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Abstract. For slender beam-columns loaded by axial compressive forces, active buckling
control provides a possibility to increase the maximum bearable axial load above that of a
purely passive structure. In this paper, the potential of active buckling control of an imperfect
beam-column with circular cross-section using piezo-elastic supports is investigated numerically.
Imperfections are given by an initial deformation of the beam-column caused by a constant
imperfection force. With the piezo-elastic supports, active bending moments in arbitrary
directions orthogonal to the beam-column’s longitudinal axis can be applied at both beam-
column’s ends. The imperfect beam-column is loaded by a gradually increasing axial compressive
force resulting in a lateral deformation of the beam-column. First, a finite element model of
the imperfect structure for numerical simulation of the active buckling control is presented.
Second, an integral linear-quadratic regulator (LQR) that compensates the deformation via the
piezo-elastic supports is derived for a reduced modal model of the ideal beam-column. With
the proposed active buckling control it is possible to stabilize the imperfect beam-column in
arbitrary lateral direction for axial loads above the theoretical critical buckling load and the
maximum bearable load of the passive structure.

1. Introduction
Buckling of slender and compressively loaded beam-columns is a critical failure mode in the
design of light-weight structures. The theory of buckling for passive beam-columns has been
thoroughly investigated, [1]. Real, non-ideal or imperfect beam-columns exhibit large lateral
deformations for axial loads considerably below the theoretical critical buckling load and,
therefore, have lower maximum bearable axial loads. A general approach to passively increase
the maximum bearable axial load is to change the geometry, e. g. length and cross-section area,
or the material so that the beam-column withstands higher loads. This, however, is sometimes
not desirable because of given design constraints. In these cases, active buckling control without
significant change in the beam-column’s geometry and material provides a suitable approach to
increase the maximum bearable axial load of a given structure.

Active buckling control of slender beam-columns with rectangular cross-section and different
boundary conditions has been investigated numerically and experimentally several times,
[2, 3, 4, 5, 6, 7, 8]. The investigated structures had relatively high slenderness ratios s, with

MOVIC2016 & RASD2016 IOP Publishing
Journal of Physics: Conference Series 744 (2016) 012165 doi:10.1088/1742-6596/744/1/012165

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



300 ≤ s ≤ 1 760 and low theoretical critical buckling loads. Often, surface bonded piezoelectric
patches were applied to beam-columns with rectangular cross-section to induce active bending
moments that counteract the deformation, [2, 3, 4, 5, 6]. The active stabilization concept
investigated by earlier own studies [7, 8] used piezoelectric stack actuators to apply active lateral
forces near the base of a fixed-pinned beam-column with rectangular cross-section. Compared
to other studies mentioned above, most of the beam-column’s surface was kept free from any
actuator like piezoelectric patches and only strain gauges were applied to the surface. In [7, 8]
and additional to all other studies, a lateral disturbance force representing uncertainty in the
beam-column’s loading was introduced to investigate the approach of active buckling control
with lateral forces near the base of the fixed-pinned beam-column. In an experimental study,
an increase in the critical axial buckling load of 40% was achieved by using a linear-quadratic
regulator (LQR) to control the first three lateral deflection modes of the supercritically loaded
beam-column, [8].

To the authors’ knowledge, active buckling control of beam-columns with circular cross-
section has not been investigated so far except in own works, [9, 10]. In [9], active buckling
control of a circular beam-column with active lateral forces acting near the beam-column’s fixed
base was investigated numerically and an increase of 110% in the critical buckling load was
achieved. The studies mentioned before investigated beam-columns with high slenderness ratios
300 ≤ s ≤ 1 760 and relatively low buckling loads. In this paper, active buckling control of
a relatively stiff beam-column with circular cross-section and relatively low and realistically
more often applied slenderness ratio s = 108 is investigated numerically. A new concept for
piezo-elastic supports is used. Lateral forces of piezoelectric stack actuators are transformed
into bending moments acting in arbitrary directions at the beam-column ends. By that, the
beam-column surface is kept entirely free of any actuators. In [10], active buckling control by
LQR control for this beam-column system without imperfections loaded by a constant axial force
was simulated numerically. A lateral impulse disturbance force was used to initially deform the
ideal beam-column and an increase of 247% in the critical buckling load was achieved by LQR
control. In an experimental test setup, the real imperfections had a significant influence on the
active buckling control and the standard LQR proved to be insufficient. Therefore, an integral
LQR will now be used to compensate the deformation of the imperfect beam-column caused
by a constant imperfection force. In the following, first the investigated beam-column system
with piezo-elastic supports and a mathematical model of the imperfect structure are presented.
Second, a reduced modal model of the axially loaded beam-column for design of the integral
LQR is derived. Finally numerical simulations of the active buckling control and conclusions
are presented.

