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Abstract

Lithium-ion batteries (LIBs) represent the subject of rapidly growing research efforts
due to their outstanding physical properties, such as high energy density, superior rate
capability, and excellent cycling performance. These performance parameters of LIBs
are governed by the ion diffusion process in the host electrode materials. The role of
material heterogeneity and structural defects is one of the major research topics regarding
the performance optimization of LIBs. In this work, a mechanically coupled diffusion
model combined with finite element formulation is developed, where the dislocation is
modeled by the regularized eigenstrain based on a non-singular continuum dislocation
theory. The free energy density for the diffusion model was formulated as a function of
the ion concentration, including the strain energy density. The ions were attributed with
an eigenstrain representing the volume change upon ion intercalation. The model was
applied to study the interaction between dislocations and diffusive ions. On the one hand,
depending on the state of charge, the results show a redistribution of the ions respective
to the dislocation stress field. On the other hand, the diffusing ions introduce a stress field,
reducing the dislocation stress field. The simulation of potentiostatic and galvanostatic
charging shows a substantial heterogeneity of ion concentration around the dislocation
core but no overall alteration of the charging speed.

Furthermore, the mechanically coupled diffusion model is extended to a phase separation
model. The configurational mechanics is generalized for dislocations in the mechanically
coupled diffusion model to compute driving forces on misfit dislocations. The driving
forces on a dislocation are due to the strain originating from the lattice misfit and from
the dislocation interaction with free surfaces, which can be described with the model of
an image dislocation. An energy-based criterion for the stability of misfit dislocations in
two-phase electrode particles is formulated. This allows computing the energy required
to introduce a misfit dislocation into a particle and analyze the results to find a critical
particle size for stable dislocations. The results show that the critical particle size is the
smallest when the dislocation and interface are positioned in the center. The critical
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particle size also strongly depends on the dislocation core width implemented in the
dislocation model.
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Zusammenfassung

Das Interesse an Lithium Ionen Batterien wurde aufgrund ihrer herausragenden physikali-
schen Eigenschaften, wie hohe Energiedichte, ausgezeichnete Lade und Entladegeschwin-
digkeit und ihrer exzellenten Leistungserhalt über die Lade-Entlade-Zyklen. Die Grundlage
dieser Eigenschaften bildet der Diffusionsprozess der Ionen in den Elektrodenmaterialien.
Ein besonderer Fokus im Hinblick auf die Leistungsoptimierung von Lithium Ionen Batte-
rien liegt in der Untersuchung von Material Heterogenität und Strukturdefekten. In der
vorliegenden Arbeit wird ein mechanisch gekoppeltes Diffusionsmodell mit Finite Elemen-
te Formulierung entwickelt, in der Versetzungen als regularisierte Eigendehnung auf der
Grundlage einer nicht-singulären Kontinuumsversetzungstheorie modelliert werden. Die
freie Energiedichte für das Diffusionmodell wurde als Funktion der Ionenkonzentration
aufgestellt, wobei wie spezifische Verzerrungsenergie enthalten ist. Die Ionenkonzentrati-
on ist mit einer Eigendehnung verknüpft, die die Volumenänderung durch die Einlagerung
von Ionen in das Kathodenmaterial repräsentiert. Das Modell wurde zur Untersuchung der
Interaktion von Stufenversetzungen und diffundierenden Ionen eingesetzt. Als Ergebnisse
wurde dem Spannungsfeld der Versetzung folgend eine Umverteilung der Ionen um den
Versetzungskern beobachtet, die vom Ladezustand abhängt. Auf der anderen Seite verursa-
chen die Ionen selbst ein Spannungsfeld, dass durch die Umverteilung das Spannungsfeld
der Versetzung reduziert. Die Simulation von potentiostatischer und galvanostatischer
Ladevorgängen zeigte eine substantielle Heterogenität der Ionenkonzentration um den
Versetzungskern aber keine generelle Änderung der Ladegeschwindigkeit.

Darüber hinaus wurde das mechanisch gekoppelte Diffusionsmodell zu einen Phasen-
separationsmodell erweitert. Die Konfigurationsmechanik wurde für Versetzungen in
mechanisch gekoppelten Diffusionsmodellen generalisiert um treibende Kräfte auf Ver-
setzungen durch die Differenz der Gitterparameter an Grenzflächen zu berechnen. Die
Ursache der treibenden Kräfte auf die Versetzung sind die Dehnung durch die Gitterfehl-
anpassung und die Interaktion der Versetzung mit freien Oberflächen, die mit dem Modell
einer Spiegelversetzung beschrieben werden kann. Ein energiebasiertes Kriterium für
die Stabilität von Grenzflächenversetzungen in zweiphasigen Elektrodenpartikeln wurde
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aufgestellt. Damit kann die erforderliche Energie berechnet werden, um eine Grenzflä-
chenversetzungen in ein Partikel einzubringen und auf eine kritische Partikelgröße für
stabile Grenzflächenversetzungen zu untersuchen. Die Ergebnisse zeigten eine kleinste
kritische Partikelgröße wenn die Versetzung mit der Grenzfläche genau in der Mitte
des Partikels positioniert sind. Die kritische Partikelgröße hängt auch stark von der im
Versetzungsmodell implementierten Kernweite der Versetzung ab.
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Conventions

Mathematical formulations follow the conventions introduced here. Index notation is used,
where lowercase indices range from 1 to 3 and the Einstein summation convention is used
when indices appear in pairs in a term. Alternatively tensors are written in bold letters, for
example C. Partial derivatives with respect to spatial coordinates xi are written as (□),i

and time derivatives are written as
.
□. Symbols marked with the ˜︁□ have the corresponding

physical units while plain symbols are dimensionless. The Kronecker delta is defined as

δij =

{︃
1 for i = j,
0 for i ̸= j.

The permutation tensor is defined as

ϵijk =

⎧⎨⎩
1 for even permutation of i, j, k,
−1 for uneven permutation of i, j, k,
0 for other cases.
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1 Introduction

Lithium-Ion Batteries

Nowadays, technology and humanity are growing new levels of interconnection, where
mobility and the independence of stationary power supplies becomemore andmore critical.
Modern technology takes advantage of and is dependent on the energy availability at
any time in sufficient amounts. Example applications are mobile phones and computers
and, in the mobility sector, electric rollers, electric supported bikes electric cars. For those
applications, the primary challenge for energy storage systems is to supply enough energy
at a high enough rate while using as little space and weight as possible. In this area,
lithium-ion batteries (LIBs) became unmatched for their high energy density, superior
rate capability, excellent cycling performance, and not to the least for the simplicity of
recharging at the omnipresent public electric network. In a lithium-ion battery, energy
can be stored and released by moving lithium ions between a high-potential material
and a low-potential material. When the ions are concentrated in the negative electrode
(anode), the state is considered as charged. When the ions are concentrated in the positive
electrode (cathode), the state is discharged. When transferring the ions between the states,
an electric current will be released or has to be applied over a metal contact connecting
the electrodes. Ion exchange between the electrodes happens via an electrolyte, which
needs to be electrically insulating but allows for diffusion of ions to ensure the above
described working principle.

The critical properties of a battery, the capacity for energy storage and the time required
during charging and discharging, are sensitive to defects in the battery material emerging
during continuous usage of the battery and have a negative effect on the properties. The
preservation of the battery performance under continuous use is called cyclability and
is described as the preservation of the capacity over the number of cycles between the
charged and discharged state. Various mechanisms causing battery degradation and
performance are described in [135]. Intercalation or deintercalation often is accompanied
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Figure 1.1: Principle of a lithium-ion battery.

by large deformation and significant stress development. Consequential crack formation
can lead to a higher ion resistance and can even separate material from the electrolyte
reducing the capacity. Chemical reaction of the electrode materials with the electrolyte
can lead to formation of the secondary electrolyte interface (SEI). It is assumed that the
SEI causes surface passivation. However, due to the lattice mismatch to the electrode
material, cracks can expose the electrode during cycling and cause a capacity loss over
the battery lifetime. Careful design of the battery cell is necessary to cope with these
challenges.

By far, the mostly utilized anode material is graphite. Alternative anode materials such as Si
and Sn have a higher capacity but are not stable due to large volume changes [9]. The most
widely spread cathode materials are LiCoO2, LiMn2O4, LiFePO4, and LiNi1-x-yMnxCoyO2
(NMC), which have large differences in performance and prices. The biggest part of the
cost of a battery is the cathode material, which is related to rare and expensive elements
such as cobalt [72]. NMC is an example of how the chemical composition can change the
properties of the cathode material while scaling down the cost [72]. Replacing cobalt with
nickel increases the energy output, but on the downside, Li/Ni mixing increases instability.
The mixing can be suppressed by donating manganese or aluminum and thus increasing
the stability. Another factor in tuning the battery properties is the particle shape, as
surface stresses of ellipsoidal particles increase (dis)charge rates but decrease the capacity
compared to spherical particles [111]. Further surface stresses can stabilize smaller
particles but reduce the usable capacity [112]. The deformation of the particles causes
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damage at the grain boundaries, which can result in cracks and surface delamination [7,
115]. Li/cation antisite defects are common, especially in layered lithium metal oxides
containing Ni [56, 86]. Such defects can improve the Li diffusion anisotropy in layered
materials and ease the phase transition between the Li-rich and Li-poor phases [46].
Impurity atoms can have different effects. It could be shown that Fe impurities in NMC
electrodes can increase capacity and capacity retention [98].

Dislocations in Lithium-Ion Batteries

Dislocations are common defects observed in LIBs [130, 120, 92, 114, 70, 110, 132]. Specif-
ically, dislocation nucleation was observed during the lithiation of SnO2 nanowires [93].
Dislocation clouds were observed during the phase transformation process from ordered
to amorphous state at the diffusion front upon lithiation [50, 137, 19, 80]. An active role
of dislocations in diffusion processes can be assumed, as nucleation of a Li-rich phase near
a dislocation was observed in LiNi0.5Mn1.5O4 [120]. Solute segregation has been widely
observed for non-battery materials, such as nickel-based superalloys [57, 73]. Misfit
dislocations observed in Li2MnO3 between the Li-rich and Li-poor phases can support the
delithiation process by dislocation climb [92]. Furthermore, dislocations can influence the
distribution of different phases [97, 44], enable alternative pathways for the diffusion [66],
increase plastic deformability by massive dislocation nucleation [127], and increase the
diffusion along the dislocation core, often referred as "pipe diffusion" [118, 30, 65]. Con-
sidering the large stressfields introduced locally by dislocations and their fundamental
role in the development of cracks, it seems to be necessary to understand how dislocations
influence mechanisms in LIBs. Material heterogeneity can influence the ion diffusion
process [31], which can be related to dislocations [130]. Material heterogeneity can cause
a concentration heterogeneity resulting in an insufficient utilization of active material,
internal stresses, local overcharge/ over-discharge, and thus degradation of the battery
performance[130]. Heterogeneous particle activity due to heterogeneous properties was
identified as the predecessor of heterogeneous particle damage in the early cycles of
LIBs, with consecutive damage homogenization in later cycles [69]. What’s more, the
interaction between the self-stress of the dislocation and the diffusion-induced stress (DIS)
should also be considered. In Li- and Mn-rich cathode materials the tensile strain during
delithiation at high voltages causes oxygen release and transition metal migration, and
the material degeneration strain affects the structural stability [74]. However, dislocations
are a promising candidate for "defect engineering", where defects are manipulated to
design material properties specifically [45].
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The demand to understand and describe the properties of dislocations fuels an ongoing
debate in the literature. Classical analytical solutions for the dislocation derived from
an eigenstrain along the gliding plane have been known for a long time. However, the
description of the core is not physical due to its singularity [91, 13]. This motivated
advanced dislocation models eliminating the singularity [63, 12]. Chemo-mechanically
coupled models already try to grasp the influence of dislocations on the DIS utilizing a
concentration dependent dislocation density. The influence of dislocations on diffusion-
induced stress is studied in a few models based on a concentration dependent dislocation
density [128, 68, 14, 141]. Those models associate the dislocation density with shear
stress that directly contributes to the DIS, utilizing the Taylor hardening model [28].
It was shown that tensile stresses are reduced by the dislocation or even converted to
compressive stresses, thereby reducing the tendency of crack nucleation and propagation.
However, as the dislocation density is implemented as a homogeneous field variable,
heterogeneous contributions of individual dislocations, including local enrichment or
depletion of solute distribution, could not be described by these models. The interaction
of phase transformations and dislocations in metals was investigated within an atomistic
study in [85], and a phase field model was proposed in [67]. Discrete dislocation models
have been developed for solute hardening in metals [17, 40, 48, 87], but theoretical and
numerical models for analyzing dislocations in LIBs are still needed. Chemo-mechanical
finite element models describing diffusion in LIBs are developed in [112, 113, 136, 6],
where the incorporation of the coupling between the stress field and the concentration
can influence the ion mobility [112, 113]. Considering the hydrostatic stress contribution
of dislocations to the free energy density of diffusive ions, an influence on the mobility
around dislocations is expected, but to the best of the author’s knowledge not thoroughly
studied in the literature.

Modeling the interaction of dislocations with other dislocations and defects is a computa-
tional challenge due to the extended range of the dislocation stress field. An established
method to capture the driving forces on dislocations and their interaction is the calculation
with the Peach-Koehler equation [99], which is utilized in discrete dislocation dynam-
ics [123, 121, 32, 52]. In the above examples, the Peach-Koehler force includes purely
mechanical contributions, so that interactions based on chemistry or electrostatics are not
covered. However, the driving force on the dislocation can be based on the dislocation
density tensor to derive the Eshelby stress tensor [61], which was extended to dislocations
in piezoelectric materials [2]. The concept of configurational or material forces, which
has its origin in the early work done by Eshelby [25], is an effective tool to evaluate
driving forces on defects in materials, where the Eshelby stress tensor is formulated
as the variation of the system potential with respect to the position of the defect. The
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divergence of the Eshelby stress tensor can then be read as configurational forces [24].
By linear extension of the free energy functional, the theory can be easily extended to
cover multi-physic problems. On this basis, Müller and Gross developed a scheme for
the finite element method to compute configurational forces on defects such as point
defects, inclusions, phase boundaries, and cracks [90, 34]. The configurational force
theory was refined to include interaction between domain walls and point defects in
ferroelectric materials [89], coupled electro-elastic problems [131, 143], and defects in
problems involving complex external loads and boundary conditions [8]. Driving forces
on dislocations within the configurational mechanics were described in [3]. A numerical
model to compute configurational forces on dislocations in a non-singular continuum
dislocation model was developed in [139] and applied with an extension to cover the
interaction between domain walls and dislocations in ferroelectric materials [45, 138].
In this work, the configurational force theory is adopted to analyze misfit dislocations in
phase separation electrode materials within a mechanical coupled Cahn-Hilliard phase
transformation model.

In a range of intercalation cathode materials such as LiNi0.5Mn1.5O4 [75], LiV2O5 [136,
20], and LiFePO4 (LFP) [51], the formation of co-existing phases can be observed during
the charging and discharging process. The phase transformation between those phases is
often accompanied by a volume change, and will result in a lattice mismatch and misfit
strain at the phase boundary. These properties are heavily size-dependent. Competing
mechanical and chemical mechanisms in monodispersed LFP particles with a size around
10 nm raise size dependent-properties where a complete single-phase reaction without any
plateau voltage is developed, and the cracking behavior of the particles is influenced [51].
Especially for small particles, the lattice mismatch between the LFP phase and FePO4
(FP) phase close to the surface is relaxed to attenuate elastic effects and stimulate phase
separation. However, phase separation takes place with a preferred wavelength that
requires a larger particle size. A critical particle size can be found for a range of materials.
In platelike and equiaxed LFP particles the crack formation related to the misfit strain
is suppressed below a critical size [49]. Crack formation during the first lithiation of
Si nanoparticles can only occur in particles larger than 150 nm [76]. In metals, an
increase of the dislocation density with a decreased particle size was found for grains
above 10µm, where a relation to an increased grain boundary length as a dislocation
source is assumed [53]. An underlying reason for crack development can be the formation
of misfit dislocations at the phase boundary. Misfit dislocations are an example of a
multiphysics scenario. On the one hand, the misfit strain interacts with the dislocation
stress field. On the other hand, the stress field can influence the chemical composition
at the interface. Misfit dislocations can reduce interface mobility, cause irreversible
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degradation of the electrochemical performance and cause fatigue crack formation [83,
94]. Consequently, the prevention of misfit dislocations in electrode particles can increase
the performance of LIBs. In LFP particles, misfit dislocations have been observed by
transmission electron microscopy [142]. Misfit dislocations are well-studied in epitaxial
films on substrates [13]. The formation of those misfit dislocations can be related to an
energy-based stability criterion for the formation which states the elastic strain energy
reduction of the strained film due to the misfit dislocation must be equal or larger than
the dislocation self energy. The model proposed by Esmizadeh and Haftbaradaran [26,
27] adopts this idea for two-phase particles. Here the condition for the critical particle
size is that the work of the misfit strain-induced stress field (background stress field)
during the formation of misfit dislocations is equal to the self-energy of misfit dislocations.
The Peach-Koehler formula [99] was utilized to calculate the driving forces on the misfit
dislocation due to both the background stress field and the image stress field that arises
from the free surfaces of the particle. Esmizadeh and Haftbaradaran’s work regards
the work done on the dislocation by the image stress resulting from the dislocation self
stress and the misfit stress due to the phase boundary, but neglects the coupling between
the misfit stress and the dislocation self stress that results in ion redistribution and in
the change of the DIS. The extension to the chemically coupled cases considering dilute
diffusion and phase transformation is still open. The existence of misfit dislocations can
significantly change the concentration distribution near the phase boundary, which leads to
the change of the stress field in the phase boundary. Such a chemo-mechanical calculation
of the driving force on the misfit dislocation is crucial for predicting the critical size of
dislocation-containing particles and goes beyond pure elastic models.

Goal and Outline

A numerical model is a powerful theoretical framework to shed light on the role of the
dislocation in battery materials and deal with the complex geometry of electrodes, complex
boundary conditions, or inhomogeneous and anisotropic materials. The dislocation model
is developed specifically to study the impact of dislocations on the diffusion and mobility
of lithium ions and the resulting driving forces on the dislocation. By computing the
work required to move a dislocation into a particle allows an estimation of a particle size
dependent stability for dislocations. For that, a non-singular chemo-mechanical continuum
dislocation model and respective configurational mechanics are introduced. A schematic
outline of the coupled model and the physics applied in the results chapters in this work
is depicted in figure 1.2.
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Figure 1.2: Schematic introduction of the model in this work.
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First, a linear elastic continuum model for small strains is formulated to cover the mechan-
ical part. The model is extended to include dislocations by introducing an eigenstrain on
the gliding plane describing the dislocation self-distortion. To remove the singularity of
the classic solutions based on the delta function, the dislocation eigenstrain is described
by a non-singular dislocation theory so that the singularity is removed. Driving forces on
the dislocation are computed in a postprocessing step within the theory of configurational
forces. For that, the Eshelby stress tensor is derived from the gradient of the free energy
density.

Further, a phase field model for the mechanically coupled diffusion is derived extending
the linear elastic continuum model for dislocations. The free energy density is formulated
in terms of the chemical and mixing energy density, the interface energy density and
the strain energy density. The original 4th order differential equation of the chemical
model is split into two equations to reduce the integration order. By that the chemical
potential and the concentration are introduced as separate but dependent degrees of
freedom. Driving forces on the dislocation are computed in a postprocessing step within
the theory of configurational forces. For that, the Eshelby stress tensor is derived from the
gradient of the free energy density with contributions from both mechanics and diffusion.

The model is numerically implemented with the finite element method and applied to
simulate the influence of dislocation in the cathode material LiMn2O4 on diffusion and
state-of-charge (SOC) heterogeneity in LIBs. By this, the influence of the dislocation
on ion redistribution and mobility is analyzed. Further, the influence of the dislocation
on the phase distributions in two-phase materials is studied. Then the diffusion along
a dislocation core is analyzed by combining the chemo-mechanical model with a pipe
diffusion model. The configurational force theory is utilized to formulate an energy-based
criterion for stable dislocations in stable LFP two-phase particles. For that, the work
done on the dislocation by the image forces from the free surfaces and the misfit strain
is integrated along the path for the dislocation gliding outside the particle. A negative
change in the system energy is then an indicator for stable dislocations. This stability
criterion is then utilized to evaluate a critical particle size for stable misfit dislocations
square shaped LiPO4 particles. The study is supplemented by analyzing the effect of the
core parameter and the non-homogeneous phase-dependent elasticity of the LFP material.
Finally, the critical particle sizes for particles of different shape and for particles with
different positions of the interface is evaluated.

The remaining work is organized as described in the following. In chapter 2, the non-
singular continuum dislocation model is introduced. First, the continuum mechanics for
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small deformation is summarized. Then continuum discrete dislocation models are de-
scribed, in particular the classical singular dislocation theory and non-singular dislocation
theory. The mechanical section is completed with a description of driving forces on dislo-
cations in the form of the Peach-Koehler equation and configurational force mechanics
for dislocations. The non-singular dislocation theory is then formulated within small
strain continuum mechanics. In particular, a Burgers vector convolution is integrated
along the dislocation gliding plane and results in a dislocation eigenstrain. The model
is implemented into the finite element method (FEM) by reformulation of the partial
differential equations into the weak form, elementwise discretization, formulation of the
stiffness matrix, and normalization to a dimensionless scale. Then the definition of the
material properties follows. The implementation is concluded by an excursion on the
integration order of the dislocation eigenstrain, which can be an easy source of error
and cause spurious stresses. The model is benchmarked by comparison of the numerical
solutions of the stress field of edge and screw dislocations to the analytic solutions. The
influence of the mesh resolution and the dislocation core radius is demonstrated. The
evaluation of the driving forces is benchmarked by comparing the configurational force
on a dislocation in a sheared volume and close to a traction-free interface (concept of an
image dislocation) to the Peach-Koehler force.

In chapter 3, the chemo-mechanical non-singular dislocation continuum model is for-
mulated and implemented into the FEM. First, the theory of diffusion is summarized
by defining Fick’s laws and the Cahn-Hilliard phase field model. Second, the numerical
dislocation model is extended to a chemo-mechanical model where the strain energy
density contributes to the free energy functional. Finally, the model is implemented into
FEM by reformulation of the partial differential equations into the weak form, elementwise
discretization, formulation of the stiffness matrix, and normalization to a dimensionless
scale. The chemo-mechanical model is benchmarked by comparative analysis of the
numerically computed phase separation for a non-coupled model and fully mechanical
coupled model and comparing the respective interphase thicknesses to the theoretical
interface thickness. Further, the concentration field in the vicinity of an edge dislocation is
compared to the respective analytical solutions in the equilibrium state. The benchmarks
are concluded with an extension of the evaluation of the driving forces on a dislocation
close to a traction free interface for the chemo-mechanical model.

In chapter 4, the heterogeneity induced by a dislocation in LiMn2O4 is analyzed, including
the influence of the ion redistribution and diffusion-induced stress depending on the state
of charge. Then the dislocation-induced mobility heterogeneity with the dependence on
the state of charge is analyzed. The chapter is concluded with an excursion to the ion
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diffusion along the dislocation core for a combined mechanical coupled diffusion and pipe
diffusion model.

In chapter 5, the configurational mechanics of dislocations in phase transformation ma-
terials is utilized to study the size dependency of the formation of misfit dislocations.
The phase separation is analyzed for particles with and without a dislocation considering
the relaxation of the misfit strain due to ion redistribution and the interaction with the
dislocation. On this basis, an energy-based criterion for the critical particle size for the
formation of misfit dislocations is formulated and utilized to predict the critical particle
size for square-shaped particles. Subsequently, the influence of the orthotropic and non-
homogeneous phase-dependent elasticity and the core parameter on the predicted critical
particle size is discussed, and the influence of different particle shapes and positions of
the interface on the predicted critical particle size is analyzed. The chapter is concluded
with a discussion of the model parameters.

