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Abstract

The present work deals with the further development of a novel scale-resolving
model of turbulence, in terms of its computational validation and in-depth analy-
sis of its predictive performance under the conditions of complex interacting flow
and thermal fields, as encountered in the thermotechnical two-phase flow systems.
Computational capturing of the phenomena being presently of interest that com-
monly characterize industrial flow configurations and require coupled modeling of
multiple flow fields include: high turbulence intensity and large-scale instabilities,
heat transfer and interphase interaction accounting also for free surface-induced
effects. Their correct capturing is either beyond the capabilities of classical RANS
(Reynolds-Averaged Navier-Stokes) models with respect to their inherent time-
averaged theoretical foundation or is too costly for correspondingly well-resolved
LES and DNS approaches. By resolving the spectrum to a reasonable extent in a
grid-spacing free manner, it is expected that the most important flow features will
be captured directly, while the non-resolved residual turbulence will be modeled
with highest possible accuracy. Particularly suitable for the latter are the models
relying on the second-moment closure concept, as presented in Jakirlić and Maduta
(2015). The key question behind the outlined research is whether the accuracy of
the model and competitive resources for its performance (reflected in the relatively
modest grid size, as compared with LES methods) can be extended far beyond
the parameter space used for its calibration and development. This dissertation
addresses this question by examining some specifically configured thermotechnical
flow configurations using a higher-order, scale-resolving turbulence model, termed
as Improved Instability-Sensitive Reynolds-Stress Model (IIS-RSM), and associated
numerical algorithms in the context of the Sensitized RANS framework.
In total, six complex flow configurations, involving a variety of all the above-

mentioned phenomena, are covered by the modeling paradigm adopted. Systemati-
cal testing of the scale-resolving capability of the model scheme is initially performed
over a range of canonical, but relevant pipe configurations. Afterwards, the IIS-RSM
is systematically validated in simulating thermal mixing in three differently config-
ured T-junction configurations that exhibit a complex flow topology resulting from
structural variations in inflow properties and strong temperature gradients causing
high-level turbulence instabilities. Moreover, the flow cases were chosen that cover
the widest possible range of Reynolds numbers consistent with practically relevant
operational conditions. The eddy-resolving Reynolds-stress model was further cou-
pled with the Euler-Lagrangian methodological framework to evaluate its suitability
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for predicting two-phase flow systems. Accordingly, three gas-liquid two-phase flow
configurations were selected, representing differently arranged bubbly columns
and a bubble stream generated by an emerged water jet exiting into a pool. The
latter flow configuration occurring at a high Reynolds number is characterized by
a jet-induced secondary motion. Additionally, model formulations describing the
Bubble-Induced-Turbulence (BIT), including the model recently proposed by Ma
et al. (2020), are tested for the first time as part of the complete computational
model operating in a scale-resolving mode.
In addition to the common results interpretation showing the evolution of global

properties and individual profiles of various variables characterizing the underlying
flow and thermal fields as well as those of turbulence quantities, Proper-Orthogonal-
Decomposition (POD) is used throughout the work to analyze and extract coherent
flow features as a means of identifying prevalent flow mechanisms.
All simulation results show a high degree of accuracy with respect to the avail-

able experimental or otherwise numerically determined reference data. Both the
statistical properties of the flow and its dynamic behavior are correctly captured
qualitatively and quantitatively by the model, with remarkable reductions in the
necessary spatial and temporal resolution. In the calculations of the two-phase bub-
bly columns, the quality of the previous studies is maintained, while the robustness
and stability of the calculations have been significantly improved. Certain weak
points of the IIS-RSM have been identified, and indications for future improvements
are proposed and presented in the conclusion. In this way, a reliable computational
tool is obtained that is capable of accurately predicting a variety of computationally
challenging flow phenomena.
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Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Weiterentwicklung eines neuartigen skale-
nauflösenden Turbulenzmodells im Hinblick auf dessen numerische Validierung und
die eingehende Analyse seiner prädiktiven Leistungsfähigkeiten unter den Bedingun-
gen komplex interagierender Strömungs- undWärmefelder, wie sie in thermotechnis-
chen Zweiphasenströmungssystemen anzutreffen sind. Zur numerischen Erfassung
der behandelten Phänomene, die eine Reihe an industriellen Strömungskonfigura-
tionen charakterisieren und eine gekoppelte Modellierung mehrerer Strömungs-
felder erfordern, gehören: hohe Turbulenzintensität und großräumige Instabilitäten,
Wärmeübertragungsvorgänge und Interphasenwechselwirkung unter Berücksich-
tigung von Effekten, die durch freie Oberflächen verursacht werden. Ihre kor-
rekte Erfassung übersteigt entweder die Möglichkeiten klassischer RANS-Modelle
(Reynolds-Averaged Navier- Stokes) im Hinblick auf ihre inhärente zeitgemittelte
theoretische Grundlage oder ist zu kostspielig für entsprechend gut aufgelöste
LES- und DNS-Ansätze. Durch die gitterfreie Auflösung des Spektrums in einem
entsprechenden Umfang wird erwartet, dass die wichtigsten Strömungsmerkmale
direkt erfasst werden, während die nicht aufgelöste Turbulenz mit höchstmöglicher
Genauigkeit modelliert wird. Für Letzteres eignen sich besonders die Modelle, die
auf dem Konzept der Dynamik der Momente zweiter Ordnung der Geschwindigkeits-
fluktuationen beruhen, wie in Jakirlić and Maduta, 2015 vorgestellt. Die zentrale
Frage, die sich hinter den dargestellten Forschungsaktivitäten verbirgt, ist, ob die
Genauigkeit und die wettbewerbsfähigen Ressourcen für die Modellleistung weit
über den für die Kalibrierung und Entwicklung des Modells verwendeten Parame-
terraum hinaus erweitert werden können. Diese Dissertation befasst sich mit dieser
Frage, indem sie einige spezifisch konfigurierte thermo-technische Strömungskon-
figurationen unter Verwendung eines skalenauflösenden Turbulenzmodells höherer
Ordnung (Improved Instability-Sensitive Reynolds-Stress Model, IIS-RSM) und
zugehöriger numerischer Algorithmen im Kontext der ’Sensitized-RANS’ Methode
untersucht.
Insgesamt werden sechs komplexe Strömungskonfigurationen, die durch eine

Vielzahl der oben genannten Phänomene charakterisiert sind, durch das eingesetzte
Modellierungskonzept abgedeckt. Die wirbelauflösende Fähigkeit des Modells wird
zunächst systematisch für eine Reihe kanonischer, aber relevanter Rohrkonfiguratio-
nen getestet. Anschließend wird das IIS-RSM systematisch bei der Simulation der
thermischen Vermischung in drei unterschiedlich konfigurierten T-Verbindungsstück-
Konfigurationen validiert, die eine komplexe Strömungstopologie aufweisen, die sich
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aus strukturellen Variationen der Einströmeigenschaften und starken Temperaturgra-
dienten ergibt, die verstärkte Turbulenzinstabilitäten verursachen. Darüber hinaus
wurden die Strömungsfälle so gewählt, dass sie den größtmöglichen Bereich von
Reynoldszahlen abdecken, die mit praktisch relevanten Betriebsbedingungen kom-
patibel sind. Das wirbelauflösende Reynolds-Spannungsmodell wurdemit dem Euler-
Lagrange’schen methodologischen Verfahren gekoppelt, um dessen Eignung für die
Vorhersage von Zweiphasen-Strömungssystemen zu bewerten. Dementsprechend
wurden drei Gas-Flüssigkeits-Zweiphasen-Strömungskonfigurationen ausgewählt,
die unterschiedlich angeordnete Blasensäulen und einen Blasenstrom darstellen, der
durch einen austretenden Wasserstrahl erzeugt wird, der in eine Wasservorlage mün-
det. Die letztgenannte Strömungskonfiguration, die bei einer hohen Reynoldszahl
auftritt, ist durch eine strahlinduzierte Sekundärbewegung gekennzeichnet. Darüber
hinaus werden Modellformulierungen zur Beschreibung der blaseninduzierten Tur-
bulenz (Bubble-Induced-Turbulence, BIT), einschließlich des kürzlich von Ma et al.,
2020 vorgeschlagenen Modells, zum ersten Mal als Teil des vollständigen Berech-
nungsmodells getestet, das in einem skalenauflösenden Modus arbeitet.
Zusätzlich zu der allgemeinen Ergebnisinterpretation, die die Entwicklung glob-

aler Eigenschaften und individueller Profile verschiedener Variablen zeigt, die die zu-
grunde liegenden Strömungs- und Wärmefelder sowie die Turbulenzgrößen charak-
terisieren, wird in der gesamten Arbeit die Proper-Orthogonal-Decomposition (POD)
verwendet, um kohärente Strömungsmerkmale zu analysieren und zu extrahieren,
um die dominierenden Strömungsmechanismen zu identifizieren.
Alle Simulationsergebnisse zeigen ein hohes Maß an Genauigkeit im Vergleich

mit den verfügbaren experimentellen- oder anderweitig ermittelten numerischen
Referenzdaten. Sowohl die statistischen Eigenschaften der Strömung als auch
ihr dynamisches Verhalten werden durch das Modell qualitativ und quantitativ
korrekt erfasst, wobei die erforderliche räumliche und zeitliche Auflösung deutlich
reduziert wird. Bei den Berechnungen der zweiphasigen Blasensäulen wird die
Qualität der in früheren Studien gewonnenen Ergebnisse wiedergegeben, aber die
Robustheit und Stabilität der Berechnungen wurden deutlich verbessert. Bestimmte
Schwachstellen des Modells wurden identifiziert, und es wurden Hinweise für
künftige Verbesserungen vorgeschlagen und in der Schlussfolgerung vorgestellt.
Auf diese Weise erhält man ein zuverlässiges Berechnungsmodell, das in der Lage
ist, eine Vielzahl von numerisch anspruchsvollen Strömungsphänomenen genau
vorherzusagen.
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1. Introduction and motivation

Methods of Computational Fluid Dynamics (CFD), representing a tool for calculating
the numerical solution to the system of governing fluid flow equations, have been
used for more that 70 years as an aid in the engineering and design of flow systems,
according to Richardson and Lynch (2007). Despite the enormous experience, the
accurate reproduction of flow processes as encountered in industrial plants remains
an open area of research and optimization. Apart from the availability of computing
power and the maturity of the numerical method used, the broad spectrum of
flow phenomena represents the greatest challenge in the application of CFD. These
are notably: high level of turbulence, complex flow topologies (secondary flows,
anisotropy-related mechanisms, recirculation zones etc.), presence of one or more
phases in the flow domain, non-isothermal conditions (heat transfer or/and phase
change), and chemical reactions to name just a few. Over the years, a variety of
modeling approaches have been developed to simulate either the single phenomenon
or the chosen combination of the previously mentioned phenomena, with each
approach having its advantages and disadvantages.
Accordingly, the prime motivation for this work is to numerically integrate and

validate the predictive performance of different modeling strategies for fluid flow
simulation and analysis relevant to the field of thermotechnical systems. These
strategies could eventually be combined into a single computational framework
to provide a modular tool that can be used flexibly to solve a wide range of flow
problems. In order to achieve the most possible universality and flexibility mentioned
above, several key issues for the application of CFD in the field of industrial flows
need to be addressed.
The first open problem is related to the usage of the appropriate turbulence

model, which should be capable to accurately predict large variety of the complex
turbulent flow phenomena. As outlined in Chapter 3, themodel adopted for this work
represents the novel, eddy-resolving (ER) RANS model by Maduta (2013), which is
capable to resolve the turbulent spectrum to an appropriate extent, while modeling
the residual turbulence with the adequately sensitized full second-moment closure
(SMC). Further discussion on the advantages of SMC in combination with spatial
resolution in terms of implicitly incorporated mesh-related parameters will follow
in Chapter 3. So far, Maduta’s model has been successfully used over the variety
of flow configurations occurring at moderate Reynolds numbers Re (e.g. Jakirlić
and Maduta (2015) or Maduta and Jakirlić (2016)), while keeping the necessary
computational resources below those, which are required by correspondingly well-
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1. Introduction and motivation

resolved LES methodology. Based on this initial success, the question discussed
in this thesis is whether the demonstrated accuracy can be successfully (and at
what costs) extrapolated to the flows with industrially relevant, high Re number
characteristics and complex flow conditions. Additionally, interaction of the model
equations, formulated in a grid spacing-free manner, with the grid resolution applied
could not be adequately understood so far, due to its implicit influence on the flow
topology. Although the problem of the model’s inherent spectral resolution was
analyzed in certain detail in Köhler et al. (2018), no definite answer to the precise
model’s correlation with the mesh resolution limit could be found. This thesis aims
at adequately closing this knowledge gap. As from the point of other flow fields like
temperature, concentration etc., the treatment of their unresolved fluxes and their
influence on the final result still remains the topic of open discussion.
Second open problem, discussed in this thesis, is related to the integration of

the turbulence model with the strategies for simulating multiphase flow regimes,
commonly encountered in industrial flow systems. Rationale behind the modeling
framework in multiphase flows depends mainly on the assumptions made by the
model of turbulence. This is dominantly reflected in the choice of smallest scale
(detail of the interfacial surface, bubble/droplet size etc.) that could be resolved
by the model. On the account of that, specific classes of flows need to be sort for
the model validation, with highly turbulent, dispersed bubbly flows being selected
for this work. Previously, Ullrich (2017) aimed at integrating the above-mentioned
Maduta’s ER-SMC model with the Two-fluid modeling (TFM) framework for several
cases of pipe flows. One of the main obstacles was the predominantly unstable
computational methods, which often made it impossible to obtain results in complex
geometries. Additionally, the conflicting assumptions underlying the turbulence
model and the TFM resulted in multiple scattering artifacts in the solution. In-depth
discussion on the topic will follow in Chapter 2. This motivates the integration of
an alternative, Euler-Lagrange (EL) two-phase flow model with the presently used
model of turbulence, in quest for obtaining and testing a more stable conjuncture
of two modeling strategies. State of the art in modeling of turbulent dispersed
bubbly flows is reviewed in high detail in Chapters 2 and 8. Related to their
multiphase nature, thermotechnical flow systems may often be characterized by the
presence of the free-surface (domain-scale separation between the phases), in which
the structures created by the anisotropy of the flow often fall beyond the closure
capabilities of conventional RANS models, requiring an LES-like approach, which is
often too expensive for the industrial use. Behavior of the eddy-sensitized turbulence
models remains poorly tested under such conditions as well, motivating the analysis
in this thesis. Lastly, partial resolution of turbulence spectrum in two phase flows
opens the problems of energy transfer between the dispersed phase and the carrier
phase, at the sub-grid (modeled) scale of the flow. This will be referred to as to
the Bubble-Induced-Turbulence (BIT), which still remains the area of systematic
research, and its assumptions need to be further addressed in combination with
eddy-resolving models, as per Dhotre et al. (2013).

2



1.1. Objectives and outline of this thesis

1.1. Objectives and outline of this thesis

As discussed in the previous section, this thesis aims at integrating the computa-
tionally optimized simulation framework for handling the industrially relevant flow
problems in thermal engineering installations. Here, to describe the dynamics of the
residual unresolved turbulence, an eddy-sensitized RANS model, based on the full
second-moment closure (introduced under the acronym IIS-RSM throughout the
work) is tested on a set of experimentally studied flow configurations that closely
reflect some of the relevant components of the thermotechnical piping systems.
In addition to extending the application of the model to flow configurations with
boundary conditions beyond the range of those used for its original calibration and
development, this work will also highlight its advantages and weaknesses. For the
purpose of modeling the heat-transfer in terms of sub-grid fluxes, two commonly
used approaches, Simplified-Gradient-Hypothesis (SGDH) and Generalized-Gradient-
Hypothesis (GGDH) will be outlined in Chapter 2 and tested in Chapter 6.
In addition, the presently adopted eddy-resolving, second-moment closure model

is for the first time (to the authors knowledge) integrated into the Euler-Lagrange
(EL) simulation framework for modeling dispersed bubbly flow regimes. The inten-
tion is to increase the robustness of the model in the flow cases where the bubble-size
corresponds closely to the meso-scale, i.e. in the case where the mesh size and the
bubble size are comparable. At the same time, problems related to the stability
of the second-moment closure integrated into Euler-Euler methodology are ade-
quately addressed. Furthermore, the performance of two models for Bubble-Induced-
Turbulence (BIT) is assessed within the EL-IIS-RSM eddy-resolving framework. As
a third objective, the coupling of the IIS-RSM in conjunction with the free-surface
modeling considerations is introduced. The aim behind it is testing whether the
reduced meshing resolution required by the IIS-RSM may adequately predict the
complex secondary flow events, which stem from the turbulence anisotropy. In-depth
discussion about the state of the art in hybridisation of eddy-resolving strategies
and modeling assumptions for multiphase flow follows in Chapter 2.

For performing the simulations, an open-source C++ library OpenFOAM ®,
(version v2112) offering a set of finite-volume (FV) solvers that operate on arbi-
trary shaped unstructured meshes, is used throughout this work. Programmatic
implementation of all the models outlined in this thesis was performed within the
framework of the present thesis. Numerical rationale behind the finite-volume-
method (FVM), as well as theoretical considerations behind the algorithms for the
solution of pressure-velocity coupled problems is outlined in more detail in Chapter
2. For the extraction of coherent flow patterns, Proper-Orthogonal-Decomposition
(POD) is tested as an integral part of the analysis framework for thermotechnical pip-
ing systems. Over the recent years, POD technique has gained substantial popularity
as a state of the art tool for isolating most energetic physical mechanisms (Lu et al.

3



1. Introduction and motivation

(2019)), thus giving a valuable insight into the flow dynamics. The implementation
of the POD procedure in the open source Python code also represents the activity
carried out in the context of the present work.
Based on the above introduced objectives, the thesis is organized as follows:
In Chapter 2 the modeling background necessary for describing the numerical

solution of single, but also dispersed two-phase flows is presented. Next to the
derivation of evolution equations for individual flow variables, the state of the art in
different modeling strategies for two-phase flows is discussed along with advantages
and disadvantages of various approaches. At the end, modeling rationale for their
usage in this thesis is discussed.
In Chapter 3, the problems of turbulence modeling in single and two-phase flows

is discussed. Derivation, evolution and mathematical analysis of the IIS-RSM is
presented in detail, with initial strengths and weaknesses outlined. Additionally,
two models handling the bubble-induced-turbulence are outlined; the models are to
be used for in Chapters 8 and 9.
In Chapter 4, post-processing techniques for the analysis of eddy-resolving tur-

bulence models are discussed. Next to the visualisation of turbulence anisotropy
using the barycentric contour maps, identification of dynamic coherent structures in
the flow field by the means of Proper-Orthogonal-Decomposition (POD) is outlined,
with core advantages and disadvantages discussed and demonstrated. In this way,
a greater insight is given into the evolution of coherent flow structures, which are
usually obscured by the random turbulent pulsations.
In Chapter 5, the performance of IIS-RSM is systematically tested over a wide

range of Reynolds numbers, by means of computing the fully-developed pipe flow.
Accuracy in predicting the first- and second-order statistics, as well as the behaviour
of the model in terms of the spectral resolution is assessed. This study provides a
thorough analysis on the optimal mesh metrics and the creation of the precursor
data-base for use in Chapters 6 and 7.
In Chapter 6, the performance of IIS-RSM is tested in two cases involving complex

thermal mixing of two fluid streams in a T-Junction configuration characterized
by different flow topologies originating from different flow rate rations. Here,
both the statistical properties of the flow, as well as its dynamical response play
an important role in the T-Junction design. The model is tested at the level of
maximal Reynolds number, with aims of showing that the accuracy in solution can
be achieved with the substantially reduced grid cell number and diminished mesh-
topology dependence, in comparison with concurring eddy-resolving strategies.
Identification of correlated flow structures in the wake of the mixing zone will be
investigated in the post-processing phase using POD.
In Chapter 7, another industrially relevant case, involving a T-Junction with an

upstream elbow will be reproduced by applying the IIS-RSM. Correct capture of
switching dynamics, involving a pair of curvature-induced secondary vortices is
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assessed, along with its influence on the mixing properties in the outlet region of
the T-Junction. Possible parasitic influences of precursor simulations are analyzed
using the POD method.
In Chapter 8, the IIS-RSM is tested in conjunction with Euler-Lagrange (EL)

framework for simulating the buoyancy driven, dispersed gas-liquid flows in bubble
columns. Additionally, two bubble-induced-turbulence (BIT) models are tested. It is
demonstrated how different modeling frameworks interact in terms of predicting
the statistical two-phase flow quantities and the turbulence-resolving properties of
the model. Certain limitations of IIS-RSM in terms of reproducing the fluctuating
flow field are addressed based on the calculation of free bubble jets.
In Chapter 9, the predictive performance of IIS-RSM is tested by computing a

free-surface flow in an open channel with a submerged bubble jet in the crossflow,
where the computationally determined flow topology is largely influenced by the
correct prediction of turbulence anisotropy. The exact boundary conditions that
apply to the modeled turbulence at the free surface are derived. Finally, in this
Chapter most of the modeling work described in this thesis is performed, where the
effect of almost all flow phenomena presented in the previous chapters are to be
simulated in parallel.
The thesis concludes with Chapter 10, which outlines the conclusions drawn

from the research conducted and provides directions for improvement and future
research efforts.
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2. Theoretical foundations

In this Chapter, some base postulates and equations from the field of computational
fluid dynamics (CFD) will be introduced. Next to the governing laws for the single-
phase flow problems, strategies for simulating the dispersed, two-phase bubbly flows
will be addressed as well. Lastly, certain aspects related to the numerical solution
of the system of governing equations will be introduced, within the framework of
Finite-Volume-Method (FVM) theory.

2.1. Basic equations of fluid dynamics
2.1.0.1. Material derivative and Reynolds transport theorem

When tackling with flow problems, large number of individual fluid parcels repre-
sent a challenging task when formulating basic equations involving their motion.
Although the Lagrangian approach (in which the observer is fixated on the individ-
ual parcel) will be used in this Chapter for simulating two-phase flow problematic,
governing equations of fluid dynamics are usually derived in the Eulerian frame of
reference, where the observer is fixed to a coordinate system. Let ϕ be any conserved
property of the flow. Then its dependence of spatial and temporal coordinates is
expressed as:

ϕ = ϕ(xk, t) (2.1)

with k = 1, 2, 3 for each of Cartesian coordinates. Therefore, any evolution in ϕ can
be expanded around the point (xk, t) using the Taylor series as:

ϕ(xk + ∆xk, t+ ∆t) = ϕ(xk, t)+

+ ∂ϕ

∂t
∆t+ 1

2
∂2ϕ

∂t2
∆t2 + ...

+ ∂ϕ

∂xk
∆xk + 1

2
∂2ϕ

∂x2
k

∆x2
k + ...

(2.2)

Taking the net change in ϕ, and dividing by ∆t, one gets in the limit case:

lim
∆xk,∆t→0

ϕ(xk + ∆xk, t+ ∆t) − ϕ(xk, t)
∆t = Dϕ

Dt
= ∂ϕ

∂t
+ ∂ϕ

∂xk
Uk (2.3)
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2. Theoretical foundations

Here, in the limit case, finite differences were transformed in to differentials. Ad-
ditionally, higher order terms in the Taylor expansion 2.2 have been neglected.
Relation 2.3 is also known as a material derivative, and denotes the net change
of ϕ in the Eulerian reference frame. Taking the change is spatial shift ∆xk with
respect to time, velocity vector Uk is obtained in the limit case. Here, a so-called
non-conservative form of the material derivative is given:

Dϕ

Dt
= ∂ϕ

∂t
+ U⃗ · ∇(ϕ) (2.4)

Let f be the density of ϕ, defined as:

ϕ =
ˆ

V

fdV (2.5)

where V is an arbitrary shaped material volume. Therefore, material derivative of ϕ
can be extended into:

Dϕ

Dt
= D

Dt

ˆ
V

fdV (2.6)

After substituting the order of integration and derivation, and by applying the
derivation on fdV , we get:

Dϕ

Dt
=
ˆ

V

[︂Df
Dt

+ f
D(dV )
Dt

1
dV

]︂
dV (2.7)

Following a detailed theoretical discussion of Gauss-Ostrogradski Theorem (see
Crnojević (2014)), one can prove that for material volume:

D(dV )
Dt

1
dV

= ∇ · U⃗ (2.8)

Substitution of previous equation into the 2.7 yields:

Dϕ

Dt
=
ˆ

V

[︂Df
Dt

+ f∇ · U⃗
]︂
dV (2.9)

With the respect to the definition of material derivative 2.4 and by compressing the
terms, we get:

Dϕ

Dt
=
ˆ

V

[︂∂f
∂t

+ ∇ · (U⃗f)
]︂
dV (2.10)

Equation 2.10 enables us to express a material derivative in a so-called conservative,
which will be of immense importance in following sections.
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2.1.1. Continuity equation
Let us observe an arbitrary shaped material volume V , in which total mass m is
contained. By using the definition of density ρ, one can write:

m =
ˆ

V

ρdV (2.11)

Mass-conservation postulate states that the net-change of m in the material volume
can only come from the presence of internal mass sources S. In all other cases, mass
is constant. In the integral form, this reads:

Dm

Dt
=
ˆ

V

SdV (2.12)

By using the conservative form of material derivative 2.10, one obtains:

Dm

Dt
=
ˆ

V

[︂∂ρ
∂t

+ ∇ · (ρU⃗)
]︂
dV =

ˆ
V

SdV (2.13)

or in the local form, previous equation reads:

∂ρ

∂t
+ ∇ · (ρU⃗) = S (2.14)

Relation 2.14 represents a general form of the continuity equation. Very often, mass
sources don’t exist, so the equation 2.14 takes the form:

∂ρ

∂t
+ ∇ · (ρU⃗) = 0 (2.15)

Finally, if the changes of density can be neglected, i.e. ρ = const. (incompressible
flow), equation 2.14 takes a so called divergence-free (solenoidal) form:

∇ · U⃗ = 0 (2.16)
or in the indexed notation:

∂Ui

∂xi
= 0 (2.17)

2.1.2. Momentum equation
Total momentum contained within the material volume can be expressed as:

M⃗ =
ˆ

V

ρU⃗dV (2.18)

where ρU⃗ can be understood as a momentum density. Newton’s second law states
that the net change of momentum inside the material volume is equal to the sum of
all forces (surface and volumetric forces) acting upon it:
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DM⃗

Dt
= F⃗A + F⃗V (2.19)

Forces acting on the surface of material volume can be expressed as:

F⃗A =
ˆ

A

σ̄̄ · n⃗dA (2.20)

where σ̄̄ is the (second-order) tensor of surface forces, and A is the surface of the
material volume, with the surface normal unit-vector n⃗. Volumetric (body) forces
may be expressed using their specific acceleration f⃗ :

F⃗V =
ˆ

V

ρf⃗dV (2.21)

By using the Gaussian rule for surface integrals and combining the conservative
form of material derivative for M⃗ (2.10) with (2.20 - 2.21, one gets in the local
form:

∂

∂t

(︂
ρU⃗
)︂

+ ∇ ·
(︂
ρU⃗U⃗

)︂
= ρf⃗ + ∇ · σ̄̄ (2.22)

In general, effect of surface forces can be decomposed in the part affecting the
volume of the fluid parcel (compression/expansion) and part affecting its shape
(deformation). Effects of compression/expansion will originate from the changes in
static pressure p, defined as:

p = −1
3 tr
(︂
σ̄̄
)︂

(2.23)

Change of shape of the material volume is sublimed in the shear-stress tensor τ̄̄ ,
defined as:

σ̄̄ = −p · I + τ̄̄ (2.24)

where I is the unit tensor. By combining equations 2.22 to 2.24, we arrive at the
so-called Navier form of the momentum equation:

∂

∂t
ρU⃗ + ∇ · (ρU⃗U⃗) = ρf⃗ − ∇p+ ∇ · τ̄̄ (2.25)

If the fluid exhibits the linear relation between the stress and strain (as will all the
fluids used in this work), a so-called Stokes-closure is provided for the shear-stress
term in the form:

τ̄̄ = 2µ
[︂1

2(∇U⃗ + ∇U⃗
T

) − 1
3∇ · U⃗

]︂
(2.26)

where µ is the dynamic viscosity coefficient, which may either be a scalar, or a
tensor (in case of anisotropic fluids, which are not considered in this work). Finally,
general conservative form of the momentum equation is obtained as:

10



2.1. Basic equations of fluid dynamics

∂

∂t
ρU⃗ + ∇ · (ρU⃗U⃗) = ρf⃗ − ∇p+ ∇ ·

(︄
2µ
[︂1

2(∇U⃗ + ∇U⃗
T

) − 1
3∇ · U⃗

]︂)︄
(2.27)

In the index notation, previous equation reads:

ρ∂Ui

∂t
+ ∂

∂xk
(ρUiUk) = ρfi − ∂p

∂xi
+ 2µSd

ij (2.28)

where Sd
ij is the deviatoric part of the strain tensor:

Sd
ij = 1

2

(︂∂Ui

∂xj
+ ∂Uj

∂xi

)︂
− 1

3
∂Uk

∂xk
(2.29)

If the flow is incompressible, insertion of 2.16 into 2.27 yields:

∂U⃗

∂t
+ ∇ ·

(︂
U⃗ U⃗

)︂
= f⃗ − 1

ρ
∇p+ ν∇2U⃗ (2.30)

or in the indexed notation:

∂Ui

∂t
+ ∂

∂xk
(UiUk) = fi + 1

ρ

∂p

∂xi
+ ∂

∂xk

(︂
ν
∂Ui

∂xk

)︂
(2.31)

which is a general form of the momentum equation applied in this thesis. Due to
the incompressible nature of the flow, used numerical solver divides the pressure
variable in advance with the density p/ρ, hence creating a co-called kinematic-
pressure, which will be of importance while interpreting results in Chapters 5 to
9. Analogously, ν denotes the value of kinematic viscosity. System of equations
completely describing the dynamics of incompressible flows with constant fluid
properties, involves the continuity equation 2.16 and the momentum equation 2.31,
and is named Navier-Stokes (NS) equations.

2.1.3. Energy equation
According to the first law of thermodynamics, one can state that the change of total
energyE within the material volume is due to the rate of work (performed by the vol-
umetric and surface forces), as well as due to the thermal energy, created/destroyed,
or transported along the boundaries of the material volume:

DE

Dt
= Q̇V + Q̇A + ẆV + ẆA (2.32)

The individual terms are modeled as:

E =
ˆ

V

edV =
ˆ

V

(︂
i+ 1

2 U⃗ · U⃗
)︂
dV (2.33)
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2. Theoretical foundations

where e is the sum of the internal energy i, and the kinetic energy K. Work of the
body forces is obtained as

ẆV =
ˆ

V

f⃗ · U⃗dV (2.34)

and the work of surface forces as:

ẆA =
ˆ

A

(︂
− pĪ̄ + τ̄̄

)︂
· U⃗dA =

ˆ
V

(︄
− ∇ ·

(︂
pU⃗
)︂

+ ∇ ·
(︂
τ̄̄ · U⃗

)︂)︄
dV (2.35)

Finally, heat-transfer through the boundary of the material volume is calculated as:

Qs
̇ =

ˆ
A

q⃗An⃗dA =
ˆ

V

∇ · q⃗AdV (2.36)

where q⃗A is the specific heat flux. By combining all the terms, one arrives at the
transport equation for the total energy in the index notation:

∂e

∂t
+ ∂

∂xi
(Uie) = Uifi − ∂

∂xi
(Uip) + ∂

∂xi
(τijUj) + ∂qi

∂xi
(2.37)

When operating with non-isothermal flows, as will be presented in Chapters 6
and 7, all flow-related thermal effects are governed by the equation 2.37. Choice of
variable e is not optimal since it combines the influences of internal energy, as well
as the kinetic energy. Kinetic energy is therefore first eliminated from the system.
First, transport equation for K is derived by multiplying the momentum-transport
equation 2.28 with Ui, and dividing the result by 2, thus obtaining:

∂K

∂t
+ ∂

∂xk
(UiK) = UiUk

∂Ui

∂xk
+fiUi + ∂p

∂xi
Ui + ∂

∂xk

(︄
ν
∂K

∂xk

)︄
−ν

∂Ui

∂xk

∂Ui

∂xk⏞ ⏟⏟ ⏞
ε

(2.38)

Note that the last term in the equation 2.38 represents a sink-term, denoting
the transfer of mechanical energy into the thermal energy by the action of viscous
effects. It is further denoted as the viscous dissipation - ε.
Ultimately, equation 2.38 is subtracted from 2.37, obtaining the transport equation

for the internal energy i. However, internal energy is for this case also a non-favorable
variable and needs to be transformed directly into the temperature, which can be
measured. This is done firstly by transforming the internal energy into the enthalpy
variable h = i+p/ρ, and then expressing the temperature as the function of enthalpy.
After a lengthy derivation which will not be repeated here (for details, see Crnojević
(2014), or Darwish and Moukalled (2021)), one obtains the temperature transport
equation in the form:

∂T

∂t
+ ∂

∂xk
(UkT ) = ∂

∂xk

(︂
α
∂T

∂xk

)︂
(2.39)
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2.2. Basic considerations of the finite volume theory

with α being the temperature diffusivity, expressed as:

α = k

ρcp
(2.40)

where k is the thermal conductivity of the fluid, ρ is its density, and cp is the
constant-pressure heat capacity.

2.2. Basic considerations of the finite volume theory

System of Navier-Stokes equations (2.16, 2.31), along with the temperature trans-
port equation (2.39) represents a system of non-linear partial differential equations,
whose analytical solutions exist only in small set of highly simplified cases. In all
other cases, relevant to the engineering practice, analytical solutions are excluded,
and hence, appropriate numerical procedures must be used for the solution obtain-
ment. Choice of the numerical method for the solution is governed by multitude of
parameters, such as: experience of the author, availability of software and simplicity
of procedure implementation, governing models of turbulence and many more.
In this thesis, finite-volume-method (FVM) will be applied. As a main advantage,

FVM is inherently conservative with respect to the governing equations, and may
operate with arbitrary shaped mesh cells (tetrahedral, hexahedral, polyhedral, etc.),
which is of highest benefit when dealing with complex geometries in the industrial
practice. Additionally, treatment and implementation of differential operators
and various numerical models is straightforward (in physical space, without the
transformation of coordinates etc.), which substantially eases the programming of
the scientific software. FVM hence remains the method of choice for the majority of
available CFD codes and frameworks. One of the key deficiencies of finite volume
method is its relatively low order of accuracy (usually second-order accurate) in the
operator reconstruction. This dictates that for the detailed resolution of smallest
flow scales, appropriately large number of cells need to be used, which hinders
the application for scale-resolving simulations on large Re. However, FVM is by
far the most matured method in the computational fluid dynamics arsenal, and
is widely used in a number of commercially and openly available codes. In this
section, some of the principal strategies of finite volume method, as described
in any number of reference textbooks (e.g. Ferziger et al. (2012), Versteeg and
Malalasekera (2007)) will be introduced, with special attention to those specific
integration and reconstruction procedures, used in this thesis. For all simulation
cases outlined further on, an open-source, C++ library OpenFOAM® (OpenFOAM:
User Guide v2112 (2022)) will be used. For an interested reader, in-depth numerical
analysis of FVM, accompanied by the specifics of programming implementation of
FVM into the code is published in high detail in Darwish and Moukalled (2021).
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Similarly to the finite-difference-method (FDM), values of any flow variable are
stored at discrete points in space and time. Principal strategy behind the FVM is
the division of the computational domain into the finite number of non-overlapping
cells of as shown in Figure 2.1, so that the total volume of the domain is expressed
as:

V =
Ncells∑︂

i=1
Vi (2.41)

where Vi is the volume of the individual cell. For each cell, its center is found at
point P . Values of the discretized, generic flow variable ϕi are stored at cell-centres,
associated with the spatial coordinate x⃗P . Additionally, each cell is defined by the
chosen number of polygonal faces Nfaces that made up its outer area Ai:

Ai =
Nfaces∑︂

i=j

Af (2.42)

where Af is the area of the selected face. For each of the cell faces, unit vector
normal n⃗f is defined. Each face is associated with two adjacent points: the owner-
P and the neighbour point N .

Figure 2.1.: Two dimensional representation of the generic, arbitrary shaped FVM mesh,
with characteristic geometrical parameters of the cell.

Transport equations governing the evolution of flow variables presented in this,
and the following Chapter can all be reduced to the generic equation:

∂ϕ

∂t
= −∇ · (U⃗ϕ) + ∇ · (Γ∇ϕ) + S(ϕ) (2.43)
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2.2. Basic considerations of the finite volume theory

where ϕ is the transported variable, Γ its diffusivity, and S its source/sink within
the cell. Previous equation can also be represented in a form:

∂ϕ

∂t
= NS(ϕ) (2.44)

where NS is the non-linear Navier-Stokes operator, encompassing the right-hand-
side of the equation 2.43. Integration of equation 2.43 hence yields:

∂

∂t

ˆ
Vi

ϕdV −
ˆ

Vi

NS(ϕ)dV = 0 (2.45)

Since the information of ϕ is not continuously available, adequate approximations
of integral and differential operators need to be addressed. Discretisation of the
right-hand side will follow in short, and for now, following simplification will be
engaged: ˆ

Vi

NS(ϕ)dV = INS(ϕ) (2.46)

where INS is the value of cell-integrated NS operator. As already said, instead
of the continuous representation which will follow in the analytical solution, FVM
discretisation is based on finding the values of ϕ in discrete time and space points.
Hence, the complete problematic of FVM is based on finding the appropriate ap-
proximations for the temporal and spatial derivatives.

2.2.1. Reconstruction of spatial derivatives
Spatial operator INS(ϕ) sublimes the cell-integrated influences of convection, dif-
fusion and the presence of source terms.

INS = −
ˆ

V

∇ · (U⃗ϕ)dV⏞ ⏟⏟ ⏞
Convection

+
ˆ

V

∇ · (Γ∇ϕ)dV⏞ ⏟⏟ ⏞
Diffusion

+
ˆ

V

SdV⏞ ⏟⏟ ⏞
Source

(2.47)

Accuracy of reconstruction for each of the mentioned terms will directly influence
the physical mechanisms associated with the respective term. Since the flow phe-
nomena encountered in this work tackle the problematic of turbulence, which is
the class of flows especially influenced by the convection mechanisms, strategies for
the reconstruction of convection term will be treated in more detail, whereas the
diffusion- and source-term influence will be discussed in a general manner.
Source term approximation is usually performed using the midpoint rule:

ˆ
V

S(ϕ)dV ≈ Si(ϕi)Vi (2.48)

Usually, source-term linearisation is used, which decomposes it into:

Si = Sp,iϕi + Su,i (2.49)
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where Sp, i and Su, i are the implicit and explicit portions of the source term.
Laplacian-term approximation which governs the diffusion mechanism is first
cell-integrated using the Gaussian rule like:

ˆ
V

∇ · (Γ∇ϕ)dV =
ˆ

A

Γ∇ϕ · n⃗dA =
Nfaces∑︂

j=1

ˆ
Af

Γ∇ϕ · nf⃗dA (2.50)

Hence, in order to calculate the Laplacian term, integration of the gradient of ϕ
needs to be performed on every cell face. Again, by using the midpoint rule for the
approximation of integrals, previous equation reads:

Nfaces∑︂
j=1

ˆ
Af

Γ∇ϕ · nf⃗dA ≈
Nfaces∑︂

j=1
(Γ∇ϕ · n⃗)fAf (2.51)

where index f denotes that the value of diffusive fluxes needs to be calculated at
the geometric center of each face. As a next step, gradient at the face center needs
to be calculated. Since the value of ϕ at the face-centres is not readily available,
appropriate interpolation is performed, whereas the stencil is made around the
cells, sharing the face (owner + neighbour). The exact procedure will not be
highlighted here since the interpolation stencil may pose to be highly complex
in case of the non-orthogonal, skewed meshes which are usually found in the
engineering practice. Concerning the up-to-date description of interpolation stencils
for this case, interested reader is referred to Mirkov et al. (2015). Suffice to say that
for the orthogonal grid, face gradient value may be calculated using the second-order
accurate finite difference stencil as:

∇ϕ ≈ ϕP − ϕN

x⃗P − x⃗N
(2.52)

where x⃗P and x⃗N are the position vectors of the points P and N , as seen in Figure
2.2.
Gradient term approximation is done similarly to the Laplacian term, by taking
the sum of surface integrals as:

ˆ
Vi

∇ϕdV =
ˆ

Ai

ϕn⃗dA =
Nfaces∑︂

j=1
(ϕn⃗f )dA ≈

Nfaces∑︂
j=1

(ϕn⃗f )fAf (2.53)

where the value of ϕ at the face center needs to be appropriately interpolated.

