

Supporting Information

for Adv. Sci., DOI 10.1002/advs.202207283

Guest Ion-Dependent Reaction Mechanisms of New Pseudocapacitive Mg₃V₄(PO₄)₆/Carbon Composite as Negative Electrode for Monovalent-Ion Batteries

Qiang Fu*, Björn Schwarz, Ziming Ding, Angelina Sarapulova, Peter G. Weidler, Alexander Missyul, Martin Etter, Edmund Welter, Weibo Hua, Michael Knapp, Sonia Dsoke and Helmut Ehrenberg Guest Ion-Dependent Reaction Mechanisms of New Pseudocapacitive Mg₃V₄(PO₄)₆/Carbon Composite as Negative Electrode for Monovalent-Ion Batteries

Qiang Fu^{a,*}, Björn Schwarz^a, Ziming Ding^{b,g}, Angelina Sarapulova^a, Peter G. Weidler^c, Alexander Missyul^d, Martin Etter^e, Edmund Welter^e, Weibo Hua^{a,f}, Michael Knapp^a, Sonia Dsoke^a, Helmut Ehrenberg^a

^aInstitute for Applied Materials (IAM), Karlsruhe Institute of Technology (KIT), Hermann-

von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany

^bInstitute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermannvon-

Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany

^cInstitute of Functional Interfaces (IFG), Chemistry of Oxidic and Organic Interfaces (COOI), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany

^dCELLS-ALBA Synchrotron, E-08290 Cerdanyola del Valles, Barcelona, Spain

^eDeutsches Elektronen-Synchrotron (DESY), Notkestr. 85, Hamburg 22607, Germany

^fSchool of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi

710049, People's Republic of China

^gTechnische Universität Darmstadt, 64289 Darmstadt, Germany

Corresponding author: qiang.fu@kit.edu (Q. Fu)

Tel: 49-721 608-41445, Fax: 49-721 608-28521.

Figure S1 TGA curve under O₂ flow. (a) and argon adsorption-desorption isotherms (inset pore size distribution) (b) of pristine MgVP/C.

Figure S2 TEM images of pristine MgVP/C, (b) & (c) HRTEM images of the blue inset dashed rectangle in (a).

Figure S3 Li, Na and K insertion performance in C65 conductive additive. The discharge charge curves (a) and cycling performance (b) of C65 at 50 mA g⁻¹ at 25 °C for LIBs, SIBs, and PIBs, respectively.

Figure S4 *In operando* synchrotron diffraction patterns of MgVP/C during the first two/one cycles for MgVP/C in SIBs (a) and PIBs (b), respectively, at 30 mA g⁻¹ (Wavelength has been converted to λ = 0.41273 Å from λ = 0.20695 Å for convenience, which were collected at P02.1, DESY).

Figure S5 Rietveld refinement from synchrotron diffraction data of pristine MgVP/C in both SIBs (a) and PIBs (b) (λ = 0.41273 Å converted from λ = 0.20695 Å).

Figure S6 Structural parameters from diffraction patterns with Rietveld refinement during the first two/one cycles for MgVP/C in SIBs (a) and PIBs (b), respectively.

Figure S7 *In operando* synchrotron diffraction patterns of MgVP/C in LIBs for the 1st cycle (λ = 0.41273 Å).

Figure S8 Structural parameters from diffraction patterns with Rietveld refinement during the first cycle for MgVP/C in LIBs.

Figure S9 Comparison of MgVP/C in LIBs at OCV, 0.01 V, and 3.0 V.

Figure S10 ZFC and FC susceptibility χ vs. *T* of pristine MgVP/C obtained at 1000 Oe.

Figure S11 Magnetic moment vs. magnetic field of pristine MgVP/C obtained at 2 K.

Figure S12 Inverse susceptibility χ^{-1} vs. *T* (open circles) for pristine MgVP/C together with Curie-Weiss fit from 150 to 390 K (solid line), where χ , *C*, *T*, θ and χ_{TI} refer to molar susceptibility, molar Curie constant, Temperature, Weiss constant, and temperature independent susceptibility, respectively.

Figure S13 susceptibility χ vs. *T* for pristine MgVP/C together with simulated curves according to model 'Ex' (red lines) and 'no Ex' (blue lines).

