
Department of Physics
Institut für Kernphysik
Theoriezentrum

Equation of state of hot and
dense matter in astrophysics
and in the laboratory
Zustandsgleichung für heiße und dichte Materie in der Astrophysik und im Labor
Zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.)
Genehmigte Dissertation von Sabrina Huth aus Lich
Tag der Einreichung: 7. Februar 2023, Tag der Prüfung: 26. April 2023

1. Gutachten: Prof. Achim Schwenk, Ph.D.
2. Gutachten: Prof. Dr. Almudena Arcones
Darmstadt, Technische Universität Darmstadt
Jahr der Veröffentlichung der Dissertation auf TUprints: 2023



Equation of state of hot and dense matter in astrophysics and in the laboratory
Zustandsgleichung für heiße und dichte Materie in der Astrophysik und im Labor

Accepted doctoral thesis by Sabrina Huth

Date of submission: 7. Februar 2023
Date of thesis defense: 26. April 2023

Darmstadt, Technische Universität Darmstadt
Jahr der Veröffentlichung der Dissertation auf TUprints: 2023

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-238446
URL: http://tuprints.ulb.tu-darmstadt.de/23844

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung 4.0 International
https://creativecommons.org/licenses/by/4.0/
This work is licensed under a Creative Commons License:
Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/

http://tuprints.ulb.tu-darmstadt.de/23844
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Für Opa.
Ohne dich würde es diese Dissertation nicht geben.

Du bist für immer in meinem Herzen.

iii





Abstract

For the interpretation of high-energy astrophysical phenomena such as supernova explosions or neutron
star collisions, a thorough understanding of matter at supranuclear densities is necessary. Unfortunately,
our current knowledge of dense matter as present in neutron star cores is limited. Novel constraints on the
equation of state of neutron star matter are provided by gravitational wave observations of neutron star
mergers such as GW170817 and measurements of neutron star radii by NASA’s NICER mission. Recently,
microscopic calculations of pure neutron matter are used as a basis for the construction of new equation of
state parametrizations. However, extrapolations to high densities are required here as these calculations are
only available up to about nuclear saturation density. Core-collapse supernovae and neutron star mergers
probe an even broader range of temperature and electron fraction in comparison to cold isolated neutron
stars. For astrophysical applications, commonly used equations of state are mostly not consistent with
microscopic calculations and recent astrophysical observations. The construction of novel equation of state
parametrizations that are in agreement with the latest constraints from nuclear physics and observations
will facilitate significant advances in nuclear astrophysics.

In this thesis, we provide new equations of state for core-collapse supernova and neutron star merger
simulations. To this end, we introduce a parametrization for the nucleon effective mass that reflects novel
microscopic calculations up to twice saturation density. The effective mass is essential to accurately describe
thermal effects, which govern the proto-neutron star contraction in core-collapse supernovae. To constrain
the parameter range of the equation of state we use results from chiral effective field theory calculations
at nuclear densities and functional renormalization group computations at high densities that are based
on quantum chromodynamics. In addition, constraints from mass measurements of heavy neutron stars,
the gravitational wave signal of GW170817, and the first NICER results are implemented as well. We
investigate the results for the predicted ranges for the equation of state and neutron star properties such
as the neutron star radius and maximum mass. From this equation of state functional, we choose a set
of representative equations of state to systematically study the impact of the nucleon effective mass and
nuclear matter properties in core-collapse supernova simulations. For this, equation of state tables can be
computed using the liquid-drop model with a single nucleus approximation that cover a wide range of
densities, temperatures, and electron fractions as required by astrophysical simulations.

Moreover, we combine information from astrophysical multi-messenger observations of neutron stars and
from heavy-ion collisions of gold nuclei at relativistic energies with microscopic nuclear theory calculations
via Bayesian inference to refine our knowledge of dense matter. Heavy-ion collision experiments offer
complementary information at intermediate densities where theoretical calculations as well as observations
are less sensitive to. Our results show an increase in the pressure in dense matter compared to previous
studies when data from heavy-ion collisions is included. This leads to a shift in neutron-star radii towards
larger values, similar to recent observations by the NICER mission. We conclude that constraints from
heavy-ion collision experiments and multi-messenger observations are strikingly consistent with each other.
This work highlights how joint analyses can shed light on the properties of neutron-rich nuclear matter
over the density range probed in neutron stars.
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Cover picture: Picture of the supernova 1987A in the Large Magellanic Cloud taken form the Hubble
Space Telescope. Credit: NASA, ESA
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Zusammenfassung

Die Interpretation hochenergetischer astrophysikalischer Phänomene wie Supernovaexplosionen oder
Neutronensternkollisionen erfordert ein umfassendes Verständnis der Materie bei supranuklearen Dichten.
Unser Wissen über dichte Materie, die in den Kernen von Neutronensternen zu finden ist, bleibt jedoch
begrenzt. Gravitationswellenbeobachtungen von Neutronensternverschmelzungen wie GW170817 sowie
Messungen der Radien von Neutronensternen im Rahmen der NICER-Mission der NASA liefern neue
Hinweise für die Zustandsgleichung von Neutronensternmaterie. In den letzten Jahren wurden viele Bestre-
bungen unternommen, Parametrisierungen der Zustandsgleichung auf der Grundlage von mikroskopischen
Berechnungen reiner Neutronenmaterie zu erstellen. Solche Berechnungen sind jedoch nur bis etwa
zur Kernsaturierungsdichte verfügbar, so dass Extrapolationen zu höheren Dichten vorgenommen wer-
den müssen. Im Vergleich zu kalten isolierten Neutronensternen weisen Kernkollaps-Supernovae und
Neutronensternverschmelzungen einen viel größeren Bereich von Temperatur und Elektronenanteil auf.
Die in astrophysikalischen Anwendungen üblicherweise verwendeten Zustandsgleichungen stimmen oft
nicht mit mikroskopischen Berechnungen und aktuellen Beobachtungen überein. Die Konstruktion neuer
Parametrisierungen von Zustandsgleichungen, die mit den neuesten Erkenntnissen der Kernphysik und as-
trophysikalischen Beobachtungen übereinstimmen, wird wichtige Fortschritte in der nuklearen Astrophysik
ermöglichen.

Wir stellen neue Zustandsgleichungen für Anwendungen in Simulationen von Kernkollaps-Supernovae
und Neutronensternverschmelzungen vor. Wir beginnen mit der Einführung einer Parametrisierung
der effektiven Masse, die auf aktuellen mikroskopischen Berechnungen basiert. Dies ist wichtig, um
die vorhergesagten thermischen Effekte zu erfassen, von denen gezeigt wurde, dass sie die Kontraktion
des Proto-Neutronensterns in Supernova-Simulationen steuern. Der Parameterbereich des der Zustands-
gleichung zugrundeliegenden Energiedichtefunktionals wird durch Ergebnisse der chiralen effektiven
Feldtheorie bei Kerndichten sowie durch funktionale Renormierungsgruppenberechnungen bei hohen
Dichten auf der Grundlage der Quantenchromodynamik bestimmt. Darüber hinaus werden Beobachtungen
von schweren Neutronensternen, das Gravitationswellensignal von GW170817 und die ersten NICER-
Ergebnisse berücksichtigt. Schließlich untersuchen wir die sich daraus ergebenden zulässigen Bereiche für
die Zustandsgleichung und die Eigenschaften von Neutronensternen, einschließlich der vorhergesagten
Grenzen für den Neutronensternradius und die maximale Masse. Aus diesem Zustandsgleichungsfunktional
wählen wir eine Reihe repräsentativer Zustandsgleichungen aus, um die Auswirkungen der effektiven Masse
der Nukleonen und der Kernmaterieeigenschaften in Kernkollaps-Supernova-Simulationen systematisch zu
untersuchen. Zu diesem Zweck können Zustandsgleichungstabellen unter Verwendung des Flüssigkeit-
stropfenmodells mit einer Ein-Kern-Näherung berechnet werden, die einen breiten Bereich von Dichten,
Temperaturen und Elektronenanteilen abdecken, wie sie für astrophysikalische Simulationen benötigt
werden.

Wir verwenden zusätzlich Bayes’sche Verfahren, um Daten aus astrophysikalischen Multi-Messenger-
Beobachtungen von Neutronensternen und aus Schwerionenkollisionen von Goldkernen bei relativistischen
Energien mit mikroskopischen Kerntheorieberechnungen zu kombinieren, um unser Verständnis von
dichter Materie zu verbessern. Wir finden heraus, dass die Einbeziehung von Schwerionenkollisions-
daten auf eine Erhöhung des Drucks in dichter Materie im Vergleich zu früheren Analysen hinweist,
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wodurch sich die Radien von Neutronensternen zu größeren Werten hin verschieben, was mit den jüng-
sten Beobachtungen der NICER-Mission übereinstimmt. Unsere Ergebnisse zeigen, dass die Ergebnisse
von Schwerionen-Kollisionsexperimenten eine bemerkenswerte Übereinstimmung mit Multi-Messenger-
Beobachtungen aufweisen und ergänzende Informationen über Kernmaterie bei mittleren Dichten liefern.
Diese Arbeit kombiniert Kerntheorie, Kernexperimente und astrophysikalische Beobachtungen und zeigt,
wie gemeinsame Analysen Einblicke in die Eigenschaften neutronenreicher supranuklearer Materie über
den in Neutronensternen untersuchten Dichtebereich geben können.
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1 Introduction

Neutron stars are one of the most compact objects in the universe aside from white dwarfs and black
holes [1, 2]. A typical neutron star has as much as 1.4 times the mass of our sun, M⊙, squeezed into a
sphere with a radius of only 10 to 14 kilometers [3, 4, 5]. To date, massive neutron stars with masses of
even ∼ 2M⊙ have been observed with high precision [6, 7, 8, 9]. The exact maximum mass above which
neutron stars collapse to black holes is still an open question. As such compact objects, neutron stars are
bound by gravity and have to be treated as relativistic objects [10]. The density in their center exceeds
several times the density in atomic nuclei on earth such that the conditions present in neutron star cores
cannot be reproduced in terrestrial experiments yet [11, 3]. Consequently, many properties of matter in
the center of neutron stars are still highly uncertain, including the constituents and their interactions that
are governed by the strong force, see e.g. [1, 12, 13]. The equation of state (EOS) describes the state of
matter across the wide range of densities from the surface to the center. Interestingly, there is a unique
link between the EOS and the mass-radius relation of neutron stars [14]. This means that observations of
neutron stars are able to inform the EOS and, thus, our knowledge about the underlying strong interaction
at densities where modern microscopic calculations as well as experiments are not sensitive to.

Neutron stars are born in core-collapse supernova (CCSN) explosions that mark the end of live of stars
of at least eight solar masses [15]. Very massive stars will collapse to a black hole, but the threshold mass
is unknown to date. As soon as nuclear fusion reactions come to an end, the star cannot longer support
its mass against gravity. The core collapses and transforms into a neutron star, while the surrounding
material is ejected into space due to the triggered explosion [16, 17, 18, 19]. Elements heavier than iron
are created via nucleosynthesis with the rapid and slow neutron capture process (r- and s-process) and
enrich the stellar medium [20, 21, 22]. While the s-process mainly occurs in asymptotic giant branch
stars, the r-process takes place in environments with higher fluxes of free neutrons. New stars and planets
that form in the gas clouds contain the synthesized heavy elements. The enormous explosions of CCSNe
can even be seen by the naked eye from earth if they are close enough, which can still be thousands of
light-years away [23, 24]. In the left panel of Fig. 1.1, we show the Crab nebula that originates from a
supernova explosion observed in 1054 [1]. Unfortunately, supernovae that are observed today are almost
all too far away for detailed measurements and observations of emitted neutrinos. The investigation of the
detailed mechanism behind CCSN explosions relies on numerical simulations where only specific parts of
the physics input can be probed in experiments.

Neutron star mergers (NSMs) are another extreme astrophysical phenomenon. Here, two neutron stars
that form a binary system spiral around each other until they eventually collide and merge [25, 26, 12],
see right panel of Fig. 1.1. The mass of the remnant determines whether it collapses to a black hole or
not. During the coalescence, matter is ejected from the neutron stars that either is directly expelled to
space (dynamical ejecta) or stays gravitationally bound and forms an accretion disk around the central
object that also generates outflows [27, 28, 29]. The ratio between these two ejecta components strongly
depends on the fate of the remnant and consequently on the EOS [30, 31]. The expelled material is
neutron-rich, especially for the dynamical ejecta, and is another site where heavy elements are produced
via the r-process [32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 28, 42]. However, the details of the nucleosynthesis
in mergers of compact objects and also CCSN are still not resolved, see e.g. Ref. [43]. The multi-messenger
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Figure 1.1: Crab nebula originating from a supernova observed in 1054 (left) as taken by Hubble Space
Telescope [44] and illustration of a neutron star merger (right) taken from Ref. [45] and a
courtesy of National Science Foundation, LIGO, Sonoma State University, Aurore Simonne.

observation of gravitational waves (GWs) and the corresponding electromagnetic counterpart offer a great
opportunity to test our current understanding of the dynamics of the astrophysical phenomena and the
involved fundamental forces.

The EOS is a key ingredient in CCSN and NSM simulations and highly influences the dynamics and
outcome in both cases. A thorough description of the properties of matter at all relevant conditions is
essential to explore these fascinating astrophysical environments and extract information from observations.
However, we still rely on phenomenological models for simulations as the extreme conditions present in
neutron stars, their mergers, and supernova explosions cannot be reproduced in terrestrial experiments yet.
These phenomenological models are often not consistent with modern nuclear theory constraints or recent
observations, see e.g. [46]. The aim of this work is to provide a new set of EOS for astrophysical simulations
based on our current understanding from novel microscopic calculations including thermal effects that are
especially crucial for the proto-neutron star evolution in CCSNe [47, 48]. In particular, uncertainties from
nuclear theory as well as observations need to be reflected in the EOS to systematically study the sensitivity
of specific nuclear physics properties in simulations. Moreover, heavy-ion collision experiments are a
promising source of complementary information at intermediate densities where microscopic calculations
are not applicable anymore and observations are not yet sensitive to. Our goal is to combine our knowledge
from nuclear theory, observations, and current information from heavy-ion collision experiments to provide
the most stringent constraint on the radius of a 1.4M⊙ neutron star.

1.1 History of neutron stars

The first consideration of neutron stars can be dated back to 1932 by Lev Landau. He postulated that
there are stars heavier than white dwarfs [49] only a month before Chadwick discovered the neutron [50].
Two years later, Baade and Zwicky assumed that neutrons are the main component of neutron stars and
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anticipated that the massive stars are formed as remnants of supernova explosions [51, 52, 53]. While
the first observation of a neutron star was still about three decades ahead, important progress has been
made in the description of neutron stars. Tolman [54] and Oppenheimer and Volkoff [55] derived the
structure equations of neutron stars independently from each other. These are now known as the Tolman-
Oppenheimer-Volkoff (TOV) equations, see Sec. 1.4 for details. For their derivation, a noninteracting,
relativistic neutron gas was assumed, which led to a first calculation of a maximum mass of neutron stars
ofMmax = 0.71M⊙ [55].

Finally in 1968, Hewish and Bell detected the first pulsar with a period of 1.337 s [56]. Pulsars are fast
rotating neutron stars with strong magnetic fields that emit radio signals, which can be precisely observed
from earth as periodic pulses. Two years later, the intense radio source in the Crab nebula observed in
1965 [57], was identified as a pulsar [58, 59]. This marked the observational evidence that neutron stars
are indeed born in supernova explosions [60]. The pulsar in the Crab nebula originates from a supernova
explosion that was visible from earth in 1054 [1]. In 1987, the supernova SN1987A has been observed
that took place in the Large Magellanic Cloud. It is the first event from which neutrinos were detected on
earth, which validated the key role neutrinos play in these events [61], see also Sec. 1.2. To date, over
3300 pulsars have been observed [62, 63].

In 1974, the first binary system of pulsars has been detected [64]. This observation also indicated
that GW exist. About four decades later, the era of GW astronomy started with the first detection of
GW from a binary black hole merger [65]. In 2017, the LIGO/Virgo Collaboration detected the first
direct GW detection from a binary NSM [66], which led to a series of new constraints on the equation of
state [67, 68, 69, 70, 71, 72, 73]. see also Sec. 1.5.

1.2 The origin of neutron stars: Core-collapse supernovae

Neutron stars are the final stages of stellar evolution for massive stars with M ⪆ 8M⊙, that explode in
CCSNe, which are violent explosions driven by the release of gravitational energy. Low mass stars end up
as white dwarfs while very massive progenitors and failed CCSN explosions lead to the formation of black
holes [15]. The threshold mass after which all progenitors collapse to a black hole is not yet clear. In this
section, we give a brief introduction starting from stellar evolution until the supernova explosion.

In the early stages of stellar evolution a star is mostly composed of hydrogen and helium. The star is
stabilized against gravitational collapse by the pressure of the gas and degenerate electrons as well as by
the energy that is released from fusion. Stars with masses of 8M⊙ and more complete all burning stages
leading to an iron core surrounded by specific burning layers that built an onion-like structure [17]. The
fusion of elements in the core stops eventually since iron has the largest binding energy per nucleon. At the
same time, the electron degeneracy pressure decreases due to electron capture reactions on either protons
or ions that produce neutrons and neutrinos. The latter are only weakly interacting and escape the system.
This prevents the inverse reaction and results in a deleptonization. At the surface of the core, silicon
burning still produces iron nuclei, which lets the core grow further until the so-called Chandrasekhar mass
Mch ≈ 1.46M⊙ [19]. Once the core reaches this value, the gravitational force cannot longer be balanced
out and the core collapses. In less than a second, the core shrinks from around thousand kilometers in
radius to only a few ten kilometers [74].

During the collapse, densities inside the core easily reach nuclear densities such that nuclei merge
together and form homogeneous matter of neutrons, protons, and electrons. More and more neutrons are
build via the electron capture reaction. Nucleons are packed so closely that the short-range interaction
between them dominates and matter becomes almost incompressible. The collapse stops and infalling
material bounces off the core. This so-called bounce initiates a shock wave that starts to propagate outwards,
see left panel of Fig. 1.2. The former iron core and material that falls through the shock onto the core
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Figure 1.2: Schematic illustration of bounce and shock formation (left) and shock stagnation and neutrino
heating (right) with dynamical conditions in the upper half and nuclear composition with nuclear
and weak processes in the lower half. The x-axis represents the mass in units of the solar
mass M⊙ and the y-axis refers to the radius where RFe, Rs, Rg, and Rν stand for the the radius
of the iron core, shock radius, gain radius, and neutrinosphere, respectively. From Ref. [15].

form a proto-neutron star (PNS). Here, the fraction of protons is approximately constant and about 30%
of all baryons [16]. The reason for this is that electron capture reaction on protons, positron capture on
neutrons, and the inverse reactions are in equilibrium as neutrinos are trapped in the prevailing dense
matter of the PNS. In the meanwhile, the shock propagates further outwards where densities decrease and
matter becomes transparent for neutrinos. This causes a neutrino burst shortly after bounce that takes
away a lot of the energy. In the material that is heated up from the shock high-energy photons dissociate
iron and nickel ions into protons and neutrons. The energy loss of the shock from this photodissociation
process together with the escaping neutrinos results in a stagnation of the shock wave at a radius of about
100 to 200 km [15] and prevents a prompt supernova explosion.

In 1965, Colgate and White [75] were the first to propose that a few percent of the energy that is carried
away by neutrinos is deposited behind the shock by neutrino absorption. Bethe and Wilson [76] postulated
about twenty years later the delayed neutrino-heating mechanism. Here, the matter behind the shock wave
in the so-called gain region is heated by the absorption of high-energy electron neutrinos and anti-neutrinos
from neutrons and protons, see right panel in Fig. 1.2. These neutrinos become even more energetic since
they are in thermal equilibrium with the PNS, whose temperature rises due to the ongoing contraction. In
the cooling layer, which forms between the PNS and the gain region neutrinos are mostly emitted. At the
same time, density and temperature at the position of the shock decrease as matter is still falling onto the
PNS, which supports the shock revival as well. Simulations of CCSNe have shown that multi-dimensional
instabilities further helps the shock propagation. In particular, Rayleigh-Taylor instabilities are induced
when cold and heavy material in the gain region sinks towards the center while hot material expands [16]
resulting in a longer duration of matter in the gain layer and, thus, higher neutrino absorption rates. In
total, only a few percent of neutrinos are absorbed, which is enough to push the shock propagation and
trigger a delayed explosion. [18]. If the deposited energy is not sufficient to revive the shock wave, the
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PNS continues to accrete material until it eventually collapses to a black hole.
Less than a second elapses from the gravitational collapse to the delayed explosion [17]. The PNS in the

center cools down mainly through the continuous emission of neutrinos. The conversion to a neutron star
by neutronization and deleptonization is completed about 10 to 20 seconds after the core collapse of the
progenitor star [11]. Days may pass by until the shock wave finally reaches the outer layers of the star and
the explosion can be observed. As stated in Sec. 1.1, the supernova SN1987A was the first and so far the
only one where a spectroscopy of the neutrino blast was possible. The observed neutrinos confirmed the
delayed neutrino-heating mechanism [61]. However, only 24 neutrinos were detected such that statistics
are weak. Neutrino observations enable a view directly to the dense matter in the core of the PNS as they
do not further interact with matter in the outer layers of the star where densities are much lower than
nuclear densities.

1.3 Neutron star structure

The composition of neutron stars varies considerably when going from the surface to the center where the
density reaches its maximum. As a result, neutron stars are divided into several layers as illustrated in the
schematic drawing in Fig. 1.3 from Ref. [77]. The atmosphere surrounds the neutron star with a thin layer
of plasma and consists mostly of hydrogen and helium [1]. Its thickness depends on the temperature, but
is at most a few ten centimeters [1]. The atmosphere is crucial for many observations as it emits thermal
radiation that gives information on the effective surface temperature, the chemical composition and the
magnetic field at the surface as well as neutron star properties like the mass and radius [12]. Thus, the
atmosphere is essential in modeling neutron stars to extract these characteristics from observational data.

The outer crust is located beneath the atmosphere. It has a thickness of several 100 meters and is
composed of a lattice of ions and degenerate electrons, where the latter dominate the pressure [1].
Towards the inner crust, the density increases progressively and with it the electron chemical potential. As

Nuclei get 
more
neutron rich
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INNER CRUST

PASTA PHASES

OUTER CORE
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Strange Baryons?
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Figure 1.3: Schematic representation of a neutron star with the different layers and the corresponding
constituents in each layer. Figure taken from [78].
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Figure 1.4: Neutron and proton density profiles for several average densities. Figure taken from Ref. [80],
see also Ref. [1].

a consequence, electron captures on protons are energetically favorable, such that nuclei become more
neutron-rich [79]. At a density of about 4 ·1011 g cm−3, nuclei are packed so close together that the neutron
chemical potential becomes positive such that neutrons become unbound and drip out of nuclei [11]. At
the same time, the electron chemical potential is high enough to hinder β-decay so that neutrons can
exist freely. The density distributions of neutrons and protons are depicted in Fig. 1.4 for several average
densities from Ref. [80] to illustrate the dripping of neutrons. The so-called neutron-drip density marks
the beginning of the inner crust.

The inner crust is about 1 kilometer thick and extends from the neutron-drip density up to roughly half
saturation density where the liquid-gas phase transition to nuclear matter is completed [12]. For details on
the phase transition see Sec. 2.5. Matter in the inner crust is composed of neutron-rich nuclei surrounded
by an electron gas and superfluid neutrons [1]. With increasing density, nuclei become heavier and the
neutron density outside nuclei increases as well. Within this transition, nuclei might be deformed in a
series of geometries including tubes, sheets, and bubbles [77]. These structures are similar to the shapes
of pasta, which is why they are called nuclear pasta. The specific region in the inner crust where these
structures are present is also depicted in Fig. 1.3. At the end of this transition at the crust-core boundary,
the neutron density outside and inside nuclei are of same size, which means that all nuclei are completely
dissolved to uniform matter [79], see Fig. 1.4.

About 99% of the matter in neutron stars is located in the core [12], which can be split into an outer
and an inner core. Matter in the outer core consists mostly of neutrons, with a small admixture of about
5% protons as well as electrons and possibly muons [1]. The specific composition is determined by β-
equilibrium and charge neutrality. The neutrons and protons form a strongly interacting Fermi liquid and
might be both in superfluid state [11]. The outer core is several kilometer thick and reaches densities up
to roughly 2n0 at the boundary to the inner core [1]. The inner core has a thickness of several kilometers,
similar to the outer core. The maximum density that is reached in the center of the neutron star might be
as high as 10n0 [12]. However, it is still an unknown quantity and very model dependent. In addition,
different forms of matter may be present like deconfined quark matter, pion and kaon condensates or
hyperons [11, 1]. A lot of efforts are currently put into studies about phase transition to these more exotic
phases that lead to a softening of the equation of state, see e.g., Refs. [13, 81, 82, 83, 84, 85].
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1.4 Neutron stars and the nuclear equation of state

Neutron stars can be described via the TOV equations for hydrostatic equilibrium that are based on general
relativity. These are two coupled differential equations for a non-rotating and spherically symmetric
body [54, 55]

dP

dr
= −(ϵ+ P )

m+ 4πr3P

r2

(︃
1− 2m

r

)︃−1

, (1.1)

dm

dr
= 4πr2ϵ , (1.2)

with the pressure P , energy density ϵ, radius coordinate r, and mass m within a sphere of radius r1. The
mass and the radius of a neutron star is obtained by integrating from the center to the surface of the star.
To this end, the equation of state P (ϵ) is required to close the system of equations. The initial conditions
are defined at the center, where the enclosed mass m as well as the radius r are zero. One chooses a value
for the central pressure Pc = P (r = 0) and integrates from there until P = 0, which is the condition of
the surface. Here, the radius coordinate is identified with the radius of the neutron star, r = R, which
then determines the neutron star mass asM = m(r = R). This procedure is performed for various central
pressures resulting in the mass-radius relation, see Fig. 1.5. Every point on this line corresponds to a
specific central pressure and, thus, to a certain maximum density. With increasing central pressures, the
maximum density increases as well and the corresponding neutron star becomes heavier. This describes
the condition for stable neutron stars, dM/dn > 0, which holds up to the maximum mass. If this mass
threshold is exceeded, the neutron star becomes unstable and collapses to a black hole.

There is a unique link between EOS and mass-radius relation, meaning that every M − R relation
corresponds to exactly one EOS [14]. The EOS describes the properties of matter across many orders of
magnitude in density including various types of interactions and degrees of freedom. The conditions in the
crust are rather well understood and can be probed in experiment resulting in low uncertainties for the EOS.
However, with increasing density nuclei become neutron-rich and are often not accessible with experiments
anymore. Towards the center of the star, uncertainties increase rapidly as also microscopic calculations break
down above nuclear densities and extrapolations to the maximum density are needed. The constituents
in the inner core are still unknown, which is also reflected in the enlarged EOS uncertainties. The space
of possible EOS is reduced by the requirement that the speed of sound vs =

√︁
dP/dϵ does not exceed

the speed of light. Another condition is that the EOS has to support masses of observed neutron stars.
To date, a few massive neutron stars with masses of about 2M⊙ have been precisely measured [6, 7, 9],
see Sec. 1.5 for more details. These two general assumptions constrain the radius of a 1.4M⊙ neutron
star to approximately 12± 2 km [3, 4, 5]. A reduction of EOS uncertainties especially at densities above
saturation density results in a smaller uncertainty for neutron star radii and vice versa. Consequently,
observations are a key tool to constrain the equation of state at high densities where terrestrial experiments
and microscopic calculations are not yet feasible.

In Fig. 1.5, we show the EOS and the resulting mass-radius relation from Ref. [4]. The EOS is based on
microscopic calculations up to roughly saturation density (dark blue band) and a polytropic expansion
to higher densities that only applies the two general assumption of causality and the 2M⊙ neutron star
and, thus, exhibits a broad uncertainty band. Soft EOS that have lower pressures at a given energy density
feature smaller neutron star radii and larger central densities for a given neutron star mass compared to
stiff EOS. The maximum mass also strongly depends on the EOS and is an important quantity to constrain
the radius uncertainty [86, 87]. A lower bound on the maximum mass is given by the most massive neutron

1Throughout this thesis, we use natural units with c = h̄ = kB = G = 1.
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Figure 1.5: Equation of state (left) and mass-radius relation (right) from microscopic calculations up to
roughly saturation density and a polytropic expansion to higher densities. Figure taken from
Ref. [4].

star known so far, while an upper bound can be inferred by the multi-messenger detection of NSMs, e.g.,
Refs. [88, 89, 90, 91], see Sec. 1.5 for details. The radius of neutron stars are correlated with the pressure.
In fact, the radius of a canonical neutron star is sensitive to the pressure around 1-2 times saturation
density [92, 87]. This specific radius and the maximum mass are the key parameter that characterize the
mass-radius relation [11].

In general, the EOS describing cold neutron stars does not only depend on density, but also on temperature
and the proton fraction. However, the proton fraction is set by the condition of β-equilibrium. The
temperature is of the order of 108 K, which corresponds to a thermal energy of about 10 keV [86, 93]. This
is small compared to the Fermi energy of neutrons at nuclear densities, which is several MeV and increases
with density [94]. Consequently, isolated neutron stars can be considered at zero temperature. We use
this description of the EOS with P = P (n) only for cold neutron stars. In the case of proto-neutron stars
born in supernova explosions and NSMs, temperature effects are relevant and the general description with
P = P (n, x, T ) is necessary for a thorough characterization of the EOS.

1.5 Observations

The observation of neutron stars is essential for our understanding of dense matter as conditions that
are present inside neutron star cores cannot be produced in terrestrial experiments yet. In our galaxy,
there are an estimate of 108 − 109 neutron stars, but only a small fraction of them have been observed so
far [1]. Observations provide information about various properties of neutron stars. In particular, masses
of pulsars in binaries can be measured with incredible precision, while measurements of the radius still
have large uncertainties. However, a promising tool to constrain the radius to a high degree in the future
is the measurement of the moment of inertia for a neutron star with a well-known mass [95, 96]. In this
section, we will focus on the types of observations that we use in the upcoming chapters of this thesis to
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Figure 1.6: Observed neutron star masses with 1σ uncertainty from various binary systems as indicated
by the different colors and symbols. From Ref. [96] with data from [98], see also [98, 99, 3].

study the dense matter inside neutron stars.