2.2.1.1. Interpolation schemes for the convective term

Due to the tight interconnection between the convective term in the momentum
equation, and the quality of turbulence resolution, schemes for the reconstruction
of the convective part will be discussed in greater detail. Repeating the integration
step in the previous subsection, convective term is without further redo reduced to:
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Figure 2.2.: Reconstruction of face-center values, based on the owner-neighbour stencil.
Mesh is non-skewed.

ˆ
Vi

∇ · (U⃗ϕ)dV =
ˆ

Ai

ϕ(U⃗ · n⃗)dA ≈
Nfaces∑︂

j=1
ϕfFf (2.54)

Here, the variable Ff denotes the volumetric flux at the face centre, made through
subliming Ff = Uf⃗ · n⃗fAf . Hence, in order to reconstruct the convective term, one
needs to approximate the value of the face fluxes, as well as the value of ϕ at face
centres. This is done through the usage of the adequately chosen interpolation
scheme.

Upwind differencing scheme (UDS) approximates the value of ϕ in dependence
of of the upstream neighbour point, as:

ϕf =
{︃
ϕP if Ff > 0
ϕN if Ff < 0 (2.55)

Hence, if the net volumetric flux is negative, it is assumed that the flow property
carried by ϕ is directly taken over from the neighbour cell. In contrast, it the flow is
advected from the cell, it takes the value from the owner node. An important asset
of the UDS scheme is its unconditional boundness, which doesn’t yield non-physical,
oscillatory solutions (Ferziger et al. (2012)). This scheme will therefore be used for
discretizing the divergence term in the temperature transport equation throughout
this thesis. However, on the account of its boundness, UDS is associated with large
diffusive error, and the low (first) order of accuracy, which is non-adequate for
the scale-resolving flows that will be presented in this thesis. However, since the
application of UDS scheme leads to the highly stable computation, it is usually
employed in ill-conditioned problems (exemplary for discretizing transport equation
for Reynolds stress tensor, outlined in the next Chapter).
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Central-differencing-scheme (CDS) is formally 1 second-order accurate scheme
where the face value of ϕ is calculated using the linear interpolation stencil of the
neighbour nodes as:

ϕf = ϕPλf + ϕN (1 − λf ) (2.56)

where λf is the face interpolation factor calculated as:

xf⃗ − xP⃗

xN⃗ − xP⃗
(2.57)

Next to its higher order of accuracy, dispersive nature of CDS scheme makes it
applicable for the usage in scale-resolving simulations. However, due to its disper-
sivity, solution is not guaranteed to fulfill the boundness criterion, and non-physical
oscillations may appear, provided that the whole numerical system is not sufficiently
diffusive.
In order to couple the boundness provided by the low-order (LO) UDS scheme,

as well as the accuracy of higher-order (HO) CDS scheme in an optimal way, a
so-called γ-blending is provided as:

ϕf = γϕHO
f + (1 − γ)ϕLO

f (2.58)

where γ is the appropriately selected limiter. List of the possible limiter combi-
nations is non-exhaustive and beyond the scope of this work. Interested reader is
referred to: Sweby (1984), Peric (1985) or Jasak (1996) for a more in-depth discus-
sion of blended schemes. Relevant for this thesis and to the fields of scale-resolving
simulations is:

filteredLinear3 scheme, which is an OpenFOAM®native scheme, developed pur-
posefully for use with scale-resolving flows (OpenFOAM: User Guide v2112 (2022)).
It aims at limiting the CDS scheme, i.e. locally applying the portion of UDS scheme
to the flow in order to eliminate the high-wave number oscillations, created as a
result of CDS dispersivity. For that purpose filteredLinear3 will always (unless stated
otherwise) be used for discretizing the divergence term in the momentum equation.
Limiter is calculated based on the nodal values of ϕ and∇ϕ at the face-neighbouring
nodes as:

1Second order accuracy is achieved only in case of orthogonal, non-skewed meshes. In other cases,
order of accuracy may be reduced due to the additional interpolation needed.
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γ = max(
min(

1 − Clim
[2d⃗ · (∇ϕ)N − (ϕN − ϕP )][2d⃗ · (∇ϕ)P − (ϕN − ϕP )]

[2d⃗ · (∇ϕ)N + 2d⃗ · (∇ϕ)P ]2

, 1)
, 0)

(2.59)
where Clim is the user-specified constant, and d⃗ is the vector connecting the nodes

P and N . Use of formulation 2.59 effectively compares the two sided gradients
at the face, in order to detect the checker-boarding (staggering) artefacts in the
solution, artificially decreasing γ, and hence providing a more UDS influence in
order to eliminate it. Value of Clim is non-unique and needs to be determined in
dependence of the case specifics. If not said otherwise, a value of Clim = 0.1 is
applied throughout this thesis.

2.2.2. Reconstruction of temporal derivatives
By applying the discretisation schemes presented in previous subsection, continuous
nonlinear spatial operator INS(ϕ) is approximated with its discrete form INS(ϕ),
subliming the divergence-, laplacian-, gradient-, and source term as INS(ϕ) ≈
INS(ϕi). Since ϕ is discretely defined not only in space, but in time as well,
problematic of the temporal propagation is based on finding ϕt

i, based on the initial
value: ϕt−+∆t

i
2, where ∆t is the time step size. First, a left-hand side volume

integral 2.45 is approximated again using the midpoint rule as:
∂

∂t

ˆ
Vi

ϕdV ≈ ∂ϕi

∂t
Vi (2.60)

By using the Taylor expansion around the temporal point t, one may derive
different stencils. Here, some of the most popular, second-order accurate schemes
available in OpenFOAM® for the simulation of scale resolving flows are presented:
Crank-Nicolson time scheme (CN) derived in Crank and Nicolson (1947) is a

second-order accurate, implicit time scheme, which when used with a constant time
step leads to:

∂ϕt
i

∂t
≈ ϕt

i − ϕt−2∆t
i

2∆t (2.61)

Hence, equation 2.45 is approximated by using the CN scheme in OpenFOAM®as:

ϕt
i − ϕt−2∆t

i

2∆t = INS(ϕt
i) (2.62)

2Or any number of time-steps into the past.
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CN scheme posesses a dominant dispersive error, which in turn may lead to the
spurious oscillations present in the solution. Therefore, it is used only when the
diffusivity of the system causes vanishing of resolved turbulence (exemplary at low
Re). If not stated otherwise, CN will not be used further on.

Backward differencing scheme (BDF) is another very popular scheme available
in OpenFOAM®, for the purposes of this work more adequate due to the lover
dispersivity with respect to time in comparison with the CN scheme. Time derivative
is approximated as

∂ϕt
i

∂t
≈ 3ϕt

i − 4ϕt−∆t
i + ϕt−2∆t

i

2∆t (2.63)

and equation 2.45, approximated by using the BDF scheme, reads:

3ϕt
i − 4ϕt−∆t

i + ϕt−2∆t
i

2∆t = INS(ϕt
i) (2.64)

BDF will be a standard scheme for temporal discretisation, used throughout this
thesis. Since both schemes are implicit, no limitation of the time-step size is needed,
as in the explicit schemes (exemplary Runge-Kutta of any order). Nonetheless,
limitation in time step size is introduced in order to match the spatial and temporal
resolution of the model, based on the value of Courant number. For each cell, value
of Courant number is calculated in dependence of time step∆t as, using the relation:

Co = ∆t
2Vi

Nfaces∑︂
j=1

|Fj | (2.65)

where Fj is the value of volumetric flux at face centers, as introduced in the previous
sub-section. Time step is limited using the criterion max(Co) < 1. Usually, value of
max(Co) = 0.6 is set throughout this work.

2.2.3. Solution of the coupled linear system of equations
By using the discretisation schemes for both space- and time derivatives, as presented
in previous subsections, initially nonlinear partial differential transport equation for
the flow variable ϕ is transformed (linearized) into the system of algebraic equations
with the form:

A · Φ = b (2.66)

whereΦ is the column vector which stores the information of ϕ at every cell center,A
is the square (and often sparse) systemmatrix, and b is the free vector, encompassing
any explicit correction of the discretized transport equation for ϕ. Within the class
of incompressible flows, which will be discussed in this work, two main questions
concerning the solution of discretized system of NS equations will be addressed.
First, what algorithm should be used to solve the individual linear equation, of type
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2.66. Second, what procedure should be used to solve the system of discretized NS
equations (including other equations, e.g. energy equation), taking into the account
that that the obtained solution must not only satisfy the momentum equation, but
the continuity equation as well. For the solution of the individual equation of the
form 2.66, OpenFOAM®is supplied with a wide variety of linear equation solvers,
including the Smooth Solvers (SS), Conjugate-Gradients-Solvers (CG), as well as
the Geometric-Algebraic-Multigrid solvers (GAMG), details of which will not be
repeated here. Interested reader is referred to the OpenFOAM: User Guide v2112
(2022) or Versteeg and Malalasekera (2007) for an in depth analysis.
As for the solution of the coupled system of discretized Navier-Stokes equation,

Pressure-Implicit algorithm with Splitting of Operators (PISO) by Issa (1986) will be
used. PISO represents an algorithm for simulating incompressible, transient flows.
For reasons explained further on, usage of PISO loop enforces the limitation of the
time-step ∆t as to ensure that max(Co) < 1. For the class of RANS turbulence
models (as introduced in the next Chapter), this is usually a computationally too
expensive limitation, since the number of individual time steps is substantially
higher than by using alternative pressure-velocity coupling algorithms (exemplary
(transient) SIMPLE algorithm, Patankar (1981)). Transient features of such flows
can be captured accurately by using much larger time-steps. However, for the flow
cases considered in this thesis, scale-resolving nature of the turbulence models is
already in need of matching spatial and temporal resolution, hence max(Co) < 1 is
already satisfied. That makes the usage of PISO loop adequate for this work. As a
first step in PISO loop, discretized momentum equation is expressed in a form:

M · U = −∇p + S (2.67)

where S can be any explicit velocity correction (like the particle interaction term,
presented in the next section). As a solution of equation 2.67, velocity field satisfying
the momentum equation (but not the continuity equation) is calculated. Therefore,
2.67 is referred to asmomentum predictor. In order to make a velocity field solenoidal
as well, correction is needed, which is done through the pressure-variable (note
that for incompressible flow, pressure only plays a continuity enforcing role). First,
left-hand side of 2.67 is decomposed as:

M · U − S = A · U − H (2.68)

where A = diag(M) is the matrix containing the diagonal entries ofM. H matrix
takes into account the influence of all neighbour cells onto the momentum, as well
as the influence of sources. By inserting the previous equation into 2.67, U can be
directly expressed as:

U = −A−1 · ∇p + A−1 · H (2.69)
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which should lead to the correct solution (that satisfies continuity and momen-
tum), provided that the H and p are calculated correctly. Therefore, equation 2.69
is referred to as momentum corrector. At this point, continuity is brought up to the
system. By taking the divergence of 2.69, and equating it with zero (as to ensure
continuity), one gets the Laplacian equation for pressure:

∇ ·
(︂

A−1 · ∇p
)︂

= ∇ ·
(︂

A−1 · H
)︂

(2.70)

By solving the equation 2.70, one obtains the corrected value of pressure, which
leads to the fulfillment of continuity equation. Equation 2.70 carries the name:
pressure corrector. By far, derived systems of equation form an identical set, used in
other pressure-velocity coupling algorithms. What differentiates them from PISO
are the individual steps taken. Note that for the velocity-correction step (2.69),
correct values of velocity are obtained if both values for H and ∇p are correctly
captured.
The principal idea behind the PISO loop is that, assuming that for the small time

steps (hence the limitation, max(Co) < 1), pressure-velocity coupling mirrored
through∇p carries more importance (Jasak (1996)) than the momentum correction.
Note that additionally, for small time steps, matrix M gets a more pronounced
diagonal dominance, providing a faster and more stable convergence, without any
under-relaxation. Therefore, momentum prediction is made only once, whereas the
multiple corrections of pressure and velocity are performed in a single time-step.
Algorithmic description of PISO loop is given in 1.

Algorithm 1 Description of PISO algorithm.
1: Time-step start, initial values for U and p taken from previous time-step.
2: Solve the momentum predictor 2.67, obtain intermediate solution for U.
3: Calculate matrices A and H.
4: Solve the pressure-correction equation 2.70, obtain the new value of p.
5: Solve the momentum-correction equation 2.69, obtain the new value of U.
6: Perform an inner loop over the steps 3 to 5, until convergence.
7: Solve discretized transport equation for other variables, e.g. temperature.
8: Update boundary conditions and proceed to the next time-step.
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2.3. Modeling of two-phase dispersed flows

Flow configurations encountered in the engineering practise are often characterised
by the presence of multiple phases, including the combinations of gaseous-, fluid-
and solid- phase. Presence of more than a single phase often makes the numerical
modeling of turbulent flows extremely challenging, since not only the adequate
tackling with turbulence modeling needs to be addressed (as presented in the next
Chapter), but also the physics of phase-interaction mechanisms (including the mass-,
momentum-, and energy transfer), which occur at their own set of length-scales
needs to be adequately captured.
Related to this work, gas-liquid two-phase systems will be discussed. Depending

on the characteristic scale of the flow, several regimes can be identified in the gas
liquid flows: Separated (segregated) flow regime, where the scale of the interface-
boundary is comparable with the dimension of the observed (computational) domain,
Dispersed flow regime, where the interface-boundary is characterised by the scale
much smaller than the characteristic dimension of the domain, and finally, any
intermediate regime combining the two. As the most complex combination, the
so-called Transient regime can be obtained. Here, the initially single-phase liquid
changes into the two-phase flow regime, featuring the number of intermediary
regimes, and then again to single phase flow, but of the gaseous phase (exemplary
in the evaporating systems). Based on the above, it is clear that by taking the ade-
quate strategy for numerical modeling, several modeling-, as well as computational
obstacles need to be overcome. For an in-depth overview of the hierarchy of the
currently employed methods, interested reader is referred to Sommerfeld (2017).

2.3.0.1. Interface capturing methods

As far as the modeling goes, among the simplest, and most universal methods
for simulationg the two-phase flows are the interface capturing methods, which
featured continuous improvement and evolution across the last half a century. These
are exemplary: Marker and Cell (Harlow and Welch (1965)), Volume of the
Fluid - VoF (Noh and Woodward (1976), Hirt and Nichols (1981)), Level-set
(Sussman et al. (1994)), as well as Front-tracking (Tryggvason et al. (2001))
methods. As the main advantage, interface- capturing techniques are able to to
reconstruct an arbitrary shaped boundary between two fluids, using the minimalist
modeling approach (exemplary, in the VoF approach, a single term capturing the
surface-tension influence is added to the momentum equation), which substantially
increases the robustness and general applicability of the model. For tracking the
front, advection equation for the phase indicator function χ is solved:

∂χ

∂t
+ ∇ · (U⃗χ) = 0 (2.71)
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where χ takes the value of 1 in the dispersed phase, and 0 for the carrier phase (or the
other way around). Although the certain challenges of the interface-reconstruction
may be posed by the numerics (e.g., problematic of interface compression, Okagaki
et al. (2021)), they can be dealt with by applying adequate numerical procedures,
and higher-order interpolation schemes. The simplicity of the model and robustness
of its use are regrettably paid for on the side of the computing resources, since
usually, (due to the low order of accuracy of FVM), a large number of cells is needed
to accurately resolve the interface. This means that for most of the industrially
relevant, dispersed flows, sole application of interface-capturing is beyond the
computational capability. Nontheless, these methods are readily combined with
the turbulence models already requiring the very fine mesh resolution (DNS/LES),
exemplary in the cases involving the breakup- and atomisation, e.g. Desjardins
et al. (2013), Abbas et al. (2021). Very often, hybridisation with other strategies,
exemplary with Lagrangian-Particle-Tracking (LPT) is used to cover a large number
of scales (Heinrich and Schwarze (2020)). For this thesis however, application
of interface capturing is not of interest since the exact nature of scale-resolving
turbulence model, presented in the following Chapter, enables the use of coarser
meshes which hinders the interface reconstruction. That will make the mesh used
in Chapters 8 and 9 at least an order of magnitude to coarse to track the front of
small dispersed bubbles.

2.3.0.2. Two-fluid (Euler-Euler) method

Very often, exact resolution involving the position and velocity, as well as the front-
tracking of every particle/droplet/bubble is of little consequence for the flow research.
Rather, an averaged description of phase evolution suffices for the study of multiphase
flows. Under the assumption that both the carrier, and the dispersed phase exhibit
the macroscopic behaviour of the continuum, evolution equations for both phases
can be derived within the Eulerian reference frame, hence giving the method the
name Euler-Euler (EE). Here, all the properties of the dispersed phase (velocity,
temperature etc.) are phase-averaged in order to obtain statistical properties of the
bubble swarm, inside of the cell. Exact interpretation of the averaging procedure
(temporal-, ensemble-, or volume averaging) is not too important, since the resulting
equations take the identical form. In the case of volume averaging, it is assumed
that the control volume (mesh cell) is larger than the particle size, but again much
smaller than the characteristic scale of the flow system, as to make the averaging
meaningful (Elghobashi and Abou-Arab (1983)). Volume-fraction of the individual
phase within the cell can be obtained as:

α = χ (2.72)

where the over-bar operator indicates the averaging procedure. Physical interpreta-
tion of α is straightforward, and represents either the fraction of the cell, occupied
by the bubbles, or the probability of bubble occurrence in the cell. In total, phase-
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averaged conservation equations need to be solved separately for each of the phases
in the flow, whereas on the account of averaging, information about the intefacial
phenomena is lost, and needs to be phenomenologically modeled through various
source terms in the respective equations. Adding to the stiffness of the system,
modeling of multiphase turbulence represents yet another matter since next to
the phase-averaging, each of the instantaneous equations needs to be additionally
subjected either to the filtering-, or RANS-based averaging (as will be shown in the
next Chapter). This produces additional unclosed terms with their own modeling
approximations. When tackling the turbulence problematic, either the turbulence
equations are solved for each phase separately (adding to the system stiffness, es-
pecially with highly complex turbulence models used), or the appropriate mixture
assumptions are used (Behzadi et al. (2004)).
If the solution of EE method is sought within the scale-resolving framework,

additional limitation is posed on the cell size, where the minimal cell-related scale
is proposed by Milelli et al. (2001). It was determined that for the optimal results,
minimal cell size ∆ must be at least 20% higher than the maximum bubble diameter
db (In contrast to the interface-capturing methods, where the upper bound on the
cell size is set). As for the momentum-based interaction, closure laws in the identical
form as with Euler-Lagrange framework are used, and will be introduced in the
following section.
The ultimate benefit of EE framework in conjuncture with scale-resolving compu-

tations is the greater universality in simulating different flow regimes (in comparison
with Euler-Lagrange approach), as well as the modest computation resources (espe-
cially in the case of dense dispersed flows), that are dictated more dominantly by
the model of turbulence. Although some numerical issues exist in the context of nu-
merical diffusion (Fraga et al. (2016)), they can be solved by using the higher-order
computational schemes.
Concerning the model of turbulence used in this thesis (IIS-RSM, introduced in

the next Chapter), scale-resolving simulations using the EE strategy have already
been performed in Ullrich et al. (2014) and Ullrich (2017), on flow configurations
involving the: two-phase developed flows in pipe systems, buoyancy driven flow in
bubble column, as well as the two-phase flow in a sudden expansion configuration.
Although the general high-accuracy and superiority of the model of turbulence was
demonstrated, several key issues were reported, which motivated the usage of Euler-
Lagrange framework further on. First, the overall stability of the model could not be
guaranteed due to the non-stable implementation of the EE model in OpenFOAM®,
as well as due to the inherently unstable nature of the turbulence model. In order
to achieve robust computations, various numerical remedies such as an increase in
scheme-diffusivity and smaller time-stepping were needed. Additionally, model of
turbulence showed extreme sensitivity to phase averaging, and turbulence properties
of the carrier phase needed to be mapped directly to the dispersed phase. Lastly,
due to the violation of Milelli criterion, scale-resolving nature of turbulence model
persistently tried to represent the averaged-out interfacial scales on the mesh, which
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posed the question of hybridisation of EE method with an appropriate interface
tracking strategy, like in Cerne et al. (2001). Concluding, usage of EE methodology
with the current scale-resolving turbulence model could not be proven robust for
the meso-scale bubbly flows, hence it was deemed unfit for usage in this thesis.

2.3.0.3. Euler-Lagrange methods

Euler-Lagrange (EL) frameworks employs the spatio-temporal evolution of the
continuous (carrier) phase equations in the Eulerian frame of reference, using the
equations of motion already derived in this Chapter for the single phase flow. As for
the secondary phase, it is assumed to take the dispersed form, which makes it optimal
to track within the Lagrangian frame of reference. Here, it is also assumed that
the dispersed phase accounts for the parcels smaller than the size of computational
cell, which again leads to the necessity for the cell-size limitation according to
Milelli et al. (2001). Since the bubble-scale interaction with the carrier fluid is
not captured, it will be reflected through the modulation of unresolved turbulence
scales. Problematic and modeling of this so-called bubble induced turbulence BIT is
addressed in the next Chapter. Hence, a spatio-temporal evolution of finite number
of computational parcels, taken as point-masses, are used to represent the secondary
phase. Here, a parcel is defined as a cluster of particles3, sharing the same properties.
EL framework is optimally matched with the resolution needs of the dispersed

gaseous flow cases outlined in this work. According to Dhotre et al. (2013) evolution
of each bubble can be calculated directly, without introducing the numerical problem-
atic associated with EE approach. Usage of the highly complex turbulence models
will prove to be substantially more robust for the EL approach, in comparison with
EE strategy, without the need for mapping assumptions, or numerical stabilisation of
the solution procedure. On the negative side, solution od EL problems may lead to
exhaustion of computational resources in cases involving large number of particles,
since the motion of each individual particle needs to be included. However, for the
flow cases outlined in this thesis, final number of bubbles is smaller, or comparable
with the mesh size, hence no additional computational burden is added to the
system.
Any property variations within the bubble (such as temperature, internal flow

dynamics etc.) are neglected, and a so-called 0-D model with constant and uniform
properties of gaseous phase is used. Additionally, no mass transfer between the
phases is considered, hence no mass (and momentum) sinks and sources will be
modeled. With that in mind, instantaneous position-x⃗b and velocity of the individual
parcel - U⃗ b can be determined by solving the following system of ordinary differential
equations (ODE)s:

dx⃗b

dt
= U⃗ b (2.73)

3In this context of this work, particle referrers to any point-mass, not strictly to solid particle.
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mb
dU⃗ b

dt
= F⃗ d + F⃗ l + F⃗ vm + F⃗ s + F⃗ g + F⃗ b (2.74)

Here, mb represents the mass of the computational parcel. Since the resources
available for this thesis allowed tracking of each individual bubble, terms parcels
and bubbles will be used interchangeably since each parcel will contain only one
bubble. On the right-hand-side, surface- and volumetric forces acting on the bubble
are noted. Their modeling still represents an open question for engineers due
the lack of modeling universality, as well as the uncertainty in the application,
leading to the large number of closures (Rusche (2003)). Since the scope of this
thesis dominantly focuses on turbulence-related effects and not on improving the
closure laws, modeling of bubble forces is performed in accordance with common
best practices, e.g: Delnoij et al. (1997), Mitrou et al. (2018). Rotation, as well
as the collision phenomena between the Lagrangian parcels are not taken into
account. Namely, although the volume fraction of bubbly flow cases presented in
the upcoming Chapters will exceed the four-way-coupling limit, as proposed by
Elghobashi (1994) (hence making it a dense suspension), collision, coalescence
and breakup of bubbles are intentionally left out. As will be seen in the reference
experimental cases presented in Chapters 8 and 9, a single class of bubble sizes
is used to describe the dynamics of the dispersed phase, without the need for
additional modeling. Lastly, no effect of turbulence dispersion is taken into account.
This has been justified with the fact that the dominant part of turbulent pulsations
can already be resolved with the eddy-resolving Reynolds-stress model (as will be
presented in the following Chapter), leaving a very small portion unresolved (as also
reported in Ullrich (2017)). With that in mind forces on the RHS of equation can
be interpreted as: drag-, lift-, virtual mass-, surface-, gravitational- and buoyancy
force.

Drag force acts collinearly with direction of the relative motion, and reacts to
changes in relative velocity between the carrier phase and the bubbles. It represents
one of the most important forces governing the interaction of phases as per Ishii
and Hibiki (2010). It is expressed as:

Fd = 1
2
d2

bπ

4 ρCd

⃓⃓
U⃗ − U⃗ b

⃓⃓(︁
U⃗ − U⃗ b

)︁
(2.75)

where the U⃗ and ρ denote the velocity- and density of the continuous phase,
respectively. The value of the drag coefficient Cd is determined according to the
model proposed by Schiller (1933):

Cd = max

[︄
min

(︄
16
Reb

(1 +Re0.687
b ), 48

Reb

)︄
,

8
3

Eo

Eo+ 4

]︄
(2.76)
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where Reb and Eo are Reynolds and Eötvos number of the bubble respectively,
calculated as:

Reb =
db

⃓⃓
U⃗ − U⃗ b

⃓⃓
ν

, Eo = g(ρ− ρb)d2
b

σ
(2.77)

where σ is the surface tension on the interface between the continuous phase
and the dispersed phase, and db is the diameter of the bubble. Relation 2.76 is used
primarily due to the robustness in numerical implementation and use, as well as
due to the proven performance over a wide range of computational cases. Note that
in in 2.76, effects related to acceleration are neglected (steady-state drag force).
They will be covered later on.

Lift force (Saffman force) acts perpendicularly towards the direction of the
relative motion (i.e. perpendicularly to the direction of the drag force), whenever
the bubble encounters the zone of continuous-phase vorticity, exemplary in the
boundary layer, or in the free jet. It is usually modeled as proposed by Auton
(1987):

Fl
⃗ = mg

ρ

ρb
Cl

(︁
U⃗ − U⃗ b

)︁
× ∇ × U⃗ (2.78)

In case of the upwardly oriented, unidirectional continuous flow which will be
presented in Chapters 8 and 9, (and provided that the lift coefficient Cl is positive),
bubble velocity will be greater than the continuous phase velocity. Hence, lift force
will tend to push the dispersed phase in the direction opposite of the carrier velocity
gradient, i.e. away from the plume center/closer to the walls. Value of the lift
coefficient Cl has been the object of long debate, without any definitive answer.
Usually, value for Cl is optimized, as to obtain the congruence with the experimental
data, whereas the ranges Cl = 0.1 ÷ 0.5 are usually encountered (Auton (1987),
Lopez de Bertodano et al. (1990), Hill (1998)). In this work, similarly to the
modeling of the drag force, lift coefficient Cl can be calculated as per Tomiyama
et al. (2002):

Cl =

⎧⎪⎨⎪⎩
min(0.288tanh(0.121Re), f) if EoH < 4
0.27 if EoH > 10
f otherwise

f = 0.00105Eo3
H − 0.0159Eo2

H − 0.204EoH + 0.474

EoH = g(ρl − ρg)d2
H

σ
, dH = d3

b

√︁
1 + 0.163Eo0.757

(2.79)

Virtual (added) mass force accounts for the transients effects, stemming from the
need to additionally deflect the volume of the carrier phase, as the dispersed phase
is moving through it. It is modeled like:

Fvm = ρVbCvm

(︄
DU⃗

Dt

)︄
− dU⃗ b

dt
(2.80)
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where almost by the rule, constant value of the coefficient Cvm = 0.5 is taken.
Surface-, gravitational-, - and buoyancy forces do not require any modeling, and
their combined influence is calculated as:

F⃗ s + F⃗ g + F⃗ b = Vb

(︂
∇p+ ∇ · τ

)︂
+mbg⃗

(︄
1 − ρ

ρb

)︄
(2.81)

Numerical considerations of EL algorithms are beyond the scope of this work.
Implementation of EL algorithm in OpenFOAM®, as well as the problematic of
temporal integration and tracking of parcels on the unstructured grids are addressed
in more detail in OpenFOAM: User Guide v2112 (2022), as well as in the works of
Iudiciani (2009) and Macpherson et al. (2009). Suffice to say that the single-phase
PISO loop, presented in Algorithm 1 is modified in the following way:
First, after the beginning of the new time step, bubble-momentum, and bubble-

position equations (2.73,2.74) are time-integrated for each parcel, during the whole
Eulerial time step ∆t. Positions, velocities as well as the history of cell-occupancy
are calculated. Afterwards, the following momentum source term is added to the
momentum-predictor equation 2.67:

S⃗i = 1
∆tVi

Nb∑︂
j=1

mb,j

(︂
U⃗ b,j,0 − U⃗ b,j,f

)︂
(2.82)

where Nb is the number of parcels, occupying the cell during the Eulerian time-step
∆t , and U⃗ b,j,0 and U⃗ b,j,f are respectively initial-, and final velocity of the j-th
parcel of the mass mb,j within the cell i. Solution of PISO algorithm is afterwards
continued as usual.
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3. Turbulence modeling in single- and
two-phase flows

In this Chapter, some core question considering the theory of turbulence, as well as
the modeling approaches relevant for this publication will be addressed. Special
attention will be dedicated to the eddy-resolving (eddy-sensitized) class of RANS
models, one of which is used continuously thought this publication. Lastly, some
modeling considerations in relation to the bubble induced turbulence (BIT) are
presented.

3.1. Introduction

Most flows encountered in nature are turbulent. Since no substantially short def-
inition for turbulence exists so far, the author is free to define it by listing some
of the most common attributes of turbulent flows instead: turbulence is associated
with stochastic, highly non-linear and dissipative flow systems, which exhibit a random
change in flow variables. Since the general evolution of the flows is believed to be
accurately described by the set of Navier-Stokes equations (2.17 and 2.28) derived
in the previous Chapter (which are deterministic in nature), source of mentioned
chaotic behaviour of its solution remains open. Previous definition therefore requires
some clarification.
Suppose a set of boundary conditions, fluid properties and measuring instruments

E that will be used in some fluid flow experiment is uniquely defined. For such
unique E , temporal evolution of generic flow variable ϕ̃(x⃗, t) is measured in a single
experimental realisation. Afterwards, experiment is repeated under identical E
(to either the precision of instruments or machine precision). One quickly realises
that no matter how many experiments are repeated, identical signal can never be
obtained, showing that randomness is an intrinsic property of turbulence.
Source of this randomness is inherently linked with the non-linear nature of

turbulence, expressed in the convective term of the momentum equation. Namely,
this term includes the multiplication of flow velocity Uĩ(x⃗) with itself, thus creating
a positive systemic feedback loop. This means that even a minute differences in E
will be reintroduced into the system, and (provided that the diffusive mechanisms
of the flow are not strong enough) eventually be amplified in time. Therefore, if will
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3. Turbulence modeling in single- and two-phase flows

result in flow field changes that cannot be repeated. In reality, it is clear that ϕ̃(x⃗)
can never be uniquely defined, following the minute variations in flow properties,
existence of background noise, imperfections in the measuring equipment, etc.
Role of non-linearity can best be visualized on the example of famous Lorentz

attractor, reported in Lorenz (1963), which represents the system of ODEs with the
form:

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z) − y

dz

dt
= xy − βz

(3.1)

where σ = 10, ρ = 28 and β = 8/3 are the standard sets of parameters. For
illustrative purposes, two experiments will be performed. First, system of equations
3.1 is solved for the initial conditions x(0) = y(0) = z(0) = 1. For the numerical
experiment, quadruple machine precision ϵ = 2.220446049250313e− 16 is used. In
Figure 3.1 (left), magnitude of the solution Θ =

√︁
x2 + y2 + z2 is plotted for the

first 100s. Second, calculation is repeated for the identical set of initial conditions,
whereas the difference between the first and second experiment Θ1 − Θ2 is plotted.

Figure 3.1.: Magnitude of the Lorentz attractor solution (left), and difference between
two experiments with identical sets of boundary conditions (right).

As can be seen, for the identical set of initial conditions, two solutions were mostly
identical up to the point of t ≈ 35[s], after which the difference between two curves
is comparable with solution magnitude. Even when the highest level of machine
precision is used, minute differences in arithmetic are certain to produce differences
in the solution, despite the deterministic nature of the non-linear system. By having
that in mind, chaotic nature of turbulence is more easily understood.
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Turbulence can also be analysed from the point of energy flow. Second law
of thermodynamics dictates that the potential energy (chemical-, elastic-, electro-
magnetic, buoyancy etc.) in any system will spontaneously be transformed first into
the mechanical-kinetic energy, in a process that usually occurs at the flow scales
comparable with the flow domain. Afterwards, kinetic energy is spontaneously
transformed into thermal energy at the smallest scales of turbulence, by the action
of diffusion processes (see the dissipation term ε, equation 2.38). Batchelor (1982)
explains that some intermediary range of scales must therefore exist between the
range of largest and smallest scales of turbulence, which is denoted as an energy
cascade. Practically, large-scale eddies need to undergo the process of breakage into
smaller and smaller eddies, until the scale of turbulence reduces enough for the
action of diffusion mechanisms. Presence of continuous scale range of coherent
structures in a turbulence field is visually represented in the Figure 3.2.

Figure 3.2.: Snapshot of decaying Taylor-Green vortices visualized using the Q-criteria.
Reproduction of results by Dr. Nikola Mirkov, using the freeCappuccino
code, Mirkov et al. (2018).

If the scale of an arbitrary large eddy1 is denoted with l, its wave-number can
be denoted with κ = 2π/l. Additionally, it is phenomenologically evident that
each eddy must contain certain portion of total kinetic energy per wave-number:
E(κ). Total kinetic energy, contained in the turbulent structures, is then obtained
by integrating the spectrum like:

k =
ˆ ∞

0
E(κ)dκ (3.2)

Typical spectral dependence between E(κ) and κ is visually represented in Figure
3.3. Plot is made according to the theoretical model for the spectrum:
1The word eddy is vaguely defined, and may be understood as any coherent turbulent structure, whose
existence lasts long enough as to be persistently spotted in the field.
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E(κη) = Cε
1
4 ν

5
4 (κη)− 5

3 f(κη)f(κL) (3.3)

Here, L denotes the integral-, and η the Kolmogorov length-scale, which are
discussed in the following section. For the more detailed insight into the modeling
assumptions behind 3.3, interested reader is referred to Pope (2000).

Figure 3.3.: Normalized model spectrum, according to the equation 3.3.
.

In the range of lowest wave-numbers (largest, top/level scales), slope is positive
(approximately quadratic slope), indicating the energy is injected into the spectrum
by the action of external forces, as well as due to the deformation of the fluid.
Followed by it is an apparently constant-slope range, a so-called inertial-subrange,
in which no dissipation takes place. Instead, a constant flux of energy from larger
to smaller scales occurs due to the breakage and separation of eddies. Citing the
derivation presented in Davidson (2015), dimensional analysis reveals that in the
inertial subrange, spectral energy is proportional to:

E(κ) ∝ ε2/3κ−5/3 (3.4)

which represents a condensed form of the equation 3.3. Usually, slope of −5/3
is a very good indicator of the physicality of the solution, as will be presented in
the upcoming Chapters. At lowest scales (largest wave-numbers), spectrum gets
increasingly concave, indicating a loss of energy, which occurs due to the action
of molecular diffusion. By using the dimensional analysis, Kolmogorov (1941)
presented the arguments for calculating the smallest scales of turbulence, based
solely on the intensity of energy flux (dissipation), as well as the properties of the
fluid (viscosity):

η =
(︂ν3

ε

)︂1/4
, τη =

(︂ν
ε

)︂1/2
, uη =

(︂
νε
)︂1/4

(3.5)
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where η, τη and uη are length-, time- and velocity-scales met at the end of the
energy cascade. Equation 3.5 is usually used for setting the lower limit on all the
scales calculated by the turbulence model.