Figure S14 Spin quantum states' energy levels as a function of magnetic field (Zeeman) according to model 'no Ex' as obtained from a fit to experimental dc magnetization vs. field and vs. temperature data. The positive axial parameter *D* firstly causes the $m_1 = 0$ state (equation S4) to be excited by the energy *D* above the $m_1 = \pm 1$ states. The transverse parameter *E* then causes a quantum mechanical mixing of the $m_1 = \pm 1$ states into G_{1m} (equation S2) and G_{2m} (equation S3). These two states are separated by energy *E* that is much smaller compared to *D*.

Figure S15 ZFC/FC magnetization vs. temperature of lithiated MgVP/C obtained at 1000 and 5000 Oe, respectively, and FC curve for carbon obtained at 1000 Oe (inset).

Figure S16 Magnetization vs. filed (a) and enlarged selection (b) of lithiated MgVP/C obtained for various temperatures.

Space gro	up: <u>P</u> 1 (No.2	Chi=0.18			
a= 6.325(1) Å, <i>b</i> = 7.90	3(1) Å, <i>c</i> =9.286	R-factor=2.94		
<i>α</i> = 105.28	87(3)°, β=108	3.567(3)°, γ= 10	R _f -factor=1.99		
Atom	Wyckoff	Х	У	Z	SOF
Mg2	2i	0.28330	0.81370	0.28950	1
V1	1a	0	0	0	0.2620
Mg1	1a	0	0	0	0.7380
V2	2i	0.38850	0.46280	0.11560	0.9340
Mg3	2i	0.38850	0.46280	0.11560	0.0660
V3	2i	0.95250	0.28480	0.47840	0.9340
Mg4	2i	0.95250	0.28480	0.47840	0.0660
P1	2i	0.22440	0.14220	0.76940	1
P2	2i	0.08790	0.58930	0.83440	1
Р3	2i	0.60870	0.76940	0.63290	1
01	2i	0.22510	0.19830	0.94480	1
02	2i	0.54580	0.62090	0.71530	1
03	2i	0.01330	0.18560	0.65900	1
04	2i	0.10490	0.78780	0.91840	1
05	2i	0.73380	0.96280	0.76890	1
06	2i	0.37330	0.77340	0.50900	1
07	2i	0.05720	0.54320	0.64970	1
08	2i	0.45660	0.25960	0.77070	1
09	2i	0.87340	0.45790	0.83680	1
010	2i	0.76060	0.72220	0.53730	1
011	2i	0.20960	0.94010	0.70630	1
012	2i	0.30880	0.53980	0.91850	1

Table S1 Crystallographic data for pristine Mg ₃ V ₄ (PO ₄) ₆	

	Pristine MgVP/C	Discharged MgVP/C
Molar Curie constant C_{mol} (cm ³ K mol ⁻¹)	3.257(3)	0.1316(7)
paramagnetic effective moment μ_{eff} (μ_{B})	5.10(1) (2.55(1) per V)	-
Weiss constant θ (K)	-51.8(3) K	0 (not refined)
Temperature independent sus. χ_{TI} (cm ³ mol ⁻¹)	0 (not refined)	$8.48(3) \cdot 10^{-3} \ (\sim 1 \cdot 10^{-2})$

Table S2 Parameters obtained from Curie-Weiss fit to pristine and discharged MgVP/C.

Table S3 Results of refinement to magnetic dc data according to model 'Ex' and 'no Ex'.

	Parameters model 'Ex'			Parameters model 'no Ex'		
		value	remark		value	remark
Total orbital quantum nr. $J = S$		1	fixed		1	fixed
Isotropic exchange J_{iso}	#1	-0.209(4) cm ⁻¹	free			
axial ZFS param. D	#2	– 235.4(8) cm ⁻¹	free	#1	– 357(2) cm ⁻¹	free
transverse ZFS param. <i>E</i>	#3	6.06(1) cm ⁻¹	free	#2	6.22(1) cm ⁻¹	free
isotropic effective g_{iso} parameter	#4	1.786(1)	free	#3	1.758(1)	free
Residual of fit		0.000018			0.000025	