In chapter 6 the results and discussions within this thesis are summarized and an outlook
on future continuation of this work is given.
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2 Finite Element Implementation of the
Non-Singular Dislocation Model

In this chapter the non-singular continuum mechanics dislocation model is presented. In
the first part the basics of linear elastic continuummechanics are introduced. In the second
part the fundamentals of dislocations are described with a focus on the analytical solutions
of the elastic fields of dislocations. Here it is distinguished between the singular solutions,
where the displacement caused by the dislocation is represented by the delta function,
which introduces a singularity at the position of the dislocation core, and the non-singular
solutions, that avoid this issue. Then the driving forces on dislocations are presented
featuring the Peach-Koehler forces and configurational mechanics and their relation. On
the basis of the continuum mechanics the numerical model for non-singular dislocations
in linear elasticity is formulated. The dislocation model is derived based on the dislocation
slip mathematically described by the delta function and consecutively developed into
the non-singular dislocation theory following Cai et al. [12]. Then the implementation
into FEM is described where the residuals and the Jacobian matrix are derived and
normalized to natural units. The model is completed by defining the material properties.
Benchmarks are done where the stress field of dislocations and the concentration field
in the vicinity of an edge dislocation are compared to the respective analytical solutions.
The configurational force on an edge dislocation is compared to the Peach-Koehler force
for the examples of a sheared volume and a dislocation close to a free surface.

The non-singular continuum dislocation model and the derivation of the Eshelby tensor
for the formulation of the configuration mechanics of dislocations has been published as
part of the previous works [139, 138, 103, 140].
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2.1 Continuum Mechanics

The linear elastic continuum mechanics describes the deformation of solids as a response
to forces and constraints, see e.g. [35, 71]. According to [35], a body of volume V is in
equilibrium, when the resulting forces from the body forces q̃i and the traction forces t̃i
on the surface A vanish ∫︂

∂V
t̃idA+

∫︂
V
q̃idV = 0, (2.1)

where the traction on the surface with normal vector nj is t̃i = ˜︁σijnj . This is equivalent
to the equilibrium condition ˜︁σij,j + q̃i = 0, (2.2)

where the stress state in a body is described by the stress tensor ˜︁σij . In this work the body
forces are neglected towards a simplified equilibrium condition

˜︁σij,j = 0. (2.3)

The displacement vector ũi is defined as

ũi = x̃i − ˜︁Xi, (2.4)

with the spacial coordinates x̃i and the material coordinates X̃i. Within this work the
assumptions for linear elasticity and small strain hold, which means that the relation
between x̃i and X̃i is linear and that the derivatives with respect to ˜︁Xj can be replaced by
derivatives with respect to x̃j as ∂ũi/∂ ˜︁Xj → ∂ũi/∂x̃j = ũi,j . Then the infinitesimal strain
tensor can be obtained as

εkl =
1

2
(ũk,l + ũl,k) . (2.5)

The total strain εkl is the sum of the elastic strain εEij and the inelastic contribution. In
particular the strain caused by intercalation of ions εCkl and due to dislocations εDkl are
considered in this work. Consequently the elastic strain reads as

εEkl = εkl − εCkl − εDkl. (2.6)

The lattice strain due to the presence of diffusive ions and the dislocation is discussed in
detail in chapter 3. Hooke’s law relates the elastic strain to the stress ˜︁σij in the constitutive
equation ˜︁σij = ˜︁Cijklε

E
kl =

˜︁Cijkl(εkl − εCkl − εDkl), (2.7)
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with the fourth order elasticity tensor ˜︁Cijkl. Hydrostatic stresses are defined as the mean
of the normal stresses ˜︁σh = (˜︁σ11 + ˜︁σ22 + ˜︁σ33)/3. The kinematic rates are on a much
larger timescale than diffusion of ions in the solid, which allows the assumption that the
mechanical state is always in equilibrium [39]. The energy stored in an elastic deformed
unit volume can be found by integration of the forces required to induce this volume
change, thus the elastic strain energy density is

˜︁FE =
1

2

∫︂
˜︁V ˜︁σijεEijd˜︁V . (2.8)

By solving the integral the strain energy density is found as f̃E
= 1

2˜︁σijεEij . Complementary
the stress tensor is describes as the derivative of the strain energy density with respect to
the strain

˜︁σij = ∂f̃
E

∂εEij
. (2.9)

2.2 Fundamentals of Dislocations

The theory for dislocation mechanics is covered in many textbooks such as the references
for this chapter [13, 91]. Dislocations are a disturbance in the periodic crystal lattice
caused by a partial displacement of atoms relative to the original lattice by the so called
Burgers vector b̃ relative to the original lattice. There are three types of dislocations, the
edge dislocation, the screw dislocation and the mixed dislocation, which is a combined
edge and screw dislocation. A dislocation is described by the sense vector ξ parallel to the
dislocation core and the Burgers vector.

The edge dislocation has the form of an additional half plane pressed into the crystal
lattice, where the edge of the half plane is the dislocation core. The Burgers vector
is perpendicular to the sense vector b̃ ⊥ ξ. The gliding plane is defined for the edge
dislocation by the normal vector n = ξ × b̃/(|ξ × b̃|). In the case of the screw dislocation
lattice planes are distorted in a spiral around the dislocation core. The Burgers vector is
perpendicular to the sense vector b̃ ∥ ξ. A pure screw dislocation has no defined gliding
plane but a gliding plane can be defined for a mixed dislocation with an edge component.
A dislocation can split up into partial dislocations with the partial Burgers vectors b̃a and
b̃b, where b̃a + b̃b = b̃. Then the atoms between the dislocations are displaced by the
partial Burgers vector b̃a creating a stacking fault. Partial dislocations occur when the
energy creating a single dislocation with Burgers vector b̃ is larger than that of creating the
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two partial dislocations and the stacking fault. In a crystal, active gliding planes are within
the atomic planes with the highest density. Slip directions are along the shortest lattice
translation vectors within the gliding plane. As an example, an fcc lattice is discussed for
its slip systems and directions. In the fcc lattice, the slip planes are in the (111) planes
with three independent slip directions along the [110] directions. The slip system then
contains 12 slip directions in 4 gliding planes. A Burgers vector of this slip system is
b̃ = ã/2[110]. The glide planes form a triangular lattice and are comparable to the hcp
structure. The hcp structure is conveniently described using the Miller-Bravais notation
with 3 basis vectors in the basal plane a1, a2, a3 and a perpendicular vector a4. The vectors
in the basal plane are triangular orientated such that a1 + a2 + a3 = 0. A vector is defined
as Rhkil = ha1 + ka2 + ia3 + la4 = [hkil]. With the convention h+ k + i = 0 each vector
can be described uniquely. The primary slip system is within the basal plane (0001) with
slip directions of type 1/3[112̄0]. For deformation that cannot be covered by slip within
the basal plane, secondary slip systems can be activated in glide planes of type (112̄2) in
directions 1/3[112̄3].

2.2.1 Singular dislocation models

Various dislocation models are described in the literature. Of those two singular models
following Volterra and Mura are selected and schematically depicted in figure 2.1 with
a comparison to a non-singular dislocation model. The Voltera model is a classic model
for dislocations. First a tube around the dislocation line (dislocation core) is cut out of
the volume. Then the volume is cut in a half plane along the dislocation gliding plane
and displaced by the Burgers vector b. The Mura model defines a shear on the dislocation
gliding plane in the form of a delta function, which is the dislocation eigenstrain [91].
Both models lead to identical solutions for the displacement and stress fields, and contain
a singularity at the dislocation core. The delta function is replaced by a distribution
function following Cai et al. [12]. This removes the singularity in the dislocation core
while keeping the mathematics simple. In the following, the singular dislocation model
following Volterra is introduced and the elastic fields are described. For that a three
dimensional depiction of a straight edge and a straight screw dislocation is depicted in
figure2.2
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Figure 2.1: Schematic depictions for models of an edge dislocation in a cylinder. a)
Volterra model [13]. b) Singular dislocation model with a defined eigenstrain
on the gliding plane (Mura model) [91]. c) Non-singular dislocation model with
distributed dislocation core from Cai et al. [12].

x1

x3

x2

x1

x3

x2

a) b)

ξ

b
r

ξ
br

Figure 2.2: Volterra model for a) an edge dislocaton and b) a screw dislocation in a
cylinder along the x3 axis. A radius r is defined for the dislocation core.
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Screw dislocation in an infinitely long cylinder

The analytical solution for the stress fields of a screw dislocation in an infinitely long
cylinder with infinite radius R is shown following [13]. The solutions follow the Volterra
model with a singularity within the dislocation core. The dislocation line and its Burgers
vector are in positive x2 direction, as indicated in figure 2.2b. The screw dislocation is
characterized by a displacement which is only in the x3 direction with no displacement
in the perpendicular x1 and x2 directions. The screw dislocation can be described as an
anti-plane strain problem in 2 dimensions. The displacement field of the screw dislocation
has to satisfy both Laplace’s equation

∇2ũ3 =

(︃
∂2

∂x̃21
+

∂2

∂x̃22

)︃
ũ3(x̃1, x̃2) = 0, (2.10)

and the Burgers condition ∮︂
˜︁C =

(︃
∂ũi
∂s̃

)︃
ds̃ = b̃i, (2.11)

where the integral is counterclockwise along the closed loop ˜︁C around the dislocation
line in the x3-axis. The solution is the displacement field

ũ3 =
b̃

2π
θ =

b̃

2π
arctan

(︃
x̃2
x̃1

)︃
. (2.12)

and consecutively the non-zero components of the stress field

˜︁σ13 = ˜︁G˜︁γ13 = −
˜︁Gb̃

2π

x̃2

x̃21 + x̃22
,

˜︁σ23 = ˜︁G˜︁γ23 = ˜︁Gb̃

2π

x̃1

x̃21 + x̃22
, (2.13)

where ˜︁G is the shear modulus. It is apparent that the screw dislocation only causes shear
stresses and the normal stresses are zero. Thus the dislocation does not cause a hydrostatic
stress field. As a result the screw dislocation can interact with other dislocations both edge
and screw type and free surfaces (e.g. image dislocation) described by the Peach-Koehler
equation introduced in chapter 2.3.1. However, there is no elastic interaction with point
defects as diffusive ions or vacancies.
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Edge dislocation in an infinitely long cylinder

An edge dislocation is placed in an infinitely long cylinder in positive x3 direction, and its
Burgers vector is in positive x1 direction, as indicated in figure 2.2a. The edge dislocation
is characterised in that the displacements are within the x1 and x2 directions where the
x3 direction is displacement free. It can be formulated as a plain strain problem in 2
dimensions in an infinitely long cylinder that can be solved by finding the Airy stress
equation satisfying the biharmonic equation.(︃

∂2

∂x̃21
+

∂2

∂x̃22

)︃(︃
∂2

∂x̃21
+

∂2

∂x̃22

)︃ ˜︁Φ(x̃1, x̃2) = 0, (2.14)

with the solution of the stress function ˜︁Φ(r̃, θ)in cylindrical coordinates
˜︁Φ(r̃, θ) = ( ˜︁Br̃3 − ˜︁Ar̃ ln r̃) sin θ, (2.15)

where ˜︁A and ˜︁B are variable terms that are evaluated from the boundary conditions as˜︁B = 0 and ˜︁A = ˜︁Gb̃/[2π(1− ν)]. The displacement field of an edge dislocation is

ũ∞1 =
b̃

2π

[︃
arctan

(︃
x̃2
x̃1

)︃
+

1

2(1− ν)

x̃1x̃2

x̃21 + x̃22

]︃
,

ũ∞2 = − b̃

2π

[︃
1− 2ν

4(1− ν)
ln(x̃21 + x̃22) +

1

4(1− ν)

x̃21 − x̃22
x̃21 + x̃22

]︃
. (2.16)

The non zero components of the stress field are

˜︁σ∞
11 =

∂2˜︁Φ∞

∂x̃22
= −

˜︁Gb̃

2π(1− ν)

x̃2(3x̃
2
1 + x̃22)

(x̃21 + x̃22)
2

,

˜︁σ∞
22 =

∂2˜︁Φ∞

∂x̃21
=

˜︁Gb̃

2π(1− ν)

x̃2(x̃
2
1 − x̃22)

(x̃21 + x̃22)
2
, (2.17)

˜︁σ∞
12 = − ∂2˜︁Φ∞

∂x̃1∂x̃2
=

˜︁Gb̃

2π(1− ν)

x̃1(x̃
2
1 − x̃22)

(x̃21 + x̃22)
2
,

˜︁σ∞
33 = ν(˜︁σ∞

11 + ˜︁σ∞
22) = −

˜︁Gb̃ν

π(1− ν)

x̃2

(x̃21 + x̃22)
.

The stress fields have both normal and shear components. The resulting hydrostatic stress
field enables strong elastic interaction with point defects. In real materials dislocations
are not ideally straight and can contain both screw and edge components. The elastic
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fields are then described as a superposition of the stress fields of the screw and edge
dislocation, where the fraction is described with the dislocation character angle ϕ. As only
the edge component causes a hydrostatic stress, point defects can only interact with the
edge component. Therefore this work will focus on edge dislocations and the observations
can be interpolated on curved dislocations, where the strongest interaction will be in areas
with pure edge component and will decrease with increasing screw component.

Edge dislocation in an infinitely long cylinder of finite radius

For dislocations in a finite medium surface effects have to be taken into account. The
free surface will act in the form of image stresses on the dislocation. The corrections for
the resulting stress field are here exemplary shown for an edge dislocation in a cylinder
with finite radius, based on the solution of the edge dislocation in a cylinder with infinite
radius. The corrected stress field has to fulfill the traction free boundary conditions at the
cylindrical surface, such that

˜︁σrr(r̃ = ˜︁R) = ˜︁σθr̃(r̃ = ˜︁R) = 0, (2.18)

with an image function describing a correction field

˜︁Φimg = ˜︁Br̃3 sin θ, (2.19)

with ˜︁B a non-zero constant defined by the boundary conditions. Calculating the image
stress fields leads to the non-zero components of the stress field as

˜︁σrr = ˜︁σ∞
rr + ˜︁σimg

rr = −
˜︁Gb̃ sin θ

2π(1− ν)r̃

[︄
1−

(︃
r̃˜︁R
)︃2
]︄
,

˜︁σθθ = ˜︁σ∞
θθ + ˜︁σimg

θθ = −
˜︁Gb̃ sin θ

2π(1− ν)r̃

[︄
1− 3

(︃
r̃˜︁R
)︃2
]︄
, (2.20)

˜︁σr̃θ = ˜︁σ∞
r̃θ + ˜︁σimg

r̃θ = −
˜︁Gb̃ cos θ

2π(1− ν)r̃

[︄
1−

(︃
r̃˜︁R
)︃2
]︄
.

Screw dislocation in an infinitely long cylinder of finite radius

The derivation for the stress field of a screw dislocation in an infinitely long cylinder of
finite radius is similar to that for the edge dislocation. It is not shown here but details can
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be found in [13]. The nonzero component of the stress field is

˜︁σθ3 = ˜︁σ∞
θ3 − ˜︁σimg

3θ =
˜︁Gb̃

2πr̃
−

˜︁Gb̃

π ˜︁R2
r̃. (2.21)

2.2.2 Non-singular dislocation models

Although the classic analytical solution for dislocation stress fields provides mathematical
simplicity, the singularity at the dislocation core is a major drawback when it comes to
simulation. Also the dislocation core is not naturally described by the simple form and the
dislocation self energy cannot be calculated straight forward. This motivates dislocation
models that remove the singularity at the dislocation core and give a physically sound
description of the dislocation core. The non-singular dislocation theories described in this
chapter are based on a spreading function for the Burgers vector [12] and the gradient
elasticity [63, 38].

Non-singular dislocation model with distributed dislocation core

In the following the non-singular solution for dislocations developed by Cai et al. [12] is
presented, which utilizes a spreading of the Burgers vector as

b̃i =

∫︂
ζ̃(x̃)d3x̃, (2.22)

with the Burgers vector density function

ζ̃(x̃) = b̃iŵ(x̃). (2.23)

The distribution function w̄(x̃) is defined as the convolution of the distribution function
ŵ(x̃) with itself

w̄(x̃) = ŵ(x̃) ∗ ŵ(x̃), (2.24)

which has the analytical form

w̄(x̃) =
15

8πh̃
3
[(r̃/h̃)2 + 1]7/2

, (2.25)

where r̃ = ||x̃||. The second spreading function w̄(x̃) modifies the distance function˜︁R =
√︁

x̃21 + x̃22 + x̃23 to ˜︁Rh =

√︂˜︁R2 + h̃
2 and introduces the dislocation core parameter
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h̃. For h̃ > 0, the modified distance function ˜︁Rh is non-zero and the singularity at the
dislocation core is removed. For large distances from the core, ˜︁Rh ≈ ˜︁R, so that the
resulting non-singular solution closely correlates to the singular solution of the classical
theory outside the dislocation core.The analytical form of ŵ(x̃) is unknown, but it can be
approximated via

ŵ =
15

8π

[︄
1−m

h̃
3
1(r̃

2/h̃
2
1 + 1)7/2

+
m

h̃
3
2(r̃

2/h̃
2
2 + 1)7/2

]︄
. (2.26)

Here h̃1 = 0.9038h̃, h̃2 = 0.5451h̃ and m = 0.6575. The eigendistortion of the dislocation
can then be written as the convolution with the distribution function as [101]

βp
ij = βp0

ij ∗ ŵ(x̃). (2.27)

The non-singular analytical solutions for the stress fields of an infinite straight screw
dislocation are

˜︁σ13 = −
˜︁Gb̃

2π

x̃2˜︁ρ2h
(︄
1 +

h̃
2

˜︁ρ2h
)︄
,

˜︁σ23 = ˜︁Gb̃

2π

x̃1˜︁ρ2h
(︄
1 +

h̃
2

˜︁ρ2h
)︄
, (2.28)

˜︁σ11 = ˜︁σ22 = ˜︁σ33 = ˜︁σ12 = 0,

where ˜︁G is the shear modulus and ρ̃h =

√︂
x̃21 + x̃22 + h̃

2. The non-singular analytical
solutions for the stress fields of an infinite straight edge dislocation are

˜︁σ11 = −
˜︁Gb̃

2π(1− ν)

x̃2

ρ̃2h

(︄
1 +

2(x̃21 + h̃
2
)

ρ̃2h

)︄
,

˜︁σ22 = ˜︁Gb̃

2π(1− ν)

x̃2

ρ̃2h

(︄
1− 2(x̃22 + h̃

2
)

ρ̃2h

)︄
,

˜︁σ33 = −
˜︁Gb̃ν

π(1− ν)

x̃2

ρ̃2h

(︄
1 +

h̃
2

ρ̃2h

)︄
, (2.29)

˜︁σ12 = ˜︁Gb̃

2π(1− ν)

x̃1

ρ̃2h

(︃
1− 2x̃22

ρ̃2h

)︃
,

˜︁σ13 = ˜︁σ23 = 0,
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where ν is the Poisson’s ratio. As a conclusion the description of the dislocation stress
field is non-singular and the stresses in the dislocation core are physical reasonable. The
core parameter h̃ can also be understood as a balancing parameter for the dislocation self
energy, with that the strain energy outside the dislocation core is balanced to the strain
energy inside the core. The core width can be found by calibrating the dislocation self
energy found in atomistic simulation to the non-singular continuum self energy. Note that
for h̃ = 0 the singular solution for the dislocation in an infinitely long cylinder is retrieved.

Non-singular dislocation model in strain gradient elasticity

A different approach to an analytical non-singular solution for dislocations is within the
framework of strain gradient elasticity by Lazar [63, 60]. In this theory a characteristic
length scale l̃ related to the dislocation core is introduced and non-singular displacement
fields for the dislocations are derived. The classical dislocation density and plastic distortion
tensors formulated by DeWit [21] and Kosseka [58] are reformulated to a non-singular
form. The strain energy density of the simplified strain gradient elasticity is

˜︂W sge =
1

2
˜︁Csge
ijklβijβkl +

1

2
l̃
2 ˜︁Csge

ijkl∂mβij∂mβkl, (2.30)

with the isotropic elasticity tensor ˜︁Csge
ijkl = G(δikδjl + δilδjk) + λ̃δijδkl and the elastic

distortion tensor βij . The three dimensional Green tensor of the Helmholz Navier equation
is calculated as ˜︁Gij( ˜︁R) =

1

16π ˜︁G(1− ν)
[2(1− ν)δij∆− ∂i∂j ] ˜︁A( ˜︁R), (2.31)

with ˜︁A( ˜︁R) = ˜︁R+
2l̃

2

˜︁R (1− e−
˜︁R/l̃), (2.32)

and the position defined as ˜︁R = |x̃− x̃′|. The Green tensor is non-singular and is written
in the explicit form as

˜︁Gij( ˜︁R) =
1

16π ˜︁G(1− ν)

[︃
δij˜︁R
(︂
(3− 4ν)(1− e−

˜︁R/l̃)

+
1˜︁R2
(2l̃

2 − ( ˜︁R2 + 2l̃ ˜︁R+ 2l̃
2
)e−

˜︁R/l̃)

)︃
(2.33)

+
˜︁Ri
˜︁Rj˜︁R3

(︄
1− 6l̃

2

˜︁R2
+

(︄
2 +

6l̃˜︁R +
6l̃

2

˜︁R2

)︄
e−

˜︁R/l̃

)︄]︄
.
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The eigendistortion of the dislocation can then be written as [101]

βp
ij = βp0

ij ∗ ˜︁G, (2.34)

where ˜︁G is the isotropic Green’s function, with ˜︁Gij = ˜︁G0
ij ∗ ˜︁G. The explicit form of the

distortion tensor is given for straight dislocations [61]. For the screw dislocation in the
anti-plain strain problem the non-vanishing components of the non-singular distortion
tensor are

β31 = − b̃3
2π

x̃2

r̃2

(︃
1− r̃

l̃
K1(r̃/l̃)

)︃
, (2.35)

β32 =
b̃3
2π

x̃1

r̃2

(︃
1− r̃

l̃
K1(r̃/l̃)

)︃
, (2.36)

with Ki the modified Bessel function of order i and r̃ =
√︁
x̃21 + x̃22. The non-vanishing

components of the non-singular distortion tensor for the edge dislocation for the plain
strain problem are

β11 = − b̃1
4π(1− ν)

x̃2

r̃2

(︄
(1− 2ν) +

2x̃21
r̃2

+
4l̃

2

r̃4
(x̃22 − 3x̃21)

−2(x̃22 − 3x̃21)

r̃2
K2(r̃/l̃)−

2(x̃22 − νr̃2)

l̃r̃
K1(r̃/l̃)

)︃
, (2.37)

β12 =
b̃1

4π(1− ν)

x̃1

r̃2

(︄
(3− 2ν)− 2x̃22

r̃2
− 4l̃

2

r̃4
(x̃21 − 3x̃22)

+
2(x̃21 − 3x̃22)

r̃2
K2(r̃/l̃)−

2(x̃22 + (1− ν)r̃2)

l̃r̃
K1(r̃/l̃)

)︃
, (2.38)

β21 = − b̃1
4π(1− ν)

x̃1

r̃2

(︄
(1− 2ν) +

2x̃22
r̃2

+
4l̃

2

r̃4
(x̃21 − 3x̃22)

−2(x̃21 − 3x̃22)

r̃2
K2(r̃/l̃) +

2(x̃22 − (1− ν)r̃2)

l̃r̃
K1(r̃/l̃)

)︃
, (2.39)

β22 = − b̃1
4π(1− ν)

x̃2

r̃2

(︄
(1− 2ν)− 2x̃21

r̃2
− 4l̃

2

r̃4
(x̃22 − 3x̃21)

+
2(x̃22 − 3x̃21)

r̃2
K2(r̃/l̃)−

2(x̃21 − νr̃2)

l̃r̃
K1(r̃/l̃)

)︃
. (2.40)
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Discussion

Within this chapter three models for dislocations have been discussed, which are the
classical singular model and two non-singular models from Cai et al. [12] and Lazar et
al. [61]. The main drawback of the classical model is the singularity at the dislocation
core introduced by the delta function which deviates from the behavior of dislocations in
real materials that can only have finite displacement and stress within the dislocation core.
The non-zero stress fields of an edge dislocation calculated with the different models are
summarized in figure 2.3. The parameter h̃ = 2 nm in the model of Cai et al. is defined
as the core width and the parameter l̃ = 1 nm in the Model of Lazar et al. is defined as
the core radius. The non-zero stress fields are compared in figure 2.3. It is shown that
the predicted stress fields of the non-singular solutions are finite within the dislocation
core region and converge to the singular solution for large distances compared to the core
radius. The two non-singular solutions have a similar course, although the solution of
Lazar et al. has the maximum closer to the dislocation core.