1.5.1 Mass Measurements of heavy neutron stars

Precise measurements of neutron star masses are especially possible when observing pulsars in binary
systems [3]. Pulsars have an almost constant rotational period. Their axis of magnetisation and rotation
are in general misaligned resulting in a small decrease of rotation. Nevertheless, the rotation as well as
its derivative can be measured accurately, such that any deviation of their predicted pulse profile due to
gravitational interaction with a companion star gives information about the mass of the pulsar [97]. The
accuracy of the mass measurement increases with the compactness of the companion such that double
neutron star binaries offer the most precise mass measurements to date where relative uncertainties of the
order of 10−4 are possible, see, e.g., the Hulse-Taylor pulsar with a mass ofM = 1.4408± 0.0003M⊙ [64].
In Fig. 1.6, a summary of observed neutron star masses from various binary systems including main
sequence-neutron star binaries, white dwarf-neutron star binaries, double neutron star binaries, and
X-ray/optical binaries. The chart also demonstrates that most known neutron stars have a mass of about
1.4M⊙, which is known as the canonical value.

Obtaining neutron star masses with long-term radio pulsar timing is done in two steps. First, the offset
between the standard profile of a pulsar that is observed and the detected pulse profile give information
about the pulsar position, the period with its derivative, and the dispersion measure [100]. Then, in
binary systems, five Keplerian orbital parameters are fitted with the mass of the pulsar and the mass of
the companion as the only unknown parameters [3]. In the case of double neutron star binaries, five
post-Keplerian (PK) parameters are fit to the pulse profile. These are the rate of the periastron advance,
the time-dilation and gravitational-redshift parameter, the rate of the orbital period decay, and the two
Shapiro delay parameters. These parameters characterize the change of the expected pulse times-of-arrival
due to relativistic effects of the two stars orbiting each other [101]. Each of the PK parameter is a function
of the two stellar masses in a given theory of gravity [102, 103]. Consequently, to obtain the mass of the
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Figure 1.7: Mass-radius relation for various EOS. The horizontal bands are the 1σ uncertainty band of the
two most massive neutron stars known to date [7, 9]. The green bar is the result of the 90%
confidence limit of the radius of a 1.4M⊙ neutron star from the multi-messenger analysis of
Ref. [72]. Figure created by Norbert Wex from Ref. [104] with EOS tabulated in Ref. [92].

neutron stars one needs to measure two PK parameters. The observation of three or more PK parameters
offers the possibility to test the theory of gravity [97].

Masses of heavy neutron stars are especially interesting as they constrain the maximum mass of neutron
stars, i.e. the mass that can be still supported against gravitational collapse to a black hole. To date, there
have been several precise observations of neutron stars with about two solar masses [6, 7, 8, 9]. These
discoveries provided valuable information about the behavior of dense matter as it excludes exotic degrees
of freedom in neutron star cores that lead to a drastic softening of the EOS and, thus, cannot support
such a high mass. This is reflected in Fig. 1.7, which depicts the mass radius relation of neutron stars for
various EOS. The horizontal bands show the 1σ uncertainty of the two most massive pulsars observed so
far [7, 9]. This rules out many EOS that predict maximum masses smaller than the current limit. The green
bar represents the 90% confidence limit of the radius of a 1.4M⊙ neutron star from the multi-messenger
analysis of Ref. [72].

1.5.2 Neutron Star Interior Composition Explorer (NICER)

Neutron stars are small, faint, and far away, which makes measurements of neutron star radii very
complicated. However, a NASA mission was launched in 2017 in which the soft X-ray telescope NICER
(Neutron Star Interior Composition ExploreR) has been installed on the International Space Station with
the purpose to measure the mass and radius of a neutron star simultaneously for the first time [105, 106,
107, 108]. This is done via pulse profile modeling of the observed X-rays that are emitted from regions
with high radiation levels on the surface of the star. These regions are called hot spots and appear as
pulsation due to the rotation of the pulsar. Relativistic effects are essential for the pulse profile since the
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Figure 1.8: Illustration of the relativistic effects of the pulse profile that are sensitive to the compactness
of the neutron star. Figure credit Morsink/Moir/Arzoumanian/NASA.

emitted photons travel through the curved exterior space-time of the star. Consequently, the amplitude
of the pulsation and the photon time delays from different points on the surface depend strongly on the
compactness M/R [78]. For a more compact neutron star with a strong gravitational field, the light
bending leads to the detection of X-rays even for the far-side hot spot [105]. This is illustrated in Fig. 1.8
for pulse profiles of two stars with different compactness. There are also other effects of general relativity
that are sensitive to the compactness and have to be taken into account, e.g., gravitational redshifting of
photons that impacts the energy-dependent normalisation [109, 110, 111, 112, 113, 114, 115, 116, 117].
The pulse profile itself also depends on other parameters like the emission direction, the emission from the
stars surface in general as well as geometrical parameters of the hot spots including its size and shape. In
order to infer the mass and radius of the observed neutron star one has to reconstruct the pulse profile. All
parameters from the surface emission model including the surface temperature pattern and the inclination
angle of the observer and all parameters of a given exterior space-time that is characterized by the mass,
radius, and spin frequency enter in this modeling [118]. The pulse profile model is then sampled and
matched to the observed data to obtain posterior probability distributions for the mass and radius via
Bayesian inference.

There are three different pulsar types with hot spots for which mass and radius can be inferred via pulse
profile modeling, namely rotation-powered pulsars, accretion-powered pulsars, and thermonuclear burst
oscillation sources. The NICER mission focuses on rotation-powered millisecond pulsars, because they
provide a very stable pulse profile that also allows for multiple distinct observation runs [78]. Future X-ray
observation missions like the enhanced X-ray Timing and Polarimetry (eXTP) [119] and the Spectroscopic
Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) [120] utilize the next generation of
telescopes with a larger area such that more photons can be detected, which ultimately leads to tighter
constraints. Here, also measurements from fainter rotational-powered pulsars as well as accretion-powered
pulsars, and thermonuclear burst oscillation sources are possible, resulting in more constraints on the
equation of state.

Up to now, NICER has reported on the measurements of two pulsars. The data have been analysed by
two groups independently from each other. The assumptions for the pulse profile modeling vary in some
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aspects, among others the configuration of hot spots, leading to different results for the inferred mass and
radius. For the observation of the pulsar PSR J0030+0451, the mass and radius have been determined to
beM = 1.34+0.15

−0.16M⊙ and R = 12.71+1.14
−1.19 km by Ref. [121] andM = 1.44+0.15

−0.14M⊙ and R = 13.02+1.24
−1.06 km

by Ref. [122]. The second target was the most massive neutron star known to date, PSR J0740+6620.
Here, the mass is known a priori such that the accuracy of the radius can be generally higher. The group
of Riley et al. published for their analysis M = 2.07+0.067

−0.066M⊙ and R = 12.39+1.30
−0.98 km [123], whereas

the group of Miller et al. reported R = 13.7+2.60
−1.5 km [124]. Both analyses are based on combined data

from NICER and from the X-ray Multi-Mirror (XMM-Newton) mission. The latter was needed to obtain
information on the mass and background, which was not constrained precisely enough from NICER alone.
For more details on the implication of the results from NICER on the EOS see, e.g., Refs. [125, 126, 127].

1.5.3 Gravitational waves and multi-messenger astronomy of neutron star mergers

GWs have been predicted by Albert Einstein [128] based on his works on general relativity [129, 130].
They are small deformations of spacetime that travel with the speed of light [25]. Their interaction with
matter is very weak, which makes the detection rather complicated. However, with mergers of two massive
objects like black holes and neutron stars direct detection is possible [131, 132, 133, 134, 135]. Such
a merger has three phases. In the inspiral phase, the two objects orbit each other, slowly approaching
one another. GWs are emitted due to the loss of energy resulting in the reduction of the orbital distance
between the two objects [25]. When they get closer, the frequency and the amplitude of the GWs increase,
where the latter is characterized by the masses of the objects [26]. In the case of a binary NSM, tidal
forces become relevant at the end of the inspiral phase [12]. The second phase is the merger itself, i.e. the
coalescence of the two objects, which is followed by the post-merger phase.

The first direct detection of GWs was in September 2015 from a binary black hole merger [65]. About two
years after on August 17, 2017, GWs of a binary NSM were detected and named GW170817. Furthermore,
a short gamma-ray burst, GBR170817A, and a kilonova, AT2017gfo, were observed in the days after the
merger [66, 136]. We show the detected frequency as a function of time from the merger as well as the
observed lightcurves featuring the short gamma ray burst in Fig. 1.9. This event marks the beginning
of the era of neutron star multi-messenger astronomy. The GWs were detected by two ground-based
interferometers from LIGO (Laser Interfermeter Gravitational-Wave Observatory) [137, 138], whereas
there was no detection visible in the Virgo [139, 140] interferometer. These laser interferometers consist
of two arms that are a few kilometers long to detect the very weak interaction of matter with GWs. A laser
beam that enters the interferometer is split by a beam splitter and reflected by mirrors at the end of the
interferometer arms. After recombining the beam, the intensity is detected via a photodiode. In the case
of an incoming GW, the interference of the recombined laser beam is altered due to the modification of
the arm length [137, 141]. Since these changes are very small and the detectors are sensitive towards
all kinds of disruptions, there are several GW detectors distributed across earth to allow for coincidence
measurements. In addition, this network of detectors helps to locate the GW source in the sky so that the
possible electromagnetic counterpart might be detected as well [25].

Currently, detectors are only sensitive to the GW signal of the inspiral phase where frequencies are below
1000 Hz [133, 142]. Here, the intensity as well as the phase of the GW is measured. In practice, the
observed waveform is matched to a theoretical model of the GW signal with fit parameters that depend on
the observables of interest [143]. For the early inspiral phase, the objects are far apart from each other
and are treated as point particles. Here, the chirp mass is a key quantity and imprinted in the evolution of
the frequency [25]. It is given by M = (M1M2)

3/5 / (M1 +M2)
1/5, withM1 andM2 being the masses of

the binary system components [144]. The mass ratio q =M2/M1 whereM1 ≥M2 becomes relevant with
increasing gravitational interaction towards the end of the inspiral phase. Here, the approximation of point
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Figure 1.9: Multi-messenger detection of GW170817 and GRB170817A. The lowest panel shows the de-
tected frequency as a function of time from the merger combined from the data of the two
LIGO observatories. The upper panels show the lightcurves for different energy ranges with
the clear imprint of the gamma ray burst associated with the gravitational wave signal. Figure
from Ref. [136].

like particles is not valid anymore. The phase of the GW signal is now set by the binary tidal deformability
Λ̃ as a function of the masses and tidal deformabilities of the individual binary participants [143]. The tidal
deformability λ is defined as the ratio of the induced quadrupole moment over the perturbing tidal field of
the companion and sensitive to the EOS [12]. Right before the merger, the frequency of the GW signal
increases rapidly and lies outside the sensitivity band of current detectors [145]. Also the post-merger
signal that entails information about the properties of matter at high densities lies outside of the current
frequency band of the detectors. However, next generation telescopes like the Einstein Telescope [146, 147]
or the Cosmic Explorer [148, 149] aim to deliver the required sensitivity.

The first detection of GW from a binary NSM, GW170817 [66], with its corresponding short gamma-ray
burst GRB170817A and the kilonova AT2017gfo [136] already led to numerous constraints on the EOS
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for neutron stars [67, 68, 69, 70, 150, 71, 72, 151, 124, 152, 73]. In particular, estimates for the tidal
deformability of a 1.4M⊙ neutron star and the binary tidal deformability favor softer EOS compared to
NICER, while stiff EOS corresponding to large neutron star radii are excluded. This is also in line with
constraints on the upper bound of the maximum mass of neutron stars inferred from the observation.
The observed gamma ray burst and the subsequent kilonova indicate that the remnant collapsed to a
black hole shortly after the merger. The time delay between the merger and the collapse supports about
2.2 − 2.3M⊙ for the upper bound of the maximum mass [88, 89, 90, 91]. The observed kilonova in
the days after the merger revealed that heavy elements are in fact produced in NSMs via the r-process,
e.g. [153, 154, 155, 156].

In 2019, the GW signal GW190425 was detected in one of the LIGO interferometers [157]. The total
mass Mtot = 3.4+0.3

−0.1M⊙ and the chirp mass M = 1.44+0.02
−0.02M⊙ are both rather large, but the system is

likely to be a binary NSM [157, 158]. It was not possible to detect an electromagnetic counterpart, see
e.g. Refs. [159, 160]. The distance of the coalescence to earth was larger than that of GW170817 and
the localisation was only poorly constrained. However, the missing kilonova could also hint at a prompt
collapse to a black hole due to the high mass of the system [161, 162]. Therefore, the inferred constraint
on the EOS from GW190425 is only weak.

In conclusion, observations are a crucial part to explore the equation of state above nuclear densities.
Mass measurements of massive neutron stars, the first detection of gravitation waves, and results from
NICER have already led to many insight into the properties of matter in neutron stars. In the next decade,
we can expect many more observations that will ultimately result in more stringent constraint for the
mass-radius relationship and hopefully shed some light on the constituents of neutron star cores.

1.6 Organization of this thesis

This thesis is structured as follows: In Chap. 2, we focus on the description of the EOS for hot and dense
matter. We start with a short introduction to Quantum Chromodynamics (QCD), which is the underlying
theory of strong interactions, and sketch microscopic approaches to the EOS at densities relevant for neutron
stars. This is followed by a description of the theoretical concept of infinite nuclear matter to establish
important properties of the EOS at nuclear densities. We then briefly discuss the extraction of information
about the EOS from heavy-ion collision experiments. This is followed by a description at finite temperature
with the interplay between the nucleon effective mass and thermal effects as well as the liquid-gas phase
transition. We conclude with phenomenological EOS for astrophysical simulations and effects of the EOS in
CCSNe. A new EOS functional consistent with results from nuclear theory, observations, and high-density
QCD calculations is established in Ch. 3. After a summary about relevant EOS constraints, we discuss the
new EOS functional with the corresponding nucleon effective mass and systematically study the impact of
specific properties on the EOS. We then construct EOS for neutron star matter that reflect the uncertainties
of the constraints from nuclear theory and observation. The work presented in this chapter is published in
Ref. [73]. In Ch. 4, we construct EOS for astrophysical applications based on the EOS functional derived
in Ch. 3. To this end, we introduce a set of representative EOS and discuss results for the liquid-gas
phase transition. We then detail our construction of the EOS for simulations based on the liquid-drop
model and the single-nucleus approximation, which can be used to built EOS tables. This is followed by
an exploration of EOS effects in NSM simulations. We present an interdisciplinary study of neutron star
matter in Ch. 5, which is published in Ref. [163]. Hereto, we detail the information from nuclear theory,
multi-messenger observations and heavy-ion collision experiments that we use in a Bayesian framework
to arrive at a combined constraint on the EOS from all of these complementary sources. We also discuss
the implementation of data from heavy-ion collisions and detail numerous tests we have conducted that
ensure that our result for the radius of a 1.4M⊙ neutron star is robust. In Chap. 6, we conclude our work

14



and provide an outlook.
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2 Equation of state of hot and dense matter

To describe neutron stars, their formation and mergers, the EOS across a wide range of density, temperature,
and electron fraction is required. In the core of neutron stars, the density exceeds several times the nuclear
saturation density n0. The dynamics of the interaction between the constituents are governed by the strong
force. The strong interaction is one of the four fundamental forces in nature and is described by quantum
chromodynamics (QCD). The phase diagram of QCD, showing the individual states of matter depending
on density in units of the saturation density n/n0 with n0 = 0.16 fm−3, temperature T , and the density
difference of neutrons to protons nn − np, is depicted in Fig. 2.1. At low densities or baryon chemical
potentials and temperatures below roughly 170MeV [164], quarks as elementary particles are confined
to hadrons. In this hadronic phase, a liquid-gas phase transition occurs just below nuclear saturation
density, which we will detail in Sec. 2.5. Nucleons are bound to nuclei only in the coexistence region
of this phase transition: this is where we and the matter around us that makes up our world live in the
QCD phase diagram. Increasing the density and/or the temperature, hadrons become deconfined into
their constituents, quarks and gluons. The exact location and behavior of this transition is topic of current
research, see e.g. Ref. [165]. There are several experiments worldwide that are dedicated to study the
nature of the state of matter across different densities and temperatures.

In the phase diagram, neutron stars are mostly located at the zero temperature plane. It is still unclear
if and to which extend quark matter is present in neutron star cores due to the missing knowledge of

Figure 2.1: Phase diagram of quantum chromodynamics. Figure taken from Ref. [166].
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the location of the phase transition and the maximum density in neutron star cores. The latter depends
strongly on the EOS, which is itself only poorly known so far at densities well above saturation density. For
astrophysical applications such as CCSNe and NSMs, the state of matter at finite temperatures is relevant as
outlined in Fig. 2.1. In this Chapter, we describe different microscopic methods for calculating the equation
of state of neutron stars and detail finite temperature effects as well as the liquid-gas phase transition that
are relevant for astrophysical simulations.

2.1 Microscopic description of the equation of state

In this section, we introduce microscopic methods to calculate the equation of state. Since neutron stars and
their astrophysical applications cover a broad range of densities, different methods have to be applied. Up to
1-2n0, chiral effective field theory (EFT) offers microscopic calculations of the EOS [4, 167, 168, 169, 170].
In the intermediate density regime, which also includes central densities of neutron stars, first results
from functional Renormalization Group (fRG) became recently available [171, 172]. At very high density,
perturbative QCD (pQCD) calculations are available [173, 174]. Currently, most EOS that are used to
study cold isolated neutron stars are based on microscopic calculations up to nuclear densities and need a
polytropic expansion [175, 4] or a speed of sound model [176, 177] to extrapolate the EOS up to central
densities, where no reliable microscopic calculations for neutron star matter are available yet. These EOS
are typically not suitable for simulations as they do not cover the required range for temperature and
electron fraction.

2.1.1 Quantum chromodynamics and chiral symmetry

The underlying theory of the strong interaction is quantum chromodynamics (QCD). The fundamental
degrees of freedom are quarks and gluons, which are the constituents of nucleons and the building blocks
of hadrons in general. There are six different quark flavors in the standard model. The three light quarks
up, down, and strange have masses from a few to roughly 100 MeV, while the three heavy quarks charm,
bottom, and top cover a mass range from 1 to about 170 GeV [178]. In addition to a fractional electric
charge, all quarks also carry a strong charge called color, where we distinguish between red, green and
blue. Anti-quarks, which are the antiparticles of quarks, carry the corresponding anticolors. In nature, only
systems that are color neutral have been observed so far. Color neutrality is realized by either a system
made up of a quark and an anti-quark (mesons like the pion) or by three quarks (baryons like a nucleon).
Gluons, which are also elementary particles, are gauge bosons that mediate the strong interaction.

The binding of nucleons to nuclei results from the interaction between nucleons that is a residual force
of the strong interaction similarly as the van der Waals force for molecules. The coupling constant αs of
QCD is highly dependent on the energy [179, 180]. At high energies or equivalently small distances, αs is
sufficiently small making perturbative calculations possible. This behavior is called asymptotic freedom of
QCD. At low energies or large distances, however, αs is of order 1 and the system is highly non-perturbative.
Direct calculations of nuclear forces from QCD in the energy scale of interest for nuclear physics are
currently not feasible [181].

Based on Ref. [182], we briefly explain an important symmetry for low-energy nuclear physics, which is
chiral symmetry. The QCD Lagrangian for the three light quark flavors up, down, and strange reads

LQCD =

3∑︂
i=1

(︁
q̄ii /Dqi −miq̄iqi

)︁
− 1

2
TrGµνG

µν , (2.1)

with the quark fields qi, their masses mi, the covariant derivative /D = γµDµ = γµ (∂µ + igAµ), where g is
related to the strong coupling constant via αs = g2/(4π) and Aµ are the gluon fields, and the gluon field
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strength Gµν . The first term of Eq. (2.1) is the kinetic term and can be decomposed into left-handed and
right-handed quarks leading to

3∑︂
i=1

q̄ii /Dqi =
3∑︂

i=1

(︁
q̄Lii /DqLi + q̄Rii /DqRi

)︁
, (2.2)

where qLi = 1/2(1 − γ5)qi and qRi = 1/2(1 + γ5)qi. From this splitting, one can see that the kinetic
term is invariant under independent rotations of left-handed and right-handed quarks. This property
is called chiral symmetry and is broken explicitly and spontaneously. The explicit symmetry breaking
is due to the mass term in the QCD Lagrangian since it couples left-handed with right-handed quarks.
Thus, chiral symmetry is broken explicitly due to non-zero quark masses. In addition, chiral symmetry is
broken spontaneously as no parity doublets exist, i.e. there are no two particles with same mass which
have the exact same quantum numbers except for parity. The difference of the particle masses leads to
the symmetry breaking. Owing to Goldstone’s theorem, every symmetry that is spontaneously broken
generates a so-called Goldstone boson, which are massless excitations of the vacuum. In the case of chiral
symmetry, the pions are the non-strange Goldstone bosons. In fact, pions are not massless because of the
explicit breaking of chiral symmetry but have rather small masses compared to other hadrons, which is
why they are called pseudo Goldstone bosons.

2.1.2 Chiral effective field theory

In this section, we give a brief introduction to chiral EFT based on Refs. [183, 184, 185, 181]. More details
can be found there.

Chiral EFT is a systematic approach to calculate the interactions between nucleons, which was pioneered
by Steven Weinberg in the early 1990’s [186, 187, 188, 189]. At the low-energy scales of interest for
nuclear matter, quarks and gluons are not resolved. Instead, nucleons and pions are the relevant degrees
of freedom. Short-range interactions are described by contact interactions of two or more nucleons, while
pion exchanges mediate the intermediate and long-range physics. The breakdown scale Λb is approximately
the mass of the heavier ρmeson. Above this scale, new physics enters, that cannot be described by nucleons
and pions. An effective theory is based on the separation of scales, which is in the case of chiral EFT the gap
between the pion mass (soft scale q ∼ mπ ∼ 140MeV) and the ρ meson mass (hard scale Λb ∼ 500MeV).

In order to come up with the expression of the nuclear force within an effective theory, one starts with
the most general Lagrangian that is consistent with the symmetries of QCD as the underlying theory of the
strong interaction. In the case of chiral EFT the Lagrangian reads

LEFT = Lππ + LπN + LNN + ... , (2.3)

where Lππ accounts for interactions among pions, LπN nucleon-pion interactions, and LNN nucleon-nucleon
interactions. The Lagrangian itself has an infinite number of terms where two or more nucleons and/or
pions contribute. The terms of the Lagrangian can be organized with the expansion parameter defined by
the ratio of soft and hard scale, Q ∼ q/Λb, which is approximately 1/3. In case of the Weinberg power
counting scheme all interaction diagrams are ordered corresponding to Qν , where ν is an integer. There
are also other alternative countings available like pionless EFT, where the only degrees of freedom are
nucleons and the breakdown scale is of the order of the pion mass. The diagrams for the two-, three-,
and four-nucleon force up to fifth order are shown in Fig. 2.2 [190]. At leading order (LO) with ν = 0
are the most simple diagrams: a contact interaction and a pion exchange. The second order called next-
to-leading order (NLO) has ν = 2, followed by next-to-next-to-leading order (2LO) with ν = 3 and so
on. Some diagrams are accompanied by so called low energy constants (LECs) that have to be fit to data,
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Figure 2.2: Diagrams of nuclear forces in chiral EFT ordered according to Weinberg power counting. Solid
lines represent nucleons and dashed lines pions. Figure taken from Ref. [190].

e.g., few-body scattering data. The high-energy or short-distance information that cannot be resolved is
contained in these LECs. Contributions from diagrams at higher orders become less and less important. In
principle, infinite orders give the exact solution, which means that with increasing order the precision of
the calculations can be systematically improved if the series converges. As visible in Fig. 2.2, many-body
interactions arise naturally in the hierarchy and appear at subleading orders. One major advantage of
chiral EFT is that one can systematically estimate uncertainties at a given order by evaluating what has
been left out at higher orders.

Once the nuclear force is established from chiral EFT, one has to solve the Schrödinger equation to calculate
the EOS. Here, many-body methods are required to solve this many-body problem. Various methods are
available, amongst others Many-Body Perturbation Theory (MBPT) [191, 192, 193], in-medium Similarity
Renormalization Group (IM-SRG) [194, 195], self consistent Green’s function (SCGF) [196], quantum
Monte Carlo (QMC) [197, 198, 199], and Coupled Cluster theory (CC) [200, 201]. Due to the breakdown
scale of chiral EFT, calculations are only possible up to 1-2n0. In Fig. 2.3, we show results for the energy per
particle of neutron matter from different chiral EFT interactions using various many-body methods [202].
In the left panel, all calculations are based on the EM 500MeV N3LO NN interaction from Ref. [183]. The
results with uncertainty bands are based on MBPT including N2LO 3N forces (red-dashed lines), N3LO
3N plus 4N forces (cyan band), and Renormalization Group (RG) evolved NN plus N2LO 3N forces. The
size of the band is mainly given due to the uncertainties in the LECs of the 3N forces. In addition, results
from SCGF, CC, and MBPT without uncertainties are displayed. The overlap of the different calculations
demonstrates that constraints on the EOS for neutron matter do not strongly depend on the choice of
the many-body method. In the right panel, complete N3LO calculations with NN, 3N, and 4N forces that
employ different chiral interactions at N3LO are compared with each other. Other results at low density
(NLO lattice, QMC) or based on phenomenological potentials lie within the uncertainty bands, which
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Figure 2.3: Energy per particle of neutron matter as a function of density for various many-body methods
(left panel) and different chiral interactions (right panel). Figure taken from Ref. [202].

highlights the overall consistency of the calculations. We refer the reader to Ref. [202] for more details.
More insights into current constraints on the EOS from chiral EFT are given in Sec. 3.1.

2.1.3 Functional Renormalization Group

Since chiral EFT constrains the EOS only for n ≲ 2n0, one needs another non-perturbative approach to
describe matter at densities that are present in neutron star cores. Here, the densities are still too small
for the perturbative regime due to the large coupling constant αs. The functional Renormalization Group
(fRG) provides such calculations from first principles via computing the effective potential of a field theory
for a variable length scale [203]. The only input are fundamental parameters of QCD, which are the quark
masses and the value of the strong coupling constant in the perturbative regime [204].

The fRG that is currently used to calculate the EOS for neutron stars uses the Wilsonian RG in combination
with a functional approach for quantum field theory [205, 206, 207]. In general, an RG pictures the
dependence of physical quantities from a length scale. The fRG introduces an effective average action
which interpolates between microscopic (quarks and gluons) and macroscopic (nucleons) degrees of
freedom and describes the evolution. One starts at high momenta k and evolves down to the infrared
regime where k = 0. During this evolution, quantum and thermal fluctuations emerge that are absorbed
into an effective Lagrangian. One step in the RG evolution is infinitesimal small such that a continuous
change of the correlation functions is obtained for concatenation of many steps [208]. During the transition
from the weakly coupled quark gluon plasma in the high energy regime to the strongly coupled nuclear
matter at lower energies the relevant degrees of freedom, symmetries and many more can change [209].
The fRG is able to capture these effects and helps to identify the underlying physical processes. This
framework is also applicable to finite temperature.

Constraints for the pressure and speed of sound of symmetric matter [171] as well as for the speed of
sound of neutron star matter [172] at densities relevant for neutron stars became available only recently.
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Figure 2.4: Results for the pressure and speed of sound as a function of density from fRG calculations
compared to chiral EFT and pQCD computations. Figure taken from Ref. [171].

Both fRG calculations involve two massless quark favors and provide an uncertainty due to the variation
of the employed RG scheme. Other sources of uncertainties such as a third light quark or quark masses
in general are not yet included. In Fig. 2.4, we show results from Ref. [171] for the pressure (left) and
the speed of sound (right) as a function of density for symmetric matter. Notably, the calculations from
fRG are consistent with chiral EFT computations at lower densities. The results indicate that the speed of
sound has a maximum at intermediate densities n ≲ 10n0, which is in agreement with considerations of
neutron-star masses [210, 177, 176, 13]. See Ch. 3 for implications on the EOS from the fRG results for
symmetric matter.

2.1.4 Perturbative Quantum Chromodynamics

Calculations from perturbative QCD (pQCD) are reliable in the high-density regime with n ≳ 50n0 [173,
211, 212] where quarks are deconfined. Here, perturbative approaches are possible due to asymptotic
freedom. The current state-of-the-art are calculations in the weak-coupling expansion with contributions
of a subset at N3LO of cold quark matter with massless quarks [211, 212]. Even though the densities of
applicability are far above densities inside neutron stars, the pQCD results are often used to construct
EOS for neutron star studies by interpolating between the chiral EFT band and the pQCD region [68,
213, 13, 214, 215, 216, 217, 218, 219, 220, 221, 222]. In Fig. 2.5 an example for this interpolation from
Ref. [214] is shown. The blue bands refer to the uncertainty bands for the EOS from chiral EFT at nuclear
densities and pQCD at high densities, where ϵ0 ≈ 150MeV fm−3 is the nuclear saturation energy density.
Central energy densities as present in maximally massive non-rotating neutron stars are marked by the
gray shaded region (ϵTOV). From observations, only the constraint of a two solar mass neutron star and the
upper bound on the tidal deformability from GW170817 are imposed. The color coding corresponds to
the maximum value of the speed of sound for each EOS. It has been predicted by Ref. [13], that smaller
maximum values of the speed of sound are compatible with sizable quark matter cores of neutron stars.
Note that in this study, the existence of massive neutron stars does not imply that the speed of sound has to
have values above the conformal bound of c2s = 1/3, which is approached from below in the high-density
limit. This can be attributed to the fact that calculations from chiral EFT are only used up to saturation
density in this study.

Topic of current research is the influence of the pQCD constraint on the EOS at neutron star densities. In
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Figure 2.5: Interpolation of the equation of state between the chiral EFT and perturbative QCD calculations
(blue bands). The color coding is due to the maximum value of the speed of sound of each
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maximally massive neutron star cores and ϵ0 ≈ 150MeV fm−3 refers to the nuclear saturation
energy density. Figure taken from Ref. [214].

