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ABSTRACT

When factor investing is applied to emerging equity markets, due to the universe’s illiq-

uid structure, the market friction must be considered. Risk-adjusted on-paper returns of

such strategies look particularly appealing, but significant implementation hurdles stand

in their path. While factor investing has been well-examined in literature, research gaps

remain. This dissertation undertakes three comprehensive studies to resolve existing

research gaps concerning portfolio cost-e�ciency regarding the trade-o� between return

and implementation costs in emerging equity markets. Various approaches for further

improvement of this trade-o� extend the research.

The first study demonstrates a factor-based strategy in emerging markets and provides

a better understanding of the above trade-o�. Multiple sensitivity analyses present the

benefits of a first cost-mitigation approach. The second study further seeks to under-

stand equity portfolios’ return and cost dynamics in a macroeconomic context. Leading

indicators from developed and emerging markets are utilized to forecast the near-term

factor regime. This prediction is adaptively implemented into the portfolios, adds a

timing component, and highly increases the cost-e�ciency. The third study extends

the e�cacy of the researched cost-mitigation strategy by implementing the benefits of

a stock liquidity prediction based on state-of-the-art machine learning models.
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ZUSAMMENFASSUNG

Bei der Anwendung von Factor Investing auf die Aktienmärkte der Emerging Mar-

kets müssen Marktfriktionen aufgrund der illiquiden Struktur des Universums beson-

ders berücksichtigt werden. Die risikobereinigten Renditen solcher Strategien sehen

auf dem Papier besonders ansprechend aus, doch stehen ihnen erhebliche Umsetzung-

shürden im Weg. Obwohl Factor Investing in der Literatur gut untersucht wurde,

gibt es immer noch Forschungslücken. In dieser Dissertation werden drei umfassende

Studien durchgeführt, um die bestehenden Forschungslücken in Bezug auf die Kosten-

e�zienz von Aktienportfolios zu schließen. Hierzu wird der Trade-o� zwischen Rendite

und Implementierungskosten der Portfolien in Emerging Markets sowie verschiedene

Verbesserungsansätze untersucht.

Die erste Studie demonstriert eine faktorbasierte Strategie in Emerging Markets und

liefert ein besseres Verständnis des oben genannten Trade-o�s. Mehrere Sensitivität-

sanalysen zeigen die Vorteile eines ersten Ansatzes zur Kostenreduzierung auf. Die

zweite Studie zielt darauf ab, die Rendite- und Kostendynamik von Aktienportfolios in

einem makroökonomischen Kontext besser zu verstehen. Frühindikatoren aus Industrie-

und Schwellenländern werden zur Vorhersage des kurzfristigen Faktorregimes herange-

zogen. Diese Vorhersage wird adaptiv in die Portfolios implementiert, fügt eine Timing-

Komponente hinzu und erhöht die Kostene�zienz erheblich. Die dritte Studie erweit-

ert die Wirksamkeit der untersuchten Strategie zur Kostenreduzierung, indem sie die

Vorteile einer auf modernen maschinellen Lernmodellen basierenden Vorhersage der

Aktienliquidität einsetzt.
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1 GENERAL INTRODUCTION

When it comes to investing, the triangle of return, risk and liquidity has to be considered

to determine one’s preferred investment vehicle. This dissertation focuses on factor

investing in emerging equity markets and seeks to break down the dynamics of the

triangle in this universe. Factor investing is a well-examined field of asset pricing

that can combine the expectations on various risk premia (Fama and French (1992),

Fama and French (2015) and Carhart (1997)) and achieve outstanding performance.

Due to their promising risk-reward profile, the emerging stock markets attract more

and more quantitative investors’ attention (Davis et al. (2010)). On the other hand,

it is well-known that this universe is less liquid (Lesmond (2005) and Bekaert et al.

(2007)) compared to developed stock markets such as the United States. Therefore, it

is unclear if this increased attention is justified in terms of performance net of market

friction. While, in general, emerging stock markets have been broadly examined for

factor investing (Achour et al. (1998), Kargin (2002) and Bruner et al. (2003)), research

gaps remain for this universe regarding the dynamics of the investment triangle. This

dissertation undertakes three comprehensive studies to resolve existing research gaps

and further advance research regarding the cost-e�ciency of factor investing in this

less liquid universe. The trade-o� between return and implementation costs of factor

investing is the main subject of investigation throughout all three examinations. Each

study focuses on this from a di�erent angle and contributes to improving net of cost

portfolio performance. In the following, I provide a brief overview of the previous

research on cost-e�cient factor investing and highlight to what extent the dissertation

contributes to it.

Since the investigation of the CAPM (Sharpe (1964)), asset pricing literature has been

growing concerning quantitative applications such as factor investing. Fundamental risk
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premia as value (Basu (1977) and Banz (1981)) and quality (Haugen and Baker (1996)

and Titman et al. (2004)), as well as well-understood market e�ects as price momentum

(Jegadeesh and Titman (1994)), are known to cross-sectionally explain stock returns

through all markets. While most studies on factor investing focus on the developed US

stock market, just recent examinations focus on emerging stock markets (Bekaert and

Harvey (1997) and Hart et al. (2003)). In general, emerging markets received less atten-

tion in all fields of asset pricing as transaction cost modeling (Lesmond et al. (2002) and

Frazzini et al. (2018)) and cost-mitigation techniques for rebalancing equity portfolios

with an underlying factor investing strategy (Donohue and Yip (2003), Garleanu and

Pedersen (2013) and Novy-Marx and Velikov (2018)). With the investors’ attention on

the growth potential of emerging equity markets, studies also focus on factor investing

with respect to transaction costs in this universe (Lesmond (2005)). However, a broad

investigation of the return-to-cost trade-o� in emerging equity markets based on the

well-examined risk premia and suitable cost models is missing. The sparse literature

on cost modeling is reasoned by the lack of a su�ciently large trading dataset of this

immature universe. As the trade-o� between stock returns and implementation costs

is not well understood, few results towards cost-mitigation techniques (Novy-Marx and

Velikov (2015)) have been carried out. In addition to these gaps, factor timing as a

controversial topic in the US stock market (Asness et al. (2000), Tibbs et al. (2008)

and Asness et al. (2018)) is only slightly researched (Desrosiers et al. (2006)) and,

to my best knowledge and belief, not examined concerning the cost-e�ciency of equity

portfolios in emerging markets. On the other side, liquidity forecasting has been carried

out by various studies in emerging stock markets (Bae and Lee (2016), Khang (2020)

and Cui (2021)), but a cross-sectional investigation of the whole universe with machine

learning approaches is still missing. Further, such sophisticated liquidity predictions

are not examined in addition to a cost-e�cient factor investing approach in emerging

2



equity markets.

It comes down to understanding the dynamics of the investment triangle to su�ciently

study the cost-e�ciency of factor investing. This dissertation does not contribute to

novel risk premia but combines its contributions to the above research gaps and pro-

vides a comprehensive study on the main research question of the trade-o� between

risk premia and implementation costs. The groundwork for better understanding the

main subject is carried out in the first study, while the following two examinations con-

secutively extend and improve its findings. This dissertation not only contributes to

the above gaps in literature, including factor timing and liquidity prediction in emerg-

ing equity markets but also extends the research by combining the findings to increase

portfolio cost-e�ciency further. Hence, the trade-o� between return and costs is also

examined in a macroeconomic framework as well as from an additional microeconomic

perspective. Here, changes in liquidity are more precisely predicted and successfully

implemented into the quantitative investment process of factor investing.

3



Table 1-1: Key characteristics of the three studies

Study Cost-mitigation of fac-
tor investing in emerg-
ing equity markets

Macroeconomic influ-
ence on cost-e�cient
factor investing in
emerging equity
markets

The benefits of ma-
chine learning for pre-
dicting stock liquid-
ity in emerging equity
markets

Aim &
scope

Examines the trade-
o� between return and
costs of equity portfo-
lio constructions and
presents a simple cost-
mitigation.

Puts the first study’s
results in a macroeco-
nomic context and uti-
lizes found dependen-
cies in a factor timing
framework.

Models the changes
of short-term stock
liquidity and further
increases the e�cacy
of the cost-mitigation
approach.

Research
design

Empirical analysis of
stock market data of
emerging countries
from 2000-2020.

Empirical analysis of
stock market data of
emerging countries
from 2000-2020 and
macroeconomic time
series from the US
market as well as
emerging markets.

Empirical analysis of
stock market data of
emerging countries
from 2000-2020.

Next, I provide a summary of the three studies and their results. Table 1-1 provides an

overview of the studies. It outlines for each study the respective aim & scope and its

research design.

The first study demonstrates factor investing in emerging equity markets with a sim-

ple and equal-weighted mix of six common risk premia (Carhart (1997), Frazzini and

Pedersen (2014) and Fama and French (2015)). The on-paper returns of this strategy

are compared to the net of costs performance by applying a liquidity-driven cost model

leaned on (Grinold and Kahn (1999) and Frazzini et al. (2018)). Therefore, this ex-

amination focuses on a better understanding of the trade-o� between portfolio return

and implementation costs of factor investing in emerging equity markets under a set of

sensitivity analyses and robustness checks. Further, the empirical results are challenged

with a cost-mitigation technique following (Novy-Marx and Velikov (2018) and Frazzini

4



et al. (2018)) to increase the cost-e�ciency of portfolios in this universe.

The emerging equity markets are researched in terms of the MSCI Emerging Markets

Index with underlying stock data from 1999-12-31 to 2019-12-31. The workhorse of

portfolio construction throughout this study and the dissertation is a simple portfo-

lio tilting. This methodology incorporates excess return expectations of risk premia

into the portfolios. The cost-mitigation approach is analyzed on top of this portfolio

construction. It implicitly constrains the size of any trade by its liquidity demand.

Therefore, ex-ante implementation costs can be quantified and considered concerning

the underlying cost model and observed liquidity. The study finds that on-paper re-

turns largely deviate from realized net performance regarding the invested portfolio

size. Much of this spread can be preserved by the cost-mitigation, which outperforms

for most cost levels and invested sizes. Eventually, successful factor investing relies on

a skilled trading desk reflected by a low cost level or on a sophisticated strategy that

mitigates implementation costs without decreasing the on-paper returns. This study

contributes to a better understanding of the return to costs trade-o� and strategies that

improve factor investing implementability in emerging equity markets.

The second study extends the findings on the trade-o� between return and costs in a

macroeconomic framework. Based on the methodology of the first study, this examina-

tion is carried out to identify the macroeconomic influence on risk premia in emerging

equity markets. Further, these findings are incorporated into portfolio decisions to in-

crease cost-e�ciency with three adaptive factor timings. Factor timing in developed

markets (Asness et al. (2000) and Asness et al. (2018)) is controversial but still a young

field for emerging equity markets (Bilson et al. (2001) and Desrosiers et al. (2006)).

The MSCI Emerging Markets Index defines the universe with underlying stock data

from 1999-12-31 to 2019-12-31. A set of promising macroeconomic time series from
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emerging and developed markets, such as the fear-index VIX (Copeland and Copeland

(1999) and Boscaljon et al. (2011)) and dollar strength (Druck and Mariscal (2018)),

completes the underlying data. In a first step, the macroeconomic data is preselected

based on its explainability of near-term factor premia. Then, the factor regime is

modeled with this data in binary classification (Guidolin and Timmermann (2007),

Bae et al. (2013) and Mulvey and Liu (2016)). The machine learning approaches

of logistic regression and the gradient boosted machine are compared against a one-

step estimate. Lastly, the regime forecasts are incorporated into portfolio construction

with three di�erent approaches to exploit macroeconomic information and increase cost-

e�ciency. The study finds that machine learning approaches highly outperform the one-

step prediction of factor regimes. I emphasize that the entanglement between developed

and emerging markets certainly contributes to the performance of this prediction. The

focus is not to miss a crash regime regarding the portfolio’s cost-e�ciency. Both machine

learning classifications’ hyperparameters are tuned accordingly to obtain the best recall

on crash regimes. Given the tuned machine learning models, especially the GBM, the

macroeconomic time series mostly provide su�cient information to not miss eventual

factor underperformance in the following month. Eventually, this study does not only

demonstrate that factor timing in emerging markets is possible. Further, incorporating

the regime forecast into portfolio construction increases the net performance of the

underlying portfolios.

Finally, the third study predicts near-term stock liquidity (Wyss (2004), Khang (2020)).

Due to the frequent rebalancing of factor portfolios and a potential implementation

lag, predicting future liquidity is essential to improve portfolio implementability. In

an illiquid market, the liquidity risk is an enormous burden to investors as unexpected

shortfalls of stock liquidity enlarge the implementation hurdle. Emerging equity mar-

kets are known to be less liquid, and a better understanding of cross-sectional liquidity
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changes is remaining. A few studies have already applied and compared machine learn-

ing models to predict stock liquidity only in a few emerging markets (Bae and Lee

(2016), Khang (2020) and Cui (2021)).

The emerging equity markets are researched in terms of the MSCI Emerging Mar-

kets Index with underlying stock data from 1999-12-31 to 2019-12-31. Based on the

methodologies of the first study, a range of machine learning applications and tunings

on a broad spectrum of market and stock features is carried out to predict near-term

changes in stock liquidity. An expanding window tune of a GBM regression outper-

forms a naïve one-step liquidity forecast by partly over 50% regarding the underlying

error metric. Several liquidity change reversals and a seasonality e�ect are the essential

features of this model. This study provides a cross-sectional improvement for predicting

stock liquidity in emerging markets. Eventually, the cost-e�ciency of the underlying

portfolios is significantly increased on top of the cost-mitigation e�ects.

The following dissertation is structured in five chapters, including this general intro-

duction. Chapters two, three, and four present the three studies outlined in Table 1-1.

Each chapter consists of an individual introduction, a section on the theoretical back-

ground, a section on the applied methodology and data, a results section, and a section

to conclude the results. Chapter five draws a general conclusion. Finally, chapter six

presents the references cited throughout the dissertation.
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2 COST-MITIGATION OF FACTOR INVEST-

ING IN EMERGING EQUITY MARKETS

2.1 ABSTRACT

Expensive trading costs of factor investing in emerging equity markets influence optimal

portfolio decisions. A simple cost-mitigation approach increases net performance based

on a total cost estimate of factor-based portfolio tilts. Exploiting the structure of market

impact, we indirectly control the costs by limiting order sizes relative to their underlying

stocks’ short-term liquidity. This cost-e�cient strategy yields better implementability

and lower-priced turnover while a possible negative e�ect on gross performance is more

than o�set.

JEL classification: G11; G12; G15.

Keywords: Investments; Asset Pricing; Trading Costs; Market Impact; Portfolio Construction; Cost-

E�ciency.
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2.2 Introduction

Investment decisions based on systematic risk premia provide a more transparent alternative to active

management that underlies high idiosyncratic risk. Meanwhile, various multi-factor asset pricing

models serve to understand the stock market better. Foremost, Fama and French (1992) demonstrate

the Arbitrage Pricing Theory and explain the stock market with a 3-factor-model extending the CAPM

with the fundamental size and value risk factors, earlier investigated by Banz (1981) for size and

Rosenberg et al. (1985) for value. Later, Carhart (1997) extents the Fama and French’s (1992) 3-

factor-model, adding the prominent momentum factor. In Fama and French (2015), the two quality

factors of investment and profitability are added as further systematic risk premia, which were rejected

earlier concerning their robustness.

At the beginning of factor investing research, transaction costs were paid little attention. Contem-

porary research, still focusing on developed markets and mainly covering US stocks, presents several

studies that identify the e�ect of transaction costs on factor-based equity portfolios with di�erent out-

comes. On the one hand, Lesmond et al. (2002), who investigate the transaction costs of momentum-

based portfolios, find that net premia vanish for this strategy after trading costs. On the other hand,

Korajzczyk and Sadka (2005), Novy-Marx and Velikov (2015), Ratcli�e et al. (2017) and Patton and

Weller (2019), who also focus on the net performance of momentum-based strategies, find di�erent

equilibrium sizes of the factor-based excess returns. Another disparity in the implementation cost liter-

ature is the shape of the underlying cost function that di�ers between concave, linear and convex. The

intentionally biased data selection can explain this disparity. Lesmond et al. (2002) report high-cost

findings based on strong overweights in small- and micro caps. This examination applies the study of

Jegadeesh and Titman (1994), who do not consider implementation hurdles for extensive gross spread

price momentum results.

In contrast, Frazzini et al. (2018) limit their results to low-cost algorithmic trading approaches in

liquid developed markets. Extrapolating these findings to less e�cient universes or average trading

e�orts might result in biased findings. However, most studies, including Frazzini et al. (2018), identify

liquidity as the most significant driver of market impact and an essential dimension for successfully

implementing factor-based strategies. An active strategy’s total costs are commission fees, bid-ask

spreads and market impact. Various papers cover market impact modeling, including Loeb (1983),

Kyle (1985), Hasbrouck (1991) and Keim and Madhavan (1996). Frazzini et al. (2018) report the
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impact of crucial model drivers (most importantly liquidity, followed by market capitalization, the

idiosyncratic volatility of a firm’s equity return and finally, variables that represent the varying market

environment) on the market impact in developed markets based on their extensive trading database.

Several examinations covering market impact find this implementation hurdle increasing with a strat-

egy’s investment size and liquidity demand. Empirical evidence agrees that the demand for trading

large order sizes relative to the liquidity level increases market impact as invisible trading costs of

adverse price movements.

Further, Lesmond (2005) researches the costs of liquidity risk in emerging markets by explaining

the high returns easily exceeding 75% p.a. with their bid-ask spread. Against this, illiquidity is

an additional risk factor researched by Pastor and Stambaugh (2003), Acharya and Pedersen (2005)

and Watanabe and Watanabe (2008), who develop asset pricing models incorporating expected asset

liquidity. Amihud (2002) finds that liquidity risk also significantly explains equity premia, especially the

small firm e�ect. These studies identify the explanatory power of liquidity risk in the cross-section of

stock returns and expose its uncertain e�ect on cost-e�cient factor investing. Based on these findings,

Donohue and Yip (2003), Garleanu and Pedersen (2013), Frazzini et al. (2018) and Novy-Marx and

Velikov (2018) find optimal portfolio decisions in developed markets concerning transaction costs.

Albeit the disparity of equilibrium portfolio sizes of factor-based excess returns and cost functions,

literature agrees that transaction costs distort optimal portfolio decisions derived from factor investing

strategies. Almgren and Chriss (2000) find cost-e�cient strategies by identifying permanent and

temporary market impact. Garleanu and Pedersen (2013) and Frazzini et al. (2018) find dynamic

portfolio policies obtained by constrained optimizations and improve net factor premia. Novy-Marx

and Velikov (2018) resume three common cost-mitigations in developed markets and compare their

benefits. Despite the extensive cost modeling, studies on liquidity risk and recent investigations on

cost-e�cient implementations, the trade-o� between risk premia and implementation costs in factor

investing remains unclear. Especially the emerging equity markets, known as a less liquid stock universe

with a significant implementation hurdle, received little attention.

