do / / Number of poles in the last block for all k
4 i f n | k do
5 mk ← k
6 else
7 mk ← n mod k
8 end if

9 sk ← size(H (k)(k)) +
(
� nk 
 − 3

)
· size(B(k)(k)) + size(B(k)(rk )) + size(T (k)(mk )) +

↪→ m2 · size
(

size(Uhybrid(K )

� n2 −1
 (�1))

)

+ ((k − mk ) · size
(

size(Uhybrid(K )

� nk −1� (�1))

)

10 end for
11 si ← min(sk : k ∈ K ) / / Choose the better construction
12 / / GENERATION
13 Create skeleton for i−way construction with n poles

14 call hybrid
(

r11 , . . . , r1� ni −1
, K
)

, . . . , hybrid
(

r
mi
1 , . . . , r

mi
� ni −1
, K

)

15 i f (i − mi ) > 0 do call hybrid
(

r
mi
1 , . . . , r

mi
� ni −1�, K

)

, . . . , hybrid
(

ri1, . . . , r
i
� ni −1�, K

)

16 end if
17 / / PROGRAMMING

18 Call edge−embedding(U (i),G(i)
1 = (V, E)) / / Call embedding algorithm corresponding to i

19 end procedure

5.4. Scalable 4-way UC Construction

Our existing implementations of [31,45] store the whole UC of sizeO(n log n) in mem-
ory, which therefore becomes a bottleneck when it comes to scalability. In this section,
we present the design of our scalable universal circuit construction. Specifically, we
show how Valiant’s 4-way UC can be modified to useO(n) memory in the input circuit
size n at each step of the execution. We note that our approach is generic, and with
additional implementation effort, it can be extended to any k-way UC as well as for the
4-way UC of Zhao et al. [72].
In this section, we present our design that utilizes two separate phases. The first phase

is scalable UC generation (Sect. 5.4.1), where the universal circuit is generated given
the size n of the input circuit. This is solved by generating the topologically ordered UC
layer by layer, each of which has size O(n). The output of this step is a set of circuit
files, which all contain a subgraph of size O(n), which helps to significantly reduce
the complexity of the second phase, i.e., scalable UC programming (Sect. 5.4.2). In
this step, the subcircuits resulting from the first phase are programmed individually,
i.e., we proceed subcircuit by subcircuit instead of edge by edge of the input circuit as
before. Therefore, the output of this step is a set of programming files that contain the
programming bits respective to the circuit files. In Sect. 7.2, wewill show experimentally
that our scalable UC construction significantly reduces the memory usage.
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Fig. 8. Scalable body block construction. a The first part B0 = B0
4 of the body block, c the second B1 = B1

4 , b
the third B2 = B2

4 , and d the fourth B3 = B3
4 , where further subgraphs are created. We note that the nodes

are shown only for one of the four subgraphs, but they are the same for all four subgraphs. Scalable head and
tail blocks are designed analogously.

5.4.1. Scalable Per-Block UC Generation

The underlying idea behind our scalable UC generation is to generate the blocks of
the main skeleton one by one, only keeping one such block and its corresponding sub-
graph nodes in memory at once. In this scenario, these blocks will be regarded as layers.
Additionally, we store some necessary information from the preceding three layers in
dedicated files, but delete these as soon as they become redundant. The required addi-
tional information is the topological order of nodes that are already defined and have
edges directed into the current layer. Since the number of subgraphs in any layer isO(n),
the number of nodes held in memory at any point is O(n) as well, since in each layer
there are only a constant number of nodes.
Our scalable UC generation relies on the fact that at each block of the main skeleton,

based on the modulo 4 result for each next recursion step, we know which part of the
next subgraph skeleton or potentially recursion base graph we build at each layer. This
observation helps us reconstruct how the subgraphs may look like for a given body block
inValiant’s 4-wayUC. Since the structure of this is complicated and there aremany cases
to consider, we show in Fig. 8 the cases for Valiant’s body block from Fig. 5a on p. 14
[66] and note that head and tail blocks can be constructed analogously. Moreover, a
similar scalable design can be constructed for Zhao et al.’s body block (Fig. 5b) [72].
Figure 8d shows a recursive block constructionwith Figs. 8b, c being base cases. From

Fig. 8, each body block construction type is denoted by Bi where i = {0, 1, 2, 3}3 is the

3Note that our design corresponds to Valiant’s 4-way UC, but for simplicity, we use Bi instead of B(4)i .
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Table 1. Files storing the UC in our scalable UC generation for an example with n = 36.

f 0

f 4 … f 1 g1 … g4

f 44 f 43 f 42 f 41 … f 14 f 13 f 12 f 11 g11 g12 g13 g14 … g41 g42 g43 g44

… H …
H0 … H0 B H0 … H0

H1 … H1 B H1 … H1

H2 … H2 B H2 … H2

R0
1 R0

1 R0
1 R0

1 H3 … R0
1 R0

1 R0
1 R0

1 H3 B H3 R0
1 R0

1 R0
1 R0

1 … H3 R0
1 R0

1 R0
1 R0

1
T 0
4 … T 0

4 B T 0
4 … T 0

4
T 1
4 … T 1

4 B T 1
4 … T 1

4
T 2
4 … T 2

4 B T 2
4 … T 2

4
T 3
4 … T 3

4 T T 3
4 … T 3

4

1 1 1 1 8 … 1 1 1 1 8 36 8 1 1 1 1 … 8 1 1 1 1

position of nodes between two poles in a body block in the subgraph. A given subgraph
has node(s) between every two set of recursion points of the parent graph to which this
subgraph belongs. We know that the recursion points, for instance {r11 , . . . , r1� n−4

4 
}, are
the poles of the next recursion step subgraph. Analogously, we can design head Hi ,
tail T i

x , and special last body blocks Bi
x , where x = {1, 2, 3, 4} denotes the type of the

body or tail block based on the number of input or output recursion points, respectively.
In the following, we use an example to detail how our scalable UC generation works.
We depict the resulting UC files and what their content is in Table 1.
Generation of first (main) skeleton. Generating the first (main) skeleton of the two

Un(�1) EUGs that are merged into aUn(�2), EUG differs from the next, recursive steps.
Let us consider an example of a DAG with n = u + k + v = 36. Ideally, our approach
constructs twice the same block from the left and right Un(�1) EUGs. In this scenario
for Un(�1), we have one (merged) head block H , seven (merged) body blocks B, and
one (merged) tail block T4 with 4 nodes in the main skeleton. Constructing the first
head block is straightforward according to [31, Fig. 4e] as we do not have to construct
any subgraph. Thereafter, we construct seven body blocks according to Fig. 5a and a
tail block according to [31, Fig. 4f]. However, these merged blocks require constructing
the subgraph nodes in the same layer alongside with it, as we describe next. Note that
in this first step, we actually generate twice the four sets of subgraph nodes, since the
two Un(�1) EUGs are merged into a Un(�2) EUG (cf. Sect. 3.1), but in later recursion
steps, only four sets of subgraph nodes are generated.
Generating subgraph nodes recursively per layer.Wecan generate the subgraph nodes

recursively for all recursion steps at a given position for nodes n. In our examplewith n =
36, we only have a head and a tail block for the recursion graph with � n−4

4 
 = 8 poles.
Therefore, we construct the first body block with H0 as subgraph level, the second body
block with H1, thereafter H2 and H3. The fifth body block is constructed with T 0, the
sixth and seventh with T 1 and T 2, respectively, and the tail block with T 3. Recursive
scalable blocks are H3 and B3 as shown in Fig. 8d. T 3

4 does not have recursion points
anymore, since a tail block has no output recursion points. For n = 8, we reach a
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recursion base with � n−4
4 
 = 1. However, for a larger n, more recursion steps might be

necessary. Therefore, at each layer, we generate all subgraph nodes necessary, and if a
recursion step, i.e., H3 or B3, occurs, we generate the nodes of the next subgraph as
well, etc. We denote the recursion bases by R1, R2, R3, and R4 with 1, 2, 3, and 4 nodes,
respectively.
With this, we have shown how to generate topologically ordered universal circuits

using the file system and achieve a scalable algorithm for UC generation that stores at
most O(n) information in memory. Moreover, our approach requires 4.75n log2 n disk
space to store the universal circuit as before, and additionally O(n) extra storage space
for every layer. However, we only store additional data for the prior three layers and
delete any other stored data at each step. In the end of the UC generation, we can delete
any additionally stored data. The maximum storage requirement for our algorithm is
before deleting the additionally stored data for the last layer, since the size of the UC
dominates the storage requirements at any other step (when only a part of it is generated
yet).

