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Abstract

The vulnerability of biometric recognition to presentation attacks (PAs) has been widely
recognized and has attracted increasing attention as it enables attackers to impersonate
authentic users. Presentation attack detection (PAD), aiming at automatically catching
PAs, is an essential technology to secure biometric systems from PAs such as printed photos
and replayed videos. Despite the considerable exploration and remarkable progress in
PAD performance, two major issues still constitute a gap in technology. The first is the lack
of proper understanding of the fairness of such algorithms over human-related attributes,
and the second is the low performance generalizability over variabilities such as unknown
attack types and capture environments. These challenges drive the main contributions of
this thesis towards analyzing and boosting the fairness and generalizability of PAD.
PAD fairness over different human attributes is extremely understudied. Such under-

exploration is mainly due to the lack of suitable data. Towards enabling the fairness
assessment and enhancement in face PAD, this thesis first introduces a combined attribute
annotated PAD dataset, including both demographic and non-demographic attribute
labels. Meanwhile, this thesis presents a new metric, accuracy balanced fairness, to
simultaneously represent both the PAD fairness and the absolute PAD performance. Then,
a comprehensive analysis of fairness in face PAD is conducted to study its relation to the
nature of training data and the methodology of decision threshold selection. Guided
by the outcomes of these analyses, a data augmentation method, namely FairSWAP, is
successfully proposed to enhance the fairness of face PAD.
In addition to the PAD generalizability over human-related attributes, seen as fairness,

another emerging challenge that encountered face PAD during the COVID-19 pandemic is
the PAD generalizability to subjects wearing facial masks. To address this issue, this thesis
first provides a collaborative real mask attack dataset involving the conventional unmasked
bona fide and attacks, masked bona fide sample, novel attacks with faces wearing masks,
and attacks with real masks placed on spoof faces. This thesis performs a set of extensive
experiments to investigate the impact of masked faces on recognition vulnerability and
PAD behaviour. Observing the degradation of PAD performance caused by the facial masks,
this thesis presents a solution to target this issue by refining the partial attack supervision
and the regional weighted inference.
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The third part of this thesis targets the more conventional PAD generalizability issues,
such as variabilities in attack creation and capture scenarios. Aiming to boost the general-
izability of face PAD, this thesis proposes to leverage the information from the frequency
domain in an optimized manner, assisting the information in the spatial domain to learn a
more generalized representation under intra-dataset and cross-dataset settings. With a
focus on enhancing the generalizability of iris PAD, this thesis proposes a micro-stripe anal-
yses solution that leverages the benefit of the spatially aware processing of well-defined
regions in the iris and its border with the sclera. This thesis further introduces a novel
attention-based deep pixel-wise binary supervision method, A-PBS, for iris PAD. This
solution aims to capture the fine-grained pixel/patch-level attack clues and automatically
locate regions that contribute the most to an accurate PAD decision. The generalizability
of the proposed iris PAD solutions is demonstrated under real-world cross-testing cases,
including cross-attack, cross-dataset, and cross-spectrum settings.
To summarize, this thesis first provides a much-needed comprehensive analysis of

fairness in PAD, leading to a well-founded and integrable fairness enhancement solution.
Then, it presents detailed investigations of the masked face PAD challenge along with
a technical solution towards improving the masked face PAD performance. The thesis
then presents a set of novel contributions to boost the generalizability of face and iris
PAD techniques. This thesis thus yields practically-aware advancements in understanding
and mitigating vulnerabilities of biometric systems and lays the groundwork for future
research into developing and deploying generalized PAD systems.
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Zusammenfassung

Die Anfälligkeit von biometrischer Erkennung für Presentation Attacks (PAs) ist weithin
bekannt und hat zunehmend Aufmerksamkeit erregt, da sie Angreifern ermöglicht, sich
als authentische Benutzer auszugeben. Die automatisierte Erkennung von Presentation
Attacks (Presentation Attack Detection (PAD)) ist eine wesentliche Technologie um bio-
metrische Systeme vor solchen Angriffen, etwa mit gedruckten Fotos oder abgespielten
Videos, zu schützen. Trotz des beachtlichen und bemerkenswerten Fortschritts bezüglich
der Erkennungsraten im Bereich PAD zeigen sich noch zwei Hauptprobleme. Das erste
Problem ist die mangelnde Kenntnis bezüglich der Fairness der Algorithmen in Bezug auf
menschenbezogene Attribute und das zweite Problem ist die geringe Generalisierbarkeit
der Algorithmen in Bezug auf Veränderungen wie etwa unbekannte Angriffstypen und
unbekannte Aufnahmeumgebungen. Die Herausforderungen, die sowohl aus der Analyse,
der Steigerung der Fairness sowie der Generalisierbarkeit von PAD-Algorithmen bestehen,
motivieren den Kern dieser Dissertation.
Die Fairness von PAD-Algorithmen bezüglich verschiedener personenbezogener Attri-

bute ist noch sehr wenig erforscht, was vor allem auf den Mangel an geeigneten Daten
zurückzuführen ist. Um die Fairness von PAD-Algorithmen für Gesichtserkennungssysteme
zu bewerten und diese auch zu erhöhen, wird in dieser Thesis zuerst ein kombinierter PAD-
Datensatz eingeführt, welcher mit demografischen sowie nicht-demografischen Attributen
annotiert ist. Des Weiteren stellt diese Arbeit eine neue Metrik, acurracy balanced fairness,
vor, um gleichzeitig die Fairness und die Erkennungsgenauigkeit von PAD-Algorithmen
zu messen. Anschließend wird eine umfassende Analyse der Fairness dieser Algorith-
men für Gesichter durchgeführt. Dabei werden die Zusammenhänge zwischen Fairness
und der Art der Trainingsdaten sowie zwischen Fairness und der Auswahlmethodik der
Entscheidungsgrenzen untersucht. Angeleitet von den Ergebnissen dieser Analysen wird
eine neue Datenaugmentierungsmethode, FairSWAP, vorgeschlagen, um die Fairness von
PAD-Algorithmen für Gesichter zu verbessern.
Neben der Generalisierbarkeit von PAD-Algorithmen bezüglich personenbezogenen

Attributen, die als Fairness angesehen werden kann, ist die Generalisierbarkeit von PAD-
Algorithmen auf Personen, die Masken tragen, eine Herausforderung, welche durch die
COVID-19 Pandemie aufgekommen ist. Um dieses Problem anzugehen wird in dieser
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Arbeit zuerst ein Datensatz vorgestellt, welcher authentische maskierte und unmaskierte
Gesichter, sowie Angriffe mit Gesichtern, die Masken tragen und Angriffe mit echten
Masken auf nicht authentischen Gesichtern, enthält. In dieser Thesis werden umfangrei-
che Experimente durchgeführt, um die Auswirkungen von maskierten Gesichtern auf die
Erkennungsanfälligkeit und die Genauigkeit der PAD-Algorithmen zu untersuchen. Ange-
sichts der Verschlechterung der PAD-Algorithmen bezüglich ihrer Genauigkeit verursacht
durch die Masken, wird in dieser Arbeit eine Lösung vorgestellt, die auf der Verfeinerung
der partial attack supervision und der regional weighted inference basiert.
Der dritte Teil dieser Arbeit befasst sich mit den konventionellen PAD Generalisierungs-

problemen, wie z.B. Unterschiede bei der Erstellung von Angriffen und unterschiedliche
biometrische Aufnahmeszenarien. Mit dem Ziel, die Generalisierung von PAD-Algorithmen
für Gesichter zu verbessern, schlägt diese Arbeit vor, zusätzlich zum räumlichen Bereich,
Informationen aus dem Frequenzbereich in einer optimierten Form zu nutzen, um eine
generalisierte Repräsentation zu lernen, sowohl für einzelne Datenbanken, als auch daten-
bankübergreifend. Um die Generalisierbarkeit von PAD-Algorithmen für Iriserkennung zu
verbessern wird in dieser Arbeit eine Lösung vorgeschlagen, die auf der Analyse von micro-
stripes basiert und den Vorteil der spatialen Verarbeitung von klar definierten Regionen
der Iris und ihrer Abgrenzung mit der Sklera nutzt. Diese Dissertation führt zusätzlich eine
neue Methodik ein, A-PBS, welche eine attention-based deep pixel-wise binary supervision
Methode für Iris-PAD ist. Diese Methode zielt darauf ab, subtile Angriffshinweise auf
Pixel- bzw. Patch-Ebene zu erfassen und automatisch die Regionen zu finden, welche
am meisten zu einer richtigen PAD-Entscheidung beitragen. Die Generalisierbarkeit der
vorgeschlagenen Iris-PAD-Lösungen wird unter realen Cross-Testing-Fällen demonstriert,
einschließlich angriffsübergreifender, datensatzübergreifender und spektrenübergreifen-
der Einstellungen.
Zusammenfassend bietet diese Arbeit zunächst eine notwendige, umfassende Analyse

der Fairness von PAD-Algorithmen, die eine integrierbare Lösung zur Verbesserung der
Fairness motiviert. Anschließend werden detaillierte Untersuchungen zur Herausforderung
von Gesichtern, welche Masken tragen für PAD-Algorithmen präsentiert und zusammen
mit einer technischen Lösung zur Verbesserung der PAD-Erkennungsraten von maskierten
Gesichtern vorgestellt. Dann wird eine Reihe von neuartigen Lösungen präsentiert, welche
die Generalisierbarkeit von PAD-Algorithmen für Gesicht- und Iriserkennung verbessert.
Diese Arbeit liefert somit praxisnahe Fortschritte bei der Reduzierung und dem Verständnis
von Schwachstellen von biometrischen Systemen und legt den Grundstein für die zukünf-
tige Forschung zur Entwicklung und zum Einsatz generalisierter PAD-Erkennungssysteme.
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1. Introduction

Biometrics refers to the automated recognition of individuals based on their physiological
or behavioural characteristics [130]. Biometrics relies on essentially immutable and unique
facets of an individual, and thus is more reliable in recognizing identity in comparison
with traditional approaches of recognition, such as knowledge-based (e.g., passwords
and Personal Identification Number (PIN) codes) and physical-based (e.g., tokens and
cards) approaches. In addition, biometric traits cannot be forgotten, lost or stolen, thereby
obviating the need to remember passwords or carry tokens. Considering such properties
and remarkable accuracies achieved by biometric recognition algorithms, biometrics has
been widely deployed in various security scenarios, such as mobile device access [192],
automated border control [66], and forensic applications [30].
When deploying biometrics in practical applications, proper biometric characteris-

tics should be selected based on the weighting of several factors, including universality,
uniqueness, permanence, collectability, performance, acceptability, and circumvention
[11]. Circumvention, describing the ease with which a trait might be imitated using an
artifact or substitute, is associated with the vulnerability of biometrics. Numerous studies
[14, 43, 168, 169, 233, 261] have shown that biometric recognition is vulnerable to diverse
attacks, in which Presentation Attack (PA) is the most widely attempted. PA refers to
presenting an attack instrument, such as a high-resolution printed face photo, artificial
fingers, or a recorded audio voice, to the biometric sensor with the goal of interfering
with the operation of the biometric recognition systems [127].
For instance, early fingerprint-based recognition systems could be compromised by

relatively crude Presentation Attacks (PAs). In 2012, the Chaos Computer Club successfully
bypassed the biometric security of Apple TouchID deployed in iPhone 5s using a fake
fingerprint from a glass surface [31]. A doctor used fake fingers made of silicon to sign in
absent colleagues in 2013 [7]. In the case of face trait, a parade of tech commentators,
journalists, and reviewers attacked the biometric systems of Samsung Galaxy S10 and S10+
devices to unlock them only with YouTube videos and static images on other devices in
2019 [196]. Also, digital security experts at Bkav released footage showing that they have
fooled the face recognition systems on the iPhone X by a 3D mask made of stone powder
with 2D images of the user’s eyes in 2017 [220]. Later, Tencent researchers bypassed
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Apple’s FaceID by putting tape and glasses on unconscious people and transferring their
funds through a mobile payment application at Black Hat USA 2019 [164]. They claimed
a weak point of the FaceID algorithm is that it did not extract 3D information from the
eye area when recognizing the glasses.
Therefore, Presentation Attack Detection (PAD) technique (also called anti-spoofing

detection), i.e. automated determination of a presentation attack, plays an important
role in securing recognition systems from PAs. At the early stage, most existing PAD
algorithms were designed based on the traditional handcrafted features [183] (e.g., Local
Binary Pattern (LBP) and Binarized Statistical Image Features (BSIF)) or dynamic signals
(e.g., eye-blink and head movement) to capture the attack artefacts. Due to the less
representation capabilities of those features, recent works have leveraged deep learning
techniques to mine the discriminative clues between bona fide and attack samples and
showed great progress in PAD performance [93, 168, 250, 251]. Recent iris [61, 243]
and face [13] PAD competitions demonstrated that CNN-based PAD algorithms achieved
impressive performance under known/seen scenarios. However, the reported results also
indicated a significant PAD performance degradation to unknown variations, such as
unknown attacks, sensors, and environments.
This chapter will first present the motivation for generalized PAD solutions in Section

1.1. Then, this is followed by stating the research questions on which this dissertation is
based in Section 1.2. Finally, Section 1.3 presents an outlook for the next chapters.

1.1. Towards presentation attack detection

PAD is an unsolved research problem for the following reasons. First, PAD is a self-evolving
problem, where PAs and PAD algorithms evolve iteratively, making it very challenging. For
example, due to the COVID-19 pandemic, the performance of PAD algorithms designed
for non-occluded faces significantly dropped when dealing with masked faces [84]. This
calls for the improvement or development of new PAD algorithms to overcome the masked
faces problem. Second, features that discriminate between bona fide and attack samples
are mostly intrinsic and subtle to varying degrees. Third, PAD is an open-set problem in
the real-world scenario. However, most existing PAD algorithms worked on developing
and evaluating under controlled settings (i.e., known data) and did not generalize well on
novel PAs and unknown domains. Very limited existing PAD works [159, 200, 203, 204]
addressed this uncertain issue between development (training) and deployment (testing)
scenarios and proposed several cross-domain PAD solutions. Moreover, fairness, as part of
generalizability in PAD, is extremely understudied.Unlike the conventional generalizability
on unknown attack types or capture environments, the fairness-related generalizability
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in PAD is concerned with uncertain identity properties, covering unknown demographic
and non-demographic attributes. As biometric recognition is gradually reaching into
society and our daily life, this raises concerns about the ethical issues of adopting such
biometric systems. Fairness is a recently established area of machine learning and refers
to the process of correcting and eliminating algorithmic bias from machine learning
models. Machine-learning-powered biometrics can lead to unfair treatment of individuals
in certain demographic groups based on their gender, age, and race. For example, Face
Recognition (FR) algorithms are known to be unfair between certain demographic and
non-demographic groups [8, 64, 69, 208, 216, 218]. However, fairness in PAD is unclear.
To address the above issues, this thesis focuses on the generalizability of PAD on

unknown variations. In recent years, iris and face recognition are gaining in popularity.
Due to the high reliability of iris recognition, it can be used in scenarios where a high
level of security is required, such as in banking and financial or government organizations,
to deny access to unwarranted identities. Face recognition has developed rapidly and has
been widely deployed in our daily life, especially with the advancement of mobile devices.
Considering their increased popularity, high accuracy, and high security demand, this
thesis is concerned with the generalizability in iris and face PAD. In the case of fairness-
related generalizability, this thesis only addresses fairness in face PAD and neglects it in
iris PAD. The reasons for this are: 1) A face carries more properties, such as face shape,
hairstyle, and accessories, in comparison with iris. 2) Attributes of iris samples are very
hard to label by human experts. 3) Compared to face PAD datasets, iris PAD datasets are
relatively small-scale and lack data diversity.
To bridge such under-explored gaps, the research efforts in this thesis are categorized

into three aspects: fairness assessment and enhancement in face PADs, the emerging
challenge of masked face PAD during the COVID-19 pandemic, and generalizability
enhancement of iris and face PAD systems. These three aspects will be studied by tackling
a number of research questions raised by the developed goals of generalized PAD and
offers solutions that address these research questions.

1.2. Research questions

To bridge the above-discussed gaps in current State of The Art (SOTA), this thesis aims at
boosting the fairness and generalizability of PAD through addressing a set of unsolved
research questions. In order to put these questions in a broader perspective and to provide
topic-specific answers, they are divided into three groups based on the research areas.
The first group focuses on fairness assessment and enhancement in face PAD. The second
group deals with the emerging challenge of masked face PAD. The third is concerned
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with the generalizability of face and iris PAD. The rest of this section presents the sets of
detailed research questions following the three groups, in Sections 1.2.1, 1.2.2 and 1.2.3,
respectively.

1.2.1. Fairness assessment and enhancement

Prior studies [64, 99, 115, 202] pointed out that biometric recognition algorithms ex-
hibit discriminatory behaviours against certain demographic groups. The 2019 National
Institute of Standards and Technology (NIST) Face Recognition Vendor Test [99] also
demonstrated that all 106 tested face recognition algorithms exhibit varying unfair perfor-
mances on gender, race, and age groups of a mugshot dataset. Creager et al.[47] stated
that deploying biased recognition systems to law enforcement is potentially unethical. To
avoid the potential negative societal impact, assessing the fairness of biometric systems
and developing a fair biometric system is an important research direction. However, unlike
growing numbers of fairness studies in face recognition, the fairness of PAD, and thus of a
major aspect in the biometric system security, is overlooked.
Therefore, in the first research area, this thesis focuses on the fairness assessment and

enhancement in face PAD. The questions listed in the following aim to address the clear
gap in analysing the fairness in PAD, as well as in providing solutions to enhance this
fairness.
• Fairness assessment: Building a PAD system involves development data collection
and pre-processing, model development, model validation and testing. Each com-
ponent may exhibit potential unfairness as defined in [99]. Prior fairness research
in recognition algorithms [227] indicated that the imbalance of the development
data is one of the triggers of unfairness, where models tend to learn better repre-
sentations for the majority group in the dataset. The decision threshold applied on
the output of the PAD models are chosen in the validation stage to fit deployment
requirements, this choice might additionally cause further unfairness. This leads to
the first research questions tackled in this thesis, and it is stated as follows:
RQ1: Are PAD systems fair? And does the lack of balance in PAD training data and the

methodology of choosing PAD decision threshold affect this fairness?

• Fairness enhancement: This thesis uncovers different aspects of unfairness in face
PAD. Such unfairness in recognition algorithms motivated a diverse set of fairness
enhancement solutions [25, 95, 209, 219], however, no such solutions previously
addressed fairness of PAD algorithms. Knowing that motivated this work to aim at
innovating a technical solution to enhance the fairness of face PAD by addressing
the following question:
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RQ2: Is the fairness of PAD solutions enhanced when controllably augmenting the
training data so that different data groups will posses specific properties of other

groups?

In an effort to answer these questions, this thesis first provides manually annotated
attribute labels for a combined face PAD dataset. Then, the fairness of PAD systems is
assessed based on four PAD solutions, including traditional handcrafted features and deep-
learning-based methods. Finally, this thesis presents a cross-identity and cross-attribute
patch swap technique to enhance the fairness of face PAD algorithms. This approach can
serve as a plug-and-play data augmentation technique to disorder the identity or semantic
information and thus guide the model to mine attack clues, resulting in a fairer face PAD
system.

1.2.2. The emerging challenge of masked face PAD

Due to the SARS-CoV-2 coronavirus outbreak, wearing a face mask has become one of the
most efficient ways to protect and prevent getting infection. Several studies explored the
effect of face masks on the performance of face recognition verification [51, 54, 181] and
their results have shown that face recognition algorithms suffer performance degradation
because of the face masks. However, the effect of masks on the PAD behaviour and the
FR vulnerability to PAs have so far been overlooked. Driven by the ongoing pandemic
and different hygiene requirements, PAD systems have encountered several understudied
challenges when facing masked faces: 1) unclear vulnerability of FR systems to masked
PAs, 2) uncertain relationship between the performance of PAD techniques and PAs with
face masks, 3) no solutions to target the masked face PAD problem.
Therefore, the second research area covers these emerging challenges, and the following

research questions are drawn to tackle the above-mentioned masked face attack problems.
• Vulnerability of recognition models: Several previous studies evaluating the
effect of face masks on face recognition performance reported that genuine score
distribution (i.e., distribution of scores obtained by comparing bona fide references
and probes belonging to the same identity) was significantly affected, and zero-
effort-imposter score distribution (i.e., distribution of scores obtained by comparing
bona fide references and probes belonging to the different identities) did not seem to
be strongly affected by masked probes [51, 54, 181]. The genuine score distribution
strongly shifted towards the imposter score distributions. However, the effect of
face masks on face recognition vulnerability to presentation attacks has not been
investigated, i.e., the effect on the PA comparison score to the bona fide reference
when either the bona fide or PA is masked. PA comparison score distributions is

19



obtained by comparing bona fide references and attack probes belonging to the
same identities. This raises the following question:

RQ3: Is the vulnerability of FR systems to PAs affected by wearing a mask?

• Behaviour of PAD models: The detection of various PAs has been comprehensively
addressed in existing PAD research, ranging from 2D attacks such as print and replay
attacks to 3D mask attacks. As a result of the COVID-19 pandemic, PADs are being
challenged by processing unfamiliar face presentations, i.e. masked faces. This also
includes the possibility of a masked PA. Masked face PA in this thesis refers to the
print or replay presentation attack, in which the subject is wearing the face mask,
or a real face mask is placed on such attacks to simulate wearing a face mask The
effect of a face mask on face PAD behaviour has not been yet studied and thus leads
to the next question:
RQ4: Is the behaviour of existing PADs effected by wearing face masks, whether on

bona fide or attack faces?

• Enhancing the PAD of masked faces: After analysing the effect of wearing a mask
on PAD behaviour, a solution is need to minimize this unwanted effect. To mine
the subtle and fine-grained local features between bona fide and attack samples,
recent PAD studies have tended to utilize pixel-wise supervision strategies during the
training phase and have significantly improved performance. However, the values
on pixel-wise ground-truth for attack samples are sub-optimally assumed to be the
same, either on a 2D binary or 3D depth ground-truth and especially when facing
structured samples such as masked faces. This leads to the next research question
in this thesis:
RQ5: Can the PAD performance, especially on masked samples, be enhanced by

designing a structured PAD training supervision strategy that takes the possibility of a
masked face into account?

To answer the above questions, this thesis first presents a novel Collaborative Real Mask
Attack Database (CRMA) dataset, including three types of PAs and both, masked and
unmasked, bona fide samples. Then, an in-depth vulnerability analysis of FR systems
to such attacks is presented by evaluating three deep-learning-based FR techniques on
three types of PAs. Furthermore, extensive experiments are conducted to explore the
effect of masked faces on the face PAD behaviour. Seven face PAD algorithms are selected
to evaluate the performance and generalizability in intra- and cross-database scenarios
under three mask-related protocols. Finally, a PAD solution is successfully proposed to
target the masked face PAD problem by refining the training supervision strategy and
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the inference process. The proposed solution is not directly linked to specific network
architecture and thus can be directly incorporated into any common or custom-designed
PAD frameworks.

1.2.3. Generalizability of PAD

In recent years, many works have leveraged deep learning techniques and showed great
progress in iris [37, 89, 155, 205, 238, 242] and face [93, 159, 168, 200, 200, 203, 204,
250, 251, 251] PAD performance. Despite the huge success of deep learning PAD models
under the general seen scenario, these models still show a huge performance degradation
when facing unknown variations such as novel types of attacks, attacks in unknown
environments, and attacks captured by unknown sensors. Most existing iris and face PAD
works are competing to boost the performance under the intra-dataset scenarios, while the
generalizability of the PAD systems on unknown scenarios, representing the real use-case,
is still an open issue.
The following research questions are stated to aim at enhancing the generalizability of

PAD systems. The questions listed in the following aim to enhance the generalizability of
face and iris PAD, given that they are some of the most widely used biometric characteristics
[48, 122, 198, 248].

• Face PAD: The recent face PAD competition [13] evaluated PAD algorithms on
unseen face attacks and reported a significant performance degradation under
unknown scenarios. This suggests that continuous efforts are needed to improve PAD
algorithms to detect fast-evolving PAs. Face PAD algorithms can be categorized into
texture-feature-based, deep-learning-based, and hybrid solutions. Texture features,
such as features extracted from the frequency domain [35, 141], are less affected
by the illumination variations, while the deep features are more discriminative
between bona fide and attack samples. However, most texture features derived
from the frequency domain are sub-optimal because frequency filters are fixed and
unlearnable. This motivates the next research question raised in this thesis:
RQ6: Can the generalizability of face PAD be enhanced by learning to include

information from the frequency domain in an optimized manner?

• Iris PAD: Similar performance degradation on unknown attacks was observed in
a series of iris PAD competitions [61, 243]. One of the main problems is that the
features that discriminate between bona fide and PAs are mostly intrinsic, content-
irrelevant (e.g., not related to the iris attribute, subject ID), and subtle to varying
degrees. Therefore, mining the attack patterns with local-specific and fined-grained

21



details is essential for enhancing iris PAD generalizability. This leads to the next
research question:
RQ7: Can analysing spatially aware regions of the iris and its iris/sclera boundary

enhance the generalizability of iris PAD?
Following the need to build automatic decisions based on correctly localized clues,
attention mechanisms have attracted increasing interest in computer vision tasks
[5, 39, 223, 236, 253]. Attention mechanisms endow networks with the ability to
focus on more interpretable and robust features by weighing features with different
levels of importance to a specific task. This motivates the next research question:
RQ8: Can networks be automatically guided to focus on the attack-discriminant iris
region during the PAD training? If so, does this enhance the iris PAD generalization?

Focusing on enhancing the generalizability of face and iris PAD systems, this thesis proposes
several PAD solutions to facilitating fine-grained and discriminative feature learning. A
learnable frequency composition is presented to complement deep features extracted
in the spatial domain and thus improve the generalizability of face PAD systems. To
learn subtle iris features, iris regions are spatially segmented and learned to improve
the generalizability of iris PAD approaches. Moreover, this thesis takes advantage of the
attention mechanism to design a generalized iris PAD network that takes into account the
need to focus on attack-discriminant regions.

1.3. This thesis

After stating the motivation and introducing the highlights of this thesis, this section
presents an overview of the rest of this work as follows:
Chapter 2 provides the essential background information in terms of the typical struc-

ture of a PAD system within a biometric system. First, the main components of biometric
recognition and PAD system are presented. Then, evaluation metrics are discussed to
measure the performance of PAD systems, the vulnerability of recognition systems, and the
fairness of biometric systems. It ends by introducing an overview of deep-learning-based
PAD models, including main network components (i.e., layer structure, data augmen-
tation, and attention mechanism) used in this thesis and mainstream iris and face PAD
benchmarks.
Chapter 3 targets the under-explored gaps in understanding and enhancing fairness in

the practical applications of face PAD. To enable answering RQ1, this thesis first combines
several face PAD datasets, and seven attribute annotations are labelled, involving demo-
graphic and non-demographic attributes. Then, the fairness of PAD systems is assessed
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from two aspects, the nature of training data and the methodology of choosing PAD
decision thresholds, as a response to RQ1. To enhance the fairness in face PAD, this thesis
further proposes a PAD solution based on carefully designed data augmentation technique
to disrupt the demographic/semantic information, in response to RQ2. This chapter is
based on works [72, 81, 86].
Chapter 4 is concerned with the emerging challenge of the masked face PAD during

the COVID-19 pandemic. To enable answering RQ3 and RQ4, a new CRMA dataset is
presented in this thesis, including unmasked and masked bona fide and attack faces, and
partially masked face attacks (i.e. PA is covered by a real medical facial mask). As a
response to RQ3, extensive experiments are conducted to explore the effect of masks on the
vulnerability of FR by adopting three conventional FR methods. Then, in response to RQ4,
three protocols are designed to measure the generalizability of the current PAD algorithms
on unknown masked bona fide or attack samples by adopting seven PAD algorithms
including hand-crafted feature-based and deep-learning-based solutions. Knowing the
PAD performance degradation on masked faces, Chapter 4 further presents a structured
PAD training supervision strategy to address the masked face PAD, responding an answer
to RQ5. This chapter is based on the published papers [75, 84].
Chapter 5 focuses on enhancing the generalizability of iris and face PAD systems. First,

this chapter proposes to intelligently leverage the information from the frequency domain
to mine subtle artefact clues, providing an answer to previously stated RQ6. Furthermore,
as a response to RQ7, spatially aware regions of the iris and its iris/sclera boundary are
analysed to enhance the performance and generalizability of iris PAD under unknown
scenarios. Lately, aiming to guide model automatically focus on attack-discriminant iris
regions, the attention mechanism based iris PAD method is proposed and evaluated under
the cross-domain evaluation, including the cross-spectrum scenario, responding to RQ8.
This chapter is based on the published papers [74, 77, 78, 79, 80, 82, 83]
Chapter 6 concludes this thesis by highlighting its contributions, elaborating its practical

benefits, and giving an outlook for future research.

1.4. Summary

This chapter first presented a motivation leading to a set of research questions posed in this
thesis. The listed questions are aimed at boosting the fairness and generalizability of PAD.
These research questions were based on three targeted challenges, fairness assessment
and enhancement in face PAD, the emerging challenge of masked face PAD systems, and
the generalizability of PAD systems, as shown in Figure 1.1.
The first focus of the presented research questions was concerned with the fairness in
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Figure 1.1.: An overview of the contributions in relation to the research questions posed in
this thesis. Fairness in PAD focuses on analyzing and enhancing the fairness
of face PAD algorithms, Masked face PAD targets the generalizability of face
PAD to subjects wearing face masks, and Generalized PAD systems provides
a set of solutions to boost the generalizability of face and iris PAD over the
attack and capture variabilities.

PAD systems by offering a comprehensive assessment of fairness in face PAD and proposing
an intelligent augmentation technique to enhance fairness. The second group of research
questions focused on addressing the emerging challenges of the masked face PAD by
providing an in-depth analysis of the impact of masked faces on PAD performances and FR
vulnerabilities. As a result, a structured training supervision strategy is designed to address
the observed performance degradation on masked faces. The third group of research
questions targeted the generalized iris and face PAD solutions. Three PAD methods were
proposed to boost the generalizability of PAD systems under unknown scenarios, such as
unknown attacks, unknown capture sensors and environments.

24



2. Background

The previous chapter presented motivation and a structure for the research problems
addressed in this thesis. This chapter presents crucial background information and defini-
tions to facilitate a better understanding of the following chapters. First, the standard
definitions for biometric systems and PAD systems, along with their main components, are
introduced. Then, this chapter presents the biometric performance metrics that are com-
monly used in the literature, including the PAD performance and fairness metric. Several
deep-learning-based techniques, including main layers of Convolutional Neural Network
(CNN), data augmentation techniques, and attention mechanisms are introduced. Finally,
this chapter includes more detailed insights into deep-learning-based PAD networks and
the mainstream datasets.

2.1. Biometric systems with PAD

Biometric characteristic, e.g., fingerprint, iris, and face [131], is defined as a biological
and behavioural characteristic of an individual. A biometric characteristic is a distinct and
repeatable biometric feature that can be extracted for the purpose of biometric recognition.
In the last decade, biometric systems have been incorporated with authentication tools
and are applied in many scenarios, such as identity access management and access control,
surveillance, and security [1, 133]. Moreover, the rapid evolution of biometric recognition
systems has raised concerns about their ability to resist PAs. This section will introduce
the components of biometric recognition systems with PAD systems.
A biometric recognition system is a technology that takes an individual biometric trait

as input, analyzes, and verifies or identifies the individual, while PAD is a technique for
the automated detection of PAs. This subsection will first present a generic biometric
recognition system based on the definition in ISO/IEC 19795-1 [132]. Then, a PAD system
which can integrated into recognition system is introduced following ISO/IEC 30107
[126] standards and illustrated in Figure 2.1.
A generic biometric recognition system can be briefly divided into five main subsystems:

data capture, signal processing, data store, comparison, and decision subsystems, as shown
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Figure 2.1.: The pipeline of biometric systems including PAD.

in Figure 2.1. First, the biometric capture devices (e.g., camera, fingerprint scanner, or
iris scanner) captures a signal from the presented biometric modality. Once the biometric
samples are successfully captured, they will be sent to the signal processing subsystem. The
signal processing subsystem can couple quality control module that assesses the suitability
of the biometric sample for recognition [131, 217]. If the quality of the captured biometric
sample is insufficient for further processing steps, the biometric characteristic shall be
presented again. In general, a generic recognition signal processing subsystem consists of
the post-processing of biometric samples (e.g., enhancement and segmentation), quality
check, feature extraction, and reference generation. The output of the biometric signal
processing subsystem is the identity template which is a distinctive and repeatable feature.
For the enrolment step, the generated identity template is then transferred to the data
storage subsystem and stored in the enrolment dataset in accordance with ISO/IEC 24745
[2]. For further verification and identification steps, a comparison subsystem compares
the biometric probe produced by the signal processing subsystem of biometric reference(s)
enrolled by the genuine data subject(s). In the case of verification, a single biometric probe
is compared to a signal reference. When performing identification, a probe is compared
to all or a subset of references. The comparison subsystem produces the comparison
score(s) and transmits it to the decision subsystem. The comparison score refers to the
similarity score in the recognition system. If the received comparison score is higher
than a pre-defined threshold (and/or the comparison score is ranked within a pre-defined
number of ranked values), the verification (identification) is successfully performed.

26



However, it has potential security problems when passing such authenticated users
without attack detection to the various services. A potential attacker can use various
attack operations to target the biometric recognition system, such as the presentation
of artefacts to the capture device, direct manipulation of the underlying algorithms like
template creation, and modification of biometric templates in the enrolment dataset. In
this thesis, we focus on presentation attacks. As defined in ISO/IEC 30107-3 [127], a
presentation attack is the attempt to present a biometric characteristic to the biometric
data capture subsystem with the goal of interfering with the operation of the biometric
system. Considering that data from the biometric sensor (e.g., face images) may be
insufficient to conduct a PAD task, biometric systems with PAD mechanisms might contain
additional sensors to detect specific properties of a biometric characteristic, such as depth
sensor and PhotoPlethysmoGraphy (PPG) detector. A biometric recognition system can
couple PAD systems as shown in Figure 2.1. After successfully capturing the biometric
sample, this is transmitted to the PAD signal processing subsystem, which involves the
post-processing of biometric samples and PAD feature extraction modules. Unlike in
recognition systems where recognition performance is usually linked directly to biometric
data quality, quality control might be deactivated by an attacker. For example, samples
from attack artefacts can exhibit better quality than samples from bona fide biometric
characteristics. Therefore, the PAD signal processing subsystem contains no quality check
in most cases. The output of the PAD signal processing subsystem is the extracted PAD
feature which is then sent to a PAD comparison subsystem to perform the classification
and produce a PAD score. Furthermore, the produced PAD score is compared with a
pre-defined PAD threshold. If the biometric presentation is detected as an attack, this
biometric sample may be presented again. Lastly, a negative PAD result (no PA detected)
is required for a final successful authentication. After passing the biometric recognition
and PAD systems, the user can access services, such as unlocking devices, financial access,
and automated gate access.

2.2. Biometric performance metrics

This section introduces performance metrics for evaluating the PAD system and assessing
the vulnerability of the biometric recognition system following the definition in ISO/IEC
30107-3 [127]. As some PAD works presented in the literature did not follow the ISO/IEC
30107-3 [127] terms for PAD performance evaluation, this section also provides the main
evaluation metrics in the literature for the sake of comparability. Lastly, this section
presents the metrics for assessing the fairness of the decision-making based biometric
systems. There is no international standard metric definition and no study for the fairness
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assessment of PAD systems yet. Therefore, the introduced fairness metrics are based on
reported metrics in the recognition literature and adapted to the PAD systems.

2.2.1. PAD metrics

The ISO/IEC 30107-3 [127] established the principles and metrics for performance assess-
ment of glsPAD mechanisms. In ISO/IEC 30107-3 [127], evaluation of PAD mechanisms
is categorized as three levels: PAD subsystem, data capture subsystem, and full system.
A PAD subsystem refers to develop a PAD mechanism and make an explicit declaration
regarding the detection of PAs. A data capture subsystem including capture hardware
and/or software couples the glsPAD mechanism and quality checks. Capture subsystem
may not know whether the presented data is bona fide or attack. A full system adds
biometric comparison to the PAD subsystem or data capture system, comprising a full
end-to-end system (as shown in Figure 2.1). This leads to additional failure points for the
Presentation Attack Instrument (PAI) beyond PAD mechanisms and quality checks. In a
full system, there might be one or multiple glsPAD mechanisms at different points in the
system. In most of existing PAD literature, evaluation of PAD mechanism and resulting
reports are based on the PAD subsystem level. The main used evaluation metrics in this
level are Attack Presentation Classification Error Rate (APCER) and Bona fide Presenta-
tion Classification Error Rate (BPCER). APCER is the proportion of attack presentations
using the same PAI species incorrectly classified as bona fide presentations in a specific
scenario. BPCER is the proportion of bona fide presentations misclassified as presentation
attacks in a specific scenario. Both APCER and BPCER metrics are computed based on
the system operation threshold calculated from the development data that control the
trade-off between these metrics. Additionally, Average Classification Error Rate (ACER)
or Half Total of Error Rate (HTER) in some literature [14, 155], the average value of
APCER and BPCER, is used to report the overall PAD performance. In addition to standard
metrics in ISO/IEC 30107-3 [127], it is common to report the PAD performance in terms
of single figure BPCER at fixed APCER or APCER at fixed BPCER for demonstrate the PAD
performance in practice [205]. For instance, Sharma et al.[205] reported True Detection
Rate (TDR) (equals to 1 - APCER) at a false detection rate (equals to BPCER) of 0.2%.
Another two common metrics to report the overall performance for comparability are
Equal Error Rate (EER) and Correct Classification Rate (CCR). EER is the APCER or the
BPCER at the operation point where they are equal, and CCR is the proportion of correctly
classified samples among all samples. To provide a visual evaluation, Detection Error
Tradeoff (DET) or Receiver Operating Characteristic (ROC) curves are used to report PAD
performance at all operational points, showing security measures versus convenience
measures. DET curve plots BPCER (y-axis) vs. APCER (x-axis), while ROC curve plots
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(1-BPCER) (y-axis) vs. APCER (x-axis). Several PAD literature also opt to include the
area under ROC curves as evaluation metric [139, 203]. In addition to the PAD subsystem
evaluation level, the most used metric in a full system evaluation of a verification system
is Imposter Attack Presentation Match Rate (IAPMR), which is the proportion of impostor
attack presentations using the same PAI species that result in accept, as defined in ISO/IEC
30107-3 [127].

2.2.2. Biometric fairness metrics

In recent years, deep learning techniques have achieved great success in various biomet-
ric tasks, including face/iris/fingerprint recognition and presentation attack detection.
Despite the improved performance, decision-making based has been shown to exhibit
discriminatory behaviour against certain groups [4, 29, 46, 81, 218]. As “fairness” and
“bias”, among other terms, are being used to describe performance variations across data
groups in biometric studies and generally in AI, our stand on the terminology and choice to
use the term “fairness” in this thesis is shortly explained in the following. The systematic
difference in treatment of certain objects, people, or groups in comparison to others in AI
is referred to as Bias in AI according to recent AI standardization document (ISO/IEC TR
24027:2021 [128]) released by the ISO/IEC JTC 1 Information technology Subcommittee
SC 42 on Artificial intelligence. The same document would use the term “Fairness” and
“Bias” as representation of AI bias and discuss the possibility of assessing fairness in AI
with a “fairness measure”. Biometric literature adapts the terms of Bias and Fairness
and their measures from AI standards and the broader machine learning and artificial
intelligence literature. Recent efforts to standardize quantifying biometric performance
variation across demographic groups within the ISO/IEC JTC 1 Information technology
Subcommittee SC 37 on Biometrics are underway. After discussions with some of the
developers of this standard, which is still under development (ISO/IEC WD 19795-10
[129]), the adaption of fairness measures from AI is seen as lacking the consideration of
social, legal, or cognitive aspects of fairness, which we agree with. Therefore, the standard
is being developed in the direction of avoiding the confusion with such aspects, and thus
using the term “aggregate equitability measure” in lieu of the term fairness measure [129].
Our work supports the use of this term and the motivation behind it. However, given that
this standard is still under development (not released) and may still be edited, we opted,
for now, to follow the common terminology in biometric literature and AI standardization
(ISO/IEC TR 24027:2021 [128]) and discuss the biometric performance variation across
different groups under the “fairness” term. A fairness metric, named Fairness Discrepancy
Rate (FDR), was proposed [64]. FDR is proposed to evaluate and compare the fairness
aspects between different biometric verification systems. FDR metric exhibits a better
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representation by leveraging a single ’fair’ decision threshold from all test groups than
other fairness metrics, such as using DET curve or ROC curve, because DET curve or ROC
curve comparison was conducted assuming that decision thresholds are group-specific,
which is not feasible in a real-world scenario. A PAD system is considered fair if different
demographic or non-demographic groups share the same APCER and BPCER for a given
decision threshold τ , where τ = APCERx from all groups. The FDR in [64] is adapted
to PAD performance as follows:

A(τ) = max(|APCERdi(τ)−APCERdj (τ)|), ∀di, dj ∈ D (2.1)
B(τ) = max(|BPCERdi(τ)−BPCERdj (τ)|), ∀di, dj ∈ D (2.2)
FDR(τ) = 1− (αA(τ) + (1− α)B(τ)) (2.3)

where D is a set of attribute groups D = {d1, d2, ..., dn}, α is a hyper-parameter to weigh
those differences, representing the level of concern applied to differences between APCER
(referring to False Match Rate (FMR) in [64]) and BPCER (referring to False Non-match
Rate (FNMR) in [64]). The value of FDR varies from 0 (maximum discrepancy) to 1
(minimum discrepancy). As a result, FDR has smaller-is-unfairer semantics. In addition to
FDR, Chapter 3 will present an accuracy balanced fairness that concerning both the PAD
performance and fairness of PAD systems.
CNN plays a vital role in the deep learning technique, especially in varied computer vision

tasks, including biometric traits PAD tasks. Therefore, the following section introduces the
details of three main types of layers used in CNN architecture.

2.3. Deep learning techniques

2.3.1. Convolutional neural networks

Convolutional neural networks are a class of deep neural networks (DNN). CNN has been
tremendously applied to various computer vision tasks such as FR, image classification,
object detection, and image segmentation. CNN architectures have yielded excellent
success in various computer vision tasks, such as image classification, object detection,
face/iris/fingerprint recognition and PAD. CNN take advantage of the fact that inputs are
images in most cases and thus constrain the network architecture in a more sensible way.
A typical CNN architecture is formed by stacking three main types of layers: Convolutional
layer, Pooling layer, and Fully-connected layer. The following is an overview of the three
main components.
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Convolutional Layer: The convolutional layer is the core building block of CNN and does
most of the computational heavy lifting, which computes the convolutional operation of
the inputs to extract fundamental features. The convolutional layer consists of a set of
learnable filters (or kernels) with small spatial width and height size and large depth
extended from input. During the forward pass, each filter is convolved with the input
images/feature map, and an activation map is created. Specifically, each filter is slid over
the width and height of the input volume, and a dot product is computed between the
entries of the filter and the input at any position. The convolve process and size of the
output volume are controlled by three hyper-parameters: depth, stride, and padding. The
depth of output volume corresponds to the number of used filters. Stride hyper-parameter
refers to the step size with which the filter slides. When the stride is one, the filter is moved
one pixel at a time. Padding allows us to control the spatial size of the output volume by
filling with a specific number, e.g., zeros around the border. Overall, the convolutional
layer learns features by having relatively few parameters due to the sparse connections
and parameter sharing. On the one hand, sparse connections refer to that each filter is
connected to only a local region of the input volume (named receptive field). On the other
hand, parameter sharing could significantly reduce the number of parameters by using
a single filter to slide across all receptive fields. Therefore, CNN is able to capture the
spatial relations between separate features during convolutional operation.

Pooling layer: To reduce the amount of parameters and computation in the CNN, pooling
layer is used to reduce the spatial size of the input feature map progressively. Consequently,
it is common to insert a pooling layer in-between successive convolutional layers. The
pooling layer operates independently on each channel (depth) of the input and resizes
it spatially. i.e., depth dimension remains unchanged. Two types of pooling in popular
use are max (Max-Pooling) and average pooling (Avg-Pooling). Max-pooling uses the
maximum value of each local region in the feature map, while Avg-Pooling computes
the average value. Similar to the convolutional layer, the pooling layer requires two
hyper-parameters: pooling size and stride. It should be noted that the pooling layer is not
trained during the backpropagation of gradients, as the output volume only depends on
the values of the input volume and hyper-parameters.