It is of high interest to implement a non-singular dislocation solution in numerical models
as the infinite stress at the dislocation core of the singular solution is physically impossible.
Further the numerically computed stresses of an infinite analytical solution can only be a
large but finite approximation, which strongly depends on the mesh as the approxima-
tion will more and more approach the analytical infinite solution the more the mesh is
refined. Both non-singular models provide solutions for arbitrary shaped dislocations in
3 dimensions. The advantages and disadvantages are discussed in the following. The
model of Cai et al. has the advantage of a simple formulation related to the distance
function ρ̃h and the distribution function w̄. However, the distribution function ŵ is only
derived in the form of a numeric approximation, so that the model lacks the analytic closed
forms of the Burgers equation and the Peach-Koehler stress equation [101]. Further the
calculated stress field is convoluted with the distribution function such that the calculation
of the Peach-Koehler force needs an integration operation. The approach by Lazar et al.
provides closed form analytical forms of the Burgers equation and the Peach-Koehler stress
equation [101]. However, the formulation in the strain gradient elasticity introduces more
complexity compared to linear elastic models. In this model the mechanical problem is
solved in the form of a displacement field and the dislocation is implemented in the form
of an eigenstrain distortion. The interaction of dislocations with other defects or external
forces is implicitly covered by solving the partial differential equation for the displacement
field. Therefore an explicit form of the Peach-Koehler force is not required in the model.
Also the numerical approximation of the distribution function is acceptable due to the
approximative nature of the FEM. With that the advantage of a mathematical simple form
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d)c)

b)a)

Figure 2.3: Comparison of the stress field solutions from the classical singular dislocation
model [13], the non-singular dislocation model in strain gradient elasticity by
Lazar et al. [63, 60] and the non-singular dislocation model with distributed
dislocation core by Cai et al. [12].
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the model following Cai et al. [12] is an excellent choice for the numerical non-singular
dislocation model. A single integration operation is sufficient for the convolution of the
Burgers vector to obtain the non-singular dislocation eigenstrain.

2.3 Driving Forces on Dislocations

Driving forces on dislocations can be understood in the sense of an energy release rate
during the movement of the dislocation. The evaluation of the driving forces on a disloca-
tion defect are schematically depicted in figure 2.4. The methods considered in this work
are the calculation of the Peach-Koehler force and the configurational forces. The driving
force on a point P on the dislocation line can be calculated by the Peach-Koehler force.
Driving forces on a dislocation can also be obtained within the configurational mechanics,
and are found by integrating the configurational forces along the Burgers surface S. At
the end of this section it will be shown that the two methods are equivalent when only
linear elastic contributions are considered.

-gi

S

Fi

P

Figure 2.4: Driving forces on an edge dislocation. For this configuration the configura-
tional forces gi obtained from the integration along the surface S are equiva-
lent to the Peach-Koehler force Fi.
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2.3.1 Peach-Koehler force

The Peach-Koehler force first introduced in 1950 [99] evaluates the force acting on a
dislocation due to a local stress field. The Peach-Koehler equation [43] translates the
stresses to a driving force on one unit length of the dislocation˜︁F = (˜︁σ · b̃)× ξ, (2.41)

which is written in index notation as˜︁Fk = ϵkij˜︁σilb̃lξj . (2.42)

The stress ˜︁σ can exemplarily be an external stress field due to mechanical loading, the
stress field of other defects such as dislocations or the stress field from an image dislocation
at a free surface in a finite volume. The interaction forces between dislocations finds
wide application in discrete dislocation dynamics [123, 121, 32, 52]. Typically the
stress field of the dislocation is expressed in the classic singular theory, which then also
leads to unphysical singular forces for distances smaller than the dislocation core. Non-
singular forces can be obtained by expressing the stress field with non-singular dislocation
theory [59]. The direction of the force is independent on the definition of the dislocation
with its sense vector ξ and the Burgers vector b̃, because if the sense vector is reversed,
then the Burgers vector will be reversed as well. The relation of the Peach-Koehler force
with the work required for the displacement of a dislocation can be shown in the derivation
with the infinitesimal work approach [99, 77]. The Peach-Koehler equation can also be
derived from the configurational force proving the equivalence between the Peach-Koehler
force and the configurational force, which is shown in the next section. The Peach-Koehler
force is utilized for benchmarking the driving forces on dislocations numerically computed
with the configurational mechanics in chapter 2.5.6 and 2.5.7.

2.3.2 Configurational mechanics of dislocations

One general approach to calculate driving forces on defects is within the configurational
mechanics (see e.g. [90]). The configurational force balance allows to directly evaluate
forces on defects within a volume. For the pure mechanical case, the strain energy density
f̃ = f̂(ũi,j ; x̃k) is a function of the strain and position for a body subject to body forces q̃i
where the symmetric stresses satisfy the equilibrium condition in equation 2.2. From the
identity,

.

f̃ − ˜︁σij .
ũi,j = 0, (2.43)
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the configurational force balance in the local form can be derived as [90]

˜︁Σkj,j + g̃k = 0, (2.44)

where the Eshelby stress tensor is

˜︁Σkj = f̃ δkj − ˜︁σij ũi,k, (2.45)

and the configurational body forces g̃k are given by

g̃k = −q̃iũi,k −
∂f̃

∂x̃k

⃓⃓⃓⃓
⃓
expl.

, (2.46)

where the free energy density explicitly depends on the position. Integration of the Eshelby
stress tensor or the configurational body forces returns the average of the forces within the
integration volume. This means that the driving forces on a defect can be found by defining
the integration area such that only the defect is contained. One major advantage is that
the configurational mechanics can be generalized, as the configurational force balance
can also be derived from the free energy density. Then by considering contributions such
as chemical or electrostatic to the free energy density, a multiphysical force on the defect
can be found [131].

In the following the configurational mechanics for dislocations are introduced according
to ref. [139]. Subsequently it is shown that the Peach-Koehler force can be derived from
the configurational forces [3, 139]. Consider a body containing an edge dislocation with
Burgers vector b̃ but free of body forces, e.g. q̃i = 0. The configurational forces are
reformulated to explicitly include the dislocation. Therefore the elastic distortion of a
dislocated body is defined as

βij = ũi,j − βD
ij , (2.47)

with the displacement gradient ũi,j and the dislocation induced distortion βD
ij . Integration

along the Burgers circuit ˜︁C allows to define the Burgers vector as
b̃i = −

∮︂
˜︁C βD

ij l̃j =

∮︂
βD
ij l̃j =

∫︂
˜︁S αijd˜︁Sj , (2.48)

where ˜︁S is the surface bounded by ˜︁C and the dislocation density αij is defined as

αij = −ϵjklβ
D
il,k and αij = ϵjklβil,k, (2.49)
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where ϵjkl is the permutation tensor. The strain energy density now includes the dislocation
contribution with

f̃ =
1

2
˜︁σij (︁εij − εDij

)︁
=

1

2
˜︁σijβij , (2.50)

with the gradient
f̃ ,k = ˜︁σijβij,k = ˜︁σij (βij,k − βik,j) + ˜︁σijβik,j . (2.51)

Multiplication of equation 2.49 with ϵkjl gives ϵkjlαij = βij,k − βik,j . By using the mechan-
ical equilibrium condition the strain energy density gradient can be rewritten as

f̃ ,k = ˜︁σijϵkjlαil + (˜︁σijβik),j − ˜︁σij,jβik = ˜︁σijϵkjlαil + (˜︁σijβik),j . (2.52)

This relation can be rearranged to the local form˜︁Σkj,j + g̃k = 0, (2.53)

with the Eshelby stress tensor ˜︁Σkj = f̃ δkj − ˜︁σijβik, (2.54)

and the configurational forces
g̃k = −ϵkjl˜︁σijαil. (2.55)

As an example, a straight dislocation is defined by its dislocation density αil = b̃iδ(x̃1 −
x̃D1 )δ(x̃2 − x̃D2 )ξ̂l. The integral

f̃k =

∫︂
˜︁S ˜︁Σkj,jd˜︁S = −

∫︂
˜︁S g̃kd˜︁S = ϵkjl˜︁σ0

ij b̃iξ̂l, (2.56)

returns the Peach-Koehler force given in equation 2.42 [99], where x̃Di is the location of
the dislocation line, ξ̂l is the sense vector of the dislocation line, and ˜︁σ0

ij = ˜︁σij |x̃i=x̃D
i
is

the stress field at dislocation core due to external loading. For more details regarding the
physical interpretation of the Eshelby stress tensor and Peach-Koehler force, one can refer
to ref. [62, 3].

2.4 Non-singular Continuum Dislocation Model

2.4.1 Singular representation

The description for a dislocation as an eigenstrain defined on the dislocation slip plane
is shown in the following. The description is based on the Dirac delta distribution and
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is singular. Considered is a dislocated body B ⊂ R3 with a volume V enclosed by the
boundary S = ∂B. The dislocated body is governed by the mechanical equilibrium˜︁σij,j = 0 in B, (2.57)

by taking the assumptions for small strain and a quasistatic problem into account, where˜︁σij is the stress tensor, and the body force is neglected. The general anisotropic linear
constitutive relation for the stress ˜︁σij and elastic strain εEij is given as˜︁σij = ˜︁Cijklε

E
kl =

˜︁Cijkl

(︁
εkl − εDkl

)︁
, (2.58)

where ˜︁Cijkl is the stiffness tensor, εEkl is the elastic strain and εDkl is the eigenstrain of
dislocations. With the assumption of linear elasticity, that means small deformations
can be described by an infinitesimal strain tensor, the total strain εkl is defined as the
symmetric part of the displacement gradient ũk,l as

εkl =
1

2
(ũk,l + ũl,k) . (2.59)

Either displacement or traction boundary condition can be considered

ũi = ūi or ˜︁σijnj = t̃i on S, (2.60)

where ūi is the prescribed displacement on the boundary, nj is the normal vector of the
boundary, and t̃i is the applied traction on the boundary. The displacement jump caused
by a gliding dislocation is associated with the eigenstrain tensor εDij , which is defined as
the symmetric form of the dyadic product of the Burgers vector b̃i and the normal vector
ni of the slip plane ˜︁D

εDij (x̃) =
1

2

(︂
b̃inj + b̃jni

)︂
δ(x̃− ˜︁D) =

1

2

∫︂
˜︁D
(︂
b̃inj + b̃jni

)︂
δ(x̃− x̃D)d ˜︁D(x̃D), (2.61)

where δ(x̃ − ˜︁D) is the one-dimensional Dirac delta function in the normal direction of
the slip plane ˜︁D. The second equality in equation(2.61) indicates that the Burgers vector
distribution is described by the three-dimensional Dirac delta function δ(x̃− x̃D), where
x̃Di denotes the location vector of points on the slip plane [91]. Equation 2.61 confines the
location of the eigenstrain onto the slip plane, i.e. when x̃ ∈ ˜︁D. In the eigenstrain theory,
by introducing the dislocation density concept, the Burgers vector can be defined as [2]

b̃i = −
∮︂
˜︁C βD

ij dC̃j =

∫︂
Ã
αijdÃj , (2.62)

where ˜︁C is the Burgers circuit and Ã is the Burgers surface bounded by ˜︁C. Here βD
ij =

b̃injδ(x) is the plastic distortion due to the dislocation and αij is the dislocation density
tensor defined in equation 2.49.
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2.4.2 Non-singular representation

The major drawback of the classical solution discussed above is the singularity at the
dislocation core related to the delta function. Therefore the solution is only valid outside
the core, and the singularity within the core has no physical meaning and leads to
numerical inconvenience for the numerical simulation. An alternative is to spread the
eigenstrain over the region surrounding the slip plane (regularization of the dislocation
slip) [123]. A non-singular continuum representation for spreading the Burgers vector
proposed by [12] ensures that the derived stress field agrees with that of the classic
solution. The model can be calibrated with a molecular dynamics model to a more
accurate description of the core energy. The model is implemented based on the spread of
the burgers vector around an arbitrary point on the slip plane in the three-dimensional
space given in equation 2.22 utilizing the spreading functions ŵ(x̃) and w̄(x̃) defined in
equations 2.23, 2.24 and 2.26. In particular the spreading function in the framework
of the non-singular continuum theory of dislocations ŵ(||x̃ − x̃D||, h̃) is a replacement
for the Dirac delta function, so that the convolution defines the non-singular dislocation
eigenstrain

εDij (x̃) =

∫︂
˜︁D ϵijŵ(||x̃− x̃D||, h̃)d ˜︁D(x̃D) = ϵij ∗ ŵ(x̃). (2.63)

2.5 Implementation in the Finite Element Method

The FEM is applied to solve partial differential equations approximately discretizing the
simulation space into elements, on which the PDE is solved. The FEM was implemented
following the previous work [139]. In the first part of this section the variables are normal-
ized to the natural units and the derivation of the residuals and the stiffness matrix for the
implementation in the FEM formulation is shown employing the dimensionless governing
equations. The model formulation is completed with the definition of the properties
of LiMn2O4 applied for the isotropic examples in this work without phase separation.
Artificial spurious stresses are discussed that can rise from plastic incompatibilities caused
by incorrect implementation of the dislocation eigenstrain. The dislocation model is
benchmarked by comparing the stress fields of an edge and a screw dislocation to the
analytical solutions. The configurational mechanics for dislocations is benchmarked first
by comparing the driving force on an edge dislocation in a sheared particle and second
by computing the driving force on a dislocation close to a free surface and compare the
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solution to the analytical calculated Peach-Koehler force resulting from the stress field of
an image dislocation.

2.5.1 Numerical computation of the regularized dislocation eigenstrain

The non-singular continuum dislocation model is reformulated to a numerical computed
eigenstrain. The dislocation eigenstrain in equation 2.63 is reformulated in the numerical
form

εDij (x̃) = ϵijŴ (x̃, h̃), (2.64)

with the numerical distribution function

Ŵ (x̃, h̃) =

∫︂
˜︁D ŵ(||x̃− x̃D||, h̃)d ˜︁D(x̃D), (2.65)

of the dislocation eigenstrain around the slip plane. The integration is truncated at a
distance r̃c by introducing the Heaviside step function H(r̃c − r̃)

Ŵ (x̃, h̃) ∼=
∫︂
˜︁D H(r̃c − r̃)ŵ(||x̃− x̃D||, h̃)d ˜︁D(x̃D) = (1−m)Ŵ 1(x̃, h̃1) +mŴ 1(x̃, h̃2),

(2.66)
with

Ŵ 1(x̃, h̃) =

∫︂
˜︁D H(r̃c − r̃)w(||x̃− x̃D||, h̃)d ˜︁D(x̃D), (2.67)

reducing the computation cost at the expense of an underestimation of the dislocation
eigenstrain. The truncation distance of r̃c = 2h̃ utilized in this work leads to an error of
less than 5% compared to the analytical solution [52]. In the following the distribution
function is integrated for a two-dimensional setup where a dislocation along the x3-axis
and the slip plane normal to the x2-axis is placed at x̃ = {0, 0, 0}T as depicted in figure
2.5a. With this the surface integration of w follows as

Ŵ 1(x̃, h̃) =

∫︂
L̃

∫︂ r̃c

−r̃c

w(||x̃− x̃D||, h̃)dx̃D3 dx̃D1 , (2.68)

where L̃ is the integration path along the x1 direction on the slip plane. With the integration
domain inside −r̃c and r̃c the Heaviside step function H(r̃c − r̃) can be removed. The
integration along the x̃D3 axis is solved analytically with∫︂ r̃c

−r̃c

w(||x̃− x̃D||, h̃)dx̃D3 =
h̃
4
r̃c(15X̃

2
+ 20r̃2cX̃ + 8r̃4c)

4πX̃
3
(X̃ + r̃2c)

5/2
, (2.69)

31



introducing the numerical distance function X̃ = (x̃1−xD1 )
2+ x̃22+ h̃

2. The integral along
the x1 direction can only be solved numerical and is given as

Ŵ 1(x̃, h̃) =
N∑︂
i=1

h̃
4
r̃c(15X̃

2
i + 20r̃2cX̃i + 8r̃4c)

4πX3
i (X̃i + r̃2c)

5/2
dx̃D1 , (2.70)

utilizing trapezoidal integration where N = 20 is the number of integration points. X̃i is
the distance function calculated at the i-th integration point. The numerical calculated
distribution Ŵ is exemplarily shown in figure 2.5b and c. Note that Ŵ (x̃, h̃) is treated as
a constant function so that it is sufficient to be calculated once at the beginning of the
simulation.

h=5

W^

0.0

0.24

b) c)a)

x2

x1
-rc rc rc

L/2-L/2

Figure 2.5: a) Schematic depiction of the integration of the distribution function Ŵ . b)
Ŵ -distribution along the glide plane with the glideplane normal n = (010) for
h = 5. c) Ŵ plotted along the line indicated in b).

2.5.2 Finite element formulation

The variables are normalized to the natural units by defining the dimensionless stiffness
tensor with Cijkl = ˜︁Cijkl/( ˜︁R ˜︁T c̃max) and the dimensionless space with x = x̃/˜︁L0, where˜︁L0 is the characteristic length scale, ˜︁R the gas constant, ˜︁T absolute temperature and c̃max

the solubility limit for lithium ions. The governing equations in dimensionless form are
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then

σij,j = 0 in B, (2.71)
ui = ūi on ∂Bu, (2.72)

σijnj = t̄i on ∂Bσ, (2.73)

and the equilibrium condition is written in the dimensionless weak form by multiplication
with the test function ηi and integrating over the volume B as

−
∫︂
B
ηi,jσijdV = 0. (2.74)

The element-wise interpolations of the test function and its gradient are

ηi =
∑︂
I

N IηIi , ηi,j =
∑︂
I

N I
,jη

I
i , (2.75)

where N I is the shape function and ηIi are the nodal values of the test function. The
superscript I denotes the node number. By inserting equation 2.75 into the weak form
formulation, the elemental residual is

RI
ui

= −
∫︂
BE

N I
u,jσijdV, (2.76)

where Nu is the shape function for the displacement ui. The non-zero component of the
element stiffness matrix follows as

KIJ
uiuk

= −
∫︂
BE

N I
u,jCijklN

J
u,ldV. (2.77)

The configurational force is computed by first solving the differential equations for the
elastic field. From this solution the Eshelby stress tensor can be computed. The configura-
tional force balance in equation 2.53 is transformed to the weak form by first multiplying
with a test form η employing the additive rule, integrating over the volume B and applying
the divergence theorem [104]

−
∫︂
B
Σijηi,jdV +

∫︂
S
ΣijnjηidS +

∫︂
B
giηjdV = 0. (2.78)

The nodal configurational forces on a node I are computed with the assembly operation⋃︁
over all adjacent elements nel

GI
i =

nel⋃︂
e=1

∫︂
Be

Σns
ij N

I
,jdV. (2.79)
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The nodal forces in an arbitrary integration volume can then be calculated in the sum

Fi = −
nnod∑︂
I=1

GI
i . (2.80)

The driving forces on a dislocation can then be found by choosing an appropriate integra-
tion volume including the dislocation core.

The finite element simulations are performed within the open source software MOOSE,
where the here presented numerical model is implemented in the form of user ele-
ments [100].

2.5.3 Spurious stresses

Solving the boundary value problem in FEM, plastic incompatibilities can rise "spurious
stresses" [52]. The origin is found in the integration order of the strain which is one order
lower than the degree of freedom, the displacement. When an eigenstrain is defined
on the dislocation gliding plane in the same integration order as the degree of freedom
variable, this cannot be captured in the space of strain. The incompatibility will be
compensated by originating spurious stresses at the element boundaries. Exemplarily,
when the displacement variables are linear, the strain is piece-wise constant. An applied
linear eigenstrain will lead to incompatibilities. Underintegrated elements can be utilized
to approach this issue, for example 8 node hexaedrons with 1-IP point quadratur [52].
Spurious stresses will be eliminated as the sampling on a reduced number of integration
points reduces the incompatibilities. However, the use of underintegrated elements
may lead to the so called "hour-glass" effect. A more simple approach is to assure that
the eigenstrain is calculated on the same integration order as the strain, resolving the
incompatibility and preventing the origination of spurious stresses. This approach is more
flexible as it is not restricted to simulation environments that support underintegrated
elements. A demonstration for a dislocation is shown in figure 2.6. If the eigenstrain has
the same order of magnitude, than the displacement variables, "spurious stresses" in σ12
emerging on the gliding plane where the eigenstrain is applied. Reducing the integration
order for the eigenstrain eliminates these "spurius stresses".

34



σ 1
2

-20

20b)a)
σ 1

2

-20

20

Figure 2.6: Stress field σ12 of an edge dislocation in the center of a finite volume with
traction boundary conditions tj applied on the outer boundaries. a) The dislo-
cation eigenstrain has the same order of approximation as the displacements
b) The order of approximation of the dislocation eigenstrain is one order lower
than that of the displacement. Spurious stresses emerge if the eigenstrain
has the same order of approximation as the displacements. The computation
of the stress field can only be correct, when the eigenstrain has the same
order of approximation as the strain.
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2.5.4 Material properties of LiMn2O4

Spinel LiMn2O4 is a reasonably relevant cathode material and because of its isotropic
properties an ideal candidate for a model material. As simplification, the isotropic lithium
partial molar volume is given as ˜︁Ωij = ˜︁Ωδij with the second order unit tensor as δij .
Note that the reference concentrations for the non-lithiated and fully lithiated state of
LiMn2O4 in this work are defined at c = 0 and c = 1, respectively. The isotropic Young’s
modulus is measured as 93 GPa [4]. The structure of dislocations have not been analyzed
in depth for LiMn2O4 but are confirmed for LiMn2O3 [70] and LiMn2O4 [105, 126], where
structural defects were induced by means of ion irradiation. In the following analytical
considerations show that a geometrical possible Burgers vector can be calculated, where
the focus is on total dislocations and partial dislocations that include a stacking fault are
neglected. According to Hornstra [47], the Burgers vector can be defined by the distance
of two equivalent sites, e.g., two equivalent oxygen sites. The dislocation slip directions
are in planes with the highest atom density. The structural similar Spinel has the highest
density plane of oxygen in the (111) plane with slip directions in [110] [47]. The distance
between two equivalent oxygen sites in the (111) plane for LiMn2O4 is ã0

√
2/2, with the

lattice parameter ã0. The corresponding Burgers vector is ã0/2[110] with the magnitude
of b̃0 = ã0

√
2/2. In an earlier experiment, a Burgers vector with similar length has been

found for an edge dislocation in LiMn2O4 [126]. All material parameters applied in the
model are summarized in table 2.1.

2.5.5 Benchmark for the elastic fields of dislocations

In this section the benchmarks for the stress field of an edge and a screw dislocation are
shown as validation for the proposed numerical model. The straight edge dislocation is
modeled as a plane strain problem in an elastic material. The anti plane strain problem is
considered to model a straight screw dislocation. The mechanical properties defined for
the benchmarks correspond to LiMn2O4 described in chapter 2.5.4.