3.2. Review of the current modeling practices for
turbulent flows

As presented in previous Chapters, simulation of turbulent flows encounters at least
two important challenges. First, a non-probabilistic evolution of state variables in
the turbulent flows which per-se is not the biggest difficulty. As will be seen in short,
statistical properties of turbulence (which are of biggest importance for practical
engineering) can be deterministically recovered, no matter the method of simulation
used. Far bigger concern represents the span of all possible scales (down to the
Kolmogorov scale, equations 3.5) which need to be represented by the solution. If
l0 and τ0 are the (top-level) length- and time-scale of the flow domain, any relevant
turbulence textbook (e.g. Tennekes et al. (1972)) shows that a simple relationship
between the smallest- and -largest scales of the flow exist in the form:

l0
η

∼ Re3/4,
τ0

τη
∼ Re1/4, (3.6)

where Re is the Reynolds number based on the top level scale. In the following,
several up-to-date strategies for the numerical simulation of turbulent flows are
presented. In general, choice of the adequate method is not uniquely defined, but
represents a synergy between the available computing power, expertise in the field
of numerical method, expertise in the application of the turbulence model, as well
as the accuracy required.
Mathematically, obvious choice for turbulence simulation relies on the Direct

Numerical Solution (DNS) of the Navier-Stokes equations, using well established nu-
merical methods. Usually, either the finite difference method (exemplary in Alfonsi
and Primavera (2007)), or some variation of hp-spectral elements (exemplary in
Sengupta et al. (2008)) are employed. As noted in Chapter 2, FVM is usually not
suitable for tackling the DNS problems, due to its low order of accuracy. One obvious
advantage of the DNS approach is the universality of the governing equations and
absence of any underlying model of turbulence (which will be demonstrated as
problematic in the following sections). However, irrespective of the method used,
DNS techniques are ultimately faced with an unavoidable obstacle concerning the ca-
pability of the calculation. Namely, as the scaling of spatial points needed to capture
the Kolmogorov scales rises with the Reynolds number of the flow (Ncells ∼ Re9/4),
computing needs for any industrially relevant flow configuration far supersede the
allocatable resources and consequently, gains from such a study. DNS therefore
remains a research toll of super-computing academic/industrial entities, and then
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again in highly simplified geometries, used mostly for obtainment of validation and
calibration cases. Interested reader should find a good overview of DNS applicability
and history in Moin and Mahesh (1998). Some recent, exemplary works using the
DNS include the flow- and vibration analysis of the axial compressor in Nakhchi et al.
(2022), combustion analysis in Gruber et al. (2021), as well as acoustic analysis
performed in W. Wang and Miller (2022). To the authors knowledge, largest DNS
simulation ever reported up to the publication date of this thesis was presented
in Cielo et al. (2021), and employed 100483 points and 6336 computing nodes,
simulating the (magneto-) hydrodynamics of interstellar turbulence.
From the standpoint of the everyday applicability, it is clear that the DNS tech-

niques are far from domesticated within the scientific/engineering community. Next
stage in the turbulence simulation is taken by the Large-Eddy-Simulation (LES)
methods, established in the 1960s. Core idea behind the LES techniques is to apply
a low-pass spatial filter to the Navier-Stokes equations, which will filter-out the
smallest scales of turbulence (which in turn are mostly isotropic and hence easily
subjected to modeling), and resolve only the scales larger than the prescribed filter
size. Although some sort of modeling paradigm needs to be applied to the unre-
solved scales, one obvious advantage in comparison with DNS is the reduction in
needed computing resources for the obtainment of the solution. Formalism of LES
was initially introduced by Smagorinsky (1963) in the field of meteorology. The
effect of low-pass filtering is identical to blurring procedure in image processing.
After applying the filtering operation, initial system of incompressible Navier-Stokes
equations takes the form:

∂Ui

∂xi
= 0

∂Ui

∂t
+ ∂UiUk

∂xk
=1
ρ

∂p

∂xi
+ τ ij + τSGS

ij

(3.7)

where the overbar indicates the filtering operator, and the τSGS
ij represents the

additional term, stemming from the filtering operation. It resembles the influence
of non-resolved (sub-grid) scales. Strategies for modeling of τSGS

ij are numerous
and beyond the scope of this publication. Very good overview of the mathematical
background, as well as up-to date models used can be found in Sagaut (2004),
Garnier et al. (2009), as well a as general overview in Zhiyin (2015). A usual
approach for modeling of the unclosed term is the usage of sub-grid turbulence-
viscosity hypotesis:

τSGS
ij = 2νSGSSd

ij (3.8)
As proposed by Smagorinsky, νSGS is usually modeled like:

νSGS = (CS∆)2S

S =
√︂

2Sij
˜ Sij

˜
(3.9)

36



3.2. Review of the current modeling practices for turbulent flows

where CS is the modeling constant, and ∆ is the mesh length scale, having the
role of filter. Despite being over half a century old, Smagorinsky model proved to be
remarkably reliable in predicting many flow cases from simple to complex. One LES
model often cited in this work represents the derivative of the Smagorinsky model
called dynamic Smagorinsky, presented in Germano et al. (1991). Here, value of CS

is not constant, but a general function of local flow properties.
Considering its industrial applicability, despite the simplicity in modeling (as will

be compared with RANS modeling in short), LES strategies for industrially relevant
flow configurations remain mostly outside of the scope for general engineering
community, and similarly to DNS, confined within the laboratory-scale experiments.
Next to high level of modeling expertise needed, as well as certain numerical
challenges (see Piomelli (2014)), highest challenge will for a long time, reside
within the high computational cost. This is due to the fact that at industrially
relevant Reyolds numbers, Re(≥ O(105)), over 90% of the total cell count is needed
to adequately resolve the boundary layer, which in turn takes less than 10% of the
computational volume. Various sources (exemplary Choi and Moin (2012)) estimate
that the high-Re, wall-resolved LES cases will not be possible at least until the end
of current decade, if the Moore’s law were to hold. P. R. Spalart (2000) made a
conservative estimate that LES of a full aircraft at flight-related Reynolds numbers
will not be possible until 2070.
By far, the most popular approach for modeling of turbulent flows lies within

the Reynolds-Averaged-Navier-Stokes (RANS) strategies. Following the inherently
random nature of turbulence, an obvious remedy for removal of non-probabilistic
instantaneous fluctuations of the flow field is found within the statistical approach,
as proposed by Reynolds (see Reynolds (1901)). Namely, instead of trying to predict
spatio-temporal evolution of random flow variable, it is reasonable to expect that
its statistical moments can be better predicted by using the probabilistic approach,
which filters out variations found in E , as discussed in Durbin and Reif (2011). If,
within an ensemble of N experiments, the single realisation is indexed with i, mean
(expected) value of ϕ̃ can be calculated as:

Φ(x⃗, t) = ϕ̃ = lim
N→+∞

1
N

N∑︂
i=1

ϕ̃(x⃗, t) (3.10)

where the overbar operator denotes the ensemble averaging. Here, the tilde symbol
is used to denote the random, non-probabilistic nature of the evolution in ϕ. It
is important to stress that generally, all variables whose evolution equations are
derived in Chapter 2 should be written with the tilde symbol. This was however not
done due to the simplicity of writing. Therefore, from now on, all capital letters will
denote the mean value, while the tilde will be used to denote the instantaneous
value of variable. Instantaneous value of fluctuation of ϕ̃ can then be calculated as:

ϕ′ = ϕ̃− Φ (3.11)
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Since, per definition, ϕ̃ = Φ, mean value of the fluctuations is equal to zero: ϕ′ = 0.
As already stated and for simplicity reasons, mean values of flow fields are denoted
with capital-, and instantaneous value of fluctuations with small letters further on,
e.g:

Uĩ = Ui + ui (3.12)

fĩ = Fi + fi (3.13)

p̃ = P + p (3.14)

T̃ = T + θ (3.15)

Since averaging is a linear operation, commutation with other linear operators is
ensured:

∇ϕ̃ = ∇ϕ̃ (3.16)

However, averaging of the double product of random variables results in an additional
double correlation of their fluctuations:

ϕ̃ψ̃ = ΦΨ + ϕ′ψ′ (3.17)

This will represent a mayor drawback of the averaging technique. Namely, if the
averaging procedure is applied to the system of Navier-Stokes equations 2.16, 2.30,
2.39, one gets in indexed notation:

∂Ui

∂t
+ ∂

∂xk
(UiUk + uiuk) = Fi + 1

ρ

∂P

∂xi
+ ∂

∂xk

(︂
ν
∂Ui

∂xk

)︂
(3.18)

∂Ui

∂xi
= 0 (3.19)

∂T

∂t
+ ∂

∂xk
(UkT + ukθ) = ∂

∂xk

(︂
α
∂T

∂xk

)︂
(3.20)

System of equations 3.18, 3.19 and 3.20, is referred to as Reynolds-Averaged
Navier-Stokes Equations (RANS), or just Reynolds Equations for simplicity. Here, all
the instantaneous flow variables are exchanged with their mean (expected) values.
As stated in Durbin and Reif (2011), Reynolds equations are far less sensitive to the
minute differences in the experimental realisations, and therefore, almost perfectly
repeatable in contrast to the Navier-Stokes Equations. Note that for statistically
steady flow, ensemble averaging may be performed in time as well, whereas in the
general case, averaging is performed over a set of experimental realisations. Hence,
terms RANS and URANS (unsteady RANS) are sometimes be used interchangeably,
all denoting the same procedure.
One obvious drawback of using the mean momentum equation 3.18 is the intro-

duction of the unclosed term uiuk, commonly referred to as Reynolds stress tensor.
It is important to state that components of the Reynolds stress tensor don’t have
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any physical interpretation, but rather represent a mathematical construct, describ-
ing the evolution of the statistical properties of the unresolved flow. Analogously,
unclosed second moment uiθ is also present in the evolution equation for mean
temperature 3.18. By applying the averaging procedure, substantial information
about the turbulence is lost, and the calculation of uiuk requires the presence of
additionally developed models, with associated uncertainties. As will be shown,
this will affect the reproduction of highly unsteady flows, where the information
concerning the temporal evolution of coherent structures may be of special interest
to the engineer. Another key deficiency which is native to RANS is the lack of
universality (although this is true for every model outside of the DNS domain, it
is most pronounced with RANS). Namely, all RANS models rely of the assumption
that the behaviour of unresolved scales may in some sense be reconstructed from
the behaviour of the resolved scales, using the appropriate calibration and dimen-
sional analysis. This means that the performance of certain RANS model ultimately
depends of the exact conditions on which it was calibrated on. The further away
the computed case lies from the parameter-space used for calibration, the larger
the degradation in results is expected. More about the modeling involved within
the RANS framework will be addressed in the following section. Suffice to say
that the RANS strategies are, despite some obvious flaws, bound to stay within
the engineering community for a perceivable future due to the relatively modest
computational resources needed, as stated by Hanjalić (2005).
Finally, in order to overcome the difficulty concerning the high cell count and

near-wall resolution with the LES method, numerous eddy-resolving models, based
on the hybridisation of LES and RANS methods have been developed over the years.
Their principal strategy relies on splitting the solution into the resolved part, which
can be directly represented on the computational mesh, and the modeled part,
which is treated by an appropriate RANS model. Mathematically, this means that
the diffusivity of the underlying RANS equations needs to be reduced down to the
point of allowing the larger-than-mesh scales to appear in the solution. This can
be done either globally, in which the spectral separation is imposed in every cell of
the domain, or zonally, where the certain regions of the domain are treated either
with RANS or with an LES model. Among the most popular, hybrid eddy-resolving
models are: DES - Detached-Eddy-Simulation (P. Spalart and M. Shur (1997), P. R.
Spalart (2009), Deck and Renard (2020)), DDES - Delayed Detached-Eddy-Simulation
(P. R. Spalart et al. (2006a)), IDDES - Improved Delayed Detached-Eddy-Simulation
M. L. Shur et al. (2008)), PANS - Partially-Averaged-Navier-Stokes - (Girimaji (2006),
Basara et al. (2018)) and PITM - Partially Integrated Turbulence Model - (Chaouat
(2012)). Here, spectral cut-off is either made in dependence on the length scale
(resolution capability is triggered by comparing the mesh length scale and the sub-
grid turbulence length scale), or by imposing the resolution functions (comparing
modeled and resolved portions of the spectrum). Last but not least, methods of
SAS - Scale-Adaptive-Simulations need to be counted in the global eddy-resolving
methods. They will be discussed in substantial details in the following section.
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Among the zonal models, WMLES -Wall-Modeled Large Eddy Simulation (see Bose
and Park (2018)), and ELES - Embedded Large Eddy Simulation (see Cokljat et al.
(2009)) are mentioned. Here, the domain is split between RANS and LES regions,
with special numerical techniques being applied for the treatment of RANS-LES
interface. So far, scientific community failed to reach an agreement on ultimate
outperforming of any of the noted methods, following the number of inherited
modeling problems. They include: explicit dependence on the mesh length-scale,
problems of smooth transition between the resolved/unresolved regions, as well as
numerical issues (exemplary, commutation error of dynamical ratio of modeled to
total kinetic energy in PANS methods with the gradient operator, as demonstrated
in Klapwijk et al. (2019)). Concerning the resources required, hybrid methods
lie well within the possibilities of the RD sector, although the requirements for
the expertise are similar as with the LES. Next to the aforementioned problems,
affordable computing resources will ultimately be paid for on the model side, where
the quality of the solution also depends on the sub-grid model of turbulence, thus
losing the universality.

3.2.1. Full closure strategy for Reynolds stress tensor

As outlined in the previous section, existence of the unclosed part of the convective
term uiuj , denoted as the Reynolds stress tensor, means that the RANS system of
equations remains unclosed and requires additional modeling. An obvious (and the
most complex) solution represents the derivation of an evolution equation for uiuj

which is done in details in any relevant turbulence textbook (for example Durbin
and Reif (2011), or Hanjalić and B. Launder (2022)) and will not be repeated here.
Suffice to say that after subtracting the averaged momentum equation 3.18 from
2.28, multiplying it with the mirror equation (in sense of the index j), and averaging
the result, one gets:

Duiuj

Dt
= ∂uiuj

∂t⏞ ⏟⏟ ⏞
Lij

+ ∂Ukuiuj

∂xk⏞ ⏟⏟ ⏞
Cij

= −

(︄
uiuk

∂Uj

∂xk
+ ujuk

∂Ui

∂xk

)︄
⏞ ⏟⏟ ⏞

Pij

−p

ρ

(︄
∂ui

∂xj
+ ∂uj

∂xi

)︄
⏞ ⏟⏟ ⏞

Φij

− ∂

∂xk

(︄
1
ρ
p(uiδjk + ujδik)

)︄
⏞ ⏟⏟ ⏞

Dp
ij

+

∂

∂xk

(︄
ν
∂uiuj

∂xk

)︄
⏞ ⏟⏟ ⏞

Dν
ij

− ∂

∂xk

(︄
uiujuk

)︄
⏞ ⏟⏟ ⏞

Dt
ij

− 2ν ∂ui

∂xk

∂uj

∂xk⏞ ⏟⏟ ⏞
εij

(3.21)
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which represents a general evolution equation for the Reynolds stress tensor.
Reynolds stress tensor is symmetric: uiuj = ujui, meaning that the evolution
equations for six additional variables governing the turbulent flow need to be solved
in addition to the equations 3.19 and 3.18. Other approaches, such as eddy-viscosity
methods (EVM) are discussed at the end of this section.
On one hand, this will prove most beneficiary since the statistical nature of the

averaged-out fluctuations will be captured in a deterministic way in every point of the
flow. Additionally, anisotropic nature of these fluctuations is captured. On the other
hand, each time the evolution equation for the certain statistical moment is derived,
higher moments will appear in the expansion, meaning that the additional closure
laws need to be applied. Although this is true for any RANS strategy, it is nowhere
as massively present as in the modeling of terms on RHS of the equation 3.21.
Here, under-braced terms can be denoted as: Lij: local change, Cij: convective
transport, and Dν

ij: transport through the molecular diffusion, and their physical
interpretations are all readily familiar from the previous Chapters. All other terms,
including: : Pij - production, Φij - redistribution, Dp

ij - pressure diffusion, Dt
ij -

turbulent diffusion and εij - dissipation can not be interpreted directly and require
some more detailed considerations. By taking half the trace of of the uiuj , one gets:

k = 1
2uiui (3.22)

which represents the kinetic energy contained in the unresolved, modeled fluctua-
tions, and is shortly denoted as turbulent kinetic energy. Evolution equation for k
should shed some light into the physical significance of other terms. By taking half
the trace of equation 3.21, one gets:

Dk

Dt
= −uiuj

∂Ui

∂xj⏞ ⏟⏟ ⏞
Pk

−1
2
uiujuk

∂xk⏞ ⏟⏟ ⏞
Dt

k

+ ∂

∂xk

(︄
ν
∂k

∂xk

)︄
⏞ ⏟⏟ ⏞

Dν
k

−ν ∂ui

∂xk

∂ui

∂xk⏞ ⏟⏟ ⏞
ε

(3.23)

Naming of the individual terms is deliberately kept in accordance with 3.21 to
enable straightforward interpretation. Production term may possess a somewhat
misleading name. Generally, it only describes that kinetic energy is exchanged
between the mean, resolved flow, and the modeled, unresolved flow, through their
interaction. As postulated by Durbin and Reif (2011), it can be expected that in most
of the usual flow configurations, Pk > 0, signifying that the unresolved turbulence
is directly produced by taking the energy from the resolved flow (Note that the
mirror equation for resolved kinetic energy 1

2U
2 contains the same term, only with

inverted sign), hence the name. This of course doesn’t mean that Pk < 0 can not
occur, which readily happens in some flow configurations (e.g. impinging jet). In its
tensor form, Pij describes the level of energy exchange of each component of uiuj

with a mean flow, and can be directly calculated:
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Pij = −

(︄
uiuk

∂Uj

∂xk
+ ujuk

∂Ui

∂xk

)︄
(3.24)

Past this point, direct calculation of right-hand side terms is impossible and numer-
ous modelling steps need to be undertaken. Based on the individual nature of the
modeling assumptions, rich basis of models are available, of which an overview can
be found in Hanjalić and B. Launder (2022). Considering the last, dissipation term
ε in the equation 3.23, one can see that it encompasses the square of the fluctuation
gradients, hence ε > 0 . Combined with the negative sign, it will always represent
the sink term (note the identical behaviour in the equation for the instantaneous
kinetic energy 2.382), and physically represents a transformation of turbulent kinetic
energy into thermal energy, following the irreversible thermodynamic nature of
turbulence. Usually, ε is referred to as a scale-determining variable since it is used
in the definition of turbulence length- and time-scales like:

Lt ∼ k3/2

ε
, Tt ∼ k

ε
(3.25)

Closure of ε and its tensorisation into εij puts yet another problem into the buffer
of modeling difficulties related to RANS, since the additional evolution equation for
ε is usually needed. This has been the topic of debate since the exact equation for
the evolution of ε is usually not used, due to its complexity. Used transport equation
is usually derived based on the phenomenological expectation of the mechanisms
acting in the turbulent flow (advection+ diffusion+production+destruction).
By combining the modeling assumptions for the equation 3.21 with those for ε,

one arrives at the full definition of the RANS model used. For this work, a low-Re,
differential Reynolds-stress-model (RSM) which was extensively scrutinized in the
pioneering work of Jakirlić and Hanjalić (2002) is chosen. This model is usually
denoted as JH-RSM (Jakirlić-Hanjalić Reynolds Stress Model), and this abbreviation
will be used henceforth. First, an alternative form for the scale-supplying variable
through the modification in the dissipation tensor is selected:

εij = εh
ij + ∂

∂xk

(︄
1
2ν
∂uiuj

∂xk

)︄
(3.26)

where εh
ij represents a so-called "homogenous" dissipation rate tensor. A choice of εh

ij

in place of εij is justified with a fact that it provides a correct asymptotic behaviour for
every component of the dissipation tensor, without introducing additional correctors
or limiters in to the model. After inserting 3.26 in to the 3.21, one gets:

2Note that in 2.38, ε denoted the instantaneous dissipation, whereas in 3.23, it represents the statistical
quantity.
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Duiuj

Dt
= ∂

∂xk

[︄
1
2ν
∂uiuj

∂xk

]︄
+ Pij + Φij +Dt

ij −Dp
ij − εh

ij (3.27)

Furthermore, it is assumed that the anisotropy eij of the dissipation tensor propor-
tionally reflects the anisotropy of the large-scale turbulent structures aij like:

eij = fsaij (3.28)

where function fs in introduced to relax direct proportionality, and should tend to
zero in the isotropic turbulence. Here, aij and eij are anisotropy tensors of Reynolds
stress tensor, and dissipation tensor respectively. They are calculated like:

aij = uiuj

k
− 2

3δij , eij =
εh

ij

εh
− 2

3δij (3.29)

By combining the invariants of anisotropy tensors for εh
ij and uiuj , we obtain:

fs = 1 − E2
√
A (3.30)

where A and E are Lumley flatness parameters for the aij and eij respectively. They
are calculated like:

A = 1 − 9
8(A2 −A3), A2 = aijaji, A3 = aijajkaki (3.31)

E = 1 − 9
8(E2 − E3), E2 = eijeji, E3 = eijejkeki (3.32)

where A2, A3 and E2, E3 are second and third invariants of the corresponding
tensors. Dissipation tensor is then calculated as:

εh
ij = fsuiuj

εh

k
+ (1 − fs)2

3ε
hδij (3.33)

Transport equation for εh will be shown in short. By taking half the trace of 3.23, one
notes that the redistribution term disappears, indicating that the interaction between
pressure and velocity fluctuations in the incompressible flow does not increase or
decrease kinetic energy contained in the fluctuations, but rather redistributes energy
between different components of uiuj . In general, far from the reflection boundaries
(solid walls, free surfaces etc.) it should lead to the isotropisation of turbulence. In
JH-RSM, this term is modeled as:

Φij = Φij,1 + Φw
ij,1 + Φij,2 + Φw

ij,2 (3.34)

Φij,1 = −C1ε
h
ijaij , Φij,2 = −C2

(︂
Pij − 1

3Pkδij

)︂
(3.35)
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3. Turbulence modeling in single- and two-phase flows

where Φij,1 is a so-called slow, and Φij,2 rapid part of isotropisation. Both terms
are additionally modified by the presence of reflection boundaries, which changes
them accordingly:

Φw
ij,1 = Cw

1 fw
εh

k

(︂
ukumnknmδij − 3

2uiuknknj − 3
2ukujnkni

)︂
(3.36)

Φw
ij,2 = Cw

2 fw

(︂
Φkm,2nknmδij − 3

2Φik,2nknj − 3
2Φkj,2nkni

)︂
(3.37)

where ni represents a normal-to-the wall-pointing unit vector, and various constants
modeled as:

C1 = C +
√
AE2, C = 2.5AF 0.25f, F = min{0.6;A2}

f = min

{︄(︂Ret

150

)︂1.5
; 1
}︄
, Ret = k2

νεh
, fw = min

{︄
k1.5

2.5εhyn
; 1.4

}︄
C2 = 0.8A0.5, Cw

1 = max{1 − 0.7C, 0.3}, Cw
2 = min{A; 0.3}

Action of pressure-diffusion termDp
ij can be neglected as small in comparison with

other terms, and the turbulent diffusion term Dt
ij be modeled using the simplified

gradient hypothesis (SGDH):

Dt
ij = ∂

∂xk

(︂
uiujuk

)︂
= ∂

∂xk

(︄
νt

σuiuj

∂uiuj

∂xk

)︄
, σuiuj

= 1.1 (3.38)

Finally, with all the terms modeled, equation 3.21 gets the more clear form:

Duiuj

Dt
= ∂

∂xk

[︄(︄
1
2ν + νt

σuiuj

)︄
∂uiuj

∂xl

]︄
+ Pij⏞⏟⏟⏞

3.24

+ Φij⏞⏟⏟⏞
3.34

− εh
ij⏞⏟⏟⏞

3.33

(3.39)

which will be used further on. Turbulent viscosity, introduced in the next section,
is calculated based on one velocity- and one length-scale, as proposed in Basara and
Jakirlić (2003):

νt = 0.144A
√
k ·max

[︄
10
(︂ν3

εh

)︂0.25
,
k1.5

εh

]︄
(3.40)

in which the lower limit, based on the Kolmogorov micro-scale (see 3.5) is ex-
plicitly set. Concerning the transport equation for εh, it is given here without the
lengthy derivation, which an interested reader can find in the original publication
of Jakirlić and Hanjalić (2002):
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Dεh

Dt
= ∂

∂xk

[︄(︄
1
2νδkl + Cε

εh

k
ukul

)︄
∂εh

∂xk

]︄
−

(︄
εh

ij

∂Ui

∂xj
− Pk

εh

k

)︄

−Cε2fε
εhε̃h

k
− 2ν

(︄
∂uiuk

∂xl

∂2Ui

∂xk∂xl
+ Cε3

k

εh

∂ukul

∂xj

∂Ui

∂xk

∂2Ui

∂xj∂xl

)︄ (3.41)

with:

fε = 1 − Cε2 − 1
Cε2

exp[−(Ret/6)2], ε̃h = εh − ν(∂k1/2/∂xl)2 (3.42)

where various constants are defined as: Cε = 0.18, Cε1 = 1.44, Cε2 = 1.8,
Cε3 = 0.32. With some modifications, turbulence model of Jakirlić and Hanjalić will
present a baseline for the development of eddy-resolving method (IIS-RSM), which
is to be introduced in the following sections.

3.2.2. Boussinesq hypothesis - eddy viscosity models
In previous subsection, model of turbulence based on the full closure of Reynolds
Stress tensor was introduced as a strategy which will be applied throughout this work.
Although the dynamics of the unresolved scales can be modeled very accurately with
it, existence of six additional equations, accompanied by the seventh, scale-supplying
equation adds to the overall complexity of the system. Outlined equations 3.39 and
3.41 contain multiple source-terms in form of complex, nonlinear functions, which
may endanger the convergence, and the robustness of the model. This motivated
the development of the family of turbulence models named: eddy-viscosity-models
(EVM). Originally stemming from the works of Boussinesq, Reynolds stress tensor is
modeled as:

−uiuj = 2νtS
d
ij − 2

3kδij (3.43)

where the νt is a so-called turbulent viscosity, and Sd
ij is the deviatoric part of the

strain-rate tensor. By using the EVM approach, transport equation for the resolved
velocity 3.18 is transformed into:

∂Ui

∂t
+ ∂

∂xk
(UiUk) = Fi + 1

ρ

∂P

∂xi
+ ∂

∂xk

[︂
(ν + νt)

∂Ui

∂xk

]︂
(3.44)

Modeling the influence of unresolved turbulence through the use of artificially
introduced turbulent viscosity is also known as a Boussinesq hypothesis. It is made
on the assumption that the good mixing property of the fully resolved turbulence
should be reflected through the increased diffusivity of the equations describing
its statistics. Based on it, dynamics of the modeled scales is assumed to resemble
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3. Turbulence modeling in single- and two-phase flows

those of the resolved ones. From the mathematical point of view, Reynolds stress
tensor is modeled analogously to the shear-stress tensor (hence the name), the only
difference being the turbulent viscosity. Term containing the turbulence kinetic
energy k is added to ensure the existence of Reynolds stresses in the isotropic,
homogeneous turbulence.
By applying the Boussinesq hypotesis, modeling problem of seven transport

equations is reduced to finding the appropriate closure for the turbulent viscosity νt.
Although by doing this, substantial information is lost concerning the behaviour of
modeled terms, EVM approach is highly favorable within the engineering community,
and the majority of RANS models, available in the commercially used codes, belong
to the EVM family. Usually, a good calibration alongside the experience with model
usage may cover for some of the its downsides. General strategy for calculation of νt

is based on dimensional grounds, involving an appropriately selected velocity- and
time scale: [m2s−1] = [ms−1]/[s], velocity- and length-scale: [m2s−1] = [ms−1] · [m]
or any other combination. A non-exhaustive list with some of the historically most
relevant models contains among others:

• k − ε model by B. E. Launder and Spalding (1983), where νt = Cµ
k2

ε

• k − ω model by Wilcox (1988), where νt = k

ω
, ω = ε

Cµk

• k − ω − SST model by Menter (1993), made by an appropriate blending of
previous two models, where: νt = a1k

max[a1ω, SF2]

Tackling with the loss of the anisotropy information, an intermediate step between
the modeling of full Reynolds stress model and the two equation models presented
above is the famous k − ε − ζ − f model by Hanjalić et al. (2004). It represents
a numerically robust update of the v2 − f model by Durbin (1995), v2 being the
normal-to-streamline component of the Reynolds stress tensor. Here, the value of
turbulence viscosity is determined as:

νt = CµζkTt⏞ ⏟⏟ ⏞
Hanjalić et al. (2004)

= Cµv
2Tt⏞ ⏟⏟ ⏞

Durbin (1995)

(3.45)

where T is the turbulence time scale, and ζ = v2/k is the dimensionless scalar,
partially capturing the anisotropy of turbulence. In this way, additional information
about the nature of unresolved fluctuations is fed to the model.

3.2.3. Near-wall turbulence modeling
All the flow cases investigated in this thesis are the wall-bounded flows. With
the exception of the rigid-lid boundaries mentioned in Chapers 8 and 9, all the
walls are defined as a solid, no-slip walls, meaning that the velocity on the wall
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is equal to zero: Uwall = 0. If the Reynolds number is formed like: Re = Uyn/ν,
where yn is the wall-normal distance, one quickly realises that with approaching
the wall, viscous effects will supersede the inertial ones, resulting in turbulence
being substantially modulated in the vicinity of the walls. Next to the viscous effects,
pressure reflections from the impermeable walls directly influence the anisotropy
of turbulence, by blocking the wall-normal fluctuations (through the pressure-
redistribution term, see equations 3.36, and 3.37). A very useful velocity-scale for
validation of simulation results may be derived from the wall shear stress τw like:

uτ =
√︃
τw

ρ
(3.46)

where uτ is known as friction-velocity. Based on it, dimensionless length- and
velocity scales may be defined as:

y+ = uτy

ν
, U+ = U

uτ
(3.47)

Based on the value of y+, several characteristic zones in the typical developed,
near-wall turbulence field may be identified: viscous sublayer (y+ < 5), where the
viscosity effects supersede turbulent effects, logarithmic layer (y+ > 30) where the
turbulence effects are dominant, and the buffer layer (5 < y+ < 30), where both
viscous and turbulent effects are of the same order of magnitude. Based on the
characteristic velocity profile in the near-wall region, a so called law of the wall can
be derived (as proposed by Von Kármán (1930)):

U+ =
{︄

y+, y+ < 5,
1
κ
ln(y+) +B, y+ > 30 (3.48)

where κ = 0.41 is the usual value of Von Karman constant, and B is the fitting
parameter, usually set to 5.2. Note that the system of equations 3.48 provides a very
reliable indicator of the near-wall turbulence under the conditions of fully developed
flow configurations (channel-flow, pipe-flow, etc.). Correct near wall behaviour is one
of the first corner-stones in the validation sequence for all turbulence models, and
will be used extensively in Chapter 5. Comparison of the law of the wall, equation
3.48, with the DNS data by Abe et al. (2001) for the fully developed channel flow is
presented in Figure 3.4.

3.3. Towards the spectral resolution - eddy sensitized
variants of RANS models

As noted in previous sections, the idea of Reynolds methodology for averaging
instantaneous field equations has been introduced in order to eliminate presence of
random field fluctuations, and to operate instead with statistical quantities, whose

47



3. Turbulence modeling in single- and two-phase flows

Figure 3.4.: Comparison of the law of the wall (dashed-line), equation 3.48 with the
DNS data for the fully developed channel flow - solid line.

evolution is perfectly repeatable (to the level of machine precision) is any numerical
experiment. This is possible due to the calibration of the model, which is made
to readily quickly dissipate any energy retained at the scale of the resolved flow,
and to transfer it to the modeled portion of the spectrum. This process can also
be performed in reverse: if the numerically introduced diffusivity of the flow is
diminished, modeled terms will be reduced adequately as well. Hence, resolved flow
structures will appear in the RANS solution. In this way, original RANS models may
be enhanced as to reproduce the spectrum, giving a rise to a so-called eddy-resolving,
(ER) RANS models.
Another formulation of the previous statement is the inability of RANS models to

reproduce any length scale that is not comparable with the boundary layer thickness
(since the only externally available information on the length scale is fed through the
shear rate S). This is consequentially reflected through the increased diffusivity of
the model. With that in mind, Menter and Egorov (2006) postulated that the URANS
methods could be used to produce the spectral content, provided that the turbulence
length scale is better defined. This gave birth to a class of models named scale-
adaptive (SA), which are the foundation stone of the eddy-resolving methodology in
this thesis. A pioneering work in finding a more appropriate scale-supplying variable
has been performed in Rotta (1968) and Rotta (1972), where a transport equation
for the variable Ψ = kL was derived (L is the integral length scale of turbulence).
By analyzing a developed, two dimensional shear flow, where y is the wall normal
coordinate, kL can be defined as:

kL = 3
16

ˆ ∞

−∞
Riidry (3.49)
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where Rii represents the trace of two point correlation tensor:

Rij = ui(x⃗)uj(x⃗+ y) (3.50)

Although the derivation of the entire evolution equation for Ψ will not be repeated
here, it is important to stress that it contains an additional sink term with the form:

DΨ
Dt

= ...− 3
16

ˆ ∞

−∞

∂U(x⃗+ ry)
∂x

R12dry (3.51)

where R12 represented the auto-correlation obtained in two-dimensional, fully
developed flow. With the Taylor expansion, noted sink term may be transformed
into:

ˆ ∞

−∞

∂U(x⃗+ ry)
∂x

R12dry = ∂U

∂y

ˆ ∞

−∞
R12dry

+ ∂2U

∂y2

ˆ ∞

−∞
R12rydry

+ ∂3U

∂y3

ˆ ∞

−∞
R12r

2
ydry + ...

(3.52)

Since νt ∝ Ψ/
√
k, one can draw an important conclusion from previous derivation:

Since the sink term in the evolution equation for Ψ directly correlates with spatial
changes in velocity fields, topology of velocity field (∂nUi/∂y

n) can be used for
appropriately decreasing Ψ, ultimately introducing a shift in the turbulent spectrum
through the reduction of modeled terms and allowing the appearance of resolved
fields.
Whereas Rotta concluded that the third derivative should be taken as the topology

related term, Menter and Egorov (2010) argued that the use of second derivative
is a better represent of non-homogenities in turbulence which should trigger the
resolution capabilities of the model. Second derivative also offers the correct be-
haviour of the model in logarithmic layer. Based on the above, they reintroduced
the additional sink term in the transport equation for Ψ, with the form:

PSAS,kL ∼ −∂2U

∂y2

ˆ +∞

−∞
R12rydry (3.53)

where the sub-script SAS denotes the scale-adaptive framework, explained in short.
Based on dimensional arguments, noted sink term can be rewritten as:

PSAS,kL ≈ −const · Pk
Ψ
k

(︂ Lt

Lvk

)︂2
(3.54)

where Lvk is the Von Karman length scale, and Lt is the turbulent length scale,
defined like:
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Lvk = κ
∂U/∂y

∂2U/∂y2 , Lt ∼ k1/2

ω
(3.55)

It is worthwhile noting that the equation 3.54 carries a striking resemblance with
the DES like procedures (see P. Spalart and M. Shur (1997)), where the resolution
capability of the model is tuned based on the comparison between the turbulent
length scale Lt and the mesh length scale ∆. In total, if the turbulent length scale
should prove larger than the mesh scale (under-resolved turbulence), the model
should push the solution towards the resolved turbulence. Here, Lvk should perform
the similar role, serving as an implicit indicator of a local mesh length scale. On
one hand, this may pose a reasonable assumption since, the more resolved the
mesh is, the more accurate the reconstruction of the derivatives is allowed. This
will prove highly advantageous in a case of complexly meshed domains, where
highly anisotropic, bad quality meshes substantially complicate the definition of a
characteristic grid size. In this way, model is able to capture the mesh resolution
fully implicitly. However, this assumption is not straightforward since Lvk does not
depend on the local resolution only, but is also dependent on the local flow conditions.
In fact, Maduta and Jakirlić (2016) concluded that the Von Karman length scale
could not be observed as an isolated grid parameter, but rather as a part of a complex
source term, depending on the local flow topology. By introducing the term 3.53
into the transport equation for Ψ, a novice strategy for the resolution of turbulence
spectrum is obtained, using a native RANS framework as a basis. Equation 3.54
can be interpreted straightforwardly: in the case where the turbulence is under-
resolved (Lt ≥ Lvk), the whole term 3.54 will increase, hence decreasing the overall
diffusivity of the flow down to the point where the new balance is established, i.e.
until the length scale of the residual turbulence is comparable with the Von Karman
length scale. This ability to readapt the level of residual turbulence to the locally
retrievable length scale is native to all SAS procedures. Next to the implicit capture of
the mesh length-scale, another advantage of SA-formulation is its natural derivation
from the scale-supplying equation, meaning that the theoretical foundation for
the ER-RANS models is highly justified. That being said, original scale-supplying
equation Ψ = kL can be transformed into the transport equation for the scale-
supplying variable of choice, usually ω or ε. Exemplary, in the original works of
Menter and Egorov (2010), Ψ is transformed into a new variable Φ = Ψ/

√
k, thus

creating a new scale-adaptive model named KSKL (k - square root of k-L), which
is directly proportional to turbulent viscosity. Common choice of scale-supplying
variable is the specific turbulent dissipation ω, which was used for introducing the
SAS methodology into the industrially popular k − ω − SST model, as discussed in
Egorov and Menter (2008). The model reads:
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(︂Dω
Dt

)︂
SST −SAS

=
(︂Dω
Dt

)︂
SST

+ PSAS

PSAS = max

[︄
0.026S2

(︄
LSST

Lvk

)︄2

− 2T2, 0
]︄

T2 = k

σϕ
max

[︄
(∇ω)2

ω2 ,
(∇k)2

k2

]︄ (3.56)

where LSST is the turbulent length scale, calculated by the k − ω − SST model.
Here, PSAS is appropriately modified using the transformation:

PSAS ∼ ω2

k3/2PSAS,kL, LSST ∼ k1/2

ω
(3.57)

As for the second term in the expansion T2, its existence is originating from the
transformation of scale-supplying variable:

Dω

Dt
= D

Dt

(︂k1/2

ω

)︂
= 3

2
ω

k

Dk

Dt
− ω2

k3/2
D(kL)
Dt

(3.58)

Additionally, max function in combination with the T2 term should prohibit the
resolution of the spectrum in the vicinity of the wall (logarithmic region), where
the RANS solution should be reproduced by the model. The k − ω − SST − SAS
model hence became the template on which any RANS model can be updated with
the SAS methodology.
Maduta (2013) used previously described technique into transforming the JH-

RSM model into its resolution-sensitized derivative. First, transport equation for εh,
3.41 was transformed into the ωh, in order to show consistency with the previously
described methodology3. After a lengthy derivation, final form of transport equation
for ωh reads4:

Dωh

Dt
= ∂

∂xk

[︄(︄
1
2ν + νt

σω

)︄
∂ωh

∂xk

]︄
+ Cω,1

ωh

k
Pk − Cω,2ω

2
h+

2
k
Cω,3ννt

∂2Ui

∂xj∂xl

∂2Ui

∂xj∂xl
+ 2
k

(︄
0.551

2ν + 0.275 νt

σω

)︄
∂ωh

∂xk

∂k

∂xk

(3.59)

where various constants are defined as:

Cω,1 = 0.44, Cω,2 = 0.8, Cω,3 = 1.0, σω = 1.1 (3.60)
3Transformation of PSAS directly into the transport equation for ε turned excruciatingly complex,
resulting in numerous additional source-terms.

4Length-scale correction term Sl, present in the original transport equation for ωh is not written within
the equation 3.59, hence it will not be used in ER-mode.
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Afterwards, the calibrated PSAS term was added to the equation:(︂Dωh

Dt

)︂
SAS

=
(︂Dωh

Dt

)︂
eqn:3.59

+ PSAS,ωh (3.61)

where PSAS,ωh was calibrated as:

PSAS,ωh = 0.004max(2.3713κS2
(︂LSST

Lvk

)︂1/2
− 8T2, 0))

T2 = 3kmax
[︂ 1
k2 (∇k)2,

1
ω2 (∇ω)2

]︂ (3.62)

By combining the transport equation for Reynolds-Stress-Tensor 3.39 with the
SAS-sensitized transport equation for ωh - equation 3.61, the new model was named
Instability-Sensitive Reynolds Stress Model (IS-RSM). It was demonstrated that the
newly established model was able to accurately reproduce the top-level instabilities
in the massively unsteady, separated flows. At the same time, highest level of
modeling practise was achieved since the residual turbulence is captured using 7
different variables, hence the anisotropy can be reconstructed very well. Note that
in previous formulation, several changes to the originally introduced SA-models
are made. First, the exponent in the length scale-ration is changed to 1/2. This
was done primarily to limit the over-resolution of the model, since with quadratic
relation, resolved turbulence will quickly consume the modeled portion, producing a
quasi DNS solution. Based on the derivation in similar publications, e.g. Menter and
Egorov (2006) or Krumbein (2019), exponent could also be set to 1, without the
loss in model consistency. Additionally, model constants were recalibrated. This was
due to the fact that the RSM system of equations is generally more dispersive than
EVM-based system. Namely, next to the application of non-linear functions in source
terms, every instability posesses a six times greater probability of entering into
the system of equations, meaning that the resolution property of the model could
be triggered more easily. Based on numerous test cases reported (in e.g. Maduta
(2013), Jakirlić and Maduta (2015) or Maduta and Jakirlić (2016)), it was shown
that the model is able to substantially improve the results obtained with the RANS
models in different flow cases, all while demonstrating possibilities for substantial
reduction in mesh resolution required by LES.
It is important to stress that in this thesis, original IS-RSM will not be used, but

rather its updated version called Improved-Instability-Sensitive Reynolds-Stress-
Model (IIS-RSM). First, an important change concerning the inclusion of modeled
turbulence within the momentum equation itself is made. Namely, since the flow
of energy (from resolved to modeled scales) is neither uni-directional, nor strictly
limited by using either JH-RSM or IS-RSM, direct incorporation of Reynolds stress
tensor 3.39 into the momentum equation 2.31 will prove too unstable as a formula-
tion. This makes the prevention of the solution blow-out very hard and decreases
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the robustness of the model. In order to prevent this, appropriate blending of
the Reynolds stress tensor, as originally proposed in Basara and Jakirlić (2003) is
performed prior to insertion in the momentum equation in Maduta et al. (2015):

uiuj = (1 − β)uiuj − β(2νtS
d
ij − 2

3kδij) (3.63)

where β is the blending function. While some newer publications (Wegt (2021))
used aRet-sensitized blending, original work of Maduta et al. (2015) used a constant
factor of β = 0.8. However, in the present publication, value of β = 0.7 is used due
to the increased stability. Second, a change in the formulation of PSAS was made.
Namely, by revisiting the equation 3.53, one can model the sub-integral quantity
more easily as:

PSAS,kL ∼ −∂2U

∂y2 u
′v′L2 (3.64)

By assuming u′v′ ∼ k, and by applying the procedure from the equation 3.58, one
arrives at the final form of PSAS used in this work, which depends solely on the
second derivative of velocity field (as reported in Köhler et al. (2018)):

PSAS,ωh = P∆U ∼
√
k
∂2U

∂y2 (3.65)

After the calibration, it takes the form:

P∆U = C1max
[︂
C2

√
k∇2U − C3T2, 0

]︂
T2 = 3kmax

[︂ 1
k2 (∇k)2,

1
ω2 (∇ω)2

]︂ (3.66)

where the model constants take values: C1 = 0.003, C2 = 29.11 and C2 = 40.
Note that since the action of the source terms is not (directly) linked to the Von-
Karman length scale, but rather to the second derivative of the velocity field, depar-
ture from the original notation takes places (PSAS = P∆U). The scale-supplying
equation takes the form:(︂Dωh

Dt

)︂
IIS−RSM

=
(︂Dωh

Dt

)︂
⏞ ⏟⏟ ⏞

3.59

+P∆U⏞⏟⏟⏞
3.66

(3.67)

Hence, the definition of IIS-RSM as a model which will be used in this thesis is
completed: As in the first version, it will use the equation 3.39 for the transport
of Reynolds stress tensor, equation 3.67 for the definition of the turbulence length
scale, and 3.63 for blending. The summary formulation of the model is given in the
Appendix A.
Next to the improvements in the stability and robustness of the model, IIS-RSM

offers a more theoretically interpretable influence of P∆U as an acting mechanism
for the turbulence resolution. The dissipation of modeled terms is increased in
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accordance with the second derivative of the velocity field, which here serves as an
implicit mesh scale indicator, using the previously stated arguments on the operators
reconstruction (note that the ratio of the turbulent-to-Von Karman length scale can
be derived easily from this formulation). Basically, the P∆U reacts to the exhibited
flow curvature in the velocity field and correspondingly enhances the dissipation. On
the other side,

√
k serves as a safeguard term. In case where the modeled turbulence

kinetic energy is reduced towards the residual level, the magnitude of P∆U will be
correspondingly reduced and the new balance between the modeled and resolved
turbulence will be established.

