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ABSTRACT

When factor investing is applied to emerging equity markets, due to the universe’s illig-
uid structure, the market friction must be considered. Risk-adjusted on-paper returns of
such strategies look particularly appealing, but significant implementation hurdles stand
in their path. While factor investing has been well-examined in literature, research gaps
remain. This dissertation undertakes three comprehensive studies to resolve existing
research gaps concerning portfolio cost-efficiency regarding the trade-off between return
and implementation costs in emerging equity markets. Various approaches for further

improvement of this trade-off extend the research.

The first study demonstrates a factor-based strategy in emerging markets and provides
a better understanding of the above trade-off. Multiple sensitivity analyses present the
benefits of a first cost-mitigation approach. The second study further seeks to under-
stand equity portfolios’ return and cost dynamics in a macroeconomic context. Leading
indicators from developed and emerging markets are utilized to forecast the near-term
factor regime. This prediction is adaptively implemented into the portfolios, adds a
timing component, and highly increases the cost-efficiency. The third study extends
the efficacy of the researched cost-mitigation strategy by implementing the benefits of

a stock liquidity prediction based on state-of-the-art machine learning models.



ZUSAMMENFASSUNG

Bei der Anwendung von Factor Investing auf die Aktienmérkte der Emerging Mar-
kets miissen Marktfriktionen aufgrund der illiquiden Struktur des Universums beson-
ders berticksichtigt werden. Die risikobereinigten Renditen solcher Strategien sehen
auf dem Papier besonders ansprechend aus, doch stehen ihnen erhebliche Umsetzung-
shiirden im Weg. Obwohl Factor Investing in der Literatur gut untersucht wurde,
gibt es immer noch Forschungsliicken. In dieser Dissertation werden drei umfassende
Studien durchgefithrt, um die bestehenden Forschungsliicken in Bezug auf die Kosten-
effizienz von Aktienportfolios zu schlieen. Hierzu wird der Trade-off zwischen Rendite
und Implementierungskosten der Portfolien in Emerging Markets sowie verschiedene

Verbesserungsansatze untersucht.

Die erste Studie demonstriert eine faktorbasierte Strategie in Emerging Markets und
liefert ein besseres Verstandnis des oben genannten Trade-offs. Mehrere Sensitivitat-
sanalysen zeigen die Vorteile eines ersten Ansatzes zur Kostenreduzierung auf. Die
zweite Studie zielt darauf ab, die Rendite- und Kostendynamik von Aktienportfolios in
einem makrookonomischen Kontext besser zu verstehen. Frithindikatoren aus Industrie-
und Schwellenldndern werden zur Vorhersage des kurzfristigen Faktorregimes herange-
zogen. Diese Vorhersage wird adaptiv in die Portfolios implementiert, fiigt eine Timing-
Komponente hinzu und erhoht die Kosteneffizienz erheblich. Die dritte Studie erweit-
ert die Wirksamkeit der untersuchten Strategie zur Kostenreduzierung, indem sie die
Vorteile einer auf modernen maschinellen Lernmodellen basierenden Vorhersage der

Aktienliquiditat einsetzt.
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1 GENERAL INTRODUCTION

When it comes to investing, the triangle of return, risk and liquidity has to be considered
to determine one’s preferred investment vehicle. This dissertation focuses on factor
investing in emerging equity markets and seeks to break down the dynamics of the
triangle in this universe. Factor investing is a well-examined field of asset pricing
that can combine the expectations on various risk premia (Fama and French (1992),
Fama and French (2015) and Carhart (1997)) and achieve outstanding performance.
Due to their promising risk-reward profile, the emerging stock markets attract more
and more quantitative investors’ attention (Davis et al. (2010)). On the other hand,
it is well-known that this universe is less liquid (Lesmond (2005) and Bekaert et al.
(2007)) compared to developed stock markets such as the United States. Therefore, it
is unclear if this increased attention is justified in terms of performance net of market
friction. While, in general, emerging stock markets have been broadly examined for
factor investing (Achour et al. (1998), Kargin (2002) and Bruner et al. (2003)), research
gaps remain for this universe regarding the dynamics of the investment triangle. This
dissertation undertakes three comprehensive studies to resolve existing research gaps
and further advance research regarding the cost-efficiency of factor investing in this
less liquid universe. The trade-off between return and implementation costs of factor
investing is the main subject of investigation throughout all three examinations. Each
study focuses on this from a different angle and contributes to improving net of cost
portfolio performance. In the following, I provide a brief overview of the previous
research on cost-efficient factor investing and highlight to what extent the dissertation

contributes to it.

Since the investigation of the CAPM (Sharpe (1964)), asset pricing literature has been

growing concerning quantitative applications such as factor investing. Fundamental risk



premia as value (Basu (1977) and Banz (1981)) and quality (Haugen and Baker (1996)
and Titman et al. (2004)), as well as well-understood market effects as price momentum
(Jegadeesh and Titman (1994)), are known to cross-sectionally explain stock returns
through all markets. While most studies on factor investing focus on the developed US
stock market, just recent examinations focus on emerging stock markets (Bekaert and
Harvey (1997) and Hart et al. (2003)). In general, emerging markets received less atten-
tion in all fields of asset pricing as transaction cost modeling (Lesmond et al. (2002) and
Frazzini et al. (2018)) and cost-mitigation techniques for rebalancing equity portfolios
with an underlying factor investing strategy (Donohue and Yip (2003), Garleanu and
Pedersen (2013) and Novy-Marx and Velikov (2018)). With the investors’ attention on
the growth potential of emerging equity markets, studies also focus on factor investing
with respect to transaction costs in this universe (Lesmond (2005)). However, a broad
investigation of the return-to-cost trade-off in emerging equity markets based on the
well-examined risk premia and suitable cost models is missing. The sparse literature
on cost modeling is reasoned by the lack of a sufficiently large trading dataset of this
immature universe. As the trade-off between stock returns and implementation costs
is not well understood, few results towards cost-mitigation techniques (Novy-Marx and
Velikov (2015)) have been carried out. In addition to these gaps, factor timing as a
controversial topic in the US stock market (Asness et al. (2000), Tibbs et al. (2008)
and Asness et al. (2018)) is only slightly researched (Desrosiers et al. (2006)) and,
to my best knowledge and belief, not examined concerning the cost-efficiency of equity
portfolios in emerging markets. On the other side, liquidity forecasting has been carried
out by various studies in emerging stock markets (Bae and Lee (2016), Khang (2020)
and Cui (2021)), but a cross-sectional investigation of the whole universe with machine
learning approaches is still missing. Further, such sophisticated liquidity predictions

are not examined in addition to a cost-efficient factor investing approach in emerging



equity markets.

It comes down to understanding the dynamics of the investment triangle to sufficiently
study the cost-efficiency of factor investing. This dissertation does not contribute to
novel risk premia but combines its contributions to the above research gaps and pro-
vides a comprehensive study on the main research question of the trade-off between
risk premia and implementation costs. The groundwork for better understanding the
main subject is carried out in the first study, while the following two examinations con-
secutively extend and improve its findings. This dissertation not only contributes to
the above gaps in literature, including factor timing and liquidity prediction in emerg-
ing equity markets but also extends the research by combining the findings to increase
portfolio cost-efficiency further. Hence, the trade-off between return and costs is also
examined in a macroeconomic framework as well as from an additional microeconomic
perspective. Here, changes in liquidity are more precisely predicted and successfully

implemented into the quantitative investment process of factor investing.



Table 1-1: Key characteristics of the three studies

Study Cost-mitigation of fac- | Macroeconomic influ- | The benefits of ma-
tor investing in emerg- | ence on cost-efficient | chine learning for pre-
ing equity markets factor investing in | dicting stock liquid-

emerging equity | ity in emerging equity
markets markets

Aim & | Examines the trade- | Puts the first study’s | Models the changes

scope off between return and | results in a macroeco- | of short-term stock
costs of equity portfo- | nomic context and uti- | liquidity and further
lio constructions and | lizes found dependen- | increases the efficacy
presents a simple cost- | cies in a factor timing | of the cost-mitigation
mitigation. framework. approach.

Research| Empirical analysis of | Empirical analysis of | Empirical analysis of

design stock market data of | stock market data of | stock market data of
emerging countries | emerging countries | emerging countries
from 2000-2020. from 2000-2020 and | from 2000-2020.

macroeconomic time
series from the US
market as well as
emerging markets.

Next, I provide a summary of the three studies and their results. Table 1-1 provides an
overview of the studies. It outlines for each study the respective aim & scope and its

research design.

The first study demonstrates factor investing in emerging equity markets with a sim-
ple and equal-weighted mix of six common risk premia (Carhart (1997), Frazzini and
Pedersen (2014) and Fama and French (2015)). The on-paper returns of this strategy
are compared to the net of costs performance by applying a liquidity-driven cost model
leaned on (Grinold and Kahn (1999) and Frazzini et al. (2018)). Therefore, this ex-
amination focuses on a better understanding of the trade-off between portfolio return
and implementation costs of factor investing in emerging equity markets under a set of

sensitivity analyses and robustness checks. Further, the empirical results are challenged

with a cost-mitigation technique following (Novy-Marx and Velikov (2018) and Frazzini



et al. (2018)) to increase the cost-efficiency of portfolios in this universe.

The emerging equity markets are researched in terms of the MSCI Emerging Markets
Index with underlying stock data from 1999-12-31 to 2019-12-31. The workhorse of
portfolio construction throughout this study and the dissertation is a simple portfo-
lio tilting. This methodology incorporates excess return expectations of risk premia
into the portfolios. The cost-mitigation approach is analyzed on top of this portfolio
construction. It implicitly constrains the size of any trade by its liquidity demand.
Therefore, ex-ante implementation costs can be quantified and considered concerning
the underlying cost model and observed liquidity. The study finds that on-paper re-
turns largely deviate from realized net performance regarding the invested portfolio
size. Much of this spread can be preserved by the cost-mitigation, which outperforms
for most cost levels and invested sizes. Eventually, successful factor investing relies on
a skilled trading desk reflected by a low cost level or on a sophisticated strategy that
mitigates implementation costs without decreasing the on-paper returns. This study
contributes to a better understanding of the return to costs trade-off and strategies that

improve factor investing implementability in emerging equity markets.

The second study extends the findings on the trade-off between return and costs in a
macroeconomic framework. Based on the methodology of the first study, this examina-
tion is carried out to identify the macroeconomic influence on risk premia in emerging
equity markets. Further, these findings are incorporated into portfolio decisions to in-
crease cost-efficiency with three adaptive factor timings. Factor timing in developed
markets (Asness et al. (2000) and Asness et al. (2018)) is controversial but still a young

field for emerging equity markets (Bilson et al. (2001) and Desrosiers et al. (2006)).

The MSCI Emerging Markets Index defines the universe with underlying stock data

from 1999-12-31 to 2019-12-31. A set of promising macroeconomic time series from



emerging and developed markets, such as the fear-index VIX (Copeland and Copeland
(1999) and Boscaljon et al. (2011)) and dollar strength (Druck and Mariscal (2018)),
completes the underlying data. In a first step, the macroeconomic data is preselected
based on its explainability of near-term factor premia. Then, the factor regime is
modeled with this data in binary classification (Guidolin and Timmermann (2007),
Bae et al. (2013) and Mulvey and Liu (2016)). The machine learning approaches
of logistic regression and the gradient boosted machine are compared against a one-
step estimate. Lastly, the regime forecasts are incorporated into portfolio construction
with three different approaches to exploit macroeconomic information and increase cost-
efficiency. The study finds that machine learning approaches highly outperform the one-
step prediction of factor regimes. I emphasize that the entanglement between developed
and emerging markets certainly contributes to the performance of this prediction. The
focus is not to miss a crash regime regarding the portfolio’s cost-efficiency. Both machine
learning classifications’ hyperparameters are tuned accordingly to obtain the best recall
on crash regimes. Given the tuned machine learning models, especially the GBM, the
macroeconomic time series mostly provide sufficient information to not miss eventual
factor underperformance in the following month. Eventually, this study does not only
demonstrate that factor timing in emerging markets is possible. Further, incorporating
the regime forecast into portfolio construction increases the net performance of the

underlying portfolios.

Finally, the third study predicts near-term stock liquidity (Wyss (2004), Khang (2020)).
Due to the frequent rebalancing of factor portfolios and a potential implementation
lag, predicting future liquidity is essential to improve portfolio implementability. In
an illiquid market, the liquidity risk is an enormous burden to investors as unexpected
shortfalls of stock liquidity enlarge the implementation hurdle. Emerging equity mar-

kets are known to be less liquid, and a better understanding of cross-sectional liquidity



changes is remaining. A few studies have already applied and compared machine learn-

ing models to predict stock liquidity only in a few emerging markets (Bae and Lee

(2016), Khang (2020) and Cui (2021)).

The emerging equity markets are researched in terms of the MSCI Emerging Mar-
kets Index with underlying stock data from 1999-12-31 to 2019-12-31. Based on the
methodologies of the first study, a range of machine learning applications and tunings
on a broad spectrum of market and stock features is carried out to predict near-term
changes in stock liquidity. An expanding window tune of a GBM regression outper-
forms a naive one-step liquidity forecast by partly over 50% regarding the underlying
error metric. Several liquidity change reversals and a seasonality effect are the essential
features of this model. This study provides a cross-sectional improvement for predicting
stock liquidity in emerging markets. Eventually, the cost-efficiency of the underlying

portfolios is significantly increased on top of the cost-mitigation effects.

The following dissertation is structured in five chapters, including this general intro-
duction. Chapters two, three, and four present the three studies outlined in Table 1-1.
Each chapter consists of an individual introduction, a section on the theoretical back-
ground, a section on the applied methodology and data, a results section, and a section
to conclude the results. Chapter five draws a general conclusion. Finally, chapter six

presents the references cited throughout the dissertation.



2 COST-MITIGATION OF FACTOR INVEST-

ING IN EMERGING EQUITY MARKETS

2.1 ABSTRACT

Expensive trading costs of factor investing in emerging equity markets influence optimal
portfolio decisions. A simple cost-mitigation approach increases net performance based
on a total cost estimate of factor-based portfolio tilts. Exploiting the structure of market
impact, we indirectly control the costs by limiting order sizes relative to their underlying
stocks’ short-term liquidity. This cost-efficient strategy yields better implementability
and lower-priced turnover while a possible negative effect on gross performance is more

than offset.

JEL classification: G11; G12; G15.
Keywords: Investments; Asset Pricing; Trading Costs; Market Impact; Portfolio Construction; Cost-

Efficiency.



2.2 Introduction

Investment decisions based on systematic risk premia provide a more transparent alternative to active
management that underlies high idiosyncratic risk. Meanwhile, various multi-factor asset pricing
models serve to understand the stock market better. Foremost, Fama and French (1992) demonstrate
the Arbitrage Pricing Theory and explain the stock market with a 3-factor-model extending the CAPM
with the fundamental size and value risk factors, earlier investigated by Banz (1981) for size and
Rosenberg et al. (1985) for value. Later, Carhart (1997) extents the Fama and French’s (1992) 3-
factor-model, adding the prominent momentum factor. In Fama and French (2015), the two quality
factors of investment and profitability are added as further systematic risk premia, which were rejected

earlier concerning their robustness.

At the beginning of factor investing research, transaction costs were paid little attention. Contem-
porary research, still focusing on developed markets and mainly covering US stocks, presents several
studies that identify the effect of transaction costs on factor-based equity portfolios with different out-
comes. On the one hand, Lesmond et al. (2002), who investigate the transaction costs of momentum-
based portfolios, find that net premia vanish for this strategy after trading costs. On the other hand,
Korajzczyk and Sadka (2005), Novy-Marx and Velikov (2015), Ratcliffe et al. (2017) and Patton and
Weller (2019), who also focus on the net performance of momentum-based strategies, find different
equilibrium sizes of the factor-based excess returns. Another disparity in the implementation cost liter-
ature is the shape of the underlying cost function that differs between concave, linear and convex. The
intentionally biased data selection can explain this disparity. Lesmond et al. (2002) report high-cost
findings based on strong overweights in small- and micro caps. This examination applies the study of
Jegadeesh and Titman (1994), who do not consider implementation hurdles for extensive gross spread

price momentum results.

In contrast, Frazzini et al. (2018) limit their results to low-cost algorithmic trading approaches in
liquid developed markets. Extrapolating these findings to less efficient universes or average trading
efforts might result in biased findings. However, most studies, including Frazzini et al. (2018), identify
liquidity as the most significant driver of market impact and an essential dimension for successfully
implementing factor-based strategies. An active strategy’s total costs are commission fees, bid-ask
spreads and market impact. Various papers cover market impact modeling, including Loeb (1983),

Kyle (1985), Hasbrouck (1991) and Keim and Madhavan (1996). Frazzini et al. (2018) report the



impact of crucial model drivers (most importantly liquidity, followed by market capitalization, the
idiosyncratic volatility of a firm’s equity return and finally, variables that represent the varying market
environment) on the market impact in developed markets based on their extensive trading database.
Several examinations covering market impact find this implementation hurdle increasing with a strat-
egy’s investment size and liquidity demand. Empirical evidence agrees that the demand for trading
large order sizes relative to the liquidity level increases market impact as invisible trading costs of

adverse price movements.

Further, Lesmond (2005) researches the costs of liquidity risk in emerging markets by explaining
the high returns easily exceeding 75% p.a. with their bid-ask spread. Against this, illiquidity is
an additional risk factor researched by Pastor and Stambaugh (2003), Acharya and Pedersen (2005)
and Watanabe and Watanabe (2008), who develop asset pricing models incorporating expected asset
liquidity. Amihud (2002) finds that liquidity risk also significantly explains equity premia, especially the
small firm effect. These studies identify the explanatory power of liquidity risk in the cross-section of
stock returns and expose its uncertain effect on cost-efficient factor investing. Based on these findings,
Donohue and Yip (2003), Garleanu and Pedersen (2013), Frazzini et al. (2018) and Novy-Marx and
Velikov (2018) find optimal portfolio decisions in developed markets concerning transaction costs.
Albeit the disparity of equilibrium portfolio sizes of factor-based excess returns and cost functions,
literature agrees that transaction costs distort optimal portfolio decisions derived from factor investing
strategies. Almgren and Chriss (2000) find cost-efficient strategies by identifying permanent and
temporary market impact. Garleanu and Pedersen (2013) and Frazzini et al. (2018) find dynamic
portfolio policies obtained by constrained optimizations and improve net factor premia. Novy-Marx
and Velikov (2018) resume three common cost-mitigations in developed markets and compare their
benefits. Despite the extensive cost modeling, studies on liquidity risk and recent investigations on
cost-efficient implementations, the trade-off between risk premia and implementation costs in factor
investing remains unclear. Especially the emerging equity markets, known as a less liquid stock universe

with a significant implementation hurdle, received little attention.