Our work closely relates to Frazzini et al. (2018) but aims to understand emerging equity markets

better. With recent progress regarding trading cost models and cost-e�cient factor investing, most

examinations focus on the liquid US stock market and other developed markets. This paper extends the

existing literature in two ways. First, we investigate the net premia of factor investing in the less liquid

emerging equity markets. Hence, we report the impact of a one-dimensionally dynamic cost model of
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three exemplary cost levels concerning portfolio size. In this approach, we provide a sensitivity analysis

of implementation costs by constructing portfolios that do not rely on a specific trading pattern nor

result in overweights in small- or micro caps. Second, we research the trade-o� between risk premia and

transaction costs of factor investing in emerging markets. This approach applies an active rebalancing

strategy based on well-known risk factors to assess cost- and turnover e�ciency. In our investigation

of the e�cient implementation of fundamental and generic factors, we use a liquidity-driven market

impact model based on Grinold and Kahn (1999) and Frazzini et al. (2018). Following and extending

the ideas of Almgren and Chriss (2000), Frazzini et al. (2018) and Novy-Marx and Velikov (2018), a

cost-e�cient rebalancing strategy is presented. This cost-mitigation strategy seeks to limit the relative

order sizes by a cap parameter in each rebalancing step concerning the underlying stocks’ short-term

liquidity. Therefore, transaction costs are treated as another quantitative factor. Doing so leads to

cost-e�cient performance.

The paper proceeds as follows. The next section describes the underlying market environment and

reflects all applied methodologies. Here, the market impact as the cost model’s most prominent com-

ponent is introduced based on three levels to provide sensitivity analysis. Furthermore, this section

defines the methodologies for the multi-factor mix and portfolio tilting. The empirical results sec-

tion outlines cost-ine�cient portfolio performances concerning various investment periods. Further,

the cost-mitigation approach and its e�ect are presented. Moreover, we report a sensitivity analysis

concerning the portfolio size and more robustness checks to assess the return-to-cost trade-o�. This

section closes with the cost-mitigation’s implications on risk-adjusted performance. The last section

concludes the research.

2.3 Data and methodology

2.3.1 The emerging markets universe

We research the emerging markets universe1 in terms of the countries listed in the MSCI Emerging

Markets Index2 over the last two decades ending in December 2019. Before the millennium, a small

range of available data was omitted concerning the quality and coverage of the liquidity data. This

1In the following, the emerging markets are denoted as “EM” and also referred to as the “whole
universe”.

2https://www.msci.com/emerging-markets, last visited: 2020-09-30.
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study uses data from MSCI to determine the underlying companies in emerging markets and their

free-floating market capitalization. Besides MSCI, the Worldscope database from Refinitive is used

for the fundamental value, profitability and investment factors. The generic momentum and low beta

factors are calculated based on market data from Datastream (Refinitive). Further, Datastream is

utilized for most market data such as return indices, liquidity and bid-ask spreads. Referring to the

market closing of 2019 as today, this emerging markets universe consists of 26 countries3 across the

five di�erent sub-regions of Emerging Americas, Europe, Middle East, Africa and the Asia Pacific, of

which the latter contributes to 79.35% of the emerging markets’ size.

In the following, the stocks associated with the MSCI Emerging Markets Index will be referred to as

large caps. In contrast, remaining stocks larger than $10 million in market capitalization are denoted

as small caps. Large- and small caps together complete the whole universe researched in this study.

Today, this emerging markets universe consists of 3480 stocks summing up to $9.2 trillion free-floating

market capitalization. These $9.2 trillion represent 15.1% of the developed4 and emerging equity’s

free-floating market capitalization with trending growth potential5. At year-end 1999, the free-floating

market capitalization of the emerging markets stocks was summing up to $1.5 trillion, of which around

$1 trillion were related to large caps divided across 761 stocks. Back then, the universe consisted of 1209

assets and the 761 large caps aggregated roughly two-thirds of the universe’s market capitalization.

At year-end 2019, the number of emerging large caps grew to 1406 constituents, covering $7.2 trillion

market capitalization measured in free-floating stocks. Today, these 1406 emerging markets’ large

caps grew in their share up to 78.3% of the market capitalization. The remainder of 21.7% of the

3The MSCI Emerging Markets Index consists of 26 emerging economies, including Argentina, Brazil,
Chile, China, Colombia, Czech Republic, Egypt, Greece, Hungary, India, Indonesia, Korea, Malaysia,
Mexico, Pakistan, Peru, Philippines, Poland, Qatar, Russia, Saudi Arabia, South Africa, Taiwan,
Thailand, Turkey, and the United Arab Emirates.

4The developed world universe consists of all countries listed in the MSCI World Index, augmented
with the small caps larger than $10 million in market capitalization in each listed country. The devel-
oped universe, excluding frontier- and emerging markets, lists the following 23 countries: Australia,
Austria, Belgium, Canada, Denmark, Finland, France, Germany, Hong Kong, Ireland, Israel, Italy,
Japan, Netherlands, New Zealand, Norway, Portugal, Singapore, Spain, Sweden, Switzerland, United
Kingdom, United States.

5Today, the equity market capitalization of emerging markets in the world’s investable stock mar-
kets (excluding frontier markets) aggregates to 15.1%. This share almost tripled and is constantly
growing from 5.4% at year-end 1999. The recent growth of the emerging stock markets is reported
with 14.5% at year-end 2018, 13.9% at year-end 2017 and 12.7% of all non-frontier stock universes’
market capitalization at year-end 2016. For reference, less than 1 billion people, or approximately
15% of the world’s population, live in a developed markets country but developed stock markets still
account for around 85% stock market capitalization. (“http://www.ashmoregroup.com/sites/default/
files/article-docs/MC_10%20May18_2.pdf”, last visited: 2020-09-30).
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market capitalization is divided across 2074 small caps that sum up to around $2 trillion. This

composition reflects the trends in the emerging market environment. Although the number of small

caps (quadrupled over the last two decades) significantly outnumbers large caps today, their relative

market capitalization in the universe dropped by over 11 percentage points compared to the year-

end 1999 level. In Figure 2-1 the number of constituents in the emerging universe, also divided into

large- and small caps, is reported. This chart shows that large caps only doubled over the last two

decades while small caps quadrupled. Further, we compare the emerging market environment with

the developed world over the last two decades. The developed world’s small caps captured only a

fifth (while emerging markets’ small caps captured a third) of their universe’s market capitalization in

year-end 1999. Today, the developed small caps market capitalization only aggregate to 13.5% (while

emerging markets small caps still aggregate to 21.7%), unveiling the same trend of dominating large

caps in the developed stock markets. Additionally, Figure 2-2 provides the “lifetime” distribution of

the stocks concerning their size class over the 240 observation months. This chart displays that, on

average small caps keep in their size class less often than large caps for any given duration over the

last two decades. Noting that stocks might change their size class during the observation months, this

chart reports the fraction of stocks that survived a given time percentile concerning their size class.

The universe counts 7531 unique assets, of which 1053 (13.9%) persist for less than a year on the stock

market (5%-percentile). Only 223 (2.96%) of these stocks survive the whole two decades, and only

22.8% of the universe is investable for at least 120 months (50% lifetime). From 6846 unique small

caps, only four stocks stay in this size class over the full-time span and the remaining 6842 either

left the market or are grown into large caps. Comparably, 124 of 2703 unique large caps keep their

large-cap status over the 20 years. Another 95 stocks that shift their size class survive the two decades

on the EM stock market. From the 6846 unique small caps, more than a third (2018 stocks) have been

downgraded from or upgraded to the large caps at least once in the two decades.

2.3.2 Transaction costs model

We need to apply a reasonable metric for the total transaction costs to calculate the trade-o� between

gross premia and implementation costs in emerging markets. The market impact model is the essential

component of the total transaction costs and reflects the implementation hurdle of the illiquid emerging
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universe6. Our study does not rely on a specific trading pattern by providing a sensitivity analysis of

the market impact. We reflect the market impact costs with a simple square root cost model leaned

on Grinold and Kahn (1999) and Frazzini et al. (2018):

market impact := cost parameter ·
Ô

%ADV (1)

ADV denotes the short-term liquidity calculated as average across primary and secondary stock ex-

changes over the last 20 trading days. Therefore, %ADV denotes the stock-wise order size relative

to the monthly calculated ADV . We analyze the three cost levels of market impact, specified by the

cost parameter. Here, we reflect an e�cient trading pattern of an institutional practitioner with a local

trading desk, followed by a suggestion of average trading results. Lastly, we reflect an expensive cost

level by the idea of incorporating issues with EM brokers and a potential time lag. In a recent study,

Frazzini et al. (2018) apply a market impact model to their US trading data. This paper’s reported

relative trade size is limited to below 15%. This low fraction occurs due to the liquid US stock market

and an e�cient trading pattern. Hence, no large relative order sizes that might occur from monthly

portfolio decisions are included. Following the cost approach of this examination and transferring it

to emerging markets, we understand the market impact of rebalancing equity to be mainly driven

by liquidity demand (relative order size in %ADV ). Finally, we define the total transaction costs as

follows:

TCost := fees + 1
2spread + market impact (2)

Execution fees7 are comparably small, while the half bid-ask spread can also be expensive in emerging

markets, albeit its general decline after the decimalization of the stock tickers. Referring to Figure 2-4,

we display the empirical spread data over the last two decades. A declining trend over the last 20 years

is observable. Figure 2-3 indicates the three cost parameters (low, medium, high costs) of variable

market impact. However, the actual impact of transaction costs of each portfolio crucially depends
6Emerging markets stocks, in general, are considered to be executed more expensive than developed

markets stocks. Besides the lower market liquidity, the time shift between emerging and developed
regions can be an additional hurdle for institutional and individual investors.

7Execution and commissions fees are negotiable and sum up to over 7bps in emerging markets.
These fees cover all legal middle o�ce activities of the sell-side and ensure the backup of all trade
documentation through a global custodian. These electronic backups are by law completed by carbon
copies in case of emergency.
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on its size. Furthermore, Almgren and Chriss (2000) research this implementation hurdle of the stock

markets by incorporating trading costs that eventually lead to a distorted but cost-e�cient portfolio.

In this sense, many naive implementations of risk factors might result in high gross premia but fail a

successful implementation as exemplary reported in Lesmond et al. (2002). We also researched more

complex cost models concerning the e�ect of stock volatility and a perfectly passive trading model.

This approach reflects the costs of waiting that arise by slowly trading towards the desired portfolio

in positions of exemplary 10% of the ADV per trading day. While the latter model mitigates the

annualized transaction costs, no researched cost model distorts the results presented in this study.

Therefore, we apply the one-dimensional market impact model concerning simplicity as the most

intuitive implementation. The following section presents a Z-scoring based on six risk factors and a

portfolio tilting methodology.

2.3.3 Multi-factor Z-scoring

Based on the asset pricing models of Carhart (1997), Frazzini and Pedersen (2014) and Fama and

French (2015), we research tilt portfolios concerning a mix of six well-known equity factors8. We

include the generic e�ects of momentum and low beta and the four fundamental risk factors, value,

size, profitability and investment. All these six factors9 are based on sound groundwork. We seek to

diversify the factor premia and maintain a more persistent performance by equal-weighted mixing of

the six signals. The empirical evidence presented in this examination is robust to alternative factor

definitions, di�erent mixes and also di�erent weighting schemes. We decide to present this mix of six

factors to cover fundamental factors and market e�ects and calculate the equal-weighted scheme with

respect to simplicity.

8A detailed description of the six factors and their calculations is reported in Appendix A.
9The fundamental value factor was researched in Basu (1977) and Rosenberg et al. (1985). The size

factor is also a systematic risk premium discovered in Banz (1981). Jegadeesh and Titman (1994) and
Hurst et al. (2017) researched the generic momentum factor. The operating profitability was researched
by Haugen and Baker (1996) and Novy-Marx (2013) and is another systematic risk premium and the
investment factor found in Titman et al. (2004), Cooper et al. (2008) and Watanabe et al. (2013).
Ang et al. (2006) and Frazzini and Pedersen (2014) examined the generic low beta factor.

15



2.3.4 Portfolio construction methodology

We apply a factor-tilt portfolio construction as a value-weighted method based on the market capital-

ization of free-floating stock. This value-weighted approach ensures no strong overweight in small- and

micro caps arise. The stock positions in the initial portfolio (at t0) as well as all the following rebal-

ancing weights (at t > t0) are constructed by screening the positive Z-scores (Z-scorei > 0) from the

multi-factor mix. To calculate portfolio weights for each stock i, the universe weights weightuniverse,i

are tilted under several constraints10 with respect to the following equation:

weighttilt,i :=

Y
__]

__[

weightuniverse,i · Z-scorei, ’i œ {EM : Z-scorei > 0}

0, else
(3)

Where the universe weights weightuniverse,i are determined by free-floating market capitalization.

Each stock i is assigned its factor-based return expectation Z-scorei, obtained by the equal-weighted

mix of six Z-scores in every monthly rebalancing step. After each rebalancing the portfolio weights

weighttilt,i are updated with empirical return indices11. This loop continues until the last rebalancing

month of 2019-11-29. Later on, this tilting (denoted as “standard” or “uncapped” tilt) is further

constrained by the cost-mitigation methodology.

2.4 Empirical results

2.4.1 Net performance

Before implementing the cost-mitigation, this subsection provides a net performance analysis of the

tilting construction in emerging equity markets. The illustrations of factor premia in emerging markets

are displayed in the upper charts of Figure 2-5 - Figure 2-8. The setting in these four charts builds

the foundation of our analysis and is split concerning the investment period to investigate time trends.

The initial portfolio size for these periods is chosen heuristically concerning the rising market liquidity

and desired comparability. The upper chart of Figure 2-5 displays the factor premia of the uncapped

10A detailed description of all (rebalancing) constraints is reported in Appendix B.
11Thompson Reuters Datastream return indices for emerging equity represent the empirical stock

returns as done by the Center for Research in Security Prices (CRSP) concerning dividend payments
and stock splits.
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tilt over the last two decades. While its gross performance is higher than the universe’s or large caps’

return, most excess returns vanish with a medium cost level. The upper chart of Figure 2-6 displays the

returns over the last decade. Here, the factor-based tilts even underperform the universe net of costs.

The upper chart of Figure 2-7 shows similar results with even more considerable underperformance

relative to the universe and large caps over the last five years. The factor premia lost much of their

magnitude in the trend of the last two decades. Hence, in the upper chart of Figure 2-8, significant

factor premia in emerging markets persist over the first decade after the millennium. Finally, the tilt

construction charts display that the gross factor premia in emerging markets have been prominent in

this century’s first decade but lost most of their potential in current market environments. Especially

with this decay in factor premia, the need for a cost-e�cient implementation rises. Based on Almgren

and Chriss (2000) and Novy-Marx and Velikov (2018), we present a cost-mitigation strategy to assess

the trade-o� between gross factor premia and transaction costs in the emerging stock markets. By

applying this strategy to the above factor-tilts, we report a thorough analysis of its e�ects.

2.4.2 Cost-mitigation strategy

This section reports the impact of the cost-mitigation strategy on the uncapped tilting portfolios. We

examine the additional cost-mitigation constraint based on gross and net factor premia insights to im-

prove its return-to-cost trade-o�. We accomplish that by indirectly considering the transaction costs

by adding a liquidity constraint to the tilt construction. While the trade execution is treated as entirely

exogenous to the monthly portfolio decisions, we implement the market impact function endogenously

into the tilting construction. This constraint limits order sizes to exploit the near-term liquidity expec-

tation. Therefore, the total transaction costs are mitigated while expensive turnover is re-distributed

concerning su�ciently liquid stocks. The portfolio objective is to maximize the net performance with-

out distorting risk. Eventually, this comes at the cost of lowered return expectation (measured in

average portfolio ex-ante Z-score) and, therefore, possibly lowered gross performance. However, the

strategy is cost-e�cient, while the uncapped tilting maximizes the ex-ante return expectation with-

out considering costs. Keeping all portfolio- and rebalancing constraints equal, various cost-mitigated

portfolios are compared to their uncapped tilts and the universe concerning (risk-adjusted) perfor-

mance. The more recent study of Novy-Marx and Velikov (2018) claims that there is no arbitrage

opportunity in harvesting factor premia in developed markets. Factor premia’s statistically significant

net performance improvement is reportedly based on higher risk exposure. Novy-Marx and Velikov
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(2018) report statistically equal Sharpe ratios for factor-based strategies against the universe. We also

find mostly statistically insignificant Sharpe ratios of risk premia in recent years. However, improved

factor tilts, particularly cost-mitigated portfolios and low-cost implementations, clearly show statisti-

cally significant (risk-adjusted) returns against the universe and uncapped tilts. Further, we display

the cost-mitigated performances of the factor-tilts in the lower charts of Figure 2-5 - Figure 2-8. These

four tilts are constructed by constraining the relative order size in each rebalancing to a limit of 100%

of the near-term ADV (100%ADV ). All these portfolios show increased net performance in comparison

to the upper charts’ performance of uncapped tilts. Due to lowered turnover and e�ciently lowered

costs, the cost-mitigation o�sets losses in gross performance. In Figure 2-5 the cost-mitigation alone

results in a significant excess return of around 2% p.a. after costs. Over the last ten years, the net

underperformance of over 1.5% relative to the large caps can almost be fully recovered in Figure 2-6.

Over the last five years, in Figure 2-7, around 2.5% of the net underperformance is recovered by the

cap parameter of 100 %ADV. In the lower chart of Figure 2-8, the cost-mitigation outperforms its un-

capped tilt by almost 1.5% annualized return after costs (at medium cost level). We remark that the

naive ADV expectation of predicting liquidity in the trade execution by its current level is a model as-

sumption. Nonetheless, we apply the cost model concerning the liquidity level after portfolio decisions

with perfect foresight. The quality of the ADV expectation relies on this naive forecast. However, the

monthly first-order auto-correlation of ADV (no overlap due to the ADV window size) is significantly

large. Even in the cross-section of di�erent size classes, the Pearson auto-correlation ranges from 70

to 90% concerning the time periods. Eventually, the cost-mitigation implicitly controls and mitigates

expensive turnover. The strategy results in more cost-e�cient implementations by applying a suitable

order size limit (100%ADV in the above scenarios) concerning the investment size.