A straight edge dislocation is modeled as a plane strain problem. The sample size for the
simulation is 200 nm× 200 nm, and the mesh consists of 200× 200 four-node quadrilateral
elements. The dislocation with normalized Burgers vector b = [b0, 0, 0] and normal vector
n = [0, 1, 0] is placed at the center of the sample. To compare the numerical finite domain
solution to the analytical infinite domain solution, the infinite domain is emulated by a
traction boundary condition that cancels out the boundary effect. In particular the traction
boundary condition is chosen in a way that defines a stress state on the outer boundary that
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Figure 2.7: The solution for a dislocation on a finite domain has to satisfy the stress free
boundary conditions which can be fulfilled by the addition of the stress fields
of image dislocations and a correction stress field. To compute a numerical
solution on a finite domain that is equivalent to the analytical solution on
an infinite domain, traction boundary conditions have to be applied on the
free surfaces of the finite domain. As indicated in the figure, the analytical
solution from the infinite volume marked by the square can be recovered
in the numerical solution when the traction boundary condition t̄i defines a
stress state of the analytical solution on the boundaries thus canceling out
the boundary effect.
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Table 2.1: General and specific parameters corresponding to spinel LiMn2O4.
Parameter Symbol Value
Gas constant ˜︁R 8.314 462 1 Jmol−1K−1

Absolute temperature ˜︁T 300K

Current density ĩn 2Am−2

Faraday constant ˜︁F 96.485 336 521Cmol−1

Young’s modulus ˜︁E 93GPa [4]
Poisson’s ratio ν 0.3 [4]
Lattice parameter ã = b̃ = c̃ 0.820 51 nm [105]
Burgers vector b̃0 0.580 19 nm

Lithium partial molar volume ˜︁Ω 3.497× 10−6m3mol−1 [133]
Solubility limit c̃max 2.29× 104molm−3 [133]

Interaction parameter χ 1.0

Diffusion coefficient ˜︁D0 7.08× 10−15m2 s−1 [133]
Stress-free concentration c̃ref 1.145× 103molm−3

corresponds to the analytical solution as described in figure 2.7. The boundary condition
is defined as

t̄i = σns
ij nj , (2.81)

where σns
ij is the non-singular analytical solution for the edge dislocation [12]. Note

the difference to the construction of an image dislocation, where the stress field of a
dislocation in an infinite body is corrected, such that it fulfills the traction free boundary
condition on a surface close to the dislocation. For a more physical meaningful core
energy, the core parameter h can be calibrated with a molecular dynamics simulation.
In absence of that, the behavior of the solution with the h-variation is studied for better
understanding. The variation of the stress field σ11 with the h-parameter is shown in
figure 2.8a. The singular analytical solution is included as reference, marked by the black
dashed line. The influence of the core width shows in the core region, as the maximum
of the stress field increases with a smaller h-value, while the position of the maximum
stress shifts towards a smaller distance from the core. The smoothness of the solution
increases with the core width. The reason is that a constant mesh size was chosen for
all simulations so that the ratio between mesh size and core width is in favour for the
simulations with a larger core width. This is analyzed in the following by variation of
the mesh size with a constant core width h = 2 in figure 2.8b. Exemplarily the stress
field σ11 is shown for sizes of the mesh elements between 0.5h and 0.25h. In the inset,

38



the mesh dependence of the numerical computed distribution function Ŵ is shown. The
numerical distribution function is element-wise constant, and thus a step function. For a
mesh size larger than the core width the distribution function is not accurate and with
that the error in the computed stress fields is large. Exemplary for σ11 converging of the
stress field between the mesh size of 0.5h and 0.25h indicates a sufficient mesh resolution.
A mesh size of 0.5h is chosen as a compromise between an accurate solution for the stress
field and computation efficiency. A detailed study of the non-zero stress fields of the edge
dislocation is shown in figure 2.9 for a dislocation core width h = 2. As reference are the
analytical singular and non-singular solutions [12] shown and the core width is indicated
by a grey shaded area. The solutions for the stress fields σ11, σ22 and σ33 are shown as
line-plots along the x2-axis and the stress field σ12 is shown along the x1-axis. This is also
indicated in the lower insets where the respective stress field distributions are shown. The
numerical solution is between the singular and the non-singular analytical solution. The
stress field outside the dislocation core region agrees well with both the singular and the
non-singular analytical solution. The upper inset shows the variation of the stress field
with the h-parameter.

b)a)

Figure 2.8: Benchmarks of the edge dislocation for the variation of the h parameter. a)
The normalized stress field σ11 for different h parameter, compared to the
analytical solution indicated with the black dashed line. b) The stress field σ11
is depicted for different mesh sizes. The inset shows the respective numerical
distribution function Ŵ .

In the following the benchmark for the screw dislocation is discussed. The size of the
three dimensional sample for the simulation is 200 nm × 200 nm × 4 nm, and the mesh
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Figure 2.9: Benchmarks for the nonzero components of the stress field a) σ11, b) σ22,
c) σ33 and d) σ12 of the edge dislocation. The numerical and analytical solu-
tions [12] agree well outside the core region defined by the dislocation core
width h marked by the shaded grey area.
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consists of 200× 200× 4 eight-node quadrilateral elements. The dislocation with Burgers
vector b = [0, 0, b0] and normal vector n = [0, 1, 0] is placed at the center of the sample.
The outer boundaries of the sample with normal directions in the x1, x2, and x3 direction
are subject to the traction boundary condition to cancel out the boundary effect as before.
The results for the non-zero stress fields of the screw dislocation are shown in figure 2.10
and the stress field outside the dislocation core region agrees well with both the classical
(singular) and the non-singular analytical solution from Cai et al. [12].
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Figure 2.10: Benchmarks for the nonzero components of the stress field a) σ13 and b) σ23
of the screw dislocation. The numerical and analytical solutions [12] agree
well outside the core region defined by the homogenization length h marked
by the shaded grey area.

2.5.6 Benchmark for an edge dislocation within a particle under shear load

In this section the configurational force on a dislocation inside a particle subject to a shear
load is compared to the analytical solution for the Peach-Koehler force. The dislocation
with a normalized Burgers vector b0 = 1.033 is placed in the center of a particle and the
boundary condition on the free surfaces for the displacement is a shear load τ = 50 as
depicted in figure 2.11. The particle size is 50× 50 nm2 with 200× 200 mesh elements.
The benchmark is computed for different core parameters and elastic properties. For the
isotropic case, the elastic properties of LiMn2O4 were applied as defined in chapter 2.5.4.
The elastic properties for the anisotropic cases are defined in chapter 3.4.3, where LFP
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stands for LiFePO4 and FP is FePO4. For LFP/FP the particle is defined containing two
phases, where FePO4 is in the upper half and LiFePo4 is in the lower half of the particle.
According to the Peach-Koehler formular, the driving force on the dislocation is then
FPK
1 = bσ12 = −51.65 and FPK

2 = 0. The calculated and computed driving forces are
summarized in table 2.2. Compared to the theoretical calculated value, the numerical
computed driving force has a maximum difference of 1.3%. Overall, the driving forces
for the isotropic and anisotropic cases agree well with a small dependence on the core
parameter. The F2 component of the numerical computed driving forces differs between
the isotropic and anisotropic cases, but do not depend on the core parameter. While the
isotropic case F isotropic

2 = 2.94×10−8 agrees well with the analytical solution, considering
numerical error, the F2 components for the anisotropic cases are nonzero. Specifically
F FP2 = F LFP2 = −30.934 for the single phase materials and F LFP/FP2 = 18.31 for the two
phase material. The driving force points towards the tensile side of the dislocation for the
single phase materials. In LFP/FP, the driving force is reversed and points to the softer
material. This is related to the asymmetry of the dislocation stress field in the x2 direction
and the inhomogeneous stress field for LFP/FP.
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Figure 2.11: A particle with a dislocation is subject to a shear load τ = −50. a) σ11 b) σ12.
The arrows represent the nodal configurational body forces.
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Table 2.2: Benchmark for the Peach-Koehler force on a dislocation with normalized
Burgers vector b0 = 1.033 inside a particle subject to a shear τ = 50. The
difference between the numerical and theoretical value is calculated relative
to the theoretical value for the driving force FPK

1 = −51.65.
h = 1.5 h = 2.0 h = 2.5

F1 Diff. [%] F1 Diff. [%] F1 Diff. [%]

Isotropic 52.28 1.2 51.57 0.2 51.38 0.5
FP −52.27 1.2 51.56 0.2 51.37 0.5
LFP −52.30 1.2 51.59 0.1 51.39 0.5
LFP/FP −52.31 1.3 51.61 0.1 51.41 0.4

b

-b

x0 x0

imaginary spacex2

x1

real space free
surface

Figure 2.12: Construction of an image dislocation.
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2.5.7 Benchmark for an edge dislocation close to a free surface

Dislocations close to free surfaces are subject to driving forces, caused by the so called
image dislocations [13]. In short, an image dislocation is constructed to modify the stress
field of the real dislocation, such that it fulfills the traction free boundary conditions at
the surface. Then the modified stress field will raise driving forces on the real dislocation.
For a screw dislocation the boundary conditions are fulfilled with the construction of
the image dislocation, where for the case of an edge dislocation an additional correction
stress field is necessary. Consider an edge dislocation with Burgers vector b = b0(100) and
gliding plane normal vector n = (010) placed in a distance x̃0 to a traction free surface
normal to the x̃1 direction at x̃1 = 0, as depicted in figure 2.12. The stress field of the
dislocation has to satisfy the traction free boundary condition t̃i = 0. A construction of a
so called image dislocation with the Burgers vector b̃img

= −b̃ at position x̃1 = x̃0 reduces
the stress field at the surface. With an additional correction stress field ˜︁σcorr

ij (x̃1 = 0, x̃2)
the boundary condition is satisfied. The resulting stress is then described as

˜︁σij(x̃1, x̃2) = ˜︁σself
ij (x̃1 + x̃0, x̃2)− ˜︁σimg

ij (x̃1 − x̃0, x̃2) + ˜︁σcorr
ij (x̃1, x̃2), (2.82)

where according to [13] the correction stress field is

˜︁σcorr
11 = −

˜︁Gb̃1
2π(1− ν)

(4x̃0x̃1x̃2)
3(x̃1 − x̃0)

2 − x̃22
((x̃1 − x̃0)2 + x̃22)

3
,

˜︁σcorr
22 =

˜︁Gb̃1
2π(1− ν)

(4x̃0x̃2)
(x̃1 − x̃0)

2(x̃1 + 2x̃0)− (3x̃1 − 2x̃0)x̃
2
2

((x̃1 − x̃0)2 + x̃22)
3

, (2.83)

˜︁σcorr
12 =

˜︁Gb̃1
2π(1− ν)

(2x̃0)
(x̃1 − x̃0)

3(x̃1 + x̃0)− 6x̃1(x̃1 − x̃0)x̃
2
2 + x̃42

((x̃1 − x̃0)2 + x̃22)
3

.

The construction of the image dislocation and the correction stress field leads to driving
forces on the real dislocation, than can be calculated by solving the Peach-Koehler equation
at the position of the real dislocation, e.g. x̃1 = −x̃0. The driving force towards the free
surface is defined as ˜︁F1 = b̃1(˜︁σ11 + ˜︁σ12 + ˜︁σ13). For the edge dislocation the shear stress
component ˜︁σ13 = 0. Further at the position of the real dislocation ˜︁σcorr

11 (x̃1 = −x̃0, x̃2 =

0) = 0. Thus only the ˜︁σimg
12 component of the stress field contributes to the ˜︁F1 component

of the Peach-Koehler force and ˜︁F1 = b̃1˜︁σimg
12 .

The Peach-Koehler force due to the image dislocation on the dislocation for the non-singular
dislocation theory [12] is calculated in the following. It is shown that the correction stress
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field does not contribute to the Peach-Koehler force, so the derivation is omitted here. As
discussed above, the non-zero image dislocation stress fields contributing to the Peach-
Koehler force of the real dislocation at position (x̃1 = −x̃0, x̃2 = 0) are the normal stress˜︁σnonsi,img
11 and the shear stress ˜︁σnonsi,img

12 . Considering b̃img
= −b̃, the stress fields of the

image dislocation at position (x̃1 = x̃0, x̃2 = 0) follows from equation 2.29 as

˜︁σnonsi,img
11 = −

˜︁Gb̃

2π(1− ν)

x̃2

ρ̃2h

(︄
1 +

2((x̃1 − x̃0)
2 + h̃

2
)

ρ̃2h

)︄
,

˜︁σnonsi,img
12 =

˜︁Gb̃

2π(1− ν)

x̃1 − x̃0

ρ̃2h

(︃
1− 2x̃22

ρ̃2h

)︃
,

where ρ̃h =

√︂
(x̃1 − x̃0)2 + x̃22 + h̃

2. As for the singular case, the resulting stress field
defined by equation 2.82 is utilized to evaluate the stress field at the position of the real
dislocation. It can be seen that ˜︁σnonsi

11 (x̃1, x̃2 = 0) = 0, which means that the respective
image dislocation stress field and correction stress fields have to be zero. This leaves
the shear stress as the remaining contribution to the Peach-Koehler force. Comparing
the stress fields of the real and the image dislocation shows that at the boundary and
x2̃ = 0 the equality is ˜︁σnonsi,self

12 (x̃1 = 0, x̃2 = 0) = ˜︁σnonsi,img
12 (x̃1 = 0, x̃2 = 0). This means

that the resulting stress in equation 2.82 already satisfies the traction free boundary
condition at this point when the stress field of the image dislocation is added and thus
the correction stress field needs to be zero, e.g. ˜︁σnonsi,corr

12 (x̃1 = 0, x̃2 = 0). Then the
non-singular Peach-Koehler force can be calculated from the image dislocation stress field
with ˜︁Fnonsi

1 = b̃1˜︁σnonsi,img
12 .

In the following the analytical forms of the image stress field are utilized to calculate
the Peach-Koehler forces on a dislocation close to an interface in an otherwise infinite
medium. The material properties correspond to isotropic spinel LiMn2O4 as described in
chapter 2.5.4. Numerical solutions with the non-singular dislocation model are computed
for a dislocation in a finite but large particle. The non-coupled numerical example particle
has the dimensions 1000× 1000 nm2 consisting of 500× 500 mesh elements. The analysis
is summarized in figure 2.13. The singular and non-singular Peach-Koehler-force agree
perfectly outside the core region. Towards the free surface, the singular Peach-Koehler-
force has a positive singularity, while the non-singular Peach-Koehler-force reduces to
zero. The maximum of the non-singular Peach-Koehler-force is at a distance of h̃/2, which
marks the position where the distance between the real and the image dislocation equals
h̃. The numerically computed driving force agrees well with the non-singular solution.
However, there are differences. Directly at the surface the numerical solution reaches
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a small but non-zero value. This could be caused by a numerical error. The maximum
driving force is found at a distance of h̃ to the free surface. This can be explained as
the area within the core subject to the prescribed eigenstrain gradually moves out of the
volume, once the distance to the free surface is smaller than the core radius, reducing the
total distortion due to the dislocation.

The integral ∆˜︂W =
∫︁ x̃0

0
˜︁F1dx̃1 defines the change of the system energy to introduce a

dislocation from the free surface into the material. The calculation of ∆˜︂W is discussed
in detail in chapter 5 in figure 5.4. In order to obtain a physical reasonable value for
the singular solution it is common to introduce a cut-off radius to deal with the infinite
singular solution at the dislocation position. In this sense the contribution of the area
within the dislocation core from the free surface can be removed from the evaluation
of the image forces, as adapted for the singular case in figure 2.13b. The change of the
system energy for all three solutions shows a similar trend but the numerical solution
shows deviations of up to 50 percent relative to the analytical solutions. The slope of
the singular and non-singular analytical solutions agree well with only minor deviations
caused by the different solution in the core region.

b)a)

Figure 2.13: a) Image force calculated with the Peach-Koehler force from singular and
non-singular stress fields and comparison to the numerical obtained config-
urational force. b) Work on the dislocation obtained from integration of the
image force in a).
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3 Chemo-mechanical Modeling and
Simulation of Dislocated Solids

In this chapter the chemo-mechanical modeling and simulation of dislocated solids is
described as depicted in figure 3.1. The fundamentals of diffusion are covered with the
Fick’s laws and the Cahn-Hilliard phase separation. The numerical non-singular dislocation
model is coupled to a Cahn-Hilliard type phase field model via a stress term in the free
energy density of diffusive ions. Then the configurational mechanics for dislocations in
chemo-mechanical problems is formulated. The implementation into FEM is described,
where the residuals and Jacobian matrix are derived and normalized to natural units.
The numerical model is benchmarked by studying the mechanical influence on spinodal
decomposition and the interface width and comparing the equilibrium ion concentration in
the vicinity of an edge dislocation to the analytical solution. Then the material properties
for LiFePO4 are introduced which find application in the examples in this work considering
anisotropic elastic properties and phase separation.

The mechanically coupled dilute diffusion problem has been published in [103]. The
derivation of the Eshelby stress tensor from the gradient of the free energy density follows
the previous works [139, 138] and the extension to the configuration mechanics of
dislocations in mechanically coupled phase transformation problems has been published
in [140].

3.1 Fundamentals of Diffusion

3.1.1 Diffusion: Fick’s laws

In the following the equations describing diffusion are presented in the form of Fick’s first
and second law according to [84]. Fick’s first law relates the Flux ˜︁Ji to the concentration
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-gk

Li

VLiS

εd

P

1

3
2

Figure 3.1: Chemo-mechanical coupled model for dislocated solids. 1) The dislocation is
modeled as a non-singular eigenstrain distribution εD along the gliding plane.
2) The strain of intercalated ions interacts with the dislocation elastic field.
The chemistry of the intercalated lithium ions Li and respective vacancies
VLi are described in a phase field model with the stress field contributing
to the free energy density of the ion phase field. 3) By integration along the
closed path S the configurational forces −gk give the driving forces on the
dislocation.
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gradient c̃,j as ˜︁Ji = − ˜︁Dij c̃,j . (3.1)

In the general case the diffusion constant ˜︁Dij is a tensor defined as

˜︁Dij =

⎛⎜⎝˜︁D11 0 0

0 ˜︁D22 0

0 0 ˜︁D33

⎞⎟⎠ , (3.2)

that can be reduced to an isotropic constant ˜︁D when ˜︁D11 = ˜︁D22 = ˜︁D33. The continu-
ity equation states that the in- and outflux of a volume element is the change in the
concentration over time

− ˜︁Ji,i = .
c̃, (3.3)

which assumes that there are no sinks or sources for the diffusive species within the
volume element. Combining equation 3.1 and 3.3 leads to the diffusion equation or Fick’s
second law

.
c̃ =

(︂ ˜︁Dij c̃,j

)︂
,j
. (3.4)

3.1.2 Phase Separation: Cahn-Hilliard Equation

The Cahn-Hilliard equation describes diffusion as an evolving field for the distribution of
diffusive species. The theory behind the Cahn-Hilliard equation is described in [11, 10].
Considered is the diffusion of ions in a host material, where species A corresponds to the
diffusive ions and species B to the according vacancies. The total number of diffusive
species is then N = nA + nB. The mixing entropy ˜︁S of such a system is then˜︁S = k̃B ln(Γ), (3.5)

where the total number of states Γ = N !/(nA!nB!). The Stirling’s approximation [64]
allows to simplify the mixing entropy with a! ≃ a ln(a)− a, where higher order terms are
neglected, to

˜︁S = k̃B [N ln(N)−N − (nA ln(nA)− nA)− ((N − nA) ln(N − nA)− (N − nA))] ,
(3.6)

which reduces to

˜︁S = −Nk̃B

[︂(︂nA

N

)︂
ln
(︂nA

N

)︂
+
(︂
1− nA

N

)︂
ln
(︂
1− nA

N

)︂]︂
. (3.7)
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Then a concentration c̃ = nA/( ˜︁NA
˜︁Vm) that can reach the maximum concentration c̃max =

N/( ˜︁NA
˜︁Vm) is defined, where ˜︁NA is the Avogadro constant and ˜︁Vm is the molar volume.

This leads to the molar mixing entropy

˜︁Sm = −c̃max
˜︁R˜︁Vm [(c) ln (c) + (1− c) ln (1− c)] , (3.8)

where the normalized concentration is c = c̃/c̃max and the gas constant ˜︁R = ˜︁NAk̃B. The
molar free energy is ˜︁Gm = ˜︁Um − ˜︁T ˜︁Sm, (3.9)

where ˜︁T is the temperature and a regular solution model [36] is utilized to define the molar
interaction energy ˜︁Um = ˜︁R ˜︁Tχ˜︁Vmc(1− c) with the dimensionless interaction parameter χ.
Then the chemical free energy density can be defined as

f̃
C
=
˜︁Gm˜︁Vm

= c̃max
˜︁R ˜︁T [χ(c)(1− c) + (c ln(c) + (1− c) ln(1− c))] . (3.10)

The free energy density describes a mixing behavior when the interaction parameter
χ < 2.5 and a non-mixing behavior for χ ≥ 2.5, as described in figure 3.2a. In the latter
case, the system tends to form two separated phases with a low concentration phase and a
high concentration phase, respectively. An interface will form between the two separated
phases and its interface tension contributes to the free energy density as

f̃
i
=

1

2
κ̃c2,i. (3.11)

The interface position is found by the local concentration gradient and the interface
parameter κ̃ defines its width, where a small κ̃ leads to a wide interface and a large
κ̃ leads to a thin interface. The thickness of the interface shown in figure 3.2b can be
calculated as

s̃ =
δc

tan θ
= (cβ − cα)

√︄ ˜︁κ
2∆f̃

C
(3.12)

where cβ and cα are the concentrations at the local minima, ∆f̃
C is the energy barrier

which can be calculated in a simplification as∆f̃
C
= f̃

C
max−f̃

C
min. For the ideal, symmetric

case, f̃C
max is the local maximum at c = 0.5 and f̃C

min is equal for either of the two minima.
The total free energy density f̃ is consequently

f̃ = f̃
C
+ f̃

I
. (3.13)
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The gradient of the free energy density with respect to the concentration c̃ returns the
chemical potential

µ̃ =
δf̃

δc̃
= ˜︁R ˜︁T [︃χ(1− 2c) + ln

(︃
c

1− c

)︃]︃
− κ̃c̃,jj . (3.14)

Following the approach described by Di Leo et al. [22], the concentration-dependent ionic
flux is defined as

˜︁Ji = −M̃µ̃,i = −
˜︁Dc̃max˜︁R ˜︁T c(1− c)µ̃,i, (3.15)

which is equivalent to Fick’s first law and M̃ = ˜︁Dc̃maxc(1− c)/( ˜︁R ˜︁T ) is the mobility. The
Cahn-Hilliard equation is

.
c̃ = − ˜︁Ji,i = (M̃µ̃,i),j , (3.16)

and is equivalent to Fick’s second law.

cα

cβ

b)a)

s
θ

χ=3

χ=2

χ=1.5

χ=2.5Δfc

Figure 3.2: a) Normalized bulk free energy for different mixing behavior depending on
the parameter χ. b) Cross section of the interface between the low and
high concentration phase for the non-mixing behavior and definition of the
interface thickness.