Fully Connected Layer: The fully connected layer connects each neuron to all activations
in the previous layer. The activations can thus be computed with a matrix multiplication
followed by a bias offset. In the classification task, including the PAD task, several fully
connected layers are stacked to extract features and the last fully-connected layer is
usually used for classification.
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Followed by the presented main layers of CNN, the next section describes several
deep-learning-based PAD algorithms and datasets that are popular in use.

2.3.2. Data augmentation

Despite the remarkable performance of deep learning models achieved on many computer
tasks, these models are heavily reliant on large-scale and diverse data to avoid overfitting.
However, collecting large-scale data is particularly tedious and labor-intensive, especially
when faced with biometric data, which is associated with privacy concerns. Therefore,
data augmentation, a data-space solution to the problem of insufficient data attracted
much attention. Data augmentation technique can increase the diversity of training data
by geometric transformation (e.g., flipping, rotation, or translation) [215], color space
transformations [215], kernel filters (e.g., Gaussian blur), mixing images [124, 254] and
GAN-based augmentation [96]. Moreover, data augmentation technique helps to alleviate
the bias problem induced by the training data. This thesis proposed a data augmentation
specially designed for PAD task that creates more complex training data by swapping
regions between different samples. To some extent, data augmentation enhanced the PAD
performance, but PAD algorithms are more sensitive to the selection of the augmentation
strategies as explored in [80] than general image classification tasks.

2.3.3. Attention mechanism

Attention mechanism in neural networks mimics the human cognition process of selec-
tively focusing on a few relevant things while neglecting others. The attention mechanism
emerged first as an improvement over the encoder-decoder based neural machine transla-
tion in natural language processing [5]. Later on, this mechanism and its variants were
used in other fields, including computer vision. The significance of attention mechanism
has been studied extensively in the previous literature [39, 223, 236, 253]. One of the
widely used attention mechanisms is Convolutional Block Attention Module (CBAM) [236]
that contains two sub-modules: channel attention module and spatial attention module.
The authors [236] pointed out that CBAM can be integrated at any convolutional block
to obtain subsequent refined feature maps Fout ∈ RC×H×W from input intermediate
feature maps F ∈ RC×H×W . First, a channel attention mapMc ∈ RC×1×1 is produced by
exploiting the inter-channel relationship of features by following the equation:

Mc(F) = σ(W1(W0(F
c
avg)) +W1(W0(F

c
max))), (2.4)

where σ refers to the sigmoid function,W0 ∈ RC/r×C andW1 ∈ RC×C/r denotes the
mutil-layer perceptron weights with reduction ratio r and are shared for both inputs. Fc

avg
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and Fc
max denote average-pooled features and max-pooled features, respectively. Then, a

spatial attention mapMs ∈ RH×W is produced by utilizing the inter-spatial relationship of
features. This attention map encodes where to emphasize or suppress by a convolutional
operation and and can be formulated as following:

Ms(F) = σ(fn×n([Fs
avg;F

s
max])), (2.5)

where σ denotes the sigmoid function and fn×n is a convolutional operation with the filter
size of n× n. Fs

avg and Fs
max denote average-pooled features and max-pooled features

respectively. Finally, two attention modules can be placed in a parallel or sequential
manner. Later on, several variant [113, 163, 264] of CBAM were proposed and applied
to improve the attention mechanism and thus enhance the performance of models. This
thesis also adopted such attention mechanism to enhance the generalizability of the PAD
algorithms as described in Chapter 5.

2.4. Presentation attack detection

As biometric systems are widely used in real-world applications, including mobile device
authentication and access border control, PAD are becoming a larger threat, where an
attacked biometric sample is presented to the biometric system and attempted to be
authenticated as introduced in Section 2.1. Therefore, PAD is a very critical step in
securing the biometric systems. As shown in Figure 2.1, the captured data samples, such
as fingerprint/iris/face images, are sent to the signal processing subsystems. The pre-
processing module of the signal processing subsystems consists of a region of interest
detection and cropping. Then, the feature extraction module is used to extract distinctive
features from cropped samples. Researchers are recently racing to boost performance
using deep learning techniques to facilitate discriminative feature learning. Hence, this
section focuses on the CNN-based PAD approaches, including backbone architectures, loss
function, and the publicly available used face and iris PAD datasets.

2.4.1. Deep-learning-based PAD

CNN have been push the frontier of the computer vision research in the past years. By
leveraging deep learning techniques, many works have shown great progress in PAD
performance. Most PAD models are built based on the popular network architectures
[107, 117, 193, 207] designed for image classification task.
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Network architectures

The main network architectures of high-performing face and iris PAD models are designed
based on the common CNN architectures used in image classification including VGGNet
[207], ResNet [107], DenseNet [117], and U-Net [193]. Some works integrated various
modules into the CNN backbones to enhance the feature learning, such as Gated Recurrent
Unit (GRU) in [27] and Temporal Shift Module (TSM) in [263]. In addition to extract
representative visual features by CNN architecture, some PADworks [168, 245] cooperated
the CNN with the Recurrent Neural Network (RNN) architecture, e.g., Long Short-Term
Memory (LSTM) [109] to extract temporal correlation across multiple frames. The
summarized information of recent face PAD with used backbones, supervision strategy
and loss function can be found in the Table 2.1. Moreover, the most used CNN backbones
in PAD are briefly described in the following.

VGGNet [207] proposed a very deep architecture by increasing depth with small 3× 3
convolution filters. Their experiments showed that a significant improvement on the
prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
VGGNet secured the first and second places in the localization and classification tracks in
ImageNet competition (ILSVRC) 2014, respectively. VGGNet arethe widely adpoted CNN
architecture for face PAD [147, 161, 172, 263] and iris PAD [77, 182, 238].

ResNet [107] is a residual framework to ease the training of networks that are substan-
tially deeper than those used previously. The network architecture is based on an identity
shortcut connection (residual connection) that skips one or more layers. The skip connec-
tion allows the information to flow by adding the input of a residual block to its output and
passing it to the following residual block. With the help of the skip connections, ResNet
won first place on classification and localization tasks in the ILSVRC 2015 competition, as
well as detection and segmentation in the COCO 2015 competitions. Consequently, ResNet
is the most widely used backbones in the face PAD [27, 33, 38, 83, 88, 162, 245, 247, 259]
and iris PAD [32].

DenseNet [117] proposed to connect each layer to every other layer in a feed-forward
manner to alleviate the vanishing-gradient problem and strengthen feature propagation.
For each layer, the feature maps of all preceding layers are used as inputs and its own
feature maps are used as inputs into all subsequent layers. DenseNet achieved high
performance on four highly competitive object recognition benchmark tasks (CIFAR-10,
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CIFAR-100, SVHN, and ImageNet) with less computation. Therefore, DenseNet is one of
the widely used backbones in the face PAD [93, 180] and iris PAD [37, 79, 205, 242].

U-Net [193] was developed first for biomedical image segmentation. This architecture
consists of a contracting path to capture context (also called encoder) and a symmetric
expanding path to enable precise localization (i.e., decoder). U-Net won the ISBI cell
tracking challenge 2015 in the most challenging categories (Phase contrast and DIC
microscopy) by a large margin. Up to now, it is one of the most popularly used approaches
in any semantic segmentation task. U-Net architecture is applied in face PAD algorithms
as generative model backbone to learn attack artefacts in collaboration with pixel-wise
supervision, such as [42, 88, 170, 230] in face PAD.

Loss functions

In the context of the deep learning neural network, the loss function, which is used to
evaluate a candidate solution (i.e., weights of the network) plays an important role in
guiding the training direction. In most cases, PAD is treated as a classification task (i.e.,
attack or not). As shown in Table 2.1, it can be noted that most PAD approaches are
trained with Cross-Entropy (CE) including Binary Cross-Entropy (BCE) when the model
training is supervised only by binary label. CE loss increases as the predicted probability
diverges from the ground truth label. To capture the more discriminative artefacts feature,
several face PAD approaches [27, 147, 168, 246, 249, 251, 263] trained model with the
help of other supervision strategy, such as binary mask, depth map and reflection map.
In particular, each pixel in a binary mask is considered a label for small patches in an
image. Depth map faces are generated only for bona fide samples, as planar attacks
(e.g., print/replay attacks) are considered to contain no depth information. In contrast
to the depth map, the reflection map is generated only for the attack sample due to the
observable surface reflection of the replayed attack. Consequently, the regression loss
is employed, such as L1 loss and Mean Squard Error (MSE) loss, to incorporate with
such supervision strategies. L1 loss measures the mean absolute error between each
element in the prediction map and ground truth, while MSE measures the average of
squared difference between predictions and targets. The generative based PAD model
[42, 88, 170, 230] is commonly trained by pixel-wise supervision (e.g., input RGB image
or spoof map) and thus most training is based on minimizing reconstruction loss (i.e.,
regression loss) and adversarial loss.
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Method Year Backbone Supervision Loss
SpoofNet [178] 2015 Custom CNN Binary BCE
FASNet [172] 2017 VGG16 Binary BCE
Auxiliary [168] 2018 custom CNN+LSTM Depth, rPPG, spectrum MSE
BASN [147] 2019 VGG16 Depth, reflection MSE, CE
STASN [245] 2019 ResNet50+LSTM Binary BCE
TSCNN [38] 2019 ResNet18 Binary BCE
Reconstruction [42] 2019 U-Net Binary mask, RGB input Structural Similarity (SSIM), regression loss
PixBis [93] 2019 DenseNet161 Pixel-wise binary mask BCE
CompactNet [161] 2020 VGG19 Binary Triplet loss
CDCN [251] 2020 Custom CNN Depth MSE, contrastive depth loss
DRL-FAS [27] 2020 ResNet18,GRU Binary BCE
BCN [246] 2020 Custom CNN Binary mask, depth, reflection MSE, CE
Disentangled [257] 2020 Custom CNN Texture map, depth Regression loss, adversarial loss, CE
AENet [259] 2020 ResNet18 Depth, reflection CE
LGSC [88] 2020 ResNet18, U-Net Binary, binary mask Triplet loss, regression loss, BCE

STDN [170] 2020 U-Net, PatchGAN Binary mask, RGB input adversarial loss,
regularizer loss, regression loss

PS [247] 2020 ResNet50/CDCN Binary mask/depth CE/contrastive depth loss
TAE [180] 2020 Autoencoder, DenseNet161 Binary, RGB input MSE, BCE
CIFL [33] 2021 ResNet18 Binary Focal loss
PCGN [162] 2021 ResNet101 Binary CE
DAM [263] 2021 VGG16,TSM Depth MSE, symmetry loss
DC-CDN [249] 2021 CDCN Depth Contrastive depth loss, MSE
Dual-stage
disentanglement

[230] 2022 ResNet18, U-Net Binary mask, RGB input Adversarial loss, MSE,
triplet loss, CE

LMFD-PAD [83] 2022 ResNet50 Binary mask Focal loss, BCE

Table 2.1.: Overview of the recent face PAD algorithms. Recent commonly SOTA face
PAD algorithms utilized the ResNet [107] as network backbone and training
was supervised by the binary label. Several approaches also tend to use other
supervision strategies, such as binary mask, depth map, and reflection map
to boost the PAD performance. As a result, the selection of loss is dependent
on the used supervision strategy.
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2.4.2. Evaluation datasets

This section presents the mainstream face and iris PAD used in the literature as well as in
this thesis.

Face PAD datasets

Table 2.2 summarizes the main publicly available face PAD datasets used in the literature.
The datasets that are used in this thesis to evaluate the generalizability of face PAD
algorithms are also briefly described in the following.

CASIA-FASD [261]: CASIA-FASD [261] dataset covers a diverse potential attack types in
real-world including warped photo attack, cut photo attack and video attack. CASIA-FASD
includes 600 videos across 50 subjects, where each subject contains 12 videos (three bona
fide and nine attacks). The videos consist of low, normal and high quality, where videos
of low and normal quality have a resolution of 640× 480, and high-quality videos with a
resolution of 1280× 720.

Replay-Attack [43]: Idiap Replay-Attack [43] dataset contains 1,200 videos (200 bona
fide and 1,000 attack samples) from 50 subjects. The bona fide and attack videos were
acquired in two sessions: controlled and adverse where the background and illumination
condition was not uniform. The attack samples were captured under two modes: hand-
based attack (i.e., the attack device was held by a human hand) and fixed-support attack
(i.e., the attack device is placed on fixed support).

MSU-MFSD [233]: MSU-MFSD [233] dataset consists of 440 videos (110 bona fide and
330 attack samples) across two attack types, video replay and printed photo, from 55
subjects.

OULU-NPU [14]: OULU-NPU [14] dataset was captured under the realistic mobile authen-
tication scenarios, where a total of 5,940 videos (1,980 bona fides and 3,960 attacks) from
55 subjects was captured under various illumination and background scene by six mobile
phones. Four protocols are provided to evaluate the generalizability of algorithms across
different covariates. Protocol-1 is designed to study the impact of environmental condi-
tions (e.g., illumination and background scene). Protocol-2 evaluates different attacks
created by various instruments. Protocol-3 is a leave one camera out protocol, aiming to
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examine the effect of different capture mobile phones. Finally, Protocol-4 explores all the
challenges above by leave-one-out cross-validation.

HKBU-MARs V2+ [166]: HKBU-MARs V2+ [166] is a 3D mask PAD dataset where the 3D
masks were generated by two different techniques. The first technique is the ThatsMyFace
mask which leverages 3D reconstruction and 3D printing techniques to generate the facial
mask. The advantage of ThatsMyFace Mask is that the mask can be easily generated with
a single customized image, but the skin texture is not well restored due to the defects of
the 3D printing technique. The second technique is the REAL-F mask which provides a
high-quality appearance and looks very similar to a bona fide face as the skin texture,
blood vessels of the eyes and iris can be reconstructed. This dataset contains 180 videos
(120 bona fides and 60 attacks) from 12 subjects.

WFFD [138]: Unlike most of the above face PAD datasets that focus on replay and print
attacks, WFFD [138] dataset provides wax figure faces as super-realistic 3D PAs. It consists
of 2,200 images with both bona fides and wax figure attack faces (a totally of 4,400 faces
from 745 subjects) with a high diversity from online collections.

CRMA [84]: CRMA database [84] contains: 1) both unmasked and masked bona fide
samples [51, 54], 2) conventional replay and print PAs created from faces not wearing a
mask, 3) replay and printed PAs created from masked face images, and 4) partial attack
where the unmasked printed/replayed faces are covered with real masks. The bona fide
data collected by Damer et al.[51, 54] were adopted for investigation of the effect of
wearing a mask on face verification performance, while the attack samples were provided
in this thesis [84] for the exploration of the effect of face mask on face PAD performance.
The CRMA database comprises 423 bona fide videos and 12690 attack videos (more
details in Chapter 4). CRMA database is a challenging PAD database due to different face
masks, multiple capture sensors, and various capture distances.

Iris PAD datasets

Table 2.3 summarizes the main publicly available iris PAD datasets used in the literature as
well as used in this thesis for evaluate the iris PAD performance. The detailed information
of these datasets is also briefly described in the following.

NDCLD-2013 [143]: The NDCLD-2013 dataset comprises of 5100 NIR images and is
conceptually divided into two sets based on capture sensors: 1) LG4000 including 4200
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Database Year # Sub # Data (BF/attack) Capture devices (BF/attack) Display devices Modality Attack type
NUAA [214] 2010 15 5105/7509 (I) Webcame - RGB 1 Print
CASIA-FAS [261] 2012 50 150/450 (V) Two USB cameras, Sony NEX-5 iPad RGB 1 Print, 1 Replay
Replay-Attack [43] 2012 50 200/100 (V) MacBook 13 / iPhone 3GS, Cannon SX150 iPhone 3GS, iPad RGB 1 Print, 2 Replay
3DMAD [71] 2013 17 170/85 (V) Microsoft Kinect - RGB/Depth 1 3D Mask
Msspoof [45] 2015 21 1,680/3,024 (I) uEye camera - RGB/NIR 1 Print

MSU-MFSD [233] 2015 35 110/330 (V) MacBook Air, Google Nexus 5 /
Cannon 550D, iPhone 5s

iPad Air, iPhone 5s RGB 1 Print, 2 Replay

HKBU-MARs V2+ [166] 2016 12 120/60 (V) Logitech C920, industrial camera,
EOS M3, 4 mobile phones

- RGB 2 3D masks

Oulu-NPU [14] 2017 55 1,980/3,960 (V) 6 smartphones Dell 1905FP, Macbook Retina RGB 2 Print, 2 Replay

SiW [168] 2018 165 1,320/3,300 (V) Cannon EOS T6, Logitech C920 webcam iPad Pro, iPhone 7,
Galaxy S8, Asus MB 168B

RGB 2 Print, 4 Replay

CASIA-SURF [258] 2018 1000 18000/3000 (I) RealSense camera - RGB/NIR/Depth 5 Papercut
CSMAD [9] 2018 14 88/160 (V) RealSense, Compact Pro, Nikon P520 - RGB/NIR/Depth 1 silicone mask

SiW-M [169] 2019 493 660/1630 (V) Logitech C920, Cannon EOS T6 - RGB 1 Print, 1 Replay,
5 3D mask, 3 Makeup, 3 Partial

WFFD [138] 2019 745 2,300/2,300 (I) Various cameras - RGB 1 wax figure face

CelebA-Spoof [259] 2020 10,177 202,559/475,408 (I) Various cameras/ 20 smartphones,
2 webcams, 2 tablets

PC, Phones, Tablets, RGB 3 Print, 3 Replay,
1 3D mask, 3 Paper Cut

PADISI-Face [194] 2021 360 1,105/924 (V) Self-built sensor - RGB/NIR 1 Print, 4 Mask,
1 Makeup, 1 Tattoo, 2 Partial

CRMA [84] 2021 47 423/12,690 (V) Various webcams/ iPad Pro,
Galaxy Tab S6, Surface Pro 6

iPad Pro, Galaxy Tab S6,
Surface Pro 6

RGB 1 Print, 3 Replay,
1 Real mask

Table 2.2.: The summary of face PAD datasets, including the CRMA dataset presented in
this thesis. #Sub refers to the number of subjects and BF is bona fide.

images captured by IrisAccess LG4000 camera, 2) AD100 consisting of 900 images captured
by risGuard AD100 camera. Both the training and the test set are divided equally into no
lens (bona fide), soft lens (bona fide), and textured lens (attack) classes.

NDCLD-2015 [142]: The 7300 images in the NDCLD-2015 [142] were captured by two
sensors, IrisGuard AD100 and IrisAccess LG4000 under MIR illumination and controlled
environments. The NDCLD15 contains iris images wearing no lenses, soft lenses, and
textured lenses.

IIIT-D CLI [151, 239]: IIIT-D CLI dataset contains 6570 iris images of 101 subjects with
left and right eyes. For each identity, three types of images were captured: 1) no lens, 2)
soft lens, and 3) textured lens. Iris images are divided into two sets based on captured
sensors: 1) Cogent dual iris sensor and 2) VistaFA2E single iris sensor.

LivDet-Iris 2017 dataset [243]: Though the new edition LivDet-Iris competition was held
in 2020, we still evaluate the algorithms in datasets provided by LivDet-Iris 2017 in this
thesis for several reasons: 1) No official training data was announced in the LivDet-Iris
2020 because the organizers encouraged the participants to use all available data (both
publicly and proprietary) to enhance the effectiveness and robustness. 2) The test data
is not publicly available. Consequently, to make a fair comparison with state-of-the-art
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Database Spectrum # Training # Testing Type of Iris Images
NDCLD-2015 [142] NIR 6,000 1,300 BF, soft and textured lens
NDCLD-2013 [143] LG4000 NIR 3,000 1,200 BF, soft and textured lens

AD100 NIR 600 300 BF, soft and textured lens
IIIT-D CLI [151, 239] Cognet NIR 1,723 1,785 BF, soft and textured lens

Vista NIR 1,523 1,553 BF, soft and textured lens
LivDet-Iris 2017 [243] Clarkson (cross-PAD) NIR 4937 3158 BF, textured lens, printouts

Notre Dame (cross-PA) NIR 1,200 3,600 BF, textured lenses
IIITD-WVU (cross-DB) NIR 6,250 4,209 BF, textured lenses, printouts, lens printouts

PAVID [190] VIS 180 (V) 612 (V) BF, replay

Table 2.3.: Characteristics of the main publicly available iris PAD datasets. All datasets
have the training and test sets based on their own experimental setting in the
related papers. The Warsaw dataset in the Iris-LivDet-2017 competition is no
longer publicly available. BF: bona fide, VIS: visible light, NIR: Near-Infrared
light. (V) indicates the video data format, others are image data format.

algorithms on equivalent data, we use LivDet-Iris 2017 datasets to restrict the evaluation
factors to the algorithm itself rather than the data. 3) The LivDet-Iris 2017 competition
datasets are still valuable due to the challenging cross-PA and cross-dataset scenario
settings. The Clarkson and Notre Dame dataset are designed for cross-PA scenarios, while
the IIIT-WVU dataset is designed for a cross-dataset evaluation due to the different sensors
and acquisition environments. The Clarkson testing set includes additional unknown
visible-light image printouts and unknown textured lenses (unknown pattern). Moreover,
Notre Dame focused on unknown textured lenses. However, the Warsaw dataset is no
longer publicly available.
Presentation Attack Video Iris Database (PAVID) [190]: PAVID is the video iris dataset
collected using smartphones (Nokia Lumia 1020 and iPhone 5S) in the visible spectrum.
PAVID contains 304 bona fide videos and 608 replay attack videos across 76 subjects.
Moreover, PAVID was divided into three sets in the official protocol: training set including
180 videos, development set including 120 videos, and testing set including 608 videos.
The development set defined in [190] was used only for determining the filter kernel of
the Laplacian pyramid in [190], not for computing the decision threshold. Therefore, we
omit the development set in our experiments.

2.5. Summary

This chapter introduced the general biometric systems along with the PAD systems. The
main component of PAD was discussed in Section 2.1. Then, the metrics for PAD perfor-
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mance and biometric fairness assessment were presented. Furthermore, several fundamen-
tal layers of neural network architectures, data augmentation techniques, and attention
mechanisms were introduced. This chapter also provided an overview of the popularly
used deep PAD architectures along with training loss functions and supervision strategies.
A summarized description of the mainstream evaluation face and iris PAD datasets were
presented. The next chapters will deeply explore and address the research questions
posed in Chapter1.
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3. Fairness in Face PAD

The previous chapter provided essential background knowledge for biometric recognition
systems and their components, along with the performance evaluation metrics, including
those measuring the performance of PAD and the vulnerability of FR systems. This chapter
targets the under-explored gaps in analysing, representing, and enhancing fairness in face
PAD, as responses to RQ1 and RQ2. This chapter is based on the [72, 81, 86].

3.1. Introduction

Data-driven approaches, including FR algorithms, are known to be unfair between certain
demographic and non-demographic groups [8, 64, 69, 208, 216, 218]. The learnable
models are heavily impacted by data-induced biases because they tend to optimize the
objectives toward the majority group, i.e. data represented with more samples in training
datasets. This commonly results in less optimized performance for minority groups,
leading to unfair decisions. Fairness assessment and enhancement in biometric systems
have gained increasing attention from the research community and the general public. For
example, many studies have investigated fairness in FR [3, 8, 64, 218] and face quality
[197, 216].
Most studies on biometric fairness have only concentrated on demographic covariants,

especially gender and race. Only a few studies [216, 218] investigated the impact of
other variations, such as appearance traits, on biometric fairness. Moreover, the fairness
of PAD has not been investigated, except for very limited studies on iris PAD [81] and
[4] face PAD. Fang et al.addressed the gender fairness in iris PADs and the experimental
results pointed out that female users were significantly less protected by the PAD in
comparison to males [81]. Alshareef et al.[4] considered the gender fairness in face PAD
by using ResNet50 [108] and VGG16 [207] on a limited PAD data. Both studies focused
only on the gender fairness assessment and with very limited evaluation data, both in
terms of size and diversity. The main reason is that the majority of publicly available
PAD datasets do not contain information regarding demographic and non-demographic
attributes, making it impossible to assess fairness, let alone enhance potential unfairnesses.

43



Moreover, the fairness of PADs in both studies [4, 81] were measured by differential
performance and outcome of PAD, i.e. no fairness metrics were applied. To date, only two
very recent definitions of fairness in FR were proposed, Inequality Rate (IR) [98] and
Fairness Discrepancy Rate (FDR) [64]. IR [98] takes ratio differences between minimum
and maximum FR performance per group. However, IR has two drawbacks: 1) IR has
no theoretical upper bound due to its multiplicative nature and exponential weights, 2)
IR might be incomputable due to its ratio property, i.e. when minimum FR performance
(denominator) for any group is zero. FDR [64] considers the maximum difference FR
performance between any two groups based on a decision threshold calculated on all
groups. In our work, we adapt FDR to represent fairness in PAD performance. However,
FDR does not take absolute performance into account and thus might consider a fair but
low-performing PAD "better" than an unfair PAD that performs close to perfect.
To target these under-explored gaps, this chapter analyses, represents, and enhances

fairness in face PAD. In the efforts seeking to answer RQ1 and RQ2, this chapter presents
the following contributions:

• To enable answering RQ1 and RQ2, this chapter presents a Combined Attribute
Annotated PAD Dataset by combining six publicly available PAD datasets including
highly diverse PAs, in which seven human-annotated attribute labels covering demo-
graphic and non-demographic attributes are provided. Moreover, this chapter adapts
the fairness metric to face PAD and introduces a novel metric, named Accuracy
Balanced Fairness (ABF), to represent both the PAD fairness and the absolute PAD
performance simultaneously.

• As a response to RQ1, this chapter assesses the fairness of face PADs from two aspects,
the nature of the training data and the Operational Decision Threshold Assignment
(ODTA) based on data of different groups.

• As a response to RQ2, this chapter proposes a simple data augmentation solution,
named FairSWAP, to disrupt the identity/semantic information, boosting PAD perfor-
mance and fairness in most cases, as will be demonstrated in a detailed and diverse
experiment.

The rest of this chapter is organized as follows: Section 3.2 presents the essential
background information regarding fairness in automated decision systems and PAD.
Section 3.3 introduces the presented Combined Attribute Annotated Presentation Attack
Detection Dataset (CAAD-PAD), including descriptions of each used PAD dataset, human-
annotation criteria, and experimental protocols designed to enable fairness analyses.
Section 3.4 focuses on setups for fairness assessment and provides the description of used
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PAD algorithms, evaluation metrics including our proposed ABF, and implementation
details. Section 3.5 introduces the proposed FairSWAP for fairness enhancement and
the corresponding implementation details. Section 3.6 and 3.7 discuss the results of
fairness assessment and enhancement of face PADs, respectively. A summary is presented
in Section 3.9.

3.2. Related work
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Figure 3.1.: Aspects effecting fairness in automated decision systems. ∗ indicates the
addressed aspects in this work, where sampling bias, validation/test data
bias, and amplification bias are relevant to the nature of training data, the
ODTA on different data groups, and the training and test on group-disjoint
data, respectively.

3.2.1. Fairness in automated decision systems

Biometric systems, as automated decision-making systems, has been widely deployed in
recent decades. Building an automated decision-making system requires the following
steps: data collection and pre-processing, model/algorithm development, model validation
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and testing, as illustrated in 3.1. Data, such as face and iris traits, are collected by sensors
and pre-processed as input for learnable models. Model/algorithm development aims
to summarize the pattern of biometric traits via supervised/unsupervised learning. The
developed model is then evaluated with respect to certain metrics, such as accuracy and
equal error rate (EER), among others. As suggested in [64, 202], the potential unfairness
triggers may exist at every stage of an automated system, as listed in Figure 3.1 (* refers
to aspects addressed in this work). Potential unfairnesses occur during the data collection
phase, such as sampling bias causing data imbalance, measurement bias related to the
capture environments and sensors, and label bias attributed to annotators. Similarly,
model/algorithm development could be human biased (e.g., problem formulation or
objective function definition by human designer) or statistically biased (e.g., performance
metric based model selection or bias inherited from the training data or pre-processing),
as argued in [46, 60, 202]. Lastly, fairness issues could arise in the model validation
and testing given an account of potential validation/test bias, evaluation metric bias or
amplification bias [202]. Amplification bias occurs when the validation/test data is skewed
in comparison to the training data distribution, which motivates our experimental protocol
design in Section 3.3.3. In automated biometric systems, a threshold commonly computed
from the validation (development) set is necessary to make a final decision. The unfair
distribution of validation data could be transmitted to the threshold computation, which
is an issue analysed in this work. Schwartz et al.[202] suggested that the dataset, the
evaluation, and the human factor are the three critical challenges in machine learning
fairness. Fairness issues caused by human factors are much more complex and multi-
faceted including societal and historical aspects. Therefore, this work focuses on studying
the dataset- and ODTA -related fairness concerns and proposing a fairness enhancement
solution on the data pre-processing level.

3.2.2. Fairness in face presentation attack detection

Recently, Drozdowski et al.[69] presented a comprehensive summary of the existing
literature on fairness assessment and enhancement of biometric systems. This survey
found that a majority of existing studies has conducted experiments using face traits and
has concentrated only on recognition algorithms, while the fairness of PADs has barely
been investigated. Up to now, far too little attention has been paid to the fairness of face
PAD systems. To the best of our knowledge, only one study [81] explored the gender
fairness of iris PAD systems and one work [4] considered the gender fairness of face
PAD by using ResNet50 [108] and VGG16 [207] on one face PAD dataset. The fairness
of demographic attributes (e.g., gender, age, race) and soft-biometric attributes (e.g.,
beards, hair, makeup, accessories) of face PAD systems has been extremely understudied.
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The main possible reason is the insufficient face PAD data and the lack of such attribute
labels. For instance, most of the existing PAD datasets, e.g., OULU-NPU [15], CASIA-MFSD
[262], MSU-MFS [234], Idiap Replay-Attack [44], were collected in laboratories from
insufficient subjects (details can be found in Table 3.1) and thus leading to the limited
variations in soft-biometric characteristics. A large-scale face PAD dataset, CelebA-spoof
[260], provided some additional soft-biometric labels. However, after a comprehensive
analysis on the data distribution, we found that data in attribute groups in CelebA-sooof is
extremely unbalanced over bona fide and attack samples, making it impossible to design
proper experimental protocols for PAD fairness analyses. For example, subjects with
eyeglasses, makeup, or bangs are all bona fide samples. The same issue exists in the
PADISI-Face [195] dataset. To address this issue, this work combined six publicly available
face PAD datasets consisting of print, replay, 3D mask and wax figure attacks, and provided
seven human-annotated attribute labels to enable PAD fairness studies.
In addition to the lack of appropriate labeled data, there is no standard criteria to

assess the fairness of developed systems. Fang et al.[81] studied the demographic bias by
adapting and reporting the differential performance and differential outcome as suggested
for verification performance in [115]. Differential performance as in [81] measures
the difference in the bona fide or attack decision distribution between specific attribute
groups independently of any decision threshold, while differential outcome describes
the difference in APCER or BPCER rates between different demographic groups relative
to a group-specific decision threshold. Alshareef et al.[4] measured the demographic
bias and fairness of PAD solutions by observing the difference in PAD performance, such
as Area Under the Receiver operating characteristic curve (ROC-AUC), accuracy, EER,
and APCER/BPCER. Both studies assessed fairness either using a group-specific decision
thresholds or being independent of any decision threshold
However, using such group-specific thresholds is not fair for different groups, as men-

tioned in [64], and measuring fairness independently from thresholds is not realistic.
Such problems was raised and explored in FRs in [154]. Our work also assess the fairness
associated with ODTA of face PADs by exploring the PAD performance under different
attribute group decision thresholds (corresponds to the marked points of the model valida-
tion/testing phases in the Figure 3.1). Furthermore, to bridge the fairness measurement
gaps, Pereira and Marcel [64] introduced Fairness Discrepancy Rate to evaluate and com-
pare the fairness between biometric verification systems. Unlike measuring the fairness
by reporting differential performance [4, 69, 81], FDR assessed the trade-off between the
model performances by assuming a single ’fair’ decision threshold for all demographic
groups. Therefore, FDR is adapted in this study to assess the fairness of face PADs (details
in Section 3.4.2). However, FDR does not consider the absolute performance, thus a
completely fair but low performing PAD will be considered ’better’ than a slightly unfair
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PAD that performs perfectly, according to FDR. To further link the PAD performance and
fairness, we propose the ABF.

3.3. Combined Attribute Annotated PAD Dataset

Extensive research [3, 8, 64, 69, 218] has shown that recognition systems exhibit bias,
that is, subjects in a certain demographic or non-demographic groups are more accurately
recognized than other groups. However, most of these research efforts focus on the
exploration [8, 64, 218, 225] or mitigation [25, 95, 209, 219] of the bias only in FR
algorithms. There has been no detailed investigation of demographic and non-demographic
bias in face PAD systems. Besides the contemporary nature of biometric bias studies, a
possible reason is the lack of sufficient PAD data with soft-biometric labels. To this end,
we alleviate this issue by combining six face PAD datasets and providing publicly released
corespondent annotations covering demographic and non-demographic attributes, named
Combined Attribute Annotated PAD Dataset (CAAD-PAD). The detailed description of
each selected PAD dataset, the criteria of annotations, the distribution of CAAD-PAD and
the experimental protocols for fairness assessment are presented in the following Section
3.3.1, 3.3.2, and 3.3.3, respectively.

3.3.1. Datasets

(a) CAISA-FASD (b) MSU-MFSD (c) Replay-Attack

(d) OULU-NPU (e) HKBU-MARs (f) SWFFD

Figure 3.2.: Samples from the datasets used to built our CAAD-PAD (attacks in red frame).

The selected six face PAD datasets (to build our CAAD-PAD) are presented in details
in this section and Table 3.1 summarizes the information of these PAD datasets, as well
as other two conventional PAD databases which contain attribute labels. CelebA-Spoof
dataset [260] involving rich annotations (as listed in Table 3.1) is considered unsuitable for
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Dataset Year # BF/attack # Sub Attack types Attribute label
CASIA-FASD [262] 2012 150/450 (V) 50 1 Print, 1 Replay No
Replay-Attack [44] 2012 200/1,000 (V) 50 1 Print, 2 Replay No
MSU-MFSD [234] 2015 70/210 (V) 35 1 Print, 2 Replay No
HKBU-MARs [166] 2016 120/60 (V) 12 2 3D masks No
OULU-NPU [15] 2017 1,980/3,960 (V) 55 2 Print,2 Replay No
SWFFD [135] 2019 2,300/2,300 (I) 745 1 3D face No

CelebA-Spoof [260] 2020 184,407/
377,168(I) 10,177 3 Print, 3 Replay,

1 3D, 3 Paper Cut Yes (40)

PADISI-Face [195] 2021 1,105/924 (V) 360
1 Print, 4 Mask,
1 Makeup, 1 Tattoo,

2 Partial
Yes (4)

CAAD-PAD (our) 2022 2,510/5,680(V)
2,300/2,300(I) 947 3 Print, 2 Replay,

2 3D masks, 1 wax face Yes (7)

Table 3.1.: Summary of the main existing face PAD datasets. "V" and "I" refers to video
and image sample, respectively. "BF" indicates the bona fide samples. The
number following the "Yes" is the number of attribute label types.CAAD-PAD
(our) combines CASIA-FASD [262], Replay-Attack [44], MSU-MFSD [234], HKBU-
MARs [166], OULU-NPU [15] and SWFFD [135]. Despite the rich annotations of
CelebA-Spoof [260], the provided attributes are extremely unbalanced over
bona fide and attack, making it impossible to design proper protocols for
fairness assessment. The PADISI-Face [195] has the same issue and is of a
much smaller scale. These issues are discussed in details in Section 3.3 and
motivates the need for our CAAD-PAD dataset.

the goal of this work work due to the extreme imbalance of its data making it impossible
to design proper experimental protocols for fairness study. For example, subjects with
attributes, such as eyeglasses, makeup and bangs, are all bona fide samples in the CelebA-
Spoof dataset. The similar issue exists in the PADISI-Face [195] dataset. To enable
fairness assessment of face PAD, we selected the following publicly available face PAD
datasets (samples in Figure 3.2): CASIA-FASD [262], Replay-Attack [44], MSU-MFSD
[234], HKBU-MARs [166], OULU-NPU [15] and SWFFD [135], to be composed into
our CAAD-PAD. This combination of datasets are chosen as: 1) they consist of diverse
PAs including print and replay attacks, 3D mask attacks, and wax figure face attacks.
2) CASIA-FASD [262], Replay-Attack [44], MSU-MFSD [234], and OULU-NPU [15] are
widely used in generalization studies [83, 168, 200, 204] which is the main problem in
PAD. 3) HKBU-MARs [166] and SWFFD [135] target realistic mask attack problem which
is one of the practical PA problems in real-world applications. The description of each
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selected dataset are provided in the following:
CASIA-FASD [262] dataset covers a diverse potential attack types in real world including

warped photo, cut photo, and video attacks. CASIA-FASD includes 600 videos across 50
subjects where each subject has 12 videos (three bona fide and nine attack). The videos
consist of low, normal and high quality, where videos of low and normal quality have a
resolution of 640× 480, and high quality videos have a resolution of 1280× 720 pixels.
Idiap Replay-Attack [44] dataset contains 1,200 videos (200 bona fide and 1,000 attack)

of 50 subjects. The bona fide and attack videos were acquired in two sessions: controlled
and adverse where the background and illumination conditions are not uniform. The
attack videos were captured under two modes: hand-based attack (i.e. the attack device
is held by human hand) and fixed-support attack (i.e. the attack device is placed on a
fixed support).
MSU-MFSD [234] dataset consists of 440 videos (110 bona fide and 330 attack videos)

across two attack types, video replay and printed photo, of 55 subjects.
OULU-NPU [15] dataset was captured under the realistic mobile authentication scenarios,

where a total of 5,940 videos (1,980 bona fides and 3,960 attacks) of 55 subjects were
captured under various illumination and backgrounds by six different mobile phones.
HKBU-MARs [166] is a 3D mask PAD dataset where the 3D masks were generated by

two different techniques. First is the ThatsMyFace mask which leverages 3D reconstruction
and 3D printing techniques to generate the facial mask. The advantage of ThatsMyFace
Mask is that the mask can be easily generated with a single customized image, but the
skin texture is not well restored due to the defects of 3D printing technique. The second
technique is the REAL-F mask1 which provides high quality appearance and looks very
similar to a bona fide face as the skin texture, blood vessels of the eyes and iris can be
reconstructed. This database contains 180 videos (120 bona fides and 60 attacks) of 12
subjects. An example of bona fide sample, a ThatsMyFace attack and a REAL-F mask are
shown in Figure 3.2 (e).
Single Wax Figure Face Database (SWFFD) [135] dataset provides wax figure faces as

realistic 3D PAs, serving as complementary of the above face PAD datasets including replay,
print, and other 3D attacks. WFFD consists of 2,200 images with both bona fide and wax
figure attack faces (totally 4,400 faces of 745 subjects) with a high diversity from online
collections. Examples of image of SWFFD [135] are shown in Figure 3.2 (f).
However, these PAD database contains only PAD labels and lack any face attribute labels.

To enabling further PAD fairness assessment in demographic and non-demographic groups,
we provide seven soft-biometric annotations as discussed in the next section.

1https://real-f.jp
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3.3.2. Face attribute annotation criteria
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Figure 3.3.: Samples of each considered attribute. Samples are labeled as occlusion if
they have beard, eyeglass, bangs, or a combination of them. Samples without
beard, bangs, and not wearing eye glass are labeled as non-occlusion. The
other attributes are individually labeled.

We manually annotated the CAAD-PAD dataset under the following criterion (as shown
in Figure 3.3):
• Gender: Gender metric in our case is determined based on the human perception
of the gender from the face image. In this work, a subject is categorized into either
male or female groups based on the majority decision of five annotators. These
decisions might have been also influenced by previous knowledge of the subjects as
some datasets included celebrities.

• Beard: A subject with no visible hair coverage around the mouth or shaved with
only light hair roots is labeled as no beard.

• Eyeglasses: A subject wearing eyeglasses in the face area is annotated as wearing
eyeglasses, regardless of types, shapes and colors of eyeglasses. Note that the
eyeglasses in the area above the forehead is labeled as no eyeglasses, as eyeglasses
in such position will be removed after the face detection and cropping.

• Bangs: A subject with hair covering more than 15% of the forehead is considered to
have bangs.

• Makeup: A subject with noticeable colors of lipstick and eye shadow is categorized
as makeup group.
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• Long/short hair: A subject with hair beyond shoulder is considered to long hair
group.

• Curly/Straight hair: A subject with noticeable waves of hair is categorized into
curly hair group. Such as gender, all the annotations were based on the majority
decision of five annotators.

Overall, the combined CAAD-PAD contains 8,190 videos and 4,600 images across 947
subjects, covering the seven binary attributes.

29% 71%

34% 66%

Female: 34%Male: 66% Female: 30% Male: 70%Training set

Female: 33% Female: 28%Male: 67% Male: 72%

Test set

W/:
W/O:

Figure 3.4.: Data distribution of the training and test set of CAAD-PAD. Most of the at-
tributes are understandably not well-distributed over genders (but well dis-
tributed over bona fide and attacks), e.g. makeup of male sample, beard
of female sample, long hair of male sample. Samples with occlusion and
without occlusion are well-distributed over genders.

3.3.3. Experimental protocols

This section first presents an in-depth analysis of the data distribution of the CAAD-PAD
dataset (as shown in Figure 3.4). The training set is a combined set of training and
development subsets from six used datasets. Similarly, the test set of CAAD-PAD is a
combined set of test subsets from each selected dataset. Therefore, the subjects in the
training and test set are disjoint. The detailed information is provided as follows:

• Training set: As most selected datasets have pre-defined and identity-disjoint
training, development, and test sets, the training set of CAAD-PAD is composed of
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samples from the original training and development subsets. Only HKBU-MARs
[166] does not provide the pre-split subsets. As a result, we manually selected
the subjects to form the identity-disjoint training and test sets of HKBU-MARs by
considering the subject attribute annotations with a subject ratio of 8:2 (train to
test). The ratio of bona fide and attack samples is 1:1.9, and the ratio of female
and male samples is 1:2.1. Samples with occlusion and without occlusion are well-
distributed over genders (close to 1:1). Although samples of several facial attributes
(e.g., makeup, beard, long hair) are not well-distributed over genders, such samples
in CAAD-PAD are very well balanced over bona fide and attack, unlike CelebA-Spoof
[260] and PADISI-Face [195] datasets.

• Test set: The test set consists of the data samples from the pre-defined test subsets
in each dataset (except HKBU-MARs [166] is identity-disjoint split by us). Similar
distribution to the training set is observed in Figure 3.4.

To assess the PAD fairness on different groups, the following protocols are designed to
target three aspects: gender, occlusion, and facial attributes, as well as the effect of the
training data on fairness. The designed protocols are as follows:

• Protocol-1: Protocol-1 targets the fairness of PAD performance across gender groups.
Protocol-1 consists of three sub-protocols:

– protocol 1.1: PAD solution is trained on the above fused training set (including
female and male) and tested separately on female test set and male test set.

– protocol 1.2: This protocol studies gender bias when male data is unseen in the
training phase. Thus, PAD model is trained only on female data in the training
set and tested separately on female and male data in test set.

– protocol 1.3: contrary to to protocol 1.2, PAD model in this protocol is trained
only on male data in the training set, and tested separately on female and male
samples in the test set to study gender bias case where female data is unseen
during the training phase.

• Protocol-2: Protocol-2 targets the fairness of PAD performance across occlusion
groups (occlusion and non-occlusion).

– protocol 2.1: PAD model is trained on the fused training set (including sam-
ples with and without occlusion) and tested separately on occluded and non-
occluded samples.
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– protocol 2.2: This protocol explores fairness when the model only learns
from occluded samples. Therefore, the PAD model is trained on samples with
occlusion and tested separately on samples with and without occlusion.

– protocol 2.3: Conversely, PAD solution is trained only on non-occluded samples
in the training set and tested separately on samples with and without occlusion
in the test set.

• Protocol-3: Protocol-3 explores the fairness of PAD performance across the re-
maining attribute groups (with/without eyeglass, beard, bangs, long/short hair,
straight/short hair), respectively. As some attributes are unbalanced over genders,
such as makeup and beard, we only train PAD models on the fused training set, and
test on each attribute group separately, unlike the extended protocols over gender
and occlusion.