Vanadium			Oxygen			V-O-coordination		
Label	0x.	Wyck.	Label	0x.	Wyckoff	Symmetry	Distance (Å)	
V1	3	1a	01	-2	2i	-x,-y,-z 445	2.182	
V1	3	1a	01	-2	2i	x,y,z 554	2.182	
V1	3	1a	04	-2	2i	-x,-y,-z 455	1.978	
V1	3	1a	04	-2	2i	x,y,z 544	1.978	
V1	3	1a	05	-2	2i	-x,-y,-z 555	2.167	
V1	3	1a	05	-2	2i	x,y,z 444	2.167	
V2	3	2i	01	-2	2i	x,y,z 554	2.077	
V2	3	2i	02	-2	2i	-x,-y,-z 555	1.82	
V2	3	2i	08	-2	2i	-x,-y,-z 555	2.04	
V2	3	2i	09	-2	2i	-x,-y,-z 555	2.015	
V2	3	2i	012	-2	2i	x,y,z 554	2.023	
V2	3	2i	012	-2	2i	-x,-y,-z 555	2.041	
V3	3	2i	03	-2	2i	x,y,z 655	1.993	
V3	3	2i	06	-2	2i	-x,-y,-z 555	2.07	
V3	3	2i	07	-2	2i	-x,-y,-z 555	2.025	
V3	3	2i	07	-2	2i	x,y,z 655	2.055	
V3	3	2i	010	-2	2i	-x,-y,-z 655	1.877	
V3	3	2i	011	-2	2i	-x,-y,-z 555	1.926	

Table S4 V-O-coordination distances of $Mg_3V_4(PO_4)_6$ according to previous work^[1].

Magnetic models for DC data fitting:

$$\widehat{H} = \widehat{H}_{EX} + \widehat{H}_{CF} + \widehat{H}_{ZEE}$$
(S1)

 \hat{H}_{EX} : exchange interaction / magnetic coupling \hat{H}_{CF} : crystal field interaction \hat{H}_{ZEE} : Zeeman effect

$$\widehat{H}_{EX} = -2 \sum_{i \neq j}^{i, j \in N} \vec{\widehat{S}}_i \cdot \overline{\overline{J}_{ij}} \cdot \vec{\widehat{S}}_i$$

 $\vec{\hat{S}}_i$: Vector operator total spin orbital momentum J_{ij} : complete ((an)isotropic and antisymmetric) exchange tensor

$$\widehat{H}_{CF} = \sum_{i=1}^{N} \sum_{k=2,4,6} \sum_{q=-k}^{k} \sigma_i^k B_{ki}^q \theta_k \, \widehat{O}_{ki}^q$$

 B_{ki}^{q} : Crystal field parameters ($A_{ki}^{q} \langle r^{k} \rangle_{i}$ in Steven's notation) θ_{k} : operator equivalent factors \hat{O}_{ki}^{q} : operator equivalents

$$\widehat{H}_{ZEE} = \mu_B \sum_{i=1}^{N} \left(\sigma_i \vec{\widehat{L}}_i \cdot \overline{I} + \vec{\widehat{S}}_i \cdot \overline{g}_i \right) \cdot \vec{B}$$

 μ_B : Bohr magneton \overline{I} : identity matrix \overline{g}_l : *g*-tensor \overrightarrow{B} : magnetic induction

Spin quantum states:

Triplet basis set: |1, −1 >, |1,0 >, |1,1 >

$$G_{m1}(0 \text{ T}): \quad \frac{1}{\sqrt{2}}|1,1> -\frac{1}{\sqrt{2}}|1,-1>$$
 (S2)

 $G_{m2}(0 \text{ T}): \frac{1}{\sqrt{2}}|1,1> + \frac{1}{\sqrt{2}}|1,-1>$ (S3)

$$H_n: - |1,0>$$
 (S4)

Determination of relative amount of V^{2+} present in the discharged sample compared to the amount of V^{3+} present in the pristine sample (Langevin paramagnetism):

$$C_{V3+} = \frac{\mu_B^2 \cdot n_{V3+} \cdot \left(\mu_{eff}^{V3+}\right)^2}{3k_B}$$
(S5)
$$C_{V2+} = \frac{\mu_B^2 \cdot n_{V2+} \cdot \left(\mu_{eff}^{V2+}\right)^2}{3k_B}$$
$$\frac{n_{V2+}}{n_{V3+}} = \frac{C_{V2+} \cdot \left(\mu_{eff}^{V3+}\right)^2}{C_{V3+} \cdot \left(\mu_{eff}^{V2+}\right)^2}$$

$$\frac{n_{V2+}}{n_{V3+}} = \frac{0.1316 \cdot 8}{3.257 \cdot 15} = 0.021549$$

[1] S. H. Porter, J. Xiong, M. Avdeev, D. Merz, P. M. Woodward, Z. Huang, *Inorganic Chemistry* **2016**, 55, 5772.