3.4. Modeling of turbulent scalar transport

Flow cases involving heat transfer will be presented in Chapters 6 and 7. Here, the
temperature evolution equation will be added to the RANS system of equations.
However, due to the specific nature of the problem, material properties will be
assumed constant and the temperature will be treated as a passive scalar, transported
by the means of the flow convection and diffusion. As shown, Reynolds averaging
produces an additional (unclosed) term in the resolved-temperature evolution
equation 3.20, ukθ, representing the unresolved (sub-grid) temperature fluxes.
Following the procedure analogously with the derivation of Reynolds-Stress transport
equation, evolution equation for ukθ can also be derived, as shown in Hanjalić and
B. Launder (2022). However, this is due to the complexity, as well as based on the
arguments that will follow in short, too complex of a strategy. Therefore, it will not
be used henceforth.
A simplified approach, without using any transport equation is proposed within

the works of Daly and Harlow (1970), and is known as generalized gradient diffusion
hypothesis (GGDH):

ukθ = cθ
k

ε
ukuj

∂T

∂xj
(3.68)

where cθ is the modeling constant. Here, similar assumption is used as with the
EVM modeling, that the unresolved temperature fluxes should enhance the overall
diffusivity of the flow, hence their dependence on the temperature gradient. Calcula-
tion of uiθ by using the equation 3.68 is most beneficiary due to its implementation
simplicity, and the inclusion of the anisotropic influences.
A final, and most simple approach is the strategy known as simplified gradient

diffusion hypothesis (SGDH), in which the Prandtl analogy is used in conjuncture
with the Boussinesq hypothesis. Similarly to the existence of turbulent viscosity,
sub-grid fluxes are defined using the turbulent diffusivity as:

ukθ = αt
∂T

∂xk
, αt = νt

Prt
(3.69)
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where Prt is the turbulent Prandtl number. By using the SGDH, mean temperature
transport equation 3.20 is transformed into:

∂T

∂t
+ ∂

∂xk
(UkT ) = ∂

∂xk

(︂
(α+ αt)

∂T

∂xk

)︂
(3.70)

In Chapter 6, both GGDH and SGDH approaches are to be tested in conjuncture
with IIS-RSM model.

3.5. Bubble-induced turbulence
Passage of bubbles through the flow field often causes the modulation of turbulence.
As noted by Elghobashi (1994), the outcome of the relative motion between the
dispersed-, and the carrier-phase can be categorized in dependence of the dispersed-
phase loading, as well as in dependence of the Stokes number- St, which compares
the timescale of the reaction of the moving bubble to the surrounding fluid, and
time-scale of the carrier-fluid turbulence. For large St, production of turbulence
supersedes the dissipation mechanisms, and vice versa for the small St. As the
volume-fraction of the dispersed fluid increases, so does the modulation. This is
referred to as the Bubble-Induced-Turbulence (BIT).
Since the interaction of bubbles with the surrounding fluid will not be directly

captured (due to the fulfillment of Milelli criterion, see the previous Chapter),
modulation of turbulence will initially affect the modeled part of the spectrum.
Initial proposals by Sato and Sekoguchi (1975) considered the direct modification
of the turbulence viscosity by adding an appropriately calibrated BIT-term like:

µeff = µ+ µt + µBIT (3.71)

which is applicable within the EVM frameworks. Second approach, used in this
thesis, involves the manipulation of transport equations, governing the sub-grid
turbulence, in sense of adding the BIT-related source terms to them. Additional
production of turbulent kinetic energy is usually associated with the work, exhibited
by the drag force, hence taking the form:

Sk ∝ Fd⃗ · U⃗r (3.72)

where F⃗ d is the drag force, calculated as in the previous Chapter, and U⃗r the relative
velocity: U⃗r = U⃗ b − U⃗ . It is clear that when dealing with RSM modeling, adequate
redistribution of BIT influence among the components of Reynolds-Stress-Tensor is
necessary, This is done in the form:

SR = b∗Sk (3.73)

where b∗ is the appropriately selected tensor. Based on the additional production,
bubble-induced dissipation also needs to be modeled, which is done like:
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3. Turbulence modeling in single- and two-phase flows

Sεh ∝ Sk

τb
(3.74)

where τb is the appropriately selected time-scale, usually connected with the char-
acteristic time of the bubble: τ = db/|Ur. However, since in this work, ωh is chosen
as the scale-supplying variable, its source term is found from Sk and Sε following
the transformation proposed in Rzehak and Krepper (2013):

Sωh = 1
Cµk

Sεh − ωh

k
Sk (3.75)

Within this work, two respective models for BIT will be subjected to scrutiny within
the field of scale-resolving simulations. Naming of each of the respective models is
performed based on the redistribution assumptions:

The Isotropic BIT model by Troshko and Hassan (2001) assumes an equal, and
isotropic redistribution of turbulent kinetic energy among the normal components
of Reynolds stress tensor:

SR,ij = 2
3δijSk (3.76)

where the kinetic energy source term is calculated as:

Sk = Fd⃗ · U⃗r (3.77)

Dissipation is based on the previously-mentioned time-scale of the bubble τ =
db/|Ur|, and found after the calibration:

Sε = 0.45 3Cd

2Cvm

Sk

τb
= 1.35Cd

Sk

τb
(3.78)

where Cvm = 0.5 and Cd are respectively virtual mass-, and drag-coefficient,
defined in previous Chapter.

The Anisotropic BIT model as reported in Ma et al. (2020), developed as a
second-moment closure (SMC) model, using the DNS data of the dispersed bubbly
flow in an upward vertical channel, will be tested as well. Source term for turbulent
kinetic energy is calculated in dependence of bubble Reynolds number, Reb:

Sk = min(0.18Re0.23
b , 1)Fd⃗ · U⃗r (3.79)

whereas the dissipation term is calculated similarly to the 3.78, just with recalibrated
constants:

Sε = 0.3Cd
Sk

τb
(3.80)
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Redistribution of k among the components of the Reynolds stress tensor is performed
like:

SX
R =

⎛⎜⎜⎝
b∗

11 0 0
0 1

2(2 − b∗
11) 0

0 0 1
2(2 − b∗

11)

⎞⎟⎟⎠Sk (3.81)

Here, the assumption is again taken that the injection of energy mainly contributes
to the normal components of Reynolds-stress tensor, of which the fluctuations in
the direction of relative motion (here taken as a cardinal direction x) should be
dominant. Fluctuations in the cross-stream directions are assumed to be equal far
away from the wall. Previous formulation also guarantees that: tr(SX

R ) = 2Sk.
Again, by fitting the DNS data, b∗

11 is calculated as:

b∗
11 = min(0.67 + 0.67exp(370Re−1.2

b ), 2) (3.82)
where for low enough Reb, b∗

11 = b∗
22 = b∗

33 = 2, and model tends to the isotropic
redistribution of energy. In the general case, direction of relative motion is of-course
not guaranteed to coincide with x cardinal direction. Hence, rotation of the SX

R is
performed in order to finally obtain the source-term for the Reynolds-stress-tensor
transport equation:

SR = QR · SSMC
R · QT

R (3.83)
where QR is the rotation matrix with the form:

QR =

⎛⎝ cosβ 0 sin β
sinα sin β cosαb − sinα cosβ

− cosα sin β sinα cosα cosβ

⎞⎠ (3.84)

where the angles α and β are calculated based on the unit vector of relative velocity
u⃗r = U⃗r/|U⃗r|:

α = arccos
(︂ −u3√︁

1 − u2
1

)︂
, β = arccos(u1) (3.85)

Since the development of two aforementioned BIT models was latched to the
EE (TFM) framework, appropriate mapping strategy between the Eulerian and
Lagrangian reference frames is needed for this thesis. Information concerning the
relative-velocities, drag coefficients and particle time-scales are available only while
looping over the Lagrangian particle list. Therefore, any source term, named in this
section can be calculated in the Eulerian frame of reference in the following way:
First, when looping over all the parcels at the beginning of the PISO loop, p-th

parcel will perform Nδti
Lagrangian time steps-δti, j, while within the cell i. Hence,

first the BIT source terms (from either the Isotropic-, or Anisotropic model) are
calculated for the parcel p within the cell i like:
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SL
p,i =

Nδt,i∑︂
j=1

Sδti,j (3.86)

where SL
p represents any of the source terms, calculated for the single parcel, using

the previously outlined equations ( S ∈ {SR, Sk, Sε, Sω}). In this way, value of the
corresponding source term is calculated in the Lagrangian reference frame.
In the second step, SL

p,i needs to be mapped to the Eulerian frame of reference.
During the Eulerian time-step ∆t, Np,i parcels will pass through the cell i. Sum-
mation over all Np,i parcels that resided in the cell during an Eulerian time step is
performed like:

SE
i = 1

∆tVi

Np,i∑︂
p=1

SL
p,i (3.87)

where SE
i is obtained as a corresponding source term in the Eulerian frame of

reference, hence finishing the mapping procedure.
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In this Chapter, advanced post processing techniques that stretch beyond the scope
of pure statistical analysis of the turbulent flow field will be presented. First, the
concept of Proper-Orthogonal-Decomposition (POD) for discovering of spatially
correlated flow structures (that are normally obscured by the turbulence), as well
as the characterisation of their dynamics is outlined. Additionally, visualisation
of turbulence anisotropy through the usage of componentality contours, based on
barycentric coordinates is presented.

4.1. Proper-Orthogonal-Decomposition: finding the
coherent structures in the turbulent flow field

Turbulent flows can, among other definitions, be defined as systems with random
evolution of state variables, possessing infinite number of degrees of freedom. From
an engineer’s standpoint, interpretation and analysis of such a system is made
challenging exactly due to the non-deterministic behaviour of flow variables. Usual
solution, as shown in the previous Chapter, involves the usage of statistical tools
which provide the average (expected) value of the selected flow variable, as well as
any number of its higher statistical moments. In this way, amount of information
describing the flow is reduced, and made more understandable for the engineer.
Although statistical tools represent the back-bone of turbulence analysis, their

application also tends to filter-out small flow structures, leaving only the blurred,
summary influence of all the underlying phenomena on the resulting, averaged flow
image. A procedure outlined in this section tends to partially bridge the gap being
made by the averaging procedure: i.e. to recover the additional data concerning
the most relevant features of the flow, all while keeping the amount of gained
information relatively small, making it interpretable for a human engineer. This
technique is also known as a Reduced-Order-Modeling (ROM), which is a generalized
name for a set of procedures in which the behaviour of highly complex systems is
simplified by isolating a limited number of dominant features that characterise it.
Family of ROM analysis techniques includes sever sub-branches, such as exemplary:
dynamic mode decomposition (DMD) and proper-orthogonal-decomposition (POD).
Interested reader will find a very detailed discussion of the mentioned techniques
in Taira et al. (2017).
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As a start for deriving the Proper-Orthogonal-Decomposition procedure, suppose
that the state of the system is determined with a flow variable U(x, t), which is
either measured or numerically calculated. Without the loss in accuracy, U(x, t)
can be represented as a decomposition (superposition) of some adequately chosen
functions that separate influence of spatial and temporal coordinate like:

U(x, t) =
+∞∑︂
i=0

ai(t)Φi(x) (4.1)

Using this change in basis, U(x, t) can be viewed as a superposition of spatially
coherent features Φi(x), characterized by their temporal evolution ai(t). The term
coherent in spatial sense represents underlying flow structures that show some
degree of correlation, with respect to their time dynamics. By using the correlation,
random, non-probabilistic features that obscure the flow field can be eliminated from
the analysis. As a start, suppose that the measurements from the aforementioned
experiment are made available in both space and time. In the certain time-instant,
recording of U is made in m points in the domain. Results can be stacked into a
column-vector:

Sn =

⎡⎢⎢⎢⎣
U1
U2
...
Um

⎤⎥⎥⎥⎦ (4.2)

which is to be referred to as a snapshot vector. Additionally, let the snapshot Sn

be sampled uniformly, in n equidistant temporal instances. By concatenating the
recording of the snapshot vectors, one gets the m× n snapshot matrix in the form:

S =

⎡⎣ | | |
S1 S2 . . . Sn

| | |

⎤⎦ (4.3)

If the statistically stationary process is observed, mean value will have no temporal
evolution, hence the S is mean-padded (in time):

S = S −mean(S) (4.4)

where the second term contains the row-vise mean. Correlation involving any
pair of spatial data points is contained within the covariance matrix C, which is
calculated as:

C = 1
n− 1SST (4.5)
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In the next step, eigendecomposition of C is performed:

C = ΦΛΦT (4.6)

Eigendecopmosition of mxm real, positive definite matrix produces an orthogonal
matrix Φ, whose columns represent the eigenvectors of C, as well as the diagonal
matrix Λ, whose entries contain a real and positive ordered set of its eigenvalues
λi. Eigendecomposition posses two features that are relevant: first, eigenvectors
Φi represent an orthogonal (spatially-independent) basis for the representation of
S. Furthermore, captured variance of S along each of the calculated vectors Φi is
maximized, and equal to the i-th eigenvalue:

λi = var(ST Φi) (4.7)

which gives the modes certain asset: modes associated with the larger captured
variance are deemed more important. If U were the velocity, than the individual
eigenvalues will determine how much of the fluctuating kinetic energy is contained
in each mode since:

k = 1
2 tr(Λ) (4.8)

As will be seen later on, measured data containing large, energetic transients will
produce a very distinctive set of eigenvalues, where the largest eigenvalues will
contain almost 100% of captured variance. Hence, to summarize the previous
discussion: Proper-Orthogonal-Decomposition is a technique based on finding the
orthogonal basis for the representation of the measured data-set S, which is done by
calculating the eigenvectors of its covariance matrix. By doing so, spatial points that
exhibit some sort of correlation will be isolated, and stacked into an eigenvector Φ,
which is referred to as POD-mode. Due to the orthogonality of the modes, spatially
independent coherent structures are isolated. By the word proper, intrinsic property
of eigendecomposition in maximizing the captured variance per mode is expressed.
Now returning to the equation 4.1, spatio-temporal evolution of the discretely
sampled observable U may be expressed as:

S = ΦAt (4.9)

where the rows of Φ contain the orthogonal modes, which are the spatial basis
function. Time dynamics of the individual modes is stored within the rows of At,
and is readily found by projecting the modes back to the snapshot-matrix S:

At = ΦT S (4.10)

Formally, the process of POD analysis is complete: the coherent, spatially orthog-
onal data structures (modes) are found as eigenvectors of the covariance matrix,
whereas their temporal dynamics it found from the equation 4.10. However, in the
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engineering practice, number of spatial points m is in the range of several tenths
to hundreds of thousands (if the proper spatial resolution is required), which will
mean that the eigendecomposition of a very large, dense covariance matrix C will
need to be performed. This is a time- and memory-consuming task, and often
beyond the capability of computing hardware. An alternative concept known as
a snapshot POD can also be used, by calculating the eigendecomposition of the
temporal covariance matrix C∗, (which posesses the identical non-zero eigenvalues
as C) and then projecting its eigenvectors Ψ back to the snapshot matrix:

C∗ = 1
m− 1ST S (4.11)

C∗Ψ = ΨΛ (4.12)
Φ = SΨ (4.13)

In spite of the accelerated procedure offered by 4.11, (eigendecomposition of
n × n instead of m × m matrix), snapshot POD suffers from the same computing
difficulties as n grows. Although some interesting concepts about acceleration of the
eigenvalue decomposition through the parallelisation of QR algorithm are proposed
in Benson et al. (2013) and Sayadi et al. (2014), eigendecomposition will not be
used as a process for obtainment of POD modes. As an alternative, third concept, a
singular value decomposition (SVD) can be performed:

S = LΣVT (4.14)

where Lm×p is the left singular matrix, Vn×p is the right singular matrix, and
Σp×p, p = min(m,n) is the diagonal matrix, whose entries are called singular
values. Since both L and V are orthonormal matrices, it can be shown that the
singular-value- , and eigendecomposition can be interchangeably used like:

SST = LΣVT VΣLT = L(ΣΣT )LT = C = ΦΛΦT (4.15)

The factor n− 1 is omitted since it will appear in the scaling of time coefficient
in any case. Equation 4.15 shows that instead of the costly calculation of m × m
matrix eigendecomposition, POD-modes can be recovered as a left-singular vectors
from the SVD algorithm, Φ = L, which is computationally much faster. At the same
time, eigenvalues of the modes can recovered from the square of the singular values
λi = σ2

i .
Although the calculation of POD modes using the SVD algorithm proved to be

much faster, it is still prone to memory errors and lengthy calculations, especially in
the case of eddy-resolving turbulence cases that contain numerous data sampling
points for good resolution, as well as due to the lengthy sampling period in order to
obtain good statistics convergence. Hence, the final POD algorithm, as used in this
work is presented below.
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In the first step, QR decomposition of the snapshot matrix is performed like:

S = QR (4.16)

which is computationally much faster. In the second step, SVD decomposition of
the upper triangular matrix R is performed:

LRΣVT = R (4.17)

It can be proven that the matrices Σ and V are identical for the SVD decomposition
of either S or R. The only thing remaining is to calculate the POD modes as:

Φ = QLR (4.18)

With that in mind, the full algorithm for the POD analysis used in this Chapter is
presented below:

Algorithm 2 Procedure for calculation of POD.
1: Assemble all n snapshots of the system involving m sampling points into the
mean-padded snapshot matrix S.

2: Calculate the QR decomposition of S, using the equation 4.16.
3: Perform the SVD-decomposition of R matrix, using the equation 4.17.
4: Obtain the POD modes from the equation 4.18.
5: Calculate the time dynamics from equation 4.10.
6: Store the results.

Implementation of the algorithm was performed in Python programming lan-
guage by the author, and the code is made publicly available at Joksimović (2022a).
Although the concepts presented above stem from the field of linear algebra and
statistics, their combination into the POD algorithm is native to the field of turbu-
lence. Introduction of POD can be back-tracked to Lumley (1967), who attempted
to represent the stochastic nature of turbulence fluctuations through the set of deter-
ministic functions, who reconstruct dominant portion of turbulence kinetic energy.
In the recent years, POD has been established as an analysis tool in numerous studies
of turbulence dominated flows with strong transient components (turbulent wakes,
separation bubbles, transients in the cavity etc.), examples of which can be found
in Murray et al. (2009), Kajishima and Taira (2017), Munday and Taira (2017) and
T. Wang et al. (2022), to name a few.

4.1.1. Initial examples - strengths and weaknesses
In order to demonstrate the usability of POD for the analyses of turbulence fields,
performed in following Chapters, three exemplary numerical experiments will be
performed.
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For the first experiment, the observable U is going to be composed of two modes,
with the form: U = a1Φ1 + a2Φ2, where both Φ1 and Φ2 are 100 × 40 matrices,
composed as:

Φ1,ij =
{︄

1, if 10 ≤ i ≤ 30, and 10 ≤ j ≤ 30
0, otherwise

Φ2,ij =
{︄

1, if 70 ≤ i ≤ 90, and 10 ≤ j ≤ 30
0, otherwise

(4.19)

Here, it is clear that ΦT
1 · Φ2 = 0, hence making the set of orthogonal coherent

structures. At the same time, to make the system statistically stationary, temporal
dynamics of both modes are chosen in the form of sinusoidal functions:

a1 = A1 cos(2πf1t), A1 = 2, f1 = 3
a2 = A2 cos(2πf2t), A2 = 1, f2 = 7

(4.20)

Provided that the POD algorithm is properly applied, original spatial modes along
with the frequency signatures should be recovered without problem.

For the second experiment, temporal dynamics is retained, but the state of
observable is superposed with the random noise from the range R ∈ {−2 ÷ 2},
which corresponds with the amplitude of the first mode, hence imitating the random
turbulent fluctuations: U = a1Φ1 +a2Φ2 +R. Here, the capability of POD algorithm
with reconstructing noisy data will be tested.

For the third experiment, noise will be eliminated, but the spatial orthogonality
will not be guaranteed, and the modes will be changed as:

Φ1,ij =
{︄

1, if 35 ≤ i ≤ 55, and 10 ≤ j ≤ 30
0, otherwise

Φ2,ij =
{︄

1, if 20 ≤ i ≤ 40, and 45 ≤ j ≤ 65
0, otherwise

(4.21)

which imposes a certain overlap between them, since ΦT
1 · Φ2 ̸= 0. Initial state

for all three experiments is shown in Figure 4.1.
Results for the POD analysis for the first experiment are shown in Figure 4.2. As

can be seen, rank of the system in the first experiment is correctly identified, with
two modes recovered. Distribution between the captured kinetic energy perfectly
corresponds to the amplitude ratioA2

1/A
2
2 = 80/20, as shown in Figure 4.2 (top-left).

Additionally, in the Figure 4.2 (top-right) FFT analysis of the time coefficients a1 and
a2 is performed, whereas again, dominant peaks are recovered exactly at frequencies
f1 = 3 [Hz] and f2 = 7 [Hz]. Also, both Φ1 and Φ2 are perfectly reconstructed.
As for the second experiment shown in Figure 4.3, it can be seen that despite the

presence of noise which makes the direct observation of U extremely challenging,
the POD algorithm first correctly identifies the rank (although due to the noise,
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contained variance is now spread among the other modes). Frequency analysis
is once again performed almost flawlessly. Finally, the original modes were (due
to their spatial orthogonality) recovered with high accuracy, although the overall
quality of the reconstruction is somewhat obscured by the noise.
Finally, for the third experiment, following conclusions can be drawn: first, even

in the situation where the spatially-coherent structures are non-orthogonal, POD
provides the correct identification of rank of the system, where the original amplitude
ratio is preserved. Additionally, temporal signatures of both modes are correctly
captured, although the two characteristic frequency peaks appear in both time
dynamics signals. However, it is usually possible to isolate the most energetic peak,
though the underlying structures are not orthogonal. The point where the POD
algorithm fails, is the correct spatial separation of modes. Here, both Mode 1 and
Mode 2 share some common properties, but due to their non-orthogonality, correct
distinction of the underlying phenomena remains very hard. This feature will prove
challenging for exact separation of phenomena who have frequency distinction,
but share the same spatial zone in the flow field. Isolation of spatially coherent
phenomena with a distinct frequency signature named spectral POD (exemplary in
Sieber et al. (2016a)) is out of scope for this publication, but remains an interesting
opportunity for further research.
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Figure 4.1.: POD analysis: Initial state for all three experiments (U(t = 0)). Note the
spatial separation for the first experiment (top), obscured nature of data
in the second experiment (center), as well as partial overlap of two modes
(down).
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Figure 4.2.: POD analysis for the first experiment: captured variance (top-left), FFT
analysis of time coefficients (top-right). Spatial representation of the first
mode (center), and the second mode (bottom).
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Figure 4.3.: POD analysis for the second experiment: captured variance (top-left), FFT
analysis of time coefficients (top-right). Spatial representation of the first
mode (center), and the second mode (bottom).
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Figure 4.4.: POD analysis for the third experiment: captured variance (top-left), FFT
analysis of time coefficients (top-right). Spatial representation of the first
mode (center), and the second mode (bottom).

69



4. Post-processing techniques

4.2. Visualization of Anisotropy - componentality
contours based on barycentric coordinates

As indicated in previous Chapters, seemingly chaotic nature of turbulence may be
presented in a statistical manner through the second-order symmetric tensor uiuj ,
capturing the covariance of the velocity fluctuations. Since the statistical properties
of turbulence are represented with 6 different variables, effortless interpretation
of turbulence statistics is possible only in case of simple geometrical domains such
as: pipe flow, periodic channel, flat plat boundary layer etc., where the principal
direction of the flow is colinear with one of the Cartesian coordinates. In case of the
isotropic turbulence, fluctuations are equally distributed in all directions and all the
normal components of uiuj are equal to 2k/3. In order to assess relative intensity
for each of the tensor components in relation to turbulent kinetic energy, a so-called
anisotropy tensor was already introduced in the previous Chapter, equation 3.29:

aij = uiuj

k
− 2

3δij (4.22)

Due to the definition, aij represents the traceless tensor, and in case of the isotropic
turbulence, it will also represent a zero-tensor. Since aij contains six independent
variables related to turbulence anisotropy (which are also dependent on the exact
orientation of the coordinate system), interpretation of the obtained turbulence
states is performed either by taking the principal components a∗

ii of aij , or by taking
the eigenvalue triplet:

[λ1, λ2, λ3] = eig(aij), λ1 > λ2 > λ3 (4.23)

Domain of realizable turbulence is bounded by three limiting states, which are:
Isotropic state, three-component turbulence - (3C), where the fluctuations in

all directions are of equal magnitude, hence: a∗
ii = 0, λi = 0.

Axisymmetric, two-component turbulence - (2C), where fluctuations of equal
magnitude exist along two directions. This state is also referred as pancake turbu-
lence. Eigenvalues take the form: λ1 = 1/6, λ2 = 1/6, λ3 = −1/3.
One-component turbulence - (1C) is a flow state where the fluctuations exist

only along one direction, and is often denoted as cigar turbulence. Eigenvalues take
the form: λ1 = 2/3, λ2 = −1/3, λ3 = −1/3.

Connecting the limiting states are the intermediary turbulence states:
Axisymmetric expansion connects the states 3C and 1C and is characterized by:

0 ≤ λ1 ≤ 1/3,−1/6 ≤ λ2 = λ3 ≤ 0.
Axisymmetric contraction connects the states 3C and 2C , and is characterized

by: −1/3 ≤ λ1 ≤ 0, 0 ≤ λ2 = λ3 ≤ 1/6.
Two component turbulence connects the states 2C and 1C , and is characterized

by: λ1 + λ3 = 1/3, λ2 = −1/3.
Finally, a most common occurrence is that of plane-strain turbulence, which repre-
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sents an intermediary state between the aforementioned ones. It is characterized at
least one λi = 0. All seven mentioned states can be represented for each point in
turbulent flow in a various ways, exemplary by using the Lumley invariant maps, as
given in Lumley and Newman (1977). However, this way of representation is not
optimal for this work due to the large amount of data points, which will obscure
the graph, and complex geometry of the domains.
Technique applied here was presented in Emory and Iaccarino (2014), and relies

on adopting the RGB colormap (a usual technique for the spatial representation of
scalars), in which every limiting state will be represented by one of the RGB color
triplets: Spatial points with the 3C state of turbulence will be presented by the blue
pixels, 2C by the green pixels, and 1C by the red colored pixels. Any other realizable
state of turbulence will be mapped into a pixel, whose coloration is determined
based on assigning different weights to the RGB colormap:

⎡⎣RG
B

⎤⎦ = C1c

⎡⎣1
0
0

⎤⎦+ C2c

⎡⎣0
1
0

⎤⎦+ C3c

⎡⎣0
0
1

⎤⎦ (4.24)

where the weights C1c,C2c and C3c are directly taken from the barycentric map
of turbulence presented in Banerjee et al. (2007), and are calculated as:

C1c = λ1 − λ2 (4.25)
C2c = 2(λ2 − λ3) (4.26)

C3c = 3λ3 + 1 (4.27)

Note that for 1C: C2c = C3c = 0, for 2C: C1c = C3c = 0 and for 3C: C1c = C2c =
0. In this way, componentality contours of turbulence anisotropy can be plotted
throughout the computational domain. Colormap corresponding to the equation
4.24 is shown in Figure 4.5 (left). In this work however, an alternative colormap is
used, since it enables a more clear differentiation of the anisotropy:

⎡⎣RG
B

⎤⎦ = C∗
1c

⎡⎣1
0
0

⎤⎦+ C∗
2c

⎡⎣0
1
0

⎤⎦+ C∗
3c

⎡⎣0
0
1

⎤⎦ (4.28)

where C∗
ic = (Cic + 0.65)5. As will be seen, this technique is going to ease the

recognition of the limiting states. In the upcoming Chapters, componentality con-
tours will be extensively used for analysis of turbulence anisotropy, and overall
visualisation of flow properties. Colormap presented by the equation 4.28 is shown
in Figure 4.5(right).
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4. Post-processing techniques

Figure 4.5.: Original colormap (left), obtained by using the equation 4.24, as well as
modified colormap (right), according to the equation 4.28.
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5. Flow configuration I: Generation of
inlet turbulence

Within this Chapter, a detailed analysis of the IIS-RSM performance in different flow
configurations and under various conditions will be introduced. Three important
assets will be tested. First, model of turbulence will be systematically tested in
reproducing a transient, fully developed turbulence fields in simple geometries
of straight, circular pipes. Wide range of industrially relevant Reynolds numbers,
including those which surpass the highestRe = 166000 used with IIS-RSM (reported
in Maduta et al. (2017)), will be covered, and the performance of the model will be
qualitatively and quantitatively assessed. In this way, general applicability of the
model will be confirmed. Second, as a result of all the calculations, an extensive
database with full statistical analysis will be created, and the obtained data will
be used further in Chapters 6 and 7. Namely, all the flow configurations listed
in named Chapters require mapping of fully developed and adequately resolved
turbulence onto their inflow boundaries, in order to enhance the physicality of the
solution. By using the precursor simulations in place of the concurrent algorithms
for generation of synthetic turbulence (exemplary Divergence-Free Synthetic Eddy
Method, Poletto et al. (2013)), highest accuracy with respect to model performance
is obtained, as stated by Jarrin et al. (2006). Finally, question of optimal meshing
metrics for the upcoming Chapters will be addressed through the grid-convergence
study of precursor simulations. Here, a grid size leading to the correct prediction of
wall shear stress will be used as an ad-hoc indicator, which can point to the optimal
meshing resolution used for the cases presented in Chapters 6 and 7. In this way,
costly grid-convergence studies involving tenths of millions of cells will be avoided.
Batch of numerical experiments containing 6 different flow cases has been selected.

Each flow configuration represents a circular, periodic pipe flow which can be
characterised by either its mean velocity-, or friction velocity based Reynolds number,
respectively:

Re = UmD

ν
, Reτ = UτD

ν
(5.1)

Previously, Wegt et al. (2022) performed an in-depth study concerning the optimal
geometrical and meshing parameters in case of cyclic, circular domains, with the
aim of producing the resolved precursor turbulence fields. Applied meshing strategy
is henceforth latched on to the conclusions outlined in this thesis.
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5. Flow configuration I: Generation of inlet turbulence

Inflow and outflow boundaries are treated with an OpenFOAM® built-in cyclic
method which eases the quick generation of fully developed turbulence, in which the
fields obtained at the outlet section communicate directly with the inflow boundary.
Axial view of the mesh with typical configuration of the block is presented in Figure
5.1.

Figure 5.1.: Axial view of the typical multi-block, hexahedral mesh, used in all six
precursor cases. Metric corresponding to each case is listed in Table 5.1.

Fully developed, resolved turbulence is obtained in a following way: first, the
flow field is initialised with uniform values of all flow variables, except for the
velocity field. Here, the random perturbation with the magnitude of 100% of the
uniform velocity is initially prescribed in order to quickly trigger the eddy-resolving
capability of the turbulence model. PISO algorithm with two pressure correction
loops, as described in Chapter 2 is used. Variable time stepping is imposed as to
limit the temporal propagation of the solution, and prohibit the blow-up. With use
of low diffusion, second order filteredLinear3 scheme listed in Chapter 2, resolved
turbulence is sustained and statistically steady ratio between the modeled and
resolved turbulence kinetic energy is established.
Table 5.1 gives a summary list of inflow- and meshing parameters for all the cases.

Exact data concerning the inflow conditions (flow rate, viscosity) and geometric
dimensions have been left out intentionally, since the results should be interpreted
in dimensionless form. Columns 4 to 6 give the optimal values for grid resolution.
Mesh employs the use of high-quality, block-structured, hexahedral cells with low
non-orthogonality. This type of meshing strategy offers better reconstruction of
derivatives at cell faces. Height of the wall-adjacent cells is adjusted, as to allow full
resolution of viscous sublayer, hence y+ ≤ 1. Cells are characterised by their radial
- ∆r+, circumferential - ∆θ+ and axial - ∆z+ size. All parameters are normalized
by the wall-normal distance, corresponding to y+ = 1. Results in the last column
are explained in short.
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Table 5.1.: Inflow conditions and optimal meshing metrics for all six precursor cases.

No. Re Reτ ∆r+ ∆θ+ ∆z+ ∆uτ [%]
1 12795 384 1÷7 7 21 2.14
2 25853 712 1÷11 11 33 3.03
3 59862 1499 1÷30 30 120 3.82
4 86757 2087 1÷40 40 160 4.75
5 107893 2537 1÷70 70 210 2.51
6 380000 7901 1÷100 100 300 3.2

Usually, finding the optimal mesh resolution in scale-resolving simulations repre-
sents a time-exhausting task, where first the initial transient needs to be successfully
eliminated, followed by the lengthy averaging period. Finally, whole process is
repeated until the mesh convergence is reached, and the physically sound solution
is obtained. Based on the author’s experience, duration of this process can be sub-
stantially reduced. First, during every simulation time-step, instantaneous value of
the surface-averaged wall shear stress (WSS) τw is calculated as:

τw(t) = 1
Awalls

ˆ
Awalls

τ(t) · n⃗dA (5.2)

Based on numerous try-outs, it was found that the cases where the value of τw

(calculated per equation 5.2) corresponds closely with theoretical estimation 1,
prediction of all the statistical properties of the flow will be very accurate. Hence,
WSS proved to be a remarkably reliable indicator of the physicality of the solution.
In the second step, evolution of WSS is monitored, as shown in Figure 5.2.

Figure 5.2.: Evolution of Wall Shear Stress, shown as a percentage of theoretical value.
1Under the theoretical estimation, usage of Colebrook–White formula for calculating WSS is meant.
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5. Flow configuration I: Generation of inlet turbulence

In horizontal axis, dimensionless time (so called flow through time FTT = tUm/L,
where L is the flow length of the domain), is shown. On the vertical axis, instan-
taneous value of τw is indicated, as a fraction of theoretical value. One can see
that the initial transient is successfully eliminated after 10-20 flows through time,
after which the averaging process may begin. Red dotted line represents the quasi
steady state value of τw, after the averaging process is finished. In the third step,
averaged value of τw is compared with the theoretical value. If the ratio doesn’t
reach 93% or more of the theoretical value 2, simulation is terminated, refinement
of the mesh takes place and the whole simulation is repeated. At the end, optimal
cell size (columns 4 to 6 in Table 5.1) is determined. Last column in Table 5.1 lists
the smallest deviation of the numerically obtained friction velocity uτ , from the
theoretical one, achieved during the mesh optimisation process.

5.1. Discussion of results
Figure 5.3 shows the iso-surfaces of the instantaneous vorticity field, which are
typically resolved during the simulation. In Figure 5.4 contours of instantaneous
streamwise velocity field are plotted for two exemplary cases, with Reτ = 712
and Reτ = 7901 in order to stress differences in the resolvable structures, which
are visible in ever more detail with increase in Re (and with corresponding mesh
refinement). Note the substantially finer scale recovered with Reτ = 7901.

Figure 5.3.: Visualisation of the resolved flow in the typical precursor simulation: iso-
surfaces of the vorticity magnitude. Background coloring shows the instan-
taneous velocity magnitude.

2Criteria determined in private discussion with Dr.-Ing. Robert Maduta.
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5.1. Discussion of results

(a) Reτ = 712 (b) Reτ = 7901

Figure 5.4.: Visualisation of the obtained flow field for two representative precursor
cases: contours of the instantaneous streamwise velocity.

In order to quantitatively assess the performance of the IIS-RSM, radial profiles
of first- and second order statistics are compared with the DNS data in Figures
5.5 to 5.7. As a DNS reference for comparison of the results, databases published
in Hultmark et al. (2012) and Pirozzoli et al. (2021), involving the cases of fully
developed flow fields in circular pipes will be used. Every numerical profile is plotted
against two "nearest" experimental data sets in sense of Reτ .
In Figure 5.5, dimensionless mean velocityU+ is plotted against the dimensionless

wall normal coordinate y+ for all six precursor cases. It can be stated that all
the profiles show a high level of congruence with experimental data, suggesting
that the model reacts well under the various meshing and flow configurations.
Small deviations in the logarithmic layer are noticeable in cases Reτ = 2537 and
Reτ = 7901. Although the origin of these overshoots could not be completely
clarified, it can be speculated that it correlates closely with the reduced diffusivity
of the flow (which should flatten-out the local peaks in the velocity profiles). This
indicates that possible deviations between the physical reality and the calculated
spatial distribution of turbulence kinetic energy exist in region y+ ≥ 100, leading
to the diminished mixing properties of the mean flow. This hypothesis will be
confirmed in short. However, it can be concluded that independently of the inflow
conditions, model reproduces the first-order statistical properties of the flow in all
of the discussed cases in a satisfactory manner.
In Figure 5.6, distributions of streamwise- u+

z , spanwise- u+
θ and wall-normal u+

r

component of the velocity fluctuations are shown. It can be seen that generally,
very good prediction of turbulence anisotropy has been made, independently of the
inflow conditions. Noted deviations from the experimental data will be addressed.
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5. Flow configuration I: Generation of inlet turbulence

(a) Reτ = 384 (b) Reτ = 712

(c) Reτ = 1499 (d) Reτ = 2087

(e) Reτ = 2537 (f) Reτ = 7901

Figure 5.5.: Profiles of mean streamwise velocity for all six precursor cases.
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5.1. Discussion of results

(a) Reτ = 384 (b) Reτ = 712

(c) Reτ = 1499 (d) Reτ = 2087

(e) Reτ = 2537 (f) Reτ = 7901

Figure 5.6.: Profiles of normal Reynolds stress tensor components for all six precursor
cases.

space
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5. Flow configuration I: Generation of inlet turbulence

Prediction of streamwise velocity fluctuation is very consistent with experiments,
up to the distance y+ ≈ 100, which is a scale surprisingly uniform for all the cases.
In spite of the strong geometric anisotropy of the cells in the vicinity of the wall,
quality of the numerical prediction remains high and all the local extremes in
the data are congruently met. However, past this point, deviations in the profiles
in relation to the experimental database are noted, and streamwise fluctuations
tend to undershoot the expected values for the cases where Reτ ≥ 1499. This
effect remains more pronounced as the Re gets higher. Spanwise and wall-normal
fluctuation components show a rather interesting behaviour, where the wall normal
component slightly overshoots, and spanwise component undershoots the data-set.
This behaviour remains persistent with the increased wall distance, albeit tending
to the correctly predicted, nearly isotropic state in the centre of the pipe. Note that
for the last data-set, Reτ = 7901, two neighbouring sets of DNS were available only
for the streamwise fluctuation component.
Profiles of turbulent kinetic energy are shown in Figure 5.7. It can be stated that

the overall prediction remains good in all the observed cases, with correctly predicted
position, and intensity of near-wall peaks. For the lower range of Reτ = 384 ÷ 712,
predicted profiles fall into the experimental range, whereas for higher Re, there is
a slight undershoot past the wall distance of y+ ≈ 100. As expected, this behaviour
correlates with already mentioned deviations in Reynolds stress tensor components.
Dashed lines represent the modeled part of the turbulent kinetic energy, governed
by the background SMC model. Near the wall, modeled spectrum accounts from
25% to 55% of total turbulence. However, further away from the wall, residual
turbulence vanishes almost completely, which seems to be the main reason for the
demonstrated undershoots of the profiles on higher Re.
In Figure 5.8 (left), ratio between the characteristic mesh scale ∆max, and the

Kolmogorov micro-scale (η) is shown for all cases. Here, the maximum distance
between the nodal points in streamwise direction is taken as a representative mesh
scale, due to the anisotropy of the grid. At low Re, mesh resolution falls close to
the criterion for the LES-required resolution, as proposed in Pope (2000). However,
for higher Re, this ratio increases, being in the range 25 ÷ 450. For the simulations
in the following Chapters, this will mean that the substantial savings in the mesh
size and resolution can be achieved by using the IIS-RSM in place of the LES
frameworks, which would require a more dense resolution. As will be seen in
Chapter 7, mesh size could be reduced by a roughly factor of 10, while keeping the
accuracy of prediction. In Figure 5.8 (right), ratios of modeled-to-total turbulence
kinetic energy have been plotted for every case. Since the mesh scale doesn’t fall
close to the Kolmogorov scale, whole spectrum is not sufficiently resolved at higher
Re, although the modeled turbulence gets completely (nonphysically) dissipated
through the action of P∆U term. In the range of largest Reτ , modeled terms in
the core zone beyond (1 − r)/R = 0.3 ÷ 0.5 fall well below 1%, whereas all the
profiles show a remarkably similar decrease in modeled energy, which seems to be
less dependent on the used meshing resolution and Re.
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5.1. Discussion of results

(a) Reτ = 384 (b) Reτ = 712

(c) Reτ = 1499 (d) Reτ = 2087

(e) Reτ = 2537 (f) Reτ = 7901

Figure 5.7.: Profiles of turbulent kinetic energy for all six precursor cases. Dashed lines
indicate the modeled turbulence kinetic energy.
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5. Flow configuration I: Generation of inlet turbulence

Figure 5.8.: Profiles of maximum cell size, compared with Kolmogorov length scale
(left), and profiles of modeled turbulence kinetic energy ratio (right).