3.4. Fairness assessment

This section first introduces the four PAD solutions used as the bases of our fairness
assessment. Then, the metrics for PAD performance and fairness evaluation are presented.
In addition, we refine the used fairness metric and introduce a novel metric that links the
PAD biometric fairness with the worst PAD cases among all groups, as will be motivated in
details. Lastly, the implementation details are provided to insure reproducibility.

3.4.1. PAD algorithms

To assess the fairness of PAD solutions, we adopt four well-established and diverse PAD
solutions ranging from the hand-crafted feature based to deep learning based methods:
LBP-MLP [63], ResNet50 [108], DeepPixBis [94], LMFD [83]. LBP-MLP [63] Considering
that LBP is a widely used hand-crafted feature in earlier PAD studies [16, 63, 173], we
use LBP features to investigate the fairness of face PAD following the highly influential
work in [16, 173]. Two LBP feature vectors are extracted from each image in RGB and
HSV color space, separately. Then, two feature vectors are concatenated into one vector
of dimension 60× 1. To detect an input image is bona fide or attack, the concatenated
feature vector is fed to a simple Multi-Layer Perceptron (MLP) classifier consisting of only
two fully-connected layer.
ResNet50 [108] Residual learning framework was firstly proposed in [108] aiming to ease
and stabilise the training of networks, since computation complexity increases as network
grows. Considering that ResNet50 [108] was applied as a backbone neural architecture in
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many PAD methods [137, 247, 260] and achieved good PAD performance, we use it in
our experiments to further assess its fairness.
DeepPixBis [94] DeepPixBis [94] is the first work to adopt pixel-wise binary supervision
to enhance the PAD performance. The pixel-wise binary label on the output maps forces
the network to learn fine-grained representation from different pixels/patches. DeepPixBis
[94] showed the good PAD performance under intra-dataset scenario and thus we adopt
in our PAD fairness assessment.
LMFD-PAD [83] LMFD-PAD [83] presented a dual-stream PAD framework, in which one
stream was used to learn features in the frequency domain and the other stream was used
to learn features in spatial color space. The benefit of this architecture is that feature in
frequency domain is less influenced by data capture devices and environment information,
resulting in one of the current top performing face PADs in the literature. We used this PAD
solution by considering its high PAD generalizability under the cross-dataset evaluation.
Implementation details of all solutions are further discussed in Section 3.4.3.

3.4.2. Evaluation metrics

To measure the performance and the fairness of the PAD algorithms, we adopt the widely
used PAD metrics defined in the standardized ISO/IEC 30107-3 [10] and a fairness
measurement metric for FR systems introduced recently in [64], which makes the bases
of our proposed PAD fairness metric.

PAD performance metric: Following the definitions in ISO/IEC 30107-3 [10], Attack
Presentation Classification Error Rate (APCER) and Bona Fide presentation classification
error rate (BPCER) are used. APCER refers to the proportion of attack presentations
incorrectly classified as bona fide presentations and BPCER refers to the proportion of
bona fide samples misclassified as attack samples. To cover different operation points, we
report the 1-BPCER value at six different fixed APCER values (0.5%, 1%, 5%, 10%, 15%,
20%) in plots. To provide a clear and straightforward comparison, we plot these values in
Figures (as shown in Figure 3.6, 3.10, 3.8, 3.11). In addition, Equal Error Rate (EER), the
APCER value when APCER and BPCER are equal, is also reported to measure the overall
PAD performance in Tables 3.2, 3.4, 3.6.

Biometric fairness metric: To explore the fairness of PAD performance on different
attribute groups, we adapt the Fairness Discrepancy Rate. FDR is proposed in [64] to assess
fairness of a biometric verification systems by leveraging a single decision threshold from
all test groups. Their experimental assessment based on pre-built fair and unfair systems
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[64] illustrated that FDR can better represent the fairness of algorithms in comparison
to only using ROC/DET curves. As a result, FDR we utilize to verify the fairness of PAD
solutions. A PAD system is considered fair if different attribute groups share the same
BPCER and BPCER for a given decision threshold τ , where τ = APCERx from all groups.
Based on this theorization, the FDR can be calculated as follows:

A(τ) = max(|APCERdi(τ)−APCERdj (τ)|), ∀di, dj ∈ D (3.1)
B(τ) = max(|BPCERdi(τ)−BPCERdj (τ)|), ∀di, dj ∈ D (3.2)
FDR(τ) = 1− (αA(τ) + (1− α)B(τ)) (3.3)

whereD is a set of attribute groupsD = {d1, d2, ..., dn}, α is a hyper-parameter that defines
the importance of misclassified attacks (i.e. APCER). The value of FDR varies from 0
(maximum discrepancy) to 1 (minimum discrepancy). Therefore, FDR has smaller-is-worse
semantics. We plot the FDR values under different decision thresholds τ = APCERx

where x varies from 0.005 to 0.2. As stated in [64], the FDR value of a fair system is not
sensitive to the variation of τ , which reflected in the plot is that the FDR curve should be
straight and in a higher position. The α is set to 0.5 in our experiments as suggested in
[64], but can be chosen differently if a certain application considers that the fairness in
one of the errors (BPCER or BPCER) is more important.

Accuracy Balanced Fairness: To explore the fairness of PAD performance on different
attribute groups, we adapt the FDR. However, FDR does not consider absolute performance,
thus a completely fair but low-performing PAD will be considered "better" than a very
slightly unfair PAD that performs perfectly, according to FDR. To further associate the PAD
performance and biometric fairness, we propose the Accuracy Balanced Fairness metric.
Given a decision threshold τ , where τ = APCERx from all groups, ABF is formulated as
follows:

A(τ) =
max(|APCERdi(τ)−APCERdj (τ)|)

1−maxD(APCER(τ))
, ∀di, dj ∈ D (3.4)

B(τ) =
max(|BPCERdi(τ)−BPCERdj (τ)|)

1−maxD(BPCER(τ))
, ∀di, dj ∈ D (3.5)

ABF (τ) = 1− (αA(τ) + (1− α)B(τ)) (3.6)

Numerators of A(τ) and B(τ) are the same as the FDR metrics, while denominators
1−maxD(APCER(τ)) and 1−maxD(BPCER(τ) are used to weight the discrepancy by
considering the worst PAD cases in a set of attribute groups. As a result, a higher ABF value
is linked to a smaller fairness discrepancy and a higher PAD performance. Similar to FDR
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values, we compute the ABF values under different decision thresholds τ = APCERx

where x varies from 0.005 to 0.2 and the area under the ABF is provided for overall
quantitative comparison.

3.4.3. Implementation details

In our experiments, we sampled 20 frames at equal intervals from each video (when the
data format is video) for training and testing, following the common practice of frame
sampling in PAD [83, 94]. For each frame, the face was detected and cropped by Multi-task
cascaded convolutional neural network (MTCNN) [256] and resized to 224×224×3 pixels
[83, 94]. For training an LBP-MLP model, the Adam optimizer was used with an initial
learning rate of 10−1 and binary cross-entropy loss was used to supervise the MLP training.
For training the DeepPixBis [94] and LMFD-PAD [83], we followed the implementation
setups described in their respective works, including horizontal flip, rotation, and color
jitter. For training a ResNet model, we use the same training settings for DeepPixBis [94]
with cross-entropy loss only. To address the unequal distribution of samples between
attacks and bona fide, we simply oversample the minority to make the ratio of bona fide
and attack data close to 1:1 following the common practice [83, 94, 153, 199]. To further
reduce overfitting, we also utilized the early stopping technique with the maximum epochs
of 100 and the patience of 20 epochs for ResNet [94], DeepPixBis [94], and LMFD-PAD
[83]. The maximum training epoch is experimentally set to 1000 for LBP-MLP [63].

3.5. Fairness enhancement: FairSWAP

Figure 3.5.: FairSWAP: patches are swapped between training samples from different
attribute groups, aiming to disorder the identity and appearance features.

In this work, four face PAD solutions (details in Section 3.4.1) are adopted to investigate
the performance fairness of different groups. The experimental results reported later in
Section 3.6 indicate that all assessed PAD solutions perform unfairly on different attribute
groups. For example, Table 3.2 shows that the performance on the female group is worse
than on the male group when the model learns from both male and female groups. Also,
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Table 3.6 indicates that subjects with bangs possess a worse performance than subjects
without bangs. One possible reason is that face PAD algorithms may be implicitly influ-
enced by semantic concepts related to face identity, rather than constantly focusing on
discovering the discriminate features between bona fide and attacks. Motivated by this
reasoning, we propose a fairness boosting cross-attribute patch swapping augmentation
(FairSWAP) technique to mitigate the bias in the trained PAD solutions. The FairSWAP
swaps image patches between images of different attribute groups to disrupt the demo-
graphic/semantic information and guide PAD models to learn to differentiate between
attack and bona fide clues, rather than other irrelevant clues. As shown in Figure 3.5,
given a training image, the attribute region of a subject, such as beard, eyeglasses, bangs,
and makeup (e.g. lipstick), is extracted and overlaid on the sample of another training
subject. In the case of gender groups, a randomly located (details to follow) region from
an image of a female subject is swapped to an image of a male subject, and vice versa.
In our work, the swapping process is simplified to randomly selecting a region from the
candidate image and swapping it to the same position in another image, which acts as
data augmentation. For PAD methods which utilize pixel-wise supervision (i.e. DeepPixBis
[94] and LMFD-PAD [83]), the corresponding ground truth map is updated based on the
swapped locations simultaneously. For the PAD methods which utilize binary supervision
(i.e. LBP-MLP [63] and ResNet50 [108]), the label of the image is updated to attack if the
input image after swapping contains a partial attack region, otherwise, the label of the
image is unchanged. The swapping strategy is detailed as follows:

• Given a bona fide image x1, a randomly located patch is swapped with a probability
p1. If FairSWAP is performed, another bona fide candidate image x2 (i.e. all bona fide
training images except x1) will be randomly selected. The corresponding training
label for training remains bona fide.

• Given an attack image x1, the final image fed to models is determined by three
probabilities. A probability p2 is first used to decide whether to apply FairSWAP. If
FairSWAP is performed, p3 is then used to determine a randomly selected attack
or bona fide candidate image (i.e. all training samples excluding x1). Lastly, if a
bona fide image is selected, p4 is used to decide the partial attack size. The binary
training labels remain attack, while the corresponding pixel-wise map is updated
according to the swapped region.

As FairSWAP serves as a data augmentation technique and can be plugged into any
training process, the image pre-processing and hyper-parameters (e.g., optimizer and
learning rate) used to train the fairness enhancement model are the same as used in the
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fairness assessment in Section 3.4.3. The swapped patch size in FairSWAP is 64× 64 in
our experiments and the probabilities p1, p2, p3, and p4 are manually set to 0.3, 0.3, 0.5,
and 0.5 based on empirically experiments.

3.6. Results of fairness assessment

This section presents the PAD performance across attribute groups in terms of detection
EER and assesses the fairness under various ODTAs in terms of FDR and proposed ABF.
To explore the dataset-induced potential bias, we adopt four PAD models described in
Section 3.4.1 on different data groups following the experimental protocols presented in
Section 3.3.3. The overall PAD performance is reported in terms of EER values in Table 3.2,
3.4, and 3.6. In addition, 1-BPCER values are computed based on different ODTAs and
illustrated in Figure 3.6, 3.8. In the following, we discuss the results on gender groups,
occlusion and non-occlusion groups, and the remaining attribute groups.

3.6.1. Fairness assessment over gender (Protocol-1)

Trained Test LBP [63] ResNet50 [108] DeepPixBis [94] LMFD-PAD [83]
B FairSwap Impro B FairSwap Impro B FairSwap Impro B FairSwap Impro

Fused M 11.13 11.27 +0.14 2.54 1.86 -0.68 1.17 1.03 -0.14 1.94 1.72 -0.22
F 17.69 14.06 -3.63 3.00 2.34 -0.66 1.57 1.29 -0.28 2.62 2.25 -0.37

M M 12.55 12.88 +0.33 2.96 1.54 -1.42 1.32 1.45 +0.13 2.15 2.68 +0.53
F 16.17 17.12 +0.95 5.90 2.34 -3.56 3.50 2.56 -0.94 3.89 3.87 -0.02

F M 19.04 22.48 +3.44 13.13 9.13 -4.00 10.95 11.77 +0.82 9.88 10.85 +0.97
F 18.67 21.98 +3.31 10.62 8.25 -2.37 7.52 8.42 +0.90 9.15 8.33 -0.82

Table 3.2.: PAD performance in terms of EER (%) on gender groups by baseline models
(B) and FairSWAP. Fused, M, and F refer to the fused male and female data,
male, and female data, respectively. Impro refers to percentage improvement.
The results are obtained by separately training models on fused, male, and
female training data of CAAD-PAD. Bold numbers indicate the highest EER
values between male and female test data by each trained model.

PAD Performance with respect to gender The experiments were conducted following
the designed Protocol-1 (Section 3.3.3) to assess the differential performance and out-
come, and fairness on gender groups. Four PAD models LBP-MLP [63], ResNet50 [108],
DeepPixBis [94], LMFD-PAD [83] were trained separately on a fused training set including
males and females (Fused), males (M), and females (F) of CAAD-PAD. The results are
then reported separately on male and female test data in Table 3.2. The EER values in
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Figure 3.6.: The results of baseline models on gender groups in terms of
BPCER @ APCERx. To study the impact of ODTA on fairness, the
threshold τ is calculated separately on fused, male, and female test set.
When evaluating models trained on fused data, using a threshold computed
on male samples shows a relatively higher performance than a threshold
from fused or male groups.

columns ’B’ refer to baseline results (results of FairSWAP will be discussed later in Section
3.7) and bold numbers refer to higher error rates between the male and female groups.
In the case of models trained separately on male and female samples, the error rates are
higher for the gender group that is unseen during the training phase. Such results are
reasonable as it is a challenge for models to generalize on data with unknown aspects.
When models are trained on the fused data, male test set obtains consistently lower EER
values than females, indicating that the male group has a relatively higher protection
from the PAD systems. It should be noted that the ratio of male and female samples in
the fused training data is close to 1:1, achieved by data oversampling (details Section
3.4.3). Moreover, models trained on the male group achieve consistently lower EER values
on both test sets than models trained on the female group. For example, when models
are trained on male data, DeepPixBis [94] and LMFD-PAD [83] achieve the lowest EER
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Figure 3.7.: Fairness measure in terms of ABF values by employing four face PADmodels
on gender groups. Solid lines represents the results of baseline models,
dashed lines represents the results of FairSWAP. Higher and smoother lines
indicate higher fairness. Models trained on separate gender groups possess
more discrepancies than the same PAD models trained on fused data.

Metric Trained LBP [63] ResNet50 [108] DeepPixBis [94] LMFD-PAD [83]
B FairSwap B FairSwap B FairSwap B FairSwap

FD
R

Fused 0.821 0.870 0.882 0.900 0.900 0.904 0.902 0.895
Male 0.775 0.820 0.871 0.895 0.886 0.888 0.883 0.889
Female 0.871 0.901 0.893 0.874 0.881 0.885 0.889 0.882
Average 0.822 0.864 0.882 0.890 0.889 0.892 0.891 0.889

AB
F

Fused 0.695 0.762 0.877 0.905 0.899 0.909 0.901 0.901
Male 0.443 0.358 0.857 0.901 0.885 0.890 0.885 0.899
Female 0.723 0.894 0.891 0.848 0.871 0.888 0.882 0.883
Average 0.620 0.671 0.875 0.885 0.885 0.896 0.889 0.894

Table 3.3.: Fairness in terms of FDR-AUC and ABF-AUCwith respect to gender. The higher
FDR-AUC and ABF-AUC indicate a fairer PAD (highest in bold). FairSWAP
enhances the fairness in most cases.

value 3.50% and 3.89%, while the lowest EER values obtained by models trained on
females are 10.95% by DeepPixBis and 9.85% by LMFD-PAD. Both observations suggest
that a model tends to learn a better feature representation from male group and shows a
better PAD generalizability on male group, which is consistent with the observations in FR
[150, 228].
Figure 3.6 explores the PAD performance under different ODTA s by illustrating the

1-BPCER(τ) values at various thresholds τ = APCERx separately computed from fused,
male, and female groups. By observing Figure 3.6, we conclude that 1) When evaluating
models trained on fused data, using a decision threshold computed on female samples
shows a relatively lower performance than a threshold from fused or male groups. 2)
When evaluating models trained on males, the PAD performance is consistently higher
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(i.e, higher 1-BPCER values) on male test data than on females irrespective of ODTA s. 3)
However, when evaluating models trained on females, male test data obtains comparable
(by ResNet50 and DeepPixBis) and even higher PAD performance (by LBP-MLP) than
testing on females, unlike the previous EER results observation that demographic data
known in the training set exhibits better PAD performance. These observations indicate
that in addition to the bias caused by the training data, the ODTA is also one of the triggers
of PAD bias.

Fairness with respect to gender The above analysis focuses on the exploration of dif-
ferential performance and outcome of PAD induced by training data and ODTA s. To
further assess the training data-related fairness and performance in PAD, we illustrate
ABFs in Figure 3.7. In addition, Table 3.3 presents the area under FDR (FDR-AUC) and
area under ABF (ABF-AUC) of each PAD system. As suggested in [64], a more stable
and higher FDR curve and a higher FDR-AUC refer to a fairer system. This section first
focuses on the fairness of baseline models without the proposed FariSWAP, i.e. solid
curves. We observe that all ABF curves in Figure 3.7 showed varied degrees of fluctuation.
Moreover, deep-learning-based models trained on separate gender groups (blue and green
curves) have more discrepancies than the same PAD model trained on fused data (red
curves) in most cases. Such observations are consistent with the ABF-AUC values in Table
3.3. In addition, deep-learning-based models exhibit slightly higher FDR-AUC values
than the handcrafted-feature-based approach. when associating PAD performance and
fairness, deep-learning-based models obtain significantly higher ABF-AUC values in Table
3.3. To summarize, we concluded that the training data distribution does affect the gender
fairness of face PAD methods.

3.6.2. Fairness assessment over occlusion (Protocol-2)

Similar to above gender fairness discussion, we report the face PAD performance in terms
of EER values on each occlusion/non-occlusion group in Table 3.4 and the 1-BPCER(τ)
value at different ODTA s in Figure 3.8. Furthermore, we assess the fairness of PAD models
trained on various composition of training data in Figure 3.9 and Table 3.5.

PADPerformancewith respect to occlusion As in Table 3.4, we observe that: 1) Training
model on separate occlusion/non-occlusion data performs better on the learned group
data. 2) Models trained on non-occlusion group obtain significant higher EER values
than models trained on occlusion group on both test groups, respectively. 3) Models
trained on fused data achieve slightly higher EER values on occlusion group in most cases.
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Trained Test LBP [63] ResNet50 [108] DeepPixBis [94] LMFD-PAD [83]
B FairSwap Impro B FairSwap Impro B FairSwap Impro B FairSwap Impro

Fused O 13.40 11.61 -1.79 2.93 2.65 -0.28 1.19 1.46 +0.27 2.54 2.28 -0.26
w/o O 13.29 12.4 -0.89 2.04 1.82 -0.22 1.33 0.95 -0.38 1.98 1.67 -0.31

O O 11.11 15.05 +3.94 3.64 2.68 -0.96 1.21 1.87 +0.66 2.87 2.80 -0.07
w/o O 14.71 18.3 +3.59 6.27 2.83 -3.44 2.69 3.43 +0.74 3.21 3.22 +0.01

w/o O O 22.60 21.43 -1.17 11.40 7.89 -3.51 9.91 6.62 -3.29 8.94 8.19 -0.75
w/o O 19.46 19.60 +0.14 4.94 4.31 -0.63 6.08 3.86 -2.22 4.82 4.68 -0.14

Table 3.4.: PAD performance in terms of EER (%) on occlusion groups by baseline models
(B) and FairSWAP. Fused, O, and w/o O refer to the fused data, occlusion,
and non-occlusion data, respectively. Bold numbers indicate the highest EER
values between occlusion and non-occlusion test data by each trained model.
The results imply that occlusion group is more challenging to be correctly
classified than non-occlusion group, but can help models learn more complex
and generalized representations.

This might suggest that occluded data is harder to classified correctly than non-occluded
data, but it can help models to learn a more complex and generalized representations.
Furthermore, as in Figure 3.8, we empirically notice that the performance of models
trained on fused data is decreased by assigning decision thresholds τ driven from occluded
data. In addition, when τ at smaller APCER, LBP-MLP and DeepPixBis model perform
worse on the non-occluded group than on the occluded group (i.e. curves of orange series
lower than curves of blue series), which is in contrast to previous observations in terms of
EER values. Besides, despite some performance degradation of models trained on separate
group data by various thresholds, the tendencies of differential outcome between two
test groups remain coincident with the observations in terms of EER values. Overall, we
concluded that the training data, distribution different data and ODTA s are triggers of
the PAD performance bias.

Fairness with respect to occlusion To neglect the effect of ODTA s, two fairness metrics
(FDR and ABF) of PAD models on different training data groups are computed by applying
a ’fair’ decision threshold (as stated in the Section 3.4.2 and in [64]). Figure 3.9 illustrates
the ABF values. In terms of the ABFs, it can be seen that deep-learning-based models
trained on non-occlusion group are significant unfairer (solid green curves) than models
trained on occlusion group (solid blue curves) and fused data group (solid red curves).
With the fused training data, models show the smaller fairness discrepancies, i.e. higher
and stable ABF curves. ABF-AUC values in Table 3.5 support these findings, i.e. highest
ABF-AUC values are achieved by models trained on the fused data. ABF-AUC values are
consistent with these observations and confirm that diverse training data is able to enhance
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Figure 3.8.: The results of baseline models on occlusion group in terms of
BPCER @ APCERx. To study the impact of ODTA on fairness, the thresh-
old τ is calculated separately on fused, occlusion, and non-occlusion test
set. Performance of models trained on fused data degrades when assigning
a τ driven from the occlusion group.

Metric Trained LBP [63] ResNet50 [108] DeepPixBis [94] LMFD-PAD [83]
B FairSwap B FairSwap B FairSwap B FairSwap

FD
R

Fused 0.887 0.892 0.898 0.899 0.904 0.905 0.901 0.902
Occlusion 0.856 0.884 0.883 0.899 0.901 0.891 0.901 0.894
w/o Occlusion 0.875 0.841 0.832 0.834 0.844 0.865 0.815 0.849
Average 0.873 0.872 0.871 0.877 0.883 0.887 0.872 0.882

AB
F

Fused 0.874 0.839 0.898 0.904 0.904 0.908 0.902 0.907
Occlusion 0.828 0.830 0.874 0.905 0.901 0.897 0.900 0.901
w/o occlusion 0.826 0.571 0.781 0.794 0.794 0.861 0.751 0.826
Average 0.843 0.747 0.851 0.868 0.866 0.889 0.851 0.878

Table 3.5.: Fairness in terms of FDR-AUC and ABF-AUCwith respect to occlusion attribute.
The higher FDR-AUC and ABF-AUC in bold indicate a fairer PAD model.
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Figure 3.9.: Fairness measure in terms of ABF values by employing four face PADmodels
on occlusion groups. Solid lines represents the results of baseline models,
dashed lines represents the results of FairSWAP. Higher and smoother lines
indicate higher fairness. Models trained on fused and occluded data exhibit
higher fairness.

both the performance and fairness of PAD algorithms.

Attribute Type LBP [63] ResNet50 [108] DeepPixBis [94] LMFD-PAD [83]
B FairSwap Impro B FairSwap Impro B FairSwap Impro B FairSwap Impro

Bangs w 13.42 12.70 -0.72 3.71 3.49 -0.22 1.36 1.60 +0.24 2.64 2.54 -0.10
w/o 13.19 12.05 -1.14 2.31 1.54 -0.77 1.27 0.92 -0.35 1.91 1.57 -0.34

Beard w 12.16 8.21 -3.95 2.96 2.08 -0.88 0.42 0.46 +0.04 1.98 1.78 -0.20
w/o 13.33 12.39 -0.94 2.65 2.05 -0.60 1.38 1.16 -0.22 2.17 1.85 -0.32

Eye glass w 13.61 11.41 -2.20 3.25 2.28 -0.97 1.25 1.61 +0.36 2.61 2.25 -0.36
w/o 13.45 12.87 -0.58 1.96 1.86 -0.10 1.31 0.67 -0.64 1.76 1.44 -0.32

Makeup w 12.20 14.12 +1.92 2.69 1.34 -1.35 2.49 0.93 -1.56 4.16 1.19 -2.97
w/o 13.33 11.95 -1.38 2.68 2.12 -0.56 1.22 1.11 -0.11 1.99 1.76 -0.23

LongHair w 21.69 16.80 -4.89 2.50 2.88 +0.38 1.82 1.84 +0.02 3.44 2.84 -0.60
w/o 11.11 11.10 -0.01 2.67 1.67 -1.00 1.19 1.05 -0.14 1.80 1.61 -0.19

StraightHair w 12.90 12.09 -0.81 2.82 2.17 -0.65 1.38 1.24 -0.14 2.30 1.92 -0.38
w/o 14.36 12.81 -1.55 1.68 1.19 -0.49 0.67 0.09 -0.58 0.83 0.97 +0.14

Average 13.73 12.38 -1.35 2.66 2.06 -0.60 1.31 1.06 -0.26 2.30 1.81 -0.49

Table 3.6.: PAD performance in terms of EER (%) on the other attribute groups by baseline
(B) and FairSWAP models trained on fused data. Type w and w/o refer to test
samples with such attribute, and without such attribute, respectively. Bold
numbers indicate the highest EER values between w and w/o test attribute
group by each trained model. Non-demographic attributes exhibit an implicit
effect on PAD to some extent.

3.6.3. Fairness assessment over other attributes (Protocol-3)

In addition to the gender and occlusion attributes, we assess the PAD performance and
fairness on six pairwise non-demograpihc attributes: with/without bangs, beard, eye-
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Metric Tested LBP [63] ResNet50 [108] DeepPixBis [94] LMFD-PAD [83]
B FairSwap B FairSwap B FairSwap B FairSwap

FD
R

Bangs 0.893 0.895 0.900 0.890 0.901 0.901 0.895 0.899
Beard 0.832 0.834 0.889 0.902 0.890 0.898 0.901 0.897
Eyeglasses 0.883 0.899 0.884 0.895 0.899 0.898 0.902 0.902
Makeup 0.859 0.859 0.870 0.901 0.893 0.901 0.893 0.887
LongHair 0.814 0.864 0.878 0.894 0.902 0.897 0.895 0.889
StraightHair 0.850 0.882 0.877 0.889 0.905 0.901 0.885 0.896
Average 0.855 0.872 0.883 0.895 0.898 0.899 0.895 0.895

AB
F

Bangs 0.884 0.837 0.900 0.895 0.900 0.906 0.893 0.905
Beard 0.779 0.647 0.886 0.907 0.887 0.904 0.900 0.902
Eyeglasses 0.872 0.879 0.881 0.899 0.898 0.902 0.902 0.907
Makeup 0.743 0.399∗ 0.858 0.906 0.891 0.906 0.891 0.892
LongHair 0.700 0.795 0.872 0.901 0.901 0.903 0.893 0.894
StraightHair 0.803 0.816 0.873 0.894 0.905 0.894 0.893 0.902
Average 0.797 0.729 0.878 0.900 0.897 0.903 0.895 0.900

Table 3.7.: Fairness in terms of FDR-AUC and ABF-AUC with respect to other attributes by
employing models trained on fused data. The higher FDR-AUC and ABF-AUC
in bold indicate a fairer PAD model. The bold numbers refer to the highest
values between baseline and FairSWAP. FairSWAP enhances the fairness of
all deep-learning-based PAD models.

glasses, makeup, long hair, and straight hair. We omit the assessment of the imbalanced
training data due to the insufficient data across such attributes. The PAD performances on
these attributes are evaluated only by adopting the models trained on the fused data.

PAD Performance with respect to attributes Table 3.6 presents the PAD performance in
terms of the EER values (first focusing on the baseline results (B)). The bold numbers refer
to the highest EER value between each paired attribute for each PAD approach. In case of
the attribute Bangs, EER values of samples with bangs is consistently lower than without
bangs for all training models. Subjects wearing eyeglasses are more difficult to detect
correctly. For attribute Beard, a different behaviour is observed in comparison with other
two occlusion annotations (Bangs and Eyeglasses), i.e. models perform better on samples
with beards in most cases. Similarly, samples without makeup obtains lower EER values
in most cases. Both may be attributed by that attributes without Beard and with Makeup
correlate exclusively with the female group as presented in Figure 3.4. For attributes
LongHair and StaightHair, samples with such attributes achieve higher error rates than
samples without such attributes in most cases. By empirically observing the cropped faces,
one possible reason is that long hair has slightly higher possibility to cover the ear region
than short hair and thus leading to some discriminate patterns loss. Additionally, the
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pattern of curly hair may be somehow easier to be learned by the model than straight hair.
Overall, these attributes are interrelated and entangled and the reasons behind the PAD
behaviour are thus difficult to analyze in a stand-alone manner. We can conclude that
non-demographic attributes also exhibit somehow implicit influences on PAD performance.

Fairness with respect to other attributes Table 3.7 presents FDR-AUC and ABF-AUC,
where the italic numbers refer to the two highest FDR-AUC values and two highest ABF-
AUC values. From Table 3.7, we make several observations: 1) Occlusion attribute (bangs,
beard or eyeglasses) obtained the highest FDR-AUC and highest ABF-AUC values in most
cases (six out of eight baseline cases). 2) Deep-learning-based PAD solutions are fairer
than hand-crafted feature-based approach, especially when considering ABF values. This
results may be explained by the fact that deep learning models learn more abstract features
beyond the texture features. Overall, PAD models show the slightly different fairness
between non-demographic attribute groups. These differences might be inherent from the
training data that the numbers of training samples in each attribute groups are different.

3.7. Results of fairness enhancement

The fairness investigation results on CAAD-PAD ( Section 3.6) showed that the training
data and ODTA are triggers of PAD unfairness. The observed unfairness may be caused by
PAD models learning the identity and semantic information beyond the discriminative
attack cues. Therefore, we proposed the FairSWAP method, acting as a data augmentation
technique, to enhance the PAD fairness (Section 3.5). This section discusses fairness
enhancement results by applying the FairSWAP solution on gender, occlusion, and the
remaining attribute groups of CAAD-PAD.

3.7.1. Fairness enhancement over gender (Protocol-1)

Table 3.2 presents the PAD performance in terms of EER values and Figure 3.10 illustrates
the performance under different ODTAs. As shown in Table 3.2, three deep-learning-based
PAD methods with the FairSWAP solution achieve improved performance in 13 out of 18
experimental cases on gender groups. However, LBP-MLP method did not benefit from
the FairSWAP solution. The possible reason is that the mixed illuminations in augmented
images decrease the discrimination ability of color-channel-based LBP features. In Figure
3.10, the PAD performance differences between male and female groups still exist, but
the differences under different ODTAs are smaller, i.e. the curves of similar colors (blue
series or orange series) are closer.
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The dotted curves in Figure 3.7 refer to ABF curves and Table 3.3 presents the FDR-
AUC and ABF-AUC values on gender groups. As shown in Figure 3.7, the dotted ABF
curves are higher than solid curves in some cases (44 higher FDR values out of 72 cases
by considering FDR at all plotted decision thresholds), especially when deep-learning-
based models trained on the non-occlusion data (green curves). Although LBP-MLP with
FairSWAP did not obtain improved PAD performance, it enhances the fairness LBP-MLP
(i.e. higher FDR values) as shown in Table 3.2. PAD methods with FairSWAP achieve
consistently higher ABF values than baseline models, indicating the combined benefits of
FairSWAP in terms of performance and fairness.
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Figure 3.10.: The results of FairSWAP models on gender group in terms of
BPCER @ APCERx. While PAD performance differences between males
and females still exist, the differences under different ODTAs are smaller,
i.e. the curves within the blue and orange series are closer.

3.7.2. Fairness enhancement over occlusion (Protocol-2)

As shown in Table 3.4 and Figure 3.11, we conclude that: 1) LBP-MLP method does not
benefit much from the FairSWAP solution compared to the deep-learning-based models.
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Figure 3.11.: The results of FairSWAP on occlusion group in terms of
BPCER @ APCERx. With the help of FairSWAP, the difference in
PAD performance under different ODTAs is reduced, i.e. the curves are
closer within the blue and orange series.

2) When evaluating models trained on the non-occlusion group, models with FairSWAP
significantly outperform baseline models (improvements in seven out of eight cases). 3)
The differential performance and outcome of PAD under different ODTAs are decreased
with the help of the FairSWAP solution. As shown in Figure 3.9, the dotted FDR curves
are smoother than solid curves when LBP-MLP, DeepPixBis, and ReseNet50 are trained
on the occlusion group (blue curves). In the case of models trained on the non-occlusion
group, FDR curves of DeepPixBis and LMFD-PAD with FairSWAP (dotted green lines) are
higher than baseline models (solid green lines). This visual observations are reflected in
the ABF-AUC values in Table 3.5. Deep-learning-based methods with FairSWAP solution
result in higher FDR-AUC values in all cases, and higher ABF-AUC values except LBP-MLP
method achieves comparable results (0.873 FDR-AUC without FairSWAP and 0.872 with
FairSWAP). In general, FairSWAP approach enhances the PAD performance and fairness
on occlusion attribute in most cases, especially for deep-learning-based PAD solutions.
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3.7.3. Fairness enhancement over other attributes (Protocol-3)

Table 3.6 compares the PAD performance of baseline models and models with FairSWAP
in terms of EER. FairSWAP improves the PAD performance on most protocol-3 attribute
groups. By considering the average performance of each model, models with FairSWAP
outperform baseline models. The FDR-AUC and ABF-AUC values are presented in Table
3.7. FairSWAP obtains comparable or higher fairness (i.e. higher FDR-AUC values) than
baselines. Looking at ABF-AUC values, deep-learning-based models benefit from the
FairSWAP approach, while LBP-MLP with FairSWAP obtains a lower average ABF-AUC
value than without FairSWAP, mainly due to the behavior with the Makeup attribute.
Overall, the FairSWAP approach enhances the PAD performance and fairness on most
attribute groups, especially for deep-learning-based PAD solutions.

3.8. Discussion

To enable answer RQ1 and RQ2, this chapter presented CAAD-PAD dataset by combining
several well-known PAD datasets where seven human-annotated attribute labels are
provided. Then, to represent both the PAD fairness and the absolute PAD performance
simultaneously, a novel metric, ABF, is introduced. As a result, the answers to RQ1 and
RQ2 are provided with detailed investigations and analyses.

• This chapter conducted a set of extensive experiments following three designed
experimental protocols over gender, occlusion, and the other attributes. With such
experiments for fairness assessment, it can be concluded that training data and
deployment choices, ODTA on different groups, are triggers of the unfairness of face
PAD. For example, when models are trained separately on male and female groups,
EER values are higher for the gender group that is unseen during the training phase.
Moreover, models trained on fused data achieve consistently higher EER values on
females than males. When evaluating models trained on fused data, using a decision
threshold computed on female samples shows relatively lower performance than a
threshold from fused or male groups.

• Based on these analyses, this chapter proposed a data augmentation method, Fair-
SWAP, to mitigate the bias in the trained PAD solutions. Detailed experimental
results demonstrate that FairSWAP approach enhanced the PAD performance and
fairness on gender, occlusion, and other attributes in most cases, especially for
deep-learning-based PAD solutions.
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3.9. Summary

To address the understudied issue of fairness in face PAD, this chapter provided a compre-
hensive analysis of the topic. To enable the answering of RQ1 and RQ2, the chapter first
presented the CAAD-PAD dataset, which combines six publicly available face PAD datasets
in Section 3.3. The dataset includes seven human-annotated attribute labels covering
both demographic and non-demographic attributes. Additionally, the chapter introduced a
novel metric, ABF, which jointly represents both the PAD fairness and absolute PAD perfor-
mance. This chapter analyzed the fairness of face PAD and its relation to the nature of the
training data and the ODTA on different data groups by employing four face PAD methods.
Extensive experimental results in Section 3.6 pointed out that the training data and ODTA
are triggers of unfairness in face PAD, providing an answer to RQ1. Consequently, this
chapter proposed a simple yet effective solution, FairSWAP, acting as a data augmentation
technique, to enhance the fairness of face PAD. FairSWAP aims to disorder the attribute
information and guide models to mine discriminative attack features instead of identity
or appearance features. Extensive experiments on the CAAD-PAD dataset in Section 3.7
demonstrated that FairSWAP boosts PAD performance and fairness on gender, occlusion,
and other attribute groups in most experimental setups, providing an answer to RQ2.
The next chapter focuses on the emerging challenge of masked face PAD.
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4. The emerging challenge of masked face
presentation attack detection

The previous chapter assessed the fairness of the face PAD algorithms and alleviated the
bias by intelligently augmenting the training data. This chapter addresses the emerging
and unexpected challenge for FR and PAD posed by wearing a facial masked during the
COVID-19 pandemic. This chapter will first present a new large-scale face masked PAD
database to enable the study of the effect of facial masked PAs on FR and PAD systems.
Then, this chapter provides a comprehensive analysis of the effect of masked face PAs
for the existing FR and PAD systems as a response to RQ3 and RQ4. Furthermore, this
chapter introduces a partial attack label supervision and regional weighted inference-based
method to address the face masked PAs issue as a response to RQ5. This chapter is based
on the published papers [75, 84].

4.1. Introduction

Since the SARS-CoV-2 coronavirus outbreak and its rapid global spread, wearing a mask
has become one of the most efficient ways to protect and prevent getting infected with
COVID-19. However, for identity checks in crowded scenarios such as at airports, removing
the mask for FR increases the chance of infection. Wearing masks in public might be
an essential health measure and a new norm even after the COVID-19 pandemic as
most countries support the use of masks to minimize the spread of the virus. As a result,
researchers have shown an increased interest in the effect of face masks on the performance
of FR verification [51, 54, 181]. The results of their studies have shown that pre-COVID-
19 FR algorithms suffer performance degradation owing to the masked faces. However,
attacks compromising the security and vulnerability of FR systems for subjects wearing
face masks have so far been overlooked. In this study, security refer to the presentation
attacks (PAs). Attackers can use PAs to spoof FR systems by impersonating someone or
obfuscating their identity. Common PAs include printed photos/images, replayed videos
and 3D masks [134, 136]. Driven by the ongoing COVID-19 pandemic, presentation
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attack detection (PAD) [250] has encountered several understudied challenges when
facing masked faces. Current face PAD databases [14, 168, 169] only contain printed
images or replayed videos in which subjects were not wearing face masks. Therefore, there
is uncertainty about the relationship between the performance of PAD techniques and PAs
with face masks. Moreover, the vulnerability of FR systems to masked attacks remains
unclear. To overcome such gaps, researchers require well-studied masked PAs. In this
study, we design and collect three types of attacks based on masked and unmasked face
images collected realistically and collaboratively [51, 54]. The bona fide samples were
divided into categories of BM0 (subjects wearing no masks) and BM1 (subjects wearing
masks). AM0 data are unmasked print/replay attacks, which are commonly used data in
most current PAD databases. AM1 data include print/replay attacks, where live subjects
wore masks. In addition, we provide a novel partial attack type, called AM2, where a
real medical mask is placed on printed photos or replayed videos to simulate the subject
wearing a mask. This is motivated by our assumption that AM2 might be a challenging
attack as it contains both bona fide and attack presentations that may confuse PAD and/or
FR systems. The data samples are presented in Figure 4.1.

Figure 4.1.: Example bona fide and attack samples in the CRMA database. Based on the
presence of face masks, bona fides are grouped into BM0 (without mask)
and BM1 (with mask) categories. The novel attacks are grouped into AM0
(spoof face without mask), AM1 (spoof face with mask), AM2 (spoof faces
covered by real masks).

To address the above concerns, this chapter introduced a new large-scale face PAD
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database, investigated and analyzed the effect of masked face attacks on FR and PAD
methods. Additionally, a PAD solution was proposed to enhance the PAD performance
on masked face attacks. In the efforts seeking to answer RQ3, RQ4, and RQ5, the main
contributions in this chapter are:
• The novel CRMA was presented in this chapter. Three types of PAs, called AM0
(unmasked face PA), AM1 (masked face PA), and AM2 (unmasked face PA with a
real masked placed on the PA) (as shown in Figure 4.1), was created for both print
and replay PAIs. To create such attacks, three electronic tablets with high-resolution
and three capture scales are used. Additionally, we designed three experimental
protocols to explore the effect of masked attacks on PAD performance.

• As a response to RQ3, in-depth vulnerability analysis of FR systems was presented.
Three deep-learning-based FR techniques for three types of PAs were evaluated. The
experimental results indicated that these three FR networks exhibit significantly
higher vulnerabilities to the real mask attacks than masked face attacks.

• As a response to RQ4, extensive experiments were conducted to explore the effect
of bona fide samples, masked faces attacks, and real masks (on spoof faces) on the
face PAD behavior. To support a comprehensive evaluation, seven PAD algorithms,
comprising texture-based, deep-learning-based, and hybrid methods, were selected
to evaluate the PAD generalizability in intra- and cross-database scenarios under
three mask-related protocols. Both quantitative and qualitative analyses revealed
that masked bona fides and PAs dramatically decreased the performance of PAD
algorithms. Moreover, deep-learning-based methods perform worse on real mask
attacks than mask-face attacks in most cases.

• As a response to RQ5, a PAD method was proposed that considers partial attack
labels to supervise the PAD model training, as well as regional weighted inference,
to further improve the PAD performance by varying the focus on different facial
areas. The proposed method was not directly linked to specific network architec-
ture and thus can be directly incorporated into any common or custom-designed
network. The proposed method outperformed seven established PAD methods on
the CRMA database by reducing the mentioned shortcomings when facing masked
faces. Additionally, a detailed step-wise ablation study pointed out the individual
and joint benefits of the proposed concepts on the overall PAD performance.

In the rest of the chapter, a brief review of relevant works is provided in Section 4.2.
Then, the new CRMA database is described in detail in Section 4.3. The proposed PAD
solution is introduced in Section 4.4. Section 4.5 presents the experimental setups and
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implementation details. Section 4.6 presents and discusses the achieved results. Finally, a
set of conclusions are drawn in Section 4.7.