Our work closely relates to Frazzini et al. (2018) but aims to understand emerging equity markets
better. With recent progress regarding trading cost models and cost-efficient factor investing, most
examinations focus on the liquid US stock market and other developed markets. This paper extends the
existing literature in two ways. First, we investigate the net premia of factor investing in the less liquid

emerging equity markets. Hence, we report the impact of a one-dimensionally dynamic cost model of

10



three exemplary cost levels concerning portfolio size. In this approach, we provide a sensitivity analysis
of implementation costs by constructing portfolios that do not rely on a specific trading pattern nor
result in overweights in small- or micro caps. Second, we research the trade-off between risk premia and
transaction costs of factor investing in emerging markets. This approach applies an active rebalancing
strategy based on well-known risk factors to assess cost- and turnover efficiency. In our investigation
of the efficient implementation of fundamental and generic factors, we use a liquidity-driven market
impact model based on Grinold and Kahn (1999) and Frazzini et al. (2018). Following and extending
the ideas of Almgren and Chriss (2000), Frazzini et al. (2018) and Novy-Marx and Velikov (2018), a
cost-efficient rebalancing strategy is presented. This cost-mitigation strategy seeks to limit the relative
order sizes by a cap parameter in each rebalancing step concerning the underlying stocks’ short-term
liquidity. Therefore, transaction costs are treated as another quantitative factor. Doing so leads to

cost-efficient performance.

The paper proceeds as follows. The next section describes the underlying market environment and
reflects all applied methodologies. Here, the market impact as the cost model’s most prominent com-
ponent is introduced based on three levels to provide sensitivity analysis. Furthermore, this section
defines the methodologies for the multi-factor mix and portfolio tilting. The empirical results sec-
tion outlines cost-inefficient portfolio performances concerning various investment periods. Further,
the cost-mitigation approach and its effect are presented. Moreover, we report a sensitivity analysis
concerning the portfolio size and more robustness checks to assess the return-to-cost trade-off. This
section closes with the cost-mitigation’s implications on risk-adjusted performance. The last section

concludes the research.

2.3 Data and methodology

2.3.1 The emerging markets universe

We research the emerging markets universe! in terms of the countries listed in the MSCI Emerging
Markets Index? over the last two decades ending in December 2019. Before the millennium, a small

range of available data was omitted concerning the quality and coverage of the liquidity data. This

“

Tn the following, the emerging markets are denoted as “EM” and also referred to as the “whole
universe”.

Zhttps://www.msci.com/emerging-markets, last visited: 2020-09-30.
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study uses data from MSCI to determine the underlying companies in emerging markets and their
free-floating market capitalization. Besides MSCI, the Worldscope database from Refinitive is used
for the fundamental value, profitability and investment factors. The generic momentum and low beta
factors are calculated based on market data from Datastream (Refinitive). Further, Datastream is
utilized for most market data such as return indices, liquidity and bid-ask spreads. Referring to the
market closing of 2019 as today, this emerging markets universe consists of 26 countries® across the
five different sub-regions of Emerging Americas, Europe, Middle East, Africa and the Asia Pacific, of

which the latter contributes to 79.35% of the emerging markets’ size.

In the following, the stocks associated with the MSCI Emerging Markets Index will be referred to as
large caps. In contrast, remaining stocks larger than $10 million in market capitalization are denoted
as small caps. Large- and small caps together complete the whole universe researched in this study.
Today, this emerging markets universe consists of 3480 stocks summing up to $9.2 trillion free-floating
market capitalization. These $9.2 trillion represent 15.1% of the developed* and emerging equity’s
free-floating market capitalization with trending growth potential®. At year-end 1999, the free-floating
market capitalization of the emerging markets stocks was summing up to $1.5 trillion, of which around
$1 trillion were related to large caps divided across 761 stocks. Back then, the universe consisted of 1209
assets and the 761 large caps aggregated roughly two-thirds of the universe’s market capitalization.
At year-end 2019, the number of emerging large caps grew to 1406 constituents, covering $7.2 trillion
market capitalization measured in free-floating stocks. Today, these 1406 emerging markets’ large

caps grew in their share up to 78.3% of the market capitalization. The remainder of 21.7% of the

3The MSCI Emerging Markets Index consists of 26 emerging economies, including Argentina, Brazil,
Chile, China, Colombia, Czech Republic, Egypt, Greece, Hungary, India, Indonesia, Korea, Malaysia,
Mexico, Pakistan, Peru, Philippines, Poland, Qatar, Russia, Saudi Arabia, South Africa, Taiwan,
Thailand, Turkey, and the United Arab Emirates.

4The developed world universe consists of all countries listed in the MSCI World Index, augmented
with the small caps larger than $10 million in market capitalization in each listed country. The devel-
oped universe, excluding frontier- and emerging markets, lists the following 23 countries: Australia,
Austria, Belgium, Canada, Denmark, Finland, France, Germany, Hong Kong, Ireland, Israel, Italy,
Japan, Netherlands, New Zealand, Norway, Portugal, Singapore, Spain, Sweden, Switzerland, United
Kingdom, United States.

5Today, the equity market capitalization of emerging markets in the world’s investable stock mar-
kets (excluding frontier markets) aggregates to 15.1%. This share almost tripled and is constantly
growing from 5.4% at year-end 1999. The recent growth of the emerging stock markets is reported
with 14.5% at year-end 2018, 13.9% at year-end 2017 and 12.7% of all non-frontier stock universes’
market capitalization at year-end 2016. For reference, less than 1 billion people, or approximately
15% of the world’s population, live in a developed markets country but developed stock markets still
account for around 85% stock market capitalization. (“http://www.ashmoregroup.com/sites/default/
files/article-docs/MC__10%20May18_ 2.pdf”, last visited: 2020-09-30).
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market capitalization is divided across 2074 small caps that sum up to around $2 trillion. This
composition reflects the trends in the emerging market environment. Although the number of small
caps (quadrupled over the last two decades) significantly outnumbers large caps today, their relative
market capitalization in the universe dropped by over 11 percentage points compared to the year-
end 1999 level. In Figure 2-1 the number of constituents in the emerging universe, also divided into
large- and small caps, is reported. This chart shows that large caps only doubled over the last two
decades while small caps quadrupled. Further, we compare the emerging market environment with
the developed world over the last two decades. The developed world’s small caps captured only a
fifth (while emerging markets’ small caps captured a third) of their universe’s market capitalization in
year-end 1999. Today, the developed small caps market capitalization only aggregate to 13.5% (while
emerging markets small caps still aggregate to 21.7%), unveiling the same trend of dominating large
caps in the developed stock markets. Additionally, Figure 2-2 provides the “lifetime” distribution of
the stocks concerning their size class over the 240 observation months. This chart displays that, on
average small caps keep in their size class less often than large caps for any given duration over the
last two decades. Noting that stocks might change their size class during the observation months, this
chart reports the fraction of stocks that survived a given time percentile concerning their size class.
The universe counts 7531 unique assets, of which 1053 (13.9%) persist for less than a year on the stock
market (5%-percentile). Only 223 (2.96%) of these stocks survive the whole two decades, and only
22.8% of the universe is investable for at least 120 months (50% lifetime). From 6846 unique small
caps, only four stocks stay in this size class over the full-time span and the remaining 6842 either
left the market or are grown into large caps. Comparably, 124 of 2703 unique large caps keep their
large-cap status over the 20 years. Another 95 stocks that shift their size class survive the two decades
on the EM stock market. From the 6846 unique small caps, more than a third (2018 stocks) have been

downgraded from or upgraded to the large caps at least once in the two decades.

2.3.2 Transaction costs model

We need to apply a reasonable metric for the total transaction costs to calculate the trade-off between
gross premia and implementation costs in emerging markets. The market impact model is the essential

component of the total transaction costs and reflects the implementation hurdle of the illiquid emerging
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universe®. Our study does not rely on a specific trading pattern by providing a sensitivity analysis of
the market impact. We reflect the market impact costs with a simple square root cost model leaned

on Grinold and Kahn (1999) and Frazzini et al. (2018):

market impact := cost parameter - VAOADV (1)

ADYV denotes the short-term liquidity calculated as average across primary and secondary stock ex-
changes over the last 20 trading days. Therefore, %ADV denotes the stock-wise order size relative
to the monthly calculated ADV. We analyze the three cost levels of market impact, specified by the
cost parameter. Here, we reflect an efficient trading pattern of an institutional practitioner with a local
trading desk, followed by a suggestion of average trading results. Lastly, we reflect an expensive cost
level by the idea of incorporating issues with EM brokers and a potential time lag. In a recent study,
Frazzini et al. (2018) apply a market impact model to their US trading data. This paper’s reported
relative trade size is limited to below 15%. This low fraction occurs due to the liquid US stock market
and an efficient trading pattern. Hence, no large relative order sizes that might occur from monthly
portfolio decisions are included. Following the cost approach of this examination and transferring it
to emerging markets, we understand the market impact of rebalancing equity to be mainly driven
by liquidity demand (relative order size in %ADV'). Finally, we define the total transaction costs as

follows:

1
TCost := fees + §spread + market impact (2)

Execution fees” are comparably small, while the half bid-ask spread can also be expensive in emerging
markets, albeit its general decline after the decimalization of the stock tickers. Referring to Figure 2-4,
we display the empirical spread data over the last two decades. A declining trend over the last 20 years
is observable. Figure 2-3 indicates the three cost parameters (low, medium, high costs) of variable

market impact. However, the actual impact of transaction costs of each portfolio crucially depends

SEmerging markets stocks, in general, are considered to be executed more expensive than developed
markets stocks. Besides the lower market liquidity, the time shift between emerging and developed
regions can be an additional hurdle for institutional and individual investors.

"Execution and commissions fees are negotiable and sum up to over 7bps in emerging markets.
These fees cover all legal middle office activities of the sell-side and ensure the backup of all trade
documentation through a global custodian. These electronic backups are by law completed by carbon
copies in case of emergency.
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on its size. Furthermore, Almgren and Chriss (2000) research this implementation hurdle of the stock
markets by incorporating trading costs that eventually lead to a distorted but cost-efficient portfolio.
In this sense, many naive implementations of risk factors might result in high gross premia but fail a
successful implementation as exemplary reported in Lesmond et al. (2002). We also researched more
complex cost models concerning the effect of stock volatility and a perfectly passive trading model.
This approach reflects the costs of waiting that arise by slowly trading towards the desired portfolio
in positions of exemplary 10% of the ADV per trading day. While the latter model mitigates the
annualized transaction costs, no researched cost model distorts the results presented in this study.
Therefore, we apply the one-dimensional market impact model concerning simplicity as the most
intuitive implementation. The following section presents a Z-scoring based on six risk factors and a

portfolio tilting methodology.

2.3.3 Multi-factor Z-scoring

Based on the asset pricing models of Carhart (1997), Frazzini and Pedersen (2014) and Fama and
French (2015), we research tilt portfolios concerning a mix of six well-known equity factors®. We
include the generic effects of momentum and low beta and the four fundamental risk factors, value,
size, profitability and investment. All these six factors” are based on sound groundwork. We seek to
diversify the factor premia and maintain a more persistent performance by equal-weighted mixing of
the six signals. The empirical evidence presented in this examination is robust to alternative factor
definitions, different mixes and also different weighting schemes. We decide to present this mix of six
factors to cover fundamental factors and market effects and calculate the equal-weighted scheme with

respect to simplicity.

8 A detailed description of the six factors and their calculations is reported in Appendix A.

9The fundamental value factor was researched in Basu (1977) and Rosenberg et al. (1985). The size
factor is also a systematic risk premium discovered in Banz (1981). Jegadeesh and Titman (1994) and
Hurst et al. (2017) researched the generic momentum factor. The operating profitability was researched
by Haugen and Baker (1996) and Novy-Marx (2013) and is another systematic risk premium and the
investment factor found in Titman et al. (2004), Cooper et al. (2008) and Watanabe et al. (2013).
Ang et al. (2006) and Frazzini and Pedersen (2014) examined the generic low beta factor.
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2.3.4 Portfolio construction methodology

We apply a factor-tilt portfolio construction as a value-weighted method based on the market capital-
ization of free-floating stock. This value-weighted approach ensures no strong overweight in small- and
micro caps arise. The stock positions in the initial portfolio (at tg) as well as all the following rebal-
ancing weights (at ¢ > to) are constructed by screening the positive Z-scores (Z-score; > 0) from the
multi-factor mix. To calculate portfolio weights for each stock 7, the universe weights weight,niverse,i

are tilted under several constraints'® with respect to the following equation:

weightyniverse,i - Z-score;, i € {EM : Z-score; > 0}
weightyi ; = (3)

0, else

Where the universe weights weight,niverse,; are determined by free-floating market capitalization.
Each stock i is assigned its factor-based return expectation Z-score;, obtained by the equal-weighted
mix of six Z-scores in every monthly rebalancing step. After each rebalancing the portfolio weights
weightyi, ; are updated with empirical return indices*!. This loop continues until the last rebalancing
month of 2019-11-29. Later on, this tilting (denoted as “standard” or “uncapped” tilt) is further

constrained by the cost-mitigation methodology.

2.4 Empirical results

2.4.1 Net performance

Before implementing the cost-mitigation, this subsection provides a net performance analysis of the
tilting construction in emerging equity markets. The illustrations of factor premia in emerging markets
are displayed in the upper charts of Figure 2-5 - Figure 2-8. The setting in these four charts builds
the foundation of our analysis and is split concerning the investment period to investigate time trends.
The initial portfolio size for these periods is chosen heuristically concerning the rising market liquidity

and desired comparability. The upper chart of Figure 2-5 displays the factor premia of the uncapped

10A detailed description of all (rebalancing) constraints is reported in Appendix B.

U Thompson Reuters Datastream return indices for emerging equity represent the empirical stock
returns as done by the Center for Research in Security Prices (CRSP) concerning dividend payments
and stock splits.

16



tilt over the last two decades. While its gross performance is higher than the universe’s or large caps’
return, most excess returns vanish with a medium cost level. The upper chart of Figure 2-6 displays the
returns over the last decade. Here, the factor-based tilts even underperform the universe net of costs.
The upper chart of Figure 2-7 shows similar results with even more considerable underperformance
relative to the universe and large caps over the last five years. The factor premia lost much of their
magnitude in the trend of the last two decades. Hence, in the upper chart of Figure 2-8, significant
factor premia in emerging markets persist over the first decade after the millennium. Finally, the tilt
construction charts display that the gross factor premia in emerging markets have been prominent in
this century’s first decade but lost most of their potential in current market environments. Especially
with this decay in factor premia, the need for a cost-efficient implementation rises. Based on Almgren
and Chriss (2000) and Novy-Marx and Velikov (2018), we present a cost-mitigation strategy to assess
the trade-off between gross factor premia and transaction costs in the emerging stock markets. By

applying this strategy to the above factor-tilts, we report a thorough analysis of its effects.

2.4.2 Cost-mitigation strategy

This section reports the impact of the cost-mitigation strategy on the uncapped tilting portfolios. We
examine the additional cost-mitigation constraint based on gross and net factor premia insights to im-
prove its return-to-cost trade-off. We accomplish that by indirectly considering the transaction costs
by adding a liquidity constraint to the tilt construction. While the trade execution is treated as entirely
exogenous to the monthly portfolio decisions, we implement the market impact function endogenously
into the tilting construction. This constraint limits order sizes to exploit the near-term liquidity expec-
tation. Therefore, the total transaction costs are mitigated while expensive turnover is re-distributed
concerning sufficiently liquid stocks. The portfolio objective is to maximize the net performance with-
out distorting risk. Eventually, this comes at the cost of lowered return expectation (measured in
average portfolio ex-ante Z-score) and, therefore, possibly lowered gross performance. However, the
strategy is cost-efficient, while the uncapped tilting maximizes the ex-ante return expectation with-
out considering costs. Keeping all portfolio- and rebalancing constraints equal, various cost-mitigated
portfolios are compared to their uncapped tilts and the universe concerning (risk-adjusted) perfor-
mance. The more recent study of Novy-Marx and Velikov (2018) claims that there is no arbitrage
opportunity in harvesting factor premia in developed markets. Factor premia’s statistically significant

net performance improvement is reportedly based on higher risk exposure. Novy-Marx and Velikov
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(2018) report statistically equal Sharpe ratios for factor-based strategies against the universe. We also
find mostly statistically insignificant Sharpe ratios of risk premia in recent years. However, improved
factor tilts, particularly cost-mitigated portfolios and low-cost implementations, clearly show statisti-
cally significant (risk-adjusted) returns against the universe and uncapped tilts. Further, we display
the cost-mitigated performances of the factor-tilts in the lower charts of Figure 2-5 - Figure 2-8. These
four tilts are constructed by constraining the relative order size in each rebalancing to a limit of 100%
of the near-term ADV (100%ADV’). All these portfolios show increased net performance in comparison
to the upper charts’ performance of uncapped tilts. Due to lowered turnover and efficiently lowered
costs, the cost-mitigation offsets losses in gross performance. In Figure 2-5 the cost-mitigation alone
results in a significant excess return of around 2% p.a. after costs. Over the last ten years, the net
underperformance of over 1.5% relative to the large caps can almost be fully recovered in Figure 2-6.
Over the last five years, in Figure 2-7, around 2.5% of the net underperformance is recovered by the
cap parameter of 100 %ADV. In the lower chart of Figure 2-8, the cost-mitigation outperforms its un-
capped tilt by almost 1.5% annualized return after costs (at medium cost level). We remark that the
naive ADV expectation of predicting liquidity in the trade execution by its current level is a model as-
sumption. Nonetheless, we apply the cost model concerning the liquidity level after portfolio decisions
with perfect foresight. The quality of the ADV expectation relies on this naive forecast. However, the
monthly first-order auto-correlation of ADV (no overlap due to the ADV window size) is significantly
large. Even in the cross-section of different size classes, the Pearson auto-correlation ranges from 70
to 90% concerning the time periods. Eventually, the cost-mitigation implicitly controls and mitigates
expensive turnover. The strategy results in more cost-efficient implementations by applying a suitable

order size limit (100%ADV in the above scenarios) concerning the investment size.