2. System description and mathematical model
In this section, the beam-column system and a state space finite element (FE) model of the
imperfect structure for numerical simulation and controller design are presented.

2.1. Beam-column system with piezo-elastic supports
The investigated system is a slender beam-column made of aluminum alloy EN AW-7075 with
length lb. It has a circular solid cross-section of radius rb, bending stiffness EIb and density ϱb,
all assumed to be constant across the entire beam-column length, figure 1. The beam-column
has two piezo-elastic supports A at x = 0 and B at x = lb. The concept of the piezo-elastic
supports was first presented in [10] and a model validation was performed in [11]. The central
element of the support is an elastic spring element that is represented by rotational stiffness
kφy ,A = kφz ,A = kφy,B = kφz ,B = kr and lateral stiffness ky,A = kz,A = ky,B = kz,B = kl that
are the same for both supports A and B and in both y- and z-direction. In each piezo-elastic
support A and B at x = −lext and x = lb + lext, three piezoelectric stack actuators are arranged
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in a support housing at an angle of 120 ◦ to each other in one plane orthogonal to the beam-
column’s x-axis. They are connected to the beam-column via a relatively stiff axial extension
(grey) made of hardened steel 1.2312 with length lext, radius rext, bending stiffness EIext and
density ϱext creating cantilever beam ends beyond both elastic spring elements. This way, active
lateral forces in arbitrary directions orthogonal to the beam-column’s longitudinal x-axis are
transformed into bending moments acting in arbitrary directions at the beam-column ends in
both piezo-elastic supports A and B.
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Figure 1: Sketch of beam-column system.

At the upper support B at x = lb, a gradually increasing axial load Fx(t) is applied. To
represent imperfections such as predeformation, eccentric loading or clamping moments that are
present in real structures, the otherwise ideal beam-column is deformed by a constant lateral
imperfection force Fimp with variable angle 0 ◦ ≤ ϑimp ≤ 360 ◦ acting at ximp = lb/2. This
way, the dynamic behavior of an ideal or perfect beam-column with an additional external
imperfection force is assumed to be the same as the dynamic behavior of a real, imperfect
structure. To determine the deformation of the beam-column in an experimental test setup, it
is assumed in the model that strain gauges at positions xs,1/2 measure the surface strain of the
beam-column in y- and z-direction. The parameters of the beam-column system presented in
figure 1 are summarized in table 1. The values for the spring element’s rotational stiffness kr
and lateral stiffness kl were obtained from static stiffness measurements on a material testing
machine, [11].
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Table 1: Properties of beam-column system.

property symbol value SI-unit

beam-column length lb 400.0 · 10−3 m
beam-column radius rb 4.0 · 10−3 m

beam-column density ϱb 2 789.0 kg/m
3

beam-column Young’s modulus Eb 75.8 · 109 N/m2

axial extension length lext 7.5 · 10−3 m
axial extension radius rext 6.0 · 10−3 m

axial extension density ϱext 7 810.0 kg/m
3

axial extension Young’s modulus Eext 210.0 · 109 N/m2

spring element rotational stiffness kr 192.4 Nm/rad
spring element lateral stiffness kl 30.0 · 106 N/m
piezoelectric stack actuator lateral stiffness kp 22.0 · 106 N/m
strain gauge position 1 xs,1 148.0 · 10−3 m
strain gauge position 2 xs,2 252.0 · 10−3 m
modal damping ratio mode 1 ζ1 15.0 · 10−3 −
modal damping ratio mode 2 ζ2 4.5 · 10−3 −