5.4.2. Scalable UC Programming

As described in Sect. 5.4.1, we design our scalable UC generation such that each sub-
graph is written into a separate file. This is important to also allow the programming step
to require only O(n) memory. It can be observed in Listing 1 on p. 17 that the recur-
sion point edge-embedding algorithm inherently handles the UC subgraph by subgraph
(cf. Sect. 4.2), which in turn calls the block edge-embedding for all blocks in a subgraph.
We observe that each skeleton can be programmed based on the information stored only
in the corresponding �1 graph, and therefore, we can store the programming bits in a
separate file for each subgraph in the same order as the nodes of the subgraph.
After reading a subgraph from its file resulting from the UC generation step detailed

in Sect. 5.4.1, it is programmed as described in Listing 1. The embedding starts from the
main skeleton in file f 0 and continues with f 1, . . . , f 4 and g1, . . . , g4, etc., and results
in the corresponding programming files p0, p1, . . . , p4 and q1, . . . , q4, etc.

6. Size and Depth of UCs

In this section, we review the size and depth of the UCs considered in this article. The
size of the edge-universal graph U (k)

n (�1) is the number of nodes, counting all the poles
and nodes created using Valiant’s construction from Sect. 3.1. The depth of the edge-
universal graph is the number of nodes on the longest path between any two nodes, i.e.,
essentially the path between the first input and last output. U (k)

n (�2) is built from two
U (k)
n (�1) edge-universal graphs as described in Sect. 3.1. When transforming U (k)

n (�2)

into a UC, the first u poles are associated with inputs, the last v poles with outputs,
and the g poles between are realized with universal gates (cf. Eq. 1 on p. 11) whose
programming is defined by the corresponding gates in the simulated circuit. The rest of
the nodes of U (k)

n (�2) are translated into universal programmable (X and Y) switching
blocks (cf. Fig. 2 on p. 11), whose programming is defined by the edge-embedding of



Efficient and Scalable Universal Circuits 1245

the graph of the circuit G into U (k)
n (�2). Thus, when considering the sizes and depths

of the UCs, we realize the nodes and poles as circuit building blocks and express the
concrete and asymptotic sizes in the number of switches (X and Y ) and universal gates
(U ) (cf. Sect. 3.2).

In Sect. 6.1, we recapitate the asymptotic size and depth of Valiant’s 2-way and
4-way UCs [66], i.e., UCValiant-2 and UCValiant-4, respectively, of Zhao et al.’s 4-way
UC UCZhao et al.-4 [72] and of the smallest k-way UCs following Lipmaa et al.’s gen-
eralization [46]. Thereafter, in Sect. 6.2, we present optimizations that reduce the size
(and potentially the depth as well) of UCs, regardless of which constructions were
used for their generation. We revise the concrete sizes and depths of UCValiant-2 and
UCValiant-4, UCZhao et al.-4 as well as that of our 2/4 hybrid UCs UCH(Valiant-2,4) and
UCH(Valiant-2, Zhao et al.-4) (cf. Sect. 5.3).

6.1. Asymptotic Size and Depth of k-Way UCs

Lipmaa et al.’s k-way UC [46] is discussed briefly in Sect. 5.1 and is depicted in Fig. 6
on p. 19. They show that a k-way body block may consist of two permutation networks
P(k), an EUG for k nodes, i.e.,Uk(�1), and additionally, (k − 1) Y-switching blocks. In
this section, we recapitulate the sizes in Table 2 and depths in Table 3 of these building
blocks and give an estimate for the leading constant for Lipmaa et al.’s k-way EUGs and
UCs with sizeO(n log2 n) and depthO(n), for k ∈ {2, . . . , 8}. We conclude that among
all UCs following this generalization, the best size is achieved by Valiant’s 4-way UC,
UCValiant-4. This does not exclude the possibility for a more efficient UC, as has been
shown in [72], where Zhao et al. propose a 4-way UC, UCZhao et al.-4, using a smaller
body block. Therefore, their construction achieves the smallest asymptotic size to date.
However, Zhao et al. state that their method cannot be used yet to find more efficient
UCs for k > 4, since it includes an exhaustive search for which the domain becomes
too large.

6.1.1. Edge-Universal Graph with k Poles

Size. Valiant optimized EUGs up to size 6 by hand in [66]: For k = 2, U2(�1) has two
poles, for k = 3 we discussed in Sect. 5.2 that an additional node is necessary. For
k ∈ {4, 5, 6}, the sizes are {6, 10, 13}, as shown in [45, Fig. 1] (the nodes denoted as
empty circles disappear in the UC). For k = 7 and k = 8, we observe that UCValiant-2

results in a better size than that of UCValiant-4 due to the smaller permutation network
and less recursion nodes. Therefore, we use these constructions to compute the size of
U7(�1) and U8(�1). As mentioned in [46], another possibility is to use the UC of [44]
instead of these EUGs since they have better sizes for small circuits. These UCs UKS08

k

are built from two smaller UKS08
k
2

, a P( k2 ) and k
2 Y switches [44]. It results in a smaller

size of 21 for k = 8.
Depth. The depth of the hand-optimized EUGs for k ∈ {2, 3, 4, 5, 6} is, respectively,
{2, 4, 5, 7, 10} as shown in [45, Fig. 1]. The depth of U7(�1) and U8(�1) becomes,
respectively, 16 and 19 with Valiant’s 2-way UC, and 14 and 16 with the UC from [44].
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Table 2. Leading term of the asymptotic O(n log2 n) sizes of k-way edge-universal graphs (U (k)
n (�1)) and

universal circuits (UC) and the concrete size of their building blocks for k ∈ {2, . . . , 8} according to the design
of [46].

k Reference Uk (�1) Uk (KS08) P(k)
l P(k)

W B(k) U (k)
n (�1) UC

#nodes #nodes #nodes #nodes #nodes #nodes #switches
(·n log2 n) (·n log2 n)

2 [66] 2 2 1 1 5 = 2.500 = 5.000
3 [31] 4 6 3 3 12 ≈ 2.524 ≈ 5.047
4 [66] 6 7 5 5 19 = 2.375 = 4.750
5 [46] 10 11 7 8 30 ≈ 2.584 ≈ 5.168
6 [46] 13 14 10 11 40 ≈ 2.579 ≈ 5.158
7 [46] 19 19 13 14 53 ≈ 2.697 ≈ 5.394
8 [46] 23 21 16 17 62 ≈ 2.583 ≈ 5.167

4* [72] – 18 = 2.250 = 4.500

4* [72] denotes the 4-way construction with the optimized block of [72], i.e., UCZhao et al.-4. n denotes the
size of the input �2(n) circuit, Uk (�1) Valiant’s edge-universal graph with k poles, UKS08

k the UC of [44],

P(k)
l the permutation network for k nodes achieving the lower bound for the size, and P(k)

W Waksman’s

permutation network [67]. B(k) is the k-way body block with the best existing alternative for universal circuits
and permutation networks marked in bold

6.1.2. Permutation Networks P(k)

Size.Waksman in [67] showed that the lower bound for the size of a permutation network
is �log2(k!)
 for k elements.We show this lower bound in Table 2 as P(k)

l . The size of the

smallest existing permutation network is Waksman’s permutation network P(k)
W [7,67].

For k ∈ {2, 3, 4}, its size matches the lower bound, but for larger values of k, P(k)
W uses

additional nodes.
Depth. The depth of a permutation network has lower bound �log2(k!)
 + 1, since each
input has to have a path to each output, where switches have only two inputs and two
outputs. We show these as the depth of P(k)

l in Table 3. Waksman’s permutation network
matches the lower bound when k ∈ {2, 3, 4}, but utilizes additional nodes for larger
values of k.