2.4.3 Sensitivity analysis

In this subsection, the effect of the cost-mitigation strategy is analyzed in more detail. The intended
improvement in the return-to-cost trade-off seeks to determine net performance efficiency concerning
portfolio size. By applying the cost-mitigation strategy, we increase the (risk-adjusted) net premia of
portfolios in emerging markets. The charts of Figure 2-9 - Figure 2-12 report the gross and net perfor-
mances of several cost-mitigations against their uncapped tilts concerning ascending initial portfolio
sizes (log-scaled x-axis). Figure 2-9 displays the performances over the last two decades and reveals a

sorted picture. No gross performance is lost with cost-mitigated tilts for small initial portfolio sizes.
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For initial portfolio sizes above $250 million, increasing parts of the gross performance are sacrificed for
most cap parameters. This negative effect is more than offset by most strategies and cost levels. The
loss in gross performance is more considerable for strict cap parameters (e.g., for limiting order sizes by
50% of the ADV, in the portfolios denoted as “TradeCap050”). The stricter cap parameters eventually
outperform the uncapped tilt at smaller portfolio sizes at a hefty cost level. For larger portfolio sizes,
more soft constraints like cap parameter 200% of ADV outperform the uncapped tilt concerning the
capacity limits of strict implementations. In Figure 2-10, there is almost no adverse effect on gross
performance and almost every cap parameter outperforms the uncapped tilt even concerning the low
cost level. More strict cap parameters stand out over this period, especially for large portfolio sizes or
high costs. With lower factor premia, the portfolios displayed in Figure 2-11 are less sorted over the
last five years. However, cost-mitigation strategies outperform the expensive uncapped tilt with rising
cost levels and portfolio size. In the market environment with significant factor premia, as seen in
Figure 2-12 after the millennium, the uncapped tilt outperforms the cost-mitigated strategies concern-
ing gross performance. While the strict cap parameters can not increase the net performance, more
soft, cap parameters can outperform the uncapped tilt at least at a medium cost level. Summing up
these results, we often see an inevitable gross performance loss induced by the additional short-term
liquidity constraint in many tilt portfolios. Nonetheless, with ascending portfolio size, cost level, or
both, a cost-mitigation strategy is found to outperform the uncapped tilt in each investment period.
Eventually, determining a cross-sectional optimal strategy parameter is impossible but depends on
investment size, cost level and market conditions. We can further conclude the empirical evidence that
the cost-mitigation strategy shows increasing profitability with higher cost levels, portfolio sizes, or

lower risk premia.

To research the effect of the cost-mitigation on further portfolio characteristics, Table 2-1, Table 2-2
and Table 2-3 exemplary report a thorough performance analysis and descriptive statistics on the
four environments. Table 2-1 shows that across all periods, fractions of the excess return expectation
(denoted as ex-ante factor Z-score) are sacrificed in the cost-mitigation. Therefore, this effect is in
line with the extent of the cost reduction and is larger for strict cap parameters. Table 2-1 also
reports the significance in (risk-adjusted) performance differences between any cost-mitigation against
the uncapped tilt. Appendix C describes the applied hypothesis testing methodology to determine
statistically significant differences in returns and Sharpe ratios. Even small differences can easily be

statistically significant due to the high serial correlation between the portfolio tilts. Table 2-1 confirms
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that for each declared investment period and cost level, at least one cost-mitigation significantly
outperforms the uncapped tilt’s (risk-adjusted) performance. In Table 2-2 other statistics are presented
to better understand the cap parameters’ efficacy. We see that more strict cap parameters lead to a
broader diversification in average holdings. This effect is mainly affecting small caps. With more
strict cost-mitigations, the two-sided turnover shrinks while limiting the expensive trades. This effect,
in general, is similar between large- and small caps in the tilted portfolios. For the 20-year and the
10-year periods after the millennium, strict cost-mitigations improve the average position size held in
the portfolio relative to its short-term ADV. This portfolio liquidity improvement is reversed for the
latest 10- and 5-year periods. Unfortunately, the average portfolio liquidity relative to the universe
liquidity worsens for the most strict cap parameters. This negative effect peaks for the first 10-year
period after the millennium between the uncapped tilt and cap parameter 50 with a 16 percentage
points difference in portfolio liquidity. Nonetheless, the (risk-adjusted) net performance improvement
is substantial for these tilts at each cost level. Finally, Table 2-2 reports the average order size of the
cost-mitigations and uncapped tilt relative to the short-term liquidity and it is clear that the strict
cost-mitigations yield a certainly improved implementability. The “capped trades” statistic shows how
many total trades in each portfolio are affected by the cost-mitigations on average per rebalancing.
Table 2-3 reports each cost-mitigation’s return and Sharpe ratio significance against the universe. The
portfolios over the last two decades and the first decade after the millennium outperform the universe
significantly. This increase in Sharpe ratio has been much weaker over the last 10 and 5 years. The
portfolio tilts often underperform concerning the cost level. For the 5-year period, only the most strict
cap parameter outperforms the universe, and the return differences are insignificant for any cost level.
This picture again reflects the observed decline in factor premia. The 10-year period portfolios must

be strictly cost-mitigated to outperform the universe significantly.

2.4.4 Robustness checks

To obtain robustness-checked results for the performance of the cost-mitigation and to smooth the
path dependencies of any initial portfolio, we provide robust statistics by constructing portfolios on a
monthly rolling basis. Due to high serial correlations in the constructed portfolios and path dependency
to their initial portfolio, geometric means over all possible portfolios (1-month rollings) of different
initial dates confirm the overall efficiency of the cost-mitigation strategy. We do not want the results

to be conditioned by the market environment or return expectations of the initial portfolio. Therefore,

20



this robustness check corrects for all path dependencies. Hence, we update the monthly rolling initial
portfolio sizes by the previous starting month’s performance. Table 2-4 reports the (risk-adjusted)
excess return significance of cost-mitigated tilts against the uncapped tilts concerning the rolling
construction. All return and Sharpe ratio differences are statistically significant concerning many
sampled rebalancing months and often high serial correlations. Table 2-5 reports the (risk-adjusted)
excess return significance of cost-mitigated portfolios against their universe concerning the rolling
construction. Cap parameter 100%ADV emphasizes the statistically significant excess returns against
uncapped tilts and the universe for various investment sizes. With the rolling portfolios over the last
20 years, 100%ADV outperforms the universe by 2.5% (the uncapped tilt by around 1%) p.a. with a

significantly higher Sharpe ratio of .96 against 0.66 (.88) at only medium cost level.

2.5 Conclusion

While illiquidity can be understood as a long-term factor that causes cyclical near-term risk premia,
it is also crucial for transaction costs. We studied this trade-off concerning gross factor premia over
various periods. From our analysis, we can draw several conclusions. First, we find it possible to
construct factor-based equity tilt portfolios with positive net premia in emerging markets over the last
two decades and sub-periods. Second, we see that the high risk premia of factor-tilts in emerging equity
markets have vanished in recent years. Therefore, a successful factor-based strategy is often determined
by an efficient implementation (cost-mitigation or low cost level). Third, with increasing portfolio size,
fractions of short-term portfolio liquidity and excess return expectation are sacrificed. Fortunately,
the negative effect on the expected excess return and, eventually, on gross performance is more than
offset. Finally, we show that the cost-mitigation improves the (risk-adjusted) net performance of the
factor-tilts but can only partially preserve vanished risk premia. A cost-efficient implementation is
often the critical component to outperform the market when the uncapped factor strategy solely does

not.

As an alternative or addition to an efficient trading pattern, this cost-mitigation approach allocates
cost-efficient decisions by incorporating trading costs and limiting expensive turnover. Further, the
strategy has certain portfolio size limitations concerning the market environment and cost-mitigation
parameters. Before reaching this capacity limit, the efficacy of the cost-mitigation is increasing con-

cerning rising investment sizes and cost levels. Further investigation will focus on the associations
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between factor investing, cost-mitigation strategies and macroeconomic influences. We researched
that risk premia are cyclical in the near term and assume that a macro-adaptive approach might

further increase cost-efficiency.
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2.6 List of charts and tables

Figure 2-1: Time series of constituents in the emerging markets universe
This chart reports three time series based on monthly data of the number of
constituents with respect to the whole universe, large- and small caps.
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Figure 2-2: Distribution of the lifetime of emerging markets stocks

As we find 7531 individual stocks in our analysis of the last two decades, this chart
reports the relative lifetime distributions based on monthly data of the three size
classifications. The relative fraction of the size class enduring this percentile is
assigned over the percentiles of the stock lifetime (e.g., the 10% percentile denotes a
lifetime of 24 months or less).
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Figure 2-3: Transaction costs square root model

This chart displays the three cost levels of market impact applied in this paper. The
three parameters are scaling factors for the square root functionality of order sizes
relative to liquidity.
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Figure 2-4: Time series statistics of spread data
This chart reports six time series statistics of the emerging markets’ positive spread
data in bps based on daily data across all stocks.
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Figure 2-5: These charts report the performance (medium cost level applied) of the
factor-based tilt portfolios with $2 billion initial portfolio size over the last two

decades. The upper chart displays the uncapped tilt with 295.98%

two-sided turnover
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Figure 2-6: These charts report the performance (medium cost level applied) of the
factor-based tilt portfolios with $5 billion initial portfolio size over the last decade.
The upper chart displays the uncapped tilt with 289.46% two-sided turnover p.a. The
lower charts display the cost-mitigated strategy with order size limiting parameter set
to 100% of ADV (250.18% two-sided turnover p.a.).
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Figure 2-7: These charts report the performance (medium cost level applied) of the
factor-based tilt portfolios with $7.5 billion initial portfolio size over the five years.
The upper chart displays the uncapped tilt with 215.12% two-sided turnover p.a. The
lower charts display the cost-mitigated strategy with order size limiting parameter set
to 100% of ADV (202.23% two-sided turnover p.a.).
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Figure 2-8: These charts report the performance (medium cost level applied) of the
factor-based tilt portfolios with $2 billion initial portfolio size over the first decade
only. The upper chart displays the uncapped tilt with 305.90% two-sided turnover
p.a. The lower charts display the cost-mitigated strategy with order size limiting
parameter set to 100% of ADV (208.21% two-sided turnover p.a.).
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Annualized Gross Performance in %

Annualized Net Performance in % (medium costs)

Figure 2-9: These charts report the gross and net performance of various

cost-mitigation strategy limitings from 1999-12-31 to 2019-11-29 with respect to initial

portfolio size and level of the trading cost model. The base case labeled as
"Uncapped" is indicated with a dotted line and a ceased line indicates the reached
capacity level of that strategy with respect to the market environment.
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Figure 2-10: These charts report the gross and net performance of various
cost-mitigation strategy limitings from 2009-12-31 to 2019-11-29 with respect to initial
portfolio size and level of the trading cost model. The base case labeled as
"Uncapped" is indicated with a dotted line and a ceased line indicates the reached
capacity level of that strategy with respect to the market environment.
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Annualized Gross Performance in %

Annualized Net Performance in % (medium costs)

Figure 2-11: These charts report the gross and net performance of various
cost-mitigation strategy limitings from 2014-12-31 to 2019-11-29 with respect to initial
portfolio size and level of the trading cost model. The base case labeled as
"Uncapped" is indicated with a dotted line and a ceased line indicates the reached
capacity level of that strategy with respect to the market environment.
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Annualized Gross Performance in %

Annualized Net Performance in % (medium costs)

Figure 2-12: These charts report the gross and net performance of various
cost-mitigation strategy limitings from 1999-12-31 to 2009-11-23 with respect to initial
portfolio size and level of the trading cost model. The base case labeled as
"Uncapped" is indicated with a dotted line and a ceased line indicates the reached
capacity level of that strategy with respect to the market environment.
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2.7 Appendix

2.7.1 Appendix A

2.7.1.1 Descriptions of factors

Factor

Momentum Logarithmic price momentum is calculated as the
sentiment of the stock price 12 months ago up to
the previous month’s end price based on
Jegadeesh and Titman (1994). The so-called
12X1 momentum omits the last month
concerning the reversal effect for long-term
investments. It is the supreme example of a
generic market factor and a superior long-term
alpha driver in the cross-section of sectors and
regions. The persistence of this factor can be
reasoned by the behavioral traits of investors
that follow strong-performing stocks. These
investors’ attention leads to a crowding effect
that fosters the price sentiment until a
macroeconomic event, earnings miss, or other
incident stops the trend. In this paper, the price

momentum is determined as

pClose;_12

Mom12X1; := log( (4)

pClose; 1
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Factor

Value

Beta

As researched in Rosenberg et al. (1985), the
value factor denotes a common book-to-price
multiple that compares an asset’s book value to
the actual market price. An immense
book-to-price value represents a cheap stock and
therefore assigns a buy signal with respect to
factor investing approaches. The origin of this
fundamental risk premium dates back to the
investigations of Benjamin Graham and David L.
Dodd and has behavioral-based characteristics
beneath its systematic and fundamental nature.
A possible explanation of the persistence of this
systematic risk premium lies in the investors’
optimism about bargains and pessimistic
overreactions, often resulting in bargains when
poor financials are reported.

The low beta factor investigated by Ang et al.
(2006) and Frazzini and Pedersen (2014)
describes how stock returns co-vary with market
returns. Empirical research proves that low beta
stocks explain cross-sectional premia in the long
run and, by construction, serve as a cushion in

drawdowns. In this study,

Beta = 7601}(7‘1’ Tuni) (5)

02 (Tunz)

is calculated with weekly data over the last 250
business days and the cov() is exponentially

weighted with a 125 business days half-life.
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Factor

Size

Operating Profit (Profitability)

Total Assets Growth (Investment)

The size factor researched in Banz (1981) shows
that smaller stocks in market capitalization
explain cross-sectional excess return as an
investor’s compensation for taking additional
risk. The efficacy of the size factor can be
economically explained as a systematic risk
premium based on the volatile nature and higher
risk of bankruptcy of small caps. This
examination calculates the size factor as the
logarithmic free-floating market capitalization.
Operating profit (commonly known as EBIT)
denotes the profitability of the company’s
business before interest and taxes and is widely
applied as another quality factor. To determine
operating profit, the operating expenses are
subtracted from the gross profit. Haugen and
Baker (1996) and Novy-Marx (2013) find an
additional risk premium with this factor.
Financially healthy companies tend to continue
their good business in the future. Therefore,
economically justifies this risk factor.

This risk factor measures the growth of the total
assets to forecast future excess return as a second
quality factor. Titman et al. (2004), Cooper et
al. (2008) and Watanabe et al. (2013) find that
stocks with lower recent total assets growth tend
to outperform the market. In this paper, we
compute the growth of the total assets over the

last 500 business days.
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2.7.2 Appendix B

2.7.2.1 Descriptions of rebalancing and tilting constraints (applied values

in parentheses)

In the following table, all applied constraints are listed. The first constraint listed is the essential
additional constraint that defines the cost-mitigation strategy. While all tilt-portfolios are equally

initialized, all cost-mitigated portfolios hold this additional constraint in all time steps t¢.

Constraint

Relative Maximum Order Size Cap This parameter distinguishes cost-mitigated

(25%-300% of ADV) portfolios from their base case. This sets a limit
for the relative order sizes in the rebalancing
steps.

Initial Threshold (Top 50%) This threshold determines the lower bound for
the mixed factor exposure at portfolio
initialization. It controls the number of titles in
the initial portfolio. This constraint represents
the banding constraint from Novy-Marx and
Velikov (2018).

Rebalancing Threshold (Top 50%) Alike the initial threshold constraint, a lower
bound for the factor exposures is set for each
rebalancing step. This banding constraint
controls turnover and guides the number of
holdings in the portfolio with respect to the
trade-off of diversification and excess return
expectation.

Relative Minimum Order Size (10%) This constraint manages the minimum size of
position changes of already held assets in the
rebalancing. It can be utilized to control

turnover.
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Constraint

Absolute Minimum Order Size (1 basis point  Alike the relative minimum order size in absolute
of portfolio size) terms. This constraint prohibits the factor-tilt
from generating economically insignificant orders

that would artificially raise the average holdings.

Absolute Minimum Holding Size (5 basis Declares the smallest permitted size of weight in

points of portfolio size) the constructed portfolio that a position might
have.

Absolute Maximum Holding Size (2% of Concerning implementability and diversification,

portfolio size) a maximum holding constraint limits portfolio

weights to a certain fraction of the whole
portfolio size. Each asset’s total market
capitalization is additionally taken care of in this

constraint.
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2.7.3 Appendix C

2.7.3.1 Pairwise portfolio significance testing for differences in annualized

(excess) returns and Sharpe ratios

Due to strong serial correlations between portfolios, auto-correlation in the tiltings, and a stochastic
dependency in the portfolios, an ordinary t-test can not be applied. To test the statistical significance
of our presented evidence, we apply the following test statistic Z,, as a two-sided t-test on the return

differences for stochastically dependent, identically distributed portfolios:

7 _ VN (jix — 1)

e 2 2
\/0’1 — 2p1,20'10'2 + o2

(6)

With N degrees of freedom (#rebalancing months—2; because portfolio initialization is cost-mitigation
independent) and pu;,0; assigning the estimated annualized means and standard deviations of both

observations.

We also report the statistical significance of the Sharpe Ratio (SR) difference between two stochastically

dependent portfolios with the following test statistic from Ledoit and Wolf (2008):

VN(SR, — SR»)
Zsp = = = .
V2212 + LISES + SRS — 2R, SRapi 7]

(7)

Based on these test statistics, all hypothesis tests check the alternatives: Hy : u; = pa  (SRy = SRa),
Hy g # pa (SR; # SR2) and report the p-value to the error levels p < 0.05, p < 0.01 and p < 0.001.

To account for the auto-correlation of the tilts, we do not just report the results of the above hypothesis

tests. Still, we perform a bootstrap that is explained as follows.

2.7.3.2 Stationary Circular Block-Bootstrapping

The hypothesis tests above are robustness-checked with a block-bootstrap to correct for auto-
correlation as researched in Efron and Tibshirani (1993). Politis and Romano (1992) proved that
randomization of the block length in the circular block-bootstrapping maintains the stationarity of
the observations in the bootstrapped samples. Therefore the reported p-values are finally calculated

as follows:
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e Calculate the Z-statistic as Z once for return- or Sharpe ratio testing

e To apply the stationary circular block-bootstrap to test Hy, transform the data so that Hy is

true.

— For return testing this transformation is given by X, =X, — i + flcombinedsample fOr both

time series.

— For sharpe ratio testing it is: X; := [Xig”’i G combinedsampie] + flcombinedsample fOr both time

series.

e The robustness-checked hypothesis test works by simulating the distribution of the Z-statistic
with block-bootstrapping under a true Hy. We do that by generating M = 10000 block-
bootstrap samples for both time series of forced length N (circular) with uniformly randomized
block-length b € {1,2, ..., L%j} to maintain stationarity. The Z-statistic is calculated for each
of the M bootstrap samples as Z;.