2.2. Finite Element model
The beam-column and the stiff axial extensions are discretized by N−1 one-dimensional Euler-
Bernoulli beam elements of length lel with N nodes. Each node n is described by the lateral
displacements vn and wn in y- and z-direction and the rotational displacements φy,n and φz,n

around the y- and z-axis, figure 2a. Axial and rotational displacements in and around the x-axis
of the beam-column are neglected. Figure 2b shows the discretized beam-column with N − 1
finite elements and N nodes. The axial extensions are discretized by one single finite element,
so that the axial load Fx(t) acts at node n = N − 1. The piezoelectric stack actuators in
the piezo-elastic supports A and B are represented by lateral stiffness kp and additional active
control forces Fay/z,A/B(t) in y- and z-direction of nodes n = 1 and n = N of the FE model.
The constant imperfection force Fimp with angle 0 ◦ ≤ ϑimp ≤ 360 ◦ acts on the central node nc

at ximp = lb/2.
The Galerkin method with cubic Hermitian shape functions g(xel) is used to get the

element mass matrix Mel, elastic element stiffness matrix Ke,el and geometric element stiffness
matrix Kg,el, all [8 × 8], for the Euler-Bernoulli beam elements, [12]. The element mass
matrix Mel and elastic element stiffness matrix Ke,el are readily found in literature, [12, 13].
The geometric element stiffness matrix

Kg,el =
1

lel



6/5 0 0 lel/10 −6/5 0 0 lel/10
6/5 −lel/10 0 0 −6/5 −lel/10 0

2/15 l2el 0 0 lel/10 −l2el/30 0
2/15 l2el −lel/10 0 0 −l2el/30

6/5 0 0 −lel/10
6/5 lel/10 0

symmetric 2/15 l2el 0
2/15 l2el


(1)

describes the influence of axial load Fx(t) on the beam-column’s lateral stiffness. After the
assembly of global mass and stiffness matrices from the element matrices, the inhomogeneous
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Figure 2: FE beam-column system, (a) n-th finite beam-column element of length lel with
element coordinates in positive directions, (b) FE model of beam-column.

FE equation of motion is

M r̈(t) +D ṙ(t) +
(
Ke − Fx(t)Kg

)
r(t) = B0 u(t) + bimp,0 Fimp (2)

with the [4N × 1] FE displacement vector

r(t) = [v1(t), w1(t), φy,1(t), φz,(t), . . . , vN (t), wN (t), φy,N (t), φz,N (t)]T . (3)

The left side of (2) represents the ideal or perfect axially loaded beam-column with piezo-
elastic supports. M is the global mass matrix, D is the global damping matrix, Ke is the global
elastic stiffness matrix and Kg is the global geometric stiffness matrix, all [4N × 4N ]. The right
side of (2) represents the external forces acting on the beam-column. These are caused, on the
one hand, by the active control forces that are summarized in control input vector

u(t) =


Fay,A(t)
Faz,A(t)
Fay,B(t)
Faz,B(t)

 (4)
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and, on the other hand, by the constant imperfection force Fimp with angle ϑimp that is used
to include the effect of imperfections without changing the FE matrices on the left side of (2).
The external forces are allocated to the FE nodes by the [4N × 4] control input matrix and the
[4N × 1] imperfection input vector

B0 =



1 0 0 0
0 1 0 0
...

...
...

...
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

[4N×4]

and bimp,0 =



0
...
0

cosϑimp

sinϑimp

0
...
0


︸ ︷︷ ︸

[4N×1]

(5)

This way, the control input vector acts on the first and last nodes n = 1 and n = N and the
imperfection force acts on the central node n = nc of the FE model.

The stiffness matrix Ke in (2) includes the discrete stiffness kp, kl and kr of piezoelectric stack
actuators and elastic spring elements, table 1. The lateral stiffness kp is added to the entries of
the lateral degrees of freedom of nodes n = 1 and n = N . Similarly, the lateral and rotational
stiffness kl and kr are added to the entries of the lateral and rotational degrees of freedom of
nodes n = 2 and n = N − 1, figure 2b. The damping matrix D is assumed by Rayleigh
proportional damping D = αM + βKe, [14]. The proportional damping coefficients α and β
are determined for experimentally identified modal damping ratios ζ1/2 of the first two bending
modes.

The beam-column’s lateral displacements v(t) and w(t) in a real test setup scenario are not
measured directly. Four strain gauges at each of the two strain gauge positions xs,1/2 measure
the surface strains due to bending in y- and z-direction, figure 1. Therefore, in the mathematical
model, the surface strains in y- and z-direction at the strain gauge positions are chosen as output

y(t) =


εy(xs,1, t)
εz(xs,1, t)
εy(xs,2, t)
εz(xs,2, t)

 = C0 r(t). (6)

In (6), the [4× 4N ] output matrix C0 allocates the surface strains y(t) to the FE displacement
vector (3) by the entries −rb g

′′(xs,1/2) at the FE nodes surrounding strain gauge positions xs,1/2.
rb is the beam-column radius and g′′(xs,1/2) is the second derivative of the Hermitian shape
functions at the strain gauge positions, [12].

