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The design freedom provided by additive manufacturing offers new opportunities to fabricate novel structures with a high
lightweight potential, such as strut-based lattice structures. These lattice structures consist of periodically repeated unit cells
and can be used in several applications due to their outstanding mechanical performance. One of the possible applications are
cores of sandwich panels since the strut-based lattices offer comparable mechanical properties to conventional honeycomb
structures. Moreover, multifunctional use of the sandwich core is enabled by allowing the heat and fluid transfer through the
sandwich due to the open-celled lattice structure. However, strut-based lattices are rarely utilized as cores in sandwich panels
in engineering practice. One of the main reasons for that is the unknown mechanical behavior of lattice cores. In particular,
when the sandwich is subjected to concentrated loads, localized stresses and deformations occur in the sandwich core, leading
to core damage. In this work, we present a novel analytical model to determine stresses and deformations in the struts of
lattice cores of sandwich panels using homogenization and dehomogenization methods. The local core compression caused
by localized transverse forces can also be determined by the derived model.
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1 Introduction

The high bending stiffness and the simultaneously low weight provided by sandwich panels make sandwich structures at-
tractive to design lightweight constructions. Typically, honeycomb and foams are employed as cores in sandwich panels.
Recently, novel light-weight strut-based lattices have been investigated in several studies, revealing that these lattice struc-
tures can provide an alternative for typical sandwich cores since they offer comparable mechanical properties to conventional
honeycomb cores [1]. This trend of considering strut-based lattice as cores in sandwich panels was mainly motivated due to
advances in additive manufacturing, which enables the fabrication of these complex structures [2]. In case the face sheets and
the core are made of the same material, the sandwich structure may be manufactured merely in one print job and no assembly
using adhesive layers is required [3].

However, strut-based lattices are rarely employed as cores in sandwich panels in industrial applications. The use of lattices
as cores is complicated by the lack of knowledge about the lattice behavior under different loads. Existing approaches to lattice
modeling are based on replacing the lattice with an equivalent homogeneous material, called homogenization [4]. Making use
of the effective properties of lattices, simple sandwich theories can be used to calculate the displacements and the effective
stresses in the core. However, most theories do not take into account the core local deformations caused by concentrated
loads and the stiffness mismatch between the core and face sheet material [5]. Advanced theories enable the determination of
local core compressions [6], but do not provide information about the stresses in the lattice struts since the lattice struts are
neglected due to lattice homogenization. Therefore, a dehomogenization method to determine the strut stresses in the lattice
core is presented in this study. Furthermore, a higher-order sandwich model is introduced to determine sandwich deformations
and in particular, the local core compression induced by concentrated transverse loads in sandwich panels with strut-based
lattice cores.

2 Modelling approach

In this work, we consider a 2D symmetric sandwich model with two isotropic face sheets (E(f), ν(f)), as illustrated in Fig. 1(a).
The quantity n describes the face sheet number, where the bottom face sheet is indicated by n = 1 and the top face sheet by
n = 2. The face sheet thickness and the core thickness are described by h(f) and h(c), respectively. A periodic lattice with
the unit cell shown in Fig. 1(b) represents the sandwich core. Furthermore, we assume that the face sheets and the lattice
struts are made of the same material and show a linear elastic material behavior. A Cartesian coordinate system xz with
−l/2 ≤ x ≤ l/2 and −h/2 ≤ z ≤ h/2 is placed in the sandwich center where l and h denote the sandwich total length and
sandwich total thickness, respectively. All geometric parameters of the sandwich are presented in Fig. 1.
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(a) Sandwich structure with a lattice core (b) Lattice unit cell

Fig. 1: The considered sandwich model and the corresponding unit cell

2.1 Lattice homogenization

To enable the calculation of the lattice strut stresses, the core will be first modeled as a homogeneous anisotropic material
which shows the same mechanical response as the lattice. For this reason, the effective mechanical properties of the considered
lattice unit cell are required. The considered unit cell is assumed to behave in an orthotropic manner. The effective orthotropic
material behavior in the considered plane can be described by four elastic constants: the effective elastic modulus in the
horizontal direction E∗

xx, the effective elastic modulus in the vertical direction E∗
zz , the effective shear modulus in the xz-

plane G∗
xz and the effective Poisson’s ratio ν∗xz . These elastic constants are obtained using FE simulations of basic load cases

of the lattice unit cell. In the FE simulations, the unit cell is subjected to an uniaxial load case in the horizontal and in the
vertical direction and a shear load in the xz-plane. The simulations are conducted for several aspect ratios where only the strut
diameter of the unit cell d is changed and the cell size a remains constant (a=5 mm). The results obtained by these numerical
simulation show that the relative elastic constants depend on the aspect ratio of the unit cell. This dependence relation for the
different moduli can be given as

E∗
xx

Es
= 1.6

(a
d

)−2

,
E∗

zz

Es
= 3.9

(a
d

)−2

,
G∗

xz

Gs
= 7.4

(a
d

)−2

, (1)

where Es is the elastic modulus of the lattice solid isotropic material.

