

Supporting Information

for Macromol. Chem. Phys., DOI 10.1002/macp.202200178

Crystalline Carbosilane-Based Block Copolymers: Synthesis by Anionic Polymerization and Morphology Evaluation in the Bulk State

Hanna Hübner, Bart-Jan Niebuur, Oliver Janka, Lea Gemmer, Marcus Koch, Tobias Kraus, Guido Kickelbick, Bernd Stühn and Markus Gallei*

License: CC BY-NC 4.0 International - Creative Commons. Attribution, NonCommercial

Supporting Information for

Crystalline Carbosilane-Based Block Copolymers: Synthesis by Anionic Polymerization and Morphology Evaluation in the Bulk State

Hanna Hübner, Bart-Jan Niebuur, Oliver Janka, Lea Gemmer, Marcus Koch, Tobias Kraus, Guido Kickelbick, Bernd Stühn and Markus Gallei*

Figure S1: Molecular weight distribution of $PDMSB_{113}$ -*b*- $P2VP_{2086}$ (4.8 vol% PDMSB) and the corresponding PDMSB aliquot according to SEC measurements in THF against polystyrene standards.

Figure S2: Molecular weight distribution of PDMSB₁₅₃-*b*-P2VP₁₄₇₉ (8.9 vol% PDMSB) and the corresponding PDMSB aliquot according to SEC measurements in THF against polystyrene standards.

Figure S3: Molecular weight distribution of $PDMSB_{150}$ -*b*- $P2VP_{842}$ (14.3 vol% PDMSB) and the corresponding PDMSB aliquot according to SEC measurements in THF against polystyrene standards.

Figure S4: Molecular weight distribution of $PDMSB_{153}$ -*b*- $P2VP_{639}$ (18.3 vol% PDMSB) and the corresponding PDMSB aliquot according to SEC measurements in THF against polystyrene standards.

Figure S5: Molecular weight distribution of $PDMSB_{145}$ -*b*- $P2VP_{541}$ (20.1 vol% PDMSB) and the corresponding PDMSB aliquot according to SEC measurements in THF against polystyrene standards.

Figure S6: Molecular weight distribution of PDMSB₁₈₉-*b*-P2VP₅₁₄ (25.7 vol% PDMSB) and the corresponding PDMSB aliquot according to SEC measurements in THF against polystyrene standards.

Figure S7: Molecular weight distribution of $PDMSB_{230}$ -*b*- $P2VP_{286}$ (43.1 vol% PDMSB) and the corresponding PDMSB aliquot according to SEC measurements in THF against polystyrene standards.

WILEY-VCH

Figure S8: Molecular weight distribution of $PDMSB_{249}$ -*b*- $P2VP_{214}$ (52.3 vol% PDMSB) and the corresponding PDMSB aliquot according to SEC measurements in THF against polystyrene standards.

Figure S9: Molecular weight distribution of $PDMSB_{219}$ -*b*- $P2VP_{135}$ (60.5 vol% PDMSB) and the corresponding PDMSB aliquot according to SEC measurements in THF against polystyrene standards.

WILEY-VCH

Figure S10: Molecular weight distribution of $PDMSB_{144}$ -*b*- $P2VP_{82}$ (62.3 vol% PDMSB) and the corresponding PDMSB aliquot according to SEC measurements in THF against polystyrene standards.

Figure S11: Molecular weight distribution of $PDMSB_{139}$ -*b*- $P2VP_{25}$ (83.9 vol% PDMSB) and the corresponding PDMSB aliquot according to SEC measurements in THF against polystyrene standards.

WILEY-VCH

Figure S12: Molecular weight distribution of PDMSB₂₆₉ according to SEC measurements in THF against polystyrene standards.