For convenience, (2) and (6) are written in state space representation

ẋFE(t) =

([
0 I

−M−1Ke −M−1D

]
+ Fx(t)

[
0 0

M−1Kg 0

])
︸ ︷︷ ︸

[8N×8N ]

xFE(t)

+

[
0

M−1B0

]
︸ ︷︷ ︸

[8N×4]

u(t) +

[
0

M−1 bimp,0

]
︸ ︷︷ ︸

[8N×1]

Fimp

y(t) =
[
C0 0

]︸ ︷︷ ︸
[4×8N ]

xFE(t),

(7)
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with [8N × 1] FE state vector xFE(t) = [r(t), ṙ(t)]T and zero and identity matrices 0 and I of
appropriate dimensions. In short form, (7) can be written as

ẋFE(t) = AFE(Fx(t))xFE(t) +BFE u(t) + bimp Fimp

y(t) = CFE xFE(t)
(8)

representing the full FE state space model of the beam-column with piezo-elastic supports,
including imperfections, active control forces and sensor output. The influence of a time-varying
axial load Fx(t) on the dynamic system behavior is described by the system matrix AFE(Fx(t)).

3. Controller design
In the following, first a reduced modal model of the axially loaded beam-column is presented.
Second, the modal model is augmented to include integrated states and a LQR for active buckling
control is derived. As simplifications and in accordance with the controller of a real test setup,
the imperfection force Fimp is ignored and the ideal beam-column system is used for controller
design. Furthermore, the axial load Fx(t) is assumed to be constant.

3.1. Reduced modal model
For the full state FE model (2) and as a specific example according to figure 2b, a number
of N = 35 nodes resulting in 4N = 140 degrees of freedom is chosen to properly describe the
maximum surface strains at the strain gauge positions xs,1/2, (6). For controller design, however,
the FE model is reduced by modal truncation to include the first two modes q1(t) and q2(t) for
both y- and z-direction only. Consequently, the FE displacement vector (3) and the deformation
of the imperfect beam-column is approximated by modal displacements

qm(t) =


q1,y(t)
q1,z(t)
q2,y(t)
q2,z(t)

 (9)

via the transformation
r(t) ≈ Φqm(t). (10)

The [4N × 4] modal matrix
Φ = [r̂1,y, r̂1,z, r̂2,y, r̂2,z] (11)

includes the first two [4N ×1] eigenvectors r̂1 and r̂2 in y- and z-direction of the FE model, [15].
The eigenvectors in (11) are normalized with respect to mass matrix M leading to the modal

mass matrix M̃ , modal elastic stiffness matrix K̃e, modal geometric stiffness matrix K̃g and

modal damping matrix D̃

M̃ = ΦT M Φ = I

K̃e = ΦT KeΦ

K̃g = ΦT Kg Φ

D̃ = ΦT DΦ

(12)

with the identity matrix I, all [4 × 4]. Using the [8 × 1] modal state vector with the modal
displacements and velocities

xm(t) =

[
qm(t)
q̇m(t)

]
, (13)
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the first order modal state space equations for the ideal axially loaded beam-column with
constant axial load Fx(t) = Fx = const are

ẋm(t) =

([
0 I

−K̃e −D̃

]
+ Fx

[
0 0

K̃g 0

])
︸ ︷︷ ︸

[8×8]

xm(t) +

[
0

ΦT B0

]
︸ ︷︷ ︸

[8×4]

u(t)

y(t) =
[
C0Φ 0

]︸ ︷︷ ︸
[4×8]

xm(t),

(14)

[15]. (14) can also be written in short form

ẋm(t) = Am(Fx)xm(t) +Bm u(t)

y(t) = Cm xm(t).
(15)

3.2. Integral LQR
Active buckling control of the circular beam-column is achieved by an infinite horizon,
continuous-time linear quadratic regulator (LQR). The constant imperfection force Fimp that
represents imperfections such as predeformation, eccentric loading or clamping moments in the
FE model (8) is not explicitly included in the controller modal model (15). In a standard LQR
design as performed in [10], the imperfection force leads to a constant controller error and non-
zero beam-column deformation despite of the active buckling control. High static controller gains
that might prove problematic for time-varying axial loads are necessary in order to reduce the
beam-column deformation close to zero. To avoid this, an additional integral term is included
in the controller design. For that, the modal state vector (13) is augmented by the integral of
the modal displacements

xi(t) =

∫
qm(t) dt (16)

to get the new [12× 1] state vector

x(t) =

[
xm(t)
xi(t)

]
, (17)

[16, 17]. With the first derivative of the new state vector

ẋi(t) = qm(t) =
[
I 0

]︸ ︷︷ ︸
[4×8]

xm(t), (18)

the augmented state space system including the integral term can be written as

ẋ(t) =

[
Am(Fx) 0[
I 0

]
0

]
︸ ︷︷ ︸

[12×12]

x(t) +

[
Bm

0

]
︸ ︷︷ ︸
[12×4]

u(t)

y(t) =
[
Cm 0

]︸ ︷︷ ︸
[4×12]

x(t).

