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A constitutive model describing the deformation-induced martensite transformation in metastable austenitic CrNi steels is
presented. In line with the previous work of Stringfellow et al. [1], the material is considered to have a composite response
of the underlying austenite and the evolving martensite phases. The stresses and strains in the individual phases are de-
scribed using viscoplastic models. The effective properties of the material are then computed by a homogenization method.
Strain hardening in the individual phases is represented using separate flow rules. Furthermore, based on the plastic strain
in the austenitic phase, a transformation kinetics model describes the evolution of the martensite volume, in the two-phase
composite.

A numerical implementation of the model is done in the finite element program FEAP [2]. The parameters in model are
identified by experimental data using the least-squares optimization. Finally, some results are presented using an illustrative
boundary value problem of a structured surface.
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1 Introduction

Austenitic stainless steels when alloyed with nickel stabilize the austenitic phase to lower temperatures. The austenite (γ)
in these kind of steels is (largely) metastable and requires an external mechanical load to be transformed to a more stable
martensitic (α′) phase. The kind of mechanical process that drives this phase transformation depends on the temperature.
Above martensite start temperature Ms and below a temperature known as Mσ

s , the applied stress assists the transformation in
preexisting nucleation sites, by adding the mechanical energy to the existing chemical energy difference between the phases,
providing the minimum activation energy required. Above Mσ

s , the stress required for the phase transformation, reaches
the yield strength of the material, thus resulting in plastic deformations. This plastic deformation in the austenitic phase
results in generation of shear bands, a collective term for active slip systems with ϵ martensite, mechanical twins or grain
boundaries, as coined by Olsen and Cohen [3]. The intersections of these shear bands were found to act as potential new
martensitic nucleation sites [3, 4]. Thus, this kind of phase transformation process is known as strain or deformation induced
transformation, where as the former process is known as stress assisted transformation. The phenomenon of transformation
by mechanical loads is observed till a temperature known as Md, above which the chemical energy difference between the
phases is so low that no further phase transformation is possible before fracture [1, 3].

In the current work, the focus is laid on the modelling of deformation induced phase transformation, where the applied
deformation drives the transformation of γ → α′. This transformation also results in an inelastic volumetric and deviatoric
deformation, a phenomenon known as transformation induced plasticity. This, combined with the strain hardening in the
austenite and the evolving martensite phases causes the material to exhibit properties such as high strength and pronounced
ductility. The model presented here, is based on the work of Stringfellow et al. [1]. It contains a part that models the stress-
strain behavior of composite two phase austenite martensite and another part that models the evolution of phase transformation
process.

2 Constitutive model

For the sake of simplicity, a geometric linear strain viscoplastic formulation is used. The corresponding relation for the Cauchy
stress σ in rate form is given by

σ̇ = C : (ε̇− ε̇p), where C = 2GI+ (K − 2

3
G)I ⊗ I (1)

represents the isotropic linear elastic modulus. The parameter G is the shear modulus, K is the bulk modulus, I is the
fourth order identity tensor and I is the second order identity tensor. The variables ε̇, ε̇p are the total and plastic strain rates
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respectively. Decomposition of stress and strains in (1) into volumetric and deviatoric components yields,

σ̇ = Ṡ − ṗI = K(ε̇v − ε̇pv)I + 2G(ė− ėp), (2)

where p is the pressure or the volumetric stress, ε̇v and ε̇pv are the trace of total and plastic strain rates respectively. The
deviatoric stress S can be written as a product of an equivalent shear stress τ times the directional tensor N as,

Ṡ =
√
2τN , where τ =

√
1

2
S : S =

√
1

2
||S||, N =

S

||S|| . (3)

Similarly, the total and plastic deviatoric strain rates ė and ėp can be written as

ė =
1√
2
γ̇M , ėp =

1√
2
γ̇pN , (4)

where γ̇ =
√
2||ė|| and γ̇p =

√
2||ėp|| are the total and plastic equivalent shear strains rates respectively. The variable M

is a unit tensor coaxial to ė. The strain rate ėp is coaxial with the deviatoric stress S. Using (3) and (4), relation (2) can be
decomposed as

ṗ = −K(ε̇v − ε̇pv), τ̇ = G(M : N γ̇ − γ̇p). (5)