Refs. [223, 224] a sizeable impact at high densities is found whereas in Ref. [215] the influence on the EOS
seems to be small. The size of the impact on the EOS beyond the constraints we have from astrophysical
observations needs to be investigated more closely in the future.

2.2 Matter at nuclear densities

Nuclear matter is an idealized system of a homogeneous mixture of neutrons and protons that interact
only via the strong force. Coulomb interactions are neglected. The system is extended to infinite mass
number A and volume V , such that the total density n = N/V is finite. The share of neutrons and protons
is characterized by the proton fraction

x =
np

nn + np
=
np
n

(2.4)

or likewise the asymmetry parameter β =
(︁
nn − np

)︁
/n = 1− 2x. One extreme case of nuclear matter is

pure neutron matter (PNM) where the proton fraction vanishes, x = 0. The energy per particle as well as
the pressure of neutron matter is positive, which means that there are no self-bound states of neutrons
only. Symmetric nuclear matter (SNM) is also of particular interest. Here, the density of neutrons is equal
to the density of protons leading to x = 1/2. Symmetric matter is a bound system and exhibits an energy
minimum at the so called saturation density n0. As a consequence, the pressure of SNM vanishes at this
specific density. The energy per particle E/A of neutron matter and symmetric matter as a function of
density are shown schematically in Fig. 2.6.

One can expand the energy per particle of nuclear matter with respect to the asymmetry parameter

23



around SNM as
E

A
(n, β) ≈ E

A
(n, 0) + S(n)β2 , (2.5)

where E(n, 0) is the energy of SNM and S(n) is called the symmetry energy. Here, we consider only
contributions up to quadratic order. If higher orders are neglected, one can identify the symmetry energy
as the energy difference between neutron matter and symmetric matter,

S(n) =
E

A
(n, 1)− E

A
(n, 0). (2.6)

Note that the symmetry energy is also given by the second derivative of E/A with respect to β, which is
identical to the energy difference only if higher order terms in Eq. (2.5) are neglected. Expanding the
energy per particle further in terms of the relative density difference χ = (n− n0)/3n0 around n0 yields

E

A
(n, β) ≈ −B +

1

2
Kχ2 +

(︁
Esym + Lχ

)︁
β2 . (2.7)

Here, B is the binding energy and corresponds to the energy minimum of symmetric matter at saturation
density. Since the pressure P = n2δnE/A vanishes in SNM at saturation density, the next term in the
expansion is of order χ2 and is characterized by the incompressibility K. At saturation density, it is
proportional to the second derivative of the energy per particle with respect to density,

K = 9
∂P

∂n

⃓⃓⃓
n0,β=0

= 9n20
∂2E/A

∂n2

⃓⃓⃓
n0,β=0

, (2.8)

and describes how nuclear matter responds to compression. The incompressibility sets the steepness of
the EOS. Soft EOS refer to small values for the incompressibility compared to stiff EOS with larger K.
The leading terms of the density expansion of the symmetry energy S(n) in Eq. (2.7) correspond to the
symmetry energy coefficient Esym = S(n0) and the slope parameter L. The latter is especially crucial in
the description of neutron stars. It is proportional to the pressure of neutron matter at saturation density,

L = 3n0
∂S

∂n

⃓⃓⃓
n0

=
3

n0
P (n0, β = 1) , (2.9)

and, thus, shows a high impact on the radius of neutron stars where large slope parameters lead to larger
radii, e.g., [225]. The coefficients n0, B,K,Esym, and L are called nuclear matter properties and are
depicted in Fig. 2.6.

The saturation density n0 and binding energy B are very well constrained through the empirical
saturation point with n0 = 0.164(7) and B = 15.86(57) [169]. These ranges have been extracted by fitting
selected Skyrme energy density functionals to properties of nuclei and nuclear matter [226] and include
an additional systematic uncertainty for the binding energy [169, 227]. Microscopic calculations are able
to reproduce these results within their uncertainties, which are in general rather large compared to the
empirical saturation point [169, 228, 226].

Nuclear theory estimates for the incompressibility of SNM K = 215± 40MeV, which is a combination
of the results from Refs. [228, 226, 169]. This is in agreement with information from heavy-ion collision
(HIC) experiments [229]. The incompressibility can also be extracted from data of the isoscalar giant
monopole resonance of finite nuclei, however, it is difficult to precisely capture finite-size effects. Here,
experiments with doubly-magic nuclei like 208Pb yield K = 240± 20MeV, but data from open-shell nuclei
such as 120Sn point towards lower values [230]. Similarly, there are also different predictions from nuclear
models. Results using non-relativistic models like Skyrme forces have systematically lower values compared
to relativistic mean-field models (see, e.g., Ref.s [231, 232] and references therein).
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Figure 2.6: Energy per particle for pure neutron matter (blue) and symmetric matter (red) at zero tempera-
ture. At saturation density n0, the system is characterized by the nuclear matter properties,
which are the binding energy B, the incompressibilityK , the symmetry energy Esym, and the
slope parameter L.

Many efforts have been dedicated to determine the symmetry energy Esym and the slope parameter
L, which have a major impact in many aspects around neutron stars and astrophysical environments,
see e.g. Ref. [233] for a recent review. In Fig. 2.7, results on the correlation between the symmetry
energy parameters from theory as well as experiment are summarized. The tightest constraints come from
microscopic calculations of neutron matter from Hebeler et al. (H) [4], Drischler et al. (GP-B) [170], and
Gandolfi et al. (G) [234]. The allowed region from the assumption that the unitary gas serves as a lower
bound for the energy of PNM is also shown (UG) [235]. The boundary UG Analytic is stemming from
the same work but includes some simplifications to obtain an analytical expression. In addition, Fig. 2.7
shows constraints from different experiments including mass measurements [236], giant dipole resonances
(GDR) [237], neutron skin thickness of Sn [238], dipole polarizability of 208Pb [239, 240], and HIC [241],
which intersect in the white area. A constraint from isobaric analog states and isovector skins (IAS+∆R) is
depicted as well [242]. Recently, the PREX collaboration extracted the neutron skin thickness of 208Pb via
parity violation in electron scattering [243]. The corresponding slope parameter L = 106± 37MeV [244],
which is extracted from the correlation with the neutron skin thickness, is rather large compared to the
microscopic calculations and not very tightly constrained.

2.3 Equation of state constraints from heavy-ion collision experiments

Constraining the EOS of neutron star matter via nuclear experiments is challenging since nuclei are mostly
symmetric while matter in the core of neutron stars is very neutron rich. As a consequence, the sensitivity of
the symmetry energy on the experimental data is oftentimes rather small leading to sizeable uncertainties,
e.g., by extrapolating to small proton fractions. Here, we report on current experimental strategies with
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Figure 2.7: Correlation between the symmetry energy and the slope parameter for different microscopic
calculations using chiral EFT and various experimental approaches. See text for details. Figure
taken from [170], see also [225].

HICs to constrain the EOS of neutron star matter by combining results for symmetric matter and for the
symmetry energy. This section is in parts based on Ref. [163], see also Ref. [245].

Over the last two decades, major experimental efforts have been devoted to measure the nuclear EOS
with HIC experiments performed at relativistic incident energies [246, 247, 248]. These collisions of
atomic nuclei form a hot, dense fireball of hadronic matter in the overlapping region, which expands in
time and reaches the surrounding detectors as baryons and mesons. Due to the initial asymmetry of the
non-central collision, the particles flowing out of the fireball in the expansion phase form an anisotropic
flow. The distribution of these particles is largely determined by the compression achieved in the collision
region, which in turn is given by the parameters of the EOS of the hot and dense nuclear matter produced
during the collision. In addition, the flow asymmetry as well as the production of secondary particles is
influenced by differences in neutron and proton potentials. The elliptic flow v2 characterizes the azimuthal
asymmetry and is the main observable to constrain the EOS of symmetric matter at supranuclear densities
with HICs. It is given by the second coefficient of the Fourier expansion of the azimuthal distribution.

It has been shown that the elliptic flow of protons emitted at incident energies of several hundred
MeV/nucleon offers the strongest sensitivity to the nuclear EOS [249, 246, 250], as evident from calculations
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made with various transport models. This dependence on the nuclear EOS is predicted by QMD [249,
251, 250, 229] and Boltzmann-Uehling-Uhlenbeck [246] models. The origin of the phenomenon has been
investigated in detail by Ref. [252]. As shown by Ref. [246], at higher beam energies between 1 and
10 GeV/nucleon, the sensitivity of the directed flow v1 to the stiffness of the EOS of symmetric nuclear
matter becomes comparable to that of v2. Overall, from HICs performed at incident beam energies of a few
hundred MeV/nucleon up to around 10 GeV/nucleon, the flow data indicate an EOS for symmetric nuclear
matter with an incompressibility K below 260 MeV, which is in agreement with chiral EFT calculations as
shown in Sec. 2.2.

Experiments to constrain the symmetry energy and its density dependence are very challenging. With
heavy-ion collisions the density-dependence of the symmetry energy can be studied where the probed
density depends on the achieved compression originating from the collision energies. Since the neutron
to proton asymmetry of the colliding ions is in general rather low, one often uses differences or ratios of
observables to enhance the effect of the symmetry energy such as comparisons of the emitted neutrons and
protons [253, 254]. At densities relevant for neutron stars, the elliptic flow ratio of particles with large
isospin difference, ideally the ratio of neutrons over protons vnp2 = vn2/v

p
2 offers promising constraints [255,

256], see Ch. 5 for implications on the EOS. Recently, first results for the slope parameter with 42 < L <
117MeV from the Sπrit collaboration became available [257]. They measure the spectra of charged pions
that are produced in collisions of rare isotope Sn beams with an isotopic Sn target.

Transport models describe the evolution of the particles in HICs. Data from the experiment is then
compared to the transport model calculations to constrain the EOS, which is an input of the transport
codes. As a result, there are not only experimental uncertainties but also model dependencies that one has
to account for to obtain reliable results.

2.4 Nucleon effective mass and thermal effects

In CCSN, temperatures of several tens of MeV can be reached [258, 18] and in NSMs even more [259, 260],
see also Fig. 2.1. Thus, the temperature dependence of the EOS is key when studying these events. The
so-called thermal index Γth is a useful tool to characterize thermal contributions to the equation of state
and is defined as [261]

Γth(n, β, T ) = 1 +
Pth(n, β, T )

εth(n, β, T )
= 1 +

P (n, β, T )− P (n, β, 0)

ε(n, β, T )− ε(n, β, 0)
. (2.10)

Here, εth = Eth/V denotes the internal thermal energy density and Pth the thermal pressure. For the right
hand side of the equation, the pressure and the thermal energy density are split into a cold and a thermal
part,

P = Pcold + Pth , (2.11)
ε = εcold + εth . (2.12)

Recently, the thermal index has been calculated using chiral EFT [262, 263]. In these calculations, it
has been demonstrated that the nucleon effective mass m∗(n, x) determines the thermal effects of the
EOS to a high degree. That is, the expression for Γth of a free nucleon gas with a density-dependent but
temperature-independent effective mass agrees accurately with the calculations of Γth from the thermal
pressure and energy density derived from chiral EFT. The right panel of Fig. 2.8 shows the agreement
between the thermal index obtained through direct calculations (solid lines) and the approximation with
the effective mass (dashed lines) for PNM and a temperature of 30MeV for two different interactions. The
impact of 3N forces is also clearly visible and leads to a steep degrees of the thermal index.
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Figure 2.8: Effective mass and thermal index as a function of density for neutron matter from chiral
EFT calculations. The different in interactions demonstrate that three-body forces lead to a
significant increase of the effective mass after saturation density, which results in a decrease
of the thermal index. Figure taken from Ref. [262].

The nucleon effective mass is based on a concept of Fermi liquid theory with quasiparticle/quasihole
degrees of freedom close to the Fermi surface with an effective mass m∗. The energy and momentum
dependence of the single-nucleon potential is mirrored by the effective mass. Due to the isospin dependence
of the strong interaction, the effective masses for neutrons and protons differ. Results from chiral EFT
indicate that the effective mass of neutrons m∗

n is larger at a given density than the effective mass of
protons m∗

p [264, 262]. Novel microscopic calculations also show that the effective mass for both neutrons
and protons first decreases with density, but after roughly saturation density it increases again and can
even exceed the nucleon mass m [262, 263], see left panel of Fig. 2.8. This behavior is attributed to 3N
forces. These findings have a significant impact on thermal effects and consequently on the dynamics in
astrophysical applications, see Sec. 2.6.2.

The thermal index of a noninteracting nucleon gas with density-dependent effective mass m∗
n,p(n) only

depends on the effective mass and its density dependence. To derive the expression for Γth, we consider a
canonical ensemble. This is a system with fixed particle number A = N + Z, where N,Z are neutron and
proton number, respectively, in contact with an external heat bath at temperature T that determines the
energy of the system. The Hamiltonian H is the sum over all single-particle energies ϵi and is given by

H =

N∑︂
i=1

[︄
k2n,i
2m∗

n

+ U(n)

]︄
+

Z∑︂
i=1

[︄
k2p,i
2m∗

p

+ U(n)

]︄

=
N∑︂
i=1

k2n,i
2m∗

n

+
Z∑︂
i=1

k2p,i
2m∗

p

+AU(n) , (2.13)

with indices n, p for neutrons and protons, momentum k⃗, and density-dependent mean-field U(n). To
calculate the thermal pressure and energy density, we compute the partition function Z in the semi-classical
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limit with the use of spherical coordinates and generalizations of Gaussian integrals:

Z = Tr e−βH

=
1

A! (2π)3A

∫︂
d3Axd3Ak e−βĤ

=
V A

A! (2π)3A/2

(m∗
n)

3N/2 (︁m∗
p

)︁3Z/2

3βA/2
e−βAU(n) , (2.14)

where β = 1/T . Note that the integral over d3Ax gives the volume to the A-th power.
With the partition function at hand, we calculate the energy density via the derivative

ε =
E

V
= − 1

V

∂ lnZ
∂β

= nU(n) +
3

2
nT , (2.15)

with the density n = A/V .
The pressure is proportional to the derivative with respect to the volume:

P = β−1∂ lnZ
∂V

= n2
∂U

∂n
+ nT

[︃
1− 3

2
n

(︃
1− x

m∗
n

∂m∗
n

∂n
+

x

m∗
p

∂m∗
p

∂n

)︃]︃
. (2.16)

The thermal pressure and energy density are obtained by subtracting the pressure and energy density at
T = 0 from the expressions. Putting everything together, the thermal index of a nonrelativistic nucleon gas
for arbitrary proton fraction x reads

Γn−rel
th (n, x) =

5

3
−
∑︂
t=n,p

nt(n, x)

m∗
t (n, x)

∂m∗
t (n, x)

∂n
. (2.17)

The value 5/3 is the thermal index of a free Fermi gas. Consequently, one can also interpret from the thermal
index how close the system is to a free gas. Note that the thermal index only depends on the effective
masses of neutrons and protons and their density dependence, but not on the temperature itself. According
to Refs. [262, 263], this expression agrees remarkably well with the thermal index determined directly
from chiral EFT. As a consequence, an accurate treatment of the effective mass in the EOS is necessary to
capture thermal effects beyond the mean-field level. See Sec. 3.2.1 and 3.4.2 for the implementation of
the effective mass based on chiral EFT and the implications for the thermal index.

2.5 Liquid-gas phase transition in nuclear matter

When a phase becomes unstable for certain thermodynamic conditions it undergoes a transition to a
different phase. Such a phase transition is well know for a van der Waals fluid, where the interactions
between molecules are repulsive at short distances and attractive at long distances. The interactions
between nucleons in nuclei exhibit the same features, which lead to the assumption that a liquid-gas phase
transition occurs in this system as well [265]. Since then, the existence of a liquid-gas phase transition has
been confirmed in various experiments based on multifragmentation and fission [266, 267, 268]. To infer
properties of the liquid-gas phase transition in nuclear matter from these experiments, one has to extrapolate
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Figure 2.9: Left panel: Pressure as a function of density for several temperatures for symmetric matter.
The solid lines correspond to the physical pressure obtained via a Maxwell construction. The
dashed line is the coexistence curve with its maximum at the critical point (black dot). Right
panel: Coexistence region for various proton fractions. The dashed line refers to the evolution
of the critical points. Figure taken from Ref. [271].

from finite nuclei to infinite matter. The data predict the critical temperature to be Tc ∼ 15 − 20MeV,
which is in agreement with microscopic calculations [269, 270, 271, 272].

The liquid-gas phase transition in nuclear matter can be visualized with the behavior of the pressure
for different temperatures similar to the van der Waals case. The left panel of Fig. 2.9 shows pressure
isotherms versus density for symmetric matter. Below the critical temperature there is an unphysical region,
which is characterized by a negative slope of the pressure. The boundary of this area is called spinodal and
is defined via ∂nP = 0. Within the spinodal, matter is unstable and separates into two phases: a gas phase
and a liquid phase. To obtain the physical pressure, one has to solve a system of equations, the so-called
Maxwell construction:

Pg(ng, xg, T ) = Pl(nl, xl, T ) ,

µn,g(ng, xg, T ) = µn,l(nl, xl, T ) , (2.18)
µp,g(ng, xg, T ) = µp,l(nl, xl, T ) ,

where the subscript g and l stand for the gas and liquid phase. As a result of the Maxwell construction
one obtains the coexistence curve, also called binodal (dashed line), which encloses the complete region
of the phase transition, i.e. at its boundary the phase transition from gas to liquid starts and ends at a
given temperature. The physical pressure is constant within the coexistence region (solid lines in Fig. 2.9).
Matter that is located in the area between the binodal and the spinodal is metastable. With increasing
temperature the densities of the coexistence curve ng and nl move closer together until they merge in the
critical point at the critical temperature. Here, the pressure exhibits a saddle point. Above Tc matter is
stable across all nuclear densities.

The right panel of Fig. 2.9 illustrates that the coexistence boundary shrinks when matter becomes
more neutron rich. In the most extreme case for neutron matter there is no unstable region at all since
the pressure increases monotonically even at zero temperature. When adding more protons to neutron
matter, the pressure exhibits at some point an unstable region. This coexistence region than expands
further until symmetric matter is reached. As a result of this behavior, also the critical temperature
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increases when adding protons. For symmetric matter itself, the Maxwell construction simplifies as the
chemical potentials of neutrons and protons are equal. One then has to solve the equations Pg(ng, 0.5, T ) =
Pl(nl, 0.5, T ), µg(ng, 0.5, T ) = µl(nl, 0.5, T ) with the two unknowns ng and nl. See Ch. 4 for results on the
phase transition for asymmetric nuclear matter with our EOS functional for astrophysical simulations.

2.6 Phenomenological equations of state for astrophysical applications

In astrophysical applications such as CCSNe or NSMs, the densities and temperatures that occur span
several orders of magnitude. On top of that, the electron fraction covers everything from highly neutron-rich
to slightly proton-rich matter. The conditions for the case of a one dimensional CCSN simulation of a 15M⊙
progenitor star are illustrated in Fig. 2.10 for two EOS that have been widely used in these simulations,
namely the Lattimer-Swesty (LS) EOS (left) and the Shen EOS (right). The color-coding represents the
mass- and time-weighted occurrence of the specific conditions after core bounce, i.e. red indicates that the
specific set of density and temperature (upper panels) or density and electron fraction (lower panels) are
present for a large mass and/or a long time during the simulation. The density-temperature plane clearly
shows that the temperature is proportional to the density. In particular, the dashed line represents the
relation T ∼ n1/3. The proto-neutron star corresponds to the region with the highest density where most
matter is accumulated as indicated by the dark red color. The maximum temperature does not appear
in the center of the star as one might expect naively, but at its surface. Here, the shock wave is initiated
from the core bounce and heats up the matter. The proto-neutron star has a relatively constant electron
fraction of about 0.3 as neutrinos are trapped at high densities. With decreasing density in the mantle
of the proto-neutron star, neutrinos that are produced in electron capture processes can escape rapidly
resulting in a sharp decline of the electron fraction. Towards the shell structure of the progenitor star
where nuclei are present at smaller densities, electron fractions increase again. The symbols correspond to
the conditions where neutrinos decouple from matter with different symbols referring to different neutrino
flavors and times after bounce. For more details see Ref. [273].

In Fig. 2.10 the influence of the EOS in the simulation is mostly visible in the density-temperature plane.
The LS EOS has a smaller incompressibility compared to the Shen EOS and, thus, the proto-neutron star
is more compact. This also results in higher temperatures and lower electron fractions in the core and
causes larger maximum temperatures at the position of the core bounce as the same amount of material is
squeezed into a sphere with smaller radius. The temperature at the surface of the star directly impacts the
neutrino energies and with it the energy that is deposited behind the shock wave, which decides if it comes
to an explosion or if the shock falls back onto the proto-neutron star and forms a black hole.

With the EOS being such a key factor in astrophysical applications, a microscopic description of matter
at all occurring conditions is desirable. However, especially at densities above saturation density ab initio
calculations for arbitrary proton fractions and finite temperature are not available yet even though there is
some recent progress [263, 274]. As a consequence, phenomenological EOS are necessary for studying
CCSN and NSM to describe the state of matter at all occurring conditions.

2.6.1 Traditional Equations of State

The two EOS that are most commonly used in CCSN simulations are the LS EOS and the Shen EOS, which
have been constructed in 1991 and 1998, respectively. In recent years, many efforts have been undertaken
to provide new EOS for astrophysical applications that are consistent with new constraints from microscopic
calculations and observations. Here, we will give a brief overview of available phenomenological EOS and
focus on the comparison of novel results from nuclear theory.
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Figure 2.10: Conditions during a 1 dimensional supernova simulation of a 15M⊙ progenitor star for the
LS EOS (left) and Shen EOS (right). See text for details. Figure taken from Ref. [273].

Lattimer-Swesty Equation of State The LS EOS is based on a non-relativistic and momentum-independent
Skyrme energy density functional in combination with a liquid-drop model [275, 276]. For inhomogenous
matter, the single nucleus approximation is used to describe heavy nuclei surrounded by alpha particles,
unbound neutrons and protons as well as electrons, positrons, and photons. This means that one single
heavy nucleus with varying mass and proton number represents all heavy nuclei. Similarly, the alpha
particles account for all light nuclei with mass numbers smaller or equal than four. The distributions of the
individual components is obtained in a thermodynamic consistent way via the minimization of the free
energy density F , which is given by

F = Fo + Fα + Fh + Fe + Fγ , (2.19)

with the indices of outside (unbound) nuclei, alpha particles, heavy nuclei, electron-positron pairs, and
photons, respectively. Nuclei are described within the compressible liquid-drop model [277], which
considers nuclei as a drop of compressible nuclear matter. The free energy density of heavy nuclei consists
of the bulk nuclear matter part together with contribution from Coulomb interactions, surface effects and
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translational motion of the nucleus. In the LS EOS, the contributions from the nucleons inside nuclei and
from the nucleon gas surrounding the representative heavy nucleus that also accounts for uniform matter
are described by the same Skyrme energy density functional

Ebulk
V

(n, x, T ) =
∑︂
t=n,p

τt(n, x, T )

2m∗
t (n, x)

+ [a+ 4bx(1− x)]n2 + cn1+δ − xn∆ . (2.20)

The first term corresponds to the kinetic energy with the kinetic energy density τ and the nucleon effective
mass m∗. The subscript denotes the isospin t, meaning that the sum runs over neutrons and protons. The
Skyrme parameters a, b, c, and δ are fitted to the saturation density n0, binding energy B, the incompress-
ibilityK, and the symmetry energy Esym. The last term in Eq. (2.20) takes into account the neutron-proton
mass difference ∆.

The nucleon effective mass is parameterized using a simple density dependence with

1

2m∗
t

=
1

2m
+ α1nt + α2n−t , (2.21)

where −t denotes the nucleon with opposite isospin. The parameters αi are fitted to specific values like
the effective mass of neutron matter and symmetric matter at saturation density. While the description of
the effective mass is included in the formulation of the LS EOS, in practice both fit parameters are set to
zero leading to m∗ = m at all densities.

Within the LS EOS, alpha particles are described as a non-interacting gas where the particles themselves
are considered as hard spheres with an effective volume Vα = 24 fm−3. Electrons, positrons, and photons
are assumed to be non-interacting and ultra-relativistic particles.

Shen et al. Equation of State The underlying theory of the Shen EOS is the relativistic mean-field (RMF)
model [278, 279, 280], where nuclear interactions are described via meson exchanges of the isoscalar
scalar σ meson, the vector ω meson, and the isovector vector ρ meson. To construct the EOS, one starts
with the Lagrangian

LRMF = ψ̄

(︃
iγµ∂

µ −M − gσσ − gωγµω
µ − gργµτaρ

aµ − eγµ
1− τ3

2
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2
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µσ − 1

2
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σσ
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3
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4
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4 − 1

4
WµνW
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2
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ωωµω
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4
c3 (ωµω
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− 1

4
Ra

µνR
aµν +

1

2
m2

ρρ
a
µρ

aµ − 1

4
FµνF

µν ,

with the nucleon field ψ, the photon field Aµ and the meson fields σ, ωµ, and ρaµ with the corresponding
nucleon massM and meson masses mσ,mω, and mρ. The coupling constants of the interactions between
mesons and nucleons are denoted as gσ, gω, and gρ, while g2 and g3 are the self-coupling constants for the
σ meson and c3 represents the self-coupling constant for the ω meson. All of these coupling constants and
the meson masses are the parameters of the Lagrangian that are fitted to properties of finite nuclei. In the
Shen EOS, the parameter set TM1 is used, see Tab. 2.1 for details. In the Lagrangian,Wµν , Raµν , and Fµν

are the field tensors for the vector mesons ω and ρ and for the electromagnetic field, respectively, and are
given by

Wµν = ∂µων − ∂νωµ ,

Raµν = ∂µρaν − ∂νρaµ + gρϵ
abcρbµρcν , (2.23)

Fµν = ∂µAν − ∂νAµ .
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As a next step, the Dirac equation for nucleons and the Klein-Gordon equations for the mesons are derived,
which refer to the equations of motion. In order to solve them for homogenous matter, a relativistic
mean-field approximation is applied. In this approximation, the meson fields are assumed to be classical
fields and the field operators σ, ωµ, and ρaµ are replaced with their expectation values ⟨σ⟩, ⟨ωµ⟩, and
⟨ρaµ⟩. The effective mass is then defined as M∗ ≡ M + gσ⟨σ⟩. The energy density of the RMF model is
obtained with the well known Fermi-Dirac distribution. It consists of a kinetic term including the effective
mass similar to the LS EOS, but with the relativistic single-particle energy ϵt =

√︁
k2 +M∗

t . The effective
interaction consists of contributions containing the coupling constants, meson masses and meson fields
derived from the Lagrangian.

The inhomogeneous phase where nuclei are present follows in many aspects a similar treatment as in the
LS EOS, e.g. a single species to represent heavy nuclei together with a admixture of free nucleons and alpha
particles. Leptons are again treated separately as non-interacting relativistic particles. An advancement
compared to the LS EOS is the application of nucleon distribution functions within the Thomas-Fermi
approximation [281]. The neutron distribution function is extended compared to the proton distribution
function resulting in a neutron skin. The individual contributions of the different particle species are
obtained via the minimization of the free energy that is given by the sum of bulk contributions from
nucleons and alpha particles, the surface, and the Coulomb energy. Also in the Shen EOS, nucleons in
the inhomogenous phase are described by the same RMF model as in uniform matter. The system is in
uniform or non-uniform matter depending on which free energy density is lower. A Maxwell construction
for calculating the coexistence boundary as in the LS EOS is not applied.

Further developments Since the construction of the LS and Shen EOS, a lot of effort has been put into
generating new EOS for astrophysical applications as well as improving their description. Many of the
more recently constructed EOS use an ensemble of nuclei in nuclear statistical equilibrium (NSE) instead
of the SNA approximation to describe inhomogenous matter, such that the formation of light clusters is
also accounted for, see, e.g., Ref. [282] for a description of the NSE model. Still, EOS for simulations
are either based on the RMF framework or a Skyrme functional. For each of them, there are several
parameter sets available that have been fitted in order to reproduce specific properties of nuclei. This
results in a number of EOS that are based on the same theoretical groundwork, but differ considerably
in their nuclear matter properties. In Tab. 2.1, we compare these nuclear matter properties of several
EOS with the current estimates from nuclear theory, see Sec. 2.2 for details on chiral EFT results for
nuclear matter properties. First, we list the properties for the LS and Shen EOS. The LS EOS is available for
three different incompressibilities, namely 180, 220, and 375 MeV. We use the LS220 as the LS EOS with
K = 180MeV does not support a 2M⊙ neutron star and K = 375MeV does not agree with constraints for
the incompressibility from nuclear theory. The SFHo and SFHx EOS are based on RMF and are constructed
in order to agree with neutron star observations that were available at the time [283]. The DD2 [284] and
FSUgold [285] EOS are two parametrizations for RMF models that have been used by Refs. [282, 286] to
construct EOS for simulations. On the Skyrme side, Ref. [48] published various EOS with different Skyrme
parameter sets, among others the SLy4 [287] parametrization.