(19)

In short form, the final state space system (19) of the ideal axially loaded beam-column with
piezo-elastic supports for controller design is

ẋ(t) = A(Fx)x(t) +Bu(t)

y(t) = C x(t),
(20)
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with system matrix A(Fx), input matrix B and output matrix C. The control law of the LQR
determines the control input u(t) so that the quadratic performance index

J =

∫ ∞

0

{
xT (t)Qx(t) + uT (t)Ru(t)

}
dt (21)

is minimized, [17]. The [12× 12] matrix Q includes weights on system state vector x(t) and is
chosen as diagonal matrix with largest weights on the modal displacements of the first modes
in y- and z-direction and their integrals, [18]. The [4× 4] matrix R includes weights on control
input u(t) and is chosen as identity matrix. The control input (4) is calculated by

u(t) = −KLQR(Fx)x(t), (22)

where the [4× 12] control matrix KLQR(Fx) is given by

KLQR(Fx) = R−1BT P (Fx). (23)

In (23), P (Fx) is the solution of the continuous-time Algebraic Riccati Equation (CARE)

A(Fx)
T P (Fx) + P (Fx)A(Fx)− P (Fx)BR−1BT P (Fx) +Q = 0 (24)

with system matrix A(Fx), input matrix B, (20), and weights Q and R, [17]. Since the system
matrix is a function of axial load Fx, the solution of (24) and the optimal control matrix (23) also
depend on the axial load. In the numerical simulations, therefore, the control matrix is switched
between different control matrices which are calculated for constant axial loads Fx = 0−3 500N
in steps of 500N.

4. Numerical simulation of active buckling control
In this section, numerical simulations of the active buckling control are presented to show the
stabilization capability of the investigated system. First, the theoretical buckling behavior of
the ideal beam-column system is presented. Second, active buckling control of the imperfect
beam-column system is investigated.

4.1. Buckling behavior of ideal beam-column system
The left side of (2) determines the dynamic behavior of the ideal, perfect beam-column. Without
imperfections or other external disturbances, the beam-column will not deform and remains
in straight position regardless of the applied axial load Fx(t). For certain axial loads, the
theoretical buckling loads, the matrixKe−Fx(t)Kg becomes singular and the system is instable.
Consequently, the theoretical buckling loads for the homogeneous beam-column model in (2)
with piezo-elastic supports are the eigenvalues of the eigenvalue problem

det [Ke − FxKg] = 0, (25)

[13]. The lowest eigenvalue calculated for the given boundary conditions, table 1, is the critical
buckling load Fx,cr = 3206N. The beam-column with circular cross-section has no preferred
direction of buckling, so the beam-column may buckle in any plane lateral to the x-axis.
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4.2. Buckling behavior of imperfect beam-column system
In a real, imperfect beam-column, the applied axial compressive load Fx(t) increases the initial
deformation. In the numerical simulations, the dynamic behavior of the real beam-column
resembles the dynamic behavior of the FE model (8) with the constant imperfection force Fimp

acting at node nc = 18, figure 2b, that is used to initially deform the beam-column. For that,
figure 3 shows a block diagram for the numerical simulations. The axial load Fx(t) acts on node
n = 34 of the beam-column as a slow ramp to represent a quasi-static loading as in a real test
setup.

ẋFE(t) = AFE(Fx(t))xFE(t) +BFE u(t) + bimp Fimp

y(t) = CFE xFE(t)

−KLQR(Fx) (C0Φ)−1

Fx

Fimp

t

t

u(t)

∫
dt

d
dt

x(t)

xi(t)

xm(t)

y(t)

qm(t)

highpass filter

integrator

imperfect beam-column

Figure 3: Block diagram for numerical simulation of active buckling control.