4.2. Related work

This section reviews the most relevant prior works from three perspectives: face PAD
databases, face PAD methods, and FR and vulnerability analysis. At the end of each part,
the difference between our work and prior work is pointed out.
Face PAD databases: Data resources have become especially important ever since

the advent of deep learning, because machine-learning-based algorithms have the risk of
underfitting or overfitting on limited data. Given the significance of good-quality databases,
several face PAD databases have been released, such as NUAA [214], CASIA-FAS [261],
Replay-Attack [43], MSU-MFSD [233], OULU-NPU [14], and SiW [168], all consisting
of 2D print/replay attacks. In addition, SiW-M [169] and CelebA-Spoof [259] databases
provide multiple types of attacks such as makeup, 3D mask, or paper cut. Moreover,
some multimodal databases are publicly available: 3DMAD [71], Mssproof [45], CASIA-
SURF [258], and CSMAD [9]. These databases undoubtedly contribute to the significant
progress of PAD research. For example, the CeleA-Spoof database comprises images
from various environments and illuminations with rich annotations to reflect real scenes.
However, these databases also have weaknesses: 1) The multi-modal databases have high
hardware requirements and cannot be widely used in daily life; 2) Some databases such
as CASIA-MFS [261] and MSU-MFS [233] cannot satisfy the current needs because of
the lower quality of the outdated acquisition sensors; 3) Oulu-NPU [14], SiW [168],
SiW-M [169], and CelebA-Spoof [259] are relatively up-to-date, but they do not consider
PAs with real face masks to fit the current COVID-19 pandemic. Hence, we collect the
CRMA database to fill the gaps in these databases in the context of the ongoing COVID-19
pandemic; Furthermore, we ensure the database is generalizable and compatible with
real scenarios. The CRMA database can be used to better analyze the effect of a real mask
on PAD performance and the vulnerability of FR systems for novel attacks, such as placing
a real mask on an attack presentation. Detailed information related to the databases
mentioned above is presented in Table 4.1).
Face PAD methods: In recent years, there has been an increasing number of studies

in the field of face PAD [87, 140, 210]. These studies can be broadly grouped into three
categories: texture-based methods, deep-learning-based methods, and hybrid methods.
Texture features, such as LBP [183], project the faces to a low-dimensional embeddings.
Määttä et al.[173] proposed an approach using multi-scale LBP to encode the micro-texture
patterns into an enhanced feature histogram for face PAD. The resulting histograms were
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Database Year # Subjects # Data (BF/attack) Capture devices (BF/attack) Display devices Modality Attack type
NUAA [214] 2010 15 5105/7509 (I) Webcame - RGB 1 Print

CASIA-FAS [261] 2012 50 150/450 (V) Two USB cameras, Sony NEX-5 iPad RGB 1 Print, 1 Replay
Replay-Attack [43] 2012 50 200/100 (V) MacBook 13 / iPhone 3GS, Cannon SX150 iPhone 3GS, iPad RGB 1 Print, 2 Replay
3DMAD [71] 2013 17 170/85 (V) Microsoft Kinect - RGB/Depth 1 3D Mask
Msspoof [45] 2015 21 1,680/3,024 (I) uEye camera - RGB/IR 1 Print

MSU-MFSD [233] 2015 35 110/330 (V) MacBook Air, Google Nexus 5 /
Cannon 550D, iPhone 5s

iPad Air, iPhone 5s RGB 1 Print, 2 Replay

Oulu-NPU [14] 2017 55 1,980/3,960 (V) 6 smartphones Dell 1905FP, Macbook Retina RGB 2 Print, 2 Replay

SiW [168] 2018 165 1,320/3,300 (V) Cannon EOS T6, Logitech C920 webcam iPad Pro, iPhone 7,
Galaxy S8, Asus MB 168 B

RGB 2 Print, 4 Replay

CASIA-SURF [258] 2018 1000 18000/3000 (I) RealSense camera - RGB/IR/Depth 5 Papercut
CSMAD [9] 2018 14 88/160 (V) RealSense, Compact Pro, Nikon P520 - RGB/IR/Depth/LWIR 1 silicone mask

SiW-M [169] 2019 493 660/1630 (V) Logitech C920, Cannon EOS T6 - RGB 1 Print, 1 Replay,
5 3D mask, 3 Makeup, 3 Partial

Celeb-Spoof [259] 2020 10,177 202,559/475,408 (I) Various cameras/ 20 smartphones,
2 webcams, 2 tablets

PC, phones, tablets, RGB 3 Print, 3 Replay,
1 3D mask, 3 Paper Cut

CRMA 2021 47 423/12,690 (V) Webcams/iPad Pro,
Galaxy Tab S6, Surface Pro 6

iPad Pro, Galaxy Tab S6,
Surface Pro 6

RGB 1 Print, 3 Replay,
1 Real mask

Table 4.1.: The summary of face PAD databases, including our CRMA database informa-
tion for brief comparison. It should be noted that our CRMA database is the
only database containing subjects wearing face masks and real face mask
attacks. The details of our CRMA database are presented in Section 4.3.

then fed to a Support Vector Machine (SVM) classifier to determine whether a sample is
a bona fide or attack. The LBP features extracted from different color spaces [16] were
further proposed to utilize chrominance information. They achieved competitive results
on Replay-Attack [43] (EER value of 0.4%) and CASIA-FAS [261] (EER value of 6.2%)
databases. Furthermore, Boulkenafet et al.[13] organized a face PAD competition based
on the OULU-NPU database and compared 13 algorithms provided by participating teams
and one color-LBP-based method (referred to as baseline in [13]). In this competition,
the GRADIANT algorithm fused multiple information, that is, color, texture, and motion.
The GRADIANT achieved competitive results in the four evaluation protocols. In addition
to the texture-based GRADIANT approach, deep-learning-based method (MixFASNet)
or hybrid method (CPqD) also achieved lower error rates in all experimental protocols.
CPqD fused the results from the fine-tuned Inception-v3 network and the color-LBP-based
method (referred to as the baseline in [13]). Consequently, we chose to re-implement the
color-LBP and CPqD methods in this study (details in Section 4.5.4), while the GRADIANT
and MixedFASNet are discarded in our work because they do not provide sufficient details
for re-implementation. Deep-learning-based methods have been pushing the frontier
of face PAD research and have shown remarkable improvements in PAD performance.
Lucena et al.[172] presented an approach called FASNet in which a pre-trained VGG16
is fine-tuned by replacing the last fully connected layer. The FASNet network achieved
excellent performance on 3DMAD [71] and Replay-Attack databases [43]. Recently,
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George et al.[93] proposed training a network with pixel-wise binary supervision on
feature maps to exploit information from different patches. DeepPixBis [93] outperformed
the state-of-the-art algorithms in Protocol-1 of the OULU-NPU database (0.42% ACER)
but also achieved significantly better results than traditional texture-based approaches in
the cross-database scenario. Considering the popularity of PAD techniques and the ease of
implementation, we also chose FASNet and DeepPixBis (details in Section 4.5.4) to study
the effect of the real mask and masked face attacks on the PAD performance. However, the
performance degradation might be caused by the noisy pixel-wise label used in [93] when
handling partial attacks. Kantarci et al.[144] improved the performance of the DeepPixBis
method by shuffling the patches from input images and combining face patches. The
generated new inputs improved the generalizability of the trained model under cross-
database scenarios. Yu et al.[247] proposed a pyramid pixel-wise supervision method,
which decomposed the pixel-wise label into multiple spatial scales for the supervision of
multi-scale deep features. The pyramid supervision is able to interpret a richer spatial
context, which is beneficial for fine-grained feature learning. Overall, pixel-wise labels
have proven to be helpful in the improvement of PAD performance. Nevertheless, the
quality of the pixel-wise labels is essential for the convergence of the trained networks.
The coarse all zero or all one pixel-wise binary mask might not be suitable for the partial
attack (masked face PAs in this case). To overcome the issues on partially masked attacks
and masked face PAD in general, a PAL-RW solution is proposed by considering partial
pixel-wise labeling and varying consideration of different facial areas (details in 4.4).
Face recognition and vulnerability analysis: As one of the most popular modalities,

the face has received increasing attention in authentication/security processes, such as
smartphone face unlocking and Automated Border Control (ABC). Moreover, FR tech-
niques [28, 68, 167] have achieved significant performance improvements, and many
personal electronic products have deployed FR technology. However, the ongoing COVID-
19 pandemic brings a new challenge related to the behavior of collaborative recognition
techniques when dealing with masked faces. Collaborative data collection refers to a
subject actively attending to use the FR systems, such as unlocking personal devices
or using an ABC gate, in contrast to uncollaborative capture scenario where the user
does not intentionally use the FR service, such as in the case of surveillance. The NIST
[181] provided a preliminary study that evaluated the performance of 89 commercial
FR algorithms developed before the COVID-19 pandemic. Their results indicated that
digitally applied face masks with photos decreased the recognition accuracy; for example,
even the best of the 89 algorithms had error rates between 5% and 50%. It is worth
noting that the masks used in the experiments were synthetically created. Damer et
al.[51, 54] presented a real mask database to simulate a realistically variant collaborative
face capture scenario. Each participant was asked to simulate a login scenario by actively
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looking toward a capture device, such as a static webcam or a mobile phone. Our attack
samples were created and collected based on the masked face data, which refers to the
bona fide samples in the PAD case (as described in Section 4.3). They also explored the
effect of wearing a mask on FR performance and concluded that face masks significantly
reduce the accuracy of algorithms. Mohammadi et al.[179] provided empirical evidence
to support the claim that the CNN-based FR methods are extremely vulnerable to 2D PAs.
Subsequently, Bhattacharjee et al.[9] presented the first FR-vulnerability study on 3D PAs.
The experiments also clearly showed that CNN-based FR methods are vulnerable to custom
3D mask PAs. However, the vulnerability of FR systems to PAs with face masks has not
been investigated. Therefore, in this chapter, we selected three CNN-based FR algorithms
for further FR-vulnerability analysis on masked face attacks: the state-of-the-art ArcFace
[68], SphereFace [167], and VGGFace [28]. These algorithms are discussed in more detail
in Section 4.5.1.

4.3. The collaborative real mask attack database (CRMA)

The proposed CRMA database can serve as a supplement to the databases in Table 4.1,
and because of the COVID-19 pandemic, it can better reflect the possible issues facing
real-world PAD performance. The CRMA database includes 1) both unmasked (BM0) and
masked (BM1) bona fide samples collected in a realistic scenario [51, 54], 2) conventional
replay and print PAs created from faces not wearing a mask (AM0), 3) replay and printed
PAs created from masked face images (AM1), and 4) novel PAs where the PAs of unmasked
faces are covered (partially) with real masks (AM2), as shown in Figure 4.1. Damer et
al.[51, 54] collected data to investigate the effect of wearing a mask on face verification
performance. For PAD, such data are considered bona fide. The data presented in this
study build on an extended version of the data introduced in [51, 54], by creating and
capturing different types of PAs based on the bona fide data captured in [51, 54]. As
a result, the bona fide data in this work are an extended version of the one introduced
in [51, 54] and the attack data presented here are completely novel and have not been
previously studied.
Figure 4.3 introduces the general statistical information of the CRMA database. This

database contains 62% males and 38% females. The attack AM0, AM1, and AM2 ratios are
30%, 60%, and 10%, respectively, as will be described later in this section. Additionally, we
count the frequency of the proportion of the face size in the video. The histogram shows
that the proportion of the face areas in the videos is mostly between 5% and 30%. This
section first describes the bona fide samples provided by [51, 54], and then introduces
our process of attack sample creation and collection.
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4.3.1. Collection of bona fide samples

To explore the FR performance on masked faces, Damer et al.[51, 54] recently presented
a database where the subjects wearing face masks. This database simulates a collaborative
environment in which participants collect videos by actively looking towards the capture
device. During this process, the eyeglasses were removed when the frame was considered
very thick following the International Civil Aviation Organization (ICAO) standard [125].
The videos were captured by the participants at their residences while working from home.
Therefore, the types of face masks, capture devices, illumination, and background were
varied. For PAD, these videos are classified as bona fides and will be used later to create
attack samples.
The final version [51] of this database contains 47 participants. Each subject recorded a

total of nine videos over three days with three different scenarios for each day. In contrast
to the study by Damer et al.[54], which examined the effects of both face masks and
illumination variations, we focused only on the impact of face masks on PAD performance.
Hence, in our study, the bona fide videos are divided into two categories: a face without a
mask on is denoted as BM0 (three videos per subject), and a face with a mask is marked
as BM1 (six videos per subject) (as shown in the right column of Figure 4.1).

4.3.2. Creation of the presentation attacks

Most FR databases tried to collect data under various harsh conditions, such as poor
lighting, strong occlusion, or low resolution. Such databases attempted to reproduce
what might happen in a real-world scenario when a legitimate user obtains authorization
[118]. In contrast, attackers use highly sophisticated artifacts, such as high-resolution
images or videos, to maximize the success rate when impersonating someone. For this
reason, we first collect the PAs in a windowless room where all lights are on. Second,
three high-resolution electronic tablets were used in the acquisition process: 1) iPad Pro
(10.5-inch) with the display resolution of 2224× 1668 pixels, 2) Samsung Galaxy Tab S6
with the display resolution of 2560 × 1600 pixels, 3) Microsoft Surface Pro 6 with the
display resolution of 2736 × 1824 pixels. In the process of collecting data, the capture
devices and displayed images/tablets were stationary. The videos were captured with a
resolution of 1920× 1080. In addition, each video had a minimum length of 5 seconds,
and the frame rate was 30 fps. This work focuses on the two common PAIs, print and
replay attacks, due to their ease of creation and low cost. The attack data in each PAI
(see the samples in Figure 4.1) are divided into three types: 1) the spoof face with no
face mask (AM0), 2) the spoof face with a mask on (AM1), and 3) the spoof face with
no face mask, but a real mask was placed on it to simulate a participant wearing a mask
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(AM2). However, the size of the face area in each video is slightly inconsistent because
the videos were recorded by the participants themselves. To reproduce the appearance of
wearing a mask in the real world, we cropped five face masks to fit most of the faces (see
Figure 4.3). The five masks are three small blue surgical masks, one slighter bigger white
face mask, and one uncropped mask. When placing the mask, we select a suitable mask
according to the size of the face in the printed image or video, aiming to cover the nose to
the chin area and the cheeks without exceeding. The details of each PAI are as followings:
Print image attack: In print PAI, an attacker tries to fool the FR system using a printed
photo. Considering the instability of the face during the first second, such as the participant
pressing the recording button or adjusting the sitting position, the 35th frame of each bona
fide video was printed out as an attack artifact. Therefore, we obtained nine photos per
subject. The three tablets mentioned above were used to capture the photos. Furthermore,
to increase the diversity and variety of the data, each tablet captured three videos for
a photo with three scales (see examples in Figure 4.2). The captured videos using the
first scale contained all areas (100%) of the photos, the second scale consisted of most
areas (80%) of the original photos, and the third scale focused on the face area (60%)
as much as possible. In addition to collecting attack data solely from printed images, we
also collected data from real face masks overlaid on photos (i.e., the previously defined
AM2). Theoretically, real masks will reduce the region of artificial features and increase
the complexity and mixture of the features in the collected attack data. Eventually, 90
print attack videos were generated for each subject, that is, a total of 4,230 videos for 47
subjects in print PAI.
Replay video attack: In replay PAI, an attacker tries to obtain the authentication by
replaying a video. The three common points of the collection process between print and
replay PAI are the use of three tablets, the use of three scales, and the process of AM2 data
creation, respectively. The difference is that these tablets were also used for capturing
displays of videos (see examples in Figure4.2). While one tablet was replaying the video,
the other two tablets were used to capture the data. As a result, each subject corresponded
to 180 replay attack videos (162 videos of the AM0 and AM1 groups, 18 videos of AM2.),
i.e., there were a total of 8,460 videos in this attack subset.

4.4. Methodology

This section describes the proposed method (PAL-RW) that utilizes our partial attack label
supervision (PAL) and regional weighted inference (RW) for masked face PAD, along with
the used backbone network architectures. The PAL intends to provide more accurate
ground truth for partial attacks and thus enhances the convergence of the model training.
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Samsung Galaxy Surface Pro Apple iPad Large Middle Small

Capture device varia�on Capture scale varia�onCapture scale varia�on

Replay varia�on (replay device to capture device)

Figure 4.2.: Different capture variations in the CRMA database. The top left shows the
videos captured by different devices. The top right shows the different cap-
ture scales. The bottom shows the six cross-device types of replay attack
settings.

AM2 10%

AM1 60%

AM0 30%

Female 38%

Male 62%

Figure 4.3.: The statistics of the subjects and the used mask shapes for creating AM2
samples in the CRMA database. From left to right: gender, mask types of
attacks (AM0, AM1, AM2), the histogram shows the probability distribution
of the face size ratio and the applied mask shapes.

Moreover, the RW post-processes the prediction results by increasing the focus on certain
facial areas to further improve the PAD performance. Figure 4.4 depicts the training and
testing phase in detail.

4.4.1. Partial attack label

Recent PAD works can be grouped into two classes: 1) global binary supervision where
a network is supervised by a binary scalar label while training [13, 172] (as shown in
Figure 4.5a), and 2) pixel-wise binary supervision where a network outputs a feature
map and is supervised by binary mask, such as [65, 93, 144, 247]. Each pixel in the
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Figure 4.4.: An overview of our proposed PAL-RW method. The input of the model is a
face image of 224× 224× 3 pixels, and the model is supervised by a feature
map with the size of 14 × 14 in addition to a binary output. In the training
phase, the pixel-wise label for partial attack (AM2) is produced based on 68
facial landmarks. The pixel-wise label of the real face mask in AM2 data is
set to 1 (bona fide) instead of a zero map for this attack. In the inference
phase, the final PAD decision score is themean value of the regional weighted
feature map for further performance improvement. The lighter the color in
the region weight map, the higher the weight value, that is, the eye region
contributes more to PAD decision.

feature map is assumed as either bona fide (1) or attack (0). Most pixel-wise supervision
methods [93, 144] utilized a zero map as ground truth of attacks and a one map for
bona fide samples as shown in Figure 4.5b). They improved the performance on print
and replay attacks, but performance degradation might occur when dealing with partial
attacks. A possible reason is the incorrect pixel-wise labels of attacks. For example, the
CRMA database contains an attack (AM2 in Figure 4.1) where a real mask was placed on
unmasked spoof faces. To address this issue, we intend to make the pixel-wise label more
accurate and thus enhance the training by partial attack label supervision. As shown in
Figure 4.5c, the shape of the face mask is detected based on 68 facial landmarks, and each
pixel-wise label in the face mask region is set to one (bona fide). Note that this operation
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on the binary mask is only performed for the partially masked face attack (AM2).

1

Bona fide Print attack

0 0

Partial attack

(a) Binary scalar label

Bona fide Print attack Partial attack

(b) Binary mask used in [93]

Bona fide Print attack Partial attack

(c) Our partial attack label

Figure 4.5.: Examples of three supervision methods. (a) Binary scalar labels for global
supervision. For example, 1 represents bona fide and 0 represents attack
[172, 173]. (b) Pixel-wise binary mask for local supervision such as used in
[93]. A zero map is usually treated as ground truth of attack and a one map is
for bona fide. (c) Our proposed partial attack label for AM2 attacks. The real
face mask placed on an attack face is segmented and annotated as bona
fide, while the rest of the attack is labeled as an attack.

4.4.2. Model architecture

To train a PAD solution based on our partial attack labels, we select two network ar-
chitectures (DeepPixBis [93] and MixFaceNet [18]) as our backbones to validate our
proposed PAL and RW on multiple architectures. MixFaceNet [18] is chosen as the second
utilized backbone architecture because it is an extremely efficient architecture for face
verification and identification, which possesses lower computation complexity (FLOPs) and
high accuracy. MixFaceNet additionally contains different sizes of convolutional kernels,
which might be beneficial to capture different levels of attack clues. The MixFaceNet
is used with the weights initialized as the publically available weights pre-trained on
the MS1MV2 dataset for face recognition, which might help maintain more subtle facial
features. On the other hand, the DeepPixBis [93] architecture is used with the initial
weights set by pre-training on the ImageNet dataset [67] for the general computer vision
tasks, as described in [93]. DeepPixBis [93] method uses DenseNet [117] as a base
network architecture and outputs a feature map of 14 × 14 pixels and a binary scalar
prediction. The training of DeepPixBis is supervised by a binary mask and a binary label.
MixFaceNet was partially inspired by the MixNets, and the channel shuffle operation to
the MixConv block was introduced for enhancing the FR performance. In this case, the
input image size of 112× 112× 3 is changed to 224× 224× 3 for outputting a feature map
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of 14×14 pixels, to be identical to the DeepPixBis backbone. Furthermore, the embedding
stage of MixFaceNet is removed and replaced by two fully connected layers. The first fully
connected layer is employed to output a feature map for pixel-wise supervision, while
the second fully connected layer is used for binary classification. The MixFaceNet is also
supervised by a binary mask and a binary label. Both models are trained by BCE loss
function.

LBCE = −[y · log p+ (1− y) · log(1− p)], (4.1)

where y is the ground truth (1 for bona fide and 0 for attack in our case) and p is predicted
probability. The overall loss equation for training of both models is shown below:

Loverall = λ · Lpixel−wise
BCE + (1− λ) · Lbinary

BCE , (4.2)

where λ is set to 0.5 in our experiments.

4.4.3. Regional Weighted Inference

Once the model is trained, the probability of a given image can be estimated if it is an
attack or bona fide. Most pixel-wise supervision-based methods use the mean value of the
output feature map as the final decision score [79, 93], which neglects the differences in
features at various facial regions. Therefore, we propose the regional weighted inference
to post-process the prediction scores of models. The RW is motivated by two main previous
observations: 1) the eye regions (including eyebrows) had a more significant influence on
the PAD prediction probability than the face mask and other facial regions (observations
can be found in Section 4.6.2). 2) Fu et al.[90] explored the contributions of different
face sub-regions to the face image quality and their experiments indicated that the eye
region quality largely affects FR performance and additionally shows consistent quality
degradation in face morphing attacks [91]. Such observations suggest that the eye regions
comprise more subtle and discriminative information for various face-related tasks. As a
result, we propose to weigh the predicted feature map regionally instead of just calculating
the overall mean score. In our experiment, the weight of the eye region (including both
the eyes and eyebrow region) is set to 0.6, while the weight for the face mask region is
0.1 and 0.3 for other regions, motivated by the observations in Section 4.6.2. Figure 4.4
illustrates the RW in the test phase, and the lighter color in the regional weight map refers
to higher weight. The output feature map is multiplied with the regional weight map by
the Hadamard product. Finally, a mean value of the weighted feature map is computed as
the final decision score.
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4.5. Experimental setup

This section presents the experimental setups and the implementation details applied in
the work.

4.5.1. Face recognition algorithms

For FR systems, trained CNNs are typically used as feature extractors. The feature vector
extracted from a specific layer of an off-the-shelf CNNwas used as the template to represent
the corresponding input face image. Then, the resulting templates were compared with
each other using similarity measures. To provide a vulnerability analysis of the FR systems
to our novel masked attacks, we adapted the following three FR algorithms:

• ArcFace: ArcFace [68] introduced an additive angular margin loss function to obtain
highly discriminative features for FR. We chose this algorithm because ArcFace consistently
outperformed state-of-the-art methods. ArcFace achieved 99.83% on Labeled Faces in the
Wild (LFW) [118] and 98.02% on YouTube Faces (YTF) [235] dataset. The pre-trained
ArcFace model 1 in our study was based on the ResNet-100 [107] architecture and trained
on the MS-Celeb-1M [100] dataset (MS1M-v2). The output template is a 512-dimension
feature vector extracted from the ’fc1’ layer of ArcFace.

• SphereFace: Liu et al.[167] proposed a deep hypersphere embedding approach
(SphereFace) for FR task. SphereFace [167] utilized the angular softmax loss for CNNs to
learn angularly discriminative features. This method also achieved competitive perfor-
mance on LFW [118] (accuracy of 99.42%) and YTF [235] datasets (95.00%). We extract
the face representation with 512-dimension from a pre-trained 20-layer SphereFace model.
2

• VGGFace2: The first version of VGGFace is based on 16-layer VGG [207] network,
while the second version of VGGFace (VGGFace2) [28] adopt ResNet-50 [107] as the
backbone architecture. In this work, we use the second version that a ResNet-50 network
trained on VGGFace2 dataset [28] 3 for extracting the 512-dimension templates.

The vulnerability of each FR system to attacks was analyzed based on three scenarios.
Regardless of the scenario, the references are scenarios-specific bona fide videos captured
on the first day, while bona fide videos from the second and third days or attack videos

1The official ArcFace model: https://github.com/deepinsight/insightface
2The official SphereFace model: https://github.com/wy1iu/sphereface
3The VGGFace2 model: https://github.com/WeidiXie/Keras-VGGFace2-ResNet50
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were selected as probes. The three cases, including the division of scenario-specific
references and probes, are described with the results in detail in Section 4.6.1. Once the
references for the face images are obtained, we use the Cosine-similarity as recommended
in [28, 68, 167] to compute the similarity scores between references and probes.
4.5.2. Face recognition experimental settings

The vulnerability of each FR system on each type of PA is analyzed based on three
experimental settings. In the first setting BM0-BM0, we use the bona fide unmasked
samples captured on the first day as references. Then, the references are compared against
bona fide BM0 samples captured on the second and third days of the same subjects
(to compute genuine scores), as well as of other subjects (zero-effort imposter (ZEI)
scores). Once genuine and ZEI comparison scores are obtained, the operating threshold
is computed using the τFMR@0.01 threshold. Finally, the probe samples of each type of
PA were compared against the reference of the same subjects separately. In the second
setting BM0-BM1, the difference is that bona fide BM1 data captured on the second
and third days are used for comparison against references BM0 and then obtain the
corresponding genuine and ZEI scores. In the third setting, BM1-BM1, the bona fide
masked faces captured on the first day are references for each subject. Such references
are also compared against the masked bona fide samples captured on the second and
third days to obtain their genuine and ZEI scores. These three experimental settings are
provided to enable addressing the following four questions: 1) When having an unmasked
reference and we use a decision threshold that does not consider masked comparisons
(BM0-BM0), how vulnerable are FR systems to the three types of attacks in CRMA (AM0,
AM1, and AM2)? 2) When having an unmasked reference and we use a decision threshold
based on unmasked-to-masked comparisons (BM0-BM1), how vulnerable are FR systems
to the three types of attacks in CRMA (AM0, AM1, and AM2)? 3) When having a masked
reference and we use a decision threshold based on masked-to-masked comparisons (BM1-
BM1), how vulnerable are FR systems to the three types of attacks in CRMA (AM0, AM1,
and AM2)? Additionally, we address the fourth question: 4) will the vulnerability of FR
systems be different when facing the AM1 and AM2 attacks?

4.5.3. Face recognition evaluation metrics

To measure the performance of FR techniques, the genuine match rate (GMR), which refers
to the proportion of correctly matched genuine samples, is used at the fixed FMR. GMR is
equal to 1 minus the FNMR. Moreover, to analyze the vulnerability of FR algorithms for
our masked attacks, the IAPMR corresponding to the proportion of PAs accepted by the FR
system as genuine presentations is adopted. IAPMR also follows the standard definition
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presented in ISO/IEC 30107-3 [127]. The threshold for GMR and IAPMR is defined by
fixing the FMR at 1% (denoted as τFMR@0.01). The probe images with similarity scores
lower than the τFMR@0.01 are not matched. Moreover, the recognition score-distribution
histograms are shown in Figure 4.6, 4.7, and 4.8. In addition to these metrics, the EER
value, where FMR equals FNMR, is computed to compare the FR algorithms.

4.5.4. Face PAD algorithms

A competition [13] was carried out in 2017 to evaluate and compare the generalization
performance of face PAD techniques under real-world variations. In this competition
[13], there were 14 participating teams together with organizers that contributed to
several state-of-the-art approaches. We chose two methods (as previously discussed in
Section 4.2), the LBP-based method (referred to as the baseline in [13]), and hybrid CPqD,
and included additional solutions. We re-implemented a total of seven face PAD algorithms
in this study, which can be categorized into three groups: hand-crafted features, deep-
learning features, and hybrid features. For further cross-database evaluation scenarios, we
used three publicly available databases, mainly involving 2D PAs (details in Section 4.2):
CASIA-FAS [261], MSU-MFS [233], and OULU-NPU [14] in the competition. A brief
description of the adopted methods is provided below:

• LBP: The LBP method is referred to as baseline method in [13] provided by the
competition organizers that utilized the color texture technique. The face in a frame is first
detected, cropped, and normalized to a size of 64× 64 pixels. Second, an RGB face was
converted into HSV and YCbCr color spaces. Third, the LBP features were extracted from
each channel. The obtained six LBP features are then concatenated into one feature vector
to feed into a softmax classifier. The final prediction score for each video was computed
by averaging the output scores of all the frames.

• CPqD: The CPqD is based on the Inception-v3 network [213] and the above LBP
method. The last layer of the pre-trained Inception-v3 model was replaced by a fully
connected layer and a sigmoid activation function. The faces in the RGB frames are
detected, cropped, and normalized to 299× 299 pixels. These face images were utilized
as inputs to fine-tune the Inception-v3 model. The model with the lowest EER on the
development set among all 10 training epochs was selected. A single score for each
video was obtained by averaging the output scores of all frames. To further improve the
performance, the final score for each video was computed by fusing the score achieved by
the Inception-v3 model and the score obtained by the LBP method.

• InceptionFT and InceptionTFS: Since the CPqD uses the Inception-v3 [213] net-
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work as the basic architecture, we also report the results of fine-tuned Inception-v3 model,
named InceptionFT. In addition to the fine-tuned model, we trained the Inception-v3
model from scratch for performance comparison, named InceptionTFS. In the training
phase, the binary cross-entropy loss function and Adam optimizer with a learning rate of
10−5 were used. The output scores of the frames were averaged to obtain a final prediction
decision for each video.

• FASNetFT andFASNetTFS: FASNet [172] used transfer learning from pre-trained
VGG16 model [207] for face PAD. They used a pre-trained VGG16 model as a feature
extractor and modified the last fully connected layer. The newly added fully connected
layers with a sigmoid function were then fine-tuned for the PAD task. This fine-tuned
FASNet is referred to as FASNetFT, similar to the Inception-v3 network methods, and
we also train FASNet from scratch with the name FASNetTFS. The input images are the
detected, cropped, and normalized RGB face frames with a size of 224× 224 pixels. The
Adam optimizer with a learning rate of 10−4 was used for training, as defined in [172].
Data augmentation techniques and class weights are utilized to deal with imbalanced
data problems. To further reduce overfitting, an early stop technique with a patience of 5
and maximum epochs of 30 was used. The resulting scores were averaged to obtain the
final score for each video.

• DeepPixBis: George et al.[93] proposed a densely connected network framework
for face PAD with binary and deep pixel-wise supervision. This framework is based on
DenseNet architecture [117]. Two dense blocks and two transition blocks with a fully
connected layer with sigmoid activation produce a binary output. We used the same
data augmentation technique (horizontal flip, random jitter in brightness, contrast, and
saturation) and the same hyper-parameters (Adam optimizer with a learning rate of
10−4 and weight decay of 10−5) as defined in [93] for the training. In addition to data
augmentation, we applied the class weight and an early stopping technique to avoid
overfitting. The final score for each video was computed by averaging the frame scores.

4.5.5. PAD experimental protocols

To study the possible effect of face masks and spoofing faces with real masks on the
performance of PAD and FR systems, we provide three protocols for further experimental
analysis.
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PAD protocols for the CRMA database

In this study, three protocols are provided to study the impact of masks on the performance
of PAD solutions under different training settings. Other factors, such as various devices,
illumination, and capture scales, are outside the scope of this study. These three protocols
try to answer three questions separately: 1) Does the PAD algorithm trained on unmasked
data generalize well on the masked bona fides and attacks, that is, can the previously
trained model be adapted to the present-day situation? 2) Does the PAD algorithm
designed before the COVID-19 pandemic still work efficiently if it is trained on additional
masked data? 3) Will a network that has learned masked face attacks be confused by real
masks that obscure the spoof face? Hence, we split 47 subjects in the CRMA database
into three subject-disjoint sets: the training set (19 subjects), the development set (10
subjects), and the testing set (18 subjects). Gender was balanced as much as possible
between the three sets. Table 4.2 provides more information about three protocols. A
detailed description of three protocols is as follows:
Protocol-1 (P1): This protocol demonstrates the generalization performance of the PAD
solutions trained on unmasked data. The training and development sets contain only
videos of subjects without masks (such as data in most current PAD databases). The trained
model was then tested on the data using face masks. More specifically, only BM0 and
AM0 data were used for training, while BM1, AM1, and AM2 were considered unknown
mask data.
Protocol-2 (P2): In contrast to protocol-1, which focuses on generalizability on unseen
mask data, the second protocol is designed to evaluate the performance of PAD algorithms
when masked data has been learned in the training phase. In this protocol, the training,
development, and testing sets include masked and unmasked bona fides (BM0, BM1),
masked and unmasked attacks (AM0, AM1), and spoof faces with real masks (AM2).
Protocol-3 (P3): Until now, the effect of AM2 on PAD performance is still unclear. AM2 is
a special attack type that a real face mask is placed on spoof faces, which means it contains
only partial artifacts (i.e., unmasked face spoofing region) compared to AM1, which carries
entire artifacts (i.e., spoofed face and mask). Therefore, this protocol attempts to answer
the following question: If the network has learned the masked attacks AM1, can this
trained model not be confused by a real mask and perform similarly on the attack covered
by a real mask AM2? Consequently, the training and development sets include bona fides
BM0 and BM1, and attacks AM0 and AM1, while AM2 is an unknown attack in the testing
set. Because data in the CRMA are video sequences and the number of videos between
bona fide and attack classes are imbalanced, we sampled 60 frames from a bona fide video
and five frames from an attack video to reduce data bias. In addition to different frame
sampling, we also adapt the class weights inversely proportional to the class frequencies
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to reduce overfitting in the training phase. In the test phase, a final classification decision
was determined by averaging the prediction scores of all sampled frames.

Protocol Set Subjects Types of masks # BF videos # Attack videos

P1
Train 1-19 BM0, AM0 57 1569
Dev 20-29 BM0, AM0 30 810
Test 30-47 BM0, BM1, AM0, AM1, AM2 162 4860

P2
Train 1-19 BM0, BM1, AM0, AM1, AM2 171 5130
Dev 20-29 BM0, BM1, AM0, AM1, AM2 90 270
Test 30-47 BM0, BM1, AM0, AM1, AM2 162 4860

P3
Train 1-19 BM0, BM1, AM0, AM1 171 4617
Dev 20-29 BM0, BM1, AM0, AM1 90 2430
Test 30-47 BM0, BM1, AM0, AM1, AM2 162 4860

Table 4.2.: The detailed information of three protocols for exploration of the possible
effect of face masks. The bona fide is denoted as BF. The test data is the
same in the three protocols, while the types of training and development data
are different.

PAD protocols for cross-database scenarios

In addition to the intra-database scenario on our CRMA database, we also perform cross-
database experiments to explore the generalizability of these PAD algorithms on masked
data. Because the PAIs in the CRMA database are print and replay attacks, we selected
three popular publicly available databases containing the same PAIs: CASIA-MFS [261],
MSU-MFS [233], and OULU-NPU [14] to demonstrate the evaluation. We conducted two
cross-database experiments. In the first cross-database scenario, the PAD solutions trained
on three publicly available databases were evaluated on the test set of the CRMA database.
In addition, the results tested on their own test sets are also reported (as shown in the left
block in Table 4.5). The first setting is similar to protocol-1 of the CRMA intra-database
scenario, as no masked data are seen in the training phase. Therefore, the first cross-
database setting is also used to answer the first question: does the PAD algorithm trained
on unmasked data generalize well on masked bona fides and attacks? Conversely, in the
second cross-database experiment, models trained on different protocols of the CRMA
database were evaluated separately on publicly available databases. This experimental
setting can help us understand the CRMA database values beyond face masks, such as
the diversity of masks/sensors/scales. However, the second scenario does not support
the main study of the work and is provided only for completeness; thus, the results are
reported in the supplementary material. In both cross-database scenarios, we use the
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τBPCER10 decision threshold computed on the development set of the training database
as a priori to determine the APCER, BPCER, and HTER values of the test database.

4.5.6. PAD evaluation metrics

The metrics following the ISO/IEC 30107-3 [127] standard were used to measure the
performance of the PAD algorithms: APCER and BPCER as introduced in Chapter 2. The
APCER and BPCER reported in the test set were based on a pre-computed threshold in
the development set. In our study, we use a BPCER at 10% (on the development set) to
obtain the threshold (denoted as τBPCER10). Additionally, HTER is used for the cross-
database evaluation. Noticeably, we computed a threshold in the development set of the
training database. Then, this threshold was used to determine the HTER value in the test
database. The Detection Equal Error Rate (D-EER) (D-EER) value, where APCER and
BPCER are equal is also reported in the cross-database scenarios. For further analysis of
PAD performance, ROC curves were also demonstrated.

4.5.7. Model training setup

We following the implementation details described in [18, 93]. First, a face was detected
and cropped by MTCNN [256]. Then, the 68 facial landmarks were detected by Dlib
library [149]. Based on the jaw landmarks, a pixel-wise label was generated for the
partial attack (AM2), in which the mask area is labeled as bona fide, and the rest of
the face is labeled as an attack. For bona fide samples (BM0 and BM1), the values in
this binary mask are all set to one (bona fide), while they are all set to zero for the
other attack samples (AM0 and AM1). Finally, the input face image and the generated
binary mask were used jointly while applying augmentation and resized to 224× 224× 3
pixels and 14× 14 pixels, respectively. In the experimental result discussion, we use PAL-
RWDeepP ixBis and PAL-RWMixFaceNet to indicate proposed PAL-RW solution by utilizing
DeepPixBis and MixFaceNet network backbones, respectively. For PAL-RWDeepP ixBis, the
same augmentation techniques (horizontal flip and random jitter with the probability of
0.5) of DeepPixBis [93] were used in the training phase. The combined training loss was
minimized by Adam Optimizer with the learning rate of 10−4 and the weight decay of 10−5.
For PAL-RWMixFaceNet, we employed the above augmentation techniques and the SGD
optimizer with the learning rate of 10−2 and the weight decay of 5−3. The Exponential
learning rate scheduler was adopted with the gamma of 0.995. To further avoid overfitting,
we applied class weight due to the unbalanced data and an early stopping technique
with the maximum epoch of 100 and the stop patience of 15 for both models training
processes. In the test phase, a regional weight map was generated based on the detected
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facial landmarks. The prediction score of each frame was a mean value of the regional
weighted feature map. Finally, a final score for each video was computed by averaging
the scores of the processed frames.

4.6. Results

4.6.1. Face recognition vulnerability

The performance and vulnerability of each FR system are summarized in Table 4.3.
SphereFace [167] obtains relatively low IAPMR values; however, its GMR values are
also much lower than those of ArcFace [68] and VGGFace [28]. In general, the IAPMR
values of all three FR systems were close to their GMR values. Specifically, FR systems are
vulnerable to unmasked attacks when unmasked bona fide samples are used as references
(the settings BM0-BM0 and BM0-BM1), and vulnerable to the masked attacks when the
reference is masked bona fide data. Comparing the vulnerability analysis results for AM1
and AM2 in all three cases and all FR systems, we note that the IAPMR values of AM2 are
always significantly higher than those of AM1. This indicates that applying real masks on
attack presentations can further reduce the performance of FR systems. This might be
due to the fact that the AM2 attacks possess more realistic features than AM1.

Settings Attack Probes ArcFace[68] SphereFace [167] VGGFace [28]
EER GMR IAPMR EER GMR IAPMR EER GMR IAPMR

BM0 - BM0
AM0

0.00 100
98.40 [98.22, 98.56]

8.57 75.85
66.31 [65.69, 66.93]

0.12 100
99.47 [99.37, 99.56]

AM1 81.61 [81.24, 81.97] 2.80 [2.65, 2.96] 71.54 [71.12, 71.96]
AM2 97.10 [96.77, 97.41] 10.45 [9.89, 11.03] 97.23 [96.91, 97.53]

BM0 - BM1
AM0

2.25 96.56
98.73 [98.58, 98.88]

22.83 19.99
84.17 [83.68, 84.64]

2.29 94.2
99.86 [99.80, 99.90]

AM1 88.57 [88.27, 88.86] 15.26 [14.92, 15.60] 90.24 [89.96, 90.51]
AM2 98.56 [98.33, 98.78] 40.00 [39.09, 40.91] 99.55 [99.41, 99.67]

BM1 - BM1
AM0

1.00 99.00
70.62 [70.19, 71.04]

13.13 59.33
2.43 [2.29, 2.58]

0.85 99.46
45.84 [45.38, 46.31]

AM1 94.20 [94.04, 94.35] 47.69 [47.36, 48.02] 97.41 [97.30, 97.51]
AM2 97.70 [97.49, 97.89] 50.82 [50.16, 51.48] 98.26 [98.08, 98.43]

Table 4.3.: The performance and vulnerability of FR systems. The GMR and IAPMR
valueswere computed based on the τFMR@0.01 threshold. The 95% confidence
intervals for the IAPMR values are shown in parentheses.

To further verify this assumption, we provide histograms of the similarity score distri-
bution in the three scenarios and three FR systems (see Figure 4.6, 4.7, and 4.8). In the
histograms, green refers to genuine scores, blue represents ZEI scores, and gray represents
attack verification scores. The ideal situation is that there is no overlap between the green
and the other two histograms. Figure 4.6 shows the score distributions of ArcFace [68],
where the rows from top to bottom represent BM0-BM0, BM0-BM1, BM1-BM1 cases and
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columns from left to right refer to AM0, AM1, and AM2 attacks. It can be seen that 1) the
verification scores of attacks are higher than the scores of ZEI in all cases. 2) The scores of
AM0 attacks and genuine scores almost overlap in the BM0-BM0 and BM0-BM1 settings,
while the scores of AM1/AM2 attacks have many overlapping areas with genuine scores in
the BM1-BM1 setting. 3) for all cases, the scores of AM2 have more overlaps with genuine
scores than AM1. Similar observations can be found in Figure 4.7 for the SphereFace, and
Figure 4.8 for VGGFace. These observations are consistent with the findings presented in
Table 4.3.
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Figure 4.6.: The similarity score distributions by off-the-shelf ArcFace [68]. The rows from
top to bottom represent three experimental settings: BM0-BM0, BM0-BM1,
BM1-BM1, as shown in Table 4.3.

Overall, these results indicate that: 1) FR systems are more vulnerable to unmasked
attacks compare to masked attacks when the references are unmasked faces; 2) When the
threshold is computed based on the unmasked-to-masked comparison, the vulnerability of
FR systems becomes higher for both masked or unmasked attacks; 3) When the reference
is masked, FR systems are more vulnerable to masked attacks in comparison to the FR
systems having unmasked references. Another important finding is that 4) FR systems
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Figure 4.7.: The similarity score distributions by off-the-shelf SphereFace [167].

pose a higher vulnerability for spoof faces with real masks placed on them (AM2) than
a masked face attack (AM1). Such observations raise concerns about the security of FR
systems when facing masked attacks.

4.6.2. Quantitative and qualitative analysis of three PAD protocols

Analysis of Protocol-1

Protocol-1 represents the pre-COVID-19 PAD scenarios, in which subjects normally do
not wear a mask, and demonstrates the generalization performance on masked data.
Therefore, protocol-1 is considered the most challenging task because of the unseen BM1,
AM1, and AM2 data. Table 4.4 describes the results of the different protocols on the CRMA
database. The bold numbers indicate the highest BPCER values between BM0 and BM1
and the highest APCER values between AM0, AM1, and AM2 in each PAI. By observing the
first block, P1, in Table 4.4, the BPCER values of masked bona fide samples are much higher
than those of unmasked ones; however, most PAD systems achieve lower APCER values on
the masked attack samples (either AM1 or AM2). The higher classification error rates on
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Figure 4.8.: The similarity score distributions by off-the-shelf VGGFace [167].

masked bona fide and the lower error rates on masked attacks are intuitively conceivable.
When the model has not seen faces wearing a mask before, it is more inclined to falsely
classify such a masked bona fide sample (BM1) as an attack. Moreover, it is interesting
to note that networks trained from scratch and the DeepPixBis approach work worse on
attack AM2 than AM1. These observations are consistent with the ROC (Figure 4.9). The
red curves generated by printed AM2, bona fide BM1, and gray curves obtained by replay
AM2 and bona fide BM1 possess significantly smaller areas under the curves in five of
the seven methods. Furthermore, training a network from scratch improves the overall
performance. The possible reason for those observations is that learning from scratch is
more efficient for obtaining discriminative features between bona fide and artifacts. On
the contrary, such approaches might be confusing when applying realistic masks to attack
samples.
In addition to the intra-database scenario, the first cross-database experiment (intro-

duced in Section 4.5.5) can be seen as similar to protocol-1, as both scenarios study PAD
methods that PAD solutions trained on unmasked data and tested on the CRMA database.
In Table 4.5, the bold BPCER number is the highest BPCER (between BM0 and BM1) for
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(c) ROC curves in protocol-3
Figure 4.9.: ROC curves for all PAD methods in three protocols. Eight combinations

between bona fide and attack (testing data) are represented for each method
in each protocol: PR(AM0)-BF(BM0), PR(AM1)-BF(BM1), PR(AM2)-BF(BM0),
PR(AM2)-BF(BM1) in print PAI and RE(AM0)-BF(BM0), RE(AM1)-BF(BM1),
RE(AM2)-BF(BM0), RE(AM2)-BF(BM1) in replay PAI. The x-axis and y-axis are
APCER and 1 - BPCER, respectively. The red curves (PR(AM2)-BF(BM1)) and
gray curves (RE(AM2)-BF(BM1)) show significantly smaller AUC values by
most PAD methods on protocol-1. Moreover, InceptionTFS, FASNetTFS, and
DeepPixBis achieve higher AUC values on protocol-2 and -3 than on protocol-1
might be due to the masked data in the training phase.