In Tab. 2.1, we list the nuclear matter properties n0, B,K,Esym, and L as well as the nucleon effective
mass at saturation density m∗

n0
/m and the radius of a 1.4 solar mass neutron star R1.4M⊙ . Note that the

determination of the neutron star radius can differ slightly depending on the specific solver of the TOV
equations. The binding energy and the incompressibility mostly agree with constraints from microscopic
calculations across the listed EOS. The saturation density is for some RMF parametrizations quite low.
Deviations from theory become larger for the symmetry energy and the slope parameter. Note that the
published value of the symmetry energy for the LS EOS is about 1MeV larger, because it is given as the
energy difference of PNM to SNM. In Tab. 2.1, the symmetry energy for the EOS parametrizations are
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EOS n0 B K Esym L m∗
n0
/m R1.4M⊙

Nucl. Theory 0.164(7) 15.86(57) 215(40) 32(3) 51(19) 0.9(2) 12(2)

LS220 [276] 0.155 16.00 220 28.6 73.7 1.000 12.7

Shen [278] 0.145 16.30 281 36.9 110.8 0.634 14.6

SFHo [283] 0.158 16.19 245 31.6 47.1 0.761 11.9

SFHx [283] 0.160 16.16 239 28.7 23.2 0.718 12.0

DD2 [284] 0.149 16.02 243 31.7 55.0 0.563 13.2

FSUgold [285] 0.148 16.27 230 32.6 60.4 0.611 12.5

SLy4 [287] 0.160 16.62 230 32.0 46.0 0.695 11.7

Table 2.1: Comparison of nuclear matter properties and radius of a typical neutron star for a selection of
EOS that are available for astrophysical applications. The saturation density is given in fm−3,
binding energy B, incompressibilityK , symmetry energy Esym, and slope parameter L in MeV,
and the radius of a 1.4M⊙ neutron star in km. Note that for all EOS, the value of the symmetry
energy is determined via the second derivative of the energy per particle with respect to the
asymmetry β. The effective mass is given at saturation density. For more details, see text.

defined via the second derivative of the energy per particle with respect to the asymmetry β. The LS220
has a rather low symmetry energy while its slope parameter is somewhat above the uncertainty estimate
from chiral EFT. This combination leads to very low energies for PNM below the saturation density as
visible in Fig. 2.11. Although SFHx has a similar symmetry energy, the slope parameter is very low, which
results in the opposite behavior for E/N . The Shen EOS highly differs from microscopic calculations for
many nuclear matter properties. The high slope parameter results in energies above the range of chiral EFT
and in very large radii for neutron stars, see right panel of Fig. 2.11. The DD2 parameter set agrees quite
well with chiral EFT constraints for the PNM energy and the mass-radius relationship for neutron stars is
also reasonable. However, its effective mass is quite low at saturation density. In Ref. [288], a boundary of
allowed Esym − L combinations is established from the assumption that the unitary gas is a lower bound
for the PNM energy. The authors compared their constraint also to values from various astrophysical EOS.

Regarding the effective mass, the listed EOS use an isospin-independent parametrization, i.e. the effective
mass for PNM and SNM are the same or only differ by the neutron-proton mass difference. Moreover, they
use a mean-field description where the effective mass monotonically decreases with density. This is in
contrast to results from chiral EFT, which show that in PNM the effective mass is larger compared to SNM
and exhibits a turnover behavior after saturation density [262, 263], see also Sec. 2.4 for details.

2.6.2 Equation of state effects in core-collapse supernovae

There are numerous EOS available to study the impact in astrophysical applications such as CCSNe. However,
most studies on EOS effects in simulations either compare EOS with different underlying theories, i.e.
Skyrme functionals and RMF models or EOS that are based on the same framework but with parameter
sets that differ for each nuclear physics input [282, 286, 283, 48]. As a result, it is not possible to test the
sensitivity of a specific nuclear matter property in astrophysical simulations. As an exception, the LS EOS
offers three individual EOS that are varied only for the incompressibility as discussed above. Only recently,
in collaboration with Hannah Yasin, we carried out a study with EOS based on the LS EOS framework
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Figure 2.11: Energy per neutron as a function of density (left) and mass versus radius of neutron stars
(right) from chiral EFT calculations in comparison with several astrophysical EOS. For the
mass-radius relationship, the chiral EFT results are extended to higher densities via a polytropic
expansion, see Ref. [4]. Figure taken from Ref. [46].

where we individually varied the nucleon effective mass, incompressibility, symmetry energy, and saturation
point to determine the influence of these parameters in CCSNe [47].

The key finding of the study is that the PNS contraction is governed by the nucleon effective mass. This is
illustrated in Fig. 2.12, which shows the PNS radius and the shock radius as a function of time. We compare
the LS220 and Shen EOS with several EOS with varied effective mass and nuclear matter properties that
are constructed using the SRO code [48, 289]. To this end, we refit the Skyrme parameters of the LS EOS
to build EOS with effective masses withm∗/m = 0.8 at n0 labelledm∗

0.8 andm∗/m = 0.634 (value of Shen)
labelledm∗

S where all other nuclear matter properties are unchanged. On top of the effective mass, we vary
the incompressibility (m∗,K)S, the symmetry energy (m∗, Esym)S, both (m∗,K,Esym)S, and the saturation
point. The latter is labelled SkShen. We find that in general lower effective masses lead to larger thermal
contributions to the pressure that directly follow the behavior of the thermal index from Eq. (2.17). As a
consequence, the PNS contraction slows down, which results in smaller temperatures at the PNS surface.
This ultimately ends up in a deceleration of the shock evolution to a later explosion due to less energetic
neutrinos.

From Fig. 2.12 it becomes clear that other nuclear matter properties do not effect the PNS contraction to
a large extend as all EOS with the same effective mass end up in a narrow band of approximately the same
radius. However, changing these parameters to the values of Shen further retards the shock evolution, such
that the simulation with SkShen does not show an explosion, similar to the original Shen EOS. We conclude
that nuclear matter properties are key when studying the PNS and high-density evolution in simulations
rather than the underlying theory of the EOS.

From the comparison of the EOS available for astrophysical applications we have seen that many are not
consistent with modern constraints from nuclear theory and observations. Especially novel results of the
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and Shen EOS and several EOS that individually vary the nucleon effective mass and nuclear
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nucleon effective mass detailed in Sec. 2.4 highly differ with the parametrizations used in current EOS.
In this thesis, we incorporate these constraints including recent results from gravitational wave detection
and NASA’s NICER mission in a new EOS functional (see Ch. 3) and start to build EOS for astrophysical
simulations with it (see Ch. 4). Moreover, we also study the influence of complementary information on
the EOS from heavy-ion collisions (see Ch. 5).
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3 New equations of state constrained by nuclear
physics, observations, and functional
Renormalization Group calculations

In the last years, novel constraints became available from both nuclear theory calculations and astrophysical
observations, which ruled out many EOS that are suitable for astrophysical applications like CCSN and NSM
simulations. In this chapter, we develop a versatile EOS functional that incorporates recent microscopic
results for the nuclear matter properties and the nucleon effective mass. To this end, we fit the parameters of
the EOS functional to theoretical calculations at low and high densities as well as observational constraints
from mass measurements, GW170817, and NICER. By varying all parameters of the functional within
the allowed uncertainties, we obtain comprehensive uncertainty bands for the EOS and for neutron star
properties. This framework also allows us to easily include new constraints and update the uncertainties
according to it.

This work is performed in collaboration with Corbinian Wellenhofer and published in Ref. [73]. It
provides the basis for new EOSs of hot and dense matter for CCSN and NSM simulations, see Ch. 4.

3.1 Overview of equation of state constraints

In this section, we briefly summarize presently available constraints on the EOS of dense nuclear matter.
First, we examine constraints from nuclear physics on the properties of neutron-rich matter at densities up
to 1–2 times nuclear saturation density. Then, we discuss high-density constraints inferred from recent
neutron star observations. Finally, we discuss the results of a recent fRG study of SNM at higher densities.

3.1.1 Constraints from nuclear physics

Here, we summarize constraints on the EOS from nuclear theory and experiment. In particular, we discuss
constraints on various characteristic parameters of the EOS around saturation density n0: the binding
energy B, the incompressibility K, the symmetry energy coefficient Esym, and the slope parameter L. (The
effective mass is discussed in Sec. 3.2.1.) Further, we discuss constraints from theoretical calculations on
the EOS of PNM.

Neutron matter constraints

The modern approach to the description of the strong interaction at nuclear energy scales is based on chiral
effective field theory (EFT) and renormalization group (RG) methods [184, 290, 181]. From general EFT
convergence restrictions as well as regulator and many-body convergence considerations, the viability of
this approach is restricted to densities n ≲ 2n0. The theoretical uncertainties in current implementations
of chiral interactions in a given many-body framework arise from the interplay of finite-regulator artifacts,
many-body and EFT truncation errors, and parameter-fitting ambiguities.
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Figure 3.1: Energy per particle E/N (left panel) and pressure P (right panel) of PNM as a function of
density n from variousmany-body calculationswith chiral EFT interactions [4, 167, 168, 169, 170];
see text for details. In the left panel, we also show the low-density quantumMonte Carlo results
by Gezerlis and Carlson [291] as well as the conjectured lower bound given by the energy per
particle of a unitary Fermi gas of neutrons [235].

Because nuclear forces are weaker in PNM, the theoretical uncertainties are under better control compared
to SNM. In Fig. 3.1 we compare the results for the energy per particle and pressure of PNM obtained
from several recent nuclear many-body calculations with chiral EFT interactions. The results by Hebeler et
al. [4], Tews et al. [167], and Drischler et al. [169, 170] are based on many-body perturbation theory, while
the results by Lynn et al. [168] were obtained from auxiliary-field diffusion Monte Carlo computations
using local chiral interactions. In each case, the results include uncertainty estimates, shown as bands
in Fig. 3.1. These are based on EFT truncation errors and different regulators in Refs. [168, 169, 170],
while they are mainly due to uncertainties in the low-energy couplings that enter three-nucleon forces in
Refs. [4, 167]. The uncertainty band of Drischler et al. PRL (2019) [169] is based on simple EFT truncation
errors. The results of Drischler et al. GP-B (2020) [170] are constructed from the same calculations (from
Ref. [169]) but based on a Bayesian uncertainty analysis using Gaussian processes, which leads to a very
similar band for the combined GP-B (450) and (500) results. One sees that while overall the results from
these calculations are in good agreement, the uncertainties become sizable for densities n ≳ n0.

At densities near and above saturation density the uncertainties associated with the effective description
of the nuclear interactions dominate over many-body truncation effects. At low densities n ≪ n0, the
nuclear interactions are less intricate, but here the many-body accuracy may be inflicted by the sensitivity
to large-scattering length physics. Still, as shown in Fig. 3.1, the various chiral EFT-based many-body
calculations discussed above are in reasonable agreement with the low-density results from precise quantum
Monte Carlo computations by Gezerlis and Carlson [291].

Finally, in Fig. 3.1 we also show the energy per particle of a unitary Fermi gas of neutrons EUG(n) =
ξEFG(n), where EFG(n) is the free neutron gas energy and the Bertsch parameter is ξ ≈ 0.376 [292]. In
Ref. [235], it was argued that EUG(n) can be used as a lower bound for the PNM energy. As seen in Fig. 3.1,
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Figure 3.2: Theoretical constraints on the symmetry energy Esym and the slope parameter L from Refs. [4,
234, 167, 170], see text for details. Also shown are constraints extracted from fits to nuclear
masses (orange band) [236] and the conjectured unitary gas (UG) bound [235]. The corners
(green dots) of the green shaded area (“This work”) correspond to the four representative
(Esym, L) pairs adopted in this work. The figure is adapted from Refs. [225, 170] using the
Jupyter notebook provided in Refs. [297, 170].

the unitary gas bound reduces the uncertainties in the results by Tews et al. [167] and Lynn et al. [168],
while the ones by Hebeler et al. [4] and Drischler et al. [169, 170] are unaffected.

Symmetry energy constraints

The symmetry energy coefficient Esym and slope parameter L are crucial for a variety of phenomena
in nuclear physics and astrophysics, ranging from nuclear masses [236], neutron skins and the dipole
polarizability [239, 293, 294, 295, 296], to heavy-ion collisions [241], and CCSNe [47, 48], see also Sec. 2.2.
In particular, the neutron star radius scales with the pressure of PNM at saturation density [225, 87], i.e.,
with the L parameter.

Many experimental and theoretical efforts have been undertaken to constrain the symmetry energy. In
Fig. 3.2, we show results for the correlation between Esym and L obtained from the microscopic PNM
calculations by Hebeler et al. (H) [4], Tews et al. (TK) [167], and Drischler et al. [GP-B (450), GP-B
(500)] [170] discussed above. In addition, we show results from auxiliary-field diffusion Monte Carlo
calculations by Gandolfi et al. (G) [234]. The uncertainties in the H, TK, and G results were obtained by
using various (chiral) two- and three-nucleon interactions. The TK results involve the largest uncertainties,
which stems in part from larger variations of the low-energy couplings in three-nucleon forces. In the GP-B
case, we show results obtained from chiral potentials with two different cutoffs, GP-B (450) and (500),
where in each case the uncertainties were obtained from a Bayesian analysis using Gaussian processes of
the fixed-cutoff EFT systematics. Note that in Fig. 3.1 the two GP-B bands are combined in one single band.

The region of (Esym, L) values spanned by these theoretical results overlaps with the constraints extracted
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from various experiments; see, e.g., Refs. [225, 298, 170]. As an example, in Fig. 3.2 we show the constraint
extracted from nuclear masses [236]. Also shown is the conjectured unitary gas (UG) bound [235]. The
theoretical constraints (H,K,TK,GP-B) are all consistent with the UG constraint.

For the EOS constructed in this work we choose four representative (Esym, L) pairs that lie within the
combined theoretical constraints (H,K,TK,GP-B):

(Esym, L)/MeV ∈
{︁
(30, 35), (31, 55), (33, 65), (34, 55)

}︁
. (3.1)

These four pairs are shown as green dots in Fig. 3.2 and the (green shaded) region spanned by them is
labeled “This work”. Note that we exclude very large symmetry energies and slope parameters to avoid
having too many EOSs exceed the PNM uncertainty band shown in Fig. 3.1. Even with (Esym, L) values
inside the GP-B region our EOS functional can still lead to PNM properties, which are incompatible with
the theoretical PNM uncertainty band. This is because of higher-order terms in the density behavior. A
detailed study of the EOS and neutron star properties associated with our four (Esym, L) pairs is provided
in Sec. 3.3.1.

3.1.2 Constraints from neutron star observations

Neutron star observations play a crucial role in constraining the dense-matter EOS. In particular, mass
measurements of two-solar-mass neutron stars [6, 7, 8] have narrowed the uncertainties in the neutron
star mass-radius relation considerably. To support neutron stars of such mass the EOS cannot be too soft,
which challenges neutron star models that include substantial portions of exotic condensates or deconfined
quark matter. The present lower bound for the maximal massMmax is given by the mass of the heaviest
observed neutron stars: PSR J0740+6620 with a mass ofM = 2.14+0.20

−0.18M⊙ [8] at the 2σ level measured
using relativistic Shapiro delay. This is in line with the radio-timing observation of the pulsar J0348+0432
with M = 2.01 ± 0.04M⊙ [7]. In our work, we use the averaged lower bound of M = 1.965M⊙ as a
constraint for the lower bound of the maximal mass.

The observation of the first NSM GW170817 [70, 299] by LIGO/Virgo together with the observation of
the corresponding kilonova AT2017gfo and the short gamma-ray burst GRB170817A [300] led to many
efforts to infer an upper bound on the maximum neutron star massMmax from the remnant behavior. The
suggested limits are generally in the range Mmax ≲ 2.3–2.4M⊙ [88, 301, 302, 89, 90, 303, 304, 305],
which would rule out overly stiff EOS, in addition to the soft EOSs ruled out by the two-solar-mass constraint.

Even with a relatively narrow range on the maximal mass, the radius of a typical neutron star withM =
1.4M⊙ is uncertain, with a typical conservative range 10 ≲ R/km ≲ 14; see, e.g., Refs. [4, 177, 176, 71].
Recently, a major step toward precise radiusmeasurements wasmade by the NICER collaboration [121, 122],
which simultaneously determined the radius and mass of PSR J0030+0451 via x-ray pulse-profile modeling.

Implications of this measurement on the EOS have been studied by Raaijmakers et al. [125] by applying
two parametrizations for the neutron star EOS (in β-equilibrium): a piecewise polytropic (PP) model [4]
and a speed of sound (CS) parametrization [176]. Raaijmakers et al. [126] performed a joint analysis of
these models to infer implications on the EOS from the NICER measurement, GW170817, and the 2.14M⊙
mass measurement. Their results for the pressure as a function of density are shown in Fig. 3.3 (green
bands). While the PP and CS bands are consistent with each other, the PP model allows stiffer EOSs for
densities n ≲ 4n0 and in general smaller maximal densities. Consequently, the M -R relation of the CS
model involves somewhat smaller radii compared to the PP model. In our work, we use the combined PP
and CS bands by Raaijmakers et al. [126] as a constraint for our EOS parametrization.
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Figure 3.3: Constraints on the pressure of neutron star matter as a function of density n/n0 (green bands)
from a joint analysis [126] of the 2.14M⊙ mass constraint, GW170817, and the NICER results,
obtained using two different EOS models: piecewise polytropes (PP) and speed of sound
model (CS). The bands are for the 95% credible regions. Also shown are the results for the
pressure of SNM (orange band) from the fRG study of Ref. [171].

3.1.3 Theoretical calculations at high densities

The ultra-high-density regime (n ≳ 50n0) of the EOS corresponds to deconfined quark matter. Perturbative
QCD provides the expansion of the EOS about the high-density limit [211]. This expansion can be used
to construct astrophysical EOSs from interpolating between the chiral EFT band for the EOS at nuclear
densities and the perturbative QCD region [306, 68], see also Sec. 2.1.4. Here, we incorporate high-density
constraints from neutron star observations explicitly. Moreover, we base the high-density extrapolation
of the EOS of SNM on a recent fRG calculation at more relevant densities. Therefore, in our case the
perturbative QCD expansion does not provide significant additional constraints on the dense-matter EOS.

At present no reliable and accurate method exists for computing the properties of strongly interacting
matter at densities n ≳ 2n0 (apart from the perturbative QCD limit). However, a notable step towards
systematic high-density calculations was made by Leonhardt et al. in Ref. [171]. Starting from the
QCD action, they use the fRG to derive a low-energy quantum effective action with effective four-quark
interactions and diquark degrees of freedom, see Sec. 2.1.3 for details. The uncertainties in the results for
the (zero-temperature) EOS of SNM from this approach have been estimated in terms of their RG scale
dependence. Other sources of error are, e.g., due to neglected quark flavors and higher-order interaction
effects.

The fRG results of Leonhardt et al. [171] for the pressure of SNM are shown in Fig. 3.3 (orange band).
They span a band from n = 3n0 to n = 10n0. The band lies mostly below the observational neutron
star matter constraints from Raaijmakers et al. [126], with small overlaps for densities near n = 3n0 and
near n = 8n0. Note that the fRG band is significantly smaller than the neutron star matter bands of
Raaijmakers et al.. We will see that neutron star constraints, in particular the maximum mass constraint
with Mmax ⩾ 1.965M⊙, tend to favor a pressure of SNM that lies somewhat above the fRG band either
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near n = 3n0 or near n = 8n0. Nevertheless, we find several EOS that are consistent with neutron star
observations and for which the pressure of SNM lies within the fRG band for n ≳ 5n0.

3.2 New Equation of state functional

We now come to the construction of a new EOS functional that takes into account the constraints from
nuclear physics, neutron star observations and high-density QCD calculations. In Sec. 3.2.1, we examine
recent microscopic calculations of the neutron and proton effective mass m∗

n,p(n, β) in SNM (β = 0) and
PNM (β = 1), and introduce a convenient parametrization of m∗

n,p(n, β) to be implemented in our EOS
functionals. The construction of the EOS functional is the subject of Sec. 3.2.2.

3.2.1 Temperature dependence and nucleon effective mass

Recently, Carbone and Schwenk [262] computed the finite-temperature EOS of PNM and SNM from chiral
EFT interactions using the self-consistent Green’s function method. In addition, they also calculated the
effective masses m∗

n,p(n, β = 0, 1). Based on these results they showed that the thermal index Γth obtained
from the pressure and the energy density, see Eq. (2.10), can be accurately parametrized in terms of
the effective mass, via the form given by Eq. (2.17). Recent microscopic neutron-matter calculations in
many-body perturbation theory have confirmed this result [263]. Therefore, a reliable implementation of
the effective masses of neutrons and protonsm∗

n,p(n, β) is crucial to capture thermal effects in astrophysical
applications.

To this end, we introduce an effective mass parametrization that fits the results for m∗
n,p(n, β = 0, 1)

at densities n ≲ 2n0 from Ref. [262] based on the N3LO NN potential from Ref. [183] and N2LO 3N
interactions constructed in Ref. [307]. The behavior of m∗

n,p(n, β) at higher densities is uncertain. We
explore different scenarios in this regime. Our effective mass parametrization as a function of density is
given by

m∗
t

m
= 1 +

(︂
α1nt + β1n−t + α2n

4/3
t + β2n

4/3
−t + α3n

5/3
t + β3n

5/3
−t

)︂ 1

1 + e5n

+
(︂
ϵt
nt
n

+ ϵ−t
n−t

n
− 1
)︂ 1− e−10n

1 + e−5(n−noff)
, (3.2)

where the nucleon with opposite isospin is denoted by −t. The six parameters αi, βi with i ∈ (1, 3)
are fit to the SNM and PNM results of Ref. [262]. The factor 1/(1 + e5n) (sigmoid function) has the
effect that the fitted part goes to zero with increasing density. The high-density behavior of m∗

n,p(n, β)
is then fixed by the parameters ϵt and ϵ−t as well as by the offset noff of the (modified) logistic function
(1− e−10n)/(1 + e−5(n−noff)). For instance, for β = 1 the high-density limit of the neutron effective mass
is given by ϵn, and for β = 0 the nucleon effective mass approaches the value (ϵn + ϵp)/2. Note that
this implies that the high-density limit of the effective mass is constant and, hence, the thermal index is
Γth → 5/3; see Eq. (2.17). The correct ultrarelativistic limit is Γth → 4/3, but this matters for the nucleonic
part of the EOS only for densities far above those relevant for neutron stars.

In Fig. 3.4, we show the results for the nucleon effective mass in PNM and SNM from Ref. [262] and
three representative effective mass parametrizations based on Eq. (3.2). In the PNM case we show the
results for the neutron effective mass m∗

n(n, β = 1). At low densities, the effective mass is a decreasing
function of density (see also the recent auxiliary field diffusion Monte Carlo computations [308]), but
starting at around nuclear saturation density it increases with density for both PNM and SNM mainly
due to 3N forces. The effective mass in PNM is larger than the one for SNM (see also Ref. [264]) and for
densities n ≳ 1.5n0 it exceeds the bare nucleon mass.
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Figure 3.4: Effective massm∗/m as a function of density n/n0 for PNM and SNM. The blue (PNM) and
red (SNM) solid lines up to n/n0 = 2 show the results of Carbone and Schwenk [262]. The
gray lines (connected by colored bands) correspond to the three representative effective
mass parametrizations employed in this work. The associated high-density limits are given by
m∗/m→ 0.7 (dashed lines),m∗/m→ 1.0 (solid lines), andm∗/m→ 1.3 (dash-dotted lines).

From Eq. (2.17) it follows that the thermal index is Γth < 5/3 in the density region where the effective
mass increases with density. Depending on the form of the increase at higher densities it may even be that
Γth < 1 at high densities. This would imply a negative thermal expansion coefficient [309], with a negative
thermal pressure contribution so that the pressure at finite temperature would be smaller than the pressure
at T = 0. While such a feature is not unphysical in general, it would still be somewhat peculiar to have
Γth < 1 in nuclear matter. We therefore restrict the high-density extrapolations of the effective mass to a
form that ensures that Γth > 1.

In this work, we set noff = 0.7 fm−3 and restrict ourselves to cases where ϵt = ϵ−t = ϵ in Eq. (3.2) such
that the effective mass has the same high-density limit in SNM and PNM. We employ three representative
values of the high-density limit, i.e., ϵ ∈ {0.7, 1.0, 1.3}, denoted by m∗

0.7, m∗
1.0, and m∗

1.3 in Fig. 3.4. As
seen in Fig. 3.4, these three scenarios span a reasonably wide range for the behavior of the effective mass
at high densities. Note also that the fit below twice saturation density is unaffected by the high-density
behavior (with our parametrization this holds true even for more extreme values of ϵ). Consequently, our
effective mass scenarios only affect thermal properties at very high densities.

Regarding isospin-asymmetric nuclear matter, our effective mass parametrization ensures that the neutron
effective mass m∗

n(n, β) increases with β and satisfies m∗
n(n, β) > m∗

p(n, β), in agreement with theoretical
results [310, 311, 312, 313, 314]. In contrast to m∗

n(n, β), which is constrained by fits to microscopic
calculations for both PNM and SNM, in our approach the β dependence (at finite n) of the proton effective
mass m∗

p(n, β) is an outcome of the fit of m∗
p(n, 0) = m∗

n(n, 0) to SNM after m∗
n(n, 1) has been fit to PNM.

We found that the β dependence of both m∗
n and m∗

p is largest at n ≈ 3− 4n0 (the high-density limit ϵ is
β independent). Moreover, our parametrization leads to a β dependence of m∗

p(n, β) that is decreased
compared to that of m∗

n(n, β), which is consistent with the results from Refs. [311, 312]. For m∗
0.7, the
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proton effective mass decreases with β at low densities n ≲ n0 and increases for n ≳ n0. In the m∗
1.0 and

m∗
1.3 case the proton effective mass decreases with β at all densities, with the decrease being significantly

more pronounced for m∗
1.3. Here, the behavior for m∗

1.0 and m∗
1.3 is more in line with nuclear theory

results [311, 312]. Future work may involve the construction of improved EOS functionals that incorporate
additional theoretical constraints on the β dependence of m∗

p(n, β).

3.2.2 Equation of state functional

We now introduce the new EOS functional that forms the basis for the investigations carried out in the
remainder of this work. The microscopic results for the relation between the effective mass m∗

t (n, β) and
the thermal index Γth(n, β) make clear that a reasonable approach to the temperature dependence of an
effective EOS functional is to use a T -dependent kinetic term with density-dependent effective mass and a
T -independent interaction part. This is also supported by the microscopic nuclear-matter calculations of
Refs. [309, 315, 314, 262, 263], where it was found that the T dependence of the interaction contribution
in many-body perturbation theory is small compared to the one of the noninteracting contribution.

In the usual (Skyrme) energy density functionals, the interaction part is modeled as a finite polynomial
in fractional powers of density; see, e.g., Refs. [316, 48]. By construction, the high-density behavior of a
polynomial EOS ansatz involves a highly fine-tuned balance between different density powers. In certain
cases, i.e., for some judicious choices of the density powers, a reasonable high-density extrapolation can
result from fits to microscopic calculations at nuclear densities [316, 317]. However, for the systematic
construction of EOS functionals constrained by nuclear physics, neutron star observations, and high-density
QCD calculations, a polynomial ansatz can clearly encounter difficulties.

We therefore choose a form of the interaction part that ameliorates this fine tuning. For the internal
energy density as a function of density n = nn + np, proton fraction x = np/n and temperature T we use
the following form:

E

V
(n, x, T ) =

∑︂
t

τt(n, x, T )

2m∗
t (n, x)

− xn∆+
∑︂
i

[︃
ai

da + n(δi−2)/3
+

4bix(1− x)

db + n(δi−2)/3

]︃
n1+δi/3 . (3.3)

Here, the second term gives the rest mass contribution (modulo the neutron mass energy), with ∆ being
the neutron–proton mass difference. The first term corresponds to the kinetic part of the internal energy
density; it is modeled as a noninteracting gas of neutrons and protons with effective masses m∗

n,p(n, x)

given by Eq. (3.4). That is, the term τt is given by1

τt(n, x, T ) =
1

2π2

∫︂ ∞

0
dp p4

1

1 + exp
[︁
1
T

(︁ p2

2m∗
t (n,x)

− µ̃t(n, x, T )
)︁]︁ , (3.4)

where the auxiliary chemical potential µ̃t(n, x, T ) is defined via

nt =
1

2π2

∫︂ ∞

0
dp p2

1

1 + exp
[︁
1
T

(︁ p2

2m∗
t
− µ̃t

)︁]︁ . (3.5)

The T → 0 limit of the kinetic part is given by τt(n, x, 0) = (3π2nt)
5/3/(5π2). The role of the auxiliary

chemical potential is similar to the one in many-body perturbation theory at finite temperature [318].
The true chemical potential is obtained from the thermodynamic potential corresponding to the variables
1We use the nonrelativistic quasiparticle dispersion relation for all densities. The high-density behavior of our EOSs is fit to
observational and fRG constraints, so only thermal effects at very high densities are affected by this approximation, which is,
however, a minor effect in comparison to the effective-mass uncertainties in that regime.
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(n, x, T ), i.e., the free energy. Since the interaction part and the effective masses are T independent, the free
energy is obtained by substituting the kinetic part of E/V with the free energy density of a (nonrelativistic)
noninteracting gas of neutrons and protons with effective masses m∗

n,p(n, x).
The third term in Eq. (3.3) is the interaction part. The crucial feature of the interaction part is that it is

based on rational functions instead of density monomials. While the parameters ai and bi with i ∈ (1, 4)
are fit to low- and high-density results as specified below, the density exponents δi as well as da and db are
not fit parameters but set to specific values. We choose two different sets for δi:

δkF = (3, 4, 5, 6), δn = (3, 6, 9, 12). (3.6)

For the choice δkF , the density exponents in the numerators of the interaction part are (1, 4/3, 5/3, 2),
corresponding to integer powers of the Fermi momentum kF at zero temperature. The choice δn corresponds
to integer powers of n in the numerators. The density dependence of the denominators is chosen such
that in the high-density limit the interaction part becomes proportional to n5/3. Note that the density
dependence in the ultrarelativistic limit is∼ n4/3, but this matters only for densities far above those relevant
for neutron stars; see Sec. 3.2.1. The purpose of the denominators is to mitigate the fine-tuning between
the different parts of the interaction term such that the EOS functional is stable under variations of the fit
input. For a given choice of δi, the fit performance of the EOS functional is controlled by the two offset
parameters da and db. We set da = db = d and use for d the following values:

dkF ∈ {1, 3, 5, 7}, dn ∈ {0.2, 0.4, 0.6, 0.8}. (3.7)

These choices provide a reasonably wide range of different density behaviors, as examined in detail below.
The smaller values of d for δn are mandated by the large density exponents, i.e., the suppression of higher
density powers must set in earlier there. We note that removing the restriction da = db has no notable
impact on our results.

We fix the eight parameters a1,2,3,4 and b1,2,3,4 by matching to the following input:

• the energy per particle of PNM at n = 0.05 fm−3, determined by the QMC result from Ref. [291] as
E/N(0.05 fm−3) = 2.1MeV,

• the nuclear matter properties (n0, B,K,Esym, L),

• the pressure of PNM at n = 1.28 fm−3 ≈ 8n0,

• the pressure of SNM at n = 1.28 fm−3 ≈ 8n0.