M=10000 >
) 1(1Z:]>)2))
M

i=1

e Now we sum =:p where I() denotes the indicator function (that equals 1
if its argument is true and 0 otherwise) to get the p-value of our hypothesis test given Hy is

true. This p-value is the reported statistic for each hypothesis test in the results section.
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3 MACROECONOMIC INFLUENCE ON COST-
EFFICIENT FACTOR INVESTING IN EMERG-

ING EQUITY MARKETS

3.1 ABSTRACT

We research the explainability of near-term macroeconomic influence on factor investing in emerging
equity markets. First, we identify leading indicators that are significantly connected to equity risk
premia. Based on this association and by incorporating machine learning classification, three macro-
adaptive approaches implement factor regime forecasts into cost-efficient portfolio decisions. Incor-
porating macroeconomic indicators increases the risk-adjusted net performance of equity portfolios in

emerging markets.

JEL classification: E44; G11; G12; G15.
Keywords: Investments; Asset Pricing; Trading Costs; Adaptive Rebalancing; Machine Learning;

Regime-Shifting.
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3.2 Introduction

Systematic risk premia are widely studied and understood in the long run, whereas short-term behav-
ior remains unclear and noisy. Therefore, it is a subject of interest to understand better the near-term
connection between macroeconomic influence and the cyclicality of factor premia. Numerous studies
have investigated the macroeconomic integration of fundamental risk factors and generic market effects
into the business cycle. Fama and French (1989)!2? examine the macroeconomic connection to factor
allocation and find that risk premia are based on macroeconomic risks in the long run. Empirical evi-
dence shows that size and value are the most cyclical risk factors, while low beta and quality are the
most defensive. Different approaches to macroeconomic influence can be found in Tibbs et al. (2008)
and Alighanbari (2016), who investigate factor momentum!? in style indices and identify a connection
to the factor premia. While Aretz et al. (2010) confirm that momentum contains incremental informa-
tion for asset pricing, they find that most macroeconomic indicators are already priced. On the other
hand, Ahmerkamp et al. (2012) also studied predictability in momentum strategies and found that
business cycle indicators are strongly connected to risk premia. Wang and Xu (2015) confirm this,
demonstrate the cyclicality of momentum profitability and provide empirical evidence of a significant
and robust connection to market volatility. Furthermore, many examinations focus on factor timing
from a different perspective, addressing market sentiment. Copeland and Copeland (1999) report that
the VIX and changes in the VIX are significant leading indicators of factor performance. Doran et al.
(2007) confirm this association between VIX-related variables and various fundamental factor portfo-
lios. Further, Boscaljon et al. (2011) point out that the findings of Copeland and Copeland (1999)
also hold for near-term holding periods of 30 days. Another approach has been carried out by Bonne
et al. (2018), who reported an association between factor crowding!? and low risk premia. Rising
investors’ attraction can explain this crowding effect to systematic and transparent asset allocation
after the failure of active management in the global financial crisis (GFC). Lately, Boven (2020) has
found a significant entanglement between fundamental factor premia and the current macroeconomic
context in the US market. Boven (2020) explains the lost potential of factor premia since the GFC by

quantitative easing and stagnation. Eventually, the explainability of near-term factor premia by the

12Chen et al. (1986), Barro (1990) and Campbell and Diebold (2009), among others.

13With factor momentum, we denote the trend observed in the risk premia of any factor concerning
consecutive time steps.

For instance, factor crowding can be measured in (prolonged) liquidity spikes of a particular factor’s
associated stocks. The recent growth and popularity of factor investing increase the potential for factor
crowding. If a factor does become too crowded, there is an increased risk of a drawdown event.
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business cycle or leading indicators remains controversial.

Recent examinations have been carried out to demonstrate the impact of transaction costs on factor
investing. According to Lesmond et al. (2002), who investigate the transaction costs of momentum-
based portfolios, net factor premia disappear for this high turnover strategy. Korajzczyk and Sadka
(2005), Novy-Marx and Velikov (2015), Ratcliffe et al. (2017) and Patton and Weller (2019), who also
examine momentum-based strategies, find different equilibrium sizes'® of factor-based excess returns.
Most studies on transaction costs identify liquidity as the costs’ most crucial driver. Based on these
investigations, Garleanu and Pedersen (2013), Frazzini et al. (2018) and Novy-Marx and Velikov (2018)
find optimal portfolio decisions and present different approaches to cost-efficient portfolio constructions.
With investors’ growing attraction to emerging equity markets, earlier examinations such as Bekaert
and Harvey (1997) and Achour et al. (1998) contribute to factor investing in this market environment.
Furthermore, the studies of Kargin (2002), Bruner et al. (2003) and Davis et al. (2010) extend these
investigations to a more current market environment. Since Lesmond (2005), little research has been
devoted to trading costs in emerging equity markets. The role of factor timing in emerging markets
has also received less attention than in the US and other developed markets. Leastwise, Bilson et al.
(2001) and Desrosiers et al. (2006) research the connection between macroeconomic indicators and risk
premia concerning factor investing in emerging equity markets. Druck and Mariscal (2018) outline the
association between dollar strength and emerging market growth as one of the tightest macroeconomic

bonds.

While the trade-off between complexity and benefit of macroeconomic factor timing remains controver-
sial in developed markets, emerging equity markets received less attention. We examine the association
between near-term leading indicators and risk premia in emerging markets based on the outlined stud-
ies on macroeconomic indicators and cost-efficiency in factor investing. For this purpose, we identify
significant indicators and research the trade-off between factor premia and trading costs with three
macro-adaptive strategies. Eventually, we outline a consideration for using machine learning'® tech-

niques to estimate the emerging markets’ factor regime. With these forecasts, the macroeconomic

15We denote a theoretical portfolio size measured in currency with equilibrium size. At this portfolio
size, trading costs empirically net out with factor premia. This entity allows comparing the net efficacy
of various investment strategies and asset classes concerning their implementability. In other words,
portfolios outreaching their equilibrium size underperform the market.

16We draw on the findings of Guidolin and Timmermann (2007), Bae et al. (2013) and Mulvey and
Liu (2016), who established machine learning models to allocate assets under regime-switching. These
studies suggest classification models such as penalized logistic regression, gradient boosted trees and
gaussian-kernel-based support vector machines to forecast changes in the market environment.
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influence can be successfully implemented in cost-efficient factor investing strategies.

The paper proceeds as follows. The next section outlines the investment universe, a methodology for
cross-sectional factor valuation and identifies significant macroeconomic influences on this factor valu-
ation. Later, these macroeconomic indicators are utilized to construct three adaptive factor investing
strategies. In the empirical results section, we review the theoretical benefits of the macroeconomic
association with factor premia in portfolio implementations and discuss machine learning approaches’
role in this context. This section closes with the implications of the risk-adjusted net performance of

macro-adaptive strategies in emerging equity markets. The last section concludes our research.

3.3 Data and methodology

3.3.1 The emerging markets universe

To assess the macroeconomic influence on factor premia in emerging equity markets, we apply a gen-
eral valuation methodology for the excess return of an equal-weighted risk factor mix. Therefore, we

t17 concerning the country listings of the MSCI

conducted our analysis on an emerging markets data se
Emerging Markets Index!'® over the last two decades ending in December 2019. A small range of
available data before the millennium is omitted concerning the quality and coverage of the liquidity
data and the macroeconomic time series. This study uses data from MSCI to determine the underlying
companies in emerging markets and their free-floating market capitalization. Besides MSCI, the World-
scope database from Refinitive is used for the remaining fundamental factors of value, profitability and
investment. The generic factors of momentum and low beta are calculated based on market data from
Datastream (Refinitive). Further, Datastream is utilized for most market data such as return indices,
liquidity, bid-ask spreads, and macroeconomic time series. Referring to the market closing of 2019 as

9 across the five different sub-regions of

today, this emerging markets universe consists of 26 countries’
Emerging Americas, Europe, Middle East, Africa and the Asia Pacific, of which the latter contributes

to 79.35% of the emerging markets’ size. The MSCI Emerging Markets Index’s underlying stocks are

IIn the following, the emerging markets are denoted as “EM” and also referred to as the “whole
universe”.

18https: //www.msci.com/emerging-markets, last visited: 2020-09-30.

19The MSCI Emerging Markets Index consists of 26 emerging economies, including Argentina, Brazil,
Chile, China, Colombia, Czech Republic, Egypt, Greece, Hungary, India, Indonesia, Korea, Malaysia,
Mexico, Pakistan, Peru, Philippines, Poland, Qatar, Russia, Saudi Arabia, South Africa, Taiwan,
Thailand, Turkey, and the United Arab Emirates.
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considered large caps, whereas all other stocks larger than $10 million in market capitalization are
denoted as small caps. Today, this emerging markets universe consists of 3480 stocks summing up to

$9.2 trillion free-floating market capitalization.

3.3.2 Factor valuation methodology

In this study, we focus on six risk premia. The first is the fundamental value factor researched in Basu
(1977) and Rosenberg et al. (1985). The size factor embodied another systematic risk premium and
was discovered by Banz (1981). Further, two systematic quality factors are added. The operating prof-
itability, which is researched by Haugen and Baker (1996) and Novy-Marx (2013), and the investment
factor found in Titman et al. (2004), Cooper et al. (2008) Watanabe et al. (2013) augment our choice.
Jegadeesh and Titman (1994) and Hurst et al. (2017) research the decisive generic momentum factor.
Lastly, Ang et al. (2006) and Frazzini and Pedersen (2014) examine the generic low beta factor that
completes our selection. A straightforward multi-factor mix based on these six risk factors is explained
in Appendix A and B. The empirical evidence presented in this examination is robust to alternative
factor definitions, different mixes and also different weighting schemes. We decide to present this mix
of six well-known factors to cover fundamental factors and market effects and apply an equal-weighted

scheme with respect to simplicity. We calculate its long risk premium at time ¢ in terms of:

Long Premium; = >i(weighty - Z-score;y - return; ) >_;(weight;y - return;;)
t S (weight; ; - Z-score; 1) > weight;, (8)

Vi€ {EM : Z-score; > 0}, Vj € {EM}

weight denotes the free-floating market capitalization and return reflects the return index over the next
business month. In the following, we utilize this value-weighted methodology to assess the risk premia
of the multi-factor mix (as displayed in Figure 3-1 and Figure 3-2) and illiquidity (as in Figure 3-3 and
Figure 3-4). We have already remarked on the distinct decline of factor valuation in recent market
environments, which is well perceptible in the charts above. Further and concerning long-short factor

valuation, we analogously calculate:

20



(weight; 4 - Z-score; ¢ - return; (weight; s - returng,
Long — Short Premium; = ZZ( g Z’t, ot i) — Zj( ]t, i)
>_i(weight; - Z-score; ) . weight;, (9)

Vi € {EM : |Z-score;| > 0.5}, Vj € {EM}

And compare the cumulative long-only versus long-short multi-factor premia in Figure 3-5. These
simple valuation methodologies (Equation 8 and Equation 9) assess the empirical monthly excess
return concerning the market (EM). With these simple valuations that generalize portfolio tiltings,
omitting trading costs and constraints, we research the association between macroeconomic influence

and factor premia.

3.3.3 The role of macroeconomic indicators

This subsection examines the connection between smoothed?® multi-factor (and illiquidity) premia
to the macroeconomic environment. Inspired by previous investigations on macroeconomic influence
in factor investing, we expect significant connections between the factor premia in emerging equity
markets and dollar strength (Druck and Mariscal (2018)), VIX (Copeland and Copeland (1999) and
Doran et al. (2007)) as well as market momentum. Druck and Mariscal (2018) report an association
between dollar strength and GDP growth in EM as one of the tightest macroeconomic connections
in the long run. This association is reasoned by a long-term income effect as follows. With rising
dollar strength, the relative price of local EM commodities falls. Falling commodity prices lead to a
lowered demand for the required labor, leading to lower income. The lowered income inhibits GDP
growth and vice versa. Drawing on this, we also expect a significant near-term connection between
dollar strength and factor premia that we reason with respect to earnings expectations. A rising dollar
strength leads to financial distress in EM companies with a significant stake in USD-denominated debt.
The risen value of the USD relative to local EM currencies increases the debt burden’s value and leads
to lowered earnings expectations. A decrease in earnings expectations leads to a near-term stock price
correction. Vice versa, falling dollar strength makes USD-denominated debt relatively cheaper, leading
to relatively expensive commodity prices in USD that benefit the production-oriented EM. The fact

that USD-denominated debt is typically denoted with a lower interest rate than local credit tightens

20We choose a 3-month smoothing window for both time series of premia in the factor valuation
concerning their signal decay.
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this cycle. In favorable business and market conditions, EM companies might be tempted to raise
their debt with cheaper US credit concerning any growth opportunity but not considering an increase
in dollar strength. With the burden on a foreign currency, no local central bank correction is possible
and the EM companies are exposed to the market condition. Therefore, we expect a cyclicality that
might be well connected to the inevitable cyclicality of factor premia in EM. As a caveat, we remark
a possible distortion in this connection as very high dollar strength could increase stock prices in EM.
Such an increase might happen due to a bargain opportunity for US investors. However, we do not
expect this to be an issue in the subsequent investigation. Further, a large absolute VIX and its
increase tend to mitigate the following factor premia. Doran et al. (2007) find that this also holds in
the near term. The VIX can be interpreted as a fear index. Opposing the pessimistic expectations in
line with a high VIX and jumps in the VIX, we assume optimistic expectations on factor premia that

accompany consecutive months of solid market performance.

Following these initial presumptions, we collect a selected range of promising macroeconomic time
series of the US and EM economies. Based on these raw indicators, we also calculate mid-term change
rates (3 months and six months) as possible leading indicators for factor premia. In the first place,
considering the issue of possible reporting lags?' in the data, we naively investigate pairwise Pearson
correlations between each indicator and the risk premia. For this purpose, we calculate the thresholds

of statistical significance with the following T-statistic:

R-VN -2
T==r— (10)

Where N —2 represents 238 degrees of freedom from 20 years of monthly data. To obtain the minimum

Pearson correlation R to hold a certain level of statistical significance, we rearrange Equation 10 to:

T 1
VI?2+ N -2 (11)

2L All investigated time series are collected from the database of Thompson Reuters Datastream. We
restrict the research in this section to these indicators that can be utilized in real-time without any
look-ahead bias induced by reporting lags. By dealing with macroeconomic data, some time series
naturally hold reporting lags of up to several months. These indicators had to be excluded from our
research.
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And display the curve in absolute terms in Figure 3-7 with respect to the p-values resulting from the
T-values under the ¢-distribution. We precondition all indicators by detrending them in an expanding
window fashion. Further and concerning required normality for the correlation tests, we also calculate
expanding Z-scores. Both premia are tested for stationarity with an ADF. The null hypothesis is
rejected at the 1% level for both time series. In Table 3-1 we report all significant macroeconomic
indicators concerning both factor premia. The table also provides a detailed overview of the issuer of the
macroeconomic time series and a description of their calculation metric. Furthermore, the heatmaps
displayed in Figure 3-8 (for illiquidity premia) and Figure 3-9 (for multi-factor premia) also show the
Pearson correlations between the macroeconomic indicators. By deriving significant leading indicators,
we correct possible ill-conditioning concerning multicollinearity. We estimate possible multicollinearity
in the data with the design matrix’s condition number?? on all indicators, including the unit vector.
The visualizations of Figure 3-8 and Figure 3-9 also show that the Pearson correlations between the
indicators tend to be low and negative. Concerning the robustness of this approach, Spearman rank-
correlations also confirm the statistical significance of these indicators. Here, we can confirm the
empirical evidence of Copeland and Copeland (1999) that identifies the VIX and changes in the VIX
as leading indicators of factor premia in emerging markets. Most EM countries have similar risk
exposures with respect to the US and EM VIX. Therefore, we decide to average both signals. This
aggregation slightly increases the connection to near-term risk premia for most non-European stocks.
For the emerging countries of the Czech Republic, Greece, Hungary and Poland, we research a stronger
connection to the VSTOXX. Furthermore, we also confirm the findings of Wang and Xu (2015) for
the emerging equity markets and report a significant connection between changes in market volatility
and factor premia. To tie on the discussion of Boven (2020), we find high significance between factor
premia and changes in quantitative easing in the US economy, measured in FED M2 money growth.
The evidence provided by Bonne et al. (2018) is also confirmed for the emerging markets by identifying
the connection between risk premia and short-term (20 business days) factor crowding. Further and
as expected, we research that the connection between the factor premia and dollar strength (as well
as changes in dollar strength for multi-factor premia) is one of the tightest bonds. While the VIX and

changes in the VIX are also confirmed as significant leading indicators, the connection with market

22We derive the condition number in terms of the spectral norm. This is calculated as the square
rooted fraction of the absolute largest and smallest eigenvalue. Further, we remark that the condition
number of a well-conditioned design matrix does not exceed 30. Concerning the heatmaps in Figure 3-8
and Figure 3-9, we report a condition number of 4.64 for the leading indicators of illiquidity premia.
The indicators for multi-factor premia result in a condition number of 7.83.
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momentum is surprisingly weaker. Additional USD-denominated debt burden of EM companies is
also identified as a positive signal. This connection can be interpreted as the issuer’s expectation of
a growth opportunity. Market momentum is measured quarterly and debt growth is calculated on
the rolling changes over a semester. We also find significant leading indicators in US Retail Sales
changes, Real EM GDP Growth, and Citi’s EM Surprise Index for multi-factor premia. We outline the
oil price, the US CEO Confidence Index, and a recession indicator of US bond rates®? as significant
leading indicators for the illiquidity premia. While we do not find significance between factor premia
and market liquidity changes, we remark that this insufficient connection is satisfactory. Therefore,
liquidity effects on factor premia and trading costs do not net out in adaptive strategy approaches.
Trading becomes cheaper at a given cost level and with higher market liquidity in EM. The total effect
would remain unclear if we simultaneously observe inferior multi-factor premia. Further, we find that
US Consumer Confidence, Citi’s US Surprise Index and US Unemployment Rates (as well as their
change rate) are no leading indicators for neither multi-factor nor illiquidity premia. In general, we
remark that our study reveals a strong connection of US macroeconomic indicators with factor premia

in emerging markets.