51



3.2 Mechanically Coupled Diffusion Model

The chemo-elastic model is based on the conventional Cahn-Hilliard phase-field model. A
free energy functional is formulated including the contribution from the chemical energy,
an interface energy and the elastic energy as a function of the ion concentration in the
host material. A chemical potential is derived and its gradient describes chemical and
elastic driving forces for the diffusion of ions. The total free energy functional F̃ of the
system is

F̃ =

∫︂
˜︁V f̃d˜︁V . (3.17)

Assuming a regular solution (see e.g. [36]), the bulk chemical free energy density f̃ can
be described as a linear combination of the chemical energy density f̃C , the interface
energy density f̃ I and the elastic energy density f̃E

f̃ = f̃
C
+ f̃

I
+ f̃

E
. (3.18)

The individual parts are formulated as functions of the concentration c = c̃/c̃max, which is
normalized by the maximum concentration c̃max, so that

f̃
C
= ˜︁R ˜︁T c̃max[c ln c+ (1− c) ln(1− c) + χc(1− c)], (3.19)

f̃
I
=

1

2
cmax˜︁κc,jc,j , (3.20)

f̃
E
=

1

2
˜︁σij (︁εij − εDij − εCij

)︁
, (3.21)

where the elastic energy density f̃E is formulated based on the Khachaturyan model [54].
Further χ is a dimensionless parameter describing non-ideal ion-ion interaction, ˜︁R is the
gas constant, ˜︁T is the absolute temperature and ˜︁κ is the interface energy coefficient. The
strain field caused by the dislocation εDij is discussed in chapter 2.4. The lattice strain
due to ion intercalation εCij = [c̃− c̃ref ] ˜︁Ωij/3 is related to the partial molar volume ˜︁Ωij of
diffusive ions in the host material [102, 15], where c̃ref is the stress-free concentration
state in the reference material. In fact this is a linear approximation for the lattice strain
due to the phase transformation upon ion intercalation between the non-intercalated state
and the fully intercalated state, which are characterized by the reference concentrations
at the two minima in the chemical free energy density in equation 3.19. Therefore ˜︁Ωii

can directly take the value of the misfit strain. The linear constitutive relation between
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stress and strain in equation 2.58 is then transformed to

˜︁σij = ∂f̃

∂εij
= ˜︁Cijklε

E
kl =

˜︁Cijkl

(︁
εkl − εDkl − εCkl

)︁
, (3.22)

where the stress tensor is considered as concentration dependent ˜︁Cijkl = ˜︁Cijkl(c). In this
work two types of material are applied, where the stress tensor of LiMn2O4 described in
chapter 2.5.4 is considered as independent on the concentration and the stress tensor
of LiFePO4 described in chapter 3.4.3 is considered as concentration dependent. Conse-
quently the derivative of the stress tensor of LiMn2O4 with respect to the concentration
will be ∂ ˜︁CLMOijkl /∂c̃ = 0 and the following equations will simplify accordingly. The evolution
of the concentration follows the mass conservation law

.
c̃+ ˜︁Ji,i = 0 in B, (3.23)

with
.
c̃ being the time derivative of the concentration and the concentration dependent ion

flux ˜︁Ji is [22] ˜︁Ji = −M̃µ̃,i. (3.24)
The variational derivative of the free energy functional gives then the chemical potential

µ̃ =
δF̃
δc̃

= µ̃0 − κ̃c,jj , (3.25)

where the homogeneous chemical potential µ̃0 is defined as

µ̃0 =
∂f̃

∂c̃
= ˜︁R ˜︁T [︃χ(1− 2c) + ln

(︃
c

1− c

)︃]︃
− 1

3
˜︁σij ˜︁Ωij +

1

2

∂ ˜︁Cijkl

∂c̃
εEijε

E
kl. (3.26)

The elastic contribution to the free energy density translates in two terms in the chemical
potential related to the stress tensor and the gradient of the elasticity tensor providing
an additional driving force on diffusive ions. Thus the ions will not only follow the
concentration field but also the stress field will influence the ion flux and the ion equilibrium
concentration. The elastic contribution in µ̃0 to the driving force is also known as the
inhomogeneity force [81]. Further the diffusion of ions is accompanied by a volume
change, which will act as a diffusion induced stress implemented in the form of the elastic
strain εE in equation 3.22. Eventually a two way coupling between the mechanical and
chemical model is accomplished. The mobility of diffusive ions M̃ is related to the diffusion
constant ˜︁D0 with

M̃ =
˜︁D0

∂2f̃/∂c̃2
=

˜︁D0c̃max˜︁R ˜︁T [ 1
c(1−c) − 2χ] + 1

9 c̃max
˜︁Cijkl

˜︁Ωij
˜︁Ωkl

. (3.27)
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In the derivation, the chemical bulk free energy of a regular solution is considered, instead
of an ideal solution. This introduces the additional term related to χ characterizing the
mixing heat, which is often not regarded in the literature. With the given constant, the
term related to the diffusion induced stress c̃max

˜︁Cijkl
˜︁Ωij
˜︁Ωkl/9 is positive. Given χ = 1 the

above equation shows that ignoring χ leads to an underestimation of the stress effect on
the mobility. Note that Vasconcelos et al. [122] has reported recently that ignoring the
activity coefficient, which is related to both the mixing heat and the excess entropy, results
in an overestimation of the stress effect on the mobility. It may imply that the excess
entropy and the mixing heat play competing roles in determining mobility. Numerical
examples on this topic are discussed in detail in chapter 4.2.1

The resulting governing equation for the stress dependent diffusion problem is

.
c̃−

(︂
M̃µ̃,i

)︂
,i
= 0 in B, (3.28)

with the boundary conditions for the diffusion problem as

c̃ = c̃0 on ∂Bc, (3.29)

˜︁Jini = − ĩn˜︁F = −j̃0 on ∂BJ . (3.30)

Here ĩn is the applied current density, j̃0 the applied flux on the boundary and ˜︁F the
Faraday’s constant. The applied current density on the boundary in the simulation refers
to the average of the total integral of the current density in the material measured
experimentally. Furthermore the partial boundaries are defined such that ∂B = ∂Bc∪∂BJ

and ∂Bc ∩ ∂BJ = 0 so that the partial boundaries fully enclose the volume B without
overlap.

Inserting 3.25 into 3.28, one obtains the mechanically coupled diffusion equation which is
a 4th order differential equation. A standard weak formulation of using the concentration
c and the displacement ui as independent field variables would require higher order
elements in the FEM [112]. To avoid this, the coupled diffusion equation is solved by
using a mixed finite element formulation, where both the concentration c and the chemical
potential µ are treated as separate degrees of freedom [33]. By doing so, the original 4th
order differential equation can be replaced by two lower order equations 3.25 and 3.28.
Then the conventional linear finite elements can be applied to solve the two equations.
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3.3 Configurational Mechanics of Dislocations in Chemo-
mechanical Problems

In this work the theory of configurational forces is utilized to obtain the driving forces
on dislocations interacting with intercalated ions. The configurational mechanics for
dislocations in chemo-mechanical problems is proposed as an extension of a previous work
on the configurational mechanics of dislocations in linear elasticity [139]. The starting
point for the derivation of the Eshelby stress tensor and the configurational force balance
is the gradient of the free energy density [24, 62]. With the principles in the previous
works [139, 138] the Eshelby stress tensor is derived from the gradient of the total free
energy density f̃ for mechanical coupled diffusion problems.

Following equation 3.18 the total free energy density f̃ can be represented as a function
of the concentration c̃, the gradient of the normalized concentration c,j , the total strain
εij , and the eigenstrain of the dislocation εDij

f̃ = f̃(c̃,∇c, ε, εD). (3.31)

The gradient is accordingly

f̃ ,k =
∂f̃

∂c̃
c̃,k +

∂f̃

∂c,j
c,jk +

∂f̃

∂εij
εij,k +

∂f̃

∂εDij
εDij,k

= µ̃0c̃,k + c̃maxκ̃c,jc,jk + ˜︁σij(βij,k − βD
ij,k).

(3.32)

Here the symmetry of the stress tensor is considered to replace the gradient of the total
strain εij and eigenstrain strain εDij with the displacement gradient (total distortion)
βij = ũi,j and plastic distortion βD

ij , respectively. Utilizing the definition of the chemical
potential in equation 3.25 and the normalized concentration in equation. 3.39, the first
two terms of the free energy density gradient can be further derived as

µ̃0c̃,k + c̃maxκ̃c,jc,jk = (µ̃c̃),k − µ̃,k c̃+ (c̃maxκ̃c,jc,k),j . (3.33)

Utilizing the stress equilibrium condition 2.57 and the dislocation density tensor 2.49 as
proposed by Lazar et al. [2, 62], leads to

˜︁σij(βij,k − βD
ij,k) = ˜︁σij(βik,j − βD

ik,j)− ˜︁σij(βD
ij,k − βD

ik,j)

= [˜︁σij(βik − βD
ik)],j − ˜︁σij,j(βik − βD

ik) + ˜︁σijϵkjlαil

= [˜︁σij(βik − βD
ik)],j + ˜︁σijϵkjlαil,

(3.34)
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where βij,k = ũi,jk = ũi,kj = βik,j is considered. Then equation 3.33 and equation 3.34
are substituted into equation 3.32. Then with f̃ ,k = f̃ ,jδkj the equations are rearranged
to the configurational force balance in its local form

˜︁Σkj,j + g̃k = 0 inV, (3.35)

where the Eshelby stress tensor is

˜︁Σkj = (f̃ − µ̃c̃)δkj − ˜︁σij(βik − βD
ik)− c̃maxκ̃c,jc,k, (3.36)

and the configurational force is

g̃k = µ̃,k c̃− ˜︁σijϵkjlαil. (3.37)

The first term of the configurational force is the chemical contribution which agrees with
the driving force for the motion of a grain boundary in ionic polycrystalline ceramics
derived by Vikrand et al. [124]. Another similar formulation of the configurational force
and the Eshelby stress tensor in the thermomechanical theory without dislocations can
be found in ref. [37]. The second term is the contribution of the dislocation, which has
been obtained in a previous work [139]. The driving force on the defect can then be
computed by the volume integration of the divergence of the Eshelby stress tensor or the
configurational force

F̃ k =

∫︂
V

˜︁Σkj,jdV = −
∫︂
V
g̃kdV . (3.38)

Particular useful is the relation of the chemical potential gradient with the flux J̃k given
as µ̃,k = −M̃

−1
J̃k, as followed from equation 3.24. In the equilibrium state, the flux is

zero at every point, labeling the first term to be zero in the volume integration. Then the
driving force on the dislocation is numerically computed by integrating the divergence of
the Eshelby stress tensor over the volume. This is equivalent to the volume integral of the
configurational force in the presence of both terms on the right hand side of equation 3.37
and therefore chemical and mechanical contributions to the driving force are included. In
this work the focus is on the driving force on misfit dislocations and their size dependent
stability at the phase boundary in two-phase particles. The influences of misfit dislocations
on the chemical driving force and phase transformation are topics for further studies in
the future.
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3.4 Implementation in the Finite Element Method

In this section the chemo-mechanical model introduced in the previous section is imple-
mented into FEM. The FEM is applied to solve partial differential equations appoximatively.
The simulation space is discretized into elements, on which the PDE is solved. In the first
part of this section the variables are normalized to the natural units. In the second part
the derivation of the residuals and the stiffness matrix for the implementation in the FEM
formulation is shown. Note that the dimensionless form of the governing equations are
employed. In conclusion, a series of examples is shown as benchmarks.

3.4.1 Normalization

A wide range of the order of magnitude in the model can cause inaccuracies during
computation due to rounding errors. In particular, the order of magnitude of a typical
elasticity tensor is in the range 109 and that of a concentration in the range 10−3. A
simple mean to this issue is to normalize the variables by scaling to the natural units.
The normalization procedure is defined in the following section. The dimensionless
concentration and molar volume are

c = c̃/c̃max, Ωkj = c̃max
˜︁Ωkj . (3.39)

The dimensionless chemical potential µ, mobilityM , and stiffness tensor Cijkl are defined
with

µ =
µ̃˜︁R ˜︁T , M =

˜︁R ˜︁T˜︁D0˜︁cmax

M̃, Cijkl =
˜︁Cijkl˜︁R ˜︁T c̃max

. (3.40)

Defining the dimensionless space and time

x =
x̃˜︁L0

, t =
˜︁D0˜︁L2
0

t̃, (3.41)

where ˜︁L0 is the characteristic length scale, allows to transform the temporal derivatives
with

∂

∂t̃
=
˜︁D0˜︁L2
0

∂

∂t
. (3.42)
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The governing equations in dimensionless form are then

σij,j = 0 in B, (3.43)
ċ− (Mµ,i),i = 0 in B, (3.44)

µ = χ(1− 2c) + ln

(︃
c

1− c

)︃
− 1

3
σijΩij +

1

2

∂Cijkl

∂c
εEijε

E
kl − κc,jj in B, (3.45)

ui = ūi on ∂Bu, (3.46)
σijnj = t̄i on ∂Bσ, (3.47)

c = c0 on ∂Bc, (3.48)
Jini = j0 on ∂BJ . (3.49)

3.4.2 Finite element formulation

The governing equations are written in their dimensionless weak forms as

−
∫︂
B
ηi,jσijdV = 0, (3.50)∫︂

B
(ηċ− η,iJi)dV = 0, (3.51)∫︂

B

{︃
η

[︃
µ− χ(1− 2c)− ln

(︃
c

1− c

)︃
+
1

3
σijΩij −

1

2

∂Cijkl

∂c
εEijε

E
kl

]︃
− η,jκc,j

}︃
dV = 0. (3.52)

where ηi and ηi,j are the test function and its gradient. The element-wise interpolations
of the test function and its gradient are

ηi =
∑︂
I

N IηIi , ηi,j =
∑︂
I

N I
,jη

I
i , (3.53)

where N I is the shape function and ηIi are the nodal values of the test function and the
superscript I denotes the node number. By inserting equation 3.53 into the weak form
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formulations, the elemental residuals are

RI
ui

= −
∫︂
Be

N I
u,jσijdV, (3.54)

RI
c =

∫︂
Be

(︁
N I

c ċ+N I
c,iMµ,i

)︁
dV, (3.55)

RI
µ =

∫︂
Be

{︃
N I

µ

[︃
µ− χ(1− 2c)− ln

(︃
c

1− c

)︃
+

1

3
σijΩij −

1

2

∂Cijkl

∂c
εEijε

E
kl

]︃
−N I

µ,jκc,j

}︃
dV, (3.56)

where Nu, Nc, and Nµ are the shape functions for the variables ui, c, and µ, respectively.
The non-zero components of the element stiffness matrix are

KIJ
uiuk

= −
∫︂
Be

N I
u,jCijklN

J
u,ldV, (3.57)

KIJ
uic =

1

3

∫︂
Be

N I
u,jCijklΩklN

J
c dV, (3.58)

KIJ
cc =

∫︂
Be

∂M

∂c
N I

c,iµ,iN
J
c dV, (3.59)

KIJ
cµ =

∫︂
Be

N I
c,iMNJ

µ,idV, (3.60)

KIJ
µuk

=
1

3

∫︂
Be

N I
µCijklΩijN

J
u,ldV, (3.61)

KIJ
µc =

∫︂
Be

{︃
N I

µ

[︃
2χ− 1

c(1− c)

+
1

9
CijklΩijΩkl

]︃
NJ

c −N I
µ,jκN

J
c,j

}︃
dV, (3.62)

KIJ
µµ =

∫︂
Be

N I
µN

J
µ dV, (3.63)

where the mobility gradient is

∂M

∂c
=

(1− 2c)

[1− c(1− c)(2χ− CijklΩijΩkl/9)]2
. (3.64)

The nonzero component of the damping matrix is

DIJ
cc =

1

∆t

∫︂
Be

N I
cN

J
c dV. (3.65)
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The driving forces on the dislocation are found by computing the nodal configurational
forces according to chapter 2.5.2 by utilization of the configurational mechanics of dislo-
cations in chemo-mechanical problems described in chapter 3.3.

The finite element simulations are performed within the open source software MOOSE,
where the here presented numerical model was implemented in the form of user ele-
ments [100].

3.4.3 Material properties of LiFePO4

LiFePo4 (LFP) is an anisotropic lithium ion intercalation material with distinct differences
in elasticity for the lithiated and non-lithiated phase. The material properties regarding
diffusion and elasticity of LiFePO4 are listed in table 3.1. The orthotropic elastic stiffness
tensor of the LFP and the FePO4 (FP) phases are taken from first principle calculation
results from ref. [82], where the GGA+U case was adopted. The remaining material
properties were taken from refs. [129, 117]. The anisotropic misfit strain due to the
lattice mismatch between the LFP and the FP phase are ε[100] = 5%, ε[010] = 3.6%, and
ε[001] = −1.9% [117]. The diagonal components of the partial molar volume are then
defined as Ω11 = 3ε[100], Ω22 = 3ε[010], Ω33 = 3ε[001]. The non-diagonal components of
the partial molar volume are zero. Note that the value of Ωii should be depending on the
value of c̃ref .

To adopt the model to the non-homogeneous elasticity, the phase dependent stiffness
tensor ˜︁Cijkl(c) = c ˜︁CLFPijkl + (1− c) ˜︁CFPijkl is defined, where ˜︁CLFPijkl and ˜︁CFPijkl correspond to the
stiffness tensors of the LFP phase and the FP phase, respectively. The mobility is simplified
as M̃ = ˜︁Dc̃maxc(1− c)/( ˜︁R ˜︁T ) with the gradient ∂M̃/∂c̃ = ˜︁Dc̃max(1− 2c). It can be noted,
that the part of this work utilizing the properties for the LFP two-phase material is focusing
on the equilibrium state and dynamic effects play only a minor role.

3.4.4 Benchmark for the phase separation in isotropic solids

In the following the phase separation is numerically computed for lithium ions in spinel
LiMn2O4 with and without contribution of the diffusion induced stress to the free energy
density. The influence of the mechanical contribution on the interface is studied. The
defined material properties are described in chapter 2.5.4. The parameter χ is related
to ion-ion coupling and a value χ > 2.0 leads to phase separation, where the phases
are separated by an interface characterised by the interface parameter κ, as discussed
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Table 3.1: General and specific parameters corresponding to LiFePO4 [129, 117]. The
stiffness tensor was calculated from first principles (GGA+U case) in [82]

.

Parameter Symbol Value
Gas constant ˜︁R 8.31 Jmol−1K−1

Absolute temperature ˜︁T 296K
Solubility limit c̃max 21 190molm−3

Interaction parameter χ 3.56
Interface energy coefficient c̃maxκ̃ 5× 10−10 Jm−1

Diffusion coefficient ˜︁D0 7× 10−15 m2 s−1

Stress-free concentration c̃ref 0.03c̃max

FePO4 LiFePO4˜︁C11 175.9GPa 138.9GPa˜︁C22 153.6GPa 198.0GPa˜︁C33 135.0GPa 173.0GPa˜︁C44 38.8GPa 36.8GPa

Stiffness tensor ˜︁C55 47.5GPa 50.6GPa˜︁C66 55.6GPa 47.6GPa˜︁C12 29.6GPa 72.8GPa˜︁C13 54.0GPa 52.5GPa˜︁C23 19.6GPa 45.8GPa
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in chapter 3.1. When the definition for the mobility in equation 3.27 is applied, the
mobility has singularities for χ ≥ 2. To avoid this, the mobility was simplified as M̃ =˜︁Dc̃maxc(1− c)/( ˜︁R ˜︁T ), where the gradient is ∂M̃/∂c̃ = ˜︁Dc̃max(1− 2c). More details on the
topic are discussed in chapter 4.2.1. In the ideal, non-coupled case the interface width can
be calculated with equation 3.12. By analyzing equation 3.10, for χ = 2.5 the normalized
free energy difference ∆fC = 0.0359 and the concentrations at the minima cα = 0.145
and cβ = 0.855 are obtained. Then the interface parameter was chosen as κ = 5.0 so that
the theoretical interface thickness has a reasonable value, that is s̃ ≈ 5.9 nm.

In the following the influence of the stress field on the phase separation in a dislocation
free sample, where the first example covers the decoupled case and the second covers
the case with the full chemo-mechanical coupling. This allows to compare the chemo-
mechanical coupled model to the well known spinodal decomposition governed by the
Cahn-Hilliard equation and analyze the differences in the ion distribution and interface
thickness. For both examples a sample size of 200 nm × 200 nm with a mesh size of
200× 200 is defined. The model is modified for the decoupled case to neglect the elastic
part of the free energy density, e.g. f̃E

= 0, which is then equivalent to the Cahn-Hilliard
equation. On all free surfaces traction free and flux free boundary conditions are defined.
Initially a random concentration distribution between 0.45 < c(t = 0) < 0.55 was chosen.
The simulation is conducted until a state close to the equilibrium is reached. The results
for the concentration distribution of the decoupled case are shown in figure 3.3. An
early stage featuring initial grains homogeneously nucleated over the sample is shown in
figure 3.3a. A later stage close to the equilibrium is shown in figure 3.3b, where only a
few large grains remain. Therefore the initial random structure transforms towards larger
grains as would be expected from the spinodal decomposition. The interface thickness
is measured across the grain boundary indicated by the white line in figure 3.3b. The
concentration distribution along this line is shown in the inset. The concentration profile
across the interface with the analysis of the interface thickness is shown in figure 3.5a.
The measured interface thickness is close to the theoretical non-coupled value.

In the following the coupled case is presented, where the strain energy component of
the bulk free energy is considered for the chemo-mechanical coupling. The geometry
of the sample and the boundary and initial conditions is equal to that of the decoupled
example. The results for the fully coupled case are shown in figure 3.4. In figure 3.4a
the concentration distribution of an early stage where the initial grains are nucleated
is shown. A later stage close to equilibrium is shown in figure 3.4b, where only a few
large grains are left. In contrast to the non coupled case nucleation happens at the free
surfaces and then the spinodal decomposition gradually evolves towards the center. The
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interface thickness shows strong heterogeneity. More specifically, the interface is thin
close to the free surfaces and widened in the center of the sample. The measured interface
thickness at the free surfaces is slightly larger than in the decoupled case. The results
for the concentration fields are complemented with the hydrostatic stress fields for the
early stage in figure 3.4c and the late stage in figure 3.4d. The largest compressive stress
fields are in the high concentration particles close to the interface and the largest tensile
stressfields are in the low concentration particles also close to the interface. In the center
of the interface the stresses relax to zero.

The different observations for the fully coupled case can be related to the elastic part of
the free energy density. The heterogeneous ion distribution causes stresses at the interface
that contribute to the elastic part of the free energy density f̃E . To reduce the free energy
density, those stresses have to relax. In the surface near regions, stresses can easily relax by
deformation. In the bulk that heterogeneous deformation is limited. This leaves only the
concentration redistribution to reduce the stresses, which causes a widening and smoothing
of the interface. The numerical decoupled equilibrium concentrations are cα = 0.142 and
cβ = 0.858, which are close to the theoretical values. It is observed that the concentration
of the coupled example is decreased to cα = 0.138 and increased to cβ = 0.862. The
coupled concentrations are highly depending on the stress field. The concentrations at the
chemical free energy density minima and the interface thickness analyzed in the following
are summarized in table 3.2. The interface thickness is calculated via trigonometry as
s̃ = (c̃β − c̃α)/c̃

max
,i and analyzed in figure 3.5. Here c̃max

,i is the numerical obtained
gradient of the tangent of through the turning point of the concentration distribution,
e.g. the center of the interface. The line plots across the interfaces utilized for the
calculation are indicated in the figures 3.3b and 3.4b. The interface for the decoupled case
is s̃decoupled = 5.97 nm. This is close to the theoretical value s̃ ≈ 5.9 nm. The interface
for the coupled case is s̃coupled = 7.6 nm on the surface and s̃decoupled = 37.7 nm in the
bulk. That means that the difference between the theoretical interface thickness predicted
by the Cahn-Hilliard model and the one calculated with the coupled model is about one
order of magnitude. However, this is only a qualitative indicator of the bulk interface
thickness as the interface thickness is too large in comparison to the sample dimensions,
so that surface effects cannot be excluded.
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Table 3.2: Analysis of the interface thickness. For the coupled case the interface thick-
ness is measured once close to the surface and once in the center (bulk) of
the sample.

theoretical decoupled coupled
cα 0.145 0.142 0.138
cβ 0.855 0.858 0.862
s̃ 5.9 nm 5.97 nm 5.97 nm (surface); 37.7 nm (bulk)
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Figure 3.3: Concentration distribution for the non-coupled model. a) Homogeneous nu-
cleation in the bulk after the first timesteps from the random initial distribution.
b) In a late timestep the seeds agglomerate to few large particles. The con-
centration change across the interface along the white line is shown in the
inset and analyzed in detail in figure 3.5.
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Figure 3.4: Concentration distribution for the chemo-mechanical coupled model. a) Nu-
cleation on the free surfaces after the first timesteps from the random initial
distribution. b) In the late timesteps the structure has evolved and only one
grain of the high concentration phase and the low concentration phase each
remains. Apparently the interface is much wider in the center of the volume
than close to the free surfaces which is analyzed in figure 3.5 at the cross
sections of the interface indicated by the white lines. The hydrostatic stress
field σh is shown in c) after the first timesteps and b) at a late timestep. The
largest compressive stress fields are in the high concentration particles close
to the interface and the largest tensile stressfields are in the low concentration
particles also close to the interface. In the center of the interface the stresses
relax to zero.
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7.60 nm
5.97 nm

37.7 nm

Figure 3.5: Concentration line plots across the interface as indicated in figures 3.3b)
and 3.4b). a) The interfaces for the decoupled case is compared to the
interface of the coupled case in the stress relaxed region near the surface.
The interface thickness is close for two cases and the increase for the coupled
case can be related to remaining stresses at the surface and the change of the
concentrations with minimal chemical free energy density of the two phases.
b) The stresses at the interface in the bulk cannot be released which causes
a strong widening of the interface related to the elastic contribution to the
free energy density.
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3.4.5 Benchmark for the equilibrium concentration in the vicinity of an edge
dislocation

The coupling of the stress and diffusion, e.g. the contribution of the hydrostatic stress field
to the free energy density will cause the ions to redistribute around stress sources. For
the equilibrium concentration around the stress field of an edge dislocation an analytical
solution is derived in [125]. With the assumption of a small concentration c ≪ 1, elastic
parameters can be modified to open system elastic constants that account for the coupling
between the concentration and a known stress field in equilibrium. The dimensionless
analytical solution of the equilibrium concentration derived from the singular dislocation
stress field solution is then given as [125]

ceq = c0 − cη(1 + ν0)
G0b

π(1− ν0)

x21x2 + x32
(x21 + x22)

2
, (3.66)

ν0 =
ν − cη2E

1 + cη2E
, (3.67)

where η = Ω/3 is the coupling parameter, E is the Young’s modulus andG0 = 0.5E/(1+ν)
is the shear modulus.