2.4.3 Sensitivity analysis

In this subsection, the e�ect of the cost-mitigation strategy is analyzed in more detail. The intended

improvement in the return-to-cost trade-o� seeks to determine net performance e�ciency concerning

portfolio size. By applying the cost-mitigation strategy, we increase the (risk-adjusted) net premia of

portfolios in emerging markets. The charts of Figure 2-9 - Figure 2-12 report the gross and net perfor-

mances of several cost-mitigations against their uncapped tilts concerning ascending initial portfolio

sizes (log-scaled x-axis). Figure 2-9 displays the performances over the last two decades and reveals a

sorted picture. No gross performance is lost with cost-mitigated tilts for small initial portfolio sizes.

18



For initial portfolio sizes above $250 million, increasing parts of the gross performance are sacrificed for

most cap parameters. This negative e�ect is more than o�set by most strategies and cost levels. The

loss in gross performance is more considerable for strict cap parameters (e.g., for limiting order sizes by

50% of the ADV, in the portfolios denoted as “TradeCap050”). The stricter cap parameters eventually

outperform the uncapped tilt at smaller portfolio sizes at a hefty cost level. For larger portfolio sizes,

more soft constraints like cap parameter 200% of ADV outperform the uncapped tilt concerning the

capacity limits of strict implementations. In Figure 2-10, there is almost no adverse e�ect on gross

performance and almost every cap parameter outperforms the uncapped tilt even concerning the low

cost level. More strict cap parameters stand out over this period, especially for large portfolio sizes or

high costs. With lower factor premia, the portfolios displayed in Figure 2-11 are less sorted over the

last five years. However, cost-mitigation strategies outperform the expensive uncapped tilt with rising

cost levels and portfolio size. In the market environment with significant factor premia, as seen in

Figure 2-12 after the millennium, the uncapped tilt outperforms the cost-mitigated strategies concern-

ing gross performance. While the strict cap parameters can not increase the net performance, more

soft cap parameters can outperform the uncapped tilt at least at a medium cost level. Summing up

these results, we often see an inevitable gross performance loss induced by the additional short-term

liquidity constraint in many tilt portfolios. Nonetheless, with ascending portfolio size, cost level, or

both, a cost-mitigation strategy is found to outperform the uncapped tilt in each investment period.

Eventually, determining a cross-sectional optimal strategy parameter is impossible but depends on

investment size, cost level and market conditions. We can further conclude the empirical evidence that

the cost-mitigation strategy shows increasing profitability with higher cost levels, portfolio sizes, or

lower risk premia.

To research the e�ect of the cost-mitigation on further portfolio characteristics, Table 2-1, Table 2-2

and Table 2-3 exemplary report a thorough performance analysis and descriptive statistics on the

four environments. Table 2-1 shows that across all periods, fractions of the excess return expectation

(denoted as ex-ante factor Z-score) are sacrificed in the cost-mitigation. Therefore, this e�ect is in

line with the extent of the cost reduction and is larger for strict cap parameters. Table 2-1 also

reports the significance in (risk-adjusted) performance di�erences between any cost-mitigation against

the uncapped tilt. Appendix C describes the applied hypothesis testing methodology to determine

statistically significant di�erences in returns and Sharpe ratios. Even small di�erences can easily be

statistically significant due to the high serial correlation between the portfolio tilts. Table 2-1 confirms
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that for each declared investment period and cost level, at least one cost-mitigation significantly

outperforms the uncapped tilt’s (risk-adjusted) performance. In Table 2-2 other statistics are presented

to better understand the cap parameters’ e�cacy. We see that more strict cap parameters lead to a

broader diversification in average holdings. This e�ect is mainly a�ecting small caps. With more

strict cost-mitigations, the two-sided turnover shrinks while limiting the expensive trades. This e�ect,

in general, is similar between large- and small caps in the tilted portfolios. For the 20-year and the

10-year periods after the millennium, strict cost-mitigations improve the average position size held in

the portfolio relative to its short-term ADV. This portfolio liquidity improvement is reversed for the

latest 10- and 5-year periods. Unfortunately, the average portfolio liquidity relative to the universe

liquidity worsens for the most strict cap parameters. This negative e�ect peaks for the first 10-year

period after the millennium between the uncapped tilt and cap parameter 50 with a 16 percentage

points di�erence in portfolio liquidity. Nonetheless, the (risk-adjusted) net performance improvement

is substantial for these tilts at each cost level. Finally, Table 2-2 reports the average order size of the

cost-mitigations and uncapped tilt relative to the short-term liquidity and it is clear that the strict

cost-mitigations yield a certainly improved implementability. The “capped trades” statistic shows how

many total trades in each portfolio are a�ected by the cost-mitigations on average per rebalancing.

Table 2-3 reports each cost-mitigation’s return and Sharpe ratio significance against the universe. The

portfolios over the last two decades and the first decade after the millennium outperform the universe

significantly. This increase in Sharpe ratio has been much weaker over the last 10 and 5 years. The

portfolio tilts often underperform concerning the cost level. For the 5-year period, only the most strict

cap parameter outperforms the universe, and the return di�erences are insignificant for any cost level.

This picture again reflects the observed decline in factor premia. The 10-year period portfolios must

be strictly cost-mitigated to outperform the universe significantly.

2.4.4 Robustness checks

To obtain robustness-checked results for the performance of the cost-mitigation and to smooth the

path dependencies of any initial portfolio, we provide robust statistics by constructing portfolios on a

monthly rolling basis. Due to high serial correlations in the constructed portfolios and path dependency

to their initial portfolio, geometric means over all possible portfolios (1-month rollings) of di�erent

initial dates confirm the overall e�ciency of the cost-mitigation strategy. We do not want the results

to be conditioned by the market environment or return expectations of the initial portfolio. Therefore,
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this robustness check corrects for all path dependencies. Hence, we update the monthly rolling initial

portfolio sizes by the previous starting month’s performance. Table 2-4 reports the (risk-adjusted)

excess return significance of cost-mitigated tilts against the uncapped tilts concerning the rolling

construction. All return and Sharpe ratio di�erences are statistically significant concerning many

sampled rebalancing months and often high serial correlations. Table 2-5 reports the (risk-adjusted)

excess return significance of cost-mitigated portfolios against their universe concerning the rolling

construction. Cap parameter 100%ADV emphasizes the statistically significant excess returns against

uncapped tilts and the universe for various investment sizes. With the rolling portfolios over the last

20 years, 100%ADV outperforms the universe by 2.5% (the uncapped tilt by around 1%) p.a. with a

significantly higher Sharpe ratio of .96 against 0.66 (.88) at only medium cost level.

2.5 Conclusion

While illiquidity can be understood as a long-term factor that causes cyclical near-term risk premia,

it is also crucial for transaction costs. We studied this trade-o� concerning gross factor premia over

various periods. From our analysis, we can draw several conclusions. First, we find it possible to

construct factor-based equity tilt portfolios with positive net premia in emerging markets over the last

two decades and sub-periods. Second, we see that the high risk premia of factor-tilts in emerging equity

markets have vanished in recent years. Therefore, a successful factor-based strategy is often determined

by an e�cient implementation (cost-mitigation or low cost level). Third, with increasing portfolio size,

fractions of short-term portfolio liquidity and excess return expectation are sacrificed. Fortunately,

the negative e�ect on the expected excess return and, eventually, on gross performance is more than

o�set. Finally, we show that the cost-mitigation improves the (risk-adjusted) net performance of the

factor-tilts but can only partially preserve vanished risk premia. A cost-e�cient implementation is

often the critical component to outperform the market when the uncapped factor strategy solely does

not.

As an alternative or addition to an e�cient trading pattern, this cost-mitigation approach allocates

cost-e�cient decisions by incorporating trading costs and limiting expensive turnover. Further, the

strategy has certain portfolio size limitations concerning the market environment and cost-mitigation

parameters. Before reaching this capacity limit, the e�cacy of the cost-mitigation is increasing con-

cerning rising investment sizes and cost levels. Further investigation will focus on the associations
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between factor investing, cost-mitigation strategies and macroeconomic influences. We researched

that risk premia are cyclical in the near term and assume that a macro-adaptive approach might

further increase cost-e�ciency.
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2.6 List of charts and tables

Figure 2-1: Time series of constituents in the emerging markets universe
This chart reports three time series based on monthly data of the number of
constituents with respect to the whole universe, large- and small caps.
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Figure 2-2: Distribution of the lifetime of emerging markets stocks
As we find 7531 individual stocks in our analysis of the last two decades, this chart
reports the relative lifetime distributions based on monthly data of the three size
classifications. The relative fraction of the size class enduring this percentile is
assigned over the percentiles of the stock lifetime (e.g., the 10% percentile denotes a
lifetime of 24 months or less).

Figure 2-3: Transaction costs square root model
This chart displays the three cost levels of market impact applied in this paper. The
three parameters are scaling factors for the square root functionality of order sizes
relative to liquidity.
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Figure 2-4: Time series statistics of spread data
This chart reports six time series statistics of the emerging markets’ positive spread
data in bps based on daily data across all stocks.

25



Figure 2-5: These charts report the performance (medium cost level applied) of the
factor-based tilt portfolios with $2 billion initial portfolio size over the last two
decades. The upper chart displays the uncapped tilt with 295.98% two-sided turnover
p.a. The lower charts display the cost-mitigated strategy with order size limiting
parameter set to 100% of ADV (190.90% two-sided turnover p.a.).
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Figure 2-6: These charts report the performance (medium cost level applied) of the
factor-based tilt portfolios with $5 billion initial portfolio size over the last decade.
The upper chart displays the uncapped tilt with 289.46% two-sided turnover p.a. The
lower charts display the cost-mitigated strategy with order size limiting parameter set
to 100% of ADV (250.18% two-sided turnover p.a.).
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Figure 2-7: These charts report the performance (medium cost level applied) of the
factor-based tilt portfolios with $7.5 billion initial portfolio size over the five years.
The upper chart displays the uncapped tilt with 215.12% two-sided turnover p.a. The
lower charts display the cost-mitigated strategy with order size limiting parameter set
to 100% of ADV (202.23% two-sided turnover p.a.).
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Figure 2-8: These charts report the performance (medium cost level applied) of the
factor-based tilt portfolios with $2 billion initial portfolio size over the first decade
only. The upper chart displays the uncapped tilt with 305.90% two-sided turnover
p.a. The lower charts display the cost-mitigated strategy with order size limiting
parameter set to 100% of ADV (208.21% two-sided turnover p.a.).
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Figure 2-9: These charts report the gross and net performance of various
cost-mitigation strategy limitings from 1999-12-31 to 2019-11-29 with respect to initial
portfolio size and level of the trading cost model. The base case labeled as
"Uncapped" is indicated with a dotted line and a ceased line indicates the reached
capacity level of that strategy with respect to the market environment.

Gross Performance Net Performance

(Low cost level)

Net Performance

(Medium cost level)

Net Performance

(High cost level)
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Figure 2-10: These charts report the gross and net performance of various
cost-mitigation strategy limitings from 2009-12-31 to 2019-11-29 with respect to initial
portfolio size and level of the trading cost model. The base case labeled as
"Uncapped" is indicated with a dotted line and a ceased line indicates the reached
capacity level of that strategy with respect to the market environment.

Gross Performance Net Performance

(Low cost level)

Net Performance

(Medium cost level)

Net Performance

(High cost level)
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Figure 2-11: These charts report the gross and net performance of various
cost-mitigation strategy limitings from 2014-12-31 to 2019-11-29 with respect to initial
portfolio size and level of the trading cost model. The base case labeled as
"Uncapped" is indicated with a dotted line and a ceased line indicates the reached
capacity level of that strategy with respect to the market environment.

Gross Performance Net Performance

(Low cost level)

Net Performance

(Medium cost level)

Net Performance

(High cost level)
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Figure 2-12: These charts report the gross and net performance of various
cost-mitigation strategy limitings from 1999-12-31 to 2009-11-23 with respect to initial
portfolio size and level of the trading cost model. The base case labeled as
"Uncapped" is indicated with a dotted line and a ceased line indicates the reached
capacity level of that strategy with respect to the market environment.

Gross Performance Net Performance

(Low cost level)

Net Performance

(Medium cost level)

Net Performance

(High cost level)
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2.7 Appendix

2.7.1 Appendix A

2.7.1.1 Descriptions of factors

Factor

Momentum Logarithmic price momentum is calculated as the

sentiment of the stock price 12 months ago up to

the previous month’s end price based on

Jegadeesh and Titman (1994). The so-called

12X1 momentum omits the last month

concerning the reversal e�ect for long-term

investments. It is the supreme example of a

generic market factor and a superior long-term

alpha driver in the cross-section of sectors and

regions. The persistence of this factor can be

reasoned by the behavioral traits of investors

that follow strong-performing stocks. These

investors’ attention leads to a crowding e�ect

that fosters the price sentiment until a

macroeconomic event, earnings miss, or other

incident stops the trend. In this paper, the price

momentum is determined as

Mom12X1t := log(pCloset≠12
pCloset≠1

) (4)
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Factor

Value As researched in Rosenberg et al. (1985), the

value factor denotes a common book-to-price

multiple that compares an asset’s book value to

the actual market price. An immense

book-to-price value represents a cheap stock and

therefore assigns a buy signal with respect to

factor investing approaches. The origin of this

fundamental risk premium dates back to the

investigations of Benjamin Graham and David L.

Dodd and has behavioral-based characteristics

beneath its systematic and fundamental nature.

A possible explanation of the persistence of this

systematic risk premium lies in the investors’

optimism about bargains and pessimistic

overreactions, often resulting in bargains when

poor financials are reported.

Beta The low beta factor investigated by Ang et al.

(2006) and Frazzini and Pedersen (2014)

describes how stock returns co-vary with market

returns. Empirical research proves that low beta

stocks explain cross-sectional premia in the long

run and, by construction, serve as a cushion in

drawdowns. In this study,

Beta := cov(ri, runi)
‡2(runi)

(5)

is calculated with weekly data over the last 250

business days and the cov() is exponentially

weighted with a 125 business days half-life.
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Factor

Size The size factor researched in Banz (1981) shows

that smaller stocks in market capitalization

explain cross-sectional excess return as an

investor’s compensation for taking additional

risk. The e�cacy of the size factor can be

economically explained as a systematic risk

premium based on the volatile nature and higher

risk of bankruptcy of small caps. This

examination calculates the size factor as the

logarithmic free-floating market capitalization.

Operating Profit (Profitability) Operating profit (commonly known as EBIT)

denotes the profitability of the company’s

business before interest and taxes and is widely

applied as another quality factor. To determine

operating profit, the operating expenses are

subtracted from the gross profit. Haugen and

Baker (1996) and Novy-Marx (2013) find an

additional risk premium with this factor.

Financially healthy companies tend to continue

their good business in the future. Therefore,

economically justifies this risk factor.

Total Assets Growth (Investment) This risk factor measures the growth of the total

assets to forecast future excess return as a second

quality factor. Titman et al. (2004), Cooper et

al. (2008) and Watanabe et al. (2013) find that

stocks with lower recent total assets growth tend

to outperform the market. In this paper, we

compute the growth of the total assets over the

last 500 business days.
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2.7.2 Appendix B

2.7.2.1 Descriptions of rebalancing and tilting constraints (applied values
in parentheses)

In the following table, all applied constraints are listed. The first constraint listed is the essential

additional constraint that defines the cost-mitigation strategy. While all tilt-portfolios are equally

initialized, all cost-mitigated portfolios hold this additional constraint in all time steps t>0.

Constraint

Relative Maximum Order Size Cap

(25%-300% of ADV)

This parameter distinguishes cost-mitigated

portfolios from their base case. This sets a limit

for the relative order sizes in the rebalancing

steps.

Initial Threshold (Top 50%) This threshold determines the lower bound for

the mixed factor exposure at portfolio

initialization. It controls the number of titles in

the initial portfolio. This constraint represents

the banding constraint from Novy-Marx and

Velikov (2018).

Rebalancing Threshold (Top 50%) Alike the initial threshold constraint, a lower

bound for the factor exposures is set for each

rebalancing step. This banding constraint

controls turnover and guides the number of

holdings in the portfolio with respect to the

trade-o� of diversification and excess return

expectation.

Relative Minimum Order Size (10%) This constraint manages the minimum size of

position changes of already held assets in the

rebalancing. It can be utilized to control

turnover.
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Constraint

Absolute Minimum Order Size (1 basis point

of portfolio size)

Alike the relative minimum order size in absolute

terms. This constraint prohibits the factor-tilt

from generating economically insignificant orders

that would artificially raise the average holdings.

Absolute Minimum Holding Size (5 basis

points of portfolio size)

Declares the smallest permitted size of weight in

the constructed portfolio that a position might

have.

Absolute Maximum Holding Size (2% of

portfolio size)

Concerning implementability and diversification,

a maximum holding constraint limits portfolio

weights to a certain fraction of the whole

portfolio size. Each asset’s total market

capitalization is additionally taken care of in this

constraint.
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2.7.3 Appendix C

2.7.3.1 Pairwise portfolio significance testing for di�erences in annualized
(excess) returns and Sharpe ratios

Due to strong serial correlations between portfolios, auto-correlation in the tiltings, and a stochastic

dependency in the portfolios, an ordinary t-test can not be applied. To test the statistical significance

of our presented evidence, we apply the following test statistic Zµ as a two-sided t-test on the return

di�erences for stochastically dependent, identically distributed portfolios:

Zµ =
Ô

N(µ̂1 ≠ µ̂2)Ò
‡̂1

2 ≠ 2 ˆfl1,2‡̂1‡̂2 + ‡̂2
2

(6)

With N degrees of freedom (#rebalancing months≠2; because portfolio initialization is cost-mitigation

independent) and µi, ‡i assigning the estimated annualized means and standard deviations of both

observations.

We also report the statistical significance of the Sharpe Ratio (SR) di�erence between two stochastically

dependent portfolios with the following test statistic from Ledoit and Wolf (2008):

ZSR =
Ô

N( ˆSR1 ≠ ˆSR2)Ò
2 ≠ 2 ˆfl1,2 + 1

2 [ ˆ
SR

2
1 + ˆ

SR
2
2 ≠ 2 ˆSR1 ˆSR2 ˆfl1,2

2]
(7)

Based on these test statistics, all hypothesis tests check the alternatives: H0 : µ1 = µ2 (SR1 = SR2),

H1 : µ1 ”= µ2 (SR1 ”= SR2) and report the p-value to the error levels p < 0.05, p < 0.01 and p < 0.001.

To account for the auto-correlation of the tilts, we do not just report the results of the above hypothesis

tests. Still, we perform a bootstrap that is explained as follows.

2.7.3.2 Stationary Circular Block-Bootstrapping

The hypothesis tests above are robustness-checked with a block-bootstrap to correct for auto-

correlation as researched in Efron and Tibshirani (1993). Politis and Romano (1992) proved that

randomization of the block length in the circular block-bootstrapping maintains the stationarity of

the observations in the bootstrapped samples. Therefore the reported p-values are finally calculated

as follows:
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• Calculate the Z-statistic as Z once for return- or Sharpe ratio testing

• To apply the stationary circular block-bootstrap to test H0, transform the data so that H0 is

true.