3.4 Empirical results

3.4.1 Macro-adaptive portfolio strategies

Based on the findings from the previous subsection, we examine three macro-adaptive strategies. The
first approach is the adaptive choice of whether or not to suspend a monthly rebalancing step to save
its trading costs entirely. Second, we also research the effect of a more aggressive long versus long-short
(130/30) strategy concerning the expected factor regime. In the last approach, we adaptively apply a

cost-mitigation strategy with respect to limiting the relative trade size?*. Here, we mitigate turnover

23The bond rate indicator is detailed in Table 3-1 and reflects a comparison between short- and
long-term US bond rates. A relatively large short-term bond rate versus a long-term bond rate is
a negative signal for the US market environment. Our analysis confirms that this macroeconomic
connection even holds for the emerging markets.

24We measure the stock liquidity in terms of executed average daily volumes across primary and
secondary stock exchanges in USD. The average daily volume, denoted as “ADV”, is calculated based
on a short-term rolling window of 20 business days. Furthermore, we calculate the relative trade size
concerning this ADV.
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and, therefore, trading costs of multi-factor investing concerning the expected illiquidity regime?°.

As we observe cyclical illiquidity premia, we assume the profitability of the adaptive cost-mitigation
approach by incorporating expectations on illiquidity premia. With respect to the macro-adaptivity, we
tighten the trade size limiting from 300% of the ADV to 100% of the ADV every time the expectations
on illiquidity premia fall short. Each strategy exploits macroeconomic association concerning the
return-to-cost dualism in the emerging stock universe. Our main goal is to determine whether or not
the macroeconomic links to factor premia can be utilized in cost-efficient equity allocations. Further,
we provide a ceiling analysis to understand the impact of macroeconomic association with risk premia
in portfolio implementations. We can validate the strategies by implementing adaptivity concerning
perfect foresight of the risk premia, a naive approach and more sophisticated regime models. First, we
construct reference portfolios based on the whole period of 1999-12-31 to 2019-12-31 with an initial
cash position of 1 billion USD at 1999-12-31 and apply a medium cost level (Figure 3-6 and Appendix
C for details). Based on this setting, we calculate the time series of a cost-mitigated portfolio tilting
with “cap300” (trade size per rebalancing capped by 300% of ADV) minus its less strict alternative of
cap100. Analogously, we build a long-short (130/30) portfolio minus a long-only construction. We find
a Pearson correlation of 0.251 between the former time series of cap300 cost-mitigation minus a strict
strategy and the smoothed illiquidity premia. Furthermore, we find a 0.461 Pearson correlation with
the smoothed multi-factor premia for the latter time series of the long-short minus long-only strategy.
Therefore, our initial considerations are supported. We see that the profitabilities of both adaptive
strategies are significantly connected with factor premia under perfect foresight. These validations led

to the investigations outlined in the following.

3.4.2 Naive versus ML-based regime estimates

The next step in successfully implementing the macro-adaptive strategies is eliminating any other
look-ahead bias. Hence, we formulate the problem of forecasting the factor regime in terms of a binary
classification problem. Therefore, we associate a “crash regime” with negative (forecasted) multi-

factor or illiquidity premia in the next business month. We can detect crash regimes without making

25This cost-mitigation strategy of limiting trade size to a good fraction of the average stock liquidity
benefits the cross-section of EM factor investing. Interestingly, this net performance increase does
not solely rely on lowered trading costs. This liquidity constraint is quasi-periodically not much of
a constraint at all. While illiquidity is a fundamental risk premium, we have already displayed its
short-term cyclicality in the long run. Summing up, the efficacy of this cost-mitigation strategy is
borne by mitigated implementation costs and recurring liquidity premia.
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expensive mistakes by approaching this as a binary classification problem. With the expectation of a
crash regime, we can either entirely suspend a non-profitable rebalancing or tightly restrict illiquid and
expensive trades. Vice versa, in the absence of an expected crash, a more aggressive investor could be
prone to an adaptive long-short positioning. We engineer two machine learning models for the factor
regime forecast and compare them against a naive one-step estimate. At this point, we remark that an
improved near-term forecast for the factor regime does not necessarily result in a beneficial adaptive
strategy concerning portfolio constraints and path dependency. However, we assume that ML-based
factor regime forecasts outperform the naive estimate concerning standard error measurements. The
great advantage of machine learning classifications is training and tuning their efficacy on one binary
case. In our problem, this translates into not missing a crash regime. Therefore, we tune the models
on the crash’s recall because a wrong decision might be more expensive than the profitability of not

missing an opportunity.

We decide to model the binary classification of the multi-factor and illiquidity regimes twofold. There-
fore, we choose a penalized logistic regression (Logit) and gradient boosted trees (GB) to compare
their forecasts. These supervised learning models were chosen to compare two classes of ML methods
concerning the Logit’s (linear model) penalization term and the GB’s (ensemble method) ability to
map non-linearities. To account for the missingness in the macroeconomic data2®, we apply a MICE
imputation after expanding window Z-scoring all independent features from 1999-12-31 to 2009-12-31.
Therefore, we initialize all portfolio tiltings at 2009-12-31 with respect to this minor look-ahead bias
induced by the data cleaning. Further, we model the Logit and GB based on monthly expanding
window tunes and fits. In this sense and concerning the stationary responses, we omit response scal-
ing. For all independent features, we choose to apply a feature-wise Yeo-Johnson power transform
concerning non-positive data. This transformation makes the data more Gaussian-like and potential
heteroscedasticity might be cured. Here, the optimal transform parameter for stabilizing the vari-
ance and minimizing skewness is estimated through maximum likelihood. Finally, the normalization
of all independent features is applied to the transformed data by expanding window zero-mean and

unit-variance normalization.

We start the expanding window modeling after an initial tune and fit covering data from 1999-12-31 to
2004-12-31. The initial and subsequent monthly tunings are based on a 5-fold time series split trained

on the crash’s recall for both ML models (Logit and GB). The tuned hyperparameters consist of only

26Fortunately, there are no data gaps after the business year of 2008.
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the penalizing parameter for the Logit and number of tree estimators, learning rate, minimum samples
per leaf and maximum tree depth for the GB. All hyperparameter tunings have been carried out on
sufficiently fine grids so that each parameter’s interval limits are never chosen as optimal. Table 3-2
compares the error metrics of both ML estimates based on the indicators listed in Table 3-1 with the
one-step estimate. Especially for multi-factor premia, the one-step estimate is not a weak forecast
but not outstanding either. Unfortunately, the critical crash recall is low, which is not satisfying for
our purpose. While the Logit’s accuracy is distinctly higher than the one-step, precision, recall, and
therefore f1 score are superior. Further, the GB’s accuracy is slightly worse than the one-step’s accuracy
and notably worse than the Logit’s accuracy. Remarkably, the GB responses were better on the recall
training than the Logit. Here, we report a 2.5 times stronger recall for the GB, while its precision
is slightly worse than the Logits. The one-step forecast for illiquidity premia has similar accuracy to
multi-factor premia but distinctly higher precision, recall and, therefore, f1 score. Also, similar to the
multi-factor premia, the Logit classifier’s error metrics outperform the one-step’s. Further, the GB
has a superior recall again, but the relative improvement is much smaller than the multi-factor premia
comparison. The GB’s accuracy for illiquidity premia is more substantial than for multi-factor premia
and lower than Logit’s estimate. Furthermore, these results assume that one-step estimated regime
forecasts might benefit macro-adaptive portfolio tiltings. We further assume that machine learning
forecasts outperform this naive adaptivity due to the remarkable increases in recall and precision
metrics concerning detecting crash regimes. We engineered solid forecasts for the multi-factor (and
illiquidity) regime in emerging markets that do not guarantee macro-adaptive efficacy but certainly

set a milestone in this investigation.

3.4.3 Sensitivity analysis on portfolio decisions

With these machine learning forecasts, we validate macro-adaptive portfolio tiltings’ efficacy. We
examine the three strategies regarding sensitivity analysis concerning portfolio size and cost level. Ma-
chine learning forecasts, the one-step estimate and perfect foresight of the factor regime are utilized to
adaptively implement macroeconomic influence in portfolio decisions to provide the ceiling analysis.
We consider a successful implementation outperforming its non-adaptive portfolio concerning signifi-
cant risk-adjusted net performance or at least significant excess return. Table 3-3 to Table 3-8 report
the performance statistics of all portfolio constructions in terms of the two-dimensional sensitivity

analysis. Here, we research all combinations of six ascending portfolio sizes (250 million, 500 million,
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1 billion, 2.5 billion, 5 billion and 10 billion USD) and the three cost levels visualized in Figure 3-6.

Each portfolio is priced with respect to the trading cost model detailed in Appendix C.

In general, we see that the success of factor investing relies on a cost-efficient implementation. How-
ever, for smaller portfolios up to 1 billion USD, we find strategies with significant excess returns even
for the highest cost level. The adaptive long-short strategy has a strong performance for the smallest
portfolio size of 250 million USD but depends on the small size and low trading costs. Unfortunately,
no macro-adaptive long-short construction with a larger initial size than 250 million USD can out-
perform its non-adaptive strategy. This lack of outperformance is the case because of its enormous
turnover that arises by liquidating the short positions when a regime change is expected. The factor
regime’s expectations often switch enough to make the macro-adaptive long-short strategy unprof-
itable for larger investment sizes. Hence, an initial portfolio size of 500 million USD is large enough
to make the adaptive long-short strategy unprofitable concerning its high turnover. Contrary to our
expectations, we have to reject the efficacy of an ML-based adaptive cost-mitigation strategy. The
Logit-based constructions align with the cap300 strategy for portfolio sizes up to 2.5 billion USD but
never outperform the more strict capl00 strategy for larger sizes concerning statistical significance.
Here, we remark that the efficacy of a cost-efficient implementation is more substantial for larger initial
portfolio sizes due to an increased implementation hurdle. However, with a size larger than 1 billion
USD invested in 2009-12-31, we emphasize the benefits of the cost-mitigation strategy even at the
lowest cost level. Another exciting side finding is that the long-short strategy outperforms the base
strategy for each investigated size despite distinctly higher annualized trading costs. Further, at a
portfolio size of only 1 billion USD and a high cost level, the non-adaptive base strategy reaches its
equilibrium with an annualized net return of 6.58%. At the medium cost level, this can be expanded
to a 2.5 billion USD portfolio size, while in both cases, the Sharpe ratios remain significantly higher
concerning the market. The equilibrium size of the non-adaptive long-short strategy at the lowest cost
level is located beyond the base strategy’s equilibrium size at over 10 billion USD. While the base
strategy’s excess return at the lowest cost level seems to be exhausted at the 10 billion USD initial
size, the strategy of suspending rebalancings based on GB forecasts still outperforms the market with
over 2.5% p.a. at 9.14% annualized net return. Surprisingly, we find that the adaptive suspending of
rebalancing steps is a consistently outperforming strategy with respect to the GB-based regime forecast
(remember that the GB responds best to the crash’s recall). Compared to the market, these findings

hold for the base strategy and one-step estimate for all investigated size and cost combinations. We
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remark that this macro-adaptive strategy outperforms its perfect foresight implementation concern-
ing the high implementation costs in emerging markets. As an additional robustness check for this
strategy, we report that its efficacy is robust to randomly skipping the same amount of rebalancings.
Therefore, especially by the construction of suspending rebalancings, we find that even in the absence
of a crash regime, high trading costs can often not be offset by risk premia. Concerning its relatively
low annualized trading costs and even for the most expensive implementation, this adaptive strat-
egy’s equilibrium size might be far beyond the 10 billion USD initially invested in 2009-12-31. This
finding underlines the importance of cost-efficiency for a successful implementation of factor investing
twofold. First, the most passive and simple strategy outperforms the most promising and aggressive
implementations. The adaptive long-short strategy with perfect foresight and the mediocre adaptive
cost-mitigation approach fail to outperform significantly at each portfolio size of at least 500 million
USD. Second, a macro-adaptive strategy can implement the investors’ need to prevent mistakes by

omitting expensive and unprofitable turnover.

In Appendix D the hypothesis testing methodology is described to determine statistically significant
differences in returns, costs and Sharpe ratios concerning auto-correlated return series. Even the most
negligible differences can be statistically significant due to the naturally high serial correlations between
the portfolio returns. Further, this method serves as a robustness check and empirically proves that

the reported statistical significance does not rely on certain sub-periods but is stable along time.

3.5 Conclusion

In this study, we investigated the success of factor investing in emerging markets regarding trading
costs and researched the impact of implementing macroeconomic influence in equity allocations. The
simplest way to successfully implement factor investing strategies lies in the cost-efficiency found at a
low cost level. Unfortunately, many reasons inhibit individual and smaller investors from achieving a
sufficiently small cost level in the stock execution at EM exchanges and therefore, alternative methods

are required. From our analysis, we can draw several conclusions.

First, we find empirical evidence for a significant macroeconomic association with factor premia in
the near term. Second, we identify that under perfect foresight, aggressive and mediocre macro-
adaptive strategies appear to be beneficial before costs and constraints. Third, we research that

ML-based models exceed a naive estimate in forecasting the factor regime. Eventually, this leads to
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a successful implementation of macroeconomic indicators in factor investing. While no sophisticated
regime forecast can be successfully implemented for an aggressive or mediocre strategy with respect to
costs and constraints, a passive approach highly benefits from macro-adaptivity. With growing portfolio
size and cost, cost-efficient implementation becomes increasingly essential. The adaptive strategy of
suspending rebalancings expands the equilibrium size of a simple factor investing framework. A more
cost-efficient implementation is often the critical component to outperforming the market when the non-
adaptive strategy solely does not. To the best of our knowledge and belief, cost-efficiency is necessary
to implement factor investing successfully with investors’ recent and ongoing attraction to the emerging
equity markets. Finally, we emphasize the tight connection between emerging markets and the US
economy that can be utilized in portfolio decisions to increase the risk-adjusted net performance of

non-adaptive strategies.
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3.6 List of Charts and Tables

Figure 3-1: Multi-Factor Premia

This chart displays the monthly multi-factor valuation from 1999-12-31 to 2019-11-29

based on the long-only valuation methodology.
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Figure 3-2: Cumulative Multi-Factor Premia

This chart displays the cumulative multi-factor valuation from 1999-12-31 to

2019-11-29 based on the long-only valuation methodology.
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Figure 3-3: Illiquidity Premia

This chart displays the monthly illiquidity valuation from 1999-12-31 to 2019-11-29
based on the long-only valuation methodology. The underlying illiquidity factor is
calculated as inverted Z-scores of ADV measured in USD.
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Figure 3-4: Cumulative Illiquidity Premia

This chart displays the cumulative illiquidity valuation from 1999-12-31 to 2019-11-29
based on the long-only valuation methodology. The underlying illiquidity factor is
calculated as inverted Z-scores of ADV measured in USD.
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Figure 3-5: Cumulative Multi-Factor Premia Long-Only vs. Long-Short
This chart displays the cumulative multi-factor valuation from 1999-12-31 to
2019-11-29 based on both valuation methodologies.
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Figure 3-6: Transaction costs square root model

This chart displays the three cost levels of market impact applied in this paper. The
three parameters are scaling factors for the square root functionality of order sizes
relative to liquidity.
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Figure 3-7: Statistical Significance

This chart displays the minimum Pearson correlation necessary for a specific level of
statistical significance. The curve is derived by Equation 11 with 238 degrees of
freedom.
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Figure 3-8: Illiquidity Premia Heatmap
This chart displays a heatmap based on Pearson correlations between each significant
macroeconomic indicator and the smoothed illiquidity premia.

0.15|0.29|0.26 |-0.17 0.15]0.18 llliquidity Premia
0.15 0.05/0.07 0.06/-0.04/0.15|0.09 Oil Price
0.29 -0.05 0.25/0.01 0.04 -0.02| US CEO Confidence Changes
0.260.07{0.25 .15/0.000.01 -0.02 US Bond Indicator
-0.17 0.01/-0.15 0.09(0.02(0.14 0.38 | Dollar Strength
-0.06 0.00/0.09 0.12 -0.00| US and EM VIX Changes
-0.04 0.01]0.02 0.07 -0.04| EM Market Volatility Changes
0.15/|0.15 |-0.04 0.14-0.12}-0.07 0.18 EM USD-denominated Debt Growth
0.180.09 -0.02 0.18 -0.06| EM Market Momentum
0.02 0.38 -0.00/-0.04 0.06 Multi-Factor Crowding
= 0 € € U c m m m Z
FeEeigzzze
5 = = > = < = s
g8 8 2 ¢ 3 2 8 8 ¢
Y g 3 8§ = %2 g = &
) 3 2 @ < < 3 ES P
3 2 g 5 % ¢ g o @9
o ® = 8 3 3 o
> ] (e} =3 5 ] =
o > = o =1 ol
® 8 < § & 3
(9] a (@) a 3 «Q
3 2 8 ©
3 a &
® [ =
7] ® Q
o
S
>

64



Figure 3-9: Multi-Factor Premia Heatmap
This chart displays a heatmap based on Pearson correlations between each significant
macroeconomic indicator and the smoothed multi-factor premia.
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3.7 Appendix

3.7.1 Appendix A

3.7.1.1 Descriptions of factors

Factor

Momentum Logarithmic price momentum is calculated as the
sentiment of the stock price 12 months ago up to
the previous month’s end price based on
Jegadeesh and Titman (1994). The so-called
12X1 momentum omits the last month
concerning the reversal effect for long-term
investments. It is the supreme example of a
generic market factor and a superior long-term
alpha driver in the cross-section of sectors and
regions. The persistence of this factor can be
reasoned by the behavioral traits of investors
that follow strong-performing stocks. These
investors’ attention leads to a crowding effect
that fosters the price sentiment until a
macroeconomic event, earnings miss, or other
incident stops the trend. In this paper, the price

momentum is determined as

Moml12X1, := log(w (12)

pClose; 1
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Factor

Value

Beta

As researched in Rosenberg et al. (1985), the
value factor denotes a common book-to-price
multiple that compares an asset’s book value to
the actual market price. An immense
book-to-price value represents a cheap stock and
therefore assigns a buy signal concerning factor
investing approaches. The origin of this
fundamental risk premium dates back to the
investigations of Benjamin Graham and David L.
Dodd and has behavioral-based characteristics
beneath its systematic and fundamental nature.
A possible explanation of the persistence of this
systematic risk premium lies in the investors’
optimism about bargains and pessimistic
overreactions, often resulting in bargains when
poor financials are reported.