97



Protocol Method
Threshold @ BPCER 10% in dev set

BPCER (%) APCER (print) (%) APCER (replay) (%)
BM0 BM1 AM0 AM1 AM2 AM0 AM1 AM2

P1

LBP 1.75 4.39 80.12 72.61 71.93 74.95 67.76 73.98
InceptionFT 19.30 84.21 10.33 3.80 2.92 27.19 5.81 0.88
CPqD 7.02 47.37 18.52 7.80 15.79 31.77 11.19 10.23

FASNetFT 12.28 56.14 7.02 1.36 2.92 20.37 12.21 9.65
InceptionTFS 7.04 48.25 1.36 0.00 1.75 7.50 0.34 7.02
FASNetTFS 7.02 29.82 1.95 0.49 15.20 8.09 4.64 7.89
DeepPixBis 19.30 28.95 1.56 1.56 5.85 3.61 4.05 6.43

P2

LBP 26.32 11.40 31.38 44.44 36.84 36.74 34.39 28.95
InceptionFT 1.75 7.02 35.28 30.80 11.70 54.09 52.17 10.23
CPqD 3.51 7.89 27.49 30.41 16.37 46.20 44.50 10.23

FASNetFT 1.75 17.54 10.72 12.77 5.85 30.60 28.09 3.80
InceptionTFS 8.77 18.42 0.78 1.56 2.34 3.90 5.23 2.63
FASNetTFS 14.04 29.82 4.09 3.41 9.36 4.69 2.88 3.80
DeepPixBis 29.82 24.56 0.78 0.19 1.75 0.10 1.86 0.88

P3

LBP 22.81 9.65 35.28 48.15 47.95 38.50 36.79 42.40
InceptionFT 1.75 8.77 24.17 24.37 11.70 46.69 47.14 14.04
CPqD 7.02 7.02 20.66 28.95 21.64 41.23 41.52 17.84

FASNetFT 5.26 21.93 14.04 9.94 26.71 22.62 19.88 20.47
InceptionTFS 21.05 21.93 0.19 0.00 1.17 1.56 2.34 4.97
FASNetTFS 22.81 34.21 0.39 0.29 2.34 3.41 2.20 6.43
DeepPixBis 17.54 24.56 0.78 0.68 2.92 0.88 1.91 6.43

Table 4.4.: The PAD performance of different PAD solutions in three protocols (as de-
scribed in Section4.5.5). The bold number in each protocol and each method
refers to the highest BPCER on BM0 and BM1 data and the highest APCER
value between AM0, AM1, and AM2 in the two PAIs, respectively. The higher
BPCER values for BM1 (in comparison to BM0) indicate that subjects wearing
masks tend to be classified falsely as attacks.

each PAD method. The bold APCER number is the highest APCER (between AM0, AM1,
and BM2) for each PAD method in print and replay attacks, respectively. This bolding is
performed to show which samples are more difficult to classify correctly. We observed
that the performance in the cross-database setting was relatively poor for all models. Even
though deep-learning-based methods achieved great results on their own test sets, they
generalize significantly worse on masked bona fide samples; for example, most BPCER
values for BM1 are close to 100%. In contrast, most algorithms achieve lower APCER
values on masked AM1 and AM2 than unmasked AM0 attacks, which is consistent with
the observation of protocol-1 from the intra-database scenarios.
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Trained on
Method

Threshold @ BPCER 10% in dev set of trained database
Tested on the same dataset (%) Tested on our CRMA dataset (%)

CAISA-FASD

D-EER BPCER APCER BPCER APCER (Print) APCER (Replay)
BM0 BM1 AM0 AM1 AM2 AM0 AM1 AM2

LBP 7.50 6.25 8.75 38.60 56.14 42.11 24.76 18.13 60.72 34.59 22.51
InceptionFT 10.00 8.75 15.00 21.05 38.60 35.48 5.95 16.96 69.49 47.44 15.50
CPqD 6.25 11.25 3.12 38.60 65.79 31.97 12.38 8.77 53.22 23.06 14.62

FASNetFT 8.75 12.50 4.38 15.79 90.35 44.83 2.14 23.98 64.13 5.76 22.81
InceptionTFS 0.00 1.25 0.00 12.28 20.08 61.60 40.35 49.71 90.35 83.19 59.65
FASNetTFS 1.25 3.75 0.62 21.05 75.44 60.23 19.49 38.60 70.86 16.32 45.61
DeepPixBis 1.25 6.25 0.00 35.09 66.67 70.57 36.65 56.73 57.99 29.26 42.98

MSU-MFSD

LBP 4.17 4.17 4.17 98.25 100.00 0.58 0.68 0.00 3.22 2.25 0.00
InceptionFT 20.14 20.81 16.67 50.88 25.44 47.95 56.04 52.05 31.19 48.85 44.15
CPqD 4.17 4.17 4.17 98.25 100.00 0.19 0.39 0.00 1.46 1.56 0.00

FASNetFT 13.19 26.39 4.17 43.86 85.96 32.55 2.63 0.58 42.50 13.39 2.34
InceptionTFS 4.17 8.33 1.39 80.70 94.74 0.19 0.00 0.00 8.58 0.78 2.05
FASNetTFS 0.00 8.44 0.00 91.23 100.00 0.00 0.00 0.00 7.70 0.00 0.29
DeepPixBis 0.00 4.17 0.00 82.46 80.70 0.00 0.10 0.00 10.33 10.36 5.26

Oulu-NPU

LBP 8.33 7.50 10.21 40.35 67.54 35.28 25.54 13.45 26.12 10.89 13.74
InceptionFT 15.00 16.67 11.04 61.40 87.72 11.50 5.85 8.77 12.38 2.39 1.46
CPqD 8.33 9.17 3.54 57.89 89.47 9.55 3.70 1.17 10.14 1.03 0.58

FASNetFT 3.23 1.67 4.38 49.12 73.68 33.92 27.10 8.77 22.81 8.99 3.80
InceptionTFS 4.17 3.33 6.46 80.07 100.00 22.81 0.78 2.34 3.22 0.00 0.00
FASNetTFS 5.10 11.67 3.33 70.18 99.12 46.98 18.03 19.88 8.09 0.39 0.29
DeepPixBis 2.29 2.92 0.00 66.67 98.25 44.64 11.21 4.68 10.23 0.10 0.58

Table 4.5.: Cross-database evaluation 1: the model trained on three publicly available
databases is used to test on the CRMA database. This cross-database sce-
nario is similar to protocol-1, as no masked data is seen during the training
phase. Italic numbers indicate the lowest error rate on their own test set, and
bold numbers indicate the highest error rate in the bona fide and each PAI
category. The results show that despite good performance on their own test
set, these trained models do not generalize well to masked bona fides and
attacks.

In general, the experimental results of the intra-database protocol-1 and the first cross-
database scenario results answer the first posed question (in Section 4.5.5) by showing
that models trained only on unmasked data cannot properly classify images of masked
faces. A subject with a mask on has a high probability of being falsely detected as an
attack by PAD systems, even if this subject is bona fide.

Analysis of Protocol-2

Protocol-2 targets the performance of PAD algorithms on masked data when both un-
masked and masked samples are used in the training phase. As shown in Table 4.4, we
can observe the following points: First, despite the fact that the masked bona fide samples
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are still more difficult to classify correctly than unmasked ones in most cases, the BPCER
value of BM1 behaves more similar to its behavior on the BM0 in protocol-2 than in
protocol-1. Moreover, the BPCER values of BM0 and BM1 in protocol-2 decreased in most
cases compared with the results of protocol-1. For example, the BPCER value of BM1
achieved by InceptionFT was 84.21% in protocol-1 and 7.02% in protocol-2. This finding
indicates that learning the masked data is helpful in improving the performance of PAD
methods. This is also consistent with the observation in the ROC curves (by comparing the
ROCs in protocol-1 and protocol-2 in general). In particular, InceptionTFS, FASNetTFS,
and DeepPixBis achieved significant progress (larger areas under the curves). Second,
six of the seven methods performed worse on the masked printed face (AM1 or AM2),
while five of the seven algorithms showed inferior results for unmasked replay attacks.
Moreover, AM2 in print PAI achieves higher APCER values than AM1 by training from
scratch approaches. One possible reason for the different results between print and replay
attacks is specular reflection. Because attack data were collected in windowless labor with
all electric lights on, tablets easily reflect the light compared to the printed paper, and
this reflection is difficult to avoid. The real face masks might also leak light when placed
on an electric tablet, but this does not appear when applied on printed paper. In general,
the experimental results of the intra-database protocol-2 answer the second question (in
Section 4.5.5), which addresses the performance changes of the current PAD algorithms
after complementary learning on the masked data. Based on the above findings, we can
conclude that the PAD algorithms still perform worse on masked bona fides (BM1) than
on unmasked faces (BM0), even when the PAD solutions are trained on masked data.

Analysis of Protocol-3

Protocol-3 investigates the generalizability of the model trained on data that includes
masked face attacks (AM1) when tested on the masked face attacks where a real mask
is placed on top of the attack (AM2). For bona fide samples, we draw a similar conclu-
sion to protocol-1 and protocol-2, stating that masked bona fide samples have a higher
probability of incorrectly being classified as attacks. However, the experimental results
show differences in attack detection behavior (APCER) between protocol-3 on one side
and protocols-1 and -2 on the other side. In this protocol, the highest APCER values of
most PAD algorithms appear on either the AM1 or AM2 attacks in both print and replay
PAIs. Second, the traditional LBP method, InceptionFT, FASNetFT, and the hybrid CPqD
method that achieve relatively worse results on AM0 or AM1 attacks than other methods
may have proved to be unable to learn or extract sufficient discriminative features. Third,
although the other methods, such as learning from scratch InceptionTFS and FASNetTFS

or custom designed DeepPixBis achieve impressive results on seen AM0 and AM1 attacks,
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they generalize not well on unseen AM2 attacks. These observations answer the third
question stated in Section 4.5.5 by stating that a network trained on masked face attacks
(AM1) tends to produce confusing decisions on AM2, where a real mask is placed on an
attack face.

Qualitative Analysis and Visualization

(a) Protocol-1 (b) Protocol-2 (c) Protocol-3

Figure 4.10.: Examples for attention maps generated by ScoreCAM of different PAD
algorithms and different protocols. The rows from top to bottom in each
protocol correspond to InceptionFT, InceptionTFS, FASNetFT, FASNetTFS,
and DeepPixBis. The columns from left to right in each protocol refer to
BM0, BM1, PR-AM0, PR-AM1, PR-AM2, RE-AM0, RE-AM1, RE-AM2. Faces
with red boxes are misclassified.

To qualitatively analyze and interpret the deep-learning-based methods, the score-
Weighted CAM [226] technique was adopted to localize the discriminative areas in face
images. The rows from top to bottom correspond to InceptionFT, InceptionTFS, FASNetFT,
FASNetTFS and DeepPixBis. Figure 4.10a shows the results of protocol-1 (the example
subject is in the test set). InceptionFT mainly focuses on the nose, including nearby
parts of the masks, whereas InceptionTFS pays more attention to the upper region of the
face. Similarly, FASNetTFS reduces the attention paid to the masks and increases the
concentration around the forehead. DeepPixBis concentrates around the eyes for both
unmasked (BM0) and masked (BM1) bona fides. However, for attack samples, attention
seems to be focused on the left eye and partial masks. In general, masks are noticed by
all networks. The results of protocol-2 and protocol-3 for the same subjects are shown
in Figure 4.10b, and Figure 4.10c. We noticed that 1) the attention areas of fine-tuned
networks hardly change in the three protocols because of the fixed weights of layers before
the last classification layer. 2) InceptionTFS in protocol-2 appears to focus on the upper
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face, including many more eye regions than in protocol-1. 3) FASNetTFS in protocol-2
concentrates much more on applied real masks than in protocol-3 where training without
AM2. 4) DeepPixBis still works well on bona fide, but for attack samples, its attention
seems to be distracted to the edge of images. Although DeepPixBis produces correct
decisions, this observation raises a serious concern about its reliability and generalizability.
This concern was confirmed by the cross-database evaluation. DeepPixBis generally obtains
worse cross-database results than the other two training from scratch networks (details
see Table 4.5). Finally, looking at attention maps in all protocols for this identity, we notice
that except for the misclassified samples (with red boxes) that appear on print/replay
AM0, print AM2 attacks are more easily to be incorrectly detected as bona fide than AM1
attacks. This finding is in line with the previous quantitative evaluation that AM2 attacks
may confuse the PAD, even if the network has been trained by masked face attacks.

4.6.3. Ablation study and results of PAL-RW

The above subsections provide a comprehensive analysis on the performance of face
PAD algorithms under various masked face scenarios. The experiment results indicate
that PAD algorithms have a high possibility of detecting masked bona fide samples as
attackers. This section will present the results of the proposed PAL-RW method based on
the Protocol-2, which is designed to evaluate the performance of PAD algorithms when
masked data has been learned in the training phase. First, the contribution of each module
will be introduced in Table 5.4 and then the overall PAD performance in Table 4.7 will be
discussed.

Ablation study in module PAL and RW

To further validate the usefulness of each component of the proposed PAL-RW solution, we
conduct the experiments by gradually adding PAL and RW modules. The results are shown
in Table 5.4. We report the APCER and BPCER values by using the threshold τunmasked

BPCER10 that
is pre-computed on only unmasked data in the development to build a realistic ablation
study where the behavior of the PAD on masked data is still unknown. As shown in Table
5.4, adding any one of the two components (PAL or RW) to the backbones does improve the
PAD performance (considering at the overall performance index metric ACER). Moreover,
the contribution made by the RW component is more significant than PAL while using
DeepPixBis [93] as a backbone. For example, the ACER value is reduced from 29.47%
obtained by the DeepPixBis backbone to 18.58% achieved by adding the RW component.
Note that both setups use the same trained model, only the output prediction maps are
weighted differently. This finding confirms our assumption that stresses the importance
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Backbone RW PAL BPCER (%) APCER (Print) (%) APCER (Replay) (%) ACER (%)BM0 BM1 AM0 AM1 AM2 AM0 AM1 AM2
DeepPixBis 63.16 64.04 0.00 0.00 0.00 0.00 0.64 0.00 29.47
DeepPixBis √ 35.09 41.23 0.00 0.10 1.17 0.19 1.95 0.58 18.58
DeepPixBis √ 42.11 51.75 0.00 0.00 0.00 0.00 0.44 0.00 23.35
DeepPixBis √ √ 26.32 29.82 0.00 0.19 1.17 0.00 1.32 0.29 14.81
MixFaceNet 5.26 7.89 12.09 9.75 11.70 21.83 17.68 14.33 13.80
MixFaceNet √ 5.26 7.89 11.50 9.36 11.70 21.64 17.15 14.33 13.75
MixFaceNet √ 12.28 7.89 4.29 4.39 8.19 17.54 12.36 9.06 13.10
MixFaceNet √ √ 8.77 8.77 4.09 6.24 7.02 22.03 17.34 17.54 12.00

Table 4.6.: The PAD performance of the different step-wise ablation experiments us-
ing DeepPixBis and MixFaceNet as backbone network architectures on the
CRMA database. Here, the used PAD decision threshold is the one scoring
a BPCER 10% on only unmasked data in the development set. The results
show the individual and joint benefits of our PAL and RW components on PAD
performance.

of eye regions for PAD decisions. When using MixFaceNet [18] as the backbone, the
reduction in the classification error rates is slightly smaller than DeepPixBis. Nevertheless,
the basic MixFaceNet achieves lower overall PAD performance (13.80% ACER value) in
comparison to the DeepPixBis with additional PAL and RW modules (14.81% ACER value).
Such results indicate that MixFaceNet architecture possesses not only lower computational
complexity but also higher generalization ability. In addition, the ROC curves for the
ablation experiments are shown in Figure 4.11. The red curve (DeepPixBis-RW-PAL) and
the grey curve (DeepPixBis-RW-PAL) are on top of other curves. Overall, the PAL and RW
components can both improve the PAD performance in the CRMA database.

Comparison with established PAD solutions

Table 4.7 presents the results of the different investigated methods on the CRMA database
of Protocol-2 in Table 4.4 and aims to put the performance achieved by the proposed
PAL-RW solution in the perspective of the performance of established PAD solutions. The
last two rows, PAL-RWDeepP ixBis and PAL-RWMixFaceNet, are results achieved by our
PAL-RW methods. The other rows are the results of established PAD solutions earlier
reported in Table 4.4. The BPCER and APCER values in Table 4.7 are determined by
the threshold τallBPCER10. The bold number is the lowest ACER value indicating the best
overall performance. As shown in Table 4.7, our PAL-WR method improves the overall
PAD performance. For example, the ACER value decreases from the 13.13% achieved
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Figure 4.11.: ROCs of different solution steps of the ablation experiments in the CRMA
database. Adding any one of the proposed modules (PAL or RW) improves
the overall PAD performance. Moreover, experiments using the MixFaceNet
backbone exhibit higher AUC values than using DeepPixBis architecture.

by DeepPixBis to 12.99% obtained by PAL-RWDeepP ixBis. In addition, the APCER value
of the partial print attack (AM2) decreases from 4.09% to 1.75% when comparing the
results of the DeepPixBis and the PAL-RWDeepP ixBis. This finding indicates that fine-
grained partial attack labels are helpful for the improvement of PAD performance under
such circumstances. Moreover, PAL-RWMixFaceNet achieves the best overall performance
(8.51% ACER value). Note that the only difference between PAL-RWMixFaceNet and PAL-
RWDeepP ixBis methods is the backbone network architecture. Hence, the lower ACER value
obtained by PAL-RWMixFaceNet indicates the efficiency of MixFaceNet [18] and rationalizes
our choice of this efficient backbone based on the different sizes of convolutional kernels
(thus the different capture levels of attack clues). In addition to comparing the results at
a specific operation point, we also present the ROC curves for further observation on a
wide range of decision thresholds. Figure 4.12 illustrates the performance of different
PAD methods. The pink (PAL-RWDeepP ixBis) and grey curves (PAL-RWMixFaceNet) possess
significantly larger areas under the curves than other methods and score lower BPCER
values than the baseline methods, especially at low APCER values, which is consistent
with the observation of Table 4.7. This work demonstrated that the proposed PAL and RW

104



Method
Threshold @ BPCER 10% on all data in dev set

BPCER (%) APCER (Print) (%) APCER (Replay) (%)
ACER (%)BM0 BM1 AM0 AM1 AM2 AM0 AM1 AM2

54 vids 108 vids 486 vids 972 vids 162 vids 972 vids 1944 vids 324 vids
LBP [183] 26.32 11.40 31.38 44.44 36.84 36.74 34.39 28.95 26.33

InceptionFT [213] 1.75 7.02 35.28 30.80 11.70 54.09 52.17 10.23 23.85
CPqD [13] 3.51 7.89 27.49 30.41 16.37 46.20 44.50 10.23 21.75

FASNetFT [172] 1.75 17.54 10.72 12.77 5.85 30.60 28.09 3.80 16.85
InceptionTFS [213] 8.77 18.42 0.78 1.56 2.34 3.90 5.23 2.63 9.40
FASNetTFS [172] 14.04 29.82 4.09 3.41 9.36 4.69 2.88 3.80 14.15
DeepPixBis [93] 12.28 31.58 1.75 0.29 4.09 0.88 1.37 0.29 13.13

PAL-RWDeepP ixBis (ours) 18.07 28.95 0.00 0.19 1.75 0.00 1.37 0.29 12.99
PAL-RWMixFaceNet (ours) 7.02 4.39 8.58 8.28 10.53 15.98 11.33 17.54 8.51

Table 4.7.: The PAD performance of our proposed PAL-RW methods using two network
backbones on the CRMA database. The first two columns represent bona fide
samples, and the left columns represent different attack types. The APCER
and BPCER value is determined by a pre-computed threshold. This threshold
is achieved at fixed BPCER 10% on all (masked and unmasked) data in the
development set. The number of videos (denoting vids) of each category is
noted in the header. The bold number indicates the lowest ACER value. Our
PAL-RWMixFaceNet method outperforms other methods.

components do substantially, and on multiple backbone networks, enhance the accuracy
of PAD decisions when facing masked faces. We also show that the proposed PAL-RW
exhibits better generalization when dealing with masked faces than other established PAD
methods. One of the advantages of our proposed method is that PAL-RW is not related to
the network structure or training strategy and thus can be easily incorporated into any
custom-designed network. Even though the proposed method is well-suited for masked
face attacks, the PAL-RW method still has several limitations and can be improved in the
future. First, the ground truth for partially masked attacks (AM2) is roughly generated
based on 68 face landmarks and is only suitable for attacks with face masks. Therefore, it
is worthwhile to produce accurate partial attack annotations (including other types of
partial attacks) either manually or specifically designed. The fine-grained ground truth
will enhance the generalization ability of PAD to unknown attacks. Second, in our case,
the region weight map is set manually for all types of attacks, which is sub-optimal for the
final PAD decision. One possible future work is to automatically perform regional weighted
inference for different attack types, such as utilizing the position attention map. A partially
masked face attack can be considered as an occlusion PAD problem. Although current
PAD algorithms have achieved good performance on 2D attacks (print/replay) or 3D mask
attacks, the occlusion PAD problem is still understudied. For example, the relevant partial
attack data are insufficient. We stress that building a partial attack database is necessary
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Figure 4.12.: ROCs of different PAD methods and our proposed PAL-RW methods on
the CRMA database. PAL-RWDeepP ixBis and PAL-RWMixFaceNet scores the
lowest BPCER values (especially at low APCER) and achieve the largest
areas under curves indicating the best overall performance.

for improving the generalizability of models to unknown attacks.

4.6.4. Discussion

To enable the study, a new large-scale face PAD database, namely CRMA, was presented,
including the conventional unmasked attacks, novel attacks with faces wearing masks,
and attacks with real masks placed on spoof faces. It consists of 13,113 high-resolution
videos and has a large diversity in capture sensors, displays, and capture scales. Moreover,
three experimental protocols were designed to study the effect of wearing a mask on the
PAD algorithms. With the throughout investigations and analyses, this chapter provided
answers to RQ3, RQ4 and RQ5.
• This chapter presented a thorough analysis of the vulnerability of FR systems to
such novel face masked attacks. The results indicate that FR systems are vulnerable
to both masked and unmasked attacks. For example, when the reference images
and the computation of system threshold are based on unmasked faces (BM0-BM0),
the IAPMR values for unmasked attacks (AM0), masked attacks (AM1), and attacks
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covered by a real mask (AM2) are 98.40%, 81.60%, and 97.10%, respectively. This
leads to the interesting observation that all the investigated FR systems are more
vulnerable to attacks where real masks are placed on attacks (AM2) than attacks of
masked faces (AM1).

• With the set of extensive experiments conducted in this chapter by using designed
protocols, the results indicated that PAD algorithms have a high possibility of de-
tecting masked bona fide samples as attackers (median BPCER value for BM1 in
protocol-1 is 48.25%). Moreover, even if the PAD solutions have seen the masked
bona fide data, the PAD algorithms still perform worse on masked bona fide samples
compared with unmasked bona fides. Furthermore, the PAD solutions trained on
masked face attacks (AM1) do not generalize well on attacks covered by a real mask
(AM2). For example, the APCER values achieved by DeepPixBis increased from
0.62% for AM1 to 2.92% for AM2 in print attack and from 1.92% for AM1 to 6.43%
for AM2 in replay (protocol-3).

• This work presented a solution to target the masked presentation attacks, especially
partially covered attacks, by proposing both the partial attack supervision and the
regional weighted inference. The goal of partial attack supervision was to guide
the neural network to better convergence while training. Meanwhile, regional
weight further improved the generalization ability of the model during inference.
The detailed ablation study showed the consistent benefits of both components,
separately and jointly, in a single solution. Our PAL-RW based models outperformed
other established PAD methods when dealing with the possibility of masked faces in
PAD decisions.

4.7. Summary

Recent FR studies indicated that the COVID-19 pandemic rendered the conventional FR
solutions less effective in many cases. In contrast to the growing number of masked FR
studies, the impact of face masked attacks on PAD has not been explored. To target this
concern, this chapter studied the vulnerability of FR and the behavior of PAD methods on
different types of masked face images. First, to enable the study, a new large-scale face PAD
database, CRMA, was presented. The CRMA database includes the conventional unmasked
attacks, novel attacks with faces wearing masks, and attacks with real masks placed on
spoof faces. Moreover, the CRMA database consists of 13,113 high-resolution videos across
diverse capture sensors, displays, and capture scales. Second, extensive experiments were
conducted to explore the vulnerability of FR by adopting three conventional FR methods.
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The results suggested that FR systems are vulnerable to both masked and unmasked
attacks, especially more vulnerable to partially masked attacks than attacks of masked
faces, providing an answer to RQ3. Third, three protocols were designed to measure
the generalizability of the current PAD algorithms on unknown masked bona fide or
attack samples, the performance of PAD solutions where the face masks are known, and
the generalizability of models trained on masked face attacks when tested on attacks
covered by a real mask, respectively. The results obtained by seven PAD methods under
three protocols showed that the performance of the existing PAD algorithms, even when
involving masked attacks in the training phase, significantly degraded, providing an
answer to RQ4. In particular, they had a high possibility of detecting masked bona fide
samples as attackers. Hence, a PAD method was proposed to target the masked face PAD
limitations based on two novel components, the partial attack label supervision, and the
regional weighted inference. Conceptually, the proposed solution focused on fine-grained
training ground truth information and post-processing predictions, which can be simply
incorporated into any common or specially designed neural network architecture. The
results demonstrated on the CRMA database indicated improved performance in the
perspective of a set of established PAD solutions as a response to RQ5. The next chapter
will address the generalizability of iris PAD algorithms under the unknown scenarios.
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5. Generalizability of PAD algorithms

The previous chapter provided an in-depth analysis of the effects of face masks on the
vulnerability of FR and performance of PAD algorithms and presented a solution to
target the masked face PAs. This chapter focuses on the analysis and enhancement of
generalizability of PAD methods, from face and iris aspects. First, this chapter presents a
face PAD solution by intelligently leveraging information from the frequency domain as a
response to RQ6. Second, this chapter presents two iris PAD solutions as responses to RQ7
(Section 5.4), and RQ8 (Section 5.5). This chapter is based on [74, 77, 78, 79, 80, 82, 83].

5.1. Introduction

This chapter is concerned with one face PAD solution and two iris PAD solutions targeting
the enhancement of the generalizability of PAD. This section briefly introduces the face
and iris-based PAD.

5.1.1. Face presentation attack detection

In recent years, face recognition systems have been widely used in our daily lives for
person authentication or access control due to their convenience and remarkable accuracy.
However, most existing face recognition systems are vulnerable to PAs. Attackers can
use different PAs to impersonate someone or obfuscate their identity. PAs such as print,
replay, or 3D mask attacks have been shown to be a serious threat to face recognition
systems. Therefore, face PAD plays a critical role in the security of face recognition
systems. PADmethods can be broadly categorized into ones based on hand-crafted features
[17, 52, 160, 173, 184], and ones based on deep-learning [65, 93, 168, 250, 251]. Hand-
crafted based methods utilized traditional texture features such as LBP and its extended
versions [17, 173, 184] that are robust to some variations, e.g., color texture, noise artifacts,
in PAs. However, the extracted features may not be discriminative enough between bona
fide and attacks. Recent PAD studies [65, 168, 245, 251] are competing to boost the
performance using CNNs to facilitate more discriminative feature learning. However,
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CNN-based methods have been a risk of overfitting and thus affect the performance
generalization over variations, such as unseen sensors or varied illumination conditions.
Considering the characteristics of the hand-crafted and deep learning-based features, it is
worth exploring the integration of both features for more discriminative and generalized
PAD decisions. In addition to widely used LBP features, several studies [34, 35, 160]
attempted to transform images to the frequency domain. Li et al.[160] utilized the
dissimilarity in Fourier spectra by considering that less high-frequency components exist
in attacks compared to bona fide samples. These hand-crafted features are less relevant
to the advanced semantic information like identity information but more relevant to
the capture conditions, like displayed screen, used photo, or capture sensors. However,
most existing hand-crafted features are extracted by static filters, which might limit the
representation capacity and make capturing the relevant patterns harder. A recent study
[186] proposed the adaptive partition of images in the frequency domain based on a set of
learnable frequency filters to detect face forgery clues. In this work, several learnable filters
are adopted to capture the PAs cues. Considering the great progress achieved by the deep
learning-based methods, we successfully aim at using CNNs to learn subtle differences
between bona fide and attacks on both decomposed components in the frequency domain
and RGB images in the spatial domain. Recently, attention mechanisms were proposed
to model the interdependencies between the channel and spatial features on feature
maps of CNNs. Woo et al.[236] proposed a CBAM that can be integrated into any CNN
architectures and is end-to-end trainable along with the base CNN. The intermediate
feature map is adaptively refined by a combination of channel and spatial wise attention.
However, most existing attention-based networks do not consider the nature of features
in different layers. The features become more abstract and complex when moving from
lower to higher layers in a CNN. The features in the lower layers are relevant to the texture
information (e.g., edges), and the features in the higher layers emphasize advanced
semantic information. Therefore, simply using a combined channel and spatial attention
module may be sub-optimal. In this work, different attention modules are successfully
applied according to the nature of the deeply learned features.
This work aims to integrate learned features from the frequency and spatial domains for

better PAD generalization capability, as a response to RQ6. This is achieved through three
main aspects. First, a dual-stream PAD solution is proposed based on learnable multi-level
frequency decomposition and the proposed hierarchical attention mechanism to capture
discriminative and generalize features from both the spatial and frequency domains,
namely the LMFD-PAD. Second, an evaluation in both intra-dataset and cross-dataset
settings is provided that demonstrates the superiority of the model in cross-dataset PAD
when compared to the state-of-the-art, including the PAD methods explicitly targeting
domain adaption/shift problem. Third, an ablation study successfully demonstrates the
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benefits of the proposed LMFD-PAD components, in a step-wise manner, to the cross-
dataset PAD performance.

5.1.2. Iris presentation attack detection

Iris recognition systems have been deployed in many law enforcement or civil applications
in recent years. However, recognition systems are vulnerable to presentation attacks
[48, 176, 243]. A presentation attack is performed to obfuscate the identity of the
attacker or impersonate a specific person, such as printed image attacks, textured contact
lens attacks, video replaying attacks or synthetic eyes. Despite the high interest from
researchers and system vendors in this issue, current algorithms still have some limitations.
First, most iris PAD systems only considered iris images captured under a controlled
environment [49, 110, 238]. Second, the number of smartphone users worldwide today
surpasses three billion and is forecast to grow further by several hundred million in the
next few years [112]. Considering the wide usage of mobile devices, algorithms with
high computational requirements are challenging to deploy on mobile devices regardless
of their high accuracy. Moreover, there are many varying attributes to deal with in the
real-world scenario, for example, new types of attacks, different sensors, or capturing
conditions, as shown in ??. Therefore, a good iris PAD system should not only be robust
and efficient, but also have generalizability to adapt to changing scenarios.
One challenge in iris PAD is the detection of texture contact lenses, especially when

they are confused with transparent lenses. Wearing a cosmetic lens is an easy method
to conceal the original texture pattern of the iris and significantly decreases the rate of
genuine match rate [6, 142, 189, 243]. That makes developing a robust and accurate
presentation attack detection system an essential and valuable task in real-world scenarios.
Hughes and Bowyer [121] proposed the first approach to analyze iris images with contact
lenses in the 3D space context. Connell et al.[157] presented a structured light projection
method to detect contact lenses by exploiting the anatomy and geometry of the human eye.
Several works [70, 156, 206] investigated the impact of the transparent contact lenses
on the iris PAD performance. Their experimental results indicated that a transparent
contact lens attack hampered the performance of an iris recognition system. In fact, one
can notice small distinguishable artefacts induced by the different types of lenses. With
these motivations, Micro Stripes Analyses (MSA) is introduced to target the issue of the
iris PAD with textured contact lenses and a lightweight model, and perform a detailed
cross-database and unknown attack detection evaluation. The extensive experiments of
MSA under various scenarios provide an answer to RQ7.
Most of the recent iris PAD solutions trained models by binary supervision, i.e., networks

were only informed that an iris image is bona fide or attack, which may lead to overfitting.
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Figure 5.1.: Cross-domain in iris PAD system. We show the currently well-studied do-
mains and the PAD domains where there is open research Potential for novel
improvements.

Besides, the limited binary information may be inefficient in locating the regions that
contribute the most to making an accurate decision. To target these issues, an attention-
based pixel-wise binary supervision (A-PBS) is introduced in Section 5.5. Given that the
integration of iris recognition in smart devices is on the rise [146, 190, 201], the study of
iris PAD under the visible spectrum is essential. Furthermore, knowing that most iris PAD
solutions are developed and trained for images captured in the Near-Infrared light (NIR)
domain, an investigation of cross-spectrum iris PAD performance is much needed. To the
best of our knowledge, there is no existing work on that investigated the PAD performance
under a cross-spectrum scenario. As a result, this work further addressed a visible-light-
based iris PAD and the cross-spectrum PAD scenario. The extensive experimental results
provide an answer to RQ8.
This chapter is organized as follows: Section 5.2 presents a detailed look into related

works to face and iris PAD solutions. Section 5.3 introduces a face PAD solution that
intelligently leveraging the information from the frequency domain. Section 5.4 introduces
a framework for detecting iris presentation attacks that focuses on detecting attack clues
around the outer iris boundary based on normalized multiple micro stripes. Section 5.5
presents an attention-based deep pixel-wise binary supervision method (A-PBS) for iris

112



PAD and provides a comprehensive analysis of generalizability of iris solutions under
cross-dataset and cross-spectrum scenarios. A final discussion of the chapter contributions
is presented in Section 5.6.

5.2. Related work

This section provides a briefly background information of face PAD and iris PAD separately.

5.2.1. Face PAD

The most relevant prior works are reviewed by focusing on feature-based and deep
learning-based face PAD methods, especially those aiming to demonstrate cross-dataset
generalizability.

Feature-based methods: Hand-crafted features, such as LBP and image distortion, are
utilized broadly to detect presentation attacks. For instance, the commonly used LBP
projects the faces to a low-dimension representation and has shown good performance on
Idiap Replay-Attack dataset [43]. Boulkenafet et al.[13] held an IJCB Mobile Face Anti-
Spoofing (IJCB-MFAS) competition [13] carried out on the publicly available OULU-NPU
dataset [14] in 2017. The goal of the competition was to evaluate the generalizability
of PAD algorithms in a mobile environment. The best performing algorithm among all
protocols, named GRADIANT, fused color, texture, and motion information from different
color spaces. In addition to LBP, transforming face images into the frequency domain
was also previously used. Jourabloo et al.[141] used Fast Fourier Transform to analyze
the spoofing noise. They found that low-frequency features are related to the color
distortion and replay artifacts, while high-frequency responses were more obvious on
print attacks. Recently, Chen et al.[35] fused the high and low-frequency features for
advanced generalizability of face PAD. In their work, three fixed filters were used to extract
the high-frequency information from the input images, and low-frequency features were
extracted by Gaussian blur filters. However, the hand-crafted and fixed filters might fail
to cover the complete frequency domain, and it is hard to use them to capture features
adaptively. Thus, Qian et al.[186] proposed a set of learnable frequency filters for face
forgery detection. In our work, we adapt three learnable filters as suggested in [186] and
add one more general filter to obtain the frequency-aware decomposed image components,
which is complemented by RGB images.
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Deep learning-based methods: Deep learning-based methods have been pushing the
frontier of face PAD research and have shown significant improvement in PAD perfor-
mance. George et al.[93] proposed a PAD based on pixel-wise and binary supervised
(DeepPixBis) training. However, the DeepPixBis method did not generalize well on un-
seen attacks/sensors scenarios. To further improve the intra-dataset performance and
increase the generalization capability, some studies use auxiliary information, e.g., depth
[251] and Remote Photoplethysmography signals [168], for training supervision. For
example, Yu et al.[250] proposed Neural Architecture Search based method for face
PAD (NAS-FAS) based on their previous work on Center Difference Convolution Network
(CDCN) [251]. They obtained significantly improved results in both intra-dataset and
cross-dataset experimental settings. However, the expensive computation cost of Neu-
ral Architecture Search (NAS) must be considered, and the higher error rates in the
cross-dataset scenarios suggest that the generalizability is still an open problem. Several
methods explicitly targeted the domain generalization problem as an inherent domain
shift that can be found between different face PAD datasets. Saha et al.[200] proposed a
class-conditional domain discriminator module to generate discriminative bona fide and
attack features to tackle the domain shift problem. Most domain generalization face PAD
methods [159, 200, 203, 204] performed experiments on four publicly available dataset:
Oulu-NPU [14], CASIA-MFSD [261], Idiap Replay-Attack [43], and MSU-MFSD [233].
We follow this cross-dataset setting to compare the presented face PAD method against
those SOTA methods later in this chapter (as reported in Section 5.3).

5.2.2. Iris PAD

In a recent work, Czajka and Bowyer [48] presented a comprehensive assessment of the
SOTA in iris PAD field. They observed that in recent years there had been growing interest
in deep learning-based iris PAD. Most neural network-related works achieved superior
results than approaches using traditional hand-crafted features, such as LBP [97, 255]
and BSIF [142, 176, 188]. We summarize some of the recent iris PAD papers in the last
two years (See Table 5.1) and notice that only several works performed cross-database
evaluation, as will be explained in details.
The LivDet started in 2013 and the most recent edition took place in 2017 [243]. The

LivDet-Iris-2013 and LivDet-Iris-2015 [244] were launched to assess the performance
of iris PAD algorithms. Recently, most algorithms achieved high performances on NIR
databases. However, by observing databases in LivDet-Iris-2017, it can be noticed that the
cross-domain problem, which referred to cross-database and cross-sensor, is considered
a major problem for current iris PAD solutions. New databases and novel acquisition
conditions of data possessed a higher difficulty than the previous competition. In the
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Author Year Algorithm Used Databases Cross
ValidationName Type of Attack Light

Condition

Chen and Ross [36] 2018 Multi-task CNN
ND-Contact, BERC-Iris-Fake,
LivDet-Iris-2017-Clarkson [243],

CASIA-Iris-Interval &Syn, LivDet-Iris-2015-Warsaw
PP, CL, SY NIR Yes, LE

Hoffmann et al. [110] 2018 Multi-patch CNN LivDet-Iris-2015-Warsaw, CASIA-Iris-Fake,
BERC-Iris-Fake PP, PE, CL NIR Yes, LE

Yadav et al. [238] 2018 Fusion of VGG features and
Multi-level Haralick features Combined Iris Datbase [238] PP, CL, SY NIR No

Yadav et al. [242] 2019 DenseNet based Combined Iris Database [238],
MUIPAD [241], WVU unMIPA [242] PP, CL NIR No

Ferreira et al. [89] 2019 wLBP+MLP with
adversarial learning VSIA [188] PP, RA VIS No

Kuehlkam et al. [155] 2019 Ensemble multi CNNs fed
with mBSIF features LivDet-Iris-2017 [243] PP, CL NIR Yes, LE

Mandalapu et al. [174] 2019 Texture-based Evaluation LivDet-Iris-2017 [243] without WVU subset PP, CL NIR Yes
McGrath et al. [176] 2018 BSIF+ensemble classifiers NDCLD2015, LivDet-Iris-2017 (Clarkson,IIITD) CL NIR Yes, LE
Czajka et al. [49] 2019 Photometric Stereo Features NDCLD-2015 [142] CL NIR No

Hoffmann et al. [111] 2019 Fusion of specific-patch CNNs LivDet-Iris-2015 Warsaw [244], BERC-Iris-Fake, IrisID PP, PE, RA, CL NIR Yes, LE
Kimura et al. [148] 2020 Hyperparameter tuning LivDet-Iris-2017 [243] PP, CL NIR Yes

Sharma and Ross [205] 2020 DenseNet-based based LivDet-Iris-2017 [243] PP, CL NIR No

Table 5.1.: Recent neural network-based iris PAD algorithms including information regard-
ing performing cross-database evaluation. Abbreviations: PP - paper printouts,
CL - contact lenses, SY - synthetic irises, PE - plastic eyes, RA - replay attack,
LE - limited evaluation

LivDet-Iris-2017 competition [243], the Chinese Academy of Sciences (CASIA) proposed
the Cascade SpoofNets to detect iris attacks. One SpoofNet was used for detecting
printouts attack, and one was for textured contact lens attack. This method achieved the
best performance on the Clarkson and Warsaw datasets. The winner of the IIITD-WVU
and Notre Dame datasets did not provide detailed information about their algorithms.
Recently, Kimura et al. [148] proposed fine-tuning the hyperparameters of the SpoofNets
to improve the iris PAD performance. Since only the IIITD-WVU dataset was designed
for cross-database evaluation, the cross-attack validation was very limited. Therefore,
in this section and this paper, we focus on the iris PAD cross-database and cross-attack
evaluation.
McGrath et al. [176] proposed an open-source PAD solution to distinguish between

bona fide and irises with textured contact lenses. They extracted BSIF features and then
classified them by an ensemble of classifiers incorporating Support Vector Machine (SVM),
random forest, and multi-layer perceptron. They concluded that ensemble classifiers (7
or 8 models) could be robust to cross-dataset validation, as the results were close to the
winner of the LivDet-Iris-2017 competition. However, such an analysis of cross-dataset
evaluation have limited implications since they only demonstrated experiments by training
on one of the databases and evaluating on the other, and not vice versa. Moreover, one

115



of the used databases was the Clarkson database that is no longer publicly available.
Furthermore, they neglected the printout attacks from the original datasets and only
focused on textured lenses, and thus did not perform cross-attack evaluation. Czajka et
al. [49] presented the first photometric stereo-based iris PAD method to detect textured
contact lenses. They concluded that their proposed algorithm had good generalization
capabilities because it was not trained on any specific texture lens pattern. Though they
showcased a good performance on regular (dot-like pattern) and irregular (no dot-like
patterns) of textured contact lenses, their experiments did not involve any cross-database,
cross-sensor, or cross-attack validation. Therefore, the generalizability of the algorithm is
insufficiently analysed. A multi-task CNN framework [36] was proposed to estimate iris
bounding boxes and detect iris presentation attacks simultaneously. This CNN model was
trained on a subset of LivDet-Iris-2015-Warsaw, then tested on the BERC-Iris-Fake and
LivDet-Iris-2017-Clarkson database, but not vice versa. Therefore, the demonstration on
cross-database capabilities is limited. Similar to the multi-task CNN, Hoffmann et al. [110]
trained a multi-patch CNN network to learn a mapping relationship between patches of
iris pixels and the corresponding classification label. The best performing CNN from the
intra-database testing scenario was considered as the trained model and tested against
the other two databases. However, the cross-database experimental results showed that
the model lost significant performance when tested on the plastic or textured contact lens
presentation attacks. Therefore, Hoffmann et al. pointed in their work that cross-database
PAD is a challenging scenario. In their following work [111], the authors sampled 20
patches, 12 patches from the ocular region and 8 patches from the iris/sclera boundary,
to train the multi-patch CNN presented in [110]. They validated the difficulties of cross-
domain again in this paper, i.e., the iris PAD algorithms need to account for variations in
the sensors, image acquisition environment, subject population, and presentation attack
generation procedures. However, extracting small size patches might lose the integrity
information of the iris-sclera boundary. In contrast, our stripes ensure the consistency of
the captured information, by ensuring a consistency localization. Moreover, the authors
reported results on an outdated database (BECR-IF 2006 [158]), no longer publicly
available database (Warsaw-2015 [244]), and a private database (IrisID), which limited
the possibility of a direct comparison.
In contrast to only using neural networks, several researchers attempted to combine

hand-crafted and deep learning features. For example, Yadav et al. [238] fused the
Multi-level Haralick (MH) texture features with VGG [207] features to encode the tex-
tural variations between bona fide and attack iris images. Although this fusion method
achieved good performance on each database, the generalization (cross-database) ability
of this approach is unclear. Moreover, the VGG-16 [207] network contains 138 million
parameters, which indicated that it is hard to deploy on embedded mobile devices, e.g.,
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smartphones. Additionally, a key problem with the above mentioned approaches on iris
PAD is that these methods were demonstrated only in a controlled acquisition environ-
ment and lacked analyses in varying conditions. As a follow-up work on [238], Yadav
et al. presented a challenging database [242], which is captured by a mobile iris sensor
in varying environmental situations (indoors and outdoors). In addition, they proposed
the DensePAD framework [242] to detect iris presentation attacks and demonstrated
its efficacy. DensePAD framework tackled the issue of textured contact lens attack, but
neglected information beyond the iris boundary. Furthermore, Sharma and Ross [205]
exploited the architectural benefits of DenseNet [117] to propose an iris PA detector
(D-NetPAD) evaluated on a proprietary database and the LivDet-Iris 2017 databases.
With the help of their private additional data, the fine-tuned D-NetPAD achieved good
results on LivDet-Iris 2017 databases, however, scratch D-NetPAD failed in the case of
cross-database scenarios. Ferreira et al. [89] used adversarial learning fed with weighted
LBP features to detect iris presentation attacks and demonstrated the algorithm on Visible
Spectrum Iris Artefact (VSIA) database [188]. Both works did not discuss the influence of
cross-database evaluation. An ensemble of multi-view learning classifiers approach [155]
was proposed for cross-domain iris PAD in 2019 and surpassed the winner of LivDet 2017
in all databases. They trained multiple CNNs fed with multi-size BSIF representations and
combined those results via meta-fusion. However, the cross-database evaluation using
this fusion method did not result in satisfying accuracy. They concluded in the paper
[155] that training CNN predictors and testing on another database resulted in accuracy
no better than random prediction. Furthermore, Mandalapu et al. [174] performed an
empirical evaluation of texture-based print and contact lens attacks on the LivDet-Iris-2017
Database. The generalization ability was mainly discussed with different experimental
scenarios in this work. However, their preliminary analyses were only based on a database
captured under controlled environment, since they did not use the LivDet-Iris-2017 WVU
subset. Recently, Chen et al. [37] proposed an attention-guided iris PAD method to refine
the feature maps of DenseNet [117]. However, this method utilized conventional sample
binary supervision and did not report cross-database and cross-spectrum experiments to
prove the generalizability of the additional attention module.