Here, the six nuclear-density inputs (first two items) are varied according to their uncertainties, as examined
in Sec. 3.1.1. The high-density input for the pressure of PNM and SNM is taken such that the resulting
EOS is consistent with constraints from neutron star observations (Sec. 3.1.2) and the pressure of SNM is
in reasonable agreement with the fRG results (Sec. 3.1.3) (we allow a 10% deviation from the fRG band to
account for further fRG uncertainties).

The results for the energy per particle E/A of PNM and SNM obtained for one particular input set are
shown in Fig. 3.5. Here we set the nuclear matter properties to (B,K,Esym, L) = (15.29, 255, 30, 35)MeV
and n0 = 0.157 fm−3, the pressure at n = 1.28 fm−3 to 600MeV fm−3 for SNM and to 1000MeV fm−3 for
PNM, and use the effective mass scenariom∗

1.0. Figure 3.6 shows the corresponding results for the pressure
P and the square of the speed of sound c2s (in units where c = 1), which is given by the derivative of the
pressure with respect to energy density. Variations of the input are investigated in Sec. 3.3. For each δi set
from Eq. (3.6), we show the results for the smallest and the largest d in the corresponding set of possible d
values of Eq. (3.7). One sees that the nuclear-density input has the effect that for densities up to roughly
twice saturation density the functional is not very sensitive to the values of δi and d. At intermediate
densities 2n0 ≲ n < 8n0, different choices of δi and d result in the following systematics:
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Figure 3.5: Results for the energy per particle of PNM (blue) and SNM (red) as a function of density n/n0
obtained from the two δi sets with the minimal and maximal value of the corresponding d. We
use the same set of low- and high-density fit points for all depicted EOS. The light blue band in
the inset corresponds to the combined chiral EFT results from Fig. 3.1.

• δkF , d = 1.0 (solid lines): We find a soft EOS for SNM indicated by the rather small values of the
square of the speed of sound, which only barely exceeds c2s ≈ 0.5. In the case of PNM, the EOS is
stiffer to support a 2M⊙ neutron star and c2s shows a broad peak around 5n0.

• δkF , d = 7.0 (dash-dotted lines): An enhancement of the d parameter results in no notable changes
for SNM. In contrast, increasing d softens the EOS of PNM for n ≲ 5n0, while at high densities it
is significantly stiffer and c2s almost reaches the speed of light at 8n0. Nevertheless, the energy per
particle as well as the pressure of PNM is smaller in the given density range.

• δn, d = 0.2 (dashed lines): Compared to the choice δkF , the larger density exponents in δn lead to a
rapid increase of the energy per particle and the pressure of both SNM and PNM at comparatively
low densities. As the density increases the EOS becomes softer again to match the pressure fit point
at 8n0. As a consequence, we find a pronounced peak for the speed of sound due to the stiffness of
the EOS.

• δn, d = 0.8 (dotted lines): Again, a larger d parameter softens the EOS. In comparison to δkF , the
sensitivity of the functional with respect to d is more pronounced for PNM as well as for SNM. In this
specific case, the speed of sound has a second maximum at high densities; this feature depends on
the chosen input values and is not present in most EOS.

These characteristics of the EOS functional are quite robust throughout the input parameter space. In
line with this, our new approach (rational functions instead of density monomials) ensures that the fit
parameters (ai, bi) remain of reasonable size (i.e., there is no “unnatural” fine-tuning) under comprehensive
variations of the low- and high-density input. More precisely, for the 16,128 input sets considered in
Sec. 3.4.1, those that are consistent with the imposed constraints from nuclear physics and observations
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Figure 3.6: Same as Fig. 3.5 but here we show the pressure P (upper panel) and speed of sound c2s (lower
panel) of PNM (blue) and SNM (red). Note the pressure fit points at 8n0. The orange band
corresponds to the fRG results of Ref. [171].

with the density exponents δn have absolute values of the dimensionless parameters of at most 2.6, with
mean values between 0.2 and 1.1. For δkF the parameters are in general larger due to the smaller density
exponents in the numerators of the interaction terms, i.e., δkF involves more tuning than δn. The mean
values of the fit parameters for δkF lie in the range 1.4 to 15.5. For the combined (δkF and δn) parameter
space, 80% of the constrained EOS have ai and bi in a range from −12 (lower bound b2) to 20 (upper
bound b3), with five out of the eight fit parameters spanning only a range at most from −3 to 3. Overall,
as discussed in Secs. 3.2 and 3.3, our approach allows to generate (via variations of the low- and high-
density input) a broadly populated range of EOSs that reflects well the uncertainties from nuclear physics,
observations, and high-density QCD calculations.
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3.3 Equation of state variations

With the energy density functional in place, we perform variations of the input choices to span a range of
EOS that covers the uncertainties of the constraints discussed in Sec. 3.1. First, we discuss the variations
of nuclear matter properties in Sec. 3.3.1. This involves the four representative (Esym, L) pairs shown in
Fig. 3.2 as well as three choices for the saturation properties of SNM. In Sec. 3.3.2, we then analyze the
behavior of the EOS parametrization for the three effective mass scenarios introduced in Sec. 3.2.1. This
is followed by high-density variations of the pressure for PNM and SNM in Sec. 3.3.3. These variations
are performed for each set of expansion coefficients δi and each of the corresponding d values given by
Eqs. (3.6) and (3.7), respectively. For each type of variation, we show the corresponding influence on the
energy per particle, pressure, and speed of sound for PNM and SNM with an associated figure.

3.3.1 Variations of nuclear matter properties

To cover the uncertainties of the energy of PNM from many-body calculations based on chiral EFT, four
combinations of the symmetry energy Esym and the slope parameter L were identified, namely,

(Esym, L)/MeV ∈
{︁
(30, 35), (31, 55), (33, 65), (34, 55)

}︁
. (3.8)

These values cover a reasonable range of the combined theoretical results for the Esym-L correlation; see
Fig. 3.2. In fact, we have investigated a whole grid of (Esym, L) pairs that encompasses and exceeds the
green-shaded region in Fig. 3.2: the grid ranges are 28–36MeV for the symmetry energy and 30–75MeV for
the slope parameter (with step sizes 1 and 5MeV). We have examined the EOS and neutron star properties
obtained from each (Esym, L) pair in this grid for each (δi, d) choice, each effective mass scenario, and
each of the different (n0, B,K) values and high-density input specified in Sec. 3.3.3. For every (Esym, L)
pair we then counted the number of EOSs, which fulfill the constraints from nuclear physics and neutron
star observations discussed in Secs. 3.1.1 and 3.1.2. Note that the high-density fRG results for SNM from
Sec. 3.1.3 are not enforced as a strict constraint.

The results from this study are analyzed in Fig. 3.7 where one sees that larger slope parameters become
disfavored the smaller the symmetry energy is. This feature, which is more pronounced for δkF , is reflected
also in the microscopic constraints on the Esym-L correlation, see Fig. 3.2. Our four choices for (Esym, L)
are based on the combined results from Figs. 3.2 and 3.7, and on the observation that they lead to EOSs
that cover a broad range of neutron star properties.

For the saturation properties of SNM, we use the empirical saturation point n0 = 0.164(7) fm−3 and B =
15.86(57)MeV [169] together with the constraint on the incompressibility K = 215(40)MeV determined
from microscopic nuclear-matter calculations [228, 226, 169]. The uncertainties in (n0, B,K) are covered
by three combinations. The triple (K,n0, B)central uses the central values. The two other triples combine
the minimal (maximal) values of n0 and B with the largest (smallest) incompressibility: (Kmax, (n0, B)min)
and (Kmin, (n0, B)max). Overall:

(Kmin, (n0, B)max) = (175, 0.171, 16.43), (3.9)
(K,n0, B)central = (215, 0.164, 15.86), (3.10)

(Kmax, (n0, B)min) = (255, 0.158, 15.29), (3.11)

in units MeV, fm−3, and MeV, respectively. These combinations have a physical motivation: First, they
follow the Coester-band correlation between n0 and B values [169]. Second, if SNM saturates at small
densities and energies, then one expects that the incompressibility increases, and vice versa.
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Figure 3.7: Grid of (Esym, L) pairs used to determine the four representative pairs given by Eq. (3.8). The
black line (labeled “UG”) corresponds to the constraint on (Esym, L) obtained from the unitary
gas boundary on the PNM energy [235]; see Sec. 3.1.1. The color coding gives the number of
EOS that fulfill the theoretical and observational constraints discussed in Secs. 3.1; see text
for details.

The four (Esym, L) pairs and three (n0, B,K) triples amount to twelve possible combinations of nuclear
matter properties for each choice of (δi, d). The corresponding results for the PNM energy at nuclear
densities are examined in Fig. 3.8 where each of the four panels is for one of the four (Esym, L) pairs.
One sees that the chosen variations of the nuclear matter properties provide a thorough representation
of the PNM uncertainty band from chiral EFT. The depicted EOS are for one particular choice of (δi, d),
m∗

t (n, x) and the high-density input, as specified in the caption of Fig. 3.8. Variations of these properties
broaden the covered area further. We use the unitary gas bound to rule out some of the EOSs (gray lines),
in particular among those are (Kmin, (n0, B)max), and δkF . The EOS with intermediate symmetry energies
and large slope parameters (Esym, L)/MeV = (31, 55) and (33, 65) are most affected by this (conjectured)
lower bound.

Finally, in Fig. 3.9, we show the analog of Fig. 3.8 for the pressure and the speed of sound of PNM and
SNM. One sees that the nuclear matter properties have only a relatively small impact on the high-density
behavior, which for a given high-density fit input is predominantly determined by the choice of δi and d.

3.3.2 Effective mass variation

As discussed in Sec. 3.2.2, we employ three different parametrizations of the nucleon effective mass,
m∗

0.7, m∗
1.0, and m∗

1.3, where the subscript denotes the respective high-density limit, see Fig. 3.4. Here,
in Figs. 3.10 and 3.11 we examine the impact of the high-density behavior of the effective mass on the
zero-temperature EOS. The impact on thermal effects is studied in Sec. 3.4.2.

In Figs. 3.10 and 3.11, the nuclear matter properties are fixed as

(K,n0, B) = (Kmax, (n0, B)min), (3.12)
(Esym, L)/MeV = (30, 35). (3.13)
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Figure 3.8: Results for the energy per particle of PNM at nuclear densities. The four panels correspond to
the four representative (Esym, L) pairs given by Eq. (3.8). In each panel we show the results
obtained from the three (n0, B,K) triples given by Eqs. (3.9)–(3.11). The light/dark blue
lines are for the δn/δkF functional. All depicted EOSs employ the smallest d available for
the respective choice of δi; see Eq. (3.7), the effective mass scenario m∗

1.0, and the same
high-density fits for the pressure (see Fig. 3.9, top panel). In the inset of the second panel, we
show the corresponding SNM results. The light blue band in each panel corresponds to the
combined chiral EFT results from Fig. 3.1. The anthracite dash-dotted line in each panel is
the conjectured lower bound (unitary gas with ξ = 0.376) on the PNM energy. All EOSs with
energies that violate this bound are excluded and shown as gray lines.
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Figure 3.9: High-density analog of Fig. 3.8 for the pressure (upper panel) and the speed of sound (lower
panel) of PNM (blue) and SNM (red) as a function of density. The orange band corresponds to
the fRG SNM results from Ref. [171].

The high-density input is fixed as specified in Fig. 3.9. We see that the overall influence of the effective
mass on the energy and pressure at zero temperature is comparatively small by construction. The speed of
sound, as a quantity that is not directly constrained by the fit, is more sensitive to variations of the effective
mass. The observed behavior depends on the choice of δi, and in each case the results for m∗

1.0 and m∗
1.3

are more similar compared to m∗
0.7. In the case of δn the maximum of c2s increases with the high-density

limit of the effective mass (i.e., the EOS becomes stiffer), while for δkF the speed of sound peak occurs at
smaller densities for m∗

0.7.
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for the three effective mass scenarios of Fig. 3.4. All depicted EOS employ the smallest d
available for the respective choice of δi. The nuclear matter properties and high-density input
are fixed, see text for details. The light blue band in the inset corresponds to the combined
chiral EFT results from Fig. 3.1.

3.3.3 High-density variations

With a careful implementation of the nuclear physics constraints at hand the objective now is to have the EOS
functional reproduce the high-density constraints from neutron star observations. That is, the goal is to cover
the band for neutron star matter obtained by Raaijmakers et al. [126] and have EOS that are consistent with
the mass measurements of Antoniadis et al. [7] and the 2σ confidence interval of the 2.14M⊙ measurement
by Cromartie et al. [8], see Sec. 3.1.2. For this, we span a grid of fit points for the pressure of SNM and PNM
at n = 1.28 fm−3 ≈ 8n0. We fit the pressure of SNM to values {300, 400, 500, 600, 700, 800, 900}MeV fm−3

and the pressure difference between PNM and SNM to {50, 100, 150, 200, 250, 300, 350, 400}MeV fm−3, so
the pressure of PNM ranges from 350 to 1300MeV fm−3. This results in 56 high-density fit combinations
for each low-density and effective mass input. From these, we exclude all EOSs that, after including
β-equilibrium and electrons, are not consistent with the Raaijmakers et al. bands in Fig. 3.3.

The high-density fRG calculations of SNM by Leonhardt et al. [171] (see Sec. 3.1.3) lie on the lower end
of the employed fit values for the SNM pressure: 310MeV fm−3 ≲ PfRG(8n0) ≲ 410MeV fm−3. A lower
SNM pressure implies that the pressure of matter in β-equilibrium is small as well. More specifically, the
proton fraction increases with the SNM-PNM pressure difference, leading to a decrease of the pressure
of matter in β-equilibrium. As a result, enforcing consistency with the fRG results reduces the range for
neutron star matter to a great extent, such that the uncertainty band by Raaijmakers et al. [126] cannot
be fully covered. Therefore, we do not use the fRG band as a strict constraint. The subset of EOSs that are
consistent with the fRG calculations is studied further in Sec. 3.4.1.

As an example, representative high-density variations of the energy per particle of PNM and SNM are
shown in Fig. 3.12. The corresponding results for the pressure and the speed of sound are displayed in
Fig. 3.13. Here, the nuclear matter properties are set to (Kmax, (n0, B)min) andEsym = 30MeV, L = 35MeV.
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Figure 3.11: Analog of Fig. 3.10 for the pressure (upper panel) and speed of sound (lower panel) of PNM
(blue) and SNM (red) as a function of density. The orange band corresponds to the fRG SNM
result from Ref. [171].

The effective mass is given by m∗
1.0, and for each δi combination we use the smallest d value from Eq. (3.7).

For each δi we keep only the EOSs, which are consistent with the constraints from nuclear physics and
neutron star observations.

As seen in Fig. 3.12, for SNM the EOSs with δn span a much wider energy band that almost entirely
encloses the δkF energy band. At nuclear densities the pressures of both the δn and the δkF EOSs lie
mostly above the fRG pressure, see the top panel of Fig. 3.13. At high densities on the other hand the δn
high-density variations encompass the entire fRG band. In contrast, for δkF the deviations from the fRG
band increase with density.

Compared to SNM, the δn and δkF energy and pressure bands are of similar size for PNM. Regarding the
speed of sound of PNM and SNM, in the bottom panel of Fig. 3.13 one sees that the high-density variations
do not lead to significant changes in the systematics for different (δi, d) choices; see Fig. 3.6. For both
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Figure 3.12: High-density variations for the energy per particle of PNM (blue) and SNM (red) as a function
of density, see text for details. The bands for the two different δi combinations include only
EOS that are consistent with neutron star constraints. The d parameter, the effective mass,
and the nuclear matter properties are kept fixed. The light blue band in the inset corresponds
to the combined chiral EFT results from Fig. 3.1.

δi sets, the EOS with largest stiffness regions involve a PNM speed of sound that at its peak is close to
c2s = 0.8. In Fig. 3.13, for both the PNM and SNM speed of sound the two δi sets give nonoverlapping
results at high densities. However, one needs to keep in mind the displayed results are for one particular
choice of the d parameter, the nuclear matter properties and the effective mass. Varying these reduces the
area that is not covered with the specific input used. Plots that involve the full range of the considered
parameter variations are shown in the subsequent section.

3.4 Astrophysical equation of state

Here, we examine our results for cold matter in β-equilibrium and study neutron star properties such as
theM -R relation and the electron fraction. We take into account the full set of parameter variations of the
EOS functional, as discussed in Sec. 3.3. Thermal effects, which are crucial for applications in CCSN and
NSM simulations, are analyzed as well.

3.4.1 Neutron star properties

The density of electrons and muons in neutron star matter is equal to the proton density because of local
charge neutrality. For simplicity, we neglect muons as this causes only a very small change in the neutron
star EOS. The proton fraction x at a given baryon density n is fixed by the requirement of β-equilibrium,

µn(n, x) = µp(n, x) + µe(ne = xn), (3.14)
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Figure 3.13: Analog of Fig. 3.12 for the pressure (upper panel) and speed of sound (lower panel) of PNM
(blue) and SNM (red) as a function of density. The orange band corresponds to the fRG SNM
results from Ref. [171].

where µn,p,e is the chemical potential of the respective particle species. Electrons can be modeled as an
ultrarelativistic degenerate Fermi gas, so the electron pressure is Pe = Ee/(3V ), with the electron energy
density given by Ee/V = (3π2ne)

4/3/(4π2). The electron chemical potential reads µe = (3π2ne)
1/3 and

the chemical potentials of neutrons and protons are µn,p = ∂nn,pE(n, x)/V +mn,p.
With the variations of the EOS input and the choices for the functional parameters δi and d of Eqs. (3.6)

and (3.7) in place, we perform all possible fit combinations to obtain bands for the EOS of matter in
β-equilibrium. The neutron star mass-radius (M -R) relation is then obtained by solving the Tolman-
Oppenheimer-Volkoff equations [54, 55]. To this end, we implement the Baym, Pethick, Sutherland (BPS)
crust from Ref. [319] for densities below ncrust = 0.08 fm−3, as in Ref. [126]. As discussed in the two
previous sections, for each of the δi sets we consider four d values, 12 variations of nuclear matter properties,
three effective mass scenarios, and 56 high-density fits for the pressure of SNM and PNM, resulting in a set
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of 16128 EOS. Among these, we keep only EOSs that

• are consistent with the theoretical PNM uncertainty band and the unitary gas bound for the energy
per particle up to 0.2 fm−3,

• provide masses of neutron stars of at least 1.965M⊙ (combined lower bound of the measurements
from Ref. [7] and the 2σ interval of Ref. [8]),

• and lie within the 95% credible regions based on the joint analysis of GW170817 and NICER from
Raaijmakers et al. [126].

The results for the pressure and the speed of sound of neutron star matter are shown in Fig. 3.14. We see
that our EOS functional covers almost the entire band for the pressure by Raaijmakers et al. [126]. At the
high-pressure boundary the agreement is very close, but some of the softer EOSs within the Raaijmakers
et al. band are not reproduced. This feature can be largely attributed to the fact that we use a strict
lower bound for the minimal value ofMmax whereas Raaijmakers et al. have modeled the mass likelihood
function for the 2.14M⊙ pulsar [8].

In Fig. 3.14, the parts of the different EOSs that correspond to neutron stars with masses below the
canonical 1.4M⊙ are highlighted in dark green. Their continuation up to the respective maximum mass
Mmax is colored in light green. The central density n1.4 for a neutron star with 1.4M⊙ lies approximately
within 2–3.5n0. The smallest and largest nmax are roughly 4.5n0 and 7.5n0, respectively, where one
particular EOS reaches nmax ≈ 7.9n0, very similar to Ref. [4]. Up to n1.4, the speed of sound is relatively
strongly constrained, but at higher densities a large variety of speed of sound curves is present that covers
a range from c2s ≈ 0.2 to almost the speed of light.

Next, in Fig. 3.15 we show the corresponding results for the pressure-energy density relation and the
neutron starM -R diagram. Regarding theM -R relation, compared to our results the band of Raaijmakers
et al. [126] includes forM ≳ 1.5M⊙ neutron stars with slightly smaller radii. This is a direct consequence
of the softer EOSs included there, as discussed above. For a 1.4M⊙ neutron star we find a radius range of
R1.4 = 11.1–13.6 km, similar to Ref. [126]. Interestingly, compared to Ref. [126] our EOS functional gives
lower-mass neutron stars with slightly larger radii as well as larger maximum masses for neutron stars with
12 ≲ R/ km ≲ 13. Further, in Fig. 3.15 we also show the mass-radius band obtained by Hebeler et al. [4]
using polytropic extrapolations of chiral EFT results. Compared to the other bands, the band by Hebeler et
al. [4] allows for neutron stars with smaller radii and larger maximum masses. This is mainly because it
shows the entire region (100% instead of 95% credible) compatible with the maximum mass constraint.

The density exponents of the functional δi mostly influence the stiffness of the EOS. In particular, softer
EOSs corresponding to neutron stars with smaller radii mainly involve δkF , while δn yields stiffer EOSs and
larger radii. Moreover, the back-bending of theM -R lines atM ≈ 0.5M⊙ is more pronounced for EOSs
that use δn.

The EOSs for which SNM is consistent with the fRG band by Leonhardt et al. [171] are highlighted in
orange in Fig. 3.15. More specifically, for the orange EOSs the pressure of SNM starting at 5n0 deviates
from the fRG band by at most 10%. Compared to the full band, the fRG-consistent neutron star EOSs
have lower pressures at energy densities ε ≳ 800MeV fm−3, which is a consequence of the relatively low
SNM pressures obtained by the fRG calculation. This translates into comparatively larger neutron star
radii and smaller maximum masses. Nevertheless, the fRG-consistent EOSs cover a broad range of the
pressure-energy density and M -R bands of Raaijmakers et al. [126]. Overall, the fRG results for SNM
provide viable additional constraints for astrophysical EOS constructions, and incorporating them leads to a
considerable narrowing of the uncertainty band for the EOS and theM -R relation. In the future, improved
fRG calculations will enable further advancements along these lines.
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Figure 3.14: Results for the pressure (upper panel) and the speed of sound (lower panel) of matter in
β-equilibrium as a function of density. As described in the text, we show all EOSs that fulfill the
constraints from nuclear physics and neutron star observations. The color coding indicates
the mass of the corresponding neutron star, where dark green corresponds to masses up to
1.4M⊙ and light green to higher masses up to the respective maximum massMmax. Gray
lines correspond to the continuation of the EOSs to densities above the central densities
nc,max of the respective heaviest neutron star. The light-gray band depicts the 95% credible
region of the neutron star constraints from Raaijmakers et al. [126].

Our results for the neutron star maximum mass are examined further in Fig. 3.16 where we plot the
number of EOSs that yield a given value ofMmax. The distribution in Fig. 3.16 shows a broad peak, which
falls off steeply forMmax ≳ 2.35M⊙, reaching zero atMmax ≈ 2.6M⊙. Our largest maximum masses are
only slightly above the model-dependent boundMmax ≲ 2.3–2.4M⊙ inferred from GW170817 [88, 301,
302, 89, 90, 303, 304]. Again, in Fig. 3.16 the EOSs that are consistent with the fRG band are highlighted
in orange. As discussed above, the fRG constraint implies softer EOSs and thus leads to smaller values of
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Figure 3.15: Analog of Fig. 3.14 for the pressure-energy density relation (left) and the mass-radius relation
(right) of cold neutron stars. The orange lines correspond to EOSs that are consistent with
the fRG SNM results from [171], see text for details. The gray band depicts the 95% credible
region of the neutron star constraints from Raaijmakers et al. [126]. For comparison, in the
M -R plot we show also the uncertainty band obtained by Hebeler et al. [4] using piecewise
polytrope extensions to high densities (light gray band).

the maximum mass withMmax ≲ 2.18M⊙.
Finally, in Fig. 3.17 we show the electron fraction Ye(n) in neutron stars as obtained from the different

EOS. The density dependence of the electron fraction is strongly related to that of the symmetry energy
S(n). Similar to the results for the speed of sound, our Ye(n) band is fairly narrow up to around saturation
density where the electron fraction is given by Ye(n0) ≈ (4Esym)

3/3π2n0 ≈ 0.035–0.055 [175]. Above
(2–3)n0, the Ye(n) band widens considerably, with different EOS given electron fractions between 0 to
about 30% in the core of heavy neutron stars. This reflects the difference in energy of PNM to SNM, as a
larger symmetry energy implies a higher electron fraction.

3.4.2 Thermal effects

Some EOSs used in NSM simulations start from a cold neutron star EOS and add a thermal part that is
parametrized in terms of a density-independent thermal index Γth = const., e.g., Γth = 1–2. The validity of
this approximation was studied by Bauswein et al. in Ref. [261] who concluded that a consistent treatment
of thermal effects beyond the Γth = const. approximation is important. As discussed in Sec. 2.4, the
thermal contribution to the EOS is governed to a large extent by the nucleon effective mass. Full EOS
tables for astrophysical simulations mostly apply a mean-field effective mass that monotonically decreases
with density. This, however, is not consistent with microscopic nuclear-matter calculations [262, 263],
which show that interaction effects beyond the mean-field approximation are significant. As discussed in
Sec. 3.2.1, our EOS functional incorporates such microscopic effective-mass results explicitly.

The temperature dependence of our EOS functional is described solely by the kinetic term, which is
modeled as a noninteracting nucleon gas with neutron and proton effective massm∗

n(n, x) andm∗
p(n, x), see
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Figure 3.16: Number of EOSs per maximum mass Mmax corresponding to the mass-radius relation of
Fig. 3.15. The orange dotted line corresponds to EOSs that are consistent with the fRG SNM
results from Ref. [171].

Figure 3.17: Analog of Fig. 3.14 for the electron fraction Ye as a function of density.
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Sec. 3.2.2. From this one arrives at the following equation for the thermal index Γth of isospin-asymmetric
nuclear matter (ANM) with proton fraction x:

Γth(n, x, T ) =
5

3
− n

∑︁
t
εt,th(n,x,T )

m∗
t (n,x)

∂m∗
t (n,x)
∂n∑︁

t εt,th(n, x, T )
, (3.15)

where εt,th(n, x, T ) = εt(n, x, T )− εt(n, x, 0) is the thermal part of the kinetic energy density of neutrons
and protons, respectively. In the context of our EOS functional, Eq. (3.15) is an exact representation of
Γth(n, x, T ), i.e., it is equivalent to Eq. (2.10). The T dependence of Γth(n, x, T ) vanishes for x = 0 and
x = 1/2, i.e., for PNM and SNM one obtains the familiar expression given by Eq. (2.17). However, for
ANM the thermal index is a temperature-dependent quantity. Consequently, we explore whether the T
dependence of Γth for ANM is a significant effect, and, if the T dependence is small, what is the appropriate
temperature-independent approximative expression for the thermal index. For a classical free nucleon gas
withm∗

n(n, x) andm∗
p(n, x) one obtains by substituting 3Tnt/2 for εt,th(n, x, T ) in Eq. (3.15) the expression

from Eq. (2.17)

Γth,classical(n, x) =
5

3
−
∑︂
t

nt(n, x)

m∗
t (n, x)

∂m∗
t (n, x)

∂n
. (3.16)

Comparing the results obtained from Eqs. (3.15) and (3.16) one finds that the classical expression
provides a very good approximation, with relative errors well below the 1% level (except at very low T ≲ 1
MeV). For example, averaging over densities n/n0 ∈ [0, 8] and the results obtained from the three effective
mass scenarios (m∗

0.7, m∗
1.0, and m∗

1.3), the mean relative errors at T = 10 MeV are (0.18%, 0.52%, 0.63%)
for x = (0.1, 0.2, 0.3). At higher temperatures one is closer to the classical limit, so the errors decrease with
T ; at T = 1 MeV and T = 50 MeV they are (0.22%, 0.61%, 0.85%) and (0.09%, 0.16%, 0.24%), respectively,
for x = (0.1, 0.2, 0.3). For each T and x and each effective mass scenario the deviations first increase
with density up to n/n0 ≈ 5–7, and then decrease again (since the high-density limit of the effective
mass is x independent in our approach). Overall, we conclude that Γth,classical(n, x) provides a very good
representation of the temperature dependence of the EOS of ANM.

Our results for the thermal index Γth of PNM, SNM, and ANM with x = 0.2 are shown in Fig. 3.18,
where for ANM we show the results obtained from the classical approximation, Eq. (3.16). The density
behavior of Γth is then for each x determined entirely by that ofm∗

n(n, x) andm∗
p(n, x). For PNM and SNM,

an increasing (decreasing) effective mass implies that Γth is below (above) the free or unitary Fermi gas
value Γth = 5/3, and the thermal index of PNM is larger than that of SNM. For each x, at low densities Γth
first increases with n and then decreases again such that Γth = 5/3 is reached at n ≈ n0, corresponding to
the minimum of m∗

t (n, x) at around saturation density (see Sec. 3.2.1). The high-density behavior is fixed
by the respective effective mass scenario, where the largest deviations from Γth = 5/3 occur for m∗

0.7 at
n ≈ 5.8n0 (the n→ 0 limit is Γth → 5/3 by construction). The smallest values, e.g., Γth ≈ 1.25 at n ≈ 3.7n0
for SNM, are obtained for m∗

1.3.
The detailed description of thermal effects within our EOS functional may have interesting effects

in astrophysical applications. In particular, the proto-neutron star contraction in CCSN simulations is
largely governed by the T dependence of the EOS [47, 48]. Lower effective masses lead to larger thermal
contributions and thus to a larger PNS radius. A faster contraction increases the temperature at the surface
of the PNS. As a consequence, neutrinos emitted from the PNS have larger energies, which aids the shock
evolution towards a faster explosion. The very high-density regime of the EOS is more important in NSM
than in CCSN applications. Investigating the effects of our different high-density effective mass scenarios
in NSM simulations may be an interesting subject for future research.
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Figure 3.18: Results for the thermal index of PNM (blue), SNM (red), and ANM with x = 0.2 (green) as a
function of density. The different line types correspond to the three effective mass scenarios,
see Sec. 3.2.1. The horizontal gray dotted line corresponds to the thermal index Γth = 5/3 of
a free or unitary Fermi gas.
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4 Impact of the equation of state in astrophysical
applications

Simulations of astrophysical environments such as CCSNe and NSMs require an equation of state that
covers a broad range of conditions in density, temperature, and electron fraction. In this chapter, we
aim to provide new EOS tables for astrophysical applications that reflect the uncertainties from modern
nuclear theory calculations as well as astrophysical observations. This enables the systematic investigation
of specific EOS parameters and uncertainties in simulations due to the EOS. To this end, we use the EOS
constructed in Ch. 3 for nuclear matter and extend it to inhomogeneous matter based on the liquid-drop
model. This EOS construction is implemented by Yeunhwan Lim. We further explore the impact of nuclear
matter properties in NSM simulations. This study is based on a previous analysis of EOS effects in CCSN
simulations, see Sec. 2.6.2. Here, the simulations of NSMs are conducted by Maximilian Jacobi.