As a benchmark, a numerical simulation is done for the ion redistribution in the vicinity
of a dislocation and the equilibrium concentration is compared and verified with the
analytical solution. The sample size, mesh size, and traction boundary condition are
equal to the stress benchmark for the edge dislocation described before. A homogeneous
initial concentration c|t=0 = cref is defined on the volume and boundary conditions for
the concentration are set on all surfaces as c0 = cref . The material properties defined
correspond to LiMn2O4 as described in chapter 2.5.4. However, it should be noted that a
Young’s modulus of 10GPa is applied in this simulation to avoid a large enrichment of
concentration on the tensile side of the dislocation, which accounts for the fact that the
analytical solution only applies to a small concentration. The equilibrium concentration
from the numerical simulation and analytical calculation is depicted in figure 3.6.

Enrichment and depletion of concentration, referring to solute segregation, can be observed
on the tensile and compressive sides of the dislocation, respectively. The numerical solution
agrees well with the analytical solution outside the dislocation core region. However, in
the analytical solution an infinite jump of the concentration across the dislocation core
is calculated, whereas the jump of the concentration across the dislocation core for the
numerical solution is finite. The origin for this is that the analytical solution is derived from
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Figure 3.6: Redistribution of the concentration due to the stress field of the edge dislo-
cation. The equilibrium distribution calculated with FEM shows good accor-
dance with the analytical solution [125].
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the classic singular solution and the numerical model is derived from the non-singular
dislocation theory.

3.4.6 Benchmark for an edge dislocation close to a free surface in a two-phase
material

In this section the benchmark for the driving force on a dislocation close to a free surface
discussed in chapter 2.5.7 is extended with the mechanically coupled diffusion model
for a misfit dislocation in a two-phase material. The material properties utilized for this
benchmark correspond to lithiated and nonlithiated LiFePO4 as described in chapter 3.4.3.
In the numerical model the diffusion induced stress resulting from the concentration
gradient across the interface accounts for the misfit strain. A fully coupled analytical
solution is difficult to obtain, thus for a coupled solution the misfit strain is accounted
for by a misfit stress field. The misfit strain is computed numerically for a particle with
the dimensions 1500 × 1500 nm2 consisting of 375 × 375 mesh elements. The coupled
Peach-Koehler force is then ˜︁F coupled

1 = b̃1(˜︁σimg
12 +˜︁σmisfit

12 ). The coupled numerical example
particle has the dimensions 1500 × 1500 nm2 consisting of 1500 × 1500 mesh elements.
The results are summarized in figure 3.7. The analytical driving forces are negative in
the bulk volume of the sample and have strong positive values at the free surface. For the
case of the singular solution, the driving force has a positive singularity at the position of
the free surface. The non-singular solution has a positive peak close to the free surface
and decreases to zero driving forces at the position of the free surface. The difference to
the pure mechanical driving forces in figure 2.13 can be explained with the additional
stress field due to the interface causing a negative driving force in the bulk pushing the
dislocation inside the particle. Close to the surface is a point with zero driving force.
For distances closer to the surface than this zero driving force the dislocation is pushed
outside the particle. For the numerical solution however, the driving force is negative for
all positions with a minimum close to the surface. The change of the system energy is
then calculated. The analytical solutions show good agreement with minor differences
related to the different solutions in the dislocation core. The kink of the singular solution
in the core region has the origin in the misfit stress field not being subject to the cut-off
radius. The numerical solution for the change of the system energy has larger negative
values compared to the analytical solutions. This indicates a larger stabilization for the
fully coupled model of the interface. With a singular dislocation theory it is necessary to
specifically treat the core region to avoid unphysical results. Typically a cut-off radius is
introduced. Here lies an advantage of using non-singular theory for dislocations where
the results in the core region are finite and no such post processing is necessary.
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b)a)

Figure 3.7: a) Driving forces on a misfit dislocation due to the image stress field su-
perposed by the misfit stress field. The chemo-mechanical coupling in the
numerical model causes a deviation. b) Work on a misfit dislocation calcu-
lated from the integration of the driving force in a).
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4 Dislocation Mediated Ion-Diffusion in
Lithium Ion Battery Materials

In this chapter dislocation mediated ion diffusion is analyzed and discussed, where the
chemo-mechanical model for dislocations presented in chapter 3 is applied. As starting
point the SOC dependence of the dislocation induced heterogeneity and its influence
on the DIS is studied. Then the potentiostatic and galvanostatic charging behavior of
a dislocation containing sample is analyzed. The SOC dependence of the ion mobility
in dislocation containing samples is studied within the whole sample and the core near
regions. A dislocation cluster shows the effect of multiple dislocations in close distance on
the concentration distribution and the mobility. Finally the diffusion along the dislocation
core in 3D for a pipe diffusion model with varying diffusion constant within the dislocation
core is studied. The content of chapter has been partially published in [103].

4.1 Dislocation Induced Concentration Field Heterogeneity

Analyzing the interaction between diffusive ions and dislocations aids the understanding
of various phenomena related to heterogeneous concentration observed in dislocation
containing materials [130]. In the following a two-dimensional chemo-mechanical model
is utilized to study the interaction between a single dislocation and diffusive ions within
an LiMn2O4 particle in various examples. The numerical model considers a free standing
particle with the sample size of 200 nm × 200 nm and the mesh size of 200 × 200. The
setting will be utilized for all the following two-dimensional simulations. In the simulations
was observed that the DIS in the core region exceeds the yield stress for the material
fracture [16] when the dislocation core parameter h̃ is small. Here it is referred to the
figures 2.8 and 2.9. To model a more realistic material parameter the core parameter is
chosen as h̃ = 5 nm for all simulations in this chapter.
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The first example shows the influence of the SOC on the concentration field heterogeneity
in the vicinity of the dislocation core. For this purpose a series of experiments with varied
SOC is conducted. The SOC is defined as the average concentration evaluated over the
whole sample volume and is controlled by prescribing a concentration c = c0 on the
outer boundaries and the initial condition c(t = 0) = c0 in the whole sample volume.
The contour plot of the equilibrium concentration for SOC = 0.5 is shown in figure 4.1a
and the concentration distributions along the x2 axis for different SOC are shown in
figure 4.1b. The ion redistribution around the dislocation generates an ion enrichment
zone in the tensile and an ion depletion zone in the compressive side of the dislocation
and the balance between the enrichment and the depletion zone is varying with the SOC.
The redistribution is most pronounced at SOC = 0.5 reaching a maximum concentration
jump that reduces towards lower and higher SOC. The redistribution is anti-symmetric
with respect to SOC = 0.5, where the enrichment is stronger at low SOC and the depletion
is stronger at high SOC. Further analysis leads to a relative concentration enrichment
and depletion shown in figure 4.1c. Correlated to a lower ion concentration, the relative
enrichment or depletion is more notable at a lower SOC, and the relative influence of the
dislocation becomes negligible for an SOC close to 1. This could be an indicator, that the
influence of dislocations on diffusion is stronger at low SOC. In fact, a similar experimental
observation has been reported. The enrichment of Na-ions near the dislocation is more
visible experimentally at a lower SOC, as reported by Xiao et al. [130]. The total jump
of the concentration across the dislocation core cmax − cmin is symmetric with respect
to SOC = 0.5. Nevertheless, the amount of concentration enrichment and depletion are
different for all SOC. At low SOC the maximum concentration enrichment is larger than the
maximum concentration depletion. At high SOC, the maximum concentration depletion
is larger than maximum concentration enrichment, but the relative difference between
enrichment and depletion with respect to the SOC is small.

The first example is further analyzed regarding the diffusion induced stress. Ion intercala-
tion causes a lattice deformation represented by the molar volume of the ions. In a free
standing particle, stresses emerge at deformation gradients. Consequently, a concentration
gradient will induce a deformation gradient and consecutive stresses, which in this work
are referenced as DIS. Analoguous to the heterogeneous concentration distribution in the
tensile and compressive sides of the dislocation, the dislocation induced DIS is non-uniform.
Because of its opposite sign, the dislocation induced DIS causes a relaxation of the disloca-
tion self stress. It can be described as the reduced hydrostatic stress∆σh = σh−σ0

h, which
is shown for different SOC in figure 4.1d, where σ0

h is the self-stress of the dislocation
calculated by setting the lattice strain εCij to be zero. The SOC dependent DIS has the
maximum value around SOC = 0.5 where the largest concentration jump was observed
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across the dislocation core. It can be noted that the maximum and minimum DIS is not
symmetric with respect to the SOC = 0.5 as highlighted in the inset of figure 4.1d. In the
compressive side, the maximum tensile DIS is reached at SOC > 0.5 and in the tensilde
side, and the maximum compressive DIS is reached at SOC < 0.5.

Until now only the equilibrium condition is considered. However, the dynamics during
the charging operation do not allow the battery materials to relax to the equilibrium
state during the process. In the following the diffusion influenced by the SOC dependent,
heterogeneous concentration field related to the dislocation presence is analyzed during
the two cases of potentiostatic and galvanostatic charging. The lithiation of the material is
simulated with and without the dislocation to specifically show how the SOC dependent
and heterogeneous concentration field around the dislocation core influences the diffusion.
The potentiostatic charging is modeled by prescribing a concentration of c0 = 0.99 on the
bottom boundary, where the other boundaries are flux free. The galvanostatic charging
is modeled by prescribing a constant, comparable ion flux of j0 = 0.001 on the bottom
boundary, where the other boundaries remain flux free. For the respective cases, the
dislocation is placed in the center of the sample as before. The initial condition for both
potentiostatic and galvanostatic charging is a homogeneous distribution c(t = 0) = 0.05.
As reference a dislocation free body subject to equivalent boundary conditions is modeled.
The resulting concentration profiles along the x2 axis for various time steps are displayed
in figure 4.2.

The potentiostatic charging is characterized by a strong concentration gradient at the
beginning and a comparable fast charging rate, which both reduce over time. The con-
centration gradient in the galvanostatic charging is smaller and constant over time and
the charging rate is slower. The concentration gradient and charging rate of the galvano-
static charging is strongly dependent on the prescribed parameters. In particular the
concentration gradient is stronger for a higher prescribed flux boundary condition, and
the charging is limited by the bulk diffusion into the sample. A comparable small flux
boundary condition was chosen also to make sure that the center of the volume is charged
before the surface concentration approaches c = 1 and the simulation becomes unstable
as the free energy density function has a singularity at this concentration. Compared to
the dislocation free reference an increase or decrease of the diffusion speed could not be
observed. However, the solute segregation due to the dislocation stress field already leads
to a heterogeneous concentration distribution around the dislocation core, which varies
over time. This heterogeneous concentration distribution seems to be primarily dependent
on the concentration level, as the profiles are similar to the equilibrium states discussed in
figure 4.1b, and secondarily dependent on the time with the change of the charge state.
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Figure 4.1: The simulations show the SOC dependency of the dislocation influence on the
diffusion. a) Equilibrium concentration distribution near the edge dislocation
for SOC = 0.5. b) The concentration along the x2 axis for different SOC. The
ion redistribution is most significant for SOC = 0.5 around the dislocation. c)
The relative enrichment or depletion is calculated as ∆c/c0 = (cmax − c0)/c0
and ∆c/c0 = (cmin − c0)/c0 for the tensile and compressive side, respectively.
cmax is themaximum value of the concentration field located in the tensile side
as depicted in b) and cmin is the minimum value located in the compressive
side, accordingly. The relative ion redistribution is more pronounced at a lower
SOC. d) The hydrostatic DIS σh−σ0

h reduces both the tensile and compressive
stress of the edge dislocation, where σ0

h is the self-stress of the dislocation.
The hydrostatic DIS is also shown to be SOC dependent.
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Figure 4.2: Influence of the edge dislocation on the concentration distribution during a)
potentiostatic charging and b) galvanostatic charging. The inset shows the
schematic setup with the boundary conditions. The concentration distribution
over time along the x2 axis is strongly influenced by the presence of the
dislocation. The overall charging state is not influenced by the dislocation but
its presence strongly alters the concentration distribution along the x2 axis.
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4.2 Ion Mobility in the Vicinity of an Edge Dislocation

A heterogeneous mobility can be observed in the vicinity of a dislocation, which is analo-
gous to the enrichment and depletion of concentration around the dislocation core. To
evaluate the mobility of the representative bulk material, one can consider the general
idea of homogenization [96, 95]

J i = −M eff
ij µ,j , (4.1)

where J i and µ,j are the volume average of the flux and the chemical potential gradient,
respectively, andM eff

ij is the effective mobility matrix. The matrixM eff
ij can be computed

by a specific control of the boundary conditions. Here the average flux is controlled by
applying constant flux boundary conditions and then the volume average of the chemical
potential gradient can be evaluated. For two-dimensional problems, M eff

ij consists of
four unknown components that can be found by solving equation 4.1. Evaluation of two
simulations with different flux directions leads to two groups of µ,j . Accordingly one
simulation is performed with a constant flux in the x1 direction and one simulation is
performed with a constant flux in the x2 direction. To evaluate the SOC dependence the
simulation is repeated accordingly by controlling the SOC by the initial condition that
defines a homogeneous concentration c(t = 0) = SOC.

The concentration distributions for the constant flux in positive and negative x1 direction
and in positive x2 direction are shown in figure 4.3a,b and c, respectively. The results
show that the numerically computed offdiagonal components of M eff

ij are zero. The
evaluation of the diagonal components M eff

ii is depicted in figure 4.3d,e and f, where
because of the anti-symmetric stress field in the x2 direction the flux is evaluated for the
positive and negative flux. The maximum mobility is observed at SOC = 0.5 and the
mobility decreases for lower and higher SOC. The relative difference betweenM eff

11 and
M eff

22 is only around 0.001%, which means that the dislocation does not introduce large
mobility anisotropy in the material. Further the averaged mobility of the whole sample is
not influenced by the dislocation presence, as indicated by comparison of the mobility
of the dislocation containing sample and the dislocation free sample. However, when
calculating the mobility at each node using equation 3.27, it follows that the heterogeneous
concentration distribution results in a heterogeneous local mobility. Therefore the mobility
is evaluated locally as M eff

core in the tensile and compressive regions marked by square
boxes of sidelength a = 2b depicted in figure 4.3a. A shift of the maximum value of
the SOC dependent local mobility is observed, where the maximum mobility is reached
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at a lower SOC within the tensile region and at a higher SOC within the compressive
region. This is caused by the enrichment and depletion of concentration at the tensile and
compressive sides, respectively. The local mobilityM eff

22 is analyzed in detail along the x2
axis, where the result for the positive flux is depicted in figure 4.4a and the result for the
negative flux is depicted in figure 4.4b. According to equation 4.1, the average chemical
potential gradients are of opposite sign in the two simulations. However, this does not
influence the local mobility (and concentration) in the dislocation core region, which can
only be observed as SOC dependent.

c

0.4

0.6

Jini=-j0

Jini=+j0

J in
i=

0

J in
i=

0

a=
2b

x2

x1

x2

x1

x2

x1

f)e)d)

c)b)a)

Figure 4.3: Influences of the dislocation on the ion mobility. Concentration field around
the edge dislocation with a) a positive flux in the x2 direction, b) a negative
flux in the x2 direction and c) a positive flux in the x1 direction. The change of
the mobility in dependence of the SOC is shown for d) positive x1 direction, e)
positive x2 direction and f) negative x2 direction. The dislocation influences
the local mobility around the dislocation core, but the average mobility in the
whole volume matches the mobility of a dislocation free reference sample.
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b)a)

Figure 4.4: The local mobility along the x2-axis for a flux in the positive is shown in a)
and a flux in the negative x2 direction is shown in b). The mobility in the
dislocation core region is not influenced by the chemical potential gradient
induced by opposite signed flux and only shows dependency on the SOC.

Oppositely signed dislocations interact in the form of a resulting shear stress acting in
the dislocations, where the influence of the dislocation induced shear stress on diffusion
is studied in various theoretical models [128, 68, 14, 141]. In this work the solute
segregation within a dislocation array is analyzed. Each single dislocation is introduced
by adding the corresponding eigenstrain distributions. An example for a dislocation array
with oppositely signed edge dislocations is shown in figure 4.5. The distance between
the dislocations in vertical and horizontal direction is 40 nm. The flux boundary condition
Jini = ±0.0001 is applied on the bottom and top surfaces. The SOC is controlled by the
initial homogeneous condition c(t = 0) = SOC as before, where an SOC = 0.4 is chosen as
example for the discussion. Due to the superposition of the dislocation stress field of the
oppositely signed edge dislocations enhances both the tensile and compressive stress fields.
This results in interconnected areas of increased concentration in the tensile region and
decreased concentration in the compressive region, as shown in figure 4.5a. Specifically at
SOC = 0.4, the local concentration increase on the tensile side of the dislocation creates a
region where the concentration exceeds 0.5. According to figure 4.3d, for an SOC < 0.5 an
increased concentration leads to an increased mobility. However, when the concentration
is further increased to c > 0.5, the mobility decreases. Similarly, on the compressive side of
the dislocations, a decreased concentration results in a decreased mobility. Consequently
a strong SOC heterogenity across the dislocation array leads to an according mobility
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heterogenity. Compared to a single dislocation, a dislocation array introduces larger areas
with concentration field heterogeneity.
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Figure 4.5: A dislocation array subject to a flux in negative x2 direction. a) Ion enrichment
and depletion due to dislocation stress fields at interconnected areas. b)
Local mobility distribution. The mobility is increased in the tensile region and
decreased in the compressive region.

4.2.1 Study of the different terms in the mobility

Different terms contribute to the mobility defined in equation 3.27. These are the terms for
the mixing characterized by the parameter χ and the stress. In this section the individual
contributions are analyzed by comparing simulations where the mobility equation is
modified. The mobility variants are labeled asMI ,MII andMIII and are defined in the
following. First the equation for the mobility is replicated in its normalized form from
equation 3.27 along with its derivative with respect to the concentratio

M =
c(1− c)

1− c(1− c)[2χ− 1
9CijklΩijΩkl]

,

M,c =
1− 2c

(1− c(1− c)[2χ− 1
9CijklΩijΩkl])2

. (4.2)

Note that the interface parameter κ is set to zero. Also the chemical potential is unmodified
and contains terms for the mixing and stress so that all three variants have chemo-

79



mechanical coupling. In the analysis the mobility calculated from the experiments using
equation 3.27 is referred to asM . The mobility and chemical potential of the first variant
I is defined by setting both the term for mixing and the stress term to zero as

MI = c(1− c),

MI,c = 1− 2c, (4.3)

which returns the classic definition for the mobility. Variant II is defined by considering
the mixing term and setting the stress term to zero as

MII =
c(1− c)

1− c(1− c)2χ
,

MII,c =
1− 2c

(1− c(1− c)2χ)2
. (4.4)

The last Variant III considers only the stress term and the mixing term is set to zero so
that

MIII =
c(1− c)

1 + c(1− c)19CijklΩijΩkl

,

MIII,c =
1− 2c

(1 + c(1− c)19CijklΩijΩkl)2
. (4.5)

The simulations were performed with all the parameters utilized in the previous section,
except that the modified definitions for the mobility are applied. Accordingly the boundary
conditions and setup defined given in figure 4.3a and the prescribed flux is in the positive
x2 direction. Each simulation is repeated for a different specified SOC in the range from 0.1
to 0.9. For comparison, all simulations were performed with and without a dislocation in
the center of the particle. The simulations are conducted until the equilibrium is reached
and then the mobility is analyzed. The results for the simulations with the mobility
variants are summarized in figure 4.6. The analytically calculated mobility variantMII for
a bulk material is shown in figure 4.6a for different χ. Naturally, for the limit χ = 0, the
two variant solutions are equalMII(χ = 0) = MI . In the range 0 < χ < 2 the mobility
increases with an increased χ. When χ = 2, the mobility function has a singularity at
c = 0.5. When χ > 2, the mobility function has two singularities and the mobility has
negative values for the concentration between those singularity points. The results for
the numerical calculated mobility with χ = 1 are shown in figure 4.6b. The dashed
lines indicate the respective analytical solutions, whereMII is identical toMII(χ = 1) in
figure 4.6a.
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The numerical solutions agree well with the analytical solutions. The mobilityM , which
contains the contribution of all terms, is compared to the mobility variants. The curves for
bothMI andMII lie above M and the curve forMIII lies belowM . This means that the
mixing term has an increasing effect on the mobility and the stress term has a decreasing
effect.

The global mobility within a particle with dislocation and without dislocation is similar.
However, similar as observed in the last section, the mobility changes in the tensile and
compressive region. The tensile region of the dislocation is evaluated in figure 4.6c and
the compressive region of the dislocation in figure 4.6d. Coinciding with the discussion in
chapter 4.2, the maximum mobility in the tensile region is shifted to a higher SOC and in
the tensile region the maximum mobility is shifted to a lower SOC.

4.3 Pipe Diffusion

The proposed model is generally formulated and covers three-dimensional problems.
Its phase field character enables smooth coupling to various physical phenomena. Pipe
diffusion is referred to as high speed diffusion along a dislocation line [130, 118, 30,
65]. Although the phenomena is known for a long time, a fundamental understanding is
lacking. In this section the chemo-mechanical coupled diffusion model is utilized to study
pipe diffusion along the dislocation core. For this, the model is coupled to a pipe diffusion
model following by locally modifying the diffusion constant D [84]. The homogeneous
core diffusion coefficient Dcore is defined within a tube along the dislocation line with
radius of 2.5 nm, as illustrated by the dashed curves in figure 4.7a. The diffusivity in the
dislocation ’pipe’, e.g. the dislocation core, can be a few orders larger than that in the
bulk material [42]. Therefore pipe diffusion with Dcore = 100D0 and Dcore = 1000D0

is studied. The simulation volume is defined with an edge dislocation lying along the
x3 axis is placed in the center of a volume of 50 nm× 50 nm× 20 nm with mesh size of
50× 50× 20. A homogeneous distribution c(t = 0) = 0.05 is applied as initial condition.
Diffusion in the vicinity of such a dislocation pipe can be considered for three normal
directions. However, for the in-plane diffusion cases in figure 4.2, the large volume of
the surrounding bulk dominates the ion diffusion such that no obvious influence was
observed with a larger diffusion coefficient in the dislocation core. Therefore the expected
resulting flux is along the negative x3 direction. Similar to the boundary condition of
the potentiostatic charging, a prescribed concentration c0 = 0.99 is applied on the front
boundary (the x3 = 10 plane) and flux free boundary conditions are applied on the other
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Figure 4.6: The mobility is studied for different variations and depending on the SOC.
a) Analytic calculation of the mobility MII for different χ-parameters. Sin-
gularities and negative mobility values are introduced for χ > 2. Note that
for χ = 0, it states that MI = MII . b) Mobility of a sample containing an
edge dislocation. c) With the mobility in the vicinity of an edge dislocation
evaluated in the c) tensile region and d) compressive region.
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boundaries. The results for diffusion along the dislocation line are shown as concentration
plots at t = 0.009s in figure 4.7. As already discussed in figure 4.3, in the low SOC state the
mobility on the tensile side of the dislocation is related to the concentration enrichment.
This results in a pipe of higher diffusivity in the tensile region along the dislocation line,
visible as an area with larger concentration in figure 4.7a. This phenomenon is enhanced
when Dcore = 100D0, where a diffusion pipe can already be observed on the tensile side
of the edge dislocation, as shown in figure 4.7b. A clear pipe diffusion can be observed
when Dcore = 1000D0. However, in this case, the pipe diffusion is mostly due to the large
diffusivity predefined in the tube along the dislocation line and less due to the interaction of
the diffusive ions with the tensile stress. To better understand the dislocation induced pipe
diffusion, a stress dependent diffusivity [41] instead of a predefined diffusion coefficient
can be considered in the model, but this is out of the scope of this work.
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Figure 4.7: Ion diffusion along the dislocation line at t̃ = 0.009s with different core diffu-
sion coefficients Dcore. Faster ion diffusion can be observed on the tensile
side of the edge dislocation indicated by the high concentration tube.
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5 Driving Forces on Misfit Dislocations in
Two-Phase Electrode Particles

In two-phase materials a dislocation will interact with the interface, especially when
there is a strong misfit strain at the interface due to lattice mismatch. This leads to more
stable positions of the dislocation at the interface oriented with the Burgers vector parallel
to the interface, such that the dislocation stress field partially cancels the misfit stress
field. The relation of particle sizes and shapes with the stability of misfit dislocations is
analyzed in this chapter. First the interaction of a dislocation with the diffusive ions for
isotropic phase separation is analyzed depending on the model parameters. On this basis
the influence of a dislocation in a mechanical coupled two-phase diffusion model with
anisotropic elasticity is studied. It will be discussed that the shear component of the misfit
strain causes a driving force on the dislocation. Another driving force on the dislocation
comes from the interaction of the dislocation with the surface in the form of image forces.
The combination of the driving forces leads to an energy based stability condition which
is sensitive to the particle size. Dislocations are stable when the work on the dislocation
by the driving forces to introduce a dislocation into the particle is zero or negative. Then
the influence of the particle shape on the critical particle size is studied as well as the
influence of the interface position in a consecutive section. The chapter is concluded with
a discussion on the model parameters. The content of chapter has been partially published
in [140].