Limitations: Based on the recent iris PAD literature, it can be noticed that there is a small
error performance gap to be closed in NIR based iris PAD. Moreover, the uncontrolled iris
captures are still a challenge for iris PAD, especially with limited computational resources.
Furthermore, the deep-learning-based methods boost the performance but still have the
risk of overfitting under cross-PA and cross-database scenarios. One of the major reasons
causing overfitting is the lack of availability of a sufficient amount of variant iris data
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for training networks. Another possible reason might be binary supervision. While the
binary classification model provides useful global information, its ability to capture subtle
differences in attacking iris samples may be weakened, and thus the deep features might
be less discriminative. In addition to the challenges across database scenarios, another
issue is that there is no existing research dedicated to exploring the generalizability of PAD
methods across spectral scenarios. PAD research in the NIR domain [77, 155, 205, 238]
has attracted much attention, while few studies [190, 240] investigated PAD performance
in the visible spectrum. Furthermore, the generalizability of PAD methods under the
cross-spectrum is unclear. Suppose a model trained on NIR data can be well generalized
to visible-light data. In that case, it requires only low effort to transfer such solution to
low-cost mobile devices [146, 190, 201], which simplifies its application in the real world.
In addition to the model generalizability problem, another concern is the unclear fairness
in PAD systems due to the insufficient annotated and balanced data resources. Despite
the limited database availability, the demographic bias in iris PAD is an open issue and is
of great interest. With the widespread use of iris recognition technology, we believe the
bias problem needs to be analyzed to enable future mitigation efforts.
The following sections introduce first a face PAD solution that intelligently leverages

information from the frequency domain to enhance the generalizability of PAD. Then,
two iris PAD methods are presented to target the generalizability of iris PAD under
cross-domain scenarios.
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5.3. Enhancing the generalizability of face PAD

This section presents a learnable multi-level frequency decomposition based face PAD
method, LMFD-PAD, targeting the generalizability of PAD performance. A dual-stream
network architecture was employed. The first stream learned discriminative features in
the frequency domain by using learnable frequency filters to obtain frequency decomposed
image components, while the other stream used RGB face images as input to learn features
in the spatial domain. Moreover, the hierarchical attention mechanism was presented to
fuse features from both domains at different stages of the network. A spatial attention
module was added at the lower layers of the CNN to capture the texture features, and
the channel attention module was added at the higher layers of CNN to obtain advanced
semantic information. The experiments were demonstrated under intra-dataset and
cross-dataset settings. The presented LMFD-PAD method achieved comparable results
in intra-dataset scenarios. Moreover, in most cross-dataset cases, the proposed solution
outperformed SOTA face PAD methods, including the methods addressing the domain
adaption/shift and generalization capability problem. The proposed components of the
LMFD-PAD solution were additionally proved in a step-wise ablation study. This section
first presented the detailed architecture of LMFD-PAD and the experiment setup. Then,
the obtained results will be discussed to respond to RQ6.

5.3.1. Methodology

In this section, we will provide details of the LMFD-PAD solution. We will introduce the
Multi-level Frequency Decomposition (MFD), including four learnable frequency filters.
Then the dual-stream network architecture is introduced where using a hierarchical
attention mechanism to integrate the features learned in frequency and spatial domain,
and at last present the used loss functions.

Multi-level Frequency Decomposition

Deep-learning based face PADmethods achieved great progress in intra-dataset evaluations.
However, the performance normally drops drastically when testing on unseen datasets
[185]. This might be caused by the variations in the attacks and capture environments,
such as illuminations and sensors. To address this issue, our proposed LMFD solution
decomposes an input face image into different level frequency components. Frequency
domain analysis is a classical method in image signal processing and has been widely
used for general image classification and texture classification tasks [104, 212]. Moreover,
some face PAD methods attempted [34, 35, 160] to transform the images in frequency

119



C
on

ca
t

Fu
lly

 C
on

ne
ct

Bona f de / Attack

Concat and
spatial attention

Concat and
spatial attention

Concat and
channel attention

C
on

v 
(k

=
3)

B
at

ch
N

or
m

al
iz

e

R
eL

U

C
on

v 
(k

=
1)

Feature
Map

14x14C
on

v 
(k

=
5 

or
 7

)

S
ig

m
oi

dAvgPool

MaxPool

Multi-scale
Frequency

decomposition

R
es

N
et

 B
lo

ck
 1

R
es

N
et

 B
lo

ck
 2

R
es

N
et

 B
lo

ck
 3

R
es

N
et

 B
lo

ck
 4

C
on

v 
(k

=
7)

B
at

ch
N

or
m

al
iz

e

R
eL

U

M
ax

P
oo

l

RGB 224x224x3

MFDs 224x224x12

R
es

N
et

 B
lo

ck
 1

R
es

N
et

 B
lo

ck
 2

R
es

N
et

 B
lo

ck
 3

R
es

N
et

 B
lo

ck
 4

C
on

v 
(k

=
7)

B
at

ch
N

or
m

al
iz

e

R
eL

U

M
ax

P
oo

l
Spatial
attention
Module

AvgPool

MaxPool

Fu
lly

 C
on

ne
ct

R
eL

U

Fu
lly

 C
on

ne
ct

C
on

ca
t

S
ig

m
oi

d

Channel
attention
Module

Attention map

Attention map

Figure 5.2.: The overall workflow of our proposed LMFD-PAD solution. Note the utilization
of our MFD and Hierarchical Attention Mechanism (HAM) (three different
channel attention components) components.

domain and mine the artifacts cues. The results showed that features in the frequency
domain are less sensitive to the variations of the capture environments (e.g., sensors or
light conditions). However, most existing frequency-based face PAD methods used filters
with fixed weight and maybe sub-optimal for discriminative feature learning.
In our work, we use a set of adaptively learnable frequency filters described in [186] for

face forgery detection. First,N manually designed binary base filters Fb = {f i
b |1 ≤ i ≤ N}

partition the frequency domain into low, middle, high frequency bands. The goal of the
binary base filters is a roughly equal division of spectrum intpN bands from low frequency
to high frequency. Then, N learnable filters Fl = {f i

l |1 ≤ i ≤ N} are added to such binary
base filters. The benefit of such learnable filters is the adaptive selection of the frequency
of interest beyond the fixed base filters. Finally, a decomposed image component Ci of an
input image x can be computed following the equation:

Ci = D−1{D(x)⊙ [f i
b + σ(f i

l )]}, i = {1, ..., N}, (5.1)

where D is DCT, D−1 is inversed DCT, and ⊙ is the element-wise product. The σ(f) =
1−exp(−f)
1+exp(−f) is used to normalize the value of f between −1 and +1.
In our case, N is set to 4 to obtain explicitly divided frequency domain of low, middle,

and high-frequency bands and the complementary full frequency band. Three bands are
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chosen as described in [186]: 1) the low frequency band f1
base is the first 1/16 of the

entire spectrum, 2) the middle frequency band f2
base is between 1/16 and 1/8 of the entire

spectrum, 3) the high frequency band f3
base is between 1/8 and 7/8 of the entire spectrum.

However, the partitioned frequencies may not be sufficient to obtain subtle cues between
bona fide and attacks. Therefore, we add one additional learnable filter f4

base where the
frequency band is the entire spectrum. Moreover, we also keep the input RGB image to
provide more visual information and complementary to frequency domain information
(as shown in Figure 5.2).
In the experiments, face detection is firstly performed on the input image by MTCNN

framework [256]. Then, the detected RGB face image is resized to 224× 224× 3 pixels.
According to the Equation 5.1, four obtained components are stacked along the channel
axis, i.e, the size of a stacked decomposition is 224×224×12. Then, we utilize dual-stream
(RGB and MFD) networks to extract different features in a face image (see Figure 5.2). In
our work, we use the ResNet-50 [107] as our backbone network.

Hierarchical Attention Mechanism

So far, we use the dual-stream to learn discriminate features in parallel, which may be
sub-optimal for a final PAD decision. To enhance that, we propose our HAM to integrate
features from the frequency domain and semantic image domain and to utilize the features
from different layers in the dual-stream.
This HAM is inspired by Convolutional Block Attention Mechanism (CBAM) [236],

which proposed channel and spatial attention blocks for the general computer vision task,
and Attention Pixel-wise Binary Supervision (A-PBS) method [79], which employed and
fused spatial attention features from multi-layers for the iris PAD task. The CBAM [236]
consisting of the channel, and distinctive spatial sub-modules can be added into networks
according to the custom design needs and showed improvements in classification and
detection performance with various neural architectures. A-PBS method [79] adopted
only spatial attention module (i.e., no channel attention module) aiming to locate the
most informative region in an RGB eye image, where might contribute most to a PAD
decision. However, in our MFD stream, we have multi-level frequency features, and
the weights of filters are adaptively learning while the model is training. The high-
frequency component emphasizes features like edges and texture information, while
the low-frequency component is related to the spatial distribution of the color gamut.
Therefore, channel attention is additionally applied in our framework.
Figure 5.2 shows that spatial attention modules are inserted after the first convolution

block and the second ResNet block, respectively, while a channel attention module is added
following the third ResNet block. The reason for such attention modules arrangement is
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based on the nature of the features extracted from different layers. The features from
lower to higher layers become more abstract and complex. More specifically, the features
in the lower layers are related to the appearance and texture cues, and the features in the
higher layers might reveal the semantic content information. Consequently, we perform
a spatial attention module on a fused feature in lower layers to focus on texture details
like the edge. Then, a channel attention module is added after the third ResNet block
to learn the advanced semantic features. To be consistent with the observation on the
nature of features in different layers, the size of the convolutional kernel is 7×7 in the first
spatial attention module and 5× 5 in the second spatial attention module, as the smaller
convolutional kernel is more suitable for locating the small-scale texture cues. Finally,
the attentive features are fused to preserve richer patterns. Moreover, we use pixel-wise
and binary supervision to train the dual-stream networks as suggested in [93] where the
intermediate feature map can be considered as the scores generated from the patches
in an image and thus improve the performance. On the one hand, the attentive feature
maps from different layers are concatenated and fed to the stacked two convolution layers
to output a feature map. The size of the output feature map in our case is 14 × 14 for
pixel-wise supervision. On the other hand, the features from the last ResNet block in two
streams are also concatenated and fed to the fully connected layer for binary supervision.

Loss function

BCE loss has proved to perform well when used for pixel-wise and binary supervision [93].
Nevertheless, to reduce the sensitivity to outliers in the output feature map, we use the
Smooth L1 (SL) function to compute the loss between the output feature map and the
ground truth binary mask. For binary supervision, we use the Focal Loss instead of BCE
loss because the Focal loss (FL) with a relaxing factor can down-weight easy samples (i.e.,
samples correctly classified with high confidence) and make the model focus on the hard
samples with low classification confidence. The equation for Smooth L1 is shown below
as:

LSL =
1

n

∑︂
z

where z =

⎧⎪⎨⎪⎩
1

2
· (y − x)2, if |y − x| < 1

|y − x| − 1

2
, otherwise

where n is the number of pixels in the output map (14 in our case). x and y refer to the
values in the output feature map and the ground truth label, respectively. The equation of
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Focal loss is:
LFL = −(1− pt)

γ log(pt)

where pt =

{︄
p, if y = 1

1− p, otherwise

where p is the predicted probability when the ground truth label y is 1 (bona fide in our
case) and γ is a tunable focusing parameter (γ is 2 in our experiments). The overall loss
function is given as:

Loverall = λ1 · LSL + λ2 · LFL (5.2)
For exploring the effect of loss functions, we also report the results of BCE loss as used in
[93] as an ablation study (as shown in Table 5.4).

5.3.2. Experimental setup

Datasets:

Our method is evaluated on four publicly available face PAD datasets: Oulu-NPU [14],
CASIA-MFSD [261], Idiap Replay-Attack [43], and MSU-MFSD [233] under different
scenarios. Oulu-NPU [14] dataset consists of 55 subjects and 5940 videos recorded
by six mobile phones. Four protocols are provided to evaluate the generalizability of
algorithms. Protocol-1 studies the impact of illumination variations, while Protocol-2
evaluates different attacks created by various instruments. Protocol-3 examines the effect
of different capture cameras, and Protocol-4 explores all the challenges above by leave-one-
out cross-validation. CASIA-MFSD [261] includes 50 subjects and 600 videos captured by
three different quality cameras. This dataset contains three attack types: warped photo
attack, cut photo attack, and video replay attack. Idiap Replay-Attack [43] contains 50
subjects and 300 videos captured by different sensors and different illumination conditions.
Moreover, two types of attacks are included in this dataset: print and replay attacks. MSU-
MFSD [233] contains 35 subjects and 440 videos captured by two different resolutions
of cameras. This dataset also includes two types of attacks, printed photo attacks and
replay attacks. The videos in datasets are recorded under different environments with
variant cameras and subjects, suitable for cross-dataset domain generalization protocol.
Moreover, the subjects in the training set and test set are disjoint in intra-dataset settings.

Implementation details:

The proposed dual-stream networks are based on ResNet-50 [107] with pre-trained
weights on the ImageNet dataset [67]. The data in all PAD datasets are videos, thus, we
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sample 10 frames in the average time interval of each video to train and test our method.
For each frame, the face is detected and cropped by the MTCNNmethod [256] and resized
to 224× 224× 3 pixels. In the training phase, the SGD optimizer is used with an initial
learning rate of 0.001, the momentum of 0.9, and a weight decay of 0.0001. Then, the
exponential learning rate scheduler is used with a multiplicative factor of the learning
rate decay value (γ) of 0.995. The ratio of bona fide and attack data is close to 1:1 by
simply duplicating the needed images to reduce the effect of biased data. Several data
augmentation techniques are used for better generalization ability, including horizontal
flip, rotation, cutout, RGB channel shift, and color jitter. To further reduce overfitting, the
early stopping technique is utilized with the maximum epochs of 100 and the patience
epochs of 15. The batch size in the training phase is 32. In our experiments, the λ1 in
overall loss function 5.2 is set manually to 1 at the beginning of the training and changed
to 100 after five training epochs, while λ2 is set to 1 in the whole training phase. In the
testing phase, a final PAD decision score of a video is a fused score (mean-rule fusion) of
all frames.

Evaluation metrics:

We follow the sub-protocols and metrics as defined in the competition [13] which was
performed on the OULU-NPU [14] dataset for a fair comparison. The Attack Presentation
Classification Error Rate (APCER) [127] is computed separately for each presentation
attack instrument (PAI), e.g., print or replay following the equation:

ACPERPAI =
1

NPAI

NPAI∑︂
i=1

(1− pi) (5.3)

whereNPAI is the number of attack samples for a given PAI, pi is the predicted binary label
of the ith presentation (0 for bona fide and 1 for attack). Then, following the OULU-NPU
protocol [14], APCERwc is the highest APCER is selected to report the overall performance,
i.e., the worst case among all the presentation instruments. The equation is APCERwc

= max (APCERPAI) among all PAIs. Bona Fide Presentation Classification Error Rate
(BPCER) [127] is the proportion of incorrectly classified bona fide samples. Average
Classification Error Rate (ACER) is the mean of APCERwc and BPCER. Moreover, to report
the cross-dataset results and to be consistent with previous works [17, 159, 168, 204, 250],
we report Half Total Error Rate (HTER) and Area Under the receiver operating Curve
(AUC) are used for the cross-dataset domain generalization protocol on OULU-NPU [14] ,
CASIA-MFSD [261], Idiap Replay-Attack [43] and MSU-MFSD [233] datasets. The HTER
is half of the sum of the APCER and BPCER.
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Prot. Method APCERwc(%) BPCER(%) ACER(%)

1

GRADIANT [13] 1.3 12.5 6.9
Auxiliary [168] 1.6 1.6 1.6
FAS-TD [231] 2.5 0.0 1.3
STASN [245] 1.2 2.5 1.9
DeepPixBis [93] 0.8 0.0 0.4
CDCN++ [251] 0.4 0.0 0.2
SSR-FCN [65] 1.5 7.7 4.6
NAS-FAS [250] 0.4 0.0 0.2
LMFD-PAD (ours) 1.4 1.6 1.5

2

GRADIANT [13] 3.1 1.9 2.5
Auxiliary [168] 2.7 2.7 2.7
FAS-TD [231] 1.7 2.0 1.9
STASN [245] 4.2 0.3 2.2
DeepPixBis [93] 11.4 0.6 6.0
CDCN++ [251] 1.8 0.8 1.3
SSR-FCN [65] 3.1 3.7 3.4
NAS-FAS [250] 1.5 0.8 1.2
LMFD-PAD (ours) 3.1 0.8 2.0

3

GRADIANT [13] 2.6 ± 3.9 5.0 ± 5.3 3.8 ± 2.4
Auxiliary [168] 2.7 ± 1.3 3.1 ± 1.7 2.9 ± 1.5
FAS-TD [231] 5.9 ± 1.9 5.9 ± 3.0 5.9 ± 1.0
STASN [245] 4.7 ± 3.9 0.9 ± 1.2 2.8 ± 1.6
DeepPixBis [93] 11.7 ± 19.6 10.6 ± 14.1 11.1 ± 9.4
CDCN++ [251] 1.7 ± 1.5 2.0 ± 1.2 1.8 ± 0.7
SSR-FCN [65] 2.9 ± 2.1 2.7 ± 3.2 2.8 ± 2.2
NAS-FAS [250] 2.1 ± 1.3 1.4 ± 1.1 1.7 ± 0.6
LMFD-PAD (ours) 3.5 ± 3.2 3.3 ± 3.2 3.4 ± 3.1

4

GRADIANT [13] 5.0 ± 4.5 15.0 ± 7.1 10.0 ± 5.0
Auxiliary [168] 9.3 ± 5.6 10.4 ± 6.0 9.5 ± 6.0
FAS-TD [231] 14.2 ± 8.7 4.2 ± 3.8 9.2 ± 3.4
STASN [245] 6.7 ± 10.6 8.3 ± 8.4 7.5 ± 4.7
DeepPixBis [93] 36.7 ± 29.7 13.3 ± 14.1 25.0 ± 12.7
CDCN++ [251] 4.2 ± 3.4 5.8 ± 4.9 5.0 ± 2.9
SSR-FCN [65] 8.3 ± 6.8 13.3 ± 8.7 10.8 ± 5.1
NAS-FAS [250] 4.2 ± 5.3 1.7 ± 2.6 2.9 ± 2.8
LMFD-PAD (ours) 4.5 ± 5.3 2.5 ± 4.1 3.3 ± 3.1

Table 5.2.: The results of the intra-dataset evaluation under the four protocols of the
OULU-NPU dataset [14]. The bold numbers refer to the lowest ACER in each
protocol. Note that our LMFD-PAD achieves competitive performance overall
and performs better than most methods that do not use auxiliary information
(depth or rPPG).
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5.3.3. Results

Comparison with the SOTA methods

Intra-dataset results on OULU-NPU An IJCB-MFAS competition [13] was carried out
on the publicly available OULU-NPU dataset. To assess the generalizability of the face
PAD methods, four protocols are provided consisting of cross-environment, cross-PAIs,
cross-sensors, cross-all scenarios. For a fair comparison, we strictly follow the definition
and evaluation metric of those protocols. In this study, we compare our LMFD-PAD
method with the best performing method in IJCB-MFAS competition [13], GRADIANT.
Moreover, we also compare with several recently PAD methods: Auxiliary [168], FAS-TD
[231], STASN [245], DeepPixBis [93], CDCN++ [251], SSR-FCN [65], NAS-FAS [250]
proposed from 2018 to 2021. The results are reported in Table 5.2. 1 The LMFD-PAD
achieved ACER values of each protocol are 1.5%, 2.0%, 3.4%, and 3.3%, respectively.
It can be observed that our method obtain competitive results in comparison to state-
of-the-art methods. For example, the lowest ACER in the most challenging Protocol-4 is
2.9% achieved by NAS-FAS [250], while our LMFD-PAD ACER value is 3.3%. This result
indicates that our model generalizes well on the cross-test scenarios. Considering that
we employ pixel-wise supervision, we can group those PAD methods into three groups
based on supervision manner for further comparison. GRADIANT [13] and STASN [245]
was trained only by binary supervision. DeepPixBis [93], SSR-FCN [65] and our method
utilized the pixel-wise and binary supervision. The left four PAD approaches used depth
or/and rPPG supervision. It can be found in Table 5.2 that our method possesses improved
performance compared to pixel-wise and binary supervised models in most cases but
scored below the depth/rPPG supervised networks in some cases. This might drive an
extension of our work by generating depth or/and rPPG information to improve the
intra-dataset performance. In this case, however, the trade-off between computational
resource/time and performance needs to be considered.

Cross-dataset results In the cross-dataset scenario, four publicly available face PAD
datasets: Oulu-NPU [14] (O for short), CASIA-MFSD [261] (C for short), Idiap Replay-
Attack [43] (I for shot), and MSU-MFSD [233] (M for short) are used. Three datasets
are randomly selected for training and the remained one is used for testing. Specifically,
following previous works targeting the domain adaption and generalization capability of
face PAD [159, 200, 203, 204], four settings are performed: O&C&I → M, O&M&I → C,
O&C&M → I and I&C&M → O.

1The results of state-of-the-art solutions listed in Table 5.2 and 5.3 are those reported in their paper.
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Method O&C&I → M O&M&I → C O&C&M → I I&C&M → O
HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)

MS LBP [173] 29.76 78.50 54.28 44.98 50.30 51.64 50.29 49.31
Binary CNN [237] 29.25 82.87 34.88 71.94 34.47 65.88 29.61 77.54
IDA [234] 66.67 27.86 55.17 39.05 28.35 78.25 54.20 44.59

Color Texture [17] 28.09 78.47 30.58 76.89 40.40 62.78 63.59 32.71
LBPTOP [184] 36.90 70.80 42.60 61.05 49.45 49.54 53.15 44.09

Auxiliary(Depth Only) [168] 22.72 85.88 33.52 73.15 29.14 71.69 30.17 77.61
Auxiliary(All) [168] - - 28.40 - 27.60 - - -
NAS-FAS [250] 16.85 90.42 15.21 92.64 11.63 96.98 13.16 94.18
MMD-AAE [159] 27.08 83.19 44.59 58.29 31.58 75.18 40.98 63.08
MADDG [203] 17.69 88.06 24.50 84.51 22.19 84.99 27.98 80.02
RFMetaFAS [204] 13.89 93.98 20.27 88.16 17.30 90.48 16.45 91.16
CCDD [200] 15.42 91.13 17.42 90.12 15.87 91.72 14.72 93.08

LMFD-PAD (ours) 10.48 94.55 12.50 94.17 18.49 84.72 12.41 94.95

Table 5.3.: The results of the cross-dataset evaluation under different experimental set-
tings on four face PAD datasets. In each setting, three datasets are used for
training, and one remaining dataset is used for testing. Our LMFD-PADmethod
is compared with state-of-the-art face PADmethods reporting on this protocol.
Not that four of the state-of-the-art methods MMD-AAE, MADDG, RFMetaFAS,
and CCDD are explicitly designed to target the domain shift problem. The bold
numbers indicate the lowest HTER and highest AUC in each setting.

In our work, we compare our LMFD-PAD model against eight state-of-the-art face PAD
methods including depth/rPPG supervision based Auxiliary [168] and NAS-FAS [250]
which outperformed in intra-testing on OULU-NPU dataset [14]. In addition, we also
compare our method with four state-of-the-art domain generalization face PAD methods:
MMD-AAE [159], MADDG [203], RFMetaFAS [204], and CCDD [200], which explicitly
target the domain shift problem. The results are reported in Table 5.3 where the last four
methods are face methods addressing domain shift problems. Our proposed LMFD-PAD
method achieves significantly improved performance in three experiment settings. For
example, the HTER value of our model is 10.48% in O&C&I → M setting and 12.50% in
O&M&I → C and 12.41% in I&C&M → O, while the second-ranking results in those settings
are 13.89%, 15.21%, and 13.16%, respectively. Although our LMFD-PAD method is not
explicitly designed for the domain shift problem, our method obtains better performance
than domain generalization face PAD methods in most cases. The cross-dataset results are
consistent with the result in the most challenging intra-dataset Protocol-4 of OULU-NPU
dataset [14]. We conclude that our method is able to learn more generalized features,
which perform well on unseen domains. However, it is still unclear which part of our
model benefits the improved results. This question will be answered in the following
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RGB MFD HAM BCE FL+SL O&C&I → M O&M&I → C O&C&M → I I&C&M → O
HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)

√ √ 17.14 90.47 22.12 82.10 24.62 82.28 19.47 88.16√ √ √ 15.47 93.17 17.21 87.50 23.51 83.25 17.26 90.41√ √ √ √ 11.19 93.39 16.83 90.62 21.42 83.92 22.27 85.98√ √ √ √ 10.48 94.55 12.50 94.17 18.49 84.72 12.41 94.95

Table 5.4.: The results of the ablation study on model inputs, components, and loss
functions. The ablation study is performed on cross-dataset experimental
settings to uncover the components generalizability benefits. One can note
that in most experiments, each of the proposed components contributes
positively to the cross-dataset PAD performance.

section by exploring the effect of the MFD, HAM parts, and loss function in an ablation
study.

(a) BF and attack. (b) Varied scenarios. (c) Varied devices.

Figure 5.3.: t-SNE visualization of a cross-dataset setting I&C&M - O using our LMFD-PAD
embeddings, where the test set is OULU-NPU dataset consisting of three
capture environments with different illumination conditions and six mobile
devices. The first t-SNE plot represents the two classes: bona fide (blue)
and attack (orange). The second and third t-SNE plot indicates three capture
scenarios and six capture devices, respectively. In Figures 5.3b and 5.3c,
each color corresponds to an environment or device, the signs■ and x refers
to bona fide and attack, respectively. It is noted that the embeddings from
the LMFD-PAD still find a common pattern between the attacks captured
under different settings.
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Ablation study on model components

So far, the results in Table 5.2 and Table 5.3 are obtained by our full model including
the MFD, HAM and a combined loss function of Focal loss and Smooth L1 loss (Equation
5.2). However, the detailed effect of each part is unknown. Therefore, we present an
ablation study on model components, and the results are summarized in Table 5.4. This
aims at understanding the generalization benefits of each of the proposed components.
The training hyper-parameters are the same for all combinations in Table 5.4 (training
details are described in Section 5.3.2). Since we assume that our method is able to learn
discriminative and generalize features, the ablation study is demonstrated under the
cross-dataset experimental setups on four datasets.

Impact of MFD: To explore the effect of the learnable frequency decomposition, we train
a one-stream network using only RGB face images as input and a dual-stream network
consisting of RGB and MFD, both solutions are trained by minimizing the BCE loss. The
results in Table 5.4 shows the improvement by the additional MFD component (the HTER
is decreased from 17.14% to 15.47% in the O&C&I→M setting). A consistent performance
enhancement is seen under all the experimental setups in Table 5.4.
Impact of HAM: In contrast to learning the features in the image and the frequency

domains in parallel and fusing such features just before the classification layer, we add
the HAM component to fuse such features earlier followed by different attention blocks
according to the levels of layers. The corresponding results are reported in the second
row and third row of Table 5.4 where it is noticeable that the addition of the proposed
HAM did enhance the performance in most experimental settings.

Impact of loss function: In our LMFD-PAD solution, we use the Focal loss to supervise
the binary label prediction and the Smooth L1 to supervise the feature map label prediction
instead of the commonly used BCE loss. To explore the effect of such modification, we
compare it to using the BCE loss for pixel-wise and binary supervision. The weights of both
BCE losses is set to 0.5 as used in [93]. As presented in Table 5.4, the loss combination
used in our LMFD-PAD solution strongly enhances the PAD performance across all the
cross-dataset experimental settings.
We conclude that our LMFD-PAD full model boosts the performance generalizability

further by adding each of the MFD, HAM, and a combined loss function.

Visualization and analysis

In our assumption, the MFD module is able to learn rich generalizable features that adapt
well to unseen datasets, especially for unseen sensors or illumination. To further verify
this assumption, we use t-SNE [222] plots to visualize deep features in the cross-dataset
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case I&C&M → O. This setting is chosen because the unseen test set is OULU-NPU dataset
[14] consisting of more variation of environment and capture devices and thus it is better
for visualization. The deep features are extracted from the last convolution layer before
the classification layer, and then the Principal Component Analysis (PCA) is used to reduce
the dimensionality of features to 128-D to reduce the computational cost of the t-SNE.
Such features are then projected to 2-D features by t-SNE. Figure 5.3 depicts t-SNE plots
on two classes (bona fide and attack), three capture environments, and six capture devices
from left to right. As seen in Figure 5.3a, bona fides and attacks can be considered as
coarsely non-linearly separable. This indicates that our model learns discriminative and
generalizes features between bona fides and attacks. In Figure 5.3b, blue, orange, and
green represent three environments of various illuminations. It can be seen that different
environments are more obviously clustered in the attack category, while they are clustered
more randomly in the bona fide category. A similar observation can be found on different
mobile devices in Figure 5.3c. These findings suggest that our model is able to mine the
general attack artifacts patterns across data capture variety and thus generalizability
on unseen datasets is less effect by different sensors or illuminations. This confirms the
achieved cross-dataset results reported above.

5.3.4. Discussion

This section proposed a learnable multi-level frequency decomposition based face PAD
method, LMFD-PAD, targeting the generalizability of PAD performance. A dual-stream
network architecture was employed . The first stream learned discriminative features in
the frequency domain by using learnable frequency filters to obtain frequency decomposed
image components, while the other stream used RGB face images as input to learn features
in the spatial domain. Moreover, the hierarchical attention mechanism was proposed to
fuse features from both domains at different stages of the network. A spatial attention
module was added at the lower layers of the CNN to capture the texture features, and
the channel attention module was added at the higher layers of CNN to obtain advanced
semantic information. The experiments were demonstrated under intra-dataset and
cross-dataset settings. The presented LMFD-PAD method achieved comparable results
in intra-dataset scenarios. Moreover, in most cross-dataset cases, the proposed solution
outperformed SOTA face PAD methods, including the methods addressing the domain
adaption/shift and generalization capability problem. The proposed components of the
LMFD-PAD solution were additionally proved in a step-wise ablation study.
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5.4. Micro stripes analyses for iris PAD

This section introduces a framework for detecting iris presentation attacks that focuses
on detecting attack clues around the outer iris boundary based on normalized multiple
micro stripes [78, 82]. The classification decision is made by the majority vote of these
micro-stripes. An in-depth experimental evaluation of this framework reveals a superior
performance in three databases, in comparison with SOTA algorithms and baselines. More-
over, MSA solution minimizes the confusion between textured (attack) and transparent
(bona fide) lenses presentations in comparison to SOTA methods. We support the ratio-
nalization of the proposed method by studying the significance of different pupil-centered
eye areas in iris PAD decisions under different experimental settings. In addition, exten-
sive cross-database and cross-attack (unknown attack) detection evaluation experiments
are demonstrated to explore the generalizability of our proposed method, texture-based
method, and neural network-based methods in three different databases. The results
indicate that the presented MSA approach has, in most experiments, better generalizability
compared to other baselines, as a response to RQ7.

5.4.1. Methodology

Figure 5.4.: Cross-database and unknwon attack detection scenarios.

There are manymethods proposed to address the iris PAD problem in the literature. How-
ever, only a few works have been investigated the generalizability of iris PAD approaches
from aspects such as the type of presentation attacks, sensors, databases. Although most
algorithms achieved high accuracy on databases captured in the controlled environment
with NIR illumination, the performance on the different databases has a significant differ-
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ence. Compared to intra-database evaluation (i.e., training on one database and testing a
subject-disjoint set of the same database), cross-database evaluation (i.e., training on one
or more databases and testing on other databases.) is considered as a more difficult chal-
lenge. Firstly, because of the limitation of databases, trained models are easily overfitting
even with regularization techniques. Moreover, many variations need to be considered in
the iris PAD field, such as characters of sensors, data acquisition environments, subject
biases, and unseen presentation attacks. Consequently, algorithms with high general-
izability and transferability are an urgent requirement in real-world scenarios. These
algorithms should have the ability to adapt to previously unknown data and maintain
similar results. As mentioned in the related works, cross-database validation has gradually
raised some attention. Nonetheless, most previous works [36, 110, 111, 155, 176] did
not perform extensive experimental analyses. Usually, the best-trained model in one
training database was chosen and tested in another one. Furthermore, a recent paper
[174] has investigated the generalizability of the textured-based iris PAD methods in
cross-database and cross-attack settings. Nevertheless, to our knowledge, there is no
extensive deep-learning-based cross-database evaluation so far for iris PAD approaches.
Hence, as shown in Figure 5.4, an extensive experimental analyses for deep learning-

based iris PAD methods with cross-database, cross-sensor and cross-attack setting is
demonstrated in this work. In order to examine the generalizability between hand-crafted
features and neural network features based approaches, four iris PAD methods and three
databases are used. Three databases consisting of bona fide and three different kinds
of presentation attacks (contact lens, printouts, contact lens + printouts) from various
sensors experiment in 3 different scenarios. In the following subsections, we discuss
our proposed MSA solution, one hand-crafted feature-based baseline, and two neural
network-based methods.

Proposed MSA method

In this subsection, we describe our MSA framework by focusing on how overlapping
micro-stripes can be used to address the iris PAD problem. Figure 5.5 presents the
overall framework for our MSA solution. It starts with a captured iris image, followed by a
number of preprocessing steps. These steps include coarse iris segmentation, segmentation
extension, iris normalization, and overlapping micro-stripes extraction. The processed
micro-stripes are fed to a specifically trained neural network, which results are fused in a
majority vote process. The following subsections present these steps in more details.

Iris Segmentation and Normalization Iris images do not only contain the iris region
but also exhibit additional information around the iris, e.g., contact lens edges. Previous
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Label attack real … attack

Input Iris Image

Coarse Iris Segmentation

Extend Boundary

Overlapping Stripes

Normalize

Neural Network Classifier

Majority Vote

Real vs. Attack Attack

Figure 5.5.: Architecture of the proposed MSA algorithm for iris PAD. Input iris image is
from the NDCLD-2015 database [142].

works noticed this property and offered a solution aiming to detect contact lens reflective
properties [116, 157]. Moreover, to further motivate our MSA normalization process,
Hoffmann et al. [111] found that the iris/sclera boundary comprised the presentation
attack artifacts, such as the clear white, unobstructed boundary, in many plastic eyes.
Typically, the contact lenses cover the entire iris area and extend beyond it in many cases.
Given the lens attack images in public databases, one can notice the existence of a lens
(see Figure 5.7). This high frequency image information on the edge of the lenses can offer
valuable information on the existence and type (textured (attack) or transparent (bona
fide)) of a lens. Moreover, in the case of printout attacks, given the high contrast (high
frequency) of the iris/sclera boundary, any blurring (frequency reduction) effect of printout
attacks can be noticed easier in this area, see examples in Figure 5.8. First, the coarse iris
segmentation is performed by using the Iris-Toolkit (USIT) v2.4.2 tool [191] to calculate
the pupil and iris boundaries. For the databases captured in an uncontrolled environment,
the USIT tool did not perform as expected. For these databases, we deployed the recently
proposed Eye Multi-Scale Segmentation (Eye-MMS) [20] lightweight segmentation, as
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Overlapping Strips

…

Predicted Labels

Attack…
Figure 5.6.: An example illustrating the process of our MSA approach in detail. The iris

image with a textured contact lens is from the LivDet-2017-WVU database
[243].

will be described in Section 5.4.2. In order to focus on the iris/sclera boundary region, we
use the following equation to extend the pupil and iris boundaries:

rinside = riris − ((riris − rpupil) ∗ s1)
routside = riris + ((riris − rpupil) ∗ s2)

(5.4)

where riris and rpupil represent the radiuses of the iris and pupil. s1 and s2 determine
the extend ratio. In experiment, s1 and s2 are both 2

5 . This aims at having an adaptive
segmentation to irises of different sizes.
Then, the extended segmentation is normalized using Daugman’s rubber sheet expansion

technique [62]. The normalized image is of the dimension 512×64 pixels in the experiment.
Finally, the Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm is
applied in the normalized image to improve the contrast and enhance the texture. The
segmentation and normalization processes are demonstrated in Figure 5.6.

Overlapping micro-Stripes Once the normalized image is obtained, we extract overlap-
ping micro-stripes for two reasons. Our MSA solution is based on an assumption that PA
artifacts around the iris/sclera boundary should provide the most useful information to
make a PAD decision. Thus, we utilize smaller regions of texture (micro-stripes) to force
the classifier to concentrate on iris/sclera boundary area and capture the PA artifacts.
On the other hand, the number of training samples available in standard iris databases
is limited. In our initial experiment on the full segmentation area (without stripes), we
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observed that the validation accuracy and loss fluctuate wildly, which indicates that the
classifier suffers overfitting as demonstrated by the inferior results and generalization
later. Therefore, overlapping micro-stripes leads to lower-dimensional input data and a
higher number of training samples, and thus enhance model fitting. Some of these stripes
might not contain the information that we are looking for as the iris/sclera boundary
and contact lens boundaries occur at different locations (in relation to the segmentation).
Moreover, the iris segmentation might not always be precise. Based on these two factors,
a fixed stripe is not always optimal for PAD. Therefore, we utilize multiple overlapping
stripes. Each of these stripes will produce a PAD decision and the final decision will be
the majority vote of these decisions. The superiority of this process will be demonstrated
and discussed later in the results section (Section. 5.4.3).

Classification and Fusion Recently, deep learning-based algorithms have been success-
fully used for various tasks such as segmentation, classification, or object detection. Recent
works in the iris PAD field have already attempted to use neural network architectures
such as VGG-16 [238], AlexNet [241], or custom CNN [36, 189] based approaches and
obtained good performances. However, despite the good detection performance, such solu-
tions demand high computational power due to their network size, which is not acceptable
for some operation scenarios. We investigate the possibility of deploying a neural network
model with constrained hardware requirements, while retaining high accuracy. In contrast
to VGG-16 with 138 million and AlexNet with 60 million parameters, MobileNetV3-small
[114] only has 2.5 million parameters. On that account, MobileNet V3-small is chosen
as the basic structure for our proposed MSA approach to classifying an iris image as a
bona fide or attack. We train our own MobileNetV3 from scratch with input stripe size
(512× 32× 1) and use early stopping to reduce overfitting. The training-from-scratch is
enabled by our overlapping micro stripes preprocessing, which provides virtually larger
training data and lower dimensionality. In the training process, the overlapping stride of 4
pixels and the early stopping patience is 10 in the training process, the maximum training
epochs is 100, and the output of our MobileNetV3 network is a score indicating a bona
fide or attack decision. In addition, we use Root Mean Square Propagation algorithm
(RMSprop) with a learning rate of 0.001 as an optimizer.
Another strategy we exploit for decision-making is majority voting in order to enhance

the robustness of our approach. The extraction of overlapping micro-stripes is not only
applied for training classifiers but also used for making a final decision. Multiple micro-
stripes from each texture image are naturally expected to have the same prediction by the
neural network model. Therefore, we sample an odd number of stripes from a normalized
iris image with the stride size of 4 pixels instead of using resized iris texture as input in
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the evaluation stage. In the end, the majority vote is used for the final prediction. The
detailed experimental and implementation details are presented later in Section 5.4.2.

Baseline Methods

LBP + SVM: LBP is used for texture-based classification. Such works [97, 174, 255] have
used LBP features to train an SVM classifier using a linear kernel. The trained SVM model
is used to predict labels (bona fide or attack) in testing databases.
VGG + SVM: VGG [207] is a CNN model for image recognition. VGG16 is now one of
the dominant approaches for feature extraction from textual data. Therefore, we use a
pre-trained VGG16 to extract features. Then, the Principal Component Analysis (PCA), a
linear dimensionality reduction technique, is utilized to project extracted features from
each iris image with 7 × 7 × 512 dimension into a 128 dimensional sub-space. Finally,
these lower-dimensional features are fed to an SVM with a linear kernel to decide whether
the test subject is a bona fide or an attack.
MobileNet V3-small: Considering that our proposed MSA solution uses MobileNet V3-
small [114] as a basic network structure, we also train this network from scratch by
feeding it the contrast-enhanced full iris images. The network is then used to predict
images labels to be either bona fide or attack.

5.4.2. Experimental setup

Database

Our proposed approach and the baseline methods are evaluated using three publicly
available databases: One is the NDCLD-2015, and the other two databases are from
LivDet-Iris 2017 competition, namely the IIITD and WVU databases. The LivDet-Iris
2017 competition [243] included other additional databases (Warsaw, Clarkson and Notre
Dame database), however Warsaw and Clarkson are no longer publicly available. Because
the Notre Dame database is a subset of NDCLD-2015 database [142] but without the
transparent (soft) lens samples, we use the NDCLD-2015 [142] to explore the impact of
soft lens on the PAD performance. Table 5.5 presents the attack types and the number of
images, capturing devices and environments, respectively. We choose databases for the
following reasons: first, the three selected databases were captured by different sensors
and under different capturing environment. NDCLD-2015 [142] and IIITD [243] were
captured by specific iris sensors under a controlled environment, and WVU was captured
by a mobile sensor [241]. Second, WVU was captured in two different environments:
indoors (controlled illumination) and outdoors (varying environmental situations), making
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Name Sensor Capture Env Type of samples
BF CL PP CL+PP Total

NDCLD-2015 AD100 and
LG4000 Controlled 4, 875 2, 425 - - 7, 300

IIITD Cognet and
Vista Controlled 2, 250 1, 000 1, 500 1, 500 6, 250

WVU IriShield
MK2120U Mobile Uncontrolled 702 701 1, 404 1, 402 4, 209

Table 5.5.: Details of the databases. Abbreviations: BF - bona fide, CL + PP - printed
images of irises with contact lenses. Other abbreviations are listed in Tab.5.1.

it one of the most challenging databases. Furthermore, these databases contain different
types of attacks that can be used for unknown attack scenario validation.
Although NDCLD-2015 [142] provides segmentation information, we perform coarse

segmentation on the three databases by the USIT v2.4.2 tool [191] for fairness. Since
around 800 images in IIITD and around 850 images in WVU databases failed to have the
iris and pupil localized by the USIT tools, we manually segmented these images to be able
to sue all iris samples. However, to prove a complete automatic pipeline, we used these
manually labeled images to train a deep learning based approach, namely the recently
proposed Eye-MMS [20] lightweight segmentation. The Eye-MMS was used to label the
complete IIITD and WVU databases. This segmentation was performed on two folds,half
(identity-disjoint half) of the manually labeled images to train the Eye-MMS and use it to
label the other half, ending up with automatic segmentation of the full database.

Figure 5.7.: Example images of the NDCLD-2015 [142] database. One can notice the
subtle difference in the image dynamics around the iris/sclera boundary
between different types of lenses and the bona fide (no lens) images. One
can notice the visible borders of contact lenses either transparent or textured
in the area adjacent to the iris/sclera boundary. Moreover, The transparent
lens has smoother border compared to the textured lens that has a rather
jagged border.

NDCLD-2015: The 7300 images in the NDCLD-2015 [142] were captured by two sensors,
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IrisGuard AD100 and IrisAccess LG400. Moreover, all iris images were captured in a
windowless indoor lab under NIR illumination. The image resolution of all samples is
640× 480 pixels. Example images of this database can be seen in Figure 5.7.