4.1 Set of representative equations of state

For the construction of EOS tables we pick a set of representative EOS from the EOS functional derived
in Ch. 3. Our requirements for this set of representative EOS is that it reflects the uncertainties of the
mass-radius relation of cold neutron stars and that it enables systematic studies of the influence of the

Figure 4.1: Equation of state and mass-radius relation for the set of representative EOSs. We further
show all EOS from our EOS functional that are consistent with nuclear theory constraints and
observations in light grey, see also Fig. 3.15.
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EOS model δi d n0 B K Esym L m∗ P SNM
8n0

P PNM
8n0

R1.4

soft δkF 1 0.157 15.29 255 30 35 m∗
0.7 600 650 11.34

fRG soft δn 0.6 0.157 15.29 255 30 35 m∗
1.3 400 650 11.64

PNM 30/35 δn 0.4 0.164 15.86 215 30 35 m∗
1.0 600 800 12.38

PNM 31/55 δn 0.4 0.164 15.86 215 31 55 m∗
1.0 600 800 13.05

PNM 33/65 δn 0.4 0.164 15.86 215 33 65 m∗
1.0 600 800 13.21

PNM 34/55 δn 0.4 0.164 15.86 215 34 55 m∗
1.0 600 800 12.69

SNM min δkF 3 0.171 16.43 175 34 55 m∗
1.0 800 1050 11.86

SNM mean δkF 3 0.164 15.86 215 34 55 m∗
1.0 800 1050 12.00

SNM max δkF 3 0.157 15.29 255 34 55 m∗
1.0 800 1050 12.13

δkF/d3 δkF 3 0.164 15.86 215 34 55 m∗
1.0 800 1000 11.72

δkF/d5 δkF 5 0.164 15.86 215 34 55 m∗
1.0 800 1000 11.70

δn/d.4 δn 0.4 0.164 15.86 215 34 55 m∗
1.0 800 1000 12.7

δn/d.6 δn 0.6 0.164 15.86 215 34 55 m∗
1.0 800 1000 12.41

m∗
0.7 δn 0.6 0.157 15.29 255 30 35 m∗

0.7 600 700 11.83
m∗

1.0 δn 0.6 0.157 15.29 255 30 35 m∗
1.0 600 700 11.80

m∗
1.3 δn 0.6 0.157 15.29 255 30 35 m∗

1.3 600 700 11.71
fRG stiff δn 0.2 0.164 15.86 215 33 65 m∗

1.3 300 700 13.28
stiff δn 0.2 0.157 15.29 255 33 65 m∗

1.3 500 850 13.61

Table 4.1: EOS parameters and radius of a 1.4M⊙ neutron star for the set of representative EOS . The
units are fm(2−δi) for d, fm−3 for n0, MeV for B,K,Esym, L, MeV fm−3 for the pressure of SNM
and PNM at 8n0 and km for R1.4.

nucleon effective mass m∗ and nuclear matter properties like saturation density n0, binding energy B, and
incompressibility K for SNM, and symmetry energy Esym and slope parameter L for PNM.

The set of representative EOS consists of 18 EOS. The soft and stiff EOS represent the radius uncertainty
and, thus, correspond to the EOS that feature the smallest and largest radius of a 1.4M⊙ neutron star
out of all possible EOS from our functional. Similar to this, the fRG soft and fRG stiff reflect the radius
uncertainty for all EOS that are consistent with the fRG constraint on top of the constraints from nuclear
theory and observation, see orange lines in Fig. 3.15. We pick 10 additional EOS to study systematics of
the EOS functional and nuclear matter properties. For this, we individually vary PNM parameters, SNM
parameters, the density exponents δi, and the high density limit of the effective mass m∗. For the PNM
variation, we use the four pairs

(Esym, L)/MeV ∈
{︁
(30, 35), (31, 55), (33, 65), (34, 55)

}︁
, (4.1)

while all other parameters are fixed to specific values, see Tab. 4.1 for details and the radius of a 1.4M⊙
neutron star for each EOS of the representative set. The names of the EOS are given by ”PNM” together
with the value for the symmetry energy and slope parameter. For the SNM variation, we use min, mean,
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Figure 4.2: Pressure and speed of sound as a function of density for the selection of representative EOS.
The gray bands for the pressure depict the 95% credible region of the neutron star matter
constraints from Ref. [126].

and max depending on the choice of n0, B, and K, i.e.

min ˆ︁= (Kmin, (n0, B)max) = (175MeV, 0.171 fm−3, 16.43MeV) , (4.2)
mean ˆ︁= (K,n0, B)mean = (215MeV, 0.164 fm−3, 15.86MeV) , (4.3)
max ˆ︁= (Kmax, (n0, B)min) = (255MeV, 0.158 fm−3, 15.29MeV) . (4.4)

For the variation of the density expansion, we choose two EOS with δkF and two with δn where only the
corresponding d value differs for each choice of the exponents. These EOS are then labeled δkF/d3, δkF/d5,
δn/d.4, and δn/d.6. Lastly, we have three EOS to systematically study the influence of the high-density
limit of the effective mass named m∗

0.7, m∗
1.0, and m∗

1.3. In Fig. 4.1, we show the set of representative EOS
and the corresponding mass-radius relations. We further depict in light grey all EOS that are consistent
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Figure 4.3: Electron fraction as a function of density for the set of representative EOS.

with the constraints from nuclear theory and observation as shown in Fig. 3.15. The chosen EOS are well
distributed across the radius uncertainty. As expected, the variation of PNM properties mainly influences
the radius of neutron stars and leads to a change of almost 1 km for the radius of a 1.4M⊙ neutron star.
We find that the density expansion impacts the radius to roughly the same degree and also influences the
maximum mass, while SNM properties and the effective mass scenarios result in only a minor change for
the radius as well as the maximum mass.

We show the pressure and the speed of sound for neutron star matter as a function of density for the set
of representative EOS in Fig. 4.2. The EOS set nicely covers the constraint from Ref. [126] that is shown
in gray. We find that those EOS producing large neutron star radii are stiff up to about 4− 5n0 and then
become softer at higher densities, while EOS corresponding to small radii are mostly soft in the beginning
and become stiff with increasing density to support massive neutron stars. This behavior is also reflected in
the speed of sound. Up to roughly 3n0, the EOS with large neutron star radii exhibit higher values for the
speed of sound, while at densities above 5n0 the speed of sound is higher for those EOS that lead to smaller
neutron stars. The set of representative EOS shows a wide spread for the electron fraction after twice
saturation density as depicted in Fig. 4.3. The electron fraction is strongly influenced by the difference
between PNM and SNM such that especially the variations of PNM parameters impacts the electron fraction
for neutron star matter.

4.2 Phase diagram of nuclear matter

We calculate the liquid-gas phase transition for asymmetric nuclear matter for the set of representative EOS,
see also Sec. 2.5 for a theoretical description on the phase transition. Following Ref. [320], we compute
the coexistence boundary via an effective 1-dimensional Maxwell construction, which is easier to solve
compared to Eqs. (2.18). In this approach, we set the neutron chemical potential to a specific value, see
also Ref. [321] for a similar strategy. This defines the neutron density for a given proton density. Thus, we

68



0.0 0.2 0.4 0.6 0.8 1.0
n/n0

2

4

6

8

10

12

14

16

18

T
[M

eV
]

x = 0.5

soft

fRG soft
δn, PNM variation

δkF
, SNM variation

δi variation

δn, m
∗ variation

fRG stiff

stiff

0.0 0.2 0.4 0.6 0.8 1.0
n/n0

2

4

6

8

10

12

14

16

18

T
[M

eV
]

x = 0.2

Figure 4.4: Coexistence boundary for the set of representative EOS for x = 0.5 (left) and x = 0.2 (right).

are able to compute the Maxwell construction for protons only:

P (np,g, T ) = P (np,l, T ) , (4.5)
µp,g(np,g, T ) = µp,l(np,l, T ) . (4.6)

In this case, we have two equations and two unknowns, which are the two proton densities for the liquid
and gas phase. After we solved for the proton densities, we can extract the corresponding neutron densities
via the fixed neutron chemical potential from the first step. As a result, we have np,g, np,l, nn,g, and nn,l,
which ultimately yields the total density n = nn + np and proton fraction x = np/n of the coexistence
boundary. The repetition of these steps for different neutron chemical potentials leads to the density of the
phase transition for various proton fractions. Similarly, we repeat all steps for different temperatures. To
obtain the phase diagram in the density-temperature plane, we interpolate our results for density and
proton fraction of the coexistence boundary and extract the values for specific proton fractions at given
temperatures.

We depict the coexistence boundary for the set of representative EOS for SNM (left) and neutron-rich
matter with x = 0.2 (right) in Fig. 4.4. In both cases, we find that the soft EOS shows the largest critical
temperature and the fRG soft the smallest. In SNM, the ranges for the critical temperature and critical
density are 14.7−18.5MeV and 0.32−0.43 fm−3, respectively. All EOS models end up at the same density nl
of approximately saturation density. As expected, the variation of the effective mass has only a small impact
on the phase transition since the EOS below saturation density is almost the same for all m∗ scenarios. The
critical temperature increases slightly with the high-density limit of the effective mass. The influence of
the PNM nuclear matter properties increases when matter becomes more neutron-rich. Consequently, all
EOS where only the symmetry energy and slope parameter are changed result in exactly the same phase
boundary for SNM, but show a deviation for x = 0.2. In particular, a larger symmetry energy leads to a
smaller critical temperature with a smaller corresponding critical density, while a smaller slope parameter
results in a phase transition that extends to larger densities for. For the two models with the same slope
parameter, PNM 31/55 and PNM 34/55, the density of the coexistence boundary are the same at low
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Figure 4.5: Uncertainty of the coexistence boundary for the set of representative EOS and three different
proton fractions, x = 0.1, 0.3, 0.5.

temperatures. We find a strong correlation of the critical temperature with SNM variations. The critical
temperature rises by about 3.5MeV for both proton fractions when we change the SNM properties from
the combination with small incompressibility to the one with large K. The critical density increases as
well. Lastly, we analyze the impact of the δi variation. The critical density stays almost the same, but the
critical temperature is about 2MeV higher for the EOS models with δkF . Here, we see no impact of the d
parameter, while for δn exponents the larger d value results in a higher critical temperature.

In Fig. 4.5, we show the uncertainty of the phase boundary for the set of representative EOS and three
different proton fractions, namely x = 0.1, 0.3, 0.5. With increasing proton fraction, the critical temperature
as well as the corresponding critical density increase. The difference between two proton fractions becomes
larger for smaller proton frations, i.e. the variation between x = 0.3 and x = 0.5 is rather small compared
to the difference between x = 0.1 and x = 0.3. The uncertainty of the critical temperature is about 4MeV
for all depicted proton fractions. In particular, for x = 0.1 the critical temperature ranges between 10MeV
and 13.9MeV and the critical density between 0.16 fm−3 and 0.26 fm−3. The phase boundary towards
dense matter shows a higher deviation for different EOS models when matter is becoming neutron-rich. In
fact, for SNM all EOS merge at high roughly saturation density, while for x = 0.1 the set of representative
EOS covers a density range of almost 0.2n0.

4.3 Equation of state construction based on liquid-drop model

There exist several models in order to construct the EOS across a wide range of density, temperature,
and proton fraction as present in astrophysical environments. The liquid-drop model and the Thomas
Fermi approximation are often used for the EOS for astrophysical applications. Here, we closely follow the
description of the LS EOS [275, 276] and employ the liquid-drop model with a single nucleus approximation,
see also Ref. [48]. The EOS calculation is performed by Yeunhwan Lim.
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4.3.1 Single nucleus approximation

We assume matter to consist of neutrons, protons, alpha particles, one representative heavy nucleus,
electrons, positrons, and photons. There are two types of phases, uniform and non-uniform matter. The
first one consists of a free gas of nucleons and alpha particles, while in the latter heavy nuclei are formed.
We describe this system using Wigner-Seitz cells. Each cell has a volume Vcell and is electrostatically neutral.
A heavy nucleus is located in the center of a cell and occupies the volume fraction u = VN/Vcell where
VN is the volume of the nucleus. In the liquid-drop model, heavy nuclei are described as bulk nuclear
matter with surface and Coulomb effects. We model the interior of heavy nuclei with constant density
ni and proton fraction xi. The nucleus is surrounded with a free gas of nucleons and alpha particles.
The latter are described as hard spheres of constant volume Vα = 24 fm−3 that excludes nucleons. Thus,
alpha particles occupy the volume fraction nαVα in each cell with the alpha particle density nα. Neutrons
and protons outside nuclei with density nno and npo, respectively, are in the remaining volume fraction
uo = (1 − u)(1 − nαvα). For consistency, we treat nucleons inside and outside nuclei with the same
EOS functional and use the energy density functional and the nucleon effective mass parametrization as
introduced in Ch. 3. We further assume matter to be in thermal equilibrium of temperature T .

The total free energy of the system is the sum of the individual constituents

F = Fo + Fα + Fh + Fe + Fγ . (4.7)

We treat leptons and photons as relativistic free gases. The free energy of nucleons outside nuclei is given
by

Fo = uonofB(no, xo, T ) with fB = EB/n− TsB , (4.8)
corresponding to our EOS functional. Alpha particles are assumed as non-interacting Boltzman particles as
in Lattimer-Swesty with

Fα = (1− u)nαfα = (1− u)nα(µα −Bα − T ) with µα = T ln
[︃
nα
8nQ

]︃
, (4.9)

where Bα is the binding energy of alpha particles relative to free nucleons and nQ = (mnT/2π)
3/2. The

pressure of alpha particles is obtained via Pα = nαT .
The free energy of heavy nuclei is the sum of the individual contributions

Fh = Fi + FS + FC + FT , (4.10)

with the free energy of nucleons inside nuclei Fi = unifi as given by the EOS functional. The free energy
contributions from the surface FS , Coulomb interaction FC , and translational energy FT are finite-size
contributions for the description of spherical nuclei and their deformation to pasta phases. In the following,
we will explain them in detail.

Surface energy

Inhomogeneous matter is separated into a dense phase corresponding to the nucleus that is surrounded by
a dilute phase given by the gas of unbound nucleons and alpha particles. The energy that is stored in the
surface between the two phases, i.e. the surface of the nuclei, can be described in terms of the surface area
and the surface tension. For spherical nuclei, the surface area is simply given by 4πr2N , with the radius of
the nucleus rN , but at higher densities where nuclei are deformed the shape is more involved. To account
for these more exotic phases, we parametrize the surface area with the surface shape function s(u) and a
generalized nuclear size rN

FS =
3s(u)

rN
σ(xi, T ) . (4.11)
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Following the LS EOS, we do not consider specific shapes such that the surface shape function is an
interpolating function that reproduces known limits of the shape of nuclei at low and high densities. To
this end, we use s(u) = u(1− u), which represents spheres at low densities limu→0s(u) = u and bubbles
at high densities limu→1s(u) = 1− u. The surface tension σ(xi, T ) depends on the proton fraction inside
nuclei xi and the temperature T . Hereafter, we describe the numerical calculation of the surface tension,
which is then approximated with a simple fitting function that is used subsequently for the calculation of
the EOS.

For the numerical calculation of the surface tension we consider semi-infinite nuclear matter. In this
system, the density varies only along one direction, here we choose the z-axis, while Coulomb effects are
ignored. Matter is homogeneous in the other two dimensions. In this description, the surface tension is
given by

σ(xi, T ) = −
∫︂ +∞

−∞
[Po − P (z)] dz . (4.12)

The limits at z → ±∞ correspond to the conditions P (z → −∞) = Po and Po = Pi for z → +∞. We
use the finite-range Thomas Fermi model to determine the surface tension for a given EOS. This model is
numerically stable and gives the surface tension also as a function of temperature. This model assumes for
the interaction energy between nucleons

W = −8π3
∫︂

d3r1
∫︂

d3r2 f(r12/a)
∑︂
t

[︂
CLft1ft2 d3kt1d3kt2 + CUft1ft′2 d

3kt1d3kt′2
]︂
, (4.13)

where CL and CU are density and momentum dependent functionals between like (L) and unlike (U)
particles, f(r12) = e−r12/a/4πr12 is the effective finite-range function with the distance between two
nucleons r12 = |r⃗1 − r⃗2|, and ft is the occupation number of a nucleon with isospin t = (n, p),

ft =
1

1 + exp( εt−µt

T )
, (4.14)

with the single particle energy

εt =
k2

2m∗
t

+ Vt , (4.15)

as given by our EOS functional. With this, the total energy of the system is E = K +W with the total
kinetic energy from neutrons and protons K =

∑︁
t

∫︁
d3r τt/2mt. The chemical potential of the nucleons

are expressed via the inverse of the Fermi-integral by combining Eq. (4.15) and (4.14)

µt = Vt + TF−1
1/2

[︄
2π2nt

(︃
1

2m∗
t

)︃3/2
]︄
. (4.16)

We use the Lagrange multiplier method to minimize the free energy density and obtain the surface tension
by applying Eq. (4.12).

Similar to the LS EOS, we apply a fitting function for the surface tension given by

σ(xi, T ) = σ0h(xi, T )
21+λ + q

(1− x)−λ + q + x−λ
, (4.17)

h(xi, T ) =

[︄
1−

(︃
T

Tc(xi)

)︃2
]︄p

. (4.18)
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Figure 4.6: Comparison of numerical calculation for the surface tension at T = 0MeV and its fitting
function for the fRG soft EOS.

Here, σ0 = σ(xi =
1
2 , T = 0) is the surface tension of symmetric nuclear matter at zero temperature. This

function is only valid for temperatures T ≤ Tc as otherwise there are no nuclei. The parameters λ, p, q
are determined by fitting the given function to the numerical calculation as explained above. The critical
temperature as a function of the proton fraction Tc(xi) is calculated numerically via solving the equations
for the phase transition Pi = Po, µni = µno, µpi = µpo. This exact numerical calculation is also fitted via

Tc(x) = Tco(1 + aδ2 + bδ4 + cδ6) (4.19)

where Tco = Tc(x = 0.5) is the critical temperature of SNM and δ = 1− 2x is the neutron excess.
In Fig. 4.6, we compare our numerical calculation of the surface tension to the fit using Eqs. (4.17)

and (4.18) for the fRG soft EOS. We find that the fit function is a suitable approximation to the numerical
calculation of the surface tension.

Coulomb energy

For the calculation of the Coulomb energy we assume the charge of the heavy nucleus at the center of the
Wigner-Seitz cell and electrons outside of the nucleus. Then, the free energy associated with Coulomb
interactions is given by

FC =
4πe2

5
(xinirN )2c(u) , (4.20)

where c(u) is the coulomb shape function and e the electron charge. Since the Coulomb and surface energy
are the only contributions that depend on the nuclear size rN , the minimization of the total free energy
with respect to the nuclear size results in the relation FS = 2FC , which is the nuclear virial theorem. We
use this theorem to express the nuclear size as a function of the surface and coulomb shape function. This
yields for the sum of the Coulomb and surface free energy

FS + FC = β
[︁
c(u)s(u)2

]︁1/3 ≡ βD with β = 9

[︃
πe2

15

]︃1/3
(xiniσ(xi, T ))

2/3 (4.21)
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Similar to the surface shape function, the coulomb shape function c(u) needs to reproduce known limits.
At low densities where nuclei are spherical, the nuclei occupy only a small volume fraction of the cell,
such that limu→0c(u) = uD(u) with D(u) = 1− 3u1/3/2 + u/2. Just below saturation density the nuclei
are deformed to low-density spherical bubbles inside dense nuclear matter. This limit is represented by
replacing u with 1− u and, thus, limu→1c(u) = (1− u)D(1− u). Between both limits, other non-spherical
shapes of nuclei minimize the free energy. However, for constructing an EOS with the liquid-drop model, it
is practical to use a continues shape function that approximates the pasta phases rather than treating them
explicitly. We use the same shape function as implemented in the LS EOS,

D(u) = u(1− u)
(1− u)D1/3(u) + uD1/3(1− u)

u2 + (1− u)2 + 0.6u2(1− u)2
, (4.22)

where D is given as introduced above.

Translational free energy

The translational energy accounts for the fact that the heavy nucleus is free to move within the Wigner-Seitz
cell. In this case, the translational free energy is given as

FT =
u(1− u)ni

Ao
(µT − T )h(xi, T ) with µT = T ln

(︃
u(1− u)ni

nQA5/2

)︃
, (4.23)

with the temperature dependent factor h(xi, T ) from Eq. (4.18) and the average mass number A that we
set to a constant A = Ao = 60 as in the LS EOS.

4.3.2 Equilibrium conditions

To calculate the EOS at a given baryon density n, proton fraction x, and temperature T , we minimize the
free energy with respect to the following variables: density of heavy nucleus ni, proton fraction of heavy
nucleus xi, density of unbound neutrons nno, density of unbound protons npo, density of alpha particles
nα, and volume fraction of a heavy nucleus u. The system of equations to solve for these variables is

n = uni + (1− u) [4nα + (nno + npo)(1− nαvα)] , (4.24)
nYe = unixi + (1− u) [2nα + npo(1− nαvα)] , (4.25)

0 = Pi −B1 − Po − Pα , (4.26)
0 = µni −B2 − µno , (4.27)
0 = µpi −B3 − µpo , (4.28)
µα = Bα + 2(µno + µpo)− vαPo . (4.29)

The first two equations refer to baryon number conservation and charge neutrality, respectively. The three
conditions that are equal to zero are obtained from derivatives with respect to the volume fraction and
density and proton fraction inside nuclei. The last equation for the chemical potential of alpha particles
reflects that alpha particles are in chemical equilibrium with unbound neutrons and protons including a
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Figure 4.7: Relative difference for the pressure (upper panels) and the fraction of heavy nuclei (lower
panels) for three different electron fractions for the LS220 EOS between our EOS calculation
and the table computed with the SRO code from Refs. [48, 289].

excluded volume correction. We further used the definitions

B1 =
∂F̂

∂u
− ni
u

∂F̂

∂ni
, (4.30)

B2 =
1

u

[︄
xi
ni

∂F̂

∂xi
− ∂F̂

∂ni

]︄
, (4.31)

B3 = −1

u

[︄
1− xi
ni

∂F̂

∂xi
+
∂F̂

∂ni

]︄
, (4.32)

with F̂ = FS + FC + FT . The solution of this system of equation gives the equilibrium values of the
independent variables at a given n, x, T . This then enables the calculation of thermodynamic quantities
like the pressure and entropy for the specific condition.
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4.3.3 Comparison with Lattimer-Swesty equation of state

We benchmark the EOS construction with the SRO code from Refs. [48, 289] for the LS220 parametrisation
as both codes are based on the LS EOS, see also Sec. 2.6. To this end, we calculate an EOS table using
the fit parameters of the LS220 EOS and compare all quantities that are necessary for a CCSN simulation.
We show the relative difference for the pressure and the fraction of heavy nuclei in Fig. 4.7 for three
different electron fractions from very neutron rich up to symmetric matter. The color coding refers to the
relative difference between our calculation and the result from the SRO code over the entire density and
temperature space of the respective EOS tables. The agreement between the two tables is excellent. We
only see differences around the phase transition. This is expected because the treatment of the phase
transition is different for the SRO code. In our case, the decision whether uniform or non-uniform matter
is present at a given density, temperature, and electron fraction is based on the Maxwell construction as
described above. In the SRO code, matter is considered uniform or non-uniform depending on which
system results in a lower free energy.

We also compared our results with the LS220 EOS table from Ref. [322], which is constructed using the
original LS code from Ref. [323]. We find that in general the relative difference at the phase transition is
smaller. Note that low densities and temperatures are calculated via the Timmes EOS [324] for the LS
EOS table from Ref. [322]. Consequently, we do find larger differences in these regions. For a comparison
between the LS220 EOS from the SRO code and the original LS code, see also Ref. [48].

To validate the implementation of our new EOS functional for the description of unbound nucleons and
bulk matter inside nuclei, we compare thermodynamic quantities including the pressure and chemical
potentials at different conditions in the n, x, T space. We further find that the phase boundary calculation
from the EOS table construction agrees with the computation using our EOS functional, see Sec. 4.2. We
conclude that the new EOS and effective mass parametrization are correctly implemented.

4.4 Impact of equation of state in astrophysical simulations

With the implementation of the EOS construction for inhomogenous matter at hand, we are now able to
compute EOS tables for our set of representative EOS to perform CCSN and NSM simulations. This step
is currently in progress. Here, we report on a study on the impact of nuclear matter properties in NSM
simulations that is mostly based on the analysis of EOS effects in CCSN simulations from Ref. [47]. The
NSM simulations are performed by Maximilian Jacobi, see also Refs. [325, 326].

4.4.1 Neutron star mergers

There are many aspects of the nuclear EOS that have an influence on the merger dynamics such as the
detailed density dependence of the pressure, thermal effects, and the dependence on the composition.
Many studies aim to quantify nuclear physics uncertainties in numerical simulations by employing a small
sample of different EOS models, see e.g. Refs. [327, 28, 328], thereby varying many of the above mentioned
aspects at the same time. While this approach is useful to reveal correlations with the general stiffness of
the EOS, the impact of its specific features cannot be studied this way. Only a few works have focused on the
dependence of neutron star mergers on individual aspects of the EOS. For example, Ref. [329] investigated
the impact of the slope of the symmetry energy on the post-merger dynamics, while Refs. [261, 330, 331]
investigated the temperature dependence by changing the thermal pressure independently from the cold
EOS.

In this work, we individually vary different nuclear matter properties in 3D general relativistic simulations
of merging binary neutron stars. We use the EOS from the study of EOS effects in CCSN simulations,
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EOS m∗(n0)/mn B K Esym L n0 Λ̃ R1.4

LS175† 1.0 16.0 175 29.3 73.7 0.155 358.9 12.1

LS220† 1.0 16.0 220 29.3 73.7 0.155 606.2 12.7

LS255† 1.0 16.0 255 29.3 73.7 0.155 661.1 13.0

m∗
0.8 0.8 16.0 220 29.3 79.3 0.155 698.4 12.9

m∗
S 0.634 16.0 220 29.3 86.5 0.155 765.4 13.2

(m∗,K)S 0.634 16.0 281 29.3 86.5 0.155 975.0 13.5

(m∗,K,Esym)S 0.634 16.0 281 36.9 109.3 0.155 1090.5 14.1

SkShen 0.634 16.3 281 36.9 109.4 0.145 1295.5 14.5

Shen 0.634 16.3 281 36.9 110.8 0.145 1220.8 14.5

Table 4.2: The nuclear matter parameters B,K , Esym, and L are given in MeV, the saturation density n0
is given in fm−3 and the radius of a 1.4M⊙ neutron star is given in km. The value of the tidal
deformability Λ̃ refers to the neutron star masses used in the simulations, 1.365M⊙.

which we discussed in Sec. 2.6.2. We add two additional EOS computed with the SRO code where only
the incompressibility is changed, labelled LS175† and LS255†. This set of EOS enables us to study the
impact of the effective nucleon mass, the incompressibility, the symmetry energy and the saturation point
separately. The nuclear matter properties, tidal deformability Λ̃, and the radius of a 1.4M⊙ neutron
star are summarized in Tab. 4.2. The simulations of Maximilian Jacobi to model binary neutron star
systems are carried out in the framework of the EinsteinToolkit suite [332, 333], which is based on
the Carpet computational toolkit [334]. To handle general relativistic hydrodynamics we employ the
WhiskyTHC code [335, 336, 337]. We perform one simulation per EOS, where each model initially consists
of two 1.365M⊙ irrotational neutron stars on quasi circular orbits with initial separation of 45 km. This
combination corresponds to a chirp mass of 1.188M⊙ and is compatible with the GW source of GW170817.

The time evolution of the maximum density inside the neutron star is shown in Fig. 4.8. The newly
formed remnant is in a highly deformed state and is initially oscillating, which is imprinted in the maximum
density. In the model LS175†, a black hole is formed immediately after merger, while for LS220†, the
remnant oscillates several times before it collapses. In both cases, the lower incompressibility reduces the
pressure at high density and the merged object is not able to support its mass against gravitational collapse.
In other models the pressure in the center of the neutron star is large enough to stop the contraction of the
remnant before a black hole is formed. In general, the final central density is larger for EOS with lower
pressures at high density. In LS255†, the dependency of the pressure on density is steeper due to the higher
incompressibility such that the contraction of the remnant stops already after 10 ms. The remnant in the
simulations m∗

0.8 and m∗
S on the other hand keep contracting for longer, which is visible due to the increase

in central density. Increasing the symmetry energy shows almost no effect on the density in the center
of the remnant. Changing the binding energy and saturation density (SkShen) results in a lower central
density and initially in a lower remnant temperature.

The lower panel of Fig. 4.8 shows the evolution of the average temperature inside the remnant as a
function of time. In LS220†, the remnant is heated up much more than in the non-collapsing cases due to
the increasingly violent oscillations. In the case of the non-collapsing remnants the average temperature
is correlated with the maximum density because stiffer EOS result in a less violent merger and reduced
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Figure 4.8: Maximum density (upper panel) and average remnant temperature (lower panel) as a function
of time after merger.

shock heating. However, comparing LS255† with m∗
S and (m∗,K)S shows a deviation from this trend.