6.1.3. Body Blocks

A body block B(k) is built of (k − 1) Y-switching blocks, an EUG for k nodes, and two
permutation networks P(k) [46] (cf. Fig. 6 on p. 19). B(k) shown in Tables 2 and 3 is
built using Waksman’s permutation network P(k)

W .
Size. The size of the body block is the sum of the sizes of its building blocks, i.e.,
size(B(k)) = min

(
size(Uk(�1)), size(UKS08

k )
) + 2 · size(P(k)) + (k − 1) · size(Y ).

Depth. The depth of B(k) is the number of edges in its building blocks, the addi-
tional edges between the different blocks and the recursion nodes. This means that
in total depth(B(k)) = min

(
depth(Uk(�1)), depth(UKS08

k )
)+2 ·depth(P(k))+ (k−1) ·

depth(Y ) + 1.
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Table 3. Leading terms of the asymptotic O(n) depths of k-way edge-universal graphs (U (k)
n (�1)) and

universal circuits (UC) and the concrete depth of their building blocks for k ∈ {2, . . . , 8} according to the
design of [46].

k Reference Uk (�1) Uk (KS08) P(k)
l P(k)

W B(k) U (k)
n (�1) UC

#nodes #nodes #nodes #nodes #nodes #nodes #switches
(·n) (·n)

2 [66] 2 2 1 1 6 = 3.000 = 3.000
3 [31] 4 5 3 3 13 ∼ 4.333 ∼ 4.333
4 [66] 5 6 3 3 15 = 3.750 = 3.750
5 [46] 7 9 4 5 22 = 4.400 = 4.400
6 [46] 10 12 4 5 26 ∼ 4.333 ∼ 4.333
7 [46] 16 14 4 5 31 ∼ 4.429 ∼ 4.429
8 [46] 19 16 4 5 34 = 4.250 = 4.250

4* [72] – 14 = 3.500 = 3.500

4* [72] denotes the 4-way construction with the optimized block of [72], i.e., UCZhao et al.-4. n denotes the
size of the input �2(n) circuit, Uk (�1) Valiant’s edge-universal graph with k poles, UKS08

k the UC of [44],

P(k)
l the permutation network for k nodes achieving the lower bound for the depth, and P(k)

W Waksman’s

permutation network [67]. B(k) is the k-way body block with the best existing alternative for universal circuits
and permutation networks marked in bold

6.1.4. Edge-Universal Graphs and Universal Circuits with n Poles

Two k-way EUGsU (k)
n (�1) graphs build up an EUGU (k)

n (�2) as described in Sect. 3.1.
Size. The asymptotic size of EUG U (k)

n (�1) is determined as size(U (k)
n (�1)) =

size(B(k))
k log2 k

n log2 n. The leading factor for a size(UC) is twice this number, since asymptot-

ically, the number of switches in the UC is the same as the number of nodes inU (k)
n (�2),

which is summarized in Table 2.We useWaksman’s permutation network P(k)
W when cal-

culating the size of the UC, however, even with the lower bound P(k)
l , for k ∈ {5, 6, 7, 8}

we have the respective leading terms {4.824, 4.900, 5.190, 5}, which are larger than 4.75
for k = 4. The last column of Table 2 shows that the smallest UC sizes are achieved in
order by Zhao et al.’s optimized UC UCZhao et al.-4, Valiant’s 4-way (k = 4) UCValiant-4

and 2-way UCs (k = 2) UCValiant-2.
Depth. The depths of the EUG and of the UC depend only on the depth of the main
skeleton, not on the subgraphs, since the longest path is between p1 and pn in the outest
skeleton. Therefore, the asymptotic depths of EUGU (k)

n (�1) and the corresponding UC

are calculated as depth(B(k))
k , as shown in the last column of Table 3. With the lower

bound P(k)
l for k ∈ {5, 6, 7, 8}, we have the respective leading terms {4, 4, 4.14, 4},

which are larger than for k = 2 and k = 4. The UC depth is minimal for Valiant’s 2-way
UCValiant-2 (k = 2), followed by Zhao et al.’s 4-way UC UCZhao et al.-4 and Valiant’s
4-way UCValiant-4 (k = 4) as shown in Table 3.
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6.2. Concrete Size and Depth of UCs

In this section, we consider formulae for the concrete sizes and depths of Valiant’s
UCs, i.e., UCValiant-2 and UCValiant-4 [66], Zhao et al.’s method UCValiant-4 [72], and our
hybrid universal circuits UCH(Valiant-2,4) [31] and UCH(Valiant-2, Zhao et al.-4). Beforehand,
we describe two optimizations.

6.2.1. Optimization for Fanin-1 Nodes

We observe that in U (k)
n (�1) there is a fanin-1 node in the head block (cf. [31, Fig. 2c

and 4e] for UCValiant-2 and UCValiant-4, respectively). A similarly designed head block for
Zhao et al.’s optimized UCZhao et al.-4 [72] has three such fanin-1 nodes (cf. in Fig. 19a
in “Appendix B”). Moreover, fanin-1 nodes exist in the base cases for a small number of
poles as well [45]. These nodes are important to achieve fanin and fanout 2 of the graph,
but can be replaced with wires when translated into a circuit description as described
in Sect. 3.2. Since at least one such node can be ignored in each subgraph when nodes

are translated into gates, this results in at least k ·
(∑logk n−1

i=0 ki
)

∼ kn less gates for the

universal circuit, where n = u + v + g. We include this optimization in our calculations
further on. This improvement decreases the depth of the UC only by a few gates.

6.2.2. Optimization for Input and Output Nodes

In the skeleton of Valiant’s UC, the poles corresponding to circuit inputs need no ingo-
ing edges and those corresponding to circuit outputs need no outgoing edges. Therefore,
since u, v and g are publicly known, we optimize by deleting nodes that become redun-
dant while canceling the edges going to the first u (input) and coming from the last v

(output) nodes. The exact number of redundant switching nodes depends on the parity
or modulo 4 of u, v, n = u + v + g, and the k-way UC, but is O(u + v) in both �1(n)

edge-universal graphs that build up the graph of the UC. This optimization also improves
the depth by O(u + v).

6.2.3. Concrete Sizes and Depths of 4-way and 2-way UCs

We realize that based on the parity (2-way UC) and the remainder modulo 4 (4-way UC),
not only the size of the outest skeleton, but also that of the smaller subgraphs can be
optimized by introducing so-called head and tail blocks (cf. Sect. 3.3 and Sect. 3.4). We
considered this in our 2-way UC in [45], and we now generalize the approach for k-way
UCs. We provide a recursive formula for the concrete size of the optimized k-way EUG
as follows. Let mk be

mk :=
{
n mod k if k � n,

k if k | n.
(13)

Then, given the designed head, body, and tail blocks (cf. [31, Figs. 2 and 4]) with sizes
and depths shown in Table 4, we can compute the size by calculating the sizes of all
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Table 4. The sizes and depths of building blocks of the 2-way and 4-way UCs (cf. Figs. 3, 5a, b on p. 12–14,
[31, Figs. 2 and 4], Figs. 19a, b in “Appendix B”), including the fanin-1 optimization from Sect. 6.2.1.

Block Head H (k)(·) Body B(k)(·) Tail T (k)(·)
#poles in (next) block 4 3 2 1 4 3 2 1 4 3 2 1

Size
UCValiant-2 – – 3 – – – 5 5 – – 4 1
UCValiant-4 13 13 12 11 19 19 18 17 14 9 4 1
UCZhao et al.-4 11 11 11 10 18 18 18 17 14 9 4 1

Depth
UCValiant-2 – – 3 – – – 6 6 – – 4 1
UCValiant-4 10 10 9 9 15 15 14 14 11 9 4 1
UCZhao et al.-4 9 9 9 9 14 14 14 14 11 9 4 1

the components of the outest skeleton, and the sizes of the smaller subgraphs with the
recursive formula in Eq. 14.4

size(U (k)
n (�1)) = size(H (k)(k)) +

(⌈n

k

⌉
− 3

)
· size(B(k)(k)) + size(B(k)(mk))

+ size(T (k)(mk)) + mk · size
(
U (k)

� n
k −1
(�1)

)

+(k − mk) · size
(
U (k)

� n
k −1�(�1)

)
. (14)

As described in Sect. 3.1, a UC is constructed bymeans of an EUGU (k)
n (�2), which is

in turn constructed from twoEUGswith fanin and fanout one,U (k)
n (�1), bymerging their

poles together and thus taking them only once into consideration. When constructing a
UC for circuit Cg

u,v , the number of inputs u, the number of outputs v, and the number of
gates g with fanin and fanout 2 are public. Thus, using Valiant’s construction, U (k)

n (�2)

with n = u + v + g poles is constructed, and thus, our formula for the concrete size
of U (k)

n (�2) corresponding to Cg
u,v is

size(U (k)
n (�2)) = 2 · size(U (k)

n (�1)) − n, (15)

and the size of the UC is

size(UCn) ≤ (size(U (k)
n (�2)) − n) · size(X) + g · size(U ), (16)

where X , Y , and U denote X-, Y-switching blocks and universal gates (cf. Sect. 3.2),
respectively, and size(Y ) ≤ size(X) ≤ size(U ).