– For return testing this transformation is given by X̃i := Xi ≠ µ̂i + µ̂combinedsample for both

time series.

– For sharpe ratio testing it is: X̃i := [ Xi≠µ̂i

‡̂i
‡̂combinedsample]+ µ̂combinedsample for both time

series.

• The robustness-checked hypothesis test works by simulating the distribution of the Z-statistic

with block-bootstrapping under a true H0. We do that by generating M = 10000 block-

bootstrap samples for both time series of forced length N (circular) with uniformly randomized

block-length b œ {1, 2, ..., Â N
2 Ê} to maintain stationarity. The Z-statistic is calculated for each

of the M bootstrap samples as Z̃i.

• Now we sum
qM=10000

i=1
I(|Z̃i|Ø|Z|)

M =: p where I() denotes the indicator function (that equals 1

if its argument is true and 0 otherwise) to get the p-value of our hypothesis test given H0 is

true. This p-value is the reported statistic for each hypothesis test in the results section.
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3 MACROECONOMIC INFLUENCE ON COST-

EFFICIENT FACTOR INVESTING IN EMERG-

ING EQUITY MARKETS

3.1 ABSTRACT

We research the explainability of near-term macroeconomic influence on factor investing in emerging

equity markets. First, we identify leading indicators that are significantly connected to equity risk

premia. Based on this association and by incorporating machine learning classification, three macro-

adaptive approaches implement factor regime forecasts into cost-e�cient portfolio decisions. Incor-

porating macroeconomic indicators increases the risk-adjusted net performance of equity portfolios in

emerging markets.

JEL classification: E44; G11; G12; G15.

Keywords: Investments; Asset Pricing; Trading Costs; Adaptive Rebalancing; Machine Learning;

Regime-Shifting.
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3.2 Introduction

Systematic risk premia are widely studied and understood in the long run, whereas short-term behav-

ior remains unclear and noisy. Therefore, it is a subject of interest to understand better the near-term

connection between macroeconomic influence and the cyclicality of factor premia. Numerous studies

have investigated the macroeconomic integration of fundamental risk factors and generic market e�ects

into the business cycle. Fama and French (1989)12 examine the macroeconomic connection to factor

allocation and find that risk premia are based on macroeconomic risks in the long run. Empirical evi-

dence shows that size and value are the most cyclical risk factors, while low beta and quality are the

most defensive. Di�erent approaches to macroeconomic influence can be found in Tibbs et al. (2008)

and Alighanbari (2016), who investigate factor momentum13 in style indices and identify a connection

to the factor premia. While Aretz et al. (2010) confirm that momentum contains incremental informa-

tion for asset pricing, they find that most macroeconomic indicators are already priced. On the other

hand, Ahmerkamp et al. (2012) also studied predictability in momentum strategies and found that

business cycle indicators are strongly connected to risk premia. Wang and Xu (2015) confirm this,

demonstrate the cyclicality of momentum profitability and provide empirical evidence of a significant

and robust connection to market volatility. Furthermore, many examinations focus on factor timing

from a di�erent perspective, addressing market sentiment. Copeland and Copeland (1999) report that

the VIX and changes in the VIX are significant leading indicators of factor performance. Doran et al.

(2007) confirm this association between VIX-related variables and various fundamental factor portfo-

lios. Further, Boscaljon et al. (2011) point out that the findings of Copeland and Copeland (1999)

also hold for near-term holding periods of 30 days. Another approach has been carried out by Bonne

et al. (2018), who reported an association between factor crowding14 and low risk premia. Rising

investors’ attraction can explain this crowding e�ect to systematic and transparent asset allocation

after the failure of active management in the global financial crisis (GFC). Lately, Boven (2020) has

found a significant entanglement between fundamental factor premia and the current macroeconomic

context in the US market. Boven (2020) explains the lost potential of factor premia since the GFC by

quantitative easing and stagnation. Eventually, the explainability of near-term factor premia by the

12Chen et al. (1986), Barro (1990) and Campbell and Diebold (2009), among others.
13With factor momentum, we denote the trend observed in the risk premia of any factor concerning

consecutive time steps.
14For instance, factor crowding can be measured in (prolonged) liquidity spikes of a particular factor’s

associated stocks. The recent growth and popularity of factor investing increase the potential for factor
crowding. If a factor does become too crowded, there is an increased risk of a drawdown event.
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business cycle or leading indicators remains controversial.

Recent examinations have been carried out to demonstrate the impact of transaction costs on factor

investing. According to Lesmond et al. (2002), who investigate the transaction costs of momentum-

based portfolios, net factor premia disappear for this high turnover strategy. Korajzczyk and Sadka

(2005), Novy-Marx and Velikov (2015), Ratcli�e et al. (2017) and Patton and Weller (2019), who also

examine momentum-based strategies, find di�erent equilibrium sizes15 of factor-based excess returns.

Most studies on transaction costs identify liquidity as the costs’ most crucial driver. Based on these

investigations, Garleanu and Pedersen (2013), Frazzini et al. (2018) and Novy-Marx and Velikov (2018)

find optimal portfolio decisions and present di�erent approaches to cost-e�cient portfolio constructions.

With investors’ growing attraction to emerging equity markets, earlier examinations such as Bekaert

and Harvey (1997) and Achour et al. (1998) contribute to factor investing in this market environment.

Furthermore, the studies of Kargin (2002), Bruner et al. (2003) and Davis et al. (2010) extend these

investigations to a more current market environment. Since Lesmond (2005), little research has been

devoted to trading costs in emerging equity markets. The role of factor timing in emerging markets

has also received less attention than in the US and other developed markets. Leastwise, Bilson et al.

(2001) and Desrosiers et al. (2006) research the connection between macroeconomic indicators and risk

premia concerning factor investing in emerging equity markets. Druck and Mariscal (2018) outline the

association between dollar strength and emerging market growth as one of the tightest macroeconomic

bonds.

While the trade-o� between complexity and benefit of macroeconomic factor timing remains controver-

sial in developed markets, emerging equity markets received less attention. We examine the association

between near-term leading indicators and risk premia in emerging markets based on the outlined stud-

ies on macroeconomic indicators and cost-e�ciency in factor investing. For this purpose, we identify

significant indicators and research the trade-o� between factor premia and trading costs with three

macro-adaptive strategies. Eventually, we outline a consideration for using machine learning16 tech-

niques to estimate the emerging markets’ factor regime. With these forecasts, the macroeconomic
15We denote a theoretical portfolio size measured in currency with equilibrium size. At this portfolio

size, trading costs empirically net out with factor premia. This entity allows comparing the net e�cacy
of various investment strategies and asset classes concerning their implementability. In other words,
portfolios outreaching their equilibrium size underperform the market.

16We draw on the findings of Guidolin and Timmermann (2007), Bae et al. (2013) and Mulvey and
Liu (2016), who established machine learning models to allocate assets under regime-switching. These
studies suggest classification models such as penalized logistic regression, gradient boosted trees and
gaussian-kernel-based support vector machines to forecast changes in the market environment.
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influence can be successfully implemented in cost-e�cient factor investing strategies.

The paper proceeds as follows. The next section outlines the investment universe, a methodology for

cross-sectional factor valuation and identifies significant macroeconomic influences on this factor valu-

ation. Later, these macroeconomic indicators are utilized to construct three adaptive factor investing

strategies. In the empirical results section, we review the theoretical benefits of the macroeconomic

association with factor premia in portfolio implementations and discuss machine learning approaches’

role in this context. This section closes with the implications of the risk-adjusted net performance of

macro-adaptive strategies in emerging equity markets. The last section concludes our research.

3.3 Data and methodology

3.3.1 The emerging markets universe

To assess the macroeconomic influence on factor premia in emerging equity markets, we apply a gen-

eral valuation methodology for the excess return of an equal-weighted risk factor mix. Therefore, we

conducted our analysis on an emerging markets data set17 concerning the country listings of the MSCI

Emerging Markets Index18 over the last two decades ending in December 2019. A small range of

available data before the millennium is omitted concerning the quality and coverage of the liquidity

data and the macroeconomic time series. This study uses data from MSCI to determine the underlying

companies in emerging markets and their free-floating market capitalization. Besides MSCI, the World-

scope database from Refinitive is used for the remaining fundamental factors of value, profitability and

investment. The generic factors of momentum and low beta are calculated based on market data from

Datastream (Refinitive). Further, Datastream is utilized for most market data such as return indices,

liquidity, bid-ask spreads, and macroeconomic time series. Referring to the market closing of 2019 as

today, this emerging markets universe consists of 26 countries19 across the five di�erent sub-regions of

Emerging Americas, Europe, Middle East, Africa and the Asia Pacific, of which the latter contributes

to 79.35% of the emerging markets’ size. The MSCI Emerging Markets Index’s underlying stocks are
17In the following, the emerging markets are denoted as “EM” and also referred to as the “whole

universe”.
18https://www.msci.com/emerging-markets, last visited: 2020-09-30.
19The MSCI Emerging Markets Index consists of 26 emerging economies, including Argentina, Brazil,

Chile, China, Colombia, Czech Republic, Egypt, Greece, Hungary, India, Indonesia, Korea, Malaysia,
Mexico, Pakistan, Peru, Philippines, Poland, Qatar, Russia, Saudi Arabia, South Africa, Taiwan,
Thailand, Turkey, and the United Arab Emirates.
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considered large caps, whereas all other stocks larger than $10 million in market capitalization are

denoted as small caps. Today, this emerging markets universe consists of 3480 stocks summing up to

$9.2 trillion free-floating market capitalization.

3.3.2 Factor valuation methodology

In this study, we focus on six risk premia. The first is the fundamental value factor researched in Basu

(1977) and Rosenberg et al. (1985). The size factor embodied another systematic risk premium and

was discovered by Banz (1981). Further, two systematic quality factors are added. The operating prof-

itability, which is researched by Haugen and Baker (1996) and Novy-Marx (2013), and the investment

factor found in Titman et al. (2004), Cooper et al. (2008) Watanabe et al. (2013) augment our choice.

Jegadeesh and Titman (1994) and Hurst et al. (2017) research the decisive generic momentum factor.

Lastly, Ang et al. (2006) and Frazzini and Pedersen (2014) examine the generic low beta factor that

completes our selection. A straightforward multi-factor mix based on these six risk factors is explained

in Appendix A and B. The empirical evidence presented in this examination is robust to alternative

factor definitions, di�erent mixes and also di�erent weighting schemes. We decide to present this mix

of six well-known factors to cover fundamental factors and market e�ects and apply an equal-weighted

scheme with respect to simplicity. We calculate its long risk premium at time t in terms of:

Long Premiumt =
q

i(weighti,t · Z-scorei,t · returni,t)q
i(weighti,t · Z-scorei,t)

≠
q

j(weightj,t · returnj,t)q
j weightj,t

’i œ {EM : Z-scorei > 0}, ’j œ {EM}
(8)

weight denotes the free-floating market capitalization and return reflects the return index over the next

business month. In the following, we utilize this value-weighted methodology to assess the risk premia

of the multi-factor mix (as displayed in Figure 3-1 and Figure 3-2) and illiquidity (as in Figure 3-3 and

Figure 3-4). We have already remarked on the distinct decline of factor valuation in recent market

environments, which is well perceptible in the charts above. Further and concerning long-short factor

valuation, we analogously calculate:
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Long ≠ Short Premiumt =
q

i(weighti,t · Z-scorei,t · returni,t)q
i(weighti,t · Z-scorei,t)

≠
q

j(weightj,t · returnj,t)q
j weightj,t

’i œ {EM : |Z-scorei| > 0.5}, ’j œ {EM}
(9)

And compare the cumulative long-only versus long-short multi-factor premia in Figure 3-5. These

simple valuation methodologies (Equation 8 and Equation 9) assess the empirical monthly excess

return concerning the market (EM). With these simple valuations that generalize portfolio tiltings,

omitting trading costs and constraints, we research the association between macroeconomic influence

and factor premia.

3.3.3 The role of macroeconomic indicators

This subsection examines the connection between smoothed20 multi-factor (and illiquidity) premia

to the macroeconomic environment. Inspired by previous investigations on macroeconomic influence

in factor investing, we expect significant connections between the factor premia in emerging equity

markets and dollar strength (Druck and Mariscal (2018)), VIX (Copeland and Copeland (1999) and

Doran et al. (2007)) as well as market momentum. Druck and Mariscal (2018) report an association

between dollar strength and GDP growth in EM as one of the tightest macroeconomic connections

in the long run. This association is reasoned by a long-term income e�ect as follows. With rising

dollar strength, the relative price of local EM commodities falls. Falling commodity prices lead to a

lowered demand for the required labor, leading to lower income. The lowered income inhibits GDP

growth and vice versa. Drawing on this, we also expect a significant near-term connection between

dollar strength and factor premia that we reason with respect to earnings expectations. A rising dollar

strength leads to financial distress in EM companies with a significant stake in USD-denominated debt.

The risen value of the USD relative to local EM currencies increases the debt burden’s value and leads

to lowered earnings expectations. A decrease in earnings expectations leads to a near-term stock price

correction. Vice versa, falling dollar strength makes USD-denominated debt relatively cheaper, leading

to relatively expensive commodity prices in USD that benefit the production-oriented EM. The fact

that USD-denominated debt is typically denoted with a lower interest rate than local credit tightens

20We choose a 3-month smoothing window for both time series of premia in the factor valuation
concerning their signal decay.
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this cycle. In favorable business and market conditions, EM companies might be tempted to raise

their debt with cheaper US credit concerning any growth opportunity but not considering an increase

in dollar strength. With the burden on a foreign currency, no local central bank correction is possible

and the EM companies are exposed to the market condition. Therefore, we expect a cyclicality that

might be well connected to the inevitable cyclicality of factor premia in EM. As a caveat, we remark

a possible distortion in this connection as very high dollar strength could increase stock prices in EM.

Such an increase might happen due to a bargain opportunity for US investors. However, we do not

expect this to be an issue in the subsequent investigation. Further, a large absolute VIX and its

increase tend to mitigate the following factor premia. Doran et al. (2007) find that this also holds in

the near term. The VIX can be interpreted as a fear index. Opposing the pessimistic expectations in

line with a high VIX and jumps in the VIX, we assume optimistic expectations on factor premia that

accompany consecutive months of solid market performance.

Following these initial presumptions, we collect a selected range of promising macroeconomic time

series of the US and EM economies. Based on these raw indicators, we also calculate mid-term change

rates (3 months and six months) as possible leading indicators for factor premia. In the first place,

considering the issue of possible reporting lags21 in the data, we naïvely investigate pairwise Pearson

correlations between each indicator and the risk premia. For this purpose, we calculate the thresholds

of statistical significance with the following T-statistic:

T = R ·
Ô

N ≠ 2Ô
1 ≠ R2

(10)

Where N ≠2 represents 238 degrees of freedom from 20 years of monthly data. To obtain the minimum

Pearson correlation R to hold a certain level of statistical significance, we rearrange Equation 10 to:

R = ± TÔ
T 2 + N ≠ 2

(11)

21All investigated time series are collected from the database of Thompson Reuters Datastream. We
restrict the research in this section to these indicators that can be utilized in real-time without any
look-ahead bias induced by reporting lags. By dealing with macroeconomic data, some time series
naturally hold reporting lags of up to several months. These indicators had to be excluded from our
research.
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And display the curve in absolute terms in Figure 3-7 with respect to the p-values resulting from the

T -values under the t-distribution. We precondition all indicators by detrending them in an expanding

window fashion. Further and concerning required normality for the correlation tests, we also calculate

expanding Z-scores. Both premia are tested for stationarity with an ADF. The null hypothesis is

rejected at the 1% level for both time series. In Table 3-1 we report all significant macroeconomic

indicators concerning both factor premia. The table also provides a detailed overview of the issuer of the

macroeconomic time series and a description of their calculation metric. Furthermore, the heatmaps

displayed in Figure 3-8 (for illiquidity premia) and Figure 3-9 (for multi-factor premia) also show the

Pearson correlations between the macroeconomic indicators. By deriving significant leading indicators,

we correct possible ill-conditioning concerning multicollinearity. We estimate possible multicollinearity

in the data with the design matrix’s condition number22 on all indicators, including the unit vector.

The visualizations of Figure 3-8 and Figure 3-9 also show that the Pearson correlations between the

indicators tend to be low and negative. Concerning the robustness of this approach, Spearman rank-

correlations also confirm the statistical significance of these indicators. Here, we can confirm the

empirical evidence of Copeland and Copeland (1999) that identifies the VIX and changes in the VIX

as leading indicators of factor premia in emerging markets. Most EM countries have similar risk

exposures with respect to the US and EM VIX. Therefore, we decide to average both signals. This

aggregation slightly increases the connection to near-term risk premia for most non-European stocks.

For the emerging countries of the Czech Republic, Greece, Hungary and Poland, we research a stronger

connection to the VSTOXX. Furthermore, we also confirm the findings of Wang and Xu (2015) for

the emerging equity markets and report a significant connection between changes in market volatility

and factor premia. To tie on the discussion of Boven (2020), we find high significance between factor

premia and changes in quantitative easing in the US economy, measured in FED M2 money growth.

The evidence provided by Bonne et al. (2018) is also confirmed for the emerging markets by identifying

the connection between risk premia and short-term (20 business days) factor crowding. Further and

as expected, we research that the connection between the factor premia and dollar strength (as well

as changes in dollar strength for multi-factor premia) is one of the tightest bonds. While the VIX and

changes in the VIX are also confirmed as significant leading indicators, the connection with market

22We derive the condition number in terms of the spectral norm. This is calculated as the square
rooted fraction of the absolute largest and smallest eigenvalue. Further, we remark that the condition
number of a well-conditioned design matrix does not exceed 30. Concerning the heatmaps in Figure 3-8
and Figure 3-9, we report a condition number of 4.64 for the leading indicators of illiquidity premia.
The indicators for multi-factor premia result in a condition number of 7.83.
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momentum is surprisingly weaker. Additional USD-denominated debt burden of EM companies is

also identified as a positive signal. This connection can be interpreted as the issuer’s expectation of

a growth opportunity. Market momentum is measured quarterly and debt growth is calculated on

the rolling changes over a semester. We also find significant leading indicators in US Retail Sales

changes, Real EM GDP Growth, and Citi’s EM Surprise Index for multi-factor premia. We outline the

oil price, the US CEO Confidence Index, and a recession indicator of US bond rates23 as significant

leading indicators for the illiquidity premia. While we do not find significance between factor premia

and market liquidity changes, we remark that this insu�cient connection is satisfactory. Therefore,

liquidity e�ects on factor premia and trading costs do not net out in adaptive strategy approaches.