5.1 Phase Separation in Isotropic Dislocated Solids

The linear elastic chemo-mechanical coupled model for dislocations is depending on
various parameters, that can be fitted to experimental data. However, the fit to the
experimental data is out of the scope of this work. Instead the according parameters were
chosen in a physical sound manner and a discussion on the influence of these parameters
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is shown in the following section. The interplay between the dislocation and separation of
phases is to a high degree defined by the core parameter h̃ and the the mixing parameter
χ, which is studied in the following. The parameter χ is related to ion-ion coupling
and a value χ > 2.0 leads to phase separation, where the phases are separated by an
interface characterised by the interface parameter κ, as discussed in chapter 3.1. When
the definition for the mobility in equation 3.27 is applied, the mobility has singularities
for χ ≥ 2. To avoid this, the mobility defined in equation 4.3 was applied. More details
on the topic are discussed in chapter 4.2.1. Following the discussion in chapter 3.4.4, the
interface parameter was chosen as κ = 5.0 leading to a theoretical stress free interface
thickness of s̃ ≈ 5.9 nm.

In accordance with the previous experiments, The numerical model considers a free
standing particle with the sample size 200 nm× 200 nm and the mesh size of 200× 200
and an edge dislocation in the center with the Burgers vector b = b0(100) and glide plane
normal vector n = (010). The material is considered isotropic and the properties for
LiMn2O4 were applied according to chapter 2.5.4. Traction free boundary conditions
were applied for the displacement variable. The concentration on the boundary was set to
c = 0.5 and the initial concentration was set as c(t = 0) = 0.5. The resulting concentration
profiles were evaluated on a line along the x2 axis through the dislocation core and
shown in figure 5.1. The influence of the dislocation stressfield is already discussed in
figures 2.8 and 2.9, where a smaller h̃-parameter leads to larger stress fields and is related
to a larger strain energy and thus dislocation self energy. Figure 5.1a shows that the
smaller h̃-parameter also leads to a larger enrichment, respectively depletion, around the
dislocation core as the concentration field follows the stress field. Thus the enlarged stress
field also results in an increased ion redistribution. The ions also carry an intercalation
strain which decreases the DIS for smaller h̃ as shown in figure 5.1b. It should be noted
that for h̃ = 1 nm the concentration maximum and minimum reaches unphysical values
of 1 and 0, respectively. For a more realistic behavior a value of h̃ = 5 nm was chosen for
the experiments.

In the following three simulation sets with different SOC where conducted, where each set
consists of a simulation series with variation of the χ-parameter. The SOC was controlled
by defining different initial conditions as cI(t = 0) = 0.2, cII(t = 0) = 0.5 and cIII(t =
0) = 0.8. The results are shown in figure 5.2. Concentration distributions for the whole
sample are shown for SOC = 0.2, SOC = 0.5 and SOC = 0.8 in figure 5.2a, b and c,
respectively for the example of χ = 2.5. Respective line plots along the x2 direction
are shown in figure 5.2d, e and f. The cases SOC = 0.2 and SOC = 0.8 show similar
behavior, where the low concentration phase is dominant in the low SOC case and the
high concentration phase is dominant in the high SOC case. The complementary high
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Figure 5.1: a) Concentration field around an edge dislocation for different h̃-parameter.
b) DIS around an edge dislocation for different h̃-parameter.

concentration and low concentration phases are formed in the tensile region and the
compressive region of the dislocation, respectively. In the case SOC = 0.5 the two phases
are evenly distributed. The tensile side of the dislocation favors the high concentration
phase and the compressive side favors the low concentration phase. However, on the
left and right sides of the particle additional phases are formed. This could be related to
the traction free surfaces and mechanical equilibrium of the stresses within the sample.
Noteworthy is the non-conformity of the interface thickness in different regions within the
sample. The interface is thin close to the free surfaces where the displacement can relax
the interface stress field. In the volume, the interfaces are much thicker. The stress field at
the interface causes a redistribution of the ions towards a wider interface as discussed in
the previous chapter on the spinodal decomposition. Finally the interface at the dislocation
core is also thin. Here the dislocation stress field is opposed to the interface stress field
causing a stress relaxation and interface widening due to the stress field is prevented.
Further the increase of the χ-value causes a stronger concentration separation close to
the dislocation core. For SOC = 0.2 and SOC = 0.8 there is a distinct jump between
χ = 2 and χ = 2.5 towards the phase separation. At SOC = 0.5 the transition is evenly.
Increasing the value to χ = 3 results in a qualitative different concentration distribution.
The maximum and minimum concentrations are closer to the values c = 1 and c = 0,
respectively. The phase nucleation on the surface is reverse to the phase nucleated at the
dislocation core, such that the concentration distribution close to the surface is strongly
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heterogeneous and shows three interfaces along the line plot. Also the concentrations are
increased in the high concentration phase and decreased in the low concentration phase
relative to the cases of χ ≤ 2.5, which is related to the free energy density fC . Which
phase is nucleated on the surface can be related to the surface stresses on the free surfaces
due to the dislocation.
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Figure 5.2: Concentration fields for χ = 2.5 at a) SOC = 0.2, b) SOC = 0.5 and c)
SOC = 0.8. For SOC = 0.2 and SOC = 0.8 one phase is dominant with the
other phase nucleated at the core. At SOC = 0.5 both phases are equally
stable and the phases are heterogeneously distributed around the dislocation
core. Line plots of the concentration are shown in d) for SOC = 0.2, in e) for
SOC = 0.5 and in f) for SOC = 0.8. The lines are plotted along the x2 axis
through the dislocation core as indicated by the dashed line in a).

The last example discusses the dynamic interaction of a dislocation with a moving diffusion
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front during the charging process including phase separation. This was already discussed
for non-phase separation material in chapter 4.1. As a reference, the charging is calculated
for a dislocation free sample as well. The initial and boundary conditions represent
potentiostatic charging and are taken from the potentiostatic charging in figure 4.2.
Further parameters are set as χ = 2.5 and κ = 5. The results are summarized in figure 5.3.
The dislocation free reference sample is shown in figure 5.3a at t̃ = 4.2 s, in figure 5.3b at
t̃ = 10.6 s and at t̃ = 15.5 s. The diffusion front has three stages, marked by the position
of the diffusion front beeing in the first half, exactly at the center and in the second half of
the sample. It can be compared that relative to the diffusion at the surface, the diffusion
in the center is faster in the first half and slower in the second half. In general the interface
is dragged towards the center of the particle. The timesteps in the sample with the
dislocation correspond to those in the dislocation-free sample, where the diffusion front
approaches the dislocation in figure 5.3d, where the diffusion front passes the dislocation
in figure 5.3e, and where it surpasses the dislocation in figure 5.3f. When the diffusion
front approaches the dislocation, the diffusion front is dragged towards the dislocation.
When the diffusion front is at the same height of the dislocation, the interface is flat.
Here the interface is thin at the dislocation. This is related to the dislocation self stress
opposite to the DIS, as discussed before. When the diffusion front passed the dislocation
the interface is pinned at the dislocation. Together with the drag of the interface towards
the center of the sample observed in the dislocation-free example, the interface is curved
due to the presence of the dislocation.

5.2 Critical Particle Size for Stable Dislocations

In this chapter the misfit dislocations in anisotrop phase separation in LiFePO4 material
are analyzed. First the misfit dislocations and their orientation appearing in LiFePO4
are discussed and the parameters for the simulations are defined. From experiments
it is known that misfit dislocations in LFP particles can have the Burgers vector in the
[100], [010] and [001] directions [29]. Esmizadeh and Haftbaradaran [27] analyzed
the minimum particle size for stable misfit dislocations in LFP, which is related to the
misfit strain. The maximum misfit strain is for the interface in the (010) plane of 5.03%.
The respective misfit dislocations are with the sense vector in the [001] direction and
the Burgers vector of 1.033 nm in the [100] direction. The study on particles with an
aspect ratio of 2 with the long side in the [010] direction shows a predicted particle width
(defined as the small diameter) around 47 nm, below which the particle is unlikely to host
a misfit dislocation at the phase boundary. Interfaces in other directions result in less
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Figure 5.3: Potentiostatic charging of a dislocation-free sample (a-c) and a dislocation
containing sample (d-f) at different timesteps. Before the diffusion front
passes the dislocation, the high concentration phase is dragged towards
the dislocation (d). After the diffusion front passes the dislocation in f), the
diffusion front is pinned at the dislocation.

89



stable directions. For example the critical particle width for dislocations with the sense
vector in the [100] direction and Burgers vector in [001] direction was predicted around
200 nm.

Larger particle sizes are associated with lithiation heterogeneities due to limitations in
the ion-transport. Nanometer-sized electrode particles on the other hand could evade
the development of large misfit strains and thus are a key factor in realising intercalation
cathodes [78]. Coinciding, excellent capacity retention during cycling was found for
small rod-like LFP particles with the length 50 nm and width 20 nm [55]. From above
observations it can be concluded that similarly small sized particles will not be influenced
by the dislocation line along the [100] direction. Therefore, the focus in this work lies on
the analysis of the minimum particle size for stable misfit dislocations with the dislocation
sense vector in the [001] direction and the Burgers vector of 1.033 nm in the [100]
direction.

With the Peach-Koehler equation 2.41 the driving force on the dislocation in the x̃1
direction can be calculated as

F̃ 1 = ˜︁σ12b̃1 + ˜︁σ22b̃2. (5.1)

As only the component of the Burgers vector b1 is non-zero for the considered dislocation, it
is sufficient to take only the interaction with the shear stress ˜︁σ12 into account. Considering
F̃ 2 as the driving force on the dislocation for the generation of misfit dislocation would
require dislocation climb, which is energetically more expensive than the glide and thus
less favourable. Thus F̃ 1 is considered as driving force along the minimum energy path
for the dislocation moving in or out of the material.

The simulations in this chapter vary in dimension and shape. If not stated otherwise, the
following parameters are chosen. A consistent mesh resolution is achieved by defining the
size for a single element as 0.25× 0.25 nm2 so that the definition of the mesh resolution
is independent on the particle size and shape. Further, one mesh element is reasonably
small compared to the core width parameter h̃ = 2 nm, as will be discussed within this
chapter. The boundary conditions on the free surfaces are defined as traction free for
the displacement variable and as flux free for the concentration variable. The initial
concentration is defined in the form of a step function as

c(t = 0) =

{︃
0.032 for x2 > x02
0.968 for x2 ≤ x02

, (5.2)

where the concentration values are the equilibrium concentrations of the low concentration
and high concentration phase and x02 is the x2-position of the interface. As a standard in
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this chapter the interface position is defined with x02 = 0. The setup of a particle with
a dislocation is depicted in figure 5.4. A dislocation is placed at P = (x1, x

0
2) and the

x1-position is iterative varied along the interface. As discussed within this chapter, the
end time for the simulations was chosen as t̃ = 14.2 s.

The critical particle size is determined by evaluation of the energy required to introduce a
misfit dislocation into the material. First the driving forces are numerically computed for
the dislocation on its gliding path along the grain boundary into the particle, as shown
in figure 5.4. Then the integration of the driving force returns the change of the system
energy as

∆˜︂W =

∫︂ x̃0

0

˜︁F1dx̃1. (5.3)

The driving force computation follows the procedure described in chapter 2.5.2. Here
the driving force is calculated from the sum of all nodal configurational forces on the
boundaries of the sample. With that the configurational force contains the contributions
from all defects within the sample volume, which in this case are the dislocation and the
phase boundary. The driving force on the phase boundary is zero in the equilibrium state,
so that the residual driving force contains only the contribution from the dislocation. The
numerical driving forces is computed for discrete dislocation positions along the gliding
plane, which is interpolated with a spline interpolation. Trapezoidal integration is applied
to calculate ∆˜︂W .
In the following a suitable mesh resolution and the required time until the equilibrium
state is reached is discussed. First the convergence with the mesh resolution is studied.
The particles have the edge length of 50 nm with the dislocation and interface in the
center. The computations are done for three different mesh resolutions with element
sizes 1.0× 1.0 nm2, 0.5× 0.5 nm2 and 0.25× 0.25 nm2. The simulation was stopped after
t̃ = 14.2 s. The results for the driving force on the dislocation and the change of the system
energy are depicted in figure 5.5a and b. Due to convergence a sufficiently small error for
the determination of the critical particle size can be assumed for the mesh consisting of
elements of the size 0.25× 0.25 nm2. The determined mesh size of 0.25× 0.25 nm2 per
element is then tested for different times and the driving forces on the dislocation and the
change of the system energy after t̃ = 0.014 s, t̃ = 14.2 s and t̃ = 71.0 s are depicted in
figure 5.5c and d. The change of the system energy ∆W is not changing after t̃ = 14.2 s,
thus this is regarded as the equilibrium state.

In figure 5.6a and b the eqilibrium concentration distribution of a square two-phase particle
with and without dislocation is compared. For that the stress fields due to the misfit strain
and the dislocation self stress are considered along with the effect on the concentration
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Figure 5.4: Evaluation of the change of the system energy for the generation of disloca-
tions. The dislocation is placed at the position (x0, 0) within the particle of
width L and height H . The path of the dislocation into the particle is repro-
duced by step-wise variation of the x1-position (marked by the crosses along
the gliding plane). On each position the driving force F1 is evaluated and then
interpolated as a spline to a continuous driving force along the dislocation
path. The numerical integration then gives the change of the system energy
∆W . The critical region within the core width h from the free surface is high-
lighted and can be excluded from the evaluation by defining a cut-off radius
rc = h. Then the integral reads as ∆W =

∫︁ x0

rc
F1dx1. The two phases are not

depicted in the graphic and normalized entities are utilized for simplicity.
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d)c)

b)a)

Figure 5.5: Convergence of a) the driving force ˜︁F1 on the dislocation and b) the change
of the system energy ∆˜︂W with the mesh resolution indicates a suitable
element size for the mesh of 0.25×0.25 nm2. Then the driving force ˜︁F1 on the
dislocation in c) and the change of the system energy ∆˜︂W in d) is computed
at different times indicating the end time t̃ = 14.2 s as the equilibrium state.
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field. An ion redistribution and as a concequence a widening of the interface is observed
along the phase boundary, which can be related to the emerging hydrostatic stresses
due to the misfit strain following the discussion for interphases in isotropic two-phase
materials in chapter 4.1. Similarly, the dislocation stress field opposes the misfit stress and
reduces the interface thickness as shown in figure 5.6b. Figure 5.6c and d analyze the time
evolution of the shear stress ˜︁σ12 along the x̃1 direction in the interface and the hydrostatic
stress ˜︁σh plotted in the x̃2 direction through the center of the particle and interface. The
two depicted time steps are the first time step calculated at t̃ = 0.014 s and a time step in
equilibrium at t̃ = 14.2 s. The strongest shear stresses emerge at the free surfaces, and the
shear stress is zero in the center of the particle. The strongest hydrostatic stresses emerge
close to the interface and the hydrostatic stress is zero at the interface. It can be seen
that the stresses relax between the first and last timestep, showing the relation between
stress evolution and concentration redistribution from the initial step distribution to the
smoothened equilibrium distribution. Figure 5.6b also shows the distribution of the nodal
configurational force g̃i in the dislocation core region. In the mechanically coupled phase
transformation problems, the configurational forces are a resultant of both the dislocation
self stress and the DIS. Analogue to the stress evolution of the dislocation-free sample the
driving force on the dislocation also decreases during the relaxation of the interface.

In the next step the driving forces on a dislocation in a square two-phase particle is
analyzed for different sizes of the particle and the analysis of the change of the system
energy ∆˜︂W leads to a stability criterion and a critical particle size for stable dislocations.
The analysis of the driving forces and the change of the system energy of the dislocation is
shown in figure 5.7. The driving forces along the gliding plane are largest in the surface
near region and show three positions where the driving forces are zero. Those positions
with zero driving forces mark the equilibrium positions of the misfit dislocations and it can
be distinguished between one equilibrium position at the center of the phase boundary and
two equilibrium positions in the left and right surface near regions of the phase boundary.
Moreover, the equilibrium position in the center has a negative slope of the driving force,
while the slope of the equilibrium positions near the surface is positive. As the driving
force is defined as the negative gradient of the free energy (F̃ i = −df̃/dx̃i), the negative
slope of the driving force curve has the meaning of a positive second order derivative of
the free energy. Therefore the position in the center is a stable equilibrium position, while
the two other positions are unstable equilibrium positions. For larger particles the relative
positions of the outer equilibrium positions shift towards the surface. However, the slope
of the driving force does not change regardless of the particle size. This remains until the
prohibition of the two-phase coexistence for very small particles [18]. Thus the center of
the phase boundary is always a stable equilibrium position for the dislocation.
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Figure 5.6: Analysis of the interface relaxation due to the misfit strain. a) Equilibrium
concentration without misfit dislocation. b) Equilibrium concentration with a
misfit dislocation. c) Distribution of the shear stress ˜︁σ12 at x̃2 = 0 along the
x̃1 direction. d) Distribution of the hydrostatic stress ˜︁σh at x̃1 = 50nm along
the x̃2 direction.
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The previous discussion does not yet include information if the formation of the misfit
dislocation is favoured from an energetically point of view, e.g. if the misfit dislocation is
stable within the particle. This is done in the following by calculating the change of the
system energy to reveal a size dependent stability criterion. Figure 5.7b shows the analysis
of the change of the system energy ∆˜︂W for different particle sizes. When the misfit
dislocation is located in the surface near region, the formation energy is always positive.
This is related to an increase of the system energy when the dislocation glides into the
particle. The two maxima of the system energy change ∆˜︂Wmax coincide with the unstable
equilibrium positions from the zero driving force points. The maxima are also equivalent to
the energy barrier that has to be overcome to introduce a misfit dislocation into the volume
of the particle, which can be normalized as Wmax = ∆˜︂Wmax/( ˜︁R ˜︁T c̃maxL̃

2
0). Because of

∆˜︂W > 0 for the formation of dislocations located on the two unstable equilibrium points,
the existence of the misfit dislocation is energetically not favoured regardless of the particle
size without any work exchange with the surrounding. This leaves the equilibrium position
in the center as remaining option to define a stability criterion. Depending on the particle
size values for ∆˜︂W at this position above and below zero are found. In particular for
small particles, ∆˜︂W > 0 for all dislocation positions. Thus the dislocation is energetically
unstable for small particles. For large particles ∆˜︂W < 0 for the dislocation positions in
the center, which means that those dislocations are energetically favoured. The particle
size with ∆˜︂W = 0 at the center equilibrium position marks the smallest possible size for
energetically favoured dislocations in the particle. This is defined as the critical particle
size for the formation of dislocations. For the given parameters the predicted critical
particle size is L̃c = 52.5 nm. Further the energy barrier decreases with increasing particle
size, so that the introduction of misfit dislocations into particles smaller than the critical
particle size is more difficult the smaller the particle is.

5.3 Influence of the Particle Shape

Tailoring the shape of particles is an efficient instrument to improve charging efficiency
and capacity preservation over the lifetime of the material [55]. In this sense the shape
dependence for the critical particles size for stable misfit dislocations is studied by variation
of the aspect ratio. Considered are rectangular particles of width L and height H, where
the aspect ratio is defined as a = ˜︁H/L̃. The phase boundary and dislocation are located
at half the height of the particle. Due to the varying particle shapes the critical particle
size is interpreted as a critical particle width and a critical specific surface area which
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Figure 5.7: Determination of the critical particle size. a) Driving force on the dislocation
at different positions on the phase boundary for three different particle sizes.
b) Change of the system energy for the formation of the misfit dislocation for
different particle sizes. The critical width is predicted as 52.5 nm.

is defined as the total surface per unit volume S̃c = 2L̃c(1 + a)/(aL̃
2
c) + 2/l̃z, where

l̃z is the length of the particle in the out of plane direction. The results for a particle
with L̃ = 50 nm are summarized in figure 5.8. First the influence of the aspect ratio
is studied for a particle with the width L = 50nm. In figure 5.8a is shown, that the
shear stress ˜︁σ12 increases with increasing aspect ratio, albeit with a saturating effect
towards larger aspect ratios. Figure 5.8b shows the increase of the driving forces with
increasing aspect ratio. Finally figure 5.8c shows, that ∆˜︂W decreases for larger aspect
ratios creating regions with ∆˜︂W < 0 in the center where dislocations are energetically
stable. Therefore the additional height has an energetically stabilizing effect on the misfit
dislocation. Figure 5.8d shows the relation of the critical particle width L̃c and the aspect
ratio. It indicates an exponentially decrease of the critical particle width with respect to
the aspect ratio. The critical specific surface area shows a maximum around 1.5 nm and
a decrease for larger aspect ratios. A large specific surface area is beneficial for the rate
capability of electrode particles. An aspect ratio of 1.25 < a < 1.5 would then allow for
dislocation free particles with a larger specific surface area.
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Figure 5.8: Analysis of the influence of the particle aspect ratio a = ˜︁H/L̃ on the criti-
cal size of dislocation free particles. a) The shear stress ˜︁σ12 at the phase
boundary in dislocation-free particles increases with increasing aspect ratio.
Accordingly the driving force on the dislocation increases with increasing
aspect ratio shown in b), which leads to a stabilization of the dislocation
indicated by the change of the system energy shown in c). The shape depen-
dence is summarized in d). The critical particle width L̃c decreases with larger
aspect ratios and saturates for aspect ratios a ≤ 2.5. The corresponding
specific surface area has a maximum around a = 1.5with a trend to decrease
for larger aspect ratios.
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5.4 Influence of the Interface Position

The critical particle size for stable dislocations size also depends on the position of the
interface within the particle. In this section a study to estimate the critical particle size is
conducted varying the position of the interface x̃PB

2 relative to the particle height ˜︁H for
particles with different aspect ratios a = 1 and a = 2. The results are shown in figure 5.9a.
As already discussed, the critical particle width is smaller when the aspect ratio is larger.
The closer the interface is positioned to the upper and lower surfaces, the larger the
critical particle width becomes. Exemplary, the critical particle width for a = 2 with the
interface at at x̃PB

2 = −0.3 ˜︁H is approximately 18 % larger than at the minimum in the
center. This is related to the reduced shear stress of interfaces close to the free surfaces, as
discussed by Esmizadeh and Haftbaradaran [27]. An asymmetry is observed with respect
to x̃PB

2 = 0. This is related to the different elastic properties of the LFP and FP phase. For
a = 2 the minimum L̃c is at x̃2/ ˜︁H = 0, while it is at x̃2/ ˜︁H = 0.1 for the aspect ratio a = 1.
When the interface is very close to the surface, curvature of the interface is observed as
shown in figure 5.9b. This happens for a = 1 when the distance of the interface is smaller
than x̃2/ ˜︁H ≤ 0.2 and for a = 2 when x̃2/ ˜︁H ≤ 0.1. This means that the assumption of the
misfit dislocation gliding along the phase boundary is not satisfied anymore and thus the
critical particle width is not analyzed for those cases. The distance to the surface when
bending occurs is 13 nm for both aspect ratios, and seems to be independent on the aspect
ratio. In figure 5.9b tilting of the interface is shown, where the interface is pinned on
its original position by the dislocation. In figure 5.9c, the interface is curved such that it
intersects with the bottom free surface. The analysis shows that it is sufficient to analyze
the critical particle width for an interface positioned in the center of the particle, e.g.
x̃PB
2 = 0. For the large aspect ratio a = 2, the minimum critical particle width is found
with the interface positioned in the center. This is not the case for a = 1, but the deviation
in the critical particle width is negligible.