4We note that for k ≥ 3, there exist H (k)(k − 1), . . . , H (k)(1) blocks. These are used for only one n,
e.g., H (k)(1) when n = k + 1, and H (k)(k − 1) when n = 2k. For simplicity, we consider these as special
recursion base numbers in our calculations, but the formula can be adapted to include these as well.
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The depth of a k-way UC also depends on mk , the head, tail and body blocks (cf.
[31, Figs. 2 and 4]), but not on the subgraphs. Thus, it is calculated using the formula
in Eq. 17.

depth(U (k)
n (�1)) = depth(H (k)(k)) +

(⌈n

k

⌉
− 3

)
· depth(B(k)(k))

+depth(B(k)(mk)) + depth(T (k)(mk)). (17)

Since depth(U (k)
n (�2)) = depth(U (k)

n (�1)), the depth of the UC is

depth(UCn) ≤ (depth(U (k)
n (�2)) − n) · depth(X) + g · depth(U ), (18)

where depth(Y ) ≤ depth(X) ≤ depth(U ).

6.2.4. Concrete Size and Depth of Our 2/4 Hybrid UC

In Sect. 5.3, we provide a construction for minimizing the concrete size of the resulting
2/4 hybrid UC. The construction chooses at each step the skeleton that results in the
smallest size. We provide the formula for determining its size using a dynamic program-
ming algorithm in Eq. 19. Size(H (k)(i)), size(T (k)(i)) and size(B(k)(i)) are values from
Table 4 for k = 2 and k = 4. Its depth is the depth of the outest skeleton, either of the
4-way or 2-way UC, depending on which is chosen first.

size(U hybrid(K )
n (�1)) = min

(
size(H (k)(k)) +

(⌈n

k

⌉
− 3

)
· size(B(k)(k))

+ size(B(k)(mk)) + size(T (k)(mk))

+mk · size
(
U hybrid(K )

� n
k −1
 (�1)

)

+ (k − mk) · size
(
U hybrid(K )

� n
k −1� (�1)

)
;

k ∈ K = {2, 4}) . (19)

6.2.5. Improvements in Size over Valiant’s 2-way UC

Figure 9 shows the concrete improvement in percentage of UCValiant-4 and UCZhao et al.-4

over UCValiant-2 up to ten million nodes in the simulated input circuit. All reported
averages are for the interval n ∈ {15, . . . , 107}. From the asymptotic leading factors
in Table 2, we expect an improvement of up to 5% for UCValiant-4 and up to 10% for
UCZhao et al.-4. In Table 5, we depict the minimum, average, and maximum improvement
compared to the asymptotic improvement in the interval n ∈ {2, . . . , 107}. For the
smallest n values (n ≤ 15), UCValiant-2 is better than both 4-way UCs. However, with
growing values of n, the 4-way UCs are better, except for some short intervals as shown
in Fig. 9. However, Valiant’s and Zhao et al.’s 4-way UCs always outperform Valiant’s
2-way UC for n ≥ 10 996 and n ≥ 172, respectively, the average improvement being
2.97% and 7.65%, and the biggest improvement being 3.78% and 8.88%.
The improvement of our UCH(Valiant-2,4) and UCH(Valiant-2, Zhao et al.-4) (cf. Sect. 5.3)

is depicted in the same Fig. 9 and summarized in Table 5. For some n values, our
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Fig. 9. Improvement in size in percentage of our 2/4 hybrid, the 4-way UCs of [66,72] over Valiant’s 2-way
UC for 15 ≤ n ≤ 107 with logarithmic x axis. We note that the different graphs are in the same order as in
the legend.

Table 5. Minimum, average, maximum, and expected asymptotic improvement in size of our 2/4 hybrid and
the 4-way UCs of [66,72] over Valiant’s 2-way UC in the range 15 ≤ n ≤ 107.

UC Reference Minimum (%) Average (%) Maximum (%) Asymptotic (%)

UCValiant-4 [66] − 34.78 2.97 3.78 5
UCH(Valiant-2,4) [31] 0 3.41 4.00 5
UCZhao et al.-4 [72] − 26.09 7.65 8.88 10
UCH(Valiant-2, Zhao et al.-4) (This article) 0 7.71 8.88 10

hybrid UCs achieve the same size as the 2-way or corresponding 4-way UCs, but due
to their nature, their improvement is always nonnegative, and greater than or equal to
the improvement achieved by the 4-way UC. Moreover, in most cases our hybrid UCs
result in better sizes than the underlying 4-way UC, which means that some subgraphs
are created for an n for which the 2-way UC is smaller. The overall improvement over
UCValiant-2 for all n ∈ {2, . . . , 107} values of our UCH(Valiant-2,4) is on average 3.41%
and at most 4.00%, and for our UCH(Valiant-2, Zhao et al.-4) is on average 7.71% and at most
8.88%.
We note that our hybrid UC can also be used to reduce the depth of the UC by utilizing

the 2-way UC, UCValiant-2, in the first step of the construction. This results in the smallest
asymptotic depth ∼ 3n (cf. Table 3).

7. Implementation and Evaluation of Our UC Compiler

In this section, we detail the challenges faced while demonstrating the practicality of
Valiant’s and Zhao et al.’s universal circuits. We show how to construct a UC and
program it according to a standard circuit description. We validate our results with a
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Fig. 10. Our universal circuit compiler.

practical implementation that, upon receiving a fanin-2 circuit Cg̃
u,v as input, outputs the

corresponding 2-way or 4-way UC UCValiant-2, UCValiant-4 or UCZhao et al.-4 and its pro-
gramming c f . We have provided the first implementation of Valiant’s 2-way UC of size
∼ 5n log2 n in [45] and implemented Valiant’s 4-way UC of smaller size ∼ 4.75n log2 n
in a modular way in [31].
In this work, we extend our implementation with the modular 2-way UC and include

the optimized 4-way UC of Zhao et al. [72] with size ∼ 4.5n log2 n. We then com-
bine the modular 2-way UC with both 4-way UCs in an implementation of our hybrid
UC proposed in [31] and Sect. 5.3, i.e., UCH(Valiant-2,4) and UCH(Valiant-2, Zhao et al.-4),
respectively. Moreover, we provide a prototype implementation of our scalable 4-way
UC from Sect. 5.4, which can be generalized to both the 2-way UC and Zhao et al.’s
improvement.

7.1. UC Compiler

The architecture of our UC compiler is depicted in Fig. 10. In this section, we briefly
describe its different artifacts and its use of the Fairplay [51] or CBMC-GC [10,23]
frameworks as a frontend. For a more detailed description, the reader is referred to [45].
Our implementation is available online at https://encrypto.de/code/UC.

https://encrypto.de/code/UC


Efficient and Scalable Universal Circuits 1253

1. Compiling Input Circuits from High-Level Functionality.We can use the Fairplay
compiler [11,51] with the FairplayPF extension [44] or the CBMC-GC compiler
[10,23] to translate the functionality described in a high-level language to the
Fairplay circuit description calledSecureHardwareDefinitionLanguage (SHDL).
These compilers output a circuit Cg̃

u,v with fanin 2, which is required for all UCs.
However, due to Valiant’s design, the input circuit Cg

u,v to our UC compiler has
to have fanout 2 as well, i.e., the outputs of all gates and inputs can only be used
as the input of at most two subsequent gates. This can be achieved using copy
gates such that instead of g̃ gates, we have g̃ ≤ g ≤ 2g̃ + v fanout-2 gates
(cf. Sect. 2.2). We give concrete examples in [45] on how this conversion affects
the size of practical circuits and show that in most cases, the resulting number of
gates remains significantly below the upper bound 2g̃ + v.