The low beta factor investigated by Ang et al.
(2006) and Frazzini and Pedersen (2014)
describes how stock returns co-vary with market
returns. Empirical research proves that low beta
stocks explain cross-sectional premia in the long
run and, by construction, serve as a cushion in

drawdowns. In this study,

cov (T, Tuni)

Beta =
e 02(Tuni)

(13)

is calculated with weekly data over the last 250
business days and the cov() is exponentially

weighted with a 125 business days half-life.
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Factor

Size

Operating Profit (Profitability)

Total Assets Growth (Investment)

The size factor researched in Banz (1981) shows
that smaller stocks in market capitalization
explain cross-sectional excess return as an
investor’s compensation for taking additional
risk. The efficacy of the size factor can be
economically explained as a systematic risk
premium based on the volatile nature and higher
risk of bankruptcy of small caps. This
examination calculates the size factor as the
logarithmic free-floating market capitalization.
Operating profit (commonly known as EBIT)
denotes the profitability of the company’s
business before interest and taxes and is widely
applied as another quality factor. The operating
expenses are subtracted from the gross profit to
determine operating profit. Haugen and Baker
(1996) and Novy-Marx (2013) find an additional
risk premium with this factor. Financially
healthy companies tend to continue their good
business in the future. Therefore, economically
justifies this risk factor.

This risk factor measures the growth of the total
assets to forecast future excess return as a second
quality factor. Titman et al. (2004), Cooper et
al. (2008) and Watanabe et al. (2013) find that
stocks with lower recent total assets growth tend
to outperform the market. In this paper, we
compute the growth of the total assets over the

last 500 business days.
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3.7.2 Appendix B

3.7.2.1 Multi-factor tilting construction methodology

Concerning single factor cyclicality, we seek to diversify the excess return expectation to maintain more
persistent premia. With the six factors outlined in Appendix A, we build an equal-weighted Z-score.
The stock positions in the initial portfolio (at #p) as well as all the following rebalancing weights (at
t > tp) are constructed by screening the positive Z-scores (Z-score; > 0) from the multi-factor mix.
To calculate portfolio weights for each stock 4, the universe weights weightyniverse,i are tilted under

several constraints as follows:

weightyniverse,i - Z-score;, i € {EM : Z-score; > 0}
weightyir; = (14)

0, else

Where the market weights weightyniverse,i are determined by free-floating market capitalization. In
every monthly rebalancing each stock i is assigned its return expectation Z-score;. After each re-
balancing, the portfolio weights weight;; ; are updated with empirical return indices®” to the next

rebalancing until this loop terminates.

2TThompson Reuters Datastream return indices for emerging equity represent the empirical stock
returns as done by the Center for Research in Security Prices (CRSP) concerning dividend payments
and stock splits.
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3.7.2.2 Descriptions of rebalancing and tilting constraints (applied values

in parentheses)

Constraint

Long-Short (130/30) This parameter determines the allocation of long
and short positions. While the former value
depicts the investment grade of the long positions
based on a theoretical 100% cash balance, the
latter corresponds to the scale of short positions.
In this tilting construction, short positions are
deducted with the same trading cost model as
long positions with respect to both sides of
monthly turnover. Additional annualized
short-selling costs are priced at conservative
30bps.

Relative Maximum Order Size Cap (300% / This parameter distinguishes cost-mitigated

100% of ADV) portfolios from their base case. This sets a limit
for the relative order sizes in the rebalancing
steps.

Initial Threshold (Top 50%) This threshold determines the lower bound for
the mixed factor exposure at portfolio
initialization. It controls the number of titles in
the initial portfolio. This constraint represents
the banding constraint from Novy-Marx and
Velikov (2018).

Rebalancing Threshold (Top 50%) Alike the initial threshold constraint, a lower
bound for the factor exposures is set for each
rebalancing step. This banding constraint
controls turnover and guides the number of
holdings in the portfolio concerning the trade-off

of diversification and return expectation.
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Constraint

Relative Minimum Order Size (10%)

Absolute Minimum Order Size (1 basis point

of portfolio size)

Absolute Minimum Holding Size (5 basis

points of portfolio size)

Absolute Maximum Holding Size (2% of

portfolio size)

This constraint manages the minimum size of
position changes of already held assets in the
rebalancing. It can be utilized to control
turnover.

Alike the relative minimum order size in absolute
terms. This constraint prohibits the factor-tilt
from generating economically insignificant orders
that would artificially raise the average holdings.
Declares the smallest permitted size of weight in
the constructed portfolio that a position might
have.

Concerning implementability and diversification,
a maximum holding constraint limits portfolio
weights to a certain fraction of the whole
portfolio size. Each asset’s total market
capitalization is additionally considered in this

constraint.
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3.7.3 Appendix C

3.7.3.1 Transaction cost model

The applied liquidity-driven cost model is drawn on the findings of Grinold and Kahn (1999) and
Frazzini et al. (2018), who found their models to be less dependent on varying market environments.
We build on the finding that the market impact of trading equities is stable concerning regime shifts.
The total costs applied in this study are composed of three components. FExecution fees and the
half bid-ask spread form the basis of this decomposition. The third and most important part is the
market impact that reflects the implementation hurdle of the illiquid emerging markets. We model

market impact with a one-dimensional square root functionality drawing on Grinold and Kahn (1999):

market impact := cost parameter - Vv%ADV (15)

ADYV denotes the short-term liquidity, calculated as average liquidity across primary and secondary
stock exchanges over the last 20 trading days. finally denotes the stock-wise order size relative to
the monthly calculated ADV. We analyze the impact of three exemplary cost levels of market impact
specified by the cost parameter (displayed in Figure 3-6). These reflect an efficient trade timing by an
institutional practitioner with a local trading desk, followed by an estimate for average trading results.
Finally, expensive trading costs are embodied by the idea of incorporating issues with EM brokers and
a possible time lag. We define the total transaction costs as a sum of fees (which we conservatively
fix at 10bps) and the empirical half bid-ask spread as explicit costs?® as well as the liquidity-driven

market impact as follows:

1
TCost .= fees+ §spread + market impact (16)

More complex cost models were also researched with respect to incorporating stock volatility and a
perfectly passive trading model. This approach reflects the costs of waiting that arise by slowly trading
towards the desired portfolio in positions of exemplary 10% of the ADV per trading day. While the

latter model mitigates the annualized transaction costs, no researched cost model distorts the results

28Execution and commission fees are negotiable and equal to over 7bps in emerging markets. These
fees cover all legal middle office activities of the sell-side and ensure the backup of all trade documen-
tation through a global custodian. These electronic backups are by law completed by carbon copies in
case of emergency.
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presented in this study. Therefore, we apply the one-dimensional market impact model concerning

simplicity as the most intuitive implementation.
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3.7.4 Appendix D

3.7.4.1 Pairwise portfolio significance testing for differences in annualized

(excess) returns, trading costs and Sharpe ratios

Due to strong serial correlations between portfolios, auto-correlation in the tiltings, and a stochastic
dependency in the portfolios, an ordinary t-test can not be applied. To test the statistical significance
of our presented evidence, we apply the following test statistic Z,, as a two-sided t-test on the return

differences for stochastically dependent, identically distributed portfolios:

7 _ VN (jix — 1)

e 2 2 (17)
VA2 — 20120102 + 6

With N degrees of freedom (#rebalancing months—2; because portfolio initialization is cost-mitigation
independent) and pu;,0; assigning the estimated annualized means and standard deviations of both

observations.

We also report the statistical significance of the Sharpe Ratio (SR) difference between two stochastically

dependent portfolios with the following test statistic from Ledoit and Wolf (2008):

VN(SR, — SR»)
Zsp = = = .
V2212 + LISES + SRS — 2R, SRapi 7]

(18)

Based on these test statistics, all hypothesis tests check the alternatives: Hy : u; = pa  (SRy = SRa),
Hy g # pa (SR; # SR2) and report the p-value to the error levels p < 0.05, p < 0.01 and p < 0.001.

To account for the auto-correlation of the tiltings, we do not just report the results of the above

hypothesis tests. Still, we perform a bootstrap that is explained as follows.

3.7.4.2 Stationary Circular Block-Bootstrapping

The hypothesis tests above are robustness-checked with a block-bootstrap to correct for auto-
correlation as researched in Efron and Tibshirani (1993). Politis and Romano (1992) proved that
randomization of the block length in the circular block-bootstrapping maintains the stationarity of
the observations in the bootstrapped samples. Therefore the reported p-values are finally calculated

as follows:
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e Calculate the Z-statistic as Z once for return- or Sharpe ratio testing

e To apply the stationary circular block-bootstrap to test Hy, transform the data so that Hy is

true.

— For return testing this transformation is given by X, =X, — i + flcombinedsample fOr both

time series.

— For sharpe ratio testing it is: X; := [Xig”’i G combinedsampie] + flcombinedsample fOr both time

series.

e The robustness-checked hypothesis test works by simulating the distribution of the Z-statistic
with block-bootstrapping under a true Hy. We do that by generating M = 10000 block-
bootstrap samples for both time series of forced length N (circular) with uniformly randomized
block-length b € {1,2, ..., L%j} to maintain stationarity. The Z-statistic is calculated for each
of the M bootstrap samples as Z;.

M=10000 >
) 1(1Z:]>)2))
M

i=1

e Now we sum =:p where I() denotes the indicator function (that equals 1
if its argument is true and 0 otherwise) to get the p-value of our hypothesis test given Hy is

true. This p-value is the reported statistic for each hypothesis test in the results section.
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4 THE BENEFITS OF MACHINE LEARNING
FOR PREDICTING STOCK LIQUIDITY IN

EMERGING EQUITY MARKETS

4.1 ABSTRACT

We research machine learning models for predicting stock liquidity in emerging equity markets based on
a broad spectrum of 190 stock and market characteristics. By exposing seasonality and reversal effects,
we evaluate the statistical advantage of machine learning predictions compared to naive estimates.
Despite a strong statistical advantage, the economic benefits in portfolios tend to be limited. However,
empirical evidence exhibits the significant benefits of the machine learning forecasts in cost-efficient

factor investing with respect to the extremes of aggressive and passive trading cost models.

JEL classification: G11; G12; G14; G15; G17.
Keywords: Interpretable Machine Learning, Data Science, Liquidity Prediction, Gradient Boosting,

Factor Investing, Portfolio Construction, Cost-Efficiency.
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4.2 Introduction

In general, systematic risk premia and factor investing are well understood, but especially in emerging
markets, their net trade-off with implementation costs remains less clear. Most studies on transaction
costs identify liquidity beneath the costs’ most essential drivers (Grinold and Kahn (1999), Lesmond
et al. (1999) and Frazzini et al. (2018)). Empirical evidence shows that the demand for trading large
order sizes relative to the stock liquidity increases the market impact. This market impact is embodied
in invisible trading costs of adverse price movements, as explained in Frazzini et al. (2018). On the
other hand, Amihud (2002) finds that liquidity risk significantly explains equity premia, especially
the small firm effect. Pastor and Stambaugh (2003), Acharya and Pedersen (2005) and Watanabe
and Watanabe (2008) also identify illiquidity as an additional risk premium and develop asset pricing
models that incorporate expected asset liquidity. This extension demonstrates the explanatory power
of liquidity risk in the cross-section of stock returns. Contrary to the practical importance, little
research has been devoted to trading costs in emerging equity markets. Lesmond (2005) examines the
costs of liquidity risk in emerging markets by explaining the high returns easily exceeding 75% p.a.
with their bid-ask spread. Despite the extensive cost modeling, studies on liquidity risk and recent
investigations on cost-efficient implementations, the trade-off between risk premia and implementation
costs in factor investing remains unclear. Especially the emerging equity markets, known as a less

liquid stock universe with a significant implementation hurdle, received little attention.

Illiquidity is broadly identified as a critical driver for implementing portfolio decisions. Therefore,
a better understanding of it and its near-term behavior is mandatory to increase the efficacy of in-
vestment strategies. Wyss (2004) ties on the risen attention on the market and stock liquidity. The
measuring and prediction approaches for stock liquidity are discussed based on a selection of Swiss
stocks. Breen et al. (2002) also studied regression models for predicting stock liquidity in the developed
US market. More recently, Cui (2021) provided a macroeconomic view on the US market liquidity
based on implications from option prices. While the research on liquidity risk mainly covers developed
markets, stock liquidity prediction in emerging countries received more attention for investment deci-
sions. However, the coverage of emerging markets stock liquidity prediction and liquidity risk primarily
focuses on single countries. Lischewski and Voronkova (2012) investigate liquidity risk in the Polish
stock market as one of the most advanced emerging markets at this time and Altay and Calgici (2019)

confirms the illiquidity risk premium for the emerging stock market of Turkey. Further, Khang (2020)
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predicts stock liquidity in the Vietnamese stock market using state-of-the-art deep learning methods.
Bae and Lee (2016) apply and compare five machine learning (ML) techniques, including Bayesian
networks, support vector machines, decision trees, neural networks, and ensemble methods on a selec-
tion of Korean manufacturing companies. Hence, predicting stock liquidity is a recent field of interest
in finance concerning the application of machine learning. Before this, the prediction of stock returns
is recently investigated by Leung (2021). Obviously, the application of ML methods for predicting
stock returns is closely related to the problem of predicting stock liquidity. This is underlined by the
successful implementation of black-box models by Mulvey and Liu (2016) in the classification of factor

regimes.

Inspired by the examination of Bae and Lee (2016), this study extends the existing literature twofold.
First, we apply ML-based liquidity prediction concerning a broad emerging markets universe and assess
the statistical advantage with various error metrics. Second, we implement the sophisticated machine
learning prediction of stock liquidity as a cost-mitigation approach for equity factor investing. Our
ML model of choice throughout this study is the Gradient Boosting Machine (GBM), which we apply
to shallow regression trees. To analyze the GBM’s black-box character, we use methods (variable
importance and partial dependence plots) from the interpretable machine learning literature. We
assume that the cost-efficiency of factor investing can be increased by reducing the exposure of stock
liquidity overestimating in portfolio decisions. Based on this methodology, we seek to answer several
research questions. The superordinate question is how to implement risk premia in emerging markets
cost-efficiently. First, we investigate whether or not it is beneficial to predict cross-sectional stock
liquidity non-naively. After replicating and extending the ideas of former studies to the whole emerging
market universe, we are interested in whether and how ML-based liquidity predictions improve or
distort portfolio characteristics. Moreover, we research the effect of the ML-based liquidity predictions
on portfolio cost-efficiency over time and with respect to two opposing trading strategies. Lastly, we

investigate the practical relevance for small and large institutional investors.

The paper proceeds as follows. The next section outlines the investment universe, a methodology for
tilted portfolio constructions, the applied machine learning model and contrasts trading cost models.
Later, the ML approach is utilized to improve factor investing strategies and is compared to a naive
estimate. In the empirical results section, we review the accuracy benefits of ML-based liquidity
prediction and finally discuss the role of the machine learning approach in this context. This section

closes with the implications of the risk-adjusted net performance of ML-predicted stock liquidity in
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emerging equity markets. The last section concludes our research.

4.3 Data and methodology

4.3.1 The emerging markets universe

To assess the relevance of ML-based stock liquidity predictions, we conducted our analysis on an
emerging markets data set?® concerning the country listings of the MSCI Emerging Markets Index3°
over the last two decades ending in December 2019. A small range of available data prior to the
millennium is omitted with respect to the quality and coverage of the liquidity data. This study
uses data from MSCI to determine the underlying companies in emerging markets and their free-
floating market capitalization. Besides MSCI, the Worldscope database from Refinitive is used for the
additional fundamental factors of value, profitability and investment. The generic factors of momentum
and low beta are calculated based on market data from Datastream (Refinitive). Further, Datastream
is also utilized for the remaining market data of return indices, liquidity, and bid-ask spreads. Referring
to the market closing of 2019 as today, this emerging markets universe consists of 26 countries®! across
the five different sub-regions. These regions include Emerging Americas, Europe, Middle East, Africa
and the Asia Pacific, of which the latter contributes to 79.35% of the emerging markets’ size. The MSCI
Emerging Markets Index’s underlying stocks are considered large caps, whereas all other stocks larger
than $10 million in market capitalization are denoted as small caps. Today, this emerging markets

universe consists of 3480 stocks summing up to $9.2 trillion free-floating market capitalization.

4.3.2 Machine learning with boosted regression trees

We use the applied machine learning model (GBM) to predict changes in stock liquidity. After com-

paring the statistical advantage of the various models researched in Bae and Lee (2016) over the whole

29In the following, the emerging markets are denoted as “EM” and also referred to as the “whole
universe”.

30https://www.msci.com/emerging-markets, last visited: 2020-09-30.

31The MSCI Emerging Markets Index consists of 26 emerging economies, including Argentina, Brazil,
Chile, China, Colombia, Czech Republic, Egypt, Greece, Hungary, India, Indonesia, Korea, Malaysia,
Mexico, Pakistan, Peru, Philippines, Poland, Qatar, Russia, Saudi Arabia, South Africa, Taiwan,
Thailand, Turkey, and the United Arab Emirates.
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emerging markets universe, we decided to implement gradient boosted regression trees as the outper-
forming method32?. We build the GBM on the weak learner class of shallow regression trees. The
virtual extension by the GBM on these decision trees is the successive splitting of the predictor space.
The iterative application of the weak learners is applied so that the residuals of the formerly fitted
model are corrected. These corrections eventually combine the weak learners into a more complex

prediction algorithm.

As with most machine learning algorithms, the GBM needs to be specified by hyperparameters to
adjust model complexity. In this case, the most critical hyperparameters are the number and depth of
the trees, the learning rate, and the minimum number of observations for each leaf. We use a specific
variation of GBM, the stochastic gradient boosting, which expands the list of relevant hyperparameters
by the number of observations and columns to sample each residual tree. In machine learning, the
tuning of a model describes searching for hyperparameters that maximize the out-of-sample prediction
performance. For tuning purposes, we also use a randomized concept of hyperparameter search over
a sufficiently large parameter space. These randomized hyperparameter vectors are evaluated on the
R-squared of the validation sets in a time series split cross-validation. The training and validation
of models are performed sequentially so that validation sets always come after training sets, never
attempting to explain the past with the future. This method’s cleaning, tuning and fitting are applied
in an expanding window fashion to predict the next month’s stock liquidity changes with the most

available data without a look-ahead bias.

The underlying data consists of the broad spectrum of 19033 firm-specific and macroeconomic indicators
completed by the response y of monthly liquidity change. Due to the non-stationarity of liquidity data
measured in currency (USD), we seek to predict the first-order liquidity changes with the GBM, which
are tested and accepted for stationarity®?. To calculate the percentage change of stock liquidity, we
construct two responses concerning two opposing trade execution approaches, which the trading cost
models reflect. These cost models are rigorously defined in the next subsection. Both change rates

are calculated based on the equal-weighted average liquidity over the past 20 business days. The first

320ur research also includes OLS regressions, the applications of LASSO, Ridge and elastic nets
over sufficiently fine tuning vectors. We further investigated the more sophisticated implementations
of neural nets, random forests and gradient boosted regression trees, of which the latter outstand
concerning out-of-sample overestimations.