Retention of modeled turbulence in the solution is jeopardized by two independent
mechanisms. First, by the very formulation of the background turbulence model,
there is no guarantee that the divergence of Reynolds stress tensor will be diffusive
in nature (as is the case for eddy-viscosity based models), allowing for the back-
scattering. This means that the unidirectional flow of energy from resolved to
unresolved scales is not ensured. Second, although the proper safeguard in form
of

√
k from the equation 3.66 should theoretically balance-out the modeled and

resolved turbulence, it seems that once the eddy-resolving capability is triggered
through the action of P∆U , inherent instability of the model (augmented through the
action of six independent turbulence variables) pushes the resolution towards the
coarse DNS state in the free-stream regions of the flow. Finally, energy equilibrium is
established with modeled turbulence being negligible far away from the wall. This
behaviour is nonetheless in full congruence with the mathematical definition of the
model, since no limit on the dissipation of modeled quantities is explicitly set.
An interesting concept for improving of the SAS model in terms of limiting the

over-resolution behaviour according to the implicit mesh limit can be found in the
works of Yue et al. (2018), who reformulated a standard DES k − ω − SST model
by readapting the dissipation term in the evolution equation for k:

Dk

Dt
= ...− FDESkω (5.3)

where FDES is a function that explicitly increases the dissipation of the modeled
quantities if the mesh is sufficiently resolved:

FDES = max

{︄
Lt

CDES∆ , 1.0
}︄

(5.4)

with Lt being the turbulence length scale, ∆ the characteristic mesh length
scale, and CDES the calibration constant. Hence, as long as the turbulent length
scale is greater than the mesh length scale, turbulence remains underresolved and
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5.2. Conclusions

the diffusivity of the model is reduced by artificially increasing the dissipation,
which is the approach already discussed in Chapter 3. As an improvement, and to
avoid explicit grid dependence, characteristic mesh scale is substituted with the
Von Karman length scale Lvk, thus creating a so called Improved-Scale-Adaptive-
Simulation paradigm (ISAS):

FISAS = max

{︄
Lt

CISASLvk
, 1.0

}︄
(5.5)

By applying this procedure, IIS-RSM acquires three distinct advantages. First, it
will retain the capability to accurately operate on coarse meshes. Second, it will still
allow the implicit capturing of mesh size variability. Lastly, max function should
automatically prohibit any over-resolution of the mesh. It is to be expected that
such a model will be more diffusive on coarse grids than IIS-RSM. Modification of
the dissipation term in the transport equation for the Reynolds stress tensor 3.39
follows naturally, like:

DRij

Dt
= ...− FISASε

h
ij (5.6)

5.2. Conclusions
In this chapter, IIS-RSM was tested in a periodic pipe geometry, using six test-cases
spanning the wide range of Reynolds numbers. As a result, precursor database is
obtained, which will be used in following Chapters. A mesh-optimization process,
based on the prediction of wall shear stress, provided an ad-hoc estimate for the
required mesh resolution for the upcoming simulations. Based on the results from
all six studies, it was concluded that the mean velocity profiles, as well as the
profiles of velocity fluctuations showed a good level of congruence with the available
experimental data, especially in the near wall zone, proving the applicability of
the model. A rather puzzling behaviour is spotted for all tested Re, where the
modeled turbulence vanishes almost completely in the free-stream zone. Although
the mathematical formulation of the model should theoretically prohibit such a
behavior, levels of modeled turbulence remained very low. This ultimately leads to
the reduced intensity of turbulence in the zones further away from the wall, which
is specially pronounced at higher Re. Despite that, near-wall behaviour is predicted
very accurately.
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6. Flow configuration II: Turbulent
thermal mixing in a T-Junction

In this Chapter, applicability of IIS-RSMwill be tested in simulating turbulent thermal
mixing of two fluid streams, in an industrially-relevant case involving the T-Junction
geometry. T-Junctions represent pipework components in which two fluid streams,
usually with different temperatures/solvent concentrations are dynamically mixed
in its outlet section. They are used over the wide range of industries, in nuclear-
and thermal power plants, processing industries, air-conditioning and many more.
In the following, motivation for application of eddy-resolving models in simulating
T-Junction cases is discussed.
Namely, in spite of the very simple geometry involved, T-junction related flow

topology is characterized with a highly three dimensional nature, with large-scale
top-level transients in the flow field, and high anisotropy of turbulence. Concerning
the mixing of two streams with different temperatures, random fluctuations of
temperature field, combined with the existence of noted large-scale transients
lead to the very serious problem from the standpoint of structural integrity of the
pipe. Namely, thermal pulsations are diffused (and partially damped) through the
viscous sublayer and ultimately transferred to the surrounding wall structure. A
periodically changing temperature field establishes in the wall material, leading
to the propagation of small cracks. Ultimately, structural failure of the wall may
occur due to the thermally-induced high-cycle fatigue. Described process is known
as thermal stripping, and caused several notable incidents in the nuclear industry, of
which a good overview can be found in Jungclaus et al. (1998). One of the especially
consequential accidents, related to the phenomena of thermal stripping, represents
a leakage in the pipework of residual heat removal system of French PWR Civaux 1
nuclear power plant in 1999, resulting in the loss of coolant (Metzner and Wilke
(2005)).
Next to the amplitude of thermally induced stresses, propagation of thermal

stripping phenomena is also tightly related to their frequency content. Chapuliot
et al. (2005) performed an analysis involving the analytical model of fracture
growth under a periodically changing temperature field, and concluded that the
low frequency pulsations at f < 10 [Hz] lead to the highest variation in stresses,
hence carrying the greatest risk for the propagation of thermal stripping.
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6. Flow configuration II: Turbulent thermal mixing in a T-Junction

In line with the industrial relevance of thermal stripping in T-Junctions, research
community featured numerous experimental and numerical publications, with aim
of documenting the most important flow features and validating the numerical
models. A non-exhaustive list of dominantly cited experimental test-cases involves:

1. T-Junction experiment, carried out by Vattenfall Research and Development
AB in 2006 at the Älvkarleby laboratory, reported by Westin et al. (2006).
Both pipes were held at Re ≈ 195, 000, with a temperature difference of
15 [oC] between the streams. Measured data included first- and second-order
statistics of temperature field on the outer walls.

2. Braillard (2008) reported an experimental case named FATHERINO for study-
ing thermal reaction in the solid wall structure of the T-junction. Maximum tem-
perature difference of 75 [oC] could be imposed between the streams, whereas
the Reynolds number based on the maximum flow rate was: Re = 270, 000.
Measured data included the statistical properties of temperature fluctuations
on the outer walls.

3. Another experimental test-case performed at Vattenfall Research and Develop-
ment Laboratory at Älvkarleby was published in Smith et al. (2011). Reported
temperature difference was 17 [oC], and the Reynolds numbers in main-, and
branch pipe were Re = 100, 000 and Re = 80, 000, respectively. Mean- and
RMS data for temperature and velocity fields were reported.

4. Zboray et al. (2007), andWalker et al. (2009) reported a series of experimental
measurements of turbulent mixing in a T-Junction, involving both isother-
mal, and thermal conditions at the Laboratory for Nuclear Energy Systems,
Institute for Energy Technology, ETHZ, Zürich, Switzerland. Next to the rich
database involving spatial measurements of both velocity and temperature
fluctuations, spectral properties of the mixing process were also reported.
Maximum Reynolds number was Re = 43, 860.

5. Kamide et al. (2009) conducted a thermal mixing experiment named WATLON
at Japan Atomic Energy Agency. While holding the branch mass flow constant,
main pipe flow was varied in order to establish a database involving several
distinct flow configurations. Temperature difference between streams was
held at 15 [oC], and maximum Reynolds number, reached in the main pipe,
was Re = 380, 000. Detailed measurements of temperature and velocity
field statistics, along the spectral analysis of temperature fluctuations were
reported.

6. Zhou et al. (2018) performed series of experiments at the Fluid-Structure-
Interaction (FSI) test facility at the University of Stuttgart, with a goal of
investigating thermal fatigue in the mixing zone of the horizontal T-junction.
Temperature difference of 260 [oC]was imposed between two streams, whereas
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the maximum Reynolds number in the main pipe reached Re = 78, 400.
Measurements included the distribution of mean and RMS temperature for
various momentum ratios between streams.

Summarising the conclusions outlined in the noted experimental publications,
it can be stated that the dynamics of the mixing process in a T-Junction is mainly
governed by the inflow momentum distribution between the streams. Dominance in
the main stream momentum leads to the formation of wall-bounded recirculation
zones, involving high velocity and temperature gradients, coupled with a spatially
limited regions of high-intensity temperature fluctuations. Poor mixing at the edge
of recirculation zones produces a thin shear layer with high levels of anisotropy.
Instabilities of the shear layer affect the spectral content of the turbulent mixing,
introducing a top-level transients into the system, which cannot be attenuated by
the wall structure, and who play dominant role in its degradation. Visualisation of
typical such an instability is given in Figure 6.1.

Figure 6.1.: Instantaneous temperature contours on the inner wall surface: Influence
of shear-layer, Kelvin–Helmholtz instabilities on the mixing process.

Over the past two decades, multiple numerical studies, dominantly referring to
the previously described T-Junction experiments have been published. Concerning
the RANS framework, its performance was evaluated to be very poor in predicting
even the first order statistics in various T-Junction cases, irrespective of the used
experimental reference. A good overview of typical RANS results can be found in
Frank et al. (2010), who used k − ω − SST , as well as in Walker et al. (2010),
who cross-compared the performance of the k − ε, k − ω − SST and BSL Reynolds
stress model. Next to the problem in convergence and oversized mesh, notable
mismatches and over/under predictions were present in the data. Although Kok
and Van der Wal (1996) proposed an artificial increase of turbulent mixing through
increase in Prandtl/Schmidt number as an effective remedy to increase the accuracy
of simulation, this solution remains non-genuine and thus not generally applicable.
It is the general opinion within the research community that RANS methods don’t
represent an applicable strategy for capturing T-Junction mixing phenomena.
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6. Flow configuration II: Turbulent thermal mixing in a T-Junction

So far, greatest popularity in predicting the wide range of T-Junction related ex-
periments resides within the LES methods, with numerous publications, exemplary:
Sakowitz et al. (2014), Selvam et al. (2015), R. Tunstall et al. (2016b), Evrim and
Laurien (2020) and Zhou et al. (2022). A very detailed performance comparison of
several different turbulence models is summarised in Smith et al. (2013), where
the results from 29 different research groups (including variations of LES, DDES
and SAS-SST methods) were cross-compared against the experimental reference of
Vattenfall T-junction test rig, reported in Smith et al. (2011). Most reported meshes
fall in the range of 1 to 5 Million cells, with maximum in 70 Million cells. A clear
trend can be spotted in the reported study. Namely, LES methods with a highly
resolved mesh dominantly outperformed other methods ((D)DES,RANS,SAS-SST)
in matching the experimental data. SAS-SST showed some notable deficiencies
which will be discussed further on. Several publications e.g. Tanaka et al. (2010)
and Kim and Jeong (2012), offered a very coarse mesh estimate in the range up
to 1 Million cells, in spite of the high Reynolds number of the flow. Although the
mean fields and transient response of the system were reconstructed within the
acceptable tolerance even with usage of coarse meshes, RMS values of both velocity
and temperature fields were seriously over/underpredicted, especially in the vicinity
of the walls. This underperformance was largely attributed to the usage of wall
functions. Jayaraju et al. (2010) as well as R. Tunstall et al. (2016a) explored the
application of wall-functions in LES studies for thermal fatigue problems. Both
studies demonstrated that their usage leads to the inaccuracies in predicting second
order statistics. A general conclusion concerning the LES methods is that the ex-
cessive computing results are still required, even at modest Reynolds numbers, in
order to achieve desired accuracy in results. Question of industrial applicability of
LES methods in the cases involving thermal mixing and thermal fatigue problems
remains open.
Scale-adaptive methodologies remain among the least used with the T-Junction

related problems. A general trend, spotted in the numerical publications, is that the
used SAS-SST method is either too inaccurate (Smith et al. (2013)), or that it was
very diffusive and prone to destruction of resolved turbulence if the dispersive CD
scheme is not used (Gritskevich et al. (2014)). Natural question that arises is why
the SAS methodology will be tested a new, since its performance was demonstrated
as bad?
To the authors best knowledge, a two equation k−ω−SST −SAS by Egorov and

Menter (2008) was the only SAS model tested so far. Since it has only two equations,
it is less likely that any small perturbation will push the model towards the resolved
state as in by IIS-RSM. Also, since the production of turbulent turbulent kinetic
energy in SAS-SST model can only be positive by definition, no back-scattering may
occur and perturbations in the modeled turbulence cannot protrude the resolved
part so easily. Ultimately, this leads to the overall greater diffusivity of the model.
Additionally, original version of the model, proposed by Egorov and Menter (2008)
imposes a further limitation on the turbulent viscosity, dictated by the WALE model.
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In this version, mesh length scale ∆ is explicitly given. In this way, the original grid-
free formulation vanishes, thus loosing the very important asset of the model. Finally,
since the steady-state inlets are used in both cases, it is questionable whether the
intermediate zone between the resolved and fully modeled flow offers enough spatial
separation, as to allow the second derivative to trigger the resolution capability
adequately. It is within the scope of this Chapter to test the IIS-RSM on the specific
experimental test case and to fill the knowledge gap in relation to the performance
of scale-adaptive methods.
For this reason, already mentioned WATLON experimental test-case, reported by

Kamide et al. (2009) will be used. Next to the very detailed documentation of mean-,
RMS- as well as temporal properties of the flow, high Reynolds number should offer
an industrial asset in substantial computational resource savings. In the WATLON
experiment, T-Junction configuration with 3:1 diameter ratio was subjected to the
varying flow rates in the main pipe, whereas the flow rate in the branch pipe was
held constant. Main pipe diameter is set to Dm = 150 [mm], and the branch pipe
diameter to Db = 50 [mm]. Temperature difference between streams is also held
constant, at 15 [oC]. In dependence on the momentum differences between the
streams, several distinct flow topologies were obtained. They were named based
n the most dominant mixing pattern as: Wall jet (W-Ref), Impinging jet (I-Ref)
and Deflecting jet (D-ref). Intermediate states between these three configurations
are also reported. In this thesis, only two first characteristic configurations will be
reproduced numerically. In Figure 6.2, mixing process in cases W-Ref (left), as well
as I-Ref (right) is visualized, with dyed branch flow. Distinct mixing patterns can
be spotted in the outlet zone in both configurations. Overview of the experimental
conditions for both cases is given in Table 6.1.

(a) Wall jet (b) Impinging jet

Figure 6.2.: Visualisation of the mixing patterns in two discussed test cases in WATLON
experiment.

Schematics of the computational domain with geometrical details is given in
Figure 6.3. Lengths of both inlet pipes were set as to position the mixing zone far
enough from the inflow boundaries. In order to avoid already mentioned problems
with SAS methodology and steady-state inlet treatment, fully developed, three
dimensional turbulence was directly mapped from the parallel running precursor
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6. Flow configuration II: Turbulent thermal mixing in a T-Junction

simulations, outlined in Chapter 5 (see cases: Reτ = 1499, Reτ = 2087 and
Reτ = 7901). Contours of the instantaneous velocity in the precursor simulations
were shown close to the inflow boundary on which they are mapped, in order to
emphasise the resolution obtained at both inlets. Detail showing the mesh quality
in the mixing zone is also shown below.

Table 6.1.: Inflow conditions for WATLON experiment.

Case W-Ref I-Ref
Main pipe Reynolds number [−] 380, 000 59, 862
Branch pipe Reynolds number [−] 86, 757 86, 757
Main pipe average velocity [m/s] 1.46 0.23
Branch pipe average velocity [m/s] 1.0 1.0
Main pipe temperature [oC] 48 48
Branch pipe temperature [oC] 33 33

Figure 6.3.: Schematics of the computational domain used for reproducing WATLON
experiment. Origin is shown in offset to its real position.

Concerning the meshing strategy, multi-block structured hexahedral strategy was
inherited from Chapter 5, due to the geometrical simplicity of the domain and due to
the optimal tradeoff between accuracy and mesh size. Same mesh will be applied in
both cases. Identical resolution in radial and circumferential direction was applied
as in the Chapter 5 for Reτ = 7901 (∆r+ = 1 ÷ 100, ∆θ+ = 100). Close to the
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main inflow, axial resolution is also the same (∆z+ = 300). By approaching the
mixing zone, cells are gradually refined in axial direction and are nearly isotropic
close to the origin (located at the intersection of pipe axes). Downstream of the
origin, cells are again elongated accordingly. Mesh in the branch pipe is of identical
shape, just three times downscaled in cell size. Total number of cells was close to
17 million. Additionally, temperature evolution was reproduced using the equation
3.70. Adiabatic boundary conditions were set at the walls, with constant, prescribed
values at inflow boundaries. Simulations were run till the mean and RMS contours
of all quantities showed convergence. Sub-grid energy fluxes were calculated using
both SGDH and GGDH approach, as outlined in Chapter 3.
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6. Flow configuration II: Turbulent thermal mixing in a T-Junction

6.1. Wall jet case

Magnitude of the instantaneous velocity field is visualized in Figure 6.4. Fully
developed turbulence, initially mapped at both inflow boundaries, sustains its
quality ≈ 1Dm behind the main-, and ≈ 2Db behind the branch inlet. This indicates
that the mixing zone is positioned far enough from the domain boundaries. Due
to the presence of highly isotropic cells in the interconnection zone, very detailed
flow structures can be resolved. Further away from the mixing region, elongation of
cells in the flow direction forces the model to become more dissipative. Hence, the
lower resolution near the outflow boundary is obtained. As a result of the steadily
advected fine flow structures, originating from the mixing, dissipation mechanisms
can not eliminate resolved eddies, and partially resolved structures persist in the
flow down to the outlet. Flow rate of the main stream significantly supersedes the
flow rate of the branch stream, which is unable to penetrate deeply into the mixing
zone. Instead, it exhibits the separation on the trailing edge of the T-junction and
creates a recirculating, low velocity wake that is advected in the vicinity of the
lower wall. Limited separation zone can also be spotted on the leading edge of the
junction. Separation bubble acts as an obstacle towards the main flow, effectively
reducing the cross-section, which produces the local acceleration of the flow above
it.

Figure 6.4.: Contours of instantaneous velocity field, W-Ref case.

Contours of instantaneous kinematic pressure (p/ρ) are given in Figure 6.5.
Due to the incompressible nature of the flow, pressure directly correlates with the
velocity field. Reference, zero-pressure plane is positioned on the domain outlet as
a boundary condition. Downstream of the trailing edge, several large-scale coherent
structures, characterized with low pressure points can be found. These suction zones
originate from the energetic, strongly rotating eddies which are produced adjacently
to the edge of the separation bubble. They are however readily dissipated by the
flow and do not survive past the length of the separation bubble. Aforementioned
separation of the leading edge can be attributed to the high pressure zone, indicating
the strong deceleration of the flow due to the bending.
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6.1. Wall jet case

Figure 6.5.: Contours of instantaneous kinematic pressure field, W-Ref case.

An interesting, model-related feature can be spotted by inspecting the mean
velocity field in Figure 6.6, where the separation bubble exhibits a so-called back-
bending behaviour of the mean dividing stream-line, violating the smooth, spherical
contour of the mixing zone. This deviation can be attributed to the pressure-
redistribution term Φij , (equations 3.34 to 3.37), indicating the prevalence of the
modeled portion of the spectrum close to the wall.

Figure 6.6.: Contours of mean velocity field, W-Ref case.

Further insight into the quality of the mixing process can be found by inspecting
the contours of instantaneous- and mean temperature field, in Figures 6.7 and 6.8.
Following the sharp bending of the branch stream, most of the velocity fluctuations
normal to the dividing streamline are suppressed. Since the main flow is locally
accelerated in the upper portion of the junction, it advects themixingwake adjacently
to the lower wall, all the way to the outlet, with very poor mixing outside of the
separation bubble.
Next to the inspection of the mean-field statistics, distribution and intensity of

temperature field variance needs to be investigated in more detail due to its direct
correlation with the progression of thermal stripping phenomena. Contours of the
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6. Flow configuration II: Turbulent thermal mixing in a T-Junction

Figure 6.7.: Contours of instantaneous temperature field, W-Ref case.

Figure 6.8.: Contours of mean temperature field, W-Ref case.

RMS temperature field are shown in Figure 6.9. It can be seen that the zone of
pronounced amplitude of the temperature field coincided perfectly with the edge
of the mixing wake between the separation bubble and the main stream. Spatially
limited spikes RMS temperature reach approximately 40% of the total temperature
difference. Overall maximum in variance is located at the leading edge of the
junction. Following the shear layer contour, fluctuation intensity gets more diffused
downstream. Since the mixing wake is attained in the vicinity of the solid structure,
contours of RMS temperature are also shown at the lower wall in Figure 6.10.
From the standpoint of variance maximum, two zones in pronounced danger from
thermal stripping are identified. First, the complete leading edge zone experiences
the RMS fluctuations in range ≈ 30% of the total temperature difference. This zone
is particularly endangered not only from the high amplitudes of temperature, but
also due to the structural degradation in the vicinity of the welded zone.
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6.1. Wall jet case

Figure 6.9.: Contours of RMS temperature, W-Ref case.

Namely, in case the T-Junction is fabricated by welding the pipes edges, heat
affected zones (HAZ) are especially prone to crack propagation due to the ther-
mocyclic degradation mechanisms, as demonstrated in Sbitti and Taheri (2010).
Second, two symmetric, high RMS belts are identified, stretching far beyond the
separation bubble length. As will be demonstrated, these characteristic regions are
directly correlated with the zone encapsulating the Kelvin-Helholmtz instability,
which develops in the shear layer at the edge of separation bubble (see Figure 6.1).
Periodic switching of mixing structures produces high amplitudes of temperature
field.

Figure 6.10.: Contours of RMS temperature on the lower wall, W-Ref case.

Comparison of obtained results with the experimental reference is performed on
two vertical lines, positioned at z = 0.5Dm and at z = 1Dm, downstream of the
junction center. In Figure 6.11, image matrix involving the validation of calculated
temperature field is given. Top row refers to the position z = 0.5Dm, and the bottom
row to the position z = 1Dm. Left column refers to the mean values of dimensionless
temperature T ∗ = T − Tmin/(Tmax − Tmin), whereas the right column refers to
the dimensionless RMS temperature T ∗

RMS = TRMS/(Tmax − Tmin). As can be
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6. Flow configuration II: Turbulent thermal mixing in a T-Junction

seen, almost perfect match is obtained not only for mean values, but also for RMS
distribution, which is a significant shift forward concerning the (relatively) coarse
resolution for this class of Reynolds numbers. Size and temperature distribution
in- and outside of the separation bubble are adequately predicted. Intensity of the
fluctuations in the shear layer and at the wall are predicted with a high level of
accuracy as well.

Presented results were produced using the SGDH hypothesis, as outlined in
Chapter 3. Results obtained with GGDH approach gave almost identical results as
SGDH, in terms of the first- and second-order statistical moment of temperature
field. This behaviour is most likely caused by the strong, resolved transients in
the separation bubble, which seem to account for the most of the variance content.
Based on that, differences in performance between GGDH and SGDH could not be
precisely determined. In Chapter 7, strong transients are also present. Therefore,
SGDH will be used henceforth due to the fact that it guarantees the diffusivity of
the thermal energy.

(a) T ∗, 0.5Dm downstream (b) T ∗
RMS , 0.5Dm downstream

(c) T ∗, 1Dm downstream (d) T ∗
RMS , 1Dm downstream

Figure 6.11.: Profiles of the first- and second order statistics for the temperature field.

96



6.1. Wall jet case

Previous analysis is repeated for the velocity field as well. Comparison of the
results is shown in Figure 6.12. Identical configuration involving spatial position
and statistical comparison is retained as in Figure 6.11. Here, quality of prediction
is almost identical to the temperature field. Not only do the mean field values
coincide almost perfectly with measure data, but the RMS values of the velocity
field follow the experimentally obtained values very closely, especially at the edge
of the separation bubble. Slight underprediction is made in the free-stream zone,
with a repeated match on the upper wall. This is most likely a consequence of
the destruction of modeled turbulence in the free stream zone, as discussed in the
previous Chapter.

(a) U∗
Z , 0.5Dm downstream (b) U∗

Zrms, 0.5Dm downstream

(c) U∗
Z , 1Dm downstream (d) U∗

Zrms, 1Dm downstream

Figure 6.12.: Profiles of the first- and second order statistics for the velocity field.

Qualitative comparison of results is performed in Figure 6.13, where the calculated
streamlines of the mean flow are plotted against the experimentally obtained ones.
Visually, very good match is obtained, especially from the standpoint of reattachment
point, overall dimensions of the separation bubble and the flow topology within.
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6. Flow configuration II: Turbulent thermal mixing in a T-Junction

The only feature which was overlooked by the model was small nested vortex in the
vicinity of the separation bubble edge, which is not predicted in the calculation. In
spite of this fact, overall prediction can be considered very good.

Figure 6.13.: Comparison of mean flow streamlines: calculation (left) and experiment
(right).

Anisotropy of the flow, represented through the componentality contours is
visualised in Figure 6.14. Most of the turbulence, both in the free stream zone, as
well as within the separation bubble can be characterised isotropic and hence highly
three dimensional. Zones of increased anisotropy are spotted, as expected adjacently
to the walls (predominantly 2C), as well as in the shear layer zone (2C, tending to
1C), most likely due to the onset of shear layer instabilities which promote strong
amplitudes of velocity field in the direction tangentially to the separation bubble
surface.

Figure 6.14.: Turbulence anisotropy, visualized using componentality contours.

Phenomena of thermal stripping is not only tightly related to the distribution
of temperature field fluctuations, but also to the temporal characteristics of such
fluctuations. They can substantially accelerate structural degradation in case of

98



6.1. Wall jet case

the highly energetic, low-frequency content. Experimental report by Kamide et al.
(2009) shows that in case of theWall jet configuration, notable attenuation of spectral
energy is spotted in the dangerous frequency range, below 10 [Hz], which means that
this configuration posesses pronounced risk of component failure due to the thermal
stripping. In the experimental reference, frequency characteristics of the mixing
structures were obtained using a single point FFT analysis, without correlating the
spectral response of the system with the underlying coherent structures. In order
to enrich the understanding of interaction between the coherent patterns in the
mixing wake and their transient response, POD analysis will be performed.

Figure 6.15.: Streamlines of the mean secondary flow (top row) and contours of the
TRMS (bottom row) at locations: z = 0.5Dm (left column) and
z = Dm (right column).

Downstream location at z = 0.5Dm was deemed an ideal candidate for the
POD analysis, due to the presence of several transient phenomena. In Figure 6.15
flow properties at this point are shown in the cross-section view. Concerning the
temperature field, previous statement on the variance distribution is confirmed
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6. Flow configuration II: Turbulent thermal mixing in a T-Junction

and the region of locally high amplitudes of temperature field coincides with the
shear layer zone. Second, inside of the separation bubble, distinct pair of so called
Dean-eddy vortices is spotted. Origins and dynamics of such secondary flow patterns
are discussed in high detail in the next Chapter. At this point, it will be said that the
symmetric vortex pair emerges due to the curvature of flow streamlines, inflicted
through geometry. It is associated with a so-called switching phenomena, in which
the intensity of one vortex supersedes the other. Vortex switching introduces another
distinct signal in the spectral signature of the temperature fluctuations, which may
affect the thermal stripping. Results of the POD analysis involving the instantaneous
velocity field at the downstream position z = 0.5Dm were given in Figures 6.16 and
6.17.

Figure 6.16.: Topology of first 4 POD modes of the velocity field at position z = 0.5Dm:
POD1 (up-left), POD2 (up-right), POD3 (down-left) and POD4 (down-
right). No color-bar is shown due to the orthonormal nature of modes.
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6.1. Wall jet case

Cumulative distribution of captured energy per mode, given in 6.17 (left) shows
that the first 4 POD Modes contain around 27% of total variance, after which no
distinct mode can be identified. Two most energetic modes: (respectively≈ 10% and
≈ 7% of total variance) reveal a strong, horizontally oriented switchingmotionwhich
is presented in two counter oriented loop patterns. Frequency peaks associated with
these two coherent patterns are practically aligned and show strong accumulation
of spectral energy at St ≈ 0.2, which is a characteristic frequency of vortex shedding
associated with Kelvin-Helmholtz type instabilities, found regularly in the literature
(here, the value of Strouhal number is formed based on the mean pipe flow velocity
and the branch pipe diameter St = fDb/Um). Modes 3 and 4 show mostly vertical
orientation, aligned with frequency peaks at St ≈ 0.3 and St ≈ 0.5 ÷ 0.6. However,
Mode 3 is more widely spread along the edge of separation bubble, whereas the
Mode 4 shows two highly symmetrical directions of fluctuation. Mode 3 is therefore
most likely associated with another, vertically oriented oscillation harmonic of the
shear-layer instability, formed due to the separation of the branch flow at the trailing
edge of the junction. Due to the symmetry and spatial limitation of the streamlines
which connect two vortex centres, Mode 4 is most likely connected with the already
mentioned vortex switching phenomena. Due to the inability of the POD procedure
to distinguish between the non-orthogonal phenomena at the same frequency (only
the spatially-orthogonal structures can be discriminated, not the spatial-temporally
orthogonal structures), both modes share almost identical spectral signature.

Figure 6.17.: Accumulation of captured variance (left) and FFT analysis of time coeffi-
cients (right) for the z = 0.5Dm.

As will be discussed in the next Chapter, theoretical rationale for determining the
characteristic vortex switching frequency, based on the external parameters of the
flow (velocity, flow hydraulic diameter etc.) is not yet established. Therefore, based
on the spectral distance to the principal switching frequency at St ≈ 0.2, one can
deem St ≈ 0.3 to be the frequency associated with the vertically oriented pulsation,
originating from the flow separation, whereas the frequency St ≈ 0.5 ÷ 0.6 can
be associated with the vortex switching. All frequency signatures share a common
−5/3 slope in the certain part of the spectrum, indicating that the POD analysis
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6. Flow configuration II: Turbulent thermal mixing in a T-Junction

also confirms the proper spectral resolution of the flow with IIS-RSM. Most of the
aforementioned frequencies appear in range f < 10 [Hz], meaning that dominant
processes, appearing in the mixing zone, carry pronounced risk for the propagation
of thermal stripping. For the final assessment of the wall structure’s susceptibility
to thermal stripping, POD Analysis is repeated on the instantaneous temperature
field, projected on to the lower wall. Mode importance as well as the FFT Analysis
of time coefficients are shown at Figure 6.18. Additionally, spatial visualisation of
modes is given in Figure 6.19.

Figure 6.18.: Accumulation of captured variance (left) and FFT analysis of time coeffi-
cients (right) for the temperature field POD analysis at the walls.

Accumulation of captured energy per-mode doesn’t have a clear interpretation and
the diminishing of captured variance progresses with higher mode number. Again,
only the first four modes will be presented. Modes 1 and 2 clearly point to the high-
intensity fluctuation zone in the vicinity of the leading edge and in the zone around
the branch inflow. Modes 3 and 4 dictate the presence of coherent structures more
downwards, in the mixing zone. Inspection of time coefficients reveals a more dense
accumulation of spectral energy around St ≈ 0.2 for all inspected modes, which
indicates that the thermal stripping phenomena is mostly governed by the Kelvin-
Helmholtz instabilities. Additional phenomena like separation induced pulsations in
the vertical direction, as well as vortex switching, related to the separation bubble,
have very little influence on the thermal pulsations in the wall structure.
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6.1. Wall jet case

Figure 6.19.: Intensity of first 4 POD modes of the temperature field at the walls:
POD1 (up), POD2 (center up), POD3 (center down) and POD4 (down).
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6. Flow configuration II: Turbulent thermal mixing in a T-Junction

6.2. Impinging jet case
Concerning the Impinging jet case, all the usual techniques used for analysis in the
Wall jet case were used here as well. In Figure 6.20, contours of the instantaneous
velocity magnitude are shown. Flow topology is practically reversed, and due to
the distribution in momentum, branch flow penetrates the main flow completely,
exposing the upper wall structure to the temporally changing cold stream, which
stretches and mixes with the hot flow along the upper wall. Additionally, central
region downstream of the branch jet exhibits elevated levels of turbulence, which is
directly visualized through the presence of top level, resolved scales that are more
clearly defined in comparison with an upstream region.

Figure 6.20.: Contours of instantaneous velocity field, I-Ref.

Contours of instantaneous pressure, shown in Figure 6.21 reveal several coherent
vortices stemming from the separation at the leading edge. Additionally, zones of
decreased pressure are found in the whole mixing region, downstream of the branch
jet.

Figure 6.21.: Contours of instantaneous pressure field, I-Ref.
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6.2. Impinging jet case

Contours of the instantaneous temperature field in Figure 6.23 reveal that Imping-
ing jet configuration exhibits identical poor mixing in the vicinity of the junction, but
due to the gradual breakage of leading- and trailing-edge separation vortices, mix-
ing process enhances along the branch-jet path. Zone downstream of the junction
reveals a highly resolved region with pronounced mixing.

Figure 6.22.: Contours of instantaneous temperature field, I-Ref.

Mean temperature contours reveal a more uniformly mixed zone in the outlet of
the junction, as compared to the Wall jet case. Upper wall is still predominantly
influenced by the temperature field stemming from the branch jet.

Figure 6.23.: Contours of mean temperature field, I-Ref.

Although the momentum distribution is fundamentally different in relation to
the Wall jet case, second-order statistics of the temperature field reveals some
similarities between two cases, which will in the end affect the thermal stripping
phenomena. Here, zones of maximal amplitudes, coinciding with the shear layer
forming between the branch jet and main flow exhibit very similar level of TRMS

intensity. This is specially notable at the leading edge zone, where the identical
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6. Flow configuration II: Turbulent thermal mixing in a T-Junction

maximum in TRMS is reached. This points to the conclusion that large-scale, top-
level structures stemming from the separation at the leading edge also govern the
mixing process in the zone close to the junction. However, due to the different flow
topology, most of large-scale mixing disappears until the branch stream reaches the
top wall, containing the process in the interior of the domain. Hence, fluctuation
intensity in the vicinity of the upper wall does not exceed 2.2 [oC], which is around
50 % of the fluctuation intensity exhibited by the Wall jet configuration.

Figure 6.24.: Contours of RMS temperature, I-Ref.

Figure 6.25.: Comparison of mean flow streamlines: calculation (left) and experiment
(right).

Concerning the validation of obtained data, no detailed experimental, in-stream
measurements of velocity and temperature statistics are reported in the Impinging
jet case by Kamide et al. (2009). As for the second-order statistics for the tempera-
ture field, its convergence was substantially slower than in the Wall jet case, due
to the lower fluctuation intensity. In the end, no smooth contours of RMS values
for temperature were obtained. Therefore, assessment of the flow will be done
only qualitatively, thus making this section shorter. In Figure 6.25, streamlines
of the mean flow, calculated in the central plane are compared with the experi-
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6.3. Conclusions

mentally obtained ones. Once again, visually adequate prediction is made, both
from the standpoint of the branch flow propagation, as well as in the distribution of
streamlines in the downstream zone, past the branch stream.
Contrary to the previous section where the POD analysis offered some valuable

insights into the flow field, here, POD analysis of neither temperature nor velocity
field offered any interpretable results, and no distinguished coherent structures could
be identified. This is most likely the consequence of wrongly positioned sampling
planes, which were set at the identical position as in the Wall jet case (z = 0.5Dm),
which is probably too far from the zone of energetic transients. Consequently,
they will not be reported further on. Although this finding is disappointing, it is
nonetheless congruent with the results of Kamide et al. (2009), who reported no
isolated peaks in their point-wise FFT analysis of the temperature field.

6.3. Conclusions
In this Chapter, IIS-RSM was tested in the case of complex turbulent mixing of
two streams in straight T-Junction configuration, as reported in the experimen-
tal campaign by Kamide et al. (2009). Two flow topologies named Wall jet and
Impinging jet were tested. Statistical properties of the flow were predicted very
accurately, especially from the standpoint of thermal fluctuations which carry the
crucial role in the thermal-stripping phenomena, and whose propagation was the
primary motivator for the experimental campaign. This has proven that the IIS-RSM
can be successfully applied at the higher end of the Re spectrum, which is a range
usually prohibitive for the usage of LES. At the same time, notable savings in mesh
size were achieved, concerning the relatively high Reynolds number used in this
study. POD technique was used in order to isolate coherent structures in the flow.
It was found that the Wall jet configuration is in prominent danger from thermal
fatigue, due to the large-scale, high energy oscillations in the wake, produced by
the Kelvin-Helmholtz instabilities.
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7. Flow Configuration III: Temporal
dynamics of secondary flows in a
T-Junction with an upstream
elbow

Based on the results discussed in the previous Chapter, it was concluded that IIS-RSM
represents a reliable tool for predicting complex flow patterns over a wide range of
Reynolds numbers. It was shown that large-scale transients in the mixing zone can
be predicted very accurately, especially from the standpoint of the low-frequency
fatigue propagation in the walls. Here, the frequency signatures stemming from the
underlying mixing structures were produced at the spot, without any external, large-
scale transient phenomena. However, industrial pipeworks often include geometrical
features such as upstream bends, which can introduce additional transient behaviour
into the flow, thusmodifying the spectral properties of themixing process. Neglecting
such geometrical details may lead to the loss in accuracy of the underlying CFD
study.
Through the presence of an upstream flow bend, additional unsteadiness is

generated by the action of secondary vortices, which are created as a result of
the streamline curvature. Existence of these secondary flows is already visualized
in Chapter 6, Figure 6.15. On the account of centripetal acceleration, pressure
gradient in the plane perpendicular to the main flow will form, pointing from the
centre of curvature and creating the region of high pressure on the outer-, and
low pressure on the inner side of the bend. In the vicinity of the wall, low inertia
fluid will be forced to move towards the zone of low pressure on the inner side
of the bend. On the account of the continuity, streamlines in the plane normal to
the main flow will form, where the fluid exhibits a secondary motion in the form
of characteristic counter-rotating vortex pair. Existence of such a flow feature was
initially described by Eustice (1910) and analytically analysed by Dean (1928), from
whom they are named Dean vortex pairs. Emergence of secondary flow structures
due to the streamline curvature is common under both laminar and turbulent flow
conditions. Intensity and topology of the secondary flows are dependent on the
diameter-based Reynolds number Re, as well as on the curvature characteristics of
the bend δ = R/Rc, where R and Rc is the pipe- and curvature radius, respectively.
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7. Flow Configuration III: Temporal dynamics of secondary flows in a T-Junction with an
upstream elbow

In the turbulent flows through the sharp bends, Dean vortices exhibit a large-scale
instability, where the pair erratically oscillates between the two bi-stable states,
in which the intensity of one vortex core surpasses the other. Such a transient
response of the secondary flows was first mentioned in M. Tunstall and Harvey
(1968), who investigated flows through both the mitred, as well as sharp bends. The
phenomena was named: swirl switching. By the means of spectral analysis, several
characteristic frequency peaks can usually be found in correspondence with the
swirl switching phenomena. Exact correlation between the switching frequency and
the integral parameters of the flow such as Re or δ is not yet well understood. Over
the recent years, several experimental and numerical studies have been published
(e.g. Kalpakli Vester et al. (2015) and Hufnagel et al. (2018)), aiming at establishing
a database for the vortex switching phenomena. In general, it was found that the
switching frequency is very sensitive to boundary- and modeling conditions such as,
treatment of inlet turbulence, large-scale phenomena in the straight pipe section
upstream of the bend, as well as instabilities of the shear layer in the bend. Despite
using the wide range of Re and δ, no definitive conclusion could be made about
their impact. Apart from the experimental study of vortex-switching by Sakakibara
et al. (2010), Reynolds number corresponding to each of these cases is substantially
lower in comparison with the case studied in this thesis.
Consistently with the results form previous Chapter, T-junction related mixing

phenomena will now be superimposed with the effect of Dean vortex switching,
through the numerical reproduction of the configuration with a 90o upstream bend.
As a validation reference, dynamic Smagorinsky LES study by R. Tunstall et al.
(2016b) is chosen. Schematics of the flow domain is given in Figure 7.1. Main,
hot flow enters through the vertically oriented pipe with the diameter Dm and the
length of 10Dm, and passes through the 90o bend, with the curvature radius of
Rc = 1.4Dm. Bend related coordinate Θ = [0 ÷ 90] is used for characterising the
flow position in the bend. Downstream of the elbow section, flow is mixed with
a branch stream, positioned 2Dm behind the bend exit. Mixing zone features a
so-called reattached jet configuration. An overview of all the flow conditions is
provided in Table 7.1. Note that the temperature is regarded as a passive scalar, and
hence treated in dimensionless form. Total cell number reported in the LES study
was close to 80 Million.
Considering the set-up of the IIS-RSM case, already conducted precursor study

for Re = 107, 893 from the Chapter 5 was run in parallel with main case, mapping
the established fields on to the main inlet boundary. Exemplary, this method is
in congruence with similar studies by Rütten et al. (2005), but differs from the
generation of inlet turbulence in the reference LES case, where the Divergence-
Free-Syntetic-Eddy-Method (DFSEM) by Poletto et al. (2013) was used. Reason for
using the mapped method in place of DFSEM simply stems from the fact that the
application of the DFSEM remained untested in conjunction with the IIS-RSM model.
Details related to the development length, accuracy and modeled-to resolved-ratio
of turbulent kinetic energy remained unclear. Advantages and disadvantages of this
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approach will be discussed along with the interpretation of results. As for the branch
inlet, low Reynolds number prohibited the obtainment of any resolved turbulence
in branch precursor, hence the steady state, prescribed values for each field are
provided at the branch inlet. Next to the inlet fields, all parameters involving the
mesh metrics were taken from the precursor simulation, see Table 5.1 and will not
be repeated here. With precursor pipe included, this results in a mesh size of approx.
7.8 Million cells, including precursors. This is close to the factor 10 reduction in
computational burden, as compared with dyn. Smagorinsky LES study.