2. Obtaining the �2(n) Graph G of the Circuit Cg
u,v . As next step, we transform

circuitCg
u,v into a�2(n) graphG = (V, E)with n = u+v+g (cf. Sect. 3.1). This

can directly be generated as described in Sect. 2.2: With the number of inputs u,
outputs v, and gates g in circuitCg

u,v , G has n nodes and the wires are represented
as edges in the graph. Then, we define a topological order ηG on the nodes of G
such that every input node vi has a topological order of 1 ≤ ηG(vi ) ≤ u and
every output node v j is labeled with u+ g+1 ≤ ηG(v j ) ≤ u+v + g. Since Cg

u,v

has fanin and fanout 2, the resulting graph G is in �2(n), where n = u + v + g.
It is possible in the modified SHDL circuit description that an internal value
becomes two times the first or two times the second input of gates. Therefore,
when a value is the second time the same input to a gate (i.e., first or second),
both the two inputs and the two middle bits of the function table of the gate must
be reversed (i.e., to compute f (in1, in2) instead of f (in2, in1)) for the correct
programming of the UC in Step 5.

3. Generating Edge-Universal Graph U (�)
n (�2) or U hybrid(K )

n (�2) for �2(n)

graphs, where � ∈ {2, 4} and K = {2, 4}. An EUGU (�)
n (�2) orU

hybrid(K )
n (�2) is

constructed by creating two instances ofU (�)
n (�1) orU

hybrid(K )
n (�1), respectively,

as described in Sect. 3.1. The two instances get merged to U (�)
n (�2) so that one

builds the left inputs and outputs and the other builds the right inputs and outputs
of the gates (based on the two-coloring of G). For efficiency reasons, we directly
generate themerged edge-universal graph, i.e., anEUGfor�2(n),with the poles as
common nodes.We partly include our optimization for the input and output nodes
from Sect. 6.2.25 and Valiant’s optimizations for the base cases n ∈ {2, 3, 4}, but
do not consider Valiant’s optimizations for n ∈ {5, 6} [66]. Knowing the number
of input bits u, the number of gates g, and the number of output bits v, we construct
the corresponding edge-universal graph U �

n (�2), where n = u + v + g. We note
that no knowledge is necessary about the topology or the gate tables in circuit C
for this step.

4. Programming U �
n (�2) and U hybrid(K )

n (�2) According to an Arbitrary �2(n)

Graph.We edge-embed graphG intoU (�)
n (�2) as described in Sect. 4 and into our

5We delete edges coming into inputs and going out from outputs. Due to this, some nodes are removed
due to our fanin-1 optimization from Sect. 6.2.1 when translated into a UC.
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hybrid U hybrid(K )
n (�2) with K = {2, 4} as described in Sect. 5.3. G is partitioned

into two�1(n) graphsG1 andG2 which are embedded into the twoEUGsU �
n (�1)1

and U �
n (�1)2. Valiant proved in [66] that any topologically ordered �1(n) graph

can be edge-embedded in an EUGU �
n (�1) (cf. Sect. 3.1). We perform the embed-

ding as described in Sect. 4 for Valiant’s 2-way and 4-way EUGs in Listing 1.
The difference when using Zhao et al.’s improvement [72] is the block edge-
embedding described in Sect. 4.1. Here, we utilize a lookup table derived from
the computer generated proof of Zhao et al. [72] that maps the in and out vectors
as defined in Sect. 4.1 into the programming bits of the block, i.e., can be used as
block edge-embedding along with the recursion point edge-embedding described
in Sect. 4.2.We edge-embedG1 andG2 into our 2/4-hybridEUGsU

hybrid(K )
n (�1)1

and U hybrid(K )
n (�1)2 as described in Sect. 5.3. When the edge-embedding is fin-

ished, we define the control bits of the programmable blocks (universal gates and
switches) as described in Sect. 3.2.

5. Generating the Output Circuit Description and the Programming of the Universal
Circuit.After embedding the graph of the simulated circuit into the edge-universal
graphUn(�2), wewrite the resulting circuit in a file using our generic UC descrip-
tion. In the edge-universal graph, each node stores the control bit resulting from the
edge-embedding (control bit c of the corresponding universal switch in Sect. 3.2)
and each pole corresponding to a gate stores four bits (the four control bits of the
function table of the corresponding gate in the original circuit Cg

u,v , c0, c1, c2, c3
in Eq. 1, their order possibly changed in Step 2). Thus, after topologically order-
ing Un(�2), one can directly write out the gate identifiers into a circuit file UC
and the control bits to a programming file c f . We include our optimization from
Sect. 6.2.1 and ignore extra nodes with fanin 1 when the graph is translated into a
UC description. This improves the size of the recursion bases for n = {4, 5, 6} as
well as of the head blocks [31, Fig. 2c and Fig, 4e] and Fig. 19a in “Appendix B.”

Our circuit description format is generic, i.e., consists of universal switches and uni-
versal gates. Therefore, any framework can be adapted to use them, independently from
if it is interpreted as a Boolean or arithmetic UC. We start with enumerating the client
input wires as C 0 1 . . . u − 1. As a reminder, the O(n log n) server input wires are
in the programming file c f . In the UC, we have universal gates denoted byU , universal
switches denoted by X or Y depending on the number of outputs (X with two outputs
and Y with one):

U in1 in2 out1 (20)

X in1 in2 out1 out2 (21)

Y in1 in2 out1 (22)

denotes that wire out1 (and possibly out2) is coming from a gate with input wires in1
and in2. The control bits are not represented in the circuit format, but for each universal
gate we save a four-bit number representing the control bits and for each universal switch
we store the control bit in the programming file c f . The output nodes are outputs of Y
universal switches and are marked in the end of the file as O o1 o2 . . . ov . The
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Fig. 11. Improvement in percentage of the UC sizes (number of switches) of our UC implementation of
Valiant’s 4-way UCValiant-4 from [31] and our novel implementations including a modular version of Valiant’s
2-way UCValiant-2, Zhao et al.’s improved block UCZhao et al.-4 and hybrid constructions UCH(Valiant-2,4) and
UCH(Valiant-2, Zhao et al.-4) over our implementation of Valiant’s 2-way UC from [45].

circuit and its programming are given in plain text files as shown in Listings 3 and 4 in
“Appendix C.”

7.2. Experimental Evaluation

Weran all experiments for ourUCcompiler on aDesktopPC, equippedwith an IntelCore
i7-4790 CPU with 3.6 GHz and 32 GB RAM, and provide our results in this section.
We performed experiments for circuit sizes n ∈ {10, 100, . . . , 1 000 000} as well as
with notable circuits from [65] such as the AES-128 circuit without key expansion with
size n = 38 518 and the SHA-256 circuit with size n = 201 206. We note that these
sizes are for the circuits transformed to have fanin and fanout 2 as described in Sect. 2.2
and in [45, Table 1].
Circuit Sizes (Fig. 11). We first compare the circuit sizes of our implementations that
slightly differ from the expected sizes shown in Sect. 6. Our initial 2-way UCValiant-2

implementation from [45] included the recursion bases for 1, 2, and3nodes and, however,
did not include those proposed byValiant [66] optimized for 4, 5, and 6 nodes. It included
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both size optimizations described in Sects. 6.2.1 and 6.2.2. In Fig. 11, we show the
improvement over our UCValiant-2 implementation from [45] in percentage of the number
of switches of our later, more modular UC implementations presented in this article and
in [31]. We note that the number of universal gates is the same for all implementations,
i.e., the number of gates in the original circuits g.