Trading becomes cheaper at a given cost level and with higher market liquidity in EM. The total e�ect

would remain unclear if we simultaneously observe inferior multi-factor premia. Further, we find that

US Consumer Confidence, Citi’s US Surprise Index and US Unemployment Rates (as well as their

change rate) are no leading indicators for neither multi-factor nor illiquidity premia. In general, we

remark that our study reveals a strong connection of US macroeconomic indicators with factor premia

in emerging markets.

3.4 Empirical results

3.4.1 Macro-adaptive portfolio strategies

Based on the findings from the previous subsection, we examine three macro-adaptive strategies. The

first approach is the adaptive choice of whether or not to suspend a monthly rebalancing step to save

its trading costs entirely. Second, we also research the e�ect of a more aggressive long versus long-short

(130/30) strategy concerning the expected factor regime. In the last approach, we adaptively apply a

cost-mitigation strategy with respect to limiting the relative trade size24. Here, we mitigate turnover

23The bond rate indicator is detailed in Table 3-1 and reflects a comparison between short- and
long-term US bond rates. A relatively large short-term bond rate versus a long-term bond rate is
a negative signal for the US market environment. Our analysis confirms that this macroeconomic
connection even holds for the emerging markets.

24We measure the stock liquidity in terms of executed average daily volumes across primary and
secondary stock exchanges in USD. The average daily volume, denoted as “ADV”, is calculated based
on a short-term rolling window of 20 business days. Furthermore, we calculate the relative trade size
concerning this ADV.
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and, therefore, trading costs of multi-factor investing concerning the expected illiquidity regime25.

As we observe cyclical illiquidity premia, we assume the profitability of the adaptive cost-mitigation

approach by incorporating expectations on illiquidity premia. With respect to the macro-adaptivity, we

tighten the trade size limiting from 300% of the ADV to 100% of the ADV every time the expectations

on illiquidity premia fall short. Each strategy exploits macroeconomic association concerning the

return-to-cost dualism in the emerging stock universe. Our main goal is to determine whether or not

the macroeconomic links to factor premia can be utilized in cost-e�cient equity allocations. Further,

we provide a ceiling analysis to understand the impact of macroeconomic association with risk premia

in portfolio implementations. We can validate the strategies by implementing adaptivity concerning

perfect foresight of the risk premia, a naïve approach and more sophisticated regime models. First, we

construct reference portfolios based on the whole period of 1999-12-31 to 2019-12-31 with an initial

cash position of 1 billion USD at 1999-12-31 and apply a medium cost level (Figure 3-6 and Appendix

C for details). Based on this setting, we calculate the time series of a cost-mitigated portfolio tilting

with “cap300” (trade size per rebalancing capped by 300% of ADV) minus its less strict alternative of

cap100. Analogously, we build a long-short (130/30) portfolio minus a long-only construction. We find

a Pearson correlation of 0.251 between the former time series of cap300 cost-mitigation minus a strict

strategy and the smoothed illiquidity premia. Furthermore, we find a 0.461 Pearson correlation with

the smoothed multi-factor premia for the latter time series of the long-short minus long-only strategy.

Therefore, our initial considerations are supported. We see that the profitabilities of both adaptive

strategies are significantly connected with factor premia under perfect foresight. These validations led

to the investigations outlined in the following.

3.4.2 Naïve versus ML-based regime estimates

The next step in successfully implementing the macro-adaptive strategies is eliminating any other

look-ahead bias. Hence, we formulate the problem of forecasting the factor regime in terms of a binary

classification problem. Therefore, we associate a “crash regime” with negative (forecasted) multi-

factor or illiquidity premia in the next business month. We can detect crash regimes without making
25This cost-mitigation strategy of limiting trade size to a good fraction of the average stock liquidity

benefits the cross-section of EM factor investing. Interestingly, this net performance increase does
not solely rely on lowered trading costs. This liquidity constraint is quasi-periodically not much of
a constraint at all. While illiquidity is a fundamental risk premium, we have already displayed its
short-term cyclicality in the long run. Summing up, the e�cacy of this cost-mitigation strategy is
borne by mitigated implementation costs and recurring liquidity premia.
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expensive mistakes by approaching this as a binary classification problem. With the expectation of a

crash regime, we can either entirely suspend a non-profitable rebalancing or tightly restrict illiquid and

expensive trades. Vice versa, in the absence of an expected crash, a more aggressive investor could be

prone to an adaptive long-short positioning. We engineer two machine learning models for the factor

regime forecast and compare them against a naïve one-step estimate. At this point, we remark that an

improved near-term forecast for the factor regime does not necessarily result in a beneficial adaptive

strategy concerning portfolio constraints and path dependency. However, we assume that ML-based

factor regime forecasts outperform the naïve estimate concerning standard error measurements. The

great advantage of machine learning classifications is training and tuning their e�cacy on one binary

case. In our problem, this translates into not missing a crash regime. Therefore, we tune the models

on the crash’s recall because a wrong decision might be more expensive than the profitability of not

missing an opportunity.

We decide to model the binary classification of the multi-factor and illiquidity regimes twofold. There-

fore, we choose a penalized logistic regression (Logit) and gradient boosted trees (GB) to compare

their forecasts. These supervised learning models were chosen to compare two classes of ML methods

concerning the Logit’s (linear model) penalization term and the GB’s (ensemble method) ability to

map non-linearities. To account for the missingness in the macroeconomic data26, we apply a MICE

imputation after expanding window Z-scoring all independent features from 1999-12-31 to 2009-12-31.

Therefore, we initialize all portfolio tiltings at 2009-12-31 with respect to this minor look-ahead bias

induced by the data cleaning. Further, we model the Logit and GB based on monthly expanding

window tunes and fits. In this sense and concerning the stationary responses, we omit response scal-

ing. For all independent features, we choose to apply a feature-wise Yeo-Johnson power transform

concerning non-positive data. This transformation makes the data more Gaussian-like and potential

heteroscedasticity might be cured. Here, the optimal transform parameter for stabilizing the vari-

ance and minimizing skewness is estimated through maximum likelihood. Finally, the normalization

of all independent features is applied to the transformed data by expanding window zero-mean and

unit-variance normalization.

We start the expanding window modeling after an initial tune and fit covering data from 1999-12-31 to

2004-12-31. The initial and subsequent monthly tunings are based on a 5-fold time series split trained

on the crash’s recall for both ML models (Logit and GB). The tuned hyperparameters consist of only

26Fortunately, there are no data gaps after the business year of 2008.
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the penalizing parameter for the Logit and number of tree estimators, learning rate, minimum samples

per leaf and maximum tree depth for the GB. All hyperparameter tunings have been carried out on

su�ciently fine grids so that each parameter’s interval limits are never chosen as optimal. Table 3-2

compares the error metrics of both ML estimates based on the indicators listed in Table 3-1 with the

one-step estimate. Especially for multi-factor premia, the one-step estimate is not a weak forecast

but not outstanding either. Unfortunately, the critical crash recall is low, which is not satisfying for

our purpose. While the Logit’s accuracy is distinctly higher than the one-step, precision, recall, and

therefore f1 score are superior. Further, the GB’s accuracy is slightly worse than the one-step’s accuracy

and notably worse than the Logit’s accuracy. Remarkably, the GB responses were better on the recall

training than the Logit. Here, we report a 2.5 times stronger recall for the GB, while its precision

is slightly worse than the Logits. The one-step forecast for illiquidity premia has similar accuracy to

multi-factor premia but distinctly higher precision, recall and, therefore, f1 score. Also, similar to the

multi-factor premia, the Logit classifier’s error metrics outperform the one-step’s. Further, the GB

has a superior recall again, but the relative improvement is much smaller than the multi-factor premia

comparison. The GB’s accuracy for illiquidity premia is more substantial than for multi-factor premia

and lower than Logit’s estimate. Furthermore, these results assume that one-step estimated regime

forecasts might benefit macro-adaptive portfolio tiltings. We further assume that machine learning

forecasts outperform this naïve adaptivity due to the remarkable increases in recall and precision

metrics concerning detecting crash regimes. We engineered solid forecasts for the multi-factor (and

illiquidity) regime in emerging markets that do not guarantee macro-adaptive e�cacy but certainly

set a milestone in this investigation.

3.4.3 Sensitivity analysis on portfolio decisions

With these machine learning forecasts, we validate macro-adaptive portfolio tiltings’ e�cacy. We

examine the three strategies regarding sensitivity analysis concerning portfolio size and cost level. Ma-

chine learning forecasts, the one-step estimate and perfect foresight of the factor regime are utilized to

adaptively implement macroeconomic influence in portfolio decisions to provide the ceiling analysis.

We consider a successful implementation outperforming its non-adaptive portfolio concerning signifi-

cant risk-adjusted net performance or at least significant excess return. Table 3-3 to Table 3-8 report

the performance statistics of all portfolio constructions in terms of the two-dimensional sensitivity

analysis. Here, we research all combinations of six ascending portfolio sizes (250 million, 500 million,
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1 billion, 2.5 billion, 5 billion and 10 billion USD) and the three cost levels visualized in Figure 3-6.

Each portfolio is priced with respect to the trading cost model detailed in Appendix C.

In general, we see that the success of factor investing relies on a cost-e�cient implementation. How-

ever, for smaller portfolios up to 1 billion USD, we find strategies with significant excess returns even

for the highest cost level. The adaptive long-short strategy has a strong performance for the smallest

portfolio size of 250 million USD but depends on the small size and low trading costs. Unfortunately,

no macro-adaptive long-short construction with a larger initial size than 250 million USD can out-

perform its non-adaptive strategy. This lack of outperformance is the case because of its enormous

turnover that arises by liquidating the short positions when a regime change is expected. The factor

regime’s expectations often switch enough to make the macro-adaptive long-short strategy unprof-

itable for larger investment sizes. Hence, an initial portfolio size of 500 million USD is large enough

to make the adaptive long-short strategy unprofitable concerning its high turnover. Contrary to our

expectations, we have to reject the e�cacy of an ML-based adaptive cost-mitigation strategy. The

Logit-based constructions align with the cap300 strategy for portfolio sizes up to 2.5 billion USD but

never outperform the more strict cap100 strategy for larger sizes concerning statistical significance.

Here, we remark that the e�cacy of a cost-e�cient implementation is more substantial for larger initial

portfolio sizes due to an increased implementation hurdle. However, with a size larger than 1 billion

USD invested in 2009-12-31, we emphasize the benefits of the cost-mitigation strategy even at the

lowest cost level. Another exciting side finding is that the long-short strategy outperforms the base

strategy for each investigated size despite distinctly higher annualized trading costs. Further, at a

portfolio size of only 1 billion USD and a high cost level, the non-adaptive base strategy reaches its

equilibrium with an annualized net return of 6.58%. At the medium cost level, this can be expanded

to a 2.5 billion USD portfolio size, while in both cases, the Sharpe ratios remain significantly higher

concerning the market. The equilibrium size of the non-adaptive long-short strategy at the lowest cost

level is located beyond the base strategy’s equilibrium size at over 10 billion USD. While the base

strategy’s excess return at the lowest cost level seems to be exhausted at the 10 billion USD initial

size, the strategy of suspending rebalancings based on GB forecasts still outperforms the market with

over 2.5% p.a. at 9.14% annualized net return. Surprisingly, we find that the adaptive suspending of

rebalancing steps is a consistently outperforming strategy with respect to the GB-based regime forecast

(remember that the GB responds best to the crash’s recall). Compared to the market, these findings

hold for the base strategy and one-step estimate for all investigated size and cost combinations. We
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remark that this macro-adaptive strategy outperforms its perfect foresight implementation concern-

ing the high implementation costs in emerging markets. As an additional robustness check for this

strategy, we report that its e�cacy is robust to randomly skipping the same amount of rebalancings.

Therefore, especially by the construction of suspending rebalancings, we find that even in the absence

of a crash regime, high trading costs can often not be o�set by risk premia. Concerning its relatively

low annualized trading costs and even for the most expensive implementation, this adaptive strat-

egy’s equilibrium size might be far beyond the 10 billion USD initially invested in 2009-12-31. This

finding underlines the importance of cost-e�ciency for a successful implementation of factor investing

twofold. First, the most passive and simple strategy outperforms the most promising and aggressive

implementations. The adaptive long-short strategy with perfect foresight and the mediocre adaptive

cost-mitigation approach fail to outperform significantly at each portfolio size of at least 500 million

USD. Second, a macro-adaptive strategy can implement the investors’ need to prevent mistakes by

omitting expensive and unprofitable turnover.

In Appendix D the hypothesis testing methodology is described to determine statistically significant

di�erences in returns, costs and Sharpe ratios concerning auto-correlated return series. Even the most

negligible di�erences can be statistically significant due to the naturally high serial correlations between

the portfolio returns. Further, this method serves as a robustness check and empirically proves that

the reported statistical significance does not rely on certain sub-periods but is stable along time.

3.5 Conclusion

In this study, we investigated the success of factor investing in emerging markets regarding trading

costs and researched the impact of implementing macroeconomic influence in equity allocations. The

simplest way to successfully implement factor investing strategies lies in the cost-e�ciency found at a

low cost level. Unfortunately, many reasons inhibit individual and smaller investors from achieving a

su�ciently small cost level in the stock execution at EM exchanges and therefore, alternative methods

are required. From our analysis, we can draw several conclusions.

First, we find empirical evidence for a significant macroeconomic association with factor premia in

the near term. Second, we identify that under perfect foresight, aggressive and mediocre macro-

adaptive strategies appear to be beneficial before costs and constraints. Third, we research that

ML-based models exceed a naïve estimate in forecasting the factor regime. Eventually, this leads to
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a successful implementation of macroeconomic indicators in factor investing. While no sophisticated

regime forecast can be successfully implemented for an aggressive or mediocre strategy with respect to

costs and constraints, a passive approach highly benefits from macro-adaptivity. With growing portfolio

size and cost, cost-e�cient implementation becomes increasingly essential. The adaptive strategy of

suspending rebalancings expands the equilibrium size of a simple factor investing framework. A more

cost-e�cient implementation is often the critical component to outperforming the market when the non-

adaptive strategy solely does not. To the best of our knowledge and belief, cost-e�ciency is necessary

to implement factor investing successfully with investors’ recent and ongoing attraction to the emerging

equity markets. Finally, we emphasize the tight connection between emerging markets and the US

economy that can be utilized in portfolio decisions to increase the risk-adjusted net performance of

non-adaptive strategies.
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3.6 List of Charts and Tables

Figure 3-1: Multi-Factor Premia
This chart displays the monthly multi-factor valuation from 1999-12-31 to 2019-11-29
based on the long-only valuation methodology.

Figure 3-2: Cumulative Multi-Factor Premia
This chart displays the cumulative multi-factor valuation from 1999-12-31 to
2019-11-29 based on the long-only valuation methodology.
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Figure 3-3: Illiquidity Premia
This chart displays the monthly illiquidity valuation from 1999-12-31 to 2019-11-29
based on the long-only valuation methodology. The underlying illiquidity factor is
calculated as inverted Z-scores of ADV measured in USD.

Figure 3-4: Cumulative Illiquidity Premia
This chart displays the cumulative illiquidity valuation from 1999-12-31 to 2019-11-29
based on the long-only valuation methodology. The underlying illiquidity factor is
calculated as inverted Z-scores of ADV measured in USD.
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Figure 3-5: Cumulative Multi-Factor Premia Long-Only vs. Long-Short
This chart displays the cumulative multi-factor valuation from 1999-12-31 to
2019-11-29 based on both valuation methodologies.

Figure 3-6: Transaction costs square root model
This chart displays the three cost levels of market impact applied in this paper. The
three parameters are scaling factors for the square root functionality of order sizes
relative to liquidity.
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Figure 3-7: Statistical Significance
This chart displays the minimum Pearson correlation necessary for a specific level of
statistical significance. The curve is derived by Equation 11 with 238 degrees of
freedom.

Figure 3-8: Illiquidity Premia Heatmap
This chart displays a heatmap based on Pearson correlations between each significant
macroeconomic indicator and the smoothed illiquidity premia.
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Figure 3-9: Multi-Factor Premia Heatmap
This chart displays a heatmap based on Pearson correlations between each significant
macroeconomic indicator and the smoothed multi-factor premia.
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3.7 Appendix

3.7.1 Appendix A

3.7.1.1 Descriptions of factors

Factor

Momentum Logarithmic price momentum is calculated as the

sentiment of the stock price 12 months ago up to

the previous month’s end price based on

Jegadeesh and Titman (1994). The so-called

12X1 momentum omits the last month

concerning the reversal e�ect for long-term

investments. It is the supreme example of a

generic market factor and a superior long-term

alpha driver in the cross-section of sectors and

regions. The persistence of this factor can be

reasoned by the behavioral traits of investors

that follow strong-performing stocks. These

investors’ attention leads to a crowding e�ect

that fosters the price sentiment until a

macroeconomic event, earnings miss, or other

incident stops the trend. In this paper, the price

momentum is determined as

Mom12X1t := log(pCloset≠12
pCloset≠1

) (12)
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Factor

Value As researched in Rosenberg et al. (1985), the

value factor denotes a common book-to-price

multiple that compares an asset’s book value to

the actual market price. An immense

book-to-price value represents a cheap stock and

therefore assigns a buy signal concerning factor

investing approaches. The origin of this

fundamental risk premium dates back to the

investigations of Benjamin Graham and David L.

Dodd and has behavioral-based characteristics

beneath its systematic and fundamental nature.

A possible explanation of the persistence of this

systematic risk premium lies in the investors’

optimism about bargains and pessimistic

overreactions, often resulting in bargains when

poor financials are reported.

Beta The low beta factor investigated by Ang et al.

(2006) and Frazzini and Pedersen (2014)

describes how stock returns co-vary with market

returns. Empirical research proves that low beta

stocks explain cross-sectional premia in the long

run and, by construction, serve as a cushion in

drawdowns. In this study,

Beta := cov(ri, runi)
‡2(runi)

(13)

is calculated with weekly data over the last 250

business days and the cov() is exponentially

weighted with a 125 business days half-life.
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Factor

Size The size factor researched in Banz (1981) shows

that smaller stocks in market capitalization

explain cross-sectional excess return as an

investor’s compensation for taking additional

risk. The e�cacy of the size factor can be

economically explained as a systematic risk

premium based on the volatile nature and higher

risk of bankruptcy of small caps. This

examination calculates the size factor as the

logarithmic free-floating market capitalization.

Operating Profit (Profitability) Operating profit (commonly known as EBIT)

denotes the profitability of the company’s

business before interest and taxes and is widely

applied as another quality factor. The operating

expenses are subtracted from the gross profit to

determine operating profit. Haugen and Baker

(1996) and Novy-Marx (2013) find an additional

risk premium with this factor. Financially

healthy companies tend to continue their good

business in the future. Therefore, economically

justifies this risk factor.