5.5 Discussion

In the chemo-mechanical coupled non-singular continuum theory for dislocations various
factors are critical for a qualitative prediction of the critical particle size for stable misfit
dislocations in two-phase particles. In the following the influence of a series of parameters
is analyzed and discussed. First the interface relaxation between the initial state and
the equilibrium state and the difference between utilizing phase-specific elasticity and
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Figure 5.9: The position of the boundary within the particle has an influence on the
stability of misfit dislocations. a) The critical particle width is shown for two
different particle aspect ratios in relation to the phase boundary position.
The stability of misfit dislocations is increased when the phase boundary is
through the center of the particle. The results are asymmetric with respect to
x̃PB
2 = 0, which is related to the different stiffness tensor in the LFP and FP

phase. b,c) When the phase boundary position is close to the surface, tilting
and curving of the interface is observed.
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utilizing homogeneous elasticity is studied. Then the influence of the core parameter h̃ is
analyzed. Conclusive is a discussion on the interface model applied in the simulations.

There can be a significance difference between the initial state and the equilibrium state
for the driving forces on defects due to relaxation processes (see also the relaxation of
the interface in figure 5.6). In the following this influence on the critical particle size is
analyzed for the differences between the initial and the equilibrium state. In the work
of Esmizadeh and Haftbaradaran [27], the utilization of a sharp interface model was
discussed as a model limit because of the lacking stress relaxation and ion redistribution.
The applied model in this work allows to study this effect in the sense of time evolution.
In the first state the concentration distribution is a step function, with only minimal stress
relaxation and concentration redistribution at the interface. The results for a sample with
the dimensions 52.5× 52.5 nm are shown in figure 5.10a-b. The first computed timestep
at t̃ = 0.014 s is compared to a later timestep in equilibrium at t̃ = 14.2 s analyzing the
driving forces on the dislocation and change of the system energy, respectively. As can be
expected from the relaxation of the shear stress discussed in figure 5.6c, the transition
to the equilibrium state is accompanied with a reduction of the driving forces on the
dislocation. In detail the driving forces between the unstable equilibrium position and
the center decrease, but the driving forces between the unstable equilibrium position and
the surface increase during the relaxation. Interestingly the larger driving forces without
relaxation do not lead to a larger critical particle size as can be seen in the reduction
of the computed ∆˜︂W at the center of the particle. On the contrary, the strong driving
forces between the two unstable equilibrium positions are pushing the dislocation towards
the center of the particle. Consequently the non-equilibrium state is accommodated
with a much larger negative change of the system energy for the dislocation generation,
thus stabilizing the dislocation for smaller particles than in the equilibrium state. This
also means that the utilization of a sharp interface model as in [27] would lead to an
underestimation of the critical particle size. Note that the driving force on the phase
boundary is non-zero at the first time step t̃ = 14.2 s. However, the redistribution of the
concentration is along the x̃2 direction and so the driving force on the phase boundary
is in the x̃2 direction and does not contribute to the analysis of the driving force on the
dislocation in the x̃1 direction.

LFP/FP has a distinct difference in the stiffness tensor between the LFP and the FP phase.
However, most of previous phase-field simulations ignored the jump in the elasticity across
the interface and simply assumed a homogeneous stiffness tensor [117, 134, 129]. This is
a motivation to study the influence of the stiffness tensor on the simulation results and
how it affects the predicted critical particle size. As an example a particle size of 52.5 nm
is chosen and computed in two variants defining a homogeneous stiffness tensor for both
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Figure 5.10: Study of the interface model in equilibrium and non equilibrium and in depen-
dence of phase-specific elastic properties. a) Driving force on the dislocation
at different times. Along with the relaxation of the interface from the first
time step at t̃ = 0.014 s to the equilibrium state at t̃ = 14.4 s the driving
force decreases. This results in a larger critical particle size at the early non-
equilibrium state, as shown in the change of the system energy in b). The
different influence of the homogeneous stiffness tensor and phase-specific
stiffness tensor is shown in c) on the driving force on the dislocation and
in d) on the change of the system energy for the formation of the misfit
dislocation. The difference in the predicted critical particle size is negligible
for the three cases.
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phases with either the properties of the FP phase (FP) or the LFP phase (LFP). This is
then compared to the result where a phase-specific stiffness tensor was defined (LFP/FP).
The results are summarized in figure 5.10c and d. It can be seen that the stiffness tensor
has a small influence on the driving forces and the change of the system energy for misfit
dislocation formation. In particular a homogeneous stiffness tensor from the LFP phase
leads to an underestimation and a homogeneous stiffness tensor from the FP phase leads
to an overestimation of the critical particle size, respectively. However, the differences are
small compared to other factors as the relaxation of the stress field of the phase boundary
and the core parameter h̃, and can be thus neglected. This indicates that results from this
work with a phase-specific stiffness tensor can be compared to other results that utilize a
homogeneous stiffness tensor.

The dislocation core width is described by the parameter h̃ that determines the relation
between the elastic energy and the core energy of the dislocation. It also relates to
the stress magnitude in the dislocation core region, as shown in figure 2.8 for isotropic
material. In general, a smaller dislocation core width leads to a larger stress field in the
core region and a larger elastic energy. The correct core width can be found with an
atomistic simulation. This is out of the scope within this work and a discussion on the
influence of the dislocation core width on the prediction of the critical particle size is
presented here instead. As suggested by Cai et al. [12], a prudent choice for the dislocation
core width h̃ is a few Burgers vectors.

The largest driving forces on dislocations are found on the surface, declaring this region
crucial to determine the free energy change for the dislocation introduction. In particular
the driving forces at the surface is due to the large image forces which are, at those small
distances to the surface, related to the stresses in the dislocation core region. This section
is dedicated to the characteristics of the chosen description of the dislocation core. In the
numerical computations the surface near dislocations are positioned with distances of
multiple h/2 from the surface. This ensures that one dislocation has the distance of exactly
one core width from the free surface which reduces interpolation differences so that the
influence of the surface is comparable between different chosen core widths. A series
of experiments is conducted varying the core parameter in the range h̃ ∈ [1.5, 3.0]. The
results are shown in figure 5.11. The hydrostatic stress shown in figure 5.11a decreases
with increasing core width, which results in a decreasing critical particle size L̃c with
increasing core width as shown in figure 5.11b. The computed driving force on the
dislocation and the change of the system energy are analyzed for different core widths in
figure 5.11c and d. It can be observed that the driving force close to the particle surface is
strongly depending on the core width, especially the points with maximum driving force
increase with smaller core width. The driving force on the dislocation between the two
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unstable equilibrium positions is almost independent on the core width and the points
of zero driving force are shifting slightly towards the center for smaller core width. The
analysis of the change in the system energy shows that the increase of the core width
leads to a more stable dislocation and a smaller critical particle size. The computed critical
particle size for h = 2 is L̃c = 52.5 nm. In particular, a smaller core width leads to a
larger increase in the system energy change in the region close to the surface reaching a
higher maximum, and thus a larger energy barrier for the formation of a misfit dislocation.
Interestingly, the shape of the curve between the points of maximum ∆˜︂W is invariant to
the core width. Therefore the dependence of the critical particle size on the core width is
related to the interaction of the dislocation with the surface.

In the energy based dislocation formation criterion, the work required for a dislocation
gliding into the particle is proportional to the dislocation self energy. In the dislocation
model the dislocation self energy is determined by the dislocation core width, where
a larger core energy is related to a smaller core width. Therefore the reduction of the
predicted critical particle size with the increase of the dislocation core width can be
explained with the reduction of the dislocation self energy. Further the large range of the
predicted critical particle sizes suggests the core width to be a crucial parameter for the
prediction of the critical particle size and a correct definition of the dislocation core width
is crucial. In the benchmark for the driving force on a dislocation in a sheared particle
in chapter 2.5.6 the driving force on the dislocation was shown to not be influenced by
the choice of the dislocation core parameter. Thus, the difference of the predicted critical
particle size for different dislocation core widths should be only caused by the difference
in the dislocation core energy. This was also observed in the work of Esmizadeh and
Haftbaradaran [27], where the classical singular dislocation theory is applied and a cut-off
radius at the order of the Burgers vector is utilized to adjust the dislocation core energy.

In the phase field model proposed in this work the interface is modeled with the Khachatu-
ryan model [54]. The model was chosen over others based on the Voigt/Taylor or
Reuss/Sachs homogenization schemes [5]. For these models a generation of extra interface
energy was found so that the inhomogeneity force and the stress field at the transition
region across the interface is not computed accurately [23, 108]. An interface model
with accurate mechanical behavior has to be consistent with the interface equilibrium
conditions satisfied with a sharp interface model [116]. The continuity of the stress vector
at the interface and the kinematic compatibility is fulfilled by the variational approach
proposed by Mosler et al. [88]. This is also known as the mechanical jump conditions at
the phase boundary, that is a force balance in the normal direction and the Hadamard
condition in the tangential direction of the interface, as discussed in the model proposed
by Schneider et al. [107, 106, 108]. The shear stress caused by the misfit strain at the
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Figure 5.11: Influence of the dislocation core width on the determination of the critical
particle size. a) Distribution of the hydrostatic stress across the dislocation
core for different dislocation core widths. b) Dependence of the critical
particle width on the dislocation core width with and without cut-off radius
r̃c = h̃. c,d) Driving force F̃ 1 on the misfit dislocation and change of the
system energy ∆˜︂W for different dislocation core widths computed for the
particle size L = 52.5 nm.

105



interface was identified to cause a driving force on the dislocation in section 5.2 and is
thus a crucial factor in determining the dislocation stability and thus the critical particle
size. A correct mechanical jump condition could improve the accuracy of the strain and
stress computation in the phase field model. However, the formulation and application
of Schneider’s model are simplified for isotropic materials [109, 119]. Nevertheless it
is promising to extend Schneider’s model for orthotropic materials to improve further
analysis of the stability of misfit dislocations in LFP particles in the future.

Some limitations of the numerical studies in this work originating from the assumptions
within the model remain to be discussed. The driving force on the misfit dislocation was
computed assuming a plane strain problem and isotropic surface energy, although the
interface energy for LFP particles was found to be highly anisotropic [1]. The assumption
of plane strain problems results in an incorrect prediction of the stress in the out-of-plane
direction related to the anisotropic inelastic strain gradient across the interface between
the LFP and FP phases. Although this stress does not raise a Peach-Koehler force of the
dislocation, the anisotropic interface energy is not the same in three-dimensional space
so that an influence on the concentration distribution and the stress field in the phase
boundary region can be expected. Therefore a three-dimensional simulation with an
anisotropic interface energy coefficient may be a more accurate tool for the stability
analysis of misfit dislocations. Further the anisotropic diffusivity of LFP particles [79] was
simplified to isotropic diffusivity. This last simplification does not influence the predictions
in this work since all cases considered the equilibrium state. However, for the analysis of
phase transformations, for example in the charging or discharging process, an anisotropic
definition of the diffusivity is necessary.
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6 Conclusion and Outlook

Conclusion

A chemo-mechanical phase-field model combined with a non-singular continuum disloca-
tion theory was developed, where the dislocation was introduced in the model in the form
of an eigenstrain distribution derived from a non-singular continuum dislocation model.
The generalized configurational force theory for dislocations in mechanically coupled
phase transformation problems was proposed. The model was numerically implemented
in the finite element method based on a mixed formulation of the diffusion equation. The
model was applied to study the interaction of lithium ions and dislocations in battery
materials. In particular, diffusion, mobility, and phase separation were studied in isotropic
spinel LiMn2O4. The configurational mechanics was applied in formulating an energy
based formation criterion of misfit dislocations to study the critical particle size for stable
dislocations in two-phase anisotropic LiFePO4.

To benchmark the linear elastic continuum dislocation model, the stress fields of an edge
and a screw dislocation were numerically computed, showing good agreement with the
analytic solution. The driving forces computed within the configurational mechanics
were benchmarked by comparison to the Peach-Koehler force. First, the configurational
force on a dislocation within a particle subject to shear stress was computed, where the
deviation to the Peach-Koehler force was around 1%. Then for a dislocation within a free
standing particle close to a free surface, the resulting driving forces depending on the
distance to the free surface were analyzed. The configurational forces were computed
numerically with the chemo-mechanical model and the analytical driving force were
calculated resulting from the stress field of an image dislocation constructed at the free
surface. The results show good agreement in distances from the dislocation surfaces larger
than the dislocation core width h̃. The image force in the classical solution has a singularity
at the free surface. The non-singular analytical solution and the numerical solution show
qualitative agreement with a maximum near the free surface and zero driving forces at the
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surface. The driving force component F1 was integrated along the glide plane to obtain
the change of the free energy ∆W upon introduction of the dislocation into the particle
showing good qualitative agreement between the different solutions.

The chemo-mechanical model for dislocated solids proposed in this work was validated
by a series of benchmarks. The influence of the mechanics on the phase separation was
analyzed in a dislocation-free sample, comparing the phase separation computed with
the non-coupled and the coupled model. It was found that the stress results in a distinct
widening of the interface compared to the classical spinodal decomposition described by
the Cahn-Hilliard equation. The equilibrium concentration of ions in the vicinity of an
edge dislocation was computed and compared to an analytically calculated concentration
distribution in the equilibrium state. The benchmark for the edge dislocation close to a
free surface was further extended to cover the chemo-mechanically coupling, where the
analytical solution was extended by linear addition of the numerically computed misfit
strain on the interface. The numerically computed driving force was significantly smaller
than the analytically calculated image force but shows qualitative agreement. The change
in the system energy was similar.

The influence of dislocations on diffusion and ion mobility was studied with the chemo-
mechanical model for dislocated solids. For the example of a single dislocation in a free
standing particle, the influence of the dislocation stress field on the diffusion of lithium
ions was analyzed. It was shown that the concentration increased in the tensile region and
decreased in the compressive region and the enrichment or depletion of concentration was
SOC dependent. Symmetry was observed with respect to SOC = 0.5, where a dominant
enrichment was found for larger SOC and a dominant depletion for lower SOC. The
relative change of the concentration due to the dislocation most substantial at low SOC
supporting the experimental observation of a more decisive influence of the dislocation
on the diffusion observed at low SOC. The diffusion-induced stress tends to reduce the
stress field of the dislocation and was also found to be SOC-dependent with a similar
symmetry respective to the SOC with a maximum reduction at SOC = 0.5. The maximum
absolute DIS was found to be at SOC < 0.5 in the tensile region and at SOC > 0.5 in the
compressive region of the edge dislocation. The potentiostatic and galvanostatic charging
of a particle with a single dislocation was simulated. An influence of the dislocation on the
concentration distribution was found, where the overall and average charging stage was
similar to an equivalent dislocation-free particle. The mobility in the vicinity of an edge
dislocation was analyzed in terms of homogenization. The mobility around the dislocation
core has shown obvious SOC dependence with a maximum at an SOC = 0.5, and the
tensile and compressive sides of the region near the dislocation core introduced mobility
heterogeneity. However, the average mobility was equivalent to a dislocation-free material,
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and the existence of the dislocation did not introduce apparent mobility anisotropy in
the bulk material. The dislocation array introduced large areas with enhanced tensile
and compressive stress, which resulted in a strong SOC heterogeneity in the material.
The mobility has contributions from a mixing term. and an elastic term, where ignoring
the first leads to an underestimation of the mobility and ignoring the latter leads to
an overestimation of the mobility. Three-dimensional simulations of the diffusion along
the edge dislocation line were performed where different diffusion coefficients were
considered inside the dislocation core region. The result has shown the formation of a fast
diffusion path initiated on the tensile side of the edge dislocation core.

The chemo-mechanical model for dislocated solids was then adopted to study dislocations
in phase separation problems. First, the interaction between the diffusive ions and a
dislocation in a phase separation model was studied in isotropic LiMn2O4. For that, the
influence of the core width on the concentration redistribution and respective diffusion
induced stress around a single dislocation was analyzed. The redistribution and the related
diffusion-induced stress were found to be stronger for a smaller core width, where the core
width h̃ = 1 resulted in concentrations close to c = 0 and c = 1. The phase separation with
a dislocation was shown with its dependence on the SOC and the interaction parameter χ.
For χ ≤ 2.5, the distribution of the high concentration and the low concentration phase
followed the tensile and compressive side of the dislocation, respectively. The charging
of a particle considering phase separation was shown with and without dislocation. It
was found that the dislocation had a pinning effect when the interface is close to the
dislocation.

Then the phase separation model was applied to study the stability of misfit dislocations
in two-phase LFP particles with anisotropic elasticity. Sufficient parameters were found
with a study on the influence of the mesh resolution and the simulation time regarding
the equilibrium state. Separately the interface relaxation with and without dislocation
was studied. A distinct reduction of the stresses ˜︁σ12 and ˜︁σh between the initial and the
equilibrium state was observed. The configurational forces were computed for misfit
dislocations at a relaxed interface in equilibrium. First, the resulting driving forces F1 and
the change of the system energy upon introduction of the dislocation into the material
were studied in a single square-shaped two-phase particle. Three equilibrium positions
with zero driving force on the dislocation were found, where the one in the center of the
phase boundary was identified as a stable equilibrium position and the other two near
the free surface as unstable equilibrium positions. The unstable equilibrium positions
coincided with a maximum system energy change which determined the energy barrier to
introduce misfit dislocations. For the assumed circumstances and given model parameters,
a minimum particle size for stable misfit dislocations of L̃c = 52.5 nm was found and
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defined as critical particle size. Different particle shapes were studied in the sense of an
aspect ratio. It was found that the shear stress ˜︁σ12 increased with the aspect ratio. The
driving force F1 and the change of the system energy were analyzed, which suggests a
stabilizing of the dislocation with an increasing aspect ratio. The critical particle width
decreased with increasing aspect ratio, where the largest difference was between a = 1
and a = 1.5 and saturation was found for a ≥ 2.5. Further particles with an aspect ratio
of a = 1.5 can be pointed out due to the largest predicted critical specific surface area.
Concluding the critical particle size was analyzed in dependence of the position of the
interface and the dislocation. In general, a deviation of the interface position from the
center of the particle was found to destabilize the misfit dislocation, so that the critical
particle size could be found with the interface in the particle center. The deviation for the
aspect ratio a = 1 was negligible, and an asymmetry due to the difference of the interface
position in the positive and negative direction was related to the elasticity of the different
phases. On the extreme positions close to the surface, bending and curving of the interface
occurred, so that these positions were excluded from the analysis.

Conclusively, the effects of some essential model parameters were discussed. First, the
influence of the relaxation of the interface was studied by comparing the first timestep
with the equilibrium state. In the first timestep, a larger critical particle size was predicted.
Thus interface relaxation resulted in a significantly smaller critical particle size compared
to a non-relaxed interface. Ignoring the interface relaxation would lead to a wrong
estimation of the critical particle size. The elasticity was implemented by defining the
elasticity tensor as a function of the concentration, thereby assigning the elastic properties
to the respective phases. The results for this phase-sensitive stiffness tensor were compared
to results implementing a constant stiffness tensor, where the properties of FP and LFP
were applied in separate examples. It was found that the constant stiffness tensors only
lead to small differences in the driving forces and prediction of the critical particle size in
comparison to the phase-sensitive stiffness tensor. Finally, the influence of the description
of the dislocation core on the results was studied. A decreased core width lead to an
increase in the hydrostatic stress field. In the driving forces, the decreased core width
resulted in an increase of the driving forces around the maxima close to the surface.
From that, a larger critical particle size was predicted for a smaller core width, e.g., the
decreasing core width destabilized the misfit dislocation. In summary, the driving forces
on the dislocation were most strong close to the surface and were affected the most by
the description of the dislocation core. Therefore this region, in combination with the
dislocation core model, is most critical for an accurate prediction of the critical particle
size.
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Outlook

The presented model provides a physically meaningful non-singular stress and strain
field of dislocations considering the chemo-mechanical influence depending on the SOC
formulated for two dimensions and three dimensions. The here presented work can be
continued to further improve the understanding of real dislocations in electrode materials.

The general nature of FEM allows simulating electrode particles in arbitrary shapes, under
complex boundary conditions, in three dimensions, and including multiple dislocations
up to dislocation networks. The free energy approach allows implementation of the
contributions of non-dislocation defects to the free energy so that the interaction of
dislocations with other defects, such as inclusions or cracks, can be studied. Another
example would be the inclusion of an electrostatic contribution to the free energy to study,
for instance, charged dislocation cores.

Within this framework, the interaction of dislocation with impurity atoms can be studied.
Conclusions can be drawn on the respective concentration fields and their effect on the
elastic energy of dislocations. This would allow predictions on the influence of doping
on dislocation stability. The presented model can also be applied to various isotropic and
anisotropic cathode materials to better understand concentration distribution and stress
development related to dislocations.

The dislocation was found to have no overall influence on the SOC during the charging
process compared to a dislocation-free particle. However, it would be interesting to study
the influence of the dislocation on the battery performance during cycling. For this,
the model can be extended to large stresses and plastic deformation and a model that
captures the damage of the material, e.g. [7]. This could shed light on the unknown
dynamic relationships between the SOC and dislocation influence during the charging
and discharging processes.

Accurate computation of the dislocation displacement and stress fields requires a mesh
size in the range of the dislocation core radius, which is a bottleneck toward large-scale
simulations. One solution for this can be a locally refined mesh around the dislocation to
enlarge the volume without increasing the computation cost. Such a locally refined mesh
is most efficient for large volumes and low dislocation densities.

The phase separation model can be improved in accuracy as the jump conditions were
simplified [54]. The correct jump conditions were described for isotropic materials in [107,
106, 108]. Extending this model to orthotropic material properties can lead to a more
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accurate prediction of the critical particle size. It is straightforward to extend the model
with anisotropic diffusivity and interface energy, given that the respective parameters are
known from experiments or first-principles calculations.

Local heterogeneous mobility is interesting for dynamic analysis of dislocation movement.
The local concentration is needed to calculate how the concentration field can follow the
dislocation movement. It would be interesting to analyze the movement of dislocations
interacting with the evolution of concentration fields influenced by internal and external
stresses during the charging and discharging of battery particles. The configurational
mechanics presented in this work is suitable for computing driving forces on dislocations
in chemo-mechanically coupled systems. The model can be extended following existing
dynamic dislocation phase field models [48, 87] to predict the dislocation movement.

The stability criterion formulated for misfit dislocations can be extended to a nucleation
criterion at a real surface of the particle. By the estimation of the required work for the
surface nucleation of dislocations and considering extensions for a dynamic dislocation
model, including release of elastic energy due to dislocation nucleation and movement,
resulting stresses from the DIS during charging and discharging can be translated into
non-elastic deformation related to dislocations. In multiple particle systems the stress
state and particle orientation can then be applied to predict the stability of dislocations
and lead to conclusions on dislocation densities.
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