The central density in the model LS255† is higher than in m∗
S and (m∗,K)S, but the average remnant

temperature is lower than in m∗
S and similar to (m∗,K)S. This is because of the larger values of Γth for

models with lower effective mass, which increases the shock heating efficiency, see also [330]. In general,
the implications due to the increased incompressibility for LS255† are seen as well when comparing m∗

S
and (m∗,K)S. Unlike in the models (m∗,K)S and (m∗,K,Esym)S, the average remnant temperature in
SkShen keeps increasing and is thus eventually larger than in (m∗,K,Esym)S. Compared to the original
Shen EOS, SkShen leads to a lower central density, which can be attributed to smaller pressures above 2n0
for SkShen. The average remnant temperature is larger in SkShen because it has a larger thermal index
than the Shen EOS. Nevertheless, the remnant evolution for the SkShen and Shen is remarkably similar. In
total, the central densities of the remnant vary between ∼ 2.5− 5n0 at the end of the simulation.
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5 Constraining neutron-star matter with microscopic
and macroscopic collisions

So far, the equation of state for neutron star matter is constrained by nuclear theory calculations and
astrophysical observations. Terrestrial heavy-ion collision experiments also probe dense matter, see Sec. 2.3.
In this work, we use Bayesian inference to combine data from nuclear theory, astrophysical observations of
neutron stars, and results from HIC experiments that were performed at the Schwerionensynchrotron 18
(SIS-18) accelerator located at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt to further
constrain the EOS in a density range for which theoretical calculations become less reliable. This work was
performed in collaboration with Peter T. H. Pang, Ingo Tews, and others and is published in Ref. [163]. My
contribution has focused on the implementation of EOS constraints from information of HIC experiments.
Additionally, in Sec. 5.6, we combine our findings for the constraints from heavy-ion collisions with the
EOS functional derived in Ch. 3.

At densities below 1-2n0, the EOS and its theoretical uncertainty can be obtained from microscopic
calculations based on chiral EFT of QCD [4, 167, 168, 169, 170, 73]. To probe dense matter beyond
these densities, further approaches, based on experimental and observational data, are necessary. A
very promising tool is the multi-messenger astrophysics analysis of neutron stars and their collisions,
which provides access to dense neutron-rich matter not accessible in terrestrial experiments at present. In
recent years, the advent of GW astronomy [66] and new electromagnetic (EM) observations of neutron
stars [136, 122, 121], including the NICER mission of NASA [122, 121], led to new constraints on the
EOS [67, 68, 69, 70, 150, 71, 72, 151, 124, 152]. However, these observations mainly probe the EOS at
densities ≳ 2n0 and still carry considerable uncertainties, reflected in the ranges for predictions of neutron-
star radii. More precise or new complementary information are required to reduce the uncertainties further.
The gap between our current knowledge of the EOS stemming from nuclear theory and experiment at
low densities and astrophysical observations of neutron stars at higher densities can be bridged by HIC
experiments. These experiments, performed with heavy-ion beam energies of up to 2 GeV per nucleon,
probe the nuclear EOS mainly in a density range of 1-2n0 at present [246, 249, 256], representing a new
source of information [338].

5.1 Nuclear theory input

Our analysis starts with a set of 15,000 EOSs that are constrained by nuclear theory calculations at low
densities from Ingo Tews. In particular, we employ calculations using local chiral EFT interactions [168, 177].
Based on local chiral two- and three-nucleon interactions, we use quantum Monte Carlo methods, which
are among the most precise many-body methods to solve the nuclear many-body problem [198]. The
15,000 EOSs are sampled such that they span the theoretical uncertainty range of the chiral EFT calculation.
The breakdown scale of the chiral EFT expansion was estimated to be ∼500-600 MeV [170]. Therefore,
we constrain our EOS set using chiral EFT input only up to 1.5n0 (corresponding to Fermi momenta of
the order of 400 MeV) but a variation within 1-2n0 shows no substantial impact on our final results for
neutron-star radii [339], see also Tab. 5.1. Applying constraints from chiral EFT only up to 1n0 allows
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for a broader and stiffer EOS prior at higher densities since information up to 1.5n0 is discarded. As a
consequence, the EOSs including HIC only and to a lesser extent the combination of HIC and observational
constraints become stiffer leading to an increase of neutron-star radii. This effect is larger when using a
natural instead of a uniform prior in radius.

Table 5.1: Comparison of the 95% credible interval for the pressure [MeV fm−3] and radius [km] of neutron
stars when including only HIC experiments, only astrophysical observations, or the combined
HIC and astrophysics results for chiral EFT constraints up to 1.5n0 and up to 1n0, and for using
a natural and uniform prior on R1.4. We find that differences for pressures and neutron-star
radii are small between both prior choices when Astro+HIC data constraints are employed.

Natural prior on R1.4

Chiral EFT up to 1.5n0 Chiral EFT up to 1n0

P/R HIC only Astro only Astro+HIC HIC only Astro only Astro+HIC

1.0n0 2.05+0.49
−0.45 2.00+0.52

−0.49 2.11+0.49
−0.52 1.95+0.51

−0.39 1.87+0.51
−0.41 1.95+0.50

−0.43

1.5n0 6.06+1.85
−2.04 5.84+1.96

−2.26 6.25+1.90
−2.26 10.77+29.80

−8.81 8.98+8.41
−4.30 9.12+6.66

−4.36

2.0n0 19.47+33.63
−11.67 18.44+16.24

−9.69 19.07+15.27
−10.53 33.02+76.25

−31.06 26.11+24.36
−17.81 26.21+21.85

−17.16

2.5n0 47.78+75.96
−32.96 45.05+39.80

−19.62 45.43+40.41
−19.11 68.31+114.74

−66.35 54.19+38.50
−20.67 54.33+35.54

−21.69

1.0M⊙ 11.89+0.79
−0.98 11.76+0.65

−0.71 11.88+0.57
−0.76 12.68+1.44

−1.41 12.36+0.95
−0.90 12.40+0.85

−0.89

1.4M⊙ 12.06+1.13
−1.18 11.94+0.79

−0.78 12.01+0.78
−0.77 12.96+1.87

−1.84 12.53+1.22
−1.03 12.56+1.07

−1.01

1.6M⊙ 12.11+1.33
−1.33 11.98+0.93

−0.79 12.03+0.98
−0.75 13.05+2.11

−2.08 12.55+1.31
−1.10 12.57+1.22

−1.04

2.0M⊙ 12.19+1.71
−1.59 11.88+1.23

−1.10 11.91+1.24
−1.11 13.21+2.53

−2.38 12.32+1.58
−1.49 12.33+1.56

−1.44

Uniform prior on R1.4

Chiral EFT up to 1.5n0 Chiral EFT up to 1n0

P/R HIC only Astro only Astro+HIC HIC only Astro only Astro+HIC

1.0n0 2.05+0.46
−0.54 1.92+0.64

−0.45 2.18+0.43
−0.68 1.98+0.49

−0.40 1.90+0.52
−0.43 2.00+0.49

−0.46

1.5n0 6.12+1.75
−2.43 5.56+2.45

−2.15 6.57+1.66
−2.92 9.11+42.6

−7.53 8.22+6.51
−5.53 8.58+6.62

−5.70

2.0n0 17.04+46.81
−12.56 18.19+27.15

−12.37 19.93+29.61
−12.96 23.84+100.12

−22.25 22.56+21.12
−18.76 23.45+21.97

−18.10

2.5n0 38.39+98.48
−34.37 44.28+47.06

−24.88 47.03+52.26
−22.44 48.34+154.87

−46.75 46.39+38.20
−31.12 47.89+37.10

−32.47

1.0M⊙ 11.70+1.25
−2.23 11.72+0.91

−0.89 11.96+0.78
−1.02 12.27+1.92

−3.01 12.15+1.07
−1.39 12.25+1.04

−1.41

1.4M⊙ 11.81+1.62
−2.30 11.90+1.18

−0.92 12.08+1.18
−0.94 12.32+2.60

−2.89 12.22+1.31
−1.42 12.33+1.26

−1.52

1.6M⊙ 11.81+1.86
−2.33 11.94+1.37

−0.96 12.10+1.34
−1.02 12.29+2.93

−2.87 12.20+1.44
−1.43 12.30+1.42

−1.50

2.0M⊙ 12.37+1.82
−2.69 11.82+1.71

−1.27 11.97+1.80
−1.27 12.92+3.04

−3.22 11.88+1.85
−1.57 11.94+1.85

−1.59

We extend each EOS above 1.5n0 using an extrapolation in the speed of sound (cs) in neutron-star
matter [340], see also Greif et al. [176]. To construct the neutron-star EOS set, we first extend our chiral
EFT calculation to β-equilibrium and add a crust [341]. Above 1.5n0 density, we sample a set of six
randomly distributed points in the speed of sound plane at baryon densities between 1.5n0 and 12n0,
enforcing 0 ≤ cs ≤ 1 at each point. A variation of the number of sampled points between 5-10 does not
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impact our findings. We then connect these points by line segments, reconstruct the EOS, and solve the
Tolman-Oppenheimer-Volkoff equations to extract neutron-star properties. Additionally, for each EOS we
construct a partner EOS that includes a segment with vanishing speed of sound to explicitly simulate strong
first-order phase transitions. We sample the onset density and width of this segment randomly.

Our EOS set includes 15,000 different EOS samples where the prior on the radii of neutron stars is
naturally determined by the EOS expansion scheme. We have explicitly checked the differences among a
prior uniform in the radius of a typical 1.4M⊙ neutron star and the “natural” prior and found only minor
changes up to around 5% once astrophysical and HIC data are included, see Tab. 5.1.

The extrapolation to high densities is only constrained by causality (cs ≤ 1) and stability of neutron-star
matter (cs ≥ 0). In contrast to Refs. [68, 69], we do not take into account any information at asymptotically
high densities from perturbative QCD calculations. In addition, at this level we require all EOSs in the prior
to support neutron stars with masses of at least 1.9M⊙, to remove EOSs that only support neutron stars with
maximum masses well below the lower limit from the combined observations of heavy pulsars [7, 342, 9].
Hence, this lower bound ensures that the resulting EOS prior has reasonable support for massive-pulsar
observations that we include at the first state of our Bayesian framework [72]). These general assumptions
lead to a broad uncertainty for the EOS at higher densities (see Fig. 5.1A), as well as for neutron-star
masses and radii (see Fig. 5.2A). The EOS prior is then used to analyse astrophysical observations and HIC
experiments.

5.2 Multi-messenger astrophysics information

To constrain the set of EOSs derived from chiral EFT with astrophysical data, a multi-step Bayesian multi-
messenger framework [72, 343] has been used in which results from individual steps are used as prior for
the next part of the analysis [72], see Fig. 5.3. Here, each EOS is analyzed with respect to its agreement
with a variety of observational data. First, we incorporate constraints on the maximum mass of neutron
stars. For this, we implement the mass measurements of the heavy radio pulsars PSR J0348+0432 [7]
and PSR J1614-2230 [342]. We do not include the mass measurement of PSR J0740+6620 [9] since we
make use of the NICER and XMM mass-radius information of PSR J0740+6620 [124, 123] at a later stage.
This procedure avoids double counting. The combination of these observations [72, 344] of high-mass
neutron stars provides a lower bound on the maximum mass of neutron stars. In contrast, an upper bound
of the maximum mass is obtained from the observation of the merger remnant of the neutron-star merger
GW170817 [89]. Among other arguments, the observation of a bright, red kilonova component and the
observation of a short gamma-ray burst 2 seconds after the merger of the two neutron stars indicate
that the remnant experienced a delayed (O(100ms)) collapse to a black hole, so that an upper limit on
the maximum mass can be derived. The combined estimate of the maximum mass, 2.21+0.10

−0.13M⊙ at 68%
uncertainty, already provides important information about the internal structure of neutron stars and
disfavors both too stiff and too soft EOSs, i.e., EOSs with too large and too small pressures, respectively.

Next, NICER’s mass and radius measurement of PSR J0030+0451 [122] and PSR J0740+6620 [124, 123]
are incorporated. In addition to NICER, the XMM-Newton telescope [345, 346] has been used for the
analysis of PSR J0740+6620 [124] to improve the total flux measurement. For PSR J0740+6620, we
average over the results obtained by Miller et al. [124] and Riley et al. [123], while for PSR J0030+0451
we only use results of Miller et al. [122].

Next, GW information from the two neutron-star mergers GW170817 [66] and GW190425 [157] are
analysed with Bayesian inference techniques by matching the observed GW data with theoretical GW
models that depend on neutron-star properties. Here, a GWmodel [347] is used that is an improved version
of the main waveform model employed by the LIGO/Virgo Collaboration for the study of GW170817 [299]
and GW190425 [157]. Similarly to the GW analysis, we also include information from the kilonova
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(A) Chiral effective field theory: 

(D) HIC and Astro combined: 

(B) Multi-messenger astrophysics: 

(C) HIC experiments:
(F) 

(E) 

Figure 5.1: Evolution of the pressure as a function of baryon number density for the EOSprior (A, gray), when
including only data from multi-messenger neutron-star observations (B, green), when including
only HIC data (C, orange), and when combining both (D, blue). The shading corresponds to
the 95% and 68% credible intervals (lightest to darkest). The impact of the HIC experimental
constraint (HIC Data, purple lines at 95% and 68%) on the EOS is shown in panel C. In panels (B)
through (D), we show the 95% prior bound for comparison (gray dashed lines). We also show
posterior distributions for the pressure at 1.5n0 and 2.5n0 at different stages of our analysis (E,
F), where the combined Astro+HIC region is light-blue shaded.

AT2017gfo [136] associated with the GW signal. To test the robustness of the GW analysis, we have explored
a number of different GW models and found only a minimal impact on the final EOS constraint [72].

The above astrophysical information leads to important constraints on the neutron-star EOS, as shown
in Fig. 5.1B. The constraints are strongest above 1.5n0, where the extrapolation in the speed of sound is
used for the EOSs. The high-density astrophysical constraints affect mostly the high-mass region in the
mass-radius plane and exclude the stiffest EOSs that lead to the largest radii, see Fig. 5.2B.

5.3 Data from heavy-ion collision experiments

To further constrain the EOS, we implement data from HIC experiments. The FOPI [249] and ASY-
EOS [256] experiments performed at GSI provide information respectively on the symmetric nuclear matter
EOS, i.e., matter with the same amount of protons and neutrons, and on the symmetry energy, which
describes the energy cost of changing protons into neutrons in nuclear matter. For both experiments, 197Au
nuclei were collided at relativistic energies (0.4 to 1.5 GeV/nucleon), forming an expanding fireball in the
collision region. This expansion is dictated by the achieved compression and therefore depends on the
EOS of hot and dense matter. Due to the initial neutron-to-proton asymmetry of the Au-Au system, the
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(A) Chiral effective field theory: 

(D) HIC and Astro combined: 

(B) Multi-messenger astrophysics: 

(C) HIC experiments:

(F)

(E)

Figure 5.2: We show the 95% and 68% credible ranges for the neutron-star radius across various masses
(up to the 95% upper bound on the maximum allowed mass, as only few EOSs support mass
beyond that, which would result in an unrepresentative credible range) for the prior (A, gray),
when including only multi-messenger constraints (B, green), when including only HIC experi-
ment data (C, orange), and for the joint constraint (D, blue). We show the prior 95% contour in
panels (B)-(D) for comparison. Posterior distributions for the radii of 1.4M⊙ and 2M⊙ stars
are given at different stages of our analysis (E, F), where the combined Astro+HIC region is
light-blue shaded.

expansion of the emitted nucleons is sensitive to the nuclear symmetry energy. Constraints on the symmetry
energy (from ASY-EOS) can be translated into a constraint on the pressure of neutron-star matter as a
function of the baryon density when empirical information on symmetric nuclear matter from experiments
(FOPI) with atomic nuclei is used.

Using FOPI data on the elliptic flow in gold-gold collisions between 400 MeV and 1.5 GeV/nucleon,
thanks to the broad acceptance of the detector, an enhanced precision in the determination of the EOS
could be achieved. Including the full rapidity and transverse momentum dependence of the elliptic flow
of protons and heavier isotopes [249] in the analysis with the Isospin-QMD (IQMD) transport model,
the incompressibility was determined as K = 190 ± 30 MeV. This result was confirmed by interpreting
the same data with three Skyrme energy-density functionals introduced into the ultrarelativistic QMD
(UrQMD) transport model [229], leading to K = 220 ± 40 MeV. The interval of confidence used in the
present study, K = 200± 25 MeV, reflects both predictions. The densities probed were estimated to range
between 1-3n0 by analyzing the densities effective in building the elliptic flow in IQMD simulations [249].
We note that the value ofK has very little influence on the observables measured by ASY-EOS to extract the
symmetry energy [348]. Note that the constraints deduced from the analysis of elliptic flow are compatible
with earlier findings of the Kaon Spectrometer (KaoS) Collaboration obtained from comparisons of QMD

83



(A) Chiral effective field theory: 
EOS derived with the chiral EFT result 
and 

(C) NICER:
PSR J0030+0451 and PSR J0740+6620

(D) GW170817: 
reanalysis with
IMRPhenomPv2_NRTidalv2

(E) AT2017gfo: 
analysis of the observed lightcurves

Prior construction

(F) GW190425: 
reanalysis with
IMRPhenomPv2_NRTidalv2

(B) Maximum Mass Constraints: 
PSR J0348+0432/PSR J1614-2230 and 
GW170817/AT2017gfo remnant 
classification

Parameter estimation

(G)

Figure 5.3: In each panel (except for panel A), EOSs within (outside of) 95% credible interval are shown
as blue (gray) lines. Lower panels indicate the probability distribution function (PDF) for the
radius of a 1.4M⊙ neutron star, with the 95% confidence range indicated by dashed lines, in
panels (B)-(F) the prior from panel (A) is shown in grey. (A) The EOS prior set constrained
by chiral EFT calculations up to 1.5n0 and Mmax ≥ 1.9M⊙. (B) The EOS set restricted by
incorporating information from mass measurements of PSR J0348+0432, PSR J1614-2230,
and themaximum-mass constraints obtained fromGW170817/AT2017gfo. The 95% confidence
interval of the maximum mass posterior probability distribution is shown by the purple band.
(C) The EOS set further restricted by the NICER mass-radius measurement of PSR J0030+0451
(purple contours at 68% and 95% confidence) and PSR J0740+6620 (orange contours at 68%
and 95% confidence). Note that the latter shows the average of the results obtained by Miller
et al. [124] and Riley et al. [123]. (D) Further restrictions on the EOS set from a reanalysis
of the GW170817 using Bayesian inference. Contours at 68% and 95% confidence show the
mass-radius measurements of the primary (red) and secondary (orange) neutron stars. (E) We
use the chirp mass, mass ratio, and the EOSs as Bayesian prior for our analysis of AT2017gfo.
(F) Further restrictions by analysing GW190425. Again, contours at 68% and 95% confidence
show the mass-radius measurements of the primary (red) and secondary (orange) neutron
stars. (G) The radius constraint at each step of this analysis with 95% confidence ranges. The
radius constraint after including HIC experimental data is also shown.
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predictions with experimental K+ meson production yields from gold-gold and carbon-carbon collisions
performed at GSI between 0.6 and 1.5 GeV/nucleon [349, 350].

The ASY-EOS experiment was performed at GSI in Darmstadt, studying collisions of gold nuclei of
400 MeV/nucleon incident energy and gold targets. The description of the experiment and the analysis
with the UrQMD transport model are given in detail in Russotto et al. [256]. ASY-EOS benefited from the
Large-Area Neutron Detector (LAND) [351] permitting the detection of neutrons and charged particles
within the same acceptance. Its isotopic resolution in this experiment was not sufficient to uniquely identify
protons. Elliptic flow ratios were, therefore, determined for neutrons with respect to all charged particles
within the LAND acceptance. We note that for the selected collisions and angular region, the yield of
charged particles consists of light isotopes, mainly protons (around 50%) according to FOPI data for the
same reaction. Confronted with UrQMD transport model predictions (and confirmed with other models,
IQMD [251] and Tübingen QMD (TüQMD) [348]), the resulting flow ratio enabled deducing a constraint
for the symmetry energy, which is so far the most precise for supra-saturation densities obtained from
HICs. As indicated by QMD model predictions, densities probed by the elliptic flow ratio in the ASY-EOS
experiment extend up to about 2n0.

5.3.1 Implementation of nuclear equation of state constraints from heavy-ion collisions

For analysing the experimental elliptic flow data, an EOS functional needs to be fed into the QMD simulations
for both symmetric and asymmetric nuclear matter. For the analysis of the FOPI experiment, symmetric
nuclear matter has been parameterised with

E

A
(n, 0) =

3

5

(︃
n

n0

)︃2/3

EF +
αn

2n0
+

β

γ + 1

(︃
n

n0

)︃γ

, (5.1)

with the saturation density n0, the Fermi energy EF , and where the parameters α, β, and γ are fixed by
the incompressibility K, the binding energy B of symmetric nuclear matter at n0, and the condition that
the pressure of symmetric nuclear matter is zero at saturation density:
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In the ASY-EOS analysis, the symmetry energy as a function of density has been parameterised as

S(n) = Ekin,0

(︃
n

n0

)︃2/3

+ Epot,0

(︃
n

n0

)︃γasy

. (5.3)

At saturation density, the kinetic part has been set to Ekin,0 = 12MeV and Epot,0 = Esym − Ekin,0. The
parameter γasy was extracted from fits to experimental data of the pt dependence of the elliptic flow ratio
of neutrons over charged particles around mid-rapidity. In particular, this results in γasy = 0.68± 0.19 for
Esym = 31 MeV and γasy = 0.72 ± 0.19 for Esym = 34 MeV. In Fig. 5.4, we compare the constraint from
the HIC experiments (red area) with various microscopic neutron matter calculations as introduced in
Sec. 3.1.1. Overall, they are in good agreement for n ≳ n0, but the HIC constraint also allows rather low
energies at smaller densities. This behavior can be attributed to the simple form of the parametrization for
the symmetry energy (Eq. (5.3)) and the fact that the uncertainty of γasy is density independent. Here,
we interpolate γasy assuming a linear function with Esym, where the uncertainty is chosen to be 0.19
independent of Esym. In Fig. 5.5, we have studied the behavior of γasy as a function of S0 for two different
QMD models. In particular, we compare the results from the UrQMD model that is used in the analysis of
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Figure 5.4: Energy per particle E/N of neutron matter as a function of density n for various many-body
calculations using chiral EFT interactions from Hebeler et al. [4], Tews et al. [167], Lynn et
al. (used here) [168], Drischler et al. PRL [169] and GP-B [170], and low-density quantum Monte
Carlo results from Gezerlis and Carlson [291]. We also show the energy per particle of a unitary
Fermi gas of neutrons, which has been proposed as a lower bound for the energy of neutron
matter [235]. Finally, we compare the theoretical results with the constraint from the ASY-EOS
and FOPI experiments (red), which is used as a constraint for neutron matter in the main work.

the ASY-EOS experiment with new simulations using the IQMD model. The red line indicates the mean
value for γasy along the linear interpolation for the chosen range of S0 that is used in this work. Overall,
the models are in good agreement with each other and we conclude that the linear interpolation in the
Esym range is suitable.

The pressure constraint is given by the density derivative of the energy per particle,

P (n, δ) = n2
∂E/A(n, δ)

∂n
, (5.4)

and depends on n, δ, n0, B,K, and Esym. We enforce this constraint only at densities where the experiment
is sensitive. The density region of the HIC constraint is set by the sensitivity of the neutrons-over-charged-
particles flow ratio determined for the ASY-EOS experiment [256]. This sensitivity curve covers the density
range from 0.5n0 up to 3n0 and peaks between n0 and ∼ 2n0, where the experiment is most sensitive.

Neutron-star matter is composed of neutrons, protons, electrons, and muons in β-equilibrium. In order
to apply the ASY-EOS constraint to neutron stars, we need to determine the proton fraction xASY-EOS
accordingly. For simplicity, we neglect muons because they only have a small impact on the neutron-star
EOS in the considered density range. Then, the density of electrons is equal to the proton density due to
local charge neutrality, and the proton fraction x at a given baryon density n is fixed by the β-equilibrium
condition.

The final pressure constraint is obtained using EF = 37MeV and by varying the parameters n0, B, K,
and Esym within specific ranges. For the parameters describing symmetric nuclear matter, we use the values
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Figure 5.5: We show the exponent γasy of the density dependence of the potential part of the symmetry
energy, see Eq. (5.3), as deduced from the analysis of ASY-EOS experimental data using the
UrQMD model used in this work [256] (red points) and new simulations from the IQMD model
(blue points). The red line indicates the mean value for γasy along the linear interpolation for
the chosen range of S0.

consistent with the FOPI analysis given by n0 = 0.16 fm−3, B = 16MeV, and a Gaussian distribution for K
with K = 200± 25MeV at 1σ. Regarding Esym, we apply a uniform prior in the range from 31− 34MeV.

In addition to the GSI experiments, we include constraints on the pressure of symmetric nuclear matter
at larger densities obtained from model calculations of Danielewicz et al. [246] that were used to analyze
experimental data from LBL and BNL in which 197Au nuclei were collided at energies up to 10 GeV/nucleon.
A comparison of this constraints together with the allowed range from FOPI and calculations from chiral
EFT for the pressure of symmetric nuclear matter is shown in Fig. 5.6.

The results from Danielewicz et al. are sensitive to higher densities, 2-4.5n0, but we only include their
constraints up to 3n0 where the sensitivity of the ASY-EOS experiment ends, i.e. we disregard all parameter
sets, which lead to a pressure that is not consistent with their constraint. This excludes the highest values
for the incompressibility K from the FOPI distribution and also influences symmetric matter at smaller
densities, which depends on the range of K. However, both experimental constraints are in very good
agreement with each other. We find that the inclusion of this additional constraint has only minimal
impact, but keep it to ensure the completeness of our study; see HIC-only results in Tab. 5.2. Note that the
uncertainty band from FOPI is smaller than the theoretical one because the empirical saturation point used
for extracting the experimental results has smaller uncertainties compared to theoretical estimates from
chiral EFT.

In Fig. 5.1C, we show the combined HIC experimental constraints (labelled HIC Data) at 68% and 95%
credibility as well as the resulting posterior distribution for the neutron-star EOS. We find that the HIC
constraints tend to prefer EOSs stiffer than the ones favoured by astrophysical observations, i.e., EOSs
that have higher pressures at densities up to 2n0, see Fig. 5.1C and Fig. 5.1E. We note that results of the
ASY-EOS experiment, in their sub-saturation density extension, are compatible with recent experimental
findings from isobaric analog states supplemented with additional constraints from neutron-skin data [242],
HICs using isospin-diffusion observables measured in mid-peripheral collisions of Sn isotopes [241], and
other nuclear structure information [352, 353]. More recently, the Sπrit campaign at RIKEN has identified
spectral yield ratios of charged pions in collisions of various tin isotopes near threshold as sensitive probes
of the slope of the symmetry energy near and beyond nuclear saturation density [257]. The obtained value
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Figure 5.6: The pressure band from the FOPI experiment [249] at the 1σ level (red) for the incompressibility
is consistent with the chiral EFT constraint from Drischler et al. [169, 171] at N2LO (light blue)
and N3LO (dark blue). Between 2-3n0, we additionally constrain the FOPI results with the
constraint from Danielewicz et al. [246] (green), which has no statistical interpretation.

Table 5.2: Comparison of the 95% credible interval for the pressure [MeV fm−3] and radius [km] of neutron
stars when including only HIC experiments and for combined HIC and astrophysics results with
and without the inclusion of the constraint from Danielewicz et al. [246].

With Danielewicz et al. [246] Without Danielewicz et al. [246]
P/R HIC only Astro+HIC HIC only Astro+HIC

1.0n0 2.05+0.49
−0.45 2.11+0.49

−0.52 2.06+0.49
−0.45 2.11+0.48

−0.52

1.5n0 6.06+1.85
−2.04 6.25+1.90

−2.26 6.08+1.83
−2.04 6.25+1.89

−2.23

2.0n0 19.47+33.63
−11.67 19.07+15.27

−10.53 19.35+33.66
−10.71 19.05+15.33

−10.27

2.5n0 47.78+75.96
−32.96 45.43+40.41

−19.11 47.59+79.68
−27.46 45.57+40.87

−18.89

1.0M⊙ 11.89+0.79
−0.98 11.88+0.57

−0.76 11.89+0.79
−0.98 11.88+0.56

−0.78

1.4M⊙ 12.06+1.13
−1.18 12.01+0.78

−0.77 12.06+1.12
−1.19 12.01+0.78

−0.77

1.6M⊙ 12.11+1.33
−1.33 12.03+0.98

−0.75 12.11+1.32
−1.34 12.03+0.92

−0.80

2.0M⊙ 12.19+1.71
−1.59 11.91+1.24

−1.11 12.18+1.70
−1.61 11.91+1.17

−1.15
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Table 5.3: Comparison of the 95% credible interval for the pressure [MeV fm−3] and radius [km] of neutron
stars when including only HIC results, only astrophysical observations, and for combined HIC
and astrophysics results for different EOS extension schemes used, namely the speed-of-sound
extension that is used in this work and the piecewise-polytrope extension.

Speed-of-sound extension Piecewise-polytrope extension
P/R HIC only Astro only Astro+HIC HIC only Astro only Astro+HIC

1.0n0 2.05+0.49
−0.45 2.00+0.52

−0.49 2.11+0.49
−0.52 2.06+0.49

−0.44 1.96+0.54
−0.45 2.10+0.49

−0.51

1.5n0 6.06+1.85
−2.04 5.841.96−2.26 6.25+1.90

−2.26 6.06+1.85
−1.96 5.66+2.15

−2.00 6.20+1.93
−2.17

2.0n0 19.47+33.63
−11.67 18.44+16.24

−9.69 19.07+15.27
−10.53 19.00+17.6

−8.34 18.96+15.40
−8.40 19.64+15.83

−8.60

2.5n0 47.78+75.96
−32.96 45.05+39.80

−19.62 45.43+40.41
−19.11 43.72+39.81

−18.98 44.77+35.36
−18.86 45.27+36.77

−18.00

1.0M⊙ 11.89+0.79
−0.98 11.76+0.65

−0.71 11.88+0.57
−0.76 11.90+0.74

−0.89 11.80+0.70
−0.69 11.92+0.67

−0.71

1.4M⊙ 12.06+1.13
−1.18 11.94+0.79

−0.78 12.01+0.78
−0.77 12.02+0.96

−1.01 11.97+0.84
−0.77 12.05+0.83

−0.79

1.6M⊙ 12.11+1.33
−1.33 11.98+0.93

−0.79 12.03+0.98
−0.75 12.05+1.11

−1.11 12.01+0.94
−0.83 12.07+0.95

−0.84

2.0M⊙ 12.19+1.71
−1.59 11.88+1.23

−1.10 11.91+1.24
−1.11 12.02+1.35

−1.39 11.88+1.22
−1.11 11.92+1.32

−1.08

is compatible with the ASY-EOS result but currently offers no additional strong constraint due to its large
uncertainty [257, 354].