Total Assets Growth (Investment) This risk factor measures the growth of the total

assets to forecast future excess return as a second

quality factor. Titman et al. (2004), Cooper et

al. (2008) and Watanabe et al. (2013) find that

stocks with lower recent total assets growth tend

to outperform the market. In this paper, we

compute the growth of the total assets over the

last 500 business days.
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3.7.2 Appendix B

3.7.2.1 Multi-factor tilting construction methodology

Concerning single factor cyclicality, we seek to diversify the excess return expectation to maintain more

persistent premia. With the six factors outlined in Appendix A, we build an equal-weighted Z-score.

The stock positions in the initial portfolio (at t0) as well as all the following rebalancing weights (at

t > t0) are constructed by screening the positive Z-scores (Z-scorei > 0) from the multi-factor mix.

To calculate portfolio weights for each stock i, the universe weights weightuniverse,i are tilted under

several constraints as follows:

weighttilt,i :=

Y
__]

__[

weightuniverse,i · Z-scorei, ’i œ {EM : Z-scorei > 0}

0, else
(14)

Where the market weights weightuniverse,i are determined by free-floating market capitalization. In

every monthly rebalancing each stock i is assigned its return expectation Z-scorei. After each re-

balancing, the portfolio weights weighttilt,i are updated with empirical return indices27 to the next

rebalancing until this loop terminates.

27Thompson Reuters Datastream return indices for emerging equity represent the empirical stock
returns as done by the Center for Research in Security Prices (CRSP) concerning dividend payments
and stock splits.
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3.7.2.2 Descriptions of rebalancing and tilting constraints (applied values
in parentheses)

Constraint

Long-Short (130/30) This parameter determines the allocation of long

and short positions. While the former value

depicts the investment grade of the long positions

based on a theoretical 100% cash balance, the

latter corresponds to the scale of short positions.

In this tilting construction, short positions are

deducted with the same trading cost model as

long positions with respect to both sides of

monthly turnover. Additional annualized

short-selling costs are priced at conservative

30bps.

Relative Maximum Order Size Cap (300% /

100% of ADV)

This parameter distinguishes cost-mitigated

portfolios from their base case. This sets a limit

for the relative order sizes in the rebalancing

steps.

Initial Threshold (Top 50%) This threshold determines the lower bound for

the mixed factor exposure at portfolio

initialization. It controls the number of titles in

the initial portfolio. This constraint represents

the banding constraint from Novy-Marx and

Velikov (2018).

Rebalancing Threshold (Top 50%) Alike the initial threshold constraint, a lower

bound for the factor exposures is set for each

rebalancing step. This banding constraint

controls turnover and guides the number of

holdings in the portfolio concerning the trade-o�

of diversification and return expectation.
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Constraint

Relative Minimum Order Size (10%) This constraint manages the minimum size of

position changes of already held assets in the

rebalancing. It can be utilized to control

turnover.

Absolute Minimum Order Size (1 basis point

of portfolio size)

Alike the relative minimum order size in absolute

terms. This constraint prohibits the factor-tilt

from generating economically insignificant orders

that would artificially raise the average holdings.

Absolute Minimum Holding Size (5 basis

points of portfolio size)

Declares the smallest permitted size of weight in

the constructed portfolio that a position might

have.

Absolute Maximum Holding Size (2% of

portfolio size)

Concerning implementability and diversification,

a maximum holding constraint limits portfolio

weights to a certain fraction of the whole

portfolio size. Each asset’s total market

capitalization is additionally considered in this

constraint.
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3.7.3 Appendix C

3.7.3.1 Transaction cost model

The applied liquidity-driven cost model is drawn on the findings of Grinold and Kahn (1999) and

Frazzini et al. (2018), who found their models to be less dependent on varying market environments.

We build on the finding that the market impact of trading equities is stable concerning regime shifts.

The total costs applied in this study are composed of three components. Execution fees and the

half bid-ask spread form the basis of this decomposition. The third and most important part is the

market impact that reflects the implementation hurdle of the illiquid emerging markets. We model

market impact with a one-dimensional square root functionality drawing on Grinold and Kahn (1999):

market impact := cost parameter ·
Ô

%ADV (15)

ADV denotes the short-term liquidity, calculated as average liquidity across primary and secondary

stock exchanges over the last 20 trading days. finally denotes the stock-wise order size relative to

the monthly calculated ADV . We analyze the impact of three exemplary cost levels of market impact

specified by the cost parameter (displayed in Figure 3-6). These reflect an e�cient trade timing by an

institutional practitioner with a local trading desk, followed by an estimate for average trading results.

Finally, expensive trading costs are embodied by the idea of incorporating issues with EM brokers and

a possible time lag. We define the total transaction costs as a sum of fees (which we conservatively

fix at 10bps) and the empirical half bid-ask spread as explicit costs28 as well as the liquidity-driven

market impact as follows:

TCost := fees + 1
2spread + market impact (16)

More complex cost models were also researched with respect to incorporating stock volatility and a

perfectly passive trading model. This approach reflects the costs of waiting that arise by slowly trading

towards the desired portfolio in positions of exemplary 10% of the ADV per trading day. While the

latter model mitigates the annualized transaction costs, no researched cost model distorts the results
28Execution and commission fees are negotiable and equal to over 7bps in emerging markets. These

fees cover all legal middle o�ce activities of the sell-side and ensure the backup of all trade documen-
tation through a global custodian. These electronic backups are by law completed by carbon copies in
case of emergency.
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presented in this study. Therefore, we apply the one-dimensional market impact model concerning

simplicity as the most intuitive implementation.
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3.7.4 Appendix D

3.7.4.1 Pairwise portfolio significance testing for di�erences in annualized
(excess) returns, trading costs and Sharpe ratios

Due to strong serial correlations between portfolios, auto-correlation in the tiltings, and a stochastic

dependency in the portfolios, an ordinary t-test can not be applied. To test the statistical significance

of our presented evidence, we apply the following test statistic Zµ as a two-sided t-test on the return

di�erences for stochastically dependent, identically distributed portfolios:

Zµ =
Ô

N(µ̂1 ≠ µ̂2)Ò
‡̂1

2 ≠ 2 ˆfl1,2‡̂1‡̂2 + ‡̂2
2

(17)

With N degrees of freedom (#rebalancing months≠2; because portfolio initialization is cost-mitigation

independent) and µi, ‡i assigning the estimated annualized means and standard deviations of both

observations.

We also report the statistical significance of the Sharpe Ratio (SR) di�erence between two stochastically

dependent portfolios with the following test statistic from Ledoit and Wolf (2008):

ZSR =
Ô

N( ˆSR1 ≠ ˆSR2)Ò
2 ≠ 2 ˆfl1,2 + 1

2 [ ˆ
SR

2
1 + ˆ

SR
2
2 ≠ 2 ˆSR1 ˆSR2 ˆfl1,2

2]
(18)

Based on these test statistics, all hypothesis tests check the alternatives: H0 : µ1 = µ2 (SR1 = SR2),

H1 : µ1 ”= µ2 (SR1 ”= SR2) and report the p-value to the error levels p < 0.05, p < 0.01 and p < 0.001.

To account for the auto-correlation of the tiltings, we do not just report the results of the above

hypothesis tests. Still, we perform a bootstrap that is explained as follows.

3.7.4.2 Stationary Circular Block-Bootstrapping

The hypothesis tests above are robustness-checked with a block-bootstrap to correct for auto-

correlation as researched in Efron and Tibshirani (1993). Politis and Romano (1992) proved that

randomization of the block length in the circular block-bootstrapping maintains the stationarity of

the observations in the bootstrapped samples. Therefore the reported p-values are finally calculated

as follows:
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• Calculate the Z-statistic as Z once for return- or Sharpe ratio testing

• To apply the stationary circular block-bootstrap to test H0, transform the data so that H0 is

true.

– For return testing this transformation is given by X̃i := Xi ≠ µ̂i + µ̂combinedsample for both

time series.

– For sharpe ratio testing it is: X̃i := [ Xi≠µ̂i

‡̂i
‡̂combinedsample]+ µ̂combinedsample for both time

series.

• The robustness-checked hypothesis test works by simulating the distribution of the Z-statistic

with block-bootstrapping under a true H0. We do that by generating M = 10000 block-

bootstrap samples for both time series of forced length N (circular) with uniformly randomized

block-length b œ {1, 2, ..., Â N
2 Ê} to maintain stationarity. The Z-statistic is calculated for each

of the M bootstrap samples as Z̃i.

• Now we sum
qM=10000

i=1
I(|Z̃i|Ø|Z|)

M =: p where I() denotes the indicator function (that equals 1

if its argument is true and 0 otherwise) to get the p-value of our hypothesis test given H0 is

true. This p-value is the reported statistic for each hypothesis test in the results section.
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4 THE BENEFITS OF MACHINE LEARNING

FOR PREDICTING STOCK LIQUIDITY IN

EMERGING EQUITY MARKETS

4.1 ABSTRACT

We research machine learning models for predicting stock liquidity in emerging equity markets based on

a broad spectrum of 190 stock and market characteristics. By exposing seasonality and reversal e�ects,

we evaluate the statistical advantage of machine learning predictions compared to naïve estimates.

Despite a strong statistical advantage, the economic benefits in portfolios tend to be limited. However,

empirical evidence exhibits the significant benefits of the machine learning forecasts in cost-e�cient

factor investing with respect to the extremes of aggressive and passive trading cost models.

JEL classification: G11; G12; G14; G15; G17.

Keywords: Interpretable Machine Learning, Data Science, Liquidity Prediction, Gradient Boosting,

Factor Investing, Portfolio Construction, Cost-E�ciency.
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4.2 Introduction

In general, systematic risk premia and factor investing are well understood, but especially in emerging

markets, their net trade-o� with implementation costs remains less clear. Most studies on transaction

costs identify liquidity beneath the costs’ most essential drivers (Grinold and Kahn (1999), Lesmond

et al. (1999) and Frazzini et al. (2018)). Empirical evidence shows that the demand for trading large

order sizes relative to the stock liquidity increases the market impact. This market impact is embodied

in invisible trading costs of adverse price movements, as explained in Frazzini et al. (2018). On the

other hand, Amihud (2002) finds that liquidity risk significantly explains equity premia, especially

the small firm e�ect. Pastor and Stambaugh (2003), Acharya and Pedersen (2005) and Watanabe

and Watanabe (2008) also identify illiquidity as an additional risk premium and develop asset pricing

models that incorporate expected asset liquidity. This extension demonstrates the explanatory power

of liquidity risk in the cross-section of stock returns. Contrary to the practical importance, little

research has been devoted to trading costs in emerging equity markets. Lesmond (2005) examines the

costs of liquidity risk in emerging markets by explaining the high returns easily exceeding 75% p.a.

with their bid-ask spread. Despite the extensive cost modeling, studies on liquidity risk and recent

investigations on cost-e�cient implementations, the trade-o� between risk premia and implementation

costs in factor investing remains unclear. Especially the emerging equity markets, known as a less

liquid stock universe with a significant implementation hurdle, received little attention.

Illiquidity is broadly identified as a critical driver for implementing portfolio decisions. Therefore,

a better understanding of it and its near-term behavior is mandatory to increase the e�cacy of in-

vestment strategies. Wyss (2004) ties on the risen attention on the market and stock liquidity. The

measuring and prediction approaches for stock liquidity are discussed based on a selection of Swiss

stocks. Breen et al. (2002) also studied regression models for predicting stock liquidity in the developed

US market. More recently, Cui (2021) provided a macroeconomic view on the US market liquidity

based on implications from option prices. While the research on liquidity risk mainly covers developed

markets, stock liquidity prediction in emerging countries received more attention for investment deci-

sions. However, the coverage of emerging markets stock liquidity prediction and liquidity risk primarily

focuses on single countries. Lischewski and Voronkova (2012) investigate liquidity risk in the Polish

stock market as one of the most advanced emerging markets at this time and Altay and Calgici (2019)

confirms the illiquidity risk premium for the emerging stock market of Turkey. Further, Khang (2020)

85



predicts stock liquidity in the Vietnamese stock market using state-of-the-art deep learning methods.

Bae and Lee (2016) apply and compare five machine learning (ML) techniques, including Bayesian

networks, support vector machines, decision trees, neural networks, and ensemble methods on a selec-

tion of Korean manufacturing companies. Hence, predicting stock liquidity is a recent field of interest

in finance concerning the application of machine learning. Before this, the prediction of stock returns

is recently investigated by Leung (2021). Obviously, the application of ML methods for predicting

stock returns is closely related to the problem of predicting stock liquidity. This is underlined by the

successful implementation of black-box models by Mulvey and Liu (2016) in the classification of factor

regimes.

Inspired by the examination of Bae and Lee (2016), this study extends the existing literature twofold.

First, we apply ML-based liquidity prediction concerning a broad emerging markets universe and assess

the statistical advantage with various error metrics. Second, we implement the sophisticated machine

learning prediction of stock liquidity as a cost-mitigation approach for equity factor investing. Our

ML model of choice throughout this study is the Gradient Boosting Machine (GBM), which we apply

to shallow regression trees. To analyze the GBM’s black-box character, we use methods (variable

importance and partial dependence plots) from the interpretable machine learning literature. We

assume that the cost-e�ciency of factor investing can be increased by reducing the exposure of stock

liquidity overestimating in portfolio decisions. Based on this methodology, we seek to answer several

research questions. The superordinate question is how to implement risk premia in emerging markets

cost-e�ciently. First, we investigate whether or not it is beneficial to predict cross-sectional stock

liquidity non-naïvely. After replicating and extending the ideas of former studies to the whole emerging

market universe, we are interested in whether and how ML-based liquidity predictions improve or

distort portfolio characteristics. Moreover, we research the e�ect of the ML-based liquidity predictions

on portfolio cost-e�ciency over time and with respect to two opposing trading strategies. Lastly, we

investigate the practical relevance for small and large institutional investors.

The paper proceeds as follows. The next section outlines the investment universe, a methodology for

tilted portfolio constructions, the applied machine learning model and contrasts trading cost models.

Later, the ML approach is utilized to improve factor investing strategies and is compared to a naïve

estimate. In the empirical results section, we review the accuracy benefits of ML-based liquidity

prediction and finally discuss the role of the machine learning approach in this context. This section

closes with the implications of the risk-adjusted net performance of ML-predicted stock liquidity in
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emerging equity markets. The last section concludes our research.

4.3 Data and methodology

4.3.1 The emerging markets universe

To assess the relevance of ML-based stock liquidity predictions, we conducted our analysis on an

emerging markets data set29 concerning the country listings of the MSCI Emerging Markets Index30

over the last two decades ending in December 2019. A small range of available data prior to the

millennium is omitted with respect to the quality and coverage of the liquidity data. This study

uses data from MSCI to determine the underlying companies in emerging markets and their free-

floating market capitalization. Besides MSCI, the Worldscope database from Refinitive is used for the

additional fundamental factors of value, profitability and investment. The generic factors of momentum

and low beta are calculated based on market data from Datastream (Refinitive). Further, Datastream

is also utilized for the remaining market data of return indices, liquidity, and bid-ask spreads. Referring

to the market closing of 2019 as today, this emerging markets universe consists of 26 countries31 across

the five di�erent sub-regions. These regions include Emerging Americas, Europe, Middle East, Africa

and the Asia Pacific, of which the latter contributes to 79.35% of the emerging markets’ size. The MSCI

Emerging Markets Index’s underlying stocks are considered large caps, whereas all other stocks larger

than $10 million in market capitalization are denoted as small caps. Today, this emerging markets

universe consists of 3480 stocks summing up to $9.2 trillion free-floating market capitalization.

4.3.2 Machine learning with boosted regression trees

We use the applied machine learning model (GBM) to predict changes in stock liquidity. After com-

paring the statistical advantage of the various models researched in Bae and Lee (2016) over the whole

29In the following, the emerging markets are denoted as “EM” and also referred to as the “whole
universe”.

30https://www.msci.com/emerging-markets, last visited: 2020-09-30.
31The MSCI Emerging Markets Index consists of 26 emerging economies, including Argentina, Brazil,

Chile, China, Colombia, Czech Republic, Egypt, Greece, Hungary, India, Indonesia, Korea, Malaysia,
Mexico, Pakistan, Peru, Philippines, Poland, Qatar, Russia, Saudi Arabia, South Africa, Taiwan,
Thailand, Turkey, and the United Arab Emirates.
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emerging markets universe, we decided to implement gradient boosted regression trees as the outper-

forming method32. We build the GBM on the weak learner class of shallow regression trees. The

virtual extension by the GBM on these decision trees is the successive splitting of the predictor space.

The iterative application of the weak learners is applied so that the residuals of the formerly fitted

model are corrected. These corrections eventually combine the weak learners into a more complex

prediction algorithm.

As with most machine learning algorithms, the GBM needs to be specified by hyperparameters to

adjust model complexity. In this case, the most critical hyperparameters are the number and depth of

the trees, the learning rate, and the minimum number of observations for each leaf. We use a specific

variation of GBM, the stochastic gradient boosting, which expands the list of relevant hyperparameters

by the number of observations and columns to sample each residual tree. In machine learning, the

tuning of a model describes searching for hyperparameters that maximize the out-of-sample prediction

performance. For tuning purposes, we also use a randomized concept of hyperparameter search over

a su�ciently large parameter space. These randomized hyperparameter vectors are evaluated on the

R-squared of the validation sets in a time series split cross-validation. The training and validation

of models are performed sequentially so that validation sets always come after training sets, never

attempting to explain the past with the future. This method’s cleaning, tuning and fitting are applied

in an expanding window fashion to predict the next month’s stock liquidity changes with the most

available data without a look-ahead bias.

The underlying data consists of the broad spectrum of 19033 firm-specific and macroeconomic indicators

completed by the response y of monthly liquidity change. Due to the non-stationarity of liquidity data

measured in currency (USD), we seek to predict the first-order liquidity changes with the GBM, which

are tested and accepted for stationarity34. To calculate the percentage change of stock liquidity, we

construct two responses concerning two opposing trade execution approaches, which the trading cost

models reflect. These cost models are rigorously defined in the next subsection. Both change rates

are calculated based on the equal-weighted average liquidity over the past 20 business days. The first

32Our research also includes OLS regressions, the applications of LASSO, Ridge and elastic nets
over su�ciently fine tuning vectors. We further investigated the more sophisticated implementations
of neural nets, random forests and gradient boosted regression trees, of which the latter outstand
concerning out-of-sample overestimations.