33Detailed description of all implemented features and their lags in Appendix C.

34We tested the liquidity changes for stationarity with an Augmented Dickey-Fuller Test and reported
stationarity at the 0.1% level.
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variable measures the change rate to linear-weighted future daily volumes over the following business
month. The second measure reflects the change rate to the equal-weighted future liquidity over the
following 20 business days. The first approach reflects the traders’ incentive to quickly trade towards
the desired position. Here, the most extensive parts of the order might be executed in the following
days after the rebalancing. In the second approach, the equal weighting accounts for a reasonable
non-instantaneous implementation. The prediction of equal-weighted liquidity changes over the next
business month suffices for this slow trade execution. A linear weighting is not meaningful when the

trade execution is purposely delayed to mitigate the market impact.

Based on the available data, we chose the first five business years as an initial training set and therefore
constructed all portfolios starting in 2005 to omit a look-ahead bias. The cleaning and pre-processing
of the entire data set are also conducted in monthly expanding windows. For the cleaning, we apply
a MICE imputation and further apply the Yeo-Johnson power transform to make all features more
Gaussian. The main goal of the ML-based stock liquidity prediction is an accuracy improvement in
the harmful overestimates. While liquidity overestimates might hurt the efficacy of cost-mitigation
approaches or investment strategies in general, we tune the GBM respectively. By overestimating the
stocks’ future liquidity over the assumed trade duration, realized trading costs are hard to control with
implicit methods. To run less into these liquidity traps, we implement an asymmetric loss function and
fit the GBM on the first tercile of the response instead of its mean. We also add a conservative weighting
to the loss function to further focus on the problematic overestimates while keeping underestimate
errors at least as stable as possible. Here, we weigh the loss function concerning the decreasing rank

of observed average liquidity over the past business month3®.

4.3.2.1 Multi-factor Z-scoring and tilting

This study takes a focus on six common risk premia, combining the examinations of Carhart (1997),
Frazzini and Pedersen (2014) and Fama and French (2015). Here, we combine the fundamental risk
premia of Fama and French (2015) with the robust market effects found by Carhart (1997) and Frazzini
and Pedersen (2014) to demonstrate our ideas with a broadly diversified factor mix. The first factor is
the fundamental value factor researched in Basu (1977) and Rosenberg et al. (1985). The size factor

embodies another systematic risk premium and is discovered by Banz (1981). Further, two systematic

35Weighting by the inverse of observed average liquidity did not result in a meaningful forecast as
it is too extreme.
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quality factors are added. The operating profitability was researched by Haugen and Baker (1996)
and Novy-Marx (2013). The investment factor was researched by Titman et al. (2004), Cooper et
al. (2008) and Watanabe et al. (2013) and augmented our choice. Jegadeesh and Titman (1994) and
Hurst et al. (2017) researched the generic momentum factor. Lastly, Ang et al. (2006) and Frazzini
and Pedersen (2014) examine the generic low beta factor that completes our selection. Appendix A
and B explain an equal-weighted multi-factor tilt based on these six Z-scored risk factors which is
displayed in Figure 4-4. The empirical evidence presented in this examination is robust to alternative
factor definitions, different mixes and also different weighting schemes. We decided to present this mix
of six well-known factors to cover fundamental factors and market effects and apply the equal-weighted
scheme with respect to simplicity. This decision not only results in a robust factor mix that explains
several sources of risk premia but also mitigates portfolio risk by incorporating the low beta factor

from Frazzini and Pedersen (2014).

4.3.3 Applied Cost Models

Ideologically, the portfolio rebalancing happens instantaneous at every month-end. In fact, implement-
ing portfolio decisions at a monthly rebalancing take time over the following business days concerning
the investment universe, invested size and liquidity demand. While in developed markets this is mostly
a matter of one trading day, in emerging markets the trading process can take days up to weeks. This
issue is displayed in Figure 4-5. The stock liquidity over these following trading days and weeks is
unknown and therefore has to be predicted. The more accurate these liquidity predictions, the better
the implicit cost control which is regulated by the tilting constraints shown in Figure 4-4. We twofold
model the trade execution after a rebalancing step with respect to two extremes. First, we implement
a quick and expensive implementation that suffers entirely under market impact but not under the
costs of waiting to trade towards the desired position. Second, opposing the market impact model, we
implement a perfectly passive opportunity cost model. This approach assumably induces zero market
impact but slowly trades towards its goal with a low participation rate of 15% per trading day. With
daily participation of 15%, a cost-mitigation strategy of limiting trades to 300% of the observed liquid-
ity, on average, takes the entire month to rebalance. Our results are robust concerning participation
rates ranging from 5 to 20% per trading day. Rates below 5% are too low to rebalance a factor-based
strategy in time, given the illiquid structure of the emerging markets. On the other hand, participa-

tion rates above 20% do not suffice the assumption of zero market impact as such participation might
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induce considerable adverse price movements. To demonstrate the benefits of ML-based stock liquidity
predictions against the naive measure of observed liquidity for the implicit cost control, we provide
empirical evidence concerning a broad range of sensitivity analyses. These include the two cost models
and their parameters. The total costs applied in both liquidity-driven approaches are split into three
components. Execution fees and the half bid-ask spread form the basis of this decomposition. The

third component is defined by the cost model.

4.3.3.1 Aggressive Cost Model

This cost model is drawn on the findings of Grinold and Kahn (1999) and Frazzini et al. (2018).
The market impact embodies the third cost component of this model and reflects the implementation
hurdle of the illiquid emerging markets. We model the market impact costs with a one-dimensional

square root functionality drawing on Grinold and Kahn (1999):

market impactry; := cost parameter - \/ DADVy,; Vi € Trading Basketr (19)

Where T indicates the rebalancing steps of the portfolio construction ranging from 2004-12-31 to 2019-
11-30. Further, ADV denotes the linearly weighted®® liquidity average over the next business month
to calculate the realized market impact of a portfolio decision. This observed average liquidity is
calculated across primary and secondary stock exchanges. %ADV finally denotes the stock-wise order
size relative to the empirical ADV during trade execution. The empirical ADV during the trading
process is unknown at the rebalancing and therefore has to be estimated in portfolio decisions. With
this market impact model, we analyze the impact of three exemplary cost levels of market impact
specified by the cost parameter (displayed in Figure 4-2). These levels reflect an efficient trade timing
by an institutional practitioner with a local EM-based trading desk, followed by a proxy for average
trading results. Finally, expensive trading costs are embodied by the idea of incorporating issues with
EM brokers and a potential time lag. Eventually, we define the aggressive transaction costs model as
the sum of fees (which we conservatively fix at 10bps), the empirical half bid-ask spread as explicit

costs3” and the liquidity-driven market impact as follows:

36We weigh the future near-term liquidity for the realized market impact calculation in a linearly
decreasing fashion. Here, we follow the idea that the most extensive parts of a rebalancing are traded
as quickly as possible.

3"Execution and commission fees are negotiable and equal to over 7bps in emerging markets. These
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More complex market impact models were also researched with respect to incorporating stock volatility
but did not distort the results presented in this study. We apply the one-dimensional market impact

model concerning simplicity.

4.3.3.2 Passive Cost Model

The cost of waiting expresses the third cost component of the opportunity cost model. The idea and
assumption behind this passive implementation are that the daily participation rate (PR) of 15% of
available liquidity (DV) might not induce the implicit costs of market impact. Purposely delaying
an order execution might save the market impact but will postpone the execution for several days
concerning trade size and liquidity demand. This delay also occurs when liquidity is overestimated
at the rebalancing. When prices rise as expected, the induced cost of waiting arises by not fully
holding the desired position. Therefore, the opportunity costs of a portfolio decision are calculated
on a weighted3® aggregation concerning daily stock returns (ret) and daily empirical liquidity (DV)

during the trade execution:

. N order sizer; — > -, DVy 1 pr . .
opportunity costst; = exp( E In(retyr;) ( or,der si;;T —————)) Vi€ Trading Basketr
t=1 )

(21)

Where T indicates the rebalancing steps of the portfolio construction ranging from 2004-12-31 to 2019-
11-30. Further, N indicates the number of trading days in the underlying business month of trade

execution. Eventually, the total costs of this passive approach sum to:

fees cover all legal middle office activities of the sell-side and ensure the backup of all trade documen-
tation through a global custodian. These electronic backups are by law completed by carbon copies in
case of emergency.

38This weighting reflects the differences in desired and already executed parts of each portfolio
decision and therefore missed returns induced by trading slowly. In the case of negative return, the
cost of waiting is also negative and therefore benefits the portfolio. This weighting is applied to the
waiting cost and the empirical half bid-ask spread.
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We also combined both trading patterns as another robustness check and could not find a deviation

from the empirical results in the next section.

4.4 Empirical results

In this section, we utilize an improved liquidity forecast in portfolio constructions and analyze its
benefits. At first, we display its advantage by comparing several error metrics between the one-step
estimate and ML-based liquidity forecast. Further, this forecast is implemented in ex-ante cost control
of limiting order sizes relative to their underlying stocks’ liquidity expectations. This implicit approach
is a possible cost-mitigation and is beneficial in the cross-section of EM factor investing®’. The more
accurate the liquidity forecast, the more efficiently this strategy controls trading costs. We researched
that this strategy has a sweet-spot parameter in the return-to-cost trade-off concerning the invested
portfolio size. Implementing factor investing without such an implicit cost control results in illiquid
decisions that do not pay off on average. To demonstrate this in combination with improved liquidity
estimates, we compare the strict (100%ADV) and less strict (300%ADV) cost-mitigation parameters.
Both implementations are analyzed concerning the presented trading cost models and various portfolio

sizes to reflect the institutional investors’ size.

4.4.1 Naive versus boosted liquidity prediction performance

We apply the machine learning method described in the previous section to predict the (linearly-)
weighted liquidity changes over the next business month and retransform them to liquidity in USD

for an error overview. We compare the naive estimate of equal-weighted average liquidity over the

39The cost-mitigation can be understood as a liquidity tilt concerning the trade-off between illiquid-
ity premia and implementation costs. Interestingly, its net performance increase does not solely rely
on lowered trading costs. This liquidity constraint is quasi-periodically not much of a constraint at all.
While illiquidity premia are well understood in the long run, they underlie inevitable short-term cycli-
cality. Eventually, the efficacy of this cost-mitigation strategy is borne by mitigated implementation
costs and recurring liquidity premia. The empirical analysis finds its optimal parameter and largely
depends on invested portfolio size.

93



past 20 trading days with the boosted liquidity predictions concerning several error metrics. Table 4-1
summarizes this comparison over the whole universe of emerging markets from 2004-12-31 to 2019-
11-30, excluding the training set. The boosted forecast outperforms concerning its abilities to map
non-linearities and is tuned with an asymmetric and weighted loss function. The machine learning
forecast keeps the overall error and underestimates stable without any induced size bias, while harmful
overestimate errors are vastly reduced. We remark that the GBM detects reversal effects in liquidity
changes and the seasonality as displayed in Figure 4-3. The one-step estimate cannot capture this
and these effects are why the boosted forecast highly outperforms the naive expectation. Previous
studies on ML-based predictions for monthly excess returns report that past return-based predictors
were deemed most important. In our case, we can translate this into the importance of liquidity-based
predictors and confirm this as displayed in Figure 4-1. In this chart, the time-averaged percentage
variable importances are reported. Liquidity changes over various time windows and their lags are

preferably selected for the splits of the predictor space.

We can also translate another finding of previous examinations on predicting returns. While the
general importance of predictors depends on the ML method used, (short-term) reversal effects are
the most relevant features for predicting short-term liquidity changes. These features are followed by
further past liquidity-based (return-based in the previous examinations) characteristics. The ensemble
method of the GBM can fit non-linear effects. Similar to the effect of estimated regression betas from
an OLS regression, the PDPs explain the effect of the single variables on future liquidity. Besides
reversal effects on liquidity changes, we emphasize the seasonality effect of the past business year’s
market return. The general tenor of the articles on predicting subsequent cross-sectional stock returns
is that ML models are superior to traditional linear factor models. We confirm the superiority of ML-
based stock liquidity prediction compared to the best naive estimate®® of observed average liquidity.
While, in general, one-step estimates embody a strong forecast for liquidity measured in USD, ML-
based methods outstand concerning the implementation of investment strategies. The main reason
is the incapability of one-step estimates to capture reversal effects. Despite our expectations, a set

of promising features was not highly important for predicting stock liquidity changes with the GBM.

40We find that the observed stock liquidity over the past 20 business days is the most robust forecast
for the future stock liquidity over the following 20 business days. Various error metrics can confirm
this. Therefore, stock liquidity in EM equities is less determined by a mid- or long-term trend but its
cross-sectional first-order autocorrelation (monthly data) lies above 80%. Unfortunately, this already
robust and naive estimate can not capture liquidity reversal effects. This is where ML-based methods
come into play and eventually outperform.
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Media coverage and news sentiment indicators are no relevant predictors. We further investigated
the count of holidays or trade-free days in the upcoming business month. This feature is also not
relevant on a monthly view since investors seem to compensate for the trade-free days with increased
trading activity around these days. We also could not find relevance in hot-encoded features based
on the country, month, sector, or combinations of these. The importance of market and firm-specific
volatility is only of second order. Eventually, the ML-based forecast is undoubtedly more robust from
a raw statistical perspective. Therefore it is indispensable concerning its ability to be tuned to reduce
harmful liquidity overestimates (liquidity traps). It is yet unclear if this advantage also materializes in
cost-efficient portfolio constructions. To answer this, we implement the boosted liquidity estimate into
portfolio decisions with respect to the outlined cost-mitigation approach and investigate its supposed

benefits.

4.4.2 Sensitivity analysis on portfolio decisions

In the previous subsection, we find that a boosted stock liquidity prediction is highly beneficial over the
whole universe concerning the reduction of costly liquidity overestimates. Therefore, we now compare
both liquidity estimates in multiple sensitivity analyses to assess the effect of the supposedly superior
machine learning forecast. Further, these analyses are fully robustness-checked concerning time by
implementing a stationary block-bootstrapping with random block length*! to assess statistical sig-
nificance. We conduct sensitivity analyses with respect to both trade execution patterns, two proven
cost-mitigation parameters and six representative initial portfolio sizes. Successful implementation of
the boosted forecast is considered to either outperform its baseline portfolio with respect to significant
risk-adjusted net performance or at least significant excess return. Table 4-2 to Table 4-4 report the
performance statistics of all portfolio constructions in terms of the three-dimensional sensitivity anal-
ysis. Without any additional turnover constraint, all reported portfolio tiltings result in around 250%
two-sided turnover per annum. As an additional robustness check, we researched the effect of different
meaningful turnover levels, which resulted in similar findings. Here, we research all combinations of
the six ascending portfolio sizes (250 million, 500 million, 1 billion, 2.5 billion, 5 billion and 10 billion
USD), strict and less strict cost-mitigation parameters (100%ADV and 300%ADV) as well as both
opposing cost models. All portfolio tiltings investigate the empirical evidence for the boosted liquid-

ity forecasts concerning the investment period from 2004-12-31 to 2019-12-31. The smallest initial

“Detailed description in Appendix D.
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portfolio, 250 million USD invested in EM equities at 2004-12-31, reflects a small-scale institutional
investor’s potential wealth and is too small to have problems with order implementation. Therefore,
neither boosted liquidity forecasts nor cost-mitigation approaches, in general, are necessary and do not
pay off either. Just the second smallest initial portfolio size of 500 million USD invested at 2004-12-31
is large enough to benefit from the cost-mitigation strategy and also boosted liquidity forecast. The
extent to which their performance increases compared to the base strategy is empirically proven to
be scaling with portfolio size and cost level. At 1 billion USD initially invested, cost-mitigations start
to be indispensable just when the base strategy alone does not secure a significant outperformance
relative to the market (9.49% p.a.) anymore*?. At the same time, the 300%ADV implementation*
is enough to secure significant outperformance (.39% p.a.) relative to the market. With 1 billion
USD or more initially invested, 100%ADYV is necessary to generate significant alpha. At 2.5 billion
USD, the 100%ADV constraint on the base strategy still results in 9.88% net performance per annum.
While the ML-based liquidity forecast is never the crucial extension that saves the outperformance
relative to the market, after 500 million USD, it solidly generates significant alpha from 2 to 26bps
p-a. This performance increase also consistently materializes in increased Sharpe ratios. Between 1
billion and 5 billion USD invested, a small positive gross effect is induced by the liquidity constraint.
This positive effect of the aggressive trade execution is fully offset by increased implementation costs
of trading larger order volumes. Further, at 5 billion USD, the base strategy also loses its significant
risk-adjusted outperformance measured in the Sharpe ratio. At the largest initial portfolio size of 10
billion USD, the aggressively executed but cost-mitigated base strategy with boosted liquidity esti-
mates still secures roughly 1.5% alpha (15bps larger Sharpe ratio) relative to the market p.a. While
the delayed trade implementation generally preserves significant amounts of outperformance relative to
the market, after 10 billion USD this pattern is not applicable anymore in this context. On a monthly
rebalancing level, the average trade duration exceeds the number of available trading days and large
cash positions distort the factor investing strategy. Another minor limitation of this cost-mitigation
approach is an inevitable but small size tilt towards mid- and small caps. As the strategy operates as a
redistribution of liquidity demand, larger positions of liquid mid- and small caps are held with respect

to ascending portfolio size. Unfortunately, this negatively impacts the average bid-ask spread, which

42The uncapped base implementation of factor investing reaches its so-called equilibrium size at 1
billion USD invested on 2004-12-31 with only a medium cost level of an aggressive trade execution
applied.

43The 300%ADV constraint serves as ex-ante cost control. No order larger than 300% of the observed
(forecasted) stock liquidity is permitted at any rebalancing step.
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is part of the transaction costs. However, for both trade patterns, this negative effect is more than
offset by the reduced market impact or cost of waiting. Another minor downside of this approach is
giving up small parts of excess return expectation from the multi-factor mix. Fortunately, on average,
this does not dematerialize in the gross performance of the portfolio tiltings but is further offset by
lowered portfolio volatility. The lowered portfolio volatility is achieved by a highly reduced exposure

to peaks in stock liquidity demand which are regularly induced by momentum stocks.

In general, we see that the success of factor investing relies on a cost-efficient implementation. If an
institutional investor is not blessed with a local trading desk, ex-ante cost control is indispensable for
cost-efficient factor investing. Further, boosted liquidity expectations provide a statistical advantage
and materialize in additional value. This increase in wealth is empirically shown to be robust with
respect to time and increasing with invested portfolio size or cost level. In Appendix D the hypothesis
testing methodology is described to determine statistically significant differences in returns, costs and
Sharpe ratios concerning auto-correlated return series. Further, we see that even the most negligible
differences can be statistically significant due to the naturally high serial correlations between the
portfolio returns. This testing serves as the robustness check and empirically proves that the reported

statistical significances do not rely on certain sub-periods but are stable over time.