Table 7.1.: Geometrical- and inflow conditions. Temperature given in dimensionless
form.

Parameter Main pipe Branch pipe
Diameter [mm] 108 21
Bulk velocity [m/s] 0.89 0.23
Reynolds number [−] 107, 893 5422
Inlet temperature [−] 1 0

Figure 7.1.: Schematics of the flow domain with details of the mesh in the mixing zone.
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7. Flow Configuration III: Temporal dynamics of secondary flows in a T-Junction with an
upstream elbow

7.1. Results
Calculations were performed until the clearly defined contours of secondary flows
were observed, and turbulence statistics reached convergence. In Figure 7.2, con-
tours depicting the instantaneous velocity magnitude are provided for the reference
LES case (top), as well as for the IIS-RSM simulation (bottom). As expected, LES
provides more structural resolution of the flow. In spite of that, IIS-RSM seems to
offer qualitatively congruent flow results. On the outer wall of the bend, curvature
of the flow enforces a local deceleration zone due to the presence of adverse pressure
gradient. Low velocity zones are of similar size and intensity in both studies. Due
to the continuity, region of increased velocity is spotted close to the inner wall.
Approximately 55◦ behind the bend entrance, primary separation zone establishes,
characterised by the region of low velocity, which is separated from the main flow by
the clearly defined shear-layer. Overall size of the primary separation zone is slightly
larger in the case of IIS-RSM simulation. Topology of the flow field in the elbow is
dominantly dictated by the presence of Dean-eddy vortices and secondary flows,
formed in the separation bubble. A detailed discussion of these phenomena will
follow up shortly. Flow field in the whole straight section downstream of the junction
is governed by the structures establishing in the wake of the primary separation
zone.
As for the mixing region close to the junction, instabilities from the main pipe are

propagating all the way to the branch inlet, creating a transient flow response in
the branch pipe. Due to the steady-state treatment of the branch inlet, length of the
branch pipe is shortened in the IIS-RSM study, in comparison with LES reference.
Since the momentum carried by the branch pipe is substantially lower than that in
the main pipe, branch flow is unable to penetrate the main flow significantly and
the locally confined separation bubble forms in the vicinity of the upper wall.
In Figure 7.3, streamlines of the averaged velocity field are shown for two cases.

Coloring represents the intensity of the local streamwise component of the flow.
Here, some more pronounced differences between cases are visible. First, a presence
of a larger primary separation zone is detected in the IIS-RSM case. This possibly
indicates a higher intensity of secondary flows within the elbow. Although the
position of the separation point is nearly identical for both cases, it seems that the
flow field from the IIS-RSM case features an additional, third separation bubble
immediately downstream of the bend. Reasons for this behaviour are not clear, but
are likely linked to the intrinsic behaviour of the model. Distortion of streamlines
is also likely responsible for the retention of separation wake in the vicinity of the
upper wall. Note that the separating shear layer in the LES study never reaches an
apparent horizontal alignment, contrary to the IIS-RSM. None the less, magnitudes
of both data sets are qualitatively mostly congruent with no drastic discrepancies.
As seen in Figure 7.10, ratio of modeled turbulence is elevated in separation

bubble, as well as in the zone adjacent to the upper wall, meaning that the local
flow behaviour is also dictated by the model of turbulence.
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7.1. Results

Figure 7.2.: Contours of the instantaneous velocity field magnitude. LES study by
R. Tunstall et al. (2016b) (top) and IIS-RSM case (bottom).
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Figure 7.3.: Streamlines of the mean flow, LES study (top) and the IIS-RSM (bottom).
Coloring represents a local streamwise component of the flow.

In Figure 7.4, contours of instantaneous temperature field are given. Following to
the qualitative similarity with the reference LES case, only the IIS-RSM temperature
has been plotted. Due to the relatively small mass flux of the branch flow, mixing
process ends in the vicinity of the separation bubble, where the large-scale coherent
structures indicate (as demonstrated in previous Chapter) poor mixing of streams
at the edge of the separation wake.
In Figure 7.5, streamlines in the plane normal to the elbow centerline are depicted

for six angular positions in the bend. Background coloring represents the streamwise
velocity, normalized by the mean flow velocity Um. A clearly developed pair of
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vortices can be spotted at each of the cross-sectional planes. As the flow progresses
through the elbow, both vortices migrate towards the upper wall. Past the angle of
60o ÷ 65o, shear effects change the eddy shape from the originally ellipsoidal, up
to the kidney-like. Secondary currents in the vicinity of the upper wall transport
the low inertia fluid towards the centre, thus influencing the size of the primary
separation zone, defined through the area of small axial velocity. At elbow exit,
influence of centrifugal force vanishes and the vortex pair now migrates towards
the axis of symmetry, as seen in Figure 7.6. Elongation of the streamlines leads to
the breakage of vortex cells into the quadruplet of vortices as seen in Figure 7.6
(b), whereas the uppermost pair continues to dominate the flow. This topology is
retained down to the mixing zone, where the separation bubble related to the branch
jet is formed. However, due to the strong main flow, branch jet is quickly reattached
and vanishes at the distance of 2Db downstream of the junction. Comparison of
the obtained secondary flows with the LES reference is performed on 3 positions
within the straight section, as seen in Figure 7.7. Regrettably, data related to the
secondary flows in the elbow were not available.

Figure 7.4.: Contours of the dimensionless instantaneous temperature field.
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(a) θ = 55o (b) θ = 65o

(c) θ = 70o (d) θ = 75o

(e) θ = 80o (f) θ = 90o

Figure 7.5.: Progression of secondary flows in the elbow. Background coloring denotes
the normalized streamwise velocity magnitude.
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(a) 10Db upstream (b) 6Db upstream

(c) 4Db upstream (d) 2Db upstream

(e) 1Db downstream (f) 2Db downstream

Figure 7.6.: Progression of secondary flows in the straight section. Background coloring
denotes the normalized streamwise velocity magnitude.
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upstream elbow

(a) 7Db upstream (b) 7Db upstream

(c) 1Db downstream (d) 1Db downstream

(e) 2Db downstream (f) 2Db downstream

Figure 7.7.: Comparison between calculated IIS-RSM solution (left) and the LES refer-
ence (right). Streamlines colored by the secondary flow magnitude.
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Upstream of the junction centre, intensity of the secondary flows near the upper
wall, as well as the position of the upper vortex pair have been correctly predicted.
However, kidney-like vortex shape generated by the IIS-RSM model leads to the
complete destruction of the bottom vortex pair. As for the positions downstream of
the junction centre, flow intensity in the vicinity of the upper wall, as well as the
position of the vortices associated with the secondary separation bubble, is predicted
correctly as well. However, in both cases, there are certain deviations from the
reference data in the position of the dominant vortex pair, which migrates more
slowly towards the lower wall, as compared with the LES study.

Figure 7.8.: Profiles of the streamwise velocity in the elbow (top), as well as in the
straight section, downstream of the elbow (bottom). Black lines indicate
the IIS-RSM, and the red ones the LES solution. Position of the vortex
centres in the IIS-RSM case is depicted with the dashed blue line. Position
of the vortex centres in the LES solution are depicted with red dashed line,
at available measurement points.

Profiles of streamwise velocity for both the LES, and the IIS-RSM solution in the
elbow are plotted in the Figure 7.8 (top). As can be seen, although the position of
the separation onset is correctly predicted, separation zone is clearly bigger in the
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IIS-RSM case, which can be attributed towards the higher intensity of the secondary
flows in the vicinity of the wall. As for the position of the vortex pair, it is shown that
it progresses steadily towards the inner wall up to the angle of Θ ≈ 80o, after which
it is reflected back to the center. Same analysis is repeated for the profiles in the
straight section, downstream of the elbow in Figure 7.8 (bottom). Here, LES and
IIS-RSM solution gradually approach, and downstream of the −4Db position, no
significant differences in the velocity profiles are visible. This can be explained by
the gradual weakening of the secondary flows along with the streamwise coordinate.
By comparing the progression of vortex centres for both solutions, a clearly visible
downtrend exists, somewhat stronger with the LES solution. Onset position for the
creation of the vortex quadruplet is clearly matched in both cases, at the position
≈ −8Db, upstream of the junction. Although the flow topology related to the primary
separation has been predicted with some discrepancies, secondary separation and
subsequent reattachment of the branch jet have been predicted with almost perfect
match, showing that branch jet reattaches at the upper wall at the distance ≈ 2Db

past the junction.
Finally, in Figure 7.9, contours of the normalized RMS Temperature are shown

on the lower wall. Although the position and shape of the variance dominated zone
is correctly predicted, comparison with experimental data indicates that maximum
in TRMS is about 20 ÷ 30% underpredicted. As it will be shown in short, dynamics
of the structures around the separation bubble is now dictated more strongly by
the incoming flow, and not by the natural response of the main stream towards the
presence of the separation bubble. This means that the structures generated in the
elbow zone dictate the mixing process. As shown in Figure 7.7 and 7.8, dominant
vortex pair is positioned closer to the upper-wall, in comparison with experimental
reference. This suggests that the vortex switching phenomena is more constricted
in space, which naturally explains the under-predicted variance.

Figure 7.9.: Contours of dimensionless Trms on the junction walls.

In Figure 7.10, contours depicting the ratio between modeled and total turbulent
kinetic energy are given. Due to the direct mapping of the inlet turbulence, resolved
turbulence dominates the region close to the centerline, as well as the zone upstream
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of the elbow and the mixing zone. Again, regions far away from the wall show
almost negligible intensity of modeled turbulence, which falls below 1 %. This
behaviour prevails throughout the domain. Near-wall zone is dominated by the
residual flow, where on average, about 20 % of the total turbulence is modeled. Ratio
of modeled to total kinetic energy shows abrupt increase close to the separation
point in the elbow. This zone of increased modeled turbulence is consequently
advected downstream and largely retained in the vicinity of the upper wall.

Figure 7.10.: Ratio of modeled-to-total turbulent kinetic energy in the IIS-RSM case.

Next to the reproduction of statistical properties of the flow, accurate recovery
of the system’s dynamic response constitutes the applicability of the model. Based
on the results from previous Chapter, it is evident that the cross-flow configuration
between the branch jet and the main stream will introduce certain transient charac-
teristics into the system, thus enabling the propagation of low-rank temperature
pulsations. In order to assess how the secondary flows influence these pulsations,
POD analysis is performed, with aim of capturing dominant directions of vortex
switching and associating them with certain frequency content.
In Figure 7.11, POD analysis of the secondary flow velocity, 7Db upstream of the

junction, is shown. It can be seen that the most energetic flow pattern (around 6%
ot total captured variance) represents the nearly horizontal switching of the upper
vortex pair, created through the elongation of the originally ellipsoidal elbow vortex
structures.
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Figure 7.11.: POD Analysis of the velocity field, 7Db upstream of the junction. Re-
spectively, mean flow (top-left), mode 1 (top-right), mode 2 (center-left)
and mode 3 (center -right). In the bottom row, FFT Analysis of three
time coefficients (left), as well as the accumulation of captured variance
(right) are shown.
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There are at least three characteristic frequencies corresponding to this motion.
First, the most energetic peak at St ≈ 0.21 ÷ 0.27. Spectral position of this peak is
in accordance with the LES data, suggesting that the vortex switching phenomena
was reliably predicted. Second, there is a very low frequency region at St ≈ 0.05
and thirdly, another dominant peak, present at St = 0.5. Their physical significance
can be best understood with interpretation of POD modes 2 and 3. Somewhat
weaker, but strictly horizontal switching can be spotted in mode 2, where the
regions of high variance correspond first with the third separation zone on the upper
wall, and secondly with the vortex switching path. Whereas the vortex switching
path resonates somewhat more weakly in the signal (note the isolated peak at
St ≈ 0.25 ), low frequency motion St < 0.1 is most likely associated with the
shear layer effects. The weakest, third mode (3% of captured variance) reflects
the vertical movement of the vortex pair. This mode is associated with the single
peak at St = 0.5. Noted vertical movement possibly points to the increase in the
variance of secondary flows, caused by the precursor. An unusual behaviour of
all three modes is captured at St = 0.5, suggesting a globally present mechanism.
Explanation is found to be unrelated to the vortex switching phenomena, but in fact
stemming from the precursor simulation. Namely, since the length of the precursor
pipe is 2Dm, artificial pulsations are introduced into the system at the frequency
which corresponds to St = 0.5. In the incompressible fluid, these oscillations are
propagated through the inlet pipe and elbow, hence the additional frequency peaks
on all modes. With respect to the treatment of the inlet turbulence, eliminating
these oscillations would only be possible with usage of the synthetic turbulence,
which is an approach already evaluated as unfit for this Thesis in Chapter 5. Overall,
POD Analysis shows that the vortex switching exhibits spatially complex migration
patterns, with horizontally oriented vortex switching occurring at the theoretically
predicted, dominant frequency of St ≈ 0.25.
POD analysis of the velocity field is also performed at the downstream position,

1Db behind the junction. Here, the horizontally directed switching expressed
through the mode 1 dominates over all other modes (more than 10% of the total
variance accumulated). Contrary to the expectations (high energy of the mode
may suggest a clearly isolated spatio-temporal phenomenon), this mode exhibits a
complex frequency response, with several isolated peaks in the range St = 0.1, up to
St = 0.8. Here, switching phenomena is more dominantly related with the two wall
streams, whose intensity undergoes a transient change. Considering the temporal
response, all peaks shown in previous POD analysis are inherited, although the
relative strength of the vortex switching phenomena loses prevalence (note that the
artificially introduced peak at St = 0.5 dominates the spectrum). Change in vortex
intensity is better reflected in the second POD mode, where the horizontal switching
direction is clearly captured. Spectral peaks migrate towards the higher frequency
region, at St ≈ 0.7 ÷ 0.8. Note that the vortex switching from the separation bubble
is also visible in the upper zone of mode 2. If the analysis from previous Chapter is
to be repeated, frequency response correlating with Kelvin-Helmholtz instabilities
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around the separation bubble should be visible at fDb/Um ≈ 0.21. The expected
frequency response should then lie in the range St ≈ 1.1, which is clearly visible in
the spectrum of the second mode.
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Figure 7.12.: POD Analysis of the velocity field, 1Db downstream of the junction.
Respectively, mean flow (top-left), mode 1 (top-right), mode 2 (center-
left) and mode 3 (center -right). In bottom row, FFT Analysis of three
time coefficients (left), as well as accumulation of captured variance
(right) are shown.

125



7. Flow Configuration III: Temporal dynamics of secondary flows in a T-Junction with an
upstream elbow

Figure 7.13.: POD Analysis of the temperature field, 1Db downstream of the junction.
Respectively, mean flow (top-left), mode 1 (top-right), mode 2 (center-
left) and mode 3 (center -right). In bottom row, FFT Analysis of three
time coefficients (left), as well as accumulation of captured variance
(right) are shown.
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Temperature field is also subjected to the POD analysis, at the identical position,
1Db downstream of the junction. Results are visualized in Figure 7.13. Similarly
to the findings presented in the previous Chapter, zones of pronounced fluctuation
intensity are found at the edge of the separation bubble, where the existence of the
low-frequency, high energy mixing structures statistically promotes high variance of
the temperature field. First mode accounts for around 30% of the total accumulated
variance, and can be the primary indicator of the nature of the temperature-field
switching. Topology of the mode suggests the existence of strong horizontally
oriented switching between two states of local temperature extremums exist. In
the previous Chapter, this motion has been correlated with the natural response
of the system to the anisotropy of the flow, and formation of the Kelvin-Helmholtz
instabilities. Here, inspection of the spectral properties of themode reveals a different
source. First, natural switching frequency of the separation bubble St ≈ 1.1 shows
no distinct peaks, indicating that the mixing process is governed mainly by the
secondary flow, generated and advected downstream of the elbow. Prominent
peaks are found first in the region St = 0.05 ÷ 0.28 and secondly, at St ≈ 0.5,
indicating that the boundary condition related unsteadiness dominantly influences
the flow. This points to two important aspects in predicting the mixing processes
in T-Junction geometries: first, that the artificial unsteadiness, created through the
precursor, exhibits an additional influence on the mixing dynamics. Only by using
the synthetically generated turbulence at the inflow boundaries can this problem
be mitigated. Second point relates directly to the usage of synthetic eddy method.
Namely, all unsteadiness in the LES simulation stems exclusively from the natural
response of the system towards the separation. If the mixing processes are clearly
influenced by any upstream transient (which are a common occurrence in pipelines
like: pumps, valves etc), accuracy in predicting realistic T-Junction conduits can not
be obtained if such a transient is neglected and in that case, synthetic eddy method
will clearly fail to predict the correct mixing dynamics.
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7.2. Conclusions
Results presented in this Chapter demonstrated that complex flow conditions, involv-
ing the secondary flows generated in the upstream elbow, and turbulent, thermal
mixing in the T-Junction may be predicted with a substantial cut in the computa-
tional cost in comparison with the LES methods. Both the statistical properties of
the flow, as well as the dynamical response of the turbulent flow structures were
predicted with the reasonable level of accuracy, since all of the underlying signals
from the LES study were recovered in the FFT Analysis of IIS-RSM results. Addition-
ally, formation of secondary vortex pair and its dynamics showed a good level of
accuracy, since the peak frequency of St ≈ 0.21 − 0.28 corresponds very well with
the reference data. Also, topology prediction of secondary flows and formation of
vortex quadruplet all clearly point to the achieved accuracy of the model.
However, presented simulation setup demonstrated two deficiencies, which de-

cisively affected the accuracy of computation results. First, usage of precursor
simulation introduced artificial unsteadiness, which propagated throughout the
simulation domain and created the synthetic peaks in all frequency signatures. POD
analysis was not able to spatially discriminate this peak from the other modes of
the vortex switching process. Second deficiency may be attributed to the model
itself. It seems that the primary and tertiary separation zones shifted the distribution
of secondary flow patterns and retained the trajectories of the Dean-eddy vortex
pair in the upper zone of the junction. This changed the dynamics of the mixing
structures past the branch inlet, damping the amplitude of temperature fluctuations
in the mixing zone. Since the behaviour of the model was deemed very accurate in
predicting most of the statistical properties in Chapters 5 and 6, noted deviations
from the experimental reference are less likely correlated with the deficiencies of
the model, and more likely caused by its interaction with the boundary conditions.
Future research should therefore be directed into using the synthetically generated
turbulence at all inlet boundaries and concentrate efforts into adequately predicting
the zone downstream of the separation point in the elbow.

128



8. Flow configuration IV: Two phase
flows in buoyancy driven bubble
columns

Results presented in previous Chapters demonstrated that the performance assets of
scale-adaptive, second-moment turbulence closure can be successfully used in the
realm of industrially relevant thermotechnical flow cases, involving high Reynolds
numbers and complex flow conditions. In this Chapter, IIS-RSM performance will
be extended into the area of two-phase, bubbly-laden flows. Turbulent, buoyancy
driven, dispersed gas-liquid flows in the bubble columns will be computed. To
the best of authors knowledge, the only case study involving the scale-adaptive
simulation of gas-liquid flow in the bubble column, not limited to the original
k − ω − SST − SAS model, was published in Ullrich et al. (2014) as well as in
Ullrich (2017), who applied the IIS-RSM in conjuncture with Euler-Euler modeling
paradigm. In quest for validating IIS-RSM with EL framework, a non-exhaustive list
of modeling constrains is presented, making the choice of the validation case very
challenging:
• First, the gas flow rate must be high enough as to ensure reasonably high
Reynolds number. This will make the method competitive with simpler but
computationally more demanding scale-resolving methods like LES. As demon-
strated in previous Chapters, IIS-RSM proves its industrial competitiveness
through the overall savings in the mesh, which justifies its numerical complex-
ity. On the other hand, gas flow rate must not be too high, since only the fully
dispersed, bubbly flow regimes can be adequately captured with EL method.
Other flow regimes typically present in the pipe-like conduits, such as churn-,
cap-, slug- and annular regimes (for details, see Whalley (1996)) will require
cross-hybridisation of EE, EL and VoF models with current methodology, which
is beyond the scope of this work.

• Flow case should be well documented, especially from the point of fist- and
second-order statistics, transient response of the flow, as well as gas void
fraction in order to enable proper validation of model.

• Flow conditions, domain geometry as well as bubble size should be optimally
combined as to allow the cell size small enough to resolve the most dominant
flow features, while at the same time, keep the bubble diameter small enough,
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as not to violate the Milelli criterion. (1.2 < ∆/db). Violation of this lower
mesh limit may lead to the inaccurate solution due to the partial resolution of
the bubble wake. This criterion proved to be substantially problematic from
the standpoint of wall bounded bubbly flows, where the integration through
the viscous sublayer is needed. Due to the violation of Milielli criterion in the
vicinity of the wall (high Re directly corresponding with very thin near wall
cells), interpolation stencil will not be able to correctly capture the interfacial
forces, thus falsely predicting the flow. Although this may be circumvented
by the usage of wall functions, introductory section of Chapter 6 posed the
argument that wall functions produce inaccuracies in the solution, under the
conditions of non-homogeneity, especially in predicting second-order statistics.
An illustrative example represents the upwardly directed bubbly flow through
the sudden expansion, as reported in the experimental study by Fdhila et
al. (1991). Although the correspondingly high Reynolds number, as well
as detailed spatial distributions of measured quantities were provided, flow
configuration posed several simulation problems:
First, based on the authors experience, the fully developed nature of two phase
flow at the inlet proved very challenging to obtain. Although this problem
may be alleviated by the prescription of boundary values for all Eulerian
fields, Lagrangian parcels do not posses such a feature, which deems the
initialization of the correct inflow field extremely challenging. One the other
hand, EE method proved to be unstable in combination with IIS-RSM and false
predicting when combined with meso-scale mesh. Hence, no viable solution
for the treatment of inlet with scale-resolving simulations could be found.
Second, it is overall questionable how the integration through the viscous
sublayer, as well as the overall interpolation between the phases should be
treated. Namely, since the single bubble encompassed around 4% of the small
pipe diameter (as given in Ullrich (2017)), it is assured that the interpolation
stencil will produce some errors in assigning the interfacial forces. A very
interesting remedy for this problem is given in the works of Caliskan and
Miskovic (2021), who proposed a chimera-like approach, involving the usage
of two separate meshes for a single EL case: one fine for the Eulerian fields,
and the other coarse, for the Lagrangian particles, which are fulfilling the
Milielli criterion. In this work though, this approach was not used due to
the programming complexity and time limitation. For the future works with
Euler-Lagrange flows with the usage of scale adaptive simulation paradigm,
this approach should be of highest importance to the researcher.

All the mentioned items represent a very narrow-band filter for the test cases
which may be used for validation of IIS-RSM, as well as for other scale-resolving
strategies. This was reflected onto the scientific community, where the number of
various geometries and flow configurations remains very small. Henceforth, two
distinct experimental configurations, widely dominating in the published literature
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will be tested. First: a wall bounded bubble column experiment, and the second:
turbulent bubbly jet in the wide domain, where the influence of nearby walls posesses
a minute effect on the bubbly plume.

8.1. Gas-liquid flows in wall bounded domains: bubble
column case

Concerning the validation of wall bounded bubbly flows by the scale resolving
methods, various researches use the famous bubble column experiment, reported in
N. G. Deen et al. (2000a), N. G. Deen et al. (2000b) or N. Deen (2001) almost by the
rule. Here, the flow geometry represents the rectangular domain with the square
base of the width W , filled with stagnant water to the height H. At the bottom,
square sparger of the dimension S serves to inject dispersed air bubbles throughout
the domain. Schematics of the domain, including the coordinate axes and up to scale
visualisation of bubbles is presented in Figure 8.1. Bubbles are colored based on
their instantaneous velocity, which will be the object of discussion later on. Reported
results include detailed first- and second-order statistics for liquid and gas phase,
which makes this flow case extremely valuable for the researches. This is reflected
in numerous publications who investigated the application of different modeling
strategies for turbulence, as well as for the inter-phase closure. In the following,
exemplary publications relevant to the field of scale-resolving simulations, dealing
with the flow geometry reported in Deen’s case will be mentioned. Practically from
the beginning, LES models such as Smagorinsky and dynamic Smagorinsky proved
advantageous and generally offered better results in comparison with RANS models.
Dhotre et al. (2013) published a very detailed study, discussing the application of
LES for dispersed bubbly flows, including multiple guidelines for the scale-resolving
simulations as well as recommendations for the future research. Interestingly
enough, they recommended the value of Smagorinsky constant CS to be parameter
subjected to optimisation, rather than to have the notion of modeling constant. This
highlighted the complex nature of turbulence modeling in multiphase flows, even
for numerically simple models belonging to Smagorinsky family.
Stephens et al. (2015) tested Euler-Lagrange method in conjuncture with 4

different closure combinations for lift and drag, as well as 4 different values for the
Smagorinsky constant CS . Overall agreement with the data was reasonably good,
although no definitive conclusion could can be drawn in relation to the optimal
choice of closure laws. It was found that the vertical fluctuation intensity depends
more strongly on the value of CS than the horizontal one, and lower values for CS

gave more accurate predictions, pointing to the advantageous nature of suppressed
numerical diffusion for such flows.
Masood et al. (2015) used Euler-Euler method in combination with three different

turbulence models: k−ε, k−ω−SST −SAS and k−ω−SST −SAS coupled with
Sato model (Sato and Sekoguchi (1975)) for the bubble induced turbulence. k − ε
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model showed least accurate performance of all, leading to the large asymmetry
in the velocity profile. This was attributed to the existence of large-scale, meta-
stable vortices in the flow, whose switching was evidently suppressed through the
higher diffusivity of the k − ε model. In general, similar prediction will always
be achieved with globally unstable flows. Scale-adaptive strategy in combination
with BIT produced reasonable agreement in terms in first order statistics. Levels of
turbulent kinetic energy were also predicted reasonably well, although some notable
under-predictions were present at certain points. When compared with previous
works by Dhotre et al. (2013), no significant difference in performance was found.
Ma et al. (2015) reported an Euler-Euler simulation of the Deen’s case, with

usage of Smagorinsky LES, as well as k − ω − SST − SAS model. Performance
of both models with and without the Sato BIT modeling was investigated. Both
LES and SAS gave very similar results in terms of mean velocity, turbulence as well
as spectral resolution. It was also found that the introduction of BIT increases the
effective viscosity to the point where the fluctuations are more dominantly dumped,
distorting the obtained profiles. Hence, better agreement with the results was found
without the introduction of BIT.
Asad et al. (2017) reported a very detailed Euler-Lagrange study, investigating

multitude of modeling parameters, including the three different modeling closures
for the drag force, as well as the effect of different injection strategies (three different
injection configurations and three different gas inflow velocities). As a sub-grid
model, DDES Spalart-Almaras (P. R. Spalart et al., 2006b) was used. Interestingly,
none of the previously tried combinations of parameters lead to the ultimately
superior performance in producing experimental results. Generally, all models un-
derpredicted the level of turbulent fluctuations, although the prediction of mean
velocity magnitude may be deemed satisfactory. Importantly, this work demon-
strated that the final outcome showed very little dependence on the initial velocity
of the injected bubbles, which will be used when setting the initial conditions in
this work.
Masterov et al. (2018) performed the EL simulation of Deen’s case using 2 different

LES models (Vreman - Vreman (2004) and Smagorinsky), as well as 3 different
DES methods, with k − ε, k − ω − SST and Spalart-Almaras models for residual
turbulence. Although the results for liquid velocity showed reasonable accuracy
for all the turbulence models used (except for DES Spalart-Almaras, which showed
substantial deviations), results for turbulent kinetic energy showed some notable
deviations from the experimental results, independently of the DES model used.
Liu and Li (2018) used Euler-Euler strategy in combination with with dynamic

Smagorinsky model, and compared their results with k−εmodel. Again, LES proved
superior and the overall results were satisfactory both from the standpoint of first
and second-order statistics. Additionally, grid to bubble size spacing ratio was tested,
and it was found that the cells comparable with the bubble scale ∆/db = 1.25 ÷ 1.5
showed superior solution in comparison with either coarser or finer cells. No
substantial difference in result was made by using the Sato BIT modeling. Through
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the frequency analysis of velocity signal, they found an additional spectral slope
of −25/3 to be valid in the high frequency region, deviating from the −5/3 law.
Origins of such a deviation however remained unclear, and need to be subjected to
further research efforts.

Figure 8.1.: Schematics of the computational domain in DEEN’s bubble column case,
with indication of dimensions, as well as visualisation of bubbles. Coloration
of bubbles indicates their instantaneous velocity, with color-bar intentionally
being left-out.

As already said, considering the application of IIS-RSM within the bubble column
case, a very detailed study involving the Euler-Euler framework was published in
Ullrich (2017), with accurately captured both first- and second-order statistics for
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the gas and liquid phase. Here, no utilisation of additional BIT models was neces-
sary. In general, previous publications showed that all scale-resolving simulation
strategies offered mostly similar results, with highest accuracy achieved when the
characteristic mesh size was in the range of bubble diameter. This could point to
the conclusion that LES methods represent an optimal choice due to the numerical
simplicity of the model. However, this may pose an advantage only when the bub-
bly flow occupies the complete or most of the domain volume. In case where the
bubbly plume doesn’t represent the only significant occurrence in the domain (as
demonstrated in the following Chapter), usage of LES like methods may prove to
be too costly for industrial use. Therefore, testing of scale-resolving models has a
distinct requirement.
Concerning the simulation setup and boundary conditions, dimensions of the do-

main are set according to the reference: W = 0.15 [m],H = 0.45 [m]. Sparger width
is set to S = 0.037 [m]. Total of 49 air-injection points are uniformly distributed
across the sparger surface, corresponding in full with experimental reference. Su-
perficial gas velocity JG = 0.0049 [m/s], calculated over the entire cross-sectional
area, is provided from the experimental reference as well. Uniform bubble size of
db = 4 [mm] is prescribed to each computational parcel, and during each second
of the simulation time, 3358 bubbles with zero initial velocity are injected at the
sparger surface. Considering the bubble forces, models for drag-, lift-, virtual mass,
far-field, gravity- and buoyancy force are taken from Chapter 2 without modification.
As provided in Chapter 3, two models for Bubble Induced Turbulence (BIT) will
additionally be tested: an anisotropic model derived by Ma et al. (2020), as well as
isotropic model by Troshko and Hassan (2001), thus making three simulation test
cases in respect to the BIT treatment. As for the Eulerian phase, no-slip boundary
conditions were used for velocity on each of the wall boundaries, except on the
sparger and on the free surface. Although this case represents a wall bounded flow,
regions of dominant interest are located centrally in the plume, which means that
the under-resolution of the wall boundary layer doesn’t carry the decisive role in
the reproduction of experimental data. In order to simplify the model, free surface
boundary is approximated with the free-slip wall. Extensive discussion of validity of
this so called rigid-lid approximation will follow in the next Chapter, where also the
appropriate modifications of turbulence boundary conditions on the free surface will
be derived. Uniform cell size of ∆x = ∆y = ∆z = 5 [mm] was used, thus ensuring
that ∆/db = 1.25. Physical properties for both phases are listed in Table 8.1.

Table 8.1.: Physical properties of liquid- and gas phase.
ρl [kg/m3] ρg [kg/m3] νl [m2/s] σ [N/m]

999.19 1.225 1.14 · 10−6 72.8 · 10−3

For each of the simulations, initial state is set with zero-velocity and zero turbulent
kinetic energy for the liquid phase, without any bubbles in the domain. Injection of
gas phase is coincident with the start of the calculation. After the injection start,
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8.1. Gas-liquid flows in wall bounded domains: bubble column case

certain time is needed for the transfer of kinetic energy, first between the bubbly-
phase and the continuous phase, as well as between resolved and modeled flow,
and finally directly between bubbles and modeled flow (if any BIT models are used).
Due to this time delay, onset of the averaging needs to be determined based on the
energy transfer dynamics, and not solely upon reaching the quasi steady number of
particles in the domain.
Three integral parameters were therefore followed in order to correctly determine

the start of the averaging period:
1) Total volume occupied by the bubbles:

Vbubbles = Nbubbles
d3

Bπ

6 (8.1)

2) Total kinetic energy contained in the resolved scales:

Kresolved =
Ncells∑︂

i=1

1
2ρiU⃗ i · U⃗ iVi (8.2)

3) Total kinetic energy contained in the modeled scales:

Kmodeled =
Ncells∑︂

i=1

1
2ρitr(Rij)Vi (8.3)

Once that all three parameters reach an apparent steady-state behaviour (either
constant value, or constant mean and variance), it can be concluded that the delay
in energy transfer is terminated and that the averaging process may begin. On
average, 3400 parcels are present in the domain in each instant. Instantaneous
view of the column outline, with the visualisation of bubbles is shown in Figure
8.2 for 6 consecutive time instances. Here, case without BIT treatment is used
for demonstration. After the injection, bubble plume exhibits a toroidal evolution
pattern, with maximum in bubble velocity located in the plume center.
After reaching the free surface, computational parcels, representing the bub-

bles, are eliminated from the domain, whereas those captured by the recirculation
vortices are reintroduced into the plume. In Figure 8.3, protrusion of generated in-
stabilities into the domain is visualised on the iso-surfaces, depicting the magnitude
of instantaneous vorticity. Identical time instances as in Figure 8.2 are shown. As
seen, initial resolved structures are located in the plume wake due to the vertically
oriented advection. In Figure 8.4, streamlines of the mean flow are presented for all
three cases. Large-scale vortex pairs serve as a transport medium for the resolved
turbulence, which gradually fills the whole domain. In the background, intensity of
the vertical velocity component is shown. Due to the continuity, flow transported
upwardly in the center is forced to recirculate to the bottom, creating a characteristic
pair of vortices. No substantial differences in velocity magnitude, as well as in the
topology of the velocity field are observable. Regions of the velocity maximum are
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coincide with the plume center, whereas the elliptical zones of equal velocity are
spreading concentrically around it. Centers of largest vortex pairs are located in the
vicinity of the column walls, with another pair of vortices located near the bottom.

(a) t = 0.3s (b) t = 1.5s (c) t = 2.4s

(d) t = 3.3s (e) t = 3.9s (f) t = 5.1s

Figure 8.2.: Visualisation of instantaneous bubble positions, with coloring indicating
the instantaneous velocity magnitude of individual bubbles.
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8.1. Gas-liquid flows in wall bounded domains: bubble column case

(a) t = 0.3s (b) t = 1.5s (c) t = 2.4s

(d) t = 3.3s (e) t = 3.9s (f) t = 5.1s

Figure 8.3.: Visualisation of resolved turbulence protrusion into the domain: iso-surfaces,
depicting the instantaneous vorticity levels are shown. Background coloring
depicts the instantaneous velocity magnitude.
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8. Flow configuration IV: Two phase flows in buoyancy driven bubble columns

Figure 8.4.: Streamlines of the mean velocity field. Background coloring denotes the
vertical velocity magnitude for cases without BIT (left), with anisotropic
BIT (center), and with isotropic BIT (right).

Contours of modeled kinetic energy ratio have been plotted in Figure 8.5. All plots
have been normalized by the maximum ratio of modeled turbulence kinetic energy,
which corresponds to 4%, 48% and 36% for cases without BIT, with anisotropic BIT,
and isotropic BIT respectively. For the case with no BIT, flow is least resolved directly
on the free surface, where the modeled portion of spectrum reaches around 4%.
This zone resembles to a certain extent an impinging jet case. Spectral resolution
changes substantially with the introduction of BIT terms. As can be seen in Figure
8.5 center and Figure 8.5 right, transfer of energy created in the bubble wake
occurs immediately after the plume injection, although at different levels. With the
anisotropic BIT treatment, modeled kinetic energy ratio reaches almost 50% close
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8.1. Gas-liquid flows in wall bounded domains: bubble column case

to the injection point. In the isotropic BIT case, 16 ÷ 20% is modeled. Also, zone
of the increasingly modeled spectrum is stretched further upward, whereas in the
isotropic BIT case, is limited to the injection zone.

Figure 8.5.: Contours of normalized turbulent kinetic energy ratio for the case without
BIT (left), with anisotropic BIT (center), and with isotropic BIT (right).
Contours normalized by the maximum in modeled turbulence kinetic energy,
respectively: 4% (left), 48% (center) and 36% (right).

Anisotropy of turbulence, reflected in the contours of Lumley’s flatness parameter
A, is shown for all three cases in Figure 8.6. It can be seen that for all three
cases, central region of the plume remains highly isotropic, with A having the value
very close to 1. Further away from the plume center, and coincidentally with the
recirculation vortices, turbulence tends to the more anisotropic state, indicated by
the lower value of A. This is likely a consequence of the suppression of horizontal
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8. Flow configuration IV: Two phase flows in buoyancy driven bubble columns

component of turbulence fluctuations further away from the plume zone. A non-
intuitive artifact occurs in the isotropic BIT case as seen in Figure 8.6 (right), where
in the upper zone of the plume, large-scale asymmetry in the flow can be spotted.
This can be attributed to the possibly insufficiently long averaging time.

Figure 8.6.: Visualisation of turbulence anisotropy through the contours depicting the
value of Lumley’s flatness parameter A for cases: without BIT (left), with
anisotropic BIT (center), and with isotropic BIT (right).

For the validation of results, first- and second-order statistics is plotted, using the
experimental samples on two horizontal lines, located at z/H = 0.63 in Figure 8.7
and at z/H = 0.72, as shown in Figure 8.8. Concerning the vertical component of
the velocity field, all three models give accurate predictions which stand in almost
full congruence with the data, with minute differences between them. Meticulous
inspection of the profiles may deem the isotropic BIT case to be least accurate,
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8.1. Gas-liquid flows in wall bounded domains: bubble column case

although only by the small magnitude. Concerning the prediction of vertical velocity
fluctuations, the best results are produced by the anisotropic treatment of BIT,
where the prediction follows the experimental data at closest. Double peaks in the
experimental data are successfully met both by the case without BIT, as well as the
anisotropic BIT, though slightly underpredicted by the former. Isotropic treatment of
BIT performed by far the worst, resulting in underpredictions of vertical fluctuations,
as well as missing the profile shape, having only one characteristic peak in the
centre.