33Detailed description of all implemented features and their lags in Appendix C.
34We tested the liquidity changes for stationarity with an Augmented Dickey-Fuller Test and reported

stationarity at the 0.1% level.
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variable measures the change rate to linear-weighted future daily volumes over the following business

month. The second measure reflects the change rate to the equal-weighted future liquidity over the

following 20 business days. The first approach reflects the traders’ incentive to quickly trade towards

the desired position. Here, the most extensive parts of the order might be executed in the following

days after the rebalancing. In the second approach, the equal weighting accounts for a reasonable

non-instantaneous implementation. The prediction of equal-weighted liquidity changes over the next

business month su�ces for this slow trade execution. A linear weighting is not meaningful when the

trade execution is purposely delayed to mitigate the market impact.

Based on the available data, we chose the first five business years as an initial training set and therefore

constructed all portfolios starting in 2005 to omit a look-ahead bias. The cleaning and pre-processing

of the entire data set are also conducted in monthly expanding windows. For the cleaning, we apply

a MICE imputation and further apply the Yeo-Johnson power transform to make all features more

Gaussian. The main goal of the ML-based stock liquidity prediction is an accuracy improvement in

the harmful overestimates. While liquidity overestimates might hurt the e�cacy of cost-mitigation

approaches or investment strategies in general, we tune the GBM respectively. By overestimating the

stocks’ future liquidity over the assumed trade duration, realized trading costs are hard to control with

implicit methods. To run less into these liquidity traps, we implement an asymmetric loss function and

fit the GBM on the first tercile of the response instead of its mean. We also add a conservative weighting

to the loss function to further focus on the problematic overestimates while keeping underestimate

errors at least as stable as possible. Here, we weigh the loss function concerning the decreasing rank

of observed average liquidity over the past business month35.

4.3.2.1 Multi-factor Z-scoring and tilting

This study takes a focus on six common risk premia, combining the examinations of Carhart (1997),

Frazzini and Pedersen (2014) and Fama and French (2015). Here, we combine the fundamental risk

premia of Fama and French (2015) with the robust market e�ects found by Carhart (1997) and Frazzini

and Pedersen (2014) to demonstrate our ideas with a broadly diversified factor mix. The first factor is

the fundamental value factor researched in Basu (1977) and Rosenberg et al. (1985). The size factor

embodies another systematic risk premium and is discovered by Banz (1981). Further, two systematic

35Weighting by the inverse of observed average liquidity did not result in a meaningful forecast as
it is too extreme.
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quality factors are added. The operating profitability was researched by Haugen and Baker (1996)

and Novy-Marx (2013). The investment factor was researched by Titman et al. (2004), Cooper et

al. (2008) and Watanabe et al. (2013) and augmented our choice. Jegadeesh and Titman (1994) and

Hurst et al. (2017) researched the generic momentum factor. Lastly, Ang et al. (2006) and Frazzini

and Pedersen (2014) examine the generic low beta factor that completes our selection. Appendix A

and B explain an equal-weighted multi-factor tilt based on these six Z-scored risk factors which is

displayed in Figure 4-4. The empirical evidence presented in this examination is robust to alternative

factor definitions, di�erent mixes and also di�erent weighting schemes. We decided to present this mix

of six well-known factors to cover fundamental factors and market e�ects and apply the equal-weighted

scheme with respect to simplicity. This decision not only results in a robust factor mix that explains

several sources of risk premia but also mitigates portfolio risk by incorporating the low beta factor

from Frazzini and Pedersen (2014).

4.3.3 Applied Cost Models

Ideologically, the portfolio rebalancing happens instantaneous at every month-end. In fact, implement-

ing portfolio decisions at a monthly rebalancing take time over the following business days concerning

the investment universe, invested size and liquidity demand. While in developed markets this is mostly

a matter of one trading day, in emerging markets the trading process can take days up to weeks. This

issue is displayed in Figure 4-5. The stock liquidity over these following trading days and weeks is

unknown and therefore has to be predicted. The more accurate these liquidity predictions, the better

the implicit cost control which is regulated by the tilting constraints shown in Figure 4-4. We twofold

model the trade execution after a rebalancing step with respect to two extremes. First, we implement

a quick and expensive implementation that su�ers entirely under market impact but not under the

costs of waiting to trade towards the desired position. Second, opposing the market impact model, we

implement a perfectly passive opportunity cost model. This approach assumably induces zero market

impact but slowly trades towards its goal with a low participation rate of 15% per trading day. With

daily participation of 15%, a cost-mitigation strategy of limiting trades to 300% of the observed liquid-

ity, on average, takes the entire month to rebalance. Our results are robust concerning participation

rates ranging from 5 to 20% per trading day. Rates below 5% are too low to rebalance a factor-based

strategy in time, given the illiquid structure of the emerging markets. On the other hand, participa-

tion rates above 20% do not su�ce the assumption of zero market impact as such participation might
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induce considerable adverse price movements. To demonstrate the benefits of ML-based stock liquidity

predictions against the naïve measure of observed liquidity for the implicit cost control, we provide

empirical evidence concerning a broad range of sensitivity analyses. These include the two cost models

and their parameters. The total costs applied in both liquidity-driven approaches are split into three

components. Execution fees and the half bid-ask spread form the basis of this decomposition. The

third component is defined by the cost model.

4.3.3.1 Aggressive Cost Model

This cost model is drawn on the findings of Grinold and Kahn (1999) and Frazzini et al. (2018).

The market impact embodies the third cost component of this model and reflects the implementation

hurdle of the illiquid emerging markets. We model the market impact costs with a one-dimensional

square root functionality drawing on Grinold and Kahn (1999):

market impactT,i := cost parameter ·
Ò

%ADVT,i ’i œ Trading BasketT (19)

Where T indicates the rebalancing steps of the portfolio construction ranging from 2004-12-31 to 2019-

11-30. Further, ADV denotes the linearly weighted36 liquidity average over the next business month

to calculate the realized market impact of a portfolio decision. This observed average liquidity is

calculated across primary and secondary stock exchanges. %ADV finally denotes the stock-wise order

size relative to the empirical ADV during trade execution. The empirical ADV during the trading

process is unknown at the rebalancing and therefore has to be estimated in portfolio decisions. With

this market impact model, we analyze the impact of three exemplary cost levels of market impact

specified by the cost parameter (displayed in Figure 4-2). These levels reflect an e�cient trade timing

by an institutional practitioner with a local EM-based trading desk, followed by a proxy for average

trading results. Finally, expensive trading costs are embodied by the idea of incorporating issues with

EM brokers and a potential time lag. Eventually, we define the aggressive transaction costs model as

the sum of fees (which we conservatively fix at 10bps), the empirical half bid-ask spread as explicit

costs37 and the liquidity-driven market impact as follows:

36We weigh the future near-term liquidity for the realized market impact calculation in a linearly
decreasing fashion. Here, we follow the idea that the most extensive parts of a rebalancing are traded
as quickly as possible.

37Execution and commission fees are negotiable and equal to over 7bps in emerging markets. These
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TCostT,i := fees + 1
2spreadT,i + market impactT,i ’i œ Trading BasketT (20)

More complex market impact models were also researched with respect to incorporating stock volatility

but did not distort the results presented in this study. We apply the one-dimensional market impact

model concerning simplicity.

4.3.3.2 Passive Cost Model

The cost of waiting expresses the third cost component of the opportunity cost model. The idea and

assumption behind this passive implementation are that the daily participation rate (PR) of 15% of

available liquidity (DV ) might not induce the implicit costs of market impact. Purposely delaying

an order execution might save the market impact but will postpone the execution for several days

concerning trade size and liquidity demand. This delay also occurs when liquidity is overestimated

at the rebalancing. When prices rise as expected, the induced cost of waiting arises by not fully

holding the desired position. Therefore, the opportunity costs of a portfolio decision are calculated

on a weighted38 aggregation concerning daily stock returns (ret) and daily empirical liquidity (DV )

during the trade execution:

opportunity costsT,i := exp(
NTÿ

t=1
ln(rett,T,i) (order sizeT,i ≠

qt
·=1 DV·,T,i pr

order sizeT,i
)) ’i œ Trading BasketT

(21)

Where T indicates the rebalancing steps of the portfolio construction ranging from 2004-12-31 to 2019-

11-30. Further, NT indicates the number of trading days in the underlying business month of trade

execution. Eventually, the total costs of this passive approach sum to:

fees cover all legal middle o�ce activities of the sell-side and ensure the backup of all trade documen-
tation through a global custodian. These electronic backups are by law completed by carbon copies in
case of emergency.

38This weighting reflects the di�erences in desired and already executed parts of each portfolio
decision and therefore missed returns induced by trading slowly. In the case of negative return, the
cost of waiting is also negative and therefore benefits the portfolio. This weighting is applied to the
waiting cost and the empirical half bid-ask spread.

92



TCostT,i := fees + 1
2weighted spreadT,i + opportunity costsT,i ’i œ Trading BasketT (22)

We also combined both trading patterns as another robustness check and could not find a deviation

from the empirical results in the next section.

4.4 Empirical results

In this section, we utilize an improved liquidity forecast in portfolio constructions and analyze its

benefits. At first, we display its advantage by comparing several error metrics between the one-step

estimate and ML-based liquidity forecast. Further, this forecast is implemented in ex-ante cost control

of limiting order sizes relative to their underlying stocks’ liquidity expectations. This implicit approach

is a possible cost-mitigation and is beneficial in the cross-section of EM factor investing39. The more

accurate the liquidity forecast, the more e�ciently this strategy controls trading costs. We researched

that this strategy has a sweet-spot parameter in the return-to-cost trade-o� concerning the invested

portfolio size. Implementing factor investing without such an implicit cost control results in illiquid

decisions that do not pay o� on average. To demonstrate this in combination with improved liquidity

estimates, we compare the strict (100%ADV) and less strict (300%ADV) cost-mitigation parameters.

Both implementations are analyzed concerning the presented trading cost models and various portfolio

sizes to reflect the institutional investors’ size.

4.4.1 Naïve versus boosted liquidity prediction performance

We apply the machine learning method described in the previous section to predict the (linearly-)

weighted liquidity changes over the next business month and retransform them to liquidity in USD

for an error overview. We compare the naïve estimate of equal-weighted average liquidity over the

39The cost-mitigation can be understood as a liquidity tilt concerning the trade-o� between illiquid-
ity premia and implementation costs. Interestingly, its net performance increase does not solely rely
on lowered trading costs. This liquidity constraint is quasi-periodically not much of a constraint at all.
While illiquidity premia are well understood in the long run, they underlie inevitable short-term cycli-
cality. Eventually, the e�cacy of this cost-mitigation strategy is borne by mitigated implementation
costs and recurring liquidity premia. The empirical analysis finds its optimal parameter and largely
depends on invested portfolio size.
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past 20 trading days with the boosted liquidity predictions concerning several error metrics. Table 4-1

summarizes this comparison over the whole universe of emerging markets from 2004-12-31 to 2019-

11-30, excluding the training set. The boosted forecast outperforms concerning its abilities to map

non-linearities and is tuned with an asymmetric and weighted loss function. The machine learning

forecast keeps the overall error and underestimates stable without any induced size bias, while harmful

overestimate errors are vastly reduced. We remark that the GBM detects reversal e�ects in liquidity

changes and the seasonality as displayed in Figure 4-3. The one-step estimate cannot capture this

and these e�ects are why the boosted forecast highly outperforms the naïve expectation. Previous

studies on ML-based predictions for monthly excess returns report that past return-based predictors

were deemed most important. In our case, we can translate this into the importance of liquidity-based

predictors and confirm this as displayed in Figure 4-1. In this chart, the time-averaged percentage

variable importances are reported. Liquidity changes over various time windows and their lags are

preferably selected for the splits of the predictor space.

We can also translate another finding of previous examinations on predicting returns. While the

general importance of predictors depends on the ML method used, (short-term) reversal e�ects are

the most relevant features for predicting short-term liquidity changes. These features are followed by

further past liquidity-based (return-based in the previous examinations) characteristics. The ensemble

method of the GBM can fit non-linear e�ects. Similar to the e�ect of estimated regression betas from

an OLS regression, the PDPs explain the e�ect of the single variables on future liquidity. Besides

reversal e�ects on liquidity changes, we emphasize the seasonality e�ect of the past business year’s

market return. The general tenor of the articles on predicting subsequent cross-sectional stock returns

is that ML models are superior to traditional linear factor models. We confirm the superiority of ML-

based stock liquidity prediction compared to the best naïve estimate40 of observed average liquidity.

While, in general, one-step estimates embody a strong forecast for liquidity measured in USD, ML-

based methods outstand concerning the implementation of investment strategies. The main reason

is the incapability of one-step estimates to capture reversal e�ects. Despite our expectations, a set

of promising features was not highly important for predicting stock liquidity changes with the GBM.

40We find that the observed stock liquidity over the past 20 business days is the most robust forecast
for the future stock liquidity over the following 20 business days. Various error metrics can confirm
this. Therefore, stock liquidity in EM equities is less determined by a mid- or long-term trend but its
cross-sectional first-order autocorrelation (monthly data) lies above 80%. Unfortunately, this already
robust and naïve estimate can not capture liquidity reversal e�ects. This is where ML-based methods
come into play and eventually outperform.
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Media coverage and news sentiment indicators are no relevant predictors. We further investigated

the count of holidays or trade-free days in the upcoming business month. This feature is also not

relevant on a monthly view since investors seem to compensate for the trade-free days with increased

trading activity around these days. We also could not find relevance in hot-encoded features based

on the country, month, sector, or combinations of these. The importance of market and firm-specific

volatility is only of second order. Eventually, the ML-based forecast is undoubtedly more robust from

a raw statistical perspective. Therefore it is indispensable concerning its ability to be tuned to reduce

harmful liquidity overestimates (liquidity traps). It is yet unclear if this advantage also materializes in

cost-e�cient portfolio constructions. To answer this, we implement the boosted liquidity estimate into

portfolio decisions with respect to the outlined cost-mitigation approach and investigate its supposed

benefits.

4.4.2 Sensitivity analysis on portfolio decisions

In the previous subsection, we find that a boosted stock liquidity prediction is highly beneficial over the

whole universe concerning the reduction of costly liquidity overestimates. Therefore, we now compare

both liquidity estimates in multiple sensitivity analyses to assess the e�ect of the supposedly superior

machine learning forecast. Further, these analyses are fully robustness-checked concerning time by

implementing a stationary block-bootstrapping with random block length41 to assess statistical sig-

nificance. We conduct sensitivity analyses with respect to both trade execution patterns, two proven

cost-mitigation parameters and six representative initial portfolio sizes. Successful implementation of

the boosted forecast is considered to either outperform its baseline portfolio with respect to significant

risk-adjusted net performance or at least significant excess return. Table 4-2 to Table 4-4 report the

performance statistics of all portfolio constructions in terms of the three-dimensional sensitivity anal-

ysis. Without any additional turnover constraint, all reported portfolio tiltings result in around 250%

two-sided turnover per annum. As an additional robustness check, we researched the e�ect of di�erent

meaningful turnover levels, which resulted in similar findings. Here, we research all combinations of

the six ascending portfolio sizes (250 million, 500 million, 1 billion, 2.5 billion, 5 billion and 10 billion

USD), strict and less strict cost-mitigation parameters (100%ADV and 300%ADV ) as well as both

opposing cost models. All portfolio tiltings investigate the empirical evidence for the boosted liquid-

ity forecasts concerning the investment period from 2004-12-31 to 2019-12-31. The smallest initial
41Detailed description in Appendix D.
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portfolio, 250 million USD invested in EM equities at 2004-12-31, reflects a small-scale institutional

investor’s potential wealth and is too small to have problems with order implementation. Therefore,

neither boosted liquidity forecasts nor cost-mitigation approaches, in general, are necessary and do not

pay o� either. Just the second smallest initial portfolio size of 500 million USD invested at 2004-12-31

is large enough to benefit from the cost-mitigation strategy and also boosted liquidity forecast. The

extent to which their performance increases compared to the base strategy is empirically proven to

be scaling with portfolio size and cost level. At 1 billion USD initially invested, cost-mitigations start

to be indispensable just when the base strategy alone does not secure a significant outperformance

relative to the market (9.49% p.a.) anymore42. At the same time, the 300%ADV implementation43

is enough to secure significant outperformance (.39% p.a.) relative to the market. With 1 billion

USD or more initially invested, 100%ADV is necessary to generate significant alpha. At 2.5 billion

USD, the 100%ADV constraint on the base strategy still results in 9.88% net performance per annum.

While the ML-based liquidity forecast is never the crucial extension that saves the outperformance

relative to the market, after 500 million USD, it solidly generates significant alpha from 2 to 26bps

p.a. This performance increase also consistently materializes in increased Sharpe ratios. Between 1

billion and 5 billion USD invested, a small positive gross e�ect is induced by the liquidity constraint.

This positive e�ect of the aggressive trade execution is fully o�set by increased implementation costs

of trading larger order volumes. Further, at 5 billion USD, the base strategy also loses its significant

risk-adjusted outperformance measured in the Sharpe ratio. At the largest initial portfolio size of 10

billion USD, the aggressively executed but cost-mitigated base strategy with boosted liquidity esti-

mates still secures roughly 1.5% alpha (15bps larger Sharpe ratio) relative to the market p.a. While

the delayed trade implementation generally preserves significant amounts of outperformance relative to

the market, after 10 billion USD this pattern is not applicable anymore in this context. On a monthly

rebalancing level, the average trade duration exceeds the number of available trading days and large

cash positions distort the factor investing strategy. Another minor limitation of this cost-mitigation

approach is an inevitable but small size tilt towards mid- and small caps. As the strategy operates as a

redistribution of liquidity demand, larger positions of liquid mid- and small caps are held with respect

to ascending portfolio size. Unfortunately, this negatively impacts the average bid-ask spread, which

42The uncapped base implementation of factor investing reaches its so-called equilibrium size at 1
billion USD invested on 2004-12-31 with only a medium cost level of an aggressive trade execution
applied.

43The 300%ADV constraint serves as ex-ante cost control. No order larger than 300% of the observed
(forecasted) stock liquidity is permitted at any rebalancing step.
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is part of the transaction costs. However, for both trade patterns, this negative e�ect is more than

o�set by the reduced market impact or cost of waiting. Another minor downside of this approach is

giving up small parts of excess return expectation from the multi-factor mix. Fortunately, on average,

this does not dematerialize in the gross performance of the portfolio tiltings but is further o�set by

lowered portfolio volatility. The lowered portfolio volatility is achieved by a highly reduced exposure

to peaks in stock liquidity demand which are regularly induced by momentum stocks.

In general, we see that the success of factor investing relies on a cost-e�cient implementation. If an

institutional investor is not blessed with a local trading desk, ex-ante cost control is indispensable for

cost-e�cient factor investing. Further, boosted liquidity expectations provide a statistical advantage

and materialize in additional value. This increase in wealth is empirically shown to be robust with

respect to time and increasing with invested portfolio size or cost level. In Appendix D the hypothesis

testing methodology is described to determine statistically significant di�erences in returns, costs and

Sharpe ratios concerning auto-correlated return series. Further, we see that even the most negligible

di�erences can be statistically significant due to the naturally high serial correlations between the

portfolio returns. This testing serves as the robustness check and empirically proves that the reported

statistical significances do not rely on certain sub-periods but are stable over time.