5.3.2 Uncertainty studies

The HIC pressure-density constraint includes various sources of uncertainties including systematic and
statistical uncertainties of the experiments and the analysis of its data [249, 256]. We have explicitly
checked the robustness of our results when varying the details of the analysis and employed models, and
generally found that our results do not significantly depend on individual model choices. In Tab. 5.3, we
analyze variations due to the extension scheme of the equation of state to high densities. Here, we compare
the speed-of-sound extension with the piecewise-polytrope scheme that extends the EOS beyond 1.5n0 with
five polytropic segments with randomly chosen transition densities and polytropic indices, see e.g. [4, 176].
The differences of the pressure estimates between the two EOS extension schemes is less than 3% and the
difference between the radius estimates is less than 0.5%.

In addition, we check the impact of the EOS parametrization for symmetric nuclear matter in Tab. 5.4.
We compare the functional form from FOPI used in this work, see Eq. (5.1), with a general Taylor expansion
for symmetric nuclear matter with the same values for the saturation point and the incompressibility but
including the third-order parameter Q = −150 ± 250MeV at 1σ using a Gaussian distribution. We find
that our results are robust with respect to a variation of this parameterisation and the impact of this choice
is at the 5% level for pressures and 1% level for radii.

Our results show also no significant changes when using a more conservative choice for the proton
fraction, see Tab. 5.5. In particular, there are only small changes when computing the proton fraction for
the HIC constraints using the EOS functional introduced by the ASY-EOS analysis (xASY-EOS) and allowing
the proton fraction to be within the rather large range 0 ≤ x ≤ 0.1 in the density range set by the ASY-EOS
experiment.

The recent NICER constraint for the radius of J0740+6220 [124, 123] prefers a stiffer EOS, which agrees
well with the constraint from HIC experiments, see Tab. 5.6. As a consequence, the impact of including
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Table 5.4: Comparison of the 95% credible interval for the pressure [MeV fm−3] and radius [km] of neutron
stars when including only HIC experiments and for combined HIC and astrophysics results for
two parameterisations of symmetric nuclearmatter. We compare the functional form from FOPI
used in this work, see Eq. (5.1), with a general Taylor expansion for symmetric nuclear matter
including the third-order parameter Q = −150± 250MeV at 1σ using a Gaussian distribution.

SNM form used here Taylor expansion
P/R HIC only Astro+HIC HIC only Astro+HIC

1.0n0 2.05+0.49
−0.45 2.11+0.49

−0.52 1.95+0.52
−0.44 2.01+0.51

−0.47

1.5n0 6.06+1.85
−2.04 6.25+1.90

−2.26 5.61+2.04
−2.00 5.87+1.99

−2.14

2.0n0 19.47+33.63
−11.67 19.07+15.27

−10.53 18.80+32.63
−12.89 18.72+16.57

−9.34

2.5n0 47.78+75.96
−32.96 45.43+40.41

−19.11 47.58+77.40
−31.93 45.66+41.66

−19.19

1.0M⊙ 11.89+0.79
−0.98 11.88+0.57

−0.76 11.77+0.84
−0.97 11.79+0.60

−0.71

1.4M⊙ 12.06+1.13
−1.18 12.01+0.78

−0.77 11.98+1.16
−1.18 11.97+0.77

−0.74

1.6M⊙ 12.11+1.33
−1.33 12.03+0.98

−0.75 12.05+1.32
−1.37 12.00+0.90

−0.78

2.0M⊙ 12.19+1.71
−1.59 11.91+1.24

−1.11 12.13+1.73
−1.61 11.92+1.23

−1.10

Table 5.5: Comparison of the 95% credible interval for the pressure [MeV fm−3] and radius [km] of neutron
stars when including only HIC experiments and for combined HIC and astrophysics results
for two choices for the proton fraction in β-equilibrium. We compare our main results that
are based on the computation using the EOS functional introduced by the ASY-EOS analysis
(xASY-EOS) with a more conservative choice that constrains the proton fraction to be within the
range 0 ≤ x ≤ 0.1.

xASY-EOS 0 ≤ x ≤ 0.1

P/R HIC only Astro+HIC HIC only Astro+HIC

1.0n0 2.05+0.49
−0.45 2.11+0.49

−0.52 2.05+0.50
−0.45 2.10+0.48

−0.52

1.5n0 6.06+1.85
−2.04 6.25+1.90

−2.26 6.02+1.89
−2.04 6.23+1.81

−2.31

2.0n0 19.47+33.63
−11.67 19.07+15.27

−10.53 19.32+33.95
−11.05 19.00+14.74

−10.54

2.5n0 47.78+75.96
−32.96 45.43+40.41

−19.11 48.00+78.57
−34.40 45.48+39.96

−19.28

1.0M⊙ 11.89+0.79
−0.98 11.88+0.57

−0.76 11.88+0.79
−0.98 11.87+0.59

−0.75

1.4M⊙ 12.06+1.13
−1.18 12.01+0.78

−0.77 12.05+1.14
−1.17 12.00+0.77

−0.77

1.6M⊙ 12.11+1.33
−1.33 12.03+0.98

−0.75 12.10+1.31
−1.36 12.03+0.91

−0.79

2.0M⊙ 12.19+1.71
−1.59 11.91+1.24

−1.11 12.18+1.70
−1.61 11.90+1.22

−1.14
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Table 5.6: Comparison of the 95% credible interval for the pressure [MeV fm−3] and radius [km] of neutron
stars when including only HIC results, only astrophysical observations, and for combined
HIC and astrophysics results when we include the combined mass-radius measurement from
NICER [124, 123] or only the radio mass measurement from Ref. [9].

Using Ref. [124, 123] for J0740+6220 Using Ref. [9] for J0740+6220
P/R HIC only Astro only Astro+HIC Astro only Astro+HIC

1.0n0 2.05+0.49
−0.45 2.00+0.52

−0.49 2.11+0.49
−0.52 1.95+0.55

−0.45 2.08+0.49
−0.53

1.5n0 6.06+1.85
−2.04 5.841.96−2.26 6.25+1.90

−2.26 5.63+2.16
−2.05 6.14+1.93

−2.28

2.0n0 19.47+33.63
−11.67 18.44+16.24

−9.69 19.07+15.27
−10.53 17.46+15.66

−9.27 18.32+14.87
−9.60

2.5n0 47.78+75.96
−32.96 45.05+39.80

−19.62 45.43+40.41
−19.11 42.23+41.75

−20.47 43.22+42.66
−19.18

1.0M⊙ 11.89+0.79
−0.98 11.76+0.65

−0.71 11.88+0.57
−0.76 11.68+0.71

−0.74 11.82+0.68
−0.78

1.4M⊙ 12.06+1.13
−1.18 11.94+0.79

−0.78 12.01+0.78
−0.77 11.83+0.86

−0.86 11.94+0.87
−0.83

1.6M⊙ 12.11+1.33
−1.33 11.98+0.93

−0.79 12.03+0.98
−0.75 11.87+1.01

−0.93 11.95+1.01
−0.91

2.0M⊙ 12.19+1.71
−1.59 11.88+1.23

−1.10 11.91+1.24
−1.11 11.74+1.44

−1.25 11.77+1.42
−1.23

the HIC constraint is smaller compared to using only the radio mass measurement from Ref. [9] since the
tension between the HIC information and the observational constraints decreased.

When extracting the HIC constraint on neutron-star matter, we vary nuclear matter properties, such
as the incompressibility parameter and the symmetry energy at n0, according to the measurements from
FOPI and ASY-EOS. We have explicitly checked that increasing these uncertainties in agreement with
theoretical estimates [73] only leads to minor changes of our final results, see Tab. 5.7. In particular, we
extend the range for the symmetry energy at saturation density to S0 = 30− 35MeV by extrapolating γasy
linearly. We use Gaussian distributions for n0, B, andK describing symmetric nuclear matter and vary these
parameters within their empirical ranges (at 1σ): n0 = 0.164± 0.007 fm−3, B = 15.86± 0.57MeV [169]
and K = 215± 40MeV from microscopic calculations [169, 228, 226], which is in good agreement with
the FOPI results.

To enforce the ASY-EOS constraints only at densities where the experiment is sensitive, we use the
sensitivity curve for neutrons and charged particles (n/ch) [256] as a prior for the probed density range.
This curve is shown in Fig. 5.7 together with the neutron-over-proton (n/p) sensitivity curves for 400
MeV/nucleon incident energy from Russotto et al. [256] and the density curve reported by Le Fèvre et
al. [249] for the sensitivity of the elliptic flow of protons in Au+Au collisions at 1 GeV/nucleon. These
curves mainly differ in their peak density. The n/ch sensitivity corresponding to the ASY-EOS results peaks
at the lowest density around saturation density. Thus, the HIC information as used in this work offers a
constraint only in this density range. We have checked the variation of our results for alternative choices of
the sensitivity curve [256] in Tab. 5.8. In particular, we compare our standard results using the neutron
over charged particles (n/ch) sensitivity curve [256] with the neutron over proton (n/p) sensitivity from
Russotto et al. [256], which peaks at 1.5n0. We find that our results are robust and differences for both
sensitivity curves are small. Additionally, we compare the results to calculations where the ASY-EOS data
is implemented using a uniform prior in density between 1-2n0 (labelled Window). For the latter choice,
we generally find larger pressures and larger neutron-star radii because the n/ch and n/p sensitivy curves
decrease rapidly after their maxima at 1 and 1.5n0, lowering the impact of the ASY-EOS constraint at higher
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Table 5.7: Comparison of the 95% credible interval for the pressure [MeV fm−3] and radius [km] of neutron
stars when using ranges for nuclear matter properties as published for the FOPI and ASY-EOS
experiments [256, 249] andwhen inflating the uncertainties according to theoretical calculations
for including only information fromHIC experiments and for the combined HIC and astrophysics
information.

HIC parameters Enlarged variations
P/R HIC only Astro+HIC HIC only Astro+HIC

1.0n0 2.05+0.49
−0.45 2.11+0.49

−0.52 2.05+0.50
−0.45 2.09+0.47

−0.52

1.5n0 6.06+1.85
−2.04 6.25+1.90

−2.26 6.00+1.90
−2.00 6.18+1.88

−2.25

2.0n0 19.47+33.63
−11.67 19.07+15.27

−10.53 19.34+35.65
−11.54 18.98+14.97

−9.92

2.5n0 47.78+75.96
−32.96 45.43+40.41

−19.11 47.36+81.44
−28.09 45.49+40.05

−20.58

1.0M⊙ 11.89+0.79
−0.98 11.88+0.57

−0.76 11.87+0.81
−0.97 11.86+0.58

−0.78

1.4M⊙ 12.06+1.13
−1.18 12.01+0.78

−0.77 12.05+1.12
−1.20 12.00+0.75

−0.80

1.6M⊙ 12.11+1.33
−1.33 12.03+0.98

−0.75 12.10+1.35
−1.32 12.03+0.92

−0.80

2.0M⊙ 12.19+1.71
−1.59 11.91+1.24

−1.11 12.17+1.70
−1.62 11.91+1.23

−1.15
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Figure 5.7: We show three sensitivity-to-density curves for different observables and incident energies.
In particular, the neutron-over-charged-particle (n/ch, used here) and the neutron-over-proton
(n/p) sensitivity curves for 400 MeV/nucleon incident energy from Russotto et al. [256] are
compared with the density curve reported by Le Fèvre et al. [249] for the sensitivity of the
elliptic flow of protons in Au+Au collisions at 1 GeV/nucleon.

densities. However, differences for radii and pressures remain small once Astro+HIC data is included.
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Table 5.8: Comparison of the 95% credible interval for the pressure [MeV fm−3] and radius [km] of neutron
stars when including only HIC experiments and for combined HIC and astrophysics results for
our standard results using the neutron over charged particles (n/ch) sensitivity curve [256] with
the neutron over proton (n/p) sensitivity from Russotto et al. [256] and calculations where the
ASY-EOS data is implemented using a uniform prior in density between 1-2n0 (labelled Window).

n/ch sensitivity n/p sensitivity Window 1-2n0
P/R HIC only Astro+HIC HIC only Astro+HIC HIC only Astro+HIC

1.0n0 2.05+0.49
−0.45 2.11+0.49

−0.52 2.10+0.45
−0.49 2.13+0.46

−0.54 2.23+0.32
−0.50 2.28+0.35

−0.55

1.5n0 6.06+1.85
−2.04 6.25+1.90

−2.26 6.23+1.68
−2.16 6.34+1.83

−2.30 6.76+1.15
−2.13 6.93+1.39

−2.17

2.0n0 19.47+33.63
−11.67 19.07+15.27

−10.53 19.62+33.36
−10.81 19.20+15.42

−9.21 21.41+30.60
−9.02 20.59+16.10

−8.36

2.5n0 47.78+75.96
−32.96 45.43+40.41

−19.11 47.61+79.33
−32.61 45.62+40.81

−18.61 54.71+66.27
−36.26 48.60+39.47

−19.32

1.0M⊙ 11.89+0.79
−0.98 11.88+0.57

−0.76 11.92+0.78
−0.95 11.91+0.61

−0.73 12.09+0.59
−0.63 12.06+0.48

−0.56

1.4M⊙ 12.06+1.13
−1.18 12.01+0.78

−0.77 12.09+1.12
−1.14 12.02+0.78

−0.76 12.26+0.96
−0.84 12.17+0.73

−0.60

1.6M⊙ 12.11+1.33
−1.33 12.03+0.98

−0.75 12.13+1.31
−1.30 12.05+0.91

−0.79 12.33+1.14
−1.05 12.19+0.81

−0.76

2.0M⊙ 12.19+1.71
−1.59 11.91+1.24

−1.11 12.20+1.68
−1.60 11.91+1.25

−1.11 12.42+1.44
−1.48 12.06+1.14

−1.20

5.4 Combination of the astrophysical and heavy-ion collision constraints

The experimental and observational EOS constraints are combined via Bayesian inference. The EOS
posterior is given by

p(EOS|MMA, HIC) ∝ p(HIC|EOS)
× p(MMA|EOS)p(EOS)
= p(HIC|EOS)p(EOS|MMA)
≡ LHIC(EOS)PMMA(EOS),

(5.5)

where MMA denotes multi-messenger astrophysics, LHIC(EOS) is the likelihood of the HIC measurements
for a given EOS, and PMMA(EOS) is the posterior probability distribution on the EOS based on the multi-
messenger observations, which acts as prior for this analysis. From the HIC experiments we obtain a
posterior of the pressure at a given density, p(P |n,HIC). By combining this with the distribution of probed
densities from the neutrons-over-charged particles sensitivity curve [256], p(n|HIC), the joint posterior
p(n, P |HIC) = p(P |n,HIC)p(n|HIC) is obtained. Therefore, the relative faithfulness of the experimental
results at various densities is accounted for. The likelihood LHIC(EOS) is given by

LHIC(EOS) =
∫︂
dn dP p(HIC|n, P )p(n, P |EOS)

∝
∫︂
dn dP p(n, P |HIC)p(n, P |EOS)

∝
∫︂
dn dP p(n, P |HIC)δ(P − P (n,EOS))

=

∫︂
dnP (n, P = P (n;EOS)|HIC) ,

(5.6)

where we used that the pressure is a function of density for a given EOS.
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Table 5.9: Comparison of the pressure in MeV fm−3 at 1.5n0 and the radius in km of a 1.4M⊙ neutron star
(median with the 95% credible interval) when including only astrophysical constraints, only HIC
experimental data, and for the combination of both.

Prior Astro only HIC only Astro + HIC
P1.5n0 5.59+2.04

−1.97 5.84+1.95
−2.26 6.06+1.85

−2.04 6.25+1.90
−2.26

R1.4 11.96+1.18
−1.15 11.93+0.80

−0.75 12.06+1.13
−1.18 12.01+0.78

−0.77

5.5 Combining information from micro- and macroscopic collisions

The final EOS constraints are obtained through the combination of both the HIC information and astrophysi-
cal multi-messenger observations, see Fig. 5.1D. While the multi-messenger data rules out the most extreme
EOS behavior, the HIC data favors larger pressures around 1-1.5n0, where the experimental sensitivity is
highest. This is similar to the effect of recent NICER observations on the EOS [124, 152]. Hence, the two
complementary approaches, HIC experiments and astrophysical observations show a remarkable agreement,
cf. Fig. 5.1E. At low densities, HIC results have a clear impact on the total posterior for the EOS, while the
EOS at higher densities (≳ 2n0) is mostly determined by astrophysical observations. At these densities,
HIC results deviate only mildly from the prior, see Fig. 5.1F. This is also reflected in the radii of neutron
stars shown in Fig. 5.2E and Fig. 5.2F. Because astrophysical observations mainly probe neutron stars
withM ≳ 1.4M⊙, for which the probed densities are higher, HIC information influences the radii of these
neutron stars to a smaller degree. The radius of low-mass stars withM ∼ 1.0M⊙, on the other hand, is also
constrained by HIC information. Our final result for a typical 1.4 solar mass neutron star is 12.01+0.37

−0.38km
at 68% uncertainty (12.01+0.78

−0.77km at 95% uncertainty), see Tab. 5.9. Comparing this value to the result
without any HIC information, 11.93+0.39

−0.41km at 68% confidence, highlights the benefit of combining these
various sources of information in a statistically robust framework. Finally, we quantify the possibility for
the presence of a strong first-order phase transition to a new phase of QCD matter in the core of neutron
stars. For this, we calculate the Bayes factor in favor of the presence of such a phase transition against its
absence, and find it to be 0.419± 0.012 < 1. Therefore, its presence is slightly disfavoured given current
astrophysical and experimental data.

The interdisciplinary analysis of EOS constraints from HIC experiments and multi-messenger astrophysics
shows remarkable agreement between the two, and provides important information to constrain the nuclear
EOS at supra-saturation densities. Going forward, it is important that both statistic and systematic sources
of uncertainty for HIC experiments are further improved. For example, the impact of choosing different
Quantum Molecular Dynamics (QMD) models when analyzing HIC experiments needs to be further
investigated (see Fig. 5.5, 5.7), and advancing HIC experiments to probe higher densities, above 2-3n0,
will be key. From Tab. 5.10, we find that for all exploratory setups, HIC data is showing a stronger impact
on the EOS constraint than the current setup. The result with a density cutoff is showing a significant
decrease in uncertainty compared to the result of this work. Therefore, to achieve a stronger constraint on
the EOS, improvements to the low-density part of the HIC constraint will be most important. Combining
the latter with a reduction of experimental uncertainties, data from HICs has great potential to provide
complimentary EOS information, bridging nuclear theory and astrophysical observations. In the next few
years, the ASY-EOS-II and Compressed Baryonic Matter (CBM) Experiments at the upcoming Facility for
Antiproton and Ion Research (FAIR) at GSI will provide a unique opportunity to study nuclear matter at
densities probed in the core of neutron stars and their mergers, and might detect new phases of QCD
matter, possibly involving hyperons and, ultimately, the transition to a deconfined quark matter phase at
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the highest densities (see, e.g., Orsaria et al. [355], Brandes et al. [356]). Together with experiments at
the Rare Isotope Beam Facility (RIBF) at RIKEN in Japan and the Nuclotron-based Ion Collider fAcility
(NICA) in Russia, the robust combination of experimental HIC constraints and astrophysical observations
has the potential to revolutionise our understanding of the EOS.

5.6 Impact of information from heavy-ion collisions on equation of state
functional

In this section, we combine the constraints from HIC data with our EOS functional from Ch. 3. To this end,
we use the HIC information as an additional constraint for PNM. The parameter ranges for the nuclear
matter properties and the exponent γasy stay in principle the same, but their implementation changes
in a statistical manner. In the study of the present chapter, we use Bayesian methods, which allows us
to implement the parameter of the HIC constraint with the corresponding statistical interpretation. For
our EOS functional we use clear cuts, i.e. if the pressure is above the predicted pressure of a particular
constraint, we neglect the EOS. In general, this leads to stricter constraints as more EOS are ruled out.

To implement the information from HICs consistently, we set the nuclear matter properties to the same
ranges as for our EOS functional, namely n0 = 0.164±0.007 fm−3,B = 15.86±0.57MeV,K = 215±40MeV
and Esym = 32 ± 2MeV. For γasy, we use the 1σ and 2σ intervals to analyze how much our findings
depend on the uncertainty of the HIC data. The resulting constraint is incorporated in the density range
defined by the full width at half maximum criterion, which corresponds for the n/ch sensitivity curve to
n = 0.056−0.278 fm−3. In general, the HIC constraint is slightly enlarged compared to the implementation
in the Bayesian framework (cf. Fig. 5.4), since we use enlarged ranges for the nuclear matter properties to
be consistent with our EOS functional.

In Fig. 5.8, we show all EOS for the allowed ranges of the EOS functional (see also Fig. 3.15 for details)
and highlight EOS that are consistent with the HIC experiments for the 1 and 2σ uncertainty. The HIC
information rules out mostly soft EOS due to the high slope parameter estimated by the HIC experiments.
Some stiff EOS are also not consistent with the HIC constraint, especially for the 1σ uncertainty for γasy.
Central densities of the remaining EOS reach only up to about 6n0. The new information is able to drastically
reduce the EOS uncertainty at low densities, while at higher energy densities a broad range is still covered.
This leads to a radius uncertainty of a canonical neutron star of R1.4M⊙ = 12.6− 13.2 km (12.6− 13.4 km)
for the 1σ (2σ) uncertainty. Since the HIC constraint does not influence the high density part of the EOS to
a high degree, the mass-radius relation spreads out with increasing mass, which results in a broad range
for allowed maximum masses.

The speed of sound for EOS consistent with the HIC information spans a rather narrow band up to
roughly 2n0, see Fig. 5.9 (left panel). At higher density that are not sensitive to the HIC experiments,
allowed values for the speed of sound only barely exceed 0.7c2. Regarding the electron fraction (right
panel), we find that for most EOS Ye increases with density reaching the highest values within the total
EOS functional range. Neutron stars with a very neutron-rich core and only a small proton fraction are
mostly ruled out by the HIC data. Only a few EOS within the 2σ uncertainty lead to proton fraction below
5 percent in the center of the neutron star.

We conclude that the constraints from HIC experiments have a significant impact on our EOS functional,
which is in contrast to our findings within the Bayesian multi-messenger framework. There are two main
factors for this. First, for the implementation in the EOS functional, we use clear cuts, i.e. we disregard
all EOS that are not consistent with the pressure for neutron matter obtained from the HIC data at any
density for the 1 or 2σ experimental uncertainty. Second, we use the HIC constraint at a specific density
window and do not take into account the relative faithfulness of the experiment over the density range as
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Figure 5.8: Pressure versus energy density (left) andmass-radius relationship (right) for the EOS functional
with and without including information from HIC experiments. The constraint from HIC data
is implemented with 1σ and 2σ uncertainty for the total experimental error. The color coding
for the entire EOS set of the EOS functional indicates the mass of the corresponding neutron
star, where dark green corresponds to masses up to 1.4M⊙ and light green to higher masses
up to the respective maximum massMmax. The gray band depicts the 95% credible region of
the neutron star constraints from Raaijmakers et al. [126]. For comparison, in theM -R plot
we show also the uncertainty band obtained by Hebeler et al. [4] using piecewise polytrope
extensions to high densities (light gray band).

done in the Bayesian framework. We have already seen in the analysis of Tab. 5.8 that the window method
results in a larger influence of HIC constraints on the EOS.
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Figure 5.9: Analog of Fig. 5.8 for the speed of sound (left) and the electron fraction Ye (right) as a function
of density.
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6 Summary and outlook

In this thesis, we explored the equation of state for hot and dense matter to improve our understanding of
matter inside neutron star cores and the mechanisms behind astrophysical phenomena such as CCSNe
and NSMs. In particular, we developed a new energy density functional for astrophysical applications
consistent with recent estimates from nuclear theory and observations. The EOS is a key microphysics input
in simulations of CCSNe and NSMs, but so far most phenomenological EOS that are suitable for simulations
are not in agreement with current constraints. We further performed an interdisciplinary study on the EOS
of cold neutron stars by combining our knowledge from nuclear theory and astrophysical observation with
information from HICs. This work also indicated future needs for HIC experiments in order to provide
more stringent constraints on the properties of dense matter.

Regarding the new EOS functional for application in CCSN and NSM simulations, we used constraints from
various chiral-EFT based calculations of neutron matter and nuclear matter, from astrophysical observations,
and (to a lesser extent) results from a recent QCD-based fRG study of high-density matter. In particular, the
EOSs obtained from our functional are consistent with recent mass measurements of heavy neutron stars
and the joint analysis of observational data from GW170817 and NICER from Raaijmakers et al. [126].
We have modeled the kinetic part of the EOS as a noninteracting nucleon gas with density-dependent
effective mass. The effective mass is a key quantity that determines the temperature dependence of the
EOS and governs the PNS contraction in CCSN simulations. The careful implementation of microscopic
results for the nucleon effective mass in our EOS functional is a novelty compared to previous constructions
of astrophysical EOS. The description of the interaction part in our approach represents an improvement
over traditional EOS functionals as well. That is, we have modeled the interaction part not as a sum of
density monomials but as a sum of density-dependent rational functions to ensure a stable EOS functional
under variations of the low- and high-density input. We have fitted the parameters of the interaction part
to the combination of state-of-the-art neutron matter calculations and observational constraints. From
this, we have derived a comprehensive uncertainty band for neutron star matter. Our EOS predict that
the radius of a canonical 1.4M⊙ neutron star lies in the range R1.4 = 11.1–13.6 km. The fRG results
of Leonhardt et al. [171] and of heavy-ion collisions [249, 256] provide an additional constraint that
leads to a significant reduction in the radius uncertainty of neutron stars. Overall, our EOS functional
represents a significant step towards a microscopic description of the complete uncertainty range of the
dense matter EOS for astrophysical simulations. Future work will be targeted at further refinements of
the EOS functional, including the careful consideration of possible phase-transition effects on the dense
matter EOS. In addition, the implementation of an uncertainty band for the nucleon effective mass based
on microscopic calculations up to twice saturation density is useful to capture thermal effects in CCSN
simulations where central densities are oftentimes in this range. Regarding the fit parameters of the EOS
functional, we have seen in subsequent studies that a larger flexibility of nuclear matter properties via a
sampling can be beneficial to extend the range of possible EOS. As soon as the parameter space of possible
EOS is largely reduced by future constraints on the EOS, a refinement of the chosen combination of nuclear
matter properties might be necessary.

From the novel EOS functional, we chose a set of representative EOS that covers the radius uncertainty of a
1.4M⊙ neutron star. This set consists of 18 EOS and permits systematic studies of individual nuclear matter
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properties. We calculated the coexistence boundary of the liquid-gas phase transition in nuclear matter
via an effective one dimensional Maxwell construction and found that for SNM the critical temperature
varies between 14.7 and 18.5 MeV and the critical density between 0.32 − 0.43 fm−3. In general, the
variation of the SNM properties, incompressibility, binding energy, and saturation density result in the
largest deviation for the critical temperature. PNM properties like the symmetry energy and the slope
parameter only show an impact for asymmetric matter. In collaboration with Yeunhwan Lim, we started to
compute EOS tables based on the liquid drop model with a single nucleus approximation where the EOS
functional is used for the description of bulk nuclear matter inside nuclei as well as of unbound neutrons
and protons surrounding the nuclei. These EOS tables are suited for direct use in CCSN as well as NSM
simulations. For further developements, we conclude from the experience with CCSN simulations that the
implementation of a nuclear statistical equilibrium rather than a single nucleus approximation results in a
more realistic evolution at lower densities and temperatures.

In addition to the improvements on the EOS for astrophysical applications, we conducted an interdisci-
plinary analysis of EOS constraints from HIC experiments and multi-messenger astrophysics that showed
a remarkable agreement between the two and provided important information to constrain the nuclear
EOS at supra-saturation densities. In fact, we analyzed the EOS and neutron-star properties by extending
our Bayesian multi-messenger astrophysics framework to include information from the FOPI and the
ASY-EOS experimental campaigns that were performed at the Schwerionensynchrotron 18 accelerator
located at the GSI Helmholtz Centre for Heavy Ion Research. The combination of these experiments
provides new constraints for neutron-rich matter in the density range around 1-2n0. We also included the
EOS constraint from Danielewicz et al. [246] for symmetric nuclear matter obtained from HIC experiments
at the Bevalac accelerator at Lawrence Berkeley National Laboratory and the Alternating Gradient Syn-
chrotron at Brookhaven National Laboratory. We found that the HIC data favors larger pressures around
1-1.5n0, for which the experimental sensitivity is highest. This is similar to the effect of recent NICER
observations on the EOS. Hence, the two complementary approaches, HIC experiments and astrophysical
observations, show a remarkable agreement. At higher densities, ≳ 2n0, the EOS is mostly determined
by astrophysical observations. Our final result for a typical 1.4M⊙ neutron star is 12.01+0.37

−0.38 km at 68%
uncertainty (12.01+0.78

−0.77 km at 95% uncertainty). From systematic studies of the robustness of our results,
we concluded that for future constraints it will be key for HIC experiments to probe higher densities above
2-3n0 and to reduce experimental uncertainties. In particular, the systematic investigation of different
QMD models is essential to provide meaningful uncertainties for the constraints from HIC experiments.
Once these challenges are solved, information from HIC experiments are a promising tool to advance our
understanding of dense matter as present in neutron star cores. In future studies, also the nuclear theory
input can be adjusted to include various microscopic calculations, which ultimately leads to a broader prior.

Overall, we live in an exciting era where we expect lots of new constraints on the mass-radius relation
from astrophysical observations. Consequently, all frameworks that are set up need to be flexible in order
to infer stringent constraints for the EOS including information from complementary sources.
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