Our modular 4-way UCValiant-4 implementation from [31] additionally included
the recursion base with 4 nodes and, however, only partly included the optimization
described in Sect. 6.2.2 concerning the input and output nodes. The edges directed into
the inputs and out of the outputs are also removed which results in smaller sizes due to
the thus redundant nodes, however, not all unnecessary connections are deleted. This,
however, incurs only a small overhead of at mostO(u+v). As we can observe in Fig. 11
and as expected (cf. Table 5 on p. 32), this implementation improved by around 5% over
our implementation from [45].
In this article, we have first implemented the modular version of Valiant’s 2-way

UCValiant-2 where inherently we use the optimized recursion base with 4 nodes as well.
An around 1.5-2% improvement can be observed over our non-modular implementation
from [45]. Using this and our modular 4-way UCValiant-4, we have implemented our
hybrid UCH(Valiant-2,4) using Valiant’s 2-way and 4-way UCs as proposed in [31]. This
implementation has a more steady improvement of at least 5% for most tested circuit
sizes.Moreover, we also implemented the optimizedUCZhao et al.-4 proposed in [72], who
have proved that their optimized block is universal by giving the programming for all
possible path combinations in the block. We use this proof to generate a lookup table file
for our implementation,which contains amapping fromany possible input–output vector
(cf. Sect. 4.1) and the corresponding programming bits for the block. The generation
of this lookup table is a one-time precomputation cost and takes around 82 seconds.
In subsequent runs of the UC compiler, this overhead is no longer needed and a file of
size 1.08 MB is read which takes only about 80 milliseconds. Thereafter, the expected
gain of around 10% can be observed over our 2-way UCValiant-2 implementation from
[45]. Moreover, the hybrid variant with this construction, i.e., UCH(Valiant-2, Zhao et al.-4),
achieves an at least 10% improvement for all our example circuits.
In Table 6, we show the concrete number of switches of the smallest UCs generated

with UCH(Valiant-2, Zhao et al.-4) as well as the sizes of the resulting UC and programming
files. The universal circuit for n = 1 million gates has around 76 million switches and
additionally around 1 million universal gates (which, in the PFE setting, results in a total
of about 77 million AND gates for Yao’s garbled circuit protocol and 79 million AND
gates for the GMW protocol). The corresponding file for the UC has size 2.8 GB, and
the programming file has size 0.15 GB.
Runtime (Fig. 12). To compare the runtime of our UC implementation with that
of the UC compiler of [45], we ran the same experiments on the same platform
using our novel implementations for UCValiant-2, UCZhao et al.-4, UCH(Valiant-2,4), and
UCH(Valiant-2, Zhao et al.-4). Runtimes are reported as averages from 10 executions. The
differences in runtimes for the different constructions are not significant, and there-
fore, we only depict the runtimes of our hybrid implementations UCH(Valiant-2,4) and
UCH(Valiant-2, Zhao et al.-4) in Fig. 12.
The runtimes of our modular UCValiant-2 and UCValiant-4 implementations are very

similar to those of UCH(Valiant-2,4), the latter of which becomes best for larger circuits
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Fig. 12. Comparison of the runtime of our hybrid UC implementations using either Valiant’s 2-way and 4-way
UCs or Valiant’s 2-way UCwith Zhao et al.’s improved block. We note that the runtime of UCZhao et al.-4 only
slightly differs from that of UCH(Valiant-2, Zhao et al.-4), and the runtimes of UCValiant-2 and UCValiant-4 only
slightly differ from that of UCH(Valiant-2,4), and therefore, we omit them from the figure.

Table 6. Size of our smallest UCs generated with UCH(Valiant-2, Zhao et al.-4), i.e., its number of switches, the
sizes of the UC, and programming files.

Input circuit size n 10 100 1000 10,000 38,518
(AES)

100,000 201,206
(SHA-256)

1,000,000

Size (#switches) 45 1719 31,667 462,667 2,119,836 6,147,387 13,277,772 76,484,267
UC file (KB) 0.6 36 794 13,473 68,730 207,789 473,915 2,936,852
Prog. file c f (KB) 0.1 4 65 933 4224 12,300 26,391 152,314

(i.e., our examples with n ≥ 10,000). The runtimes of UCZhao et al.-4 are only slightly
lower than those of our hybrid UCH(Valiant-2, Zhao et al.-4), both of which include a one-
time overhead of around 80 milliseconds for reading in our lookup table of size 1.08MB
for each possible block programming [72]. However, this one-time expense is only
significant for small circuits as can be observed in Fig. 12, and UCH(Valiant-2, Zhao et al.-4)

becomes faster than UCH(Valiant-2,4) for our examples with n ≥ 10, 000. The runtime of
our original 2-way UCValiant-2 from [45] was slightly better due to its handling of the
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UC as one big block. However, it also becomes worse than UCH(Valiant-2, Zhao et al.-4) for
our largest examples SHA-256 and the circuit for one million gates due to the gain in
the size that results in a less complex embedding. For instance, it takes about 12 s to
generate the smallest UCH(Valiant-2, Zhao et al.-4) with our new implementation for AES-
128, while our original implementation for UCValiant-2 took 9.4 s. Our largest examples
SHA-256 and a circuit with onemillion gates were generated and programmed in 2.1 and
18.6min, respectively. The runtimes are high for these large examples; however, they
are generally a one-time precomputation expense in most application scenarios such as
private function evaluation (cf. Sect. 1.1).
Scalable 4-way UC Implementation (Figs. 13, 14). We also implemented our scalable
4-way UC generation algorithm presented in Sect. 5.4. We note that our implementation
only includes Hi , T i

x and Bi
x for i = 0, 1, 2, 3 and x = 4 and does not include the

optimized versions for x = 1, 2, 3 which we leave as future work. Moreover, we include
the base cases for n = 1, 2, 3 but not that for n = 4. This is due to the fact that a lot
of engineering effort would be required for including the other options as well and our
work is only a proof-of-concept implementation of our method presented in Sect. 5.4.
Therefore, we test circuits with specific sizes where none of the other blocks or base
case are required, i.e., where all subgraphs at each recursion step have 4 nodes in the
tail block and the base case with n = 4 is not needed. Currently, for generating UCs
for different sizes, one would need to pad the original circuit with dummy gates to an
allowed size. Our aim was to improve the memory consumption of the UC generation
(and programming) algorithm,while keeping the price paid in runtime as low as possible.
The number of files created is the number of subgraphs in the UC, which is necessary
for efficient scalable programming of the UC.
We show that our scalable UC generation implementation provides the expected

improvement in memory usage by comparing our scalable UCValiant-4 implementation to
our implementation from [31]. We depict in Fig. 13 the memory usage of the generation
algorithm with growing input circuit sizes on a machine with 32 GB RAMmemory. As
can be seen in the figure, instead of holding the whole UC of sizeO(n log n) in memory,
we indeed hold onlyO(n) information in memory at each step. When using 1 GB, 8 GB,
and 32 GB of memory, we can generate a UC for over 27×, 28×, and 29× larger input
circuit sizes n, respectively. Moreover, as can be observed in Fig. 14, the runtime of the
resulting scalable UC generation is only around 4× that of the UCValiant-4 implementa-
tion of [31]. This difference is becoming smaller with increasing n due to the fact that
the implementation of [31] is running short on memory and starts swapping to disk. Our
experiments show that while reducing the memory requirements of our UC generation
for UCValiant-4, we keep the runtime asymptotically the same (cf. Fig. 14). Moreover, the
required storage capacity is alsoO(n log n) as before, since the additionally stored data
at each step are at most O(n), cf. Sect. 5.4.

8. Toolchain for Private Function Evaluation

Secure function evaluation (SFE) allows two parties to jointly compute a public func-
tion on their private inputs, without revealing anything to each other apart from the
output of the computation. As it is probably the most prominent application of UCs
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Fig. 13. Comparison of the maximum memory used between our per-block and [31]’s UC generation. [31]’s
implementation runs out of 32 GB of memory for n > 1 398 100 nodes.

(cf. Sect. 1.1), we implement private function evaluation (PFE) using SFE of a Boolean
universal circuit. In this scenario, one of the parties holds its input x and the other party
holds the programming c f corresponding to a private function f that allows the UC to
compute UC(x, c f ) = f (x). We note that the UC (with control bits for the universal
gates and switches) can be publicly generated.
We have created a novel toolchain for private function evaluation (PFE) in [45], using

the ABY framework for SFE (secure against semi-honest adversaries) as backend of our
UC compiler. ABY implements state-of-the-art optimizations of Yao’s garbled circuit
protocol [69,70] and theGMWprotocol [32].Weemphasize that our tool for constructing
and programming UC is generic and can easily be adapted to other secure computation
frameworks or other applications of UCs listed in Sect. 1.1.