4.5 Conclusion

In this study, we investigated the success of factor investing in emerging markets concerning trading

costs and researched the impact of liquidity expectations on equity allocations. The simplest way to

successfully implement factor investing strategies lies in the cost-e�ciency found at a low cost level.

Unfortunately, many reasons might inhibit investors from achieving a su�ciently small cost level in

the stock execution at EM exchanges. Therefore, alternative methods are required to control the

implementation costs. From our analysis, we can draw several conclusions. First, we successfully

implement a sophisticated machine learning prediction of stock liquidity as additional cost-mitigation.

Second, we better understand the impact of several stock and market characteristics on stock liquidity

changes. Further, this knowledge is utilized to tune the model to run less often into costly liquidity

traps. Third, we achieve that the GBM outperforms the best naïve liquidity estimate and other ML-

based models in forecasting the liquidity concerning crucial error metrics. Finally, the boosted liquidity

forecast does also add significant value in cost-e�cient implementations of factor investing in emerging
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equity markets across various sizes of investors. With this examination, we close a gap in literature

by delivering a cross-sectional model for stock liquidity prediction in emerging equity markets based

on machine learning. Further, we extend the existing research by utilizing this model to increase the

net performance of factor investing approaches. The main limitation of our study is induced by a

su�ciently large trading database covering emerging equity markets. All investigation was carried

out with respect to sensitivity analyses. This limitation opens an exciting avenue for further research.

Given such a trading database over any specific factor-based strategy, all results presented in this study

can be checked for robustness by accurately fitted cost models. Further research can be conducted

with respect to rebalancing higher frequency strategies and liquidity predictions or more long-term

liquidity predictions as additional portfolio constraint.
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4.6 List of Charts and Tables

Figure 4-1: Time-averaged percentage variable importances.
This chart visualizes the normalized feature importances of the GBM on predicting stock 
liquidity changes over the following month. The feature importances displayed are equal-
weighted over all estimation steps of the expanding window application.

Figure 4-2: Aggressive cost parameters.
This chart displays three cost levels of market impact applied in this paper. The three
parameters are scaling factors for the square root functionality of order sizes relative
to liquidity on market impact.
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Figure 4-3: Partial dependence plots.
These charts visualize the features’ partial dependencies learned by the GBM on predicting 
stock liquidity changes over the following month. Reversal effects of liquidity-based 
features dominate with respect to the feature importances.
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Figure 4-4: Overview of factor-based portfolio tilting.
This graphic visualizes the combination of multiple risk premia to a multi-factor mix for the 
portfolio tiling scheme to obtain desired portfolio positions. 

Figure 4-5: Overview of the trading process.
This graphic visualizes the approximation of trading under market friction after a
portfolio rebalancing.
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Table 4-1: Overview of the statistical error metrics in the liquidity prediction problem
from 2004-12-31 to 2019-12-31. Absolute metrics are reported in million USD. The
predictions based on the equal-weighted future daily volumes (for the passive trade
execution) perform analogously.

One-step
ADV20d forecast

linearly-weighted
boosted forecast

RMSE 14.255 11.135
RMSE (Mcap-weighted) 51.982 51.395

RMSE (weighted by inverted ranks of observed liquidity) 5.434 4.293

RMSE on overestimates 13.771 6.081
RMSE on overestimates (Mcap-weighted) 40.106 22.550

RMSE on overestimates (...) 3.675 1.455

RMSE on underestimates 14.799 13.085
RMSE on underestimates (Mcap-weighted) 60.141 57.440

RMSE on underestimates (...) 6.820 5.234

Symmetric MAPE 41.587% 37.534%
Symmetric MAPE (Mcap-weighted) 35.076% 36.371%

Symmetric MAPE (...) 44.618% 41.408%

MAD 4.238 3.067
MAD (Mcap-weighted) 26.688 25.624

MAD (...) 1.439 1.076

MASE 100% 72.412%
MASE (Mcap-weighted) 100% 96.047%

MASE (...) 100% 74.832%
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4.7 Appendix

4.7.1 Appendix A

4.7.1.1 Descriptions of factors

Factor

Momentum Logarithmic price momentum is calculated as the

sentiment of the stock price 12 months ago up to

the previous month’s end price based on

Jegadeesh and Titman (1994). The so-called

12X1 momentum omits the last month

concerning the reversal e�ect for long-term

investments. It is the supreme example of a

generic market factor and a superior long-term

alpha driver in the cross-section of sectors and

regions. The persistence of this factor can be

reasoned by the behavioral traits of investors

that follow strong-performing stocks. These

investors’ attention leads to a crowding e�ect

that fosters the price sentiment until a

macroeconomic event, earnings miss, or other

incident stops the trend. In this paper, the price

momentum is determined as

Mom12X1t := log(pCloset≠12
pCloset≠1

) (23)
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Factor

Value The value factor as researched in Rosenberg et al.

(1985) denotes a common book-to-price multiple

that compares an asset’s book value relative to

the actual market price. An immense

book-to-price value represents a cheap stock and

therefore assigns a buy signal concerning factor

investing approaches. The origin of this

fundamental risk premium dates back to the

investigations of Benjamin Graham and David L.

Dodd and has behavioral-based characteristics

beneath its systematic and fundamental nature.

A possible explanation of the persistence of this

systematic risk premium lies in the investors’

optimism about bargains and pessimistic

overreactions, often resulting in bargains when

poor financials are reported.

Beta The low beta factor investigated by Ang et al.

(2006) and Frazzini and Pedersen (2014)

describes how stock returns co-vary with market

returns. Empirical research proves that low beta

stocks explain cross-sectional premia in the long

run and, by construction, serve as a cushion in

drawdowns. In this study,

Beta := cov(ri, runi)
‡2(runi)

(24)

is calculated with weekly data over the last 250

business days and the cov() is exponentially

weighted with a 125 business days half-life.
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Factor

Size The size factor researched in Banz (1981) shows

that smaller stocks in market capitalization

explain cross-sectional excess return as an

investor’s compensation for taking additional

risk. The e�cacy of the size factor can be

economically explained as a systematic risk

premium based on the volatile nature and higher

risk of bankruptcy of small caps. This

examination calculates the size factor as the

logarithmic free-floating market capitalization.

Operating Profit (Profitability) Operating profit (commonly known as EBIT)

denotes the profitability of the company’s

business before interest and taxes and is widely

applied as another quality factor. The operating

expenses are subtracted from the gross profit to

determine operating profit. Haugen and Baker

(1996) and Novy-Marx (2013) find an additional

risk premium with this factor. Financially

healthy companies tend to continue their good

business in the future, which economically

justifies this risk factor.

Total Assets Growth (Investment) This risk factor measures the growth of the total

assets to forecast future excess return as a second

quality factor. Titman et al. (2004), Cooper et

al. (2008) and Watanabe et al. (2013) find that

stocks with lower recent total assets growth tend

to outperform the market. In this paper, we

compute the growth of the total assets over the

last 500 business days.
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4.7.2 Appendix B

4.7.2.1 Multi-factor tilting construction methodology

Concerning single factor cyclicality, we seek to diversify the excess return expectation to maintain more

persistent premia. With the six Z-scored factors depicted in Appendix A, we build an equal-weighted

Z-score. The stock positions in the initial portfolio (at t0) as well as all the following rebalancing

weights (at t > t0) are constructed by screening the positive Z-scores (Z-scorei > 0) from the multi-

factor mix. To calculate portfolio weights for each stock i, the universe weights weightuniverse,i are

tilted under several constraints as follows:

weighttilt,i :=

Y
__]

__[

weightuniverse,i · Z-scorei, ’i œ {EM : Z-scorei > 0}

0, else
(25)

Where the market weights weightuniverse,i are determined by free-floating market capitalization. In

every monthly rebalancing, each stock i is assigned its return expectation Z-scorei. After each re-

balancing, the portfolio weights weighttilt,i are updated with empirical return indices44 to the next

rebalancing until this loop terminates.

44Thompson Reuters Datastream return indices for emerging equity represent the empirical stock
returns as done by the Center for Research in Security Prices (CRSP) concerning dividend payments
and stock splits.
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4.7.2.2 Descriptions of rebalancing and tilting constraints (applied values
in parentheses)

Constraint Description

Relative Maximum Order Size Cap (300% /

100% of ADV)

This parameter distinguishes cost-mitigated

portfolios from their base case. This sets a limit

for the relative order sizes in the rebalancing

steps.

Initial Threshold (Top 50%) This threshold determines the lower bound for

the mixed factor exposure at portfolio

initialization. It controls the number of titles in

the initial portfolio. This constraint represents

the banding constraint from Novy-Marx and

Velikov (2018).

Rebalancing Threshold (Top 50%) Alike the initial threshold constraint, a lower

bound for the factor exposures is set for each

rebalancing step. This banding constraint

controls turnover and guides the number of

holdings in the portfolio concerning the trade-o�

of diversification and return expectation.

Relative Minimum Order Size (10%) This constraint manages the minimum size of

position changes of already held assets in the

rebalancing. It can be utilized to control

turnover.

Absolute Minimum Order Size (1 basis point

of portfolio size)

Alike the relative minimum order size in absolute

terms. This constraint prohibits the factor-tilt

from generating economically insignificant orders

that would artificially raise the average holdings.

Absolute Minimum Holding Size (5 basis

points of portfolio size)

Declares the smallest permitted size of weight in

the constructed portfolio that a position might

have.

110



Constraint Description

Absolute Maximum Holding Size (2% of

portfolio size)

With respect to implementability and

diversification, a maximum holding constraint

limits portfolio weights to a certain fraction of

the whole portfolio size. Each asset’s total

market capitalization is additionally considered

in this constraint.
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4.7.3 Appendix C

4.7.3.1 Overview of features applied in machine learning modeling

Feature Origin Description

ADV 20d change liquidity-based previous 20d liquidity change

+ 12 lags

ADV 60d change liquidity-based previous 60d liquidity change

ADV 126d change liquidity-based previous 126d liquidity change

ADV 252d change liquidity-based previous 252d liquidity change

ADV 20d to Mcap liquidity-based previous 20d liquidity relative

to market capitalization + 12

lags

ADV 20d to Mcap change liquidity-based change of previous 20d

liquidity relative to market

capitalization + 12 lags

TRET20d return-based previous 20d total return + 12

lags

TRET60d return-based previous 60d total return

TRET126d return-based previous 126d total return

TRET252d return-based previous 256d total return

12X1 momentum factor Jegadeesh and Titman (1994) price momentum

historical vola 20d volatility-based previous 20d volatility (daily

data) + 12 lags

historical vola 20d change volatility-based change of previous 20d

volatility (daily data) + 12 lags

historical vola 60d volatility-based previous 60d volatility (daily

data)

historical vola 60d change volatility-based change of previous 60d

volatility (daily data)

historical vola 126d volatility-based previous 126d volatility (daily

data)
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Feature Origin Description

historical vola 126d change volatility-based change of previous 126d

volatility (daily data)

historical vola 252d volatility-based previous 252d volatility (daily

data)

historical vola 252d change volatility-based change of previous 252d

volatility (daily data)

BMRET20d return-based previous 20d market return

(Mcap-weighted) + 12 lags

BMRET60d return-based previous 60d market return

(Mcap-weighted)

BMRET126d return-based previous 126d market return

(Mcap-weighted)

BMRET252d return-based previous 252d market return

(Mcap-weighted)

historical vola 20d volatility-based previous 20d volatility (daily

data) + 12 lags

hist. market vola 20d change volatility-based change of previous 20d market

volatility (daily data) + 12 lags

hist. market vola 60d volatility-based previous 60d market volatility

(daily data)

hist. market vola 60d change volatility-based change of previous 60d market

volatility (daily data)

hist. market vola 126d volatility-based previous 126d market volatility

(daily data)

hist. market vola 126d

change

volatility-based change of previous 126d

market volatility (daily data)

hist. market vola 252d volatility-based previous 252d volatility (daily

data)

hist. market vola 252d

change

volatility-based change of previous 252d

market volatility (daily data)
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Feature Origin Description

market liquidity dispersion

20d

liquidity-based variation coe�cient of 20d

average liquidity in currency

(USD) + 12 lags

market liquidity dispersion

20d change

liquidity-based change of variation coe�cient

of 20d average liquidity in

currency (USD) + 12 lags

market liquidity 20d change liquidity-based change of previous 20d market

liquidity (Mcap-weighted) + 12

lags

market liquidity 60d change liquidity-based change of previous 60d market

liquidity (Mcap-weighted)

market liquidity 126d change liquidity-based change of previous 126d market

liquidity (Mcap-weighted)

market liquidity 252d change liquidity-based change of previous 252d market

liquidity (Mcap-weighted)

media coverage news-based linearly-weighted count of

media references until the end

of the business month (logged)

news sentiment score news-based news sentiment relative to the

average market level

upcoming holidays calendar-based (linearly-weighted) count of

occurrences of closed stock

exchanges

country hot-encoded factorial feature

sector hot-encoded factorial feature

month hot-encoded factorial feature

country_sector hot-encoded factorial feature

country_month hot-encoded factorial feature

sector_month hot-encoded factorial feature
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All referenced change rates are calculated monthly. The upcoming holidays feature is implemented

linearly-weighted for the aggressive trade model and equal-weighted for the opportunity cost model.
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4.7.4 Appendix D

4.7.4.1 Pairwise portfolio significance testing for di�erences in annualized
(excess) returns, trading costs and Sharpe ratios

Due to serial correlations between portfolios and auto-correlation in the tiltings and a stochastic

dependency in the portfolios, an ordinary t-test can not be applied. To test the statistical significance

of our presented evidence, we apply the following test statistic Zµ as a one-sided t-test on the return

di�erences for stochastically dependent, identically distributed portfolios:

Zµ =
Ô

N(µ̂1 ≠ µ̂2)Ò
‡̂1

2 ≠ 2 ˆfl1,2‡̂1‡̂2 + ‡̂2
2

(26)

With N degrees of freedom (#rebalancing months≠2; because portfolio initialization is cost-mitigation

independent) and µi, ‡i assigning the estimated annualized means and standard deviations of both

observations.

We also report the statistical significance of the Sharpe Ratio (SR) di�erence between two stochastically

dependent portfolios with the following test statistic from Ledoit and Wolf (2008):

ZSR =
Ô

N( ˆSR1 ≠ ˆSR2)Ò
2 ≠ 2 ˆfl1,2 + 1

2 [ ˆ
SR

2
1 + ˆ

SR
2
2 ≠ 2 ˆSR1 ˆSR2 ˆfl1,2

2]
(27)

Based on these test statistics, all hypothesis tests check the alternatives: H0 : µ1 = µ2 (SR1 = SR2),

H1 : µ1 ”= µ2 (SR1 ”= SR2) and report the p-value to the error levels p < 0.05, p < 0.01 and p < 0.001.

To additionally account for and correct the auto-correlation of the tiltings, we do not just report the

results of the above hypothesis tests but perform a bootstrap explained as follows.

4.7.4.2 Stationary Circular Block-Bootstrapping

The hypothesis tests above are robustness-checked with a block-bootstrap to correct for auto-

correlation as researched in Efron and Tibshirani (1993). Politis and Romano (1992) proved that

randomization of the block length in the circular block-bootstrapping maintains the stationarity of

the observations in the bootstrapped samples. Therefore the reported p-values are finally calculated

as follows:
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• Calculate the Z-statistic as Z once for return- or Sharpe ratio testing

• To apply the stationary circular block-bootstrap to test H0, transform the data so that H0 is

true.

– For return testing this transformation is given by X̃i := Xi ≠ µ̂i + µ̂combinedsample for both

time series.

– For Sharpe ratio testing it is: X̃i := [ Xi≠µ̂i

‡̂i
‡̂combinedsample] + µ̂combinedsample for both

time series.

• The robustness-checked hypothesis test works by simulating the distribution of the Z-statistic

with block-bootstrapping under a true H0. We do that by generating M = 10000 block-

bootstrap samples for both time series of forced length N (circular) with uniformly randomized

block-length b œ {1, 2, ..., Â N
2 Ê} to maintain stationarity. The Z-statistic is calculated for each

of the M bootstrap samples as Z̃i.

• Now we sum
qM=10000

i=1
I(|Z̃i|Ø|Z|)

M =: p where I() denotes the indicator function (that equals 1

if its argument is true and 0 otherwise) to get the p-value of our hypothesis test given H0 is

true. This p-value is the reported statistic for each hypothesis test in the results section.

117



5 GENERAL CONCLUSION

In general, many aspects of factor investing are thoroughly examined. This dissertation focuses on its

implementability in the context of illiquid emerging equity markets and extends the research by pre-

senting a set of novel improvements regarding its cost-e�ciency. It contributes to the gaps in literature

as follows. At first, this dissertation ties on the existing research and combines the often separately

investigated fields of return and liquidity prediction relative to simple cost models to understand better

the trade-o� between portfolio return and implementation costs in emerging equity markets. Second,

a simple cost-mitigation technique is examined concerning cost level and invested portfolio size. Third,

one of the most exciting findings of this dissertation is the demonstration of factor timing in emerging

equity markets. I again emphasize that the entanglement of developed and emerging markets can be

utilized by machine learning in portfolio construction. When examining developed markets alone, there

is less variety and interaction in macroeconomic data and factor timing remains controversial. Fourth,

the prediction of stock liquidity changes is another prime example of machine learning applications

that can be utilized to increase portfolio cost-e�ciency. This dissertation has a few limitations. Recent

trends of quantitative easing and factor crowding seem to harm the performance of risk factors in the

cross-section. Literature on breaches of risk factors is emerged but is not in consensus on whether these

strategies persist in the future. Also, all empirical analyses are carried out by strict assumptions on

the cost models and their sensitivity analyses. An extensive trading database of a unique live strategy

might be the most exciting extension of this dissertation. Lastly and overall concluding, this disserta-

tion repetitively emphasizes the importance of trading costs to implement factor investing in emerging

equity markets successfully. While long-term risk premia are well-examined, a thoughtful execution or

cost-mitigation approach decides the underlying strategy’s success. Today, this might be the only skill

a manager that beats her peers possesses. Therefore, the increasing investors’ attention to emerging

equity markets can be justified under the assumption of a possible low cost level. However, while

finding a novel source of alpha is increasingly di�cult, there is another path to increase the net of cost

performance of factor investing. The investigations carried out in this dissertation do not provide an

additional source of alpha but show how on-paper returns can often be largely preserved by implicitly

controlling the cost component. So, if one does not implement a factor strategy mindlessly, what you

see might be close to what you get.
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