Figure 5.8.: Example images of IIITD [102, 151, 239, 243]. One can notice a border of the
zoomed contact lens, and a difference between the bona fide and different
attacks. Please note that both printouts attack are noticeably different than
the printout attack in the WVU database. Given the high contrast (high fre-
quency) of the iris/sclera boundary, any blurring effect of printout attacks
can be noticed more clearly in this area.

IIITD: The images in the LivDet-2017 IIITD were developed using bona fide and textured
contact lens iris images from the IIIT-Delhi Contact Lens Iris (CLI) database [151, 239] and
print attack images were selected from the IIITD Iris Spoofing (IIS) database [102]. The
iris images were captured under controlled environment using two iris sensors. Example
images of this database can be seen in Figure 5.8.
WVU: The images in the LivDet-2017 WVU [241, 243] have been acquired in both indoors
and outdoors environments. Besides, the outdoor images have been acquired at varying
times of the day and weather conditions. The WVU database contains four of the most
common presentation: bona fide, textured contact lens, printed iris images, and printed
contact lens images. Example images from this database can be seen in Figure 5.9.
IIITD database and WVU database are combined into one database called the IIITD-

WVU in the LivDet-Iris 2017 competition, where the IIITD database is used for training
and the WVU database is used for testing. Therefore, we will compare this cross-database
evaluation with SOTAs and also the winner of the LivDet-Iris 2017 competition in Section
5.4.3.

Implementation details

In this subsection, three different experimental scenarios are identified, and experiments
are designed to evaluate the performance between different iris PAD approaches within
these scenarios. Because the sensors used in three databases are different from each other,
the scenario 2 and scenario 3 below are defined as cross-sensor evaluation.
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Figure 5.9.: Example images of the WVU [241, 243] database. Similar to the samples of
the NDCLD-2015 and the IIITD databases, one can notice the subtle appear-
ance changes in the iris/sclera boundary area in the cases of lens attack and
printouts.

Scenario 1: Intra-database experiments

In this scenario, each database is split into 5 cross-validation folds. The subjects in the
training and testing partitions are disjoint.
In order to explore the impact of transparent contact lenses on the performance, three

experiment compositions of training/testing subsets from NDCLD-2015 are defined:

• The training and testing subset contains both bona fide iris images and textured
contact lens attack images.

• The training and testing subset contains bona fide iris images, transparent and
textured contact lens attack images. In this way, the images with transparent contact
lenses are treated as bona fide iris images.

• No images with transparent lenses are used in the training phase. However, the
testing data included both transparent and textured contact lenses, and also bona
fide images. Only the samples wearing textured contact should be detected as attack
presentation.
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These experimental setups followed the one reported in [142]. The experiments on the
WVU and IIITD databases are demonstrated separately on different types of attacks and
combined attacks.

Scenario 2: Cross-Database experiments

In this experimental setting, we explore the generalizability of iris PAD methods. Cross-
database means that one database is used for training a classification model, and other
databases are used for testing. Three cases are designed by considering the type of attacks:
1) contact lens attack, 2) printouts and contacts printouts attack, 3) mixed attacks. This
scenario is repeated independently five times to replace the 5-folds cross-validation to be
consistent with the experimental setup of Scenario 1 and for more accurate and stable
performance.

Scenario 3: Cross-Attack (Unknown-Attack) experiments

In a real-world scenario, new types of attacks always appear, which the current iris PAD
system has not seen before during training. Thus, the robustness, generalizability, and
transferability should also be used to verify the performance of PAD solutions. In this
experimentation, we use one type of attack in the training subset, while the testing subsets
contain other attacks. For example, a training set has authentic iris images and print attack,
while the testing set consists of bona fide iris images, and textured contact lens attacks.
Based on our three databases, different compositions are constructed. The reported results
use the same setting to scenario 2 (repeat 5 times independently).

Evaluation metrics

The following metrics are used to measure the PAD algorithm performance: CCR, APCER,
BPCER and HTER. CCR metric follows the same defined metric in the relative SOTA works
[36, 49, 110, 152, 176]. Other works reported the Total Error rate, which is simply
1−CCR [238, 241, 242]. In the MSA solution, the threshold for each stripe is 0.5 (which
is the network convergence threshold). The binary decisions from multiple stripes are
combined in a vote. For baseline methods described in Section 5.4.1, the threshold for the
final decision is 0.5 (which is the SVM or network convergence threshold, depending on
the method). Moreover, DET curves are plotted to provide a view on the performance on a
wider range of operation points (balance between APCER and BPCERvalues). The APCER
and BPCER follows the standard definition presented in the ISO/IEC 30107-3 [127].
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5.4.3. Results

Scenario 1: Intra-database Results

The results of the intra-database experiments are presented considering different aspects.
First, we analyse the contribution of micro-stripes in iris PAD performance based on
EER heatmaps. Then, we compare the achieved results with other iris PAD algorithms,
including SOTAs and baseline methods described in Section 5.4.1 on each database
separately. We also demonstrate the experiments described in Section 5.4.2 to explore the
impact of transparent contact lenses on iris PAD algorithms. Finally, the different sizes of
micro-stripes (including full texture) are used to examine our MSA solution.
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Figure 5.10.: EER heatmaps for different circular rings in the eye region. The area on
the outer boundary of the iris and inner boundary of the sclera produces
the lowest PAD EER (darker color) over most attacks. This points out the
significance of this area for an accurate PAD.

Rationalizing the Micro-stripes: To support our assumption regarding the iris/sclera
boundary area significance for PAD decision, we plot the heatmap of each database based
on the achieved EER values. This heat map shows the relative significance of different
stripes (rings centered around the pupil) by showing the EER achieved if only one stripe
is used to make a PAD decision. As shown in Figure 5.10, the region from the inner dash
circle to the outer dash circle is divided into nine thinner circular rings. Each circular ring is
normalized by Daugman’s rubber sheet technique [62] (resulting in our micro-stripe) and
used to train a MobileNetV3 network from scratch on the training subset and evaluate on
the test subset. Finally, the EER values of all circular rings on each database are normalized
between 0− 1 for better relative-visualization to plot as a heatmap. For each database,
each stripe (circular ring) was used separately to train an individual network. The trained
network was then evaluated on the corresponding stripe data in the testing subset to
measure the EER values. The lighter color in the plot refers to the higher EER values,
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and the darker color corresponds to the lower EER values. In this case, the darker areas
are considered to contain more information that aids in PAD decision. In most cases, the
region from the fifth to the eighth ring has the darkest red, i.e., the lowest EER values.
Besides, the ring closest to the pupil tends to be of light color, which indicates that this
part of the iris does not provide much information for a PAD decision. Hence, we believe
that the iris/sclera boundary comprises useful information for PAD as its region produces
the most accurate PAD decisions.

Metric Presentation Attack Detection Algorithms (%)
LBP [102] WLBP [255] DESIST [152] MH VGG [207] MHVF [238] PSF [49] MobileNet MSA(ours)

CCR 74.42 76.98 82.48 85.43 98.92 98.99 98.38 96.22 99.31
APCER 6.15 50.58 29.81 21.73 1.54 1.92 - 3.24 0.59
BPCER 38.70 4.41 9.22 9.74 0.78 0.39 - 3.59 0.72

Table 5.6.: Iris presentation attack detection performance (%) of our proposed MSA
algorithm and existing algorithms on NDCLD-2015 database.

Comparison with other PAD algorithms: Table 5.6, Table 5.7 and Table 5.8 summarize
the results combined with CCR, APCER, and BPCER as mean values across 5-folds cross-
validation. The APCER and BPCER are reported at the threshold of 0.5. It should be
noticed that the result of NDCLD-2015 here is obtained based on the first experimental
setting defined in Section 5.4.2. Because IIITD and WVU database consist of contact lens
attack images and printouts attack images, our intra-database experiments demonstrated
on the three compositions of databases: 1) detecting contact lens, 2) detecting printouts
and contacts printouts, 3) detecting both types of attacks. The three baseline methods,
LBP+SVM, VGG+SVM and MobileNet, are described in the Section 5.4.1. Our proposed
approach achieved the highest CCR in comparison to SOTA algorithms in the NDCLD-2015
database. Furthermore, in IIITD and WVU database, our MSA solution achieved the
best results for contact lens, mixed attack and similar results for the printouts attack
detection. Since our MSA method uses the MobileNetV3 as basic network architecture,
to demonstrate the superiority of our micro-stripe solution, we use the same network
structure and training parameters to classify the full iris image without the micro-stripe
processing, which is reported as the "MobileNet" in Table 5.6, Table 5.7 and Table 5.8. We
notice that our proposed MSA achieves higher accuracy in comparison to the MobileNet
baseline. In comparison to other methods that also used the full image, namely the VGG16
(reported in [238]) and Multi-level Haralick and VGG Fusion (MHVH) [238] in Table
5.6, they achieve higher performance than the MobileNet. This might be due to the large
number of parameters and pre-trained nature of the VGG16 solution and the fact that
MHVF combines the VGG16 features with handcrafted features. However, Our proposed
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MSA significantly outperformed all the previously reported results on the NDCLD15
database. For example, the CCR of the previously best performing solution, the MHVF
[238], is increased from 98.99% to 99.31% achieved by our MSA solution. Table 5.8 shows
the superiority of our proposed approach in the mobile sensor and uncontrolled capture
environment domain by outperforming all the reported baselines on the WVU database,
as well as our MobileNet baseline. For example, the best previously reported CCR on
the WVU database, by the MobileNet baseline , achieved 95.31%, and our proposed MSA
improved that to reach 99.14% to detect contact lens attacks. Considering the properties
of our MSA solution, such as image dynamic signs in the iris/sclera boundary area, our
methods surpassed all results in all databases for detection of contact lens. In addition,
we achieved the best results in mixed attack databases.

Database Metric Presentation Attack Detection Algorithms (%)
LBP+SVM [102] VGG+SVM MobileNet MSA(ours)

IIITD (CL)
CCR 69.10 97.12 80.12 98.15
APCER 99.10 8.08 54.82 4.88
BPCER 0.28 0.54 4.23 0.50

IIITD (Print)
CCR 75.96 99.88 89.67 99.32
APCER 23.22 0.06 10.97 0.47
BPCER 25.11 0.19 9.48 0.95

IIITD (Mixed)
CCR 69.70 97.46 85.80 98.24
APCER 21.60 0.90 7.48 1.91
BPCER 45.58 5.41 25.99 1.51

Table 5.7.: Iris presentation attack detection performance (%) of our proposed MSA algo-
rithm and existing algorithms with different types of attacks on the database
IIITD [116, 157].

Database Metric Presentation Attack Detection Algorithms (%)
LBP+SVM [102] VGG+SVM MobileNet MSA(ours)

WVU (CL)
CCR 61.50 90.43 95.31 99.14
APCER 36.69 10.81 6.70 0.80
BPCER 40.05 8.31 2.64 0.94

WVU (Print)
CCR 97.97 98.21 99.10 99.98
APCER 2.53 0.05 1.09 0.00
BPCER 0.0 8.78 0.13 0.61

WVU (Mixed)
CCR 85.16 92.32 98.22 99.19
APCER 17.00 1.07 0.00 0.35
BPCER 4.00 40.54 5.56 3.17

Table 5.8.: Iris presentation attack detection performance (%) of our proposed MSA algo-
rithm and existing algorithms with different types of attacks on the database
WVU [241, 243].
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Impact of Transparent Lens: Baker et al. [6] reported that transparent contact lenses
lead to the degradation of iris recognition performance. To explore the impact of trans-
parent contact lenses on iris PAD performance, additional experiments are carried out to
evaluate if our method can make a correct classification decision unaffected by transparent
lenses, i.e., do not classify transparent lenses as attacks and thus reduce the CCR. Three
experimental settings are described in Section 5.4.2 and results are shown in Figure 5.11.
The average accuracy of three experiments is 99.31%, 99.08%, 99.01%, respectively. The
accuracy of employing the model that never sees transparent lenses decreases only 0.07%
than the model with already learned related features. This proves that our proposed MSA
solution is able to classify the unknown transparent lenses correctly as bona fide.

+ : PSF based method
Notched Box: Our method

Figure 5.11.: The red cross represents the results from [49], which explore the effect of
transparent contact lenses. The notched box describes our cross validation
results for three experimental compositions: 1. the training and testing
subsets do not have images with transparent lenses, 2. the training and
testing subsets contain images with transparent lenses, 3. models trained
by subsets without transparent lenses are used to evaluating on testing
subsets with transparent lenses.

The red crosses in Figure 5.11 are the average accuracy from the Photometric Stereo
Features (PSF) based method reported in [49], where they only reported the first and
third experimental setting. Although the same database (NDCLD-2015) is used, they
demonstrated in their own constructed two subsets, one called regular, which textured
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lens has a dot-like pattern, and the other is an irregular subset, without a dot-like pattern.
The construction process completely relies on people to distinguish patterns and split them
into respective subsets. Since it is hard to replicate the exact experimental settings, we only
discuss the performance degradation induced by the transparent lenses on the performance,
and we do not compare the CCR values themselves. Their CCR decreased from 98.38% to
95.24%, while ours, from 99.08% to 99.01%, point out higher generalization. Other works
that reported on this database did not analyze the issue of transparent lenses and thus
are not included in this aspect of the comparison. The WVU and IIITD databases do not
include transparent lenses bona fide samples, and thus, we are not able to perform this
analyses on these databases.
Impact of Overlapping Micro-Stripes: The purpose of this subsection is to prove the

positive effect of our proposed micro-stripes approach. As a baseline, we use the full
segmented area as one large stripe with the size of 64× 512 pixels, processed by the same
network structure and trained with the same experimental settings as the micro-stripes.
We also investigate using stripes of different heights (24, 32, and 48 pixels). Figure 5.12
illustrates the CCR achieved by these different settings. Figure 5.12 shows that the MSA
approach improved the CCR on all databases, in comparison to the full segmented area
classification. Having a micro-stripe of the height of 32 pixels improved the CCR from
94.92% to 99.31% on the NDCLD-2015 database, from 92.15% to 98.14% on the WVU
database, and from 94.87% to 99.17% on the WVU database, in comparison to the baseline.
We assume that the stripes provide the network with a chance to better generalize on the
problem by providing a larger amount of samples, as well as, samples with less complicated
information (smaller area). One can imagine the effect of the micro-stripes in a similar
manner to data augmentation, leading to lower overfitting. Since we are looking for
certain image dynamic signs in the iris/sclera boundary area, and since the segmentation
is not always optimal, these signs of attack might occur at different places. The nature of
the overlapping micro-stripes is assumed to provide robustness to this localization issue.
However, in some scenarios, having very thin micro-stripes might reduce the performance,
e.g., 24 pixel stripes on the NDCLD-2015 database (see Figure 5.12). This might be due to
the fact that a very small stripe might not have sufficient information to make the detection
decision. Therefore, the size 32 × 512 pixels of the micro-stripe should be considered
suitable for higher performance on both databases and both imaging spectrums. This size
will be the one reported for all other experiments.

Scenario 2: Cross-Database Results

In this subsection, we demonstrate our proposed method in cross-database where one
database is used for training and the other databases are used for testing. In order to
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Figure 5.12.: Performance of the different size of overlapping micro-stripes on the three
investigated databases. Size of 64 × 512 means that full normalized iris
images are fed to network.

explore the impact of different types of attacks, the following experiments are performed
based on contact lens attack (Table 5.9 and Figure 5.14), printouts attack (Table 5.10 and
Figure 5.15), and mixed attacks (Table 5.11 and Figure 5.16). Moreover, we also show the
EER heatmaps to analyze the contributions of different regions to the iris PAD decisions
(See Figure 5.13), and thus further rationalize (see Section 5.4.3) our MSA approach for
the generalizability over unknown databases.
First, we look at the heatmaps based on EER values, as shown in Figure 5.13. These

heatmaps are generated by using the same approach described in the intra-database
scenario (Section 5.4.3). We expand the normal iris segmentation and split it into nine
thinner circular rings. The difference is that each ring is trained on one database and
tested on another database to perform the cross-database validation and measure the
generalizability of the decision produced by each of these rings. By observing the heatmaps,
we can notice that the stripes (ring), which are closet to the pupil or too far away from
the iris, contribute the least in most cases. In contrast, the stripes from the fifth to the
eighth place achieve relatively lower EER values. This is valid for contact lens and printout
attacks. These results validate the significance of the iris/sclera boundary region again,
this time for cross-database generalization. In the following, we further analyze additional
experiments based on CCR values and DET curves separately.
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Figure 5.13.: EER-heatmaps of cross-database iris PAD. These EER heatmaps correspond
to the three cross-database scenarios, which are divided by dash lines. The
first three columns of heatmaps target textured contact lens attack. The
fourth column plots are EER values based on the print attack, while the
heatmaps in the last column related to the mixed types of attacks (print +
textured lenses). The darker the color, the more significant the contribution
of this area to the iris PAD result. The labels of the heatmaps indicate
the training data, then the testing data, and the testing data attack type
(Training Data (NDCLD/WVU/IIITD) - Testing Data (NDCLD/WVU/IIITD) -
Testing Attack Type (contact lenses (CL)/printouts (print)/mixed (Mix)).

Contact Lens Attack Detection To find the dynamic signs around iris/sclera boundary
area, we use our MSA solution to perform contact lens detection. Table 5.9 shows the
evaluation results based on CCR (%) and Figure 5.14 represents the comparison of APCER
and BPCER error rates through DET curves. The important observations made from this
experiment are as follows: 1) Our MSA solution displays the highest correct classification
rate when training on NDCLD-2015 and IIITD databases and testing on other databases.
This proves again that using multiple micro stripes improves the performance of contact
lens detection even in the cross-database evaluation; 2) VGG+SVM method shows better
results than our proposed approach when training in the WVU database. This can be
caused by an imbalanced number of training and testing samples. Since the WVU only
contains 702 contact lens samples, our MSA model might be overfitted.3) The DET curves
of cross contact lens detection indicate that our method has better generalizability than
the other three baseline methods, as shown in Figure 5.14.
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Figure 5.14.: DET curves: Cross-database Performance of Contact Lens

Database Iris PAD Methods (CCR in %)
Training Testing LBP+SVM VGG+SVM MobileNet Our MSA
NDCLD15 WVU 57.56 79.96 77.90 91.77
NDCLD15 IIITD 56.48 75.06 87.13 91.00
WVU NDCLD15 52.39 84.25 54.72 58.45
WVU IIITD 33.60 91.72 44.19 69.47
IIITD WVU 49.93 89.14 78.54 90.38
IIITD NDCLD15 50.47 82.96 79.57 89.14

Table 5.9.: Cross-database Performance of Contact Lens.

Printouts Attack Detection Because the NDCLD-2015 database does not contain
printouts attack, the cross printout attack is performed when training on the WVU and
testing on the IIITD databases and vice versa. It should be noticed that there are two
kinds of printouts attacks: 1) bona fide printouts, 2) contact lens printouts. The main
observations from this experiment are summarized below:

1. The VGG+SVMmethod achieves the highest accuracy when using WVU as a training
database, while MobileNet baseline obtained the best result in the case of IIITD as
a training database, as shown in Table 5.10. Our proposed approach works worse
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than VGG+SVM or MobileNet. It seems that micro stripe lost some information in
printouts attack samples after expanding the segmentation.

2. The accuracy in both databases is lower than 85%. Compared to cross-database
with contact lens with most accuracies higher than 90%, the printout attacks cross-
database proved to be a harder problem in our experiments. This is due to the
significant difference between printouts attack samples in WVU and IIITD databases.
As shown in Figure 5.9 and Figure 5.8, samples in the WVU database have a higher
resolution compared to samples in the IIITD database because of various printer
types.

3. The DET curves of the four PAD methods for cross printouts attack detection are
presented in Figure 5.15.

Database Iris PAD Algorithms (CCR in %)
Training Testing LBP+SVM VGG+SVM MobileNet Our MSA
WVU IIITD 42.49 79.83 50.10 54.59
IIITD WVU 59.87 45.86 83.67 79.25

Table 5.10.: Cross-database Performance of Printouts and Contacts Printouts.
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Figure 5.15.: DET curves: Cross-database Performance of Printouts and Contacts Print-
outs.

Mixed types of Attacks Detection The databases including two types of presentation
attack are used to perform the cross-database evaluation. Therefore, the NDCLD-2015
database is removed in this experiment. The IIITD-WVU cross-database evaluation is
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also used in the LivDet-2017 competition. Thus, our method also compares with the
winner and another SOTA algorithm. The main observations from this experiment are
summarized below: 1) Our MSA solution performs the best in the IIITD-WVU cross-
database evaluation with 93.07% CCR in Table 5.11. In addition, our proposed method
achieved lower HTER than the winner of the LivDet-Iris 2017 competition and meta-fusion
method [155] as shown in Table 5.12. The results indicate that our MSA approach has
better generalizability than SOTA algorithms. 2) VGG+SVM baseline displays a higher
CCR in WVU-IIITD composition than the MSA approach. Considering the similar results in
the cross-database of printouts attack detection, the problem may still be that the training
samples are insufficient for our neural network, resulting in model overfitting. 3) The
DET curves of four PAD methods for cross-database are presented in Figure 5.16 and
support our stated observations on a wider range of operation points. 4) The heatmaps
presented in Figure 5.13 indicates the relatively higher significance of the areas around
the iris/sclera boundary in detecting attacks in a cross-database evaluation scenario.

Database Iris PAD Algorithms (CCR in %)
Training Testing LBP+SVM VGG+SVM MobileNet Our MSA
WVU IIITD 47.75 85.74 72.08 67.77
IIITD WVU 70.68 70.59 76.45 93.07

Table 5.11.: Cross-database Performance ofmixed Attacks (Contacts, Printouts, Contacts
printouts).

Database Iris PAD Algorithms (HTER in %)
Training Testing LivDet-Iris 2017 Winner Meta-Fusion [155] Our MSA
IIITD WVU 16.70 14.92 11.67

Table 5.12.: Comparison of HTER (%) with LivDet-Iris 2017 and Meta-Fusion approach
[155]

Scenario 3: Unknown-Attack Results

In the real-world scenario, a PAD system should be able to handle unknown types of
presentation attacks. Therefore, unknown attack detection evaluation is designed using
one type of attacks (e.g. printouts) in the training phase and testing with other unseen
attacks like contact lenses. There are eight databases combinations for unknown attack
detection evaluation as shown in Table 5.13, the corresponding DET curves are represented
in Figure 5.17, and the corresponding EER heatmaps are showed in Figure 5.18. The main
observations from this experiment are summarized below: 1) Our proposed MSA method
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Figure 5.16.: DET curves: Cross-database Performance of Mixed Attacks.

achieves four of the highest accuracy in eight combinations of databases, two combinations
are trained with contact lens and tested on printouts, the other two combinations are vice
versa. It proved that our method has a better generalization ability than other baselines.
2) In WVU (Print) - NDCLD15 (CL) and WVU (Print) - IIITD (CL) compositions, all
methods achieve close to random accuracy. In other compositions, performances are
lower than evaluation results in a single database. It indicates that unknown attack
detection is a changeling problem and should become a potential criterion to examine the
generalizability of PAD systems. 3) The DET curves of four PAD methods for unknown
attack detection are presented in Figure 5.17 and support our stated observations on a
wider range of operation points. 4) The heatmaps presented in Figure 5.13 indicate the
relatively higher significance of the areas around the iris/sclera boundary in detecting
attacks in a cross-attack evaluation scenario.

Database Iris PAD Algorithms (CCR in %)
Training Testing LBP+SVM VGG+SVM MobileNet Our MSA

NDCLD15(CL) WVU(Print) 59.58 43.98 53.68 78.16
NDCLD15(CL) IIITD(Print) 86.05 46.93 47.00 77.14
WVU (CL) IIITD (Print) 40.02 70.98 71.09 80.03
IIITD (CL) WVU (Print) 14.89 60.85 88.44 86.99
WVU(Print) NDCLD15(CL) 35.52 56.64 50.91 40.01
WVU(Print) IIITD(CL) 54.23 58.70 50.57 50.20
IIITD(Print) WVU(CL) 50.50 50.07 50.07 64.82
IIITD(Print) NDCLD15(CL) 45.83 51.36 53.92 75.59

Table 5.13.: Cross-database Performance of Unknown Attacks.
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Figure 5.18 shows the EER heatmaps to analyze the contributions of different regions
to the iris PAD decisions for unknown attacks, and thus further rationalize (see Section
5.4.3) our MSA approach for the generalizability over unknown attacks. The stripe (ring)
close to the pupil contributes very little compared to others, even the outermost stripes.
The darker stripes (lower EER values) appear in the fifth to the eighth or ninth place. We
conclude that the iris/sclera boundary area has significant contribution to iris PAD decision
in the case of cross-attack detection. This is even more obvious when training on textured
lenses and testing on print attacks. One possible reason is that the iris samples with the
lenses have a clear border as shown in Figures 5.7, 5.8 and 5.9. When we train the model
on the print attacks and test on the contact lenses, we find that the contributing stripes
are closer to the pupil compared to training on the textures lenses. In the LivDet-Iris
2017 competition, the results suggested that printed iris images are easier to detect than
textured contact lenses. Based on this notion, we assume that the print attacks contains
more detectable artifacts (blur) distributed over the whole image. In general, the heatmaps
indicate that the image dynamics around the iris/sclera boundary contribute relatively
more significant information for the PAD of unknown attacks.
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Figure 5.17.: DET curves: Cross-database Performance of Unknown Attacks. The figures
in the first row present the situation where the training procedure use contact
lenses iris samples and test on the printouts attack. The figures in the second
row indicate that using printouts attack samples to train a model and test
on the contact lenses attack.
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Figure 5.18.: EER-heatmaps of cross-attack PAD. The plots to the left of the dashed line
are the results trained on textured lens attacks and tested on print attacks.
In contrast, the plots to the right of the dashed line are the results trained on
print attacks and tested on textured lenses. The darker the color, the greater
the contribution of this area to the iris PAD result. It can be noticed that the
fifth to eighth rings contribute a lot to the iris PAD decisions in most cases.
The labels of the heatmaps indicate the training data and type of attack
used in training, then the testing data and type of attack used for testing
(Training Data (NDCLD/WVU/IIITD) and training attack type (contact lenses
(CL)/printouts (print)) - Testing Data (NDCLD/WVU/IIITD) - and testing attack
type (CL/print)).

5.4.4. Discussion

The MSA solution [78, 82] was presented to detect iris presentation attacks. The proposed
methods focused on the differences (between attack and bona fide) in the image dynamics
around the iris/sclera boundary area. To achieve that, multiple thin micro-stripes of
the normalized segmentation were extracted to provide more samples and less sample
dimensionality, resulting in a better fitted model. The decision of multiple overlapping
stripes was fused by a simple majority vote to build the final detection decision. Moreover,
the efficiency, robustness, and generalizability of the proposed methods were analyzed,
and its results were compared with SOTA iris PAD algorithms in three different scenarios
based on two types of attacks: 1) intra-database evaluation, 2) cross-database evaluation,
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3) unknown attack detection evaluation. Moreover, the illustrated EER heatmaps based
on different pupil-centred rings were used to support the assumption that the iris/sclera
boundary contains relatively more significant information for a PAD decision, even in the
cases of unknown databases and unknown attacks. The lowest EER values commonly
occurred in the fifth to the eighth stripe areas, which were those around the iris/sclera
boundary. The experimental results and comparison of the iris PAD algorithms in the
intra-database scenario were discussed in detail. The MSA [78, 82] solution surpassed
the detection performance of almost all SOTA methods reported on all databases. The
CCR of NDCLD-2015 was increased to 99.31%, from 98.99%, in the best performance
reported on this database. The same goes for the WVU database, where the CCR was
increased from 98.22% to 99.19% in case of mixed printouts and contact lens attacks.
Similar to the WVU database, the CCR on the IIITD database was enhanced from 97.46%
to 98.24% in mixed types composition. The experiments included a clear rationalization
of our micro-stripe process and detailed analyses of the variations in the micro-stripe size.
In addition, we demonstrated that our MSA solution does not demonstrate the common
issue of confusing bona fide transparent lenses with attack textured lenses. Moreover, the
proposed MSA approach can be deployed on low-end devices as the model only has 2.5
million parameters.
In the cross-database evaluation scenario, it can be observed that the proposed method

performs better than other methods in case of contact lens attacks when there are sufficient
training samples. Moreover, the MSA solution outperformed the winner of the LivDet-
2017 competition and another recent SOTA algorithm in the IIITD-WVU composition
database. In the scenario of unknown attack detection, it can be concluded that detecting
unseen attacks is a challenging task based on the observed large decrease in performance
compared to intra-database evaluation. Nevertheless, the proposed MSA method achieved
the four highest accuracies in eight combinations of experiments. VGG+SVM method
obtained the two best results, while the LBP+SVM method and MobileNet method had
only one of the highest accuracy, respectively. Therefore, the presented method had better
generalizability. Though no single method outperformed in all experimental setups, the
results indicated that deep learning-based methods were more accurate than hand-crafted
features-based methods.
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5.5. Attention-based iris PAD via pixel-wise supervision

As introduced in 5.2, most results obtained by iris PAD solutions were reported under
intra-database scenarios and it is unclear if such solutions can generalize well across
databases and capture spectra. One possible reason that these PAD methods ran the risk
of overfitting is the binary label supervision during the network training, which serves
global information learning but weakens the capture of local discriminative features. This
section presents an attention-based deep pixel-wise binary supervision (A-PBS) method
[79]. A-PBS utilizes pixel-wise supervision to capture the fine-grained pixel/patch-level
cues and attention mechanism to guide the network to automatically find regions where
most contribute to an accurate PAD decision. Extensive experiments are performed on
six NIR and one visible-light iris databases to show the effectiveness and robustness
of proposed A-PBS methods. Extensive experiments are additionally conducted under
intra-/cross-database and intra-/cross-spectrum for detailed analysis. The results of the
experiments indicates the generalizability of the proposed A-PBS iris PAD approach, as a
response to RQ8.

5.5.1. Methodology

This section starts by introducing the DenseNet [117], which is used as a preliminary
backbone architecture. Then, the Pixel-wise Binary Supervision (PBS) and Attention-based
PBS (A-PBS) methods are described. We presented this approach initially in [79], however,
we extend it here by investigating its advantages on different attack types, iris images
captured in the visible spectrum, and cross-spectrum deployments. Figure 5.19 depicts an
overview of our different methods. The first gray block (a) presents the basic DenseNet
architecture with binary supervision, the second gray block (b) introduces the binary
and PBS, and the third block (c) is the PBS with the fused multi-scale spatial attention
mechanism (A-PBS).

Baseline: DenseNet DenseNet [117] presented direct connection between any two
layers with the same feature-map size in a feed-forward fashion. The reasons inspiring
our selection of DensetNet are: 1) DenseNets naturally integrate the properties of identity
mappings and deep supervision following a simple connectivity rule. 2) DenseNet has
already demonstrated its superiority in iris PAD [61, 205, 242]. Figure 5.19.(a) illustrates
that we reuse two dense and transition blocks of pre-trained DenseNet121. An average
pooling layer and a Fully-connected (FC) classification layer are sequentially appended,
following the second transition block, to generate the final prediction to determine whether
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Figure 5.19.: An overview of (a) baseline DenseNet, (b) proposed PBS and (c) proposed
A-PBS networks.

the iris image is bona fide or attack. PBS and A-PBS networks are extended on this basic
architecture later.

Pixel-wise Binary Supervision Network (PBS) By reviewing the recent iris PAD literature
[77, 82, 155, 205], it can be found that CNN-based methods outperformed hand-crafted
feature-based methods. In typical CNN-based iris PAD solutions, networks are designed
such that feeding pre-processed iris image as input to learn discriminative features between
bona fide and artifacts. To that end, a FC layer is generally introduced to output a prediction
score supervised by binary label (bona fide or attack). Recent face PAD works have shown
that auxiliary supervision [83, 93, 168] achieved significant improvement in detection
performance. Binary label supervised classification learns semantic features by capture
global information but may lead to overfitting. Moreover, such embedded ’globally’ features
might lose the local detailed information in spatial position. These drawbacks give us
the insight that adding pixel-wise binary along with binary supervision might improve
the PAD performance. First, such supervision approach can be seen as a combination
of patch-based and vanilla CNN based methods. To be specific, each pixel-wise score
in output feature map is considered as the score generated from the patches in an iris
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image. Second, the binary mask supervision would be provided for the deep embedding
features in each spatial position. Figure 5.19.(b) illustrates the network details that an
intermediate feature map is produced before the final binary classification layer. The
output from the Transition Block 2 is 384 channels with the map size of 14× 14. A 1× 1
convolution layer is added to produce the intermediate map. In the end, an FC layer is
utilized to generate a prediction score.

Attention-based PBS Network (A-PBS) The architecture of PBS is designed coarsely
(simply utilizing the intermediate feature map) based on the DenseNet [117], which
might be sub-optimal for iris PAD task. To enhance that, and inspired by Convolutional
Block Attention Mechanism (CBAM) [236] and MLF [77], we propose an A-PBS method
with multi-scale feature fusion (as shown in Figure 5.19.(c)). Even though PBS boosts
iris PAD performance under intra-database/-spectrum, it shows imperfect invariation
under more complicated cross-PA, cross-database, and cross-spectrum scenarios (See
results in Table 5.17, 5.23, and 5.22). As a result, it is worth finding the important
regions to focus on, although it contradicts learning more discriminative features. In
contrast, the attention mechanism aims to automatically learn essential discriminate
features from inputs that are relevant to PA detection. Woo et al. [236] presented an
attention module consisting of the channel and spatial distinctive sub-modules, which
possessed consistent improvements in various classification and detection tasks across
different network architectures. Nonetheless, only spatial attention module is employed in
our case due to the following reasons. The first reason is that the Squeeze-and-Excitation
(SE) based channel attention module focuses only on the inter-channel relationship by
using dedicated global feature descriptors. Such channel attention module may lead to a
loss of information (e.g., class-deterministic pixels) and may result in further performance
degradation when the domain is shifted, e.g., different sensors and changing illumination.
Second, a benefit of the spatial attention module is that the inter-spatial relationship
of features is utilized. Specifically, it focuses on ’where’ is an informative region, which
is more proper for producing intermediate feature maps for supervision. Furthermore,
based on the fact that the network embeds different layers of information at different
levels of abstraction, the MLF [77] approach confirmed that the fusing deep feature from
multiple layers is beneficial to enhance the robustness of the networks in the iris PAD task.
Nevertheless, we propose to fuse feature maps generated from different levels directly
within the network instead of fusing features extracted from a trained model in MLF [77],
because finding the best combination of network layers to fuse is a challenging task and
difficult to generalize well, especially when targeting different network architectures.
Figure 5.19 illustrates that three spatial attention modules are appended after MaxPool,
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Transition Block 1, and Transition Block 2, respectively. The feature learned from the
MaxPool or two Transition Blocks can be considered as low-, middle- and high-level
features and denoted as

Flevel ∈ RC×H×W , level ∈ {low,mid, high} . (5.5)

Then, the generated attention maps Alevel ∈ RH×W encoding where to emphasize
or suppress are used to refine Flevel. The refined feature F ′

level can be formulated as
F ′
level = Flevel ⊗ Alevel where ⊗ is matrix multiplication. Finally, such three different
level refined features are concatenated together and then fed into a 1 × 1 convolution
layer to produce the pixel-wise feature map for supervision. It should be noticed that the
size of convolutional kernel in three spatial attention modules is different. As mentioned
earlier, the deeper the network layer, the more complex and abstract the extracted features.
Therefore, we should use smaller convolutional kernels for deeper features to locate useful
region. The kernel sizes of low-, middle- and high-level layers are thus set to 7, 5, and 3,
respectively. The experiments have been demonstrated later in Section 5.5.2 and showed
that in most experimental setups, the A-PBS solution exhibited superior performance and
generalizability in comparison to the PBS and DenseNet approaches.

Loss Function

In the training phase, BCE loss is used for final binary supervision. For the sake of robust
PBS needed in iris PAD, Smooth L1 (SmoothL1) loss is utilized to help the network reduce
its sensitivity to outliers in the feature map. The equations for SmoothL1 is shown below:

LSmoothL1 =
1

n

∑︂
z , where z =

⎧⎪⎨⎪⎩
1

2
· (y − x)2, if |y − x| < 1

|y − x| − 1

2
, otherwise

(5.6)

n is the amount number of pixels in the output map (14× 14 in our case). The equation
of BCE is:

LBCE = −[y · log p+ (1− y) · log(1− p)] , (5.7)

where y in both loss equations presents the ground truth label. x in SmoothL1 loss presents
to the value in feature map, while p in BCE loss is predicted probability. The overall loss
Loverall is formulated as Loverall = λ · LSmoothL1 + (1 − λ) · LBCE . In our experiments,
the λ is set to 0.2.
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IIITD-WVU

Bona fide Textured Lens Printouts Printouts+Lens

Figure 5.20.: Iris image samples from the used databases. It should be noted that trans-
parent lens is classified as bona fide in our case. Only PAVID database was
captured under the visible spectrum.

5.5.2. Experimental setup

Databases

The DenseNet, PBS, and A-PBS were evaluated on multiple databases: three NIR-based
databases comprising of textured contact lens attacks captured by different sensors [142,
143, 239], and three databases (Clarkson, Notre Dame and IIITD-WVU) from the LivDet-
Iris 2017 competition [243] (also NIR-based). TheWarsaw database in the LivDet-Iris 2017
is no longer publicly available due to General Data Protection Regulation (GDPR) issues.
For the experiments on NDCLD13, NDCLD15, IIIT-CLI databases, 5-fold cross-validation
was performed due to no pre-defined training and testing sets. For the experiments in
competition databases, we followed the defined data partition and experimental setting
[243]. In addition to above NIR-based iris databases, we also perform experiments
on another publicly available database where images were captured under the visible
spectrum, named Presentation Attack Video Iris Database PAVID [190]. Subjects in each
fold or defined partition are dis-joint. The image samples can be found in Figure 5.20 and
the summery and detailed description of the used databases can be found in Chapter 2.

Implementation Details

In the training phase, we performed class balancing by under-sampling the majority class
for the databases, whose distribution of bona fides and attacks are imbalanced in the
training set. Data augmentation was performed during training using random horizontal
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flips with a probability of 0.5. The model weight of DenseNet, PBS and A-PBS models were
first initialized by the base architecture DenseNet121 trained on the ImageNet dataset
and then fine-tuned by iris PAD data, by considering the limited amount of iris data. The
Adam optimizer was used for training with a initial learning rate of 1e−4 and a weight
decay of 1e−6. To further avoid overfitting, the model was trained with the maximum 20
epochs and the learning rate halved every 6 epochs. The batch size is 64. In the testing
stage, the binary output was used as a final prediction score. The proposed method was
implemented using the Pytorch.

Evaluation Metrics

The following metrics are used to measure the PAD algorithm performance: APCER,
BPCER, and HTER as introduced in Chapter 2 and were adopted in most PAD literature
including in LivDet-Iris 2017. The threshold for determining the APCER and BPCER
is 0.5 as defined in the LivDet-Iris 2017 protocol. In addition, for further comparison
with the state-of-the-art iris PAD algorithms on IIITD-CLI [151, 239] database, we also
report the CCR. Furthermore, to enable the direct comparison with [205], we evaluate
the performance of our presented DenseNet, PBS, and A-PBS methods in terms of TDR
at a false detection rate of 0.2%, as [205] claims that this threshold is normally used
to demonstrate the PAD performance in practice. TDR is 1 -APCER, and false detection
rate is defined to be the same as BPCER, we therefore use BPCER. An EER locating at
the intersection of APCER and BPCER is also reported under cross-database and cross-
spectrum settings (results as shown in Table 5.17, 5.22, and 5.23). The metrics beyond
APCER and BPCER are presented to enable a direct comparison with reported results in
state-of-the-arts.

5.5.3. Results

This section presents the experimental results from two aspects: intra-sepcturm (in NIR,
and in visible) and cross-database evaluation, and cross-spectrum evaluation.

Intra-spectrum and cross-database evaluation results

This section presents the evaluation results on different databases and comparison to state-
of-the-art algorithms. The comparison to state-of-the-arts depends mainly on the reported
results in the literature, as most algorithms are not publicly available or their technical
description is insufficient to ensure error-free re-implementation. Therefore, we aim to
report the widest range of metrics used in other works to enable an extensive comparison.
First, the results from different aspects/metrics on LivDet-Iris 2017 database are reported
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in Table 5.14 which compare our solution with state-of-the-art PAD methods, 5.15 that
report the results in terms of TDR at low BPCER, and 5.16 that investigate the performance
on different PAs. Then, we demonstrate the experiments under cross-database scenarios
by using the three databases in LivDet-Iris 2017 competition to verify the generalizability
of our A-PBS solution. Furthermore, the results on NDCLD-2013/NDCLD-2015 and IIITD-
CLI databases are presented in Table 5.18, 5.19 and Table 5.20, respectively. We further
perform the experiment on the PAVID database in visible spectrum (results in Table 5.21).
In this section, we also provide explainability analyses using attention map visualisations
for further visual reasoning of the presented solution.

Iris PAD in the NIR spectrum The results on each databases, LivDet-Iris 2017 Databases,
NDCLD-2013/2015 Database, and IIITD-CLI Database collected in the NIR spectrum
will analyzed first. Then, the results on one database PAVID invisible spectrum will be
presented.

Results on the LivDet-Iris 2017 Databases: Table 5.14 summarizes the results in terms of
APCER, BPCER, and HTER on the LivDet-Iris 2017 databases. We evaluate the algorithms
on databases provided by LivDet-Iris 2017. The evaluation and comparison on LivDet-Iris
2020 are not included due to 1) no officially offered training data, 2) not publicly available
test data. Moreover, LivDet-Iris 2017 databases are still considered as a challenging task,
because the experimental protocols are designed for complicated cross-PA and cross-
database scenarios. In this chapter, we aim to focus on the impact of the algorithm
itself on PAD performance rather than the diversity of data. Consequently, to make a fair
comparison with state-of-the-art algorithms on equivalent data, we compare to the Scratch
version of the D-NetPAD results [205], because Pre-trained and Fine-tuned D-NetPAD
used additional data (including part of Notre Dame test data) for training. This was not
an issue with the other compared state-of-the-art methods.
It can be observed in Table 5.14 that A-PBS architecture achieves significantly improved

performance in comparison to DenseNet and also slightly lower HTER values than the PBS
model in all cases. For instance, the HTER value on Notre Dame is decreased from 8.14%
by DenseNet and 4.97% by PBS to 3.94% by A-PBS. Although the slightly worse results
on Notre Dame might be caused by the insufficient data in the training set, our PBS and
A-PBS methods show significant superiority on the most challenging IIITD-WVU database.
Moreover, Figure 5.21 illustrates the PAD score distribution of the bona fide and PAs for
further analysis. The PAD score distribution generated by A-PBS shows an evident better
separation between bona fide (green) and PAs (blue). In addition to reporting the results
determined by a threshold of 0.5, we also measure the performance of DenseNet, PBS,
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Database Metric Winner [243] SpoofNet [148] Meta-Fusion [155] D-NetPAD [205] MLF [77] MSA [78, 82] DenseNet PBS A-PBS

Clarkson
APCER 13.39 33.00 18.66 5.78 - - 10.64 8.97 6.16
BPCER 0.81 0.00 0.24 0.94 - - 0.00 0.00 0.81
HTER 7.10 16.50 9.45 3.36 - - 5.32 4.48 3.48

Notre Dame
APCER 7.78 18.05 4.61 10.38 2.71 12.28 16.00 8.89 7.88
BPCER 0.28 0.94 1.94 3.32 1.89 0.17 0.28 1.06 0.00
HTER 4.03 9.50 3.28 6.81 2.31 6.23 8.14 4.97 3.94

IIITD-WVU
APCER 29.40 0.34 12.32 36.41 5.39 2.31 2.88 5.76 8.86
BPCER 3.99 36.89 17.52 10.12 24.79 19.94 17.95 8.26 4.13
HTER 16.70 18.62 14.92 23.27 15.09 11.13 10.41 7.01 6.50

Table 5.14.: Iris PAD performance of our presented DenseNet, PBS, and A-PBS solutions,
and existing state-of-the-art algorithms on LivDet-Iris 2017 databases in
terms of APCER (%), BPCER (%) and HTER (%) which determined by a thresh-
old of 0.5. TheWinner in first column refers to the winner of each competition
database. Bold numbers indicate the two lowest HTERs.