2.2 Higher-order sandwich theory

In the current study, we consider a sandwich structure that is subjected to a single transverse load on the mid of the top face
sheet upper surface and simply supported at the ends of the bottom face sheet, reassembling the set-up of a three-point bending
test, as shown in Fig. 2(a). Since the considered load and geometry are symmetric, merely a half model is taken into account
(Fig. 2(b)). To determine the sandwich displacements, the principle of minimum potential energy is used.

(a) Boundary conditions of a 3-point bending test (b) Sandwich half model with the corresponding boundary condi-
tions

Fig. 2: The considered sandwich model and the boundary conditions
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First, the employed displacement approaches of the face sheets are presented. Since the face sheets are assumed to be
slender, a beam-like behavior is expected. Therefore, Timoshenko beam deformation approaches are employed to model the
face sheets deflections

u(n)(x, z) = u
(n)
0 (x) + zψ(n)(x), w(n)(x, z) = w

(n)
0 (x), (2)

wherew(n)
0 and u(n)0 are the vertical and horizontal displacement of the face sheet mid-axis and ψ(n) is the angular deformation

of the face sheet. Strains of the face sheets are obtained by the derivatives of displacement functions concerning the horizontal
coordinate x or vertical coordinate z

ε(n)xx =
∂u(n)

∂x
, ε(n)zz =

∂w(n)

∂z
, γ(n)xz =

∂u(n)

∂z
+
∂w(n)

∂x
. (3)

Assuming a plane-stress state in the xz-plane, the face sheet stresses can be given as

σ(n)
xx =

E(f)

1− ν(f)
2 ε

(n)
xx , τ (n)xz = G(f)γ(n)xz . (4)

Since the core is expected to show a more complex deformation behavior than the face sheets, using simple linear approaches
would not reveal the core compression induced by concentrated loads. Thus, higher-order approaches are introduced to extend
the linear interpolation between the face sheet displacements. Adding quadratic to 4th-order terms (ŵ, w̃, w̆, û, ũ, ŭ) enables
the calculation of linear, quadratic, and cubic strain distributions. The core displacement approaches are given as

u(c)(x, z) =
u
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0 (x) + u

(2)
0 (x) + h(f)
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2 ψ(2)(x)

2
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h(c)
z ++ũ(x)f̃(z) + û(x)f̂(z) + ŭ(x)f̆(z), (5)
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where the distribution functions f̃(z), f̂(z), and f̆(z) are quadratic, cubic and 4th-order functions of the coordinate z and
satisfy the displacement continuity on the interfaces between the core and the face sheets
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The core strains are calculated in the same manner as in the face sheets. In contrast to the face sheets, the lattice core is
assumed to show an effective orthotropic material behavior. Therefore, four elastic parameters are required to determine the
core stresses using the following material laws

σ(c)
xx =

E
(c)
xx

(1− ν
(c)
xz ν

(c)
zx )

[
ε(c)xx + ν(c)xz ε

(c)
zz

]
, σ(c)

zz =
E

(c)
zz

(1− ν
(c)
xz ν

(c)
zx )

[
ε(c)zz + ν(c)zx ε

(c)
xx

]
, τ (c)xz = G(c)

xz γ
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Regarding all introduced degrees of freedom, the considered sandwich has a total of 12 degrees of freedom which are
functions of the coordinate x. To determine these unknown functions, the method of minimum potential energy is employed.
Considering the half model presented in Fig. 2(b), the external energy can be determined depending on the applied load F by
Πa = −F

2 w
(2)
0 (x = 0). The sandwich strain energy is composed of the sandwich layers energies. Since the transverse normal

stresses in the face sheets are neglected, the face sheet strain energy can be given as
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In contrast, the core strain energy involves all stress components in the xz-plane

Π
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1

2

∫ 0

−l/2

∫ h(c)/2

−h(c)/2

(σ(c)
zz ε

(c)
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xz + σ(c)

xx ε
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The sum of all energies yields the total sandwich potential energy Π. Considering the rules of the calculus of variation, the
condition δΠ = 0 yields 12 coupled second-order differential equations of the sandwich degrees of freedom

A Ψ̈ +B Ψ̇ + C Ψ = 0, (11)
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with Ψ the vector of the 12 unknown deflections of the sandwich layers

Ψ =
[
u
(1)
0 u

(2)
0 ψ(1) ψ(2) w(1) w(2) w̃ ũ ŵ û w̆ ŭ

]T
. (12)

By converting this system to a first-order equation system, the first-order system can be solved using an exponential ansatz
function of the eigenvalues of the first-order system matrix. Further information about solving and converting the differential
equation system is discussed in detail in [7].