4.5 Conclusion

In this study, we investigated the success of factor investing in emerging markets concerning trading
costs and researched the impact of liquidity expectations on equity allocations. The simplest way to
successfully implement factor investing strategies lies in the cost-efficiency found at a low cost level.
Unfortunately, many reasons might inhibit investors from achieving a sufficiently small cost level in
the stock execution at EM exchanges. Therefore, alternative methods are required to control the
implementation costs. From our analysis, we can draw several conclusions. First, we successfully
implement a sophisticated machine learning prediction of stock liquidity as additional cost-mitigation.
Second, we better understand the impact of several stock and market characteristics on stock liquidity
changes. Further, this knowledge is utilized to tune the model to run less often into costly liquidity
traps. Third, we achieve that the GBM outperforms the best naive liquidity estimate and other ML-
based models in forecasting the liquidity concerning crucial error metrics. Finally, the boosted liquidity

forecast does also add significant value in cost-efficient implementations of factor investing in emerging
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equity markets across various sizes of investors. With this examination, we close a gap in literature
by delivering a cross-sectional model for stock liquidity prediction in emerging equity markets based
on machine learning. Further, we extend the existing research by utilizing this model to increase the
net performance of factor investing approaches. The main limitation of our study is induced by a
sufficiently large trading database covering emerging equity markets. All investigation was carried
out with respect to sensitivity analyses. This limitation opens an exciting avenue for further research.
Given such a trading database over any specific factor-based strategy, all results presented in this study
can be checked for robustness by accurately fitted cost models. Further research can be conducted
with respect to rebalancing higher frequency strategies and liquidity predictions or more long-term

liquidity predictions as additional portfolio constraint.
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4.6 List of Charts and Tables

Figure 4-1: Time-averaged percentage variable importances.

This chart visualizes the normalized feature importances of the GBM on predicting stock
liquidity changes over the following month. The feature importances displayed are equal-
weighted over all estimation steps of the expanding window application.
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Figure 4-2: Aggressive cost parameters.

This chart displays three cost levels of market impact applied in this paper. The three
parameters are scaling factors for the square root functionality of order sizes relative
to liquidity on market impact.
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Figure 4-3: Partial dependence plots.
These charts visualize the features’ partial dependencies learned by the GBM on predicting
stock liquidity changes over the following month. Reversal effects of liquidity-based
features dominate with respect to the feature importances.
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Figure 4-4: Overview of factor-based portfolio tilting.
This graphic visualizes the combination of multiple risk premia to a multi-factor mix for the

portfolio tiling scheme to obtain desired portfolio positions.
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Figure 4-5: Overview of the trading process.
This graphic visualizes the approximation of trading under market friction after a

portfolio rebalancing.
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Table 4-1: Overview of the statistical error metrics in the liquidity prediction problem
from 2004-12-31 to 2019-12-31. Absolute metrics are reported in million USD. The
predictions based on the equal-weighted future daily volumes (for the passive trade
execution) perform analogously.

One-step linearly-weighted
ADV20d forecast boosted forecast

RMSE 14.255 11.135
RMSE (Mcap-weighted) 51.982 51.395
RMSE (weighted by inverted ranks of observed liquidity) 5.434 4.293
RMSE on overestimates 13.771 6.081
RMSE on overestimates (Mcap-weighted) 40.106 22.550
RMSE on overestimates (...) 3.675 1.455
RMSE on underestimates 14.799 13.085
RMSE on underestimates (Mcap-weighted) 60.141 57.440
RMSE on underestimates (...) 6.820 5.234

Symmetric MAPE 41.587% 37.534%

Symmetric MAPE (Mcap-weighted) 35.076% 36.371%

Symmetric MAPE (...) 44.618% 41.408%
MAD 4.238 3.067

MAD (Mcap-weighted) 26.688 25.624
MAD (...) 1.439 1.076

MASE 100% 72.412%

MASE (Mcap-weighted) 100% 96.047%

MASE (...) 100% 74.832%
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4.7 Appendix

4.7.1 Appendix A

4.7.1.1 Descriptions of factors

Factor

Momentum Logarithmic price momentum is calculated as the
sentiment of the stock price 12 months ago up to
the previous month’s end price based on
Jegadeesh and Titman (1994). The so-called
12X1 momentum omits the last month
concerning the reversal effect for long-term
investments. It is the supreme example of a
generic market factor and a superior long-term
alpha driver in the cross-section of sectors and
regions. The persistence of this factor can be
reasoned by the behavioral traits of investors
that follow strong-performing stocks. These
investors’ attention leads to a crowding effect
that fosters the price sentiment until a
macroeconomic event, earnings miss, or other
incident stops the trend. In this paper, the price

momentum is determined as

Close;—
Moml12X1; := log(m (23)

pClose; 1
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Factor

Value

Beta

The value factor as researched in Rosenberg et al.
(1985) denotes a common book-to-price multiple
that compares an asset’s book value relative to
the actual market price. An immense
book-to-price value represents a cheap stock and
therefore assigns a buy signal concerning factor
investing approaches. The origin of this
fundamental risk premium dates back to the
investigations of Benjamin Graham and David L.
Dodd and has behavioral-based characteristics
beneath its systematic and fundamental nature.
A possible explanation of the persistence of this
systematic risk premium lies in the investors’
optimism about bargains and pessimistic
overreactions, often resulting in bargains when
poor financials are reported.

The low beta factor investigated by Ang et al.
(2006) and Frazzini and Pedersen (2014)
describes how stock returns co-vary with market
returns. Empirical research proves that low beta
stocks explain cross-sectional premia in the long
run and, by construction, serve as a cushion in

drawdowns. In this study,

cov(Ty, Tuni)

Beta =
e 02(Tuni)

(24)

is calculated with weekly data over the last 250
business days and the cov() is exponentially

weighted with a 125 business days half-life.
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Factor

Size

Operating Profit (Profitability)

Total Assets Growth (Investment)

The size factor researched in Banz (1981) shows
that smaller stocks in market capitalization
explain cross-sectional excess return as an
investor’s compensation for taking additional
risk. The efficacy of the size factor can be
economically explained as a systematic risk
premium based on the volatile nature and higher
risk of bankruptcy of small caps. This
examination calculates the size factor as the
logarithmic free-floating market capitalization.
Operating profit (commonly known as EBIT)
denotes the profitability of the company’s
business before interest and taxes and is widely
applied as another quality factor. The operating
expenses are subtracted from the gross profit to
determine operating profit. Haugen and Baker
(1996) and Novy-Marx (2013) find an additional
risk premium with this factor. Financially
healthy companies tend to continue their good
business in the future, which economically
justifies this risk factor.

This risk factor measures the growth of the total
assets to forecast future excess return as a second
quality factor. Titman et al. (2004), Cooper et
al. (2008) and Watanabe et al. (2013) find that
stocks with lower recent total assets growth tend
to outperform the market. In this paper, we
compute the growth of the total assets over the

last 500 business days.
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4.7.2 Appendix B

4.7.2.1 Multi-factor tilting construction methodology

Concerning single factor cyclicality, we seek to diversify the excess return expectation to maintain more
persistent premia. With the six Z-scored factors depicted in Appendix A, we build an equal-weighted
Z-score. The stock positions in the initial portfolio (at ¢y) as well as all the following rebalancing
weights (at t > tg) are constructed by screening the positive Z-scores (Z-score; > 0) from the multi-
factor mix. To calculate portfolio weights for each stock ¢, the universe weights weightyniverse,i are

tilted under several constraints as follows:

weightyniverse,i - Z-score;, i € {EM : Z-score; > 0}
weightyir; = (25)

0, else

Where the market weights weightyniverse,i are determined by free-floating market capitalization. In
every monthly rebalancing, each stock i is assigned its return expectation Z-score;. After each re-
balancing, the portfolio weights weight;; ; are updated with empirical return indices?* to the next

rebalancing until this loop terminates.

“Thompson Reuters Datastream return indices for emerging equity represent the empirical stock
returns as done by the Center for Research in Security Prices (CRSP) concerning dividend payments
and stock splits.
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4.7.2.2 Descriptions of rebalancing and tilting constraints (applied values

in parentheses)

Constraint Description

Relative Maximum Order Size Cap (300% / This parameter distinguishes cost-mitigated

100% of ADV) portfolios from their base case. This sets a limit
for the relative order sizes in the rebalancing
steps.

Initial Threshold (Top 50%) This threshold determines the lower bound for
the mixed factor exposure at portfolio
initialization. It controls the number of titles in
the initial portfolio. This constraint represents
the banding constraint from Novy-Marx and
Velikov (2018).

Rebalancing Threshold (Top 50%) Alike the initial threshold constraint, a lower
bound for the factor exposures is set for each
rebalancing step. This banding constraint
controls turnover and guides the number of
holdings in the portfolio concerning the trade-off
of diversification and return expectation.

Relative Minimum Order Size (10%) This constraint manages the minimum size of
position changes of already held assets in the
rebalancing. It can be utilized to control
turnover.

Absolute Minimum Order Size (1 basis point  Alike the relative minimum order size in absolute

of portfolio size) terms. This constraint prohibits the factor-tilt
from generating economically insignificant orders

that would artificially raise the average holdings.

Absolute Minimum Holding Size (5 basis Declares the smallest permitted size of weight in
points of portfolio size) the constructed portfolio that a position might
have.
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Constraint

Description

Absolute Maximum Holding Size (2% of

portfolio size)

With respect to implementability and
diversification, a maximum holding constraint
limits portfolio weights to a certain fraction of
the whole portfolio size. Each asset’s total
market capitalization is additionally considered

in this constraint.
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4.7.3 Appendix C

4.7.3.1 Overview of features applied in machine learning modeling

Feature

Origin

Description

ADV 20d change
ADV 60d change
ADV 126d change

ADV 252d change
ADV 20d to Mcap

ADV 20d to Mcap change

TRET20d

TRET60d

TRET126d

TRET252d

12X1 momentum factor

historical vola 20d

historical vola 20d change

historical vola 60d

historical vola 60d change

historical vola 126d

liquidity-based
liquidity-based
liquidity-based

liquidity-based

liquidity-based

liquidity-based

return-based

return-based

return-based

return-based

Jegadeesh and Titman (1994)

volatility-based

volatility-based

volatility-based

volatility-based

volatility-based

112

previous 20d liquidity change
+ 12 lags

previous 60d liquidity change
previous 126d liquidity change
previous 252d liquidity change
previous 20d liquidity relative
to market capitalization 4+ 12
lags

change of previous 20d
liquidity relative to market
capitalization + 12 lags
previous 20d total return + 12
lags

previous 60d total return
previous 126d total return
previous 256d total return
price momentum

previous 20d volatility (daily
data) + 12 lags

change of previous 20d
volatility (daily data) + 12 lags
previous 60d volatility (daily
data)

change of previous 60d
volatility (daily data)
previous 126d volatility (daily
data)



Feature

Origin

Description

historical vola 126d change

historical vola 252d

historical vola 252d change

BMRET20d

BMRET60d

BMRET126d

BMRET252d

historical vola 20d

hist. market vola 20d change

hist. market vola 60d

hist. market vola 60d change

hist. market vola 126d

hist. market vola 126d

change

hist. market vola 252d

hist. market vola 252d

change

volatility-based

volatility-based

volatility-based

return-based

return-based

return-based

return-based

volatility-based

volatility-based

volatility-based

volatility-based

volatility-based

volatility-based

volatility-based

volatility-based

113

change of previous 126d
volatility (daily data)
previous 252d volatility (daily
data)

change of previous 252d
volatility (daily data)
previous 20d market return
(Mcap-weighted) + 12 lags
previous 60d market return
(Mcap-weighted)

previous 126d market return
(Mcap-weighted)

previous 252d market return
(Mcap-weighted)

previous 20d volatility (daily
data) 4+ 12 lags

change of previous 20d market
volatility (daily data) + 12 lags
previous 60d market volatility
(daily data)

change of previous 60d market
volatility (daily data)
previous 126d market volatility
(daily data)

change of previous 126d
market volatility (daily data)
previous 252d volatility (daily
data)

change of previous 252d

market volatility (daily data)



Feature

Origin

Description

market liquidity dispersion

20d

market liquidity dispersion

20d change

market liquidity 20d change

market liquidity 60d change

market liquidity 126d change

market liquidity 252d change

media coverage

news sentiment score

upcoming holidays

country

sector

month

country_ sector
country__month

sector _month

liquidity-based

liquidity-based

liquidity-based

liquidity-based

liquidity-based

liquidity-based

news-based

news-based

calendar-based

hot-encoded
hot-encoded
hot-encoded
hot-encoded
hot-encoded

hot-encoded

variation coeflicient of 20d
average liquidity in currency
(USD) + 12 lags

change of variation coefficient
of 20d average liquidity in
currency (USD) + 12 lags
change of previous 20d market
liquidity (Mcap-weighted) + 12
lags

change of previous 60d market
liquidity (Mcap-weighted)
change of previous 126d market
liquidity (Mcap-weighted)
change of previous 252d market
liquidity (Mcap-weighted)
linearly-weighted count of
media references until the end
of the business month (logged)
news sentiment relative to the
average market level
(linearly-weighted) count of
occurrences of closed stock
exchanges

factorial feature

factorial feature

factorial feature

factorial feature

factorial feature

factorial feature
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All referenced change rates are calculated monthly. The upcoming holidays feature is implemented

linearly-weighted for the aggressive trade model and equal-weighted for the opportunity cost model.
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4.7.4 Appendix D

4.7.4.1 Pairwise portfolio significance testing for differences in annualized

(excess) returns, trading costs and Sharpe ratios

Due to serial correlations between portfolios and auto-correlation in the tiltings and a stochastic
dependency in the portfolios, an ordinary t-test can not be applied. To test the statistical significance
of our presented evidence, we apply the following test statistic Z, as a one-sided t-test on the return

differences for stochastically dependent, identically distributed portfolios:

7 _ VN (jix — 1)

e 2 2 (26)
VA2 — 20120102 + 6

With N degrees of freedom (#rebalancing months—2; because portfolio initialization is cost-mitigation
independent) and pu;,0; assigning the estimated annualized means and standard deviations of both

observations.

We also report the statistical significance of the Sharpe Ratio (SR) difference between two stochastically

dependent portfolios with the following test statistic from Ledoit and Wolf (2008):

VN(SR, — SR»)
Zsp = = = .
V2212 + LISES + SRS — 2R, SRapi 7]

(27)

Based on these test statistics, all hypothesis tests check the alternatives: Hy : u; = pa  (SRy = SRa),
Hy g # pa (SR; # SR2) and report the p-value to the error levels p < 0.05, p < 0.01 and p < 0.001.

To additionally account for and correct the auto-correlation of the tiltings, we do not just report the

results of the above hypothesis tests but perform a bootstrap explained as follows.

4.7.4.2 Stationary Circular Block-Bootstrapping

The hypothesis tests above are robustness-checked with a block-bootstrap to correct for auto-
correlation as researched in Efron and Tibshirani (1993). Politis and Romano (1992) proved that
randomization of the block length in the circular block-bootstrapping maintains the stationarity of
the observations in the bootstrapped samples. Therefore the reported p-values are finally calculated

as follows:
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e Calculate the Z-statistic as Z once for return- or Sharpe ratio testing

e To apply the stationary circular block-bootstrap to test Hy, transform the data so that Hy is

true.

— For return testing this transformation is given by X, =X, — i + flcombinedsample fOr both

time series.

. . . > X —is A ~
— For Sharpe ratio testing it is: X; := | Z(ﬂ_’“ G combinedsample] + fecombinedsample for both

time series.

e The robustness-checked hypothesis test works by simulating the distribution of the Z-statistic
with block-bootstrapping under a true Hy. We do that by generating M = 10000 block-
bootstrap samples for both time series of forced length N (circular) with uniformly randomized
block-length b € {1,2, ..., L%j} to maintain stationarity. The Z-statistic is calculated for each
of the M bootstrap samples as Z;.

M=10000 >
SIME0 11212 2))
M

=:p where I() denotes the indicator function (that equals 1

e Now we sum
if its argument is true and 0 otherwise) to get the p-value of our hypothesis test given Hy is

true. This p-value is the reported statistic for each hypothesis test in the results section.

117



5 GENERAL CONCLUSION

In general, many aspects of factor investing are thoroughly examined. This dissertation focuses on its
implementability in the context of illiquid emerging equity markets and extends the research by pre-
senting a set of novel improvements regarding its cost-efficiency. It contributes to the gaps in literature
as follows. At first, this dissertation ties on the existing research and combines the often separately
investigated fields of return and liquidity prediction relative to simple cost models to understand better
the trade-off between portfolio return and implementation costs in emerging equity markets. Second,
a simple cost-mitigation technique is examined concerning cost level and invested portfolio size. Third,
one of the most exciting findings of this dissertation is the demonstration of factor timing in emerging
equity markets. I again emphasize that the entanglement of developed and emerging markets can be
utilized by machine learning in portfolio construction. When examining developed markets alone, there
is less variety and interaction in macroeconomic data and factor timing remains controversial. Fourth,
the prediction of stock liquidity changes is another prime example of machine learning applications
that can be utilized to increase portfolio cost-efficiency. This dissertation has a few limitations. Recent
trends of quantitative easing and factor crowding seem to harm the performance of risk factors in the
cross-section. Literature on breaches of risk factors is emerged but is not in consensus on whether these
strategies persist in the future. Also, all empirical analyses are carried out by strict assumptions on
the cost models and their sensitivity analyses. An extensive trading database of a unique live strategy
might be the most exciting extension of this dissertation. Lastly and overall concluding, this disserta-
tion repetitively emphasizes the importance of trading costs to implement factor investing in emerging
equity markets successfully. While long-term risk premia are well-examined, a thoughtful execution or
cost-mitigation approach decides the underlying strategy’s success. Today, this might be the only skill
a manager that beats her peers possesses. Therefore, the increasing investors’ attention to emerging
equity markets can be justified under the assumption of a possible low cost level. However, while
finding a novel source of alpha is increasingly difficult, there is another path to increase the net of cost
performance of factor investing. The investigations carried out in this dissertation do not provide an
additional source of alpha but show how on-paper returns can often be largely preserved by implicitly
controlling the cost component. So, if one does not implement a factor strategy mindlessly, what you

see might be close to what you get.
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