In the case of horizontal fluctuations, case with no BIT treatment performed the
best, matching the data in the middle with high accuracy, whereas the isotropic
BIT gives comparable results. Here, anisotropic BIT model gives some slight over-
prediction. When comparing the calculated levels of turbulence kinetic energy,
it can be stated that case without BIT, as well as with anisotropic BIT treatment
give overall very similar results for k, not only in magnitude, but also in shape of
the profile, matching the double peaks. Isotropic BIT model failed to predict this
behaviour, although correctly matching the level in the column center. Predicted
intensity of turbulence fluctuations is not significantly increased by the usage of BIT
models for this class of flow conditions, which served as an additional redistribu-
tion mechanism, rebalancing the resoled and modeled portions of the spectrum.
This is further confirmed by inspecting the ratio of modeled-to-total turbulence
kinetic energy. Spectral cut-off is as expected at its lowest with no usage of BIT
models (around 1%), and nearly doubled with the usage of isotropic BIT model. At
its extreme, by using the anisotropic BIT model, level of modeled turbulence has
increased more than 10 times in comparison with the case without BIT. However,
since no notable changes can be spotted at the overall levels of turbulence kinetic
energy, previous argument concerning the redistribution of energy remains valid.
Lastly, value of the Lumley’s flatness parameter A was plotted in order to evaluate
the influence of the model to the anisotropy. Again, no significant change has been
spotted between the cases with no BIT, and anisotropic BIT, suggesting the high
quality of the predicted turbulence is for this class of bubbly flows. Isotropic BIT
model leads to the largest anisotropy in the predictions, most likely due to the
suppressed horizontal fluctuations.

Finally, frequency response of the velocity field, sampled at two different positions
is shown in Figure 8.9. In spite of some minute differences between the obtained
signals, all three BIT treatment methods produce almost identical spectral signatures.
Several low frequency peaks in the range f = 0.5 ÷ 2 [Hz], probed closer to the
sparger are visible in the signal, indicating a possible low-rank switching of the
plume. By going further upwards, signal gets more smooth, indicating the vanishing
influence of the plume switching. Both spectral signatures show a physically sound
−5/3 slope in the low frequency region, immediately followed by the −25/3 slope,
which is in accordance with other studies of such case, for example LES by Liu and
Li (2018).
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(a) Vertical velocity (b) Vertical fluctuation intensity

(c) Horizontal fluctuation intensity (d) Turbulence kinetic energy

(e) Modeled turbulence ratio (f) Turbulence anisotropy

Figure 8.7.: Comparison of calculated and experimental results for z/H = 0.63.
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(a) Vertical velocity (b) Vertical fluctuation intensity

(c) Horizontal fluctuation intensity (d) Turbulence kinetic energy

(e) Modeled turbulence ratio (f) Turbulence anisotropy

Figure 8.8.: Comparison of calculated and experimental results for z/H = 0.72.
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Figure 8.9.: FFT Analysis of the velocity magnitude signal, sampled in the column
center at z/H = 0.152 (left), and z/H = 0.352 (right). All three cases
of BIT treatment are cross-compared.
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8.2. Bubble plume in quiescent water
After the fruitful analysis of the bubble column geometry, it was decided to apply
the IIS-RSM onto yet another important industrial case, involving the bubble plume
in the large domain filled with quiescent, non-stratified liquid. Impact of the
recirculation zones and wall presence can be almost completely neglected. As will
be stressed in the next Chapter, such a flow configurations are regularly met in
the areas of geophysical and atmospheric flows, where the application of LES-like
methods is still largely prohibitive from the standpoint of needed resources. It is
expected that the usage of hybrid methods like IIS-RSM should enable the prediction
of flow characteristics with comparable quality as wih LES, while at the same time
achieve the substantial savings in the mesh. Also, selected cases are (in spite of the
dispersed flow regime) characterised by elevated void fractions in the range which
should lead to a more significant contribution of BIT. Injection of energy into the
modeled scales will therefore carry more influence with increasing void fraction of
bubbles. This should help better understand the advantages and disadvantages of
BIT models used.
In total, two experimental cases were chosen for simulation: bubble plume in the

gas stirred, conical ladle by Johansen and Boysan (1988) and the bubble plume in
the cubic domain, by Fraga et al. (2016). In both cases, aquarium stone is placed at
the bottom of the symmetrical domain, filled with initially quiescent water. After
the beginning of the injection, nearly mono-disperse plume develops in the domain.
Instantaneous view of both cases is shown in Figure 8.10, where the bubble parcels
are shown up to scale. Overview of the applied geometric and flow conditions is
given in Table 8.2.

Figure 8.10.: Visualisation of the bubble plume in the cone ladle by Johansen and
Boysan (1988) (left), and in the squared domain by Fraga et al. (2016)
(right).
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Table 8.2.: Geometrical and flow conditions for both bubble plume experiments.

Case No. 1 Case No. 2
Domain Cone ladle Cubic

Base dimensions [m] 0.93x1.1 1x1
Height 1.237 1

Gas flow rate [mm3/s] 470, 000 8, 333
Mean bubble diameter [mm] 3 2

For both cases, identical initial and boundary conditions, as well as fluid properties
were set as in the case with bubble column. As for the meshing strategy, multi-
block hex meshing was employed. Additionally, in the plume zone, cells were split
successively along all three principal axes, as to satisfy the Milelli criterion. In Figure
8.11, top view of the mesh for both cases is shown.

Figure 8.11.: Meshing view for the case of Johansen and Boysan (1988) (left) and
Fraga et al. (2016) (right). Note the central refinement needed for the
fulfillment of Milelli criterion.

However, final results have proven most disappointing from the standpoint of
resolved turbulence. Namely, both cases ultimately return to a RANS solution,
with no, or very little resolved turbulence. In order to initially explain this result,
visualisation of the resolved turbulence progression is given for the first case, which
is characterised with higher gas flow rate. Six different time instants are given.
Additionally, results are compared with LES-WALE model in order to investigate the
reason for the steady state progression.
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8.2. Bubble plume in quiescent water

Figure 8.12.: Comparison of IIS-RSM (left column) and LES-WALE (right column)
performance in the first case, for time instants: t = 1[s] (up), t = 2[s]
(center) and t = 3[s] (bottom). Coloring indicates the intensity of
instantaneous vorticity magnitude.
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Figure 8.13.: Comparison of IIS-RSM (left column) and LES-WALE (right column)
performance in the first case, for time instants: t = 6[s] (up), t = 9[s]
(center) and t = 20[s] (bottom). Coloring indicates the intensity of
instantaneous vorticity magnitude.
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As can be seen, at the beginning of the simulation, followed by the initial few
flows through time, IIS-RSM cases show a behaviour very similar to the LES results.
However, in the later stages of the plume development, it seems that the IIS-RSM gets
progressively diffusive, starting from the top of the ladle and progressing towards
the injection point. Identical behaviour is also observed in the reproduction of the
case by Fraga et al. (2016) and hence, visualisation concerning their experiment
will not be repeated here. Contrary to that, LES-WALE case is characterized by the
retention of resolved turbulence. Explanation for such a model behaviour is found
by observing the levels of integrated resolved kinetic energy (see equation 8.2) for
both IIS-RSM and WALE models, shown in Figure 8.14. Since both cases behaved
nearly the same, comparison is performed only in the case of Johansen and Boysan
(1988), due to the higher gas flow rate.

Figure 8.14.: Temporal progression of the integrated resolved, kinetic energy,see equa-
tion 8.2, with usage of IIS-RSM and LES-WALE turbulence model.

Up to the certain time instant, levels of resolved turbulence in both WALE and
IIS-RSM cases remain nearly the same, which gives almost identical resolution. This
is primarily caused by the initialisation of the case: namely, at the beginning of the
simulation, both cases have the zero-initialised modeled turbulent kinetic energy.
For the IIS-RSM curve, this growth period represents a development time, in which
the energy flows from the resolved, towards the modeled turbulence. From the time
instant t ≈ 3 [s], IIS-RSM curve experiences a sudden change in slope, indicating
that the modeled part of the spectrum exhibits increased influence on the resolved
part. IIS-RSM fails to recover from this state, resulting in the dropping levels of
resolved kinetic energy.
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Various numerical remedies were tried out in order to obtain a resolved turbulence
solution: from the very aggressive schemes for the convective term, such as pure CD
scheme (or in more extreme cases, limited-cubic-scheme), and CN scheme for the
time discretisation. It was expected that the numerical perturbations, caused by the
highly dispersive nature of the schemes, will ultimately trigger the eddy-resolution
capability of the model. Despite of that, IIS-RSM model was always returning
towards the unresolved state, provided that the simulation did not blow out due to
the aggressive schemes.
Finally, and after a lengthy investigation, attention was drawn to the behaviour

of P∆U since it should directly limit the overall growth of modeled turbulence.
Surprisingly enough, the value of P∆U was exactly zero in almost entire zone,
occupied by the bubble plume! This occurrence is thus worthwhile investigating.
By recalling the exact formulation for P∆U , given in 3.66, it is evident that such
a distinct value can be achieved only in case when either the second derivative of
the velocity field is zero (which is clearly not the case, since the initially generated
instabilities are highly resolved), or that the second term C3T2 outweighs the
inhomogeneity detection term C2

√
k∆U . Since the role of C3T2 is to provide a full

RANS closure to the IIS-RSM in the vicinity of the wall, it can be speculated that the
distribution of turbulent quantities in the plume clearly mimics the wall presence,
thus eliminating the action of P∆U completely. Although the obvious remedy will
be to either recalibrate the model or eliminate the T2 term, this will render the
model useless for the cases of wall bounded flows with free stream bubbly plume,
which will be the subject of the next Chapter. Since the obtainment of the resolved
turbulence was not possible under the circumstances of this case, testing of BIT
models would also not follow.
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8.3. Conclusions
In this Chapter, performance of IIS-RSM was tested using the Euler-Lagrange frame-
work in the case of buoyancy driven, gas-liquid dispersed bubbly flow. In addition,
performance of two models for bubble induced turbulence (BIT) was compared
with the case without BIT modeling. Based on the wall-bounded bubble column
case, it was concluded that all three models predict the mean flow velocity with
high accuracy, whereas the prediction of turbulence was substantially better with
usage of either no BIT model, or with anisotropic model. Concerning the impact
of the spectral cut-off, it was concluded that the usage of BIT acts as an additional
redistribution mechanism, moving the cut-off further up the spectrum. It doesn’t
notably change the intensity of turbulence in this case.
Afterwards, the model was tested in two different cases of turbulent bubble

plumes in the wide quiescent domain, in which the influence of the walls can be
mostly neglected. Due to the elevated void fraction of the bubbles, BIT models were
expected to have a more significant influence on the solution. Regrettably, it was
found that the model was unable to retain the resolved turbulence and very quickly,
nearly all resolved scales disappear from the solution domain. It was outlined that
the formulation of the P∆U term itself was to blame for such an occurrence. Since
the second term in its formulation falsely interprets the plume topology to represent
the near wall zone, it renders the P∆U term inactive. Very soon, modeled turbulence
starts prevailing in the domain.
At this point, it is important to stress a few additional facts concerning the

industrial applicability of the BIT models in conjunction with IIS-RSM. Based on
the single phase cases, experience dictates that the small numerical diffusion of the
model gives rise to many potential blowout points, meaning that all the used cases
need to be properly initialised, and boundary conditions well posed. By adding
the additional source terms to the evolution equations for Rij and ωh, already
unstable system is additionally destabilized by adding the explicit correction terms
to the right side of the conservation equations 3.39 and 3.67. Although some future
improvements can be added through the numerical remedies like implicit correction,
cases with additional usage of BIT were not always unconditionally stable in the
solution process (in comparison with single phase and no BIT cases). Sometimes,
restarting of the simulation coupled with increased number of outer correctors
and under-relaxation was needed. Overall, since no substantial improvement in
results was obtained by using the BIT models (but what’s more, the solution process
was destabilized), it was decided that no BIT model will be used in the Chapter 9.
Further work on the use of BIT in conjunction with scale-adaptive models is hence
strongly encouraged, and additional experimental works dealing with dispersed
bubbly flows are therefore urgently needed.
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9. Flow Configuration V: Bubble
plume in open-channel cross-flow

Whereas the object of research outlined in Chapter 8 were exclusively cases in which
the dispersed gaseous phase was introduced to the quiescent water, modeling of
two-phase flows can be substantially more complex if the carrier phase exhibits
additional movement, unrelated with the effects of buoyancy force. Turbulence
characteristics of such a flows are not only dictated by the parameters of bubbly
plume (such as diameter and injection rate), but also through the externally imposed
flow conditions. In case of strong secondary currents, as will be demonstrated,
rotational symmetry of the bubbly plume is lost, and the two-phase system possesses
an externally imposed transient response.
Modeling complexity can be increased if the carrier phase possesses the free

surface, where the additional features such as secondary flows are created. Their
influence is then superimposed with those of the bubbles. These types of flow
patterns are specially relevant in the range of geophysical and atmospheric modeling,
as well as in oil-industry, pollutant tracking and many more. Modeling practices
for the treatment of free surfaces are in principle dictated by boundary conditions,
where in case of the weakly advective flows, inertial forces will be overcome by
the effect of gravity and the transient deformations of the free surface could be
neglected in comparison with the external dimension of the flow. This effect can be
quantified with the Froude number:

Fr = U√
gH

(9.1)

where U represents the free-stream velocity of the flow, and H the characteristic
length scale, usually the depth. In case of Fr << 1, transient deformations of
the free surface may be neglected, and a so-called rigid-lid approximation is used,
where the free-surface boundary is approximated with the free-slip frictionless
wall. Ramos et al. (2019) demonstrated that, in case of low Fr number, sensitive
flow characteristics such as secondary flows and local turbulence intensities can
be captured with the high level of accuracy by using the rigid-lid approximation,
even if the free surface possesses large-scale stationary deformations, exemplary
in open-channel confluences. When all the noted effects are combined within the
single case, a non-exhaustive list of challenges is presented to the modeler. Among
the most important phenomena that need to be accurately simulated are:
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1. Prediction of local and integral characteristics of bubble plume.

2. Prediction of secondary flows and turbulence anisotropy, generated by the
complex boundaries and by the bubble motion.

3. Tackling with highRe flows in terms of the proper turbulence model, operating
at reasonable computational cost.

4. Operating at low diffusivity in order to allow large-scale transients to appear
in the solution.

Publications related to the numerical modeling of the aforementioned phenomena
are not numerous. Exemplary, Mitrou et al. (2018) performed an EL-LES simulation
of the bubble plume inside of the narrow open channel at Re = 52, 363 without
the co-current injecting of air and water. Presented results for the mean velocity
were compliant with the experimental data, with around 22 Million cells used.
Xiao et al. (2021) performed an EE-LES simulation of the bubble-driven plume in
the stratified cross-flow and presented the results for the first-order statistics as
a reference. Cell count was reported similar as in the case by Xiao et al. (2021).
Le Moullec et al. (2008) performed an EE simulation of the cross-flow gas-liquid
wastewater treatment reactor, whereas the performance characteristics of k − ε and
the Reynolds-Stress-Model (RSM) were compared, and the overall results for RSM
showed better congruence with experimental data, although the values of axial
velocity were poorly predicted.
Overall, it can be stated that the LES based models predicted the reported velocity

fields with a high level of accuracy, whereas the computational burden was mostly
prohibitive for the wider industrial application. As expected, results for the RANS
simulation study are more dominantly dependent on the model. As an advantage,
RANS models required substantially reduced computational burden. None of the
previously reported studies provided an in depth analysis of turbulence in respect
to its intensity and anisotropy, as well as the possible large-scale transients, whose
presence will harden the obtainment of statistically steady results. Since all the used
models used exclusively either LES or RANS methodology, problematic concerning
the integration of the hybrid, eddy-sensitized RANS model with the free-surface,
bubble-laden flows remains open. It is within the scope of this Chapter to partially
close this knowledge gap.
An experimental test by Zhang and Zhu (2013) will serve as a data-referencing

case. Main part of the experimental facility represents an open-channel with dimen-
sions 0.65 [m] in depth, by 1.2 [m] in width, thus creating an aspect ratio Ar ≈ 2. A
steady stream of water is pumped through the channel with the free-stream velocity
U = 0.2 [m/s], thus creating a moderately high, hydraulic diameter based Reynolds
number of Re ≈ 249, 000. At the origin, a cylindrical injection column with the
diameter dC = 22 [mm] is placed. Mixture of air and water is pumped through the
nozzle with the diameter of d = 6 [mm], placed at the top of the column at the
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height of h = 120 [mm] from the bottom of the channel. All physical properties
correspond to Table 8.1, from the previous Chapter. After entering the domain,
air-water jet deflects and bends in the direction of the flow, whereas the injected
water breaks from the bubbly plume and gets mixed with the oncoming cross-flow.
Air plume is discharged from the domain at the free surface. Air and water flow
rates can be independently varied, which created a set of 12 different experimental
configurations. For this work, an experimental configuration named ’3-5’ will be
reproduced. Visualization of the experimental flow field is given in Figure 9.1. Fol-
lowing the experimental reference, mean bubble diameter remains nearly constant
along the trajectory of the plume, and the flow will be considered mono-disperse.
An overview of the boundary conditions is given in table 9.1.

Figure 9.1.: Visualisation of the experimental flow case ’3-5’, with a dyed nozzle flow.
Provided from Zhang and Zhu, 2013.

Table 9.1.: Inflow conditions and geometric parameters.
WidthW [m] 1.2
Depth H [m] 0.65

Aspect ratio Ar [−] 1.85
Free stream velocity U0 [m/s] 0.2
Froude number Fr [−] 0.03

Hydraulic diameter DH [m] 1.248
Hydraulic diameter based Reynolds number Re [−] 249, 000
Friction velocity Reynolds number Reτ [−] 5602
Injected air volumetric flow rate Qa [l/min] 3
Injected water volumetric flow rate Qw [l/min] 5

Mean bubble diameter db [mm] 2.11
Injection rate [bubbles/s] 10, 166
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Before applying the model in the-full scale simulation, its performance needs to
be tested in a more simple geometry, in order to assess its prediction capability in
open channel flows. Due to the geometrical simplicity, this will normally be done
like in previous Chapters, by generating the precursor simulation and adapting the
mesh resolution, until satisfactory accuracy has been achieved. Unfortunately, to
the authors knowledge, experimental or numerical data for open-channel flow cases
at comparable Reynolds numbers are not reported. Therefore, performance of the
model will be tested in the case with similar geometry, but with lower Reynolds
number. Later on, numerical analysis will then be extrapolated to the main case.
Prior to the simulation set-up, some more detailed discussion, pointing towards
modifying the boundary conditions on the free surface needs to follow.

9.1. Free-surface modeling considerations

As already noted in previous section, due to the relatively low value of Fr, free
surface may be approximated with a free-slip wall, which is better known as a rigid-
lid approximation. Spectrum is partially governed by the resolved, and partially by
the modeled turbulence, thus promoting the need for accurate assigning of boundary
conditions for both of the underlying sets of flow variables. If the surface normal
coordinate is assigned as z, then for the free-slip, impenetrable wall one obtains at
z = 0:

∂U

∂z
= ∂V

∂z
= 0, W = 0 (9.2)

As for the residual turbulence, a variety of modeling approaches may be used.
Whereas the asymptotic value may be assigned to the sub-scale quantities like uiuj

or k, treatment of scale determining variable remains open to discussion. Some older
date publications, exemplary Gibson and Rodi (1989) suggested a wall-function
approach, where the assumption of a linear growth of a turbulent length scale
away from the surface is imposed. However, Craft et al. (2000) concluded that the
evidence basis for such an assumption lacks, since the results of their free-surface
test case provided to be non conclusive. By using the zero-gradient hypothesis, they
managed to obtain a qualitatively convincing results in the case of the submerged
water jet. Additionally, it is not clear if and how such an approach will affect the
resolution capability of the model. Note that the eddy-resolving formulation is based
on the integration through the viscous sublayer, whereas the wall-function approach
will offer questionable results. With that in mind, an asymptotic boundary conditions
need to be derived for six components of uiuj , as well as for scale-supplying variable
ωh.
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Here, a procedure outlined in Swean et al. (1991) will be used. If one assumes the
complete destruction of wall-normal fluctuation components on the free surface, and
applies the free-slip boundary conditions (∂u/∂z = ∂v/∂z = w = ∂2w/∂z2 = 0),
Taylor-like expansion around z will offer for each fluctuating component:

u = a1 + c1z
2 + ...

v = a2 + c2z
2 + ...

w = b3z + d3z
3 + ...

(9.3)

where ai, bi, ci, ... are the unknown coefficients, independent of z (but depen-
dent of the streamwise- x, spanwise- y, and temporal- t coordinate). After cross-
multiplication and averaging, one gets:

uu = a1a1 + 2a1c1z
2 + ...

vv = a2a2 + 2a2c2z
2 + ...

ww = b3b3z
2 + 2b3d3z

4 + ...

uv = a1a2 + (a1c2 + a2c1)z2 + ...

uw = a1b3z + (a1d3 + b3c1)z3 + ...

vw = a2b3z + (a2d3 + b3c2)z3 + ...

(9.4)

Evidently, all wall-normal components of uiuj may be assigned with zero-value,
Dirichlet-type boundary conditions. Since all the other components of uiuj pos-
sess a finite value on the free-surface, a simple workaround will be to assign the
zero-gradient, Neumann-type boundary conditions to them (note the quadratic
dependency of higher order terms). Separate treatment of boundary conditions for
different components of uiuj may pose certain implementation difficulties. However,
inherent instabilities of the model promote an almost complete destruction of mod-
eled turbulence near the surface, as will be demonstrated shortly. This means that
zero-gradient boundary condition may be assigned to all of the tensor components,
without the notable loss in accuracy, since the major part of the spectrum is governed
by the resolved fields, whose boundary conditions are correctly provided.

Additionally, asymptotic boundary conditions for εij = 2ν ∂ui

∂xk

∂uj

∂xk
may be derived.

Here, only the normal components of εij will be investigated. After a lengthy
derivation, compression of terms, averaging and neglecting of higher order terms,
one obtains:

ε11 = E11
0 + E11

2 z2 + E11
4 z4 + ...

ε22 = E22
0 + E22

2 z2 + E22
4 z4 + ...

ε33 = E33
0 + E33

2 z2 + E33
4 z4 + ...

(9.5)
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where Eii
m are the coefficients absorbing the derivation, cross-multiplication and

averaging of ai, bi, ci, .... As for the dissipation rate ε, derivation is straightforward
after taking one half of the trace:

ε = E0 + E2z
2 + E4z

4 + ... (9.6)

Some obvious differences in relation to the no-slip wall boundary condition are
notable: Although the value for ε is certainly definite at the free-slip surface, a clear
quadratic behaviour around z ≈ 0 can be derived for the free-slip wall, as compared
to the linear dependence on the no-slip wall. Hence, a zero-gradient boundary
condition may be used. By using the same procedure, asymptotic behaviour for
k = 1

2ukuk can be obtained like:

k = K0 +K2z
2 +K4z

4 + ... (9.7)

Since the free-surface value for k is definite (due to the presence of streamwise
and spanwise fluctuations), zero-gradient boundary condition can be used again.

Analogously, the value for the homogeneous dissipation rate εh = ε− 1
2ν

∂2k

∂x2
i

is:

εh = Eh
0 + Eh

2 z
2 + Eh

4 z
4 + ... (9.8)

Finally, for the specific homogeneous dissipation rate, one gets:

ωh = Eh
0

K0 +K2z2 + ...
+ Eh

2 z
2

K0 +K2z2 + ...
+ Eh

3 z
3

K0 +K2z2 + ...
+ ... (9.9)

Since the value for ωh on the wall is finite, validity of zero-gradient boundary
condition will be investigated by deriving the previous equation. Only the first term
in the expansion will be shown. It is obtained as:(︄

∂ωh

∂z

)︄
z=0

= 2Eh
0K2z + ...(︂

K0 +K2z2 + ...
)︂2 + ... = 0 (9.10)

Summarising this section, it has been shown that due to the quadratic behaviour
near the free surface, as well as due to the assumption for the over-resolution of the
model far away from the (no-slip) boundaries, zero-gradient boundary condition
may be enforced for the modeled turbulence variables:

∂uiuj

∂z
= ∂k

∂z
= ∂ωh

∂z
= 0 (9.11)
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9.2. Open-channel developed turbulence

Before proceeding towards the simulation of the complete experimental test case,
some additional steps need to be undertaken. If one aims into repeating the simula-
tion procedure from previous Chapters, the precursor simulation will initially be used
to test the turbulence model in the conditions of similar geometry, to validate results
based on the available experimental data, and to supplement an optimal meshing
parameters which will be used in the main case. Turbulence fields generated in the
precursor phase will then be mapped to the main case inflow.
However, two difficulties are met, related to the present experimental case. First,

despite supplying the detailed measurements for the bubble plume, no data has
been reported on the distribution and dynamics of the velocity field. Second,
precursor phase is substantially more difficult to validate since, to the authors
knowledge, no open-channel DNS/LES simulations cases were reported at Reynolds
number corresponding to the main case. Therefore, the numerical workflow will
be modified. First, the well documented, lower Re experimental case will be
reproduced, and the obtained results will be analysed. After proving the ability
of the model to successfully simulate the free surface flows, the analysis will be
extrapolated towards the higher Re precursor simulation. Tominaga. et al. (1989)
reported an experimental open-channel flow case at Re ≈ 73, 100 with an aspect
ratio Ar = 2. Additionally, Shi et al. (1999) used the identical geometry of the
channel, but with somewhat higher Reynolds number (Re ≈ 91, 400) in their LES
study. Supplied results include mean streamwise velocity and secondary flows, along
with the distribution of turbulence intensity. Within this stage, the LES test case
with higher Reynolds number will be reproduced. Due to the geometrical simplicity,
block-structured hexahedral meshing strategy was used. Near wall resolution was
fine-tuned so as to fully resolve viscous sublayer. Mesh dependency analysis was
performed identically as in previous Chapters, and will not be repeated here. After
reaching the satisfactory resolution and proper prediction of wall shear stress, mesh
size was set to approximately 866, 000 cells. An overview of the optimal mesh metrics
is given in Table 9.2.

Table 9.2.: Mesh metrics for the first open-channel flow case.
Ar U0 ReDh

Reτ Fr ∆x+ ∆y+ ∆z+

2 1.507 90, 400 2157 0.54 90 1 ÷ 30 1 ÷ 30

After superimposing the initial perturbation, equations are integrated in time
and space. In Figure 9.2, isosurfaces of the instantaneous vorticity are used to
visualize the flow. As can be seen, a very resolved flow structures are obtained.
Averaging was performed until the secondary flow contours, along with Reynolds
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9. Flow Configuration V: Bubble plume in open-channel cross-flow

stress components reached convergence. Due to the low intensity of the secondary
currents (as will be demonstrated shortly), exceptionally long averaging time is
needed for the convergence (around 1300 flows through time).

Figure 9.2.: Iso-surfaces of the instantaneous vorticity. Background coloring represents
the instantaneous velocity. Identical orientation of coordinates will be used
in main case.

In Figure 9.3, cross-sectional view of the channel half-width is shown. Contours
of the dimensionless streamwise velocity are compared with an LES reference. A
correspondingly good congruence between two data-sets is obtained.

Figure 9.3.: Contours of the streamwise velocity: LES reference (left), and the simu-
lation results (right). Isolines (shown in black) correspond to the same
levels in both figures.
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9.2. Open-channel developed turbulence

One especially notable feature represents the position of the velocity maximum (so
called velocity-dip phenomena), which is not located at the free surface, but is rather
sub-merged, at the position z/H ≈ 0.7. This phenomena is a standard characteristic
of turbulent flows in narrow open channels and can be explained by the presence
of strong secondary currents that directly affect distribution of momentum within
the flow domain. A more detailed explanation of the velocity-dip phenomena will
follow up shortly.
Quantitative comparison is performed in the channel centerline, where the profiles

of mean velocity field are plotted against the experimental reference by Tominaga.
et al. (1989), as shown in Figure 9.4 (left). Position of the velocity dip has been
captured accurately. Minor differences between the data-sets can be attributed
towards the higher Reynolds number of the numerical case. Considering the dis-
tribution of turbulent fluctuations, results for the normal Reynolds stress tensor
components are plotted against the LES reference in Figure 9.4 (right). Good fit
has been obtained for all of the components. Note the complete vanishing of the
surface-normal fluctuation components at the free surface.

Figure 9.4.: Profile of dimensionless streamwise velocity (left), with experimental data
from Tominaga. et al. (1989). Normal Reynolds stresses (right) are plotted
against the LES reference by Shi et al. (1999).

In the vicinity of the wall, a small mismatch between the data exists. This is
however of no concern since the Shi et al. (1999) explicitly noted that the poor
wall resolution and no wall treatment were used in their LES study. Since the value
of wall shear stress is predicted accurately, a mismatch may be attributed to the
incomplete LES data. Since no clustering of the grid cells is used near the free
surface, and the results match the reference nonetheless, it has been concluded that
the mesh layering will be used only near the no-slip walls to resolve the viscous
sublayer. Free-surface mesh will have the ’free-stream’ resolution.
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9. Flow Configuration V: Bubble plume in open-channel cross-flow

A potent indicator for assessing the capability of the model is the accuracy in
predicting secondary flows. In Figure 9.5, streamlines belonging to a plane per-
pendicular to the main flow have been plotted against the LES reference. Three
characteristic vortex zones are identified: 1) the bottom-corner vortex, associated
with the inclination between the bottom and side walls, 2) the free stream, large-
scale vortex in the vicinity of the free surface, and 3) the surface-corner vortex,
associated with the free surface corner.
Concerning the accuracy of the simulation, it can be seen that the position and

span of the bottom-corner vortex have been predicted accurately, and that the
center of the free-stream vortex is moved slightly towards the centerline of the
flow, although the depth of vortex centre matches the LES data. Origin of this
small deviation is straightforwardly explained by the presence of the surface-corner
vortex, which promotes the compression of streamlines belonging to the free-surface
vortex. Although this surface-corner vortex is not recovered in the LES study, its
presence is nonetheless physical according to the experimental measurements of
Tominaga. et al. (1989). Its absence in the LES study may be explained by the poor
wall resolution, whereas in the present study, full integration through the viscous
sublayer is performed.

Figure 9.5.: Secondary flow streamlines: LES reference (left) and IIS-RSM results
(right).

By inspecting the magnitude of secondary flows, it can be seen that the their
maximum is reached on the free surface. Although the overall momentum intensity,
contained with the secondary flows can be considered small in comparison with the
streamwise flow (less than 6% of U0 at the free surface, and around 1% of U0 in the
interior of the domain), distribution of the mean velocity and turbulence anisotropy
is decisively affected by it.
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When considering flow cases with distinctively mono-directional character (pipes,
channels, conduits etc.), emergence of coherent flow patterns in the plane per-
pendicular to the direction of the mean flow, is a common occurrence. Generally
speaking, Prandtl classified two kinds of such flows. Secondary flows of first kind are
intrinsically connected with the curvature of the mean flow, which may be a result
of geometric constraint such as bends and elbows. They were already investigated
in Chapter 7.
Secondary flows of the second type typically accompany turbulent flow configura-

tions that don’t possess rotational symmetry, as in this case (channels, non-circular
pipes etc.). Here, secondary motion is generated without any external curvature.
Prandtl presented arguments that the origin of the second kind of secondary flows
is tightly connected with the anisotropy of the turbulence field. A detailed analysis
involving anisotropy-related generation of secondary flows is given in Nikitin et al.
(2021) and the complete outlined mathematical derivation will not be repeated here.
Rather, a descriptive approach will be used. In the case of a fully developed flow
field, turbulence in the plane normal to the streamwise flow is governed by the fluc-
tuations both normal- and tangential to the wall. In the presence of non-penetrable
boundaries (solid walls, free surfaces), normal-to-boundary fluctuations will be
suppressed, leaving the tangential fluctuating component dominant, as presented
in Figure 9.6. Close to the corners of the channel, isosurfaces of the tangential
fluctuations magnitude v+ + w+ will form a curved surface.

Figure 9.6.: Contours of the spanwise velocity fluctuations.

Any pulsation oriented along the tangent to the surface will create a centrifugal
force, oriented opposite from the center of curvature, forcing the flow towards the
corner. Due to the continuity, stagnation points will form in each of the corners,
ejecting the fluid outwardly along the walls. This creates a characteristic vortex
triplet. In case of the free surface vortex, pressure gradient overcomes the Reynolds

163



9. Flow Configuration V: Bubble plume in open-channel cross-flow

stresses on the surface, and the low momentum fluid is transported towards the
stagnation point in the centre, and then downwards. This creates the free surface
vortex, responsible for the presence of the velocity dip.

Figure 9.7.: Contours of the streamwise turbulent fluctuations, reference data (left)
and simulation results (right).

Figure 9.8.: Componentality contours of turbulence anisotropy (left), and contours
depicting the ratio of modeled turbulence kinetic energy (right).

In Figure 9.7, contours of the streamwise turbulent fluctuations are compared with
the LES reference. Spatial congruence with the experimental data remained very
good. Due to the action of secondary flows, low intensity turbulence is transported
in the form of two symmetric spikes towards the bottom corners of the channel,
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9.2. Open-channel developed turbulence

thus breaking the high fluctuation intensity regions formed in the vicinity of the
walls. Near the free surface, bending of isocontours depicting the turbulence kinetic
energy is again associated with the strong impact of free surface vortex.
Secondary flows also affect the distribution of the anisotropy, as can be seen in

Figure 9.8 (left). Corner-directed flows transport the dominantly isotropic fluid
towards the stagnation points, where the turbulence undergoes a change from
towards the 3C state. Next to the free surface, turbulence is mostly two-componental
(2C), since the third component is suppressed through the boundary condition. In
Figure 9.7 (right), ratio of the modeled to total turbulent kinetic energy is plotted.
In the vicinity of the wall, the cut-off enables the modeling ratio to lie in range
20 ÷ 30%. Further away from the wall, modeled turbulence is almost completely
destroyed, which is also the case at the free surface, thus confirming the proposition
of using the same boundary condition for all of the components of the Reynolds
stress tensor.
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9.3. Main case
After successfully finishing the simulation for the open-channel flow case in which
the ability of the model to predict complex patterns, affected by the corners and
by the free surface is confirmed, analysis is moved towards the simulation of the
main case. Analogously to the previous Chapters, the precursor simulation will be
performed initially. Meshing has been done correspondingly to the previous section,
only the mesh size and resolution have been changed. Parameters corresponding
with the optimal prediction of wall shear stress are listed in Table 9.3.

Table 9.3.: Inflow conditions and mesh metrics for the main case precursor.
Ar U0 ReDh

Reτ Fr ∆x+ ∆y+ ∆z+

1.85 0.2 249, 000 5602 0.03 250 1 ÷ 70 1 ÷ 70

Detailed analysis of results will not be repeated here since all of the flow features
are connected with the same underlying phenomena. In Figure 9.9, cross-sectional
view of the precursor simulation is shown. It can be seen that the velocity dip was
obtained again, only this time at the height of z/H ≈ 0.8. From the standpoint of
secondary flows, a vortex quadruplet is recovered in the present study. Next to the
bottom-corner-, free-stream- and free-surface corner-vortex, a fourth characteristic
vortex structure develops due to the extensive curvature of streamlines between the
two corners.

Figure 9.9.: Streamwise velocity contours (left), and the streamlines of the secondary
flow (right), with background coloring indicating the magnitude of sec-
ondary flows.

Considering the distribution of turbulence anisotropy visualized in Figure 9.10,
near-corner regions remain less affected by the more isotropic core flow, which is
transported from the channel center by the secondary flows. Core region is mostly
dominated by the 2C-3C zone, with free surface again being mostly in the range
1C-2C due to the boundary condition induced suppression of the surface-normal
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fluctuations. Magnitude of the modeled fluctuations remain again very low far away
from the walls, and the ratio of the residual to total turbulence kinetic energy is
close to 1 ÷ 5%.

Figure 9.10.: Barycentric visualisation of the flow (left), and modeled-to-total kinetic
energy ratio (right).

Concerning the main case, meshing resolution has been set identical as in the
precursor, except in the central zone of the bubbly jet. Meshing details corresponding
to this zone are given in Figure 9.11 (top). Next to the near-wall regions, compression
of the mesh has been applied in the area close to the origin, so that the aspect ratio
of the cells lies close to 1. Additionally, in the zone dominated by the plume,
refinement box is introduced, as to enable the fine resolution of the bubble related
structures. Here, ∆/db = 3, thus fulfilling the Milielli criterion. Total number of
cells is close to 5, 914, 000. Injection nozzle is placed at the origin. Water injection
is imposed at the nozzle tip, with the prescribed volume rate. Bubbles are injected
as the parcels, with their initial velocity calculated based on the diameter of the
nozzle and the imposed volumetric flow rate of both air and water. Injection rate
is 10, 166 parcels per second, and the total number of bubbles after reaching the
quasi-steady state oscillates around 18, 000. Again, all models for bubble forces
from the Chapter 2 are used without modification. BIT modeling was not used
since it made computations unstable, as already noted in the previous Chapter. In
Figure 9.11 (bottom), instantaneous velocity field in the X-Z plane is shown. Upper
limit to the velocity magnitude is set at 0.3 [m/s] in order to ease the visualisation.
Additionally, injection column is shown, with the each of the bubbles in the domain,
represented to the scale.
In Figure 9.12, down, isometric view of the solution domain with some relevant

flow features is shown. Bubble dimensions were again visualized to the scale, with
their coloring representing the instantaneous velocity. Nozzle-injected water is
forced to deflect downstream, and the curvature of streamlines creates a characteris-
tic pair of vortex tubes which are visualized as well. These vortex tubes are advected
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9. Flow Configuration V: Bubble plume in open-channel cross-flow

downstream, and the large-scale secondary currents dominate the central region of
the channel, as shown by the cross-sectional streamlines. Close to the injection point,
bubbly swarm separates from the nozzle-injected fluid, and progresses towards the
free surface, at an apparently constant angle. Afterwards, it is discharged from the
domain.

Figure 9.11.: Mesh cross-section in the X-Y plane (top). Instantaneous view of the
velocity field in the X-Z plane, with the dispersed bubbles shown to scale
(bottom).
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Figure 9.12.: Isometric view of the solution domain, with down-to-scale visualisation of
bubbles. Isocontours of mean vorticity are used for visualisation of vortex
tubes. Secondary flows are represented through the streamlines in the
plane normal to the main flow.