Database TDR (%) @ 0.2% BPCER
D-NetPAD [205] DenseNet PBS A-PBS

Clarkson 92.05 92.89 94.02 92.35
Notre Dame K 100.00 99.68 99.78 99.78

U 66.55 58.33 76.89 90.00
IIITD-WVU 29.30 58.97 69.32 72.00

Table 5.15.: Iris PAD performance reported in terms of TDR (%) at 0.2% BPCER on the
LivDet-Iris 2017 databases. K indicates known test subset and U is unknown
subset. The highest TDR is in bold.

and A-PBS in terms of its TDR at 0.2% BPCER (to follow state-of-the-art trends [205])
in Table 5.15. It is worth noting that our A-PBS method achieves the highest TDR value
(90.00%) on unknown-test set in Notre Dame, while the second-highest TDR is 76.89%
achieved by PBS.
Furthermore, we explore the PAD performance based on each presentation attack in

LivDet-Iris 2017 database [243]. Because the Notre Dame database contains only textured
contact lenses, we report the results on Clarkson and IIITD-WVU databases in Table 5.16.
The results show that textured contact lens attacks obtain higher APCER values than
printouts attack in most cases, e.g., the APCER value on textured lens attack is 10.59%
and on printouts is 1.52% both achieved by A-PBS solution. Hence, we conclude that
contact lens is more challenging than printouts in most cases.
In addition to intra-dataset evaluation, we further evaluate the generalizability of our

models under cross-database scenario, e.g., the model trained on Notre Dame is tested on
Clarkson and IIITD-WVU. As shown in Table 5.17, the A-PBS model outperforms DenseNet
and PBS in most cases, which verifying that additional spatial attention modules can
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Database Clarkson IIITD-WVU
# Images # 1485 # 908 # 765 # 704 # 1404 # 701 # 1402
Metric BPCER APCER (PR) APCER (CL) BPCER APCER (PR) APCER (CL) APCER (PR-CL)
DenseNet 0.00 0.66 22.48 17.95 3.06 8.27 0.00
PBS 0.00 0.44 19.08 8.26 11.68 5.42 0.00
A-PBS 0.81 1.32 10.59 4.13 11.68 17.97 0.86

Table 5.16.: Iris PAD performance reported based on each presentation attack on the
LivDet-Iris-2017 database in terms of BPCER (%) and APCER (%). PR, CL and
PR-CL refer to printouts,textured contact lens, printed textured contact lens,
respectively. The Notre Dame database is omitted because it comprises only
texture contact lens attack and the results are the same as in Table 5.14. It
can be observed that textured contact lens attack is more challenging than
printouts in most cases.

reduce the overfitting of the PBS model and capture fine-grained features. Furthermore,
the DenseNet and A-PBS models trained on Notre Dame even exceed the prior state-of-
the-arts when testing on the IIIT-WVU database (8.81% HTER by DenseNet and 8.95%
by A-PBS, while the best prior state-of-the-art achieved 11.13% (see Table 5.14)). It
should be noted that the APCER values on Notre Dame are significant higher by using
models either trained on Clarkson or IIITD-WVU. Because Notre Dame training dataset
contains only textured lens attacks while Clarkson and IIIT-WVU testing datasets comprise
of both textured lens and printouts attacks, which makes this evaluation scenario partially
consider unknown PAs. In such an unknown-PAs situation, our A-PBS method achieved
significantly improved results. In general, the cross-database scenario is still a challenging
problem since many D-EER values are above 20% (Table 5.17).

Results on the NDCLD-2013/2015 Databases: Table 5.18 compares the iris PAD perfor-
mance of our models with five state-of-the-art methods on NDCLD-2015 and two different
subsets in the NDCLD-2013 database. It can be seen from Table 5.18 that our A-PBS
model outperformed all methods on all databases, revealing the excellent effectiveness of
a combination of PBS and attention module on textured contact lens attacks. In addition
to comparison with state-of-the-art algorithms, we also report the TDR (%) at 0.2% BPCER
in Table 5.19. It can be found that despite all three models produce similarly good results,
A-PBS obtains slightly better performance than DenseNet and PBS. The near-perfect results
on NDCLD-2013/-2015 databases hint at the obsolescence and limitations of the current
iris PAD databases and call for the need for more diversity in iris PAD data.
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Figure 5.21.: PAD score distribution of bona fide (green) and PAs (blue) on the LivDet-Iris
2017 databases. The histogram top to bottom are results on Clarkson, Notre
Dame and IIITD-WVU databases, and the histograms from left to right are
produced by DenseNet, PBS, and A-PBS, respectively. The larger separability
(measured by Fisher discriminant ratio [57, 171]) and smaller overlap indicate
higher classification performance. It can be observed that the our proposed
A-PBS method achieved the highest FDR value on all three databases.
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Train dataset Notre Dame
Test dataset Clarkson IIITD-WVU
Metric EER HTER ACPER BPCER EER HTER ACPER BPCER
DenseNet 30.43 32.01 51.29 12.73 7.84 8.81 5.93 11.69
PBS 48.36 47.28 28.15 66.4 15.52 14.54 22.24 6.83
APBS 20.55 23.24 14.76 31.72 6.99 8.95 15.34 2.56

Train dataset Clarkson
Test dataset Notre Dame IIITD-WVU
Metric EER HTER ACPER BPCER EER HTER ACPER BPCER
DenseNet 22.33 31.11 62.22 0.00 26.78 42.40 84.80 0.00
PBS 28.61 32.42 64.83 0.00 25.78 42.48 84.97 0.00
APBS 21.33 23.08 46.16 0.00 24.47 34.17 68.34 0.00

Train dataset IIITD-WVU
Test dataset Notre Dame Clarkson
Metric EER HTER ACPER BPCER EER HTER ACPER BPCER
DenseNet 18.28 19.78 36.56 3.00 22.64 48.55 0.00 97.10
PBS 12.39 16.86 33.33 0.39 37.24 47.17 0.00 94.34
APBS 15.11 27.61 54.72 0.33 21.58 21.95 20.80 32.10

Table 5.17.: Iris PAD performance measured under cross-database scenarios and re-
ported in terms of EER (%), HTER (%), APCER (%), and BPCER (%). APCER
and BPCER are determined by a threshold of 0.5. The lowest error rate is in
bold.

Database Metric Presentation Attack Detection Algorithm (%)
LBP[102] WLBP [255] DESIST [152] MHVF [238] MSA [78, 82] DenseNet PBS A-PBS

NDCLD-2015 [142]
ACPER 6.15 50.58 29.81 1.92 0.18 1.58 1.09 0.08
BPCER 38.70 4.41 9.22 0.39 0.00 0.14 0.00 0.06
HTER 22.43 27.50 19.52 1.16 0.09 0.86 0.54 0.07

NDCLD13 (LG4000) [143]
APCER 0.00 2.00 0.50 0.00 0.00 0.20 0.00 0.00
BPCER 0.38 1.00 0.50 0.00 0.00 0.28 0.03 0.00
HTER 0.19 1.50 0.50 0.00 0.00 0.24 0.02 0.00

NDCLD13 (AD100) [143]
APCER 0.00 9.00 2.00 1.00 1.00 0.00 0.00 0.00
BPCER 11.50 14.00 1.50 0.00 0.00 0.00 0.00 0.00
HTER 5.75 11.50 1.75 0.50 0.50 0.00 0.00 0.00

Table 5.18.: Iris PAD performance of our proposed methods and existing state-of-the-
arts on NDCLD-2013/-2015 databases with a threshold of 0.5. The best
performance (in terms of lowest HTER) is in bold

Results on the IIITD-CLI Database: Since most of the existing works reported the results
using CCRmetric on IIITD-CLI database [151, 239], we also strictly follow its experimental
protocol where we show the experimental results in Table 5.20. In addition to CCR, the
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Database TDR (%) @ 0.2% BPCER
DenseNet PBS A-PBS

NDCLD-2015 99.45 99.84 99.96
NDCLD13 (LG4000) 99.75 100.00 100.00
NDCLD13 (AD100) 100.00 100.00 100.00
IIITD-CLI (Cognet) 99.02 99.59 99.57
IIITD-CLI (Vista) 100.00 100.00 100.00

Table 5.19.: Iris PAD performance reported in terms of TDR (%) at 0.2% BPCER on NDCLD-
2013 and NDCLD-2015 databases. The best performance is in bold.

PAD Algorithms Cogent Vista
Textural Features [232] 55.53 87.06

WLBP [255] 65.40 66.91
LBP+SVM [102] 77.46 76.01

LBP+PHOG+SVM [12] 75.80 74.45
mLBP [239] 80.87 93.91
ResNet18 [107] 85.15 80.97
VGG [207] 90.40 94.82
MVANet [101] 94.90 95.11
DenseNet 99.37 100.00
PBS 99.62 100.00
A-PBS 99.70 100.00

Table 5.20.: Iris PAD performance in terms of CCR (%) on IIITD-CLI database. The best
performance is in bold.

TDR at 0.2% BPCER is reported in Table5.19. The experiments are performed on Cognet
and Vista sensor subsets, respectively. As shown in Table 5.18, our PBS and A-PBS solutions
outperform all hand-crafted and CNN-basedmethods by a large margin (99.79% on Cognet
subset and 100.00% on Vista subset). The near-perfect classification performance obtained
by DenseNet, PBS, and A-PBS reveals that despite the significant PAD improvements
achieved by deep learning models, there is an urgent need for large-scale iris PAD databases
to be built for future research and generalizability analysis.

Iris PAD in the visible spectrum In addition to results on NIR databases, we also report
results on the visible-light-based PAVID database in Table 5.21. The experiments were
demonstrated following the defined protocols in [190]. For example, the Nokia - iPhone
setup refers to the training and testing data as bona fide videos captured using the Nokia
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phone and the attack videos captured by iPhone. Moreover, we provide the results under
a grand test setup, where bona fide and attack data includes videos captured by Nokia
and iPhone. The models trained under grand-test setup will be used for cross-spectrum
experiments later. It can be observed in Table 5.21 that deep-learning-based methods,
including our A-PBS, outperform all the previously reported results on the PAVID database,
which are hand-crafted feature-based PAD solutions. The DenseNet, PBS, and A-PBS
methods obtain the best performance with all error rates of 0.00%.

Video Metric IQM-SVM [92, 190] LBP-SVM [173, 190] BSIF-SVM [188, 190] STFT [190] DenseNet PBS A-PBS

Nokia - iPhone
APCER 4.50 4.51 10.81 4.46 0.00 0.00 0.00
BPCER 76.92 3.84 2.56 1.28 0.00 0.00 0.00
HTER 40.71 4.18 6.68 2.87 0.00 0.00 0.00

Nokia - Nokia
APCER 3.57 2.67 0.89 2.68 0.00 0.00 0.00
BPCER 57.31 4.87 6.09 1.21 0.00 0.00 0.00
HTER 30.44 3.77 3.49 1.95 0.00 0.00 0.00

iPhone - iPhone
APCER 11.60 0.89 9.82 1.78 0.00 0.00 0.00
BPCER 57.31 4.87 6.09 1.21 0.00 0.00 0.00
HTER 34.45 2.88 7.96 1.49 0.00 0.00 0.00

iPhone - Nokia
APCER 10.71 3.54 8.92 0.00 0.00 0.00 0.00
BPCER 76.92 3.84 2.56 1.28 0.00 0.00 0.00
HTER 43.81 3.69 5.74 0.64 0.00 0.00 0.00

Grand-test
APCER - - - - 0.00 0.00 0.00
BPCER - - - - 0.00 0.00 0.00
HTER - - - - 0.00 0.00 0.00

Table 5.21.: Iris PAD performance of our proposed methods and established solutions
on PAVID database with a threshold of 0.5. The results are reported based
on APCER (%), BPCER (%), and HTER (%). Nokia - iPhone refers that the bona
fide video is captured by Nokia while the replayed attack video is captured
by iphone, and vice versa. Grand Test refers that both, bona fide and reply,
videos are captured by Nokia and iphone. The best performance (the lowest
HTER value) is in bold.

Cross-spectrum evaluation results

Most studies [155, 238] have presented PAD algorithms and verified their performance
on NIR-based database. However, the performance of visible-light iris PAD has been
understudied, especially under the cross-spectrum scenario. Therefore, we used the
visible-light-based PAVID [190] and the NIR-based LivDet-Iris 2017 [243] databases to
explore the effect of PAD performance across different spectra. The first scenario is the
VIS-NIR where the models trained under the PAVID grand-test setup (visible spectrum)
were evaluated on the test subsets of the NIR databses (Clarkson, Notre Dame, and
IIIT-WVU), respectively. This evaluation results are presented in Table 5.22 and the bold
numbers indicate the best performance (lowest error rates). It can be seen that our PBS
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Train database PAVID
Test database Clarkson Notre Dame IIITD-WVU
Metric EER HTER APCER BPCER EER HTER APCER BPCER EER HTER APCER BPCER
DenseNet 37.78 36.69 45.97 27.41 56.39 56.69 59.28 54.11 54.43 49.94 9.40 49.94
PBS 30.43 37.12 66.23 8.01 55.67 55.39 81.22 29.56 51.10 50.59 82.66 18.52
A-PBS 33.41 33.57 46.20 20.94 53.11 53.83 40.33 65.89 26.32 26.13 36.30 15.95

Table 5.22.: Iris PAD performance measured under cross-spectrum scenarios and re-
ported in terms of EER (%) and HTER (%), APCER(%), and BPCER(%). APCER
and BPCER is determined by a threshold of 0.5. The training subset of the
grand-test on the visible-light-based PAVID database is used to train a model,
and the testing subset of each database in the LivDet-Iris 2017 database is
used for evaluation. The lowest error rate is in bold.

Train database Clarkson Notre Dame IIITD-WVU
Test database PAVID
Metric EER HTER APCER BPCER EER HTER APCER BPCER EER HTER APCER BPCER
DenseNet 6.04 13.53 23.94 3.13 57.49 61.40 95.30 27.50 8.28 8.07 7.38 8.75
PBS 4.47 5.97 10.07 1.88 56.38 57.94 76.51 39.38 13.43 14.15 17.67 10.63
A-PBS 1.34 12.98 25.95 0.00 52.35 50.63 100.00 1.25 8.63 8.05 11.63 5.62

Table 5.23.: Iris PAD performance measured under cross-spectrum scenarios and re-
ported in terms of EER (%), HTER (%), APCER(%), and BPCER(%). APCER
and BPCER is determined by a threshold of 0.5. The training subset of the
NIR-based Clarkson, Notre Dame, and IIITD-WVU is used to train a model,
and the testing subset of the grand-test on the PAVID database is used for
evaluation. The lowest error rate is in bold.

and A-PBS outperform the trained from scratch DenseNet. However, all PAD methods do
not generalize well on the Notre Dame database. One possible reason is that Notre Dame
comprises only challenging textured lens attacks and no print/reply attacks. The PAVID
database, used for training here, only include reply attacks. One must note that both reply
and print attacks involve the recapture of an artificially presented iris sample, unlike lens
attacks. This recapture process can introduce artifacts identifiable by the PAD algorithms.
Table 5.23 presents the results tested on the PAVID databases by using respective models
trained on LivDet-Iris 2017 databases (the case of NIR-VIS). Similar observation can be
found in Table 5.23 that the model trained on Notre Dame can not generalize on the PAVID
database, e.g., the lowest EER and HTER values are 52.34% and 50.63% obtained by our
A-PBS solution. In contrast to the results on Notre Dame, the model trained on Clarkson
and IIITD-WVU generalizes much better on the visible-light database. The lowest EERand
HTER values are 1.34% achieved by A-PBS and 5.97% achieved by PBS methods, while
DenseNet and A-PBS obtained similar error rates on IIITD-WVU. Moreover, we illustrate
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the PAD score distribution with the fisher discriminant ratio [57, 171], which measures
the separability, for further analysis. Figure 5.22 and 5.23 presents the results of case
NIR-VIS and VIR-NIR, respectively. The PAD score distributions of the NIR-VIS case in
Figure 5.22 show that models trained on Notre Dame perform worse than those trained on
Clarkson and IIIT-WVU (bona fide and attack scores almost completely overlap). Moreover,
the model trained on PAVID also obtained the largest overlapping and the smallest FDR
value in Figure 5.23. One possible reason is the insufficient training data in Notre Dame
(1,200 training data). However, the main reason might relate to the type of attacks and
the lack of the recapturing process in the lens attacks, as mentioned earlier. This is also
verified by the quantitative results in Table 5.22 and 5.23 (the APCER values are between
40.33% to 100.00%).

Visualization and Explainability

PBS is expected to learn more discriminative features by supervising each pixel/patch
in comparison with binary supervised DenseNet. Subsequently, the A-PBS model, an
extended model of PBS, is hypothesized to automatically locate the important regions
that carry the features most useful for making an accurate iris PAD decision. To further
verify and explain these assumptions, Score-Weighted Class Activation Mapping (Score-
CAM) [226] is used to generate the visualizations for randomly chosen bona fide and
attack iris images (these images belong to the same identity) under intra-database and
cross-spectrum scenarios as shown in Figure 5.24 and 5.25.
Figure 5.24 illustrates the score-CAM results on the PAD samples in the test subset of

IIITD-WVU. We adopted models trained on the training subset of IIITD-WVU (PAD) and
models trained on the training subset of PAVID (visible-light) to generate score-CAMs,
respectively. As shown in Figure 5.24, it is clear that PBS and A-PBS models pay more
attention to the iris region than DenseNet in both intra-database and cross-spectrum
cases. The DenseNet model seems to lose some information due to binary supervision.
Similar observations can be found in Figure 5.25, where the PAD and visible-light models
were tested on the visible images in the test subset of the PAVID database. In the visible
intra-database case, DenseNet gained more attention on the eye region of visible-light
images than of PAD images in Figure 5.24. Moreover, in the cross-spectrum case in Figure
5.25, the use of the attention module (A-PBS) has enabled the model to keep focusing
on the iris area, while DenseNet and PBS lost some attention, especially on the attack
samples. In general, the observations in Figures 5.24 and 5.25 are consistent with the
quantitative results in Table 5.23 and 5.22 that the training on visible-light and test on
PAD data (VIS-PAD) is more challenging than the training on PAD and test on visible-light
data (PAD-VIS) in our case. It might be caused by: 1) The perceived image quality of

169



visible data in the PAVID database are relatively lower than PAD images (see samples in
Figure 5.20). 2) Some of the video frames in the PAVID database have an eye-blinking
process, and thus some iris information (regions) will be hidden by eyelids and eyelashes.
3). While the used visible data (PAVID) contains only recaptured attacks (reply attacks),
the PAD data contains both recaptured attacks (print attacks) and lens attacks, which
makes it more difficult for a PAD trained on the visible images to perform properly on PAD
attacks in our experiments.

5.5.4. Discussion

This section focused on the iris PAD performance in the PAD and visible domain, including
challenging cross-database and cross-spectrum cases. The experiments were conducted
using the proposed attention-based pixel-wise binary supervision (A-PBS) method [79]
for iris PAD. A-PBS solution [79] aimed to capture the fine-grained pixel/patch-level cues
and utilize regions that contribute the most to an accurate PAD decision by utilizing an
attention mechanism. The extensive experiments were performed on six publicly available
iris PAD databases in the PAD spectrum (including LivDet-Iris 2017 competition databases)
and one database in the visible spectrum. By observing intra-database and intra-spectrum
experimental results, several conclusion can be driven that 1) The results reported on
respective attack types indicated that textured contact lens attack is more challenging to
detect correctly than printouts attack. 2) cross-PA and cross-database are still challenging
(EER values are over 20% in most cases). Furthermore, to our knowledge, this chapter is
the first work to perform and analyze experiments under the cross-spectrum scenario. The
experimental results showed that models trained on the visible spectrum do not generalize
well on PAD data. It might also be caused by the limited visible data and its attack
mechanism. In general, the A-PBS solution presents a superior PAD performance and
high generalizability in the PAD and visible captured images, cross-database experiments,
as well as cross-spectrum PAD deployments. The A-PBS [79] also showed to focus the
attention of the PAD models towards the iris region when compared to more traditional
solutions.
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Figure 5.22.: PAD score distribution of bona fide (green) and PAs (blue) under cross-
spectrum scenario (NIR-VIS). The models trained on the training subset of
Clarkson (top), Notre Dame (middle), and IIITD-WVU (bottom) databases are
used to evaluate on the test subset of PAVID database. and the histograms
from left to right are produced by DenseNet, PBS, and A-PBS, respectively.
The larger separability (measured by Fisher Discriminant Ratio (FDR) [57,
171]) and smaller overlap indicate higher classification performance.
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Figure 5.23.: PAD score distribution of bona fide (green) and PAs (blue) under cross-
spectrum scenario (VIS-PAD). The model trained on PAVID database is
used to test on the test subset of Clarkson, Notre Dame, and IIITD-WVU,
respectively. The histogram top to bottom are test results on Clarkson,
Notre Dame and IIITD-WVU databases, and the histograms from left to
right are produced by DenseNet, PBS, and A-PBS, respectively. The larger
separability (measured by Fisher Discriminant Ratio (FDR) [57, 171]) and
smaller overlap indicate higher classification performance.
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Figure 5.24.: Score-CAM visualizations for bona fide and attack samples in the IIITD-WVU
test set under intra-database and cross-spectrum (VIS-PAD) scenarios. The
darker the color of the region, the higher the attention on this area. The
column from left to right refers to the raw samples, maps produced by
DenseNet, PBS, and A-PBS model under two cases, respectively. The row
from top to bottom refers to bona fide samples, textured contact lens, and
printouts attack. PBS and A-PBS models pay more attention on iris region
than DenseNet in both cases.
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Figure 5.25.: Score-CAM visualizations for bona fide and attack samples in the PAVID
test set under intra-database and cross-spectrum (PAD-VIS) scenarios. The
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iPhone. It is clear that the A-PBS model with an additional attention module
is able to preserve relatively more attention on the iris region, especially for
attack samples.
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5.6. Summary

This chapter focused on the generalizability of PAD problem by presenting one face PAD
solution and two iris PAD solutions. At first, this chapter presented a novel face PADmethod
by intelligently leveraging the information from the frequency domain to enhance the
generalizability of face PAD. Later, the spatially aware iris regions were studied to enhance
the performance and generalizability of the iris PAD. Finally, the attention mechanism-
based iris PAD model was discussed under the cross-domain evaluation, including the
cross-spectrum scenario.
Despite the great performance achieved by the hand-crafted and deep-learning-based

face PAD methods in intra-dataset evaluations, the performance drops when dealing with
unseen scenarios. The first part of this chapter proposed a dual-stream CNN framework.
One stream adapted four learnable frequency filters to intelligently learn features in the
frequency domain, which are less influenced by variations in sensors/illuminations. The
other stream leveraged the RGB images to complement the features of the frequency
domain. Moreover, a hierarchical attention module was integrated to fuse the information
from the two streams at different stages by considering the nature of deep features in
different layers of the CNN. The proposed method was evaluated in the intra-dataset and
cross-dataset setups, and the results demonstrated that the proposed approach enhances
the generalizability in most experimental setups in comparison to SOTA, including the
methods designed explicitly for domain adaption/shift problems, as a response to RQ6.
Furthermore, the design of the proposed PAD solution was proved successfully by a step-
wise ablation study that involved the presented learnable frequency decomposition, the
hierarchical attention module design, and the used loss function.
Existing iris PAD solutions are not deployable in mobile devices due to the large model

size and lack the analysis of the generalizability under varied captured environments,
unknown sensors or unknown attacks. To address these issues, in the second part of this
chapter, the benefit of the spatially aware iris region was studied. Section 5.4 proposed
a micro-stripe analyses solution to detect iris PAs. The proposed MSA method focused
on the differences between bona fide and attack in the image dynamics around the
iris/sclera boundary area. To achieve that, multiple thin micro-stripes of the normalized
segmentation were extracted to provide more samples and less sample dimensionality,
resulting in a better fitted model. The decision of multiple overlapping stripes was fused
by a simple majority vote to build the final detection decision. In addition, the assumption
that the iris/sclera boundary contains relatively more significant information for a PAD
decision, even in the cases of unknown databases and unknown attacks, was supported
by the illustrated EER heatmaps based on different pupil-centred rings. The lowest
EER values commonly occurred in the fifth to the eighth stripe areas, which are those
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around the iris/sclera boundary. An in-depth experimental evaluation of this MSA method
revealed a superior performance in three databases, in comparison with SOTA algorithms
and baselines. Additionally, extensive cross-database and cross-attack (unknown-attack)
detection evaluation experiments were demonstrated to explore the generalizability of
the proposed method, texture-based method, and neural network-based methods. The
results indicated that the MSA approach has better generalizability compared to other
baselines in most experiments. Section 5.4 provided an answer to RQ7 by studying the
significance of different pupil-centred eye areas in iris PAD decisions using MSA method,
and proving its improved generalizability under different experimental settings.
The third part of this chapter focused on the iris PAD performance in the NIR and

visible domain, including challenging cross-database and cross-spectrum cases. First, it
introduced a novel attention-based deep pixel-wise binary supervision method, named
A-PBS, for iris PAD. A-PBS solution aimed to capture the fine-grained pixel/patch-level
cues and utilize regions that contribute the most to an accurate PAD decision by utilizing
an attention mechanism. The A-PBS showed to focus the attention of the PAD models
towards the iris region when compared to more traditional solutions. The extensive
experiments performed on six iris PAD databases in the NIR spectrum and one database
in the visible spectrum verified the effectiveness and robustness of the presented A-PBS
methods under scenarios with unknown attacks, sensors, and databases. Furthermore,
this work performed and analyzed experiments under the cross-spectrum scenario by
using A-PBS method. The experimental results showed that models trained on the visible
spectrum do not generalize well on NIR data and the models trained on the NIR data
generalized relatively better on visible data compared to the aforementioned cases. This
could be attributed to the limited visible data and its attack mechanism. In general, the
A-PBS solution presented a superior PAD performance and high generalizability in the
NIR and visible captured images, cross-database experiments, as well as cross-spectrum
PAD deployments, as an answer to RQ8.
Previous chapters assessed the fairness of PAD systems, discussed the emerging masked

face PAD challenge, presented a set of solutions to enhance the generalizability of face
and iris PAD. The next chapter will conclude the thesis and provide a brief outlook on
future work.
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6. Conclusion and Future Work

The previous chapters (3, 4 and 5) provided detailed responses to the research questions
presented in Chapter 1. In the following, a summarized contribution of this thesis and an
outlook for future research are provided.

6.1. Conclusion

The aim of presentation attack detection is to mitigate the vulnerability of biometric
recognition algorithms to these attacks, thus enabling a wider deployment of biometric
technology. This thesis presented advances in PAD by addressing three under-researched
and emerging challenges of PAD. The contributions in this thesis were motivated by these
three challenges identified in Chapter 1 and targeted the research questions presented in
this thesis. The three main targeted challenges were fairness in face PAD, the emerging
challenge of masked face PAD, and the generalizability of PAD.

Fairness in face PAD The first part of this thesis (Chapter 3) aims to analyse and enhance
the fairness of face PAD, which itself can be viewed as a PAD generalizability issue. FR
performance has been shown to be unfair to certain demographic and non-demographic
groups. However, the fairness of face PAD is an understudied issue, mainly due to the
lack of appropriately annotated data. To enable answering RQ1, a combined attribute
annotated PAD dataset, CAAD-PAD, that combines several well-known PAD datasets were
presented, in which seven human-annotated attribute labels were provided, covering
both demographic and non-demographic attributes. To represent both the PAD fairness
and the absolute PAD performance simultaneously, a novel metric, ABF, was introduced.
Toward this end, RQ1 was answered by comprehensively analysing the fairness of a set
of face PADs and its relation to the nature of training data and the ODTA on different
data groups on the presented CAAD-PAD dataset. Extensive experiments on CAAD-PAD
showed that the nature of the training data and ODTA induced unfairness on gender,
occlusion, and other attribute groups. Based on these analyses, a data augmentation
method, FairSWAP, was proposed, as a response to RQ2. FairSWAP aimed to disrupt
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the identity/semantic information and guide models to mine attack clues rather than
attribute-related information. Detailed experimental results demonstrated that FairSWAP
generally enhanced both the PAD performance and fairness.

The emerging challenge of masked face PAD The second part of this thesis (Chapter
4) targeted the emerging and unexpected challenge posed by wearing a facial masked
during the COVID-19 pandemic on FR and PAD. Since existing face PAD databases only
contain attacks in which subjects were not wearing face masks. The relationship between
the performance of PAD techniques and masked faces is uncertain and the vulnerability of
FR systems to masked face attacks remains unclear. To overcome such gaps and enable
the study, CRMA dataset was presented, including the conventional unmasked bona fides
and attacks, novel bona fide and attacks with faces wearing masks, and attacks with real
masks placed on spoof faces. It consists of 13,113 high-resolution videos and has a large
diversity in capture sensors, displays, and capture scales. Moreover, three experimental
protocols were designed to study the effect of wearing a mask on the PAD algorithms.
As a response to RQ3, this thesis presented a thorough analysis of the vulnerability of

FR systems to such masked faces. The results indicate that FR systems are vulnerable
to both masked and unmasked attacks. For example, when the reference images and
system threshold are based on unmasked bona fide faces (BM0-BM0), the IAPMR values
for unmasked attacks (AM0), masked attacks (AM1), and attacks covered by a real mask
(AM2) are 98.40%, 81.60%, and 97.10%, respectively. This leads to the interesting
observation that all the investigated FR systems are more vulnerable to attacks where real
masks are placed on attacks (AM2) than attacks of masked faces (AM1).
Additionally, this thesis conducted extensive experiments by following designed proto-

cols, providing an answer to RQ4. The experimental results indicated that PAD algorithms
have a high possibility of detecting masked bona fide samples as attackers (median BPCER
value for BM1 in protocol-1 is 48.25%). Even if PAD solutions have seen the masked bona
fide data during training, PAD algorithms still perform worse on masked bona fide samples
compared to unmasked bona fide ones. Furthermore, PAD solutions trained on masked
face attacks (AM1) do not generalize well on attacks covered by a real mask (AM2).
Lastly, a response to RQ5 was drawn by presenting a solution to target the masked

PAs, especially partially covered attacks, by proposing both the partial attack supervision
and the regional weighted inference. The aim of partial attack supervision was to guide
models to better convergence while training. Meanwhile, regional weighting improved
the generalizability of PAD in the inference phase. The detailed ablation study showed
the consistent benefits of both components, separately and jointly, in a single solution.
The presented PAL-RW based models outperformed other established PAD methods when
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dealing with the possibility of masked faces in PAD decisions. Moreover, as PAL-RW focused
on refining training labels and post-processing of PAD predictions, it thus could be easily
incorporated into any neural network architecture.

Generalizability of PAD algorithms The third part of this thesis (Chapter 5) aims at
enhancing the generalizability of PAD by presenting one face and two iris PAD solutions.
As a response to RQ6, this thesis proposed a novel dual-stream face PAD framework

by intelligently exploiting information from the frequency domain to enhance the gen-
eralizability of face PAD. One of the streams adapted four learnable frequency filters to
learn features in the frequency domain in an optimized manner, which is less influenced
by variations in sensors/illuminations. The other stream leveraged RGB images to com-
plement the features in the frequency domain. Moreover, a hierarchical attention module
was integrated to fuse the information from two streams at different stages by considering
the nature of deep features in different layers of CNNs. Through extensive intra-dataset
and cross-dataset evaluations and comparisons to the recent SOTA algorithms, including
methods explicitly for domain adaption/shift problems, the experimental results proved
the superiority of the proposed method over recent PAD algorithms, especially under most
cross-dataset scenarios. The design of the proposed PAD solution was also successfully
demonstrated by a step-wise ablation study involving the presented learnable frequency
decomposition, the hierarchical attention module design, and the used loss function.
In the aspect of iris PAD generalizability, this thesis responded to RQ7 by studying

the benefit of spatially aware iris and iris/sclera region. This is performed by proposing
the micro-stripe analyses solution, MSA, to detect iris PAs. The proposed MSA method
focused on the differences between bona fide and attack in the image dynamics around the
iris/sclera boundary areas. The illustrated EER heatmaps based on different pupil-centred
rings supported our assumption that the iris/sclera boundary contains relatively more
significant information for a PAD decision, even in the cases of unknown databases and
unknown attacks. As a result, multiple thin micro-stripes of the normalized segmentation
were extracted to provide more samples and less sample dimensionality, resulting in
a better-fitted model. The final decision was determined by a simple majority vote
of multiple overlapping stripes. An in-depth experimental evaluation of MSA method
revealed a superior performance on mainstream iris PAD datasets, in comparison with
SOTA algorithms and baselines. Extensive cross-database and cross-attack (unknown-
attack) evaluation experiments were conducted and proved the enhanced generalizability
of iris PAD obtained by MSA.
Following the need to build automatic decisions based on correctly localized clues,

the third part of Chapter 5 introduced a novel attention-based deep pixel-wise binary
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supervision method, named A-PBS. The A-PBS solution aimed to capture the fine-grained
pixel/patch-level clues and automatically locate regions that contribute the most to an
accurate PAD decision by using an attention mechanism. To demonstrate the effectiveness
and robustness of the presented A-PBS, a set of extensive experiments were conducted on
six NIR iris PAD databases and one visible spectrum database by following the protocols
for the unknown attack, sensor, database, and spectrum scenarios. The results reported
in Chapter 5 showed that models trained on visible spectrum did not generalize well on
NIR data, while models trained on NIR data generalized relatively better on visible data
compared to the aforementioned cases. This could be attributed to limited visible data and
its attack mechanism. Overall, the A-PBS solution obtained a superior PAD performance
and boosted generalizability on both NIR and visible spectrum intra-dataset scenarios,
cross-database experiments, as well as cross-spectrum PAD deployments, providing an
answer to RQ8.
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Figure 6.1.: A summary of contributions in relation with the research questions posed in
this thesis, the chapters responding to those questions, and the publications
building to these chapters.
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Summary To sum up, this thesis focused on boosting the generalizability and fairness
of PAD by presenting a set of contributions driven by a set of research questions listed in
Chapter 1. Figure 6.1 links these research questions to the corresponding chapters along
with the related publications.
In response to the RQ1: Are PAD systems fair? And do the lack of balance in PAD training

data and the methodology of choosing PAD decision threshold affect this fairness?, this
thesis confirmed that PAD systems are unfair to certain groups and fairness of face PADs
is affected by the nature of training data and the ODTA. This answer is confirmed by
comprehensively analyzing the fairness of face PADs and their relation to both effect
factors through extensive experiments on the presented CAAD-PAD dataset. Knowing
the outcome of RQ1, this thesis proposed a simple solution, FairSWAP, serving as a data
augmentation technique, to enhance the fairness of investigated PAD solutions, providing
a confirmed answer to RQ2: Is the fairness of PAD solutions enhanced when controllably
augmenting the training data so that different data groups will possess specific properties of
other groups?.
Towards the masked face PAD challenge, this thesis first presented CRMA dataset to

enable answering RQ3, RQ4, and RQ5. In response to RQ3: Is the vulnerability of FR systems
to PAs affected by wearing a mask?, this thesis confirms that the vulnerability of FR systems
differed when faced with masked faces. Compared to unmasked face attacks, FR systems
are less vulnerable to both types of masked faces. Additionally, they were more vulnerable
to attacks with real face masks (AM2) than masked face attacks (AM1). These conclusions
were drawn by presenting a thorough analysis of the vulnerability of FR systems to novel
masked faces in CRMA. The answer to RQ4: Is the behaviour of existing PADs affected by
wearing face masks, whether on bona fide or attack faces? confirmed that the masked bona
fide and attacks caused a significant PAD performance degradation by conducting a set of
extensive experiments. Knowing such outcomes, this thesis further proposed a solution
to target this issue, especially partially covered attacks. This solution is based on two
modules, the partial attack supervision and the regional weighted inference. The improved
PAD performance by the proposed solution provided a confirmed answer to RQ5: Can the
PAD performance, especially on masked samples, be enhanced by designing a structured PAD
training supervision strategy that takes the possibility of a masked face into account?.
Towards enhancing the generalizability of PAD algorithms, this thesis presented three

contributions. First, to answer RQ6: Can the generalizability of face PAD be enhanced by
learning to include information from the frequency domain in an optimized manner?, this
thesis successfully designed a face PAD framework that adapted learnable frequency filters
to intelligently learn features in the frequency domain, along with features from the spatial
domain, proving to enhance the PAD generalizability. In response to RQ7: Can analyzing
spatially aware regions of the iris and its iris/sclera boundary enhance the generalizability of
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iris PAD?, this thesis confirmed that by studying the benefits of spatially aware iris and its
iris/sclera region and successfully introducing a micro-stripe analyses solution to detect
iris PAs under both intra-dataset and cross-dataset evaluations. Furthermore, this thesis
confirmed RQ8: Can networks be automatically guided to focus on the attack-discriminant
iris region during the PAD training? If so, does this enhance the iris PAD generalization?
by introducing a novel attention-based deep pixel-wise binary supervision method for
iris PAD that successfully demonstrated the enhanced generalized performance under
intra-dataset, cross-dataset, and cross-spectrum scenarios.
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6.2. Future Work

As PAD plays an important role in protecting biometric systems from PAs, these PAD
systems are even more demanding, and thus prompting several future research directions
based on the contributions of this thesis. These research directions can be summarized as
follows:

Efficient PAD solutions Due to the significant importance of PAD in mitigating the vulner-
ability of recognition algorithms, most researchers are competing to present solutions to
boost the performance by employing overparameterized deep learning networks with high
computational cost [108, 117, 207]. Despite the success of such deep learning models,
the deployment of these overparameterized models on many use-cases is limited by the
computational capability. This challenge has attracted increasing attention in biometric
recognition tasks [18, 40, 175], but much less attention in PAD. Considering the use-cases
that are extremely limited by computational resources like mobile devices, designing an
accurate PAD solution with low complexity is crucial for deployability. This thesis has
attempted to select MixFaceNet [18] as one of the backbones for building PAL-RW solution
in Chapter 4 by considering its lower computational complexity and high accuracy in
face verification and identification tasks. PAL-RWMixFaceNet obtained the best overall PAD
performance, indicating the efficiency of MixFaceNet [18] and rationalizes the choice of
this efficient backbone based on the different sizes of convolutional kernels. In addition
to the manual design of efficent architectures, the core metrics of a given model can be
improved by automatically designing some of its components. An example of that is using
neural architecture search (NAS) [26, 165] to automate the design of neural architec-
tures. In such a solutions, the architecture itself is finetuned and the automated search
helps find a model that optimizes both loss/accuracy and other metrics such as model
latency/size. Yu et al. [250] proposed a NAS-based PAD solution to discover suitable
task-aware networks. However, this solution focused on studying the search spaces for
performance enhancement, i.e. still possessing high computational cost. In addition to the
efficient architecture design (manually or automatically), model compression techniques,
including parameter pruning and model quantization, can be employed to reduce the
required computational cost of deep learning models. Overall, efficient PAD solutions
raise the need for considering and reporting the cost of model development, training, and
deployment.

Standardization of fairness Fairness in AI systems has attracted increasing attention
and gained significant importance in building such systems. Current fairness research

183



concentrates on the definition [123, 177, 224], metric [64, 98, 105], assessment, and
enhancement [8, 64, 69, 208, 216, 218, 221, 252] of fairness. However, up to now, fair-
ness is still a broad concept without a unifying standard definition. A recently released
AI standardization document, ISO/IEC TR 24027:2021 [128], used the terms Fairness
and Bias to represent AI bias and discussed the possibility of assessing fairness in AI with
a fairness measure. This measure is currently being utilized in the biometric research
community. Additionally, there are efforts to standardize the definition and measure-
ment of fairness in biometric solutions with a standard currently under development
[129], as fairness measures from AI are seen as lacking consideration for social, legal,
or cognitive aspects of fairness. As suggested in [202], bias may exist at every stage of
building AI systems, data collection and pre-processing, model/algorithm development,
and validation/test step. This thesis only studied the fairness of PAD systems related to
the nature of training data at the data collection stage and ODTA at the deployment stage.
The problem formulation, model selection, or optimization objective may also affect the
fairness at the model development stage. Such aspects are worth investigating in the
future to improve the model design. Moreover, the existing fairness in biometric systems
is mostly measured based on the differential performance independent of any thresholds
or differential outcome by a group-specific threshold [4, 69, 81]. This thesis thus adapted
a recently defined fairness metric based on a decision threshold computed from all groups,
and proposed ABF to associate fairness with the absolute PAD performance. However, as
investigated in Chapter 3, the fairness of face PADs was influenced by ODTAs. Therefore,
it is critical to define standard metrics for fairness over varied use cases. Overall, the
standardization of fairness will subsequently support fairness studies of data-driven and
automated decision-making biometric systems and help evaluate and develop fairness
enhancement algorithms.

PAD datasets Compared to datasets used in general computer vision tasks, such as
ImageNet for object classification and detection, biometric data is relatively very limited
due to the time and effort required to collect and manage it, along with privacy concerns
associated with acquiring such datasets. As aforementioned in Chapter 3, most PAD
datasets lack detailed annotations on attributes, and thus fairness in PAD has been poorly
investigated. Besides, the presented CRMA dataset in Chapter 4 is also limited in terms
of the number of subjects and the types of PAI. Moreover, due to the increasing ethical
and legal problems, several biometric datasets are recently retracted by their creators,
such as VGGFace2 [28], MS-Celeb-1M [100], and MegaFace [145] for face recognition,
and Warsaw dataset for iris PAD and SiW for face PAD. To broaden the scope of the
research field related to PAD, building large-scale PAD datasets is valuable. In addition to
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collecting authentic data, a major alternative can be building data based on synthetically
generate data. Synthetic data has received increasing attention in the biometric field and
successfully employed in face recognition [22, 187] and face morphing attack detection
[55, 120]. Overall, large-scale PAD data with rich attribute annotations promote the
diversity and depth of future research, including generalizability and fairness in PAD.

Domain generalization Despite the enhanced face and iris PAD generalizability by
presented algorithms in Chapter 5, PAD is still an open problem in practice due to the
large uncertainty gaps caused by the unknown nature of variations in the attacks. PAD
is also a self-evolving problem, where PAs and detection algorithms evolve iteratively.
One limitation of all the presented algorithms in Chapter 5 is that they are supervised
learning, highly relying on the known presentations. Several unsupervised learning
techniques could be adapted to learn a generalized feature representation. For example,
recent task-independent self-supervised feature learning techniques [41, 106] showed
promising results on general downstream computer vision tasks. Moreover, to alleviate
the PAD domain bias problem, one possible direction is curriculum learning technique
[103, 229], which imitates the learning strategy in human curricula, training models in
a meaningful order (easy-to-hard etc.). The curriculum learning techniques have been
proven to be successfully employed in many machine learning fields in a wide range
of tasks [119, 211]. The enhanced performance on such tasks suggests that curriculum
learning techniques can help the unsupervised PAD domain adaption research. Another
limitation of current face PAD solutions is that many domain adaptation and domain
generalization-based PAD methods rely on a priori knowledge, such as domain labels, and
require access to the unlabeled target data, which are generally unavailable in real-world
scenarios. Therefore, exploring the intrinsic causal mechanisms or performing domain
adaptation/generalization on the embedding space could be potential future research
directions to address this challenge.
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A. Publications

The author published 13 scientific publications as a first author, contributed to 12 scientific
publications.
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1. Meiling Fang, Marco Huber, and Naser Damer. SynthASpoof: Developing Face
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tation attack detection in the nir and visible domains. In Sébastien Marcel, Julian
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Springer Nature Singapore
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A.3. Competitions

The author participated in two international competitions [61, 185].

1. The first place in image category and the second place in video category at Face
Liveness Detection Competition (LivDet-Face) - 2021 [185]

2. The second place at Iris Liveness Detection Competition (LivDet-Iris) - 2020 [61]
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B. Supervising thesis

The following bachelor and master theses were supervised by the author, and the results
of these works were partially used as an input into this thesis.

1. Wufei Yang, Meiling Fang (supervisor) and Prof. Dr. Arjan Kuijper (supervisor). Bias
Exploration and Mitigation in Face Presentation Attack Detection systems. Bachelor
Thesis, TU Darmstadt, 2022.

2. Hamza Ali, Meiling Fang (supervisor) and Prof. Dr. Arjan Kuijper (supervisor). Intra-
identity PatchSwap: On the Generalizability of Face Presentation Attack Detection.
Master Thesis, TU Darmstadt, 2022.

3. Nour Eldin Alaa Badr, Meiling Fang (supervisor) and Prof. Dr.-Ing. Franz Kummert
(supervisor). Momentum Contrast for Representative Face Presentation Attack
Detection. Master Thesis, FH Bielefeld, 2022.
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