In figure 3, the surface strains εy/z according to (6) are the output y(t) of the FE model (8).
The deformation of the beam-column in y- and z- direction due to the axial load Fx(t) and the
external forces Fimp and u(t) is approximated by the modal displacements (9) that, due to the
invertibility of the [4× 4] matrix (C0Φ), result in

qm(t) = (C0Φ)−1 y(t). (26)

A first order Butterworth highpass filter is used to numerically differentiate the modal
displacements qm(t) to get the modal velocities q̇m(t) that together form the modal state vector
xm(t), (13). An integrator sums up the modal displacements to get the integral state vector
xi(t), (16). The full state vector x(t), (17) is used to calculate the control forces u(t) via (22).
The control matrix KLQR(Fx), (23) is calculated for the reduced ideal modal model (20) and for
constant axial loads Fx. For the quasi-statically increasing axial load Fx(t), the control matrix
is switched in steps of 5N.

The results of the numerical simulations with and without active buckling control for a
constant imperfection force Fimp = 2N with angle ϑimp = 234◦ and an axial load ramp
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Fx(t) = 0 − 3 400N are shown in figure 4. Again, the number of nodes for this example and
according to figure 2b is N = 35. This leads to the absolute displacement of the central node
nc = 18 with nodal displacements v18(t) and w18(t) in y- and z-direction that is plotted with
respect to the axial load Fx(t) in figure 4a. Figure 4b shows the displacements v18(t) and w18(t)
of the central FE node in the y-z-plane.

Nodal displacement
√

v218 + w2
18 in mm

0 1 2
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x
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(a)
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-2 0 2

D
is
p
la
ce
m
en
t
w

1
8
in

m
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-2

0

2

ϑimp

(b)

Figure 4: Displacements v18(t) and w18(t) of the central node nc = 18 in y- and z-direction for
the imperfect beam-column with ( ) and without ( ) active buckling control, (a) absolute
displacement versus axial load Fx(t) (b) displacements in y-z-plane.

Without active buckling control, the load deformation curve shows the typical continuous
deformation with increasing axial load. That is known from real, imperfect beam-columns where
sudden buckling does not occur, [1]. The beam-column continuously deforms in the direction
of the constant lateral disturbance ϑimp. It is not possible to define one single critical buckling
load of the uncontrolled system, only a maximum bearable load is seen for a given admissible
deformation. A maximum absolute displacement of 0.5mm is reached for the axial load of
Fx,0.5 = 2858N = 0.89Fx,cr, figure 4a. That is considerably less than the theoretical critical
buckling load Fx,cr = 3206N, determined for the ideal beam-column system.

With active buckling control, the active forces at nodes n = 1 and n = 35, with respect to
figure 2b, are able to initially force the beam-column into a straight position and then to reduce
the beam-column deformation for the quasi-statically increasing axial load Fx(t). The integral
LQR is able to stabilize the beam-column up to an axial load of Fx,max = 3360N ≈ 1.05Fx,cr.
Up to Fx,max, the deformation in both y- and z-direction remains zero, figure 4a. At Fx,cr, the
system matrixAFE(Fx(t)) of the FE beam-column model (8) becomes instable and the controller
is able to stabilize the beam-column and keep it in its straight position. At Fx,max however,
oscillation of higher modes that are not considered in the controller occur that grow and finally
lead to buckling of the beam-column at an angle of ϑimp so that the simulation is stopped at
Fx(t) = 3 400N. Nevertheless, the presented active buckling control is able to stabilize the
beam-column and to increase the maximum bearable load above the theoretical critical buckling
load Fx,cr.
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5. Conclusions
A new method of active buckling control of an imperfect axially loaded beam-column with
circular cross-section by piezo-elastic supports is presented and investigated numerically.
Imperfections are represented by a constant lateral imperfection force that initially deforms
the beam-column. With the piezo-elastic supports, lateral forces of piezoelectric stack actuators
are transformed into bending moments acting in arbitrary directions at the beam-column ends.
A finite element (FE) model of the imperfect beam-column system is derived and used for
numerical simulations. A reduced modal model of the ideal beam-column is augmented by
integrated states and used to implement an integral linear quadratic regulator (LQR). Without
active buckling control, the numerical simulations show that the imperfect axially loaded beam-
column exhibits high lateral deformations for axial loads considerably below the theoretical
critical buckling load of the ideal structure. With active buckling control using piezo-elastic
supports, stabilization above the theoretical critical buckling load and the maximum bearable
load of the passive imperfect beam-column is possible. In current investigations, the practical
effectiveness of the stabilization concept is tested in an experimental setup.
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