In Figure 9.13, the cross-section in the X-Z plane with contours of first- and
second order statistics has been shown. In the top row-left, instantaneous positions
of bubble centres were shown along with the streamlines of the mean flow. Bubbles
seem to withhold the initially given vertical velocity up to the height z ≈ 0.22 [m],
after which the branch flow deflects downstream at an apparently constant angle,
carrying away the bubbly swarm. Continuous red line indicates the position of
the bubble-plume center, found from the condition |∇α| = 0. A line-associated
coordinate ξ can be drawn from the center of the nozzle, and following the line, up
to the free surface. This coordinate will be used to characterize the local features
of the plume in the next section. Since the offset between the real plume center,
and the apparent symmetry of the plume exists, it points to the conclusion that the
bubbly plume is non-ellipsoidal in nature, which will be investigated shortly. Red
crosses indicate the positions of the 4x3 probe set, used for FFT Analysis of the flow
dynamics. Their positions are listed in Table 9.4, where for each of the 4 heights, 3
probes were installed: one upstream of the plume, one centrally positioned in the
plume, and one downstream of the plume. Naturally, all probes were installed in
the X-Z plane, hence y = 0.
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Figure 9.13.: Streamlines of the mean flow, visualized with the bubble centerline (top
left), as well as with the componentality contours of anisotropy (top right).
In the center, normalized streamwise uu (center left) and spanwise vv
(center right) components of Reynolds stress tensor are shown. In the
bottom row, normalized vertical ww component (bottom left), as well as
ratio of modeled to total turbulence kinetic energy (bottom right) are
shown.
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In order to obtain an insight into thea complex flow topology, mean-flow stream-
lines are superimposed with the anisotropy contours in the Figure 9.13, top-right.
Normalized normal Reynolds stresses are additionally plotted in center- and bottom
rows. Although the analysis of componentality contours makes sense only in the ben-
eficially chosen, locally principal coordinate system, we will nonetheless perform it
using the projections of Reynolds stress tensor in the established x−y−z coordinate
system, since the directions of dominant flow patterns are mostly coaligned with
uu, vv and ww. Upstream of the injection point, incoming flow can be considered
mostly isotropic, where all three components account for roughly one third of total
turbulence kinetic energy. Encounter with the bubbly plume is reflected in the main
flow similarly to the impingement process, in which the streamwise component is
strongly suppressed due to the breakage and deflection of the flow. This points to
the poor mixing of the streams in the vicinity of the injection point. Concerning the
anisotropy of turbulence in the plume, overall state seems to be the intermediate
between 2C and 3C. This mechanism is maintained up to the position z ≈ 0.33 [m],
after which the sudden change in the contour continuity occurs. As will be demon-
strated, this represents the onset point for the formation of the vortex tubes due to
the curvature of the injected water streamlines. Closer to the surface, anisotropy of
the flow is mainly governed by the pressure-driven effects that favor distribution of
energy in streamwise and spanwise directions, and lead towards the suppression
of the surface-normal fluctuations. Upstream of the plume, surface fluctuations
are dominated by the spanwise component. However, in the plume zone, sudden
redistribution in favor of streamwise fluctuations appears. Concerning the plume
spreading zone, it is dominated by the vertical fluctuating component, which is
especially pronounced in the zone between z ≈ 0.4 [m] and z ≈ 0.55 [m], where tur-
bulence tends to 1C-2C state. Initial speculation that correlated this anisotropy zone
with the horizontal vortex switching (described later on) proved to be unfounded,
since the orientation of the anisotropy related phenomena is vertical (vertically
oriented fluctuations account for more than 70% of the local turbulence kinetic
energy). Exact source of this phenomena will be further investigated in the spectral
analysis section. Considering the overall modeled-to-total kinetic energy ratio, given
in the bottom right row, model is again performing in the over-resolution mode and
modeled turbulence doesn’t account for more than 2% of of total turbulence, except
in the vicinity of the injection point, where the resolved flow is explicitly suppressed
through the boundary condition. As the injected flow is convected further away,
modeled turbulent kinetic energy reduces in magnitude correspondingly.
Since the local characteristics of the bubbly plume have been the key asset of the

experimental reference, they will be validated first. In Figure 9.14 changes in local
bubble characteristics have been plotted against the plume-associated coordinate
ξ (distance expressed as a number of nozzle diameters - d). Plots of the absolute
bubble velocity magnitude (top left), as well as relative velocity magnitude (top
right) indicate that the terminal stage of the bubbly phase evolution is reached in
the range 50d÷ 60d behind the injection point, in which both drag and buoyancy
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effects reach local equilibrium. Initially, bubbly phase exhibits a strong deceleration,
caused by the sudden introduction of the drag force. Although the first experimental
point is matched surprisingly well, bubble velocity in the zone 20d÷ 40d is slightly
underpredicted. Sudden downtrend in the relative velocity indicates the deceleration
of the bubbles on the account of the drag force. Since the magnitude of the drag
force is proportional to square of the relative velocity and tends to diminish it
completely, subsequent uptrend signifies the more dominant influence of of the
buoyancy force up to the distance 60d.
Bottom row shows the distribution of the bubble probability (void fraction), plotted

against the plume centerline ξ (bottom left), as well as its lateral distribution (bottom
right). Here, general trend is again matched well, although some more notable
overprediction is present close to the injection point. Reasons for this overprediction
can be better understood after the inspection of the general bubble probability
relation:

αi = 1
∆tVi

Nb∑︂
j=1

Vb,jδtj (9.12)

Increase in bubble probability can either be realised through the increase in
residence time of the bubble within the cell, δt, or through increasing the overall
number of bubblesNb that passed through the cell i during the Eulerian time step∆t.
Overprediction in residence time may be attributed with the underpredicted absolute
velocity of the bubbles, signifying that possibly, drag force is not adequately modeled
in the regions where α is higher. However, this assumption doesn’t correspond with
the available experimental observations. First, mismatch in the α profile is not
proportional to the underprediction in absolute velocity, which tends to be more
congruent with the data. Second, by inspecting the spreading rate of the bubble
plume (bottom right), quantitatively surprisingly good match is obtained, although
the maximum values of α are overpredicted. This indicates that both the lift force
intensity and direction, and the relative velocity as well, have all been predicted
with acceptable accuracy. Third, match of the first measurement point for the
bubble velocity is in complete contrast to the largest overestimation of α at the same
position.
The only valid explanation seems to be lack of modeling certainty concerning the

boundary conditions. Namely, local flow patterns in the nozzle duct are not known
a-priory and can only be estimated based on the integral flow quantities like volume
flow rate for both bubbles and water phase. Since the numerical modeling of the
bubble injection involves placing the 10, 166 bubbles of the prescribed diameter at
the injection boundary, and assigning them with initial velocity at each second, all
two-phase processes in the injection duct are omitted and the initial state of the
injected bubbles possibly doesn’t correspond with the realistic swarming effects,
reflected through Nb.
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Surprisingly enough, initial mismatch in the data doesn’t reflect the terminal state
of the plume, which is shown to correspond well with experiment. This may be
attributed to the neglecting of bubble-bubble interactions (breakage/coalescence),
where the spatio-temporal evolution of the individual bubbles is governed only by
the interaction with the carrier phase, and not by the falsely predicted accumulation
of bubbles in the injection zone. Furthermore, although the dynamics of carrier
phase may be additionally modulated in the vicinity of the nozzle (vortex switching,
shown in short), strong streamwise convection prohibits the propagation of this
disturbance further upwards, where the bubbles are met with the free-stream fluid,
unaffected by the injection zone.

Figure 9.14.: Distribution of local plume characteristics along the plume centerline ξ:
absolute velocity (upper left) and relative velocity (upper right), void-
fraction (lower left), and lateral distribution of void fraction (right) in
four consecutive positions of ξ.

173



9. Flow Configuration V: Bubble plume in open-channel cross-flow

Evolution of plume shape in three consecutive positions downstream of the in-
jection point is shown in Figure 9.15. In contrast to the injection of a mono-phase
jet in the cross-flow, presence of the secondary streams modifies the shape of the
plume. Starting from the expected ellipsoidal shape close to the nozzle, counter
rotating vortex pair, originating from the bent water-jet reshapes the plume in the
kidney-like form, which is also documented in the experimental reference. Initially
disturbed by the secondary flow, elongation of the plume contour progresses further
downstream.

(a) x = 0.05 (b) x = 0.15

(c) x = 0.25 (d) x = 0.43

Figure 9.15.: Distortion of initially elipsoidal plume shape at four downstream positions.

Fluid injected along with the bubbly phase is forced to bend, whereas the stream-
line curvature increases after the separation from the bubbly plume. This strong
curvature is responsible for the generation of secondary flows of the Prandtl’s first
kind in form of the counter-rotating vortex pair. Spatial evolution of the flow is
presented in Figure 9.16 for three consecutive downstream positions. Streamlines
depicting secondary flow are imposed at each Figure. In the left column, contours
of the normalized streamwise velocity are shown, whereas in the right column,
componentality contours of turbulence anisotropy are shown.

174



9.3. Main case

Figure 9.16.: Development of flow properties at three consecutive positions downstream:
x = 0.05 (top), x = 0.15 (center), and x = 0.25 (bottom).

Since the branch flow represents a large-scale obstacle towards the main flow, it
is expected that the secondary flows will possess some sort of temporal switching
dynamics, which makes the averaging, visualisation and analysis of the Prandtl’s
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second kind of secondary flows challenging. Surface level vortex pairs that were
dominating the central region of the precursor are now shifted towards the wall, and
the velocity dip phenomena could not be spotted due to the high inertia fluid which is
now transported towards the free surface. As a reminiscence of the bottom-, as well
as surface-corner vortex pairs, several vortex cells are formed along the side wall and
gradually advected towards the bottom, as the fluid progresses further downstream.
Since the secondary flow patterns are confined within the relatively narrow domain,
they posses a certain diffusive role and the high inertia fluid, originating from the
nozzle gets more spreadwithin the cross-section. Overall flow rate in the channel gets
additionally accelerated. Position of the bubbly jet can be identified in the regions
of maximal velocity and with the characteristic kidney/horseshoe shape. From the
standpoint of anisotropy, turbulence in the vicinity of the walls remains relatively
unchanged, and spatial distribution in both spanwise coordinates remains almost
identical near the wall. As the plume progresses along the streamwise coordinate,
anisotropic behaviour tends to change from the 2C -3C, to 1C -2C turbulence, seen
as the dominantly increasing yellow zone, immediately upwards of the vortex pair.
Interestingly enough, this area is also affected by the secondary flow advection,
and possesses a kidney like shape. However, since the anisotropy dominated zone
is positioned upwardly of the plume center (identified with maximum in velocity
magnitude), strong vertical fluctuations spotted in Figure 9.13 do not seem to
be directly correlated with the dynamics of the vortex switching itself, but rather
represent the artifact related to the zone adjacent and upstream of the plume. In
order to investigate the temporal response of the system, twelve different velocity
measurement probes were placed in the flow, their positions being listed in Table
9.4.
Velocity magnitude is sampled at each of the probe locations with the time-step of

∆t = 4 ·10−3 [s]. After a sufficient sampling time, FFT Analysis is performed on each
of the signals. Results for each of four heights are given in Figure 9.17. As expected,
signals close to the center of the plume are upwardly shifted in terms of attenuated
energy. It can be seen that all of the frequency signatures follow a −5/3 slope in the
certain region, which indicates that the transient nature of the turbulent spectrum is
adequately captured. Additionally, signals in the central position are shifted towards
the higher frequencies. These two features can be readily explained by the injection
of additional energy into the spectrum by the bubble plume, which first attenuates
more energy at all frequencies (hence the upward shift), and then, leads to the
increased dissipation in the plume, which shifts the Kolmogorov scales towards
the higher wave numbers. Spectral signatures gradually converge as the plume
approaches the free surface, which is to be expected since the energy exchange is at
its highest rate closer to the injection point. There seems to be a strong attenuation
of fluctuating energy at f ≈ 0.2 [Hz], whereas the peaks are more pronounced
closer to the injection point. As will be seen in the POD analysis, these peaks are
correlated with the horizontally oriented switching of the vortex pair, which retains
the same dynamic response independently of the height in the plume.
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9.3. Main case

(a) z = 0.2 (b) z = 0.325

(c) z = 0.45 (d) z = 0.55

Figure 9.17.: FFT Analysis of the velocity signals at four different heights in the plume.
Each measurement height is associated with 3 different positions in the
flow.

Table 9.4.: Position of the probe triplets for the FFT Analysis.
Height Upstream Plume center Downstream
z = 0.2 x = −0.1 x = 0.01 x = 0.3
z = 0.325 x = −0.1 x = 0.1 x = 0.3
z = 0.4 x = 0.0 x = 0.2 x = 0.4
z = 0.55 x = 0.1 x = 0.3 x = 0.5
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9. Flow Configuration V: Bubble plume in open-channel cross-flow

An interesting artefact can be spotted at the last two set of probes (z = 0.4 [m]
and z = 0.55 [m]), at f ≈ 4 [Hz] within the plume, and at f ≈ 2[Hz] downstream.
Origins of these spectral peaks are open to discussion. On one hand, since the
energetic peaks are located more than the order of magnitude higher in the spectrum,
it is unlikely that they represent some higher harmonics of the eddy switching
process. On the other hand, if the characteristic bubble related frequency is formed
at the account of the bubble slip velocity and diameter (Ur = 0.05 ÷ 0.2 [m/s],
db = 2 [mm]), the resulting frequency lies in range f = 25 ÷ 100 [Hz], which is
now an order of magnitude higher in the spectrum in comparison with the artefact.
Interestingly enough, both sets of probes are located in the vicinity of the anisotropy
dominated zone with strong vertical fluctuations, as seen in Figure 9.13. This
clearly dictates that strong vertically oriented pulsations exist in- and upwards of
the plume. Since the abrupt change in spectral slope appears immediately after
this frequency, it is also possible that this artifact is purely related to the model
performance (dynamic shifting of kinetic energy between resolved and modeled
flow). Some future analyses may include an additional sampling of data at this
point, in order to investigate this phenomenon more deeply.
In order to characterize previously mentioned vortex switching, dominant di-

rections of velocity oscillations are analysed using a POD procedure, involving the
snapshots of the velocity in the Y-Z plane at position x = 0.25 [m]. Results are
presented in Figure 9.18. Accumulated energy of first 20 POD modes is shown,
capturing around 47 % of the total variance in the flow, as indicated by the red
dashed line. The first POD mode accounts for more than 10 % of the fluctuating
energy, making it the most dominant feature of the flow. Streamlines correlating
with the mean field, as well as the first three POD modes are shown. Additionally,
FFT analysis of their temporal dynamics is shown as well.
Clearly defined vortex pair exhibits an energetic oscillation in the horizontal plane,

indicating a dominant switching direction. There are three clearly defined peaks
related to this oscillation: at f ≈ 0.15 [Hz], f ≈ 0.3 [Hz] and f ≈ 0.45 [Hz], with
multiple low-energy harmonics, located further down the spectrum. Failure of POD
to separate spatially non-orthogonal structures can clearly be seen on the example
of the second most dominant POD mode. Here, two important phenomena are
captured in parallel. First, nearly identical temporal dynamics is reflected, although
the oscillation direction is not as clear. This points to the rather complex switching
pattern of the vortex pair, not only having a horizontal oscillation component, but
also a vertical one. Two initial dominant peaks indicate that the underlying source
of this vertical-to-horizontal transition is the same as in case of POD mode 1, hence
it can be attributed to the vortex switching. Second, zone of high vertical variance
is also recovered in the second POD mode, both in the spatial distribution (note
the zone z ≈ 0.4 [m] ÷ z ≈ 0.5 [m]), as well as in the FFT signal (note the very
weak, but still dominating peak at f ≈ 2 [Hz] in the log-plot). This shows that the
vertically oriented switching phenomena is nearly an order of magnitude weaker
in intensity, as compared with vortex switching. As for the third POD mode, its
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9.3. Main case

pattern gets more erratic and harder to interpret, although a certain component
of horizontal oscillating patterns is recovered, signifying yet another mode of the
vortex switching. Concerning the spectral properties, −5/3 slope is again recovered,
indicating a physically sound resolution of the spectrum.

(a) Captured variance (b) FFT Analysis of time dynamics

(c) Mean flow (d) POD1

(e) POD2 (f) POD3

Figure 9.18.: Results of the POD analysis.
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9. Flow Configuration V: Bubble plume in open-channel cross-flow

9.4. Conclusions
In this Chapter, performance of IIS-RSM was tested in flow configuration involving
the bubble plume in the open channel cross-flow. Motivation for this study was the
knowledge gap in relation to the model behaviour in complex conditions, involving
most of the flow phenomena, outlined in previous Chapters. To the authors best
knowledge, this was the first publication, aiming at numerical reproduction of the
experimental test case by Zhang and Zhu (2013).
Initially, applicability of the model was tested in the straight open channel geom-

etry, with boundary conditions for the treatment of modeled turbulence, at the free
surface, applied for the first time in the class of eddy-resolving, second-moment
closure. Obtained data were in good congruence with experimental measurements.
Secondary flow patterns, stemming from the turbulence anisotropy were also pre-
dicted with high level of accuracy. Afterwards, identical workflow was shifted
towards the full case, involving the mixture of water and air, injected from the bot-
tom surface. Experimental measurements of the bubbly plume characteristics were
compared with numerical data, and good congruence was obtained in the terminal
stage of the plume, with some uncertainties in the vicinity of the injection point.
This proved the accuracy of the model in the conditions of complex, two-phase flow
regime, provided that the boundary conditions were properly applied. Since the
validation basis for the first- and second-order statistics of this case was not provided,
dominantly qualitative analysis of results was presented. It was discovered that next
to the highly three-dimensional flow patterns, at least two characteristic transient
phenomena are established within the flow. First, a top-level transient involving
the vortex switching around the bubble plume, and second, vertically oriented
fluctuation at the edge of the bubble plume. Its origin could not be determined,
and may stem from either the periodic vertical acceleration of the flow, or may be
model-induced. Some further analyses of the plume dynamics are needed in order
to better understand this phenomena.
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10. Conclusions and outlook

In the present thesis, some specifically configured flow configurations relevant to
the field of thermotechnical piping systems have been computationally investigated.
The flow configurations considered are characterized with high-intensity turbulence,
complex topological patterns with high-level energetic transients, heat-transfer,
dispersed two-phase flow regimes, and flows influenced by free surface effects.
All simulated flow cases represent either a single or a combination of the above-
mentioned phenomena. The aim of this work was to validate a computational
strategy consisting of an eddy-resolving second-moment closure model (IIS-RSM)
in combination with Euler-Lagrange methodology, in search of a simulation tool as
universal as possible, capable of capturing all above-mentioned flow phenomena
relevant to the field of thermotechnical facilities. On the basis of the computational
studies carried out, the following conclusions can be drawn.

• Presently applied model of turbulence allows a significant reduction of the
computational costs in all considered flow configurations, where it success-
fully reproduces the experimentally obtained results. In terms of resources
required, over a range of high Reynolds number flows, spatial resolution can
be coarsened by approximately factor of ten, in comparison with Smagorinsky-
based LES models. Here, the optimal meshing metrics could be determined in
a precursor-simulation, where the criterion for optimal resolution is based on
the accurate determination of wall shear stress. In contrast to other proposed
hybrid RANS/LES models, i.e. the eddy-resolving models (as e.g., DES, PANS
etc.) that incorporate appropriately modified RANS-based formulations, the
IIS-RSM exhibits two distinct advantages: first, the numerical grid-related
length scale could be implicitly captured by including higher-order derivatives
of the velocity field, which increases the flexibility of the model in dealing with
complex grid arrangements where grid-cell quality criteria may be violated.
Second, the theoretical rationale of the SAS-methodology allows for a smooth
transition between the RANS/LES regions of the flow (or the corresponding
parts of the spectrum), without additional blending and correspondingly intro-
duced ad-hoc generated functions, or numerical challenges pertinent to other
eddy-resolving methods. This greatly enhances the flexibility of the model.
Finally, the treatment of residual turbulence by using the second-moment
closure provides the highest quality reproduction of turbulence anisotropy and
makes the use of substantially coarsened meshes possible. The experimental
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results were successfully reproduced on the basis of two criteria: first, coherent
structures at the top energetic level, which are responsible for most of the
variance in the flow were directly captured, thus mimicking the resolution
capability of LES. On the other hand, treatment of residual turbulence in terms
of differential Reynolds stress model provided the maximal insight into the
dynamics of residual fluctuations. One of the most notable features of the
model was an almost complete damping of the modeled turbulence fraction in
the regions far away from the no-slip wall boundaries. So far, this drawback
does not reduce the accuracy of the obtained results in the significant portion,
since most of the dominant features (flow-separation, heat-transfer etc.) are
indeed wall-related and hence, the capture of the residual-turbulence in the
free-stream regions was of lesser importance. Here, the resolution of the top-
level energetic transients plays a far more important role. Questions governing
the limitation of the over-resolution will be addressed further on. The IIS-RSM
performed well in predicting strong transients as well as general statistical
properties of the flow in case of the high Re numbers in the T-Junction formed
by the straight pipe segments. However, somewhat reduced accuracy was
reported in case of the T-Junction with a preceding 90o upstream elbow. Most
notable deviations were spotted in the spectral behaviour of the solution,
on the account of two acting mechanisms. First, it seems that the parasitic
influence of the precursor simulation induced another frequency peak, which
affected the mixing process in the T-junction geometry. Although the spectral
signatures produced in the reference LES simulation were also present in
the IIS-RSM solution, mixing process was ultimately governed neither by
the Kelvin-Helmholtz instabilities of the secondary-separation bubble, nor
by the switching of the secondary vortex pair, but correlated directly with
the characteristic frequency of the precursor simulation. Since the branch
flow was of a substantially weaker intensity in comparison with the straight
T-Junction case (in relation to the momentum carried), all flow phenomena
related to the mixing zone are correspondingly weaker in comparison with
transient characteristics related to the precursor. As a result, the precursor
simulation gained importance in the study. Second, it seems that the exter-
nally imposed transient flow features promoted the change in the average
intensity of secondary flows, thus enlarging the primary separation zone in the
elbow. Since the turbulence statistics has been predicted accurately upstream
of the primary separation, deviations from the reference results are most likely
not the result of the model deficiency, but rather linked to the interaction of
the model with this additional unsteadiness. Further research efforts should
focus on investigating the exact mechanisms leading to this variation. Despite
the problems discussed, the model correctly predicted the location of the
separation point in the elbow, the size of the branch-related separation bubble,
as well as the general position and dynamics of the secondary flow features. In
realistic piping systems (especially those with incompressible flows), statistical
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flow information is therefore not sufficient for the final description of the flow,
and often the numerical modeler must be provided with frequency information
to validate the calculations.

• In Chapters 8 and 9, application of IIS-RSMwas combined with Euler-Lagrange
strategy in simulating the turbulent, dispersed bubbly flows. As a first bene-
fit, modeling assumptions behind the continuous (Eulerian) phase remained
unchanged since only the bubble-related source terms were added to the
momentum equation. This made the computations substantially more stable,
and almost indistinguishable in terms of the performance in comparison with a
single-phase case. Stabilization of computations within the two-fluid modeling
(TFM) strategy remained one of the greatest challenges in second-moment
closure due to the large number of coupled equations, as well as the high
non-linearity of source terms, increasing the system stiffness. Within the Euler-
Lagrange computational framework, no artificial increase in system diffusivity
was required to support the iteration process, and the model remained robust,
even in the case of a highly dispersed central-differencing scheme, which is
much more complex when combined with Euler-Euler method. As a word
of caution, it is noted that the implementation of both the turbulence model
and the TFM framework was done in OpenFOAM®, while the alternative
CFD codes may exhibit different behaviour depending on the numerical im-
plementation. Since the bubble dimension remained in the meso-scale region
(comparable with the mesh size), computation was substantially accelerated
in comparison with the Euler-Euler-concept-related models. Number of com-
putational parcels was less, or comparable with the number of cells. Second,
the time integration of particle evolution equations was done explicitly. In
Chapter 8, results related to the bubble column showed the same level of
(high) accuracy in reproducing experimental results, achievable with using
the LES models. In Chapter 9, flow configuration involving the bubble plume
in the cross flow is to the authors knowledge simulated for the first time by
using the eddy-resolving modeling approach. Whereas some uncertainties in
the boundary conditions promoted slight deviations from the experimental
data close to the injection point, development of the bubbly jet gradually
approached the experimentally obtained results. This proved the application
properties of the EL method in combination with scale-adaptive methodol-
ogy, with all the benefits from both models combined. One demonstrated
drawback of the inherited scale-adaptive formulation of IIS-RSM was also
demonstrated in Chapter 8 where in the case of a free bubbly jet, model of
turbulence constantly kept returning to the RANS solution. Cause for this
behavior was found in the definition of the additional production term P∆U .
Based on the above, the possibilities for the application of IIS-RSM in free
bubbly jets need further testing. Suggestions for further improvements of the
EL-IIS-RSM modeling strategy are presented in the outline.
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• Bubble Induced Turbulence (BIT) strategies were used in conjuncture with
IIS-RSM in order to capture the energy transfer between the residual turbu-
lence and the dispersed bubbles, which is omitted through the modeling of
sub-grid turbulence, and the Euler-Lagrange approach. Two model formula-
tions were tested, with main difference being the anisotropic redistribution of
BIT fluctuations among the components of Reynolds Stress Tensor. Several
conclusions were drawn: first, next to the increase in accuracy of the results,
BIT introduced an improvement of spectral properties of IIS-RSM since now,
modeled quantities accounted for around 10% of the total turbulence kinetic
energy. Since no significant changes can be spotted in the levels of total turbu-
lent kinetic energy, it can be concluded that BIT played a more re-distributive
role in this sense. From two tested BIT models, anisotropic model performed
substantially better, especially in predicting a double peak of turbulence fluc-
tuations in the case of vertical bubble column. One very notable drawback of
the current BIT is the negative effect on the model stability. Due to the explicit
correction of transport equations, robustness of the model is jeopardized, and
stable computations could not be always guaranteed. Another problem related
to the usage of BIT is the relatively low void fraction of the secondary phase, on
which the BIT models were tested. Since the computations of the free bubbly
jet failed to produce the model unsteadiness, BIT models require additional
testing in conjunction with the IIS-RSM, in order to evaluate their performance
more accurately. It can be stated that the application of anisotropic BIT model
leads to the improvement in scale-resolving computations even at relatively
low void fractions, in comparison with isotropic treatment of BIT.

• The eddy-resolving, second-moment closure was tested for the first time ever
in conjunction with the free surface flows, in which the so-called rigid-lid
approximation was used. Asymptotic boundary conditions for the modeled
turbulence at the free surface were derived in Chapter 9 in order to provide
physically correct treatment of the second-moment closure model at the free
surface. The imaging and evolution of anisotropy-related features (in the form
of corner vortices) were both accurately captured, again with substantially
coarser meshes than in the LES simulations. The free-slip boundary condition
for the rigid lid seems to provide reasonable accuracy for flows characterized
by low Froude numbers. Once again, it was demonstrated that topologically
complex, higheRe number flows can be reproduced with substantially reduced
computational resources.

• Proper-Orthogonal-Decomposition (POD) was used for the extraction of most-
energetic, spatially correlated flow structures, from the flow affected by the
non-probabilistic turbulence pulsations. As demonstrated in Chapters 6, 7 and
9, POD analysis successfully isolated the most dominant flow features, such
as Kelvin-Helmholtz instabilities, Dean-vortex switching and flow pulsations,
originating from the precursor simulation. Consequentially, a distinction be-
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tween the flow-related phenomena and the numerically introduced artifacts
was achieved, leading to a better understanding of the flow dynamics and pro-
viding insight into the model performance. One of the more serious limitations
of POD is the need for spatial orthogonality of POD modes, which is hardly
achievable in context of the internal flows. Here, in contrast to the external
flow cases, several phenomena with highly different temporal dynamics are
usually superimposed. Separation between the modes in sense of their spa-
tial distribution, as well as from the standpoint of temporal dynamics is very
challenging. On the other hand, POD is one of the methods where the classifi-
cation of modes based on their importance is very straightforward (in contrast
to the alternative reduced-order-modeling strategies, exemplary dynamic-
mode-decomposition - DMD). Although a scattered spectrum of characteristic
frequencies (non-isolated peaks) are obtained for each mode, spectral energy
was usually densely accumulated around the single mode frequency. The
degradation of modes in terms of captured energy progresses quickly, and
usually first couple of modes are the only ones that are interpretable.

10.1. Outlook

In terms of future work in this direction, several research priorities are proposed.
First question that needs to be urgently addressed is the over-resolution property
of the model. Until the conclusion, it remained unclear to what extent the highly
reduced level of residual turbulence back-propagates to the resolved pulsations.
Since the reproduced results showed a very high level of agreement with the ex-
perimental results, it would be worthwhile to investigate whether the prediction of
modeled quantities is of such quality that the top-level generated unsteadiness can
mimic the part of the unresolved spectrum, despite the limitation introduced by the
underlying mesh resolution. Further investigations into the relationship between
the model-provided spectral cut-off and the mesh-limit need to be performed as
well. Applying the so-called Improved-SAS strategy to a second-moment closure,
see equation 5.6, could be a worthwhile direction for future model development.
In this way, the retention and preservation of the modeled turbulence is explicitly
guaranteed.
From the perspective of considering the two-phase model, the demonstrated

stability and accuracy of the EL-IIS-RSM combination promotes its further use and
development. To cover the widest possible range of scales, hybridization of EL
with competing VoF models, such as was done in Evrard et al. (2019), would be
very interesting in the domain governed dominantly by LES approaches. Another
research direction that could alleviate the meshing limit (especially in the vicinity
of the wall) by using a double-grid (chimera) approach was outlined in Caliskan
and Miskovic (2021) and represents another worthwhile direction for investigation.
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Considering the bubble induced turbulence (BIT), it was concluded that the
second-moment, anisotropic closure by Ma et al. (2020) contributes substantially
better results in scale-resolving mode. Further testing in the configurations with
higher bubble/particulate loading is recommended. In this way, validity of the
underlying assumptions may be tested outside of the TFM-RANS framework.
From the standpoint of the coherent structure analysis, upgrade of the outlined

POD strategy, named Spectral-Proper-Orthogonal-Decomposition (SPOD) which aims
at finding the optimal set of spatially correlated structures with a high degree of
spectral coherency. Here, the variance maximizing feature of SVD decomposition is
used to eliminate (to the high extent) the presence of noise in the signal, similarly
to the Welch-like procedure (Schmidt and Colonius (2020)). In this way, each of the
underlying flow features can be isolated both in frequency space, as well as in the
physical space (Sieber et al. (2016b), Towne et al. (2018)). The implementation of
the SPOD procedure, available to the public use, is currently under development
and may be tracked at: Joksimović (2022b)
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A. Appendix -
Improved-Instability-Sensitive
Reynolds-Stress-Model

Transport equation for the Reynolds stress tensor:
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Blending of the Reynolds stress tensor before introducing in the averaged
momentum equation:

uiuj = 0.7uiuj − 0.3(2νtS
d
ij − 2

3kδij)

Turbulent viscosity:

νt = 0.144A
√
k ·max

[︄
10
(︂ν3

εh

)︂0.25
,
k1.5

εh

]︄

Homogenous stress dissipation rate tensor:

εh
ij = fsuiuj

εh

k
+ (1 − fs)2

3ε
hδij , fs = 1 − E2

√
A, εh = ωhk

Transport equation for specific homogenous dissipation rate:

Dωh

Dt
= ∂

∂xk

[︄(︄
1
2ν + νt

1.1

)︄
∂ωh

∂xk

]︄
+Cω,1

ωh

k
Pk − Cω,2ω

2
h

+ 2
k
Cω,3ννt

∂2Ui

∂xj∂xl

∂2Ui

∂xj∂xl

+ 2
k

(︄
0.551

2ν + 0.275 νt

1.1

)︄
∂ωh

∂xk

∂k

∂xk

+P∆U

Eddy-resolving source term:

P∆U = C1max(C2
√
k∇2U − C3T2, 0))

T2 = 3kmax
[︂ 1
k2 (∇k)2,

1
ω2 (∇ω)2

]︂
Various constants in the scale-supplying equation:

C1 = 0.003, C2 = 29.11, C3 = 40,
Cω,1 = 0.44, Cω,2 = 0.8, Cω,3 = 1.0
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Acronyms
BDF Backward Differencing Scheme

BIT Bubble Induced Turbulence

CDS Central Differencing Scheme

CG Conjugate-Gradients

CFD Computational Fluid Dynamics

CNS Crank-Nicolson Scheme

CV Control volume

DES Detached-Eddy Simulation

DDES Delayed Detached-Eddy Simulation

DFSEM Divergence-Free Synthetic Eddy Method

DMD Dynamic Mode Decomposition

DNS Direct Numerical Simulation

EE Euler-Euler

EL Euler-Lagrange

ELES Embedded Large Eddy Simulation

ER Eddy-resolving

EVM Eddy-viscosity method

FDM Finite Difference Method

FFT Fast Fourier Transformation

FTT Flow Through Time
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FVM Finite Volume Method

GAMG Geometric-Algebraic-Multigrid

GGDH Generalized Gradient Diffusion Hypothesis

HAZ Heat-affected zone

HO High Order

ICA Independent Component Analysis

IDDES Improved Delayed Detached-Eddy Simulation

IISRSM Improved Instability Sensitive Reynolds Stress Model

ISAS Improved Scale Adaptive Simulation

ISRSM Instability Sensitive Reynolds Stress Model

JHRSM Jakirlić-Hanjalić Reynolds Stress Model

KSKL k - square root of k-L

LES Large-Eddy Simulation

LHS Left-Hand Side

LO Low-Order

LPT Lagrangian Particle Tracking

NSE Navier-Stokes Equations

ODE Ordinary Differential Equation

PANS Partially Averaged Navier Stokes

PDE Partial Differential Equation

PISO Pressure-Implicit with Operator-Splitting

POD Proper Orthogonal Decomposition

PWR Pressurized-Water Reactor

RANS Reynolds-Averaged Navier-Stokes

RD Research and Development

RHS Right Hand Side
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RMS Root Mean Square

ROM Reduced Order Modeling

RSM Reynolds Stress Model

SA Scale Adaptive

SAS Scale Adaptive Simulation

SGDH Simplified Gradient Diffusion Hypothesis

SGS Sub-grid scale

SMC Second-Moment Closure

SPOD Spectral POD

SR Scale-resolving

SS Smooth Solver

SST Shear Stress Transport

SVD Singular Value Decomposition

TFM Two-fluid model

UDS Upwind Differencing Scheme

URANS Unsteady RANS

VOF Volume of the Fluid

WALE Wall Adapting Local Eddy-viscosity

WMLES Wall-Modeled Large-Eddy Simulation

WSS Wall shear stress
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Dimensionless numbers
Co Courant number

Eo Eötvos number

Fr Froude number

Re Reynolds number

Pr Prandtl number

Prt Turbulent Prandtl number

St Strouhal number

St Stokes number

We Weber number

Dimensionless symbols - Latin letters

Bold
A System matrix

At Matrix containing the row-vise time dynamics of POD modes

b Free vector

C Spatial covariance matrix

C∗ Temporal covariance matrix

L Matrix containing left singular vectors

Q Orthogonal matrix, stemming from QR decomposition

QR Rotation matrix

R Upper triangular matrix, stemming from QR decomposition

S Snapshot matrix

V Matrix containing right singular vectors
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Uppercase
Ar Aspect ratio

A2 Second invariant of aij

A3 Third invariant of aij

A Lumley’s flatness parameter of aij

Cd Drag coefficient

Cl Lift coefficient

Clim Limiter function

Ci RGB colormap weight

C∗
i Modified RGB colormap weight

Cµ Modeling constant

Cvm Virtual (added) mass coefficient

CS Smagorinsky constant

E2 Second invariant of eij

E3 Third invariant of eij

E Lumley’s flatness parameter of eij

FISAS Modeling constant in ISAS formulation

I Unit (identity) tensor

Nfaces Number of faces on the cell

Ncells Number of cells in the mesh

Nδti Number of Lagrangian time-steps within the cell i

Np Number of different parcels cell i, during one Eulerian time step

S Source term

Sn n-th snapshot vector

SL
p,i Source term in the Lagrangian frame of reference, for parcel p, residing

within the cell i

SE
p,i Source term in the Eulerian frame of reference, for the cell i
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Sp Implicit source term

Su Explicit source term

U+ Dimensionless velocity

Lowercase
ai(t) Time dynamics of i-th POD mode

aij Reynolds stress anisotropy tensor

a∗
ij Principal Reynolds stress anisotropy tensor

b∗ Redistribution tensor

eij Dissipation anisotropy tensor

fs Relaxation function

u⃗r Unit vector of relative velocity

n⃗f Surface normal unit-vector on face f

y+ Dimensionless wall-normal distance

Dimensioned symbols - Latin letters

Bold
A Diagonal matrix in the discretized momentum equation, kgs−1

M System matrix in the discretized momentum equation, kgs−1

H Matrix containing neighbour influence, discretized momentum equation,
N

p Vector containing discretized pressure, Pa

S Explicit velocity correction matrix in the discretized momentum equation,
N
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Uppercase
A Surface, m2

Cij Convective term, Reynolds stresses evolution equation , m2s−3

D Pipe diameter, m

Db Branch-pipe diameter, m

Dm Main-pipe diameter, m

DH Hydraulic diameter, m

Dt
ij Turbulent-diffusion term, Reynolds stresses evolution equation, m2s−3

Dt
k Turbulent-diffusion term, turbulent kinetic energy evolution equation,

m2s−3

Dν
ij Molecular-diffusion term, Reynolds stresses evolution equation, m2s−3

Dν
k Molecular-diffusion term, evolution equation for turbulent kinetic energy

m2s−3

Dp
ij Pressure-diffusion term, Reynolds stresses evolution equation, m2s−3

E Total energy, J

F⃗ Force, N

F⃗A Surface force, N

F⃗ b Buoyancy force, N

F⃗ d Drag force, N

F⃗ f Volumetric flux through cell face, m3s−1

F⃗ g Gravity force, N

F⃗V Volumetric force, N

F⃗ l Lift force, N

F⃗ vm Virtual (added) mass force, N

F⃗ s Surface (far-field) force, N

K Kinetic energy, J

Kmodeled Integrated modeled kinetic energy, J
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Kresolved Integrated resolved kinetic energy, J

L Integral length scale, m

Lij Local term, Reynolds stresses evolution equation, m2s−3

Lt Turbulent length scale, m

LSST Turbulent length scale in k − ω − SST model, m

Lvk Von-Karman length scale, m

M⃗ Momentum, kg ·ms−1

PSAS Scale-adaptive source term in transport equation for ωh, s−2

P∆U Eddy-resolving source term in transport equation for ωh, s−2

Pij Production term, Reynolds stresses evolution equation, m2s−3

Pk Production term, evolution equation for turbulent kinetic energy, m2s−3

Q̇ Heat flux,W

Q̇A Surface heat flux,W

Q̇W Volumetric heat flux,W

R Radius, m

Rc Curvature radius, m

Rij Reynolds stress tensor, m2s−2

S Strain-rate, s−1

Sij Strain-rate tensor, s−1

Sd
ij Deviator of the strain-rate tensor, s−1

Sk Source term in transport equation for turbulence kinetic energy, m2s−3

SR Source term in transport equation for Reynolds stress tensor, m2s−3

Sεh Source term in transport equation for εh, m2s−3

Sωh Source term in transport equation for ωh, m2s−3

T Temperature, K

TRMS RMS Temperature, K
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Tt Turbulent time scale, s

U⃗ Velocity, ms−1

U⃗ b Velocity of the bubble, ms−1

U⃗r Relative velocity of the bubble, ms−1

V Volume, m3

Vi Volume of the cell i, m3

Ẇ Work,W

ẆA Work of surface forces,W

ẆV Work of volumetric forces,W

Lowercase
db Bubble diameter, m

e Specific total energy, m2s−2

f Frequency, s−1

f⃗ Specific volumetric force, ms−2

g⃗ Gravitational acceleration, ms−2

h specific enthalpy, Jkg−1K−1

i specific internal energy, Jkg−1K−1

k Turbulence kinetic energy, m2s−2

kt Thermal conductivity,Wm−1K−1

l0 Top-level length scale, m

m Mass, kg

mb Bubble mass, kg

p Pressure Pa

q⃗ Specific surface heat flux,W ·m−2

t Time coordinate, s
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u⃗ Velocity fluctuation, ms−1

uη Kolmogorov velocity scale, ms−1

uτ Friction velocity, ms−1

uiuj Reynolds stress tensor, m2s−2

uiθ Sub-grid heat flux vector, mKs−1

x⃗ Spatial coordinate, m

x⃗b Bubble position, m

x⃗P Position of the cell center, m

yn Wall-normal distance, m

Dimensionless symbols - Greek letters

Bold
E Set of experimental conditions

Λ Diagonal matrix containing sorted eigenvalues of either C or C∗

Σ Diagonal matrix containing singular values

Φ Matrix containing row-vise eigenvectors of C

Ψ Matrix containing row-vise eigenvectors of C∗

Uppercase
Γ Diffusivity in the transport equation for generalized variable ϕ

∆ Shift (spatial or temporal)

Φi i-th POD mode
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Lowercase
α Void fraction of the dispersed phase

β Blending function

γ Blending function

δ Curvature characteristics

δij Kronecker symbol, identity tensor

ζ Anisotropy related variable

κ Von Karman constant

λ Eigenvalue

λf Face interpolation factor

σ Singular value

ϕ Generic flow variable

ϕ′ Fluctuation intensity

χ Phase indicator function

∇ Nabla operator

Dimensioned symbols - Greek letters

Uppercase
∆ Mesh length scale, m

Φ Scale-suplying variable in KSKL model, m2s−1

Φij Redistribution term, Reynolds stresses evolution equation, m2s−3

Ψ Scale-supplying variable in Rotta’s turbulence model, m3s−2
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Lowercase
α Temperature diffusivity, m2s−1

αt Turbulent temperature diffusivity, m2s−1

ε Dissipation rate, m2s−3

εij Tensor of dissipation rate, m2s−3

εh Homogeneous dissipation rate, m2s−3

εh
ij Tensor of homogeneous dissipation rate, m2s−3

η Kolmogorov length scale, m

θ Temperature fluctuation, K

κ Wave number, m−1

µ Dynamic viscosity, Pas

µeff Dynamic effective viscosity, Pas

µt Dynamic turbulent viscosity, Pas

µBIT Dynamic bubble-induced viscosity, Pas

ν Kinematic viscosity, m2s−1

νeff Kinematic effective viscosity, m2s−1

νt Turbulent kinematic viscosity, m2s−1

νSGS Sub-grid turbulent viscosity, m2s−1

ρ Density kgm−3

σij Tensor of surface forces, Pa

τ0 Top-level time scale, s

τη Kolmogorov time scale, s

τ Shear stress, Pa

τb Bubble time scale, s

τw Wall-shear stress, Pa

τij Tensor of tangential shear stresses, Pa
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τSGS
ij Sub-grid stress tensor, Pa

ω Specific dissipation (turbulence frequency) , s−1

ωh Homogeneous specific dissipation (turbulence frequency) , s−1
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