To compute the rates of p and τ , the evolution equations for ε̇pv and γ̇p are required. The austenitic crystal in its transformation
to martensitic crystal structure undergoes an increase in volume and also experiences a change in shape. The rate of increase
in volume is captured by ε̇pv and it given as

ε̇pv = ∆v ḟ , (6)

where ∆v represents the relative change in volume associated with γ → α′. The term ḟ represents the rate of change of
martensite volume fraction f . The change in shape results in a transformation contribution to γ̇p, the remaining contributions
are due to dislocation movements in the austenitic and the martensitic phases. Thus,

γ̇p = Aḟ + fγ̇m + (1− f)γ̇a, (7)

where the constant A represents the effect of the shape strain orientations on a distribution of nucleation sites. It is computed
using the relation,

A = A0 +A1

(
τ

s∗a

)
, (8)

where s∗a is the reference stress of austenitic phase, A0 and A1 are numerical constants. The evolution of flow stresses in the
individual phases γ̇a/m is defined using a viscoplastic model with a power-law relation as,

γ̇a/m = γ̇∗
0

(
τa/m

sa/m

)M

, (9)

where γ̇∗
0 is a reference strain rate, M ≥ 1 is a material constant and sa/m represent the current shear strength of the austenitic

and martensitic phases respectively. The relation between global and the local stresses and strain rates in the individual phases
can be given by the use of homogenization methods. Here, in order to avoid the computational cost due to iterative solving of
nonlinear homogenization equations at the material level, as it is in the case of Stringfellow et al. [1], a simple Sachs/Reuss
homogenization scheme is used. This scheme assumes that the stress, both in local and global domains, are identical, thus
resulting in τ = τa = τm. Under this assumption, (9) becomes

γ̇a/m = γ̇∗
0

(
τ

sa/m

)M

. (10)

The shear strength of the austenitic and martensitic phases sa/m increases due to the strain hardening caused by the plastic
deformation. Martensite, being lot harder that austenite, has significantly different hardening behavior in comparison to the
austenite. So, two separate hardening laws are used

sa/m = s∗a/m

(
1 +

γa/m

γ∗
a/m

)na/m

. (11)
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3 Phase transformation kinetics

A numerical model for the deformation induced γ → α′ was initially proposed by Olsen and Cohen [3]. Considering the shear
band intersections as potential martensitic nucleation points, they proposed a 1D model that depends on temperature and the
plastic strain rate in austenite. Stringfellow et al. [1] generalized this model to 3D, coupled it with the stress strain response
and also considered the influence of stress state on the phase transformation. The evolution model used in the present work is
adapted from Stringfellow et al. [1] and the presentation style below is followed from Papatriantafillou et al. [5].
The rate of change of the martensitic volume fraction f is given by

ḟ = (1− f)(Af γ̇a +Bf Σ̇), (12)

where as Σ is stress triaxiality and is defined in (13). The factor (1 − f) forces the rate of phase transformation to decrease
with the consumption of available austenite volume, resulting in sigmoidal transformation curves.

Σ = − p√
3τ

(13)

The coefficient Af is given by

Af = αβr(1− fsb)(fsb)
(r−1)P, (14)

where fsb is the volume fraction of shear bands in austenite. It evolves with the plastic strain

ḟsb = (1− fsb)αγ̇a, (15)

where α is a constant representing the rate of shear band formation dfsb/dγa. Its value decreases with an increase in temperature.
The parameter r is the exponent that models the randomness of shear band orientations and β is a geometrical constant.
Based on the observation that martensite grows only in a certain fraction of shear band intersections that cross the minimum
thermodynamic energy barrier, a probability parameter P is defined. It is cast in the form of Gaussian cumulative probability
distribution of the normalized thermodynamic driving force g.

P =
1√
2πSg

∫ g

−∞
exp

[
− 1

2

(
g′ − ḡ

sg

)2]
dg′, (16)

where ḡ and sg are the mean and the standard deviation of the distribution of the minimum g values required for the activation
of shear band intersections. The driving force g considers the influences of temperature and stress by the relation

g = g0 + g1Θ+ g2Σ, (17)

where g0, g1, g2 are dimensionless constants, Θ is the normalized temperature related to the absolute temperature T by

Θ =
T −Mσ

s

Md −Mσ
s

. (18)

The coefficient Bf is given by the expression

Bf = βfsb
r g2√

2πSg

exp

[
− 1

2

(
g − ḡ

Sg

)2]
H(Σ̇), (19)

where H(Σ̇) is the Heaviside function of the stress triaxiality rate.