2.3 Lattice dehomogenization

After calculating the displacement functions, these functions are evaluated on the lattice nodes so that the vertical and hori-
zontal displacements (u1, u2, u3, u4, w1, w2, w3 and w4) of each unit cell node are obtained (Fig. 3). These displacements will
be transformed to the respective strut local coordinate system to enable the calculation of the corresponding strut extension or
compression ∆ls

∆l1 = (u2 − u1) cos(π/4) + (w2 − w1) sin(π/4),

∆l2 = (u3 − u2) cos(3π/4) + (w3 − w2) sin(3π/4),

∆l3 = (u4 − u3) cos(5π/4) + (w4 − w3) sin(5π/4), (13)

∆l4 = (u1 − u4) cos(−π/4) + (w1 − w4) sin(−π/4),
∆l5 = (w3 − w1).

Finally, the lattice strut stresses are determined using Hooke’s law σs = Es
∆ls
ls

.

Fig. 3: Dehomogenization of the homogenized core in sandwich panels

3 Results and discussion

In this section, the results of the calculation of the lattice strut stresses in sandwich panels subjected to a transverse force using
the dehomogenization method are presented. The considered sandwich involves two face sheets made of the same material
and a lattice core with a unit cell aspect ratio a/d = 40. The selected geometric parameters yield a lattice core with 4 layers
through the core thickness. The face sheet material is used to model the lattice solid material (E(f) = Es = 70000 MPa
and ν(f) = νs = 0.35). The face sheets have a thickness of 1 mm and the thickness ratio h(c)/h(f) and the slenderness ratio
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l/h(c) are assumed to be 20 and 10, respectively. An equivalent FE model is used to verify the results obtained by the present
model. In the FE model, the lattice struts are simply joined with no moment transfer using truss elements, and the face sheets
are modeled as solid layers using plane stress elements. The absolute normalized stress (σ = |σ/F |) in the lattice core struts
along the sandwich length in the core layer under the top face sheet is illustrated in Fig. 4(a). Since the vertical struts are
partially not loaded outside the model boundary areas, the stress distribution through the core thickness in the vertical struts
is only illustrated in the struts near the load application area (Fig. 4(b)). The stress in the vertical struts exhibits high values
near the load introduction area and decreases with increasing distance from the applied load. The inclined struts show lower
stresses in the load application area. In contrast to the vertical struts, the inclined struts are higher stressed outside the load
application area. Comparing the results presented by the derived model to the FE results, the stresses in the lattice struts are
well captured by the present model and show an excellent agreement with the FE results.

(a) Stress distribution in the inclined core struts at (x, (h(c)−a)/2) (b) Stress distribution in the vertical core struts at (−a/2, z)

Fig. 4: Stress distribution in the inclined struts of the core layer under the top face sheet and the vertical struts near the load application area

The sandwich lattice core can be replaced by a lattice with the same aspect ratio but different unit cell size a and strut
diameter d. In Fig. 5(a), two cores with the same aspect ratio but different unit cell size and strut diameter are shown. These
two sandwiches with different cores are equivalent since the effective elastic constants of the lattice depend merely on the
aspect ratio. Replacing the unit cell by a cell with a smaller cell size and a thinner strut diameter results in cores with more
layers through the thickness in case the thickness remains constant. Fig. 5(b) shows the stress distribution in the vertical struts
near the load application area through the core thickness in cores with different cell sizes but the same aspect ratio. The 4
investigated sandwiches consist of cores with 4, 5, 8 and 10 layers and the same thickness and the same effective stiffness.
The highest stress in the load application area is observed in the core with the thinnest strut diameter, namely the 10-layer
core. It can be shown that the stress in the load application area increases with increasing number of the core layers since the
strut diameter decreases. Outside the load application area (approximately starting from the mid of the sandwich), the stresses
in the vertical struts exhibit no deviation in the different cores since they are not affected by the load application and all lattice
cores have the same effective stiffness. With the knowledge gained from Fig. 5, the relevance of the dehomogenization and the
determination of the lattice strut stresses become clear. By using effective properties alone, the influence of the strut diameter
and the cell size on the occurring local stresses cannot be considered since the effective core stress does not change.

4 Conclusion

In the present work, a dehomogenization method to determine the lattice strut stresses in lattice cores of sandwich panels is
introduced. By using higher-order displacement approaches, the core compression and local displacements can be captured
with reasonable accuracy. In contrast to the models using merely homogenized lattice cores, the presented model enables
the consideration of the impact of the unit cell size and the strut diameter on the local stresses in the lattice struts. Due to
the flexibility of manufacturing provided by additive manufacturing, knowledge gained by this study can be used to grade
the lattice core and tailor the core properties to be adapted to the local strut stresses in the core without demanding lattice
modeling using FE software programs.
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(a) Two equivalent sandwiches (b) Stress distribution in vertical struts at (−a/2, z)

Fig. 5: Vertical strut stress near the load application area in equivalent sandwiches with different core layer numbers
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