8.1. Extension of the ABY Framework

Weadapt theABY secure two-party computation framework [19] for securely evaluating
universal circuits. We realize the universal circuit building blocks (universal gates and
switches) with a number of AND and XOR gates, which is the functionally complete
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Fig. 14. Comparison of the runtime of our per-block and [31]’s UC generations for up to about n = 2, 446, 000
nodes, which fails with [31]’s UC generation and 32 GB of memory.

set of logical gates that ABY uses. Since XOR gates can be evaluated for free in the
underlying protocols for secure function evaluation due to the free-XOR optimization
[43], from here on, we study the AND-size (sizeAND) and AND-depth (depthAND) of
UCs, i.e., the number of AND gates and the maximum number of AND gates on the
longest path, respectively. For other applications, however, the total sizes and depths of
the UCs with respect to both AND and XOR gates are relevant. We implement universal
gates and switches optimized for PFE and therefore use few AND gates, and only (free)
XOR gates alongside it. X and Y gates are obtained as shown in [43]

out1 = Y (in1, in2; c) = (in1 ⊕ in2)c ⊕ in1 (23)

(out1, out2) = X (in1, in2; c) = (e ⊕ in1, e ⊕ in2) with e = (in1 ⊕ in2)c (24)

with sizeAND(Y ) = sizeAND(X) = depthAND(Y ) = depthAND(X) = 1 for both univer-
sal switches. In case the SFE implementation uses Yao’s garbled circuit protocol [70],
both sizeAND(U ) = 1 and depthAND(U ) = 1, due to the fact that in some garbling
schemes (such as in the case of garbled 3-row reduction (GRR3) [55]) the evaluator
does not learn the type of the evaluated gate. Therefore, a universal gate can be imple-
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mented using only one 2-input non-XOR gate [60]. For other SFE protocols such as
GMW where this optimization is not possible, our efficient implementation of generic
universal gates uses Y gates yielding

out1 = U (in1, in2; c0, c1, c2, c3) = Y [Y (c0, c1; in2),Y (c2, c3; in2); in1] (25)

with sizeAND(U ) = 3 and depthAND(U ) = 2. We note that the implementation of
switches and universal gates might look very different when other 2-input Boolean gates
can also be used, e.g., when other size metrics are to be minimized.
We include our implementation of these efficient UC building blocks in the open-

source ABY framework https://encrypto.de/code/ABY. For evaluating a UC securely,
the output universal circuit file of our UC compiler is parsed, a circuit UC is generated
and evaluated with the input x and the control bits c f to compute f (x). Our toolchain
is the first implementation of Valiant’s size-optimized UC that supports efficient private
function evaluation [45].

8.2. Experimental Results

We validate the practicality of our implementation, which is the first practical imple-
mentation of private function evaluation (PFE), cf. Sect. 1.1. We ran our experi-
ments on two Desktop PCs, each equipped with an Intel Core i9-7960X CPU with
2.8 GHz and 128 GB RAM. We give the runtimes in Fig. 15 and communication in
Fig. 16 for our example circuits from the previous section, i.e., for random circuits of
sizes n ∈ {10, 100, . . . , 1,000,000} as well as the AES and SHA-256 circuits from [65].
For completeness, we give the exact numbers in Table 7 in “Appendix D.” Our runtime
measurements are provided from an average of 10 executions, in two different settings:
in a LAN setting with 10 Gbit/s bandwidth and 1ms RTT, as well as in a simulatedWAN
setting with 100 Mbit/s bandwidth and 100ms RTT.
We evaluate UCs in ABY [19] with both the GMW protocol [32] and Yao’s garbled

circuit protocol [69] with state-of-the-art optimizations. Yao’s garbled circuit protocol
achieves much better runtimes than that of the GMW protocol since the latter has O(n)

rounds (i.e., the number of rounds is the depth of the circuit, and Valiant’s UCs have
depth O(n), cf. Sect. 6.1 and Table 7 in “Appendix D”), whereas Yao’s protocol runs
in 3 rounds. The effect of this is especially apparent in the WAN setting where the
round-trip time is much higher. In both settings, the runtime of the GMW protocol is
dominated by the linear term due to the linear number of online rounds. The amount
of communication is similar in both implementations; however, it could be reduced by
half for Yao’s protocol if X and Y switches would be implemented with the optimization
from [43] using only one ciphertext. The current implementation utilizes two ciphertexts
per X and Y switches.
Due to the clear advantage of Yao’s protocol over the GMW protocol, we highly

recommend using Yao’s protocol when evaluating UCs securely for PFE. Investigating
depth-optimized UCs [17] with O(d) depth in the depth of the input circuit d could
improve the performance of the GMW protocol; however, its number of rounds will still
depend on d, whereas Yao’s protocol runs in only 3 rounds.

https://encrypto.de/code/ABY


1262 M. Y. Alhassan et al.

Fig. 15. Total runtime in seconds on LAN/WAN of PFE with the best available UC variant
UCH(Valiant-2, Zhao et al.-4).

8.3. Comparison of PFE Approaches

Mohassel et al. in [53] design a generic framework for PFE and apply it to three different
scenarios: to the m-party GMW protocol [32], to Yao’s garbled circuits [70], and to
arithmetic circuits using homomorphic encryption [16]. Both the two-party versions
of their framework with the GMW protocol and the one with Yao’s garbled circuit
protocol have two alternatives: Using homomorphic encryption, they achieve linear
complexityO(n) in the circuit size n, andwhen using a solution solely based on oblivious
transfers (OTs), they obtain a construction with O(n log n) symmetric-key operations.
TheOT-based construction in both cases ismore desirable in practice, sinceOT extension
reduces the number of expensive public-key operations significantly [2,36].
As the asymptotical complexity of this construction and using Valiant’s UC for PFE

is the same, we compare these methods for PFE. We revisit the formulas provided in
[53] for the PFE protocol based on Yao’s garbled circuits and elaborate on the number
of symmetric-key operations when the different PFE protocols are used. Mohassel et al.
show that the total number of switches in their framework is 4g̃ log2(2g̃) + 1 that are
evaluated using OT extension, for which they calculate 8g̃ log2(2g̃) + 8 symmetric-key
operations together with 5g̃ operations for evaluating the universal gates with Yao’s
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Fig. 16. Total communication in megabytes of PFE with the best available UC variant
UCH(Valiant-2, Zhao et al.-4).

protocol. We count only the work of the party that performs most of the work, i.e., 4g̃
symmetric-key operations for creating a garbled circuit with g̃ gates and 3 symmetric-
key operations (two calls to a hash function and one call to a pseudorandom function
(PRF)) for each OT using today’s most efficient OT extension of [2]. Hence, according
to our estimations, the protocol of [53] requires 12g̃ log2(2g̃)+ 4g̃+ 12 symmetric-key
operations.
In the same way, we assume that in the case of PFE with UCs, for both the universal

gates and switches, the garbler needs 4n symmetric-key operations. In this case, however,
n = u + v + g, where g̃ ≤ g ≤ 2g̃ + v. It is, therefore, difficult to directly compare
complexities of specifically designed protocols with g̃ fanin-2 gates and UCs where
the input circuit is required to have fanout 2 as well. In Fig. 17, we therefore depict
the minimum and maximum required number of symmetric-key operations for circuits
with size g̃ ∈ {10, 100, . . . , 1,000,000}. Moreover, we depict the concrete values with
real-world circuits (AES-128 and SHA-256 from [65]) with UC with SFE, and note that
for the other approaches the points lie on the corresponding line.
The protocol of [53] has been improved to achieve better communication in [6]. The

communication of the protocol of [53] is (10g̃ log2 g̃ + 4g̃ + 5) · 128, while that of
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Fig. 17. The number of symmetric-key operations of different PFE protocols: Valiant’s UCwith Yao’s garbled
circuits, Mohassel et al.’s OT-based method from [53] and its optimized version from [6].