4 Numerical implementation

The model is implemented as a material routine in a finite element environment. The time differential equations shown above
are integrated using explicit integration at the material level, where as the global finite element formulations are integrated
implicitly and are solved using Newton’s method. A general overview of the steps involved in solving the material equations
is presented below.

The simulation is considered to be displacement driven. Thus for a given time increment [tn, tn+1] and at a given Gauss
point, the values of strain εn+1 and the strain rate ε̇ at the time tn+1 are known. Also known are the values of stress σn and
the internal variables (fn, γa|n, γm|n, ṗ, τ̇ ) at time tn, the updated values of these variables have to be evaluated at the time
tn+1. The steps for the corresponding computation are as follows:
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Using σn, the pressure p and the deviatoric stress S at time tn are computed by

pn = −σii|n
3

, Sn = σn + pn I. (20)

With these results, the values of τn, Σn can be computed using (3) and (13). Furthermore, the value of Σ̇ can be calculated
using the relation given in Stringfellow et al. [1] as

Σ̇ = Σ

(
ṗ

pn
− τ̇

τn

)
. (21)

In the next step, ε̇ is decomposed into volumetric ėv and deviatoric ė components. Then the equivalent strain rate γ̇ and the
directional tensor M of ė are computed. In the following step, the trail deviatoric stress Str is computed by

Str = Sn + 2Gė∆t, (22)

where, ∆t = tn+1 − tn. The unit tensor N can be obtained from

N =
Str

||Str|| . (23)

Thereafter, using the values of γa|n, γm|n and τn the shear strengths sa/m|n and the rate of increase of plastic strains γ̇a/m
in the individual phases are computed using the relations (11) and (10). The shear band volume fraction fsb at time tn is
computed in the next step, using a relation obtained from the integration of (15) as

fsb|n = 1− e−αγa|n . (24)

In the following step, the values of driving force g and the cumulative probability P are calculated at time tn, using (17)
and (16). With the results above, the coefficients Af and Bf at time tn are evaluated:

Af |n = αβr(1− fsb|n)(fsb|n)(r−1)Pn, Bf |n = βfsb|nr g2√
2πSg

exp

[
− 1

2

(
gn − ḡ

Sg

)2]
H(Σ̇). (25)

The rate of martensite volume fraction ḟ can be obtained from

ḟ = (1− fn)(Af |n γ̇a +Bf |n Σ̇). (26)

In the following step, the equivalent volumetric and the deviatoric plastic strain rates ėpv, γ̇
p of the material are derived from

ėpv = ∆vḟ , γ̇p = Anḟ + fnγ̇m + (1− fn)γ̇a. (27)

Using these strain rates, the corresponding equivalent stress rates ṗ and τ̇ are computed as

ṗ = −K(ėv − ėpv), τ̇ = G(M : N γ̇ − γ̇p). (28)

The next step involves updating the internal variables to time tn+1 using an explicit integration scheme:

fn+1 = fn + ḟ∆t,

γa|n+1 = γa|n + γ̇a∆t,

γm|n+1 = γm|n + γ̇m∆t,

pn+1 = pn + ṗ∆t,

τn+1 = τn + τ̇∆t.

(29)

Finally, using the updated equivalent stresses pn+1, τn+1, the stress tensor at time tn+1 is available from

Sn+1 =
√
2τn+1N ,

σn+1 = Sn+1 − pn+1I.
(30)

This concludes the integration process for the current time increment [tn, tn+1] and the steps are repeated for the subsequent
increments. For solving the global FE formulations using the Newton’s method, a material tangent ∆σn+1/∆εn+1 has to be
provided. This tangent, updated at every time increment (usually) results in fast convergence. In the current work, the material
tangent at all time increments is considered to be same as the isotropic elastic tensor C, shown in (1). This assumption, may
result in more iterations for the convergence, but it won’t have any influence on the final converged result.
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5 Parameter identification

The parameters in the current material model have to be estimated, so that the model is able to replicate the experimental
behavior of the considered metastable austenitic steel AISI 347. The values of elasticity modulus E, Poisson’s ratio ν of the
considered material and the values of the parameters that are adapted directly from Stringfellow et al. [1], are shown in the
Table 1.

Table 1: Material constants of AISI 347 and parameters adapted from previous works.

E ν r ḡ sg g1 g2 γ̇∗
0 M A0 A1 ∆v

191GPa 0.27 4 3220 290 1450 490 0.007 40 0.02 0.02 0.03

Since the experimental determination of Mσ
s and Md temperatures is difficult, the value of Mσ

s is taken to be same as
Ms temperature (192.018K for AISI 347 [6]) and the value of Md is assumed to be 400K. Further, an attempt has been
made to estimate the parameters (s∗a, γ

∗
a, na, s

∗
m, γ∗

m, nm) that model the hardening behavior of the individual austenitic and
martensitic phases, by fitting the corresponding hardening laws given in (11) with the experimental data of uniaxial tensile
tests. For the estimation of the hardening parameters of austenite, the plastic flow data of stable austenitic steel AISI 904L is
used and for the case of martensite, the parameters are fitted to a flow curve of a pre-worked AISI 347 steel with 80% final
martensite content. The corresponding plots are shown in Fig. 1 and 2, the resulted hardening parameter values are shown in
Table 2.
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Fig. 1: Fit of austenitic hardening law with AISI 904L.
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Fig. 2: Fit of martensitic hardening law with 80%
martensite AISI 347.

Table 2: Fitted hardening parameters of austenite and martensite phases.

s∗a γ∗
a na s∗m γ∗

m nm

357MPa 0.0299 0.3872 1106MPa 0.0014 0.018

It can be seen that in case of martensite, the fit shown in Fig. 2 is not optimal. Using these parameters, the remaining pa-
rameters were estimated by fitting them simultaneously with the experimental stress-strain and the martensite evolution curves
obtained during the uniaxial tensile loading of AISI 347 at a temperature of 192 K [6]. For this, the model is implemented in
finite element analysis program FEAP [2], using 8-noded solid elements and bi-linear shape functions. A two objective least
square error function, one for the stress-strain data and one for the martensite evolution-strain data are weighted to compute
the total error. This constrained optimization problem was then solved using the inbuilt MATLAB algorithm fmincon.

This identification approach of fixing the parameters shown in Tables 1, 2 and trying to estimate the remaining parameters,
led to non-conclusive results. The reason for this as mentioned in [7], could be that the hardening behavior estimated in the
Table 2, may not be able to correctly model the flow behavior of the individual phases that evolve with the plastic deformation.
After some trail and error, one of the combination that gave conclusive results is obtained by fixing the hardening parameters
of martensite along with the others mentioned in Table 1 and let the austenite hardening parameters be estimated along with
the remaining ones. The results is shown in the Fig. 3, 4 and the estimated parameters are given in the Table 3.

Table 3: Fitted remaining material parameters.

α β s∗a γ∗
a na g0

4.16 1.88 129MPa 0.0053 0.2008 3624
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Fig. 3: Fit with stress-strain data of AISI 347.
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Fig. 4: Fit with martesnite evolution-strain data of
AISI 347.

6 Results

The application of the model is demonstrated by an illustrative boundary value problem of structured surface, as shown
in Fig. 5. Boundary conditions prevent it from moving vertically. Also the deformations in thickness direction are restricted.
The body is displaced horizontally, up to a strain of 5%, in a duration of 100 s. Before deformation the material is considered
to be in 100% austenitic phase. The corresponding results of the stress in the horizontal direction and the martensite evolution
due to the applied deformation, are shown in Fig. 6 and 7.

Fig. 5: Boundary value problem
with structured surface. Fig. 6: Stress distribution in

horizontal direction.
Fig. 7: Martensite evolution f .

The bottom of the grove, experiences higher stresses due to the geometry, thus a visible phase transformation is to be
observed. There, as it can be seen in Fig. 7, around 18 % of austenite has transformed to martensite.
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