[6] is (6g̃ log2 g̃ + 0.5g̃ + 3) · 128. For SFE with UC, we require one ciphertext per
X and Y switches [43] and 3 · 2 ciphertexts per universal gates. Figure 18 depicts the
comparison between the communication of SFEwith UCswithminimum andmaximum
values depending on the relation of g and g̃ as before and the alternatives of [53] and
[6]. We can see that SFE with UCs always achieves the best communication, requiring
1.5-3× less communication than the improvement of [6].

9. Conclusion

Universal circuits (UCs) are highly relevant for various applications such as verifiable
computation, attribute-based encryption, and private function evaluation (PFE) which
can, for example, be used for privacy-preserving evaluation of diagnostic programs,
proprietary software and in private database management systems. These applications
require size-optimized universal circuits, first proposed by Valiant [66]. Since then,
several optimizations appeared to further reduce the size of the UCs.
In this article, we revisit Valiant’s original constructions and the optimizations later

proposed by our previous works by Kiss and Schneider [45] and Günther et al. [31] as
well as by Zhao et al. [72]. We have shown the practicality of Valiant’s universal circuit
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Fig. 18. Communication of different PFE protocols in megabytes: UCH(Valiant-2, Zhao et al.-4) with Yao’s
garbled circuits, Mohassel et al.’s OT-based method from [53] and its optimized version from [6].

constructions and its several improvements by providing the implementation of the most
efficient UC to date with size ∼ 4.5n log2 n in the input circuit size n. Moreover, we
highly improve the memory consumption of our UC generation algorithm by designing
and implementing a method that utilizesO(n) memory instead of the previous methods
using O(n log n) memory.
Universal circuits for an input circuit size of one million can be generated and pro-

grammed within a matter of around 18 minutes on a standard PC and utilized in various
applications. We demonstrate the practicality of PFE with the secure evaluation of UCs
and show that such a large universal circuit can be evaluated within 1.3 and 5.9 minutes
using Yao’s garbled circuit protocol in LAN and WAN settings, respectively.
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A Abbreviations and Notations

ABE Attribute-based encryption.
DAG Directed acyclic graph.
DBMS Database management system.
EUG Edge-universal graph.
GRR3 Garbled row reduction.
OT Oblivious transfer.
PFE Private function evaluation.
semi-PFE Semi-private function evaluation.
SFE Secure function evaluation or secure two-party computation.
UC Universal circuit.
f Function to be privately evaluated using a universal circuit.
c f Control bits for a universal circuit to compute function f .
u Number of inputs in simulated Boolean circuit.
v Number of outputs in simulated Boolean circuit.
ĝ Number of gates in simulated Boolean circuit with arbitrary fanin and fanout.
g̃ Number of gates in simulated Boolean circuit with fanin 2 and arbitrary fanout.
g Number of gates in simulated Boolean circuit with fanin and fanout 2.

Cĝ
u,v The Boolean circuit that describes f with arbitrary fanin and fanout.

Cg̃
u,v The Boolean circuit that describes f with fanin 2 and arbitrary fanout.

Cg
u,v The Boolean circuit that describes f with fanin and fanout 2.

n Size of the simulated circuit Cg
u,v with fanin and fanout 2, n = u + v + g.

d Depth of the simulated circuit Cg
u,v .

G The �2(n) graph of Cg
u,v where every input, output and gate is represented

with a node and every wire is represented with an edge.
�ρ(n) The set of all graphs with fanin and fanout ρ and n nodes.
Un(�ρ) Edge-universal graph for �ρ(n) graphs, used generally for Valiant’s UC.

U (k)
n (�ρ) k-way edge-universal graph for �ρ(n) graphs.

U
hybrid(K )
n (�ρ) Hybrid edge-universal graph for �ρ(n) graphs with a set K of k possible

values, e.g., K = {2, 4}.
pi Distinguished nodes in Un(�ρ), called poles, with fanin and fanout ρ.
P Set of all poles in Un(�ρ).
U A universal gate that computes any function with two inputs and one output,

using four control bits c0, c1, c2, c3 as in Eq. 1.
X A two-output X-switching block that returns its two input values either in the

same or in reversed order depending on control bit c.
Y A one-output Y-switching block that returns one of the two input values

depending on control bit c.

http://creativecommons.org/licenses/by/4.0/
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B(k) Body block of k-way EUG.

P(k) Permutation network for k nodes.

P(k)
l Lower bound on the size of the permutation network for k nodes.

P(k)
W Size of the Waksman’s permutation network [67] for k nodes.

UKS08
n The UC of [44].

UCValiant-2 Valiant’s 2-way UC [66].

UCValiant-4 Valiant’s 4-way UC [66].

UCZhao et al.-4 Valiant’s 4-way UC with Zhao et al.’s optimization [72].

UCH(Valiant-2,4) Hybrid UC with UCValiant-2 and UCValiant-4.

UCH(Valiant-2, Zhao et al.-4) Hybrid UC with UCValiant-2 and UCZhao et al.-4.

B Optimized Blocks for Zhao et al.’s 4-way UC

In this section, we depict the head and tail block constructions in Fig. 19a and b, respectively, for Zhao et al.’s
body block (cf. Fig. 5b), similar to those of [31, Figs. 4e-4f] for Valiant’s 4-way UC. Similarly, tail blocks can
be designed also for smaller number of poles in the final block, but as shown in Table 6, they will have the
same size as our tail blocks for Valiant’s 4-way UC [31, Fig. 4g–i].

p4i+1

p4i+2

p4i+3

p4i+4

r1i r2i r3i r4i

(a) Head block.

p4i+1

p4i+2

p4i+3

p4i+4

r1i r2i r3i r4i

(b) Tail block (4).

Fig. 19. Optimized blocks for Zhao et al.’s 4-way block (Fig. 5b) [72].
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C Example Output of Our UC Compiler

In this section, we provide an example output of our UC compiler, i.e., the circuit and programming files
shown on Listings 3 and 4 corresponding to the universal circuit shown in Fig. 1e on p. 10.

Listing 3. Example output UC.
1 C 0 1
2 X 0 1 2
3 X 1 0 3
4 X 0 2 4
5 X 3 0 5
6 U 2 3 6
7 X 4 6 7
8 X 6 5 8
9 Y 4 7 9
10 Y 8 5 10
11 U 7 8 11
12 Y 9 11 12
13 Y 11 10 13
14 Y 12 13 14
15 O 14

Listing 4. Example programming.
1 / / input bits
2 0 / /X switch (no swap grey)
3 1 / /X switch (swap green)
4 1 / /X switch (swap blue)
5 0 / /X switch (undefined)
6 1 / /A N D gate (0001)
7 1 / /X switch (swap blue)
8 0 / /X switch (no swap red)
9 0 / /Y switch (undefined)
10 0 / /Y switch (undefined)
11 6 / /X O R gate (0110)
12 0 / /Y switch ( right input orange)
13 0 / /Y switch (undefined)
14 1 / /Y switch ( lef t input orange)
15 / / output bits

D Concrete Performance Measures for Private Function Evaluation

In this section, we provide the concrete performance measures used for depicting the runtimes and commu-
nication of PFE by securely evaluating UCs generated with UCH(Valiant-2, Zhao et al.-4) in Figs. 15 and 16,
respectively.

Table 7. Runtime and communication of PFE with universal circuits generated for input circuit size n
(cf. Table 2 for the respective UC sizes).

Input circuit size n 10 100 1000 10,000 38,518 100,000 201,206 1,000,000
(AES) (SHA-256)

Yao LAN (s) 0.006 0.013 0.08 0.48 2.25 6.63 13.70 78.73
GMW LAN (s) 0.032 0.386 3.89 38.92 147.14 389.85 783.94 3925.94
Yao WAN (s) 0.323 0.413 0.75 2.81 10.71 29.49 63.10 354.32
GMW WAN (s) 2.000 23.990 240.55 2395.32 9044.30 * * *
Yao comm. (MB) 0.005 0.087 1.51 21.79 99.36 287.51 620.07 3562.21
GMW comm. (MB) 0.013 0.182 2.27 27.20 114.21 319.31 670.23 3660.17
GMW rounds 34 441 4491 44,991 169,871 449,991 903,686 4,499,991

*Denotes cases where an experiment would have taken more than 5 hours and therefore was not performed
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